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ABSTRACT

The present work deals with the optimal design of a system

by using structural redundancy. A basic consideration in the

design of a complex system is the reliability which should

be very high. Generally, the reliability of the constituent

components is not sufficient to meet the system reliability

requirement. One way of enhancing the system reliability

is to curtail the complexity of the system which may result

in poor stability and transient response of the system and

degradation in the quality of product. The other practical

way is to introduce structural redundancy at the subsystem

level. The amount of redundancies to be employed depend on

the resources available which are usually limited and pose

a problem to the system Designers. Therefore, in the opti

mal design of a system, the problem of optimal allocation of

redundancies to optimize reliability subject to the multiple

constraints such as cost, weight, power consumption etc./

arises. An attempt has been made to solve this problem in

the present work. In the interest of generality, any parti

cular system is not considered in this stucy.

This thesis embodies the mathematical modelling of the

optimal design problem of a system having active or dynamic

redundancy. The active redundancy includes parallel, series,

series parallel, majority voting and multiple-line redun

dancy while dynamic redundancy comprises standby and hybrid.
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redundancy. Generalized expressions are derived for the

models suggested. The effect of switch failures, i.e. false

switching, gradual failure and failure to operate, and dor

mancy in the dynamic redundancy are considered in the mathe

matical modelling. The systems having standby redundancy with

spare and repair facilities are also considered. These models

result only in partial optimization of the design problem. A

true optimal design requires optimal allocation of reliability

as well as redundancy in a system. Considering this fact,

reliability problem is formulated. It takes the final form

of nonlinear mixed integer programming problem.

These nonlinear integer programming problems are linear

ized by using the bivalent variables. The linearized relia

bility problem has same feasible solution region as the origi

nal one but the number of variables are increased.

The nonlinear integer programming reliability problem

is converted into the Geometric Programming formulation by

assuming variables to be continuous which leads it to a system

of nonlinear simultaneous equations with variables one less

than the number of constraints. When the system has only one

constraint, expressions are derived to get optimal number of

redundant components required in terms of resources available.

These expressions are very useful to the system designer.

• An algorithm is devised for solving reliability problem

by using SUMT formulation. The constrained problem is solved

by s^tcep&st "escent and tree search method. This algorithm is

effective when system is subjected to multiple constraints and

provides an exact solution.
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The use of nonbinary tree search based on graphy theory

is made to solve the linearized reliability problem. The

method is conputationally efficient than the other available

zero-one programming methods as it requires only few branch

ing and less computer sorage. The same method is modified to

avoid the calculation of external stable set to find upper

bound on the objective function.

The linearized reliability problem is solved by the flexi'

ble enumeration scheme which allows a great deal of flexibi

lity in the backtracking process and thus improving the effi

ciency of the search procedure. This method requires simple

algebraic computation and provides accurate results.

The multiple constraints linearized reliability problem

is converted into an equivalent knapsack type problem having

a single constraint by aggregating the constraints. This

equivalent problem is easier to solve than the original prob

lem. A Branch and Bound method is brought out to solve the

equivalent problem.

A very efficient method is developed to solve nonlinear

integer programming reliability problem. The method is based

on-the fact that for maximizing the system reliability one

component must be added sequentially to that particular stage

which has lowest reliability. As the method needs only simple

calculations and very little memory, it can be used to solve

large systems.

The optimal allocation of reliability and redundancy

problem is solved by using SUMT formulation with discretiz

ation penalty function.
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The computer programs are developed and have been applied

to solve various problems with success. To illustrate the

methods of attack, numerical examples are incorporated. These

methods can be used for the reliability-based design of the

system such as control system, digital system

At the end, the various methods discussed in this thesis are

compared so that a system designer may know their limitations

and advantages. Future avenues of research are also discussed.

In short, the mathematical models have been presented for

the optimal reliability design problem. Various types of re

dundancies are considered and methods to solve the reliability

problem are discussed.
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SYMBOL S

The following symbols are those which have a specific

meaning throughout the text. The other symbols used may

have somewhat different meaning which are defined separate

ly in the text.

a. . - resources requirements associated with each com-

ponent of j stage.

b. - total amount of resources available for the i

type of constraint.

k - number of stages or subsystems in a system.

m. - number of standy components.

n . - number of redundant components in j stage

N . - upper bound on n .

p. - the probability of occurrence of i event.

q. - unreliability of the j type component.

q - unreliability of the switching device,
s

Q - system unreliability.

r. - reliability of the j type component

R. - reliability of the j stage.

R - system reliability

R - reliability of the voter

s - number of constraints on the system.



t - mission time

X - binary variable

Z - binary variable

X. - failure rate of j type component

M. - repair rate of j type component

T. - standby failure rate of j type component

(xi)



Chapter 1

I NTRODUCTION

Reliability of a system is defined as the probability of

achieving the required input-output function within specified

limits throughout the whole mission under given environment.

Therefore, reliability of a nonredundant system is a decreas

ing function of the failure rates of the constituent compo

nents, the size of the system and the time for which the sys

tem is designed to operate. Due to increased complexity,

sophistication and automation in modern systems, system n

reliability always tends to decrease. An interruption in the

operation of the system has consequences in terms of cost,

time wasted, the psychological effect of inconvenience and

in certain instances personnel and national security. In some

cases, the cost associated with the failure of a component is

not only its cost due to a complete curtail nent of the whole

system, but also cost due to the deterioration in. the quality

of manufactured product. For example, an interruption in the

power supply to the electric arc furnace will result in damage

to the furnace as well as will deteriorate the quality of

steel to be produced. Due to some remote large-scale failures

in nuclear power plant, large quantity of radio-active material

may be released and may provide risk to human life. Modern

process plants are quite complex and involve high capital cost.

In order to increase the efficiency of the process, moderate

values of process parameters are used. For example, in chemi

cal plants, processes are performed at high pressure and tem

perature with higher concentrations of reactive chemical for

increasing its effectiveness. On the occurrence of a fault



in these processes, there are possibilities of great damage

to the plant as well as to the operating personnel.

Generally, the reliability of the constituent components

of the system is not sufficient to meet the system reliability

goal. Therefore, some means must be employed to enhance the

system reliability. It can be increased by incorporating the

following methods I

1. reducing the complexity of the system

2. increasing the reliability of the components by
product improvement program

3. using structural redundancy

Curtailment of system complexity may yield in poor sta

bility and transient response of the system and reduced accu

racy and degradation in the quality of product. The part im

provement program demands the use of improved package and

shielding techniques, derating etc. Although these techniques

result in reduced failure rate of the component, but require

more time for design and special state of art of production.

Therefore the cost of part improvement program is higher as

against the cost of a redundant component. The employment of

structural redundancy at subsystem level, keeping specific

system topology, can provide theoretically unity system relia

bility. When there are many similar components in the system,

this method provides very effective results. Structural redun

dancy may involve use of two or more identical components, so

that when one fails, others are available in such a way that

the system is able to perform the specified task in the presence

some faults in the components. The use of four engines in an



aeroplane is one of the examples of the redundant system.

The various types of redundancy schemes can be grouped

into two categories: active redundancy and dynamic redun-

In the active redundancy, all the redundant components are

kept in the operating condition. On the failure of one com

ponent, others will be able to perform the system task. In

the dynamic redundant system, only one component .(called basic

component) is kept in operating condition while others are kept

in an inactive state. These are put on sequentially only when

the basic component fails. The use of redundancy provides

quickest solution if time is main consideration, easiest solu

tion if component is already designed, cheapest method if cost

of redesign of a component is too high and the only solution

if improvement in the component reliability is not possible.

It is definite that the use of redundancy increases the

system reliability, but on the other hand, system weight, cost,

power-requirement etc. increase. But these are usually limited

and such constraints pose a problem to the system designer.

Therefore, in the optimal design of a system, the problem of

maximizing system reliability by using structual redundancy

subject to the multiple constraints arises.

Various methods are available on the active parallel redun

dancy case with one or more specific constraints. Moskowitz

Mclean [211 considered the problem of maximizing reliability

with a cost constraint using a variational method. Proschan

and Bray [22j extended Kettelle's |j23j computational method

for maximizing reliability subject to the cost constraint to

multiple constraints. A dynamic programming approach was



suggested by Bellman and Dreyfus [243- A modified dynamic

programming formulation of reliability problem was developed

by Misra [25]. Fan et al_. [26] used the discrete maximum

principle for maximizing reliability. Tillman and Liittschwager

[27] developed a method for maximizing reliability or minimiz

ing cost subject to several constraints by using an integer

programming formulation. Mizukami [28] used a convex integer

programming method for maximizing reliability with multiple

linear constraints. Federowicz and Mazumdar [29] formulated

the redundancy allocation problem in the form of geometric

programming problem, to obtain approximate solutions. Ghare

and Taylor [30] maximized the reliability of parallel redundant

systems by a branch and bound procedure. Misra [31] used a

binary algorithm to optimize system reliability or cost subject

to multiple constraints. Lambert et al. [32] used maximum

principle approach for maximizing availability subject to cost

constraint. Misra [33] used least square formulation for maxi

mizing system reliability. Banerjee and Rajamani [34] used

the parametric approach to solve reliability problem.

All the above papers considered active parallel redun

dancy case. Messinger and Shooman [35] used generalized

Lagrange multiplier and dynamic programming approach for find

ing the optimum number of spare components in a system. Burton

and Howard [36] presented a dynamic programming method for

allocating standby components to maximize system reliability

subject to cost and weight constraints.

In the present study, various types of redundancies

are considered. Different methods are developed for finding



optimal allocation of redundancies to maximize system relia

bility subject to multiple constraints. All these methods

can be grouped into two categories'.

a. Method which proviae approximate results, which, in

some cases, are also true optimum.

b. Methods which give true optimum solution.

The procedure to. be adopted for solution of reliability

problem, depends on the accuracy of the results and cost of

obtaining them. The system designer has to £»ok several

alternatives and alteration in design parameter from other

technical considerations.

The redundancy allocation problem is a sub-optimization

problem. If the components of different reliabilities are

available, the true optimal solution requires the optimum

selection of number of redundant components as well component

reliability. This problem is formulated as a mixed integer

programming problem and solved by using sequential unconstrained

minimization technique .

When cost of repair in money as well as in time is less

in comparison with the cost of equipment, it is economical

to consider system repair. It may be possible that at a time

more than one component fail simultaneously. This requires

more than one crew in order to increase the operating time of

the equipment. But in case of non-redundant system, repair

will not help in the sense of increasing the system reliability.

It can be enhanced by providing spare components. . Both the

use of multiple repair facilities and spare components require

additional resources. For optimal design, a mathematical



model is developed which is solved by Lexicographic Enu

meration technique.

The aim of present work is to present the mathernati

cal formulation of the optimal design problem of a system

from reliability consideration and the techniques to solve

them. These methods can be used for fault-tolerant optimal

design of control systems, digital systems,

communication systems, etc. In the interest of generality,

any particular system is not considered in this study.



Chapter 2

PROBLEM FORMULATION

A complex system consists of many functional units. They

can be grouped into various modules or stages. The size and

complexity of the modules rely on the volume of irredundant

structure, degree of logical branching of the functional units,

easiness of replacement and checking etc. After decomposing

the complete system into modules, it is necessary to draw the

logic diagram of the system for reliability analysis. A logic

diagram gives an idea that which components must operate failure-

free for performing the intended job. If a complex system

is partitioned into k modules and failure of any module results

in loss or premature termination of the job or mission, the

logic diagram of such type of system will have k modules in

series. If the failure of a module does not result in system

shutdown, it will be represented by a parallel element in the

logic circuit. Consider a digital system shown in Fig. 2.1.

Ail the ten components are partitioned into seven modules.

If all the components are required for successful operation

of the system, the logic diagram will be a series system as

shown in Fig. 2. 2.

2.1. ASSUMPTIONS

After drawing the logic diagram, mathematical model of

the system can be developed. The various assumptions which*

are to be made for reliability analysis are

1. The inputs to the system from outside world are all perfect
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i.e. highly reliable.

2. The failure of any subsystem or module results in system

failure,

3. The failures of the subsystems are statistically independent,

4. The arrangement of the function in the system is given.

5. The failure distribution of the component is exponential

with failure rate as \.

The first assumption is made for the ease of calculations

and can be considered in the mathematical formulation. Second

assumption is generally true for the system which is in the

design phase. The system in which this assumption is not

valid are considered in Ch«pt. 4. The failure independence

assumption in calculating system reliability results in a

slight underestimate of the system reliability. This error

(less than 10% normally) is negligible. Single component

failure in a series system greatly outnumber overlapping fail

ures. Also, as soon as a single component fails, the system

is at least partially de-energized, thus resulting in a

reduction in the probability of subsequent overlapping failures.

The actual value of the error caused by the statistical in

dependence consideration can be estimated C37J and it can be

shown that dependence has at the most a second-order effect.

From field data it is found that times to failure of electri

cal and electronic components are generally exponentially dis

tributed. Therefore, fifth assumption seems to be reasonable.

2. 2. GENERAL PROBLEM

Consider a system having k subsystems or modules or
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stages. With the above-mentioned assumptions, the system

reliability can be given by [9]

k
Rs(n) = rr r (n ) (?#1)

J=l

where,

R. (n ) m reliability of jth stage

n = number of redundant components in jth stage

Since the use of redundancy is limited by the availabi

lity of resources, the optimal design problem can be stated

as

Maximize system reliability.

k

Rs (n) = w MnJ (2.2)
j=l

subject to the constraints

* Gij (nj} *- bi (2.3)

Hj > 1 and integer; i « 1,2, s

where Gij(n,-) is the i type resources requirement for
.th . _
j stage and b± is the total amount of resources available

th
for the i ' type of constraint. Mathematically, the problem

can be stated as I the selection of non-negative integer

vector n such that Rg (n) is maximum subject to the constraints

given as above. As the formulation shows it is a nonlinear-

integer programming problem. For solving this problem, the

expression for reliability of jth stage is required. This

expression depends on the type of redundancy which is to be

©-ployed for enhancing the system reliability. It may be
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either active or dynamic redundancy or hybrid redundancy.

2. 3. ACTIVE REDUNDANCY

The use of active redundancy results in less stresses in

the components if load sharing exists, and thereby provides

higher system reliability than the dynamic redundancy. But

special care should be taken to impedance levels, power, signal

gains and linearity etc. In some cases, active redundancy pro

vides better performance than dynamic redundancy. For example,

in a time-sharing system, a user may have devoted considerable

efforts at console, which can be destroyed if a system failure

occurs. The use of active redundant console can save his

efforts, even when one console fails. The active redundancy

can be classified as parallel, series-parallel, parallel-series,

majority voting, and multiple line redundancy.

2.3.1. Parallel Redundancy:

A parallel redundant system as shown in Fig. 2.3 is

defined as the system in which failure of one or more paths

still allows the remaining path or paths to perform the in

tended function. An example of such type of system is two

transmitters *\ and B connected in parallel. Even on the fail

ure of transmitter A, transmitter B will perform the job. If

mode of component failures is fail safe this type of reuun-

dancy provides an easiest method of improving the system re
liability.

Consider a system having k stages connected in cascade.

Let stage j have a set of n. components connected in parallel,
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each having probability of failure q .. With the assumption

made ii 2.1, the system re-iability can be written as [1]

k
R (n) m TT R. (n.) (2.4)
S j=l J J

where,

R,(n.) » l-qjj (2-5)

In the above derivation, it is assumed that the failures

of n. components in the j stage are statistically indepen

dents But failure of any redundant element connected in para

llel causes changes in the technical characteristics of the

redundant stage. For example, change in the resistance or

capacitance of a circuit may cause it to operate in an unstable

and irregular manner. Considering that due to the failure of

a component, redistribution of loads or voltages occur in the

parallel connected elements and thereby there is a change in

their failure rates. Let there be n. diodes connected in para

llel in the j stage and total load on the j stage is equal

to the rated load of a single diode, the failure rate of the

stage when exactly i diodes have failed can be given by

X. = (n.-i7d X. (2.6)
i j Ji

where X. is the failure rate of the diode when operating at

full load and d is a constant.

This subsystem fails, when all n. components fail. The

possible states which this subsystem can have are 0, 1, 2, .. n .-1.

Assuming that at time t subsystem is in state i and after an

infinitesmal interval At, it changes to i +1 state. The

characteristic equation defining the state of the subsystem



at any time t can be written as

. v 1-d 1-dp£(t) = -Xjr(nj-i)x Hjp1.(t)+J^nJHL+D*^Vi1.-1(t)
+ 0(At)

i = 0, 1,. . .n .-1

14

(2.7)

with initial conditions

a for i = 0

(0 else

where p± (t) is the probability of subsystem being in ith state

and probabilities of more than one transition are negligible.

