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ABSTRACT

As power system generating facilities increase
in size, number and complexity, the power utllity is faced
with a range of decision scheduling problems. The simple
rules of thumb, based on human judgement alone are no longer
applicable in the solution of intricate cases., The applica=
tion.of mathematical programming techniques as a supplement
to human judgement has aroused considerable interest among
| power system engineers. The present work is primarily con-
cerned with the development of mathematical models and sche=-
duling algorithms for a range of decision making situations
arising in the daily and/or periodic functioning of a power
plant or group of power plants under centralized administra=-
‘tionq Based on the structure of the mathematical models used

the work is classified into two parts. In the first part,a :

number of maintenance scheduling and allied problems are
formulated as integer linear and nonlinear programs. In the
second part, generation scheduling problems are formulated

as mixed integer nonlinear and continuous variable nonlinear
ﬁrogfamé;

First of all, the problem. of preventive maintenan-

ce scheduling is discussed. A 0-1 integer programming
model is presented for obtaining minimum maintenance cost

schedules. A set of comprehensive and interacting conse-

traints, such as sequencing of generating units, security
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considerations , resources limitation etc. are transformed
into the integer prograuming format. The problem becomes
an involved one, when a large number of units are to be

maintained during the multiperiod scheduling horizon. A
new, simple and efficient optimization technique is deve-
loped for the solution of the problem. The method is supe-
rior to the other known integer programming procedures as,
it exploits the special properties of the model. In the
dverhauling of power plants, the maintenance staff is inter-
changed between stations at times of overhauls. A mathema=-
tical description of the problem of staff interchange sche=-
duling is presented and solved through the 0-1 programming
approach, Thus, the program makes available the required

number of craftsmen of each category at the minimum cost.

Next, the problem of corrective maintenance schedul-

e

ing is presented. To have built-ipvﬁéiptengnge at the
design or planning stage is referred.to as the problem of
ngregtive maintenance, A system analyst / designer is faced
with the problem of designing systems having failure free
operation. Such an objective is fulfilled by designing
critical subsystems having a high degree of reliability.

A nonlinear programming formulation of the corrective
maintenance scheduling problem is presented. The analysis
results in the optimal number of standby components and

repair facilities to achieve a specific level of system
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reliabilitys. A new scheduling algorithm is devised and
the results of computation are presented for'generator

exg}ﬁgpion system' and 'turbine cooling system' .

TIn the next section; the problem of maintenance
budgetary control is discussed, Choosing a sound and

effective maintenance policy reduces the systenm down=time

and thus increases the revenue to the utility. The objec=
tive is aimed at sclecting that set of proposals which
wvill meximize the net present value of its total expected

return, The problem is discussed under conditions of cer=
tainty and uncertainty. 4 mathematical version of the
problem is presented and scheduling algorithms are develo-

ped for deterministic and probabilistic cases.

After the units have been scheduled for preven-
tive maintenance on annual basis, the next problen is
the selection of units out of the available set for real
time opération. This is referred to as the problem of unit
commitment scheduliﬁg. The total production cost to be
minimized is the sum of running cost, shut down cost and
time eregggntagtart up cost . The security model incor=
- porated provides a means for assessing system security in
hour-to=hour operation on a probabilistic basis. 4An eff-
icient computation procedure i developed based on the
premise of feasibility and economic dispatch. Results of

computation are presented to obtain a 24=hour schedule
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for a medium size system drawn from the literature. In

the end a continuous variable nonlinear model is presented
for the real power scheduling. A linearized representa=
tion of the network is used to include the effect of trans-
rission losses. An efficient multivariable constrained
search iterative procedure is developed for the solution
of coordinating equations. A scheduling algorithm is

developed and results are presented for a sample system,

The computation time and storage are encouragingly small.

Avenues of future research in the area are discussed.
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CEAPIEBR I

INTRODUCTION

STATEMENT OF THE PROBLEM

As power generating facilities increase in size,
number and complexity, the power utility is faced with a
range of decision scheduling problems . In today's economy
technological, environmental and competitive factors. inter-
act in a complicated fashion and it becomes difficult to
make up a schedule that is both realistic and econonmical.

A broader meaning is attached to the word scheduling and

it implies, the preparation of a time table, a plen, a pro=-
gramme or a scheme, It is a rational approach to execute
decisions according to a prepared schedule, as the prepara-
tion involves, the diagnosis and detailed analysis of the
problem. In the past , human judgement has been used in
the preparation of échedules and this works well for tack=-
ling simple situaﬁicns. In the present times, the simple
rules of thumb based on judgement alone afe no longer appli=
cable 1in the solution of intricate cases. The application
of mathematical programming techniques, as a supplement

to human judgement has aroused considerable interest among
power system engineers. The present work is primarily
concerned with the development of mathematical models and
scheduling algorithms for a range of decision making situ-

ations arising in the daily and/or pericdic functioning of



a power plant or a group of power plants under centralized .

administration,

APPROACH

A generating system is considered to be composed
of a management system and the equipment, Both of these
could be further classified into their subsystems , which
" are interconnected and interdependent in operation, concepts
and objectives. The problems of Importance faced by the
utility are identified and posed to the system analysts .
The problems are approached from a systems view point as,
such an approach is inter-=disciplinary and takes benefit
of the experience of the designers of equipment, financial
experts, administrators j system operators and dispatchers.
A prelude to a quantitative analysis of avdecision schedul-
ing problem is a thorough qualitative analysis. Thus,-‘a
realistic appraisal of the specifigs of the problem is
obtained by the system analyst. After obtaining a feel
of ‘the problem, a suitable mathematical model, which keeps
a balance between detail and tractability is formulated.
The model building involves the choice of an objective or
a measure of effectiveness. In pursuit of its objective
all systems operate within a set of constraints, some
self imposed and some stemming from technical considera=
tions. The time horizon for which the decisions are to

remain valid is specified, The dinput data requirements



for the model are also specified. Some of the data may

be readily available and the other may be gathered from

past historical records.

Now depending upon the nature of the objective
function, constraints and the type of decision variables,
the problemgare usefully classified by a number of att-
ributes. The problems may be , linear or nonlinear, dis=
crete or continuous, deterministic or probabilistic., Exam-
ples of these various models are available in the work

presented.,

After the problem is casted into a suitable mathe-
matical model, the next question is the selection of a par-
ticular technique of analysis, At this stage, the structure
of the model could be usefully exploited in simplifying the
solution procedure, The choice of a particular technique
is primarily governed by the type of the model and the
experience of the system analyst., Developing new, simpli=-
fied and efficient algorithms is an active area of research

where the system scientists can exhibit their ingenuity.

REVIEW AND SCOPE

The reliability of operation, production cost and

capital expenditures on a power system'are all affected
by the maintenance outages of generating facilities. The

statistics available for the year 1970 indicate that the
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U.S. industry alone has spent 1.5 billion dollars on the
preventive maintenance of thermal generting units during
this year [ho] « In addition to rising costs; presént
trends in the business are to large generating units,
stronger interconnections, and greater difficultieslin
maintaining adequate reserves, The objective of maintenance
scheduling is to evolve an overall maintenance policy con=-

sidering the various facets of the problem.

First of all the problem of preventive maintenance
scheduling is discussed, The task of scheduling preventive
‘maintenance involves specifying dates at which man power is
to be allocated to an overhaul of a major functional ele=
ment or group of elements. The problem has been attacked
by many authors [11,12,1#,22,2#,26,28,32,46,5'2,59:] and
useful contributions haVe been reported. In the early
attcapts [11,12,22,#6,52] rigorous approaches have been
rejected as impractical and adhoc computer algorithms have
been developed in an attempt to do this scheduling automa-
ticglly. With all their limitations, the contributions
are valuable, in the sense that these have served the need
of the industry in the absence of algorithms resulting in
global optimal solutions. The problem of preventive main=
tenance scheduling has been also discussed in the literature
with reference to the generation expansion schedules L281]
and the unit commitment schedules [24,25&. The problem

becomes an involved one, when a large number of generating
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units are to be scheduled for maintenance in the multi-

period scheduling horizon.

The application of mathematical programming
techniques to the problem of preventive maintenance is
a recent trend. Gruhl [24) has advanced a mixed-integer
model for the general scheduling problem, in which, main=-
tenance Scheduling is solved as a sub-problem. Zurn and
Quintana [59:]have presented a valuable contribution pro-
posing "group sequential scheduling" to find a compro-
mising or good feasible solution to the problem. A large
class of scheduling problems are also formulated as 0=1
integer programs [ﬁh,h5j . Dopazo and Merrill‘[1¥]have
used an integer programming formulation for thé preventive
maintenance problem. The solution procedure uses Bglé's
algorithm for finding the optimal solution. In this pro-
cedure some of the variables are initially assigned values
and these are called partial solutions. The completion
of these partial solutions are tested and in this process

some of the infeasible solutions are ignored. All solutions

are generated explicitly or implicitly . Lot of book =
keeping has to be done in order to keep a record of the
initial position of the variables. A back-tracking proce-
dure is used in the method to avoid recundancy.

The present work offers the 0«1 integer programm-

ing model that includes the new constraining equations.
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The elements of uncertainty associated with the availa-
bility of resources are considered [33] ; The model has
the advantage that a diversity of constraints are easily
transformed into the problem format. The mathematical .
model is critically analyzed and arranged in a systematic
fashion., A new and efficient tree search optimization
technique is developed exploiting the special structure
of the models, Programming considerations for reducing
the storage of binary vectors are presented. New skipp-

ing rules are ecvolved for eliminating many infeasible

solution vectors.

Next , the problem of corrective maintenance
scheduling is presented. To have built-in meintenance
in the system at the design phase or planning stage is
referred to as the problem of corrective maintenance
scheduling. The system analyst/ designer 1is poséd'
with the problem of preparing design schedules, which
result in the failure free operation of the systems} as
far as possible. Such an approach reduces the expendit-
ure on maintenence during the operating life of the sys-
tem and also enhances the system reliability‘t9,'51j>.
Billinton and Krasmodekski [5’3 have also emphasized
the inclusion of reliability and mainteinability analysis:
at the design phase. In the present wdrk a nonlinear
integer programming formulation of the correétiVe main-

tenance problem is presented. The analysis is useful
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in deciding power plant sub=-system configuration and

size [}2]‘, The objective is aimed at maximizing the
systen reliability or minimizing the cost subject to

the attainment of a specific level of system reliability. .
The analysis results in the optimal number of standby
components and repair fagilities. A scheduling algorithm
is developed and results are presented for a'generator

excitation system'and tturbine cooling system!.

