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ABSTRACT

The thesis gives a detailed study of the problem of

redundancy allocations in electronic circuits associated with

the protective relay circuits. The approach has been kept

general so that application to various fields is unrestricted.

Operational reliability is the main concern of any electronic

circuit associated with such protective relay circuits. Un

less the electronic components are made absolutely reliable

by tried and tested methods of manufacturing processes, the

choice rests on duplicating the components or, in general, what

is called as redundancy applications.

The thesis begins with a. detailed study of the redundancy

circuits and their modelling as far as the reliability evalu

ation is concerned.

Various types of redundant circuits are analysed to

complete the study. Different approaches are devised for relia

bility evaluation of such networks. In general, one may come

across series and/or parallel or non series-parallel networks

in practice. The non series-parallel networks usually present

difficultywhen the problem is to evaluate the overall reliability

of such networks. Flow-graph method has been developed wherein

a method of inspection makes it all the more easy to calculate

reliability of the redundant networks, quickly.

If the network is large and complex, the reliability

evaluation poses a problem; therefore an algorithm is present

ed for straight and fast computation on a digital computer for

any type of the redundant network. This has been possible by



(ii)

correlating the properties of redundant networks with those of

di-graphs.

The thesis embodies optimisation techniques for maxi

misation of the system reliability subject to linear or non

linear constraints. Here again, various techniques have been

applied, viz. gradient method, Kuhn-Tucker conditions of opti-

mality, Dynamic programming, Variational method, Discrete

maximum principle, Integer linear programming etc.

Several new approaches and modifications of the existing

methods have been proposed and they are tested on problems

from various sources.

One usually faces the problem of choosing proper values

of Lagrangian multipliers when solving an optimisation problem

with linear constraints. Attempts have been made to make proper

selection of these and to solve such problems with ease. Dynamic

programming formulation in 'summation' form has been developed

and was found to be more convenient than usual 'product' formu

lation. An algorithm based on Lagrangian multipliers and

general optimal condition is proposed in case of problems with

linear constraints.

A Variational method for multiple linear constraints is

also developed and has been tried on several problems. Discrete

maximum principle has been used for problems with linear and

non-linear constraints. Discrete optimisation technique- is

discussed in general perspective for reliability optimisation

under'several constraints. In the end a comparative assessment

of the methods embodied in the thesis is made to provide th'e

merits and demerits of each so as to allow one to make his

own choice of the method under limitations and advantages exposed.
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In brief, a detailed mathematical analysis has been

presented for the problem of reliability evaluation and opti

misation of the redundant networks under conditions specified

which will help to pave the way for making circuits or systems

more reliable.
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INTRODUCTION

It was mainly during World War II and the post-War

years that the need for reliable electronic devices was un

questionably felt. Early efforts in this direction were aimed,

principally toward determining the causes of unreliability.

Von Neumann, Shanon and Moore [1], were perhaps the

investigators whose contribution in this field, gave impetus

to the development of mathematical reliability theory. With the

electronic devices and systems becoming increasingly complex

and thus more susceptible to failures, new techniques for their

reliability analysis, had to be developed. Much of the litera

ture available on the subject, has come out in the past few

years only.

More recently power system protective schemes have also

undergone a remarkable change especially with advent of solid

state devices. The shift has been from conventional relays to

electronic relay schemes. It is needless to stress the importance

of reliability of such schemes, whose failure may cause heavy

financial loss and inconvenience.

Fundamentally, every electronic relay consists of several

components such as tubes, transistors, resistors, condensers etc.

The reliability of each of such components contributes to the

overall reliability of the relay. It is therefore in this

context that the thesis presents a generalised approach to

the reliability analysis of such circuits.



Basically, there are two ways of achieving higher system

reliability. The first is to develop highly reliable components

for use in equipments and systems. The second is to design

reliable systems from less reliable parts through use of redun

dancies. It is a fact that even if high reliability components

and equipments are used, the overall system reliability decreases

with their number becoming large. The aim of this thesis, there

fore, been to explore the field and scope of the second alter

native.

Reliability allocation is a process of assigning reliabi

lity requirements to individual units to attain the desired system

reliability. Thus the object of redundancy allocations, is to

maximise the system reliability with certain constraints such

as cost, weight, volume etc. imposed on its application.

Before the allocation problem may be discussed and analysed,

it is often necessary to know special features of reliability

functions which will be the objective function of the optimisation

process. The first chapter of the thesis is, therefore, devoted

to the study of reliability function and its evaluation by observ

ing special properties thereof. A method of flow-graph has been

developed and illustrated with several numerical examples of

different classes. It has been found to be of great help in

quickly determining the reliability function for all types of

reliability network with different types of components.

Non series-parallel networks usually present difficulty

in the reliability evaluation. The Factoring Theorem suggested

by Moscowitz £2] was the only existing technique for analysing
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such networks. The thesis therefore presents alternative

computational approaches for the reliability evaluation of these

networks. A systematic study of redundant networks yielded that

they can be treated with the help of di-graph modelling and an

algorithm could be developed for use on digital computer for

large systems.

Once it is established that the reliability of any system

could be increased by recourse to redundancies one usually faces

the problem 'how much to apply'. One can go on increasing the

reliability of a component by putting several units in parallel

infinitely but there are always some inherent constraints such

as cost, weight etc., that prevent one from doing so. It is no

good to design a system 'too costly1 or 'too heavy' to compen

sate for the system reliability. Generally, there should be

some compromise between these factors.

It is with this view that the problem of maxmisation

of reliability, under the constraints imposed by economical

considerations, has to be thought of. Usually a problem of

maximisation of reliability subject to cost, weight or volume,

is considered.

There were several attempts [10, 11, 12, 13} to aim at

this problem. Moscowitz and Mclean [12] considered the problem

of maximisation of reliability with only one constraint, i.e.

cost. Moscowitz D-2] in fact used a variational method to

come to an optimum allocation. Gordon 0-3] also considered

the problem of single constraint. Kettelle Q.0] provided a

computational approach for maximising reliability subject to
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'cost' constraint only. However, Proschan and Bray [15]

extended the method of [10] to include more than one

constraint, viz. cost, weight etc. This required an

approximate estimate of the reliability. The above

approach has been applied in the thesis, for non-linear

constraint problems also. Bellman and Dreyfus [16] formu

lated the problem as a Dynamic programming problem. The

bulk of computation however in this formulation was

too heavy even for a problem with few stages only. Fan

and Tillman [21] proposed a method using discrete maximum

principle but a slightly different problem formulation

was used. They infact optimised the profit accruing out

of a system with high reliability. Tillman[2 3] again

used the Discrete maximum principle for the case of non

linear constraint problem and very rece. tly Tillman [27]

proposed an Integer programming approach to the problem

of maximising reliability subject to several non-linear

separable constraints and with different modes of failure.

Mizvkami [26] formulated the allocation problem again

as integer linear programming problem by approximating the

concave objective function as linear between two variable

x.-points and further formulating it as linear programming

problem. Muzukami infact used Mixed-linear programming

technique for the solution.

A survey paper by Lawler and Wood [30] provided a

new approach to the problem of non-linear programming. Based

on [30] initial work has already been taken up and Jacobson

I



CHAPTER X

ANALYSIS OF REDUNDANT NETWORKS

1.1. Introduction

It is a well-known fact that if a high reliability of a system

is to be ensured, either the constituent elements of the system should

have high reliability or the elements could be duplicated so that if

one fails another ensures the failure-free operation of the system.

This applies to all systems whether they happen to be mechanical, elec

trical, communication or information channels. This logic finds its

application in electronic circuits for protection Tschemes, military

application, space programmes, where reliability is of prime import

ance for their faultless operation. For example, Fig. 1(a) gives the

circuit of a relay using a vacuum tube - the probability that the relay

will operate when a signal appears at the grid terminals of the tube,

is the reliability of the vacuum tube. If there happens to be an open

circuit in the filament circuit, the failure of the system occurs be

cause of non-operation of relay. Now to ensure even more reliable

operation if we duplicate the tube, the system will remain operative

even if there happens to be a failure of one of the tubes. The relia

bility of system now is increased (2 - p) times the original reliability

of the tube where p, is reliability of a tube given that 0 < p< 1.

The system with two tubes will be called Redundant system.

1.2. Definitions

Redundancy can be defined as the existence of more than one

means of accomplishing a task. All means should fail before the system

failure occurs. Obviously chanches of failure of a sys~tem are less
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'cost' constraint only. However, Froschan and Bray [15]

extended the method of [10] to include more than one

constraint, viz. cost, weight etc This required an

approximate estimate of the reliability. The above

approach has been applied in the thesis, for non-linear

constraint problems also. Bellman and Dreyfus [16] formu

lated the problem as a Dynamic programming problem. The

bulk of computation however in this formulation was

too heavy even for a problem with few stages only. Fan

and Tillman [21] proposed a method using discrete maximum

principle but a slightly different problem formulation

was used. They infact optimised the profit accruing out

of a system with high reliability. Tillman [23] again

used the Discrete maximum principle for the case of non

linear constraint problem and very rece: tly Tillman [2 7]

proposed an Integer programming approach to the problem

of maximising reliability subject to several non-linear

separable constraints and with different modes of failure.

Mlzvkami [26] formulated the allocation problem again

as integer linear programming problem by approximating the

concave objective function as linear between two variable

x.-points and further formulating it as linear programming

problem. Muzukami infact used Mixed-linear programming

technique for the solution.

A survey paper by Lawler and Wood [30] provided a

new approach to the problem of non-linear programming. Based

on [30] initial work has already been taken up and Jacobson

I I



[31] has brilliantly worked out an algorithm using branch

and bound method for minimising the cost of a system

subject to maintaining a certain level of reliability. The

author is also currently working on the same problem and

hopes to bring out some fruitful results in future.

In short different investigators used different

approaches to the problem of maximising the system reliabi

lity subject to specified constraints.

The present thesis aims at presenting few more

aspects and oomputational approaches to the above problem.

The thesis also presents the comparative study of different

approaches which is very much required by the system designer

before any convenient solution to the problem is desired.



where there are redundancies or, in other wordo, the reliability of a

system increases with the introduction of redundancy in a system.

Redundancies can be classified under three broad categories:

Active redundancy, Standby redundancy and Voting redundancy.
*

In active redundancy all the redundant paths (units) are conti

nuously energised while the system operates. If the redundant unit

ioes not perform any function and comes into operation only when the

primary unit fails, this type of redundancy is called standby redun

dancy. In such a redundancy system it is necessary to have some

decision making device which will detect the failure of first unit and

place the second unit into operation simultaneously. A standby unit

may be partially or fully energised or completely inactive. In the

third type of redundancy, three or more units operate in conjunction

with a switch which selects the unit with agreeing outputs if they

constitute a majority. This type of redundancy is commonly used in

computer applications. The redundancies may be introduced at any level

of a system, viz. component-part, component, unit (or equipment) system

itself. This necessitates definitions of different terms used here.

Element or Component Part - This is a basic unit in any system, such as

resistance, capacitance, diode, tube, transistor etc.

Component - Assembly of component parts forms a circuit, viz, osci

llator, trigger cct, register etc.

•

•-Unit or Equipment - Next higher level of system assembly is an equip

ment or unit such as relays (static) etc.

System - A complete operating unit constituting of several equipments

or units may be called as a system.

Redundancy may be introduced at any level in a system, i.e.

component parts, a circuit, an equipment or a system itself may be



8

duplicated. However, it is obvious that active redundancy in component

parts such as resistors, capacitors are unsuitable because if one fails,

out of, say, two parallel units then this changes the circuit constants.

In such cases, standby redundancy may be resorted to if it becomes

absolutely necessary. To make the analysis more general and depending

on the level at which redundancy is introduced these terms may inter

changeably be used. A block in reliability model will henceforth be

called as an element and the whole assembly as a system.

1.3.Redundant Networks

After Shanon .[l] suggested that a large number of less reliable

relays could be connected in a lattice form to give more reliable ope

ration, the attention of several investigators was drawn to the use of

redundancies in several forms and to the evaluation of reliability of

such networks.

Depending on the connections of different constituent elements

in a system, three situations arisen the elements may be in series,

parallel or in a non series-parallel form. Therefore in a broader

perspective, all the networks can be divided into two categories:

a. Mixed redundancy or series-parallel configuration, in which

the elements are connected to each other only in series and/or

in parallel.

b. Non series-parallel configurations, which have not only series--,

parallel connections but also interconnecting elements such as

in bridge networks. Because of these interconnecting elements

it is not possible to call elements either being in series or

parallel.

Non series-parallel circuits may be planar or non-planar which

can be drawn only while crossing each other.

It can be shown very easily that a circuit of 4 elements of
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two parallel paths with two elements in series can be made still more

reliable by the introduction of an interconnecting link to make it a

bridge circuit.