Solving the above differential equations with specified

initial conditions

Pl(o, . jc

P±(t)

and

i-1

rr (n .-1)
1=0 J

1-d

PQ(t) exp

i ^r^jr^-^1"^]2
1=0 *

,«0V J J J-
03^1

i = 1, 2, . . .n .-1

h. n . t
jr j

(2.8)

Therefore, reliability of jth subsystem can be given by

n .-1

R,(n )= 2 p. (t)
J J 1=0 1

thTherefore, j subsystem reliability can be written as

Rj "V = exp -x. nxr%jr j t|

n .-1
J

2

i=l

f-l i exp[-\ (n -l)1"^]
tt (n,-l) 2 -j-'—- ~ -

1=0 I K-^^-Cn.-li1"^1=0 J

(2.*;
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The reliability expressions for a parallel redundant sub

system without dependency (2.5) and with load dependency (2.9)

are shown in Fig. 2.4 and Fig. 2.5, respectively, From Fig. 2.5,

it is clear that if load sharing between parallel redundant

components is possible, this type of redundancy will provide

higher improvement in subsystem reliability than standby redun

dancy (d = O).

2.3.2. Group Redundancy:

Some components such as diodes, relays, transistors, vacuum

tubes etc. fail in two modes, i.e. open circuit and short circuit,

If such components are connected in parallel, failure of any

one due to short circuit will result in complete system fail

ure. Similarly, if they are connected in series, an open cir

cuit failure will also result in system failure. To increase

the reliability of such components, it is necessary to reduce

the probability of open and short circuit failure simultaneous

ly. This can be achieved by using group redundancy. Group

redundancy or mixed redundancy can be realieed by two types

of arrangements, i.e. series-parallel redundancy and parallel-

series redundancy as shown in Fig. 2.6a and 2.6b, respectively.

Which type of mixed redundancy to be used, depends on the tech

nical characteristics of the components. For example, let

parallel-series redundancy be used to increase the reliability

of a thyrister valve in a convertor circuit. When one of the

valves arcs back or fire through, a voltage rise occurs across

the remaining valves. But in case of series-parallel arrange

ment, voltage across all the remaining parallel connected

valves group rises. If one of the valves in parallel series
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arrangement fails to fire, the current in that link of valves

will fail to flow and load will be carried by other links

connected in parallel. This may cause current overload in

the convertor circuit, while in series parallel arrangement

current overload takes place only in the valves connected in

parallel with the one which fails to fire. The other factors

on which the arrangement to be chosen depends are, the possi

bility to disconnect the faulty valve without disturbing the

operation of convertor circuit, the method of feeding the

control pulses to the valve grid and the layout of valves at

the convertor station. Simultaneous firing of the series

connected valves is necessary when parallel-series arrange

ment is used. The simultaneous firing of valves in series-

parallel arrangement is not strictly required, but in case of

considerable lag in the firing, the parallel connected valves

lose uniformity in the current distribution. The replacement

of the valve in this type of arrangement can easily be done

without interrupting the operation of convertor system, when

failure rate of a component is a function of the load that it

is carrying, the parallel-series arrangement is preferred.

Consider a j stage having n components connected in

parallel and n components connected in series. Let p be
^J ^op

the conditional probability of an open circuit failure of a

component, given that a failure has occurred, p =l-p
*op *"op '

denotes the conditional probability of a short circuit,given
that a failure has occurred and F. (t) is the failure time

distribution functionof the jth type component. The jth stage
will fail when all npJ components in any unit fail by open-
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Circuiting or when at least one component in each unit fails

by she rt-circuiting if series-parallel redundancy is usedv

Assuming that a short circuit failure cannot occur after an

open circuit failure, the stage reliability (using series-

parallel redundancy) can be given by |'10j

R . (t) =
spj

n_

l-(PppPj(t)) PJ
n
sj -

n

n

1"(1"popFj(t)) PJ
sj

(2.10)

If parallel-series redundancy is used to increase the

stage reliability, the stage will fail when at least one com

ponent in each parallel connected chain fails or when all

components in a parallel connected chain fail. [10]

R .(t) =

n

n -PJ r
n

n .

-I PJ

l-(PopFj(t))SJ 1-U-PopFjCt)) Sj (2.11)

The reliability expression for series-parallel redundant

system is plotted in Fig. 2.7 which shows that if the pro

bability of open circuit of a component is low, series-parallel

redundancy is preferred. Beside this, stage reliability in

creases with number of components to be connected in parallel

upto a point after that it decreases with increase in n .

2.3.3. Majority Voting Redundancy!

Use of majority voting redundancy is the most effective

method of improving the reliability of the digital system, when

mission time is short and repair is not possible. It does not

require error-detecting and switching device and is, there

fore, ineffective by the random transient failures which
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generally occur in the digital computer systems. This type

of red mdancy is also called as N modular redundancy (NMR)

In NMR system each stage has (2n.+l) identical components

connected in parallel whose outputs are fed into a majority

voter as shown in Fig. 2.8. The output of the voter is the

t hmajority of its input signal. The j n stage will fail when

(n. +l) components fail, if R is the voter reliability, the

j stage reliability can be expressed as f_?j

R,(nJ
J JJ

2n. + l

R 2

v i-n.+l
J L

(2n. + l) I

(2n.+l-i) |i|
J • •

i 2n ,+1-i
t. (1-r.) J

J J
(2.12)

where n .=1, 2, . ..

In the above analysis it is assumed that a component has

an equal probability of failure with output 0 and with out

put 1, which is not always valid. Beside this, one may inten

tional ny design a component to fail in a given output state.

Consider a Triple modular redundant (TMR) system where one

component failure is tolerated. If second component fails to

the opposite logic level (0 or 1), thus neutralizing, the voting

effect of the first failed component, and resulting the output

of the TMR system same as the good component signal.

If p1 is the conditional probability of the component
th

of j stage failing to logical one and (1-p .) is the condi

tional probability of the component failing to logically zero,

the j stage reliability can be given by

R. (n .) = r
J J v

j 2 „ 3r.-21-. +6PlJ(l-p1.)rJ(l-r.) (2.13)
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For the components having symmetrical failures, the choice

of vott r is a majority element. If the components have asy

mmetrical probability of failure, the majority voter will not

be a best choice. For example, if a component always fails

with zero output, an OR gate is a best choice for voting ele

ments. Reliability expression (2.12) has been plotted with

respect to normalized time \ t and is shown in Fig. 2.9 which

shows that if a component has normalized time greater than

0.65, the use of NMR system will provide higher system relia

bility.

2.3.4. Multiple Line Redundancy:

It can be shown that total triplication is superior to

partial triplication for a system having component unrelia

bility less than 0. 25. A system in which total triplication

is done, is called as multiple line redundant system. The •

reliability of such a system can further be increased by pro

viding three voters per stage, as failure of a voter in a single

voter system, which is simple to design, brings about the fail

ure of the complete system. The various factors which affect

the number and placement of the voters are

1. availability of resources such as cost, weight etc.

2. the voter circuit delay and drive requirement.

3. the testing facilities.

4. the trouble shooting time and logistic requirement

5. number of signals to be transferred out of a component

6. the reliability of the voter

Consider a multiple line redundant system having k
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independent stages or subsystems, the system reliability can

be giv in by

2 2 3 3
R = rr i3r,R -2rJRJa |_ jsI j v j v 3( v r )2-2( tt r )

m 1$I 1$I -1
(2.14)

where I is the set of stages having majority structure.

A family of curves illustrating the behaviour of this type of

redundancy is shown in Fig. 2.11.

2. 4. DYNAMIC REDUNDANCY

This type of redundancy is also called as standby redun

dancy. Realization of standby redundancy requires a fault

detecting and switching device, which makes it possible to

locate the faulty component and replace it by the standby

component. If the fault detecting and switching device is per

fect, i..e. highly reliable, theoretically it enables to achieve

system reliability close to unity. Such type of redundant

system is shown in Fig. 2.12. Its operation can be explained

as follows. Consider that the jth stage has n . redundant

components. Initially, the basic component is only kept in

energized condition and others are kept standby. when the

basic component fails, a standby component is switched-in

to take its place. The failure of the stage occurs when n
j

components fail. Assuming that the fault detecting and switch

ing device is perfect and requires no time for operation, spare
components do not age while waiting for replacement and the

distribution of the number of failures of the components upto
and including time t is poisson with mean as X.t, the ith

J J
stage reliability can be given by £9J
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n.-l (U)1
R,(n ) = e J E —f, (2.15)

J J 1=0 xl

The fault detection and switching operation can be per

formed by a human being. But it requires considerable time

in locating the fault and in the replacement of faulty compo

nent. If t- . is the time required in the fault detection

and replacement in j stage, then j stage reliability can

be given by [10]

n .-1 ,1 f\ , lNj -l -,'j-1 K^t-(n.+1)tfr.y
1=0 1 ]

(2.16)

Above expression shows that there is a considerable

improvement in the system reliability if fault detection and

replacement are instantaneous. This can be achieved by using

automatic switches. The expression (2.15) is only valid when

switches are highly reliable. Generally, switches remain in

inoperative condition; they are only required to operate when

a fault has occurred. It might be possible that under this

condition switch may fail to operate. Therefore, the possi

bility of a stage failure may occur due to shortage of any

spare component and failure of fault detecting and switching

device when it is called for operation. For analysing system

under these conditions, let state i denote that the ith

standby component is in operation,* and n^h state denote the

failure of the j stage. If qg is the probability of failure

of fault detecting and switching device and during infinites!-



FAULT

DETECTING

AND

SWITCHING

DEVICE

y

BASIC UNIT

STAND BY UNIT I

STAND BY UNIT 2

FIG 2.12 A SUB-SYSTEM WITH STAND BY REDUNDANCY

-*- '

COMPONENT RELIABILITY fj =e> p( >jt)—— COMPONENT RELIABILITY r, =exp (-Ajt)

FIG. 2. l3ttRELIABILITY FUNCTION OF STANDBY FIG-2-l3b RELIABILITY FUNCTION OF STANDBY
REDUNDANT SUB-SYSTEM WITH REDUNDANT SUB-SYSTEM WITH

PER FACT SWITCH SW|TCH FAILURE



27

-mal interval At, the j stage changes from state i to state

i+1 & probabilities of more than one transition are negligible,

the differential equations defining the various states of the

system can be written as

P'Qit) =-[Xj At]pQ(t) +0 (At) (2.17)

pi(t) = [^jd-qs)At]pi_1(t)-XjAtpi(t)+o(At) (2.18)
i - 1, 2, . . .n .-1

P;,(t) =-[xjqsAt]Pi(t) (2.19)
i b 1, 2, . .n .-1

J

with initial conditions as

1 i=0

P± Co) =
0 i=l,... .n .-1
»- J

From (2.17), P (t) can be calculated as

PQ(t) = exp 1-X.t)

and from (2.18), p (t) can be calculated as

p. (t) . rj e J

Therefore, the j stage reliability can be given by

n .-1
J

n.-l [XjdVq^t]
R (n ) = 2 p (t) Bexp(-\t) 2 n (2. 20)

i=0 J i=0 x[

A family of curves are plotted in Fig. 2.13 for various values

of switching device reliability, which show that switch device

should have high reliability if standby redundancy is to be
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used for enhancing the system reliability.

In the above analysis it is assumed that failure rate of

the standby components when unpowered, is zero. But, generally,
the ratio of failure rates of the components with power on,

to that with power off, ranges from 1.21 to 2.16, depending

upon the type of component, environment and packaging. Beside

this switch may fail in more than one mode. Considering more
complex situation, the various modes of failures of the standby
system can be categorised as -

1. Gradual failure of the components: The gradual failure

in the components occurs while they are kept as standby
or in operating condition. Let the time upto first power-

on and power-off failures be distributed according to

exponential law with parameters, as X.and r respectively.

2. Static failure Of switch: The switch operates when it is

not called for operation. This may be due to false sensing
or due to some failure in switching mechanisms or external

conditions such as vibrations etc. This will cause unnece

ssary switching of one standby component. Let the pro

bability distribution of static failure be poisson with
parameter as c< ..

J

3. Dynamic failure of switch: If switch fails to operate when
it is called for operation, the failure of switch is called
as dynamic failure. This failure may occur due to jamming
of contacts or failure of the switching mechanism. For

analysis, it is assumed that probability of such type of
failure is q .

Ms
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4. Gradual failure of the switch occurs during the operating

time of the active component. Let the time upto such failure

be distributed exponentially with parameter 3 .

For the analysis, it is assumed that these failures are

statistically independent. Consioer the jth stage of the

system. Let the state i ( i=l, 2 n .) denote that ith compo

nent is in operating condition and switches are working proper

ly. Let state nj+i (i=l, 2, . . .n ) denote that ith component is
working but switch is not working properly and (2n.+l)th state

denotes that j stage failed. The probability that the j

stage changes from ith state to i+lth state during an infinitesi
mal time At can be given by

r[xj+(n.-i)rj^.]qsAt

'-{* -> i+i. At j = +0(At) 1 < i < n.
J

'.{«] -

where qg m 1-q

0J At + o( At)

n . < i < 2n .
J J

[Xj+Cnj-iJYj-Wj+B 1At+o(At)

X At + 0( At)

1 1 i 1 2n .
J

n . < i < 2n .
J J

12. 21)

It is assumed that probability of more than one transi

tion is zero. The differential equations describing the be
haviour of the jth stage can bewritten as

P'l(t) "4VVl)Yj^j+?j]Pl(t) (2.22)



£(t) =-[xj+^.-DYj^.+sJp.a)
+[xj+(n.-i+i)rj^.] qs p._i(t)

i=2, . . . n

V(t) - 'A^'-y^w

with initial conditions as

i=l, 2, . . .n .
J

P± (0) =
T for i=l

0 for 1 < i < 2n

30

(2. 23)

(2.24)

(2. 25)

Taking Laplace transform of both si dec of »k«
u tn sictes of above equations

and solving for p. (S), it will regult in

P± (S) m

[s+Xj+^-Dr^cCj+Sj]
l-lf

?r \\j+(n -l+l)y ^1-
?. (s) = J-.-1 LJ J J JJ s

Pnj+i W

1 = 2, 3, .. . n .
J

i=l, 2, ... n .
J

(2. 26)

(2. 27)

(2. 28)

The probability that jth stage ^^ ^ ^ ^^ ^ ^ ^
t can be csloulated by taklng Laplace ^^^^ ^
and (2.28), which results in



p.(t) = expT- fx.+ (n.-l) X.+o(.+ 3.?t
11 L J J J J Jj .

i-1

p.(t) = q.

1-1 ,
it \ X.+(n.-l+l) y.+c(J

1=1 i J J J J)

t e.pC-JYlnj-coJ^j^jlt]'
2

03=1

i-1

1

[ y}"1 7T ((0-1)]
3 1=1

i— 2,3, ...,n.

i-1

•Vi(t)--*j5i
J

tt [X.+ (n.-l+l) y.+ o(.]=1 J J J JJ

exp ( -Xjt)
i

TT f(
1=1 L

tlj-1) ^ +w:

expl"- X .+ (n ,-co) y.+o( .+ 3 . t]
i L J J J J ' J J
2

co=l i-1Xp rr [eo-ll.C-^nj-cojyj+oCj+pjJ]
Iffe

i = 1,2, . . ., n .

,thThe j stage reliability can be given by

2n.

R,(n.) = S P,(t)
J J i=l

31

( 2 . 29 )

(2.30)

(2.31)

(2.32)

Therefore the stage reliability is a function of failure

rate of the component with power on and power off, and switch

reliability. A family of curves are plotted between stage

reliability and component reliability with different values

of c< • , 3. , and q as shown in Fig, 2.14.
J ' J s
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2. 5. HYBRID REDUNDANCY

Hybrid redundancy consists of the combination of-an hm

with majority voting and standby redundancy. This type of

redundancy is superior than NMR due to higher improvement of

system reliability, specially when component reliability is

very low and provides larger mean life than the nonredundant

system. The operation of the hybrid redundant system (N, m)

as shown in Fig. 2.15, can be explained as follows. This

hybrid system has NMR core with 2 spare components. When

any conponent in the NMR core fails, it is detected by dis

agreement detector by comparing each input to the voter with

its output. The failed component is then disconnected from

NMR core by a switching device and a spare component is

switched in, if available, thus restoring the NMR in the

system. when all spare components are exhausted, the hybrid
system operates as a NMR system.

For analysis purpose, consider a jth subsystem or stage
having Nj (Nj=2nj+1, where nj=l, 2,...) fold active redundant
components forming the NMR system and tn spare components.

