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ABSTRACT

The thesis gives a detailed study of the problem of
redundancy allocations in electronic circuits associated with
the protective relay circuits., The approach has been kept
general so that application to various fields is unrestricted.
Operational reliability is the main concern of any electronic
circuit associated with such protective relay circuits. Un-
~less the electronic components are made absolutely reliable
by tried and tested methods of manﬁfacturing procesées, the
choice rests on duplicating the components or, in general, what
is called as redundancy applications.

The thesis begins with a detailed study of the redundancy
circuits and their modelling as far as the reliability evalu-
ation is concerned.

Various types of redundant circuits are analysed to
complete the study. Different approaches are devised for relia-
bility evaluation of such networks. In general, one may come
across series and/or parallel or non series-parallel networks
in practice. The non series-parallel networks usually present
difficultywhen the problem is to evaluate the overall reliability
of such networks. Flow-~graph method has been developed wherein
a method of inspection makes it all the more easy to calculate
reliability of the redundant networks, quickly.

If the network is large and complex, the reliability
evaluation poses a problem; therefore an algorithm is present-
ed for straight and fast computation on a digital computer for

any type of the redundant network., This has been possible by



(ii)

correlating the properties of redundant networks with those of
di-graphs. |

The thesis embodies optimisation techniques for ma%i—
misation of the system reliability subject to linear or non-
linear conspraints. Here again, various techniques have been
applied, viz. gradient method, Kuhn-Tucker conditions of opti=~
mality, Dynamic programming, Variational method, Discrete
maximum principle, Integer linear programmiﬁg etc.

Several new approaches and modifications of the existing
methods have been proposed and they are tested on problems
from various sources.

One usually faces the problem of choosing proper values
of Lagrangian multipliers when solVing an optimisation problem
with linear constraints. Attempts have been made to make proper
selection of these and to solve such probiems with ease. Dynamic
programming formulation in ‘'summation' form has been developed
and was found to be more convenient than usual 'product' formu-
lation. An algorithm based on Lagréngian multipliers and
general optimal condition is proposed in case of problems with
linear constraints.

| A Variational method for multiple linear constraints is
also developed and has been tried on several problems. Discrete
maximum principle has been used for problems with linear and
non-linear constraints. Discrete optimisation technique:is
discussed in general perspective for reliability optimisation
under several constraints. In the end a comparative assessment
of the methods embodied in the theéis is made to'provide tﬁ?
merits and demerits of each so as to allow.one to make his '

own choice of the method under limitations and advantages exposed.
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In brief, a detailed mathematical analysis has been
presented for the problem of reliability evaluation and opti-
misation of the redundant networks under conditions specified

which will help to pave the way for making circuits or systems

more reliable.
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INTRODUCTION

It was mainly during World War II and the post-War .
years that the need for reliable electronic devices was un-—
questionably felt. Early efforts in this direction were aimed,

- principally toward determiniﬁg the causes of unreliability.

Von Neumann, Shanon and Moore [1], were perhaps the
investigators whose contribution in this field, gave impetus
to the development of mathematical reliability theory. With the
electronic devices and systems becoming incfeasingly complex
and thus more susceptible to failures, new techniques for their
reliability analeis, had to be developed. Mich of the litera-
ture available on the subject, has come out in the past few
years only.

More recently power system protective schemes have also
undergone a remarkable change especially with advent of solid
state devices., The shift has been from conventional relays to
electronic relay schemes. It is needless to stress the importance
of reliability of such schemes, whose failure may cause heavy
financial loss and inconvenience.

Fundamentally, every electronic relay consists of several
- components such as tubes, transistors, resistors, condensers etc.
The reliability of each of such components contributes to the
overall reliability of the relay. It is therefore in this
context that the thesis presents a generalised approach to

the reliability analysis of such circuits.,



Basically, there are two ways of achieving higher system
reliability. The first is to develop highly reliable components
for use in equipments and systems., The second is to design
reliable systems from less reliable parts through use of redun-
dancies. It is a fact that even if high reliability components
and equipments are used, the overall system reliability decreases
with their number becoming large. The aim of this thesis, there=~
fore, been to explore the field and scope of the second alter-
native.

Reliability allocation is a process of assigning reliabi-
lity requirements to individual units to attain the desired system
reliability. Thus the object of redundancy allocations, is to
maximise the system reliability with ceriain constraints such
as cost, welght, volume etc. imposed on its application.

Before the allocation problem may be discussed and analysed,
it is often necessary to know special features of reliability
functions which will be the objective function of the optimisation
process. The fifst chapter of the thesis is, therefore, devoted
to the study of reliability function and its evaluation by oObserv-
ing special properties thereof. A method of flow-graph has been
developed and illustrated with several numerical examples of
different classes. It has been found to be of great help in
quickly determining the reliability function for all types of
reliability network w{th different types of components.

Non series-parallel networks usually preseht difficulty
in the reliability evaluation. The Faétoring Theorem suggested

by Moscowitz [ 2] was the only existing technique for amalysing



such networks, The thesis therefore presents alternative
computational approaches for the reliability evaluation of these
networks, A systematic study of redundant networks yielded that
they can be treated with the help of di-graph modelling and an
algorithm could be developed for use on digital computer for
large systems.

Once it is established that the reliability of any system
could be increased by recourse to redundancies one usually faces
the problem 'how much to apply’. One can go on increasing the
reliability of a component by putting several units in parallel
infinitely but there are always some inherent constraints such
as cost, weight etc., that prevent one from doing so., It is no
good to design a system 'too costly' or 'too heavy' to compen-
sate for the system reliability. Generally, there should be
some compromise between these factors.

It is with this view that the problem of maxmisation
of reliability, under the constraints imposed by economical
considerations, has to be thought of. Usually a problem of
maximisation of reliability subject to cost, weight or volume;
is considered.

There were several attempts (10, 11, 12, 13] to aim at
this problem. Moscowitz and Mclean [12] considered the probiem
of maximisation of reliability with only one constraint, i.e.
cost. Moscowitz [12] in fact used a variational method to
come to an optimum allocation. Gordon [13] also considered
the problem of single constraint. Kettelle [10] provided a

computational approach for maximising reliability subject to



icost' constraint only. However, Proschan and Bray [(15]
extended the method of [10] to include more than one
constraint, viz. cost, weight etc. This required an
approximate estimate of the reliability. The above
approach has been applied in the thesis, for non-linear
: constraint problems also., Bellman and Dreyfus [16] formu-
lated the problem as a Dynamic programming problem. The
bulk of computation however in this formulation was
too heavy even for a problem with few stages only. Fan
and Tillman [21] proposed a method using discrete maximum
principle but a slightly different problem formulation
was used. They infact optimised the profit accruing out
of a-system with high reliability. Tillman[23] again
used the Discrete maximum principle for the case of non-
linear constraint problem and very rece. tly Tillman [27]
proposed an Integer programming approach to the problem
of maximising reliability subject to several non-linear
separable constraints and with different modes of failure.

M zukami [26] formulated the allocation problem again
as integer linear programming problem by approximating the
concave objective function as linear between two variable
xj-points and further formulating it as linear programming
problem. Muzukami infact used Mixed=-linear programming
technique for the solution,

A survey paper by Lawler and Wood [30] provided a
new approach to the problem of non-linear programming,. Based

on [30] initial work has already been taken up and Jacobson



CHAPTER .1

ANALYSIS OF REDUNDANT NETWORKS

151, Introduction

It is a well-known fact that if a high reliability of a system
is to be ensured, either the constituent elements of the system should
have high reliability or the elements could be duplicated so that if
one fails another ensures the failure-free operation of the system.
This applies to all systems whether they happen to be mechanical; elec—
trical, communication or information channels. This logic finds its
application in electronic circuits for protectiom schemes, military
applicatidn, space programmes, where reliability is of prime import-
ance for their faultless operatioh. For example, Fig. 1l(a) gives the
circuit of a relay using a vacuum tube - the probability that the relay
will operate when a signal appears at the grid terminals of the tube,
is the reliability of the wvacuum tube. If there happens to be an open
circuit in the filament circuit, the failure of the system occurs be-
cause of non-operation of relay. Now to ensure even more reliable ‘
operation if we duplicate the tube, the system will remain operative
even if there happens to be a failure of one of the tubes. The relia-
bility of system now is increased (2 - p) times the original reliability
of the tube where p, is reliability of a tube given that 0 p<{ 1,

The system with two tubes will be called Redundant system.

l.2. . Definitions
Redundancy can be defined as the existence of more than one
means of accomplishing a task. All means should fail before the system

failure occurs. Obviously chanches of failure of a system are less
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FIG. 1(a) NON-REDUNDANT RELAY CIRCUIT USING ONE VACUUM TUBE.

V = VACUUM TUBE
R = RELAY

FIG.1(b) REDUNDANT RELAY CIRCUIT USING TWO VACUUI:d TUBES IN PARALLEL



‘cost' constraint only. However, Proschan and Bray [15]
extended the method of [10] to include more than one
constraint, viz. cost, weight etc. This required an
approximate estimate of the reliability. The above
approach has been applied in the thesis, for non-linear
: constraint problems also. Bellman and Dreyfus [16] formu-
lated the problem as a Dynamic programming problem. The
bulk of computation however in this formulation was
too heavy even for a problem with few stages only. Fan
and Tillman [21] proposed a method using discrete maximum
principle but a slightly different problem formulation
was used, They infact optimised the profit accruing out
of a system with high reliability. Tillman[23] again
used the Discrete maximum principle for the case of non-
linear constraint problem and very rece: tly Tillman [27]
proposed an Integer programming approach to the problem
of maximising reliability subject to several non-linear
separable constraints and with different modes of failure.

M zvkami [26] formulated the allocation problem again
as integer linear programming problem by approximating the
concave objective function as linear between two variable
xj—points and further formulating it as linear programming
problem. Muzukami infact used Mixed-linear programming
technique for the solution,

A survey paper by Lawler and wood [30] provided a
new approach to the problem of non-linear programming,’ Based

on [30] initial work has already been taken up and Jacobson
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[(31] has brilliantly worked out an algorithm using branch
and bound method for minimising the cost of a system :
subject to maintaining a certain level of reliability. The
author is also currently working on the same problem and
hopes to bring out some fruitful results in future.

In short different inVestigators used different
approaches to the problem of maximising the system reliabi-
lity subject to specified constraints,

The present thesis aims at presenting few more
aspects and aomputational approaches to the above problem.
The thesis also presents the comparative study of different

approaches which is very much required by the system designer

before any convenient solution to the problem is desired.
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where there are redﬁndanéies or, in other word-, - the reliabiiity of a
system increases with the introduction of redundancy in a system.

Redundancies can be elassified under three broad categories:
Active redundancy, Standby redﬁndancy and‘Voting redundancy.

In active redundancy all the redundant paths (units) are conti-
nuously energised while the system operates. If the redundant unit
ioes not perform any function and comes intc operation only when the
primary unit fails, this type of redundancy is called standby redun-
dancy. In such a redundancy system it is necessary to have some
decision making device which will detect the failure of first unit and
place the second unit into operation simultaneously. A standby unit
may be partially or fully energised or completely inactive. In the
third type of redundancy, three or more units operate in conjunction
with a switch which selects the unit with agreeing outputs if they
constitute a majority. This type of redundancy is commonly used in
computer applications. The redundancies may be introduced at any level
of a system, viz. component-part, component, unit (or equipment) system

itself. This necessitates definitions of different terms used here.

Zlement or Component Part — This is a basic unit in any system, such as

resistance, capacitance, diode, tube, transistor etc.

Jomponent - Assembly of component parts forms a circuit, viz, osci-

‘llator, trigger cct, register etc.

#Jnit or Equipment - Next higher level of system assembly 1s an equip-

ment or unit such as relays (static) etc.

System - A complete operating unit constituting of several equipments

or units may be called as a system.

Redundancy may be introduced at any level in a system, i.e.

component parts, a circuit, an equipment or a system itself may be



duplicated. However, it is obvious that active redundancy in component
parts such as resistors, capacitors are unsuitable because if one fails,
out of, say, two parallel units then this changes the ci;cuit constants.
In such cases, standby redundancy may be resorted to if it becomes
absolutely necessary. To make the analysis more general and depending
on the level at which redundancy is introduced these terms may inter-
changeably be used. A block in reliability model will henceforth be

called as an element and the whole assembly as a system.

l.3.Redundant Networks

After Shanon.[1] suggested that a large number of less reliable
relays could be connected in a lattice form to give more reliable ope-
ratien,the attention of several investigators was drawn to the use of
redundancies in several forms and to the evaluation of reliability of
such networks.

Depending on the connections of different constituent elements
in a system, three situations arise: the elements may be in series,
parallel or in a non series-parallel form., Therefore in a broader
perspective, all the networks can be divided into two categories:

a. Mixed redundancy or series-parallel configuration, in which
the elements are connected to each other only in series and/or
in parallel.

b. Non series-parallel configurations, which have not only series- -
parallel connections but also interconnecting elements such as
in bridge networks. Because of these interconnecting elements
it is not possible to call elements either being in series or
parallel. »

Non series-parallel circuits may be planar or non-planar which
can be drawn only while crossing each other.

It can be shown very easily that a circuit of 4 elements of
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two parallel paths with two elements in series can be made still more
reliable by the introduction of an interconnecting link to make it a

bridge circuit.

1.3.1.Series-parallel configurations
A schematic development of series-parallel configurations of like
elements is given in Fig. 2. As is clear from the Fig. 2, the diffe-
rent possible configurations for four elements éan be dérived from
those of three elements realising the fact that the new element could
be placed in the following manner:
a.'In parallel with the whole unit of three elements.
b. In series with the whole unit of three elements.
c. Introduced in branch path of the unit of three elements, in
either parallel or in series with an individual element.
It is obvious that (a) and (b) just double the possibilities by the
introduction of a new element; however (c) gives a definite number of
possibilities only. It is also clear that the independent configur-
ations contributed by (c) for a particular number of elements can be
found from the configurations falling under the same group (c) of the
preceding number (i.e. one short) of elements. The number of possible

configurations upto seven elements are listed in Table 1.

