N

CA—
| ' A

OPTIMIZATION OF RELIABILITY OF A
SERIES SYSTEM

By
JAYDEV SHARMA

A THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR
OF PHILOSOPHY IN ELECTRICAL ENGINEERING

e

"
L T
Tl

- ';m; :
257 ROORKEE o, .,

. //\ @}‘?{_

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE
1974.



@B R.IT 8L @R PR

—

Certified that the thesis entitled “OPTIMIZATION
OF RELIABILITY OF A SERIES SYSTEM' which is being submit-
ed by Mr. Jaydev Sharma in fulfilment of the requirements
for the degree of Doctor of Philosophy (Electrical En-
gineering) of the University of Roorkee, is a record of the
student’s own work carried out by him under our supervi-
sion and guicance. The matter embodied in this thesis has
not been submitted for the award of any other degree or

diploma.

This is further to certify that he has worked for
a period of two years and three months, from December
1971 to February 1974 for preparing this thesis for the

Doctor of Philosophy Degree, at the University.

c:::Q»o Xr“\ /UR&LVHM/W
e B

M. Rao K. B, Misra
Professor & Head Reader
Electrical Engineering Electrical Engineering
Lepartment Lepartment
University of Roorkee University of Roorkee

Roorkee ~ India - March 25, 1974



(i)

P
to
Ui
H
A
b
Lt

The present work deals with the optimal design of a system
by using structural recundancy. A basic consideration in the
design of a complex system is the reliability which should

be very high. Generally, the reliability of the constituent
components is not sufficient to meet the system reliability
reguirement., One way of enhancing the system reliability

is to curtail the complexity of the system which may result
in poor stability and transient response of the system and
degradation in the quality of product. The other practical
way 1s to introduce structural reduncdancy at the subsystem
level. The amount of redundancies to be employed depend on
the resources available which are usually limited and pose

a problem to the system designers. Therefore, in the opti-
mal design of a system, the problem of optimal allocation of
recundancies to optimize reliability subject to the multiple
constraints such as cost, weight, power consumption etc.,
arises., An attempt has been made to solve this problem in
the presant work. In the interest of generality, any parti-

cular system is not considered in this stucy.

This thesis embodies the mathematical modelling of the
optimal design problem of a system having active or dynamic
rodundancy. The active redundancy includes parallel, series,
series parallel, majority voting and multiple-line redun-

dancy while dynamic redundancy comprises standby and hybrid
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redundancy. Generalized expressions are.derived for the
models suggested. The effect of switch failures, i.e. false
switching, gradual failure and failure toO operate, and dor-
mancy in the dynamic redundancy are considered in the mathe-
matical modelling. The systems having standby redundancy with
spare and repair facilities are also considered. These models
result only in partial optimization of the design problem. &
true optimal design requires optimal allocation of reliability
as well as redundancy in a system. Considering this fact,
reliability problem is formulated. It takes ﬁhe final form

of nonlinear mixed integer programming problem.

These nonlinear integer programming problems are linear-
ized by using the bivalent variables. The linearized relia-
bility problem has same feasible solution region as the origi-

nal one but the number of variables are increased.

The nonlinear integer programming reliability problem
is converted into the Geometric Programming formulation by
assuming variables to -be continuous which leads it to a system
of nOnlinear‘simultaneOus equations with variableé one less
than the number of constraints. When the system has only one
constraint, expressions are derived to get optimal numnber of
redundant ¢Omp0nents required in terms of resources available.

These expressions are very useful to the system designer.

An algorithm is devised for solving reliability problem
by uéing SUMT formulation. The constrained problem is solved
hy stoepest wscent and tree search method. This algorithm is
effective when system is subjected to multiple constraints and

provides an exact solution.
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The uyse of nonbinary treebsearch based on graphy theory
is made to solve the linearized reliability problem. The
method is computationally efficient than the other available
zero-one prOgrémming methods as it requires only few branch-
ing and less computer sorage., The same method is modified to
avoid the calculation of external stable set to find upper

bound on the objective function.

The linearized reliability problem is solved by the flexi-
ble enumeration scheme which allows a éreat deal of flexibi-
lity in the backtracking process and thus improving ﬁhe affi~
ciency of the search procedure. This method requires simple

algebraic computation and provides accurate results.

The multiple constraints linearized reiiability problem
is converted into an equivalent knapsack type problem having
& single constraint by'aggregating the constraints. This
equivalent problem is easier to solve than the original prob-
lem. A Branch and Bound method is brought out to solve the

equivalent problem.

A very efficient method is developed to solve nonlinear
integer programming reliability problem. The method is based
on.the fact that for maximizing the system reliability one
component must be added sequentially to that particular stage
which has lowest reliability. As the method needs only simple
calculations and very little memory, it can be used to solve

large systems.

The optimal allocation of reliability and redundancy
problem is solved by using SUMT formulation with discrztiz~

ation penalty function.



(iwv)

The computer programs are developed and have been applied
to solve various problems with succeés. To illustrate the
methods of attack, numerical examples are incorporated. These
methods can be used for the reliability-based design of the
system such as control system, digital system
At the end, the various methods discussed in this thesis are
compared so that a system designer may know their limitations

and advantages. Future avenues Of research are also discussed.

In short, the mathematical models have been presented for
the optimal reliability design problem. Various types of re-
uundancies are considered and methods to soOlve the reliability

problem are discussed.
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The following symbols are those which have a specific

meaning throughout the text. The other symbols used may

have somewhat different meaning which are defined separate=

Ly in

- T
&g

the text.

~ resources requirements associated with each com-
ponent of jth stage.

- total amount of resources available for the ith
type of constraint.
- number Of stages Or subsystems in a system.
- number ©0f standy components.
: i .th
- number of redundant components in j stage
- upper bound on nj
= tha probahility of occurrence Of ith event.
(Eh '

~ unreliapility of the J type component.
- unreliability of the switching device.
~ system unreliability.

A .th
- reliapility of the j type component

P ) B
= reliabiliGy -6 whe j stage.
- system reliability
- reliability of the voter

- number oOf constraints on the system.
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mission time
binary variable
binary variable

: .th
failure rate of j type component

] .th

repair rate of j type component

standby failure rate of jth type component



Chapter 1

I RTRQ DTS N

Reliability of a system is defined as the probability of
achieving the required input=-output function within specified
limifs throughout the whole mission under given environmenﬁ.
Therefore, reliability of a nonredundant system is a decreas-
ing function of the failure rates of the constituent compo-
nents, the size of the system and the time for which the sys-
tem is designed to operate. Due to increased complexity,
sophistication and automation in modern systems, system 4
reliability always tends to decrease. An interruption in the
operation of the system has consequences in terms of eust,

time wasted, the psycholOgicai effect of inconveniznce and

in certain instances personnel and national security. In some
cases, the cost associated with the failure of a component is
not only its cost due to a complete curtail went of the whole
system, but also cost due to the deterioration in. the quality
of manufactured product. For example, an interruption in the
powervsupply e the electric arc furnace will result in damage
to the furnace as well as will deéteriorate the quality of
steel to be produced. Dues to sOme‘reﬁDte lafge—scale failures
in nuclear power plant, large quantity of radio-active materi al
may be reléased and may provide risk to human life, Modern
process plants are quite complex and involve high capital cost.
" In order to increase the efficiency of the process, moderate
values of process parameters are used. For example, in chemi-
cal plants, processes are performed at high pressure and tem-
perature with higher concentrations of reactive chemical for

increasing its effectiveness. On the occurrence of a fault



in these processes, there are possibilities of great damage

to the plant as well as to the operating personnel.

Generally, the reliability of the constituent compoOnents
of the syStem is not sufficient to meet the system reliability
goal. Therefore, some means must be employed to enhance the
system reliability. It can be increased by incorporating the
following methods:

i. reducing the complexity of the system

2. increasing the reliability of the components by
product improvement program

3. using structural redundancy

Curtailment of system complexity may yield in poor sta-
bility and transient response of the system and reduced accu-
racy and degradation in the guality of product. The part im-
provement program demands the use of improved package and
shielding technigues, derating etc. Although these techniques
result in reduced failure rate of the cOmpOnent, but require
more time for design and special state of art of production.
TherefOre the cost of part improvement program is higher as
against the cost of a redundant component. - The empl oyment of
structural redundancy at subsystem level, keeping specific
system topology, can provide theoretically unity system relia-
bility. When there are many similar compOnents in the system,
this method provides very effective results. Structural redun-
‘dancy may involve use of two or more identical components, sO
that when one fails, oﬁhers are available in such a way that
the system is able fo perform the specified task in the presence .

some faults in the components. The use Of four engines in an



aeroplane is one of the examples of the redundant system.

The various types of redundancy schemes can be grouped
into two categories: active redundancy and dynamic redun-
Taoitlhe acfive redundancy, all the redundant components are
kept in the operating condition. On the failuré of one com?
ponent, others will be able to perform the system task. In
the dynamic redundant system, only one component (called basic
componeﬁt) is kept in operating condition while others are kept
in an inactive state. These are put on sequentially only when
the basic component fails. The use of redundancy provides
quickest solution if time is main consideration, easiest solu-
tion 1if component is already designed, cheapest method if cost
of redesign of a component is too high and the onliy solution

if improvement in the component reliability is not possible.

It is definite that the use of redundancy increases the
system reliability, but on the other hand, system weight, coOst,
power-requi}ement etc. increase. But these are usually limited
and such constraints pose a problem to the system designer.
Therefore, in the optimal design of a system, the problem of
maximizing system reliability by using structual redundancy

subject to the multiple constraints arises.

vVarious methods are available on the active parallel redun-
dancy case with one or more specific constraints. Moskowitz
Mclean [21] considered the problem of maximizing reliability
with a cost constraint using a variational method. Proschan
‘and Bray [22] extended Kettelle’s [23] computational method
for maximizing reliability subject to the cost constraint to

multiple constraints. A dynamic programming approach was



suggested by Bellman and Dreyfus [24]. A& modified dynamic
prograrming formulation of reliability problem was developed
by Misra [25]. Fan et al. [26] used the discrete maximum
principle for maximizing reliability. Tillman and Liittschwager
[27] developed a method for maximizing reliability.or minimiz=
ing cost subject to several COnstraiﬁts by using an integer
programming formulation. Mizukami [28] used a convex integer
programming method for maximizing reliability with multiple
linear constraints. Federowicz and Mazumdar [29] formulated
the redundancy allocation problem in the form of geometric
programming problem, to obtain approximate solutions. Ghare
and Taylor [30] maximized the reliability of parallel redundant
systems by a branch and bound procedure. Misra [31] used a
binary algorithm to optimize system ralishillity Or cost subject
to multiple constraints. -Lambert et al. [32] used maximum
principle approach for maximizing availability subject to cost
constraint. Misra [33] used least square formulation for maxi-
mizing system reliability. Banerjee and Rajamani [34]'used

the parametric approach to solve reliability problem.

All the'above papers considered~active'parallel redun-
dancy case. Messinger and Shooman [35] used generalized
Lagrange multiplier and aynamic prOgramminQ approach for find-
ing the optimum number of spare components in a system. Burton
~and H0ward [36] presented a dynamic programming method for
allocating standby components to maximize system reliability-

subject to cost and weight constraints.

In the present study, various types Of redundancies

‘are considered, Different methods are developed for finding



optimal allocation of redundancies to maximize system relia-
bility subject to multiple constraints. All these methods
can be grouped into two categories:
a. Method which proviae approximate results, which, in

sohe cases, are also true optimum.

b. Methods which give true optimum solution,

The procedure to be adopted for solution of reliability
problem, depends on the accuracy of the results and cost of
obtaining them. The system cesigner has to SsukK several
alternatives and alteration in design parameter from oOther

technical considerations.

The redundancy &allocation problem is a sub-optimization
problem. If the components of différent reliabilities are
available, the true optimal solution requires the optimum
selection of number of redundant components as well component
reliability. This problem ig formﬁlsted as a mixed integer
programming problem and solved by using sequential unconstrained

minimization technique

When cost Of repair in money &s well as in time is less
in comparison with the cost of equipment, it is economical
to consider system fepair. It may be possible that at a time
more than one component fail simultaneously. This requires
more than one crew in order to increase ths operating time of
the equipment. But in case of non-redundant system, repair
wilil not Felp in the sanse of incréasing the system reliability.
It can be enhanced by providing spare components. . Both the
use of multiple repair facilities and spare components require

additional resources. For optimal design, a mathematical



mocel is cdeveloped which is solved by Lexicographic Enu-
meration technique.

The aim of present work is to present the mathemati
cal formulation of the optimal design problem of a system
from reliability consideration and the technigues to solve
them. These methods can be used for fault-tolerant optimal
design of control systems, cigital systems,
communication systems, etc. In the interest of generality,

any particular system is not considered in this study.



Chapter 2

PR GBL BM FORMULATION

A complex system consists of many functional units. They
can be grouped into various modules or stages. The size and
complexity of the modules rely on the volume of irredundant
structure, degree of logical branching of the functional units,
easiness of replacement and.checking etc. After decompOsing
the complete system into modules, it is necessary to draw the
logic diagram of the system for reliability analysis. A4 logic
diagram gives an idea that which components must operate failure-
free for performing the intended job. If a complex system
is partitioned into k modules and failure of any module results
in loss or premature termination of the job or miSsiOn, the
logic diagram of such type of system will have k modules in
series. If the failure of a module does not result in system
shutdo.m, it will be represented by a parallel element in the
logic circuit. Consider -a digital system shown in Fig. 2.1.
ALl the ten components are partitioned into seven modules.

If all the components are required for successful operation
of the system, the logic diagram will be a series system as

shown in Figs 2s 2.

2. 1. ASSUMPTIONS

After drawing the logic diagram, mathematical model of
the system can be developed., The various assumptions which”
are to be made for reliability analysis are

1. The inputs to the system from outside world are all perfect



i

r5

e e S b T
———>{concoenc] | I_ | l
l CIRCUIT T concioence] ! | outse
INPUT 'I ‘ : : _,[; : AMPLIFIER f—
{ |
| Heomcence] | i [ [FLIP-FLOP i E
—L o] circurt | :
AT it W EA COINCIDENCE ,
fac 2t CIRCUIT '
TSN S | ISy L B ot s S T - S 2o ol LRI E L R, g
D E r—F G
|
i [
——~RECENERAT-1- ——(AMPLIFIER R -EéﬁhRAT__I --!F_‘g;%; -
FIG-2.1 A DIGITAL SYSTEM
v
— A B ¥ D E F G ¢

FIG.2.2 LOGIC DIAGRAM OF SYSTEM SHOWN IN FIG. 2.1




i.e. highly reliable.

2. The failure of any subsystem or module results in syskem

failure.
3, The failures Of the subsystems are statistically independent.
4. The arrangement of the function in the system is given.

5. The failure distribution of the component is exponential

with failure rate as kj

Thé first assumption is made for the ease of calcul ations
and can be considered in the mathematical formulation. Second
assumption is generaliy true for the system which is in the
. design phase. The system in which this assumption is not
valid are considered in Ch=pt. 4. The failure iﬁdependence
assumption in calculating system reliability results in a
slight underestimate of the system yellabllity. This error
(less than 10% normally) is negligible. Single component
failure in a series system greatly outnumber Uvarlepping fell~ -
ures. Also, as soon as a single component fails, the system

is at least partially de-energized, thus resulting in a

reduction in the probability of subsequent overlapping failures.

The actual value of the error caused by the statistical in-
dependence consideration can be estimated [37] and it can be
shown that dependence has at the moOst a second-order effect.
From field data it is found that times to failure of electri-~
cal and electronic components are generally exponentially dig-

tributed. Therefore, fifth assumption seems to be reasonable.

2. 2. GENERAL PROBLEM

Consider a system having k subsystems or modules or
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stages. With the above-mentioned assumptions, the system

reliability can be given by [9]

{2 1)

I
e Ey
Py
B

R (n)

where,
: S AHy!
Rj(nj) = reliability of j stage
- ; .th
nj = number oOf redundant components in j stage
Since the use of redundancy is limited by the availabi-

lity of resources, the optimal design problem can be stated

as

Maximize system reliability.

' k _
R, 5 jZl Rj(nj) (2. 2)

subject to the constraints

7 S 5 (nj) g by (2.3)

i M~

J
nj 2L andintegnr) 4 & 1,208

where Gij(nj) is the ith type resources requirement for
jth stage and bi is the total amount of resources available
toriEhe ith type of constraint. Mathematically, the problem
can be stated as. the selection of non-negative integer
vector n such that RS(H) is maximum subject to the constraints
given as above. As the formul ation shows it is a nonlinear
integer programming problem. For solving this problem, the
expression for reliability of jth stage is required. This
expression depends on the type of redundancy which is to be

erployed for enhancing the systew reliahility. It may be
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either active or dynamic redundancy or hybrid redundancy.