Any component in the subsystem may be either operating or

waiting in spare storage. The subsystem fails when (m.+n.+l)

components fail. Therefore, the possible states of the sub

system are 0, l, 2, ..(mj+nj+l). Assuming that the active
and standby components have constant failure rate as X. and

X. respectively; during a small interval of time At, the sub

system state changes from state i to i+1. The probability
of transition from state i to i+1 can be given by
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l?jXj+(mj~l)rj] At+0(At)
O^i < m.

N.+m.-i\ N.+m.-1-i
J J ]X At(l-A At) J J

1 / J J

35

Pr ji M+l, Atj +0(At)

[Nj«j-i]V*

0 otherwi se

m. < i < n .+m .
J *" J J

(2.33)

For simplicity defining a new variable X as,

Tn X.+ (m -i)Y.J 0<i £m

[Kj+m.-i]x.h

0 otherwi se

m . < i < n ,+m .
J v J J

(2.34)

The probability of more than one transition in infini

tesimal interval At can be neglected as it is very small. If

p. (t) is the probability of the system being in state i at time

t, the differential equations characterising the state of the

system can be written as

p[ (t) = •Vi(t)+ViVi-i(t)
i = 0,1, . . . n .+m .

J J

(2.35)

The initial conditions of the system are p (0)=1 and

p. (0)=0 for ifO. Taking Laplace transform of (2.35) it

results in

X. ~q
- 1"1 s K--t(s)

(s+x±)
(2.36)



Since

P0(S) .
s+X,

expression (2.36) can be written as

_i-l i-1

qs * hPi<s, . ^0^_i
TT (S+ K. )

1=0 x

Taking Laplace inverse of (2.38), we have

PiCt) m
i-1 i-1

TT X-,
1=0 J

i exp (-X-, t)

2 i
1=0 i <w

CJAkl

i=l.. .m .+n .
J J

36

(2.37)

(2.38)

(2.39)

.thTherefore, the j subsystem reliability can be given

by

n .+m . ,-
J J

R . (n .+m .) m R 2
3 3 J v i=0

i-1

TT X,
1=0

and if m. =0
J

n . N .

i exp C-X-, t)
2 -s *

1=0 * ,r r .
7f^(VXl)

co=0

C04J.
if m . > 1

-»i

t.(n. , 0>.%.(J exp (-X.t) 1-exp (-X .t)

(2. 40)

(2.41)

where R is the voter reliability

The reliability expression for NMR and Hybrid (3, m)

is plotted in Fig. 2.16a which shows that when component

reliability is less than 0.5, the use of NMR decreases the sub

system reliability. The larger value of N. further makes the



0-8

= 0-6
UJ
a.

uj 04

I
CQ 0-2

R (3,2)-v

~R(5,2)-0\
r (7,2) -\Vy£
R(9 ,2) -\YW

/ JjJy ^—SIMPLEX

^^^i i 1 1
0-2 0 4 0-6 0 6 10

COMPONENT RELIABILITY » T\- exp (Xjf

FIG.2.16c RELIABILITY FUNCTION OF R(N,ml FIG-2-16d RELIABILITY COMPARISION OF A
SYSTEM VS COMPONENT R(3 m) AND NMR SYSTEM VS
RELIABILITY Y\ NORMALIZED TIME At

0 2 0 4 06

COMPONENT RELIABILITY-

08 0-2 0-4 0-6 06 IC

COMPONENT RELIABILITY Xj=exp ("X jf. )

FIG-2.I6C RELIABILITY FUNCTION OF R(3,m) FIG-2.l6f RELIABILITY FUNCTION OF R(3 m)
SYSTEM (A/X =I0,RW =|.0) SYSTEM (A/^ =10 ,RV =I0)



33

subsystem worst, while use of hybrid redundancy results in

appreciable shift of the well-known cross-over point as indi

cated in Fig. 2.16b. The shift of the cross-over point is

effected by the ratio of y .A . , N. and m.. As shownin
J J J J

Fig. 2. 16d, for m =1, increase in N-will improve the subsystem

reliability only wnen 0. 58<r..<l- Even in these ranges, larger

value of N. do not provide significant increase in the subsys

tem reliability. Therefore, N. is kept as 3 and m. is varied.
•J -J

The plot of reliability function when m. isa variable is shown

in Fig. 2. 16a which shows that any desired level of system

reliability can be achieved by increasing m.. The effect of

switch failure is to reduce system reliability as shown in

Fig. 2. 16c.

2.6. STANDBY REDUNDANCY WITH REPAIR FACILITIES

lnen a fault in a system is nonrecoverable the failed

equipment is disconnected from the system and repair is per

formed. It may be possible that at a time more than one com

ponent can fail simultaneously. This requires more than one

repair crew in order to increase the operating time of the

system. But in case of irredundant system, repair will not

help in the sense of increasing the system reliability. It

can be enhanced by providing spare components. The behaviour

of such type of system can be explained as follows. Initially,

one component is kept in operation and others are kept as spare,

When a component fails, it is replaced by a spare component

and the failed component is sent for repair. When repaired,

it is kept as a standby component.
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Consider a j subsystem having N (N .=1, 2, ..) components

connected in series and m components as spare. Let the

repair time have exponential distribution with parameter as

(4>. and replacement time is very small and can be neglected.

Any component in the system may be in one of the states -

a) operating in the subsystem

b) waiting in the standby

c) waiting for or receiving the repair facilities

The transition diagram for system having two spare com

ponents is shown in Fig. 2.17. The probability of transition

during infinitesimal time interval (At) can be expressed as

Pr [i >i+l| m X^ (At) +0(At)

Pr [i—»i-lj - A- (At) +0(At) (2.42)
where X. and // can be defined as

and

M,

N.X. if 0 / i < m,
j J w *" j

0 otherwise

xM
J

i* 1 £± £-r
cj

r Jt if r . < i < m.cj j cj * *- j

0 otherwise

.thwhere r is the number of repair crew for j stage.

(2.43)

(2.44)

If P2(t) is the probability of the system being in state i

at time t, the probability that system will be in state i

after time t+At will be
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p(t+At) . (1-X.At) (l-/I.At)pi (t)+Xi_1At(l-ML.1At)pi_1(t)

+(l-XL+^At)A.+1Atpi+1 (t) +0 (At) (2. 45)

Therefore,

P^(t) = (X;^i)Pi(t)+X^1Pi-1(t)+^+1p.+1(t) (2H4)

with initial conditions as

P± (0) = 0 for 0 < i

and PQ(°) = 1

From (2.46), the set of differential equations describing

the behaviour of the subsystem can be described as

Pj,(t)

Pj(t)

-N XjPQ(t) + MjPx(t)

•(N \ +±M,)p. (t)+N .X.p. . (t) + (i+l)^ p (t)
JJ Jl J J 1 -1- Jl +1

i *L i *. r,
CJ

(2.47)

(2. 49)

pj<t> . (N.Xj+rc .A.)P. (t)+N .X.p,., (t)+rc/jPi+1(t)

rcj < x C m. (2.49)

The steady state reliability of the subsystem can be found

by setting up lefthand side of (2.47), (2.48) and (2.49) to

zero and solving for p. (t >Qo)

N. X.N1, .±(*-±±x) p
i • i | V fi I po

J '

i <L i <L r cj

J J

'cj

N . X.'
_J J

cj *j*

(2.50)

(2.51)

m .+1

Since Z p. =1, the probability that system will be
i=l x
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in zero state can be written as

o

r . n .X. v m.+l
cj , i j j\ J

1+ S tM ——J + 2
i^l1! V*j

wV/CJ
V1U "J

-1
i* r n

cjn
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(2. 52)

and the probability that the system will be in down state

P, . can be given by
m .+1 y *

r . m.-r .+1

J j\ / J J\
m.+l "rcj I »s r .V,

(2.53)

The reliability of the subsystem can be written as

Rj^cjmj) - X"Pm.+l {2-54)

Tne expression (2.54) is plotted between probability of

subsystem being in down state, number of repair crews and

standby by component as shown in Fig. 2. 18.

2.7. EQUIVALENT LINEAR PROBLEM

From the reliability expressions and (2.2) and (2.3),

it is clear that reliability problem is a nonlinear integer

programming problem having integer variables. It can be linear

ized by using bi-valent variables. Taking logarithm of (2.2),

it will result in a separable function as

k

Ln R (n) . S Ln R (n .) (2.55)
j =l J J
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The separable reliability expression can be linearized

by approximating it to be astraight line between two values

of n.. as shown in Fig. 2.19. Let x ^=1, 1=1, 2,...N. be

the increment in variable n. between interval 1+1 and 1, the

linearized reliability expressionfor jth stage can be written
as

N

Ln R (n ) « 2 c., x ., +Ln R . (1)
J J 1=1

jl -jl (2.56)

thwhere c ., is the slope of the 1 segment and can be
'Jl

given by

cjl - Ln

Rjd+D

Rj(l) (2.57)

N is the upper bound on n.. Assuming that the constraints

on the system are linear, N can be calculated from constraints

set as

N . m min

J i

"b. "
l

•*• —•JL / C, f m m • S (2.58)

where a. . and b^ are the resources requirements associated

with each component of j stage and the total amount of re-

sources availability for the i type of constraint, respect

ively.

Similarly, with some manipulations constraints can also

be written in terms of x ^ variable. Therefore, the nonlinear

reliability problem is transferred into an equivalent linear

problem with x ., variables as

Maximize



* Nj
0tx) • Z I C41 x.,+ £ Ln R.(l)

j=l 1=1 Ji •3i j=l J

su.jject to the constraints
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(2.59)

k N 'S EJ a, . x., < b'. (2.60)
j=l 1=1 1J J i=l/ 2, .../S

x = 0 or 1

whe re,
k

b'. = b. - 2 a .
1 x j =l 1J

(2.61)

As the objective function is concave and monotone in

creasing (except mixed redundancy), it ensures that c^> c^?

> cjN / which indicates that for p > 1, the variable xjp

can be one only when Xjj-li i.e. the variable x.± will
always enter the solution before xjp . Therefore, the line
arized reliability problem has same optimal solution as

original one.

The optimal solution of the original problem defined

by (2.2) and (2.3) can be obtained from the optimal solution
of the above equivalent problem. Let X be a feasible

solution to problem given by (2.59) and (2.60), then

k J - b'v y a . x., = o.
h ij Jl i

j=l 1=1

N. k
* J2 aii 2 x = b. - S a

j=l 1J 1=1 J J=l

N .

2 a . 1 + 2 xJX( .- b
j=l 1J [ 1=1 J
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hence,

N .
J

n . = S x (2. 62)
2 1=1 JX

This maximization problem can be converted into a minimiz

ation problem by replacing x .. by (1-x.-.). The resulting prob

lem can be stated as

Maximize TjJ(x)

N .
k j

U(x) = ~ 2 2 c . x ., + g (2.63)
j=l 1=1 JX JX

subject to the constraints

x J

2 2 a x4l > e. (2.64)
j=l 1=1 J JA *

where,

k

e± = 2 ai . N -b£ (2.65)
j =l J J

and -

k j k
• g = 2 2 c ., + 2 In R. (l) (2.66)

j=l 1=1 J1 j=l J

Since term g is constant, less than or equal to zero,

maximization of the function ^J (x) is same as minimization of

H J
E Z c .. x .-, . The equivalent reliability problem «an be

j=l 1=1 JX J±
rewritten as

Minimize F(x)

* J -
F(x) m 2 2 c ., x .. (2.67)

j=l 1=1 JX 3±

subject to the constraints



• N.
k j
2 2

j=l 1=1
aijXjl ^ei

-J- / <L~ / • • • S
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(2.68)

An optimal solution to a problem defined by (2.2) and

(2.3) can be obtained from the optimum solution of the equi

valent minimization problem v/ith the help of the following

relation

N .
J

n = 1 + 2 (1-x n ) (2.69)
3 1=1 JX

For easy handling of the problem, the above formulation can

be expressed in terms of single subscripted variables, viz.

Minimize F(z)

w

F(z) « 2 g. z.
J J

subjec to

w

j=l

2 h, . z . ;> e.
J-I 1J J J

z . = 0 or 1

where,

w 2 N

j = l

(2.70)

(2.71)

i = 1, 2, .. .s

(2.7 2)

g. and h. . are related to c ., and a. . respectively by
J i J Ji i J

the following relations!

11

for j=l, 2, ...U1

1=1, 2,. ..N.



9J

and

h. . =

'21

°kX

ail

for j=(N1+l)... (N1+N2)

1 = 1, 2, .. . ,N_

k-1

for j= E N +l,...,w
P=l P

for j = l, . . . ,N.

ii2 for j=N1+l , (N1+N )

aik
k-1

for j= z N +l /W
P=l p

48

(2.73)

(2.74)

If constraints on the system are nonlinear, they can be

linearized in the same way as the objective function.



Chapter 3

TECHNIQUES OF RELIABILITY OPTIMIZATON

In the previous chapter, reliability problem has been

formulated as a nonlinear integer programming and linear in

teger programming problem. This problem can also be solved

by assuming n to be a continuous variable and thereby the

solution obtained, will be an approximate one. In this chapter,

methods are given for solving this problem by using three

types of formulations:

1. Nonlinear programming formulation assuming n. to be

continuous variables

2. Linear integer programming formulation

3. Nonlinear integer programming formulation

3. 1. GEOMETRIC PROGRAMMING FORMULATION

A new formulation for the problem of system reliability

optimization when constrained by some linear constraints is

presented. This formulation is applicable to the systems in

which the active parallel redundancy can be used for enhancing

the system reliability. The formulation provided is easily

adaptable to Geometric Programming form. The problem is fur

ther reduced to that of an optimization of an unconstrained

objective function with variables one less than the number

of constraints, when its dual is defined.

Reliability optimization problem of a system using para
llel redundancy can be expressed as 12.2, 2.3, 2.4)
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k n .

i (n) = TT (1-q ]) (3.1)
J-l J

subject to the constraints

k

ai i ni < *i (3.2)

•1 —1/ <i / • • * / S

J-l

Since q.« l,the expression (3.1) for unreliability of the

system can be approximated as the'sum of the unreliabilities

of the stages. Therefore, the reliability problem can be re-

formulated as

Problem 1

Minimize the system unreliability

k n .

0 (n) = £ q 3 (3.3)
j =l 3

su ject to the constraints given by (3.2).

To obtain the geometric programming formulation of the

reliability problem we define Q. in terms of n. as

Ln Q.

nj = Ln q. j=1'2 k (3-4)

Substituting Q. in (3,3) anu by exponentiating (3.2),

the geometric programming formulation of (3.3) and (3.2)

Problem 2

Minimize

k

2 w< (3.5)
j =l J

subject to the constraints ' " ^
CENTRAL UEWffT WTTJOTT CF ROORKEE

ROORKc^



where,

txp(-l) TT Q J
J-l J

'ij

aij
b. .In q .

i J

i-1, 2, . .,s

J =1, ct « • • , K

51

(3.6)

(3.7)

Assuming n . to be continuous variables, the dual geo

metric programming formulation of problem 2 is

Dual problem

Maximize

I
s+j s

71 {T—)j=l o . i-1
J s+j

and

subject to

S i . - 1
J-l S+J

4

exp (-1)

T

<$. . 0

•L
i.

1 [y'

s+j
E y. . d.

i =l YlJ 1 J —1, c.1 . » . , K.

dA > o i.i, 2,. ..,s+k

(3.8)

(3.9)

where 6. [i =l, 2,... , sj" are the dual variables correspond

ing to (3.6) and o . [j =l, 2, . .. ,kj are the dual variables
s+j

corresponding to (3.5).

Expressing

and L. .
ij

A *j

y. ./e•*ij s

*,-«* £; I; .,s

.,k

(3.10)

(3.11)
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Substituting the above-defined constraints in (3.8) and

(3.9), and taking the logarithm of them, we have an uncons

trained problem of s-1 variables, which is

Minimize

s-1

o.
s-1

E 6 (1- -i-)+ £ L Ln(S.+ E L» A )
1=1 X L es j-l 1J 3 1=1 lJ*

k s —1

+ £ a. Ln(Z,+ E L-, . o\ )+-^-
j=l Jl=l ±3

(3.12)

Differentiating (3,12) with respect to 6. |i=l, 2, (s-1)

and equating to zero, we have

6i k s~2 (
(1- S~ )+ E L. Ln(2.+ 2 L. . o-, ) +

ij J 1-1 -

k L,rt, L. .
£ ^J IJ

j-l

s-1

c,
03

CD-I "LJ-1

. 2 . L. .
X J IJ

S_1 ia t+ S L, . & J
J 1 =1 1J ~

+ £

j-l S_1 ia .+ £ L. . o„
3 i =1 1 '3 x

0

i-1, 2, . . ., (S-1) (3.13)

(3.13) is a system of (s-1) nonlinear equations which

can be solved by Newton's method or by the subrelaxation method.