Table 1 - Possible Series-parallel Configurations

Elements 2 3 4 5 6 7

Total number of
configurations 2 4 10 24 66 180

If the configurations listed in Table 1 are classified on the
basis of number of nodes they have, then Table 2 is obtained. It is
evident from Table 2 that the maximum number of configurations lie in

mean number of node's column and are almost equal to the total number
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nas its dual drawn in Fig. 6. The procedure or drawing dual network

is to take two terminals outside the network whose dual is to be found

and then putting a node in each loop of the original network, lines can

be drawn through all the elements joining the two proper nodes. The

method is displayed in Fig. 5(b).

e

1.3.4.Development of reliability models

Before the reliability of a system consisting of several func-

tional units is evaluated a representative model of the system is

developed depending on how different constituent units interact as

regards their functions to make a system operative. When this block

diagram is developed it will fall in any of the above configurations

discussed earlier. Thus knowing the reliability parameter of the units

or in more common language the elements, the overall reliability para-

meter of the system can be obtained by the methods to be described

later.

1.4+ Analysis of Redundant Networks

works

Some of the results desired from an analysis of redundant net-

are:
The overall reliability for various kinds of redundancy, given

the appropriate parameters of the elements of the network.

. For particular subsystem should it contain several replicas in

a redundant formulation or should a more reliable element be

used by itself? One can make tradeoffs between reliability and
various resources for this purpose. A typical cost vs reliability
curve is shown in Fig. 7.

If the reliability of a system must be improved,.on which sub«
system should the effort be allocated?

The proper tradeoffs of reliability versus volume, weight, cost

or other factors.



FIVE ELEMENTS Y

FIG.3 A BRIDGE NETWORK OF FIVE ELEMENTS.

SIX ELEMENTS

FIG.4. BRIDGE NETWORKS FOR SIX ELEMENTS.
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of configurations for the preceding number of eclements case. -

Table 2 - Distribution of Configurations on the
basis of No. of Nodes and Elements

No, of Configurations

No. of Nodes - Noé o) f4 E 1 ? m e n6t S
2 1 1 1 3 1 1
3 1 2 4 6 2, 12
4 = Dy 4 10 23 44
5 - - 1 6 23 66
6 . - - 1 9 44
7 - - - - 1 12
8 - - - - - 1
Total 2 4 10 24 66 180

1.3.2.Non series-parallel networks

Fig. 3 shows a bridge circuit which is the first non series-
parallel circuit that can be drawn with minimum of 5 elements.

It may be made clear that only independent configurations have
peen considered. However, in all these cases any particular element
can take up all ather positions of the elements. This would not change
the approach of analysis of a particular configuration. The next non
series-parallel configurations which can be drawn for 6 elements, are
shown in Fig. 4. Further development is easier for a case of 7 elements

and 50 onhe.

1.3.3.Dual networks

in fact all the network configurations shown in-Fig. 2 can be
grouped in two sections. The networks shown above the centre line have
their image networks as their duals. For example, in case of 4 elements
the configuration 4 has its dual as 7,and 2 has its dual as 9.,..etcs

The method of drawing dual network is shown in Figs. 5 and 6. Fig.5(a)
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is to take two terminals outside the network whose dual is to be found

and then putting a node in each loop of the original network, lines can

be drawn through all the elements joining the two proper nodes. The

method is displayed in Fig. 5(b).
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Before the reliability of a system consisting of several func-

tional units is evaluated a representative model of the system is

developed depending on how different constituent units interact as

regards their functions to make a system operative. When this block

diagram is developed it will fall in any of the above configurations

discussed earlier. Thus knowing the reliability parameter of the units

or in more common language the elements, the overall reliability para-

meter of the system can be obtained by the methods to be described

later.

1.4, Analysis of Redundant Networks

works

Some of the results desired from an analysis of redundant net-

are:
The overall reliability for various kinds of redundancy, given

the appropriate parameters of the elements of the network.

. For particular subsystem should it contain several replicas in

a redundant formulation or should a more reliable element be

used by itself? One can make tradeoffs between reliability and
various resources for this purpose. A typical cost vs reliability
curve is shown in Fig. 7.

If the reliability of a system must be improved,bon which sub-

system should the effort be allocated?

The proper tradeoffs of reliability versus volume, weight, cost

or other factors.
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In this chapter, the main concern is with (a) above. The solution to
that problem is necessary for any of the subsequent results, The follow-
ing assumptions are made:
a. All elements are always operating (no standby or switched
redundancy) .
b. The states of all elements are statistically independent.
This means that the failure of one element does not affect the
probability of failure of other elements.
c. Time is not explicitly an independent variable.
d. Bach element may be represented as a two-terminal device.
e. The state of each element and of the network is either good

(operating) or bad (failed).

1 4.7, Basic property of an element
An element in a reliability model of a system may be given a
statistical parameter p such that it represents the probability of that
element to survive under the specified condition of ehvironment. Des-
cribing the same parameter in other words [2] in a physical sense, if
X. 1is the number of alike items wi th probability of survival p then

11

xout is the number of items expected to remain in operating condition
after a certain time t. Therefore an element or a block may be repre-
sented by a twe-terminal link with parameter as p having a linear

relationship as -

- = Tapait : e 2

Here the author differs with usual convention as described in [2], in
that the element as represented by (1) must also be given a direction
from 'IN' terminal to 'OUT' terminal (as shown in Fig. 8), so as to
make it possible to extend topological methods for the analysis of
redundant networks. .

However, it may be made clear that in case of interconnecting
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links such as we come across in non series-pn allel configuration such
an oriented graph would not be possible for these interconnecting
links but as will be seen later such an eventuality can be byepassed

by defining more than one oriented graph for the same network.

l.5.Historical Procedures

The problem of finding the overall reliability parameter knowing
the reliability parameters of constituent elements becomes complicated
and time—consuming when the system is large and complex. Each ele-
ment can have either of the two states, i.e. either it is operating
or has failed. Same applies to the system also i.e. either it will be
operating or has failed. Therefore, the overall performance of the
system is binary function of the element performance. Consideration
of all combinational states of different elements multiplies the
number of states for each element in the network. If the state 1
denotes the operative state of an element and state O represents the
failure of that element then the number of states for three elements
would be 8 and for a case of seven elements it will be 128 or in short
2™ for n elements, Further for a case of 20 elements it will be more
than one million as was pointed out in [2] also. The gystem performance
will be the summation of all the events leading to successful operation
of the system.

Moskowitz [2] suggested breaking up of the large complex system
into smaller units of series and parallel networks of the system and
used dot and cross operators for systematic evaluation of the network
function. No doubt, the system performance function can be easily
written down using dot and cross cperations defined as below:

Dot operation; X.Y = Xy
Cross operation; X XY = X+§ =Xy

but actual evaluation is even tedious, for it involves many multipli-
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cations.

For bridge circuits, [2] suggested the.use of factoring theorem.
Factoring theorem states that if F (pl, Pyr Py - - - pn) is the relia-
bility function of the network of n elements including an interconnect-
ing link k whose reliability is pk, the ove rall function can be written
as -

F (pll p2[ p3 . . B pn) = pk LF (pll p2 . - . pn)] pk

+pk [iF (Dis Poow e )]
1 2 n
pk

where pk is reliability of the element k and EE = (1 - pk). Again

0o

Il

here if there are many such interconnecting links then for each link
the number of series-parallel configuration of the same size as the

number of elements in the original network would be doubled.

l.6Some Properties of Reliability Expressions for a Redundant Network

Before discussing the topological method, author has developed,
some of the properties of reliability polynomials will be given.

If each element has a probability of survival p, then the ex-
pression for the reliability of the network will be a polynomial in
the various p's. Some of the properties of these reliability poly-
nomials are -

a. The highest degree for any term is the number of elements in
the network.

b: The sum of all the coefficients of the polynomial is unity

c. The coefficient for the term of highest degree is unity in case
of series-parallel networks. For non series-parallel networks,
it is the number of variations in the orientation of the graph
of the interconnecting links as will be discussed later.

d. The sign of the highest degree coefficient will be positive if

there is an even number of loops (zero is an even number). For
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an odd number of loops the sign of the *ighest degree coeffi-
cient will be negative. (Actually in the strictest sense we
cannot have any loops in the oriented graph of a network in
reliability modelling as will be seen later; the complete orient-
ed graph turns out to be a cascaded graph.)

The sum of the number of nodes and loops in a network will be
equal to N + 1, (N is the number of elements in the network) .

The sum of the number of nodes in a network and in its dual
network will be N + 3, (N is the number of elements in both
networks) .

Let the parameter of each element be the same, p. Then the
reliability polynomial when plotted against p will be S-shaped

if there is no single element in series or parallel overall.

This means that for some range of p, the network will be more
reliable than a single element and for some other range of p, the
network will be less reliable than a single element. This is
clear from Fig. 9 drawn for the case of 4 elements. Chained

line in Fig. 9 shows the curve when there were only one element.

The curves of the polynomial corresponding to configurations
3.2, 3, A-and 7, 8,-9,. 10 of Tigh 2 are eitlier below this 1line
or above this line respectively and decreasing monotonically
but configurations 5 and 6 exhibit a migratory tendency or S-
shapedness i.e. for certain range of probability of success of
an element the network may be better than a single.element in
reliability and for another range of element reliability the
network may be worse than a single element in reliability. If
we trace back then we realise that these networks were obtained
by introducing an element in the branch in place of putting the

element either in overall series or parallel while going from
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3 elements network to 4 elements neﬁwoau. For 5-elements net-
works, S-shaped curves will be for configurations 11, 12, 13

and 14 only (Refer Fig. 2). Another interesting thing about
these curves 1s that crossing point with chained line can be
obtained at any point by choosing a proper network. For example,
in case of 6 elements case, these configurations will be 18 and
for 7 elements they will be 48 in number and they can provide

any range of crossing points.

147. Flow~graph Method
In Section 1.4.1 the property of an element was given and it was

pointed out that an element must be oriented for flowgraph analysis.
Therefore if an element is to have transmittance pij when the element
is connected between nodes i and j, the signal must be 'in' at the
terminal 1 and 'out' at the terminal j, to recognise it as an oriented
graph. Since in the analysis of redundant‘circuits we are mainly
concerned with the evaluation of transmittanece between two (or
otherwise specified) terminals, all elements must be oriented such
that they seem to carry a signal from the IN (source) terminal to

the OUT (sink) terminal. A source node will have only outgoing
branches and the sink ﬁode, only incoming branches. This convention

should be followed while orienting the branches of a graph.

With such an assumption for series-parallel redundant networks,
the resulting oriented grabh turns out to be a cascade flow graph since
any cascade sequence of coefficients always cascades into a new vari-
able. There will be no feedback loops.

Since the variables at ea¢h node have the same dimension, the
application of topological methods becomes easier. The ordinary multi-
plication gnd addition rules of linear flow-graphs can be applied.

When two elements are in series with probability of success Py and Py



17

and the failures are statistically independent then the total trans-
mittance (reliability) is P,P,. In general for m elements in series

the total transmittance, Tr, will be -

m
Yo &0 p. (2)

Also when two elements are in parallel the total transmittance will
be Py + P, - P.P,: Or in general for n elements
n

Prae Low ff (1-p, ) (3)
F 85,

One can use a Boolean sum of events, to give the formula

Tr = Pr{\j E.\ (4)
o Y
where Ei is the event ith element is good. Therefore the solution of
redundant networks can be found straightforwardly by finding all possi-
ble forward paths in an oriented graph of the network and then summing
them for the transmittance between the IN and OUT terminals according
to (4) using the Boolean algebra rules. Remembering the basic Boolean
rules the expansion of the terms into algebraic sums could be done.
For example, considering the configuration of Fig. 10, all possible

forward paths in oriented graph will be

Ege Eqr ENEg, ElﬁE2 EBI'YE4 (5)
Then
Tr = Pr {E6 UE7U (E4ﬂES)U (ElﬂEpE{IE(})} (6)

This is the transmittance between terminals IN and OUT of the network,
i.e. the reliability. Equation (6) could be expanded by the usual

laws of probabilities of statistically independent events (remember
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that the [Ei] are independent). The number o. terms becomes very

large,

for 7 forward paths the total number of terms will be 127 -

of course many of them would combine.

l1.7.1. A speedy method of analysis by inspection

For the series-parallel case of 7 elements of Fig. 10, the

method described below gives all 15 terms directly without any mathe-

matics involved, by inspection and following certain rules. This is

the easiest approach - the analysis and speedy solution of the problem

is without any tedious manipulétions.

Rs

Find out, one by one, all the possible forward paths available.
The maximum number of elements in any forward path will not be
more than one short of the number of nodes assuming that

(i) there is at least one path which contains all the nodes

or (ii) all nodes are interconnected as may be the case in

non series-parallel networks. Find their sum.

Find all oriented graphs touching IN and OUT terminals contain-
ing one loop only. Assign negative sign to the sum of product
of the probabilities of success of those elements which consti-
tute a particular graph. For example, in Fig. 2, the 6th graph
has only one loop (actually in the language of flow graph, this
cannot be called a closed loop) and consists of elements 4,

5, 7. Therefore this gives rise to a term P,PsP4 with negative
sign.

Next, we find all oriented graphs again touching IN and OUT
terminals having two loops and sum their products of probabili-

ties of success; attach a positive sign.

-Steps 2 and 3 are repeated for all loops until the graphs that

contain the maximum number of loops have been considered. An

odd number of loops gets a minus sign, the even numbers get a
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plus sign. The maximum number of loops in any network will be

one plus the number of elements minus the number of nodes.

The above procedure is so simple that one can write the complete
reliability polynomial or transmittance without difficulty or mistakes.
All 15 steps for the problem of Fig. 10 are shown thereon.

The procedure can be programmed and successfully performed with
a computer for a large complex network if the sole purpose is to
evaluate transmittance. Although with a computer any of the methods
may be used with ease, the method just described is recommended because
it only requires the information as regards the connection of diffe-
rent elements to particular nodes, i.e. connection matrix. No other
information or manipulation is necessary. Therefore the method des-
cribed has an edge over other methods. Before applying the above
procedure the network can first be reduced by combining parallel ele-
ments across any two particular nodes. The author used the above
method and found it successful. The flow chact of the computer
algorithm is shown in Fig. 11 (NN is the number of nodes).