2. 3. ACTIVE REDUNDANCY

The use of active redundancy results in less stresses in
the components if load sharing exists. and thereby provides
higher system reliability than the dynamic redundancy. But
special care should be taken to impedance levels, power, signal
gains and linearity etc. In some cases, active redundancy pro-
vides better performance than dynamic redundancy. For example,
in a time~sharing system, a user may have devoted considerable
efforts at console, which can be destroyed if a system failure
Occurs. The use of active redundant console can save his
efforts, even when one console fails. The active redundancy
can be classified as parallel, series-parallel, parallel-series,

majority voting, and multiple line redundancy.

2. 3.1. Parallel Redundancy:

A parallel redundant system as shown in Fig. 2.3 is
defined as the system in which failure of one or more paths
still allows the remaining path or paths to perform the in-
tended function. an example oOf such type of system 1is two
transmitters & and B connected in parallel. Even on the fail-
ure of transmitter A, transmitter B will perform the job. If
mode of component failures is fail safe this type of reuun-
dancy provides an easiest method of improving the system re-
1isbility.

Consider a system having k stages connected in cascade,

Let stage j have a set of nj components connected in parallel,
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each having probability of failure qj. With the assumption

made ii. 2.1, the system re.iability can be written as [1]

k
RS {in) = jil Rj (nj) (34
where,
i (2.5)
= l' . .
Rj(nj) qJ |

In the apove derivation, it is assumed that the failures

of n, components in the jth stage are statistically indepen-

B
dent. But failure of any redundant element connected in para-
llel causes changes in the technical characteristics of the
redundant stage. For example, change in the resistance or
capacitance of a circuit may cause it to operate in an unstable
and irregular manner. Considering that due to the failure of

a component, redistribution of loads or voltages occur in the
parallel connected elements and thereby there is a change in
their Zailure rates. Let there be nj diodes connected in para-
llel in the jth stage and total load on the jth stage is equal

to the rated load of a single diode, the failure rate of the

stage when exactly 1 diodes have failed can be given by

R = (nj-i) xjr {25)

where kjr is the failure rate of the diode when operating at

full load and d is a constant.

This subsystem fails, when all nj components fail. The
possible states which this subsystem can have are 0,1,2,..n_,-1,
Assuming that at time t subsystem is in state i and after an
infinitesmal interval At, it changes to i+lth state. The

characteristic equation defining the state of the subsystem
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at any time t can be written as

k L AP a4 o 1-d
pi(t) o Xjr(nj ) pi(t)+%jénj £4+1) pi_l(t)
+ O(At) (2570
i = O[ l,o.onj—l
with initial conditions

FLitEdE i 0

(B
O else

where p, (t) is the probability of subsystem being in 130 ks

and probabilities of more than one transition are negligible.

Solving the above differential equations with specified

initial conditions

: 1=d
fil N 1 sxpi-k, . fan.=l) t]
py(t) = | m ()t y [
1=0 1=0 ; 1-d 1-a7
@) = (n -
wZo[(nJ ) (n J J
ol

i = l’ 2,.-.1’1.).‘1

and 1-d
P,lt) = exp [l“kjr n; £ ] (2.8)

Therefore, reliability of jth subsystem can be given by

7 B |

J
Rj(nj)= _‘LEO P; (t)

e . st g
therafors, j h subsystem reliability can be written as

= f
RJ. (nJ.) = exp [Xjr nJ. §+

- . - Eall l-d
n, Ll 1 exp['kjr(nj 1) t]
- i L B e R

=0 G a]
el o [(n.—m)l qn,-1;1 di
W=0 J J

(v W (2.9)
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The reliability expressions for a parallel redundant sub-
system vithout dependenc3 (2. 5) and with locad dependenc%‘(2.9)
are shown in Fig. 2.4 and Fig. 2.5, respectively. From Fig. 2.5,
it is clear that if load sharing between parallel redundant
components is possible, this type of redundancy wiil provide
higher improvement in subsystem reliability than standby redun-

dancy (d = 0).

2.3+ 2« Group Redundancy:

Some components such as diodes, relays, transistors, vacuum
tubes etc. fail in two modes, i.e. open circuit and short circuit.
If such components are cohnected in parallel, failure of any
Oone due to short circuit will result in complete system fail-
ure., Similarly, if they are connected in series, an Open cir-
cuit failure will also result in system failure. To increase
the reliability of such components, it is necessary to reduce
the propability of open and short circuit failure simultaneous-
ly. This can be achieved by using group redundancy. Group
redundancy or mixed redundancy can be realized by two types
of arrangements, i.e. series-parallel redundancy and parallel-
series redundancy as shown in Fige. 2.6a and 2,6b, respectively.
Which type of mixed redundancy to be used, depends on the tech-
nical characteristics of the components. For example, let
parallel-series redundancy be used to increase the reliability
Of a thyrister valve in a convertor circuit. When one Of the
valves arcs back or fire through, a voltage rise occurs across
the remaining valves. But in case of series-parallel arrange-
ment, voltage across all the remaining parallel connected

valves group rises. If one of the valves in parallel series
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arrangement fails to fire, the current in that link of valves
will fail to flow and load will be carried by other links
connected in parallel. This may cause current overload in
Ehé convertor circult, while in series parallel arrangement
current overload takes place only in the valves connected in
parallel with the one which fails to fire. The other factors
on which the arrangement to be chosen depends are, the possi-
bility to disconnect the faulty valve without disturbing the
Operation of convertor circuit, the method of feeding the
control pulses to the valve grid and the layout of valves at
the convertor station, SimdltaneOus firing of the series
connected valves is necessary when parallel-series arrange-
ment is used. The simultaneous firing of valves in series-
parallel arrangement is not strictly required, but in case of
considerable lag in the firing, the parallel connected valves
lose uniformity in the current distribution. The repl acement
of the valve in this type of arrangement can easily be done

without interrupting the operation of convertor system. When

failure rate of a component is a function of the load that it

is carrying, the parallel-series arrangement is preferred.

Consider a jth stage having npj components connected in
parallel and nsj components connected in series. Let pOp be
the conditional Probability of an open circuit failyre. . af §
component, given that a failure has occurred, 55p=l-pop P
denotes the conditional probability of a short circuit,given
that a failure has occurred and Fj(t) is the failure time

distribution functionof the jth type component. The jth stage

will fail when all npj components in any unit fail by open-
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tircuiting or when at least one component in each unit fails
by shc st-circuiting if series-parallel redundancy is used.
Assuming that a sﬁort circuit failure cannot occur after an
Open circuit failure, the stage reliability (using series-

parallel redundancy) can be given by [10]

-~ nsj - npj 5]
_ = D o
Rspj(t) - [1 (pOpFJ. (t)) J Ll (1 pOpFJ. £ } (2.10)

If parallel-series redundancy is used to increase the
stage reliability, the stage willi fail when at least one com-
ponent in each parallel connected chain fails or when all

components in a parallel connected chain fail, [10]

ol o 7 Pi L 7 P
- SJ =1 Ta i Tm ®J 3
Rpsj(t) — |j (popFJ. (t) J [1 {1 popFJ. () } (2 )

The reliability expression for series-parallel redundant
system is plotted in Fig. 2.7 which shows that if the PEO~
bability of open circuit of a component is low, series-parallel
redundancy is preferred. Beside this; atage relieblldty in-
creases with‘number of chpOnents to be connected in parallel

upto a point after that it decreases with increase in npj‘

2. 3. 3. Majority Voting Redundancy:

Use Of majority voting redundancy is the most effective
method of improving the reliability of the digital system, when
mission time is short and repair is not possible. It does not
require error-detecting and switching device and is, there-

fore, ineffective oy the random transient failures which
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generally occur in the digital computer systems. This type
of redindancy is also called as N modular redundancy (NMR).
In NMR system each stage has (2nj+l) identical components
connected in parallel whose outputs are fed into a majority
voter as shown in Fig. 2.8. The output of the voter is the
majority of its input signal. The jth stage will fail when
(nj+l) components fail, if R is the voter reliability, the

jth stage reliability can be expressed as [9]

" - 2nj+l (2n++l)| i )2nj+1-i
BRI = R . e g N o iz, {R=13)
- Biv v iwnj+l (2nj+l l)!l! 5 j

where nj=1,2,...

In the above analysis it is assumed that a component has
an equal probability of failure with output O and with out-
put 1, which is not always valid. Beside this, one may inten-
tional'y design a component to fail in a given output state.
Consider a Triple modul ar redundant (TMR) system where one
component failure is tolerated. If second component fails to
the opposite logic level (O or 1), thus n:utralizing:the voring
effect of the first failed component, and resulting the output

of the TMR system same as the good component signal.

if plj is the conditional probability of the component
of jth stage failing to logical one and (l-pij) is the condi=-
tional probability of the component failing to logically =zero,
the jth stage reliability can be given by

: e, ol 2
R iln .t = R ( Sr=2riwap.  {tp. Jr. {1l-r; 2,17

[
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For the components'having symmetrical failures, the choice

Of voter is a majority element. If the components have asy-
mmetrical probability of failure, the majority voter will not
be a best choice. For example, if a component always fails
with zero output, an OR gate is a best choice for voting ele-
ments. Reliability expression (2.12) has been plotted with
respect to normalized time Kjt and is shown in Fig. 2.9 which
shows that if a component has normalized time greater than
0.65, the use of NMR system will provide higher system relia-

bility,

2.3.4. Multiple Line Redundancy:

It can be shown that total triplication is superior to
partial triplication for a system having component unrelia-
bility less than 0.25. A& system in which total triplication
is done, is called as multiple line redundant system. The
reliapility of such a system can further be increased by pro-
viding three voters per stage, as failure of a voter in a single
voter system, which is simple to design, brings about the fail-
ure of the complete system. The various factors which ALfFact
the number and placement of the voters are
1. availability of resources such as cost, weight etc.

2. the voter circuit delay and drive requirement.

3. the testing facilities.

4. the trouble shooting time and logistic requirement

5. number of signals to be transferred out of a component

6. the reliability of the voter

Consider a multiple line redundant system having k Mo
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independent stages or subsystems, the system reliability can
be giv:n by

Rt ,r v_(_3r2.R2-2r§R3][3(1r £)%-2(m rl>3J (2.14)

b g it - 161

where I is the set of stages having majority structure.
A family of curves illustrating the behaviour of this type of

redundancy is shown in Fig. 2.11.

2¢ 4« DYNAMIC REDUNDANCY

This type of redundancy is also called as standby redun-
dancy. Realization of standby redundency requires a fault
detecting and switching device, which makes it possible to
locate the faulty component and replace it by the standby
component. If the fault detecting and switching device is per-
fect, i.e. highly reliable, theoretically it enables to achieve
system reliability close to unity. Such type of redundant
system is shown in Fig. 2.12., 1Its Operation can be explained
as follows. Consider that the jth stage has nj redundant
components. Initially, the basic component is only kept in
energized condition and others are kept standby. When the
basic component fails, a standby component is switched-in‘
to take its place. The -failure of the stage occurs when nj
components fail. Assuming that the fault detecting and switch-
ing device is perfect and requires no time for operation, spare
components do not age while waiting for replacement and the
distribution of the number of failures of the components upto
and including time t is poisson with mean as kjt, the jth

stage reliability can be given by 9]
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g’ T 3 n_]
Boin ) e a4 ) b A (2. 15)
J o J ), ol

i, (7\,,t)l
4

The fault detection and switching operation can be per-
formed by a human being. But it requires considerable time
in locating the fault and in the replaceﬁent of faulty compo-
neiEs LIEf tfrj is the time required in the fault detection

and replacement in jth stage, then jth stage reliability can

be given by [10]

Rj(nj) = exp [}j {F—(nj+l)tfrj}].

iy ) L & B

L (g o ) :

L HiEeg ] 216
1=0

Above expression shows that there is a considerable
improvement in the system reliability if fault detection and
repl acement are instantaneous. This can be achieved by using
automatic switches. The expression (2.15) is only valid when
switches are highly reliable. Generally, switches remain in
inoperative condition; they are only required to operate when
a fault has occurred. It might be possible that under this
condition switch may fail to operate. Therefore, the pOssi-
bility of a stage failure may occur due to shortagas of any
sbare component and failure of fault detecting and switching
device when it is called for operation. For analysing system
under these conditions, let state i denote that the ith
standby component is in operation; and ngh state denote the
failure of the jth stage, If dg is the probability of failure

of fault detecting and switching device and during infinitesi-
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~mel interval At, the jth stage changes from state i to state
i+l & probabilities of more than one transition are negligible,
the differential equations defining the various states Of the

system can be written as

pé(t) = -[%j At}po(t) + O (Ax) (2178
o (&) = [nj@-abe]e; ; (0)-hAtp, ()400t) (2.18)
2w Ly esuly =]
t
p; (£} = -[qusﬂt]pi(t) (3197

i = l,2,..n.-l
5,

with initial conditions as

K. el
Dokal =
2 0 i=l,...nj—l

From (2. 17)., po(t) can be calculated as
po(t) = Eexp (-Kjt)

and from (2.18), pi(t) can be calculated as
i .
[}j(l_qs)t} g -

= J
pi(t) = T e

[ i ;
Therefore, the j h stage reliability can be given by

: 3
=l L (T i
: oy

Al
Rj(nj) = E B 2] = exp(—kjt>iio

T (2. 20)
A family of curves are plotted in Fig. 2.13 for various values
Of switching device reliability, which show that switch device

should have high reliability if standby redundancy is to be
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used for enhancing the system reilspliity,

In the above analysis it is assumed that failure rate of
the standby components when unpowered, is zero. But, generally,
the ratio of failure rates of the components with power on,
to that with power off, LRGeS Frem Lol e 2. 16, depending
upon the type of component, environment and Packaging. Beside
this switch may fail in more than one mode, Considering more
complex situation, the various modes of failures of the standby

system can be categorised as -

l. Gradual failure of the components:. The gradual failure
in the components occurs while they are kept as standby
Or in operating condition., Let the time upto first power-
on and power-off failures be dist:ibuted according- to

< Fespectively.

d

2. Static failure Qf switch: The switch opergtes when it is

exponsntial law with parameters, as hjand Y

not called for operation., This may be due to false sensing
Or due to some failure in switching mechanisms or external
conditions such as vibrations etc. This will cause unnece-
Ssary switching of one standby component, Let the pra-
bability distribution of static failure be poisson with

pParameter as dj.

3. Dynamic failure of switch: If switch fails to Operate when
it is called for Operation, the failure of switch is called
as dynamic failure. This failure may occur due to Jjammi ng
Of contacts or failure of the switching mechanism. For
analysis, it is assumed that Probability of such type of

failure is qg-
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4. Gradual failure of the switch occurs during the operating
time of the active component. Let the time upto such failure

be distributed exponentially with parameter BJ.