Let us consider the case when there is only one linear

constraint on the system, i.e. s-1 or a constraints set in

which the active constraint is known. From (3.9) and (3.10)

we have



( k

1=V jfl *U

lnd fi^r^ij/ei
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Using primal and dual relationship of Geometric Programm-

.ng and (3.4), we have

k

Lnq

J —1, t-i • • «,k

By substituting various constants defined by (3.7) and

(3.10), n , the optimum number of parallel components in each

stage can be calculated, and the optimum reliability of the

system can be given by R

k f" k
Rs - 1- £ exp £ y Ln(e/y ) e +Ln (y /e.) -l/s,

ji_l {_i =1 x -1 iJ J- i

(3ll6)

The above expression does not give the exact system relia-

bility due to the assumption made in deriving expression (3.3).

This gives 0.09% error in the calculation, which is very small.

From (3.16), the expression for reliability in terms of resources

allocated can be derived which may be very useful to the system
designer.

Numerical Example

A system consists of four stages, each having reliability,

cost and weight as tabulted below (Table 3.1). It is required

to find the optimum number of redundant components so that the

system reliability is maximized with cost and weight constraints

(3.15)
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as 56 and 30 units, respectively.

Table 3.1

Stage number Reliabili

0.80

•ty Cost Weight

. 1 1. 2 1.0

2 0.70 2.3 1.0

3 0.7 5 3. 4 1.0

4 0.85 4.5 1.0

The above data were substituted in (3.15) by making use

of (3.14) and (3.7). The results obtained are -

n. - 4.8997

n2 = 6.4941

n3 = 5.2417

n. = 3.9415
4

Rounding off to the nearest integer value we get an optimal

allocation as given in Table 3. 2.

Table 3. 2

Stage number
Number of parallel

components

1 5

2 6

3 5

4 4

System Reliability = 0.99809 ,_ . ,.. ,
7 y |From (3.10)|

Actual System Reliability - 0.99713

The proposed approach of solving the reliability problem
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is practical method due to its simplicity and less algebraic

calculation. The problem with nonlinear constraints can also

be tackled by this approach after transforming nonlinear cons

traints into a posynomial form as required by Geometric Pro

gramming. Computation time depends only on the number of cons

traints on the system.

3. 2. PENALTY FUNCTION METHOD

A method is developed in this section in which the use of

penalty function is made to convert the constrained reliability

problem into an equivalent unconstrained problem. The latter

is solved by the steepest ascent method by assuming n . to pe

continuous variable.

The reliability problem can be written as

Minimize

k

-Ln R (n) = - S Ln R.(n.) (3.17)
3 J-l 3 3

subject to the constraints

i=l, 2, .. .,s (3. 18)

n. > 0 and integer

The equivalent unconstrained problem can be written as

Minimize

-,-1

(3.19)
s

f (n, r) - -Ln Ro (n) +r„ S
s

where r is a parameter called as penalty factor. A
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sequence of positive value of r which are strictly decreasinq
P

to zero, are used for minimizing (3.19). It results in a se

quence of minimum points which converges to the constrained

minimum of the -Ln R (n). If the optimal solution is integral,

then problem is solved. Otherwise, a non-integer variable

(let it be n.) is chosen which has highest fractional part

(dn.). A new constraint is incorporated in the original prob

lem which can be written as

n. 2l lnjl+1 (3.20)

where |n.| is the integral portion of the n.. The new
J J

problem is again solved in the similar way as original un

constrained problem. If new problem converges, n . is set as

|n.|+i; otherwise, as |n.|. The same procedure is repeated

for other variables. The stepwise procedure can be summarised

as follows. [Fig. 3.1]

ALGORITHM

1. Select an initial value of r > 0 and an interior point n°.

Set 1=0.

2. If n nearly minimizes f (n,r )y go to step 6, otherwise

calculate direction vectors d.
J

df(n, r )
d . = —5—•—E-

J on .
J j = l, 2, ...,k

3. Choose stepsize t that minimizes f (n +std , r )

4. Calculate new trial point

1+1 1 t-l
n . = n . + td . . , . „

J J I J J=l, 2, . ..,k

5. Set 1=1+1 and go to step 2.
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6. Check convergence. If solution is optimal go to step 7,"

else replace r by str. where 0< st ^ 1 and go to step

2 with 1=0.

7. Choose that variable which has greatest dn . and add the
J

following constraint in the problem

nj > In.. |+1

8. Repeat step 2-5. If problem converges set n. =|n.|+l,-

otherwise, n. = |n.| and remove j stage from calculation.

9. If all variables are tried, stop; else, go to step 7.

The initial value of r should be such that

-Ln R (n)
-Op S_
'P C S r k -i-l
rl - F •• — — (3.21)

£ lb. - £ G, . (n .)]

where F is 0.01 < F < 1. Various problems were solved

on IBM1620 by using this method and satisfactory results were

obtained. The use or numerical differentiation is made in case

of standby and hybrid redundancy.

NUMERICAL EXAMPLE.

An electric power system in an aeroplane consists of three

stages: I. C. engine, generator, and a frequency convertor

connected in series. The cost, weight, volume and reliability

data for these equipments are tabulated in table 3.3. The

problem is to maximize system reliability by using parallel

redundancy such that cost, weight and volume of the complete

system do not exceed 50, 52, and 65, respectively.

Initially, r is assumed as 0.8 which gave a minimum
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point as (1.9481, 1.6929, 1.3573). In the next iter

ation, r is reduced by 0.35 and again a minimum is obtained.

This procedure is repeated until an optimal solution to problems

(3.17) and (3.18) is achieved. The complete results are tabu

lated in table 3.4.

Table 3. 3

I.C. Engi ne

Reliability 0.86

Cost 4.00

Weight 6.00

Volume 10.00

Table 3.4

Iteration No, n.

Generator

0.91

8.00

6.00

5.00

n,

Frequency con
vertor

0.96

6.00

10.00

10.00

n.

1 — 1.0 1.0 1.0

2 0.8 1.948 1.692 1.357

3 .28 2.197 1.891 1. 517

4 .098 2. 431 2.070 1.647

5 .0343 2. 668 2. 203 1.710

Optimum solu-
tion

3. 3. FLEXIBLE TREE SEARCH METHOD

This enumerative procedure I 3$ allows a great deal of

flexibility in the backtracking steps which improves the effi'

ciency of the search procedure.
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The linearized reliability problem can be written as

Mi- imize

w

F(z) = £ g z (3.22)
j-l 3 3

subject to the constraints

w

£ h z > e. (3.23)
j-l 3 3 x

X ~ X / Z/ m a • / S

The stepwise method for solving above problem by flexible

tree search can be described as

ALGORITHM.

1. Start. Set all variables free and r=l.

2. Forward move - Pick out a variable z from the set of

free variables which has maximum uf , where uf is

uf - max
j = 1, . . ., w

s

£ d. + h. .

i-1 x X3
(3. 24)

and d. for i constraint is defined as

d = £ h z -e (3.25)
jes J J

S is the set of variables specified at any iteration and

z. is the value assigned to a variable. Set z^=l. If

there is a tie, choose that variable which has minimum g ..
J

Label this variable as assigned and put it in the list of

specified variable of rank r. If this set is feasible,

Check whether it is optimal; if yes, record it and go to

step 4, else go to next step.

3. Test for next move - If this set has interesting solution,
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WHICH HAS MAX Uf LABEL IT AS
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1[aj FROM THE LIST OF ASSIGN

VARIABLE HAVING HIGHEST RANK

AND MAXIMUM Vu/
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go to step 2, else go to step 5.

4. Backward move - Pick out a variable z from the list of
Y

assigned variables which has the highest rank and maximum

v . In case of a tie, choose that variable which has maxi

mum g . where
J

vy . Itiy . (3.26)
and

V-V^ i.x.s s (3'27)
(£ represents only those t. ' s are to be added which have
i *• iy
negative sign.)

Set z to alternate value and label it as fixed. Assign

rank r =r+l to variable z and to all the variables from
y

the list, which have higher rank than r are set free. Go

to step 2.

5. Test for termination - All specified variables are fixed,

go to step 6; else go to 4.

6. Stop.

An Example

The reliability of a system, consisting of three stages

in series is to be maximized through the use of parallel redun

dant components. The reliability cost and^weight of each

component type are tabulated in table 3. The entire cost

and weight of the system should not exceed 50 and 60 units,

respectively. From the design consideration, it is known that

the maximum number of redundant components at each stage can

at the best be three.
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Table 3. 5

Stage Rel Labili ty Cost Weight

I 0,75 6 10

2 0.85 6 5

3 0.90 10 10

The linearized problem with single subscripted variables

can be given by

Minimize f (z)

f(z) = 0. 223132z1+0. 04879z2+O.OH84z3+0. 13076z4

+0.01937z c+0.00287z.+0.09531z„+0.00904za
5 O / O

+0.0009z, (3. 28)

subject to

6z1+6z ~+6z~ +6z +6z5+6z610z7+10zg+10zg-38 > 0

10z1+10z2+10z3+5z4+5z5+5z6+10z7+10z8+10zg-40 > 0

r .=0 or 1.
J

z9-z8_z3_z6-z5-l

zl=z2=z4=z7 =°

(3. 29)

Initially, all variables are assumed to be free, i.e.

z .=0, j = l,...,9 and u. are calculated. The complete proce

dure is tabulated in table 3.6. The optimal solution ob

tained is

(3.30)

or, in other words, the number of redundant components in

stage one, two and three are three, two and two, respectively.

Various reliability problems were solved on I3M1620

using this approach. In all cases, the exact optimal solutions

were obtained. In the enumeration methods available so far,



Table 3.6 ~ Details of stepwiffg Solution

Step

Start

m.

V,

-*2 -62 -62 —6"

ward

'6 '7 '3

r3

»j / - 5q -

More

-42 -42 -42 -47 -47 -47 -38 -38
*<ird

c - - _

for-

»era

0 ©

*9

v9

van -

able IGbjec-
to be

set

to 0

tive

tioa.

O.O

^ « «1 .0OO9

zB.l .OG9S

=i . ioe:

._ .11701

l£rl ..11996
o

-7 I .59

Li St Of

specified
variable

-38 -40 Empty

•28 -30 z.

-20 z9 .«8

O I? , Eg , I-

*3 ' Z6

Feasible

Solution

*9=*8"*7W

z3=z6.l

*1~2*«"

xr«e

O zg , zg . z7 .

z3 ' Z6

E e st a r * s

I pit bar
• •_ - *e

POp >
move wi** se ;.««*-

w.ard



Table 3.6 (continued)

Step

'o»e

«ove

back

ward

Move

for

ward

Move

for

ward

Move

far-

ward

Move

back

ward

Move

back

ward

18

# *

-JVari -
ug able

to be

'set

Objec
tive

func-

List of
specified
variable

-, -22 -22 "22 z3=G .10525 -8 -lO zg ,Zg ,z?

-, -38 ,00994 -18 -20 zg ,z3 ,z?

•22 -22 -22 -27 -27 -27 ,=1 .02178 -12 -lO zc ,z8 ,z7 ,

-6

O

-11 -11

-22 -22

-11 -11 -11 z =1 .07057

zc=l .07344

•5 ^15 -15 -15 z.=0 .07057

-6 0 zr

-6 O zr

•Zg ,z? ,

,Zg ,Z-

,%2 -Zg

,Zg .z.

. z - . z.
2 i

-26 -26 z.=0 .02178--I2 -10
Zg ,Zg ,Z.

z3 ,z2

Feasible

Solution

Remark s

Setting to 1 other
vaiiables will give

F(z) > - .11996, tt e
known icasioxe s
tion, next rr.ove

backwards

:g=z3=z2=z6=l

/ 1 4 5

Setting to 1 other
variables will give

ftz) > 0.07 344, next
move backward.



Table 3.6 (continued)

Step

Move

for- -6
ward

Move

Back 22
ward

Move

for

ward

Move

for

ward

Move

back

ward

Move

back

ward

Move

-, -11 -11 -11

.1 -11

0

•11 -6 -6

•22

-38

-26

-15

•26

-42

Vari

able

to be

set

to 0

or 1

Objec
tive

func

tion

-, z^l .24491 -6 0

.02178 -12

W1
.02465 -6 -5

.04402 0

-15 z5=0 .02465 •6 -5

id. st of
specified
variable

Zg ,Zg ,z? ,

z3 ,z2 ,*!

z. »z0 »z-7 »'^-a

z9 /Z8 '*7 '

«3 ,z2 ,z 1 /Z6

z9 ,z3 ,z7 ,z3 ^^e^J^^S'

•<_ zl >z>- ,z,

feasible
Soluti ob

Remarks

Setting to any other
variable to 1 will
givefifc)> 0.07 34.
Next wove backward.

,zQ=zR-z,=z6«Zc=l

«z .*0E7=»2-Z.1«4

Zg .Zg ,Z7 ,*,..

z2 ,zx .x6 »*5

-.26 z-=© .02178 -12 "10 z 9 'ZS '*7 'z3 '

By setting z-.=l, '
fix) > 0.04402.
Next wove back

ward •

By setting z. and

z to lf(z)> 0.04402.

Next wove backward.

By setting vari
ables to 1, results
inF(z}> 0.04402.
Next move backward.

z2 ,zx .z6

-42 x3=0 .00994 -18 -20 zg ,Zg »z? ,*3



Table 3.6 {eontitmed)

Feasible

Solution

Stej ul U2 V a5 U6 U7 u8 U9

Vara -

able
to be

to G

or 1

Objec
tive

func

tion

dl d2 List of

specified
variable

Move

% ard

Move

back -

ward

Stop

-, -58 -58 zB=C .0009 -28 -30 z , 2,

z .,=0 -38 -40

R e m a r k s

setting van -
abies to 1, results

j.,, j > 0.044G:.
Next move backwards.

By setting vari
eties to I, re;

Aii variaaies are
fixed.

3
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last variable, in order, is set to zero for backtracking. In

this mrrhod, a more flexible rule is used for backtracking

which improves the efficiency of search procedure. This app

roach requires simple calculation and less computational effort

and memory.

3.4. ZERO-ONE PROGRAMMING METHOD

This method makes use of zero-one programming C40J . This

method depends on the non-binary tree search, where upper bound

is calculated by making use of graphy theory. All the tree-

search methods for 0-1 problem, available to-date, are binary.

They can be divided into two subproblems, firstly a variable

is set to one and search is made for the remaining free variab

les, and secondly set the same variable equal to zero and again

search is made. While in this method, the use of tree search

is made to calculate Only the lower bound to the objective

function at the nodes.

The linearized reliability problem given by (2.70) and

(2.71) can be solved by this method. The stepwise procedure

for solving the reliability problem can be summarised as -

(1) Consider node A where all variables z . are free and set
J

T = A.

(2) e' > 0 e'=e.- 2 h. . , where H is the set of variable
z..pH 1J

which has been set to 1 find reduce set | S j_ | , other

wise set all variables z .=0 which will give optimum solu

tion and stop.
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(3) Calculate external stable set.

(4) F^nd lower bound on objective function.

(5) Find IS*Tj_ |=min| STi I. Form tree by branching r nodes
i

from node T by setting z ..=1 for each node. Each branch

can be treated as one subproblem.

(6) Repeat step (2) for each node.

(7) Repeat step (3) for each node.

(8) Repeat step (4) for each node.

(9) Find the node L which has lowest lower bound on objective

function set z .. -1.
JL

(10) If for this L node all [SLi |=d then current partial

solution is the solution to the problem and stop, other

wise set T=L and go to step (5).

CALCULATION OF REDUCE SET t40J

If e' > 0 for i constraint, then h. . of the free vari-
1 ij

ables are arranged in the descending order to get a table

of h. ,, , h. ._ , ...,h. ._» A variable z .-, is the member
ljl ij2 ijF jl

of reduce set S. if and only if

m

p=i j^

for any q such that 1 £_ ^ £_ F

It is clear that if Z.n does not satisfy the above condi-
Jl

tion, Z.n 1 , Z.-, „ ... will ."ilso not be a member of this
J/1+1 j/1+2

reduce set.

CALCULATION OF MINIMAL EXTERNAL STABLE SET [15]

For calculating minimal external stable set for a systems.
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logic expression is tob formed for each vertex x, in which

eithe1 x or one of the elements Y is to be included. The

associate properties and law of absorption is used to simplify

logic expression and remove redundancies. The resultant ex

pression gives the number of minimal external stable sets.