1.3.1.Series-parallel configurations

A schematic development of series-parallel configurations of like

elements is given in Fig. 2. As is clear from the Fig. 2, the diffe

rent possible configurations for four elements can be derived from

those of three elements realising the fact that the new element could

be placed in the following manner:

a. In parallel with the whole unit of three elements.

b. In series with the whole unit of three elements.

c. Introduced in branch path of the unit of three elements, in

either parallel or in series with an individual element.

It is obvious that (a) and (b) just double the possibilities by the

introduction of a new element; however (c) gives a definite number of

cossibilities only. It is also clear that the independent configur

ations contributed by (c) for a particular number of elements can be

found from the configurations falling under the same group (c) of the

preceding number (i.e. one short) of elements. The number of possible

configurations upto seven elements are listed in Table 1.

Table 1 - Possible Series-parallel Configurations

Elements 2 3 4 5 6 7

Total number of

configurations 2 4 10 24 66 180

If the configurations listed in Table 1 are classified on the

basis of number of nodes they have, then Table 2 is obtained. It is

evident from Table 2 that the maximum number of configurations lie in

mean number of node's column and are almost equal to the total number
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has its dual drawn in Fig. 6. The procedure 01 drawing dual network

is to take two terminals outside the network whose dual is to be found

and then putting a node in each loop of the original network, lines can

be drawn through all the elements joining the two proper nodes. The

method is displayed in Fig. 5(b).

1.3.4. Development of reliability models

Before the reliability of a system consisting of several func

tional units is evaluated a representative model of the system is

developed depending on how different constituent units interact as

regards their functions to make a system operative. When this block

diagram is developed it will fall in any of the above configurations

discussed earlier. Thus knowing the reliability parameter of the units

or in more common language the elements, the overall reliability para

meter of the system can be obtained by the methods to be described

later.

1.4. Analysis of Redundant Networks

Some of the results desired from an analysis of redundant net

works are:

a. The overall reliability for various kinds of redundancy, given

the appropriate parameters of the elements of the network.

b. For particular subsystem should it contain several replicas in

a redundant formulation or should a more reliable element be

used by itself? One can make tradeoffs between reliability and

various resources for this purpose. A typical cost vs reliability

curve is shown in Fig. 7.

c. If the reliability of a system must be improved, on which sub

system should the effort be allocated?

d. The proper tradeoffs of reliability versus volume, weight, cost

or other factors.
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f configurations for the preceding number of elements case.

Table 2 - Distribution of Configurations on the
basis of No. of Nodes and Elements

No. of Configurations

No. of Nodes
No. of Elements

12

10 23 44

23 66

44

12

Total
10 24 66 180

10

1.3.2.Non series-parallel networks

Fig. 3 shows a bridge circuit which is the first non series-

parallel circuit that can be drawn with minimum of 5 elements.
It may be made clear that only independent configurations have

been considered. However, in all these cases any particular element

can take up all »ther positions of the elements. This would not change
the approach of analysis of a particular configuration. The next non

series-parallel configurations which can be drawn for 6 elements, are

shown in Fig. 4. Further development is easier for a case of 7 elements

and so on.

1.3.3.Dual networks

In fact all the network configurations shown in Fig. 2 can be

grouped in two sections. The networks shown above the centre line have
their image networks as their duals. For example, in case of 4 elements
the configuration 4 has its dual as 7,and 2 has its dual as 9, etc.

The method of drawing dual network is shown in Figs. 5and 6. Fig.5(a)
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has its dual drawn in Fig. 6. The procedure oi drawing dual network

is to take two terminals outside the network whose dual is to be found

and then putting a node in each loop of the original network, lines can

be drawn through all the elements joining the two proper nodes. The

method is displayed in Fig. 5(b).

1.3.4.Development of reliability models

Before the reliability of a system consisting of several func

tional units is evaluated a representative model of the system is

developed depending on how different constituent units interact as

regards their functions to make a system operative. When this block

diagram is developed it will fall in any of the above configurations

discussed earlier. Thus knowing the reliability parameter of the units

or in more common language the elements, the overall reliability para

meter of the system can be obtained by the methods to be described

later.

I.4.Analysis of Redundant Networks

Some of the results desired from an analysis of redundant net

works are:

a. The overall reliability for various kinds of redundancy, given

the appropriate parameters of the elements of the network.

b. For particular subsystem should it contain several replicas in

a redundant formulation or should a more reliable element be

used by itself? One can make tradeoffs between reliability and

various resources for this purpose. A typical cost vs reliability

curve is shown in Fig. 7.

c. If the reliability of a system must be improved, on which sub

system should the effort be allocated?

d. The proper tradeoffs of reliability versus volume, weight, cost

or other factors.
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In this chapter, the main concern is with (a) aoove. The solution to

that problem is necessary for any of the subsequent results. The follow

ing assumptions are made:

a. All elements are always operating (no standby or switched

redundancy).

b. The states of all elements are statistically independent.

This means that the failure of one element does not affect the

probability of failure of other elements.

c. Time is not explicitly an independent variable.

d. Each element may be represented as a two-terminal device.

e. The state of each element and of the network is either good

(operating) or bad (failed).

1 4,i. Basic property of an element

An element in a reliability model of a system may be given a

statistical parameter p such that it represents the probability of that

element to survive under the specified condition of environment. Des

cribing the same parameter in other words [2] in a physical sense, if

X. is the number of alike items wL th probability of survival p then

X is the number of items expected to remain in operating condition

after a certain time t. Therefore an element or a block may be repre

sented by a two-terminal link with parameter as p having a linear

relationship as -

X . = p X. ...(1)
out r in

Here the author differs with usual convention as described in [2], in

that the element as represented by (l) must also be given a direction

from 'IN' terminal to 'OUT' terminal (as shown in Fig. 8), so as to

make it possible to extend topological methods for the analysis of

redundant networks.

However, it may be made clear that in case of interconnecting
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links such as we come across in non series—pa allel configuration such

an oriented graph would not be possible for these interconnecting

links but as will be seen later such an eventuality can be byepassed

by defining more than one oriented graph for the same network.

1.5.Historical Procedures

The problem of finding the overall reliability parameter knowing

the reliability parameters of constituent elements becomes complicated

and time-consuming when the system is large and complex. Each ele

ment can have either of the two states, i.e. either it is operating

or has failed. Same applies to the system also i.e. either it will be

operating or has failed. Therefore, the overall performance of the

system is binary function of the element performance. Consideration

of all combinational states of different elements multiplies the

number of states for each element in the network. If the state 1

denotes the operative state of an element and state 0 represents the

failure of that element then the number of states for three elements

would be 8 and for a case of seven elements it will be 128 or in short

2 for n elements. Further for a case of 20 elements it will be more

than one million as was pointed out in [2] also. The system performance

will be the summation of all the events leading to successful operation

of the system.

Moskowitz [2] suggested breaking up of the large complex system

into smaller units of series and parallel networks of the system and

used dot and cross operators for systematic evaluation of the network

function. No doubt, the system performance function can be easily

written down using dot and cross operations defined as below:

Dot operation; x.y = xy

Cross operation; x x y = x+y-xy

but actual evaluation is even tedious, for it involves many multipli-
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cations.

For bridge circuits, |"2] suggested the-use of factoring theorem.

Factoring theorem states that if F (p , p2, p3 . . . p ) is the relia

bility function of the network of n elements including an interconnect

ing link k whose reliability is pk, the ove rail function can be written

as -

F(pr P2, P3 ...pn) =pk [f (pr p2 ...pn)]

+pk F (p , p9 . . . p )
L n -1 pk = 0

where pk is reliability of the element k and pk = (1 - pk). Again

here if there are many such interconnecting links then for each link

the number of series-parallel configuration of the same size as the

number of elements in the original network would be doubled.

1.6,Some Properties of Reliability Expressions for a Redundant Network

Before discussing the topological method, author has developed,

some of the properties of reliability polynomials will be given.

If each element has a probability of survival p, then the ex

pression for the reliability of the network will be a polynomial in

the various p's. Some of the properties of these reliability poly

nomials are -

a. The highest degree for any term is the number of elements in

the network.

b. The sum of all the coefficients of the polynomial is unity

c. The coefficient for the term of highest degree is unity in case

of series-parallel networks. For non series-parallel networks,

it is the number of variations in the orientation of the graph

of the interconnecting links as will be discussed later.

d. The sign of the highest degree coefficient will be positive if

there is an even number of loops (zero is an even number). For
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an odd number of loops the sign of the "ighest degree coeffi

cient will be negative. (Actually in the strictest sense we

cannot have any loops in the oriented graph of a network in

reliability modelling as will be seen later; the complete orient

ed graph turns out to be a cascaded graph.)

e. The sum of the number of nodes and loops in a network will be

equal to N + 1, (N is the number of elements in the network).

f. The sum of the number of nodes in a network and in its dual

network will be N + 3, (N is the number of elements in both

networks).

g. Let the parameter of each element be the same, p. Then the

reliability polynomial when plotted against p will be 3-shaped

if there is no single element in series or parallel overall.

This means that for some range of p, the network will be more

reliable than a single element and for some other range of p, the

network will be less reliable than a single element. This is

clear from Fig. 9 drawn for the case of 4 elements. Chained

line in Fig. 9 shows the curve when there were only one element.

The curves of the polynomial corresponding to configurations

1, 2, 3, 4 and 7, 8, 9, 10 of Fig. 2 are either below this line

or above this line respectively and decreasing monotonically

but configurations 5 and 6 exhibit a migratory tendency or S-

shapedness i.e. for certain range of probability of success of

an element the network may be better than a single element in

reliability and for another range of element reliability the

network may be worse than a single element in reliability. If

we trace back then we realise that these networks were obtained

by introducing an element in the branch in place of putting the

element either in overall series or parallel while going from
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3 elements network to 4 elements netwOj ... For 5- elements net

works, S-shaped curves will be for configurations 11, 12, 13

and 14 only (Refer Fig. 2). Another interesting thing about

these curves is that crossing point with chained line can be

obtained at any point by choosing a proper network. For example,

in case of 6 elements case, these configurations will be 18 and

for 7 elements they will be 48 in number and they can provide

any range of crossing points.

111.Flow-graph Method

In Section 1.4.1 the property of an element was given and it was

pointed out that an element must be oriented for flowgraph analysis.

Therefore if an element is to have transmittance p.. when the element

is connected between nodes i and j, the signal must be 'in' at the

terminal i and 'out' at the terminal j, to recognise it as an oriented

graph. Since in the analysis of redundant circuits we are mainly

concerned with the evaluation of transmittanre between two (or

otherwise specified) terminals, all elements must be oriented such

that they seem to carry a signal from the IN (source) terminal to

the OUT (sink) terminal. A source node will have only outgoing

branches and the sink node, only incoming branches. This convention

should be followed while orienting the branches of a graph.

With such an assumption for series-parallel redundant networks,

the resulting oriented graph turns out to be a cascade flow graph since

any cascade sequence of coefficients always cascades into a new vari

able. There will be no feedback loops.

Since the variables at each node have the same dimension, the

application of topological methods becomes easier. The ordinary multi

plication and addition rules of linear flow-graphs can be applied.

When two elements are in series with probability of success p^ and p2 ,
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and the failures are statistically independent then the total trans

mittance (reliability) is p.p^. In general for m elements in series

the total transmittance, Tr, will be -

m

K= I p, (2)
1»I

Also when two elements are in parallel the total transmittance will

be p1 + p„ - p.Pp, or in general for n elements

n

Tr = 1 - IF (1-p. ) (3)
i=l 1

One can use a Boolean sum of events, to give the formula

f n )
Tr = PH U E.f (4)

!i=l -ij

where E. is the event i element is good. Therefore the solution of

redundant networks can be found straightforwardly by finding all possi

ble forward paths in an oriented graph of the network and then summing

them for the transmittance between the IN and OUT terminals according

to (4) using the Boolean algebra rules. Remembering the basic Boolean

rules the expansion of the terms into algebraic sums could be done.

For example, considering the configuration of Fig. 10, all possible

forward paths in oriented graph will be

E6, Ey, E4nE5, E^E2 E3ffE4 (5)

Then

Tr =Fr \e6 (JE7U (E4fiE5)U (E^IE^E^eA (6)

This is the transmittance between terminals IN and OUT of the network,

i.e. the reliability. Equation (6) could be expanded by the usual

laws of probabilities of statistically independent events (remember
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that the £e. j are independent). The number oi. terms becomes very

large, for 7 forward paths the total number of terms will be 127 -

of course many of them would combine.