In the first part of the program, the element reliabilities
and the nodes to which the elements are connected are stored in a
table. Next the elements of the connection matrix of the order NN x NN
are made zero, and a reduced matrix (NN X NN) is prepared from the

stored table with the help of a Subroutine Reduce which combines all

the parallel elements across any two nodes. For example, the connec-
tion matrix developed for the configuration of Fig. 10 will be of the

form:



(" READ NE,NN )
£ B
C READ IK (1), JK(I), P(I) >
. 1=1,NE
£ WO 1
INITIALIZE
c(1,4J)

-

LOOP
CI=1,NNI [
LOOP

CALL SUBROUTINE REDUCEJ‘

l
END LOOP %

!

L____“W 3 2 |
e
ot RS
END LOOP
—fffiiiifgg
[C—('J,IFC(I,J) ‘]

EALL SUBROUTINE FORWRD

~

R ’ AR
(- PUNCHPT )
A% e S

[ END )

N,

FI1G.1l. FLOW CHART FOR TOPOLOGICAL METHOD.
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o €42 . o 7 C15T
Gy .08 Sy Y 3
¢ [, 5} =)0 ey o) o) 0 (7)
€41 9 Sfi o €45
LC51 ) O c54 o]

where c 5, = Pys Cyy = Pg: Cyg = (p6 + Py - p6p7) as obtained from

Subroutine Reduce. Once the connection matrix is developed, Sub-

routine Forwrd finds all possible paths from nodes 1 to NN. The upper

diagonal elements of matrix C take care of the formation of a forward
path, first with one loop, next with two loops and sO oOn depending on
the number of terms in any particular row in the lower diagonal. The
procedure followed is exactly as described above: All the products
of probabilities during these walks are added with proper sign to
give the transmittance between nodes 1 and NN.

This method necessitates that the numbering of the nodes be 5 i)
ascending order - a condition for the network to have a cascaded di-
graph. All elements should be oriented from lower node number to the

higher node number. This is not difficult to achieve in practice.

1.7.2. Non series-parallel redundant networks
Non series-parallel networks differ from others, in that there
are interconnecting elements which are bilateral in nature, viz. they
are oriented in both directions. It was observed earlier in series-
parallel networks that by properly orienting the graph, it turned out
to be a cascade flow graph. The IN node of each element has its
serial nunber less than the OUT node and all graphs are oriented from

lower node number to higher node number. . But in non series-parallel
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networks it may not be so, due to the interccnaecting elements. This
problem can be solved by what may be called superposition. Again,
writing down the transmittance will be easier than any other method.
Except for the interconnecting elements all other elements have a fixed
orientation.
Take the example of the bridge network of Fig. 12. Element 5
is an interconnecting element and cannot be given any fixed orient-
ation. Now since element 5 may be oriented in either direction, two
separate networks with all other elements having their orientation the
same, except that of 5, are developed as shown in Figs. 14 (a) and (Db).
The solutions of these two networks by graph theory are found separately.
The di-graphl?a has forward paths 12,34 and 154; similarly,

the graph 14b has forward paths 12, 34 and 352. The paths of 6 are:

Path, = (Elﬂsz) U (B, E4) U (ElﬂE4nE5),

(8)

Path, = (Elr\Ez) U (E3ﬂE4) L (E20E30E5)

The total transmittance of the network 12 is

T

il

pr [Path,U Path,]
(9)

Pr [(ElﬂE2> U (E3 E4) U (ElﬂE4ﬂE5) U (E20E30E5)]

One must take precaution While applying the method of inspection and
tracing out the paths, that no path having an element oriented back-
wards can be taken, since that violates the properties of cascade flow
graphs. All elements directly connected to smurce and sink must be
properly oriented.

While orienting an interconnecting element one must not direct
it so that a closed loop is formed because the graph would then not be

a cascade flow graph.
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For the problem of Fig. 15 (dropping the leti<» E from the event
notation and implying intersection by the grouping) the paths for

oriented graphs of Fig. 16(a), (b) and (c) are

a = INEN 13 eI 1S
b = 147 123 )67} 356 L) 1483 (10a)
& =-1231)67 \)6423 > 356

The total paths are

al) blU c = 1474 123 67U 3561 12570 1345 U 2346
(10b)
The transmittance is the probability of this combined event. The
probability can be calculated as mentioned above (probabilities of terms
taken by ones, threes, fives, and sevens are positive; the others are

negative).

Pr = 67 + 123 4 147 + 356 + 1257 = 1767 ~ 3567 # 2540
4+ 1345 - 12345 - 12346 - 12347 - 12356 - 12357
-~ 12367 — 12457 - 12567 - 34567 - 23456 - 13456
_ 13457 + 2(123456) + 2(123457) + 2(123567) + 2(123467)

+ 124567 + 134567 + 234567 - 3(1234567), (119

where now the p's have been dropped and the numbers 1-7 stand for
the probabilities of individual events (e.g. 67 @ Ppgp,). If the

elements have equal probabilities of success, P, (11) will be
B e B B o 1085 4ag0 L ART (12)

satisfying the~condition that 2. coefficients = 1 as indicated

earlier.
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1.7, Networks with elements that can short or open
In the preceding sections, we have considered situations in

which the failure'of an ipdividual element or a path failure had no

effect on the operation of the remaining elements or paths. 1In a

situation where an individual element can fail in either of the two
ways » viz. open circuit or short circuit, the analysis will be slight-
ly different. An example of an element that can short or open is a
diode. The failure in either way affects the operation of the surviv-
ing elements.

Since a single element fails by open or short circuit but not
by both, open and short circuit failures are mutually exclusive
events. Denoting ¢_ and q_ as the probabilitieé of opeﬁ and short

respectively, the total probability failure g is
e qo + qs (13)

subject to the condition

ogqgl,ogqogl and 0 { 9 {1

There have been only a few references [4, 5] where series-
paréllel configurations of such netwqus have been considered. 1In
an? redundant network of the above combinations, the analysis would
be too tedious to argue out based on the analysis that has been des-
cribed in the above references. However, an easy method based on
floﬁ graph approach is very convenient for any nétwork consisting of

the elements that can fail either by open or short circuit.

1.8.2.Paths and cuts
In any of the two terminal networks considered earlier, the
overall reliability has been computed by finding all possible paths

from saurce node to sink node and then adding up the events using



Boolean algebra rule and the probabilities associated with them. For
successful operation of the system , successful operation of each
element forming a path is necessary.

With each parth Aj’ 32 1, 20 + v B BEe 8 binary function

may be written as

O<J(X) = T:- Xi (13)
i€A,
J
which will take the value of 1 if all elements in the path function
successfully. It is also obvious from (13) that all elements of
such a jth path act in series. Assuming a performance probability

distribution of the elements such that

b ]

where p; is reliability of ith element and X5 is the binary random

g
1]
0
'
b
Il
[
[ SN |
I

number denoting the state of the element i, the probability for

successful operation of a path would be given by
P [°J§(X) = 1]

and the reliability of the system could be written as

R = P[CP(X) = 1] (14)

where @ (X) =1 —'% [l— °<J.(x)] which gives the probability of
successful operat%:; of a system, Similarly, there are elements
in any network if failed, would render a system as failed. Such
elements are called cuts. Thus any cut Bk' Ko T 20 sy N

again a binary function could be written as

@( (X) = 1 -~ TI— (l—X.) (15)
£ >

which takes the value O if all elements in kth cut fail and 1 » : (-
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otherwise.

1e8e.2.0pen and short circuit failures

Now the properties of paths and cuts could be used for the
analysis of short circuit and open circuit failures of a system.

A path of a system, elements of which could short can only
fail if all the elements constituting a path short. Similarly, a
cut of a system, elements whereof could open would only fail if all
the elements constituting a cut open.

Keeping above points in view one can redefine paths and cuts
such that probability of short circuit failure associated with a
path j,

ay, = [ Gl 1] _ (16)

Obviously, the total probability of a system failing due to short
circuit will be given by
r ~,
q:l—“(l—P{“’.((X)cl] (17)
s J S
J=1
Similarly, the total probability of system failing due to open cir-
cuit, constituent elements of which could open, can be written,

through concept of cuts, as
S
5 =T 2 [/ x) =o0] (18)
S k (o}

Applying the methods discussed earlier an example of Fig. 1l7a
consisting of three elements which can either open or short. }

The flow diagram for paths for the consideration of short
circuit failures would be as shown in Fig. 17b. The total probability

of failure of the system due to short circuit will be given by

q, =1 - [(1—qslq32)(1-qslq33)] (19)
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Using the method of inspection described earlier qs can also be

written as

9 = Qo Haor® Hay Toq -~ 959 95293 (20)

Again the flow-diagram for cuts for the consideration of open cir-
cuit is given in Fig.l7c. It may be noted here that while apply-
ing topological method it is easier te write all possible paths
quickly, therefore one can write down the cuts of a system by find-
ing the paths of a dual network of the original network.

Thus the probability of failure due to open circuits of the

elements can be written as

T-= 91 * 92 Fo3 = Y51 Fo2 Ya3 (21)

As the open circuit and short circuit are two mutually exclusive
events, the probability of failure of the system due to thése will
be algebraic sum of the probabilities associaced with these two
events, i.e.

q=4q, +d,

Graphically, the situation is as shown in Fig. 17d. The
branch 1, of the di-graph of Fig. 17d considers the short circuit
failures and branch 2, the open circuit failures. The topological
method can be applied directly to find g from Fig. 17d once it is
drawn for system of 17a.

Finally,the reliability of the system of which elements can

short or open then can be written as

Raoetiee OF

To distinguish between mutually exclusive events and other-

wise in a di-graph we may use dotted lines for the former and firm
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lines for the latter. Such a situation is shown in di-graph of
Fig. 17d. This appz>ach will be found to be very convenient in case

of complex networks.

1.9.An algorithm for Direct Reliability Evaluation using
Di-graph Matrices

An algorithm is presented in the following sections for
direct evaluation of reliability of series parallel and non-series
parallel networks using di-graph matrices. This will be especially
suitable on digital computers for largerand compléx networks. The

algorithm is quite fast and programming is fairly simple.

1.9.1l.Modelling of networks

As discussed in section l.4.,the modelling of a redundant
network can be done to represent.it as a di-graph with 'IN' (source)
and 'OUT' terminals. A source-node will have out-going branches
and the sink-node, incoming branchés only. Any element between
o T terminals is given a transmittance pij which is reliability of
that element. For example, di-graph for a series parallel network
of Fig. 18a is shown in Fig. 18b. For non-series parallel network,
the same technique is observed except that an interconnecting ele-
ment is replaced by two links with equal transmittances P&j
between node i and j, one oriented from i to j. the other from
j to i. Such a di-graph for a simple non-series parallel network
of Fig. 19a is shown in Fig. 19b. Here an obvious assumption will
oe made that both the oriented links, i.e. from i to jatand . § o1,
cannot exist together simultaneously and that probability asso-

ciated -with such an event is zero.

1.9 7 Combination of parallel elements

Before proceeding to evaluate the overall reliability of
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redundant networks it ig usanally advantageous to combine all
parallel elements between nodes i and j using boolean algebra rules
~and replace them by an equivalent link hawving reliability as c,.

1]
connecting nodes i and j. If there are n parallel elements

g i :
G, 2Py { U BE } £22)
d k=1 i
: th :
where E, 1s the event that the k element is good.
Alternatively,
T ) )
g .1 - (1 - p, {23
*J k=1 ]

As a matter of fact, this can be done as soon as the data about
the system or network is ‘read' in the computer. The data about

the network can be fed in a tabular form as given below:
(Ix{1), Ix(r), P({1), I.= 1, NE)

where NE is the total number of elements in the network, IK and JK
are the nodes having ith element with reliability as P(I). The
computer then scans the table ‘read' and the elements with common
nodes are combined together and stores an equivalent reliability
link between nodes IK and JK while removing the.nodes and elements
from the table that have been combined to quicken the scanning.
This process is repeated for all possible combinations of the nodes
of the network till, finally, a weighted connection matrix [C] is
obtained with the property that for any non-zero entry in [C] there
exists one and only one branch between any two nodes. Initially
all elements of [c] are initialised tO zero and therefore only non-
zero entries are transferred to (cl]. A portion of main program ’

(in FORTRAN) and the subroutine which tests for the parallel
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KeBeMISRA, MAIM PROGRAM
DIMENSICN IK(10)sJK(10)sP(25)C(10510C)
COMMON  NNoNEoPs IKsJK
READ1ICO s NNoNE

FORMAT (213)

READ2CO s (TK(T) s JK(T)sP(I)eI=1sNE)
FORMATI(5(2125F1046))

DO111=1sNN

DO1J1=14NN

Ct11+J1)=0,

JJ=2

NNMT=NN=1

DO211=1sNN1

DO3J1=JJ NN

CALL TESTPR(I14J1,PO)

CAT I s T I=C L s J1 I +PO

Ja=J i+l

CONTINUE

SUBROUTINF TESTPR(I1sJ1,P0)
DIMENSICON IK(10)sJK(10)sP(25)
COMMON NNZNEsP 91K JKsPO
PO=04

DO1 I=1sNE
IF(IK(TI=T1)1s2s1
IF(JK(TI)=J1)1s3,1

P12=P(1)

IK(I)=0

JK(I)=0

Q0=1.-P0O

PO=PO+Q0O*P12

CONTINUE

RETURN

END

F1Ge23 A PROCRAM FOR NETWORK REDUCTION
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branches and combines them, are given in Fig. 23.

1;9.3.Series parallel networks
Once the parallel branches have been grouped together and
a weighted adjacency matrix [c] is developed, the equivalent net-
work will be having less number of branches and will be equal to
the non-zero entries of [C].

For example the matrix [c] for the network of Fig. 18 will

be

P 1

0 Byd e Tyl

0 -0 c (0]

[c] = 2 (24)

0o =0 0 c34

¢ 0 e e

- p.

where c12 7 pl+p2—plp2; 013 = p3+p4—p3p47

i

C3q = Py*Pg+Pg=P;Pg=P7Py~PgPg*P7PgPg SEC:

This matrix will automatically be developed by the computer by
scanning the table (fed-in as data), again and again for each term
as described in section 1.9.2.