For the analysis, it is assumed that these failures are
statistically independent, Consioer the jth stage of the
system. Let the state i ( i=l,2,...nj) denote that ith compo=
nent 1& i'n Operating condition and switches are working proper-
ly. "Ligt state nj+i (i=l,2,...nj) denote that ith component. is
working but switch is not working properly and (2r1J.+l)th state
denotes that jth stage failed. The probability that the 5
stage changes from ith state to i+lth state during an infinitesi-

mal time At can be given by
[)\J.+(nj~i)Yj+°(j:[ 3, ot

+0 (At) 15t 9n,
P {i-—-—-) i+, At} - J

Bj at 4 Of At)

" T i % 2.
l s o J

R ]
Xj+(nj l)Yj¥Nj+Bj At+0(At)
3 kL an

%jAt + O Ax)

P {i-———>i} -]
0, &h € 2nJ. 2. 21)

where &g = 1-q J i

It is assumed that probability of more than one transi-
tion is zero. The differential equations describing the be-

haviouyr of the jth stage can bewritten as

pp(t) = -LAJ+(nj-l)YJ+uj+Bj]pl(t) (2221
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p{ {t) = -[%j+(nj-i)Yj+o<j+8j]pi (t)

+[}j+(nj_i+l)yj+dj] U Py -z i€

i=2,...nj (2. 23)

péj+i 3 W iji (&) -Ajpnj+i ()

ad v (3..24)
)
with initial conditions as

.} for l:l
QU g e 2nj (2.25)

Taking Laplace transform of both sides of apove equations

and solving for P 6By 1€ 411 result in
g 4

p, (5) = - (2.26)
. ~1)Y. Al
[S+)\J+(nJ )YJ+ o<J+BJ:{
i-1 ) i
=1 +1)Y 4ot .
lZl E\j+(nj 1+ YJMJ]qS
pl (S) = i _
4 =] > - :
lZl S+>\J+(nJ )YJ+ qJ+BJ]
i=2,3,...nj {327
i=1 .
s T ol . )
BJ 111 [%J+ (nJ +1)YJ4o<JJqS
pnj+i(s) - 3
. Bk . N 2 4 i . B
(S+XJ) lzl[j+kj+(nj )YJ+ qj + ,J]
. 5 L S (2.28)

The Probability that jth stage will be in state i at time

t can be calculated by taking Laplace transform of (2, 26), (&2
and (2.28), which results in



=3 4

(t) = g [; {l.+(n.~l A+ .+B.?t] £l 0
= Xp 3% ; ) YS o« i (2.29)

-

i-1[i-1 |
R S T VA +(n,~1+1) Y.te, (| .
ks 8| s g b Yty

.. -

expl =N+ (0 =w) Y to,+B. i
expl ] J+(n m))3+dJ+BJ} A

H
w=1 i=1
%

J
i
7T (w=1)]

i=2,3,...,nj (2.30)

_i'l i-1 E
pr1j+i(t):‘3qu lzl [/\.j+(1’1j—l+l) )/J+ o(J] -

- Lt

por-

e -A.T
xp 3 )

-+

.
fin.=1) Y. +, +B,
gzll}nj ) 73 ety +BJ}

3 exp[- /\j+(nj -) )/j+o<j+ BJ t]

)3
w=1 yi*l TJ;
1 1=1

1#w

[w-l].[—{(nj“w)y3+dj+8j%]

i = 112,...11’1-]. (2-31)

The jth stage reliability can be given by

2nj
Rj(nj) = 3 Pi(t) (2.32)

i=1
Therefore the stage reliability is a function of failure
rate of the component with power on and power off, and s:.itch
religbility. =~ family of curves are plotted between stage
reliability and component reliability with different values

B . @ Bj ., and q, as shown in Fig. 2.14.
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2.5, HYBRID REDUNDANCY

Hybrid redyndency congists of the compination of- an hMR
with majority voting and standby redundancy. This type of
redundancy is superior thaniNMR due tO higher improvement of
system reliability, specially when component reliability is
very low and provides larger mean life than the nonredundant
system. The operation of the hybrid redundant system (N, m)
as shown in Pig. 2.15, can be explained as follows. This
hybrid system has NMR core with 2 spare components. Whén
any conmponent in the NMR core féils, it is detected by dis-~
agreement detector by comparing each input to the voter with
its output. The failed component is then disconnected from
NMR core by a switching device and a spare component ié
switched in, if available, thus restoring the NMR in the
system. When all spare components are exhahsted, the hybrid

system Operates as a NMR system.

For analysis purpose, consider a jth subsystem or stage
having Nj (Nj=2nj+l' where nj=l,2,...) fold active redundant
components forming the NMR system and mj spare components.

Any component in the subsystem may be either Operating or
walting in spare storage. The subsgstem fails when (mj+nj+l)
components fail, Therefore, the pPossible states Of the sub-
system are 0, 1, 2, ..(mj+nj+l). Assuming that the active

and standby components have constant failure rate as kj and

Yj respectively; during a small interval of time At, the sub-

system state changes from state i to i+l. The probability

Of transition from state i to i+l can be given by
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- |
E\]j)‘j‘L(mj-l)Yj] At+0 (At)

0 ¢ i< m.
gl __mJ
N.+m.-1 N.+m.—l-i
JJ Iaat(-a Ae) D
1 3 ]
P_ {i———>i+1, Ag} - +0(At)

~ IN,4m.-1 palis
[J+mJ ]kJ

m. i n. +m. .
J % e I

g 0O otherwise
(2.33)

For simplicity defining a new variable J. as,

NN = 3 Q& i
[ jh gt m; l)YJ} Sismy
Ki = ENj+mj-i]kj mj &l € nj+mj
O otherwise
o (2.34)

The probability of more than One transition in infini-
tesimal interval At can be neglected as it is very small. If
pi(t) is the probability of the systém being in state i at time
t, the differential equations characterising the state of the

system can be written as

p; (t) = =P, (£)+k; _,a,p; . (E) (2. 35)

The initial conditions of the system are pO(O)=l and
p, (0)=0 for i40. Taking Laplace tramsform of (2.35) it

results in

)
(S+xi)
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Since

P, (8) = L _ {3: 37}

S+)xO

expression (2.36) can be written as

_EENANL
qs lio >‘l
T (S+ Xi)

1=0

Taking Laplace inverse of (2.38), we have

I o T R Y

s 1
l (@ l:.—O i S
™ (NN )
W=0

gl (2.39)

G B S o
2

Therefore, the jth subsystem reliability can be given

by

G ey e L PO ¢ R exp (~A; t)
'

R.(n.,+m.) = R .- T ik 3 -
'J J J ¥ i-_-O J_-_-O l =O . g e
L4 (xw-xl)
B0 (2. 40)
o (L > S |
j =

and if mjzo

= N = 448
: j i :
Rj (nj PR ¢ - T (i J lexp (-)\J.t)jl [l-exp (—hjt):l (2.41)

Vi_e
where RV is the voker reliability

The reliability expression for NMR and Hybrid (3, m)
is plotted in Fig. 2.16a which shows that when component
reliability is less than 0.5, the use of NMR decreases the sub-

system reliability. The larger value of Nj further makes the
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subsystem worst, while use of hybrid redundancy results in
appre.iable shift of the well-known cross—over point as indi-
cated im Fig., 2.16b. The shift of the cross~over point is
effected by the ratio of Yj/%j ;N and m,. As shownin

Fig: 2.1e6d, fer mj=l, increase in Njwill improve the subsystem
reliability only when 0.58¢ r.¢<l. Even in these ranges, larger
value Of deo not provide significant increase in the subsys-
tem reliability. Therefore, Nj is kept as 3 and mj is varied.
The plot of reliability function when mj isa variable is shown
in Fig. 2.16a which shows that any desired level of system
reliability can be achieved by increasing m. The effect of

switch fallure is to reduce system reliability as shown in

®ibs 2 Lha.

2.6, STANDBY REDUNDANCY WITH REPAIR FACILITIES

‘nen a fault in a system is nonrecoverable the failed
equipment is disconnected from the system and repair is per-~
formed. It may be possible that at a time more than one com-
ponent can fail simultaneously. This requires more than one
repalr crew in order to increase the Operating time of the
system. But in case of irredundant system, repair will not
help in the sense of increasing the system relishiliey. It
can be enhanced by providing spare components. The behaviour
Of such type of system can be explained as follows. Initially,
one component is kept in operation and others are kept as spare.
When & component fails, it is replaced by a spare component
and the failed component is sent for repair. When repaired,

it is kept as a standby component.
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Consider a jth subsystem having Nj (Nj=l,2,..) components
connected in series and mj components as spare. Let the
repair time have exponential distribution with parameter as
#j and replaceméht time is very small and can be neglefted.
Any component in the system may be in one of the states =~

a) operéting in the subsystem

b) waiting in the standby

c) waiting for or receiving the repair facilities

The transition diagram for system having two spare com-
Ponents is shown in Fig. 2.17. The probability of transition

during infinitesimal time interval (At) can be expressed as

b, {i-*ﬁ"iu} = X, (At) + 0(AL)

-1 {i-——ai—l} - E&(At) + O(At) (2.42)

where ii and ﬁi can be defined as

rN.K. EE 81 ¢,
, I 1 ) 1
1 o otherwise (2.43)
and =
il , e L b B
#J £1¢< C
”i = rcjuj i rcj £-1 £ mj
0 otherwl se (2. 44)

where rcj is the number of repair crew for jth stage.

If py(t) is the probability of the system being in state i
at time t, the probability that system will be in state i

after time t+#At will be
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plt+dt) = (1-NAt) (1= At)py (£) 4N At (1-4 _,At)p, _, (t)

E=
+(1—M+1At)#i+lAtpi+l (t)+0(At) (24 45)

Therefore,

i

p (t) (N +4, )Py (t)+>‘i-1pi-1(t)+“i+1pi+1 (t) (2. 46)

With initial conditions as
pi(O) = O sy 0.4 4

and pO(O) = 1

From (2.46), the set of differential equations describing

the behaviour of the subsystem can be described as

B, L) = -ijjpo (£) + Abjpl(t) (2.47)
pj (8) = - (ijj+i#j§pi (t)+Nj>\jpi_l(t)+(i+l)ﬂjpi+l (t)

Lgi < T (2.49)
pi(t) = *(Njkj+rcjﬂj)pi(t)+NjAjpi_l(t)+rcjﬂjpi+l(t>

Toy < iogm, ' (2.49)

The steady state reliability of the subsystem can be found
by setting up lefthand side of (2.47), (2.48) and (2.49) to

zero and solving for p, (t=——>00)

1 (N.)\.i
W i “ ] By 1g1gr, (2. 50)
I b e
S L T ¢3 |
1 (J J> (J J) Hen
B o= i o P g
: g Ty 2 et .
m+1
Since I pizl, the probability that system will be
fal
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in zero state can be written as

L - MR 1 W il I T ej
ai & ( j J) 3 o J)
o= 1lg = + =
) : ik L, iy i |<. &
i=1 v J l=_LCj+l . J
o g T
N X cJ
sl i,
i : {(2.52)
N :

and the probability that the system will be in down state

p can be given by

m_+1

J

. R e
N.A, e N.A. 4 9
L ( : J) <, - ) (2.53)

p = C

il RAT St

The reliability of the subsystem can be written as

Rjg;cj@j) w b= pmj+l (2.54{

“ne expression (2.54) is plotted between probability of
subsystem being in down state, number of repair crews and

standby by component as shown in Fig. 2.18.

2. 7. EQUIVALENT LINEAR PROBLEM

From the reliability expressions and (2.2) and (2.3),
it is clear that reliability problem is a nonlinear integer
programming problem having integer variables. It can be linear-
ized by using bi-~valent variables. Taking logarithm of (2.2),

it will result in a separable function as

k
LDR = Z L R. o 3
S(n) - n R, (nJ) (2.55)



FIG.2 19 PLOT OF RELIABILITY FUNCTION FOR jth STAGE
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The separable reliability expression can be linearized
by approximating it to be astraight line between two values
of nj as shown in Fig. 2.19. Let le=l, l:l,2,...ﬁﬁ‘ be
the increment in variable nj between interval 141 and 1, the

linearized reliability expression for jth stage can be written

as
L (n,) zj | (1) (2.56)
)TN 5 A = (=R S U G 1B .
- Tk toh o — J
where cjl is the slope of the lth segment and can be
given by
R,(Q+1)
J
Ry = iA R, 1) ' (2.57)

Nj is the upper bound on nj' Assuming that the constraints
on the system are linear, ﬁj can be calculated from constraints

set as

ﬁjzr@n [zi_]' 121,2,...8 (2. 58)
: i G U

where aij and bi are the resources requirements associated
with each compbnent of jth stage aﬁd the total amount of re-
sources availabiiity gor the ith ﬁype of constraint, respect-
ivély.

Similarly, with some manipul ations constréints can also
be written in terms of x ;) variable. Therefore, the nonlinear
reliability problem is transferred into an equivalent linear

problem with le variables as

Maximize
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k ﬁj § ‘

o x) = J_El 151 1 le+jil Ln Rj(l) (2.59)

suo ject to the constraints
k ﬁj
gl - ! 121, 2, .. 8 e
le = Darl

where,

o : k " .

bi = b, - jEl ay (2.81)

As the objective function is concave and monotone in-

creasing (except mixed redundancy). it ensures that le> Cjo

” Cjﬁj , which indicates that for p > 1, the varisble xjp
can be one ornly when x.,=1, i.e. the variable le will

ji
always enter the solution bufore ij‘ Thercfore, the line=
arized reliability problen has same optimal solution as
original one,

The optimal solution of the original problem defincG
by (2.2) and (2.3) can be obtained from the optimal solution
of the above eauivalent problem. Let X be a feasiblc

solution to problem given by (2.59) and (2.60), then

X L\:j

5 5 Gl =_ .
B o 1 * .

k N_—j k

5 a, . 7 e e Ba kLD Ay
CaRe - BT i T R -

N,

e fre 5 oxglen

bl Pl s = I & =

g3 t 1=1 Jl( *
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hence,

{Z2:62)

This maximization problem can be converted into a minimiz-
ation problem by replacing %51 by (l-fjl). The resulting prob-
lem can be stated as

Maximize T (x)

kg 2

Uix) = —jil lil Cj %41 * 9 {2,63)

subject to the constraints

N .
k J o
X FU T S A 2. 64
Gl 1T % : )
where,
3 N )
& L= X a,., N,-b! . (2.65
i 1 1 L
and =
ol T da ) (2. 66)
g = % z (g + In R(l 2. 66
BT 5N DE i J

Since term g, is constant, less than or equal to zero,

maximization of the function PY(x) is same as minimization of

o My
by I S R s
oy e
rewritten as

The equivalent reliability problem ean be

Minimize F(x)

3 kN
F(X) = Z Z

X, (2.67)
Sl Lk -

i VS ¢

subject to the constraints
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i N,
k J =
B o B Wy (2. 68)
j=1 1=1
Hey mer il B0 o A

An optimal solution to a probiem defined by (2.2) and
(2.3) can be obtained from the optimum solution of the equi-
valent minimization problem with the help of the following

relation

(1-x . (2.69)

[ d

e}
I
—

+

. )
j 1 1

|
L

For easy handling of the problem, the above formulation can

be expressed in terms Of single subscripted variables, viz.

Minimize F(z)

w
PiE) w Y gy B {2 707)
jud 424
subjec to
w
2 Ry &Y W {aadal
v o R Al
s et o S
z:OOrl
where,
i v
w mw L N, {2.72)
j=1

. and h. . are related to ¢.. and a., , respectively b
QJ i il i 5 P Y by

the following relations:

—

" for J=1, 2,0 . Ny
Q
11

l:_"l, 2]‘ -ch



&
g_] = .21
%1
and

Fail

a,
h, ., = l.2
15 .
%k

[.for

for

for

for

for
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j: (ﬁl+l) P (ﬁl-l-ﬁz)

L 0 B S

2
N
j:: Z Np+l,oo'1w (2-73)
p=1
J=l,....N;
j=N1+l,...,(Nl+N2)
=L _ - )
e R Wl i gw (2. 74)

If constraints on the system are nonlinear, they can be

linearized in the same way as the objective function.



Chapter 3

TECHNIQUES OF RELIABILITY OPTIMIZATON

In the previous chapter, reliability problem has been
formul ated as a nonlinear integer programming and linear in-
teger programming problem. This problem can also be solved
by assuming n, to be a continuous variable and thereby the
solution obtained will be an approximate one. 1In this chapter,
methods are given for solving this problem by using three
types of formul ations:

l. Nonlinear programming formul ation assuming nj to be
continuous variables
2. Linear integer programming forrulation

3. Nonlinear integer programming formul ation

3.1. GEOMETRIC PROGRAMMING FORMULATION

A new formulation for the problem of system reliability
optimization when constrained by some linear constraints is
presented. This formulation is applicaple to the systems in
which the active parallel redundahcy éan be used for enhancing
the system reliability. The formulation provided is eésily
adaptable té Geometric Programming form. The problem is fur-
-ther reduced fo that of an optimization of an unconstrained
objective function with variables oﬁe lesé than the number.

Of constraints, when its dual is defined.

Reliability optimization problem of a system using para-

llel redundancy can be expressed as (-2, 2.3, 2id)
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n.
(l-qj]) (3.1

W 1.3

\S (n) =
subject to the constraints

2, £ b ! | (3.2)

ey

Dby o o Fals

Since qj<< 1.the expression (3.1) for unreliability of the
system can be approximated as the sum of the unreliabilities
of the stages. Therefore, the reliability problem can be re-

formuyl ated as

Problem 1

Minimize the system unreliability

k n.
Q/ (I’l) = b g .J (T 3)
= J

su~ject to the constraints given by (3.2).

To obtain the geometric programming formulation of the
reliability problem we define ;j in terms of nj as

Ln )

al
T .
J qj

n j=ll 21---1k (3-4‘)

Substi tuting gj in (3.3) anu by exponentiating (3.2),

the geometric programming formulation of (3.3) and (3.2)

Problem 2

Minimize
: N\ e O
z b4 NG OFE roygh
Yl 9
) i /(\ E:'/ :\ -:.
subject to0 the constraints m-ﬂif . c
. CENTRAL LIZRATY LN Cf ROORKEE

ROORKEE
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k 5
exp(=1) m Q.7 (3 6}
j=1 J
where, A
LS
¥l w o TR - YRR, (%1}

j:ll 2,--n]k

Assuming nj to be continuous variables, the dual geo-

metric programming formulation of problem 2 is

Dual problem

Maximize

k s+j 8 exp (-1) s r i
A | L ) T —— T L éi] (3.8)
Fe S NS i=1
S+ ] i
sub ject to
k
el . o
j=1 +J
and
8
(S ar e Z yi " éi = (@) (3.9)
S+J i:l J J=l, 2,.-.,]{

é_z_o S S AP

where 51 [i=1,2,...,8] are the dual variables correspond-

ing to (3,6) and és+j [j=1,2,...,k] are the dual variables

corresponding to (3.5).