LOWER BOUND ON OBJECTIVE FUNCTION!

Setting each Z e s± to one lower bound on objective fun

ction is calculated by expression

where ZQ is the value of the partial solution.

HUMERICAL EXAMPLE

The reliability of a system consisting of three stages

having reliabiloty cost, weight as tabulated in Table 3.5, is to

be maximized by using parallel redundant stages. The cost and

weight of the system must no exceed 50 and 60 units. From a

design consideration it is known that the maximum number of

redundant components which each stage can have is three, i.e.

N .= 3.
J

The linearized reliability problem is

Minimize

0. 223132z1+0.04879z2+O.01184z3+0. 13976z4+0. 01937z5

+O.O0287z6+O.O9531z7+O.OO904z8+0. 0009z9 (3. 31)

subject to

6z1+6z2+6z3+6z4+6z5+6z6+10z7+10z8+10z9 > 38

10z1+10z2+10z3+5z4+5z5+5z6+10z7+10z8+10z9 £ 40

Zj=0 or 1 for j=l ,9 (3.32)

CENTRAL LIERAfY UJHCTTf CF ROORKEE
ROOKKbJS



71

Assuming all variables are zero at node A (Fig. 3.3),

reducer set for this node are lsAil =(z7 > zg > zg)/ 'Sa?' =

(z, , z„ , z _. , z_) and the minimal external stable set are

\Z1 / Zo// \Z „ , Zp// \Z -, , Zr>) f \Z , i Zn/i ^9 ' ZQ'/

(Z- , Zg) , (Z_) •

The lower bound L=0.01274 is produced by set (z , zg) .

The lower bound on the objective function is 0.01274. Since

the reduced set SA1 has minimum number of variables, therefore

we continue the branching by setting either z7=l (node B.J,

zQ=l (node B2), zg=l (node B ) in Fig. 3. 3. Now we start with

node B-p The complete calculations are tabulated in Table 3.7.

The optimum solution of the problem is given by (3. 22)

end (3. 23) is ,

Z1=Z2=24=Z7=°
and

'J3=Z5~Z6"Z8~Z9 = 1

or s olution to the primal 0-1 programming solution is

X11-X12~X21:=X31~1/

X13~X22_X23"0f32~X33~0

From (2.62) the optimum number of redundant components to

be employed in stage one, two and three are three, two and two,

respectively.

A number of problems were solved by this method and it is

found that this approach requires fewer iterations than the

other available zero-one programming algorithms.
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Node

Name

Table 3.7

z
Reduce Set Minimal external stable set

Lower

bound on

objective
function

Partial

solu
tion

Branch

ing
from

A Z s!=^7 , Zg , Z9) (Z1 , Zg), (Z2 , Zg), (Z3 , Zg) 0.02274 A

Sn=(Zi / Z. , Z^ , Z-j (Z.,Zq/,(Z_,ZqJ,(Z-.,Zq),

(z7)

B1 Z?=l S1=:(Z8 / Z9 , Zx , Z2) (Z-^, (Z2), (Zg), (Zg , Z3) 0.10435

S2=(Z1 , Z2 , Z3 , Zg)

B2 Zg=l S1=:(Z7 , Z9 , Z± , Z2) (Zx), (Z2), (Z7), (Zg , Z3) 0.02178 Z9=l B3

S„= \Zl , Z„ / Z-, , Ci r-. )

B3 Z9=l S1=(Z? , Zg , Zx . Z2) (Z1)/ (Z2)> (Z?), (Zg , Z3) 0.02178

^ Zx«l S1=(Z2 , Z3 , Z? , Zg)= (Z2), (Z3), (Z?), (Zg) 0.20899
S2 -

C2 Z2=l S1=(Zl , Z3 . Z? , Zg) (Zx), (Z3), (Z?), (Zg) 0.05873 Zg=l
S2=(Z1 , Z3 , Z7 , Z3) ^ Z^JX c^

C33 z3=l S1.(Z1 , Z2 , Z7 , Zg) (Z2), (Z2), (Z7), (Zg) 0.02O88
S„= (Zi , Z „ , Z7 , Zg/

(continued)



Table 3.7 (cOntd. )

C4 Z7»l S1^(Z1 , Z2 , Z3 , Z4 , (Zx), (Z2), (Z3) 0.1O715 C
z„)

!c5i.:_!3.i.hL.-!
Dl Zl=1 S1=(Z2 ' Z4 ' Z7 ' Z8) (Z2), (Z4), (Z?), (Zg) 0.24491

s2=(z2 , z4 , z5 , z7 ,,

. V .._
D2 Z2=1 S1=(Z1 ' Z4 ' Z7 ' Z8} (Zx), (Z4), (Z?), (Zg) 0.07057 Zg=l

b _= \Z-| , Z . , Zr , Zr, ,

*§>
D3 Z7=1 S1(Z1 ' Z2 ' Z4 ' Z5 ' vZx), (Z2), (Z4), (Z5), (Zg) 0.11709 Z3=l D4

^ Zg=l

3

2~ 1 ' 2 ' 4 ' 5 '

«->

D4 Zg=l S1=(Z1 , Z2 , Z4 , Z5 , IZj), (Zj), (Z4), (Z5), IZ?) 0.01274

z7)

b 2= IZl / Zo ; Z ^ , Zj-,

z7)

(continued)

-J



Table _3tZ_i£2GtcL2 ,

B, Zn=l S1=(Z2 , Z4 , Z5 , Z6 , IZ2>> (Z4), (Z5), IZ6), (Z?) 0.24778

S =<p V

E2 Z2=l BlJSL1 , Z4 , Z5 , Z6 , (Z2), (Z4), (Z5), (Z6), (Z?) 0.07344
S =<P Z7) _ Zg=l

E3 Z4«l S1 =(Z1 , Z2 , Z5 , Z6 , (Zr), (Z2), (Z5), (Z6), (Z7) 0.16441 Z3=l E4
S2=<P __V _ Zg=l

E4 Z5=l S1=(Z1 , Z2 . Z4 , Z6 , (Zx), (Z2), (Z4), (Z6), (Z?) 0.03828 Z5=l

»rf It . •
E5 Z7 =l S1=(Z1 , Z2 , Z4 , Z5 , IZX), (Z2), (Z4), (Z5), (Z6) 0.11996

s2=(P _V
*F™Zl«i s1=0) , s2=q) °_'-llil&- Z9=1
'p2"""z2in^T"s2Ii 0.08994 Z3=l
T"z]ll"l~l77ll=V 0.18091 Z=1 No

3 4 12 branching

"f4""6=i""s^q""s2^" " 0.04402 ZfA
F5 Z7=l S1=0 , S2=(P 0.03643 Z^l
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3.5. MODIFIED NON-BINARY TREE SEARCH METHOD

A method is proposed to solve the linearized reliability

problem. A simple rule of branching is given, which reduces

the computation time and memory requirement considerably.

Since all the coefficients of the linearlized reliability

expression are positive, the smallest lower bound can be ob

tained by setting a variable which has smallest c ., and is

a member of a reduce set having minimum number of elements.

The stepwise procedure for solving the linearized problem

(2.67) and (2.68) by this method can be described as

(1) Set all variables (x ^ ; j=l, 2, ...,k, 1=1, 2, . .. ,N .),

free.

(2) Calculate e^ , (i=l, 2,. . . ,m), whose ef is given by

k J -*
e. =e. - Z 2 a. . x -t
1 X j=l 1=1 13 3l

x .-, are the variables which are assigned as 1.

(3) If e^ > 0, find the reduced set S. , else go to step 6.

(4) Find the set S . , where S . is given by

Smin = rTdn Si i=1'2, . ..,s

i.e. S^. is that reduced set which has lowest number of

elements or variables.

(5) Find the variable x ., from the set S . which has the
jl rmn

lowest c.q and assign this variable x .,=1. Go to step 2.

(6) Set all free variables to zero and the resulting solution

wi 11 be opti mum.

(7) Stop.



SET ALL VARIABLES FREE \.Z

Xj| =0 j F1.2, k
1=1,2, Nj

CALCULATE Z\ WHERE

k Nj
ei =e,-E IT ai = ci

j=l 1=1

_*

ij xJ'l

YES

FIND REDUCED SET

Sj , l' = 1,2, S

FIND THE SET Smin
c . min Si
Smin = ; '.i= 1,2, s

FINAL THE VARIABLE Xj. FROM

THE SET Smjn WHICH HAS LOWEST

CJl

SET Xj . =

SET ALL FREE VARIABLE'.' TO ZERO

STOP

FIG. 3.4 FLOW CHART FOR MODIFIED NON-BINARY TREE-SEARCH METHOD
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The flow chart for this method is shown in Fig. 3.4.

Various reliability problems were solved on IBM1620 by using

this method and exact results were obtained.

AN ILLUSTRATIVE EXAMPLE:

Consider a feedback control system as shown in Fig. 3. 5

consisting of an input transducer with three function groups

denoted by G.(S), G (S) and G (S) and two feedback loops. The

major and minor loops have output transducer and feedback posi

tion denoted as H. (s). For successful operation of the control

system, each component must be in proper working condition.

Reliability of the error detector is assumed as unity. The

unreliability cost, weight, and power consumption for each

component are given in Table 3.8. It is required to maximize

the reliability of the control system by using redundant com

ponents. The incremental cost, weight, and power consumption

of the system must not exceed 43, 35 and 90 units, respectively.

From design consideration, it is known that at the most, each

stage may have two redundant components.

Table 3.8 - Parameters for a feedback control system shown
i n Fi g. 3.5.

Component
Unreli-

abilitv

0.06

Cost Weight

2.0

Power con

sumption

1. Input Transducer 15.0 10.0

2. Function Group G. (S) 0.08 5.0 4.0 15.•

3. Function Group G (s) 0.05 8.0 8.0 20.0

4. Function Group G (s) 0.03 6.0 6.0 15.0

5. Feedback position
H1(S) 0. 10 5.0 3.0 5.0

6. Output Transducer 0.09 10.0 4.0 5.0



INPUT I

TRANSDUCER K^
FUNCTION 2

GROUP G((S)
FUNCTION 3

GROUP G2(S)
FUNCTION 4

GROUP G3(S)

FEED BACK 5

POSITION Hj(S)

OUTPUT 6

TRANSDUCER

FIG.3.5 A FEED-BACK CONTROL SYSTEM.

FIG.3-6 A LOGIC DIAGRAM OF THE FEED-BACK CONTROL SYSTEM SHOWN IN FIG.3-5
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The functional diagram of the feedback control system

shown in Fig. 3.1 will be a series system as shown in Fig. 3.6,

The linearized reliability problem for this control system

will be

Mi ni rri ze F (x)

0.05827xu+0. 00399xl2+0.07696x21+0. 00591x"22+0. 04879x~31

+0. 00237x3 +0. 02956x41+0. 00087x42+0. 09531x51

+0. 00905x52+0. 08618x61+0. 0074x"62 (3. 34)

subject to the constraints

15x1:L+15x12+5x2l+5x22+8x3l+8x32+6x4l+6x42+5x5;L+5x52

+10x\.,+10x\o > 55 (3.35)
Di t>Z

2x-n+2x-12+4x-21+4x22+8x3l+8x32+6x4l+6x42+3x51+3x52

+4x_+4x_ > 19 (3.36)
61 62

10x"11+10x"12+15x21+15x22+20x3l+20x32+15x41+15x42

+5x51+5x52+5x61+5x62 > 50 (3.37)

where x .-,=0 or 1 ', j=l, . . ., 6 ', 1=1, ...,2

1. Assuming all variables free,

2. The reduced sets are IS, = (*]i ' X12 ' x61 J x62^'

52 = (x22 ' X31 ' X32 ' X41 ' X42 ' X61 ' X62}/

53 = (x2l ' X22 ' X31 ' X32 ' X41 ' X42^"

The S . is S, and the variable to be assigned as 1 is
mm 1

x,_ as it has smallest c .-, in set S.. The modified d|,s

are d'x = 40, d' = 17, d'3 = 40.

3. The reduced sets are S, = (x., , x~., , x^.„ , xfil , x6:?)/
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52 ~ (X22 ' X31 ' X32 ' X41 ' X42 ' X62)7

53 = (x21 ' X22 ' X31 ' X32 ' X41 ' X42}'

ana the variable to be assigned as 1 is x . Modified

d^=32, d'=9, d3=20.

4. The reduced sets are S^ = (x^j. , X-^ , x , xg, , xgJ,

52 = (X21 ' X22 ' X31 ' X41 ' X42 ' X61 ' X62}'

53 = (xll ' X21 ' X22 ' X31 ' X41 ' X42 ' X62 '̂

The variable to be assigned as 1 is x. . The resulting

d^ 's are d£«26j d'2=3' d3=5'

5. The reduced sets are, S-, = ^xn /X^i ' x/i ' x61 ' x69^

52 = (x2l ' X22 ' X3l ' X41 ' X42 ' X51 ' X52 ' X61 ' X62'> '

53 = (xll ' X21 ' X22 ' X3l ' X4l ' X51 ' X52 ' X61 '

xfi~) and the variable to be assigned as 1 is xfi„.

Modified d. 's are d'=16, d'=- , d'=0.

6. The reduced sets are S, (x-j-i > x ?*? ' x^i ' x4i ' xfSl^'

S =0**, S =0l The variable to be assigned as 1 is x .

Modified d.'s are d',=11, -, -.

7. The reduced sets are Sj = (xl;L , x~, , x., , x^ , Xg,),

S = 0", S = 0l The variable to be assigned as 1 is xCo.
* J 52

Modified d.'s are d'=6, -, -.

8. The reduced sets are S1 = (x*^ , x~2l , x"3l , x"41 , Xg,),
S, b ft S = 01 Variable to be assigned as 1 is x.,.

Modified d.'s are d'
i i =o, -, -.

9. The reduced sets are S, = 01 S =01 S =0l
** When e. < O, the reduced set 5. is empty and is denoted by 01
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10. Set all free variables to zero, The optimum solution is

x12 = x22 = x32 = x41 = x42 " x52 " X62 = l

Xll B X21 = X31 = x51 = x61 • °

By (2.69), the optimum number of redundant components to

be used are

n1 mIs n2 = 1, n3 = 1, n4 = 0, n5 = 1, ng = 1

Optimum structure of the feedback control system with redun

dant components is shown in Fig. 3.7.

AN EXAMPLE.*

Consider a control system as shown in Fig. 3.8 consisting

of a measuring element, amplifier, comparator and an actuator

in series. Their parameters are tabulated in Table 3.9. It

is needed that the system reliability is to be maximized by

using spare standby components. The maximum number of the

spare components for each stage may be assumed as three and

the replacement time is to be neglected in comparison with

the life time of the system. The constraints on the system

are

k 22 a±i n. < 36 (3.38)
J=l J J

k

Z f n exp (n /4) £ 150 (3. 3g)
j=l J J J

The life time of the system is 10 years and the reliability

of the switch is 0.999.



FIG.3.7 REDUNDANT FEED-BACK CONTROL SYSTEM.

MEASURING ELEMENT COMPERATER AMPLIFIER ACTUATER

u

L

U

J I

y
Lf

FIG.3.8 CONTROL SYSTEM WITH SPARE STAND BY REDUNDANT COMPONENTS
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Table 3.9

Stage failure rate a .

J fj
per vear

1. Measuring element 0.0798 1.0 7.0

2. Amplifier 0.0328 2.0 8.0

3. Comparator 0.0066 3.0 6.0

4. Actuator 0.026 4.0 9.0

The linearized reliability problem can be written as

Minmize .

0. 58623x^+0. 16281x12+0, 03915x"13+0. 28343x j+0. 03064x~22

+O.004 23x00+O.06385x01+0. 00204x.o+0.00004xoo
Zj Jl j Z J J

+0. 23091x41+0. 02642x42+0. 00221x"43 (3. 40)

subject to the constraints

ril+3x12+5x13+2x-21+6r22+10x23+3x31+9x"32+15x33

+4x41+12x42+20x43 > 54 (3.41)

8.98aT11+14.094x12+2l. 37 5xl3+10.27 2x2l+16. l°7x"22

+24. 428x"23+7.704x31+l2.08x32+18. 321x"33+H. 556x"41

+18. I2x42+27.482x43 > 40.530 (3.42)

x., = 0 or 1 , j=l,..,4 , 1=1,... ,3

(1) Set all variables free.

(2) The reduced sets are S, = (x.,-, , x._ , *.-.),

S2 = ^X12 ' X13 ' x22 ' X23 ' X32 ' X33 ' X42 ' X43'*

Variable to be assigned as 1 is x„. Resulting state
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d'2 = 39, d' = 22. 206.