In the next section, the problem of mgintenanecc
budget scheduling is discussed..The selection of a
portfolio of proposals out of a set of alternatives
involving capital expenditure is referred .to as the
problem of budgetary control or budget scﬁeduling E9:].
The future success of a poiicy, consisting of a set of
proposals, depends upon the imvestment decisions made
today. Choosing a sound and effective maintenance
policy enhances the life of the equipment, reduces
system down-time and thus increases the revenue to the
utility. Bierman and Smidt [6} have emphasised the
role of net present value, as a measure of fotal expected
return to the utility. Mao and Wallingford [41] have
solved investment decision scheduling problems using .
Lawler and Bell {57] method of integer programminge.
The method does not take advantage of the special str-
ucture of the model. In this method, the problem is

arranged in a special form and this increases the



velue of the constraints to double. The generation of
the solution is started by keeping one variable as unity
and remsining variables as zero. Then tests are applied
for génarating the next vector, In this process some
of the solutions are skipped, In going from one solu-
tion vector to the next many intermediate steps are
involved and these are also time consuming. In the
present work integer linear and nonlinear models are
presented for the control of maintenance expenditure on
thermal gencrating units, The objective is aimed at
selecting that set of proposals for maintenance, which
will maximize the net present value of its total expec=-
ted return . New and efficient maximization algorithms
are developed for the deterministic and probabilistic

casesSe

After tﬁe units have been scheduled for preven-
tive maintenance on annual basis, tﬁe next problem is
the sclcetion of units out of the available set for
real time operation. This is referred to as the prob=
lem of unit commitment scheduling. The objective func-
tion to be minimized is the total production cost, which
is a summation ;of the running cost, shut down.éost and
time-dependent stért up cost, The eaflier préctice was
to start up and shut down units in accordance with

a priority list based on unit heat rates [4,29] . Such
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an approach could impair reliability and economics of
operation. The work in the area of application of mathe=-
mgtical techniques to the problem of unit commitment
started about a decade ago and many useful contributions
[1,15,23,25,26,38,39,4371 have been presented. Garver[é3]
nas advanced an integer programming formulation of the
problen.Muckstadt and Wilson [39) use a mixed-integer
model and employ Benders Decomposition to find a solution.
Lowery {38] has recommended the use of dynamic programming
and subsequently Guy E25] and Ayoub and Patton [1] have
used this approach incorporating the evaluation of
security into the model. A useful compargtive study of
some methods for the hydro-thermal generating unit commit-|

ment has been reported by Nagrath and Kothari [43] in

a recent contribution. The present work takes a differ=-
ent approach and develops a new direct iterative proce=-
dure based on the premise of feasibility and economic
dispatch. The heuristics developed limit the search
in the region of interest and help to speed up the enu=
meration of binary vectors, A scheduling algorithm is
designed and its applicacy tested on a system drawn

from the literature.

In the end the problem of real power scheduling
is discussed. The theory of this subject is well developed
and many useful contributions [7,16,31,#2,%8,#9,50,53 ,5#]
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have appeared in the literature. In the work reported
a li.earized representation of the network is used to
include the effect of transmission losses. An efficient
- multi-variable., constrained scarch iterative procedure
is developed for the solution of coordinating equations.
The limit on the line flows 1s included in the model.
A scheduling algorithm 1is developed and its applicacy
is tested on a sample system. The data is assumed to

be available for the models presented.
ORGANIZATION OF THE THESIS

The work is classificd into four chapters in
addition to the first and the last chapters, which con=-
tain the introduction and conclusion of the subject. A
chart showing the type of the problem tackled and the
nature of the mathematical model used is displayed in
Fige 1o In the second chapter, the preventive maintena=-
nce scheduling of power plants is discussed. An effi=-
cient scheduling algorithm is developed for the solution
of the problem. In the third chapter of the thesis,
the problem of corrective meintenance scheduling is
presented. The applicacy of the analysis is demonstrated
for a ‘generator excitation system and turbine cooling
system'[ﬁd] « In the fourth chapter, the problem of

maintenance budget scheduling is presented. Two
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maximization algorithms are developed for the determini-
sti. and probabilistic cascse. In the fifth chapter the
generation scheduling problems are giscussed. Simplified
and efficient algorithms are devised for the solution
of the problems. In the last chapter, the conclusions
regarding the contributions made by the author are drawn.
Some suggestions, for further investigations in this
ficld which might lead to some 1t areatAni PRI

nave been included in the concluding discussion.
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PREVENTIVE MAINIEN2NCE SCHEDULING

The task of scheduling preventive (that is rou-
tine or planned) maintenance involves specifyingvdates
at which manpower is to be allocated to an overhaul of
a major functional element or a group of elements, The
scheduling interval between two successive maintenance
events is decided based on the type and the state of
the unit to be maintained. As the number and complexity
of the units increase, manual scheduling becomes both
difficult and tedious., A detailed description of the
present déy practice for the scheduling of maintenance

for the fossil fuel generating facilities is available [9],

The problem of preventive maintenance has been
attacked by many authors , In the éarly attempts D1,12,
22,#6,5?] rigorous approaches have been rejected as
impractical and adhoc computer algorithms have been deve-
loped in an attempt to do this scheduling automatically.

The three serious drawbacks of these methods are 3

(1) they may fail to find a schedule satisfying
the problem constraints, even when one does

exist 'S
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(ii) while they implicitly incorporate a criterion
of goodness, tiiey do not always find the best
schedule in terms of this criterion; and

(iid) the criterion of goodness is limited to either
eggg}}ging net reserve or requalizing an

approximation to "Loss of Load Probability".

The application of mathematical programming tech-
niques to the maintenance scheduling is a recent trend.
Gruhl [2H]A has advanced a mixed integer model for the
general scheduling problem in which y maintenance scheduling
problem of thermsl gmorating units is solved as a
sub=-problem. However, this algorithm is suboptimal and
may fail to find a schedule satisfying the constraints ’
even when one exists [1%] » Recently Zurn and Quintana
[59] have proposed "Group sequential scheduling" to find
a compromising or good feasible solution to the problenm,
The grouping criterion is the same as used by Hara et al

[26] « A large class of scheduling problems are also

formulated as 0-1 integer programs [4#,#5] « Dopazo

and Merrill [14] have used an integer programming model
in formulating the preventive maintenance scheduling
problem . The solution procedure uses Bala's additive
algorithr [ 2 ], The method is not an efficient one and
the programming is involved. The present work offers

the Q=1 integer programming model that includes new
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constraining equations. There is always an element of
uncertainty associated with the avallability of resour=-
ces specially, during the later intervals of the scheduling
horizon. 8&uch a requirement is modelled with the help

of chance constraints. Some of the old units requiring
maintenance more than once during the scheduling horizon
are also modelled, These constraints have not been
considered in the earlier formulation [1#] » The model

has the advantage that a diversity of constraints asso=-
clated wlth the problem are easily transformed into the

0=1 format .

2.1 MODELLING

The problem of preventive maintenance of fossil
fuel generating units involves the determination of the
periods or intervals during which the overhauling is
to be done on each of its units in a multiperiod schedul-
ing horizone The cost of preventive maintenance is to
be minimized subject to the satisfaction of a set of

interacting and comprehensive constraints.

The maintenance scheduling problem is set up

as a2 O0=1 1integer program, whose general form is

n
Minimize ¢t 2z = E cj Xy (241)
J=1 :
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Subject to:

n.
Z 35 4 by (2.2)
j=1
(1 = 1§2yivis B
xy = 0 or 1 (2+3)
where s cj are the cost coefficients and aij are

the constraint coefficients. bi are the limits on
the m constraints. A variable xj is unity when

the maintenance starts on g generating wunit in a par-

ticular interval and is zero if the maintenance does
not start in that interval. Ih accordance with the
generally accepted terminologyy a verctor § = (x1,x2,
ey Xh) is a solution to the problem. Moreover, if
the constraints (2.2) and (2.3) hold, then it is a
feasible solution. A feasible n-vector 8 is optimal
if and only if, the corfesponding objective function

value z*‘ngin Ze 3 where z, corresponds to all

feasible z values.,

VARTABLES

Each xj is associated with beginning mainten=-
ance on some unit G; during some interval k , Mainten=~
ance on unit Gi is scheduled to begin during week k
if and only if the corresponding x:j = 1, For each prob-
lem, tables relating j,i,k are developed. For further
explanation and ease of exposition, Table 2.1 13 presen=-

ted for a 4= unit example. The variables x; are assigned
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to each unit for the start of maintenance in the allowed

Unknowns Associated with a UL=unit Example

Unit |Capacity [Allowed |Outage |Associate| Mainten-
l MW period duration | variables | ance
o weeks weeks ; itart in
[ : {2 -} we
G, 80 1=k 2 X, i
N
x’+ 2
G, 70 2=l 1 Xy 3
X L
HEE e A e e
; 5 =2
Gy 50 2=k 2 i 3
Xg 1
G), 110 1-3 1 %10 <
11 3

COST FUNCTION

Depending upon the choice of the system analyst
and subject to the availability of appropriate data, the

objective of preventive maintenance could be to optimize

any of an important class of useful criteria .

the important cost func

tions are

Some of

Minimum Lateness

Penalty Scheduley; Minimum change from existing schedule

and the Minimum Cost Sc

hedule.
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TABLE 2.2

'Mim;mum Lateness Penalty Schedule' Cost Function

— ™

R v v Vv
c; = [ow 210-1-2/0 ﬂow 27

o . . Mbgiiosse

Table é.z shows a possible cost function for
the 4 unit system of Table 2,1. For each generating unit
there is a penalty of O associated with beginning mainten-
ance as early as possible, during the first allowed inter-
val. There is a cost of 1 imposed for beginning mainten-
ance in the second ailowed week and cost of 2 for third
allowed week. The schedule that mininizes, this cost
function is the "Minimum Lateness Penalty" maintenance
schedule for the system. Such penalty factors are similor

to the one used in the general problem of machire schedul-

n
ing {58} . An example of Minimum changes cost function

~ is demongtrated for the foliowing cases Supposey an opti--
mal maintenance schedule.haé been obtained for a particular
period and plans have been made with plant personnel and

} parts suppliers to implement it, It then turns out that

a unit that was not  originally on the list to be maint=-
ained, needs to be scheduled for outage during this per=-
iods This has to be done with the minimum possible dis=-
ruption of the existing schedule. Minimizing the cost
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function shown in Table 2.3y provides the least disrup=

tiye changes from the existing schedule [14+] . The mini-
mum disruptive changes are obtained by keeping the cost

coefficients for the new unit 8s Z8ro.