Expressing
kK
i L
2j = ;1478
(3. 13)
and Llj = ylj = l:l]2,a--,s

Ik sl k
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Suhstituting the above-defined constraints in (3.8) and
(3.9); mnd taking the logarithm of them, we have an uncons-
trained problem of S-1 variables, which is

Minimize

g= &, k S i |
g5 [(1— éi)+ jil e Jél)}
g=1

L p £yal o é. a—— S

k
+ Z
=1 & el S

J
Di fferentiating (3.12) with respect to éi I e T

and equating to zero, we have

= =l

. k
4,
1- =~ 5 L. alga & Ly, $ ) +
( s )+J=1 tJ LRI
- o B
szl é E, LwJ i |
s S O e (%
o LY T -y
jt 5 &
k Ty Dy
+ 2 = O

fals @aa is g EBeil (3. 13)

(3.13) is a system of (s-1) nonlinear equations which

can be solved by Newton’s method or by the subrelaxation method.

Let us consider the case when there is only one linear
constraint on the system, i.e. s=1 or a constraints set in
which the active constraint is known. From (3.9) and (3.10)

we have
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B éj+f=ylj/él

Using primal and dual relationship of Geometric Programm-

‘ng and (3.4), we have
Bl 5. o
0y = |,

By substituting various constants defined by - (3.7) and

N tar

e : : :
. T3 Ln(€,/yy ;) € €, +L“(Y1j/él)} i

(3. 15)
jzll 21.co’k

(3403, nj , the optimum number of parallel components in each
stage can be calculated, and the optimum fediability of the

system can be given by RS

k k
R, = 1- z exp[i HF yﬁ_Ln(el/yli) €1+Ln(ylj/él)—l/%l
J‘:l 1 =1
(3s.1:6)

The above expression does not give the exact system relia-
pility due to the assumptioh made in deriving expression (3.3).
This gives 0.09% error in the calculation, which is very small.
From (3.16), the expression for reliability in terms of resources
allocated can be derived which may be very useful to the system

Cesigner.

Numerical Example

A system consists of four stages, each having reliability,
cost and weight as tabulted below (Table 3.1). It is required
to find the optimum number of redundant components soO that the

yctem reliapility is maximized with cost and welght constraints
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as 56 and 30 units, respectively.

Teble 3.1
Stage number Reliability Cost Weight
L 0. 80 Jive; 2 110,
2 0.70 263 1.0
< 0.75 3.4 1.4
4 0.85 4.5 1.0

The above data were substituted in (3.15) by making use

oE (3.14) angd (3.7). The resilte obtained &re -

n, = 4. 8997
n, = 6.:2494]
ny, = 5.2417
gy 30415

Rounding off to the nearest integer value we get an optimal

allocation as given in Table 3. 2.

Table 3.2

Stace number Number of parallel

components
i 5
2 : 6
3 5
4 4
System Reliability = 0.99280% [From (3.10) ]
Actugal System Reliability = ©.99713

The proposed approach of solving the reliability problem
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is practical method due to its simplicity and less algebraic
calculation. The problem with nonlinear constraints can also
be tackled by this approach after transforming nonlinear cons-
traints into a posynomial form as required by Geometric Pro-
gramming. Computation time depeﬁds only on the number of cons-

traints on the system.

'3.2. PENALTY FUNCTION METHOD

A method is developed in this section in which the Qse of
penalty function is made to convert the constrained reliability
problem into an equivalént unconstrained problem. The latter
is solved by the steepest ascent method by assuming nj to be

continuous wvariable.

The reliability problem can be written as
Mirnimize
k

-Ln Rs(n) = = Ln Rj(nj) {8« 17

J:l

subject to the constraints

: S 5 (nj) < by

&

J
i:l, 210--15 (3.18)
nj > O and integer
The equivalent unconstrained problem can be written as

Minimize

=1
' s k
£in, ) = -Ln RS (n) +rpiill:bi-ji]l@ij (nj)] | (3.19)

where rp is a parameter called as penalty factor, A
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sequence of positive value of r? whicﬁ are strictly decreasing
to zero, are used for minimizing (3.19)., It results in a se-
quence Of minimum points which converges to the constrained
minimum of the -Ln Rs(n). If the optimal solution is integral,
then problem is solved. Otherwise, a non-integer variable

(let it be nj) is chosen which has highest fractional part
(dnj). A new constraint is incorporated in the original prob-

_lem which can be written as
1. mn, |4l (3. 20)
] - e Jl

where Injl is the integral portion of the o The new
problem is again solved in the similar way as original un-
constrained problem. If new problem converggs, nj is set as
]njl+l; ‘otherwise, as |nj|. The same procedure is repeated
for other va:iables. The stepwise procedure can be summariéed
asfdlmm.ng,3J]
ALGORI THM
1., Select an initial value of R > O and an interior point n°.

Set 1=0.

2; 1¥ nl nearly minimizes f(n,rp},'go to step 6, otherwise

calculate direction vectors dj

OF (n, r )

J A3 T E B s 2

J

3. Choose stepsize t,that minimizes f(nl£§d 2 rp)

|
4, Calculate new trial point

1 k) 1 X
; = x =06 P : .
nJ nJ ¥ 3 Tl napke

5. Set l=1+1 and go to step 2.
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6. Check convergence. If solution is optimal go to step 7;
else replace rp by strp. where O¢ st ¢ 1 and go to step

7. Choose that variable which has greatest dnj and add the
following constraint in the problem

o R e
J_IJI

3. Repeat step 2 ~ 5. If problem converges set nj=|njl+l}
otherwise, njzlnjl and remove jth stage from calcul ation,
9. If all variables are tried, stop, else, go to step 7.
The initial value of rp should be such that
-Ln R_(n)
o O = f3. 2)

P g B k =1
. Ea.— pX G..(n.)]
B3 S o e

where FC i 0.0l ¢ FC < 1. Various problems were solved
on IBM1620 by using this method and satisfactory results were
Obtained. The use of numerical differentiation is made in case

Of standby and hybrid redundancy.

NUMERICAL EXAMPLE.

An electric power system in an aeroplane consists of three
stages: I.C. engine, generator, and a frequency convertor
connected in series. The cost, weight, volume and reliability
data for these equipments are tabulated in table 3.3. The
problem is to maximize system reliability by using parallel
redundancy such that cost, weight and volume of the complete

system do not exceed 50, 52, and 65, respectively.

Initially, rp is assumed as 0.8 which gave a minimum
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point ag (1.9481, 1.6929, 1.3573). In the next iter-
Bl O :p is reduced by 0.35 and again a minimum is obtained.
This procedure is repeated until an optimal solution to problems
(3.17) and (3.18) is achieved. The complete results are tabu-

lated in table 3.4.

Table 3.3
1.C. Engine Generator FEEdueney | con=
vertor
Reliability 0. 86 (@Yl 0948
Cost 4,00 8.00 (151646
Weight 6. 00 6.00 10,00
Volume 10, 00 5.00 10.00
Table 3.4
Iteration No. rp nl n2 J n3
1 - 1.0 Tve O § )]
2 0.8 I 948 1.692 dugioT
=) RS To FDT 1. B0 LSk
4 . 098 2. 431 207 1.647
5 o (3 2. 668 2 A 1. F10
Optimum solu- 3 5 5

tion

3.3. FLEXIBLE TREE SEARCH METHOD

This enumerative procedure [ 3§ allows a great deal of
flexibility in the backtracking steps which improves the effi-

ciency of the search procedufe.
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The linearized reliability problem can be written as

Mi - imize

subject to the constraints

W
N I A

e
3 3050 1.

J s o T

(3. 22

(3.23)

e 7S

The stepwise method for solving above problem by flexible

tree search can be described as

ALGORI THM.

l. Start: Set all variables free and r=1.

2, Forward move

free variables which has maximum u

S
u = Max 3 (=
= j=l,...,w|:i=l %
and di for ith

d; = = hy .z e,
e

- Pick out a variable z

f 4

axg

constraint is defined as

- from the set of

where uf is

(3. 45

(3. 25)

i:l,?,..-,S

S is the set of variables specified at any iteration and

Zj is the value assigned to a variable. Set zf=1. if

there is a tie,

choose that variable which has minimum gj.

Label this variable as assigned and put it in the list of

specified variable of rank r.

If this set is feasible,

check whether it is optimal; if yes, record it and go o

step 4, else goO to next step.

3« Test for next move - If this set has interesting solution,
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go to step 2, else go to step 5.

4, Backward move - Pick out a variable ZY from the 45t of
assigned variables which has the highest rank and maximum
Vy' In case of a tie, choose that variable which has maxi-

mum gj where

e _ (3. 26)
i

and
o a8 =E, A% 27
*¥ el Byl B o o 8 ( )

(g represents only these t; ‘s are to be added which have
;egative sign,)

Set Zy to alternate value and label it as fixed. Assign
rank r =r+l to variable z, and to all the variables from

the list, which have higher rank than r are set free. GO

to step 2.

5. Test for termination - All specified variables are fixed,

go to step 6, else go to 4.

@ SEOD.
An Example

The reliability of a system, consisting ©0f three stages
in series is to be maximized through the use of parallel redun-
dant components. The reliability cost and_weight of each
component type are tabulated in table 3. The entire coOst
and weight of the system should not exceed 50 and 60 units,
respectively. From the design consideration, it is known that
the maximum number of redundant components at each stage can

at the best be three.
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Table 3;5

Stage Reliability Cost Weight
i 0,75 6 10
2 0. 85 6 -
3 0.90 10 10

The linecarized problem with single subscripted variables
can be given by
Minimize f (z)

flz) = 0.2231322 +O.O487922+O.0118423+0.130762

1 4
+O.Ol93725+0.OO287Z6+O.O953lz7+O.OO9O4Z8
+0. 0009z 4 {3 28)
subject to
6zl+6z2+6z3+6z4+6z5+6z6lOz7+1028+lOz9-38 - 20
lOzl+lOz2+1023+524+525+526+lOz7+1028+lOzg-40 2 O(3 e
z =0 Br 1.
d

Initially, all variables are assumed to be free, i.e.
zj=O, l;:l,...,9] and uj are calculated. The complete proce-
dure is tabulated in table 3.6. The optimal solution ob-
tained is

29:Z8=Z 3=Z 6:2 5:1

(3. 30)

Zl=Z 2:2 4=Z7 =O

or, in other words, the number of redundant components in

stage one, two and three are three, twO and two, respectively.

Various reliability problems were solved on IBM1620
using this approach. In all cases, the exact optimal solutions

were obtained. In the enumeration methods available so far,
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set func=- variable
) ] !
MOove . 3 = -
Vo - . ~1f i, = = aas =3D =22 =22 x.=0 .1052% -8 =10 xe L2e ST Setting to 1 other
; 3 9 8 7 e s
L variables will give
23 Ry > L il 9%0, the
knowrn L-38liue SO4—
tion, next move
backwards
Move =
back~ -, -, -, -, -, -, =38 -38 =38 = }:C .00994 -18 -20 Zg +2g +Z4 i P
ward
Move : -
fars =22 =22 =22 =27 _ =21 .=27 ~y e ~ o=l GOZEE i =10 Zg 1Zg +Zq s “w =
ward 2 : -
. Z3
Moye o
for- -b =8 - =ik =11 =11 =5 ~ — 2.=1. 97057 -6 0 24 w2q 129 4 = ) L
ward -t = =
z25 02,
Move —
for- o - - =] fe] o =T - T zg=l .07344 © zZg +Zg +Z- :,-:zq=23=zz-_~zé=l
ward =0
zZ3 25 +Zg Z =k, =8 =2 =0
‘Move e -
back~ =, -=1¥ =il -, - -5 =3}§ =18 ~1§- zs._.o . 07057 =6 O 25 .25 .Z,5 Setting to 1 other
ward ' - oo i g : variaples will give
Zy iZgp ik Hz) > 0.07344, next
~ move backward.
e = e — = : _ 2g +Zg %,
back— el =22 o=y = =y = —26_726 z,=0 .02128--12 -10 gl - -
ward - T . — e s 33 ;zz




Table 3.6 (continued)

| l vari-
£ i able |Objec- | @ d, |List of Feasicle Remarks.
Sk e i L R 1 e B to be tiie 3 2 lspecified Solutiom il )
| | set |func- variable
| I te O |tiom
! 1 or 1
Move ' zg +Z .;7 . E:téiﬁgtzomllyﬁoilﬂl:er
- - - - - - - - = 1 .24491 -6 O SRy
s . ' el = : o i : ' T Bt givef) > 0.0734.
ward E} 2 1 Hext move backward.
Move y b :.
Back= —22 ey g 4 - s =5 =26 .02178 12 29 rZg +Z4 rZB
ward
Move L -
for= = - e =11 =3 e b B = — ‘631 . 02465 s 5 :9 rza Jz? ’
Move r =Z =2 =1
for— ) - (&) 0 = - - . 04402 0 (0] zg ‘Zg .27 .z3 .39=28=z3 6=%¢
kel ;2 .;1 sZg .25 z7=:2-zlzz4=0
By .setting 21,
. , = -6 - z z) > 0.04402.
-6- -, - - ; & =5 Ty /Ty +Fq sEg iz
back~ =, ~ .=, =~11 e i ‘ = 15 13 zE’w"c" i il g 8 7 3 Next move back-~
e : ; ;2 tZy +Zg +Zg ward-
: By setting z, and
Move ; - . = 3 - i
back= =3 ¥ -22 2 =17 “e -26 "_._23_. 26‘-0 .02178 12 10 Eg 058- :27 133 ’ 25 ro 1R=)> 0.044072.
> ;2 ,;1 .;‘ Next move backward.
3 e R ] e LS ¥ DR o s = By setting vari-
Py . - - Zo .Z to 1, results
LR U, B, reLnEe s n 8 o4 TR 4=0" - 00994 18 20 24 .ZTg 424 423 arses

infgz) > O. 04402.
Next move backward.




Table 3.6 (continued)

Yari- |
Step | u, u, uy u, i L u, ug ug able [Objec- d1 d IList of Feasiple l Remarkas
] to be |[tive specified Sclution ‘
1 set fune=- variable 1
to & tiom |
=1 or 1 | !
Move =
back= =, s i = o ~s = =58 =58 gz -0 .0COS =28 =30 Sz 2o By setting wveri-
ward 5 ¥ éaoieg to 1, results
ingn > C.0440:.
Next move packwards,
MOye =5 By setting vari-
back~- =, =1 T = = = = - =y Z,=0 C =38 =4C 2z. acles to 1, resylts
ward E - infz > 0,04407
All variasles aras
fixed.
Stop

L9
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last variable, in order, is set to zero for backtracking. In
this me-hod, a more flexible rule is used for backtracking
which improves the efficiency of search procedure. This app-
roach requires simple calculation and less computational effort

and memory.

3.4, ZERO-ONE PROGRAMMING METHOL

This method makes use Of zero-one programming [40]. This
method depends on the non-binary tree search, where upper bound
is calculated by making use of graphy theory. All the tree-
search methods for O-1 problem, available to-date, are binary.
They can be divided into twoO subproblems, firstly a variable
is set to one and search is made for the remaining free variab-
les, and secondly set the same variable equal to zero and again
search is made. While in this method, the use of tree search
is made to calculate only the lower bound to the objective

function at the nodes.

The linearized reliapility problem given by (2.70) and
(2.71) can be solved by this method. The stepwise procedure

for solving the reliapbility problem can be summarised as =

(1) Consider node A where all variables zj are free and set

Tl = B

(2) & » 0 e’=ei- 5 h; ; , where H is the set of variable
ZjeH E

which has been set to 1 find reduce set [S other-

il

wise set all variables zj=o which will give optimum solu-

tion and stop.
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(3) Calculate external stable set.
(4) F.nd lower bound on objective function.

(5) Find | 5% [=min|s Form tree by branching r nodes
i

il
from node T by setting Zjizl £0r each ntde, Each branch
can be treated as one subproblem.

(6) Repeat step (2) for each node.

(7) Repeat step (3) for each node.

(8) Repeat stép (4) for each node.

(9) Find the node L which has lowest lower bound on objective
function set sz=l.

(30} If for this L0 noda all |S. : | =& then current partial

Ll
solution is the solution to the problem and stop, other-

wise et Tel and go to step (5).

CALCULATION OF REDUCE SET [14Q]

ki ei » O Afor ith constraint, then hij df the free vari-
ables are arranged in the descending order to get a table
of hijl , hij2 § ""hijF'

of reduce set S, if and only if

A variable Zjl is the member

for any q such that 1 ¢ q ( F

Zt i@ clmar that 1€ Zjl does not satisfy the above condi-
tien, Zj,l+l ' Zj,l+2 ..+ will nlso not be a member of this

reduce set.