The reduced network corresponding to (24) will be as shown
in Fig. 20, with the values of the corresponding probabilities
indicated.

To hake further progress in the process of evaluation of
total transmittance between terminals 1 and 4 we will make use of
certain properties of a di-graph. What we acﬁually desire finally,
is an equivalent edgeconnecting nodes 1 and 4.. This can be achiev-
ed if we can somehow eliminate the intermediate nodes; for Fig.

20 these will be, nodes 2 and 3. In series parallel networks
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the elements can either be in series or in parallel. Fig. 20
obtained after reduction (combining the parallel elements only)
does not contain any two or more edges across a pair of nodes and
as a matter of fact it should not if all parallel edges have been
combined. The only possibility that exists is: there is at least
one such node to which only two edges are connected,one is inci-
dent to and the other will be incident from the node.

Node 2 in Fig. 20 satisfies this condition. This type of
node can be called as series-node and will be the first to be
eliminated from the reduced di-graph. The equivalent edge bet-
ween nodes 1 and 3 corresponding to the two edges 1-2 and 2-3 will
have a probability value associated as obtained by multiplying
the elements €12 and Cos of matrix [C]. Since the probability
- associated with the event that m elements in series operate

P :
series

successfully, is

m S m
Pr{ !w Ek} o 1:)series = .Tr pi (25)
i=k i=k

The product is transferred to the entry of Cq3 and added to the

existing value using parallel combination rules i,e.:

c = C (26)

13 e B o e 1 d°12°23

new old o

In fact, Cqp is the probability of the occurrence of two events
new

that the element directly across nodes 1 and 3 is good as well as
the two elements 1-2 and 2-3 in series.

In general, if node k has c;, element incident to and ki

incident from, then an entry Cy4 is transferred to the

j = ©ix%xj

location (i, j) and is added to the existing value using
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Coin =

e (27
lJnew lJold

T FR B

Howevér, the entries Cix and ckj once they have been used and the
node k has been eliminated are madte zero.

The information about the node, needed for the elimination
process, just described, can be had through the use of: what is
called as degree matrix & = [dij]' There are two dggree matrices
defined for a di-graph, [D], one is out-degree matrix [oa (D)
which has only diagonal entries Odii' indicating the number of
branches 'going out' or directed away from the node i. The other
matrix is in-degree matrix tId(D)] for-graph (D). This matrix also
has diagonal entries idii indicating the number of branches 'coming
in' or directed towards the node i. It is easier to understand
that odii is the total number of non-zero entries of the row
corresponding to node i, in [C].

Similarly, idii for node i will be the total number of non-

zero entries corresponding to ith column of matrix [C]. For

example, just before elimination, [0d] and [1d) for network of Fig.

20 will be

Sl et Dl ! s B Sn i R
113 ] i S
2 1 2 1

(ca] = [1d] = (28)
3 1 4 3 2
0 4 <

4»- g L -

It will®*be interesting to note that idii will be O as node 1 happens
to be a source-~node. Similarly od,, will also be O as node ¢ is a

sink node having only incoming branches.
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It may be remembered that elements of matrices (od] and [1d]
will keep on changing as the elimination proceeds. Finally when
all intermediate nodes have been eliminated there will be only one
entry in [0d] i.e.,for our example, od,, = 1; rest of the entries
will be zero. The same applies to [Id] which will also have only
one entry i.e. Id44 = 4,

Since matrices [0d] and [Id] have only diagonal entries,
it is economical to find a simpler wayléf storing them in memory.
We can make use of the column corresponding to source~node of [CJ
for storing the diagonal elements of [od] and the row correspond~-
ing to sink-node may be utilised for storing the diagonal elements
of [Id] because both these column and row have zero entries through-
out, always. Incidentally, the element of [Cj corresponding to (sink,
source) entry will always be zero, therefore overlapping of an
and [Id] elements at the corner have no problem because odSink =
Sablil oo 0. TFor example, Fig. 20 will have matrix [C] just
before the elimination process as:

o -y

3 | 0.96 0,99 0.95

1 0 Q.90 .0 (29)

(c]

i

& O o) 0.936

LO x 2 2

-

As 1s evident from (29) we have been able to save lot of space by
combining the features of three matrices [C], (0a) amd [zd].
Tt is also easier to find total. number of non-zero entries in any
row and enter it in first column of that row and vice=-versa.

It was pointed out earlier that the elimination starts with

the node 'i‘' that has odii and idii equal to one. After eliminating
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and updating the entries of [C], again we look for the node which
has in-degree and out-degree as one. This goes on till all such
nodes have exhausted and finally the only entry in [C] left out
will be that of S, ik which will be the total transmittance
or reliability of the network under consideration. The changes in

[c], as nodes 2 and 3 are eliminated, are presented in (30) for the

example under discussicn,.

4 s r— -
2 & 00,9967 0©.95 110" 0 -0.,9966
(e} & 0 0] S A Ol

- R (30)
1 G- -0 0.936 O 02050
B & Sl | 2 (i ] SO BT € R

- = o

After node 2 is After node 3 has

eliminated been eliminated

The steps involved in the alc~rithr. d~seribed can be summarise€

as follows: .

1. Draw a di-graph for the network assigning proper direction to
the elements and numbers to the nodes and elements.

2. From the data 'read in' a weighted-adjacency matrix is deve-
loped after combining the parallel elements across any two nodes.

3. Define odii and idii for each node.

4, Eliminate the node 'i' which has odii and idii as unity.

5. Transfer the product ¢;,Cy to (i, j) entry and modify the

old = entry using,

j

s

= C +C., C, :=C -
1k 2 ijold THK ijold ik kj

Also make the entries Cix and ckj as zero.

6. Check whether all the intermediate nodes have been eliminated:
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if not: go to step 3 otherwise print out the element Cg, o ce, sink
and stop.

This algorithm has a unique advantage of being fast and direect
and requires minimum extra information or manipulation. Every inform-

ation is containted in [(CJ.

1.9.4, Non-series parallel networks

For non-series parallel networks, the same algorithm can be
used effectively for the evaluation of reliability with somemani-
pulations. Reference (2] had suggested the use of Factoring
Theorem. We will use the same theorem but in modified form and it
becomes - less cumbersome to use the theorem, than suggested in [2].
Actually the network as a whole, can be handled rather than breaking
it into small units. The algorithm to be described will be found
very convenient with the use of a computer and for large complex
networks. The steps involved before applying the theorem can be
enumerated as follows:

1., As in case of series parallel networks, elements across any
two nodes can be combined first, as it is easier to work with
reduced network. The weighted—-adjacency matrix is developed.

2. Any series-node may be eliminated as discussed in earlier
sections. This further reduces the network size. It may be
peointed out that a network not decomposable finally to a single branch
connecting source and sink nodes by algorithm described in section 1.9.3.
is necessarily a non-series parallel network.

After the two steps mentioned above, we will be left with
a small network (with interconnecting branches) which is quite
convenient to handle.

Instead of usual procedure of factoring out one by one the



(@) NET WORK.

(b) BRANCHES 3 AND 6 OPEN.

€ (c) BRANCH 3 SHORTED AND
6 OPEN.

¢ (d) BRANCH 3 OPEN AND

6 SHORTED.
4 Pa r
2 4
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FIG.21l A NON-SERIES PARALLEL NETWORK.

FIG.22 A NON-SERIES PARALLEL NETWORK WITH
ADJACENT INTERCONNECTING BRANCHES.
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interconnecting branches we will use different combinations of the
states of interconnecting branches (much less in number usually,
than the total number of elements) and define corresponding series-
parallel networks to work with. Finally all the transmittances
associated with such networks are added up algebraically to get the
reliability of the network. The procedure involved will be illus-
trated with the help of an example, taking network of Fig. 21 (a)

Assuming, after going through the two steps mentioned in
this sectioﬁ we end up with a network of 21 where branches with
reliabilities P, and Pg are the interconnecting branches. Now we
consider all possible states of the branches 3 and 6, i.e. they
may be shorted or opened. There are only four possibilities:
branch 3 and 6 open, branch 3 shorted and 6 open, branch 3 open
and 6 shorted and, finally. branches 3 and 6 may both be shorted.
In general, if there are n interconnecting branches, then o
possibilities would be encountered. This should not be so dis-
appointing as the interconnecting branches are usually very few.
Secondly, it will be seen later that it is very convenient to work
with the matrices associated with the graphs. Therefore, further
manipulations on the matrices to simulate all the possible states
of the interconnecting branches, are quite simple. Also any
general approach for direct computation with minimum effort is
preferable than otherwise.

It is easier to conceive from factoring theorem, that the
total reliability e of network shown in Fig. 21 .,can be written
as

R = q,q, [reliability of network 21(b)] + P4 [reliability

non
of network 21(c)] - q3p6 [reliability of network 21(d)j+
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pyPg [reliability of network 21(e)l (31)

Obviously, if one calculates the reliabilities of the networks

21(b), (e), (d) and e), R, Can be directly conmputed.

on

It is not necessary to rig up all the networks, and then
computing the reliabilities separately using the method of section
1.0.3, Instead, we will make use of network 21(b) only and the other
networks can be obtained by shorting one pair of terminals, and then
two pairs of terminals at a time. This is simulated on the computer
by first developing a matrix corresponding to 21(b) which can'be

obtained if the elements corresponding to interconnecting branches

are removed from the weighted-adjacency matrix, viz.

SR L L B
i rO c & O (0] (@) *
12 €13
20 0 (@] c24 0] O
G B O T (@) O c O :
= 35 (32)

Thereafter the nodes 2 and 3 are shorted to get network of 21(c).
The corresponding operation on (32) if the shorted nodes be recog-
nised as sinc’~e node 2, will be

1. Transfer all non-zero of 3rd column to corresponding positions
in column 2.

2. Transfer all non-zero entries of 3rd rbw to corresponding
positions in row 2.

3. All entries of réw and column 3, are made to zero.

While the entries of m column are being transferred to column
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k, it must be remembered that if in i-row there is non-zero entry
in k-column i.e. Cik then the new Cix after Cym 1S transferred to

position Cix will be given by

ik L = agl
old

» e

et (33)

old o

The same applies to the transfer of elements of l-row to n-row.

Following these rules the matrix [C]2l(c) will have entries as

o hae

0 c12 Q0 0 (0]

W (@] c24 c25
; Q0 06 0 0
[0321((:) - L S & (34)

46
00 00 0 c56

0. -6 O 0 0 ©
L R

Similarly, other networks can also be simulated using the above
rules. All these series parallel networks are solved by the alcorithm
of section 1.9.3. At the end of one computation matrix [C] is
initialised back to that corresponding to 21(b) to obtain a new
network again. Once the reliability of a network is evaluated
it is multiplied by proper combination of reliability or unreliabi-
lity of the interconnecting branches according to (31) and stored
in< This goes on t£ill all networks have been considered. The final
sum of all these will be the reliability of the non-series parallel
network.

Network of Fig. 22, has adjacent interconnecting branches, in
which case shorting any one interconnecting branch puts the other
adjacent interconnecting branch in paréllel with other elements.

The total number of combinations if we remove interconnecting
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branches one by one will be less than what we will get following
the procedure described. But extra labour involved cannot be com=
pensated by the loss of generality of the algorithm. Moreover, the

manipulations on the part of a user are also maintained as minimum.

1.9.5.Applications

The algorithm can be applied to any series parallel or non-
series parallel redundant network. Nowhere loss of generality |
hés occurred and thus this can be used in variety of cases.

The algorithm can also be applied to the networks (series
parallel or non-series parallel) with elements having two types of
failures viz. open circuit and short circuit, parallel to the method
of section 8.2.

Applications of algorithm can be extended to evaluate the
selective and non-selective operation probabilities (7] in case of
any complicated relay networkss The procedure will be exactly similar
to that of element with two types of failure.

Thus the algorithm can be effectively applied to solve variety
of problems in the field of reliability evaluation which aCtuallytis

essential in many reliability studies of a systeh.

1.10. A method of deriving reliability expression of redundant networks
The reliability expression of a redundant network series para-

llel or non-series parallel can be derived by first developing a di-
graph for the netwo:k, using the modelling described in section 1.9.1
and thereafter defining the associated boolean adjacency mair~ix
(]. Any entry By indicates the state of the element lying between
nodes i and j i.e. either good (-Eij = 1) or bad (Eij )y 1t 38
obvious that probabilities associated with the boolean sum of events

that all elements of all forward paths, are good, provide the



39

reliability of the network. To generate all forward paths, one can
multiply adjacency matrix n-2 times (n being the number of nodes).
After each multiplication, the element of corresponding

(source, sink) position is picked up and added (using boolean algebra
rules) to the pgevious one. This method actually generates all
forward paths of unit element length, two element length and so..

on. One can at the most have a forward path of maximum n-1 length
if there are n nodes in the network. Tﬁe number of multiplication
can of course be reduced further to n-3. For example, for the
network of 19(b), one requires only one full matrix multiplication,

viZe

| ~ T .
Ep = E;q + (0 Ej,E 5 01 [0 By, 07 + fo &, ,E,,0].

ey

E 0]

o it

O Ey3 Eyy
R, OB

o) 0 o)

[o E (35)

&
24" 34 9
14

E SRR SR SRR G

The rellablllty of the network would then be given by R = Pr‘_ T}

It may be stated here that Pr{E2?E32‘} = as was indicated Vin sec-
tion 2 for non-series parallel networks, therefore the terms involving
these during the multiplications may be dropped right in the beginning.
The method is particularly useful for nan-series parallel redundant
networks however complicated Eut with the condition that there exists
only one branch between any two:mnodes. If there are more than one

we reéplace them with an equivalent branch. It may also be remembered
that + sign in (35) and the internal multiplication indicates the

boolean sum of events.



CHAPTER 2

OPTIMISATION OF RELIABILITY WITH LINEAR CONSTRAINTS

In the previous chapter it has been amply emphasised that the
reliability of a system can be increased by introducing redundancies
in the sub-systems. Although one can obtain a high value of system
reliability by providing as many redundancies as possible but to
ensure that it is not a very costly, heavy or bulky system, the
question of optimisation of system reliability with respect to cost,
weight or volume etc. arises. The present chapter is, therefore,
devoted to the problem of obtaining an optimal allocation of redun-
dancy, i.e. maximum system reliability for the cost, weight, or

volume etc. allswed.