TABLE 2.3

'yinimum Changes f Cost Function

-

— Present Schedule

b meawa s S R BRGD
old unit New Unit

v - Particular attention is directed to a new cri- _
terion [1hﬂ1 incorporating Rupees costs / benefits incurr-
‘ed by delaying or adyanging maintenance on a_unit. Perfor-
ming maintenance is viewed as a capital investment that is

expended over a 12 months period : for the maintenance
expenditure (ng¢ purchaées 12 months of operation of the
unit. Flg. .2.7a shows that there is a cost associated

with maintaining a unit too early.

If the maintenance is delayed too long, the eXp=
ected mainteance cost will yi#e dramstically, . Such & bes
Sdinr 1 displayed in Fig. 2.1b. The increesed cost
is due to the accelerated deterioration of neglected mach=-
inery, that makes maintenance, when it is performed, more
expensive. There is also an expected cost associated with

rapid increase in the likelihood of forced outage.
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- Fig. 2.1c 1is the sum of the costs of Fig.2.1a
and Fig. 2.1b. The optimum tine to begin maintenance on
this unit is available from the figufe. Cost functions
similar to Fig. 2.1c have been developed [1%] . In the
absence f constraints each unit is maintained at its
individual optimum time. The presence of a.set of const=-
raints complicates the issue and the need for employing

a mathematical programming technique arises,

CONSTRAINTS

Some of the important constraints are very neatly
embedded implicitly in the model and need not be.expressed
explicitly as (2.2)« These constraints are @ .that each
unit must be maintained exactly once, that the maintenance

for esch unit must occupy the required time duration, witho*t

interruption, in a specified allowed time period.

A required precedence constraint is expressed
"
in words as unit m must be taken down exactly k weeks

] ; |
after unit j comes back on line'.

A resource constraint is a limit on the resources
\
(negawatt, manpower) available for maintenance at any

given time.

Because of security considerations, it may not
be possible to execute simultaneous maintenance on some
of the units., This is expressed by an exclusion constr=

: n
aint in words as No more than one of the units 1,Jsky..
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be maintained simultaneously.

Some of the old units, if, required to be maine=

tained twice during the scheduling horizon can be easily

included in the problem format. 8uch a requirement is

modelled by replacing the single unit by two equivalent 563

units of the same capacity and the maintenance on these

two. units is separated by a fixed time horizon.

TABLE 2,k

Constraints Description for the 4 Unit Example

e R R R T e T v

CO§SE- : ; : aij e
4§§.n vUnlt G1 Unit Gg Qnit G3 Unit G# bi
X1 X2 X3 X)+ XS X@ X7 X8 X9 X,]o X"
&
1 AR e ele D R TR el s
2 IR R e s e
B0 %Nl .0 a8 sy A
S TERE R D R Y e e
5 88 80 0. B 0 B8 6. 6 1 o8
£ B 80 80 0 70 0 .5 %0 -0 - 0 118990
D 080 oo e A g e a0 B R
8 B T o SeR Y e e
9 1 e R 0% 8 T
10c EEEETEL S B ae e R e
Starting

Cost
coeff.

no
W
-—
no
C
-—
o
no
w
(O)
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A description of precedence constraint, resource
constraint and exclusion constraint is obtainable from
" Table 2.4 for the 4 unit example presented in Table 2.1,
Constraints 1,2,3 correspond to the sequence of mainten-
ance on units G, and Gy . These are referred to as the
precedence constraints. Constraints 4,5,6,7 represent the
limit on the resources. Constraints 8,9 and 10 are fa
preventing simultaneous maintenance on the units G4 and

G?+' These are also called the exclusion constraints.

f

CEANCE CONSTRAINTS

The uncertainty associated with the availability

of resources is modelled with the help of chance const-
reined programming {587} . The constraints (2,2) are
divided into a set of deterministic and a set of proba=-

bilistic constraints as follows s

n
Z aij xj ( bi '(i=1,2yo--ig) (2.""’)
=1
cand | p : ,
P[Zaij xj< by }}ﬁi (1 = g#lyeee,ym)
=1 (2.5)

Eq. (2.5) is interpreted as constraining the uncondi=-
tional probability to be no smaller than pi’ where

0B L1 t}llat thepctual value for b; 1s at least ?‘ ;
e I =
as large as 2 aij xj = f’) 1‘
: Jj=1 :
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It is possible {137 to transform probabilistic

constraints (2.5) into deterministic ecuivalent const-

raints (2.6) as follows

n
zaij x, § By for i=gt,...,m (2.6)
§=1
where Bi is the largest number satisfying
B[y < TEree L (2.7)

A numerical example is given to éxplain as to
how to determine B, from a marginal distribution.
Suppose the marginal distribution for b1 is
P [b1 = 10]:: 0.2 3 P_[béz 30 } = 0.4 } P'{b1 = 80}:—-0.3,
P[b,‘ = 100] = 0.1 givirg the graph of P{b1 »8.] shown
in Plg. 2.2. ;

Thus 1if 0.8 B, < 1.0  then B, = 10

and 0.4& B.< 0.8 then B, = 30 etc.

1

The chance constrained model has two desirable
properties. First, it leads to an equivalent linear
program that has the same size and structure as a deter-
ministic version of the model. Consequently,vthe comput=-
ational burden of the stochéstic version is no greater
after the proper right hand side values have been deter-
mined. $8econd, the only information regquired about each

‘uncertain element b; is the (1= ﬁi) fractile for the

unconditional distribution of the right-hand-side coefficient.
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2.1+1 PREFILTERING ANALYSIS

Prefiltering analysis is important meinly from
a dimensionality standpoint., By studying the properties
of the constraining eQuations, simple test rules are
éﬁolved. The test rules are applied at the pre-computa-
tional stage and obviously infeasible variables and
irrelevent constraints are filtered out., It is also
advantageous to aggregate the,sets of constraints with
integer coefficients into equivalent single constraints
f21] . This helps in reducing the dimensionality of a

large size problem with many constraints.

CANCELLING VARIABLES

A variable xj is cancelled when xj = 1 cannot
be part of an optimal feasible completion of any solu=-
tion 8, When x; 1s cancelled it is considered to be

fixed at xj = 0 and is removed from the set of variables.

If for some variable X, corresponding to some unit GC ’

the following inequality (2.8) holds, then that variable

is cancelled,

Z_ inf (aj(s")) + 8 (8% £ b (2.8)
v =1tok ' '
vye

where c¢ 1is the Generator, whose corresponding variable

X is under test. 8" corresponds to the vth generator.
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inf (aj(sv)) is the smallest element of ith constraint
corresponcing to vth unit

k are the total number of units.

Applying the above test to the constraint set
of Table 2.4+ , the variable x,, stands cancelled. 8ince
Xqq can never be unity in the enumerated solutions,

therefore, it is removed from the set of variables.

CANCELLING CONSTRAINTS

Sometimes, some of the constraints, always
remain satisfied, whatever, the values of the variables
may be « 8Such constraints should be eliminated or

ignored 1in order to enhance the efficiency of the solu-
tion procedure. The following test (2.9) helps in

cancelling such constraints.

S osw a6 . & b (2.9)
§=1to k

where

sup (aj(SV)) is the largest element of constraint i

corresponding to the vth unit.

Applying the above test to the constraint éet
of Table 2.4, the constraints 3 and 10 stand ignored.
Since, these constraints always remain satisfied, therefore,

these are not considered while solving the problen.
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AGGREGATING CONSTRAINTS

In many practicnl systems, the number of const-

raints may be very large. Thus; the checking for feasibl-
lity is very time consuming. There i1s a synergetic effect
associated with the set of constraints taken as a whole
or in certain groups., Geffrion [19,20] has recommended
the development of additional t'surrogate constraints' ,
which are linear combinations of original constraints,
The new constraints are obtained from the linear prograrre
ing subroutine embedded in the algorithm. In the main-
tenance scheduling problem most of the constraints are
with integer coefficients, Bven if this is not so for
some of the constraints, it can always be achieved by
simple manipuletions. Glover and Woolsey [21/} have deve=-
loped a procedure for aggregating the constfaints,with
integer coefficients. Thus the multi-constrainf problen
can be converted into a single constraint problem by the

procedure detailed below s

By adding the slack variables o+i

the inequalities (2.2) are transformed into the equalities,

(131,2'0'0'[[1)

as

Z By X vX o= b (2.10)

i= 1,2’...’m

Consider first two constraints, i.e.y, i = 1,2. Therefore,
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n
Z a1j‘j+%+1 = 'b1 $2:11)
j:._;‘l
and
n :
2 B3 Xyt Eyp, = ol
=1

Equalities (2.11) and (2.12) can be combined
to form a new constraint by using multipliers vt1 and t2

respectively satisfying the following conditions [21].