CALCULATION OF MINIMAL EXTERNAL STABLE SET (5]

For calculating minimal external stable set for a system,
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logic expression is tob forméd for eagh vertex x; in-whigh
eithe' x or one of the elements YX is to be included, The
associate properties and law of absorption is used to simplify
logic expression and remove redundancies. The resultant ex-

pression gives the number of minimal external stable sets.

LOWER BOUND ON OBJECTIVE FUNCTION:
Setting each st Si to one lower bound on objective fun-

ction is calculated by expression
Z =% wdnl, E 9.1

o 12 =2
p L JEp

where Zo is the value of the partial solution.

NUMERTI CAL EXAMPLE

The reliability of a system consisting of three stages
having reliabiloty cost, weight as tabulated in Table o 55 da €6
be maximized by using parallel redundant stages. The cost and
welght of the system must no exceed 50 and 60 units. From a
design consideration it is known that the maximum number of
redundant components which each stage can have is three, i.e.

N, =3.

J
The linearized reliability problem is

Minimize

O.22313221+O.O4879z2+0.01184z3+0.l3976z4+0.0193725

+o.oozs7z6+o.0953127+o.oo90428+o.ooo9z9 (3.31)
subject to

6zl+6z2+6z3+6z4+625+6z6+lOz7+lOza+lOz9 2 38

lOzl+lOz2+1023+Sz4+525+526+10z +lOz8+1029 2 40

|
zj=o B4 Pl s g R (333
ATy PNIUTRSIY CF ROORKEE .

CENTRAL LIERAZY Uar
ROORKEE
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Assuming all variables are zero at node A (Fig. 3.3),
reducer set for this node are ISAllz(z7 : Zg 29), ISA2|=

(zJ ¢ By 2 Ty o4 z7) and the minimal external stable set are

(z, ., 2g), (25, 2g8), (25, 2g), (2, ., zg), (z, s zg),

(z3 r Mol s (27).

The lower bound L=0.01274 is produced by set (z3 ' 29).
The lower bound on the objective function is 0.01274. Since
the reduced set SAl has minimum number of variables, therefore
we continue the branching by setting either z,=1 (node Bl),
zg=1 (node Bz), 2g=1 (node 83) in Fig.3.3. Now we start with
node Bl' The complete calculations are tabulated in Table 3.7.

The optimum solution of the problem is given by (3.22)
amil' {3.23) is

gt el o g

and

33=Z 5'::Z 6:28=29 = 1

Or solution to the primal O-1 programming solution is

X=Xy g py %421

=X =% =X =0

o % Haa. ¥ Bk %

=X22

43
From (2.62) the optimum number of redundant components to
be employed in stage one, two and three are three, two and two,

respectively.
A number of problems were solved by this method and it is

found that this approach requires fewer iterations than the

Other available zero-one programming algorithms.
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Table 3.7

ggi: Zj - Reduce Set Minimal external stable set gggig on ggfsial ?ESHCh—
objecpive tion from
e 1 function
A 2 8=, , 2g ., 2Zg4) 2z, , 2g), @, . zg), @, 2g) 0.02274 A
S =z, . Z,4 24 Z4) @, . 2g). (22 ; 29),(23, Zg),
B o R R |t i S o R s | YOG SR
By 24=1 8;=0g, 25, 2; . 2,) (2%, (@) (2g), (25 . Z,) 0.10435
___________ 5o T R WL R R O e SN SO
B, 2g=l S1=(25 , 29 ., 27 . Z,) (Z1), (@5), (29), (2g . Z3) 0.02178  Zg=1 B3
___________ v e At O AT SIS ¢ e SIS, + 1= -
By Zg=l 5;=(2, ., 2g5. 2; ., 22) z,), k22>, (27), (z2g . z3> 0.02178
___________ B o s o e e i
Cp 29=1 8=, ., 25. 24, 28)= (2,). (23), @), (2g) 0. 20899
Moo . USafY o O R RCTT N A A e
-;;_-;;;; ;’1:(21 ¢ Zy 0 Bg . Zg) (z1), (25). (@), (2g) 0.05873  2Z4=l
___________ 5 s T S = i - AN S LT ST SN o
Cy3 2,=1 8= ., 2, . 2, , 2g) (21), @y), (2q), () 0.02088
S,=(2) . 2, ., 27, Zg)

(continued)

T TN S m S Om S e e e me e e e e e e N S S e S e T e G R S e G A e s v e e T P m G R W e M M T AR G T W S S A e e e T S S b e e By em e e B e em G e v e A e T e e e e

L



C, 2,=1 §1=(2; ., Zo s 254 By (z,), (22), (z4) O._10715 C,
___________ ?sz§;_1_?z_:_%gi__f?i_____--____--__-_--__-___-_-__-------,-_________________ .
D; 2=l 8y=(z,, 2,., 2, ., 2g) (z,), (0. (@), (zg) 0. 24491
Bl Ty v Ty - |
Zg)
D, 2,=1 S,=(2; ,2,., 2, , 2g) (200, 2 ,),(2,), (2g) o _53;5;;“ Zg=1
s.2=(zl 0 Ty 0 Zg . Zq,
______________________________ e T it Ry e e e
Dy 2,=1 85,z , 2, , Zy s Zg s 29, (22), (24),'(25), (zg) 0.11709  2z.=1 D,
| zg) Zg=1
S,=(2y , Zo 1 2y 0 Zs s
_____________________________ I B B s Rt 1
Dy 2g=l S1=(27 ., 2,, 2,., 25, (27), @,):(@2,). (2Zg), 2) 0.01274
B2 ‘
So=(27 , 25,4 24, 25
Z)
(continued)

o S e S e e oy o o, S i S 00 S s o k" e ] | W i | - S 0 i (0 G G G e o A S . - S . A U e S M S 5 e g St . g - ]

kL



E, 2Z,=1 81=2,, 2, . 25, 24, tzZ),(z4),(zs>,<26),(z7) 0.24778

___________ map oo MR RN CSNNSTR

B, 2,21 842, , 2, ., 25, Z¢ . (210, @,), 25), 2g), (25 0.07344

___________ TV e . - S e

By 2,=1 S1=(2, ., 2,, 25 . 2¢ ., (21). 2Z,), @), (2g), (29) 0.16441 z,=1 E,
___________ REEOCTGT e, (R Lo 1 ot e,

B, Bg=1 8,=(Z; « B,y . &y, Zg . (21). (2,), @,). 2g), @) 0.03828 Zg=l

___________ VT AR et ST o NI

Eg Zo=1 8,=(2; , 2, . 2, ., 25, (21),(2,), @), 25, @) 0.11996

___________ ) St aled o - (SR e B B e a9
P g Sl ol RS o SR e e

¥s 22=1 $;=¢ , 5,=0 0.08994  z,=1

N e R RN n . e SR o o T Ll oS
s A

REEly BRI EGE W Loy 3 DT LR, T 0.08643 7=l

&L
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3.5. MODIFIED NON-BINARY TREE SEARCH METHOD

A method is proposed to solve the linearized reliability
problem. A simple rule of branching is given, which reduces

the computation time and memory requirement considerably.

Since all the coefficients of the linearlized reliability
expression are positive, the smallest lower bound can be ob-
tained by setting a variable which has smallest le and is

a member Oof a reduce set having minimum number of elements.

The stepwise procedure for solving the linearized problem

(2.67) and (2.68) by this method can be described as

(l) Sat all variables (}?jl 7 j:l, 2,..o1k1 .].:l[ 21-.o:ﬁj)/

free.
(2) Calculate ei £ (i=l,2,..;,m), whose ei is given by

N,
];, 5 X
el=e,~ sl kS
dui gy AL T
—
le are the variables which are assigned as 1.

t3 Xt e > O, find the reduced set S; , else go to step 6.

(4) Find the set Spip ¢ where S . is given by

Smn=mn Sl i:l,2,=..,s
£l
i.e. Smin is that reduced set which has lowest number of

elements or variables.

(5) Find the variable ;31

lowest le and assign this variable ;jl

(6) set all free variables to zero and the resulting solution

from the set § . which has the
min

=1. Go to Step 2

will be optimum.

(7). stop.



SET ALL VARIABLES FREE |.e
a0 =0 = : -
XL RaERE S K

L= 1525 0N

CALCULATE €} WHERE

’ k N. __"
€j :G:j-Z Gij le

=1 k=i
y IF YES o
eji>0 -

NO

FIND REDUCED SET
‘ Si ? i= rsa,a"" =S

/

FIND THE SET Smin
min Sj
|

Smin = y K202 g

i

FINAL THE VARIABLE le FROM
THE SET Smin WHICH HAS LOWEST
Cjl
y
- SET ijl‘ |

SET ALL FREE VARIABLES TO ZERO

S F 0P

FIG.3.4 FLOW CHART FOR MODIFIED NON-BINARY TREE-SEARCH METHOD
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The flow chart for this method is shown in Fig. 3.4.
Various reliability problems were solved on IBM1620 by using

this method and exact results were obtained.

AN ILLUSTRATIVE EXAMPLE:

Consider a feedback control system as shown in Fig. 3.5
consisting of an imnput transducer with three function groups
denoted by Gl(S), G2(S) and G3(S) and two feedback loops. The
major and minor loops have output transducer and feedback posi-
tion denoted as Hl(S). For successful operation of the control
system, each component must be in proper working condition.
Reliability of thé error detector is assumed as unity. The
unreliability cost, weight, and power consumption for each
component are given in Table 3.8, It is required to maximize
the réliability of the control system by using redundant com-
ponents. The incremental cost, weight, and power consumption
of the system must not exceed 43, 35 and 90 units, respectively.
From design consideration, it is known that at the most, each
stage may have two redundant components.

Table 3.8 -~ Parameters for a feedback control system shown
im Fras 3550

Component ngfii; Cost weight zzxgiiggn_
1. Input Transducer 0.06 15.0 2.0 10.0
2. Function Group Gl(S) 0. 08 5.0 4.0 R &
3. Function Group G2(S) 0.05 8.0 8.0 20.0
4. Function Group G3(S) 0.03 6.0 6.0 15.Q
5. Feedback position
Hl(S) 0. 10 5.0 3.0 S

6. Output Transducer 0.09 10.0 ] 5.0




INPUT
TRANSDUCER

FUNCTION 2
GROUP G (S)

FUNCTION 3
GROUP GZ(S)

FUNCTION

4
GROUP  Gg(S)
FEED BACK 5

POSITION Hj(S)

QUTPUT 6
TRANSDUCER
FIG.3.5 A FEED-BACK CONTROL SYSTEM.
o
2 3 4 5

FIG.3.6 A

LOGIC DIAGRAM OF THE FEED- BACK CONTROL SYSTEM SHOWN IN FIG.3.5
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The functional diagram of the feedback control system
shown in Fig. 3.1 will be a series system as shown in Fig. 3.6.
The linearized reliability problem for this control system
will be

Minimze F(x)

0.05827x ; +0. OO399X12+O.O7696x21+O. 0059 1x,,+0. 04879x 5,
+0.00237% 5 ,+0. 02956x , ; +O. 00087x , ,+0.09531x ¢ ;
+O.00905x52+0.08618x6l+O.OO74x62 (3. 34)

subject to the constraints

:L5xll+15xl +5x21+5x 2+8x3l+8x32+6x41+bx42+5x,:_)l+5.x52

g 2
+1o§?61+1o§€62 > 55 (3.35)
D)+ 2 AR 5+ B 5 48X k6K HEX 4 K g 43X g
+4>?6l+4>?62 e (3.36)
1O;ll+10;l2+15;21+15;22+ZO;31+2O;32+15;4l+15;42
+5;51+5;52+5;61+5;622- 50 (3.37)

where Ejl=o e D T S T B 1, S

1. A&ssuming all variables free,

2. The reduced sets are:!S; = (xll ; Xjo 4 Xgq oy X62)’

p— —

BiLael Sag 1o Ragq b Has ¥ Bpa e N )

x|
x|

8. = 1x

2 62

22"

Sy = (Xpp # Xpp 4 Xgp 0 X3y 0 Xyg . Xyo)e

The. 8 .. i8-8

it 1 and the variable to be assigned as 1 is

x ab it has sfallest o, in set S.. ' The modifisd @7 ,s
T4 il 1 i

are dl = 40, d2 = LT d3 = 40,
3. The reduced sets are 5, = (xll r X3y 2 Kgp s Xgq X62>’



82= (X

S3=(X

ana the variable to be assigned as 1 is X

S

31 7 X3p ¢ Xy3 ¢ Xgp 0 Xgols
¥,

ol

X IX IX IX411X42

39° Modi fied

di=32, d.=9, dL=20.

ik

2

4, The reduced

S (x

2

S (x

3

The variable to be assigned as 1 is x

a3

v

el

1

5. The reduced

3

sets &are Sl = (xll ¢ X397 Xyn 0 Xgp s X690

4o The resulting

‘s are d4{=26, d’=3, d.=5.

Z 3

sets are, §; = (xll 1X3p ¢ Xyp 0 Xgp o oo X62)1

— — — — - —-—

Sy = (1 o Xog ¢+ X3 ¢ Xg41 0 Xgp o Xgq o X5y + Xgp 2 Xgp)s
Sy = (cyy v Xpy v Xpp 0 gy . Xy s Xgy) 4 Xgy o Xgp

;62) and the variable to be assigned as 1 is ;62'
Modi fied di s are di=l6, d§=- & d%:O.

6. The reduced sets are S_.L (Xll 5 x22 i X31 "y X4l ’ X6l)’

S2=¢**, S3=®i The variable to be assigned as 1 is x

22"

3 il 3 2 7 s -
Modi fied di s are dll:ll, 7 -

7. The redgced sete are 5, = (Xll » X310 Xy 0 Koo X6l)’

&, = &, = @. The variable to be assigned as 1 is x

Modi fied di's are d?

52
1:6, i Ty

8. The reduced sets are S; = (xll ¢ X1 s Xgy 0 Xyq X6l)’

52=@’,

Modi fied di’s are d’

Hos

= #. Variable to be assigned as 1 is ;41.

——OJ _I —.

1=

9. The reduced s=ts are Sl = @; 82=¢: S3=¢:

* * "Ihd =
NIIETY .
1

g |;'_‘.I

the reduced set S is empty and is denoted by #.
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10, Set all free variables to zero., The optimam solution is

X

X
[l

X445 =
<

1 2o 32 % Xy =Xy = Agy = Xgy =1

= O

|
ol
i
<
I
X
(&}
e
|
X
o))
=
I

exyd = Bayi 31

By (2.69), the optimum number of redundant conponents to
be used are

n=l,n=l,n=l,n=0,n:l,n Pl |

X

Optimum structure of the feedback control system with redun-

dant components is shown in Fig. 3.7,

AN EXAMPLE 3

Consider a control system as shown in Fig. 3.8 consisting
Of a measuring element, amplifier, comparator and an actuator
in series. Their parameters are tabulated in Table 3.9. It
is needed that the system raliabllity 18 t0 be maximized by
using spare standby components. The makimum number of the
spare components for each stage may be assumed as three and
the replacement time is to bpe neglected in comparison with
the life time of the system. The constraints on the system

are

£ . 36 {3.38)

k
2 E, n, exp (nj/4) < 150 (3.39)

The life time of the system is 10 years and the reliability

Of the switch is 0.999.



FIG.3.7 REDUNDANT FEED—BACK CONTROL SYSTEM.

MEASURING ELEMENT COMPERATER AMPLIFIER ACTUATER

b | A

- . W,
. .

FIG.3.8 CONTROL SYSTEM WITH SPARE STAND BY REDUNDANT COMPONENTS.

Y
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Table 3.9
>
8 ¢t s g e failure rate &, £a
per year ] ]
l. Measuring element 0.0798 La ©) TaQ
2. Amplifier (@RS S 250 8.0
3. Comparator 0. 0066 oA 6.0
4. Actuator ' 0.026 4.0 9.0

The linearized reliability problem can be written as

Minmnize
o.5862351140.16281?12+o.o3915§l3+o.28343221+o.o3064§22
+o.00423§23+o.06385§3l+o.00204532+o.oooo4§33
+O.23091;4l+0.02642;42+O.00221§;3 (3. 40)

subject to the constraints

L

(2)

;._ll+3X12+5x13+2x21+6>.22+10x23+3x3l+9x32+15x33

+20,. 2 S4 (3.41)

+4x4l+l2x 3

42

+21.375§l3+1o.272§ l+16.1o7>?