(3) Th reduced sets are s1 = (x*23 , x , x. ),

r_ ~ (x12 ' X13 ' X22 ' X23 * X32 ' X4l ' x42 ' X43^*

Variable to be assigned as 1 is x\_. Resulting state

d'x = 19, -.

(4) The reduced sets are Sj = (x?2 , x23 , x , x~4J,

S2 = 01 Variable to be set to 1 is x . Resulting state
d'x = 10, -.

(5) The reduced sets are S^ = (x13 , x22 , x23 , x\, , X.J),

S = 0l Variable to be set to 1 is x9-.. Resulting state

ft» = 0, -.

(5) The optimum solution is

X23 = X32 = X33 = X43 = 1

xl = x12 = X13 = X21 = X22 = X31 = X4l = X42 = °

and the optimum solution of the original reliability prob

lem is n.«3, n =2, n =1, n.=2.

3,5. BRANCH AND BOUND METHOD

The linearized reliability problem (2.70 and 2.71) can be

converted into an equivalent knapsack problem by aggregating

the constraints which have integer coefficients. When cons

traints have rational coefficients, they can be converted into

integer coefficients by multiplying constraints by a suitable

multiplier. Consider a set of two constraints



w

Z h. . z . + z . = e.i=1 ij J w+i i
i = 1, 2, ..
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(3.43)

where z . are the slack variables. These two equations
w+i

can be combined by choosing two suitable multipliers t. and

t such that, one of the following conditions holds good [_MA\

(a) t1 > u2+l and t > u.j+1

(b) tx £. -L2+l and t2 > -L1+l

(c) t1 > 0 arbitrary and t > max u^l, -L.^+1

(d) t, > max u2+l, "L2+1 and to > ° arbitrarY

where,

L.
l

u„.

""S i 1 —I./ A/ • • * / S

w

Z h. .

(3.44)

(3.45)

The single equivalent constraint which has the same

solution as the original constraints (3.43) can be written as

w

Z hn . z .+z , -e,
lj j w+1 1

L j=i
+t,

w

Z h2j zj+zw+re2
L j=i

= 0 (3.46)

Recursively using the above construction for ell cons

traints, it results in a single equivalent constraint which

has same feasible solution as the original problem. There

fore, the reliability problem can be converted into an equi

valent Knapsack type problem. The equivalent Knapsack type

problem for (2.70) and (2.71) can be written as

Maximize F(z)
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w

F(Z) = Z g. z.
j=l 3 3

subject to the equivalent constraint

Z y, z . < v (3.47)
j=l 3 3

z .=0 or 1

The stepwise procedure for solving the above problem by

Branch and Bound method can be described as follows!

(1) List the variables such that their coefficients g /y .|j=l,
2, ...,w are in descending order.

(2) Consider node A where all variables are free. Set N=A

and 1=1.

(3) From tree by branching two nodes B1 and ^ from N by C^

from N by setting z .=1 and z .=0, respectively.

(4) Find the upper bound on the feasible solution at node B^^

and Cj_ •

(5) If 8, has greater upper bound on F(z) than at C^ , assign

z as 1 and N=B, , otherwise assign z . as 0 and N=C- .
j 1 J x

(7) If l>w go to next step, else set 1=1 +1 and go to step 3.

(8) Find the corresponding index j of 1 from list and stop.

If z . are set to 1 in the sequence as given in the list

1=1, 2, , while satisfying the constraint, will give an

upper bound on the feasible solution. If z. having 1 index

in the list breaks a constraint or constraints, then z.

corresponding to (l+l) index is tried.
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AN EXAMPLE:

Consider a system of an aerospace computer consisting

of coincidence circuit, amplifiers, regenerators and flipflops

as dhown in Fig. 3.9. The complete system is divided into

seven subsystems. The reliability cost, weight and power

requirement for each subsystem is tabulated in Table 3.10.

The reliability of the majority voter is 0.999. It is requir

ed to increase the reliability of the system by using triple

modular redundancy. The cost, weight and power consumption

of the system must not exceed 66, 60 and 70 units, respective

ly. The cost, weight and power consumption of the voter is

3, 4 and 2 units, respectively.

The reliability problem in the form of (2.70) and (2.71)

can be written as

Table 3.10 - The Parameters of the System

Stage
Number

NO. of

circuits
r .

J pj
Cost Weight

Power

con

sumption

1 1, 2 0.99 0. 6 5.0 2.0 4.0

2 3,4, 5 0.99 0. 2 10.0 7.0 10.0

3 6 0.97 0. 6 2.0 1.0 1.0

4 7 0.92 0.2 4.0 4.0 5.0

5 8 0.94 0.6 3.0 3.0 4.0

6 9 0.94 0. 6 3.0 3.0 4.0

7 10 0.95 0. 6 5.0 1.0 2.0

Maximize F(z)

F(Z) • 0.00849z,+O.00984z„+0.023O7zQ+O.O6078z .+0.055369zc
1 z J 4 b

+0. 055369z6+0. 046452z? (3. 48)
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subject to the constraints

I3z1+.3z2+7z3+llz4+9z5+9z6+13z7 < 34 (3.49)

82l+l?22+6z3+12z4+10z5+10z6+6z7 £ 39 (3.50)

10zz1+22z2+4z3+l2z4+10z5+10z6+6z7 < 40 (3. 5l)

z . =0 or 1

Constraints (3.49) and (3.50) are combined by choosing

t2 and t2 as 72 and 1 according to (3.44). The equivalent
constraint is

944z1+1674z2+510z3+8lOz4+658z5+658z6+
+942z7+72za+z9 = 2478 (3. 52)

(3.51) and (3.52) can be combined by using t.=l and

t2=76 according to (3.44) resulting in

717 54Zl+l27 246z2+38764z3+611l2z4+50018z5+50018z6

71598z7+5472zg+76z9+z10 = 189052

Dropping slack variables zQ , Zg and ZjL0 , the equiva
lent constraint is

717 54z1+127 246z2+38764z3+611l2z4+50018z5+50018z

+71598z? 1 189052 (3.53)

The equivalent reliability problem is given by (3.43)

and (3.53). Arranging z in the order of descending co

efficients g./y, as given in Table 3.11.

Setting all variables free at node A as shown in Fig. 3.11,

node B1 and C1 can be branched by setting Z(-=l and z =0,

respectively. At node B. the feasible solution is z =z =z =0
5 6 4 '
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Table 3.11

Index

Number

1

1 2 3 4 5 6 , 7

gj .055369 .055369 .06078 .02807 .046452 .00984 .00844

yj 51334 51334 62724 39784 73638 130596 73642

Stage
Number

j

5 6 4 3 7 2 1

giving an upper bound on objective as 0.171518. At node C

the feasible solution is z6=z4=z3=l, z^z^z 2=z?=0 resulting
in an upper bound on objective function as 0.144219. There

fore, further branching is to be done from node B,. The com

plete calculations are shown in Fig. 3.1. The optimum solution

obtained is z5=z6=z4=l and z1=z2=z3=z?=0/ giving system relia

bility as 0.9257. The optimum structure of the system (Fig. 3.9)
is shok l in Fig. 3.10.

3.7. A DIRECT SEARCH METHOD

A simple computational procedure is developed in this

section. It can be used to solve reliability problem having

parallel, standby, majority voting, hybrid redundancy. By tak

ing the logarithm of the expression (2.1), it changes to

k

Ln R (n) = Z Ln R. (n )
S j=l J J

d Rs(n) Rs(n)

that is, increment in the system reliability will be maximum



if stacre 1 satisfies the following condition I

min

l<Ji*
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Vni} >n Rjtoj) l3.54)

Therefore for maximizing the system reliability, one

component must be added to the 1th stage. Intuitively, it
can be said that if we go on adding one component, i.e. in

creasing the decision variable by one, to that particular stage
which satisfies the condition given by (3.54) without violating
the constraints, total increment in the system reliability will
be maximum. when decision variables reach in the neighbour

hood of the boundary of its feasible region, active constraint

is found out by calculating the slack. From active constraint,
a feasible.set of stages (j) is calculated, in which the incre

ment in the stage reliability is possible. Again, test (3.54)

is made for finding the candidate stage (i.e. the stage in

which c ie more component can be added), from set (j). This

procedure is to be repeated until set (j) becomes errpty. If

more than one constraint are active, the candidate stage must

be common to each set calculated from each active constraint.

The complete procedure can be explained stepwise by dividing it
into two phases as given below.

Algorithm:

Phase I:

(1) Initially set nfl for all j (l ( j <k)/ that iS/ system
is considered to be irredundant.

(2) Find the stage 1 which satisfies the following condition
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R-i (n, ) m min R . (n .)
l<J<k J 3

In case of tie, evaluate S^ and select that stage which
has lowest ^ , where S^ is given by

Smin " miiran b, - 2 (a, . n .)
i L1 J-l 1J 3 _

(3) Assign n, = n, +1
i i *

(4) Check constraints, if not violated go to step 2, else go
to next step.

(5) Set n^n-^1, which will be the optimal number of redundant

components to be allocated to the current 1th stage.

Phase II:

(6) Evaluate S . .
min

(7) If Smin=0, st°P>* else find out set (j) which is defined
as

(3. 55)

j e J if y. ± i

where y . = S . /a . (-> Ci-\JJ min min, j (3.56)

(8) If set is empty stop, else go to next step.

(9) Select stage which satisfies the condition

R, (n.) = min R . (n .)
jSJ J J

In case of tie, choose that stage which has lowest a
min, j"

(10) Set n^^+1 and go to step 6. when same constraint is

active in the next iteration of Phase II, corresponding
new set (j) can be calculated from the old set (j) cal-
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-culated in the previous iteration.

A flow chart for this method is shown in Fig. 3.11. A

number of problems were solved by this method and satisfactory
results were obtained.

EXAMPLE i: .

Consider a digital system shown in Fig. 3.12, where diffe

rent blocks represent the logic elements. All blocks are re

quired for the successful operation of the system. The relia

bility, cost, power consumption of each stage or block are given
in Table 3.12.

The system reliability is to be maximized by using majo

rity voter redundancy, while total cost, volume and power

consumption of the system must not exceed 125,350 and 100 units,

respectively. It is assumed that external inputs to the sys

tem are perfectly reliable.

Table 3. 12

Stage numbe r Reliabili ty Cost Volume Power consump
-tion

1 0.900 10.0 16.0 4.0

2 0.99 16.0 21.0 2.0

3 0. 880 . 18.0 30.0 6.0

4 0.980 3.0 25.0 12.0

5 0.9 50 8.0 30.0 15.0

Voter 0.99 5.0 10.0 8.0

The reliability expression for a k-stages system having
majority voting redundancy can be expressed as
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r (n) = tt R (n.)
s j=l 3 3

k

or Ln R (n) = 2 R . (n .)
s j=l 3 3

2n .+ 1 (2n.+l)|
J J

where R.(n.) = R Z
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wy " *V * . (2n. +l-i)| i|
J J i=n .+1 j ...

The n. will have value equal to zero if j stage is non-

redundant. Therefore, initially all n. are set to zero.
3

The candidate stage is 3. With n =1 and other n .=0, constraints
J

are checked which are within limit. The next candidate stage

is 1 and again constraints are checked with n =n^=l and n -n =

n =0. We proceed in the similar way and finally get n.=n =n5=

1 and n =n .=0 as an optimal solution. The optimum redundant

structure is shown in Fig. 3.12.

EXAMPLE 21

The use of parallel redundancy is to be made for maxi

mizing the system reliability with three nonlinear constraints.

The system is shown in the following table.

Stage 12 3 4 5

Element Q0 QQ5 0^9Q Q^65 0>?5
Reliability

The constraints are

2 2 2 2 2g,(n) = n. +2n +3n3+4n4+2n5 <_ 110
n,/4 n A n A

g (n) = 7 (n2+e )+7(n +e )+5(n +e )

n./4 n A
+9(n4+e 4 )+4(n5+e ) ^175



Table 3. 13

Number of Components Unreliability of Stage _fa, a(n) ..
in Stage f z g^vn; 9 2 gvw

nl n2 n3 n4 n5

11111 0.2 0.15 0.1 0. 35a 0.25 12 73.1 48.8

1112 1 0.2 0.15 0.1 0.1225 0.25 24 85.4 60.8

1112 2 0. 2a 0.15 0.1 0.1225 0.025 30 90.8 79.0

2 112 2 0.04 0.15a 0.1 0.1225 0.0625 33 100.4 93.3

2 2 12 2 0.04 0.0225 0.1 0.l225a 0.0625 39 109.9 109.2

2 2 13 2 0.04 0.0225 0. la 0.042875 0.0625 • 59 123.1 127.5

2 2 2 3 2 0.04 0.0225 0.01 0.042875 0.0625a 68 130.0 143.6

2 2 2 3 3 0.04a 0.0225 0.01 0.042875 0.015625 78 136.0 171.1

0.008 0.0225 0.01 0.042875 0.015625 83 146.1 192.5

a This is the stage to which a redundant component is to be added.



n./4 n /4 n /4
g„ (n) = 7n,e +8n0e +8n e

100

n /4 n /4
+6n4e 4 +9n5e 1 200

Starting with n= (1,1, 1, 1, 1), add one element at a time

as shown in Table 3.13, hence v.e obtain the optimum number

of redundant components

n = ( 3, 2, 2, 3, 3)

Many problems were tried and exact results were received.

Due to less memory requirement and computation effort this

mnethod is suitable for optimal design of a large system from

reliability consideration.

3.8. A SIMPLE METHOD

A simple rule is usedin this section to find an equiva

lent problem having only one constraint. This equivalent

problem h. s the same number of variables and feasible solu

tions as the original problem. It is easier to solve an equi

valent problem rather than to solve the original problem with

many constraints, which is generally computationally tedious

for a practical system with many stages. A simple method is

developed to solve this equivalent problem.

AGGREGATING CONSTRAINTS.'

By adding the slack variables n . [i=l,2, . . . sj the in

equalities (3. 2) are transformed into the equalities, as

k

Z
. , a. . n . + n,J=l lj j \ + x - b, (3. 57)

1~i/ ^/«••/o
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Consider the first two constraints, i.e. i =1,2,

k

Z a, . n . + n, , = b, t3. 58)
j=l lj 3 *+1 X

k

.S, a2j nj + ^ +2 • b2 (3.59)
J— *•

They can be combined to form a new constraint by using

multipliers t, and t satisfying the following conditions as

derived by Glover and woolsey L~42l-

(1) t, and t 'should be relatively prime.

(2) t. does not divide b0 and t does not divide b^.

(3) t, > b9~a^ and t > b-,~ai where a. represents the small'

est of the positive a. .. (3.60)
* ij

Then equivalent constraint which has the same solution

as the constraints (3. 58) end (3. 59) , can oe written as

k k
t, 2a- n .+n. ,+t0 2 a n .+ri 0 = t.b.+t b (3.61)

1 ._, Ij j k+1 2 ._-, 2j j K+ 2 11 2 2

Recursively, using the construction (3.61) for all cons

traints, the reliability problem reduces to the maximization

of the reliability function subject to a single constraint,

i .e.

Maximize system reliability

k

i^nR (n) = 2 Ln R.(n.) (3.62)
j=l J 3 .

subject to the constraint



k

2 y
j=l

. n . < b'
J J ~
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(3.63)

SOLUTION procedure:

The reliability problem given by (3.62, 3.63) can be

solved by any standard reliability optimization method in

which the presence of single constraint is advantageous. Here,

a simple method is developed for finding the optimal solution

of (3.63).

ALGORITHM:

(1) Calculate the derivatives of (3. 62)cJwith respect to n.
J J J

at n =1.

(2) Replace n in (3.63) by (1+st.d.) and solve it for st.

(3) Select the stage which has lowest reliability. Let 1

be the stage satisfying this condition. Set n-, equal

to n-j^ +A^ , where An^ is the integral part of the^td, .
Modify the resources and remove this stage from calcu

lations.

(4) If all stages are removed from calculations, stop; else

go to step 2.

EXAMPLE :

Consider a system having two stages in series. The com

ponent reliability, cost, v/eight, volume and power consumption

data are as follows.'

Stage

1

2

Component

reliability

0.99

0.98

Cost

1

3

Weight

2

4

Vol ume

3

4

Power con-

sumption

5

2
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Find the optimum allocation of the redundancy for maxi

mizing -che system reliability. Total cost, weight, volume

and power consumption must not exceed 8, 10, 15 and 10 units,

respectively.

