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ABSTRACT

As power system generating facilities increase

in size, number and complexity, the power utility is faced

with a range of decision scheduling problems. The simple

rules of thumb, based on human judgement alone are no longer

applicable in the solution of intricate cases. The applica

tion of mathematical programming techniques as a supplement

to human judgement has aroused considerable interest among

power system engineers. The present work is primarily con

cerned with the development of mathematical models and sche

duling algorithms for a range of decision making situations

arising in the daily and/or periodic functioning of a power

plant or group of power plants under centralized administra

tion. Based on the structure of the mathematical models used

the work is classified into two parts. In the first part,a

number of maintenance scheduling and allied problems are

formulated as integer linear and nonlinear programs. In the

second part, generation scheduling problems are formulated

as mixed integer nonlinear and continuous variable nonlinear

programs.

First of all, the problem, of preventive maintenan

ce scheduling is discussed. A 0-1 integer programming

model is presented for obtaining minimum maintenance cost

schedules. A set of comprehensive and interacting cons

traints, such as sequencing of generating units, security
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considerations , resources limitation etc. are transformed

into the integer programming format. The problem becomes

an involved one, when a large number of units are to be

maintained during the multiperiod scheduling horizon. A

new, simple and efficient optimization technique is deve

loped for the solution of the problem„ The method is supe

rior to the other known integer programming procedures as,

it exploits the special properties of the model. In the

overhauling of power plants? the maintenance staff is inter

changed between stations at times of overhauls. A mathema

tical description of the problem of staff interchange sche

duling is presented and solved through the 0-1 programming

approach. Thus, the program makes available the required

number of craftsmen of each category at the minimum cost.

Next, the problem of corrective maintenance schedul

ing is presented. To have built-in maintenance at the

design or planning stage is referred to as the problem of

corrective maintenance. A system analyst / designer is faced

with the problem of designing systems having failure free

operation. Such an objective is fulfilled by designing

critical subsystems having a high degree of reliability.

A nonlinear programming formulation of the corrective

maintenance scheduling problem is presented. The analysis

results in the optimal number of standby components and

repair facilities to achieve a specific level of system
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reliability. A new scheduling algorithm is devised and

the results of computatj m are presented for generator

r> excitation system and turbine cooling system .
T —

In the next section, the problem of maintenance

budgetary control is discussed. Choosing a sound and

effective maintenance policy reduces the system down-time

and thus increases the revenue to the utility. The objec

tive is aimed at selecting that set of proposals which

will maximize the net present value of its total expected

return. The problem is discussed under conditions of cer

tainty and uncertainty. A mathematical version of the

problem is presented and scheduling algorithms are develo

ped for deterministic and probabilistic cases.

After the units have been scheduled for preven

tive maintenance on annual basis, the next problem is

the selection of units out of the available set for real

time operation. This is referred to as the problem of unit

commitment scheduling. The total production cost to be

minimized is the sum of running cost, shut down cost and

time dependent start up cost . The security model incor

porated provides a means for assessing system security in

hour-to-hour operation on a probabilistic basis., An eff

icient computation procedure is/ developed based on the

premise of feasibility and economic dispatch. Results of

computation are presented to obtain a 2^hour schedule
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for a medium size system drawn from the literature. In

the end a continuous variable nonlinear model is presented

for the real power scheduling. A linearized representa

tion of the network is used to include the effect of trans

mission losses. An efficient multivariable constrained

search iterative procedure is developed for the solution

of coordinating equations. A scheduling algorithm is

developed and results are presented for a sample system.

The computation time and storage are encouragingly small-

Avenues of future research in the area are discussed.
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CHAPTER I

INTRODUCTION

STATEMENT OF THE PROBLEM

As power generating facilities increase in size,

number and complexity, the power utility is faced with a

range of decision scheduling problems . In today's economy

technological, environmental and competitive factors, inter

act in a complicated fashion and it becomes difficult to

make up a schedule that is both realistic and economical.

A broader meaning is attached to the word scheduling and

it implies, the preparation of a time table, a plan, a pro

gramme or a scheme. It is a rational approach to execute

decisions according to a prepared schedule, as the prepara

tion involves, the diagnosis and detailed analysis of the

problem. In the past , human judgement has been used in

the preparation of schedules and this works well for tack

ling simple situations. In the present times, the simple

rules of thumb based on judgement alone are no longer appli

cable in the solution of intricate cases. The application

of mathematical programming techniques, as a supplement

to human judgement has aroused considerable interest among

power system engineers. The present work is primarily

concerned with the development of mathematical models and

scheduling algorithms for a range of decision making situ

ations arising in the daily and/or periodic functioning of



a power plant or a group of power plants under centralized .

administration.

APPROACH

A generating system is considered to be composed

of a management system and the equipment. Both of these

could be further classified into their subsystems , which

are interconnected and interdependent in operation, concepts

and objectives. The problems of importance faced by the

utility are identified and posed to the system analysts .

The problems are approached from a systems view point as,

such an approach is inter-disciplinary and takes benefit

of the experience of the designers of equipment, financial

experts, administrators J system operators and dispatchers.

A prelude to a quantitative analysis of a decision schedul

ing problem is a thorough qualitative analysis. Thus,'a

realistic appraisal of the specifics of the problem is

obtained by the system analyst. After obtaining a feel

of the problem, a suitable mathematical model, which keeps

a balance between detail and tractability is formulated.

The model building involves the choice of an objective or

a measure of effectiveness. In pursuit of its objective

all systems operate within a set of constraints, some

self imposed and some stemming from technical considera

tions. The time horizon for which the decisions are to

remain valid is specified. The input data requirements



for the model are also specified. Some of the data may

be readily available and the other may be gathered from

past historical records.

Now depending upon the nature of the objective

function, constraints and the type of decision variables,

the problem^are usefully classified by a number of att

ributes. The problems may be , linear or nonlinear, dis-s

crete or continuous, deterministic or probabilistic. Exam-

pies of these various models are available in the work
^ ,

presented.

After the problem is casted into a suitable mathe

matical model, the next question is the selection of a par

ticular technique of analysis.. At this stage, the structure

of the model could be usefully exploited in simplifying the

solution procedure. The choice of a particular technique

is primarily governed by the type of the model and the

experience of the system analyst. Developing new, simpli

fied and efficient algorithms is an active area of research

where the system scientists can exhibit their ingenuity.

REVIEW AND SCOPE

The reliability of operation, production cost and

capital expenditures on a power system are all affected

by the maintenance outages of generating facilities. The

statistics available for the year 1970 indicate that the



U.S. industry alone has spent 1.5 billion dollars on the

preventive maintenance of thermal generting units during

this year [mo] • In addition to rising costs, present
trends in the business are to large generating units,

stronger interconnections, and greater difficulties in

maintaining adequate reserves. The objective of maintenance

scheduling is to evolve an overall maintenance policy con

sidering the various facets of the problem.

First of all the problem of preventive maintenance

scheduling is discussed., The task of scheduling preventive

maintenance involves specifying dates at which man power is

to be allocated to an overhaul of a major functional ele

ment or group of elements. The problem has been attacked

by many authors [11,12,1^,22,2*f,26,28,32,k6t52,59J and
useful contributions have been reported. In the early

attempts [11,12,22,^6,52] rigorous approaches have been
rejected as impractical and adhoc computer algorithms have

been developed in an attempt to do this scheduling automa

tically. With all their limitations, the contributions

are valuable, in the sense that these have served the need

of the industry in the absence of algorithms resulting in

global optimal solutions. The problem of preventive main

tenance scheduling has been also discussed in the literature

with reference to the generation expansion schedules u28j

and the unit commitment schedules [2^,26]* The Pr°blem
becomes an involved one, when a large number of generating



units are to be scheduled for maintenance in the multi-

period scheduling horizon.

The application of mathematical programming

techniques to the problem of preventive maintenance is

a recent trend. Gruhl £2^1 has advanced a mixed-integer

model for the general scheduling problem, in which, main

tenance scheduling is solved as a sub-problem. Zurn and

Quintana [59^f have presented a valuable contribution pro

posing "group sequential scheduling" to find a compro

mising or good feasible solution to the problem. A large

class of scheduling problems are also formulated as 0-1

integer programs (V4"*1^.] .Dopazo and Merrill [I'+jhave
used an integer programming formulation for the preventive

maintenance problem. The solution procedure uses Bala's

algorithm for finding the optimal solution. In this pro

cedure some of the variables are initially assigned values

and these are called partial solutions. The completion

of these partial solutions are tested and in this process

some of the infeasible solutions are ignored. All solutions

are generated explicitly or implicitly . Lot of book -

keeping has to be done in order to keep a record of the

initial position of the variables. A back-tracking proce

dure is used in the method to avoid redundancy.

The present work offers the 0-1 integer programm

ing model that includes the new constraining equations.
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The elements of uncertainty associated with the availa

bility of resources are considered [33] •The model has

the advantage that a diversity of constraints are easily

transformed into the problem format. The mathematical

model is critically analyzed and arranged in a systematic

fashion. A new and efficient tree search optimization

technique is developed exploiting the special structure

of the model. Programming considerations for reducing

the storage of binary vectors are presented. New skipp

ing rules are evolved for eliminating many infeasible

solution v ec tors.

Next , the problem of corrective maintenance

scheduling is presented. To have built-in maintenance

in the system at the design pha.se or planning stage is

referred to as the problem of corrective maintenance

scheduling. The system analyst/ designer is posed

with the problem of preparing design schedules, which

result in the failure free operation of the systems, as

far as possible. Such an approach reduces the expendit

ure on maintenance during the operating life of the sys

tem and also enhances the system reliability [9, 51 J •

Billinton and Krasmodekski [5 ] have also emphasized

the inclusion of reliability and maintainability analysis

at the design phase. In the present work a nonlinear

integer programming formulation of the corrective main

tenance problem is presented. The analysis is useful



in deciding power plant sub-system configuration and

size [32l ,The objective is aimed at maximizing the
system reliability or minimizing the cost subject to

the attainment of a specific level of system reliability...

The analysis results in the optimal number of standby

components and repair facilities. A scheduling algorithm

is developed and results are presented for a! generator

excitation system'and 'turbine cooling system'.

In the next section, the problem of maintenance

budget scheduling is discussed. The selection of a

portfolio of proposals out of a set of alternatives

involving capital expenditure is referred to as the

problem of budgetary control or budget scheduling [9 J*

The future success of a policy, consisting of a set of

proposals, depends upon the investment decisions made

today. Choosing a sound and effective maintenance

policy enhances the life of the equipment, reduces

system down-time and thus increases the revenue to the

utility. Bierman and Smidt [6J have emphasised the
role of net present value, as a measure of total expected

return to the utility. Mao and Wallingford [iftj have
solved investment decision scheduling problems using

Lawler and Bell L37j method of integer programming.

The method does not take advantage of the special str

ucture of the model. In this method, the problem is

arranged in a special form and this increases the
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value of the constraints to double. The generation of

the solution is started by keeping one variable as unity

and remaining variables as zero. Then tests are applied

for generating the next vector. In this process some

of the solutions are skipped. In going from one solu

tion vector to the next many intermediate steps are

involved and these are also time consuming. In the

present work integer linear and nonlinear models are

presented for the control of maintenance expenditure on

thermal generating units. The objective is>aimed at

selecting that set of proposals for maintenance, which

will maximize the net present value of its total expec

ted return . New and efficient maximization algorithms

are developed for the deterministic and probabilistic

cases.

After the units have been scheduled for preven

tive maintenance on annual basis, the next problem is

the selection of units out of the available set for

real time operation. This is referred to as the prob

lem of unit commitment scheduling. The objective func

tion to be minimized is the total production cost, which

is a summation of the running cost, shut down cost and

time-dependent start up cost. The earlier practice was

to start up and shut down units in accordance with

a priority list based on unit heat rates |}f,29j •Such
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an approach could impair reliability and economics of

operation. The work in the area of application of mathe

matical techniques to the problem of unit commitment

started about a decade ago and many useful contributions

[1>l5,23,25i26,38,39,l+3l have been presented. Garver[2l]
as advanced an integer programming formulation of the

problem.Muckstadt and Wilson [39J use a mixed-integer

model and employ Benders Decomposition to find a solution.

Lowery £38] has recommended the use of dynamic programming

and subsequently Guy [_25j and Ayoub and Patton L*1 J have

used this approach incorporating the evaluation of

security into the model. A useful comparative study of

some methods for the hydro-thermal generating unit commit

ment has been reported by Nagrath and Kothari V+3^ in

a recent contribution. The present work takes a differ

ent approach and develops a new direct iterative proce

dure based on the premise of feasibility and economic

dispatch. The heuristics developed limit the search

in the region of interest and help to speed up the enu

meration of binary vectors. A scheduling algorithm is

designed and its applicacy tested on a system drawn

from the literature.

In the end the problem of real power scheduling

is discussed. The theory of this subject is well developed

and many useful contributions [V, 16,31 ,^2,^,^9,50,53 ,5k]
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have appeared in the literature. In the work reported

a linearized representation of the network is used to

include the effect of transmission losses. An efficient

multi-variable, constrained search iterative procedure

is developed for the solution of coordinating equations.

The limit on the line flows is included in the model.

A scheduling algorithm is developed and its applicacy

is tested on a sample system. The data is assumed to

be available for the models presented.

ORGANIZATION OF THE THESIS

The work is classified into four chapters in

addition to the first and the last chapters, which con

tain the introduction and conclusion of the subject. A

chart showing the type of the problem tackled and the

nature of the mathematical model used is displayed in

Fig. 1, In the second chapter, the preventive maintena

nce scheduling of power plants is discussed. An effi

cient scheduling algorithm is developed for the solution

of the problem. In the third chapter of the thesis,

the problem of corrective maintenance scheduling is

presented. The applicacy of the analysis is demonstrated

for a generator excitation system and turbine cooling

system*[lOJ . In the fourth chapter, the problem of

maintenance budget scheduling is presented. Two
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maximization algorithms are developed for the determini-
sti, and probabilistic cases. In the fifth chapter the
generation scheduling problems are discussed. Simplified
and efficient algorithms are devised for the solution
of the problems. In the last chapter, the conclusions
regarding the contributions made by the author are drawn.
Some suggestions, for further investigations in this
field which might lead to some interesting results,
have been included in the concluding discussion.



CHAPTER II

PREVENTIVE MAINTENANCE SCHEDULING

The task of scheduling preventive (that is rou

tine or planned) maintenance involves specifying dates

at which manpower is to be allocated to an overhaul of

a major functional element or a group of elements. The

scheduling interval between two successive maintenance

events is decided based on the type and the state of

the unit to be maintained. As the'"number and complexity

of the units increase, manual scheduling becomes both

difficult and tedious. A detailed description of the

present day practice for the scheduling of maintenance

for the fossil fuel generating facilities is available [9]

The problem of preventive maintenance has been

attacked by many authors , In the early attempts [l1,12,
22,*+6> 52J rigorous approaches have been rejected as

impractical and adhoc computer algorithms have been deve

loped in an attempt to do this scheduling automatically.

The three serious drawbacks of these methods are 1

(i) they may fail to find a schedule satisfying

the problem constraints, even when one does

exist,
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(ii) while they implicitly incorporate a criterion

of goodness, they do not always find the best

schedule in terms of this criterion; and

(iii) the criterion of goodness is limited to either

equalizing net reserve or requalizing an

approximation to "Loss of Load Probability".

The application of mathematical programming tech

niques to the maintenance scheduling is a recent trend.

Gruhl [2^] has advanced a mixed integer model for the

general scheduling problem in which , maintenance scheduling

problem of thermal generating u^its is solved as a

sub-problem. However, this algorithm is suboptimal and

may fail to find a schedule satisfying the constraints ,

even when one exists [ik] .Recently 2urn and Quintana

[59] have proposed "Group sequential scheduling" to find
a compromising or good feasible solution to the problem.

The grouping criterion is the same as used by Hara et al

[26] .A large class of scheduling problems are also

formulated as 0-1 integer programs [nh,k-5~\ .Dopazo

and Merrill [iv] have used an integer programming model
in formulating the preventive maintenance scheduling
problem. . The solution procedure uses Bala's additive

algorithm [2J. The method is not an efficient one and
the programming is involved. The present work offers

the 0-1 integer programming model that includes new
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constraining equations. There is always an element of

uncertainty associated with the availability of resour

ces specially, during the later intervals of the scheduling

horizon. Such a requirement is modelled with the help

of chance constraints. Some of the old units requiring

maintenance more than once during the scheduling horizon

are also modelled. These constraints have not been

considered in' the earlier formulation fl^l • The model

has the advantage that a diversity of constraints asso

ciated with the problem are easily transformed into the

0-1 format.

2.1 MODELLING

The problem of preventive maintenance of fossil

fuel generating units involves the determination of the

periods or intervals during which the overhauling is

to be done on each of its units in a multiperiod schedul

ing horizon* The cost of preventive maintenance is to

be minimized subject to the satisfaction of a set of

interacting and comprehensive constraints.