2.1. Statement of the problem

Assuming there are k sub-systems or stages (all of them con-
sidered to be in series) in a system, stage i consists of ni+l,
similar units in parallel, each having independent probability

q4 Oe(qi<\l of failure, the system reliability may be then given

by
- % ni+l
By ¥l qil ) (2.3)
Tl
where n is a vector of non-negative integers such that n = (nl,
Bay v o n;) and represents the redundancies at each stage. There

exist constraints on the allocation of redundancies which may be linear
= ®

or non-linear. Assume linear constraints on n such that

ic..nigcj,: - B o P RBR el (B

ey *J
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where Cij;> O and each Cj shows the allowable limit of cost, weight
Oor volume etc. upto r constraints: The problem can therefore be
stated as: the selection of vector n such that R(n) is maximum

subject to the constraints given in (2.2).

2.2. Domination

cij n, represents the cost of the redun-

gl

Assuming Cj(H) =
dancy allocation n, the ;llocation Bﬂ is said to dominate 32 if
cj(Hl)sgcj(EQ), sl 8. s o v ahlle B} > R(R°), If in addi-
tion, at least one inequality is strict then‘zﬂ is said to dominate
n strictly. A sequence S of redundancy allocation-ﬁh, h =1,

vt S sétisfying the constraints (2.2) is said to be a dominat-
ing sequence if no.r_1h is strictly dominated, and if every n satisfy-
ing the constraints (2.2), which is not strictly dominated, occurs in
Sle

Conversely, T°is said to be undominated if R(T) >>R(HQ) implies
Cj(ﬁi) > Cj(gz) for some j, whereas R(Hi) = R(EQ) implies either
Cj(ﬁi) >-C$(32) for some j or Cj(Hl) = Cj(HQ) for all j, where

CXa ) :;: e
] ey e S §
2.3. Approximate solution of redundancy allocation problem
An approximate solution to the problem (2.1) can be rapidly
and easily obtained by generating an incomplete family of undominated
allocations.
k
Let R(n) = FiRi(ni) (23]

i
where Ri(ni) is the reliability of sub-system using components of

type i and that ny redundant units of type i are provided.

S k
Then log R(n) = >_ log Ri(ni) (2.4)
izl
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Since log x is a mone@tone-increasing functior of x, the problem of
maximising R(n) is equivalent to maximising log R(n).

The procedure for generating an incomplete family of undomi=-
nated allocation can be summarised as follows:

Starting with redundancy allocation of (O, O . . . 0), one
adds a new component to that stage which yields greatest improve-
ment in system reliability for the cost incurred in placing it.
This continues till any one constraint is violated. The proof of
the theorem that if log Ri(n) is concave each redundancy allocation
generated by above procedure'is undeminated is given in Appendix A.
To prove that log R(n) is a concave function of n one can show that

(1—q§*3)(1-q§*1)

(1—q?+2)2

Z}? log Ri(n) = 45? log(l-q?+l) = lug (2;5)

where Alog Ri(n) = log Ri(n+1) - log Ri(n).

The denominator is larger than numerator as
n+2,2 n+3 n+l n+1l 32
¥ - -t = J. .- O
(1-q§™%) (1-a77%) (1 ] ) =gy ita-1) >‘
Therefore z}? log Ri(n) 4\0, so a@lse log R(n) as tha sum of concave
functions is again a concave function. T
= k
Hence log R(n) =,;:E; log R; (n;) is concave.
i=
2.3:1. Examples
(i) Single Cost Factor
Assuming that there is only one constraint in (el 1oes
cost of the item, the procedure for generating allocations will be

to calculate desirability factor Fi for each stage given by

F. = = 8;{[1”(3 Rl(nl+l) o lOg Ri(nl):l (2.6)

<,
5 e L




43

Retaining the index ip for which Fio is maxin. .m amongst the stages,
a cemponent is added te that stage to find new allocation., If
maximum occurs for more than one index, the lowest has been chosen
for allocatioh.

Taking numerical example from reference [Kettelle 1962], in which

data runs as,

Stage 1 I 1 { 2 } 3 { 4
Reliability 0.8 } 0.7 } 0,78 I 0.85
{ e } 3.4 : 4.5

Cost | fer e

the Table 2.1 gives the complete information about the undominated
allocations. Fig. 2.1. shows the allocations on system reliability
vs system cost. The allocations corresponding to a particular cost
may be easily read from this figure. It may be noted here that allo-
cations are given for the system and actual redundancy allocation
can be found Ly subtracting (1, 1, 1, 1) from the system allocations.

The computer program for this method is gilven in Appendix B.

" (ii) Multiple Cost Factors
If there exist more than one 'cost' factors the desirability

factors Fi's may be defined as

I
e [log Ri(ni+l) - log Ri(ni)] g
e I -
Gl 0o R S A
where ;. @ . . . a are non-negative weights with the condition
r
that > a. = 1. Here some of the aj's may be zero but not all.
j=1 £
In fact the vector a may be taken:as (1, O . . . O) to start with and

successively aj may be given a fixed increment é;aj till all possi-

bilities of a may be exhausted and a final choice may be (0, O,... 1).
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Table 2.1 - Single Cost Allocation

i{igfm Systgm System Desirability Factors
cnbicn Reliability cost F1 F2 F3' F4

: 535 oy 0.3570 11.4 0.15194 0.11407 0,06563 0,03106
: i g ) 0.4284 12.6 0,02732 0.11407 0.06563 0.03106
7 5 T | 0.5569 14.9 0.02732 0.,02910 0,06563 0.03106
o 0.6961 18.3 ©G.077132 0.02910 0,01435 0.03106
222 0.8005 22.8 < 0,02732 0.02910 ~0.,01435 0,00431
20 0.8560 25.1 0,02732 0.00836. 0,01435 0.00431
¥322 0.8845 26.3 0.00536 0.00836 0.01435 0,00431
332 0.9287 29.7 0.00536 0,00836 0.00348 0.00431
4 3°C 0.9468 32.0 0,00536 0.00248 0.00348 0.00431
432 0.9529 33.2 0.00107 0.,00248 0.00348 0.00431
4 33 0.9715 37.7 0.00107 0.00248 0,00348 0.00064
4 43 0.9831 41.1 0.00107 0©0.00248 0.00086 0.00064
543 0.9887 43.4 0.00107 0,00074 0.,00086 0.00064
5 43 0.9900 44.6 0,00021 0.00074 ©.00086 0.00064
553 0.9929 48,0 ©0.00021 0,00074 0,00022 0,00064
65 3 0.9946 50.3 0.00021 ©0.00022 0,00022 0.00064
6 5f4 0;9974 54.8 0.00021 0,00022 0,00022 0.00010
54 0.9979 57;1 0.00021 0,00007 ©0.00022 0,00010
7 6 4 0.9987 60.5 0.00021 0.00007 0,00005 0,00010
7 6 4 0.9989 61.7 0.00004 0,00007 0,00005 0,00010
T:6% 0.9994 66.2 - - - -
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The family of undominated allocations thus obtained is not
complete even for all convex combinations of aj's. However as the
allocations are very clLose to each other, the true solution to the
problem can be very closely found by proper selection of a.

The method is based on the idea that an optimum balance has
been struck in allocating among the different component types when
increments in log reliability per.uhit ¢onvex combination of costs
are the same for all component types within the limitations of

discreteness of (nl, By i nk) variables.

Example:

The following example has been taken for illustration:

|

Stage i 1 2 3 4
Stage :
Raliahility 0. 80 | Q.70 015 L85
Cost T2 l 2o 3.4 1.5
Weight | 5 I 4 ' 8 | 7

Fig. 2.2 shows the system allocations on weight vs cost axes. The
allocations for different combinations of aj's have been lisﬁed in
Table 2.2. These allocations corresponding to different aj's have
been clearly shown in Fig. 2.2, vOne can read off allocation toO
particular constraints on the weight and cost of the system from
this figure. For example, if the system cost is not to exceed 56
and the weight should be less than 120 then system allocation may be
given as (5, 6, 5, 4) with reliability of 0.99747 and actual cost
and weight being 54.8 and 117.0, respectively. In Table 2.2 the
last column gives the cases under which the allécations have been

obtained. For brevity, the cases considered are listed below:



Pable 2.2 = Multiple Cost Allocations

Al Y (Al Ll Cases under which
cation 3 : .
T3 11.4 24.0 0.3570 A P T A
1219 V3.7 28.0 0.4641 Fordi 4,0 o
315 V2.6 29.0 O,4284 .8

E2 T 140 33.0 0.5569 Yo g 4k

- R 18.3 41.0 O, 6061 = s 3/ % & &

$ 283 1098 48.0 Q a0k S 4 g oy o
28428  ac.1 52.0 0.8560 I, 2,3, 4, 5
3392 6.3 57.0 O.8848~ <1 .20 3 4 &

8 2. a0 69.0 C.o88B 1,8 5 4 8
Ty - ias 76.0 0. 9683 48 504

$§ 4332 333 74.0 0.9529 5

T LI 84.0 Gultde. - 3. 2, 3

'8 3 317 81.0 CLOlE 4 -«

28 43 - 42.3 88.0 09824 1.2

S8ty 1.1 89.0 o831 3,94, %

S84 43,4 93.0 05887 - M gy an
4 6 4 3 45.7 97.0 0.9904 s TRy B

4553 46.8 101.0 0.9916 4

558y gk 98.0 0.9900 5

4 65448 80,3 1040 09858 .1

4653 49.1 105.0 0.9933 3,54 \
B85y w60  106.0 0.9929 5

&¢654 536 112.0 0.9961 1, 2; 3

565 3 50.3 110,0 0.9946 4, 5

B65s . 548 11700 0.9974.  .1,°2,.3; 4,8
R4 7.1 121.0 ¢ 0.9979 L 2o 34 85
EE &0 K0.5 1386 OO887 - SN s
5789 %o 1380 0.9991" 1, 2 8
6768 - 8T 13d.0 0.5985 3, 4, 5

6765 860 1410 0.9984 - 4, 2.3 4.8
6.8 6 5 68.5  145.0 Q.9995 © 1,9 -% 4 =

46
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Values of aj

Cases :
: s | L o ¥
1 0.00 l 1.00
2 0.25 { 0.75
3 0.50 : 0.50
4 | 0.75 a8
3 : 0.00

o L l 1.00

The computer program for the procedure outlined is given in Appéndix,
C. One can easily solve for any allocation problem with given cost
and weight constfaints using this program. .By using finer increment
of [;aj, all possible allocations can be obtained and the bgstvwith
maximum reliabiiity within the allowable limits on cost and weight

can be selected.

2.3.2. Alternative Method

Another method which also generates an undominated allocation
family for different values of vaakor A (Xl, A % st )\r) for
r 'cost' problem. By proper selection of ‘g‘one can arrive immediate-
ly at a larger allocation and in this method it is not necessary to
generate the whole family of successively larger allocation as in

the method of section (2.3.1). Therefore problem is to choose

A= ()jl, %2 e )\r) where each >\j>/ O but not all %j = O,
gor 3= 1, 2 ., . i k to caleulate ni(;r) as the smallest integer m
satisfying
r
log Ri(m+l) - log Ri(m)<: Eg& )\j cij {2.8)

Here again if log R(n) is concave, it can be proved on similar lines
as the theorem given in Appendix A, the allocations will be undominat-

ed.

Inequality (2.8) can be further manipulated as follows:
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AR A | J oo
e i i3 ot log Ri(n) = log g
J-l 1 _ql
Exponentiating,
25
- g,
% N ¥ qri1+2 qril+l i
e S S et e
Jel oo 1 n+l 1
9y
Y (L - q.)
i
or exp [E:_ >\ c..] 1+ ——
) e > s big)
wricing (1 - 21) = p, and further simplifying,
r.
3 exp [EZL)\j c131 - 1
R i i=1
ol B T qy o ; s s

-~ T
exp L?—}l 2 Cij] -9

Therefore ni(iiv can be written as (since n can only have integer

values), ~ W
5
exp[ - SN G cij] -1
o : 4 i=1 J
ni(‘k) = i6§-af log T {2,10)
. exp[.ET N, c..] - d.
i L it i e

If the quantity within outermost brackets is denoted by x then
the value of ni(;:) should be chosen as the largest integer not exceed-
ing x. The procedure can therefore be outlined as finding out the
ni(jC) for all stages, i.e. i =1, 2 . . . k using a proper value
of 7: such that no cost constraint is violated. If in first choice of
"M\, one does not arrive at the optimum value several trial values of

—S;may be used. In fact if one varies the vector 7:,»different redun=

dancy allocations may be obtained. The choice of 7: is therefore
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crucial in this method.

The author made several variations in the problem of a proper
choice of the value of 7: so as to get the correct allocation in a
few trials. Several programs were written to study the different

approaches. A few are reported herein.

(i) Discrete Steps Variation
The method has been illustrated by taking an example given

below, in addition to the problem of section 2.3.1(ii).

Stage 1k 2 { 5 | 4 l 5 IConstraints

Reliability  0.90, 0.75, 0.65; 0.80; 0.85

Cost £ AT 9 7 7 100

Weight | 8 l 104

For the above problem, the allocations by varying 7\1 and %2
in discrete steps were found and the cost-weight map with >\l and
)\2 axes has been shown in Fig. 2.3. From the Fig. 2.3, it is obvious
that s df %l is decreased cost of the system increases and if )\2
is decreased weight increases. The conclusions thus derived can be
summarised as follows:
1. Cost is a decreasing function of )\1'
2. Weight is a decreasing function of )\2.
3. By proper adjustments of")\l and )\2 one can arrive at the
desired allocation within the constraints assigned.
Therefore an algorithm was developed to satisfy the conditions listed
below (Table 2.3), where C, W are the calculated cost and weight
found from a particular allocation and CG and WG are given cons-

traints on cost and weight, respectively.
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oG : W: WG Reoeimigartile 8
i
{ i /\ jdecreases both A i and A\ 5
<: : = 'stop
- I <‘ Istop
= = {StOp
7 I
| <. l1ncrease )\1
[ &
> increase >\2

increase both >\1 and >\ 2

D
<
>
-

increase

A

1

b

Iincrease

A

2

Using the above logic a computer program was written the flow chart

for which is given in Fig. 2.4 and the results are listed below in

Table 2.4.
P WY

g Trial | X { ~, { Al :Cost {Weight
No. | | o Cation . i
£ 668 lo.01 io 31 ¢ o!fgb i 22
2 {0.001 -lo.go1 !1 232 2(.68 : 74
3 lo,0001 lo.0001 }2 4.5 3 3H1s 1)
4 lo,0005 'o.0005 }2 3422 86 | 97
5 [0.00005 [0.00005 {3 5643138 | 157
6 '0.00025 1000025 :2 3432 o3

Here the decrease provided in A

1 and >§ in a step was one-tenth

and increase provided was 5 times to make the solution converge

quickly.