1.7.1.A speedy method of analysis by inspection

For the series-parallel case of 7 elements of Fig. 10, the

method described below gives all 15 terms directly without any mathe

matics involved, by inspection and following certain rules. This is

the easiest approach - the analysis and speedy solution of the problem

is without any tedious manipulations.

a. Find out, one by one, all the possible forward paths available.

The maximum number of elements in any forward path will not be

more than one short of the number of nodes assuming that

(i) there is at least one path which contains all the nodes

or (ii) all nodes are interconnected as may be the case in

non series-parallel networks. Find their sum.

b. Find all oriented graphs touching IN and OUT terminals contain

ing one loop only. Assign negative sign to the sum of product

of the probabilities of success of those elements which consti

tute a particular graph. For example, in Fig. 2, the 6th graph

has only one loop (actually in the language of flow graph, this

cannot be called a closed loop) and consists of elements 4,

5, 7. Therefore this gives rise to a term p p^p- with negative

sign.

c. Next, we find all oriented graphs again touching IN and OUT

terminals having two loops and sum their products of probabili

ties of success; attach a positive sign.

d. Steps 2 and 3 are repeated for all loops until the graphs that

contain the maximum number of loops have been considered. An

odd number of loops gets a minus sign, the even numbers get a
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FIG. 10. TOPOLOGICAL METHOD.
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plus sign. The maximum number of loop^ in any network will be

one plus the number of elements minus the number of nodes.

The above procedure is so simple that one can write the complete

reliability polynomial or transmittance without difficulty or mistakes.

All 15 steps for the problem of Fig. 10 are shown thereon.

The procedure can be programmed and successfully performed with

a computer for a large complex network if the sole purpose is to

evaluate transmittance. Although with a computer any of the methods

may be used with ease, the method just described is recommended because

it only requires the information as regards the connection of diffe

rent elements to particular nodes, i.e. connection matrix. No other

information or manipulation is necessary. Therefore the method des

cribed has an edge over other methods. Before applying the above

procedure the network can first be reduced by combining parallel ele

ments across any two particular nodes. The author used the above

method and found it successful. The flow chart of the computer

algorithm is shown in Fig. 11 (NN is the number of nodes).

In the first part of the program, the element reliabilities

and the nodes to which the elements are connected are stored in a

table. Next the elements of the connection matrix of the order NN x NN

are made zero, and a reduced matrix (NN x NN) is prepared from the

stored table with the help of a Subroutine Reduce which combines all

the parallel elements across any two nodes. For example, the connec

tion matrix developed for the configuration of Fig. 10 will be of the

form:



f READ NE ,JlO
_ I

READ 1K(I),JK(I),P(I)

I«I,NE .

INITIALIZE

C(I,J)

1=1 , J =2

NNI = NN-I

LOOP

_I^JJjy|NI_£P

LOOP

J=2,NN \jT

.

CALL SUBROUTINE REDUCE

END LOOP

C(J,1)=C(I,J)

CALL SUBROUTINE FORWRO

r—

C PUNCH PT

END

_/

FIG. II. FLOW CHART FOR TOPOLOGICAL METHOD
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v, „ r^ n -o c = (p + p., - p^P.) as obtained fromwhere C-2 * Pj/ ci4 = p5' 15 = p6 p7 ^6^7

Subroutine Reduce. Once the connection matrix is developed, Sub-

routine For>,rd finds all possible paths from nodes 1 to NN. The upper

diagonal elements of matrix C take care of the formation of a forward
path, first with one loop, next with two loops and so on depending on
the number of terms in any; particular row in the lower diagonal. The

procedure followed is exactly as described above: All the products

of probabilities during these walks are added with proper sign to

give the transmittance between nodes 1 and NN.

This method necessitates that the numbering of the nodes be in

ascending order - a condition for the network to have a cascaded di

graph. All elements should be oriented from lower node number to the
higher node number. This is not difficult to achieve in practice.

1.7.2. Non series-parallel redundant networks

Non series-parallel networks differ from others, in that there

are interconnecting elements which are bilateral in nature, viz. they

are oriented in both directions. It was observed earlier in series-

parallel networks that by properly orienting the graph, it turned out

to be a cascade flow graph. The IN node of each element has its

serial number less than the OUT node and all graphs are oriented from

lower node number to higher node number. .But in non series-parallel
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networks it may not be so, due to the interconnecting elements. This

problem can be solved by what may be called superposition. Again,

writing down the transmittance will be easier than any other method.

Except for the interconnecting elements all other elements have a fixed

orientation.

Take the example of the bridge network of Fig. 12. Element 5

is an interconnecting element and cannot be given any fixed orient

ation. Now since element 5 may be oriented in either direction, two

separate networks with all other elements having their orientation the

same, except that of 5, are developed as shown in Figs. 14 (a) and (b).

The solutions of these two networks by graph theory are found separately.

The di-graphl-^a has forward paths 12,34 and 154; similarly,

the graph 14b has forward paths 12, 34 and 352. The paths of 6 are:

Pathx . (e/IV U (e3 e4) U (E^E^EjJ,
(8)

Path2 = (E/^) U lE^E4) U (E2AE3OE5)

The total transmittance of the network 12 is

Tr = Pr CPathi^ Path23

«Pr [tt^) U(E3 E4)U (E^E^E,.) U^/lE^)]
One must take precaution while applying the method of inspection and

tracing out the paths, that no path having an element oriented back

wards can be taken, since that violates the properties of cascade flow

graphs. All elements directly connected to s^urr-e and sink must be

properly oriented.

While orienting an interconnecting element one must not direct

it so that a closed loop is formed because the graph would then not be

a cascade flow graph.

(9)
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For the problem of Fig. 15 (dropping the Leu, r B from the event

notation and implying intersection by the grouping) the paths for

oriented graphs of Fig. 16(a), (b) and (c) are

a = 147 U 123 U 67 U 1257

b = 147 U 123 U 67 U 356 U 1453 (10a)

c = 123 (J 67 U 6423 \J 356

The total paths are

aU bU c = 147 U 123 (J 67 U 356 U 1257U 1345 U 2346

(10b)

The transmittance is the probability of this combined event. The

probability can be calculated as mentioned above (probabilities of terms

taken by ones, threes, fives, and sevens are positive; the others are

negative).

Tr = 67 + 123 + 147 + 356 + 1257 - 1!67 - 3567 + 2346

+ 1345 - 12345 - 12346 - 12347 - 12356 - 12357

- 12367 - 12457 - 12567 - 34567 - 23456 - 13456

- 13457 + 2(123456) + 2(123457) + 2(123567) + 2(123467)

+ 124567 + 134567 + 234567 - 3(1234567), (ll)

where now the p's have been dropped and the numbers 1-7 stand for

the probabilities of individual events (e.g. 67 a p6P7')' If the

elements have equal probabilities of success, p, (ll) will be

Tr = p2 + 3p3 + P4 - 12p5 + HP6 - 3p7, (12)

satisfying the-condition that X. coefficients = 1 as indicated

earlier.



23

1,°.Networks with elements that can short or jpen

In the preceding sections, we have considered situations in

which the failure of an individual element or a path failure had no

effect on the operation of the remaining elements or paths. In a

situation where an individual element can fail in either of the two

ways, viz. open circuit or short circuit, the analysis will be slight

ly different. An example of an element that can short or open is a

diode. The failure in either way affects the operation of the surviv

ing elements.

Since a single element fails by open or short circuit but not

by both, open and short circuit failures are mutually exclusive

events. Denoting q and q as the probabilities of open and short

respectively, the total probability failure q is

3 = % + qs
(13)

subject to the condition

O < q ( 1. o < qQ4 1 and o £ qs 4 1

There have been only a few references f.4, 5] where series-

parallel configurations of such networks have been considered. In

any redundant network of the above combinations, the analysis would

be too tedious to argue out based on the analysis that has been des

cribed in the above references. However, an easy method based on

flow graph approach is very convenient for any network consisting of

the elements that can fail either by open or short circuit.

1.8,1.Paths and cuts

In any of the two terminal networks considered earlier, the

overall reliability has been computed by finding all possible paths

frOm source node to sink node and then adding up the events using
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Boolean algebra rule and the probabilities associated with them. For
suooessfnl operation of the system ,successful operation of each
element forming a path is necessary.

i o r Mv, a binary functionWith each parth A., j - 1# 2, . . . r, say, a oina y

may be written as

o< (X) -t 1 X,
i€A

j

(13)

which will take the value of 1if all elements in the path function
successfully. It is also obvious from (13) that all elements of
such ajth Path act in series. Assuming aperformance probability
distribution of the elements such that

iBl]5B [Xij
where p± is reliability of 1th element and x± is the binary random
number denoting the state of the element i, the probability for

successful operation of a path would be given by

p. ~- P x.
*i L

°<(x) = l

and the reliability of the system could be written as

R=P[CP(X) p. l] U4)

where <P (X) =1-I [l- *&] ^ich gives the probability of
successful operation of asystem. Similarly, there are elements
in any network if failed, would render asystem as failed. Such
elements are called cuts. Thus any cut B^ k = 1, 2, . . .3, say,

again a binary function could be written as

/3 (x) Bl.T d-x,) ^
k i£3k

wwd,,r takes the value 0if all elements in kth cut fail and 1>
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otherwise.

1.8.2.Open and short circuit failures

Now the properties of paths and cuts could be used for the

analysis of short circuit and open circuit failures of a system.

A path of a system, elements of which could short can only

fail If all the elements constituting a path short. Similarly, a

cut of a system, elements whereof could open would only fail if all

the elements constituting a cut open.

Keeping above points in view one can redefine paths and cuts

such that probability of short circuit failure associated with a

path j,

q .'= P[ °J (X )= ll (16)
sj L J s J

Obviously, the total probability of a system failing due to short

circuit will be given by

q =1 - If (1 - P|°f (X ) « ll (17)
j

Similarly, the total probability of system failing due to open cir

cuit, constituent elements of which could open/ can be written,

through concept of cuts, as

s

= 1-I(l-P[°f (X ) « ll
1=1 L J s j

/3 (x ) - ol (18)%\l± p[/fe (V -°]
Applying the methods discussed earlier an example of Fig. 17a

consisting of three elements which can either open or short.

The flow diagram for paths for the consideration of short

circuit failures would be as shown in Fig. 17b. The total probability

of failure of the system due to short circuit will be given by

%=1~[{1-%1%2H1-%1%3}] U9)
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Using the method of inspection described earlier q can also be

written as

qs = qsl qs2 + qsl qs3 " qsl qs2qs3 (20)

Again the flow-diagram for cuts for the consideration of open cir

cuit is given in Fig.17c. It may be noted here that while apply

ing topological method it is easier to write all possible paths

quickly, therefore one can write down the cuts of a system by find

ing the paths of a dual network of the original network.

Thus the probability of failure due to open circuits of the

elements can be written as

qo = qol + qo2 qo3 " qol qo2 qo3 (2l)

As the open circuit and short circuit are two mutually exclusive

events, the probability of failure of the system due to these will

be algebraic sum of the probabilities associated with these two

events, i.e.

q = qs + qo

Graphically, the situation is as shown in Fig. 17d. The

branch 1, of the di-graph of Fig. 17d considers the short circuit

failures and branch 2, the open circuit failures. The topological

method can be applied directly to find q from Fig. 17d once it is

drawn for system of 17a.

Finally,the reliability of the system of which elements can

short or open then can be written as

R = 1 - q

To distinguish between mutually exclusive events and other

wise in a di-graph we may use dotted lines for the former and firm
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lines for the latter. Such a situation is shown in di-graph of

Fig. 17d. This approach will be found to be very convenient in case

of complex networks.

1.9.An algorithm for Direct Reliability Evaluation using
Di-graph Matrices

An algorithm is presented in the following sections for

direct evaluation of reliability of series parallel and non-series

parallel networks using di-graph matrices. This will be especially

suitable on digital computers for larger-and complex networks. The

algorithm is quite fast and programming is fairly simple.

1.9.Lr-lodelling of networks

As discussed in section 1.4.?/the modelling of a redundant

network can be done to represent it as a di-graph with 'IN' (source)

and 'OUT' terminals. A source-node will have out-going branches

and the sink-node, incoming branches only. Any element between

i - j terminals is given a transmittance p. .which is reliability of

that element. For example, di-graph for a series parallel network

of Fig. 18a is shown in Fig. 18b. For non-series parallel network,

the same technique is observed except that an interconnecting ele

ment is replaced by two links with equal transmittances P
ij

between node i and j, one oriented from i to j, the other from

j to i. Such a di-graph for a simple non-series parallel network

of Fig. 19a is shown in Fig. 19b. Here an obvious assumption will •

be made that both the oriented links, i.e. from i to j, and j to i,

cannot exist together simultaneously and that probability asso

ciated with such an event is zero.