The maintenance scheduling problem is set up

as a 0-1 integer program, whose general form is

n

Minimize x z - £_ Gi xi (2«1)
j=1



16

Subject to:

n

a±J ^« b± (2.2)

3»1
(i a 1,2,..., m)

x, a 0 or 1 (2.3)
J

where? c. are the cost coefficients and a.. are

the constraint coefficients, b^ are the limits on

the m constraints. A variable x. is unity when
J

the maintenance starts on a generating unit in a par

ticular interval and is zero if the maintenance does

not start in that interval. In accordance with the

generally accepted terminology, a veretor S a- (x^,xp,

..., x. ) is a solution to the problem. Moreover, if

the constraints (2.2) and (2.3) hold, then it is a

feasible solution. A feasible n-vector S is optimal

if and only if, the corresponding objective function

value z «^ Min zf ; where zf corresponds to all

feasible z values*

VARIABLES

Each x. is associated with beginning mainten-

ance on some unit G. during some interval k • Mainten

ance on unit G. is scheduled to begin during week k

if and only if the corresponding x. = 1. For each prob

lem, tables relating j»i,k are developed. For further

explanation and ease of exposition, Table 2.1 is presen

ted for a k- unit example. The variables x. are assigned
J
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to each unit for the start of maintenance in the allowed

intervals.

TABLE 2,1
t— .••„•••••.. w-M.aafe

Unknowns Associated with a h—unit Example
•.„•'«•• ~ .•• I. 1 . -. m - —* >• •• i * «•

— - t r - •••—-—- • ——i <—•»-• • -"-—*-* ,— .».. —-*

Unit Capacity Allowed Outage Associate: Mainten

0 MW
period duration variables ance

weeks weeks >tart in
1 i week*

x1 1

G1 80 1-lf 2 X2 2

x3 3

\ 2

Go 70 2-h- 1 x5 3
2

x6 h

G3 50 2-4- 2
x?

X8

2

3

x9 1

\ 110 1-3 1 X10

x11

2

3

COST FUNCTION

Depending upon the choice of the system analyst

and subject to the availability of appropriate data, the

objective of preventive maintenance could be to optimize

any of an important class of useful criteria . Some of

the important cost functions are : Minimum Lateness

Penalty Schedule, Minimum change from existing schedule

and the Minimum Cost Schedule.
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TABLE 2.2

Minimum Lateness Penalty Schedule Cost Function
. . .. T . .._; . ^ __!_ . ^ • -ft nil i- f\

V

-ic.

[

m*,**>#'>*^^wm»m» ••*+**+<¥*-<•>'-*• 'iri.i..^.'n .m,l**tim

Table 2*2 shows a possible cost function for

the h unit system of Table 2.1* For each generating unit

there is a penalty of 0 associated with beginning mainten

ance as early as possible, during the first allowed inter

val. There is a cost of 1 imposed for beginning mainten

ance in the second allowed week and cost of 2 for third

allowed week. The schedule that minimizes, this cost
»» tt

function is the Minimum Lateness Penalty maintenance

schedule for the system. Such penalty factors are similar

to the one used in the general problem of machine schedul

ing £581 . An example of Minimum changes cost function

is demonstrated for the following case. Suppose, an opti

mal maintenance schedule has been obtained for a particular

period and plans have been made with plant personnel and

parts suppliers to implement it. It then turns out that

a unit that was not .originally on the list to be maint

ained, needs to be scheduled for outage during this per-

iod# This has to be done with the minimum possible dis

ruption of the existing schedule. Minimizing the cost
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function shown in Table 2.3» provides the least disrup-

ti-f * changes from the existing schedule ClH-J •• The mini

mum disruptive changes are obtained by keeping the cost

coefficients for the new unit as zero.

TABLE 2.3

'Minimum Changes Cost Function

r Present Schedule

- -^- 2 3 0 1 2 ---0000

old unit New Unit

Particular attention is directed to a new cri

terion L14-J incorporating Rupees costs / benefits incurr

ed by delaying or advanging maintenance on a unit. Perfor

ming maintenance is viewed as a capital investment that is

expended over a 12 months period : for the maintenance

expenditure ^ne purchases 12 months of operation of the

unit. Fig. .2.1a shows that there is a cost associated

with maintaining a unit too early.

If the maintenance is delayed too long, the exp- .

ected maintenance cost will rise dramatically. Such a be

haviour Is displayed in Fig. 2.1b. The increased cost

is due to the accelerated deterioration of neglected mach

inery, that makes maintenance, when it is performed, more

expensive. There is also an expected cost associated with

rapid increase in the likelihood of forced outage.
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Fig. 2.1c is the sum of the costs of Fig.2.1a

and Fig, 2.1b. The optimum time to begin maintenance on

this unit is available from the figure. Cost functions

similar to Fig. 2.1c have been developed [1h-J . In the

absence cf constraints each unit is maintained at its

individual optimum time. The presence of a set of const

raints complicates the issue and the need for employing

a mathematical programming technique arises.

CONSTRAINTS

Some of the important constraints are very neatly

embedded implicitly in the model and need not be expressed

explicitly as (2.2). These constraints are : that each

unit must be maintained exactly once, that the maintenance

for each unit must occupy the required time duration, without

interruption, in a specified allowed time period.

A required precedence constraint is expressed

Xn words as unit m must be taken down exactly k weeks
It

after unit j comes back on line .

A resource constraint is a limit on the resources

(megawatt, manpower) available for maintenance at any

given time.

Because of security considerations, it may not

be possible to execute simultaneous maintenance on some

of the units. This is expressed by an exclusion constr

aint in words as No more than one of the units i,j,k,..
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be maintained simultaneously.

Some of the' old units, if, required to be main

tained twice during the scheduling horizon can be easily

included in the problem format. Such a requirement is

modelled by replacing the single unit by two equivalent

units of the same capacity and the maintenance on these

two units is separated by a fixed time horizon,

TABLE 2 A

Constraints Description for the h- Unit Example

Const
raint

No.

a- .
1J

Unit G1 Unit G2 Unit G3 Unit G^ \

x1 x2 X3 xh x5 X6 x7]
x8 X9 X10

1

1 0 0 0 • 0 0 0 -1 0 1 0

c

0 0

2 0 0 0 0 0 0 0 -1 0 1 0 0

3c 0 0

0

0

0

0

0

0

0

0

0

• 0

0

0 0

0 110

0

0

.1 0

h 80 o 150
5 80 80 0 70 0 0 5o 0 0 110 0 170

6 0 80 30 0 70 0 50 50 0 0 110 180

7 0 0 30 0 0 70 0 50 0 0 0 120

8 1 0 0 0 0 0 0 0 1 0 0 1

9 1 1 0 0 0 0 0 0 0 1 0 1

10c 0 1 1 0 0 0 0 0 0 0 1 1

Starting
week 1 2 3 2 3 k 2 3 1 2 3 -

Cost
coeff.

1 2 3 1 2 h 1 2 2 3 6
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A description of precedence constraint, resource

constraint and exclusion constraint is obtainable from

Table 2.*+ for the *f unit example presented in Table 2.1,

Constraints 1,2,3 correspond to the sequence of mainten

ance on units G» and G^ . These are referred to as the

procedence constraints. Constraints 1+,5j6,7 represent the

limit on the resources. Constraints 8,9 and 10 are fcr

preventing simultaneous maintenance on the units G1 and

G^. These are also called the exclusion constraints.

CHANCE CONSTRAINTS

The uncertainty associated with the availability

of resources is modelled with the help of chance const

rained programming £58} . The constraints (2,2) are

divided into a set of deterministic and a set of proba

bilistic constraints as follows :

n

E a±. x £ b± (i=1,2,...,g) (2A)

>1

and
• n •l

P Y~a
L j31

xi< \
J

n

> P± (i = g+1,...,m)
(2.5)

Eq. (2.5) is interpreted as constraining the uncondi

tional probability to be no smaller than |L, where

0 *C Pi C 1 » that thejactual value for b± is at least I?

as large as 3 a*, x. .

Ja1

(^
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It is possible (l3l to transform probabilistic

constraints (2.5) into deterministic equivalent const

raints (2.6) as follows :

n

J~ai(3 x < B± for i= g+1,..., m (2.6)

where B. is the largest number satisfying

P[bi <B.]< 1 - p± (2.7)
A numerical example is given to explain as to

how to determine B. from a marginal distribution.

Suppose the marginal distribution for b^ is

P[b1 m10] a 0,2 ', P[bga 30 } =O.if ; P[b1 a 80 J=0.3,
Pjt^ a 100] * 0.1 giving the graph of P[b > B^ shown
in Fig. 2.2.

Thus if 0.8^ pj< 1«0 then B1 a 10

and 0A< $..< 0,8 then B1 - 30 etc.

The chance constrained model has two desirable

properties. First, it leads to an equivalent linear

program that has the sane size and structure as a deter

ministic version of the model. Consequently, the comput

ational burden of the stochastic version is no greater

after the proper right hand side values have been deter

mined. Second, the only information required about each

uncertain element b. is the (1- fL) fractile for the

unconditional distribution of the right-hand-side coefficient,
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2.1*1 PREFILTERING ANALYSIS

Prefiltering analysis is important mainly from

a dimensionality standpoint. By studying the properties

of the constraining equations, simple test rules are

evolved. The test rules are applied at the pre-computa-

tional stage and obviously infeasible variables and

irrelevant constraints are filtered out. It is also

advantageous to aggregate the sets of constraints with

integer coefficients into equivalent single constraints

£21jf . This helps in reducing the dimensionality of a

large size problem with many constraints.

CANCELLING VARIABLES

A variable x. is cancelled when x. q 1 cannot

be part of an optimal feasible completion of any solu

tion S. When x. is cancelled it is considered to be

fixed at x. * 0 and is removed from the set of variables.

If for some variable x corresponding to some unit G ,

the following inequality (2.8) holds, then that variable

is cancelled.

]T inf (a.(Sv)) ♦ am(Sc) £ b± (2.8)
v 3 1 to k

v ** c

where c is the Generator, whose corresponding variable

2^ is under test. Sv corresponds to the vth generator.
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inf (a^S )) is the smallest element of ith constraint

corresponding to vth unit

k are the total number of units.

Applying the above test to the constraint set

of Table 2A , the variable x11 stands cancelled. Since

x,.^ can never be unity in the enumerated solutions,

therefore, it is removed from the'set of variables.

CANCELLING CONSTRAINTS

Sometimes, some of the constraints, always

remain satisfied, whatever, the values of the variables

may be , Such constraints should be eliminated or

ignored in order to enhance the efficiency of the solu

tion procedure. The following test (2.9) helps in

cancelling such constraints.

sup (&j(Sv)) < b± (2.9)
v=ito k

where

sup (a.(S )) is the largest element of constraint i

corresponding to the vth unit.

Applying the above test to the constraint set

of Table 2,lf, the constraints 3 and 10 stand ignored.

Since, these constraints always remain satisfied, therefore,

these are not considered while solving the problem.

r
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AGGREGATING CONSTRAINTS

In many practical systems, the number of const

raints may be very large. Thus, the checking for feasibi

lity is very time consuming. There is a synergetic effect

associated with the set of constraints taken as a whole

or in certain groups. Geffrion £19>20] has recommended

the development of additional 'surrogate constraints' ,

which are linear combinations of original constraints,

The new constraints are obtained from the linear programm

ing subroutine embedded in the algorithm. In the main

tenance scheduling problem most of the constraints are

with integer coefficients. Even if this is not so for

some of the constraints, it can always be achieved by

simple manipulations. Glover and Woolsey £21]} have deve

loped a procedure for aggregating the constraints with

integer coefficients. Thus the multi-constraint problem

can be converted into a single constraint problem by the

procedure detailed below :

By adding the slack variables x +i (i=1,2,.,.,m)

the inequalities (2.2) are transformed into the equalities,

aS

z
.J"1

i= 1,2,...,m

Consider first two constraints, i.e., i = 1,2. Therefore,

aij Xj + Xn+i ^ bi (2-10)
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n

a «. +*,^-i • b„ (2.11)
1j

Hi

n

aon x-i + x^o = b„ (2,12)

Cj+Xn+1 = D1

and
n

l2j Xj + *h+2 = b2

Equalities (2.11) and (2.12) can be combined

to form a new constraint by using multipliers t.. and tp

respectively satisfying the following conditions £2ll»

1. t1 and tp are relatively prime

2. t^ does not divide bp and tp does not divide b..

3. t^ > bp - a2 and tp > b.. - a- where a^

represents the smallest of the positive a^•.

The equivalent constraint which has the same

solution as constraints (2.11) and (2.12) is written as :

t, (y: **j xj ♦ vi)+ ^E *2i **+ *♦*)
j=1 J~1

a t1b1 + tpbp (2.13)

Recursively using the construction (2.13) for

the constraint set (2.2), the single equivalent constraint

obtained is :
n

H djxj < D (2.1»0

where d. are the new constraint coefficients and D
J

is the right-hand-side value.
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By employing the above procedure, the constraints

8 and 9 of Table 2A are combined to form the single

equivalent constraint as given by (2.15a).

l+Xl + 3x2 + x9 ♦ 3x1Q < h (2.15a)

Similarly, the single equivalent constraint for the

sequence of units G^ and G^ is given by 2.15(b)

-Xr, -3xg + x9 + 3x1Q =0 (2.15b)

To the knowledge of the author, this procedure

of aggregating the constraints has not been discussed

elsewhere in the power system engineering literature.

Thus , the prefiltering analysis helps in reducing the

storage and computational burden of the scheduling algo

rithm,

2.2 OPTIMIZATION TECHNIQUE

The problem, whose solution is to be obtained

is stated in (2.1), (2.2) and (2.3). Dopazo and Merrill

{jU-3 have used Balas implicit enumeration algorithm [2].
The method is not computationally efficient, the storage

is large for practical size systems and the programming

is involved. In the present work, a new strategic tree

search method is developed for the solution of the problem,

The other important existing tree for the 0-1 programming

problems is the Balas tree £2"} , where the number of

branches are very large.
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r -l " 'Balinski[ 3Jrightly pointed out that various

clever methods of enumeration and other specialized

approaches are the most efficacious means existent by

which to obtain solutions to practical problems . His

belief is strengthened by the development reported below:

The problem to be tackled is a multi-variable,

multistage one. As a first step, systematization is

introduced by rearranging the variables of the cost func

tion to be minimized. The cost function coefficients are

arranged in a monotonic increasing sequence for each stage

of the problem. To the knowledge of the author, such

systematic modelling ha, s not been done earlier. The intu-

tive reasoning for such a systematic arrangement is that

in a minimization problem, all the low cost solutions

are generated first thus avoiding the search for an

optimal solution over the whole solution space. Next,

it can be observed that the model of the problem has

a specialized structure. It is signified by the const

raints (2.16) which form a part of the constraint set (2.2)

That is,

zT xCSi5 =1 ' (2'16)
It k

Thus, k of the m constraints are absorbed in the solution

procedure and only (m-k) constraints remain associated

with the problem. Stated in words (2,16) says that the
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summation of all the variables corresponding to each

stage is unity . Thus in any enumerated solution vector

only one variable for each stage will be unity and all

the remaining zero. Therefore, taking advantage of this

property of the model, a large number of imfeasible

solutions are never generated. This results in an

efficient search process. Using the above mentioned simple,

but powerful ideas, the new optimization technique comes

out to be superior to the existing methods £2,19 j.

2.2.1 THEORY

Any solution vector S is composed of k inde

pendent subsets (or subvectors) , where k are the number

of stages in the problem. Each subset S± further consists

of n± components or variables, where the index i varies

from 1 to k. The following notation is used in develop

ing the theory of the method.

81 ~ (x6,,+1 »*bj*2 »"• ' X61+n1 )

"2 = (X62+1 ' V2 ' •" ' Vn2 )

= (x6±+1 »Xb±+2 »••* »%+n^

6k = (x6k+1 • \+2 ' '•• • \*\ }
(2.17)
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where

6i * 6i-1 + "i-1

i • 2,3,..., k (2.18)

and b* a 0 • , initial.

The subscript of any variable x gives the number

of the variable in any solution vector S. n^ are the

number of variables in the ith subset. Therefore, the

equality (2.19) holds
k

i=1

where , n are the total number of variables in any solu

tion vector S. The subscript of 6 , gives the subset

to which a particular variable belongs.

The following properties of the subsets and sets

are useful in depicting their characteristic behaviour. The

properties hold true for the model presented.

1• The subsets of any solution vector S are mutually

independent and the union of these subsets results

in the solution vector S.

or S = [J S (2.20)
ie k

2. All the subsets Si(i=1,2,.,, ,k) belong to the set S.

.'. S± C S (ia 1,2, ,k). (2.21)
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3, The subsets S.^ and the set S are never empty.