8.988xll+l4.094x

iz 2 22

+11.556>?4

+24.428x23+7.704x l+12.08x 2+18.32lx

3 & 2 1

+18.12§42+27.482§4 > 40,530 (3.42)

k.

lezOOrl, J:l,.-,4,l=l;...,3

Set all wvariables free.

The reduced sets are §; = (x33 b i x43),

Sy, = (yp 0 X130 Xop v Xp30 X3p 0 X330 Xy 0 Xyqls

Variable to be assigned as 1 is X Resulting state

33"
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di = At = 22, 708

2

il - T X =

(3) reduced sets are S, = (x23 ¢ Xyo o x43),
7 g X3 Xop 0 Xpg . X3 Kyy o0 Xgp o X 430
Variable to be assigned as 1 is ;43. Résulting state
di = 19, e

1) Th - (x x X X

(4) e reduced s=ts are S (x22 » Koy 2 Xgo x42),
82 = @.Variable to be set to 1 is ;32. Resulting state
di = lO, A

(5) The reduced sets are S, = (X13 ¢ Koot Koz s XKyq s x42),
82 = ¢ variable to be set to 1 is ;23. Resulting state
dl = O, B

(6) The optimum solution is
S = Fan o Xgy = Rygy =1
R TTOEE ey - Xy = Mpg W Tgg © Ty =Xy =0

and the optimum solution of the original reliability prob-

iem is nl=3, n2=2, n3=l, n4=2.

3. 6. BRANCH AND BOUND METHOD

The linearized reliability problem (2.70 and 2.71) can be
converted into an equivalent knapsack problem by aggregating
the constraints which have integer'coefficients. When cons-
traints have rational coefficients, they can be converted into
integer coefficients by multiplying constraints by a suitable

multiplier. Consider a set of twoO constraints
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W
z hij 2ot 2,4 =8 (3.43)
J:l
i = l[ 2[.0-
where 2 4i are the slack variables. These two equations
can be combined by choosing two suitable multipliers t, and

t, such that, one of the following conditions holds good [44]

2 -H il STl T s e

(@) t; 2 u, 5 & ¥y

b) t; 2 L+l and t, > L+l

e} ¢, > 0 srbitrary and €. 3 max[}l+l, -Ll+l]

1 2 _.
(@) t; 2 max|u+l, —L2+1] and t, > O arbitrary (3.44)
where,
Li = "€y L= 2e e s nS
- (3. 45)
e jil 3

The single equivalent constraint which has the same

solution as the original constraints (3.43) can be written as

w w |
tl[jflhlj zj+zw+1_el‘l+t2l: J._Z_lhzj Zj+zw+1'ez] k0 (3. 46)

Recursively using the above construction for &ll cons-
traints, it results in a single equivalent constraint which
has same feasible solution as the original problem. There-
fore, the reliability problem can be converted into an equi-
valent Knapsack type problem. The equivalent Knapsack type
problem for (2.70) and (2.71) can be written as

Maximlize F(2)
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Ev. %, S ¥ {3.47)

o 0 Gy L
J

The stepwise procedure for solving the above problem by

Branch and Bound method can be described as follows:

(1) List the variables such that their coefficients gj/yj[}=l,

2,...,w] are in descending order.

(2) Consider node A where all variables are free. Set N=A

and 1l=1.

(3) From tree by branching two ncdes B, and Cl from N by Cl

from N by setting z?:l and z?:O, respectively.
(4) Find the upper bound on the feasible solution at node By
and ¢, -

(5) If B, has greater upper boundon F(z) than at C,, assign

z? as 1 and N:Bl , Otherwise assign z? as O and N=Cl'

(7) If 1>w go to next step, else set l=l+1 and go to step 3.

(8) Find the corresponding index j of 1 from list and stop.

‘If z, are set to 1 in the sequence as given in the list
{}=m,2,...J, while satisfying the constraint, will give an
upper bound on the feasible solution. Ef Zj havi ng lth index

in the list breaks a constraint or constraints, then zj

; th
corresponding to (l1+1) index is tried.
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AN EXAMPLE .

Consider a system of an aerospace computer consisting
of coincidence circuit, amplifiers, regenerators and flipflops
as dhown in Fig. 3.9. The complete system is divided into
seven subsystems. The reliability cost, weight and power
requirement for each subsystem is tabulated in Table 3.10.
The ralisbility of the majority voter is 0.599%9. 1t is reguir=
ed to increase the reliability of the system by using triple
modul ar redundancy. The coOst, weight and power cOnsumption
of the system must not exce=d 66, 60 and 70 units, respective-
ly. The cost, weight and power consumption of the voter is

3, 4 and 2 units, respectively.

The reliability problem in the form of (2.70) and (2.71)

can be written as

Table 3.10 - The Parameters of the System

Sssg:r g?écgfts rj pj e RS S iggfr.
sumption
1,2 0.99 0,6 5.0 %0 4.0
2 34,5 0.99 Q2 10.0 7% - X0
3 6 0.97 0.6 2.0 146 81
4 7 0.92 0.2 4.0 4.0 5.0
5 8 0.94 0.6 3.0 3.0 4.0
6 9 0.94 0.6 3.0 3.0 4.0
7 10 0.95 0.6 5.0 1:0 2.0
Maximize F(Z)
FZ) = 0. 00849z, +0, 00984z ,+0. 02807z 3+0. 06078z ,+0. 055369z
+0. 055369z (+0.046452z (3. 48)
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subject to the constraints

l3zl+b3z2+7z3+llz4+925+9z6+l327 < 34 (3.49)
" L 18

821+*‘z2+623+1224+1025+IOZ6+6Z7 < 39 (3+5D)

lozzl+2222+4z3+l?z4+1025+1026+6z7 < 40 t3.53)

A ,:O (&3 1
)

Constraints (3.49) and (3.50) are combined by choosing
t, and t, as 72 and 1 according to (3.44). The equivalent
constraint is

944zl+1674z2+51Oz3+81024+65825+65826+

+9422472z g4z g = 2478 (3.52)

(3.51) and (3.52) can be combined by using t,=1 and
t,=76 according to (3.44) resulting in

71754zl+127246z +38764z

2 3+611122

+500182 +5001826

4 3

~7159827+547228+76z = 189052

7% 10 .3

Dropping slack variables zZg ¢+ zg and 240 ¢ the equiva-
lent constraint is

+387642 4611122

71754zl+127246z2 3 4

+5001825+5001826

+715982 < 189052 (3. 53)

g

The equivalent reliability problem is giveEn by £3.48)
and (3.53). Arranging z in the order of d@escending co-

efficients gj/yj as given in Table 3.11.

Setting all variables free at node & as shown in Fig. 3.11,
node B, and C, can be branched by setting'zszl and z c=0,

respectively. At node Bl the feasible soluytion is ZS=Z6=Z4=O’
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Table 3.11

“ndex
Number 1 2 3 4 ) 6 Vi
X
gj « 055369 .055369 ,06078 .02801 ~ 046452 .00984v . 00844
yj 21334 51334 BR2Y24 39TEY 73638 130596 73642
Stage .
Number 5 6 4 3 / ‘ 2 ok
d

giving an upper bound on Objective as 0.171518, At node Cl

the feasible solution is z6=z4=z3=l, ZS=Zl=22:Z7=O resulting

in an upper bound on Objective function as 0.144219. There-
fore, further branching is to be done from node Bl' The com-
plete calculationsAare shown in Fig. 3.1. 'The optimum solution

Obtained is 2 ;=2 =2 =1 and 21=2 ,=2,=2,=0, giving system relia-

4 At )
bility as 0.9257. The optimum structure of the system (Fig.3.9)

is ghowa dn Fig. 3.10.

3.7, A DIRECT SEARCH METHOD

A simple computational procedure is developed in this
section. It can be used to solve reliability problem having
parallel, standby, majority voting, hybrid redundancy. By tak-

ing the logarithm of the expression (2.1), it changes to

{ k

Ln R = & L R ; ;
n S(n). a8 n J(nJ)

3 Rs(n> Rs(n)

] S—Rj ('n”p = R"J‘.'(HJT)

that i1s, increment in the system reliability will be maximum



if stage 1 satisfies the following .condition:

Ry (ny) = mi n Rj(nj) (3. 54)
1<5<k
TﬁerefOre for maximizing the system-reliability, One

component must be added to the lth stage. Intuitively, it
can be said that if we go on adding one component, i.e. in-
creasing the decision variable by one, to that particular stage
which satisfies the condition given by (3.54) without violating
the constraints, total increment in the system reliability will
be maximum. When decision variables reach in the neighbour-
hood of the boundary of its feasible region, active constraint
is found out by calculating the slack. From active constraint,
a feasible set of stages (J) is calculated, in which the incre-
ment in the stage reliability is possible. Aagain, test (3. 54)
is made for finding the candidate stage (i.e. the stage in
which ¢ 1e more component can be added), from set (J). This
procedure is to be repeated until set (J) becomes enpty. If
more than one constraint are active, the candidate stage mﬁst
be common to each set calcul ated from each active constraint.
The complete prOCédure can be explained stepwise by dividing it

into two phases as given below.

Algorithm:

Phase I.
(1) Initially set n;=1 for all j (1 ¢ j < k), that is, system

is considered to be irredundant.

(2) Find the stage 1 which satisfies the following condition



(3)

(4)

(5)
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Rl(nl) - min R, (.}

<5<k 4D

In case of tie, evalyate Smin and select that stage which

has lowest a i . where Smin 1s given by

Iy

min

k
5. min!}i = (F . n.)] ‘ ' (3.55)
. s ,

Assign n, = nl+l

Check constraints, if not violated go to step 2, else go

to next step.

Set nl=nl-l, which will be the optimal number of redundant

components to be allocated to the current s stage.

Phase II.

(6)
(7)

(8)

(9)

(10)

Mdu&eSmH.

IE Snin=Cs Stop; else find out set (J) which is defined
as
3.0 g yj & L

where yj4= Smiﬁ/émin,j (3. 56)
If set is empty stop, else go to next step.

Select stage which satisfies the condition

R, (n,) = min R.(n.)
- L jeg
In case of tie, choose that stage which has lowest a . e

min, j
Set nl=n1+l and go to step 6. When same constraint is
active in the next iteration of Phase IT, corresponding

new set (J) can be calculated from the old set (J) cal~-
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—culated in the previous iteration.
A flow chart for this method is showh in Fig. 3.11. a
number of problems were solved by this method and satisfactory

results were obtained.

EXAMPLE 1.

Consider a digital system shown in Fig. 3.12, where diffe-
rent blocks represent the logic elements. Aall blocks are re-
Quired for the successful operation of the system. The relia-
bility, cost, bOwer consumption of each stage or block are given

in Table 3.12.

The system reliability is to be maximized by using majo-
rity voter redundancy, while total cost, volume and power
consumption of the system must not exceed 125,350 and 100 units,
réspectively. It is assumed that external inputs to the sys=

tem are perfectly reliable.

Table 3.12
Stage number Reliability ‘ Cost - Volume P0weftfgﬁsump
| 0.900 10.0 16.0 4.0
2 0. 99 _ 167, © 2k, @ 2.0
3 0. 880 e T -0 6.0
4 0.980 I @ 25.0 12.0
S 0.950 8.0 30.0 15.0
voter 0.99 5.0 10.0 8.0

The reliability expression for a k-stages system having

majority voting redundancy can be expressed as
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2n HE (2430
Al 3l .

where R.(n.}) = R z
J J i:nj+l

(2nj+l-i)l il

The nj will have value equal to zero if jth stage is non=-
redundant. Therefore, initially all nj are set to zero.

The candidate stage is 3. With n3=i and other nj:O, constraints

are checked which are within limit., The next candidate stage

is 1 and again constraints are checked with n =nl=l and n,=n

3 4=
n5=O. We proceed in the similar way and finally get Ny=N,=N.=

1 and n2=n4=0 as an optimal solution, The optimum redundant

structure is shown in Fig. 3.12.

EXAMPLE 2:
The use of parallel redundancy is to be made for maxi-
mizing the system reliability with three nonlinear constraints.

The system is shown in the following table.

Stage 1 2 = W 4 5
Element :
Reliability 0. 80 Qels 0.90 0. 65 Q78

The constraints are
2 2 2 2 2

gl(n) = ny+2n5+3n5+4n,+2n; < 110
nl/4 n4/4 n3/4

gufn) = 7ingse )+7(n2+e T )+5(ngte )
n,/4 n_/4

+9 (n 4o ’ )+4(n5+e .3 e s



Table 3.13

Number of Components

Unreliability of Stage

in Stage : gl(n) g2(n) g3(n)
n, n, n, n % 2 3 4 5 ’ ’
. ol O 1 0.2 0.15 By 1 0.35° 0. 25 12 ¢ P -
P AR 1 0.2 0.15 0.1 0.1225 0. 25 24 85.4 60.8
L A 2 o 3 0.15 0.1 0, 1225 0.025 30 90.8 79.0
af & cE 2 0.04 st oud B1225 0.0625 33 1004  93.3
= ol R | 2 0.04 Ou2%5 @il 0.1225% 0.0625 39 105,69 " 108, 7
2 g 2 2 0.04 0.0225 0.1% 0.042875 0.0625 59 . 7 10, T - o
A 2 0.04  0.0225 0.0l 0.,042875 0.0625° 68 130.0 143.6
- LU RS 3 0.042 0.0225 0.01 0.042875 0.015625 78 13640 LILYI
S off s 3 0.008 0.0225 0.0l 0.042875 0.015625 83 146.1 192.5

SThis is the stage to which a redundant component is to be added..

66
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n,/4 nz/ﬁ n3/ﬁ
g.{n} = Tn,e +8n e +3n e

n,/4 n5/4

+6n4e +9n5e £ 200

Starting with n=(l,l,l,lL1); add one element at a time
as -shown in Table 3.13, hence we obptain the optimum number
of redundant components
B (32,2238
Many problems were tried and exact results were received.
Due to less memory requirement and compuntation effort this
method.is suitable for optimal design of a iarge system from

reliability consideration.

3.8. A SIVPLE METHOD

A simple rule is usedin this section to find an equiva-
lent problem having only one constraint. This equivalent
problem h:-s the same number of variables and feasible solu-
tions as the original problem. It is easier to solve an equi-
valent problem rather than to‘solve the original problem with
many constraints, which is generally computationally tedious
for a practical system with many stages. A simple method is

developed to solve this equivalent problem.

AGGREGATING CONSTRAINTS:
By adding the slack variables 01 fi-d; Zineaal tha i
equalities (3.2) are transformed into the equalities, as
k
E a M =l
53 el Bk Sl VY L b |
Bt

(3.57)
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Consider the first two constraints, i.e. i = 1,2,
k :
jil alj nj +n . = b1 (3. 58)
and
k
P s Sl U Bl _ (3. 59)

They can be combined to form a new constraint by using

multipliers t, and t2 satisfying the following conditions as

derived by Glover and Woolsey [47].

(1) t; and t,'should be relatively prime.

£2) t, does not divide b, and t, does not divide b;.
(3) ty > b,y,a, and t, > bj;-a; where a;, represents the small-
est of the positive aij' (3. 60)

Then equivalent constraint which has the same solution

as the constraints (3,58) end (3.59), can be written as

S

k .
i\ N i e
o ]

T 4 Nyt o = . batb PTG

el g 2 By o Bt

J

Recursively using the construction (3.61) for all cons-
traints, the reliability problem reduces to the maximization
of the reliapAlity function subject to a zingle éOnstraint,
-

Maximize system reliability

R ) -
un S(n) =

H ot~

Ln Rj(nj)v (3.62)

j=1

subject to the constraint
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k
¥ g B Sl (3.63)

SOLUTION PROCEDURE:

The reliability problem given by (3.62, 3.63) can be
solved by any standard reliability optimization method in
which the presence of single constraiht is advantageous. Here,
a simple method is developed for finding the optimal solution

of (3.63).

ALGORITHM ;

(1) Calculate the derivatives of (3,62;ﬁwith respect to n

at n.=1.
J

(2) Replace n, = {3,853} by (l+st.dj) and solve it for st.

(3) Select the stage which has lowest reliability. Let 1°tP

b8 the stage satisfying ®his condition: Set n; equal
to n;+8n; , where énl is the integral part of the gtd, .
Modify the resources and remove this stage from calcu-

lations.

PEITE all stages are removed from calculations, stop; else

go to step 2.