) 1. t, and t, are relatively prime

1 2
a4 t1 does not divide b2 and t2 does not divide b1
3 t1:> b, - a, and t, > b, - a, wherea;

represents the smallest of the positive aij’

The equivalent constraint which has the same

solution as constraints (2.11) and (2.12) is writtén as :

1N o
t, (Z 3 5 xj+xn+1> + t,(2 8 xj'*'xn+2>
o =1
J=1
= tyby + b, (2.13)

Recursively using the construction (2.13) for

the constraint set (2,2), the single equivalent constraint

obtained is

n
2 d;x;, £ D (2.1%)
j=1
where d. are the new constraint coefficients and D

J
is the right-hand-side value.
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By employing the above procedure, the constraints
8 and 9 of Iable 2.4 are combined to form the single

equivalent constraint as given by (2.15a).
hx, + 3%, + X5 + 3%49 & (2.152)

Similarly, the single equivalent constraint for the

sequence of units G) and G, is given by 2.15(b)

=X, =3%g + Xg + 3z, =0 (2,15D)

To the knowledge of the author, this procedure

e ]

of aggregating the constraints has not been discussed | <=—

elsewhere in the power system engineering literature.
Thus , the prefiltering analysis helps in reducing the
storage and computational burden of the scheduling algo=-

rithm,
2.2 OPTIMIZATION TECHNIQUE

The problem, whose solution is to be obtained
is stated in (2.1), (2.2) and (2.3). Dopazo and Merrill
[1%3‘have used Balas implicit enumeration algorithm.{al.
The method is not computationally efficient, the storage
is 1large for practical size systems and the programming
is involved. In the present work, a new strategic tree
search method is developed for the solution of the problem.
The other important existing tree for the 0=1 programming
problems is the Balas tree [27}, where the number of

branches are very large.
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: iy
Balinski[ 3 Jrightly pointed out that various

clever methods of cnumeration and other speciaglized

approaches are the most efficacious means existent by

"
which to obtain solutions to practical problems . His

belief is strengthened by the development reported belows

The problem to be tackled is a multi-variable,

multistage one. As a first step, systematization is
introduced by rearranging the varigbles of the cost func-
tion to be minimized. The cost functiorn coefficients are
arranged in a monotonic increasing sequence for each stage
of the problem. Touphe knowledge of the guthor, such

B

systematic modelling has not been done earlier. The intu-
ti%é reasoning for such a systematic arrangement is that

in a minimization problem, all the low cost solutions

are genefated first thus avoiding the search for an

optimal solution over the whole solution space. Next,

it can be observed theat the model of the problem has

a specialized structure. It is signified by the const=-
raints (2.16) which form a part of the constraint set (2.2).

That is,

E:j %18} =9 7 (2.16)
iek

Thus, k of the m constraints are absorb:d in the solution

procedure and only (m-k) constraints remain associated

with the problem, Stated in words (2.1¢) says that the
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summation of all the variables corresponding to each
sgééé is unity . Thus in any enumerated solution vector
6nly ‘one variable for each stage will be unity and all
the remaining zero. Therefore, taking advantage of this
property of the model, a large number of imfeasible
solutions are never generated. This results in an
efficient search process. Using the above mentioned simple,
but powerful ideas, the new optimization technique comes
out to be'superior to the existing methods [2,19] .

2.2.1 - THIRY

Any solution vector 8 is composed of k inde-
pendent subsets (or subvectors), where k are the number
of stages in the problem. Each subset Si further consists
of ny components or variables, where the index i varies
from 1 to k.« The following notation is used in develop-
ing the theory of the method.

8 = ( 9 ) e X )
75 gkt ) g2 341,
2] n AR 3 3 sse

5,+1 "o 542 aytn, )

= ( g X eees 3 X )
i ”‘614-1 v +2 ! By Ny

8 = ( y X 3 eeo )
K o+ byc+2 ' To
(2.17)



where
& = ¥ ¥ Nyog
1 = 2,3,.-0’ k (2.18)
and 5, = 0 . ;s '

The subscript of any variable x gives the number
of the variable in any solution vector S. n; are the
number of variables in the ith subset. Therefore, the

equality (2.19) holds
% :
Z ni = 1 s : : (2019)
1=1

where , n are the total number of variables in any solu=-
tion vector 8. The subscript of & 4 gives the subset
to which a particular variable belongs.

The following properties of the subsets and setg
are useful in depicting their characteristic behaviour. The

properties hold true for the model presented.

1« The subsets of any solution vector S8 are mutually
independent and the union of these subsets results

in the solution vecctor S.
..o. s=S1U82U83 e Usk

or 8 = L8, ' - -(2.20)
i¢k

2. 411 the subsets 8;(i=1,2,...,k) belong to the set S.

siC gl L e PSRRI & {2:21)
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- s

3«  The subsets 8y and the set 8 are never embty.
.. By # g
& v @ | (2.22)

GENERATION OF A NON-REDUNDANT SOLUTION SET

In an n variable problem, there are s possible
solutions, which are to be searched implicitly or explicitly
for finding an optimal solution to the problem(2.1)= (2.3):

Many of the emumerated solutions are infeasibles If the
constraint set (2.16) 1s kept satisfied, then many of
the infeasible solutions need not be generated at all.
Thus, the search procedure should be in a position to

generate the remaining set of non-redundant solutions.

‘Now, if there are ny components in the ith subset,
then, these correspond to n; locations which are to be
occupied by o3 objects. Then the number of arrangemeﬁﬁs
of o; objects at ng locations, without repetition are

(o
termed as permutations and symbolized by A =

ny o

Where,

Thus for k subsets, the mumber of possible solutions &%

1s given by expression (2.24).



1 2 =3 k
T = An1 £ vt An3 Ank
In n n Ny
. il LS "2 X L3 x._.L:_.*
P Pa [ b
(2.24%)

Now, for the specific case at hand, there are

n; locations in the ith subset, over which the unity

element has to move.

Therefore,
0-1::0-2 =000=0-i=oo¢=0—k =1
(2.25)
and
T n n n
S = L1 XL'”? X v X_‘Tlf___
By = & ingd M - 1
s n1 Xn2 X .o..Xn
k ;
or ik
st (2.26)
11

Thus, the non-redundant (no arrangement is
repeated) solution set given by (2.26), is the product
of the number of variables belonging to all the subsets.
For this speccialized problem, this is much smaller

n

than 2 solutions in a general case.
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DEVELOPMENT OF THE TREE

It is desirable that the 8T solutions for any
n variable broblem be generated systematipally and also
efficiently, After lot of experimentation and intutive
thinkingy a new tree is developed.. The enumerated solu-
tions are represented at the branches of the:tree. In
order to initiate the generation of solutions, the initial
solution 8° has its 1eft-hand-side elements x$i+1
(1 = 1244445 k) as unity and the remaining elements as

zero., The first element i.e¢ X is underlined or

>+
put under a bar. This serves a; a reference point for
generating further descendants. For any n~variable problem
having n; variables (1= 1y240...9 k) for its various
subsets, the tree developed is unique. There are a defi=-
nite number of branches and a fixed number of levels asso-
ciated with the trees The number of branches at each level

of the tree is also fixed., The generation of solutions

from the first level is initiated and a fixed number of
descendents appear at level 2 of the three., The generali-
zed prdcedure for generating descendents from any parent
branch is = starting from the underlined element, shift

the unity entry one position towards the right-~hand-side
with respect to the subsets of solution vector at the parent
branch, Thus, by the shifting of unity elements towards

the right-hand-side and proceeding in a systematic fashion,

the complete tree is cnuncrated. The 1:-st solution at the
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extreme level (tail ) of the tree has all the xsi+ni
(i= 1425eeeyk), extreme right-hand-side elements as
unity and the remaining eleﬁents as zero. The generg~
tion procedure takes care of the fact that none of the
solution vector duplicates, while enumerating the tree.
For further discussion and ease of exposition, a % stage,
10 variable problem tree is enumerated and is shown in
Fige 243 « The variables X9 % ’ x3 correqund to the
first stage and hence the first subset, the variables

X» X5y Xg correspond to the second stage, Xy Xg to the
third and X5y Xy, to the kth stage. The corresponding

cost coefficients are arranged in a monotonic increasing

order which means ¢, £ ¢, € ¢35 3 ¢, € cx & e ¥
Cs L cg and cgg €y *

Looking at the tree diagram Fig. 2.3, one finds

~ that one of the unity entry is underlined at every branch.
The underlining of an element of a solution vector is a
very dimportant concept, as, the underlined element is

the reference point for generating further desceﬁdants

and also tells us as to how many descendants are associated
with any parent branch, The next section explains

the generation of descendants.
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GENERATION OF DESCENDANTS

For the systematic generation of the branches
of the tree, it is important to know, as to how meny

descendants are associated with any parent branch. It is

~ also essential to know, which unity element in a solution

is to be underlined.

Let us consider a solution véctor (3) s Indicated
on Fig. 2,3. There are 4 subsets i.e. 8,5 8,y 8yand 8),
The unity element x, , which belongs to &4 is underlined.
The number of descendants associated with this branch
is 4. . In general, let the underlined slement (%) belong
to the ith subset and X is not the last element of ith
subset (i.e. # x%i+ni ’ then the numoer of descendants

D, is given by (2.27)

D, = k =1 &9 (2.27)

The second possibility is that the X 1is the
1,st element of ith subset (i.e., = xsi+ni ) o Then Dy is
given by (2.28)

D, = k-1 - (2.28)

This is explained by solution vector (:) indica-
ted in Fig. 2.3« Here, the last element xy of 8§, is
underlined, Therefore, in this case D, 135 3.

#4s regards, : the underlining of unity elements

‘of‘descendanté,' consider solution vector (:} s whose
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descendants are (:) ’ {:) and (:) shown in Fig. 2.3. If
% Dbelongs to the ith subset at the parent branch and is

not the last element (i.c., # xbi+ni) , then ith subset

X is shifted one position towards the right-hand-side

in the 1st descendant and‘the subsecquent solutions have
’
Tiet +2 .

as underlined., If X is the last clement of the ith

o PR T elements
i+2+2 bi+3+2 6k +2

subset (l.e. = xsi*ni ) , then it remains fixed and the
rest of the procedure is same as explained above. To the
knowledge of the author the newly developed tree and the
procedure of generating descendants has not been discussed

elsewhere in the literature.

PROPERTIES OF THE TREE

1s The total number of levels present in any tree
is given by (2.29)
L = %}‘i‘ n, = k+ 1 (2.29)

=1 :

(Proof $¢= The number of levels associated with
any tree is given by the expression (2.29). For
this the basic requir ement is to find the number
of stages from which the first solution vector
having all the left-hand-side elements passes
in going to the last solution vector having &l
the right-hand=side elements in the various sub~-

sets as unity. Therefore, the number of stages
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3.

LS

k
to be traversed is ( ?:% n; - k), because

k positions are initially occupied by the unity

entries. Including the first level or stage from
where the enumeration is started, the total

k
nunber of levels L=£_:_’1 ni-k+1) .