*\ S± * *

S / 0 (2.22)

GENERATION OF A NON-REDUNDANT SOLUTION SET

In an n variable problem, there are 2n possible

solutions, which are to be searched implicitly or explicitly

for finding an optimal solution to the problem('2*1) * (2.3)«

Many of the enumerated solutions are infeasible* If the

constraint set (2*16) is kept satisfied, then many of

the infeasible solutions need not be generated at all*

Thus, the search procedure should be In a position to

generate the remaining set of non-redundant solutions*

Now, if there are n^ components in the Ith subset,

then, these correspond to zu locations which are to be

occupied by <r± objects. Then the number of arrangements

of ac. objects at n± locations, without repetition are
1 o^

termed as permutations and symbolized by A .-

Where,

.°i &" "• to *«A a ... „ ,rr*,- .> (2.23)
ni

Lv °i

T
Thus for k subsets, the number of possible solutions S

is given by expression (2.2*f).
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CTk

n,.
A

"3

n3"°3

"k

n, - Cr
k k

(2.2*0

Now, for the specific case at hand, there are

n^_ locations in the ith subset, over which the unity

element has to move.

Therefore,

and

or

en, = cr
1 2

•,. — o~_. — •«, a oz — 1

S =

L"i xl n2
W A • • •

n2-1
X

Rk

|n1 - 1 nk - 1

n1 x n X .

k

TT n,

.. .X n
k

i=1

(2.25)

(2.26)

Thus, the non-redundant (no arrangement is

repeated) solution set given by (2.26), is the product

of the number of variables belonging to all the subsets.

For this specialized problem, this is much smaller

than 2 solutions in a general case.
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DEVELOPMENT OF THE TREE

T
It is desirable that the S solutions for any

n variable problem be generated systematically and also

efficiently. After lot of experimentation and intutive

thinkingr a new tree is developed. The enumerated solu

tions are represented at the branches of the tree. In

order to initiate the generation of solutions, the initial

solution S° has its left-hand-side elements x. +^
(i a 1,2,..., k) as unity and the remaining elements as

zero. The first element i.e. x. +1 is underlined or

put under a bar. This serves as a reference point for

generating further descendants. For any n-variable problem

having n* variables (i m 1,2,*.,., k) for its various

subsets, the tree developed is unique. There are a defi

nite number of branches and a fixed number of levels asso

ciated with the tree* The number of branches at each level

of the tree is also fixed. The generation of solutions

from the first level is initiated and a fixed number of

descendents appear at level 2 of the three. The generali

zed procedure for generating descendents from.any parent

branch is - starting from the underlined element, shift

the unity entry one position towards the right-hand-side

with respect to the subsets of solution vector at the parent

branch* Thus, by the shifting of unity elements towards

the right-hand-side and proceeding in a systematic fashion,

the complete tree is enumerated. The Jlagt solution at the
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extreme level (tail ) of the tree has all the tl .
6rni

(1= 1,2,...,k), extreme right-hand-side elements as

unity and the remaining elements as zero.' The genera

tion procedure takes care of the fact that none of the

solution vector duplicates, while enumerating the tree.

For further discussion and ease of exposition, a *f stage,

10 variable problem tree is enumerated and is shown in

Fig* 2*3 . The variables l , r , x correspond to the

first stage and hence the first subset, the variables

xlf» x5"i x5 correspond to the second stage, x-,, Xq to the

third and Xg, x1Q to the M;h stage* The corresponding

cost coefficients are arranged in a monotonic increasing

order which means c, ^ c2 ^ c^ J c^j^ c^ ^ c^ ;

c7< c8 and c9^ C10 '

Looking at the tree diagram Fig* 2.3, one finds

that one of the unity entry is underlined at every branch.

The underlining of an element of a solution vector is a

very important concept, as, the underlined element is

the reference point for generating further descendants

and also tells us as to how many descendants are associated

with any parent branch. The next section explains

the generation of descendants.
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GENERATION OF DESCENDANTS

For the systematic generation of the branches

of the tree, it is important to know, as to how many

descendants are associated with any parentbranch* It is

also essential to know, which unity element in a solution

is to be underlined.

Let us consider a solution vector (T) , indicated

on Fig. 2.3* There are *f subsets i.e. S^, Sp, S^and S^ .

The unity element xp , which belongs to S- is underlined.

The number of descendants associated with this branch

is If* In general, let the underlined element (x) belong

to the ith subset and x is not the last element of ith

subset (i.e. f x. ) , then the number of descendants
°i ni.

D^ is given by (2.27)

D a k - i + 1 (2.27)
e

The second possibility Is that the x Is the

last element of ith subset (i.e. = x& +rj ) . Then D^ is

given by (2.28)

Dn * k - i (2.28)
e ;

This is explained by solution vector £g) ? indica

ted in Fig. 2.3* Here, the last element x^ of S1 is

underlined. Therefore,, in this case DQ is 3*

As regards, the underlining of mity elements

of descendants, consider solution vector (3/ , whose



descendants are (h) , © and (6) shown in Fig. 2.3. If
x belongs to the ith subset at the parent branch and is

not the last element (i.e., * x6.+n * » then ith subset

x is shifted one position towards the right-hand-side

in the 1st descendant and the subsequent solutions have

z* o.o i x*. 4.0 * xk 4.9 »•••••• x* +9 elements
^i+1 +2 6i+2+2 6i*3 2 6k *2
as underlined. If x is the last element of the ith

subset (i.e. w z , ) , then it remains fixed and the
6i+ni

rest of the procedure is same as explained above. To the

knowledge of the author the newly developed tree and the

procedure of generating descendants has not been discussed

elsewhere in the literature.

PROPERTIES OF THE TREE

1o The total number of levels present in any tree

is given by (2.29)

k

L ~ 1Z ni " k+ 1 (2.29)

(Proof t- The number of levels associated with

any tree is given by the expression (2.29) . For

this the basic requir ement is to find the number

of stages from which the first solution vector

having all the left-hand-side elements passes

in going to the last solution vector having all

the right-hand-side elements in the various sub

sets as unity. Therefore, the number of stages
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k

to be traversed is (Tl n± - k ),because

k positions are initially occupied by the unity

entries. Including the first level or stage from

where the enumeration is started, the total
k

number of levels La £ m-k+1) •
fil

For the h unit, 10 variable example L = 7.

2. The number of branches in a tree is given by

T3 , where
_ k

ST a Jl" n± (2*30)
i=1

(Refer to the proof given in Eqs (2.23) - (2.26))
T

For the example discussed, S a 36.

3. At the centre of the tree, if we consider an

image plane, then the solution vectors below

the image plane are the images of the solution

vector above it. For example, the last vector

(0010010101) of Fig. 2.3 is the image of the

first vector (1001001010).

if. k spread of the solutions at the various levels

of the tree follows a symmetric distribution.

For the h unit example, the distribution is shown

In Fig. 2.h.

5". The values of z at the ith level of the tree

are always greater than the minimum of z at the
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(i-flth level. Therefore, the inequality

(2.31) holds.

z1 > Min z1"1 (2.3D

The above statement is factual because of the

monotonic behaviour of the cost function for each stage*
*

2.2*2 ALGORITHM

Based upon the concepts explained above a

computer algorithm is developed for the solution of

Eqs.(2.1), (2.2) and (2.3). The effective size of the

tree to be searched is further reduced by enumerating

many solutions at the subsequent levels with a very

little computational effort. The reduced tree diagram

for a *f stage 10 variable example is shown in Fig.2.5"»

Such a move enhances the efficiency of the search process

andalso gives a relief to the computer core. The

efficiency of the scheduling algorithm can be further

enhanced by evolving simple rules for skipping a large

number of solution vectors at the levels of the tree.

A simple SKIP RULE I is evolved by taking advantage

of the structure of constraining equations with positive

coeffidients. The rule is based on the premise that if

the summation of the constraint coefficients upto (w-1)th

subset Violates the particular constraint, then all

subsequents solution vedtors associated with this parent

branch are infeasible and therefore are skipped. Where, w
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refers to the subset with an underlined element. Stated
mathematically, if

ra. .x. £ 1°' for constraints

36 (w-1)

with positive coefficients a±. ,then skip all descend
ants associated with this parent branch. This is called

SKIP RULE I.

I

The steps of the algorithm are detailed below *

1. Read System Parameters - Cost coefficients, const

raint coefficients and constraint limits.

2. Initialize solution vector at 4 * 1. Enter x6 .1 ,

(i = 1,2,...k) as unity entries and the remaining

x = 0 • Underline element x& +1 .

3. Check constraints. If satisfied, stop, otherwise

go to step *f.

if. Advance the level counter by one i.e. A a £ + 1*

Generate descendants by using Eqs. (2*27) and (2*28).

Go to 5*

5. Search for a feasible schedule at the £th level.

Terminate the branches having jl element
k-1 k-1

as underlined and the branches having any of the

elements x& +j (j - 1,2,..., nk) as underlined.

^pply SKIP RULE I. Go to 6.
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6. Does a feasible schedule exist ? If yes, go to 7,

else go to h»

7. Store z , which is the minimum feasible z at the £th

level, as z interesting. Check if z is the minimum

of all z at this level. If not go to 8, else stop.

8. Terminate branches having zjz • Go to h*

A flow chart of the algorithm is given in Fig* 2.6.

2*2.3 PROOF OF OPTIMilLITY

Theorem ;

The procedure of flow chart Fig„2.6 results in

an optimal solution to the problem given by Eqs,(2,1) ,(2*2) ,

(2*3) and (2.16).

Proof_:

The monotonic non-decreasing characteristic of
*/

the multistage cost function is displayed in Fig. 2.7. For

any stage i, the following inequality (2*32) holds«

c6i+1 < C6t*2 4 C6i+3 ••* * °b±^±
(2.32)

The initial solution z° corresponds to the state, when

Q. +1 (i a 1,2,. ..,k) are active * Therefore,
1 k

1=1

|f the constraints (2.2) are satisfied corresponding to

tjhls solution, then, the optimal is reached, because z
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is the summation of all the least values of c s for the

k stages.

If the above condition does not hold, then the

descendants are generated by the shift of unity entry

by just one position, towards the right-hand-side. This

helps in generating various low cost combinations of

z.

Let us suppose, there are, some feasible z values

at any level £ of the tree. Thus z - Min z , Now, if

z is the minimum of all z at this level. Then, the optimal

is reached. This is so, because of the non-decreasing

characteristic (2.32) of the cost function.

The only alternative left is that z % Minz .

Under this condition, moving down the tree, z'^ Min z

gets satisfied and the optimal solution is achieved.

This completes the proof that the flow chart of

Fig. 2.6 results in an optimal solution.

2.2A ADVANTAGES

The optimization technique developed above has

the following advantages,

1. Every move is in the forward direction. No back

tracking^) is required and hence the book-keeping
is minimum *
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2. The computational time is small as the z values and

the constraints at the ith level are obtained from

the z values and the constraints at the (i-1)th level,

only by a minor change.

3. The storage is small, as it needs storing solutions,

corresponding to only two levels at a time.

1+, A large number of infeasible solution, which do

not satisfy Eq.(2.16) are never generated.

5. As the constraint set (2.16) remains satisfied, the

total number of constraints are reduced.

6. For practical problems, only a part of the tree

has to be searched for finding the optimal solutions.

Many branches are also terminated during the search

process.

2.2.5 PROGRAMMING CONfiTDERATIONS

From the programming stand point, it is desirable

that the computer storage be economized and the speed of

computations should be fast. This enhances the value of

the algorithm in solving problems of large dimensionality.

A storage scheme for the enumerated solution vectors is

shown in Fig. 2,8, Such an arrangement take advantage

of the systematization present in the search procedure.

Because of the known fact that there is one and only one

element of a subset which is unity, one needs storing only

/ o o\T 75""""
CHTWl IIHAKT MISHIT OF W0»W A

OFU'
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the index of this element. Fig. 2.8 displays the storage

of solution vectors corresponding to the first three levels

of the tree diagram shown in Fig. 2.3. For example, the

numbers 1A,7,9 refer to the variables x*9 * , jl and

Xcj , Thus, for the enumerated solution, these variables are

currently active and have unity values.

ACCELERATING THE CONVERGENCE

The efficiency of the scheduling algorithm can

be further increased by taking advantage of the systematic

behaviour of the constraining equations, This requires the

evolvement of skipping rules, with the aid of which ,

many branches of the tree are terminated during the search

process. Also, sets of constraints need not be checked

for many enumerated solutions. The applicacy of these ideas

is demonstrated by evolving SKIP RULE I. Another skipping

rule is evolved in section (3.2) on the basis of the systema

tic behaviour of the constraining equations. Thus, the

inclusion of skipping rules enhances the efficiency of the

algorithms.

2.3 SAMPLE APPLICATIONS

The problem of preventive maintenance is discuss

ed in detail in section (2.1). A scheduling algorithm

is developed for the solution of the problem and is given

in Fig. 2.6 .A computer program of the algorithm is
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prepared in Fortran II for an IBM 1620 computer. The app

licacy of the algorithm is demonstrated by solving two

examples. Another important problem concerning overhaul

ing of generating units is the interchanging of staff

among power plants, during the maintenance periods. A

mathematical description of the problem is presented and

an illustrative example is given. The results of com

putation are displayed.

2.3.1 A ^--ST^GE E5UMPLB

EXAMPLE 2.1

Generating units G.,Gp, G, and Gk are to be main

tained during a time horizon of four weeks. The resour

ces available during these intervals are 150, 170, 180,

and 120 MW respectively. A sequence constraint specifies

that the maintenance on unit G^ , must begin immediately

after maintenance on unit G. is completed. From Security

considerations, simultaneous maintenance on units G. and Gk

is to be avoided. The data of the problem is given in

Table 2.1. The details of constraint coefficients and

cost coefficients are displayed in Table 2.h. Constraints

1,2,3 correspond to the sequence of maintenance on units

Go and G^ . Constraints *f,5»6,7 represent the resources.

Constraints 8,9? and 10 are for preventing simultaneous

maintenance on the units G., and G» . A minimum cost main

tenance schedule is to be obtained.
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With the help of prefiltering rules (2.8) and

(2.9) , the variable x^ stands cancelled and the const
raints 3 and 10 get eliminated.

The problem is solved as a 10 variable one. The

tree diagram of Fig. 2.5 is applicable for this case.

The optimal solution appears at branch 1 of level 3 of

the tree diagram.

Thus the optimal solution is •

x3 = xh = x? = x9 = 1

X1 * X2 3 x5 = X6 = X8 = X10 = x11 = °-

z = 7

The solution obtained is the first feasible solution and

is also the optimal. Further search at this level is ter

minated. The computer memory requirement and the execu

tion time for the IBM 1620 computer is 1970words length
and 2.0 mins. respectively. AVory uSeful ropreSent.

ation of the results of computation is in the form of bar

charts. Such charts ma.y be obtained directly from the

computer, thus saving lot of manual labour. The bar

chart for the case discussed is shown in Fig. 2,9. The
bar charts are of value to plant managers for executing
maintenance decisions.
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2.3.2 A 10-STAGE EXAMPLE

EXAMPLE 2.2

A power utility has to maintain 10 generating

units (G^ ,i = 1,2,..., 10) during a. scheduling horizon

of one year having 12 equal monthly intervals. The data

of the problem is given in Tables 2.5 , 2=6, and 2.7 .

In Table 2.5 ,the units G^ and G^ are equivalent to a

single unit which requires maintenance twice during the

scheduling horizon. The maintenance on these two units

is to be separated by a six months period. In the Table

2.6 , the constraints (1-12) are for the resources limi

tation. The constraints (13-1^) are for the old unit

which is replaced by G^ and G^ . The constraints (16-18)
are for sequencing of maintenance on the units Gp and G,

The constraints (19-21) are for the exclusion of simulta

neous maintenance on the units g1 and G „ Table 2.7

portrays the constraint limits for the constraints of

Table 2.6 . The data used is hypothetical.

The optimal solution obtained to the 10 generator,

35 variable, 12 interval problem is :

X3 = \ = *7 = x9 = X12 = X15 = x19 = x23 = x27 = x32 =1

X1 = X2 = x5 = x6 = *8 =X10 =X11 =X13 =;:1>f =x16 = X17= x18
= x2Q * x21 = x22 = x2lf = x^ = x26 = x28 = x29 = x3Q = x3l

=^X33 = X31f = x35 = °-
z* = 160.00
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Data and the A ssociatcd unknowns for Example 2.2

i

Unit
Capacity Allowed Outage Associated Maintenance

MW period duration
months

variables starts in
month

x1 1

Gi 80 1-if 2 x2 2

1

X3

\
X5

3

G2 ko 1-3
1

2

x6
3

G3 80 2-h 2 *7

X8

2

3

X9 2

G^ ko 2-k 1 X10 3

x11 h

X12 8

G? \0 8-10 1 X13
x1if

9

10

X15 ^

G6 120 Jf-9 3
x16
x17

5

6

x18 7

x19 5

°7 80 5-9 2 x20 6

x21 7

x22 8

x23 2

G8 120 2-7 3
X2if
x25

3

if

•»• x26 5

X27 8

G9 ko 8-12 1 X28
x29
x30
X31

9
10

11

12

" x32 7

G10 120 7-12 3
x33
x3>f

x35

8

9
10
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TABLE 2.7

Constraint limits b. for Example 2.2

I Constraint
h

Constraint
b

Number Di Number Di

1 100.0

i

12 100.0

2 250.0 13 00.0

3 300.0 1if 00.0

if 350.0 15 0.0

5 200.0 16 0.0

6 200.0 17 0.0

7 150.0 18 0.0

8 200.0 19 1.0

9 150.0 20 1 .0

10 250.0 ' 21 1.0

11 100.0

'

The computer memory requirement and the execu

tion time for the IBM 1620 computer is 3760 words length

and 12.0 mins. respectively. A graphical display of the

results is presented in Fig. 2.10.