Similarly, the four-stage problem of section 2.3:3(iL) with

cost and weight constraints alsowas solved in seven trials as given

below in Table 2.5.

S
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Table 2.5.
e o p A | AR e

1 0.01 0.01 1.2 4 13.7 28
2 0.001 0.001 3.3 327 ) e 65
3 0.0001 0.0001 4.5 23 | wuy 93
4 0.00001 0.00001 576 4 60.5 129
5 0.00005 | 0.00005 $653 a1t 108
6 0,000005 | 0.000005 | 6865 | 68.5 .| 145
7 0.000025 0.000025 7

In both the problems, however, it has been observed that either both
cost and weight were less or more simultaneously than the allowable
limits of cost and weight; therefore >\l and >\2 were observed to
be same at any trial.

One can, of course, stop after trail 3 in Table 2.4 and observe
that the allocation lies somewhere between trial values of >\l and
>\2

meshes for >\1 and,x2 can be made of finer steps but it is usually

used corresponding to trial 2 and 3. After step 2 the grid-

difficult to ascertain as to what values of >\l and >\2 exactly would
lead to optimum allocation. To overcome this difficulty the author

used random numbers generated to simulate the values of .>1 and A 2°

(ii) Random Numbers Approacﬁ

Best results would be obtained if the logic of Table 2.3 and
the idea of generation of random numbers were combined to obtain exact
allocation for the system. The author successfully used this approach
for the four-stage problem of section 2;3.l(ii) results whereof are

also reported in Table 2.5. Here again two variations were considered.
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1. Random Numbers for both,>\l and )\2:

As is clear from Table 2.5 the values of_>\l and >\2 were
somewhere between the values corresponding to step 3 and 4. To
strike at the correct choice perhaps quickly, two random numbers for
)ﬁ and >\2 were 'called' in the main program and a ngw allocation
was found. The reference [24f] gives many methods of generating
random numbers between O and 1. The random number thus generated
can be multiplied by a constant corresponding to the higher value
of: kl and >\2, respectively, in trial 3. It is startling to observe
that the final allocation has been obtained in one trial only for

the values of >\l and )\2 as:

)\l >\2 Allocation Cost Weight

0.00000614 0,00004131 569 R 54.8 117

2. Random Number for >\l only:

Instead of 'calling' random numbers from two random sequences,
it may be easier to 'call' only one random number and for getting
%2 one can multiply )\l by a preassigned constant or random in-
tegers in sequence. A typical observed case using this approach

is given below:

m >\1 n1>i Allocation Cost Weight

) 0.00007424 0.0 86 54 54.8 117

In the opinion of the author the approach of both random numbers for
)1 and >\2 is quite promising and this can be very effectively used
if the true optimum is to be searched and the allocations are very

near to each other. In these cases this will be a useful approach
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and much nearer to true optimum,

(iii) A Graphical method
One can very conveniently prepare graphical chart to
directly and quickly read the allocations in case of multiple or

single cost constraints using equation (2.8), i.e.

e
E;_]} A cl >Alog R (n)> log 1_...—_q_n_+T
3 -

where n is the smallest integer satisfying above ipequality.
There in Fig. 2.4(a) the curves have been dfawn for increasing
values of n, i.e. the number of redundant units to be used at
ahy stage corresponding ﬁo a particular value of unreliability g
of a-sﬁage. To calculate the allocation at any stage. one has
to simply look for the curve corresponding the unreliability of
'a unit of that stage and after choosing the values of ()\1
>§2..)\k) and computing with the given values of cij's, the
left~hand side of the above expression one can read off Ehe value
of n for that stage which will prov1de A log R (n) less than the
computed value of Z )\

Once all the Ny 1—1 k have been calculated we can make a
check about the constralnts if still there is scope of increas=
ing the allocation then we decrease the values of 3&, so that
we can arrive at a higher point onnthe curve., Moreover;, the
curves are almost linear upto a certain range; - therefore
extrdp01ationAis also easier, It is also obvious from Fig.
2.4(a) that after a particular of n, the decrease in

o log Ri(n) is not at all pronounced and the curves seem to

coincide and remain steady. 3
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2.4. Kettelle's Algorithm

Kettelle.[ﬁO] developed a simple computational procedure
using dynamic programing algorithm for optimizing reliability without
exceeding a constraint. Kettelle, however, presented it for a single-
cost constraint only, i.e. cost of the equipment. The method actu-
ally develops a dominating sequence as the elements are successively
added to the system at different stages. One can select the allo-
cation within the total cost allowed which gives maximum reliability.
The method requires either a rough estimate of the system realiabi-

lity or the system reliability should be specified.

2.4.1. Dominating Sequences

The definition of dominating sequence has already been given
earlier in section 2.2. 1In simpler language one can say that one
configuration is said to dominate another if it has either (a) more
reliability and no more cost, or (b) no less reliability and less
cost. It is interesting to note that a dominating sequence contains
only configurations that are undominated. One can generate whole
family of undominated allocations starting with (O, O . . . O)
allocations in stages. The Kettelle's algorithm gives the complete
family allocations which is not the case with the methods of earlier

sections.

2.4.2. Illustrative example
Suppose it is required to have a system reliability of 0,99

with the data available about different stages as given below:

Stage 1 2 3 4
Reliability 0.80 0.70 0.75 0.85
Cost 3.2 2.3 3.4 v 4B
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The steps involved in the procedure can be outlined as follows:

1,

2.

Since all the stages can not be considered simultaneously for
developing dominating sequence two stages at a time will have to
be taken, therefore stages shoﬁld be paired, In general for k
stage system k-1 pairings can be done. In the illustrative

problem there are two pairings of stages possible:

; i.e. first 1 & 2, then 3 & 4 and finally
(1 & 2) and (3 & 4)

1}
: i.e. first 1 & 2, then 2 & 3 and finally
3 & 4 are paired.

Minimum number of elements in each stage are found from the data
available on system reliability. Assuming even if the reliability
of each stage be equal to system reliability, one arrives at the
minimum number of elements to start the algorithm. Otherwise the
complete family starting with (O, O) allocation will have to be
generated. The minimum number of elements are calculated from the

expression
Log (l-Rg)

ng (min.,) = iaaTT:ﬁzy—
where Rg is the given system reliability and Ri is the reliability
of element of i stage.
For the example of this section, the minimum elements calculated
are:

Stage: 1 2 3 4

Minimum elements: 3 4 3 2
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3. A table as shown iﬁ-Fig. 2.5 is developeda where cost and un-
reliabilitz are sttﬁd and starting with 3 ana 4 elements for
stage 1 and 2 the cost and unreliability of any other combiﬁ-
ation of elements for stage 1 and 2 greater than the minimum
number of elements, are calculated successively. For calculat-
ing unreliability of the sub-system combined of stage 1 and 2 an
approximation is usually made, that is: if Ql is the unreliability
of first stage and Q2 is the unreliability of stage 2 then the
combined unreliability of stage 1 and 2 will be given by Ql+ Q2
leaving the third term of (—Qle). Kettelle has shown that the
error introduced using this approximation is less than Q2 where

Q is system unreliability.

Another approximation that may reduce the length of dominat-
ing sequence is the following:
In comparing a pair of entries in the table developed one may intro-
duce a tolerance factor éj for the jth cost (here we have only one
cost i.e. the cost of the ejuipment only) and/or a tolerance factor
Eq for unreliability. If two entries in the table differ by E‘j or
less in the cost, they are considered alike as far as the cost is
concerned; similarly, if they.differ by E'q or less in unreliability
the result is that domination becomes more likely so that the lengths
of the dominating sequences are reduced. If the dominating sequences

are long one can introduce tolerance factors in cost and unreliabi

-lity to reduce their lengths.

Another table for stage 2 and 3 combined is also prepared similarly
and finally a table combining (1 & 2) and (2 & 3) stages is developed.
They are shown in Fig. 2.6 and 2.7 respectively. The dominating

sequences for all these three are given in. Tables 2.6, 2.7 and 2.8



and Figb 2‘5[ 2-6[ 2.70

Table 2.6 - Dominating Sequence for Stage 1 & 2

No. of elements

Dg:;s:zigg per stage Reliability Unreiiisi- Cost
Stage 1| Stage 2
i 4 4 0.9903 0.0097 14.0
2 5 & 0:9916 0.0084 1552
3 4 5 00,9960 0.0040 i6.3
4 5 5 QL8993 ©.0027 17.5
5 4 6 0.9977 0.0023 10.5
6 5 6 00,9980 0.0010 19.8
7 Bl 0.9992 0,0008 21.0
!
Table 2.7 - Dominating Sequence for Stage 3 & 4

Dominating No. of elements : e Unreliabi-]| .
sequernce Stag:rlsgigge - Reliability lity Cost
1 e 3 0290927 0.0073 . % §
2 5 3 0.9956 0.0044 30,5
3 6 3 0.9964 0.0036 33.9
4 S 4 00,9985 0.0015 35.0
5 6 4 09992 0.0008 38.4
6 6 5 @, 9997 0.0003 42.9

57
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Table 2.8 - Dominating Sequence for Stages (1 and 2)
and (3 and 4) combined

Dominating Noinog e;igzzts Reliability] Unre%iabi-'r Cost
sequence 1 TN L lity

1 5 - e < e 0.9900 0.0100 44.6

2 & il %2 0.9904 0.0096 45.7

3 4 g .53 0.9916 0.,0084 46.8

4 5 6 4'-3 0,9917 0.0083 46.9

5 6 g 4 -3 0,9919 0.,0081 47.1

6 - R R | 0.9929 0.0071 48.0

7 4 8.3 0.9933 0.0067 49.1

8 5 - 00,9945 - 0.0054 50.3

9 6 8 v 0.9948 0.0052 51.5

10 5 - | 0,9958 0.0042 52.5

11 4 S 0.9962 0,0038 93.6

12 5 6.5 4 09975 0.0025 54.8

13 6 . 0.9977 0.0023 56.0

14 5 6.6 4 0,9982 0.0018 58.2

15 6 686 4 0,9982 0.0016 59.4

16 - 6 -6 -5 0.9987 0.0013 62.7

17 6 66 5 0.9990 0.0011 63.9

s
Obviously from Table 2.8, it is clear that the system with minimum
cost should have allocation as (5, 5, 4, 3). On the other hand,

if the constraint on cost is specified, one can find from the dominat-
ing sequence the allocation with cost less than or equal to the

specified value.

2.4.3, Multiple Cost Constraints

In section 2.4.2, only single constraint was considered,
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however, the Kettelle's algorithm can be extended to multiple cost
constraints such as cost, weight, volume etc. without much diffi-
culty. Basieally, the procedure remains same, except that an
estimation of approximate reliability of the system is made to
calculate the starting values for n; for each stage.

The starting value in case of multiple costraint is found
by adding one unit of each component type in succession until a
constraint is violated upon the next addition. Then the reliabi-
lity of the system is computed from the resulting value of H; =
(nl eDy .o nk). Finally from the calculated value of system
reliability minimum component types in each stage are calculated

as in Kettelle's algorithm using formula

log(l—RS)

. 5 1og(1—Ri5

A proper solution of 5; reduces considerably the calculation in

preparing the table.

2.4.4. Multiple Cost Problem
For illustration the following problem has been worked out
in detail in Tables 2.10 and 2.11. The final dominating sequences

for combined stages is shown in Table 2.12.