1.9 ° Combination of parallel elements

Before proceeding to evaluate the overall reliability of
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redundant rvofcurot-ko ** ** HWinnjj' ^nnfscfp^is to oombine all

parallel elements between nodes i and j using boolean algebra rules

and replace them by an equivalent link having reliability as c^

connecting nodes i and j. If there are n parallel elements

(5,
Vk=i

C . « Pr { U Bj> (22^

thwhere Ev is the event that the k element is good.

Alternatively,

c \ .1 (1 -p ) <23>
XJ k=l 1J

As a matter of fact, this can be done as soon as the data about

the system or network is 'read' in the computer. The data about

the network can be fed in a tabular form as given below:

(IK<I), JK(I), P(I), 1=1, NE)

where NE is the total number of elements in the network, IK and JK

are the nodes having ith element with reliability as P(l). The

computer then scans the table 'read' and the elements with common

nodes are combined together and stores an equivalent reliability

link between nodes IK and JK while removing the nodes and elements

from the table that have been combined to quicken the scanning.

This process is repeated for all possible combinations of the nodes

of the network till, finally, a weighted connection matrix Cc] is
obtained with the property that for any non-zero entry in [c] there

exists one and only one branch between any two nodes. Initially

all elements of Cc] are initialised to zero and therefore only non

zero entries are transferred to {£]. A portion of main program

(in FORTRAN) and the subroutine which tests for the parallel



C C K.B.MISRA. MAIN PROGRAM
DIMENSION IK(10) ,JK(10)»P(25) *C(10*10)
COMMON NN,NE»P»IK,JK

READ 100,NN*NE
100 FORMAT(213)

READ200»UK< I ) »JK ( I ) »P ( I ) ».I*1»NE)
200 F0RMAK5 (2T2,F10.6) )

D01I1=1.NN

D01J1=1»NN

1 Cffl»JU«0,

JJ = 2

NN1*«N«1

D02I1=1»NN1

D03JI=JJ*NN
CALL TESTPRtI1»J1»P0)

3 C(I1.J1)=C(I1»J1)+P0
JJ=JJ+1

2 CONTINUE

SUBROUTINE TESTPR(I1»J1»P0)
DIMENSION IK(10)»JK(10)»P(25)
COMMON NN»NE»P»IK,JK»D0

P0=0.

D01 I=1*NF

IF( IK(T >-IlH#2»l
2 IF( JKd )-Jl)l»3,l

3 PI2=P(I)

IK( I) = 0

JK( I)=0

00=1.-po

P0=P0+Q0*PI2

1 CONTINUE

RETURN

END

FIG.23 A PROGRAM FOR NETWORK REDUCTION
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branches and combines them, are given in Fig. 23.

1.9.3.Series parallel networks

Once the parallel branches have been grouped together and

a weighted adjacency matrix [3 is developed, the equivalent net

work will be having less number of branches and will be equal to

the non-zero entries of [c].

For example the matrix [C] for the network of Fig. 18 will

be

CC] *

0 C12 C13 C14-

0 0 C23
0

0 0 0 C34

0 0 0 o

(24)

where cl2 • P1+P2-P;ip2; C13 S P3+P4~P3P4;

c34 •P7+P8+P9-P7P8-p7P9-p8P9+P7P8P9 etC*

This matrix will automatically be developed by the computer by

scanning the table (fed-in as data), again and again for each term

as described in section 1.9.2.

The reduced network corresponding to (24) will be as shown

in Fig. 20, with the values of the corresponding probabilities

indicated.

To make further progress in the process of evaluation of

total transmittance between terminals 1 and 4 we will make use of
certain properties of a di-graph. What we actually desire finally,
is an equivalent edgeconnecting nodes 1 and 4. This can be achiev
ed if se can somehow eliminate the intermediate nodes; for Fig.

20 these will be, nodes 2 and 3. In series parallel networks
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the elements can either be in series or in parallel. Fig. 20

obtained after reduction (combining the parallel elements only)

does not contain any two or more edges across a pair of nodes and

as a matter of fact it should not if all parallel edges have been

combined. The only possibility that exists is: there is at least

one such node to which only two edges are connected,one is inci

dent to and the other will be incident from the node.

Node 2 in Fig. 20 satisfies this condition. This type of

node can be called as series-node and will be the first to be

eliminated from the reduced di-graph. The equivalent edge bet

ween nodes 1 and 3 corresponding to the two edges 1-2 and 2-3 will

have a probability value associated as obtained by multiplying

the elements c 2 and c23 of matrix CCJ • Since the probability

P . associated with the event that m elements in series operate
series

successfully, is

or P . = P- (25)
series . , i

i=K >pi a s
The product is transferred to the entry of c^, and added to the

existing value using parallel combination rules i.e.

C13 " C13 ,J+C12G23~C13 1,C12C23
new old old

(26)

In fact, C,2 is the probability of the occurrence of two events
new

that the element directly across nodes 1 and 3 is good as well as

the two elements 1-2 and 2-3 in series.

In general, if node k has c±. element incident to and c^

incident from, then an entry c± .= cikckj is transferred to the

location (i, j) and is added to the existing value using



:. . = c . . +c ., c, .-c. . c., c, .
ij ii ,, ik kj ija1, ik kj
Jnew Jold Jold
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(27)

However, the entries c, and c, . once they have been used and. fcHe
XK K J

node k has been eliminated are made zero.

The information about the node, needed for the elimination

process, just described, can be had through the use of: what is

called as degree matrix A = [6^ J . There are two degree matrices

defined for a di-graph, [d] , one is out-degree matrix [OdtD)}

which has only diagonal entries od±i, indicating the number of

branches 'going out' or directed away from the node i. The other

matrix is in-<aegree matrix [l.dUD)] for graph (D). This matrix also

has diagonal entries idi;L indicating the number of branches 'coming

inf or directed towards the node i. It is easier to understand

that od.. is the total number of non-zero entries of the row

corresponding to node i, in [Cj.

Similarly, id., for node i will be the total number of non

zero entries corresponding to i column of matrix [C*]. For

example, just before elimination, Cod] and [id] for network of Fig.

20 will be

0

[Cd] ^ Ildj (28)

It will: be interesting to note that idi;L will be 0 as node 1 happens

to be a source-node. Similarly od44 will also be 0 as node 4 is a
sink node having only incoming branches.
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It may be remembered that elements of matrices [Od] and [id]

will keep on changing as the elimination proceeds. Finally when

all intermediate nodes have been eliminated there will be only one

entry in [Od] i.e., for our example, 0dn = 1; rest of the entries

will be zero. The same applies to [id] which will also have only

one entry i.e. Id44 = !•

Since matrices [cd] and [Id] have only diagonal entries,

it is economical to find a simpler way of storing them in memory.

We can make use of the column corresponding to source-node of [c]

for storing the diagonal elements of [Od] and the row correspond

ing to sink-node may be utilised for storing the diagonal elements

of [Id] because both these column and row have zero entries through

out, always. Incidentally, the element of [c] corresponding to (sink,

source) entry will always be zero, therefore overlapping of [pO

and [Id] elements at the corner have no problem because °dsink =

0 and id « °« For example, Fig. 20 will have matrix [c] just
source

before the elimination process as:

[C] ^

3

1

1

0

0.96 0.99 0.95

0 0.70 0

0 0 0.936

1

(29)

As is evident from (29) we have been able to save lot of space by

combining the features of three matrices [c], [od} and [id] .

It is also easier to find total number of non-zero entries in any

row and enter it in first column of that row and vice-versa.

It was pointed out earlier that the elimination starts with

the node 'i 'that has od±;L and id^ equal to one. After eliminating
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and updating the entries of [C], again we look for the node which

has in-degree and out-degree as one. This goes on till all such

nodes have exhausted and finally the only entry in [C] left out

will be that of c . , which will be the total transmittance
w source, sink

or reliability of the network under consideration. The changes in

[c], as nodes 2 and 3 are eliminated, are presented in (30) for the

example under discussion.

r*
m *

2 0 0.9967 0.95 1 0 0 0.9966

0 0 0 0
•a o o o

1 0 0 0.936 0 0 0 0

0 0 1 2
<*

0 0 0 1
•

After node 2 is
eliminated

After node 3 has
been eliminated

(30)

The steps involved in the alcprirtr. Ascribed can be summarise:

as follows:

1. Draw a di-graph for the network assigning proper direction to

the elements and numbers to the nodes and elements.

2. From the data 'read in' a weighted-adjacency matrix is deve

loped after combining the parallel elements across any two nodes.

3. Define od.. and id. . for each node.

4. Eliminate the node 'i 'which has od±i and id±i as unity.

5. Transfer the product c.kckj to (i, j) entry and modify the

old c. . entry using,

Cij
B C . 4C, c,_ _.-c c, c.

new
^old ik kj ijold ik «

Also make the entries cik and c^j as zero.

6. Check whether all the intermediate nodes have been eliminated;
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if not: go to step 3 otherwise print out the element ^sourOQl sink

and Stop.

This algorithm has aunique advantage of being fast and direct
and requires minimum extra information or manipulation. Every inform-

ation is containted in 03•

I.9.*. Non-series parallel networks

For non-series parallel networks, the same algorithm can be
used effeotively for the evaluation of reliability with somemani-
pulations. Reference &1 had suggested the use of Factoring
Theorem. We will use the. same theorem but in modified form and it
becomes less cumbersome tc use the theorem, than suggested in \fl..
Actually the network as awhole, can be handled rather than breaking
it into small units. The algorithm to be described will be found
very convenient with the use of acomputer and for large complex
networks. The steps involved before applying the theorem can be

enumerated as follows:

1. as in case of series parallel networks, elements across any

two nodes can be combined first, as it is easier to work with
reduced network. The weighted-adjacency matrix is developed.

2. Any series-node may be eliminated as discussed in earlier
sections. This further reduces the network size. It may be
pointed out that anetwork not decomposable finally to asingle branch
connecting source and sink nodes by algorithm described in section 1.9.3.
is necessarily a non-series parallel network.

After the two steps mentioned above, we will be left with
asmall network (with interconnecting branches) which is quite

convenient to handle.

instead of usual procedure of factoring out one by one the
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P| P4

(0) NETWORK.

(b) BRANCHES 3 AND 6 OPEN

6 (c) BRANCH 3 SHORTED AND

6 OPEN.

6 (d) BRANCH 3 OPEN AND

6 SHORTED.

6 (e) BRANCHES 3 AND 6 SHORTED.

FIG.2I A NON-SERIES PARALLEL NETWORK.

FIG.22 A NON-SERIES PARALLEL NETWORK WITH
ADJACENT INTERCONNECTING BRANCHES.
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interconnecting branches we will use different combinations of the

states of interconnecting- branches (much less in number usually,

than the total number of elements) and define corresponding series-

parallel networks to work with. Finally all the transmittances

associated with such networks are added up algebraically to get the

reliability of the network. The procedure involved will be illus

trated with the help of an example, taking network of Fig. 21 (a)

Assuming, after going through the two steps mentioned in

this section we end up with a network of 21 where branches with

reliabilities p, and p6 are the interconnecting branches. Now we

consider all possible states of the branches 3 and 6, i.e. they

may be shorted or opened. There are only four possibilities:

branch 3 and 6 open, branch 3 shorted and 6 open, branch 3 open

and 6 shorted and, finally, branches 3 and 6 may both be shorted.

In general, if there are n interconnecting branches, then 2

possibilities would be encountered. This should not be so dis

appointing as the interconnecting branches are usually very few.

Secondly, it will be seen later that it is very convenient to work

with the matrices associated with the graphs. Therefore, further

manipulations on the matrices to simulate all the possible states

of the interconnecting branches, are quite simple. Also any

general approach for direct computation with minimum effort is

preferable than otherwise.

It is easier to conceive from factoring theorem, that the

total reliability R of network shown in Fig. 21 can be written
u non

as

R = q.q^ [reliability of network 21(b)] + p.,qfi [reliability
non ^3 6 c J °

of network 21(c)] + q3P6 [reliability of network 21(d)} +
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pp [reliability of network 21(e)} (31)

Obviously, if one calculates the reliabilities of the networks

2Kb), (c), (d) and e), Rnon can be directly computed.

It is not necessary to rig up all the networks, and then

computing the reliabilities separately using the method of section

1.9-.3. Instead, we will make use of network 21(b) only and the other

networks can be obtained by shorting one pair of terminals, and then

two pairs of terminals at a time. This is simulated on the computer

by first developing a matrix corresponding to 21(b) which can be

obtained if the elements corresponding to interconnecting branches

are removed from the weighted-adjacency matrix, viz.

[c]21 (b)

1 2 3 4 5 6

M.
«M

1 0
C12 C13

0 0 0

2 0 0 0
C24

0 0

3 0 0 0 0
C35

0

4 0 0 0 0 0 C46

5 0 0 0 0 0 C56

6 0 0 0 0 0 0

(32)

Thereafter the nodes 2 and 3 are shorted to get network of 21(c).