2.3.3 MAINTENANCE STAFF INTERCHANGE SCHEDULING

The reliability and economics of operation dictates

the need for pool coordination of resources (men and mate

rial) within a utility. The pooling is also beneficial

to the mutual interest of the neighbouring utilities.
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employed from an alternative source D. The data pertaining

to the problem is given in Table 2.8. The data used is

hypothetical . A schedule which minimizes the total

cost of interchanging the labour is to be obtained.

A diagrammatic view of the staff interchange

scheduling problem is presented in Fig. 2.11. The arrows

on the lines connecting the stations indicate the direc

tion in which the labour is transferred. The dotted

line indicates that there are constraints between the

stations.

TABLE 2.8

Dcita of Exampl 3 2.3

Source
No. of

Repair
Associated

variables
Cost

coefficient

l

teams

Station A 1 X1 5

(Labour of 2 X2
X3

10

category I) 3 25

Station B 1 xh if

(Labour of 2
X5
x6

8
category II)

3
• -• -

20

Alternative 0 x7 0

source D 1 x8
x9

10

(Labour of
Category i)

2 20
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TABLE 2.7

Constraint limits b. for Example 2.2

!

\ Constraint
b.

Constraint
b

Number ui Number l

1 100.0 12 100.0

2 250.0 13 00.0

3 300.0 1if 00.0

if 35o.o 15 0.0

5 200.0 16 0.0

6 200.0 17 0.0

7 150.0 18 0.0

8 200.0 19 1.0

9 150.0 20 1 .0

10 250.0 * 21 1.0

11 100.0

The computer memory requirement and the execu

tion time for the IBM 1620 computer is 3760 words length

and 12.0 mins. respectively. A graphical display of the
results is presented in Fig. 2.10.

2.3.3 MAINTENANCE STAFF INTERCHANGE SCHEDULING

The reliability and economics of operation dictates

the need for pool coordination of resources (men and mate

rial) within a utility. The pooling is also beneficial

to the mutual interest of the neighbouring utilities.
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In the overhauling of power plants, maintenance

staff is to be interchanged between stations at times of

overhauls. In this way a larger labour force is concentra

ted in two or more nearby stations. Then, instead of two

or more units being out of service simultaneously with

less than optimum manpower working on them, they may be

dealt with one after the other, each overhaul employing

a combined labour force and taking a considerable shorter

time. A logical extension of this concept of interchanging

labour is to establish Divisional or Regional pools of

labour, which can supplement the station maintenance teams.

The problem of staff interchanging [$] is formu

lated as an integer program. The model falls within the

format of Eqs. (2.1), (2.2), (2.3) and (2.16) . The schodul-

ing algorithm of Fig. 2.6 is applicable. The following

example 2.3 illustrates the above concepts. A schedule,

which minimizes the total cost of interchanging the labour

is obtained.

EXAMPLE 2.3

An electric utility is managing three power plants

named as A,b, and C. The maintenance is to be concentrated

on plant C and its maintenance teams are to be supplemented

by pooling of repair men from stations A and B. A minimum

labour force is required at any of the plants A and B for

emergency purposes. The additional labour, if required, is
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employed from an alternative source D. The data pertaining

to the problem is given in Table 2.8. The data used is

hypothetical . A schedule which minimizes the total

cost of interchanging the labour is to be obtained,

A diagrammatic view of the staff interchange

scheduling problem is presented in Fig. 2.11, The arrows

on the lines connecting the stations indicate the direc

tion in which the labour is transferred. The dotted

line indicates that there are constraints between the

stations.

TABLE 2.8

Data of Example 2.3

Source

Station A

(Labour of

category I)

Station B

(Labour of

category II)

Alternative

source D

(Labour of
Category i)

No. of

Repair

teams

2

3

1

2

3

0

1

2

Associated I Cost

variables |coeffie

x„

Xr

^8
x,

5

10

25

if

8

20

0

10

20



FIG- 2.11 A DIAGRAMMATIC VIEW OF STAFF-INTERCHANGE
SCHEDULING PROBLEM



Table 2.8 contd..

Source

alternative

Source D

(Labour of

Category II)

No. of
Repair
teams

0

1

2

Associated
variables

x
10

:11
[12

eh

Cost

coefficient

0

12

2k

Thus, the objective is to

Minimize z a 5x„ + 10xo+ 25x- + kx> + 8x^ +20x. + 0xo
1 2 3 *f> 7 6 /

+10x +20Xq + 0 x1Q + 12x^ +2ifX (2,3k)

Subject to the constraints

(i) To assure that the required labour teams of category I

are available at plant C , the equality (2.35) is

written. That is,

I x1 + 2x2 + 3x3 + 0x7 + 1xg + 2x9 a l+ (2.35)

(ii) To assure that the required labour teams of category

II are available at plant C, the equality (2.36) is

written. That is

1xlf + 2x^ + 3x + 0x1Q + 1x11 + 2x12 a 3 (2.36)

(iii) To account for the minimum labour force at any of the

plants A and B for emergency purposes, the inequality

(2.37) is written. That is,

1x1 + 2x2 + 3x3 + 1xlf + 2x^ + 3x6 < 5 (2.37)
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The optimal solution obtained is :

X2 = x6 = x9 = X10 ~ 1

X1 a X3 = Xlf = X5 a X? = Xg a X^ S ^ g„ 0

z =50

The computer memory requirement and the execution time

for the IBM 1620 computer is 1926words length and if.O mins.

respectively. The optimal solution is obtained at level 6

of the tree. The solution indicates that 2 repair teams

of category I are transferred from station A, 3 repair teams

of category II are transferred from station B, 2 repair

teams of category I are transferred from source D and no

repair team of category II is transferred from source D.

The cost of transferring labour is 50 units.



CHAPTER III

CORRECTIVE MAINTENANCE SCHEDULING

It is conceivably true that a system should be

designed to have built-in maintenance as far as possible.

A system analyst is posed with the problem of preparing

the best schedule out of a host of available alternatives.

Such an approach reduces the expenditure on maintenance

during the operating life of the system and also enhances

the system reliability . Billinton and Krasnodekskifj? J

have also emphasized the inclusion of maintainability ana

lysis at the design phase. In designing systems with

regard to reliability and repairability typical considera

tions involve trade offs between system mean time to

failure (MTTF) , and system mean time to repair (MTTR).

Criteria for the tradeoffs are based on cost and availabi

lity. These techniques are particularly applicable to the

determination of the number and capacity of boiler feed

pumps, feed heating train arrangements, pulverizer confi

guration, auxiliary electric power systems and cooling

water etc. The tradeoff techniques are also applicable to

such situations where ;

i) A choice is to be made between easily replaceable

modular components against piece parts.

ii) A decision is to be made on the layout of the

system, subsystem or equipment, whether to economize

space or facilitate easy accessibility.



67

Thus, it is possible to increase the auxiliary

system reliability by varying the configuration and using

mixed redundancy. The tradeoff analysis results in the

optimal number of standby components and repair facilities

required in order to achieve a specific level of system

reliability.

3.1 MODELLING

A huge amount of literature is available in the

area of reliability modelling for Defence and Aerospace

systems [5,51J . The basic models are also applicable to

many situations in Power System Engineering. It is required

that power system engineers take full advantage of the

available literature and develop a unified approach for

corrective maintenance scheduling. Some of the important

reliability models, under which the power plant equipment

may be classified are for »t standby systems, standby

systems with repair facilities, systems subject to two

types of failures, (m/n) systems ,(m/n) systems with repair

facilities. The following treatment is presented in

order to explain the behaviour of these models in an

expository form. Graphical plots of the reliability

expression of various types of subsystems are useful to

the system analyst in understanding the characteristic

behaviour of these subsystems and in the analysis of

corrective maintenance scheduling problem.
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1 . STANDBY SYSTEM

A system consisting of n independent components

is said to be a standby system provided the system operates

in the following manner. Component 1 operates until failure

then component 2 is switched on, , component i operates

until failure failure, then component i+1 is switched on,

, component n operates until failure, then the system

is declared as failed. The reliability expression, which

is of interest to system analyst, for such a system is given
by Sq. (3.1) [511-

. _ -xt &i at-)1
«1 • e > — (3.1)

iaO i I
where,

X is the failure rate, t is the mission time and n are

the total number of components. The network configuration

of such a system is provided inVig. 3.1 , where S and

SD denote the switch and the failure sensing device. Typi
cal assumption in analysing such systems are :

I) If switching is necessary due to failure in a

parallel component, the time required is insigni

ficant and does not affect the desired operation.

ii) No warm up time is necessary for components being
switched in.

iii) Failure is detected with probability one and the

subsequent component is then switched in automatically.
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A useful graphical plot of expression (3.1) is

obtainable from Fig. 3.2 ,where tL, = 1- r!J is the
standby system unreliability.

2. STANDBY SYSTEM WITH REPAIR

When a fault in a system is non-recoverable the

failed component is disconnected and repair is performed.

It is possible that at a time more than one component

may fail simultaneously . This requires more than one

repair crew in order to increase the opera,ting life of

the system. In the case of irredundant systems, repair

alone does not help in increasing the system reliability.

It is enhanced by providing the spa,re components. The

behaviour of such type of system is explained a.s follows:

Initially one component is kept in operation and the others

are kept as spare. When a component fails, it is replaced

by a spare component and the failed component is sent for

repair. When repaired, it is kept as a standby component.

If a standby system has n components each with a

constant failure rate X and there are r repair facilities,

each with constant repair rate M , where 1<^r^n , then,

the reliability expression of such a system [5l] , which

is of interest to system analyst is given by Bq.(3,2).

R2 • 1 " Pn (3.2)

dHTML U!M*f IW'SSITY OF KOORKEE



where,

and

P,

71

X 1

Pi " ~< ?=? 00 po
for r+1 < i < n

1 +

r , n ,--1

Z~ ii It* ) ' L-. ri ri-r VMjr« rJ
i=1 i=r+l

R2 is also known as system uptime ratio (.3,k)

A useful graphical plot of expression (3.2) is

provided in Fig. 3.3 , where Up = 1- R? is the correspond

ing system unreliability.

3. SYSTEM SUBJECT TO TWO TYPES OF FAILURES

Many types of systems [56 J consists of components

which fail in the mutually exclusive ways, and the result

is that the system fails in either of the two mutually

exclusive ways. For example, a network consisting of n

relays in parallel has the property that a short-circuit

failure on any one relay would cause a system failure,

and an open circuit failure of all the n relays would

again cause a failure of the system. Diodes also exhibit

the behaviour of two failure modes given by an open circuit

failure or a short circuit failure. A series parallel

arrangement of diodes is used, if the probability of open

circuit failure is high. The reliability expression for
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such 'a system, which is of interest is given in Eq.(3.5)

*3 =[l-<Vn] "I1 " (1-Q->n

< =
n

>
i=m

here,

2

where

q is the probability of open circuit failure

Qp is the probability of short circuit failure

m are the number of sections in series,

n are the number of diodes in each section

connected in parallel.

A graphical plot of expression (3.5) is given
i

in Fig. 3-^ ? where U^ = T-IU is the corresponding

unreliability.

If- (m/n) SYSTEM

A system with n Independent components out of

which m components must operate is called (m/n) or «m

our of n ' system. In a data processing system with

five video displays, a minimum of three displays opera

ble may be sufficient for full data display, in which

case the display subsystem behaves as a (3,5) system.

In such a system, when (m-n+1) component fail, the sys

tem is said to have failed. The reliability expression,

which is of interest for such a system is given by Eq.(3.6)

("He**)1 d-^V*1 (3.6)
i

X is the failure rate, t is the mission time, n

are the total number of components and m are the number of

_- m

(3.5)
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components, which must be in an operable state.

A graphical plot of Eq. (3-6) is available

from Fig.3.5 , where uY = 1-Rj, is the corresponding

unreliability.

OBJECTIVE

Consider a system composed of k independent

subsystems, which are functionally in series. The reliabi

lity of a such a system in terms of subsystem reliabilities

is given by the expression (3.7) , That is,

k

R = j! R.(m.,r.) (3.7)
s . „ ill

i=1

where, 2L is the reliability of ith subsystem and is a

function of the number of repair facilities r. and thg

number of spare components m.,

The product reliability expression (3.7) is

converted into the summation (3.8), by taking the logarithm

of the both sides of expression (3*7). Thus,

k

Ln R3 = 1 LnR.(m.,r.) (3.8)
1=1 1

The advantage of the above transformation is

that the reliability expressions for each stage get

separated and a separable objective function obtained.

One of the important objectives on which the

resulting schedule is based, is the maximization of the
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system reliability, R , subject to the constraints on

cost, weight, volume (space) and power consumption etc.

Stated mathematically, the problem is :

k

Maximize 1 Ln Rg = ^ Ln Ri(mjL,ri) (3.9)
i=1

subject to;

k

j = 1,2,...., w

where,

g. . is the jth type resource requirement asso-

ciated with the ith subsystem and b. is the amount alio-
J

cated for the jth resources and w are the total number

of constraints.

The objective of maximizing the system reliability

can also be realized by minimizing the system unreliabi

lity as given by expression (3.11)

Us = 1- Rs (3.11)

where, Us stands for the system unreliability. Therefore,

the objective function (3,9) is transformed to the

objective function (3,12) . That is,

k

Minimize : Ln UQ = - XL" Ln R. (a, ,r.) (3.12)

subject to the constraints (3.10).

Another important objective could be to minimize

the cost of additions or changes in the system, subject to

gii <VPi^ ^ bj (3.10)
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the satisfaction of achieving a specific level of relia

bility besides satisfying-other associated constraints.

The problem of minimiz: ng the unreliability

(3.12) or minimizing the cost o.f additions or changes

in the system is transformed into the integer linear

program as given below,

Minimize : z a J~ ex. (3.13)
i=1

subject to
n

X_ a., x < b, (3.1»0
i=1 x3 -1- * J

J = 1,2,...,w

x±= 0 or 1 (3.15)

where, z is the objective function to be minimized and

and c± are the unreliability values, when the objective

is : system unreliability minimization. For the case,

when the cost is to be minimized, c± are the cost coeffi

cients, a. . are the constraint coefficients and b. are

the limits on the available resources for the w constraints,

In the formulation (3.13) - (3.15) , k of the

w constraints have a special structure as given by

(3.16) . That is,

XT x(si> = 1 (3.16)
iek

The equality (3.16) signifies that for each subsystem

or stage, the summation of the variables is unity. To the

knowledge of the author such systematic modelling for the
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corrective maintenance scheduling problem has not been

done earlier. In this case also the cost coefficients

for each stage are arranged in a monotonic increasing

sequence,

3.2 ALGORITHM

The problem whose solution is to be obtained

is given by equations (3.13) - (3.16) . The mathematical

structure of the problem is identical to the problem of

preventive maintenance scheduling discussed in Chapter II.

Thus, the scheduling algorithm of Fig. 2.6 is directly

applicable.

In many of the corrective maintenance scheduling

problems a part of the constraints (3.1lf) have a systematic

structure. Thus, the constraint set (3.1*f) is represen

ted by the equations (3,17) and (3.13) as given

below '.
n

and

> a. . x < b

i=1 (3.17)
j a 1,2, ,h

n

> a. . x. <f b.
i=T 1J J

j = h + 1 , • •

(3.18)
w

Thus , h of the w constraints given by Sq. (3.17) have

a special structure such that the constraint coefficients

aii "£>or eack stage appear in a monotonic non-deereasing
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sequence. Advantage is taken of this property of the

constraint set (3.17), in order to enahance the effi

ciency of the scheduling algorithm. A simple skipping

rule is evolved by exploiting the monotonic character

istic of the constraint set (3-17) - The rule says that

if any of the h constraints (3.17) gets violated at '

any parent branch then ignore or skip all subsequent

descendants at this branch as these will be all infeas-

ible solutions. This is called SKIP RULE II. Stated,

mathematically, the rule is '.
n

if X a. .x. 4 b, (3.19)
xTi ij i ^ j

For any of the constraints (j = 1,2, .,h),

then, terminate the branch, where the rule is applied.

The modified algorithm incorporating skip

rule II is given in Fig. 3.6. A computer program

of the flow chart of Fig* 3.6 has bo jn prepared for an

IBM 1620 computer. The next section demonstrates the

applicacy of the algorithm.