For the 4 unit, 10 variable example L = 7.

The number of branches in a tree is given by
T

8" , where
T L
e =11 n ‘ (2.30)
=1

(Refer to the proof given in Eags (2.23) - (2.26))
For the example discussed, g% = 36

At the centre of the tree, if we consider an
image plane, then the solution vectors below
the image Plane are the images of the solution
vector above it. For example, the last vector
(0010010101) of Fig. 2.3 is the image of the
first vector (1001001010).

4 spread of the solutions at the various leﬁels
of the tree follows a symmetric distribution.

For the 4 unit example, the distribution is shown
in Fig. 2.%.

The values of z at the ith 1level of the tree

are always greater than the minimum of z at the
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(i=1)th level. Therefore, the inequality

:(2.315 holds.

Z* > Min zi'1 (2.31)

' The above statement is factual because of the

monotonic behaviour of the cost function for each stage.

2.2.2 ALGORITHM

Based upon the concepts explained above a
comﬁuter algorithm is developed for the solution of
Eqs.(2.1), (2.2) and (2.3). The effective size of the
tree to be searched is further reduced by enumerating
many solutions at the subsequent levels with a very
little computational effort. The reduced tree diagram
for a 4 stage 10 variable example is shown in Fig.2.5,
Suc'}‘l a move enhances tﬁe efficiency of the search process
and’ also gives a relief to the computer core. The
efficiency of.the scheduling algorithm can be further
enhanced‘by evolving simple rules for skipping a large
number of solution vectors at the levels of the tree.
4L simple SKIP RULE I 1is evolved by taking adﬁantage
of the structure of constraining equations with positive
coeffidients. The rule is based on the premise that if
the summation of the constraint coefficients uptb {w=1)th
subset :Violates the particular constraint, then all
subsequeﬁts solution vedtors associated with this parent

branch are infeasible and therefore are skipped. Where, w
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refers to the subset with an underlined element. Stated

matiiematically, if

E 8y j ?j at by for constraints

je (w=1) .
with positive coefficients 55 then skip all descend-

ants associated with this parent branch, This is called

SKIP RULE I.

!
The steps of the algorithm are detailed below 3

1. Read System Parameters = Cost coefficients, const-
raint coefficients and constreint limits.
5. TInitlalize solution vector at & = 1. Enter X, ,q »
i
(1 = 1,2,...k) as unity entries and the remaining
x= 0 ., Underline element xs1+1 .

3. Check constraints.’ If satisfied, stop, otherwise
go to step k.

4, 4dvance the leﬁel counter by one i.e. & = & + 1.
Generate descendants by using Egs. (2.27) and (2.28) .
Go to 5.

5. 8earch for a feasible schedule at the Lth level,

Terminate the branéhes having element

et * P
as underlined and the branches having any of the

elements x5k+j (3 = 19250.y ny) &S underlined.,

4pply SKIP RULE T, Go to 6.



READ SYSTEM PARAMET-
= ERS

iNTiaLize L= i
SUBSTITUTE Xgy4 1 (4 =1, 2, JKYAS 1 &

THE REMAINING X AS O. UNDER LINE Xg, 4 |

C ONSTRAINTS NO
VIOLATED 7
: b e
| vES
st L=l +1

GENERATE DESCENDANTS USING
EQS. (2-27)8& (2.28)

|

TERMINATE BRANCHES HAVING "ELEMENTS
@ Xy + Ny, AND @) ANY OF THE
ELEMENTS Xg. | (]=1,25=-NY ) AS UNDER
LINED APPLY . °SKIP RULE 1

DOES A

3 FEASIBLE SCHEDULE
\ EXisT 7

é"::: Min. 5;

zaié = ALL FEASIBLE 3 AT Lth
f LEVEL

}
//\\
/CHECK ¥ \ NO TERMINATE

< —d  BRANCHES WITH

‘«.\'é = MIN. ?3‘ é > 51

: ‘R
YES f
! STOP

Lo

FIG.2.6 FLOW CHART FOR THE PREVENTIVE MAINTENANCE SCHEDULING
ALGORITHM



L7

6. Does a feasible schedule exist ? If yes, go to 7,

else go to k4.

7. Store z' , which is the minimum feasible z &t the &th
level, as z interesting. Check if z is the minimum
of &1l z at this level. If not go to 8, else stop.

8., Terminate branches having Zggz' o GO to k.

‘4 flow chart of the algorithm is given in Fig. 2.6.

2¢2.3 PROOF OF OPTIMALITY

?heorgg 3

The procedure of flow chart Fig.2.6 results in
_an optimal solution to the problem given by Bas.(2:1),(2.2),
(2.3) and (2.16).
Proof ¢
The monotonic non-decreasing characteristic of
the multistage cost function is displayed in Fig. 2.7. For
eny stage i1, the following inequelity (2.32) holds -

e c e S5 c
dy+1 < 5,42 & o443 < d4+1y

(2.32)
The initial solution z° corresponds to the state, when

o +1 (1 = 1,244..,k) are active . Therefore,
: k

z° = :E: e,

1=1

S+ (2,33)

%f the constraints (2.2) are satisfied corresponding to
his solution, then, the optimal is reached, because z°
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is the summation of all the legst values of c's for the

k stages.

If the above conditicn does not hold, then the
descendants are genercted by the shift of unity entry
by Jjust one position, towards the right-hgnd-side. This
helps in generating various low cost combinations of

Ze

Let wus supposey thore arc. some feasible z values
at any level £ of the tree. Thus z' = Min z;'_ . Now, if
z' is the minimum of all z at this level. Then, the optimal

is reached. This is so, because of the non-decreasing

characteristic (2.32) of the cost function.

The only alternative left is that z' K Minz'z .
Under this condition, moving down the tree, z'{f Min z‘

gets satisfied and the optimal solution is achieved.

This completes the proof that the flow chart of
Fig., 2.6 results in an optimal solution.

2.2.4 ADVANTAGES

The optimization technique developed above has

the following advantages,

1. Every move 1is in the forward direction. No back-

tracking{jzj is required and hence the book=keeping

is minimum‘*
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2e The computational time is small as the z values and
the constraints a2t the ith level are obteained from
the z values and the constraints at the (i=1)th level,

only by 2 minor change.

3. The storage is small, as it needs storing solutions,

corresponding to only two levels at a2 time.

4. A large number of infeasible solution, which do

not satisfy Bq.(2.16) are never generated.

5. As the constraint set (2.16) remains satisfied, the

total number of constraints are reduced.

6. For practical problems, only a part of the tree
has to be secarched for finding the optimal solutiams.
Many branches are also terminated during the search

process,
2.2.5 PROGRAMMING CONSIDERATIONS

From the programming stand point, it is desirable
that the computer storage be economized and the speed of
computations should be fast. This enhances the value of
the algorithm in solving problems of large dimensionality.
A storage scheme for the enumerzted solution vectors is
shown in Fig. 2,8. 8uch an arrangement take advantage
of the systematization present in the s=arch procedure,
Because of the known fact that there is one and only one

element of a subset which is unity, one needs storing only
lafE 28 ,
CENTRAL LIBRARY UMIVERSHY OF ROORYEE
ROGRKI -
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the index of this element. Fig. 2.8 displays the storage

of solution vectors corresponding tc the first three levels
of the tree diagram shown in Fig. 2.3+ For example, the
numbers 1,4,7,9 refer to the variables Xy Xy g % and

Zg e Thus, for thec enumerated solution, these variables are

currently active and have unity values.

ACCELERATING THE CONVERGENCE
The efficiency of the scheduling glgorithm can

be further increased by taking advgnt,ge of the systematic
behaviour of the constraining equations. This requires the
evolvement of skipping rules, with the 2id of which ,

many branches of the treec are terminated during the search
process. Ahlso, sets of constraints nced not be checked

for many enumerated solutions, The applicacy of these ideas
~1s demonstrated by evolving S8KIP RULE I. Another skipping
rule is evolved in section (3,2) on the basis of the systema=
tic behaviour of the constraining equations. Thus, the.

- inclusion of skipping rules enhances the efficiency of the
algorithms,

2.3 SAMPLE (PPLICATIONS

The problem of preventive mgintenance is discusse-
ed 1in detail in section (2.1). A scheduling algorithm

is developed for the solution of the problem and is given

in Figes 2.6 « & computer program of the nlgorithm is
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prepared in Fortran II for sn IBM 1620 computer. The app=
licecy of the algorithm is demonstrated by solving two
examples. Another important problem concerning overhaul-
ing of generating units is the interchanging of staff
among power plants, during the maintenance periods. &
mathematical description of the problem is presented and
an illustrative example is given. The results of com-

putation are displayed.

2¢301 A L4-STAGE EX4MPLE

EXAMPLE 2.1

Generating units G11Gsy G3 and G) are to be main=-
tained during a time horizon qg*gggfrweeks. The resour-
ces available during these intervals arev150, 170, 180,
and 120 MW respectively. A scquence constraint specifies
that the maintenance on unit G3 y musSt begin immediately
after maintenance on unit G% is completed. From Security
considerations, simultaneous maintenance on units G4 and G),
is to be avoided. The data of the problem is given in
Table 2.1. The details of constraint coefficients and

cost coefficients are displeyed in Table 2.4. Constraints

1,243 correspond to the sequence of meintenance on units
G3 and Gh . Constraints h,5,6,7 reprz2sent the resources.
Constraints 8,9, and 10 are for preventing simultaneous
maintenance on the units G1 and Gh « & minimum cost main-

tenance schedule is to be obtained.
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With the help of prefiltering rules (2.8) and
(2.9) , the variable X,4 Stands cancelled and the const-

raints 3 and 10 get eliminated.

The problem is solved as a 10 variable one. The
tree diagram of Fig, 2.5 is applicable for this case,
The optimal solution appears at branch 1 of level 3 of

the tree diagram.

Thus the optimal solution is

XB = xh = X7 = X9 g

The solution obtained is the first feasible Solution and
is also the optimal. Further search at this level is ter-
minated. The computer memory requirement and the execu-
tion time for the IBM 1620 computer is 1970words length
and 2.0 mins. respectively. 4 very useful represSent-
ation of the results of computation is in the form of bar
charts, Such charts may be obtained directly from the
computer, thus saving lot of manusl lebour, The.bar
chart for the case discussed is Shown in Fig. 2.9, The
bar charts are of value to plant managers for executing

maintenance decisions.