Aduing slack variables n3 , n4 , n5 and n& , the equa

lity constraint on the system can be written as

nx+3n +n3+0n4+0n5+0n6 = 8 (3.64)

2n1+4n2+On3+On4+OnR+On6 = 10 (3.65)

3n1+4n2+On3+On4+On5+On6 =15 (3.66)

5n3+2n2+On3+On4+On5+On6 = 10 (3.67)

Combining the constraints (3.64) and 13.65) by choosing

suitable values of the multipliers, to form a new constraint,

t1=ll and t =9 satisfy the conditions given by (3.60). The

new constraint is

29n1+69n2+lln3+9n4 =178 , (3.68)

Now the constraints (3.68) and 13.66) are combined by

choosing t.^16 and t =170, to form an equivalent constraint

which can be written as

974n1 +1784n2+176n3+144n4+l70n5 = 5398 (3.69)

For combining (3.69) and (3.67), the suitable values of

t^ and t are 11 and 5255, respectively, giving

36989n1+30134no+19 36n^+1584n.+1370nc
i 2 3 4 5

+5255n6 ' = 111928 (3.70)
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Dropping slack variables the equivalent inequality cons

traint on the system is

36989n1 + 30l3n2 < 111923 (3.71)

The original reliability problem reduces to the maximiz

ation of the system reliability Rg (n) subject to the single
n .

constraint (3.71). Derivatives of 1-(1- r . ) 3 are cal

culated with respect to ^ and n2 and nx and n2 in (3.71) are
replaced by U+. 22-st) and (1+. 139. st). The st is obtained

as 3.6. As described above, the stage to be selected is 2, as

it has lowest reliability. Therefore, n2 is set as 2. Same

procedure is repeated for nx and nx is found out to be one.

Therefore, the optimum number of components to be used in

stage 1 and 2 are one and two, respectively.

The solution of the reliability problem is obtained by

solving an equivalent problem having only one constraint. The

generality of this method is not bound by the requirement of

the integer coefficients of the constraints, as any irrational

number can be approximated by a rational number, which in turn

can be converted into an integer form by multiplying the in

equality by a suitable factor. Reliability problem with non

linear constraints can also be solved by linearizing them.

3*9* ^flXlCOGRAPHIC ENUMERATION TECHNIQUE

The nonlinear integer reliability problem can be convert

ed into zero-one nonlinear programming problem by replacing
n. by binary vector Xjl having numerical ordering as
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n. = l+x.1+2x.9+...+..2 x.-,
J 31- 3 & J-1-

where x .-.-0 or 1. 1 is chosen to be sufficiently large

1-1 '
for 2 to be an upper bound on the value of n.. But the

condition is that the objective function and the constraints

should be monotone non-increasing in each of the variables

Xy. The reliability problem can be stated as

Maximize system reliability

k

Ln R (n) 2 Ln R. (n.) (3.72)
S J=l J 1

subject to the constraints

k

2 G. (n )-b, < 0 i3.73j
j=l 1J 3 .

-L — X / £j • • • / S

n should be integer

In terms of the binary variables x ., , the reliability

problem can be expressed as

Maximize

k

Ln Rs (X) 2 Ln R&J (3.74)
j =1 J J

subject to the constraints

j^ijfaCjl'-^ < 0i=i<2 s (3.75)
Xjj. =0 or 1 i=l, 2, ...,1

Usually in the reliability problem, objective function

and the constraints are increasing function of the variables

x.^. This can be converted into non-increasing function by
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replacing x ± by (1-x .^). That is: n. can be given by

1 . ,
n. - 1 + 2 2 (1 - x.. ) (3.76)
J i=l J1

Therefore the reliability problem can be restated as

Maximize

G (x) = Ln R (x) = 2 R. (x ., )
° S j=l 3 3±

subject to

k

2 G (x ) - b < 0 (3.77)
j=l 1J J1 *

x ., =0 or 1
J1

.!_ -i//ly»,-/S

If the objective function G (x) is not monotone non-

increasing as in case of systems having mixed redundant com

ponents, a new constraint is added. The reliability problem

in this case will result in

Maximize

~xo

subject to

~X0 " GQ(x) £ 0

k

* Gij (X11) ~ bi < ° (3.78)
j=l J J

X=X/ sL/ • • • / S

x ., = 0 or 1
J1

The above problem can be solved by total enumerating of

the binary vector in lexicographically increasing order. The

best suited numerical ordering is
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t(r = <xkl---x2lxll Xk2'"X22Xl2Xkl','X21Xll)
(3.78)

Using this ordering and some other skipping rules faster con

vergence is achieved than {431| and £313.. In order to avoid

total enumeration, certain skipping rules can be used. If

the current binary vectors x are ordered by t(x), the skipp

ing will result the next vector to be enumerated as x*. For

given vector (x), x* can be found out [14] by the following

method.

Let the right-most position of one in x be u and the

position of right-most 0 to the left of u be v. The x* vector

can be obtained from x by

1 - putting x* =1
• v

2 - putting x*. =0 v+1 £_ i £ u

3 - putting x *. =*i 1 < - <. v_1

where u is the total length of vector x. The step

wise procedure [14] for solving above problem can be ex

plained as

ALGORITHM

(1) Set X = (0, ...0). If it is feasible to (3.77), stop and

it is an optimal solution. Else, set X = (0,0,... 1) and

GQ = -co

(2) If GQ(x) ^ GQ , go to step 5. Else go to next step.

(3) If x is feasible to (3.77), set Go=GQ (x) and go to step 5.
Else go to next step.

(4) If x* exist and for some i
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I G (x*-l) - b. > C, go to step 5. Else if x=(l,...l)

go to step 6,' otherwise replace x by x+1 and go to step 2.

*

(5) If x does not exist, go to next step. Otherwise set

x=x* and go to step 2.

(6) Terminate.

NUMERICAL EXAMPLE.'

Consider a system consisting of two stages. The relia

bility, cost and weight parameters of the components are given

below. It is required to find the optimal number of parallel

components to be employed in each stage to increase the system

reliability. The total cost and weight of the system must

not exceed 40 and 30 units, respectively.

St ige number one two

Component reliability 0.91 0.96

Cost 9 6

Weight 5 8

Mathematically, the reliability problem can be written
as

Maximize Ln R (n)
s

Ln Rs (n) = Ln(l-0.09 )+Ln (1-0.04 Z)

subject to

9nx+6n -40 ^ 0

5n2+8n -30 < 0

Let each stage not have more than three components. With
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the help of (3.76), the reliability problem in terms of binary

variables can be written as

Maximize Ln R (x)
s

t- X -j -1 /.X i q 01 ^^ o o

Ln R (X) =Ln (1-0.09 X XZ)+Ln (1-0.04 - ^)
s

subject to the constraints

-9xn-18xl2-6x2l-l2x22+20 £ 0

-5xir10xi2-8x2r16x22+22 ^ °

x (1 = 0 or 1 • j=l, 2

1=1, 2

The solution sequence is given in Table 3.14. Initially,

G is set as -co and x as (0,0. ..0).

Table 3.14

TEST VECTOR

x
22

0

0

0

j

0

0

1

1

1

1

1

•12
x

21
x

11

COMMENTS

0 0 1 step 4, i=l, 2, skip to x*

0 10 Step 4, i=l,2,_skip to x *
10 0 Step 4 change x to x+1

10 1 step 4, i = 2, skip to x *

110 Step 4, change x -*» x+1

1 1 1 Go=-0.09437, skip to x*
0 0 0 Step 4, change x to x+1

0 0 1 Step 4, change x to x+1

0 10 Step 4, change x to x+1

Oil GQ=-0.04155, skip to x*
ICO G =-0.00973, skip to x*

The optimal solution obtained is x„„=xl9=l and x 1=xn=0.

From (3.76), the optimum number of redundant components

employed in each stage are two and the optimum system relia-
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—bility obtained is 0.9914.

Many reliability problems were solved on IBM1620 using

this approach and exact results were obtained. This method

provides faster convergence for small problems than the me

thods discussed in section 3.3 and 3.4.

3.10. MIXED INTEGER PROGRAMMING METHOD

The techniques discussed so far in this study are appli

cable for solving the reliability maximization problem by

treating number of redundant components to be used in each

stage, as variables. If the components of varied reliability

are available, the true optimal reliability problem involves

in finding the optimal number of redundancies as well as the

component reliability [44]. Therefore the reliability problem

can be stated as

Maximize system reliability

k

R (n, r) = tt R . (n . , r .)
S j=l 3 3 3

subject to the constraints

1 0.. (n. , r.> < b.
1 —j J-y Z,t • • • s

0 < r.<^ 1

and

n. should be integer (3.79)

It is a mixed integer nonlinear programming where r
j

and n are continuous and integer variables, respectively.
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The reliability maximization problem can be converted into

the se: arable minimization problem by taking logarithm of

the system reliability expression as

Minimize -F (n, r)

•P(n, r) = - 2 Ln R . (n . , r ,)
j=l J 3 3

subject to the constraints

V.f^ijtaj ' rj) i- °

] .= 0 < r . < 1
s+J J ~

n . is integer

•J- *- / c. / • • • S

(3.80)

This constrained minimization problem can be converted

into an unconstrained problem by using weighing factors. The

transformed problem can be defined as [4 5] .

Minimize F(n, r)

F1 (n, r) = f(n,r)+T^I1 [g± (n, r)} +T^ M± (n) (3.81)

If this problem is solved sequentially, that is for a

series of 1, then

nan _, / *
F, (n,r)

n,r 1

CO

mi

n,r
» /lf(n,r), g± > 0, Mx(n)=0> (3.81)

For a given precision, it will result in a finite value

of 1. Using SUMT formulation the constraint penalty func

tion term can be defined as

Ix ( g± (n,r)) = 2 -~ (3.82)
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and the discretization penalty function [45] can be defined as

where,

k I- - T1
L (n) = 2 4n. (1-n.) > (3.83)

j-i L J J J

n. = (nj-n^)/(n^-n^.) (3.84)
and

1 y s Un . < n . < n
J ~ J ~ J

n. and n. are the lower bound and upper bound on the n ..
J J J

In the above problem, \ and T, are tie weighing factors corres

ponding to the constraint penalty function and discretization

penalty function. cr is a constant and is used to change

the shape of discretization penalty function while weighting

factor Td is used to change its amplitude. The value of

this function will be zero at the optimum point. This uncons

trained problem can be solved by Davidon-Fletcher-Powell method

for seouence of T and T-, such that
c d

^+1 > V

and cr1+1< cr1 (3.35)

One serious difficulty arises in this method, that prob

lem may converge to a false optimum point due to wrong selec

tion of the parameters of discretization penalty function.

This situation occurs when one of the discretization point

happens to be in the neighbourhood of a constraint boundary

on the infeasible side. A recovery procedure is applied under
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such circumstances. The complete procedure can be explained

stepw: se as follows. (Fig. 3.14)

algorithm:

(1) Initiatize y° where y .=n and y, .=r for j=l,2, ..,k and
J J K+J J

process parameter. Evaluate function F (y° ) . Set It = 1.

(2) Set i=0.

(3) Set 1=0.

Solution of unconstrained problem.

14) Set HT's I (2k* 2k identity matrix).

(5) Evaluate the gradients V F (y ) at the current point.

(6) Compute current descent direction HT

H^ = -H1 VF(y1) (3.36)

(7) Compute the current descent step length a that satisfies

F(y1+c^1H^) = min F^+dH.) (3.87)

(8) Compute the current descent step

Ay1 = i1 h\

(9) Modify the value of current vector

y1+1 = y1 + A/

i . i

modified point y

(11) Calculate Af1 = VF(y1+1) - VF(yX)

<l2> If {F(yi+1)-F(y1)j /f.F(y1)> e, go to next step.
Otherwise go to step 15.

(13) Modify the current approximation H1

(10) Calculate function F(y1+1) and gradient VF(y1+1) at
1+1
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J-+1 IT1 Ay1 (Ayl)T hW (AFL)%a)T
= (AyVAF^ STO (3'88)

(14) Set 1=1+1 and go to step 6.

(15) Set i=i+l. If i < i go to next step. Else go to
max "

step 17.

U6, setT/^.T/, Tdi+1=t2.V and

i+1
o- = cr• /t . Set i=i+l and go to step 3*

(17) If y (j=l, 2, . . . ,k) are integer, stop. Otherwise go to

next step.

Recovery procedure:

(18) Iflrt-=1, set T° = T,1'2 and T° = 2?d1"1. Set It =2 and
go to step 2. Otherwise go to next step.

(19) Set T = Tc1_1 and Td = 21^. Set It =1 and go to step 2.

Th Golden section method is used for single dimension

search in the step (7) of above algorithm. The initial parameter

Betting is the drawback of this procedure. As the initial value

of the process parameters T , "L and cr influence.' the conver

gence of the problem, the initial value of the T can be found
c

out from the following expression

Tc =F(y°)/f.j I0 (g.. (y°) )j (3. 89)
The value of f to be chosen depends on the starting point. If

starting point is very close to the optimum, the large value

of f is to be used. Generally, the value of f lies between 1

and 100 [45]. When location of optimum is not known, Gisvold

[45] recommended the value of f as 20. The vaxue of reduction
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factor tx should lie between 0.2 and 0.025. It does not have

any effect on the computation time. If small value of t is c

chosen, the problem will require less iteration to converge,
but computation time per iteration will be large. Initially,
the parameter Td is calculated by the expression

L = c
V F(y°, T! ) (3.90)

V M(y° , o-°)

The values for C can be taken as 0.001 ^ C < 0.1. Good results

:2
were reported for C=0.01. The constant t is calculated from

t± with the help of the following relation

'J
t. (3.91)

should always be greater than one, to make the discretiz

ation penalty function different! able. In the programme o- =2.l7

produces good results. The constant t3 should be greater than
one. A typical value of t3=l. 25 is used to solve the relia
bility problem.

NUMERICAL EXAMPLE :

Consider a four-stage system whose reliability is to be

maximized by using parallel redundant components. The para-
meters of the system are tabulated below.

Staqe
1

1.00

2

3. 50

3

2.00

4

5.00

a2j 20.00 20.00 20.00 30.00

33j 0. 30 0.55 0. 40 0. 65

a*J
0. 6 O. 6 0. 6 0. 6



TABLE 3.15

T T.
d

n. n, n. n

Initial Point 2.0 2.0 2.0 2.0 0.5 0.5 0.5 0.5

System
Reliability

0.3164

0.00500 0.00002 3.4 4.25 3.73 4.06 0.763 0.670 0.749 0.623 0.9593

0.00300 0.00004 3.44 4.28 3.76 4.63 0.795 C. 676 0.756 0.623 0.9721

0.00180 0.00008 3.82 4.82 4.23 5.19 0.819 0.665 0.754 0.602 0.9825

0.00080 0.00016 4.86 6.19 5.110 6.97 0.680 0.570 0.671 0.586 0.9850

0.00048 0.00032 5.21 6.88 6.15 7.46 0.670 0.561 0.624 0.541 0.9880

0.00028 0.00064 6.55 7.27 6.72 7.59 0.669 0.556 0.618 0. 534 0.9920

0.00016 0.00128 7.001 8.00 7.00 8.00 0.66 0.54 0.610 0.510 0.9927

Optimum solution 7.00 8.00 7.00 8.00 0.66 0.54 0.610 0.510 0.99 27
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The constraints on the system are

2 a exp a ,/(l-r .) n . < 300
j_l XJ L JJ J J J

and

k a .

2 a„ . r , J n . < 5000 (3.92)
j=l 23 3 3 ~

It is required to find the optimum parameters of the system,

i.e. component reliability and number of redundant components

in each stage.

Initially, T , T/d and o- are taken as 0.005, 0.00001

and 2.17, respectively. The initial feasible point chosen

is (2.0, 2.0, 2.0, 2.0, 0.5, 0.5, 0.5, 0.5). with these values

of process-parameters the reliability problem is solved on IBM

1620. The complete results are tabulated in Table 3.15.

A few reliability problems were solved by this method and

satisfactory results were obtained. One blind run of the pro

gramme is required for the proper initial setting of the pro

cess parameters, as they effect the convergence of the prob

lem. Author is trying to develop a direct search method of

solving the mixed integer reliability problem and hoping to

report that in near future.



Chapter IV

EVALUATION OF OPTIMIZATION METHODS

The selection of a particular technique rests on the

formulation of the problem and the experience of the analyst.

Specifically, in order to find, which is the best method,

the following criteria are to be considered I-

(i) execution time

(ii) computer memory requirement

(iii) accuracy of solution

(iv) simplicity of use (time required by the user to
prepare data)

(v) simplicity of the computer programme to execute the algo
rithm.

•The most common criteria used to evaluate the relative

effectiveness of the different methods discussed in Chapter 3,

are execution time and memory requirements

TEST PROBLEMS

Problem I (parallel redundancy)

Four stage reliability problem v/ith linear constraint.