3.3 SAMPLE APPLICATIONS

EXAMPLE 3,1

The excitation system of a generator consisting

of a sub-pilot excitor, a pilot excitor, a main excitor

and a rectifier unit is shown in Fig. 3,7, The relia

bility of the system consisting of four stages is to be
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maximized through the use of mixed redundancies. The

stages 1 and 2 are to be supported by standby componants

and the stage 3 with standby components along with repair

facilities. The open circuit failure probability of the

rectifiers, because of the voltage spikes arriving, is

higher as compared to the short circuit probability of

failure. Under these conditions series-parallel arrangement

of the rectifiers is to be used. The entire cost and

space of the system should not exceed 25.2 and 17 ur.its

respectively, the available resources, From the design

consideration the maximum number of redundant components

and repair facilities at each stage is known.

TABLE 3.1

Failure and Repair Rate Data For Example 3.1
—"C

Sub-System Failure rate

(1/yr) * V

' i

Repair rate

(Vyr) j M

Sub Pilot Excitor 0,2 -

Pilot Excitor 0.3 -

Main Excitor 0.5 1.25

Rectifier Diode
O.C. Prob.

failure

of

0.18

S.C. Prob. of

failure 0.02

The failure and repair rate data for the various

subsystems is given in Table 3.1. The complete description

of the problem is obtained from Table 3.2.
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TABLE 3.2

Detailed Description of Example 3 .1

Number Number Associa Object-' Cost space

of stancof Repa- ted ive fun
3onstraint constraint

Sub
system hy compo

nents

ir
facilit
ies

variables
ction

coeff.

coeff. coeff.

k M

xi ;
x0

0.0008^ 0.8 0.0

Recti 3 ^ 0.00!+23 0.6 0.0

fier
unit 2 -

2

x3
0.023^0 O.k 0.0

1 - \ 0.1317^ 0.2 0.0

2 2 x5 0.01075 20.0 12.0
Main

exciter 2 1 x6
0.0>f020 16.0 12.0

1 1 x? 0.10821 10.0 6.0

3 _

X8
x9

0.00027 6.0 6.0

Pilot
Excitor 2 - 0.00361 If.O k.O

1 - x10 0.0376^4- 2.0 2.0

, ? x„„ 0.00115 1.0 1.0
Sub Pil Dt * 11

Excitor 1 -- X12 0.01768 o.5 0.5

The optimal solution obtained is :

X2 ~ X5 ~ X9 = X12 = 1*
Xl = x3 = xh = x6 =x? =x8 =x1Q »x11 - 0

The computer memory requirement and the execution

time for the IBM 1620 computer is 1918 words length and 3.0

mins. respectively. The optimal solution is obtained at level

k of the tree.
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The results show that the redundant component for

stage one and two are 1 and 2 respectively. . Stage three

has 2 standby components with 2 repair facilities. For

stage four, the number of diodes in each section conn

ected in parallel is 3.

The system reliability achieved is 0.9623.

EXAMPLE 3.2

The cooling arrangement of a turbine consisting of

heat exchangers, sump, filter section and an oil circulating

pump is shown in Fig. 3-8. The temperature of the turbine

bearings is maintained within very precise limits [_10] .
A schedule of repair and spare components is to be prepared

to achieve a minimum system reliability of the value of 0.981

The •- heat exchanger, which form a m/n system is to be

supported with standby units. The filter section is to be

supported with standby sections and the oil circulating .

pump with standby units along with repair facilities.

TABLE 3.3

Failure and Repair Rate Data for Example 3^2

J- •

Subsystem Failure Rate

(1/yr) X
Repair Rate

(Vyr) ^

Pump 0.5 2-5

Heat ,-Exchanger
section 0.05 -

Filter section

i

0.2 m
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TABLE 3.k

•

Detailed Description of Example 3 .2

•

Sub-system

Number

of
standby
componen

ts

Number

of

Repair
facili
ties

Associa
ted
variables

Object*
, ive
function

cost
coeff.

Reliabi

lity
const.
coeff.

i

Space
const.

coeff.

Heat •
exchanger
unit

1

2 Ml

X1

X2

2.00

If.OO

0.13369

0.03677

2.00

»f.O0

3 - *3
6.00 0.00990 6.00

k - xk 8.00 0.00259 8.00

Filter 1 - x5
o.5o 0.30685 1.00

S ection 2 - x6
1.00 0.08371 2.00

3 - X7 1.50 0.01917 3.00

if mm

x8
2.00 0.00367 If. 00

1 1 x9
1.50 0.03278 0.5

Pump
2 1 X10 2.25 0.006^3 1-0

2 2 X11 3*00 0.00163 1.0

From design considerations, the maximum number of

standby components and repair facilities for each stage

is known. The sump is taken to be perfect. The decisions

are to remain valid for a period of five years. The entire

space should not exceed 12 units, the available resources.

A minimum of 2 units are required in the cooling section

which means m = 2 , The cost of obtaining the required

schedule is to be minimized.
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The failure and repair rate of the various

subsystem is given in Table 3.3. .The complete descrip

tion of the problem showing the variables, cost and const

raint coefficients is displayed in Table 3.k.

The optimal solution obtained is :

x3 = *8 = X11 = 1

x1 = x2 = xk ~ x5 = x6 = *7 ~ x9 = X10 = °

Z* a 11

The computer memory required and the execution

time for the IBM 1620 computer is 1898 words length

and 5.0 mins. respectively. The optimal solution is

obtained at level 7 of the tree.

The results show that the standby component

for stage one and two are 3 and k respectively. The stage

three is to be supported with 2 standby components along

with 2 repair facilities.. The system reliability achieved

is 0.98*fSO.



CHAPTER IV

MAINTENANCE BUDGET SCHEDULING

The financial management of a power utility

frequently chooses among competing investments either

because the firm's capital is rationed or because

some of the projects are interdependent. The future

success of a policy, consisting of a set of proposals,

depends upon the investment decisions made today. Choosing

a sound and effective maintenance policy reduces the

system down-time, enhances the life of the equipment and

thus increases th,3 revenue to the utility. Bierman and

Smidt L6 1 have duly emphasized , the role of net present

value, as a measure of total expected return to the utility.

In the present work, integer programming linear and non

linear models are presented for the control of maintenance

expenditure on thermal generating units. The objective

is aimed at selecting that set of proposals which maximizes

the net present value of its total expected return. New and

efficient maximization algorithms are developed for the

solution of the problems.

lf.1 MODELLING

The maintenance budget scheduling problem belongs

to an important class of capital budgeting decisions. In

the evolvement of an optimal maintenance jiolicy, the

selection of a portfolio of proposals is of the utmost



88

importance to the financial management of the utility.

Advantage is taken of the existing models [8,27,VI j, in
the formulation of the problem. The problem of maintenance

budgeting is discussed both under conditions of certainty

and uncertainty. Some of the new terras used in the analysis

are discussed.

DETERMINISTIC CASE

First of alli the concept of net present value is

explained. This is also referred to as the present dis

counted value of a return. By investing on the preventive

maintenance of a generating unit, the power company purchases

the successful operation of the unit for a specific period.

As a consequence of this, there is a return associated

with this investment. Thus, the net present value of the

return to be obtained at a later time is a very useful

measure of the alternative proposals. In terms of the

formula framework, the promised future reward F of the

present sum M is [_272 •

F = M( 1 + r)n . Of.D

or m = i- (*f.2)
(1+r)n

Bq. (k.2) says that the offer of a, promised future reward

F, in n years, is worth the present sum Mif one's time

value of money is r.
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Next, the concept of cash flows is of importance

in che analysis of capital budgeting problems. The company's

directors insist that the total cash outflow, during the

time horizon for which the prepared schedule is to remain

operative, should be restricted. The cash out flow asso

ciated with each alternative proposal during the intervals

of the scheduling horizon is known for the analysis.

Thus, under conditions of certainty, the maintenance

budgetary control problem is set as a 0-1 integer linear

program, whose general form is :

Maximize : z = NPV (Net Present Value)
n

= 1 c.x. (k.3)

i=1

subject to :n

Z

i=1

aip \ € *p ik.k)

where,

(p = 1,2,...,m)

and x± =0 or 1 (*f«5)

c-'s are the net present value of the various

proposals.

a, ' s are constraint coefficients
iP

b 's are the right-hand-side values of m constraints
P

n are the total number of proposals.



90

PROBABILISTIC CASE

When the various available proposals are inter

acting, there is a risk involved in the achievement of

the objective of the firm. In such a case, it is not

enough to maximize the function Of.3) alone. The inter

action among various proposals are measured by the varian

ces and covariances associated between them . The port

folio manager derives utility or satisfaction from the

return obtained. Most of the managers set their objectives,

so as, the firm's utility function is quadratic or cubic

|27J . Thus a combined objective function is formulated,

which results in a maximum return to a firm at the minimum

of risk involved. In the present work, a quadratic cost

function is considered.

Under conditions of uncertainty, the cash outflows

and hence net present values are random variables with

forecast means (expected values) and variances. If it is

assumed that the company's utility function is quadratic,

then the power generating firm should choose that 'port

folio' of proposals, which maximize the following function:

Maximize : z=E(NPV) -a| [e(NPV)] +V(NPV)| (lf,6)

where

E(NPV) Expected Net present value for the set of

proposals.
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V(NPV) Variance of the Net present value for the

set of proposals.

A Power generating firm's coefficient of

risk aversion.

From the computations stand point, the expression (^.6)

is put in the following convenient form :

n

Maximize z = V" E(NPV)± 3^ - A
i=1

C s<NIV>i xi
*2

i=1

- A
n

J~ x. x< C (npv) (if.7)

Subject to the constraints (If. If) and (-f.5)

where,
r

V(NPV) if i = j

Covariance of the ith and jth
C(NPV). . •

proposals' NPV , otherwise.

The expression (U-.7) has the characteristic

that if proposal i is rejected, then proposal i makes

no contribution to the objective function. If i = j,

then no covariance is associated with proposal i. Finally»

if proposal j is rejected, no covariance is associated

with proposal i.

In the linear (if.3) and nonlinear (k.7) formulations

a verctor S = (x , x ,...., x ) is composed of a number
12 n



92

of subsets S± (i =* 1,....,k) ,where k are the number
of stages in the problem. These.- k of the m constraints

(If.if) have a structure as given by Eq.0f.8). That is,

x (S±) = 1 (^.8)

i e k

Eq. (if.8) signifies that for each stage of the

problem, only one proposal is to be selected from a set

of proposals. It is shown in the section to follow that

k of the m constraints are eliminated because of the

desirable attributes of the solution procedure.

if. 2 ALGORITHMS

DETERMINISTIC CASE

First, the development of the algorithm is dis

cussed for the deterministic case given by B%)8. C^«3)i

(if.if) and (if.5). The Eq. (If.8) also holds true for this

case. The problem whose solution is to be obtained is the

maximization of the objective function. As a first step,

systernatization is introduced in the model. The objective

function coefficients are so arranged that these appear

in a monotonic decreasing sequence for each stage or

subset. The intutive reasoning for such a move is to

obtain the optimal solution with a minimum of the computa

tions, without searching the solution over the whole

solution space. Thus, for any stage i , the following
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inequality (if.9) holds. That is,

C6i+1 > CC6±+2 > C5±+3
(if. 9)

where, n. are the number of variables in the ith
7 l

subset. Also,

>Vni

6i = 6i-1 + ni-1
i=2,3,..., k MO)

6. = 0 initial
1

The subscript of the cost coefficient c gives the number

of the variable to which this coefficient precedes. A

graphical display of the characteristic behaviour of

the cost function is given in Fig. if.1 . The tree search

method discussed in section 2.2 is applicable for the

case at hand. In this case, the problem is that of

maximization one, therefore, the property no.5 of the

tree given in section 2.2.1 is modified as follows :

The values of z at the ith level of the tree

are always less than the maximum of z at the (1-1)tb level,

Therefore, the inequality (if.11) holds. That is

z1 ^ Max z1"1 (Jf.11)

The rules for generating the descendants are :

*•) D = k - 1 + 1 (M-.12)
e

(ifx t X5i+n1)
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and

*** De = k-± . (^13)

(±f "X =V^
where k are the number of stages or subsets and the

underlined element lies in the ith subset. Thus, using

the concept given above, a computer algorithm is developed.

The steps of the algorithm are detailed below :

1. Read System Parameters

2. Initialize solution vector at 4=1 . Enter X* +«j

(i = 1,2,...k) as unity entries and the remainir%

x = 0 . Underline element x .- . ( In the computer
by •

program the sign of negation (-) is used for this

reference element and other underlined elements).

3. Check constraints, iF'satisfied, stop, else go to If.

If. Advance the level counter by one i.e. t = £ +1.

Generate Descendants by using Eqs Of.12) and (if.13).

Go to 5.

5. Search for a feasible solution at the fcth level.

Terminate the branches having x element as
°k-rnk-1

underlined and the branches having any of the ele

ments xb +. (J a 1,2, , nk) as underlined.
Apply SKIP RULE *I (Refer section 2.2.2) . Go to 6.

6. Does a feasible solution exist ? If yes, go to 7,

else go to k.
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7. Store z , which is the maximum feasible^ at the
£th level as z interesting. Check if Z is the
maximum of all z at this level. If No, go to 8,

else stop.

8. Terminate branches having z (z . Go to ^

Aflow chart of the algorithm for the determinis

tic case is given in Fig. k.2. The algorithm has been
programmed in Fortran Hon an IBM 1620 computer.

PROBABILISTIC CASE

HOW, the development of the algorithm is presented
for the case given by Eqs. (k.7) , V*M >^.5).- In
this case also the equality 0k8> nolds true. Here the
objective function is nonlinear and has a random behaviour.
If the objective function has a monotonic characteristic,
one could exploit this property and pioceed as in the
linear case. This advantage is not present here. Thus,
for the nonlinear case the solutions are searched along
the branches of the tree- When a feasible solution is
obtained, it is stored as an interesting case. Now, if
a better feasible solution results, it replaces the
earlier interesting solution. Acomputer algorithm is
devieed for the case discussed. The steps of the

i
algorithm are *
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1 . Read system Parameters

2. Initialize solution vector at a a 1 . Enter x6^+1
(i - 1,2, ,k) as unity entries and the remainning

x a 0 , Underline element x& +1«

3. Check constraints. If satisfied, store z a z

feasible . Go to k.

k. Advance the level counter by one i.e. £ = £+1.
Generate descendants using Eqs. (If.12) and (If.13 ).

Go to 5,

5. Search for a feasible solution at the *th level.
Terminate the branches having x i element

°k-1 k-1
as underlined and the branches having any of the

elements xx ., (j = 1,2,....,n ) as underlined.
k ^

Apply SKIP RULE I (Refer section 2.2.2) Go to 6.

6. Does a feasible solution exist ? If yes, go to 7

else go to k.

7. Store z', which is the maximum feasible z upto the

£th level. Check if x +n (i a 1,2, ,k) vector
i i

with unity entries has reached. If yes, stop,

else go to k.

A flow chart of the algorithm for a probabilistic

case is given in Fig. lf.3 • A computer program for the

algorithm has been prepared in Fortran II for IBM 1620

computer.
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Stage
No.

100

If.3 SAMPLE APPLICATIONS

EXAMPLE lf.1 DETERMINISTIC CASE

A power generating utility is obliged to choose

one alternative from each of the available sets of alter

native proposals for its three newly installed units.

Each generating unit is made up of a boiler, a turbine

and a generator. From practical considerations it is

TABLE M

Data of Alternative Proposals

Cash aoutflows

Gene
rator ?o sal

Pro- Nature of Investment NPV

Rep
air
men

Reqd.
Cap.
MW

No.
Yr

1

Yr

2

Yr

3

Yr

k

Yr

5

20

1 Contract Maintenance lf25 k-5 1*f 1U- 1*f 1*f 1*t
to the manufacturer

2 Expand the existing
maintenance facili- 1^20 W 100 20 10 0 0
ties.

10

3 Contract maintenance 650 30 30
to the manufacturer

k Sub contract mainten
ance to another firm 596 20 1*f

5 Expand the existing 350 15 20
maintenance facilities

8

20

8

20

6 Contract the mainte
nance to the manufac

turer 987 30

7 Subcontract mainte-
15 nance to another 825 25

firm

8 Expand the existing
maintenance facili- 7^7 20
ties

60 if 0

30 2k 8

10 10 15

If If

8 8

12 6

0 16

8 8

10 k
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decided that the maximum number of repairmen should not

be more than 100. The power utility is not in a position

to expand its existing maintenance facilities for both

of the 10 MW and 15 MW generating units simultaneously.

The complete data for the problem is given in Tables if.1

and k,2. The data used are hypothetical. Select that

set of proposals, which will maximize the net present value

of the return to the utility over the next five years.