UNIT NUMBER Gi —

ol —

ir b 4

2 e s |

R b 4
1 i i i o |

! 2 3 4
SCHEDULING INTERVALS —o

FIG. 2.9 BAR CHART FOR A FOUR STAGE EXAMPLE



26

2+3.2 4 10-STAGE EXAMPLE

EXAMPLE 2,2

A power utility has to maintain 10 generating
units (Gi sy 1 = 1,254..,10) during a scheduling horizon
of one year having 12 equal monthly intervals. The data
of the problem is given in Tables 2.5 , 2.6, and 2.7 .
In Table 2.5 , the units Gy, and G5 are equivalent to a
Single uhit which requires maintenance twice during the
Scheduling horizon. The maintensnce on these two units
is to be separated by a six months period. In the Table
2.6 4 the constraints (1-12) are for the resources limi-
tation, The constraints (13-15) are for the old unit
which is replaced by G), and G5 « The constraints (16-18)
are for sequencing of maintenance on the units G2 and G3 2
The constraints (19-21) are for the exclusion of simulta-

neous maintensnce on the units G1 and G Table 2.7

2 °
portrays the constraint limits for the constraints of

Table 2.6 . The data used is hypothetical.

The optimal solution obtained to the 10 generator,

35> variable, 12 interval problem is 3

X3:x4 x7:x9=x12=x15:x19=x23=x27:x32::1

MRS R e Xy Pe T T e ex = Ton %18

2" T4 = X5 % Dg = Xg = Xyg = Ay = %31

x3y = x35 = 0,

1
>

20 = ¥oq



Data and the Associated unknowns for Example 2,2

s l Capacity,iAllowed Outage Lssociated Maintenahce
Unit MW period duration |variables |starts in
! months month
X1 1
G, 80 1=l 2 X5 2
Xq 3
x), 1
G2 40 1=3 1 x5, 2
e
%6
: 2
o 3
8
X9 e
Gy, 40 2=k 1 %10 3
X1 %
™2 8
Gy %0 8=10 1 %43 9
i 10
| % 5 0
G6 120 9 3 X 5
e 6
X 7
X9 5
X
~ 20 6
G7 80 5=9 2 xo1 7
238 8
%23 2
X
2l 3
Gg 120 2-7 3 Xo5 s
X26 5
£37 g
X
28
G9 L0 8=12 1 X5g 10
5 12
3 7
; X33 8
G.q 120 7=12 3 X3 9
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TABLE 2.7

Constraint limits bi for Example 2.2

Constraint b. Constraint b
Number i Number i
1 100.0 12 100.0
2 250.0 13 00.0
3 300.0 14 00.0
L 350.0 15 0.0
5 200.0 16 0.0
6 200.0 17 0.0
7 150.0 18 0.0
8 200.0 19 1.0
9 1 oL 20 1.0
10 250.0 21 3.
c . X8 100.0
|

The computer memory requirement and the execu-
tion time for the IBM 1620 computer is 3760 words length
and 12.0 mins. respectivaly. A graphical display of the
results is presented in Fig. 2.10.

2.3.3 MAINTENANCE STAFF INTERCHANGE SCHEDULING

The reliability and economics of operation dictates
the need for pool coordination of resources (men and mate=-
rial) within a utility. The pooling is also beneficial

to the mutual interest of the neighbourirg utilities.
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employed from an alternative source D. The data pertaining
to the problem is given in Table 2.8. The data used is
hypothetical . 4 schedule which minimizes the total

cost of interchanging the labour is to be obtained.

4 diagrammatic view of the staff interchange

scheduling problem is presented in Fig. 2.11. The arrows

on the lines connecting the stations indicate the direc-
tion in which the labour is transferred. The dotted

line indicates that there are constraints between the

stations.
TABLE 2.8
Data of Exemple 2.3
Source g:éagi Associated | Cost
variables S
teams coefficient
Station 4 1 x1 5
(Labour of 5 %, 4
category I) 3 X, o5
Station B 1 %), ¥
(Labour of 5 %
category II) 3 T 5
6
Alternative 0 x7 :
?ource D 1 x8 10
Labour of
2 = O
Category I) 9 2
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TABLE 2.7

Constraint limits bi for Example 2.2

| Constraint b Constraint &

Number - Number 1

1 100.0 12 100.0

2 250.0 13 00.0

3 300.0 14 00,0

L 350.0 15 0.0

5 200.0 16 0.0

6 200.0 12 0.0

7 150.0 18 0.0

8 200.0 19 1.0

9 150.0 20 1.0

10 L 21 1.0
" 100.0

|

The computer memory requirement and the execu-
tion time for the IBM 1620 computer is 3760 words length
and 12,0 mins. raespectively. A graphical display of the
results is presented in Fig. 2.10. :

2.3.3 MAINTENANCE STAFF INTERCHANGE SCHEDULING

The reliability and economics of operation dictates
the need for pool coordination of resources (men and mate-
rial) within a utility. The pooling is also beneficial

to the mutual interest of the neighbourirg utilities.
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In the overhauling of power plants, maintenance
staff is to be interchanged between stations at times of
overhauls, In this way a larger labour force is concentra=-

ted in two or more nearby stations. Then, instead of two

or more units being out of service simultaneously with
less than optimum manpower working on them, they may be
dealt with one after the other, each overhaul employing
a combined labour force and taking a considerable shorter
time. 4 logical extension of this concept of interchanging
labour is to establish Divisional or Regional pools of

labour, which can supplement the station maintenance teams.

The problem of staff interchanging [9] is formu-

lated as an integer program. The model falls within the
format of Egs. (2.1), (2.2), (2.3) and (2.16) . The schedul-
ing algorithm of Fig. 2.6 is applicable. The following
example 2.3 illustrates the above concepts. A schedule,
which minimizes the total cost of interchanging the labour

is obtained.

EXAMPLE 2.3

An electric utility is managing three power plants
named as 4,B, and C. The maintenance is to be concentrated
on plant C and its maintenance teams are to be supplemented
by pooling of repair men from stations A and B, A minimum

labour force is required at any of the plants A'and B for

emergency purposes. The additional labour, if required, is
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employed from an alternative source D. The data pertaining
to the problem is given in Table 2.8. The data used is
hypothetical . 4 schedule which minimizes the total

cost of interchanging the labour is to be obtained.

4 diagrammatic view of the staff interchange

scheduling problem is presented in Fig. 2.11. The arrows

on the lines connecting the stations indicate the direc-
tion in which the labour is transferred. The dotted

line indicates that there are constraints between the

stations.
TABLE 2.8
Data of Example 2.3
No. of : 5
A
cwtia - | ngere, | Sibelmied | cimt by
i coefficien
Station 4 X, 5
(Labour of 2 x, 10
category I) 3 X3 25
Station B 1 X, L
(Labour of 2 XS
category II)
X6 20
Alternative 0 x7 SRy
source D 1 X8 10
(Labour of
2 X 0
Category I) 9 “
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Table 2.8 contd..

No. of Associated Cost
Source Repair variables coefficient
teams '
wlternative 0 X410 0
Source D 1 X44 12
(Labour of 2 X5 2k
Category II)

Thus, the objective is to

Minimize z = 5x1 - 1OX2+ 25X3 + hxh + 8x5 +20X6 - 0x7

+10X

8 +20X

+ 0 x + 12X

9 i +2#X12 (2.34)

11

Subject to the constraints

(1)

(i)

(1ii)

To assure that the required labour teams of category I
are available at plant C , the equality (2.35) is
written. That is,

X+ 2x2 + 3x3 + 00X, + 1X, + 2X

1 7 8

To assure that the required labour teams of category

9 = )+ (2-35)

II are available at plant C, the equality (2.36) is
written. That is

1xLF + 2x5 + 3x6 + OX1O + 1x11 + 2%, = 3 .(2.36)

To account for the minimum labour force at any of the
plants A and B for emergency purposes, the inequality

(2.37) is written. That is,

1% + 2%, + 3x3 + 1%, + 2%y + 3%, 5 (2.37)



The optimal solution obtained is g

X,] ::XB—:Xl+ =X5':X7=X8=X11:X12=O
Z* =50

The computer memory requirement and the execution time
for the IBM 1620 computer is 192éwords length and 4.0 mins.
respectively. The optimal solution is obtained at level 6
of the tree. The solution indicates that 2 repair teams
of category I are transferred from station A, 3 repair teams
of category II are transferred from station By 2 repair
teams of category I are transferred from source D and no

repair team of category II is transferred from source D.

The cost of transferring labour is 50 units.
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CORRECTIVE MAINTENANCE SCHEDULING

It is conceivably true that a system should be

designed to have built-in maintenance as far as possible.
A system analyst is posed with the problem of preparing
the best schedule out of a host of available alternatives.
Such an approach reduces the expenditure on maintenance
during the operating life of the system and also enhances
the system reliability . Billinton and Krasnodekski[5 ]
have also emphasized the inclusion of maintainability ana=-
lysis at the design phase. In designing systems with
regard to reliability and repéirability typical considera-
tions involve trade offs Dbetween system mean time to
failure (MTTF) , and system mean time to repair (MITR).
Criteria for the tradeoffs are basedoncost and availabi-
lity. These techniques are particularly applicable to the
determination of the number and capacity of boiler feed=
pumps, feed heating train arrangements, pulverizer confi-
guration, auxiliary electric power systems and cooling
water etc. The tradeoff techniques are also applicable to

such situstions where %

i) A choice is to be made between easily replaceable
' modular components against piece parts.
ii) A decision is to be made on the layout of the
system, subsystem or equipment, whether to economize

space or facilitate easy accessibility.
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Thus, it is possible to increase the auxiliary
system reliability by varying the configuration and using
mixed fedundancy. The tradeoff anglysis results in the
optimal number of stahdby components and repair facilities
required in order to achieve a specific level of system

reliability.