A system consists of four stages, each having reliability

and cost as tabulated below. It is required to find the opti

mum number of redundant components so that the system relia

bility is maximized with cost constraints as 56 units. Assume

constraint on the system is linear

Stage number 1 2 3 4

Component reliability 0.80 0.70 0.75 0.35

Cost 1.2 2.3 3.4 4.5

Optimum solution (5, 6~, 5, 4)
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Problem II (Standby redundancy)

Four stage reliability problem with two nonlinear cons

traints. Consider a system consisting of four stages. Their

parameters are tabulated below. It is needed that the system

reliability is to be maximized by using spare components. The

maximum number of the spare components for each stage may be

assumed as three end the replacement time is to be neglected

in comparison with the mission time of the system which is

10 years. The constraints on the system are

k ?
2 a. n: < 3 6

j-l J J "
and

k

Z f . n. exp (n./4) < 150
j=l 3 3 3

The reliability of the switch is 0.999

Stage
number j

X.
J

failure rate a .

J
per year

1 0.0798 1.0

2 0.03 23 2.0

3 0,00 66 3.0

4 0 .026 4.0

f.
J

7.0

8.0

6.0

9 .0

Optimum solution (3/ 2, 1/ 2)

Problem III (Parallel redundancy)

Fifteen stage reil lability problem with four linear

constraints,. Consider a system consisting of fifteen stages

The parameters of the system are tabulated in table given

below. The system reliability is to be increased by using



121

parallel redundant components. The system cost, v/eight, volun

and power consumption should not increase more than 840, 170

5200 and 450 units, respectively. Assume constraints on

the system are linear,.

Stage
number

Component
reliabi
lity

Conponent
Cost

Component
we ig ht

Component
volume

Power con

sumption
by a compo

nent

1 0.99 80.0 2,0 100 .0 10.0

2 0.86 5.0 4,.0 1 50 ..0 50,0

3 0,9 8 90,0 5.0 130,0 14.0

4 0,87 10.0 3.0 160,0 26.0

5 0.99 80.0 10,0 140.0 18,0

6 0.9 7 70.0 5.0 120,0 56.0

7 0.38 15.0 6.0 155.0 14.0

3 0,98 90.0 8.0 200.0 12.0

9 0 .89 20,0 4.0 150.0 8,0

10 0.9 6 60.0 2.0 80.0 35.0

11 0.90 30.0 15.0 500.0 16.0

12 0.9 2 60.0 12,0 200 .0 25.0

13 0,9 5 40,0 16,0 600 .0 10.0

14 0,9 3 65.0 20.0 650.0 22.0

15 0.94 45.0 13.0 600.0 16,0

Optimum solution (1,2,1,2,1,1,2,1,2,1,2,1,1,1,1)

Problem iv (Hybrid redundancy)

Consider a protective systemfor a chemical plant, con

sisting of six stages. Assuming the reliability <bf the voter

and fault-de tec ting and switching device as unity, it is
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required to find the optimum number of spare components

for increasing the system reliability by employing hybrid re

dundancy. The cost of protective system must not exceed 72

units. Neglect the fault-detection and switchover time.

Mission time is one year.. The parameters of the system are

tabul a ted below,

Stage
number

Component On line fail

ure

rate/year

Off line

failure

rate/year

Cost

1 Pressure

switch

0,01278 0,001278 3.0

2 Differential
pressure

transducer

0.010 5 3 0.0010 53 4.0

3 Oxygen Analy
ser

0,00833 0 .000833 6.0

4 Reactor tempe
rature indi

cator

0 ,0356 0,00356 1,.0

5 Temperature
trip ampli
fier

0,00512 0.000 512 8.0

Invertor 0.00333 0.000833 4,0

Optimum solution (2,1,0,2,0,1)

Problem v (Maintained system)

Consider a system consisting of two stages. Each stage

hQs 100 identical components, which should operate failure-

free for the successful operation of the stage. The failure

rate and repair rate of each component is constant. The

parameters of the system are tabulated below. It is required

to increase the system reliability by providing the spare
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components and multiple repair facilities. The amount avail'

able for providing repair facilities and spare components is

48 units. Neglect the replacement time.

Stage
number

Failure rate Repair rate Cost of a Cost Of

of component per hour component single repair
per hour X facility

-3 /
x 10

1

2

0.5

1.0

0,19 2

0,25

Optimum solution

10

5

8

10

repair facilities 1, 1

spare components 2, 2

COMPARISON OF METHODS

(a) Robustness and Accuracy -

All the test problems are solved by the methods present

ed in this thesis. None of the methods failed to converge.

For these test problems, by rounding off the continuous solu

tion obtained by using geometric programming formulation, and

other methods gave exact solution. But, in general, methods

given in item (3.1, 3.7, 3.3) will provide near-optimal solution,

(b) Computer Storage -

The memory requirement for each method is tabulated below foi

fifteen stages and five constraints reliability problem.



Method

1. Geometric programming
formulation

2. Penalty function
me thod

3. Flexible tree search
me thod

4. Zero-one programming
method

5. Modified non-binary
tree-search method

6. Branch and Bound method

7v Direct search method

8,. Simple method

9 . Lexicographic enu
meration technique

Word length

261

1259

1701

263 6

1680

1282

674

49 6

2348

124

If there is only one constraint on a systeiri, then geo

metric programming formulation will require only 48 words

length.

(c) Execution time -

The execution time on I3M1620 for each method is tabu

lated below.

../
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Method Execution time in minutes

Problem

I

Problem

II

Problem

III

Problem

IV

Problem

V

1, Geometric pro
gramming
formulation

3.0 - 10.0 -
-

2, Penalty function 8,0
me thod

3, Flexible tree 16.0
search method

4. Zero-one pro- 20*0
g ramming
method

5. Modified non- 12,0

oinary tree-
search method

6. Branch and

Bound method

9 .0

7. Direct search

method

10.0

8. Simple method 8.0

9, Lexicographic
enumeration

tec hnicrue

15.0

11.0 13.0 16.0 13.0

10.0 20,0 20.0 15,0

15,0 18.0 21,0 16.0

3.0 12.0 16.0 11,0

6,0 13.0 18.0 12.0

3.0 12.0 12.0

6,0 11.0 8.0

10.0 18.0 15.0 3,0

GRADING

s G r a d i n g

No.
Based on execu- •

tion time

Based on memory Based on time

and memory

1.

2,

3.

4.

5.

6.

7.

3.

9 ,

7

9

2

5

6

3

4

1

8

7

2

6

5

3

9

4

1

8

7

2

9

6

5

3

4

The memory requirement and execution time for mixed

integer programming method for problem given on page 116 is

3150 words and 40 minutes, respectively,.



Chapter 5

CONCLUSIONS

Due to increased complexity, sophistication and auto

mation in a modern system, the system reliability always tends

to decrease. The use of protective redundancies which provide

the easiest and cheapest solution, is made to enhance the

system reliability. But it involves extra money, weight and

volume etc. Therefore, for the optimal design of a reliable

system the optimal allocation of redundancies to maximize

system reliability subject to multiple constraints are to be

found out.

The solution of this problem requires the mathematical

modelling of the system. The derivation of the mathematical

model is eased by first drawing a logic or functional diagram

of the system. The structure of the reliability expression

rely on the type of redundancies to be employed for enhanc

ing the system reliability. The various types of redundancies

which are considered in this study are parallel, series-parallel,

parallel series, majority voting, multiple line, standby and

hybrid redundancy. Generalized expressions for system relia

bility are derived in section 2.4 for standby redundant system

considering the effect of dormancy and three types of switch

failures, that is static, dynamic and gradual failures. For

hybrid 'redundant system, reliability expression is derived in

section 2. 5, incorporating the effect of dormancy and dynamic

failure of the switching device. Maintained systems with
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standby redundancy are analysed in section 2.6 and steady

state reliability expression is derived. The type of redun

dancy to be used is dictated primarily by system performance

considerations. The other factors are operating conditions,

power requirement, modes of failure of the components and

maintainability considerations etc. Because of all this,

the problem is an involved one and there does not exist a

straightforward solution to the problem.

The reliability problem has the form of nonlinear inte

ger programming problem. If the system reliability expression

is separable and monotone increasing function, it can be con

verted into an equivalent linear programming problem having

zero-one variables as explained in section 2.7- If it is not

monotone increasing function with respect to the variables

but separable, an equivalent linear zero-one programming prob

lem can be formulated, which results in large number of binary

variables.

A new formulation for the problem of system reliability

maximization using active parallel redundancies subject to

linear constraints is presented in section 3.1. The constrain

ed reliability problem is reduced to that of an optimization

of an unconstrained objective function with variables one less

than the number of constraints. When there is only one linear

constraint on the system or a constraints set in which the

active constraint is known, expressions are derived for opti

mum number of parallel components in each stage and optimum

system reliability in terms of the system parameters. These
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expressions may be useful to the system designer, as he can

know with, the help Of these expressions that how much resources

are required for achieving the desired system reliability.

Formulation given in [ 29 ] which also have usee geometric

programming requires one more nonlinear equation to solve, than

the formulation given in the report. The error in the calcu

lation of system reliability by [29] is 10.1% while this

formulation gives only 0.09% error. The. reliability problem

given in [22] is solved in [29] and the result reported is

5,5,43. The same problem is solved by suggested formulation

providing optimum solution as 5,6,5,4, which is also an optimal

solution obtained in [22].

When reliability problem has a number of constraints and

approximate solution is required, the useof penalty function

approach can be made for solving it as explained in section

3.2, This method provides coi.tinuous solution and has fast

convergence. A tree search, method is developed for obtaining

the integer solution from the continuous solution obtained by

the penalty function method. The use of numerical differen

tiation is made when system reliability expression is not

differentiate. This formulation is highly reliable, robust

and can be used for any type of constraint set. The only limi

tation of this formulation is that it requires initial point

to be feasible one. But in reliability problems, initial feasi

ble point is always known.

The equivalent linear reliability problem v/ith zero-one
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variables is solved by flexible tree search method in section

3.3. This method allows a great deal of flexibility in the

backtracking step which improves the efficiency of the search

procedure,

In all the enumeration methods available so far, for cal

culating upper bound on objective functions, a variable is

first set to one and search is made for the remaining free

variables. Secondly, the. same variable is set to zero and

again search is made, while in the zero-one programming method

given in section 3,4, the use of tree search is made for cal

culating lower bound using the concept of the minimal exter

nally stable set which reduces computation considerable. The

convergence of this method to a feasible solution is faster

than the previous method, In this method, the termination of

the search before obtaining the optimal solution, culways pro

vides a feasible solution.

A modified non-binary tree search method is proposed to

solve equivalent linear programming problem in section 3.5,

A simple rale for branching which eliminates the use of exter

nal stable set for calculating lower bound to the objective

function, is presented. . It reduces the computation time and

memory requirement considerably.

The reliability problem is converted into an equivalent

Knapsack problem in section 3.6 by aggregating the constraints

which have integer coefficients. It is easier to solve this

equivalent problem rather than to solve original problem with

multiple constraints, A branch and bound method is developed
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which is simple and provides exact solution. This method is

found to be very efficient when constraint coefficients are

small and integer. The generality of this method is not bound

by the requirement of the integer coefficients of the cons

traints, as any irrational number can be approximated by a

rational number, which in turn can be converted into an integer

form by multiplying the inequality by a suitable factor,

A computational method is developed in section 3.7, which

can be used for solving reliability problem of the parallel,

standby and hybrid redundant system. Due to simplicity ana

less computational effort requirement, this method is best

suited for large systems. It has not been rigorously proved

that this method, provides optimal solution, but atleast it

will always provide a near-optimal solution. Reliability

problems both with linear ana nonlinear constraints, are solved

by this approach and exact results were obtained. Since during

initial design phase, reliability problem does not require an

exact solution, as several alterations and alternatives are

sought from other technical considerations, therefore this

method is suitable under these conditions.

In section 3.8, a multiple linear constrained reliability

problem is transformed into/an equivalent single constraint

problem by simple rule. The equivalent problem has same number

of variables and feasible solutions as the original problem.

A simple method is developed to solve the equivalent problem.

This method is best suited for the system having parallel,

standby and dynamic redundant components with many constraints
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having integer coefficients of small magnitude.

The integer nonlinear reliability problem is converted

into zero-one nonlinear programming problem by using binary

variables in section 3.9,. An improved method of generating

the skipping vector x* is used for increasing the efficiency

of lexicographic enumeration. This method is quite simple and

easily programmed. This approach is useful forsolving the

reliability problem of the mixed redunuant systems and stand

by redundant systems having multiple repair facilities.

All the above methods can be grouped into two categories :

(a) methods which provide approximate results which, in some

cases, are also true optimum, and (b) methods v/hich give true

optimal solution,. The effectiveness of a method can be exa

mined from theoretical pointof view and experimentation. In

all cases, theoretical experimentation is not possible. There

fore, experimentation for each method is performed on IBM1620,

Experimentation largely depends on the programming of the

algorithm and the precision required. The details about the com

putational experience are given in Chapter IV. For parallel,

s.andby and hybrid redundant system, direct search method deve

loped in section 3.7 provides the fastest convergence while

for mixed redundant system ana standby redundant system with

repair facilities, the lexicographic enumeration technique

results in the fastest convergence. If continuous solution

of the reliability problem v/hich has multiple constraints, is

required, the penalty function approach provides fast conver

gence, when there is only one constraint on the system, the

use of geometric programming formulation provides continuous
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solution with least computational time.

All the methods discussed above are applicable to solve

the suboptimization reliability problem, that is, the compo

nent reliability is kept constant and number of redundant com

ponents to be employed are treated as variables. But the true

optimal reliability problem involves in calculating the optimal

redundancy level as well as component reliability, with these

as variables, the reliability problem is formulated as mixed

integer programming problem as explained in section 3.10. The

constrained problem is converted into an unconstrained problem

by using constraint and discretization penalty functions. The
unconstrained problem is later on solved by variqjak metric

method. The problem encountered in the implementation of this

method is the selection of the approximate value of the process

parameters. One blind run is required for correct parameter

setting of the process parameters. This method is found to

be suitable for big problems having many constraints. The

mixed integer reliability problem requires further exploration

both in the problem formulation and solution technique. Author

is already pursuing some work in this direction.

The method to be used for the solution of reliability

problem depends on the accuracy of the results and the cost of

obtaining them. The methods for which the costof obtaining the

results exceeds the gain in the design are not suited from

practical considerations. From computational experience, it
is felt that the methods presented in this study are well

comparable in this regard.

Due to high risk and cost, the fault-tolerant design
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of the technological systems, is needed. Optimization methods

will undoubtedly be required to avoid overdesigning of the

technological systems. Therefore, the need of efficient, re

liable and flexible computational techniques is felt. It is

hoped that the present work may prove of value in this connec

tion ..
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APPENDIX

The maintained system problem explained on page 122

can be expressed mathematically as

Maximize

System reliability R (m, r )

• Rl(ml ' rcl)'R2(ra2 ' rc2}

subject to the cost constraint

where,

10m.. + 8r . + 5m +10r_ < 48
1 cl 2 c 2 —

rn. and r . are integer, j = l, 2
J CJ

-3-

(A.l)

(A. 2)

Rl(ml ' rcl} = l'
100 x 0 .5 x 10

QTPJ?
cl t

and

R2(m2 ' rc2) = X rc2i

100 x 0.5 x 10

r . x 0.19 2

- m -r .+1
•3-1 cl

(A.3)

100 X 1

0

X 10"3 I
725 J '

100 x 1 x 10

rc2 x0'25

_ m^-r +1
-3-| 2 c2

']

To convert expression (A.l) into separable functionfor

simplicity, logarithm of (A.l) is taken. The reliability

problem can be expressed as

Maximize Ln R (m, r )
s c

Ln R (m, r ) = Ln(m1 , rcl)+ Ln(m2 > rc2^ (A.4)

subject to the constraint given by (A. 2) .
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The various interesting feasible solutions of this prob'

lem are tabulated below.

Number of

f acili

repair

ties

Number of spare
components

System
reliabi
lity

Co;

rel

sp<

cor

Jt of

3air &

Stage 1 Stage 2 Stage 1 Stage 2
are

nponent

1 1 1 1 0.8503 33

1 1 1 2 0.9 081 38

1 1 1 3 0.9328 43

1 1 1 4 0.9 413 48

1 1 2 1 0.3540 43

1 2 1 1 0.9 204 43

2 1 1 1 0.8727 41

1 1 2 2 0,9445 48

1 2 1 2 0.9001 48

2 1 1 2 0 .9 3 21 46
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