TABLE k.2

Maximum cash outflows

Year Max. cash

outflow

1 ^kO

2 60

3 30

k 30

5 30

Thus, our objective is to

Maximize z a

1*f25 x1 + Iif20 xo + 650 x3 + 596 x^ + 350 x- + 987 x6
+ 825 x? + 757 xQ (k^k)

Subject to the constraints

Jf5x1 + kOx2 +30X +20xlf +I5x^ +30x6 +25x? + 20xg ^ 100

(U-.15)
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lUx. +100x2 +30x3 +1**% +?.0x^ 4- 60x + 30x7 +10Xg ^ 1*f0

lifX ♦ 20x + ifx.. + 8x^ +20x* ♦. ifx, + 2kXy +10xg ^ 60

llfx^ + 10x2 + kx~ + Sx^ +20x^ + Ox^ + 8X7 +l5xg ^ 30

1ifX ♦ 0x2 * kx~ + 90c, +12x^ + Ox, + 8x„ +10Xg ^ 30

1lfx1 + 0x2 + ifx^ + Sx^ + 6X5 + 16x6 + 83^ + ifXg ^ 30

(if.16)'

X5 + X8 <1
CM?)

x1 + x2 = 1

x3 + \ + x5 = 1
x6+ x?+ x8 a 1

(if.18)

In the above formulation, constraint (if.15) repre

sents the limit on maximum number of repairmen. Constraint

set (^. 16) restricts the cash flows. Constraint (if.17) is

included because of power generating firm's limitation, of

not being able to expand the existing maintenance facilities

for both the 10MW and 15 MW generating units simultaneously.

The constraint set (if. 18) signifies that only one alternative

is to be chosen from each. set. This set is eliminated because

of the desirable attributes of the solution procedure.

The algorithm of Fig. if.2 is used for finding

the solution to the above problem. The tree diagram

applicable for this case is shown in Fig. if.if.
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Here c«j > Cg ; c3 > c^ > c^ ; c6 ^ c? > cQ .

The optimal solution obtained is

x1 " x3 = X7 = 1

x2 = xif = X5 = X6 = X8 = °

Z S3 2900

The computer memory and the execution time for the IBM 1620

computer is 191+3 words length and 2.0 mins. respectively.

The solution is obtained at level 2 of the tree. Thus,

the power generating firm accepts the proposals 1,3, aid

7 with a return of 2900.

EXAMPLE if.2 PROBABILISTIC CASE

The variance and co-variance data associated

with a set of proposals of Table if.1 is portrayed in

Table if.3. The constraints for the problem are the same

as given by (if.15), (if.16) , (*f.17) and (if.18). The

utility s coefficient of risk aversion is of the value

(2.0) x 10 . A schedule which results in a maximum

expected return is to be obtained.
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TABLE if. 3

Variance and Co-variance Data of Various Proposals

" ' "—•

"2,

i,1

> 0

Proposal
No.

—--——~—~

1 2

I

3 if 5 6 7 8

HI

1 1000 0 3000 1500 -1000 3000 if5oo - 990

2 0 if00 1200 1000 - 800 1200 960 - 600

3 3000 1200 1if000 0 0 10000 ifSOO -3300

if 1500 1000 0 if900 0 6500 3*f00 -2100

5 -1000 - 800 0 0 3600 -3960 -2800 1800

6 3000 1200 10000 6500 -3960 12000 0 0

7 2000 960 ifSOO 3if00 -2900 0 6if00 0

! 8 • •. 990 - 600 •3300 -2100 1800 0 0 2500

-A

Thus, the objective is to

Maximize z =

1i+25x1 +1if20x2 +650x3 +596x^ +35ox5 +987x6 +825x?+757xg

1if25x1 +1if20x2 +650x3 +596x^ + 350x5+987x6 +825x7+757x3

-A 1000x^ + 3000x1x3 +I500x1xlf - 1000x.)x^ +3000x1x,6 +if500x1x?
-990x1X8 ) i =1

•990xgx1 - 600xgx2 - 3300xgx3 -2100xgxl+ + I800xg x^
+2500x2 J 1 = 8

CV.19)
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The algorithm of Fig. if.3 is used for obtaining

the solution to (if.19) subject to the constraints (if.15) >

(if.16), Of.17) and (if.18). The tree diagram of Fig. if.if

is also applicable for this case. The optimal solution

obtained is

x2 = x3 a xg = 1

X1 = Xh = X5 = X6 = X? a0 •

z = 1226

The computer memory and the execution time for

the IBM 1620 computer is 2012 words length and if.0mins.

respectively. The optimal solution is obtained at level

if of the tree. Thus, under conditions of uncertainty the

power generating firm accepts the proposals 2,3 and 8 with

an expected return of 1226.

if .if COMPARISON OF RESULTS

A study was carried out to compare the efficiency

of the newly developed tree search optimization technique

with the earlier used Lawler and Bell [37J method for

the investment decision scheduling problems (VlJ. Example

if.1 was solved using both these methods and results of

comparison are portrayed in Table if.if.



TABLE if. if

Results of comparison

Basis for comparison

Number of constraints

Solution space size

Number of searches
required to arrive at
the optimal solution

Lawler and Bell
Method

13

256

81

107

Tree search
method developed
by the Author

7

18

10

In the Lawler and Bell method, the number of

constraints are large, because each equality constraint

has to be transformed into two inequality constraints,

one of the 'less than type' and second of the 'greater

than type'. Thus, the constraint set (if,18) having 3

constraints is replaced by 6 constraints. In the tree

search method these equality constraints are absorbed in

the search procedure and thus get eliminated from the

problem. The example if.1 has 7 constraints when solved

by the tree search method and 13 constraints when solved

via Lawler and Bell method. Further the size of each

constraint is doubled in the Lawler and Bell procedure

for applying the skip rules.

The size of the solution space over which the

optimal solution has to be searched is much smaller
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k

( TT ni = 18 ) in the case of tree search method as
la1

o

compared to the total solution space (2 = 256). Such

a vast reduction in the solution space results as the

tree search method exploits the special structure of the

model which has not been done earlier. A large number

of infeasible solutions are never genera.ted.

In the Lawler and Bell method the search is

initiated by assigning one variable as unity and the

remaining variables as zero. Two side vectors are genera

ted for the implementation of the skip rules. A number

of intermediate steps are involved in going from one vector

to the next and these are time consuming. Some of the

infeasible solution vectors are skipped in the search

process. In the tree search, method, the search process

is direct and systematic. By employing the L&wler and

Bell method to example if.1, 81 searches have to be made

in order to find the optimal solution. In the tree search

method only 10 searches are made for arriving at the optimal

solution. Thus, the newly developed technique of analysis

is superior to the earlier used method for the specialized

problem discussed.



CHAPTER V

GENERATION SCHEDULING

An important class of scheduling problems are

discussed in literature under the title of "Generation

Scheduling". These relate to the scheduling of real and

reactive power in power systems. Many useful contributions

have appeared in this area and many more are appearing. The

problems are diverse in nature and are discussed under the

mathematical models of mixed integer programs, continuous

variable programs and integer programs. In the work repor

ted, a unit commitment scheduling problem and a real power

scheduling problem are discussed. New and efficient schedul

ing algorithms are developed and sample applications are

presented. The work is primarily useful for real time opera

tion of power systems and also for study purposes.

5.1 UNIT COMMITMENT SCHEDULING

For the reliable operation of a power system, it is

first necessary to evolve an optimal maintenance policy[32]

for the generating units and its auxiliary systems. After the

units havb been scheduled for preventive maintenance on

annual basis, the next problem is the selection of units

out of the available set for real time operation. This is

referred to as the problem of unit commitment scheduling.

The scheduling horizon over which such a decision has to
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be valid may be a couple of hours, a day or even a week.

The objective function to be minimized is the total pro

duction cost, which is a summation of the running cost,

shut down cost and time dependent start-up costs during

the intervals of the scheduling horizon.

The earlier practice was to start up and shut

down units in accordance with a priority list based on

unit heat rates £~if, 29] • Many a tines this would also
involve the discretion of the system operator or dispatcher

based on his own experience. As a consequence of this such rules

as - units are shut down if not required for a preselected

interval are very common. Such an approach could impair

reliability and economics of operation. The work in the

area of application of mathematical programming techniques

to the problem of unit commitment started about a decade

ago and many useful contributions have been presented.

Garver L*23 3 has advanced an integer programming formulation

of the.problem. Muckstadt and Wilson [_39 j use a mixed

integer linear model and employ Benders Decomposition to

find a solution. The start up cost model included in

the mixed integer formulation is approximate as it is

not time dependent. The cost function considered is linear

and thus the solution procedure cannot accommodate nonlinear

(quadratic or cubic) cost functions. The computation

burden of the algorithm presented is large and is only
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useful for very small size systems. A 2 generator 2

interval problem is solved. Lowery [38H has recommended

the use of dynamic programming. Subsequently Guy C25J and
Ayoub and Patton {ll have used dynamic programming approach

incorporating the evaluationjof security into the model.
The computer storage and the computation burden are large.

The present work takes a different approach to

the problem of unit commitment and presents a new direct

iterative optimization procedure based on the premise of

feasibility and economic dispatch. The heuristics deve

loped limit the search in the region of interest and help

to speed up the enumeration of binary vectors. The security

function Incorporated provides a means for assessing system

security in hour-to-hour operation on a probabilistic basis,

Based on the concepts detailed above, a scheduling algorithm

is designed and its applicacy tested on a medium size

system. The results of computation are presented.

5.1.1. MODELLING

The problem of unit commitment is set up as a

mixed-integer program, whose general form is

Minimize f(P& , y) = f1(PQ) + fg<y) <5.1)

Subject to
§1(PG) +g2(y) > 0 (5.2)
IljCPjj) > 0 (5.3)
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h2(y) > 0 (5.k)

PG > 0 , y a 0 or 1 (.5.5)

Where P„ is the real variable vector, corresponding to

the generations of various units, y is the 0-1 variable

vector corresponding to the status of the units; g1 +g2

in (5.2) represent m constraint functions and h«j , h2

are the constraints involving only PQ and only y res

pectively. For example security constraint belongs to

the g-+gp set, the generation equals load demand belongs
to h- and if because of limited labour force available

say only one unit can be started at a time, this belongs

to constraint set h . The function f1(PQ) varies non-

linearly with the power output P& and f2(y) is a

function of y and represents the start up anA-3hut_dpvn

costs,

FUEL COST CALCULATION MODEL

The cost curves (or input-output curves) of

fossil fuel generating units are assumed to bo nonlinear.

The normal practice [l,25J is to approximate these curves

by quadratic functions. Since, in a composite system

units are of different ages and types, therefore, for

some or all units cubic [*&] or higher order functions
may give a more faithful representation of the input-

output curves. In view of this, it is desirable that the

method used should be able to handle a set of polynomials

of the form given in (5.6)•
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f±(PG) a Au +A2± PG +A^ +Alf. p^ ... (5.6)

where,

f (P ) = fuel cost of ith generator supplying P„ MW
i G «

in Rs./hr.

11' 21 cost function constants associated with

A3i* Aifi 1^h generator.

START-UP AND SHUT-DOWN COSTS

The act of starting or removing a unit from

line involves labour and money. The decision to shut

down a unit depends upon a number of factors which include:

1. The number of hours the unit can be shut down before

it is required again, i.e. the shape of the hourly

integrated load time curve for the period considered.

2. The cost of start up and the shut down costs.

3. The relative efficiency of the unit to be shut down

compared to the efficiencies of the units left running,

Now, if a decision is to be taken to shut down

a unit, the boiler will either be shut down and allowed to
i

cool on it will bo banked and continue to be supplied

with fuel to maintain boiler pressure and temperature.

Clearly, the latter alternative will be chosen when the

unit is to be required again in a short time.
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It is assumed that when a unit is shut down tha-

boiler is allowed to cool and hence its temperature will

fall exponentially. The cost of restart [if] the unit

is given by Eq. (5.7).

-<*(T-1)[S(y) = B 1 + KT (5,7)

where, T is the number of hours the unit ha,s been shut

down. B is the cost of starting the boiler cold. KT

is the cost of starting the turbine alone. °< is the

cooling time constant of the boiler. For simplicity, the

above expression is written as |_ 1J f
cCT

s(y) = s^
- c( T

L-

(5.8)

where S^ is the cold start up cost of the complete

unit.

From the above discussion it transpires that a

case arises for making trade off analysis between total

production cost, including start up and shut down costs

by closing a unit or keeping it on line.

UPPER AND LOWER BOUNDS ON THE VARIABLES

The power Pri4. for the generating unit 1 at

any time t may be zero or between the two limits P^j-
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and P ^ .A bivalent variable represents this two
max.

state condition '.

ylt - 1 lf Pmini < PGit < ^
The above may also be represented by the constraint

Eq. (5.9) i i.e.,

Pmin. yit < PQit < PmXi y (5.9)

SPINNING RESERVE

The availability of spinning reserve is a

basic requirement for the reliable operation of any system.

Its location in the system will be a result of the computa

tion. It is a common practice to maintain spinning reserve

equal to or larger than the operating set. If R MW is

the amount of spinning reserve during any hour t , then

the constraint eq. (5.10) must hold. That is,

II PmaXi yit " XT PGit -Rt >°
1=1 1 -i_l

x"1 (5.10)

Also, n

tZ PGit " PD, (5.11)
i=1 t

Sq.(5.11) signifies that the load demand is always met.

Pp. is the load demand for the interval t and n are the

total number of units on-line.
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The missing ingradient in the above representa

tion is the failure and repair rate consideration of diff

erent units. Therefore, a more rational way of meeting

the spinning reserve need is through the evaluation of

short term reliability Lk7J or security of the system.

For incorporating the security model into the scheduling

algorithm a maximum tolerable insecurity level (MTIL)

is defined through simulation studies. A quantitative

measure of system security is obtained by calculating

a dimensionless security function S(t) as follows :

S(t) = £ P.(t) Q. (t) (5.12)
i

where,

Pi(t) = Probability that the system is in state i at

time t

Q^t) m Probability that state i is a condition for

which theload exceeds the generation at time t.

The summation (5.12) is in theory carried out over

all possible system states, but in practice only needs

to be carried out over states reflecting a relatively small

number of forced outages. Q.(t) functions as a true

probability only when uncertainty exists as to wheather

or not a certain system state constitutes a breach of

security at time t: . In the case at hand, uncertainty

may arise due to the fact that the load at the future
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time t is not known precisely at the time the security

function is calculated, and the values of Q.(t) will then

depend on the load forecasting method. However, it is

assumed that the load forecasts are exact and consequently

Qi(t) takes on values of either zero or unity. That is,

either a system state constitutes a breach of security

or it does not . Qi(t) assumes that value of unity if

the system load exceeds the available capacity, and the

value zero, otherwise. The remaining problem is the deter

mination of the state existence probabilities, P.(t) .

Assuming that the operations of generating units is modelled

as a discrete-state continuous transition Markov process,

it is shown [k7 ] that P (t) , the probability that any
m

unit m is down at time t , given that it was up at time

zero , is equal to :

m X + M
m m

-(X + M )t
m m

1 - e

(5.13)

where X^ and t*m are the failure and repair rates of

unit m, respectively. The probability of finding the

mth unit in the upstate is given by (5.1k-), i.e.,
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Now, assuming no standby generators or t less

than the time required to start a standby generator,

the probability of system state is found as follows:

?i(t) = TT »to (« |f P (t) (,.15)
3exi ° key; P*

where,

X a set of generators which are down in state i

*

Y ss set of generators which are up in state 1

Therefore, to calculate the probability of the

existance at any state at any time, it is necessary only

to combine the appropriate unit state probabilities in a

multiplicative process.

5.1.2 ALGORITHM

For evolving practical algorithms, it is concei

vably true that the problem model be critically analysed

and its properties used in order to reduce the computational

burden of the algorithm. The solution procedure should be

based on simple logic and the computations should also be

arranged in a systematic fashion, as far as possible, in

order to obtain the solution with a. minimum of the computa

tions. Such desirable attributes are present in the method

discussed below.
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DIRECT ITERATIVE PROCEDURE

In the formulation (5.1) y is called a vector

of complicating variables in the sense that (5.1) is a

much easier optimization problem in P„ when y is tempora-
Li

rily held fixed. This is called aa the continuous

nonlinear subproblem.

The solution procedure for the continuous non

linear subproblem is based on the premise of feasibility

and economic dispatch. A feasible solution vector PQ

corresponds to the conditions when genera,tion meets the

load demand and the variables are within their upper

and.lower bounds. Thus, during any interval t , the equality

(5»11) must hold. In the procedure, starting from any

feasible point and reaching the final solution point in

a finite number of iterations, the total change in the

variables: is aero. Thus, the equality (5.16) holds,

That is,

n

>
i=1

p
Git

i=1

&

Also

t A P :*Git • 0

i=1

Provided changes in losses are neglected.

W - PD (5'16)

(5.17)
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For example, if Pp and P are the two
1 2

pivot variables corresponding to the lowest and the highest

incremental cost values, then for the next solution point,

these variables are incremented by + t PG and - Ap&

respectively . The change L PQ is so chosen that there

is no overcrossing of new Pr and P variable values.
u1 G2

During this process if a variable reaches at its boundary,

it is held fixed and no further change is made in this

variable. Thus, the method is called a multivariable

constrained search procedure. In this method, every move

is a move of success and this enhances the efficiency of

the procedure. Such, a procedure terminates to a conver

gent solution in a finite number of step moves.