The corresponding operation on (32) if the shorted nodes be recog

nised as sine1 ° node 2, will be

1. Transfer all non-zero of 3rd column to corresponding positions

in column 2.

2. Transfer all non-zero entries of 3rd row to corresponding

positions in row 2.

3. All entries of row and column 3, are made to zero.

While the entries of m column are being transferred to column
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k, it must be remembered that if in i-row there is non-zero entry

in k-column i.e. c±k then the new c±k after cim is transferred to

position c-k will be given by

c.

lknew =°ikold+ Cim" cikQldCim (33)

The same applies to the transfer of elements of 1-row to n-row.

Following these rules the matrix (A^Kc) wil1 nave entries as

Cc] 21(c)

0 c12 0 0 0 0

0 0 0 c24 c25 0

0 0 0 0 0 0

0 0 0 0 0 c

0 0 0 0 0 c

0 0 0 0 0 0

46

56

(34)

Similarly, other networks can also be simulated using the above

rules. All these series parallel networks are solved by the alrrr\r?.thffl

ofsection 1.9,3. At the end of one computation matrix [c] is

initialised back to that corresponding to 21(b) to obtain a new

network again. Once the reliability of a network is evaluated

it is multiplied by proper combination of reliability or unreliabi

lity of the interconnecting branches according to (31) and stored

in. This goes on till all networks have been considered. The final

sum of all these will be the reliability of the non-series parallel

network.

Network of Fig. 22, has adjacent interconnecting branches, in

which case shorting any one interconnecting branch puts the other

adjacent interconnecting branch in parallel with other elements.

The total number of combinations if we remove interconnecting
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branches one by one will be less than what we will get following

the procedure described. But extra labour involved cannot be com

pensated by the loss of generality of the algorithm. Moreover, the

manipulations on the part of a user are also maintained as minimum.

1.9.5.Applications

The algorithm can be applied to any series parallel or non-

series parallel redundant network. Nowhere loss of generality

has occurred and thus this can be used in variety of cases.

The algorithm can also be applied to the networks (series

parallel or non-series parallel) with elements having two types of

failures viz. open circuit and short circuit, parallel to the method

of section 8.2.

Applications of algorithm can be extended to evaluate the

selective and non-selective operation probabilities [YJ in case of

any complicated relay networks-* The procedure will be exactly similar

to that of element with two types of failure.

Thus the algorithm can be effectively applied to solve variety

of problems in the field of reliability evaluation which actually is

essential in many reliability studies of a system,

1.10. A method of deriving reliability expression of redundant networks

The reliability expression of a redundant network series para

llel or non-series parallel can be derived by first developing a di

graph for the network, using the modelling described in section 1.9*1

and thereafter defining the associated boolean adjacency matrix

[E]. Any entry E. .indicates the state of the element lying between

nodes i and ji.e. either good (E^ = l) or bad (E±. =0). It is
obvious that probabilities associated with the boolean sum of events

that all elements of all forward paths, are good, provide the
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reliability of the network. To generate all forward paths, one can

multiply adjacency matrix n-2 times (n being the number of nodes).

After each multiplication, the element of corresponding

(source, sink) position is picked up and added (using boolean algebra

rules) to the previous one* This method actually generates all

forward paths of unit element length, two element length and so..

on. One can at the most have a forward path of maximum n-1 length

if there are n nodes in the network. The number of multiplication

can of course be reduced further to n-3. For example, for the

network of 19(b), one requires only one full matrix multiplication,

viz.

ET *E14 * t° E12E13 °^ CO E24E34 0]T + &> E^E^O].

° E12 E13 °
0 0

0 E.

E23 E24

0 E,
32 "14

0 0 0 0

& E24E34 ^ (35)

The reliability of the network would then be given by R = Pr ^ET| ,

It may be stated here that Pr{E2pE32) = 0 as was indicated in sec
tion 2 for non-series, parallel networks, therefore the terms involving

these during the multiplications may be dropped right in the.beginning.

The method is particularly useful for non-series parallel redundant

networks however complicated but with the condition that there exists

only one branch between any twotnodes. If there are more than one

we replace them with an equivalent branch. It may also be remembered

that + sign in (35) and the internal multiplication indicates the

boolean sum of events.



CHAPTER 2

OPTIMISATION OF RELIABILITY WITH LINEAR CONSTRAINTS

In the previous chapter it has been amply emphasised that the

reliability of a system can be increased by introducing redundancies

in the sub-systems. Although one can obtain a high value of system

reliability by providing as many redundancies as possible but to

ensure that it is not a very costly, heavy or bulky system, the

question of optimisation of system reliability with respect to cost,

weight or volume etc. arises. The present chapter is, therefore,

devoted to the problem of obtaining an optimal allocation of redun

dancy, i.e. maximum system reliability for the cost, weight, or

volume etc. allowed.

2.1. Statement of the problem

Assuming there are k sub-systems or stages (all of them con

sidered to be in series) in a system, stage i consists of n.+l,

similar units in parallel, each having independent probability

q. , o(q ( 1 of failure, the system reliability may be then given

by

R(n) * I (1 - qni+1) (2.1)
i=l x

where n is a vector of non-negative integers such that n «= (n, ,

n2, . . . mQ and represents the redundancies at each stage. There

exist constraints on the allocation of redundancies which may be linear

or non-linear. Assume linear constraints on n such that

j£ cij ni^cj- j = 1, 2, , . . r (2.2)
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where c^. > 0 and each C. shows the allowable limit of cost, weight

or volume etc. upto r constraints. The problem can therefore be

stated as: the selection of vector n such that R(n) is maximum

subject to the constraints given in (2.2).

2.2. Domination

k

Assuming C.(n) = 2Z c. . n. represents the cost of the redun-
i i=l J

dancy allocation n, the allocation n1 is said to dominate n"2 if

Cj(n )^C.(n'), j = l, 2, . . . r while Rtn1) ^R(n2). If in addi
tion, at least one inequality is strict then "n"1 is said to dominate

n strictly.. A sequence S of redundancy allocation "n*1, h = 1,

2, . . . satisfying the constraints (2.2) is said to be a dominat

ing sequence if no n is strictly dominated, and if every n satisfy

ing the constraints (2.2), which is not strictly dominated, occurs in
S.

__2

Conversely, n is said to be undominated if Rtr"1) > R(n2) implies
i "i

C.(n ) > Qin ) for some j, whereas Rln1) = R(n2) implies either

Cj(n ) >Cj (n ) for some j or Ch (n1) . C,(n2) for all j, where

cj<"1) " SCU v
2.3. Approximate solution of redundancy allocation problem

An approximate solution to the problem (2.1) can be rapidly

and easily obtained by generating an incomplete family of undominated

allocations.

_ k

Let R(n) - ._^VniJ (2.3)

where R..(n.) is the reliability of sub-system using components of

type i and that n± redundant units of type i are provided.

k

Then log R(n) = ^ log R.(n.) (2 4)
i=l x x
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Since log x is a monotone-increasing functior of x, the problem of

maximising R(n) is equivalent to maximising log R(n).

The procedure for generating an incomplete family of undomi

nated allocation can be summarised as follows:

Starting with redundancy allocation of (0, 0 „ . .0), one

adds a new component to that stage which yields greatest improve

ment in system reliability for the cost incurred in placing it.

This continues till any one constraint is violated. The proof of

the theorem that if log R.(n) is concave each redundancy allocation

generated by above procedure is undominated is given in Appendix A.

To prove that log R(n) is a concave function of n one can show that

,t ^n+3\ ,, ,n+1\
2 ? n+1 (1_q-i Hi-q. )£± log R. <n) = Z\ log(l-q"+1) = log ± —y-^ (2.5)

1 x (1-qJ )

where Z\log R.(n) = log R.(n+1) - log R.(n).

The denominator is larger than numerator as

(1_qn+2}2 _(1^3)(1-qn*lJ =qn+l ^yj^Q

Therefore /\>. log R.(n) <<. ©, so ais© log R(n) as the sum of concave

functions is again a concave function. ~~ -
k

Hence log R(n) = <j>' log R. [n. ) is concave.

2.3.1. Examples

(i) Single Cost Factor

Assuming that there is only one constraint in (2.1), i.e.

cost of the item, the procedure for generating allocations will be

to calculate desirability factor F. for each stage given by

A log R^ (n. )
Fi - ;— ~ =gMl^g ^(^+1) - log Ri(n±)] (2.6)
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Retaining the index i for which F. is maxim .m amongst the stages,
3 p 10

a c#mponent is added to that stage to find new allocation. If

maximum occurs for more than one index, the lowest has been chosen

for allocation.

Taking numerical example from reference [Kettelle 19621, in which

data runs as,

Stage i i 2 3 4

Reliability 0.8 0.7 0.75 0.85

Cost 1.2 2.3 3.4 4.5

the Table 2.1 gives the complete information about the undominated

allocations. Fig. 2.1. shows the allocations on system reliability

vs system cost. The allocations corresponding to a particular cost

may be easily read from this figure. It may be noted here that allo

cations are given for the system and actual redundancy allocation

can be found by subtracting (1, 1, 1, l) from the system allocations.

The computer program for this method is given in Appendix B.

(ii) Multiple Cost Factors

If there exist more than one 'cost ' factors the desirability

factors Fi's may be defined as

F. =
l r

> a. c. .
jtl J U

[log R. (n.+l) - log R. (n. )1
ii l l J

1 m 1, 2,

(2.7)

. k

where a, , a2
r

that 2Z a • :
j=l

. . a are non-negative weights with the condition

1. Here some of the a.'s may be zero but not all.

In fact the vector a may be taken.- as (1, 0 . . . 0) to start with and

successively a. may be given a fixed increment /J^a. till all possi

bilities of a may be exhausted and a final choice may be (0, 0,... l).
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Table 2.1 - Single Cost Allocation

System
System

Reliability

System

cost

11.4

Desirability Factors

allo

cation Fl F2
F
'3 F4

1111 0.3570 0.15194 0.11407 0.06563 0.03106

2 111 0.4284 12.6 0.02732 0.11407 0.06563 0.03106

2 2 11 0.5569 14.9 0.02732 0.02910 0.06563 0.03106

2 2 2 1 0.6961 18.3 0.02732 0.02910 0.01435 0.03106

2 2 2 2 0.8005 22.8 0.02732 0.02910 0.01435 0.00431

2 3 2 2 0.8560 25.1 0.02732 0.00836 0.01435 0.00431

3 3 2 2 0.8845 26.3 0.00536 0.00836 0.01435 0.00431

3 3 3 2 0.9287 29.7 0.00536 0.00836 0.00348 0.00431

3 4 3 2 0.9468 32.0 0.00536 0.00248 0.00348 0.00431

4 4 3 2 0.9529 33.2 0.00107 0.00248 0.00348 0.00431

4 4 3 3 0.9715 37.7 0.00107 0.00248 0.00348 0.00064

4 4 4 3 0.9831 41.1 0.00107 0.00248 0.00086 0.00064

4 5 4 3 0.9887 43.4 0.00107 0.00074 0.00086 0.00064

5 5 4 3 0.9900 44.6 0.00021 0.00074 u.00086 0.00064

5 5 5 3 0.9929 48.0 0.00021 0.00074 0.00022 0.00064

5 6 5 3 0.9946 50.3 0.00021 0.00022 0.00022 0.00064

5 6 5 4 0.9974 54.8 0.00021 0.00022 0.00022 0.00010

5 7 5 4 0.9979 57.1 0.00021 0.00007 0.00022 0.00010

5 7 6 4 0.9987 60.5 0.00021 0.00007 0.00005 0.00010

6 7 6-4 0.9989 61.7 0.00004 0.00007 0.00005 0.00010

6 7 6 5 0.9994 66.2 - -
— —
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The family of undominated allocations thus obtained is not

complete even for all convex combinations of a.'s. However as the

allocations are very close to each other, the true solution to the

problem can be very closely found by proper selection of a.

The method is based on the idea that an optimum balance has

been struck in allocating among the different component types when

increments in log reliability per. unit convex combination of costs

are the same for all component types within the limitations of

discreteness of (n., n2 . . . nfc) variables.