EXAMPLE ©
Consider a system having twO stages in series. The com-

ponent reliability, cost, weight, volume and power consumption

data are as follows:

, Component ; Power con-
; iy o / )
Rgs reliability oy Mgl i sumption
i - Qe ge _ 1 2 & 5

2 (98 s 8 4 4 2
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Find the optimum allocation of the redundancy for maxi-
mizing the system reliability. Total cost, weight, volume

and power consumption must not exceed 8, 10, 15 and 10 units,

respectively.
Adding slack variables Ny, n, , ng and ng . the equa-
lity constraint on the system can be written as
n;+3n,+n 340n , +0n +0n, = 8 ' (3. 64)
2nl+4n2+Qn3+On4+On5+On6 = 10 (3. 65)
3n)+4n,40n,+0n,+0n +0ng = 15 (3.66)
5n3+2n2+0n3+0n4+0n5+0n6 = 10 {3 67)

Combining the constraints (3.64) and (3.65) by choosing

suitable values of the multipliers, to form a new constraint,

t)=11 and t,=9 satisfy the conditions given by (3.60). The

new constraint is

+11n_+9n = 178 ' , (3.68)

29nl+69n2 3 4

Now the constraints (3.68) and (3.66) are combined by

choosing tl=l6 and t.,=170, to form an equivalent constraint

2

which can be written as

+170n,. = 5398 (3.69)

974nl+l784n2+l76n3+144n 5

4

For combining (3.69) and (3.67), the suitable values of

tl and t2 are 11 and 5255, respectively, giving

+1936n +1584n4+1370n

2 3

_36989nl+30134n 5

45255n6 ' = 111928 2. 79
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Dropping slack variables the eqguivalent inequality cons-

traint on the system is

36989n; + 3013n, < 111923 (3.71)

The original reliability problem reduces to the maximiz-
ation of the system reliability Rs(n) subject to the single
constraint (3.71). Derivatives of 1-(1- rj)nj are cal-
culated with respect to n, and n, and n; and n, iﬁ (3.71) are
replaced by (1+.22.st) and (1+.139.st). The st is obtained
63.3.6. As described above, the stage toO be selected is 2, a4
it has lowest reliability. Therefore, n, is set as 2. same
procedure is repeated for n; and n; is found out to be one.

Therefore, the optimum number Of components to be used in

stage 1 and 2 are one and two, respectively.

The solution of the reliability problem is obtained by
solving an equivalent problem having only one constraint. The
generality Oof this method is not bound by the requirement of
the integer coefficients. of the constraints, as any irrational
number can be approximated by a rational number, which in turn
can be converted into an integer form by multiplying the in-
equality by a>suitable factor., Reliability problem with non-

linear constraints can also be solved by linearizing them.

3.9. LEXICOGRAPHIC ENUMERATION TECHNIQUE

The nonlinear integer reliability problem can be convert-
ed into zero-one nonlinear programming problem by repl acing

nj by binary vector le having numerical ordering as
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ik =
n CET T le + 2 sz LN le

where x ., =0 or da 1 is chogen to be sufficiently lerge

= I
fer 2l s t0 e an upper bound on the value of nj' But the
condition is that the objective function and the constraints

should be monotone non-increasing in each of the variables

X The reliability problem can be stated as

jL
Maximize system reliability

k
fam W) e R LR T8 ) (3.72)
8 j=1 3

Subject to the constraints

Gl.j(nj)-bi < 0 13.73)

S s

j=1
i:l.[ 2,-.-,8

n should be integer

b

1n terms of the binary variables le - the reliakili ty
problem can be expressed as

Maxmi ze
- k
Ln RS(X) o i Ln Rj(le) (3.74)

subject to the constraints

k
I & ke Fh € . & {3: 78
j:l lJ Jl - Iy i:ll 21---15 )

xji =0 or 1 k25 ) e, i |

Usually in the reliability problem, objective function
and the constraints are increasing function of the variables

le. This can be converted into non-increasing function by
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replacing x ., by (l—§51). That is: ny can be given by

ji

. + £ Z {l e 5. ) (3.76)
J L %

Therefore the reliability problem can be restated as

Maximize
. = k =
Go(x) = 'En Rs(x) = .Z Rj(le)
_]:l
subject to
k —
E o8 ' - g B e Wy &

0 <
$ad a b -} i

le=0 or 1

If the objective function GO(E) is not monotone non-
increasing as in case of systems having mixed redundant com-
ponents, a new constraint is added. The reliability problem
in this case wil; result in

Maximize

=

Eubjegt to

Rl ) £ =8
k =
j§1 Gij (le) iy LD {3.78)
i"-:l, 2, [S
X_]l = O G L

The above problem can be solved by total enumerating of
the binary vector in lexicographically increasing order. The

best suited numerical ordering is
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k2t ¥opX1 %1 Xg1X 1)
(3.78)

t(;\ = (X

Using this ordering and some other skipping rules faster con-
vergence is achieved than (43} and [31]. In order to avoid
total enumeration, certain skipping rules can be used. If
the current binary vectors x are ordered by t(x), the skipp-
ing will result the next vector to be enumerated as x*. For
given vector (x), x* can be found out [14] Dby the following
method.

Let the right-most position Of one in x be u and the
position Of right-most O to the left of u be v. The x* vector

can be obtained from ;.by

1 - putting x*v = 1
4 = putting x*i = O v+l ¢ 1 i u
3 = patting x*i = X3 B 4 i £ v1

where u is the total length of vector x. The step-
wise procedure [14] for solving above problem can be ex-

plained as

ALGORI THM

(1) set X = (0,...0). If it is feasible to (3.77), stop and
it iz an optimal golytiomn Else, set [ - 0,0 vs. 1} api
G, = -

(2 2 &) £ G go to step 5. Else go to next step.

o ?
(3) If x is feasible to (3.77), set 55:@0(;5 and go to step 5.

Else go to next step.

(4) If x* exist and for some i
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k =
G, , x*-1) - bi > 0, go to - stap 5. Elge 1f x=(1;...:1)

oy 4

go to step 6; otherwise replace ;'by x+1 and go to step 2.

*
(5) If x does not exist, go to next step. Otherwise set

—

X=x* and go to step 2.

(6) Terminate.

NUMERICAL EXAMPLE:

Consider a system consisting of two stages. The relia-
bility, cost and weight parameters of the components are given
below. It is required to find the optimal number of parallel
components to be employed in each stage to increase the system
reliability. The total cost and weight of the system must

not exceed 40 and 30 units, respectively.

St age number one two
-Component reiiability <. B 0.96
Cost ) 6
Weight - 8

Mathematically, the reliability problem can be written as
Maximize Ln Rs(n>

n n

Ln RS n} = hbo(1-0.08 l)+Ln (1-0,04 2)
Suhijest to
9nl+6n2—40 -

5n1+8n2-3o & D

Let each stage not have more than three components. With
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the help of (3.76), the reliability problem in terms of binary
varicl__.es can be written as
Maximize Ln Rs(i)
S 4=% , 1 =2% 4-X = 2%
Ln R_(X) = Ln(1-0.09 11 T2 sntisoios 2 23

subject tO the constraints

-9xll—18xl2-6x21—l2x22+20 {, DO

=By . =T0%. =8¢ =16k o)
Sy 0% 0K =18k, 432 g

l=1,2

The solution sequence is given in Table 3.14. Initially,
55 is sat as - ard ¥ &8 (0,0...0).

Table 3.14

TRk A GRTREE R:
4 = T go MMENTS

o Tk E Y 1s

0 () 0 il Step 4 ©=l, @ TekigriiEn s

0 0 3. 0 Step 4, i=l,2,_§kip_to X

0 1 @] ¢] Step 4 change x to x+1

i 0 A Step 4, i=2, skip to x*

o 1 i 0 Step 4, change X —» x+1

o) 1 1 1 G =-0.09437, skip to x*

1 0 0 (@] Step 4, change X to x+l1

1 0 0 i Step 4, change X to x+l

1 o) 1 0 Step 4, change x to x+1
% o 1 3 65:-0.04155, skip to x*

I i i 0 GO:-O.00973, skip to x*

The optimal solution optained is x =1 and x

¥ e 7%y y=0.
From (3.76), the optimum number of redundant components

employed in each stage are two and the optimum system relia-
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~=pility obtained ig 00,9914,

vlany reliability problems were solved on I8M1620 using
this approach and exact results were obtained. This method
provides faster convergence for small problems than the me-

thods discussed in section 3.3 and 3.4.

3.10. MIXED INTEGER PROGRAMMING METHOD

The techniques discussed so far in this study are appli-
cable for solving the reliability maximization problem by
treating number of redundant components to be used in each
stage, as variables. If the components of varied reliability
are available, the true optimal reliability problem involves
in finding the optimal number of redundancies as well as the
component reliability [44]. Therefore the reliability problem
can be stated as .

laximize system reliebility

and

n, should be integer | , (3.79)

It is a mixed integer nonlinear programming where rj

and nj are continuous and integer variables, respectiyely.
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The reliability maximization problem can be converted into
the se; arable minimization problem by taking logarithm of
the system reliability expression as

Minimize ¥ (n, r)

F {0y, ) e 1%, - SRR,
] J J

Ty

subject to the constraints

k
gl = bl—.L Gl_](n_l ’ r_]) 2 Q
J:l
i:l,2, .S
g = ) < (e < I
b J G 1= T T
n, is integer (3.80)

This constrained minimization problem can be converted
into an unconstrained problem by using weighing factors. The
transformed problem can be defined as [45].

Mnimize F(n, r)
Eip, ) = £in r)+TiI ko, ) +Tl M (n) {3.81)
-1 = 2 cl{gi S s

If this problem is solved sequentially, that is for a

series ©of 1, then

A

md n F, (o, 1) - min {f(n,r), g; 20, M (n):O}- (3.81)
L

Wiy el T, il

L == ) “a

For a given precision, it will resuylt in a finite wvalye

of 1. Using SUMT formulation the constraint penalty func-

tion term can be definad as

Il( gi(n,r)) = SE - (3. 82)
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and the discretization penalty function [45] can be defined as

{0 e

- J n n )} . ( )
M, (n) = & = 3.83
. O J |
where,
= o Ly 2k (
= -1 e 3.84)
nj (nj nJ)/(nJ nJ)
and
n% AT
A == - L J

nﬁ and n? are the lower bound and upper bound on the nj.
In the above problem, Ti and Té are tle weighing factors corres-
ponding to the constraint penalty function and discretization
peralty function. o-l is a constant and is used to change
the shape of dlscretization penalty function while weighting
factor (;’ is used to change its amplitude. The value of
this function will be zero at the optimum point. This uncons-
trained problem can be solved by Davidon-Fletcher-Powell method

for secuence of T; and Ta such that

e gl 1
TC < Tc
Al i
tﬁ > Ta
and o-l+l< c—l (3.85)

One serious difficulty arises in this method, that prob-
lem may converge to a false optimum point due to wrong selec-
tion of the parameters of discretization penglty function.
This situation occurs when one of the discretization point
happens to be in the neighbourhood of a constraint boundary

©n the infeasible side. A recovery procedure is applied under
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such circumstances. The complete procedure can be explained

stepw: se as follows. (Fig. 3.14)

ALGORITHM:

J
process parameter. Evaluate function F(y°). Set It = 1.

] i i i 3 — i Pl ‘:l, ..
(1) Initiatize y° where Yj n, and yk+J rJ for j %y k and

(2) Set i=0.
{3} Bt 1-0,

Solution of unconstrained problem.

i4) Set Hl = I (%« % identity matrix).
(5) Evaluate the gradients Vv F(yl) at the current point.

(6) Compute current descent direction Hﬁ

Hi ) (3. 36)

(7) Compute the current descent step length él that satisfies

F(yl+élHi) = min F(yl+éni) E3B7)

(8) Compute the current descent step

(9) Modify the value of current vector

141 i 1
y = y +8y

(10) Calculate function F(yl+l) and gradient Vv F(yl+l) at

-modi fied point y*tT.

:
(11) calculate AF" = v F(y*+l) =. 0 F(yl)

B2 1 {»F(yL+l)-F(yl)} i f.F(yl)) €, go to next step.

Otherwise go to step 15.

(13) Modify the current approximation H:L
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-
L+l Ayt (ayl)T . Har oF) Tul)
= ey e (3.88)
@yt ar orFt) THarh)
(14) Set 1=1+1 and go tO step 6.
) et Ldel., If 1 2 L go to next step. Else go to

max
step 17.

i+l s 11 i
(16) set '('C :tl'Tc' Td =t2.Td and
o~l+l= o~l/%3. Set i=i+l1 and go to step 3.
X 37 Y (j=1,2,...,k) are integer, stop. Otherwise go to

next step.

Recovery procedure!:
i=}
(N

go to step 2. Otherwise go tO next step.

o R [+]
(18) T£Tk=1, set {, = T} 2 and Ty =2 Set It =2 and

=T . .
(19) set T = 71 T L 2T,;'. set Tt=1 and go to step2.

Tk Golden section method is used for single dimension
search in the step (7) of above algorithm. The initial parameter
seti_ny s the drawback Of this procedure. A&s the initial value
of the process parameters T; b Ta and g influence. the conver-
gence of the problem, the initial value of the T; can be found

out from the following expression
i -
- ) o
T; = Py )/f'1.1° (gi(y ) )} (3.89)

The value of f to be chosen depends on the starting point. If
starting point is very close to the optimum, the large value
Of £ is tO be used. Generally, the value of f lies between 1
and 100 [45]. When location of optimum is not known, Gisvold

[45] recommended the value of £ as 20. The vaiue of reduction
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factor tl should lie between 0.2 and 0.025. It does not have
any effact on the computation time. If small value of tl i ©
chosen, the problem will require less iteration to Converge,
but computation time per iteration will be large. I'nberally,

the perameter T, is calculated by the expression

d

v Py, Tc; ) (3.90)

0 = B
V M(y® ,o°)

The values for C can be taken as 0.001 £ €4 O0:l. Good resplts

were reported for C=0.01., The constant t2 is calculated from

tl with the help of the following relation

& = |[— (3.91)

0~ should always be greater than one, to make the discretiz~
ation penalty function differentiable. In the programme o-=2.17
produces good results. The constant t3 should be greater than
one. A typical value of t3=l.25 is used to solve the relia-

bility problem,

NUMERICAL EXAMPLE :

Consider a four-stage system whose reliability is to be
maximized by using parallel redundant components. The para-

meters of the system are tabul ated below.

Stage i 2 3 4
alj 1. 00 350 2,95 =N @)
a2j 20, 00 20000 20, 00 305-00
a3j 0. 30 @L55 0. 40 2 65

(e B g )
a4j 6 6 o6 06




TABLE 3.15

L l T l G ) ’ e l Ty l__ - ‘ =p ' o ‘ g | Refgznglty

Initial Point 2.0 2.0 2.0 1.6 0.5 0.5 0.5 0.5 0.3164
0.00500 0.00002 3.4 425 (3 4.06 0.763 0.670 0.749 0.623 0.9593
0:00300 O.00008 .44 L, AT 4.63 0.795 0.676 0.756 0.623 0.9721
0.00180 0.00008  3.82 4.82  4.23 5.18 0.619 0.668 0.754 O.602 ©,9885
0.00080 ©.00016  4.86 5,19 5,110 6,97 ©0.680 0.570 0.671 0.586 O.39850
0.00048 0.00032  5.21 6.88 6.15 7.46 0,670 0.561 0.624 0.541 O©,9880
0.00028 0,00064  6.55 7.27 6.72 7.59 ©0.669 0.556 0.618 ©0.534 0.9920
0.00016 0.00128 7.001 8,00 7,00 8,00 0.66 0.54 0,610 0.5l0 O.9927
Optimum solution 7.00  B.00 7.00  8.00 0.66 0.54 0.610 0.510 0.9927

LT
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The constraints on the system are

k
T &y . e l:a ./(l—r.)]n. < 300
1 1] o fe:r hgfl iy g
_J_
and
k (e
2l L w4 5000 (3.92)
Full <3 4 TR S

It is required to find the optimum parameters of the system,
i.e. component reliability and number of redundant components

in each stage.

Initially, Té z (5 and o~ are taken as 0.005, 0,00001
and 2.17, respectively. The initial feasible point chosen

is (2.0, 2.0, 2.0, 2.0, 0.5, 0.5, 0.5, 0.5), with these values
Of process-parameters the reliability problem is solved on IBM

1620. The complete results are tabulated in Table 3.15.

A few reliability problems were solved by this method and
satisfactory results were obtained. One blind run of the pra-
gramme is required for the proper-initial setting of the pro-
cess parameters, as they effect the convergence of the prob-
lem. Author is trying to develop a direct search method of
sOlving the mixed integer reliability problem and hoping to

repore that in near future,



Chapter IV

EVALUATION OF OPTIMIZATION METHODS

The selection of a particular technique rests on the
formul ation of the prdblem and the experience of the analyst.
Specifically, in order to f£ind, which is the best method,
the following criteria are to be considered :-

(1) execution time
(11) computer memory requirement
(iii) accuracy of solution

(iv) simplicity of use (time required by the user to
prepare data)

(v) simplicity of the computer prograume to execute the algo-
rithm.
The most common criteria used to evaluate the relative

h

effectiveness of the different methods discussed in Chapter 3,

are execution time and memory requirement.