3.1 MODELLING

A huge amount of literature is available in the
area of reliability modelling for Defence and Aerospace
systems [5,5ﬂ o The basic models are also applicable to
many situations in Power System Bngineering. It is required
that power system engineers take full advantage of the
avallable literature and develop a unified approgch for
corrective maiﬁtenance scheduling. Some of the important
reliability models, wunder which the power plant equipment
may be classified are for i, standby systems, standby
systems with repair facilities, systems subject to two
types of failures, (m/n) systems,(m/n) systems with repair
facilities. The following treatment is presented in
order to explain the behaviour of these models in an
expository form., Graphical plots of the reliability
expression of various types of subsystems are useful to
the system analyst in understanding the characteristic
behaviour of these subsystems and in the analysis of

corrective mgintengnce scheduling probiem.



1. STANDBY SYSTEM

A system consisting of n independent components

is said to be a standby system provided the system opergtes

in the following manner. Component 1 operates until failure
then component 2 is switched ONy «...y component i operates
until failure failure, then component i+1 is switched on,
seeey component n operates until failure, then the system
is declgred as failed. The religbility expression, which
is of interest to system analyst, for such a system isg given
by Bq. (3.1) [51}.

AETR (Xt)i

'
R1=e Z L 2

F=0) .

(3.1)

where,

A 1s the failure rate, t is the mission time and n are
the total number of components. The network configuration
of such a gystem is provided iﬁ?ig. i P e where S and
SD denote the switch and the failure sensing device. Typi-

cal assumption in analysing such systems are

13 It switching is necessary due to failure in a
parallel component, the time required is insigni-
.ficant and does not gffect the desired operation.

ii) No warm up time is necessary for components being
switched in.

iii) Failure is detected with probability one and the

subsequent component is then switched in automatically,
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A useful graphical plot of expression (3.1) is
obtainable from Fig. 3.2 , where U, = 1= Ry is the
standby system unreliability.

2. OSTANDBY SYSTEM WITH REPAIR

When a fault in a system is non-recoverable the
failed component is disconnected and repair is performed.
It is possible that at a time more than one component
may fail simultaneously . This requires more than one
repair crew in order to increase the operating life of
the system. In the case of irredundant systems, repair
alone does not help in increasing the system reliability.
It is enhanced by providing the spare components. The
behaviour of such type of system is explained as follows:
Initially one component is kept in operation and the others
are kept as spare. When a component fails, it is replaced
by a spare component agnd the fgiled component is sent for

repair. When repaired, it is kept as a standby component.

If a standby system has n components each with a
constant failure rate A and there are r repair facilities,
each with constant repair rate ¥ , where 1 rg{n , then,
the reliability expression of such a system [ 51] s which

is of interest to system analyst is given by Bq.(3.2).

RI = 1 = pn (302)

AL LRRATY URPTRSHY OF ROORKEE
o 3RKEE
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where,
1 i

| A
. = . e (3.3)
pl I‘! rl"r (“ > pO

= r n ‘,- 1

4 g 1 i
1+2—_ e ..}.\..\) +:— 3 .31__>
it Ko i Ph A0S K

% i=1 ' i=rd1 e

R, is also krown as system uptime ratio (3.4%)

A useful graphical plot of expression (3.2) is

provided in Fig. 3.3 , where U2 = le Ré is the correspond-

ing system unreliability.

3. SYSTEM SUBJECT TO TWO TYPES OF FAILURES

Many types of systems [56 | consists of components

which fail in the mulually exclusive ways, and the result

is that the system fails in either of the two mutually
exclusive ways. For example, a network consisting of n
relays in parallel has the property that a short-circuit
failure on any one relay would cause a system failure,

and an open circuit failure of all the n relays would
again cause a failure of the system. Diodes also exhibit
the behaviour of two failure modes given by an open circuit
failure or a short circuit failure. A series parallel
arrangement of diodes is used, if the probability of open

circuit failure is high. The reliability expression for
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such 'a system, which is of interest is given in Eq.(3.5)

= -

e [1-<Q1>n]m -*_1 i <1-Q2>nj (3.5)

where

Q is the probzbility of open circuit failure
Q2 is the probability of short circuit failure
m are the number of sections in series.

n are the number of diodes in each section

connected in parallel.

A graphical plot of expression (3.5) is given
in Fig. - 3.4 , where U3 = 1-R; is the corresponding

unreliability.
L. (m/n) SYSTEH

A system with n indeperndent components out of
which m components must operate is called (m/n) or 'm
our of n ¢+ system. In a data processing system with
five video displays, a minimum of three displays opera-
ble may be sufficient for full data display, in which
case the display subsystem behaves as a (3,5) system.
In such a system, when (m-n+1) component fail, the sys-
tem 1is said to have failed. The religbility expression,
which is of intérest for such a system is given by Bq.(3.6)

tl

% n = -i
o= (e ™h Ty
=m i

(3.6)

.

i

where,
A is the failure rate, t is the mission time, n

are the total number of components and m are the number of
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i

components, which must be in an operable state.

A graphical plot of Bg. (3.6) is available
from Fig.3-5 y Where Uh = 1-RL is the corresponding

unreliability.

OBJECTIVE

Consider a system composed of k independent
subsystems, which are functionally in series. The reliabi=-
lity of a such a system in terms of subsystem reliabilities

is given by the expression (3.7) . That is,

k .
iz
where, R; 1s the reliability of ith subsystem and is a

function of the number of repzir facilities ry and the

number of spare components m, e

The product reliability expression (3.7) is
converted into the summation (3.8), by taking the logarithm

of the both sides of expression (3.7). Thus,

k ; :
In R, = zz: Ln Ri(mi,ri) (3.8)

1=1
The advantage of the above transformation is
that the reliability expressions for each stage get

separated and a separable objective function obtained.

One of the important objectives on which the

resulting schedule is based, is the maximization of the
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system reliability, Ry, subject to the constraints on
cost, weight, volume (space) and power consumption etc.

Stated mathematically, the problem is :

- K
Maximize . In R, = j:: Ln Ri(mi,ri) (3.9)
i=1
subject to:
X

J = 15250000y W
where,
& j is the jth type resource requirement asso=-
ciated with the ith subsystem and bj is the amount allo=-
cated for the jth resources and w are the total number

of constraints.

The objective of maximizing the system reliability
can also be realized by minimizing the system unreliabi-
lity as given by expression (3.11)

US = 1= RS (3011)

where, U stands for the system unreliability. Therefore,

s
the objective function (3.9) is transformed to the
objective ‘function (3.12) . That is,

Mo . . k (
inimize : In U, = - i%% Ln Ry (my ,7F;) 3.12)

subject to the constraints (3.10).

Another important objective could be to minimize

the cost of additions or changes in the system, subject to
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the satisfaction of achieving a specific level of relia-

bility besides satisfying-other associated constraints.

The problem of minimiz ng the unreliability
(3.12) or minimizing the cost of additions or changes
in the system is transformed into the integer linear

program gs given below,

n
Minimize 3+ 2z = :z: ¢y X (3.13)
1=
Subject to
n
-—
) A i 3 (3.1%)
TR R R S
j=1,2’...,w
x.= 0 op 9 (3.15)

L

where, z is the objective function to be minimized and
and c; are the unreliability values, when the objective
is { system unreliability minimization. For the case,
when the cost is to be minimigzed, c; are the cost coeffi-
cients, a;y are the constraint coefficients and bj are
the limits on the available resources for the w constraints.
In the formulation (3.13) - (3.15) , k of the
w constraints have a special structure as given by
(3.16) . That is,
b X(Si) = (3.16)
iek
The equality (3.16) signifies that for each subs&stem
or stage, the summation of the variables is unity. To the

knowledge of the author such systematic modelling for the
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corrective maintenance scheduling problem has not been

done earlier, In this case also the cost coefficients
for each stage are arranged in a monotonic increasing

sequence.

3.2 ALGORITHM

The problem whose solution is to be obtained
is given by equations (3.13) = (3.16) . The mathematical
structure of the problem is identical to the problem of
preventive maintenance scheduling discussed in Chapter II.
Thus, the scheduling algorithm of Fig., 2.6 is directly
applicable.

In many of the corrective mgintenance scheduling

problems a part of the constraints (3.14) have a systematic

structure. Thus, the constraint set (3.1%) is represen-

ted by the equations (2.17) and (3.18) as given

below ¢
n
2 T -
g n -
i=1 {317
j = 1,2,.0-.,}]
and n_ :
A :
{%T My N < b

(3.18)

j:h+1,...,w

~Thus , h of the w constraints given by Bq. (3.17) have
a special structure such that the constraint coefficients

aij for each stage appear in a monotonic non-decreasing
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sequence. Advantage is taken of this property of the
constraint set (3.17), in order to enahance the effi-
ciency of the scheduling algorithm. A simple skipping
rule is evolved by exploiting the monotonic character-
istic of the constraint set (3.17). The rule says that
if any of the h constraints (3.17) gets violated at '’
any parent branch then ignore or skip all subsequent
descendants at this branch as these will be all infeas-
ible solutions. This is called SKIP RULE II. Stated,

mathematically, the rule is 1
n

ir- [ | (3.1
jﬁ_:l aij Xi \{ ,j 3 9)

For any of the constraints (j = 1,2,....,h),
then, terminate the branch, where the rule is applied.
The modified algorithm incorporating skip
rule ITI is given in Fig. 3.6. A computer program
of th: flow chart ¢f Fig., 3.6 has be:n proparcd for an
IBM 1620 computer. The next section demonstrates the

applicacy of the glgorithm.

3.3 SAMPLE APPLICATIONS

EXAMPLE 3.1

The excitation system of a generator consisting
of a sub~pilot excitor, a pilot excitor, a main excitor
and a rectifier unit is shown in Fig. 3.7. The relis-

bility of the system consisting of four stages is to be
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maximized through the use of mixed redundancies. The
stages 1 and 2 are to be supported by standby componaents

and the stage 3 with standby components along with repair

facilities. The open circuit failure probability of the
rectifiers, because of the voltage spikes arriving, is
higher as comparzd to the short circuit probability of
failure. Under these conditions series=-parallel arrangement
of the rectifiers is to be used. The entire cost and

space of the system should not exceed 25.2 and 17 units
respectively, the available resources, From the design
consideration the maximum number of redundant components

and repair facilities at each stage is known.