Example

The following example has been taken for illustration:

Stage i 1 2 3 j 4

Stage 0>80 0<?0 j 0>75 0.85
Reliability 1 I

Cost 1.2 2.3 3.4 4.5

Weight 5 4 8 7

Fig. 2.2 shows the system allocations on weight vs cost axes. The

allocations for different combinations of a 's have heen listed in

Table 2.2. These allocations corresponding to different a, *S have

been clearly shown in Fig. 2.2. One can read off allocation to

particular constraints on the weight and cost of the system from

this figure. For example, if the system cost is not to exceed 56

and the weight should be less than 120 then system allocation may be

given as (5, 6, 5, 4) with reliability of 0.99747 and actual cost

and weight being 54.8 and 117.0, respectively. In Table 2.2 the

last column gives the cases under which the allocations have been

obtained. For brevity, the cases considered are listed below:
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Cases
Values of a.

l

al a2

1 0.00 1.00

2 0.25 0.75

3 0.50 0.50

4 j 0.75 0.25

5 1.00 0.00
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The computer program for the procedure outlined is given in Appendix

C. One can easily solve for any allocation problem with given cost

and weight constraints using this program. By using finer increment

Of A.a-/ all possible allocations can be obtained and the best with

maximum reliability within the allowable limits on cost and weight

can be selected.

2.3.2. Alternative Method

Another method which also generates an undominated allocation

family for different values of vector A = ( X,, A -, ...)\) for
l z r

r 'cost' problem. By proper selection of X one can arrive immediate

ly at a larger allocation and in this method it is not necessary to

generate the whole family of successively larger allocation as in

the method of section (2.3.1). Therefore problem is to choose

i= (A./ A, . . . A ) where each X. \ 0 but not all A.. = 0,
•x * r J J

for i = 1, 2 . . i k to calculate n. (~) as the smallest integer

satisfying

r

log R (m+1) - log R.(m)< 5~ X . c..

Here again if log R(n) is concave, it can be proved on similar lines

as the theorem given in Appendix A, the allocations will be undominat

ed.

Inequality (2.8) can be further manipulated as follows:

m

(2.8)



, n+2
r s i - q±
> A, c. . \ Z\ log R. in) = log —-y
jTl J 1J ? X 1-qj+1

Exponentiating,

n+2
i - q

exp fe x3 \J > rr^x >
1

n+1 " qi
qi

1
- 1

n+1
^

(1 - q,)
or exp rs~ a. c. . \ i + 7-1—

Writing (1 - q.) = P- and further simplifying,

n > log q± .oo

exp [51 X. c. .I- 1
Li~l J x^

exp [V Xj c ]-q.
j=l J

- 1

48

(2.9)

Therefore n.(A) can be written as (since n can only have integer

v alues),

n±(A) * log 0t1 log

exp [ 51 X, c.J

exp Ls xj ciJ-qij^i

(2.10)

If the quantity within outermost brackets is denoted by x then

the value of n. (~>T) should be chosen as the largest integer not exceed

ing x. The procedure can therefore be outlined as finding out the

n.(7T) for all stages, i.e. i = 1, 2 . . . k using a proper value

of ~X such that no cost constraint is violated. If in first choice ol

~\, one does not arrive at the optimum value several trial values of

~A may be used. In fact if one varies the vector A' different redun

dancy allocations may be obtained. The choice of ^ is therefore
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crucial in this method.

The author made several variations in the problem of a proper

choice of the value of ~~\ so as to get the correct allocation in a

few trials. Several programs were written to study the different

approaches. A few are reported herein.

(i) Discrete Steps Variation

The method has been illustrated by taking an example given

below, in addition to the problem of section 2.3.1(14).

Stage 1 2 3 4 5 Constraints

Reliability 0.90 0.75 0.65 0.80 0.85

Cost 5 4 9 7 7 lOO

Weight 8 9 6 7 8 104

For the above problem, the allocations by varying A1 and A2

in discrete steps were found and the cost-weight map with A1 and

X axes has been shown in Fig. 2.3. From the Fig. 2.3, it is obvious

that if X is decreased cost of the system increases and if A ,
1 *

is decreased weight increases. The conclusions thus derived can be

summarised as follows:

1. Cost is a decreasing function of A..

2. Weight is a decreasing function of X2*

3. By proper adjustments of \ and A2 one can arrive at the

desired allocation within the constraints assigned.

Therefore an algorithm was developed to satisfy the conditions listed

below (Table 2.3), where C, W are the calculated cost and weight

found from a particular allocation and CG and WG are given cons

traints on cost and weight, respectively.



K0W

• or

Table 2.3.

C:CG W:WG R b m a r k s

< / 1decreases both A and A

< = stop

= < stop

= = * stop

> / increase \
< > increase \
> > increase both A. and X „

> = increase *i
= > |increase X2
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Using the above logic a computer program was written the flow chart

for which is given in Fig. 2.4 and the results are listed below in

Table 2.4.

Table 2.4.

Trial

No.
... .

\ aii°- L *.Cost
cation ,

1Weight

1
o.oi o.oi 0

•+Vte

1 1 1 0 | 20
i .

22

2 0.001 o.ooi 1

h

2 3 2 2 i 68 74

3 o.oooi 0.0001 2 4 5 3 3 113
i

! 127

4 0.0005 0.0005 2 3 4 2 2

1 •

86 97

5 0.00005 0.00005 3 5 6 4 3 138 157

6 0.00025 0.00025 2 3 4 3 2 93 104

Here the decrease provided in >1 and X2 in astep was one-tenth
and increase provided was 5 tines to make the solution converge

quickly.

Similarly, the four-stage problem of section 2.3.1(ii) with

cost and weight constraints also was solved in seven trials as given

below in Table 2.5.



INCREASE A

C READ N, CG, WG J

c READ Rj , Cj , W; 3
Qi=l-Ri

ASSIGN A, ,A2

CALCULATE N| (I), 1=1, N 2
I exp(Tr|C")-l

USING n ti = *°9 «xpt| C8i)-qi'" logq;

CALCULATE CS.WS
(COST AND WEIGHT)

IEASE
_2.INCREASE^] kN.CA!

(b

FIG.2-4FL0W CHART FOR MULTIPLE COST ALLOCATIONS.

<*>

ii

PUNCH Nj(I)
FOR ALL I'S
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RELIABILITY
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Table 2.5.

Trial

No. \ 1 *2

Allo

cation
Cost Weight

1 0.01 0.01 12 11 13.7 28

2 0.001 ! 0.001 3 3 3 2 29 .7 65

3 0.0001 0.0001 4 5 4 3 43.4 93

4 0-. 00001 |0.00001 5 7 6 4 60.5 129

5 0.00005 0.00005 4 6 5 3 49.1 105

6 0.000005 0-. 000005 6 8 6 5 68.5 145

7 0.000025 0.000025 5 6 5 4 54.8 117
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In both the problems, however, it has been observed that either both

cost and weight were less or more simultaneously than the allowable

limits of cost and weight; therefore A and A were observed to

be same at any trial.

One can, of course, stop after trail 3 in Table 2.4 and observe

that the allocation lies somewhere between trial values of A . and

X„ used corresponding to trial 2 and 3. After step 2 the grid-

meshes for N. and A„ can be made of finer steps but it is usually

difficult to ascertain as to what values of X and A2 exactly would

lead to optimum allocation. To overcome this difficulty the author

used random numbers generated to simulate the values of A and A
•

(ii) Random Numbers Approach

Best results would be obtained if the logic of Table 2.3 and

the idea of generation of random numbers were combined to obtain exact

allocation for the sys'tem. The author successfully used this approach

for the four-stage problem of section 2.. 3.1(ii) results whereof are

also reported in Table 2.5. Here again two variations were considered.
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1. Random Numbers for both. A - and A2:

As is clear from Table 2.5 the values of A and A^ were

somewhere between the values corresponding to step 3 and 4. To

strike at the correct choice perhaps quickly, two random numbers for

X and A were 'called' in the main program and a new allocation

was found. The reference [241 gives many methods of generating

random numbers between 0 and 1. The random number thus generated

can be multiplied by a constant corresponding to the higher value

of. X and X respectively, in trial 3. It is startling to observe

that the final allocation has been obtained in one trial only for

the values of A and X as:

X A Allocation Cost Weight

0.00000614 0.00004131 5 6 5 4 54.8 117

2. Random Number for A only:

Instead of 'calling' random numbers from two random sequences,

it may be easier to 'call' only one random number and for getting

X one can multiply X. by a preassigned constant or random in

tegers in sequence. A typical observed case using this approach

is given below:

m X, mX Allocation Cost '-/eight

0 0.00007424 0.0 5 6 5 4 54.8 117

In the opinion of the author the approach of both random numbers for

X and X is quite promising and this can be very effectively used

if the true optimum is to be searched end the allocations are very

near to each other. In these cases this will be a useful approach
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and much nearer to true optimum.

(iii) A Graphical method

One can very conveniently prepare graphical chart to

directly and quickly read the allocations in case of multiple or

single cost constraints using equation (2.8), i.e.

n+2

ZlXc.. >Alog R.(n)>log -^
J=1 1-cr,•%

where n is the smallest integer satisfying above inequality.

There in Fig. 2.4(a) the curves have been drawn for increasing

values of n, i.e. the number of redundant units to be used at

any stage corresponding to a particular value of unreliability q

of a stage. To calculate the allocation at any stage, one has

to simply look for the curve corresponding the unreliability of

a unit of that stage and after choosing the values of (X ,

2*" k^ and comPuting with the given values of c. ."s, the

left-hand side of the above expression one can read off the value

of n for that stage which will provide A log R. (n) less than the
r x

computed value of T~ \.c ..
jtl J iJ

Once all the n^ , i=l,k have been calculated we can make a

check about the constraints, if still there is scope of increas

ing the allocation then we decrease the values of "^, so that

we can arrive at a higher point on the curve. Moreover, the

curves are almost linear upto a certain range; therefore

extrapolation is also easier. It is also obvious from Fig.

2.4(a) that after a particular of n, the decrease in

& log R^(n) is not at all pronounced and the curves seem to

coincide and remain steady.
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2.4. Kettelle's Algorithm

Kettelle [10J developed a simpJLe computational procedure

using dynamic programing algorithm for optimizing reliability without

exceeding a constraint. Kettelle, however, presented it for a single-

cost constraint only, i.e. cost of the equipment. The method actu

ally develops a dominating sequence as the elements are successively

added to the system at different stages. One can select the allo

cation within the total cost allowed which gives maximum reliability.

The method requires either a rough estimate of the system realiabi-

lity or the system reliability should be specified.

2.4.1. Dominating Sequences

The definition of dominating sequence has already been given

earlier in section 2.2. in simpler language one can say that one

configuration is said to dominate another if it has either (a) more

reliability and no more cost, or (b) no less reliability and less

cost. It is interesting to note that a dominating sequence contains

only configurations that are undominated. One can generate whole

family of undominated allocations starting with (0, 0 . . . 0)

allocations in stages. The Kettelle's algorithm gives the complete

family allocations which is not the case with the methods of earlier

sections.

2.4.2. Illustrative example

Suppose it is required to have a system reliability of 0.99

with the data available about different stages as given below:

Stage

Reliability 0.80 0.70 0.75 0.85

Cost 1.2 2.3 3.4 4.5
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The steps involved in the procedure can be outlined as follows:

1. Since all the stages can not be considered simultaneously for

developing dominating sequence two stages at a time will have to

be taken, therefore stages should be paired. In general for k

stage system k-1 pairings can be done. In the illustrative

problem there are two pairings of stages possible:

/

i.e. first 1 & 2, then 3 & 4 and finally
3*1 (1 & 2) and (3 & 4)

.}
i.e. first 1 & 2, then 2 & 3 and finally

3 •& 4 are paired.

2. Minimum number of elements in each stage are found from the data

available on system reliability. Assuming even if the reliability

of each stage be equal to system reliability, one arrives at the

minimum number of elements to start the algorithm. Otherwise the

complete family starting with (0, 0) allocation will have to be

generated. The minimum number of elements are calculated from the

expression
Log (1-Rr)

ni (minJ =LogU-Rj-
where ^ is the given system reliability and R. is the reliability

of element of i stage.

For the example of this section, the minimum elements calculated

are:

Stage: 1 2 3 4

Minimum elements: 3 4 3 2
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3. A table as shown in -Fig. 2.5 is developed where cost and un

reliability are posted and starting with 3 and 4 elements for

stage 1 and 2 the cost and unreliability of any other combin

ation of elements for stage 1 and 2 greater than the minimum

number of elements, are calculated successively. For calculat

ing unreliability of the sub-system combined of stage 1 end 2 an

approximation is usually made, that is: if Q. is the unreliability

of first stage and Q~ is the unreliability of stage 2 then the

combined unreliability of stage 1 and 2 will be given by Qj+ Q2

leaving the third term of (-Q^Q^). Kettelle has shown that the
2

error introduced using this approximation is less than Q where

Q is system unreliability.