The next important point is about the enumera

tion of binary vectors. Supposing we have started our

computation by fixing all binary variables to unity and

the convergent solution to the nonlinear sub-problem is

obtained. The question to be answered is that which of the

binary variables be made zero next. In power system

parlance, it means that which of the generators be

switched off in order to obtain a better feasible solution.

This decision is guided by the indices developed from the

continuous nonlinear sub-problem in the preceding

step. These indices are obtained by the ratio of the

fixed charge cost and the variable cost of each, generator
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corresponding to expression (5.6). Thus, the generator

having the highest index is eliminated first and so on.

Such heuristics limit the search in the region of inte

rest by limiting the number of binary vectors to be enume

rated.

The security calculation sub-program is very

neatly embedded in this procedure. This further helps

in reducing the number of binary vectors to be enumera

ted. Thus, by following the above procedure, the minimum

cost solution for a specific interval is obtained by

enumerating a few binary vectors.

Based on the concepts detailed above, a schedul

ing algorithm is developed. A tradeoff analysis with

start up cost is included within the scheduling horizon

This is based on the promise that there1 is a possibility

of achieving a less costlier operating cost schedule by

not shutting down some of the units for various periods

of time. Thus, if the operating cost by keeping a unit

on line is smaller than the operating cost (running cost

plus later start up cost) by not keeping the unit on

line, then the first alternative is accepted. The procedure

is similar to the one given in the reference ^1 J• The

main steps of the algorithm are s

1. Read system Parameters. Initialize time t = 0 , Go to 2.

2* Advance the time counter by 1 i.e. t = t+1 , Go to 3
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?,. If time t is greater than t , the maximum time of
— . max

the scheduling horizon, stop, else go toif,

if. Generate a feasible schedule and minimize by direct

iterative procedure. Evaluate secuity function and

compare with MTIL Go to 5.

5. Check convergence ? If No, go to 6 , else go to 7.

6. Enumerate next binary vector and go to if.

7. Compare (y., - y.. ..) ? If zero or minus one go to
it its— i

2 , else go to 8.

8. Calculate start up costs. Is trade off for start

up. cost needed ? If no , go to 2 . If yes, reset

t = t* , go to 2.

A flew chart for the unit commitment algorithm

is presented in Fig. 5.1. In this t corresponds
ma 3"

to the number of intervals in the scheduling horizon. (j±^"
y.. 1) establishes as to which of the units have been

started or shut down for the time interval t. Also t

corresponds tc an earlier tine interval when a unit was

shut down . This helps in makinp trade off analysis with

the start up cost between different intervals within the

scheduling horizon. A computer program for the algorithm

has been prepared in fortran II for an IBM 1620 computer.
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5.1.3 SAMPLE APPLICATION

The method of the paper has been applied to a

sample system £l ] having ten generating units the para
meters of which are given in Table 5.1 . The cooling

rate of all units, « is taken to be 0.25 . All units

TABLE 5.1

Generating Unit Parameters* for Sample Application

— I
Failu-Repair
re rate
rate

Unit

No.

- Mini
mum

out
put
(MW)

Capa>

city

(MW)

cost curve parameters Cold
start
up

time

(hr)

Cold
start

up

cost

Rs.

1 60

2 80

3 100

if 120

5

6

7

150

280

320

8 ifif5

9 520

10 55o

15

20

30

25

50

75

120

125

250

250

A
1

Rs.

105

175

280

22if

203

50if

3if3

57k

735
700

A2
Rs./MW Rs/MW

15A238

13A127

12.9626

11.8752

12.6105

10.7^70

8.8501

8.if952

8.3678

7.8995

0.03570

0.02772

0.02751

0.0267*f

0.01if8if

0.01827

0.02023

0.01136

0.00889

o.oo9if5

3

3

3

if

if

6

8

10

12

12

595

707

793

658

791

12?2

1309

1589

1869

I97if

1/yr

1.2

1.2

1.2

2.5

2.5

2.6

2.6

2.6

if.O

k.O

-j-

1/yr

151

151

151

585

585

638

638

638

638

219

mm •"I,i"

* The data is taken from reference [l] .A conversion
factor of one dollar = seven rupees is used.
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TABLE 5*2

Minimum Cost Schedule

Unit :status Start Load

Running cost
up MW

Hr
1 2 3 if 5 6 7 8 9 10

•

Rs

U. :—, -—i

cost
Rs

1 1 1 1 1 1 1111 296^2.697 - 2000

2 1 1 1 1 1 111 1 29312.if72 -
1980

3 1 1 0 1 1 1111 28^5.618 -
19^0

if 0 1 0 1 1 1111 27729.226 -
1900

5 0 1 0 1 1 1111 26750.080 -
18if0

6 0 1 0 1 1 1111 27237.973 •• 1870

7 0 0 0 1 1 1111 26323.171 m 1820

8 0 0 0 1 1 1111 2if390.268 - 1700

9 0 0 0 1 1 0 111 .1 2123if.570 -
1510

10 0 0 0 0 1 0 1111 19580.183 M Iif10

11 0 0 0 0 1 0 1111 18201.057 -
1320

12 0 0 0 0 0 0 1111 17198.if61 -
1260

13 0 0 0 0 0 0 1111 16293.if0 3 - 1200

1if 0 0 0 0 0 0 1111 15701.007 M> 1160

15 0 0 0 0 0 0 1111 I5lf08.106 •• HifO

16 0 0 0 0 0 0 1111 15701.007 -
1160

17 0 0 0 0 0 0 1111 17198A61 - 1260

18. 0 0 0 1 0 1111 19116.307 if7if.60 1380

19 0 0 0 1 111 1 2220if.595 1335.60 1560

20 0 0 0 1 1111 2if390.268 -
1700

21 0 0 0 1 111 1 26323.171 -
1820

22 0 1 0 1 111 1 27729.226 -
1900

23 0 1 1 1 1111 28722.183 665.00 1950

2if 0 1 1 1 1111 29380.if1 if

•i • " ' *r—>

1990
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are assumed to be operating at time zero, the time at

which the 2if-hour schedule is computed. In practice of

course no such assumption would be required since the past

operating history of all the units would be known. Knowledge
of operating history prior to scheduling period is required

for calculation of start up time and costs.

A scheduling period of 2if hours is assumed for

the sample application. The predicted load cycle,

assumed to be error free, is given in Table 5.2. The

value of MTIL used in this study is 0.000if50. Operation

according to this value of MTIL should result in a loss

of load about once every ten years for the sample system

according to the results of a Monte Carlo simulation

study.

Table 5.2 shows the minimum cost schedule subject

tc the satisfaction of the security constraint and also

including trade off for start up cost.

The total Running cost is Rs. 555,253.92 and

the start up cost is Rs. 3033.10.

5.2 REAL POWER SCHEDULING

The optimal scheduling of real power is important

from the system economic and other operating considerations.

The problem is also referred to as "Economic Power Dispatch".
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The theory of the subject is well developed and many useful

contributions have appeared in the literature. A well

known method which is representative of the state of the

art in the developments is the optimal power flow develop

ed by Dommol and Tinney [16J. It schedules real and react

ive power, represents losses exactly and satisfies con

straints on load voltages, reactive sources and tie line

power angles. The method is based upon Newton power flow

solution and is much more elaborate than the simplified •

approach presented. However, the method is based upon

explicit and exact solution of the network and is

computationally much more difficult and involved. The

computer memory and time required are beyond the range

of many dispatch-office computer systems . The coupling

between the real and reactive power flow is small and

the phase angle difference between the two nodes mainly

controls the active power flow through the connecting

branch, and the difference between voltage magnitudes

is mainly related to the reactive power flow {5k] .
Thus , the static real power scheduling problem is con

sidered decoupled from the reactive power of the system.

In the past, Kirchmayer's method [30] has been

well established as an effective method for economic

scheduling. Such an approach evaluates losses by loss

formula based on Kron's B coefficients [7, 31 ] •
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However, the calculation of the loss formula itself

involves a considerable computation effort. In the pre

sent work, a simplified method is used forthe calcula

tion of transmission loss coefficients. The method is

based upon the linearized or d.c. load flow approximation.

She accuracy of the method has been extensively tested

and is well within the practical requirements of economic

dispatch [if8j • The method requires a very small

computation time and introduces the possibility of up

dating loss coefficients on line according to actual

network status and load conditions. Another limita

tion of the Kirchmayer's method is that there is

no guarantee that the schedules will not violate secure

line limits. In the actual operation of power system,

there are peak load periods, when one or more lines

may get over loaded, if not checked Wl . Therefore,

it is necessary to reallocate the generation so that the

line constraints are satisfied. In practice, this

operation is most commonly performed by manual adjustment

of generator output limits. With the demands upon the

power system reliability and the increasing size and com

plexity, it is desirable that the scheduling algorithm

accounts for the network constraints.

The problem of real power scheduling has also

been solved by gradient projection method \k-9j . The
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gradient projection method is basically an extension

of the method of steepest descent and has the charac

teristic limitations of slow convergence near the optimum

and oscillations along a steep sided valley . Thus, the

method become unsuitable when the cost function is re

presented by a cubic or higher order polynomial. In

this procedure, the evaluation of optimal step size at

each iteration is also time consuming,, In the work

reported, a simple and efficient multi-variable constra

ined scheduling method is presented„ The computer storage

and computation time are encouragingly small. The appli

cacy of the algorithm is tested on a sample system and

the results of computation are presented,

5.2.1 MODELLING

In the " scheduling of real power, the conside

ration of losses is important. In the present work a

simplified method [kQ*] . is used for the calculation of

transmission loss coefficients. The DC load flow loss

formula, provides a fast means for calculating incre

mental losses without the need for direct network solu

tions. Thus, transmission losses are coordinated into

economic schedules without large overhea Is in computer

time and storage.
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SYSTEM LOSSES

The basic probxem is to express the system

losses as a function of the generator power outputs. As

a first step, the losses are separated into voltage magni

tude and angle dependent components.

The real power loss in the branch k m in Fig.5.2

is ,

\ •£ *m (5-18)
Using the cosine rule to expand E^,

PL = ( \ + Em " 2EA cos ( °k " °m }) 6km
(5.19)

In power system operation (o"k - o^) is small and therefore

the approximation (5.20) is valid.

cos (crk - o ) - 1- (o-k - crn)2/ 2 (5.20)

Thus, from above,

In expression (5.21) the branch loss is separated

into two parts. The first component is dependent only on

voltage magnitudes and the second component is predominantly

dependent on voltage phase angles. Thus, for the complete

system, the losses are summed over all the branches

Therefore, the system loss is expressed as,



where,

= PCT + PK

PB = ) )

and

P
Or-

k m

-) )
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(5.22)

(E -E )2 g, (5.23)v k m' bkm

Sk Bm(0k " °m)2 gkm {5'2h)
k m

The expression (5.22) is put in a more convenient form

as,

PL = CT* Gmcr +PE C5.25)

Where, the elements of Gm are defined by,

G„TO(k,k) = ) « * » (5.26)
NN Z "k m bkm

m

r (k.m") = -E E a (5.27)GNN ' km bkm

Thus, the losses are separated into voltage magnitude and

argli dependent components.

LINEARIZED LOAD FLOW

The linearized dc load flow is applied to express

the bus angles linearly in terms of the bus powers. The

power flow in line km of Fig. 5.2 is given by fifS J
Eq. (5.28).
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FIG-5.2(b) BRANCH VOLTAGE AND CURRENT RELATIONSHIPS
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Pkm =Ek [V^n C°S (°k "*£ ] gkm
* EkEm sin (c^ - om) b^ (5.28)

The terms of (5.28) are the components of power flow

through the branch conductance and the branch susceptance
respectively. . For the dc load flow, the following

approximations are used ,

Sin (ok - tTm ) = ok- crm (5.29)

and cos (c\~&m) = 1 (5.30)

The effect of the error in the latter approximation

is reduced by the high X/R ratios of the modern

transmission systems. Thus, from above ,

Pkm =Bk(Sk-Sm>gkm " "A **<* ~«tf i%^
Considering the power balance at each bus, ore obtains,

h s h +BNN ^ (5'32)
Where, the M-(k)a the net conductive flow from bus k,

is given by (5.33)

Vk) = I VBk -v % (5-33>

and BNN ty

3km

m
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Vk>k> - T. W \m
m

(5-3U-)

and BNN(k,m) . Ek Em bkm (5.35)

Eqn (5.32) expresses the bus powers P^ linearly

in terms of the bus angles <r and it is commonly known

as the dc load flow equation. For convenience, M,T

is lumped with the load powers, thus Eq„ (5.32) becomes

N " ^TN cT (5.36)

THE DC LOAD-FLOW LOSS FORMULA

The dc load-flow

bus angles,

9 = ^ PN

Eq.(5.36) is solved for the

(5.37)

Substituting (5.37) into (5.25) , the losses are obtained

as quadratic function of the bus powers.

PL = \i \tn gM pn + PB (5.38)

Separating, the bus powers into the generator power

Pp and the load powers P^-r ,

'Nj •NL (5.39)

Also, Z-Q is defined as a submatrix of the generator bus

columns of Z . Substitution of (5.39) into (5.38) thus
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gives,

PL " PG ^G GNN ^IG PG + 2 PG ZNG GNN ^N PNL

•* Z. G Z. P T + P (5.ko)
NL TJN NN %W NL B+ P

The dc load-flow loss coefficients are defined as,

t

EGG a ^G GNN ^G

t

EG0 ~ 2 ^G °NN h® PNL

t

E00 = PNL ZNN GNN **& PNL (^*lf1)

Thus, the system losses are expressed in terms of the

generator powers as,

PL * PG BGG PG + PG EG0 +E00 +PE ^.k2)

Eq. (5.if2) is referred to as the dc load-flow

loss formula,. The incremental losses are therefore,

dPL^ =" 2EGGPG +EG0 ' (5A3)
G

MATHEMATICAL STATEMENT OF THE PROBLEM

Stated mathematically, the objective is :

Minimize f(PQ) =£~ *n *̂ ?Gi ^3±4± **k±4i.
iCNG (5#Mf)
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Subject to

P = P + P (5.k5)
*Gi D * rL

16 NG

P • & P • < p (5A6)-minj_ ^ Gi ^ maXj^

i = 1,2...... ,NG

and

POT £ P . < P„TT (5.k7)
SL3 aJ *UJ j=1,2,...,g

Where,

A1i' A2i
a with ith generating bus

A3i '\i

Cost function constants associated

NG Number of generating buses

p . Minimum active power generation at node i
min,.

P Maximum active power generation at node i
maxi

p . Actual generation at ith bus
Gi

P Total system load demand

p Total system losses
L

p . Active power flow in line j
aj

p . Specified lower power limit in the jth line
SLj

p Specified upper power limit in the jth line

f(p ) Total system running cost.
G
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The operating cost of a generating unit is

generally approximated by a polynomial of the generated
active power with a degree three or higher. Thus, the

objective function, f(PQ) is non-linearly related to
the variables P^ s . The system losses and the incre
mental transmission losses are evaluated by the dc load-

flow loss formula (5.*f2) , (5.k3) . The line flow limits

(5.if7) are represented [k$2 as linear inequality const

raints on the control variables PQ . Thus, the problem
to be solved is : minimizethe nonlinear objective function

subject to the linear constraints. The next section pre

sents an algorithm for the solution of the problem.

5.2.2 ALGORITHM

The economic dispatch of power systems is based

upon scheduling generation so that the cost of supplying

the system load is minimized. This involves the

coordination of generator production costs with system

transmission losses. The coordinating equations, whose

solution is to be obtained are,

IC,

-^ = ***- 1 _ (5.1*8)
1 - ITL.

whore, IC. = .>,.,. »«&. ,. (5A9)
dP„.

Gi

6PTand ITI^ = _J, (5.50)
6PGi
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where ^ is the incremental generation cost.

The problem becomes difficult to solve, under

the constraints (5.if5) ,(5A6) and (5.k7). In developing

the algorithm advantage is taken of the constraints (5A5).

If the constraint (5.if5) remains satisfied, wo always have

a feasible solution , provided the constraints (5.if6) and

(5.k7) are also satisfied. Thus, using the concept of

feasibility, perturbations are given in the generation

levels at the generating nodes. Stated mathematically,

H PGi + H ^PGi " PD +PL (5.51)
i e NG i £ NG

where '̂Pqj_ is the change in generation at the ith node.

Also

A?Gi =0 (5.52)

i I NG

The above signifies that the perturbations are so given

that the total generation remains unchanged. The size of

the increment depends upon the scope available for the

improvement of the feasible solution. The small change

in transmission loss, which is likely to result is absorbed

by the slack bus. Thus, at every iteration a decision is

to be made regarding the magnitudes of changes AP-, .
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For this, the ^ ^ values are evaluated for all the

generating nodes. An average value of ^^is obtained.