Example: To find the optimum allocation for the system given

below with cost and weight not exceeding 56 and 120,

Stage 5 Z 3 Z

Cost 3¢9 2.3 3.4 4.5
Weight 5 4 8 7

Finding the starting values of ny table 2.9 is prepared, which



Table 2.9 -~
Stage }Stage {Stage :Stage {Cost { s ;
1 J 2 % 3 : 4 4 I We;\.ghtl Remarks
1 1 i 1 1 B 24
> i 1 3 12.6 29
2 2 i 3 i 3 14.9 33
2 /r2 2 1 18,3 41
2 2 2 2 22,8 48
3 2 2 2 24,0 53
3 3 2 2 2643 57 Cost cons~
3 3 3 2.0 gy 65 Eraint 56
Weight cons~
3 3 ! 3 34.2 72
: traint 120
4 3 3 3 354 7T
4 4 3 3 317 81
4 4 4 3 41.3 89
4 4 4 4 45.6 96
5 4 4 o 46,8 101
5 > 4 4 49,1 105 Attainable
reliability

5 2 9 = 57.0 120



STAGE 1

4 5 6 7 8
Cost 4.8 6.0 y 38 8.4 9.6
Weight 20,0 25.0 30.0 35.0 40,0
Ui‘f:\lriabi“ 0.0016 0.00032 0.000064 0.,0000128 0.00000256
6.9 11.7 1308 14.1 15.3
3 12.0, 32.0 == 37,0 42,0 '
0.0081 0.,0097 / 0,00842 U,008164 0,0081128 0400810256
9.2 14.0/ 15,2 16,8 17.6
4 16.0 36.0 > 41.0 46,0 | 51,0
0,00243 0.00403 0.00275 0.00249 4 0,0024428 0.00243256
11.5 B N ienn 18.7 19.9
STAGE ITI 5§ 20,0 40,0 T 45,0 ~—em 50.0 55.0
0.000729 0.002329 0.001049 0.00079 3 0.,0007418  0.00073156
13.8, 18.6 19.8/ 21,0 22,2 23.4
3 Mo 44.0 49,07 % 54,0 —euwsepr 59,0
0.0002187  0.0018187 0.0005387  0,0002827 0.0002315 0.00022126
16.1 20.9 ALY 23.3/ 24.5 88,4

0.,00006561 C.,00166561 0,00038561 0,00012961 0,00007841 0. 00006817

18.4 , 26.8/ 28.0
8 32.0 : 67.0 ——> 72,0
0.000021183 0,001621183 U,000341183 U.000085183 0.00~”33983_ 0.000023743

Table 2.10 - Dominating Sequence for Stages 1 & 2



STAGE IV

STAGE III

6 7 8

4 5
Cost 13.6 17.0 20.4 23.8 27.2
Weight 32,0 40,0 48,0 56,0 64.0
Unreliabi- . _
™ .OO .O O.O *
e 0,003906 0,000976 0.000244 00061 0,000015
13.5 27.1 30,5 33.9
21.0 §3,0 Tt 61,0 69.0
0.003375 0.007281: /0.004351 0.003619
18.0 2iE S 3% 38.4 .8
28.0 60,0 —> 68,0 ——> 76,0
0.000506 0.004412 0.001482 ‘\0.000750 0.000567
2.5 37.1 39.5 vV 42.90 46.3 49.7
35,0 67.0 75.0 b R L 99,0
0,000075 0,003981 0.001051 0,000319 t 0.,000136 0.000090
27.0 40.6 ¥ s0.8 54,2
42,0 74.0 98,0 — > 106.0
0.,000011 0.003917 0.,000987 0.000255 0.000071 | 0.000026
31,5 | { 58.7
49,0 X x X X 113:0
0.000001 | 0.000016
36,0 ¥ 63.2
56.0 X X X X ' 120,0
0.000000 0,000015
Table 2.11 - Dominating Sequence for Stages 3 & 4

29



Table 2. 12 - 4 ‘
: Dominating Sequence for Stages 1, 2, 3 & 4 combined

63

“lnge [CGrage SRR unrelta-| nelabt- | i Lesone
sequence | I II IIr IV | I o R l
1 4 5 4 3 000610 99050 43.4 93
2 4§ 4 $§ 8 . ;o08imy 906 diis 97
3 S . B & 5 008330 NG - saik 98
4 $ 4 8 § 000061 993099 48,7 168
5 ¢ 5 & 3 006718 99353 6,8  ibi
6 § S § 3 005400 994660 48,0 o6
7 4 4 5 4  ,005512 ,994488 49,0 104
8 6 85 & '§  004d 04956 .8 i
9 5 4 5 & (004232 996766 60,2 16%
10 4 5 5 4 (003811 996100 5i.3 168
11 5 5 5 & 00053 99748 5.6  ivi
12 6 5 5§ ¢ (O S9TVS 8557 118
13 5 6 § 4 002000 H9NE0 68 18t
14 § S5 & 4 ,00i199 996201 586 ' 13%
15 & 6 5 4 001766 996336 560 193
16 & 5 6 4 001545 996457 S7.1 126
17 § 6 6 4 O0I288 .998712 sS6.F 15
18 6 6 6 4 ,001032 ,998968 59,2 130
19 7 6 6 4 000081 999019 - 606 148
20 6 7 6 4  .,000879 .999121  61.7 134
21 § .6 6 5 000857 999143 €57 %
22 ' 7T 6 4 000828 999177 6.9  ¥3p
23 6 6 6 5  ,000601 ,999399 63,9 137
24 7 6 6 5  ,000550 ,999450  65.1 142
25 6 7 6 5 000448 999552 66.3. . 14
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gives attéinable"reliability. Then from the aﬁtainable system
reliability the starting allocation will be (4, 3, 4, 3). Proceede
ing as indicated in earlier section 2.4.2, the.allocation within
the-allowable limits on cost and weight, is found to be (5, 6,

5, 4).

2.5. Bellman Dynamic Programming Approach

Bellman's [lé, 17] dynamic prOgramming, can be applied con-
veniently to the problem of bptimising reliability of a system with
k stages in series subject to one or two constraints such as cést
or weight or both, The allocation problem is solved as a multi-
stage decisibn_problem where at any stage j;:the decision is made:
on how much to allocate to activity j that is Xjfis selected. The
dynamic programming apprdach to solving probl-m makes use of this
fact and really solves a sequence of problems beginning with a one-.
stage problem, moving on to a two-stage one etc., until finally all 
stages are included. The solution for k stages is obtained from
the solution for k-1 stages by adding the kth stage and making
use of k-1 stages. The optimal allocation Xj’ T SR
depends on the total quantity of resource ? + which is available
for allocation to k stages. The mathematical formulation of

redundancy aliocatiqn is given in the following section.

2.5.1. Dynamic Programming Formulation
The non-linear programming problem'to be solved can be states

as follows:

36 ;
jtl ajxj S b} aj > O; j = 1' o 5o kl xj ) Ol j=1) --ctk:

k g
all x, integers, max z = 3. % £, {2:1%)
3 o i .
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The above problem involves only one constraint b, and has a sepa-

rable objective function, requiring all xj's to be integers. The
problem with two constraints can also be solved easily by the use
of Lagrange's multiplier and introducing one of them in objective
function a8 will be discussed later. The computational problem
can be described as follows:

If the sequence of functions be defined as

n
(€ ) = max PR TR e S {2.,12)
£ S J-ZzlJ j

xl,...xn

where maximisation is carried out for non-negative integers

satisfying
n
% ax. % : : (2.13)
j=1 . 3 |
Once fl(% ) has been calculated directly, the remaining fn(g )
can be computed recursively, since

“n-1

£ (? ) = max|8_(x )+ max . 2lx,) (2,14)
" X LE > = =1 Ll
n e - e A :
where in computing
n-1
max Zﬁj(xj) - (2.15)

Xl; .. ..'Xn__l _j=l

the maximisation is carried over non-negative integers Xysewes
Xn-1 satisfying
n~1

jz;lajxj < % ~d %
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Under these conditons, (2.15) is simply fn_l(‘;-anxn). Therefore,

fn(é) = mix[ﬁn(xn)-t-fn_l(;-anxn):l, RE2; v R (2.16)
n
and x, varie over the values 0O, 1, .... [g/an] (2.16)
Finally
z* = £, (b) (2317)

Summarising the procedure, one can start with first stage by
computing
fl(g ) = max Z(x,) (2.18)
o4 x, 4 [ j/al]
where in computing fl(?) for a giveng’ : X, ranges over integers in .
the interval ::' é/al]. For each value of% w05 1; &b fl(g ) is

calculated. Nenoting the value of x, by /:21( “;) for which

£,(8) =2, [Ql(f‘;)] (2.19)

A . » . .
that 1is, xl( *i) is a value of x4 which maximises fl(xl) when %,

takes the values O, 1, ..., [(j/al], a table such as given below

is built:
Table 2.13
/N
£ %) ] niY)
0 £,(0) 21(0)
N\
1 ufl(l) xl(l)
b fl(é) QE(B)

Once fl(%) have been calculated one can proceed to compute fz(g

for every value of %: 0, Xy »ees B using
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fz(% ) = max [bz(x2)+fl(§ ~azx2)] (2.20)
© éxzé [?/az] 3

For a given§ , £,(§ ) is computed as follows:
9,005 §) = £,(0)4£,(§)
Wz(lzg) = B,(1)+£, (€ -a,) (2.21)
W20 [§/2,]1 § ) = 2,08/, )8, (§ =a, [ §/2,))

The maximum of wz's is stored as fz(g ) and the corresponding value

A
of X, as xQ( %). Again a table similar to 2.13 is prepared.

Similalry, the procedure is adopted to calculate f3(§ ) for
¢=0, 1, ..., b and finally for all £ (& ).

To determine the optimum allocation at each stage, one can

start with xth stage where fk(b) = 2% and‘Qk(b) is the allocation

th

at kth stage xﬁ. with allocation at k stage known, allocation at

k-1 stage will be given by

A

X1 = Ky 8, (2.22)

(b—akxk
This proceeds on backwards till, finally
o~ k
N = ol *
xy = xl(b ;gzanxn) (2.23)

2.5.2. Optimisation with two constraints and one control variable

If the optimisation problem is framed as

Mo

k
3y 4% £bys E aijj‘ by + %y 2 O J=1, ...k; all integers,

1 1

J

k
max z = o P.(x,) (2.24)
S SO
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where all aiJ.; bi are assumed to be positive integers, obviously

the sequence of functions defined analogous to previous section

will be

n
fn( El’%z) i max }._1;53- (XJ.), j=1' s 0K (2.25)

Xl .-.Xn j:

where maximisation is to be carried out over non-negative integers

satisfying
n n ( %
J§1aljxj é % ) Jz;—lazjxj =X 2 (2.26)

If “;1 and %2 are two state parameters, the state functions for

first stage will be

e
fl( Gy ¢ %,2) = ma:n:< ,@l(xl) (2,27)

or in general,

£ l,% = max Eé(x%rf__( .. P x)]
2 O(x \Bnnn nl%l }nn %2 2nn
n = 21 ..k (2028)
and
z* = £, (b; , b2) (2.29)

£ 5, = min %[2 /a ], [gz/azn]} (2.30)

Once £ ({’7 % ,) is determined, simultaneously /32 ({cl % ) &8
e il s . Ckaakity ol
stored. At kth stage, xﬁ corresponding to fk(bl ? bz) is deter-
mined and remaining optimum allocation at each stage is found by
4 A :
tracing back the stored table of fn(%1 : %2) and x_( il ¢+ §,) corres-
ponding to two state parameters 5’91 and %2 instead of only one as

given in (2.22) and (2.23).
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It is much more difficult to solve this problem than (2.11)
because fn andlgg'are now functions of two arguments. If both %;1
and %,2 can take 100 values, then in general one may have to tabulate
ﬁg(%]_' €2) for 10000 possible combinations of %]_and @é. More-—
over, maximisations have to be carried out 10000 times at eaech
stage. Another trouble that may arise is that of storing such a
large table in costly computer memory. Also the speed has to be
high to reduce access—time. To overcome this difficulty one may
use Lagrange's multiplier technique as will be discussed in the

following section.

2.5s3, Lagrange's Multiplier technique
A Lagrange multipler M can be used to reduce the number of
state parameters by one.

Problem of (2.24) can be reframed as
k
Jgialjxj { by

XJ. >/O 2 J‘:l, o-.k

k R
max z, = S @B.(x,)-A3. CORE (2.31)
R R B oy 0
J=1 j=1
This problem can be easily solved as single constraint pProblem
involving only one state parameter.

The recurrence relations for the state function will be
£.L g ) = m;a(x [ﬁn(xn)— AaZan"'fn—l( é—alnxn)] n=2,...k (2.32)
n

For the problem of (2,31) an obvious assumption is made that
Xj are continuous variables and ¢j(xj) are nondecreasing functions
of xj. It is therefore clear that one of the constraints holds

a strict equality for any optimum solution and in fact in (2.31)
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second constraint i.e.
k

;E;azjxj = b,
is assumed to hold strict equality. This however does not present
any difficulty in keeping Xj as integers. In this case it is not
necessarily true that either constraint must hold as é strict
equality. One can proceed by varying N to make ZEX(A>] as large
as possible while not violating either of the constraints. If the
eliminated constraint holds as strict equality when the xJ are not
restricted to be integers, this is equivalent to that of determin-
ing >\such that the constraintcomes closer to strict equality with-
out violating the constraints.

The procedure of computation will be exactly the same as that
of section (2.5.1). Often one has to use his own judgment in making
a suitable ghoice OfAu Few trials or in fact the solution of prob-
lem (2.31) is usually required till one strikes at the correct
value of ANto get the optimum solution. If two trials have been
‘made for two different values of>\then one can usually make linear
intrapolation or extrapolation to arrive at almost correct choice
of new >\,.

If )‘O and )\1 are the two Vilues of Lagrange multipliers

1

O
tried and corresponding values of z aijj are b2 and b2 then a
j=1

new value of multiplier )\2 can be used, given by the relation

')\1' )\o

1.0
b5-b,

) =

3 (by=bg)+ N (2.33)

If more than two values bf\% have been tried, the latest two can

be used for intrapolation or extrapolation,
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2e5.4. Optimum Redundancy allocation subject to two
Linear Constraints

If l+xj components of reliability pj'are used at the jth

stage then the probability of successful operation Rj(xj) of the

jth stage is given by

R, (x;) = l—(l—pj)l+xj (2.34)

and the overall reliability of the system may be written as
- l1+x. 1
j= :
Expression (2.35) can be expressed as
k
Z = log R -5 3 B:ln,) {2+36)
i L

A & S l14+x
where ¢j(xj) £ log Rj(xj) = log {1 (1 pj) .j}

This form is more convenient to use since each term of the sum
depends only on a single variable. Moreover ﬂj(xj) is monotone-
increasing concave function of X5 4 maximising RS is equivalent to

maximising log RS.

The problem is therefore as follows:
maximise z = Z:ﬂj(xj)

X, ;}O Fpaas T T KA RS TR L Xy integers

subject to the cost and weight constraints

ZchxJ $.C ang Jz wixg L W (2.37)
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where cj_and vy are cost and weight of the like-components at
jth stage, C and W are given cost and weight constraints; or,

alternatively, introducing Lagrange's multiplier A,
k X
max z, = S B,.(x,) =™ > w.x,
B L

Xj>/O’ j=l;.-ok

subject to the cost constraint

BT 2.38
EJJ\ ( )
The recurrence formula will be given by

£ ‘g ) = m;acx [ﬁn(xn)- >\wnxn+fn_l( é-cnxn)]
n

n = 2io-ok (2'39)

The author has used this form for the following reasons
rather than using product formulation of reliability problem
(16, .17; 18]1

1. Addition is faster on computers than multiplication and
thereby reducing considerably the time for each run of the

problem for a particular value of A\ .