Another approximation that may reduce the length of dominat

ing sequence is the following:

In comparing a pair of entries in the table developed one may intro

duce a tolerance factor (. for the j cost (here we have only one

cost i.e. the cost of the equipment only) and/or a tolerance factor

£ for unreliability. If two entries in the table differ by £ . or
^q 7 J

less in the cost, they are considered alike as far as the cost is

concerned; similarly, if they.differ by (or less in unreliability
Si

the result is that domination becomes more likely so that the lengths

of the dominating sequences are reduced. If the dominating sequences

are long one can introduce tolerance factors in cost and unreliabi.

-lity to reduce their lengths.

Another table for stage 2 and 3 combined is also prepared similarly

and finally a table combining (1 & 2) and (2 & 3) stages is developed,

They are shown in Fig. 2.6 and 2.7 respectively. The dominating

sequences for all these three are given in Tables 2.6, 2.7 and 2.8



and Fig. 2.5, 2.6, 2.7.

Table 2.6 - Dominating Sequence for Stage 1 & 2

Dominating
sequence

}No. of
per

elements

stage Reliability
1 Unreliabi

lity
Cost

Staqe 1 Stage 2

1 4 4 0.9903 0.009 7 14.0

2 5 4 0.9916 0.0084 15.2

3 4 5 0.99 60 0.0040 16.3

4 5 5 0.9973 0.0027 17.5

5 4 6 0.9977 0.0023 18.6

6 5 6 0.9980 0.0010 19.8

7

i

6 i 6

1
0.9992 0.0008 21.0

Table 2.7 - Donnninating Sequence for Stage 3 & 4

Dominating
sequence

No. of elements

per stage Reliability

i

Unreliabi

lity Cost
Stage 1 Stage 2

1 4 3 0.9927 0.0073 27.1

2 5 3 0.9956 0.0044 30.5

3 6 3 0.9964 0.0036 33.9

4 5 4 0.9985 0.0015 35.0

5 6 4 0.9992 0.0008 38.4

6 6 5 0.9997 0.0003 42.9

57



Table 2.8 - Dominating Sequence for Stages (1 and
and (3 and 4) combined

2)

58

Dominating
C ZTi/T 1 1 A TT\ /~*\ /~\

No .

in

Of 6

a

dements

staqe Reliability Unreliabi

lity
Cost

o eyuence
1 2 3 4

1 5 5 4 3 0.9900 0.0100 44.6

2 4 6 4 3 0.9904 0.009 6 45.7

3 4 5 5 3 0.9916 0.0084 46.8

4 5 6 4 3 0.9917 0.0083 46.9

5 6 6 4 3 0.9919 0.0081 47.1

6 5 5 5 3 0.9929 0.0071 48.0

7 4 6 5 3 0.9933 0.0067 49.1

8 5 6 5 3 0.9945 0.0054 50.3

9 6 6 5 3 0.9948 0.0052 51.5

10 5 5 5 4 0.9958 0.0042 52.5

11 4 6 5 4 0.9962 0.O038 53.6

12 5 6 5 4 0.9975 0.0025 54.8

13 6 6 5 4 0.9977 0.0023 56.0

14 5 6 6 4 0.9982 0.0018 58.2

15 6 6 6 4 0.9982 0.0016 59.4

16 5 6 6 5 0.9987 0.0013 62.7

17 6 6 6 5 0.9990 0.0011 63.9

Obviously from Table 2.8, it is clear that the system with minimum

cost should have allocation as (5, 5, 4, 3). On the other hand,

if the constraint on cost is specified, one can find from the dominat

ing sequence the allocation with cost less than or equal to the

specified value.

f

2.4.3. Multiple Cost Constraints

In section 2.4.2, only single constraint was considered,
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however, the Kettelle's algorithm can be extended to multiple cost

constraints such as cost, weight, volume etc. without much diffi

culty. Basically, the procedure remains same, except that an

estimation of approximate reliability of the system is made to

calculate the starting values for n. for each stage.

The starting value in case of multiple costraint is found

by adding one unit of each component type in succession until a

constraint is violated upon the next addition. Then the reliabi

lity of the system is computed from the resulting value of n =

(n. ,n~ • . n,). Finally from the calculated value of system

reliability minimum component types in each stage are calculated

as in Kettelle's algorithm using formula

log(l-R )
s

ni s log(l-R..)

A proper solution of n reduces considerably the calculation in

preparing the table.

2.4.4. Multiple Cost Problem

For illustration the following problem has been worked out

in detail in Tables 2.10 and 2.11. The final dominating sequences

for combined stages is shown in Table 2.12.

Example: To find the optimum allocation for the system given

below with cost and weight not exceeding 56 and 120.

Stage 1 2 3 4

Cost 1.2 2.3 3.4 4.5

Weight 5 4 8 7

Finding the starting values of n. table 2.9 is prepared, which



Table 2.9 -

Stage .Stage Stage Stage L . ,
1 2 ^3 ' 4 |Cost !Weight! Remarks

1111 11.4 24

2 111 12.6 29

2 2 11 14.9 33

2 / 2 2 1 18.3 41

2 2 2 2 22.8 48

3 2 2 2 24.0 53

3 3 2 2 26.3 57 Cost cons

3 3 3 2 29.7 65
traint 56

3 3 3 3 34.2 72
Weight cons

traint 120

4 3 3 3 35.4 77

4 4 3 3 37.7 81

4 4-4 3 41.1 89

4 4 4 4 45.6 96

5 4 4 4 46T8 101

5 5 4

5 5 5

5 5 5 5 57.0 120

4 49.1 105
Attainable

reliability
4 52.5 113 = 0.99577

^^^^^^^^^^^^M
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Table 2.12 - ,

Dominating Seque

Dominat- Ino. of eguip
ing Stage

sequence 1 I II m

nee for Stages 1, 2, 3 Sc 4 combined

ments 1 „
j Unrelia-

IV bility
1 Reliabi

lity

1
1 Cost
1

1
Iweight
I

•
4 5 4 3 .009610 .990390 43.4 93

1 4 4 5 3 .008381 .991619 44.5 97

3 . 5 5 4 3 .008330 .991670 44.6 98 ,

4 5 4 5 3 .007101 .992899 45.7 102

5 4 5 5 3 .006770 .993230 46.8 101

6 5 5 5 3 .005400 .994600 48.0 106

7 4 4 5 4 .005512 .994488 49,0 104

8 6 5 5 3 .005144 .994856 49.2 111

9 5 4 5 4 .004232 .995768 50.2 109

10 4 5 5 4 .003811 .996189 51.3 108

11 5 5 5 4 .002531 .997469 52.5 113

12 6 5 5 4 .002275 .997725 53.7 118

13 5 6 5 4 .002020 .997980 54.8 117

14 5 5 6 4 .001799 .998201 55.9 121

15 6 6 5 4 .001764 .998236 56.0 122

16 6 5 6 4 .001543 .998457 57.1 126

17 5 6 6 4 .001288 .998712 58.2 125

18 6 6 6 4 .001032 .998968 59.2 130

19 7 6 6 4 .000981 .999019 60.6 135

20 6 7 6 4 .000879 .999121 61.7 134

21 5 6 6 5 .000857 .999143 62.7 132

22 7 7 6 4 .000828 .999172 62.9 139

23 6 6 6 5 .000601 .999399 63.9 137

24 7 6 6 5 .000550 .999450 65.1 142

25 6 7 6 5 .000448 .999552 66.2 141
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gives attainable..reliability. Then from the attainable system

reliability the starting allocation will be (4, 3, 4, 3). Proceed

ing as indicated in earlier section 2.4.2, the allocation within

the allowable limits on cost and weight, is found to be (5, 6,

5, 4).

2.5. Bellman Dynamic Programming Approach "

Bellman's [l6, 17] dynamic programming, can be applied con

veniently to the problem of optimising reliability of a system with

k stages in series subject to one or two constraints such as cost

or weight or both. The allocation problem is solved as a multi

stage decision problem where at any stage j, the decision is made

on how much to allocate to activity j that is x. is selected. The

dynamic programming approach to solving probl m makes use of this

fact and really solves a sequence of problems beginning with a one-,

stage problem, moving on to a two-stage one etc., until finally all

stages are included. The solution for k stages is obtained from

the solution for k-1 stages by adding the kth stage and making

use of k-1 stages. The optimal allocation x., j = 1 ... k

depends on the total quantity of resource £ , which is available

for allocation to k stages. The mathematical formulation of

redundancy allocation is given in the following section.

2.5.1, Dynamic Programming Formulation

The non-linear programming problem to be solved can be states

as follows:

k

k

all x. integers, max z = X^(xJ (2.11)
J 1=1 J J
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The above problem involves only one constraint b, and has a sepa

rable objective function, requiring all x.'s to be integers. The

problem with two constraints can also be solved easily by the use

of Lagrange's multiplier and introducing one of them in objective

function ae will be discussed later. The computational problem

can be described as follows:

If the sequence of functions be defined as

f <s>
n

max

1 n

n = 1, ...k

where maximisation is carried out for non-negative integers

satisfying

n

(2.12)

T. ax 4 %
j=l J 2

(2.13)

Once f-^^ )has been calculated directly, the remaining f (| )
can be computed recursively, since

max 0n(xn)+ max
n-1

fn<t> =
n x]_' '"*Xn—1 ^—

where in computing

n-1

^(x.)max

xl"-'xn-l j=1

the maximisation is carried over non-negative integers x,,.

x . satisfying

(2.14)

(2.15)



Unde r these conditons, (2.15) is simply f ,(fc-a_xj. Therefore,
n-1 > n n

66

vV- max

xn
W+WS -ax), nn nJ

, 1, ..., 7/a

£ t • * • / -K (2.16)

and x varie over the values 0 (2.16)

Finally

z* = fk(b) (2.17)

Summarising the procedure, one can start with first stage by

computing

f1( j ) = max 0(x.)
04Xl [̂)/aJ

where in computing f.(j ) for a given £ , x, ranges over integers in

the interval jj >/a1|. For each value of | m0t 1, ...b f (I ) is
calculated. Denoting the value of x. by x.(t) for which

1 1 ?

fx(.|) -^jx^)] (2.19)

(2.18)

that is, x,( i) is a value of x. which maximises f1 (x., ) when x.

, a table such as given belowtakes the values 0, 1, ..., ^/a1

is built:

Table 2.-13

% fx(%) \i%)
0 f2(o) xx(0)

1 fx(l) %(1)
•

•

•

•

•

•

b f1(b) %(b)

Once fi (\ ) have been calculated one can proceed to compute f9(\ )

for every value of \ = 0, 1, ..., b using
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f2(^)= max |̂ 2(x2)+fl(*5 ~a2x2}J (2.20)
0^x2^[5/a2]"

For a given %, £2(| ) is computed as follows:

TJJ2(0; £) =02(O)+£1f§ )

f2(l/^) - iZS2(l)+f1(|-a2) (2.21)

ltf2([f/a2];|) ^^((VaJ+f^l-a.ff/a,])

The maximum of ^2's is stored as f2(f ) and the corresponding value
of x2 as x2( \). Again a table similar to 2.13 is prepared.

Similalry, the procedure is adopted to calculate f3(| ) for

fe « O, 1, ..., b and finally for all fy( | ).
To determine the optimum allocation at each stage, one can

start with kth stage where fR(b) = z* and xk(b) is the allocation
at kth stage x*. With allocation at k stage known, allocation at

k-1 stage will be given by

This proceeds on backwards till, finally

A *x* = xx(b-I anx*) (2.23)
n=2

2.5.2. Optimisation with two constraints and one control variable

If the optimisation problem is framed as

r aiiXi^V £ a21x1*b2 ' xi > °' J=1' -'*' a11 inte9ers'
j=l J J j=l J J

max z = T *U*J (2.24)
j=l J J
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where all a..; b. are assumed to be positive integers, obviously

the sequence of functions defined analogous to previous section

will be

n

:n(t;t,) - max i_0<(x.), j*I« •••*
n * * x, ...x j=l J J

1 n J

(2.25)

where maximisation is to be carried out over non—negative integers

satisfying

n n £
S,alJXJ * >1 ' 5ia2JXJ ^ ^2 (2*26)

If fe. and p? are two state parameters, the state functions for

first stage will be

fl( %1 • (%2) ~ max ^i(xi} (2*27)
°4xi ^ °1

or in general,

fr,( I1 '%->)- maX ^r,^Xr,^+fr, 1U 1"^1 nXr, ' ^O'^O^^ln y 7 2 _ > ^ c nn n—1 x,l In n 72 2n n

n = 2, ..k (2.28)

and

z* = fk^b! » b2) (2.29)

&n =min {[V*n]' [Va2n]} (2'30)
Once f ( 5, 1 , ^2) is determined, simultaneously x ( 51 , *j2) is

stored. At k stage, x* corresponding to f\.(b-i / b2) is deter

mined and remaining optimum allocation at each stage is found by

tracing back the stored table of f ( t, , ^2) and x £%•, 1 ^2^ corres
ponding to two state parameters ^1 and ^2 instead of only one as

given in (2.22) and (2.23).
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It is much more difficult to solve this problem than (2.11)

because fQ and xfi are now functions of two arguments. If both fe"

and ^2 can take 100 values, then in general one may have to tabulate
fn^ %1 ' %2^ for 10OO° possible combinations of % and fe_. More
over, maximisations have to be carried out 10000 times at earh

stage. Another trouble that may arise is that of storing such a

large table in costly computer memory. Also the speed has to be

high to reduce access-time. To overcome this difficulty one may

use Lagrange's multiplier technique as will be discussed in the

following section.