TABLE 3.1
Failure and Repair Rate Data For Example 3.1
i 4
Sub-System Failure rate Repair rate
(1/yr) s N (1/yr) 5 H
Sub Pilot Bxcitor Q,2 -
Pilot Bxcitor ol ~
Main Bxcitor 045 1:25
0.0 Probs of
Rectifier Diode failure 0.18
S.C.:Prob. of
failure 0.02

The failure and repair rate data for the wvarious
subsystems is given in Table 3.1. The complete description

of the problem is obtained from Table 3.2.
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Detailed Description of Example 3.1

Number INumber |Associa- jobject:-{ Cost - space
G of standof Repa- ted L ve fun-Fonstrainticonstraint
gy by compo<ir variables iy coeff. coeff.
ystem . ction
nents facilit=- coeff
ies ;
)+ -~ X1 000008)'4' 008 0.0
Recti- 3 5 X 0.00423 0.6 0.0
fier e
1 g X)+ 001317)"' 002 0.0
Wit 2 2 X 0.01075  20.0 12.0
exciter 2 1 Xg 0.04020 16.0 12.0
1 1 X7 0.10821 10.0 6.0
: 3 - X 0.00027 6.0 6.0
Pilot 8..
Excitor 2 - X 0.00361 4.0 4.0
Sub Pilot 2 - X, 0.00115 1.0 1.0
The optimal. solution obtained is 3
X, = x5 - x9 B Xen o= ¢
A 0

1

X3 = X)+ = X6 =X7 '—:X8 =X1O =X11 =

The computer memory requirement and the executien

time for the IBM 1620

computer is 1918 words length and 3.0

mins. r:spectively. The optimal solution is obtained at level

4 of the tres.
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The results show that the redundant component for
stage one and two are 1 and 2 respectively. . Stage three
has 2 standby components with 2 repair facilities. For
stage four, the number of diodes in each section conn-

ected in parallel is 3.

The system reliability achieved is 0.9623.

BXAMPLE 3.2

The cooling arrangement of a turbine consisting of
heat exchangers, sump, filter section and an oilcirculating
pump is shown in Fig. 3.8. The temperature of the turbine
bearings is mainteined within very precise limits [10].

A schedule of repair and spare components is to be prepared
to achieve a minimum system reliability of the value of 0.981
The ~ heat exchanger, which form a m/n system is to be
supported with standby units. The filter section is to be
supported with standby sections and the oil circulating

pump with standby units along with repair facilities.

TABLE 3.3
Failurc and Repair Rate Data for Example 3.2

Subsystem Failure Rate Repair BRate
(1/yr) A (1/yr) H
Pump | 0.5 s
Heat ..Exchanger
section 0.05 -
; Filter section 0.2 -
,‘L




TABLE 3.4

Detailed Description of Example 3.2

Number Number | Associa=-|Objectw | Reliabi= Spacz
% of of ted {ive lity const.
=9 SyStemstandby Repair wariables function}const. coeff.
componen=| facili- cost coeff. :
ts ties coeff.
I | i ' L‘
Heat 1 - X, 2.00 0.13369 2.00
exchanger
" - x), 8.00 0.00259 8.00
Filter 1 - X5 0.50 0.30685 1.00
Section 8 - Xg 1.00 0.08 371 2.00
3 - x7 1:50 0.01917 3.00
5 : % 2.00 0.00367  %.00
1 1 X9 1.50 0.03278 0.5
iy > 1 - 2.25 0.00643 1.0
2 2 Z49 3,00 0.00163 1.0

From design considerations, the maximum number of
standby components and repair facilities for each stage
is known. The sump is taken to be perfect. The decisions
are to remain ﬁalid for a period of five years. The entire
space should not exXceed 12 units, the available regources.
A minimum of 2 units are required in the cooling section
which means m = 2 , The cost of obtaining the required

schedule is to be minimized.
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The failure and repair rate of the various
subsystem is given in Table 3.3. The complete descrip-
tion of the problem showing the variables, cost and const=

raint coefficients is displayed in Table 3.k4t.

The optimal solution obtained is ¢
x3 = xg = x11 = 1

X1 =‘x2=‘x)+= x5.= x6::x7=x9=x10 = 0

The computer memory required and the exXecution

time for the IBM 1620 computer is 1898 words length
and 5,0 mins. respectively. The optimal solution is

obtained at level 7 of the tree.

The results show that the standby component
for stage one and two are 3 and 4 respectively. The stage
three is to be supported with 2 standby components along
with 2 repair facilities.. The system reliability achieved

is 0.98480.



CRAPERR IV

MAINTENANCE BUDGEI SCHEDULING

The financial management of a power utility
frequently chooses among competing investments either
because the firm's capital is rationed or because
some of the projects are interdependent. The future
success of a policy, consisting of a set of proposals,
depends upon the investment decisions ﬁade today. Choosing
a sound and effective maintenance policy reduces the
system down-time. enhances the life of the equipment and
thus increases the revenue to the utility. Bierman and
Smidt [ 6] have duly emphasized , the role of net present
value, as a measure of total expected return to the utility.
In the present work, integer programming linear and non-
linear models are presented for the‘control of maintenance
expenditure on thermal generating units. The objective
is aimed at selecting that set of proposals which maximizes
the net present value of its total expected return. New and
efficient maximization algorithms are developed for the

solution of the problems.

4,1 MODELLING

The maintenance budget scheduling problem belongs
to an important class of capital budgeting decisions. In
the evolvement of an optimal maintenance policy, the

gelection of a portfolio of proposals is of the utmost
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importance to the financial management of the wutility.
Advantage is taken of the existing models [8,27,#1], in

the formulation of the problem. The problem of maintenance
budgeting is discussed both under conditions of certainty
and uncertainty. Some of the new terms used in the analysis

are discussed.

DETERMINISTIC CASE

First of all, the concept of net present value 1is
explained. This is also referred to as the present dis.=-
counted value of a return. By investing on the preventive
maintenance of a generating unit, the power company purchgses
the successful operation of the unit for a specific period.
As a consequence of this, there is a return associated
with this investment. Thus, the net present value of the
return to be obtained at a later time is a very useful
mea sure of the alternztive proposals. In terms of the
formuls framework, the promised future reward F of the

present sum M is [27] .

F = M(1+ 1) (4.1)
P
M = .
or pre (4+.2)

Eq. (4.2) says that the offer of a promised future reward
F, in n years, is worth the present sum M if one's time

value of money is r.
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Next, the concept of cash flows is of importance
in the analysis of capital budgeting problems, The company!s
directors insist that the total cash outflow, during the
time horizon for which the prepared schedule is to remain
operative, should be restricted. The cash out flow asso=-
ciated with each alternative proposal during the intervals

of the scheduling horizon is known for the analysis.

Thus, under conditions of certainty, the maintanance
budgetary control problem is set as a 0~1 integer linear

program, whose general form is <

Maximize 7z = NPV (Net Present Value)

£ .
= ;i‘ %y (4.3)
1=1

subject to n
= s N SN (4.4)

i=1

(p = 1,2,...,111)

and % =0 or1 (%.5)

c:'s are the net present value of the various
proposals.

aip S are constraint coefficients

5'e are the right-hand-side values of m constraints

n are the total number of proposals.



PROBABILISTIC CASE

When the various available proposals are inter-
acting, there is a risk dinvolved in the achievement of
the objective of the firm. In such a case, it is not
enough to maximize the function (%.3) alone. The inter=-
action among various proposals are measured by the varian-
ces and covariances associated between them ., The port-
folio manager derives utility or satisfaction from the
return obtained. Most of the managers set their objectives,
so as, the firm's wutility function is quadratic or cubic
[27] . Thus a combined objective function is formulated,
which results in a maximum return to a firm at the minimum

of risk dinvolved. In the pfesent work, a quadratic cost

function is considered.

Under conditions of uncertainty, the cash outflows
and hence net present values are random variables with
forecast means (expected values) and variances. If it is
assumed that the company's utility function is quadratic,
then the power generating firm should choose that !'port-
folio!' of proposals, which maximize the following function:

2
Mpximize : 2z = BONAV) - A)( [_E(NPV)] + V(NPV)} (%.6)
i

where
B(NPV) Bxpected Net present value for the set of

proposals.
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V(NPV) Variance of the Net present value for the

set of proposals.

A Power generating firm's coefficient of

risk aversion.

From the computations stand point, the expression (4.6)

is put in the following convenient form <

2
n n
Maximize 2z = ;;% E(NPV)i X - A [EEQ'E(NPV)i 31}

n
e [E;; Xy %y © (va)i,il (4.7)

Subject to the constraints (4.4) and (+.5)
where,
f .

YOIW) if 1= ]
C(va)i ; = | Covariance of thg ith and jth
L proposals! NPV , otherwise.

~

The expression (4.7) has the characteristic
that if proposal i 1is rejected, then proposal i makes
no contribution to the objective function. If i = j,
then no covariance is associated with proposal i. Finally,
if proposal j 1is rejected, no covariance is associated

with proposal i.

In the lirear (%.3) and nonlinea~ (%.7) formulations

a verctor S = (x1, Xy seeey X ) 1is composed of a number
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of subsets S; (i = 1y¢...3kK) , where k are the number
of stages in the problem. These: k of the m constraints
(4.4) have a structure as given by Eq.(%.8). That is,

) % (Si) = 1 (4+.8)

iek
Bq. (4.8) signifies that for each stage of the
problem, only one proposal is to be selected from a set

of proposals. It is shown in the section to follow that

k of the m constraints are eliminated because of the

desirable attritutes of the solution procedure.

- 4,2 ALGORITHMS

DETERMINISTIC CASE

First, the development of the algorithm is dis-
cussed for the deterministic case given by Bans. (%.3),
(4.) and (4.5). The Bqg. (4.8) also holds true for this
case. The problem whose solution is to be obtained is the
maximization of the objective function. As a first step,
systematization is introduced in the model. The objective
funétion coefficients are so arranged that these appear

in a monotonic decreasing sequence for each stage or

subset. The intutive reasoning for such a move is to
obtain the optimal solution with a minimum of the computa=-
tions, without searching the solution over the whole

solution space. Thus, for any stage i , the following
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inequality (4.9) holds. That is,

i
(4.9

where, n; are the number of variables in the ith

c Cc c @ " " e >c
84+1 2 ai+2 ;3 5i+3 | Z “b 4N

subset, Also,

by B Bi T T

s i=2,3,..., k ()'4-010)
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