2. As is clear from the recurrence expression of (2.39) the
terms corresponding to ﬂj(xj) and >\wjxj appear in sum form,
the values of ¢j(xj) can be calculated once for all and may
be subsequently used for all possible values of Xj at each
stage and different values of AN . This saves re—-computation

of the product each time the value of Xj is changed from

O to [:%/xj] in each stage for all values of (g from O to bl’
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This process reduces considerably the time due to the fact that

a large number of multiplications are saved. This procedure
infact reduced the total time of a run to almost 1/4. With

high speed memory this may be even less,

3. This method also helps in estimating a correct value of A
quickly as the effect of the variation of >‘wjxj can be clearly

observed in process of calculation.

2,5.5. Example

Using the computer program given in Appendix D, the author
tried the above procedure and also after modifyingrfhe program
to the product form, ﬁhe following problem of table 2.14 has been

solved, for justifying the time comparison as discussed in earlier

section. The results are presented in tables 2.15 and 2,16,

Table 2.14

Stage 5 § 2 3 4 5
Reliability 0,90 0.75 0.65 0.80 0.85
Cost 5 4 9 FRet 7
Weight 8 9 6 7 8
Cost :

gonstraint 100 units

Weight £

constraint 104 units

The system weight corresponding to different values of A is given in

table-2:16.

Table 2.16
o A 0.002 00,0014 0.0012 0,001 00,0008
iy 4y 3, 1,787 St L, e G5) 25 3 05l ¢35 %,
Alloecation 2, 2 2,2 7.2 2, 2 7.2
System Weight 74 80 89 97 104
System Cost 68 TF 81 36 93




A= 0,002 N = 0,0014 A = 00,0012 A = 0,001 A = Q,0008

g Stage . : Y 5 7S 7 A : P
NO. £(¢ ) x(%) f(t';) x(%) gLs) x(%) £(£) x(&) f£(g) x(&)

o i -0,10536051 0 =04,10536051 0O =0,10536051 0 -Q.10536051 0O ~0.10536051 O

1 " O L1 u‘ O n y O " O 1" . o

é -0.02605033 1 -0,02125033 1 -0,01965033 1 -0,01805033 1 -0.,01645033 ik
16 un 1 n 1 " 1 -0.,01700050 2 -0,01380050 2
106 It 1 n 1 " 1 " o " -
O 2 -0,28768207 O =0328768207 0O -0,28768207 0 -0.28768207 0O =0,28768207 (0]

4 -0,10858885 1 -C,09838885 1 -0,09498885 1 -=0.09053902 1 -0,08553902 i

é ~0.07779869 2 . =-0,06219869 2 =0,05677869 2 =0,05074885 2 =0,04394885 2
12 " 2 i 2 -0,05596418 2 =0,04791434 3 =-0,03931434 3
loo 1" 2 " 2 1" 3 H} 3 " 3
Q 3 -0,43078291 0 -0,43078291 0 =0.43078291 0 -0.43078291 O -0.43078291 0
10 -0,22047701 1 «0,2082770] 1 =0,19384250 1 -0,18459266 1 -0.17479266 y
319 ~0,14561997 2 -=0,12281997 ' 2 ~0,11418546 250 O uTORTI562 2 =0,09273562 2
28 -0.12891862 3 -=0,10251862 3 =-0,09268411 3 -0,0810342 3 -0.06883428 3
37 4 3 =0,10106463 4 -0,09003012 4 -0,07718028 4 -0,06378028 4
100 " 3 " 4 " 4 " 4 n 4
0 4 -0,22314355 O =04228%4355 0 -0,22314355 O =0.22314355 O =0,22314355 0

8 -0.18374061 1 -=0,15168662 1. =0,13228211 1 -0,12500228 1 -0.11020228 1
15 -0,16495079 2 =0,12869680 2 =0.11486229 2 =0,09921245 2 -0,08301245 &
2 by ; 2 ¥ 2 s 2 4 2 -0,0821815¢ 3
100 1" 2 1] 2 " 2 n 2 " 3
) 5 -0,16251892 O -0.,16251892 0 -0.16251892 O -0,16251892 O -0.16251892 @
8' -0,20370777 1 -0.,16265378 1 -0.14721927 1 -=-0.12996944 1 -0,11133855 L
15 -0, 20033149 2 -=0,15447750 2 =0,13744299 2 -=0,11859316 2 =0,09836227 2
100 m % n 2 " 2 ] 2 " .

Table 2,15

VL
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 As is clear from table 2.15, a further reduction in memory
requirements, is possible by storing the state functions fn((g) and
A
optimal allocations x( %) for the values of % which changes the
" :
fj(%) or x( % ). In this way for any stage the maximum number of

~ ,
times fn(% F.or x(g) is to be stored.can at the most be [b/_cj]:

but programming may be slightly complicated. For large problems
this technique may have an advantage; however, it requires high

speed memory.

2.6. An Algorithm using Lagrangian multipliers technique

The author has evolved a computational technique for
reliability optimisation subject to linear constraints using
Lagrangian multipliers in cases where number of stages k is
greater than the number of constraints m,

It has been observed previously in section 2,.3.2 that the
choice of Als usually crudal and the solution obtained by the
method of that section is usually an approximate due tQ the
rounding off of the allocation results. However, in some cases
this may yield true optimum also but no suchassurance is valid.

The present algorithm aims at 're;movihg these snags.
Theorem: Let £(x) be a concave function over the closed convex
set X in E°. Then any relative maximum of f(x) in X is also the
global maximum of f£(x) over X. If f(x) is strictly concave then
'the point in X at which the global maximum is assumed is.' unique.
If £(xX) is concave over a convex set X and if £(x)€ Cl (i.e.
f(x) and its first derivative are continuous over some subset of
ES), then ¢ £(X) = 0 at x*;, f(x) takes on its global maximum over
X at x*.

Now the problem is to maximise z = f(X) for x 30
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satisfying gi(i) =b;, ,1i=1, ..m; m{k and x = (xl + Xy
..xk). It is assumed that fe‘Cl and gif_‘“cl, Xom 1,2 «sM, Also
if £(x) takes on a relative maximum at X*, the following k+m

equations (necessary conditions) should be satisfi ed,

dEE)  m | g, ()
3% " E:l)i y o) jsl, 2 ..k
gi(;*) = b, 1=, ...m (2.40)

The A i are uniquely determined for any such x*.

Obviously if solution to (2.40) is possible by some com=~
butational procedure this assumes

(i) The x are continuous variables. '
(ii) Constraints are all having equality expressions.

The rounded off solution of %* to integer form will be a
feasible solution also t‘o the problem where constraints are of
the type gi(E)Q b, . Furthermore, the raounded off solution
leaves some slack in each constraint and if it is possible to
reduce these slacks with integer condition of the solution and
at the same time modifying >‘i such that at least first'k
equations of (2.40) are satisifed and the k+l to m equations of
(2.40) are satisfied to an extent that no slack in resources
bi + is of the size that any equipment of jth type j=1..k
is poslsible to be allocated.

Returning to the reliability problem we have similar to

Section 2.5.4

k
maximise z = 2_ log {l-(l-pj)xj} = f(x)
j=1

subject to xJ. 20 3
i = . e 2041
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" where xj are the system allocation (i.e. redundancies +
1 units) and pj is the reliability of the jth type component.
Modifying (2.41) constraints to equality form and writing

the Lagrangian function we have,

gl — 4
Flx, &) = 4T/ D, ~ 2.k x.]
g 5t i

Applying necessary conditions of (2.40) and writing qJ.:l-pj '

one gets
aq m
~§__J--;{—-};_og qj -El)\iaij = 0

m

q.
or) —i— logq.+f/xa..=0
J i 13]

e =1

j=l..k

k
and B, X, =D i=l..m 2,42
?51 R e (2.42)
The algorithm now can be stateé in the following steps:
1. Assume the values- of >\i , i=1, ..m to start the processe.
(All7\i can be assumed to be equal but #%£ O) so as to yield %5

within the feasible solution.

2. Calculate the values of Xy j=l..k using first k equations
of (2.42).

3. Round off xj's to lower integers say nj's and calculate
the slack Sy by

k
i = bi - ?El
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Obviously the slack will be non-negative since the nj’s form

a feasible solution.,

Calculate for each stage wj=min{;(si/aij), i=l..nl} j=l,.:k
w5 provide an estimate of how much one can add to the existing
allocation in each stage without violating any one of the m

constraints.,

Compute wj'= <:wj> i.e. roynd off the wj to lower integer.

If all Wy are zero stop and print out the allocation nj's.

wl
If any one of wJ'. is not zero then we compute AnJ. = (-{-)
where 1 is any arbitrary constant 1. This is done so as
not to reach very close to any constraint 'too soon'; other-

wlse the local maximum situation will prevail.

Next the increase in objective function due to change in
allocation from nj to (nj+¢;nj) is computed for each stage.
Here we can make use of the fact that increase in log

(system reliability) will be equivalent to increase in log

(reliability of the stage to which & n is added).

We add the increment in allocation n to that stage j'
which gives maximum increase in the objective function and thus

arrive at an allocation of (nl ¢ Ny g ...nj+¢3nj ¢ ...nk).

Using the allocation arrived in step 8 we compute 7\i ’

i=1, ..m from the first k equation of (2.42). This indeed
will result in a set of equations with their number greater
than the number of unknowns i.e. )Nizl, ..M. The only possi-
bility of solving such an over-determined system is by "the
method of least squares" [25].

The solution can be obtained‘as follows:
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Let [A] = l;ij ¢ i=1,..k;, j=1,..m| be the matrix of coeffi~-
cients of %jfs in-(Zi42)
Then

A%A A waAd (2.44)

where X is a column vector of (X » i=1,..m] and & is
the right hand side of (2.42) after the values of mj's
have been substituted in first k equations of (2,42).
The system of equations of (2.44) would lead to unique

Values Of Ai 27 i=1' e oMo

Using the above values 7\i's we re-compute Xj ¢ J=l,..k

and return to step 3.

The above algorithm will terminate when hi ¢ L=l

and X5 j=1,..k are such that they satisfy the first k equa-

tions of (2.42) and the ni's are such that slacks of m-constraint

equations of (2.42) are reduced considerably and that no compo-

nent of any type be added to the existing allocations without

violating any one or more constraints.

Nothing can be said about the efficiency of the algorithm

as at this time the general purpose program has not yet been

developed.

However the algorithm seems to be quite convincingly

appropriate.



CHAPTER 3

VARIATIONAL APPROACH

Moscowitz and Mclean [12] obtained the condition for minimum
cost, if the reliability of the system is given a preassigned value,
using.variational approach. It may be stated here that the problem
of finding minimum cost for a specified value of system reliability,
is the same as optimising reliability with given cost constraint
on the system. Moscowitz and Mclean method, however, was developed
for the former case. The author has suggested an extension and
generalisation of the technique for single and multiple cost cons-

traints, -

3.1. Condition for minimum cost
Let there be a basic system of k elements in series having
Ly LhesaTp reliabilities and cost of cl 3 c2...ck such that basic

reliability of the system be

k
RO = '-" ri (3-1)
Ii=%

and basic system cost
= (3.2)
C = C. 3-2

o i1t

The problem is therefore, to find redundancy allocation which

gives minimum cost for the specified system realiability of Rg.

Denoting the number of elements in stage i by my the reliability

of stage i can be written as ,06760

LIBRARY UNIVERSITY OF ROORKE

CBNTRAL
ROORKEE.
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Ri = 1 = qTi (3.3)

where qi =1 - L, ry is the reliability of each element in

i stage and Ry is the reliability of m, such elements in para~

llel, The system reliability therefore would be written as
k
R, = TR, (3.4)

Since the cost of ith group of parallel elements is m; C, . the

total system cost is
k
€ = Sme (3.5)
s it

The required result can be found by solving equations (3.3), (3.4),

(3.5) as a variational problem and finding the distribution of

mi's for minimum cost. - Introducing another variable ay defined
by :
' e =

R; = Rg (3.6)

It can be shown that a real positive number a; between O and 1,
can always be found to satisfy (3.6). Then from (3.3) and (3.6)

each mi can be written as

5 -R3i
. log(1-R;)  log(1-ri1)

| = % T
& log q; log q; ( )
and the system cost and reliability can be given by
k k c.log(1-Rr%1)
C w2 moc, = 2 g (3.8)
Woar - gy T ON,
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k
R=]TRi=T[R1=R‘

= & (3.9)

In order (3.9) can be valid, it is required that

k
a=2 a =1 (3.10)
i=%

It is now possible to optimise cost with reliability. This occurs

for distribution of ai's which gives stationary value for the ratio

Cs/Rs' The particular distribution of a; 's is to be found which

satisfy
s§C SR
$f) =0 o EF - iate © (3.11)
S S S

k
subject to the constraint that &a = :E:5>ai = 0 (3. 12)
=k

If N is a real constant then simultaneous solution of (3.8), (3.9),
(3.10) and

&C & R

S
S S

will provide the distribution of a;'s for stationary value of CS/

RS' Now

gRs = Rs(a+&a)--RS (a)

k
[El(ai-.- éai)]
= RS .

since fa = Zsai & 0
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&R

k-0 (3.14)

therefore
s

Similarly the variation of CS with a is given by,

bc = C_ (a+ ba)—cs(a)

s
e
% i _olai+ dail)] _
= iZ::i T qi. log[l R.™
k =N ay
%; log T log(1-R_*)
o l—R;ai"' $a;i)
= > c; log 1y (3.158)
i=1 1 -R
S
c,
T R
where cy = Tog I,

If it is assumed that RS is quite high, i.e., very close to 1

and qg is \}ery small

a.+ $a.
1- (1 - q.) % *

5 ’
sz e ?Ci log a,
1 - (1-qi)

§a
/ i
=.§ Ci log E 2 3

> 8

then to vthe first approximation

6C 2‘ S a
C v
S S

(3.16)
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Substitution of (3.14) and (3,16) in (3.13) y‘elds

L

c .
E At -2TB8a =0 (3.17)
£ 873 2

This ean be satisfied if

cf
& )\Cs
Solving for A, realising Z . -
i
C.'
:.):Za"‘l; (3019)
K S -
Substituting (3.19) in (3.18),
¢! ¢ /o094
o E:cj/log 9y

Therefore minimum cost can be obtained for the distribution ai

given by (3.20) and substitution of (3.20) in

a
log (l---RS
m —

i log qi
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