The differences between ^± and y &v are measured
and also the closeness of generations with their upper

or lower limits is recorded. Based on these two factors

the changes 6 P are affected. Care is taken during

the search process that if any PQ violates the constraints
(5.if6) or (5.if7) , that PQ is also constrained,, The
input to the dispatch program consists of the following

data,

(i) loss coefficients EQG, EQ0 and EQ0
(ii) branch-generator power matrix SBQ (required for

calculating line flows)

(iii) generator cost data

(iv) generator power limits,. PmjLn and Pmax .

(v) Total load PD

(vi) Branch power limits PgL and Psu

vii) initial generation P and initial line flows

LOSS COEFFICIENTS EVALUATION

The following steps are used for evaluating the

loss coefficients, which are needed as input to the schedul

ing algorithm.
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1 . Read branch admittances and load powers. Also,

read the bus voltage magnitudes and generator

power.

2. Assemble .the matrices BM and GM ,
3. Form PN u BM cr

k. Invert B^ to get Z^ . Seperate Z^.
5. Calculate EQG, EQ0 and E^.

LINE FLOWS

The power flowing in a branch is represented X.k9]

as linear function of generation P_ . Thus,

Pa • Sbg PG +rb (5.53)

where

BG G*B * Pa ' SBG PG C5-.M

Pa is the initir 1 line flow and P° is the initial

generation level .. Also , the branch-genera.tor power
matrix is,

SBG = BBB ABN ^TG (5-55)

where,

BNN diagonal matrix of branch susceptances

ABN branch-node transformation matrix

ZNG generator node columns of Z^

Based on the concepts detailed above, a scheduling

algorithm is developed. The main steps of the algorithm
are %
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1 . Read System Parameters. Initialize i = 0 ,

NGR = [Oj Go to 2.

2. Advance iteration counter by 1, i.e. i = i+1 ,

Go to 3, IC
_. n , -, . <My _ , i = 1,...,NG and
3. Calculate >_• - ' 7 '

1 1 - I TL

i ^ NGR . Go to if.

if. Calculate > . From (-\. -\ J and .'
1 av 'l av

(Pmax - PG > and (Pmin " V • "«*•*•

' & PGi »i= 1»*'*'NG 'i* NGR G° t0 ^'
5. Check constraints (5.if6) and (5.if7). If satisfied,

go to 6 , else go to 7.

6. Calculate f(PQ) =YZ An +A2iPGi4'A3iPGi+AifiPGi
i S NG

Check, if ( '^ - y )< TOL, stop, else go
max > rain

to 2.

7. Form set NGR . Go to 2.

Where NGR is the restricted generator set ,

in which increments are not possible, TOL is the tolerance

for convergence of the solution. A flow chart of the

algorithm is given in Fig. 5.3. The next section demonstrates

the application of the algorithm.
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READ SYSTEM PARAMETERS

INTIALIZE i=0,NGR=r[0]

1=1+ » 1

CALCULATE ^ * ~If*t
•.« j,....„,NG j i 4: NGR

CALCULATE ^QV- EVALUATE

6ft - 4'QV.) &(p&- PmIn)»^MAX-,,g)
FIND &PG1 >t" !»NG* ** NGR

I
CONSTRAINTS

VIOLATED ?

YES

ADJUST APl (N P&, ,

EVALUATE fi(PG) 1* I,-—,NG

itMAX-~" ^wn)* 10\S

YES

[ STOP

FORM SET NGR

.3 FLOW CHART FOR THE REAL POWER SCHEDULING ALGORITHM
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5.2.3 SAMPLE APPLICATI ON

The line diagram of an eight bus system [l7j

is given in Fig. 5.if. The percentage admittance data

is portrayed in Table 5.3. The cost data for the generat

ing nodes is given ir Table 5.if. The Table 5.if also

gives the upper and lower generation" limits at the

generating nodes . Table 5.5 records the initial load

flow bus voltage magnitudes and real bus powers. The

data is on a base MVA = 10 .The line L1G is constrained
to carry a maximum line flow of 15.00 pu . A minimum pro

duction cost schedule is to be obtained.

TABLE 5.3

Line Da ta

»•• —I—I 1

Line

!_ < 1 « ^ 1 »

6* b %

1 0.0200 0.1if00
2 0.1920 0.9620
3 0.0330 0.3300
if 0.0187 0.1520
5 0.0850 0.if850
6 0.0187 o.1570
7 0.0i+if3 0.66if0
8 0.0J+67 0. if300
9 0.0165 0.1210

10 0.0351 0.3290
11 0.2010 0.9580
12 0.1160 o.75oo
13 0.0361 o.if75o
1if 0.0261 0.3200



Bus

i

A
11

cost

1 25.00

2 75.00

3 5o.oo

if 90.00

1ifif

• TABLE 5J±

Cost Data ar I Generator Limits

A
21

A

31
A

ifi

cust/MWi:

nin. max.

MW

^4-

cost/MW cost/MW' MW
•-..^..frfth

1.91610 0.00396 o.ooooo 20.00 100.00

1 .535ifO 0.00261 OoOOOOO 120.00 300.00

1.85180 0.00393 O.OOOOO 80.00 250.00
1.12850 0.00135 0.00000 150.00 ifOO.OO

TABLE 5.5

Initial Load Flow Results for the Sample System

Bus

i

., 1 .. ii. 1 1 i •-^~ 1—1

Voltage
Magnitude

pu

Bus angles
&

Degrees

Gene ratior

pu

a

Load

pu

i „

1 1 .0000 0.000000 3.if386

2 1,0572 6.25if6if 25.00C0 -

3 1.00000 10.67595 15.0000 -

if 0.95if0 8.52if00 25.000 -

5 1.0000 -17.92220 -
23.300

6 0.9276 0.352if7 •v 22.000

7 1.0000 - 8.12036 - 20.000

8 0.9350 9-01675 **
•H

The algorithm of Fig. 5.3 is used for attaining

the most economic schedule of generation. A computer

program of the algorithm has been prepared in Fortran II

for the IBM 1620 c,mputer. The optimal schedule of real
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power generation for the generator buses 1,2,3 and if

is ; 8.012, 15.00, 8.00 and 37.500 units of power (pu )

respectively with a total production cost of 1if9*f.30

cost units. A tolerance of 0.075 is used for the

convergence of the solution. The convergence charac

teristic of the solution procedure is displayed in Fig.5.5.

The computer memory and the execution time requiremert

for the IBM 1620 computer is if160 words length

and 6.0 mins. respectively. A total of 8 iterations

are needed for the convergence of the solution. Most

of the cost reduction occurs in the first four iterations.



CHAPTER VI

CONCLUSIONS

The application of mathematical programming

techniques in the solution of complex scheduling problems
is of a great interest and importance to tije utilities.
The present work is an attempt in presenting mathematical
models and algorithms for a range of important decision .

scheduling problems. Avenues of future work in the area

are also detailed in the concluding discussion.

First of all the problem of preventive maintenance

scheduling is discussed. Aset of different objectives of
preventive maintenance, such as to obtain minimum lateness
penalty schedule, minimum change from the existing schedule
or minimum malntenance cost schedule, are explained. Now
depending upon the choice of the system analyst and subject
to the availability of appropriate data, a suitable
objective is aimed at. An important objective is.to .
minimize the cost of maintenance during the: intervals
of the scheduling horizon. A set of comprehensive and
interacting constraints such as, precedence constraints,
security considerations and resources limitations are

included in the mathematical formulation of the problem.

The uncertainty associated with the availability of

resources is modelled with the help of chance constrained

programming. Some of the old generating units requiring
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maintenance more than once are considered in the formulation.

After the formulation, a prefiltering analysis is applied

in order to reduce the dimensionality of the program.Simple

rules are developed in order to cancel some of the variables

and constraints at this stage,. A procedure for aggregating

groups of constraints into single equivalent constraints

is presented. To the knowledge of the author this proce

dure has not been used earlier in the power system engineer

ing literature. This helps in reducing the computation

burden of the algorithm as the constraints checking for

feasible solutions is time consuming.

The present work offers an integer programming

model for the preventive maintenance scheduling problem.

The formulation has the advantages of having only bivalent

variables and the diversity of constraints are easily

transformed into the problem format. Dopazo and Merrill

[lif] have made an arduous effort in modifying Bala's
algorithm L2J and making it suitable for the solution

of the problem. The solution procedure is not an efficient

one, as the optimal solution has to be searched over the

whole solution space. In the present work, the problem

has been approached from a different view point. First

of all, the problem model is critically analyzed and

systematically arranged. To the knowledge of the author

such systematic modelling for the multistage problem has
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not been presented elsewhere in the literature. The

properties of the mathematical model are exploited in

evolving a new and efficient Tree search optimization

technique. The development of the tree, its properties

and the method of generating non- redundant descendants

are the new additions in the existing literature of Opera

tions Research. In the tree search method no back-tracking

procedure is required as compared to the Bala's method

[_2 1. This results in a lot of saving in the computation
effort and core as regards the book-keeping for avoiding

redundancy is concerned. New skip rules are developed

by taking advantage of the properties of the constraining

equations. This helps in reducing the size of the tree to

be searched as many branches are terminated at a vory

early stage in the search process. Thus, by employing

this procedure the region of search for finding the

optimal solution is drastically reduced. The applicacy

of the algorithm developed is demonstrated for two sample

studies. First a if unit, 10 variable, if interval problem

is solved. The second case study is made for a 10 unit,

35 variable 12 interval preventive maintenance scheduling

problem. The results of computation are presented in

the form of bar charts,which are useful for plant managers

in executing maintenance decisions. These charts can be

directly obtained from the computer resulting in lot of

saving of manual effort. Next, a mathematical version of
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the maintenance staff interchange scheduling problem

is presented. An illustrative example is given. The

algorithm makes available the required number of ..

craftsmen of each category, at the plant where the main

tenance is currently active, at the minimum cost. The

same concepts can be used forthe pool coordination

of other facilities in the system.

The present work might prove to be of value

in the solution of integrated scheduling problems, where

the preventive maintenance is coordinated either with

the unit commitment scheduling or generation expansion

scheduling. The sparsity of the preventive maintenance

matrices can be exploited in further enhancing the

efficiency of the solution procedure.

Next, a mathematical description of the correc

tive maintenance scheduling problem is presented. A

graphical display of the reliability characteristics

of some types of subsystems is presented. There is a

huge amount of literature available in the area of reli

ability and maintainability analysis of aerospace and

Defence systems. The power system engineers can take

advantage of the existing models and develop a unified

approach for the corrective maintenance scheduling of

power plant equipment. * This analysis is of value in

the preparation of design sohedules or for affecnting
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system configuration changes using reliability as a figure

of merit. The mathematical model of the corrective

maintenance is nonlinear. A transformation is used for

converting the nonlinear problem to a linear-integer

program. The algorithm developed for the preventive main

tenance scheduling problem is suitably modified for the

solution of this problem, A new skip rule is developed

taking advantage of the systematic characteristic of the

constraining equations . The applicacy of the analysis

is demonstrated for a» generator excitation system' and

•turbine cooling system'. Further work would include

classifying the power plant critical subsystems into the

known types of models and extending the analysis to these

systems.

Next , the problem of selecting a set of pro

posals or schemes in the formulation cf a maintenance

policy is viewed as a maintenance budgeting problem.

The objective is aimed at maximizing the net present value

of the total expected return to the utility. Integer

programming linear and nonlinear models are presented for

the deterministic and probabilistic versions of the

problem. Mao and Wallingford (VlJ have solved a similar
investment decision scheduling problem employing Lawler

and Bell £37} method of integer programming. The method
is not efficient aS it does not exploit the special structure

of the model. In the present work, the problem model is
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critically analyzed and arranged in a systematic fashion.

Thus, taking advantage of the properties of the model,

new maximization algorithms are developed for the deter

ministic and probabilistic cases. The algorithms are

used for 3 stage 8 variable sample system studies and

results of computation a.re given. A study was carried out

to compare the efficiency of the newly developed tree

search optimization technique with the earlier used

Lawler and Bell method [37] for the investment deci

sion scheduling problems [if1 ] . The results of comparison

have been portrayed in Table if.if. The results show that

the new technique of analysis is much superior to the

earlier used solution procedure. The future work would

include the utilization of the maximization algorithms

developed, for other investment decision scheduling

problems.

Next the problem of unit commitment or

predispatch scheduling is discussed. The consideration

of the security of the system is incorporated into the

model. The heuristics developed limit the search in the

region of interest. A simplified and efficient algorithm

is presented for the solution of the problem. As, the

number of binary vectors to be enumerated is relatively

small, it is a superior approach. The computation time

and the storage requirement of the algorithm are encourag

ingly small.
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In the end, a mathematical model of the problem

of real power scheduling is presented. A linearized load

flow representation of the transmission network is used.

The accuracy of such a representation is very high for

the modern transmission systems having high X/H ratio.

A simplified and efficient algorithm is developed for

the solution of the problem.

The future work would include the development

of a single algorithm for the solution of the total problem

of generation scheduling i.e. the combined problem of unit

commitment and the real power scheduling including

transmission losses. It is in this context that the pre

sent work might prove to be ,f value. Thus new heuristic

rules need to be developed for the enumeration of binary

vectors considering system losses . During the scheduling

process load changes occur in the system which may be fre

quent and also violent. Therefore, another cost term is

associated with the act of changing the load conditions.

This excess cost is due to the transient degradation in

unit efficiency produced by fluctuations in boiler and

turbine parameters when generator output is changed.

Stadlin [55~\ nas done some . work on a similar problem,
which relates to the.economic allocation of the regula

ting margin. Perhaps, what is required is that the

scheduling algorithm should also advise the system operator
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as to how best to accept the load changes. This may

amount to reallocating the power on some or all of the
generators for the transient period in order to accept
the additional load with the minimum of change related

cost. Further research would clarify the position about

this aspect of the scheduling problem.

APPLICATION OF THE TREE SEARCH METHOD

The tree search technique of analysis developed

in this thesis is of a fundamental nature. Unlike the

situation with basic research in other sciences, however,

relatively little time elapses between an important dis
covery in operations research and its implementation by
experienced practitioners in industrial groups.

A potential application of this new technique

is demonstrated f>fj for the scheduling of reactive power,
when banks of fixed and switchable capacitors are to be

allocated in the system for the control of system voltage

profile under different contingencies. Amathematical
statement of the problem solved is given in the appendix .

The problem has been earlier solved by Lawler and Bell

method £37] , which is not an efficient procedure. It
has boon identified that the integer programming models

presented for the maintenance scheduling problems have a

natural matching with many real life situations. The author
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hopes that the tree search method will find application
in the solution of other fascinating practical problems,

in power system engineering and in the field of business
management. The problems, which can be tackled are I
optimal allocation of shunt reactors in EHV systems,
optimal allocation of lightning arrestors, optimal design
of a series compensated line, optimal design of systems

using mixed redundencies and a class of planning problems.
The method is also useful for the solution of optimal

routing problems. The solution of some class of contrac
tual scheduling and machine scheduling problems also falls

within the perview of the present technique of analysis.

It is hoped that the work reported would help

to pave the way to a better understanding and control of

the inherent complex aspects of modern thermal generating

systems.
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APPENDIX

OPTIMAL CAPACITOR ALLOCATION

In electric power system, low voltages may occur at

various points of the system due to large loads or line/gene

rator outages. Adding capacitor banks to the system for volt

age control, is a very economical way of correcting low-voltage

levels. With the increase in size and complexity of the system,

the determination of sixe and location of the capacitor banks

has become quite an involved problem as many alternate solut

ions are possible. A new 0-1 programming formulation of the

capacitor allocation problem is presented [36]. The objective

is to minimise the total number of capacitors and buses at

which these are placed, out of the chosen application set,

under all anticipated, contingencies.

The tree search optimization technique developed in

this thesis for the preventive maintenance scheduling problem

is very successfully applied to the capacitor allocation

problem. The mathematical statement of the problem is detailed

below.

MATHEMATICAL MODEL

n

Minimize s f = r c.x. (i)
i=1 1 x

subjectt to »

V^(CF, B, so) ^ Vmax A=1,2,...,L (ii)

V* «>*«# > /J • *=1,2,...,L
mn j=1,2,...,K CiH)

x. a 0 or 1 (iv)
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where,

n = total number of binary variables

K = total number of low voltage or outage conditions to

be studied.

L = total number of load buses

s = state corresponding to the highest expected voltage

condition

s. a state corresponding to jth low voltage on outage

case to be studied

S1
V . = L vector representing lower limits on bus voltage

mm

magnitudes corresponding to jth case to be studied.

V = L vector representing upper limits on bus voltages
max * b

f = cost function accounting for cost of capacitor units,

cost of any associated breakers and controls and the

cost of installation

In accordance with the generally accepted terminology,

a vector x (x., ,...,x ) with 0-1 components is a solution to

the problem. If the constraints (ii),(iii) and (iv) hold, then

it if a feasible solution . A feasible n-vector x* is optimal

if and only if, £~ * / J2- Q for 1X feasible x.
1=1 11 * m x x

The algorithm for the problem (i), (ii), (iii) and

(iv) is developed using the tree search method [36J . The

results are presented for a sample system drawn from the

literature [57J . The other details are available from the

reference F36~i .
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