TEST PROBLEMS

Problem I (parallel redundancy)
Four stage reliability problem with linear constraint.
A system consists of four stages, each having reliability
and cost as tabulated below. It is required to find the opti~
mum number of redundant components so that the system relia-
bility is maximized with cost constraints as 56 units. Assume

constraint on the system is linear

Stage number i 2 3 4
Component reliabil ity (@80 ATy S 0 .85
Cost 1.3 2B Bad &5

——

Optimum solution (5, 6, 5, 4)
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I
Prcoblem II (Standby redundancy)

FPour stage reliability problem with two nonlinear cons-
traints,. Consider & system consisting of four stages. Their
parameters are tabulated below. It is needed that the system
reliability is to be maximized by using spare components. The
maximum number of the spare components for each stage may be
assumed as three and the replacement time is to be neglectad
in comparison with the mission time of the system which is

10 years. The constraints on the system are

kK 2
il . B £ A G
j=l J J -
and
k
oo B o @de it Al 150
e R R TA N B

The reliabil ity of the switch is 0.599

Stage A,
number j . A
failure rate =h fj
per year J
1 QO T8 1140 746
2 08328 20 8.0
5 0.0066 SN, 6.0
4 @ PG LI, P A3

optimwn solution (3. 2, 1, 2)

Problem III (Parallel redundancy)
Fifteen stage reiliability problem with four linear
constraints. Consider a system consisting of fifteen stages.
The parameters of the system are tabulated in table given

below. The system reliability isto be increased by using
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parallel redundant components. The system cost, weight, volumc
and power consumption should not increase more than 840, 172
5200 -and 43 units, respectively. Assume constraints on

the system are lincar.

Stage Component [Component JComponent Component |Power con-
number reliabi~ Cost welght volume sumption

Lity by a compo-

nent

1 Glacks 80 .0 2.0 e afile 1.0

2 0.86 5.0 4l - 3150,0 50 .0

=) 0.98 20 .0 S e L BOE0 40

4 B EH SR 10 .0 3l 1800 26.0

L st 80 .0 18D 140.0 18.0

6 P 700 5D 120.0 6.0

9 0,88 15.0 6.0 4 580 ¥4 .0

3 0.98 90,0 S 200 .0 133

o 31,59 20 .0 4.0 5RO B .0

10 Q.H85 60 .0 2.0 80.0 3556

11 0.90 30.0 15.0 500 .0 16.0

2 282 60 .0 LD 200 .0 2550

13 Q9 5 40 ,0 L EN(e) 600 .0 18750

14 0.93 65 .0 20 .0 5500 22407

=5 0,94 4559 18.0 600 .0 L

Optimum solution (l: onalip 2y 1oy 2ols20te 236115 l)

Problem IV (Hybrid redundancy)
Consider a protective systemfor a chemical plant, con-
gisting of six stages. Assuming the reliability &f the voter

and fault-detecting and switching device as unity, it is
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r=gquired to find the optimum number of spare components

for increasing the system reliability by employihg tiybrid re-
dundancy. The cost of protective system must not exceed 72
units. Neglect the fault-detection and switchover time.
Mission time is one year. The parameters of the system are

tabul ated below.

Stage Component On line faild4 Off line
number ure failure g &%
rate/year | rate/year
1 Pressure 0.01278 0.001278 3.0
switch
2 Differential O LO5E3 0.001053 4.0
pressure
transducer
3 Oxygen Analy- 0.00833 0 .000833 6.0
ser
4 Reactor tempe- 0.0356 0 .00356 320
rature indi-
gatar
& Temperature 2 ZO0 &l G L0512 8.0
trip ampli-
fier
6 Invertor 0 .003833 0.000833 456

Optimum solution (2,1,0,2,0,1)

Problem V (Maintained system)

Consider a system consisting of two stages. Each stage
has 100 identical components, which should operate failure-
free for the successful operation of the stage. The failure
rate and repair rate of each component is constant. The
parameters of the system are tabulated below. It is required

to increase the system reliability by providing the spare
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components and mul tiple repair facilities. The amount avail -
able for providing repair facilities and spare components is

48 units. Neglect the replacement time.

Failure rate| Repair rate|Cost of a GO 008
Stage : 3
of component| per hour component single repair
nurber | R
per hour X% )M EagLlitey
X 10-3
1 (S LS - X6 8
2 iLAe & 2D 5 10

[repair facilities 1, 1 |
Optimum solution J

spare components 2, 2

COMPARISON OF MzTHODS

{a) Robustness and Accuracy -

All the test problems are solved by the methods present-
ed in this thesis. None of the methods failed to converge.
For these test problems, by rounding off the continuous solu-
tion obtained by using geometric programming formulation, and
other methods gave exact solution. But, in general, methods

given in item (3.1, 3.7, 3.8) will provide near-~optimal solution.

(b) Computer Storage =~
The memory requircment for each method is tabulated below fo:z

fifteen stages and five constraints reliability problem.
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Method word length

1. Geometric programming 261
formul ation

Ze-Fenal ty function 1250
me thod

3. Flexible tree search 1767
me thod

4. Zero-one programming 2686
method

5. Modified non=binary 1680
trecr-search method

6. Branch and Bound method LaE

7% Direct search method 674

8. Simple method 496

9. Lexicographic enu- 2348

meration technique

If there is only one constraint on a system, then geo-
metric programming forimulation will require only 48 words

length.

(c) Execution time =«
The execution time on IBM1620 for each method is tabu-

lated below.
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Method Execution time in minutes
Problem |Problem |Problem ProblemrProblem
I LT ITIT TV vV
1. Geometric pro- 3.0 - 10%0 - -
gramming
formulation
2. Penalty function 8.0 11.0 i3.0 180 1856
e thod
3. Flexible tree 16.0 1o leHo 200 FE56
search method
4, Zero=-one pro= 2058 3 5 LE 18,0 Tl 165.©
gramming :
method
5. Modified non- 1 %0 Bl e =  1@.m e

oinary tree-
search method

6. Branch and 9 .0 6.0 L350 18.0 1 2.
Bound method

7, Direct zearch 10.0 3«0 120 405 -
method

8. Simple method 8.0 6.0 Sk e 8.0 -

9. Lexicographic 15.0 10 .0 18.0 1S4 8.0
enumeration

technicue

GRADING
3 [C R - T I TP
N5, Based on execu=~ - iBased on memory |Based on time
s tion timeé and memory
1, 1 1 %
e 8 8 8
Je X 7 '
4. 9 2 ¥
. 2 6 g
& 5 & 6
i1 6 3 =
8, 3 2 3
- 4 . 4 4

The memory requirement and execution time for mixed
integer programming method for problem given on page 116 is

3150 words and 40 minutes, respectively.



Chapter 5

CORCLUSI ONGE

Due to increased complexity, sophistication and auto-
mation in a modern system, the system reliability always tends
to decrease. The use Of protective redundancies which provide
the easiest and cheapest solution, is made to enhance the
system reliability. But it involves extra money, weight and
volume etc. Therefore, for the optimal design of a reliable
system the optimal allocation of redundancies to maximize
system reliability subject to multiple constraints are to be

found out.

The solution of this problem requires the mathematical
modelling of the system. The derivation of the mathematical
model is eased by first drawing a logic or functional diagram
of the system. The structire of the reliability expression
rely on the type of redundancies to be employed for enhanc-
ing the system reliability. The various types of redundancies
which are considered in this study are parallel, series-parallel,
paraliel series, majority voting, multiple line, standby and
hybrid redundancy. Generalized expressions for system relia-
bility are derived in section 2.4 for standby redundant system
considering the effect of dormancy and three types of switch
failures, that is static, dynamic and gradual failures. For
hvbrid 'redundant system, reliability expression is derived in
section 2.5, incorporating the effect of dormancy and dynamic

failure of the switching device. Maintained systems with
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standby_rédundancy are analysed in section 2.6 and steady
atate peliagbility expression is derived. The type of redun-
dancy to be used is dictated primarily by system performance
considerations. The other factors are operating conditions,
power reguirement, modes Of failure of the components and
maintainability considerations etc. Because of all this,
the problem is an involved one and there does not exist a

straightforward solution to the problem.

The relisbili®y problem hes the form of nonlinear inte=-
ger programming problem. If the system reliability expression
is separable and monotone increasing function, it can be con-
verted into an equivalent linear programming problem having
zero-one variables as explained in section 2.7. If it is not
monotone increasing function with respect to the variables
but separable, an equivalent linear zero-one programming pProb-
lem can be formulated, which results in large nﬁmber of binary

variables.

A new formulation for the problem of system reliabiiity
maximization using active parallel redundancies subject to
linear constraints is presented in section 3.1. The constrain-
ed reliapility p—-oblem is reduced to that of an optimization
of an unconstrained objective function with variables one less
than the number of constraints. When there is only one linesar
coristraint on the system Or a constraints set in which the
active constraintvis known, expressions are derived for opti-
mum number Of parallel components in each stage and optimum

system reliability in terms of the system parameters. These
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exprossions may be useful to the system designer, as he can
know with the help Of these expressions that how much resourc:s

are required for achieving the desired system reliability.

Formulation given in [29] which also have used geometric
programming requires one'more.nonlinaaf equation to solve, than
the formulation given in the report. The error in the calcu-
lation of systom reliability by [29] is 10.1% while this
formulation gives only 0.09% error. The reliability problem
given in [22] is solved in [29] and the result reported is
5,5:43. The same problem is solved by suggested formulation
providing optimum solution as 5,6.5,4, which is also an optimal

solution obtained in [22].

when reliability problem has a number of constraints and
approximate solution is reguired, the useof penalty functiou
approach can be made for solving it as explained in section
3.2. This method provites continuous solution anc has fast
convergence. A tree search method is developed for obtaining
the integer solution from the continuous solution obtained by
the penalty function method. The use of numerical differen-
tiation is made when system reliability expression is not
differentiable. This formulation is highly reliable, robust
and can be used for any type of constraint set. The @rly limi-
tation of this formulation is that it requires initial point
to be feasible one. But in reliability problems, initial feasi

ble point is always known.

The equivalent linear reliability problem with zero-one
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variables is solved by flexible trece search method in saction
3.3. This method allows a great deal of flexibility in the
backtracking step which improves the efficiency of the search

procedure.

In all the enumeration methods available so far, for cal-
culating upper bound on objective functions, a variable is
first set to one and search is made for the remaining free
variables. Seconcly, the same variable is set to zero and
again search is made, while in the zero-one programming method
given in section 3.4, the use of tree search is made for cal-
culating lower bouna using the concept of the minimal exter-
nally stable set which reduces computation considerabl%. The
convergence of this method to a feasible solution is faster
than the previous method. In this method, the termination of
the search before obtaining the optimal solution, wlways pro-

vides a feasible solution.

A modified non-binary tree scarch method is proposeda to
solve equivalent linear programming problem in sactioﬁ By
A simple rule for branching which eliminates the use of exter-
nal stable sc¢t for calculating lower bound to the objective
function, is presented. . It reduces the computation time ana

memory reguirement considerably.

The reliability problem is converted into an eguivalent
Knapsack problem in section 3.6 by aggregating the constraints
which have integer coefficients. It is casier to solve this
equivalent problem rather than to solve original preoblem with

multiple constraints. A branch and bound method is developed
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which is simple and provides exact solution., This method is
found to be very efficient when constraint coefficlents are
small and integer. The generality of this method is not bounc
by the requirement of the integer coefficients of the cons-
traints, as any irrational number can be approximated by a
rational number, which in turn can be converted into an integer

form by mul tiplying the inequality by a suitable factor.

A computational method is developed in section 3.7, which
can be used for solving reliability problem of the parallel,
standby and hybrid redundant system. Due to simplicity and
less computational effort requirement, this method is best
suited for large systems. It has not been rigorously proved
that this method provides optimal solution, but atleast it
will always provide a near-optimal solution. Reliability
problems both with linear and nonlinecar constraints, are solved
by this approach and exact results were cbtained. Since during
initial design phase, reliability proplem does not reguire an
exact solution, as several alterations and alternatives are
scught from other technical considierations, therefore this

method is suitable under these conditions.

In section 3.8, a multiple lincar constrained reliability
problem is transformed intoan eguivalent single constraint
problem by simpls rule. The equivaient problem has same numoer
of variables and feasible solutions as the original problem.

A =imple method is developed to solve the equivalent problemn.
This method is best suited for tﬁe system having parallel,

standby and cynanmic reduncant components with many constraints



having integer coefficients of small magnitude.

The integer nonlinear reliability problem is converted
into zero-one nonlinear programming problem by using binary
variables in section 3.9. An improved method of generating
the skipping vector x* 1is used for increasing the afficgiency
of lexicographic enumeration, This method is quite simple and
easily programmed. This approach is useful forsolving the
reliability problem of the mixed redunuant systems and stand-

by redundant systems having multiple repair facilities.

All the above methods can be grouped into two categories .
(a) methods which provide approximate results which, in some
cases, are also true optimum, and (b) methods which give true
optimal solution. The effectiveness of a method can be exa-
mined from theoretical pointof view and experimentation. In
all cases, theoretical experimentation is not possible. There-
fore, experimentation for each method is performed on IBM1620 .
Experimentation largely depends on the programming of the
algorithm and the precision required. The details about the com-
putational experience are given in Chapter IV. For parallel,
s.andby and hybrid redundant system, direct search method deve-
loped in section 3.7 provides the fastest convergence while
£or mixed redundant system and standby redundant system with
repele tacdl ities, the lexicographic enumeration technigue
results in the fastest convergence. If continuous solution
of the reliability problem which has mul tiple constraints, is
required, the penalty function approach provides fast conver-
gence. When there is only one constraint on the system, the

use of geometric programming formul ation provides continuous
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solution with least computational time.

All the methods discussed above are applicable to solve
the suboptimization reliability problem, that is, the compo~
nent reliability is kept constant and number of redundant come
ponents to be employed are treated as variables. DBut the true
optimal reliability problem involves in calculating the optimal
redunGancy level as well as component reliability. with these
a@s variables, the reliability problem is formulated as mixed
integer programming problem as explained in section 3.10. The
constrained problem is converted into an unconstrained problem
by using constraint and discretization penalty functions. The
unconstrained problem is later on solved by variqhl metric
method. The problem encountered in the implementation of this
method is the selection of the approximate value of the process
parameters, One blind run is required for correct paramcter
setting of the process parameters. This method is found to
be suitablie for big problems having many constraints. The
mixed integer reliability problem requires further exploration
ooth in the problem formulation and solution technigue. -Author

is already pursuing some work in this direction.

The method te be used for the solution of reliability
problem depends on the accuracy of the results and the cost of
obtainihg them. The methods for which the costof ocbtaining the
results exceeds the gain in the design are not suited from
practical considerations. From computational expcericnce, it
is felt that the methods presented in this study arc well

comparable in this regard.

Due to high risk and cost, the fault-tolerant design



of the technological systems. is needed. Optimization methods
will undoubtedly be required to avoid overdesigning of the
technological systems. Therefore, the need of efficient, re-
liable and flexible computational techniques is felt. It is
hoped that the present work may prove of value in this comnnec-

tion.
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APPENDIX

The maintained system problem explained on page 122

can be expressed mathematically as

Maximize
System reliability Rs(ma rc)
= Rl(ml y rcl).Rz(m2 g rcz) (A1)
subject to the cost constraint
lOml+8rC1+5m2+lOrC2 < 48 (A.2)
mj and rcj are integer, j=1,2
where,
=S _3~
1 T e I e LS
R.(m, , r ,) = 1- |_ : |
ok
i} il Cl rcl ' O 92 o
A N o
l’100x0.5x103' 1 Tk
L Eap ¥ Odd g
and (K:3]
1 -~ io0% 1-x 1073
Rolmy + £opd =1 = ¢ l 0. 25 -[
a2t L e -
m_~r +1
( 180 % 1 %16 31 c2
rc2 ¥ Q.25

To convert expression (A.l) into separable functionfor

is taken. The reliability

simplizity, logarithm of (A.l) i
problem can be expressed as

Maximize Ln R (m, r_ )
8 <

T Rs(m, rC) = Ln(ml g rcl)+ Ln(m2 , rcz) LA e )

subject to the constraint given by (a.2).
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The various interesting feasible solutions of this prob~

lem are tabulated below.

Number of repair Number of spare tlogt of

Emailities components iéffi@i- repair &
Stage 1 | Stage 2 | Stage 1 | Stage 2 | lity ggﬁggnent

1 ol 1 1 0:. 9503 33

il 1 1 - 08081 Si=

1 1 1 3 G538 43

1 1 | 4 0.9413 48

i 4 P i CreBB40 43

i 2 il 1 0.9 204 43

2 1 1 % & BT27 41

& 1 2 2 o8 445 48

i 1 2 O.3001 48

2 % 1 2 Q3331 46
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