2.5r3, Lagrange's Multiplier technique

A Lagrange multipler A can be used to reduce the number of

state parameters by one.

Problem of (2.24) can be reframed as

k

j=l u J ^ 1

*j >y ° / j=1. ••.k

k k

max z - 2l0,(x )-A^a2,x. (2.31)
j=l J J j=i ZJ J

This pxoblem can be easily solved as single constraint problem

involving only one state parameter.

The recurrence relations for the state function will be

fn{%) =^x[^n(xn)-Aa2nxn+fn_1(|-alnxn)l n=2,...k (2.32)
n

For the problem of (2.31) an obvious assumption is made that

x. are continuous variables and jZS. (x.) are nondecreasing functions

of Xj. It is therefore clear that one of the constraints holds

a strict equality for any optimum solution and in fact in (2.31)
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second constraint i.e,

k

<5a2jXj " b2
is assumed to hold strict equality. This however does not present

any difficulty in keeping x. as integers. In this case it is not

necessarily true that either constraint must hold as a strict

equality. One can proceed by varying ^ to make z(x( A) jas large

as possible while not violating either of the constraints. If the

eliminated constraint holds as strict equality when the x. are not

restricted to be integers, this is equivalent to that of determin

ing A such that the constraint comes closer to strict equality with

out violating the constraints.

The procedure of computation will be exactly the same as that

of section (2.5.1). Often one has to use his own judgment in making

a suitable choice ofA. Few trials or in fact the solution of prob

lem (2.31) is usually required till one strikes at the correct

value of X to get the optimum solution. If two trials have been

made for two different values of A then one can usually make linear

intrapolation or extrapolation to arrive at almost correct choice

of new A .

If A0 and A- are the two values of Lagrange multipliers
0 1tried and corresponding values of 2£~a.-,.x. are b9 and b7 then a

i=1 J J

new value of multiplier A* 2 can be used, given by the relation

v ^1~^0 0 \
A2 = "1 O (b2-b2)+*0 (2.33)

b2-b2

If more than two values of A have been tried, the latest two can

be used for intrapolation or extrapolation.
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2.5.4. Optimum Redundancy allocation subject to two
Linear Constraints

If 1+x. components of reliability p. ar^ used at the j

stage then the probability of successful operation R.(x.) of the

,th . .
j stage is given by

R,(xj) =i-u-p/+x: (2-34)

and the overall reliability of the system may be written as

k k

R = TTr.(x.) 5 "j[(l-(l-p.)1+xj) (2.35)
S j=l J J j=l! J

Expression (2.35) can be expressed as

Z = log R = Hi^,(x.) (2.36)
S j=l J J

where 0.(x.) Blog R(x.) =log ^1-(1-p )1+xj \

This form is more convenient to use since each term of the sum

depends only on a single variable. Moreover fl.(x-) is monotone-

increasing concave function of x. , maximising R is equivalent to
J s

maximising log R .

The problem is therefore as follows:

maximise

j=l J J

x. >. 0 , j = 1 , ...k, all x. integers

subject to the cost and weight constraints

k k

Hc.x. 4 C and ^w.x. <^W (2.37)
j=l J J j=l J J



where a. and w. are cost and weight of the like-components at
j J

j stage, C and W are given cost and weight constraints; or,

alternatively, introducing Lagrange's multiplier A,

max z

JS v JS
= H0,U.) - A 2. w.x.

1 j=i J J 5=1 J J

x. ^ 0 , j=l, —k

subject to the cost constraint

72

4-ex. £ C
j^l J J

(2.38)

The recurrence formula will be given by

^V - max

xn
"0n(xn)-Xwnxn+fn-l(|-Cnxn)

n = 2 , . . .k (2.39)

The author has used this form for the following reasons

rather than using product formulation of reliability problem

0-6, 17, 18]:

1. Addition is faster on computers than multiplication and

thereby reducing considerably the time for each run of the

problem for a particular value of A.

2. As is clear from the recurrence expression of (2.39) the

terms corresponding to 0j(xA) and AWn.xn. appear in sum form,
J J J J

the values of 0\(x.) can be calculated once for all and may

be subsequently used for all possible values of x. at each

stage and different values of A . This saves re-computation

of the product each time the value of x. is changed from

0 to >/x.] in each stage for all values of "*? from O to bj
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This process reduces considerably the time due to the fact that

a large number of multiplications are saved. This procedure

infact reduced the total time of a run to almost 1/4. With

high speed memory this may be even less.

3. This method also helps in estimating a correct value of A

quickly as the effect of the variation of Aw.x. can be clearly

observed in process of calculation.

2.5.5. Example

Using the computer program given in Appendix D, the author

tried the above procedure and also after modifying the program

to the product form, the following problem of table 2.14 has been

solved, for justifying the time comparison as discussed in earlier

section. The results are presented in tables 2.15 and 2.16,

Table 2.14

Stage 1 2 3 4 5

Reliability 0.90 0.75 0.65 0.80 0.85

Cost 5 4 9 7 7

Weight 8 9 6 7 8

Cost

constraint
100 units

Weight
constraint

104 units

The system weight corresponding to different values of A is given in

table 2.16.

Table 2.16

A 0.002 0.0014 0.0012 0.001 0.0008

Allocation
1, 2, 3,

2, 2
1, 2, 4,

2, 2
1, 3, 4,

2, 2
2, 3, 4,

2, 2
2, 3, 4,

3, 2

Svstem Weight 74 80 89 97 104

System Cost 68 77 81 86 93
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As is clear from table 2.15, a further reduction in memory

requirements, is possible by storing the state functions f-n^%) and
optimal allocations x(£ ) for the values of ^ which changes the

f (fc ) or x( £ ). In this way for any stage the maximum number of

times f (£ )or x( |)is to be stored^can at the most be [b/c ."],
but programming may be slightly complicated. For large problems

this technique may have an advantage; however, it requires high

speed memory.

2.6. An Algorithm using Lagrangian multipliers technique

The author has evolved a computational technique for

reliability optimisation subject to linear constraints using

Lagrangian multipliers in cases where number of stages k is

greater than the number of constraints m.

It has been observed previously in section 2.3.2 that the

choice of "Ais- usually crucial and the solution obtained by the

method of that section is usually an approximate due to the

rounding off of the allocation results. However, in some cases

this may yield true optimum also but no such assurance is valid.

The present algorithm aims at removing these snags.

Theorem: Let f(x) be a concave function over the closed convex

set X ±n E . Then any relative maximum of f(x) in X is also the

global maximum of f(x) over X. If f(x) is strictly concave then

the point in X at which the global maximum is assumed is unique.

If f(x) is concave over a convex set X and if f(x)£ C (i.e.

f(x) and its first derivative are continuous over some subset of

Ek), then ^ f(x) = 0 at x*", f(x) takes on its global maximum over

X at x*.

Now the problem is to maximise z = f(x) for x > 0
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satisfying g.(x) =b. , i = l, . .m; m<k and x = (x± , x2 ,
..xk). It is assumed that fsc1 and g.CC1, i = 1, 2 ..m. Also
if f(x) takes on a relative maximum at x*, the following k+m
equations (necessary conditions) should be satisfied.

>f (x»? m '0gi(x*)
>*T~& * ' ix. -° i**' 2 ••*

gi(x*) = b± i=l, ...m (2.4o)

The A £ are uniquely determined for any such x*.
Obviously if solution to (2.40) is possible by some com

putational procedure this assumes

(i) The x are continuous variables.

(ii) Constraints are all having equality expressions.

The rounded off solution of x* to integer form will be a

feasible solution also to the problem where constraints are of

the type g^x)^. Furthermore, the rounded off solution

leaves some slack in each constraint and if it is possible to

reduce these slacks with integer condition of the solution and

at the same time modifying >± such that at least first k

equations of (2,40) are satisifed and the k+1 to m equations of

(2.40) are satisfied to an extent that no slack in resources

b± , is of the size that any equipment of jth type j=l..k
is possible to be allocated.

Returning to the reliability problem we have similar to

section 2.5.4

k

maximise z = Zl logfl-(i-Pj)xjJ =f(x)

subject to x^O j = l,..]c
and£aijxj£bi i = 1/ ..m (2.41)
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where x. are
the system allocation (i.e. redundancies +

.th1 units) and p is the reliability of the J» type component.
Modifying (2.41) oonstraints to equality form and writing

the Lagrangian function we have,
m

F(x, A) e f (x) +£l\
i=l

r JL 1b. - 5_,a. .x.
^ jtl 1J JJ

onditions of (2.40) and writing q.pl-P.j *Applying necessary c

one gets

q
'J

1-q.

x,

orj ii

l-q.

m

'log qj - £Vij

m ^

log q. + ^Aiaij
J 1=1

and TZ a±ix. = b±
j=l 1J J

= 0

= 0

j=l..k

i=l..m
(2.42)

The algorithm now can be stated in the following steps:

1. Assume the values of A. , i-l, .*• to start the process.
(AllAi can be assumed to be equal but * 0) so as to yield x.
within the feasible solution.

2. Calculate the values of x. , j-l..k using first k equations

of (2.42).

3. Round off x.'s to lower integers say n.

the slack si by

k

»i " bi ~Jjjj aij "j

say n.'s and calculate

n . i=l..m
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Obviously the slack will be non-negative since the n.'s form

a feasible solution.

4. Calculate for each stage w.=min^ (s./a. .), i=l..m j j=l,..k
j <,_ 1 ij j

w. provide an estimate of how much one can add to the existing

allocation in each stage without violating any one of the m

constraints.

5. Compute w.'= *Cw./ i.e. round off the w. to lower integer.

If all w. are zero stop and print out the allocation n.'s.

6. If any one of w'. is not zero then we compute &n.=(-^ /
where 1 is any arbitrary constant 1. This is done so as

not to reach very close to any constraint 'too soon'; other

wise the local maximum situation will prevail.

7. Next the increase in objective function due to change in

allocation from n. to (n.+&n.) is computed for each stage.

Here we can make use of the fact that increase in log

(system reliability) will be equivalent to increase in log

(reliability of the stage to which & n is added).

8. We add the increment in allocation n to that stage j'

which gives maximum increase in the objective function and thus

arrive at an allocation of (n., , n2 , ...n.+^n. , ...n^).

9. Using the allocation arrived in step 8 we compute *^ ,

i=l, ..m from the first k equation of (2.42). This indeed

will result in a set of equations with their number greater

than the number of unknowns i.e. A±=l, ..m. The only possi

bility of solving such an over-determined system is by "the

method of least squares" [25].

The solution can be obtained as follows:



[a] • ai- , i=l,..k; j=l,..mjLet [A] • |a± . , i=l, . .k; j=l,..m| be the matrix of coeffi

cients of A . 's in (2.42)
1

Then

A*A £ « f^d (2.44)

where ^ is a column vector of f_ >. , i=l,..mj and d is
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the right hand side of (2.42) after the values of m.'s

have been substituted in first k equations of (2.42).

The system of equations of (2.44) would lead to unique

values of * , i=l,..m.
i

10. Using the above values "A.'s we re-compute x. , j=l,..k

and return to step 3.

The above algorithm will terminate when A. , i=l,..m

and x. , j=l,..k are such that they satisfy the first k equa

tions of (2.42) and the n.'s are such that slacks of m-constraint

equations of (2.42) are reduced considerably and that no compo

nent of any type be added to the existing allocations without

violating any one or more constraints.

Nothing can be said about the efficiency of the algorithm

as at this time the general purpose program has not yet been

developed.

However the algorithm seems to be quite convincingly

appropriate.



CHAPTER 3

VARIATIONAL APPROACH

Moscowitz and Mclean [12] obtained the condition for minimum

cost, if the reliability of the system is given a preassigned value,

using variational approach. It may be stated here that the problem

of finding minimum cost for a specified value of system reliability,

is the same as optimising reliability with given cost constraint

on the system. Moscowitz and Mclean method, however, was developed

for the former case. The author has suggested an extension and

generalisation of the technique for single and multiple cost cons

traints .

3.1. Condition for minimum cost

Let there be a basic system of k elements in series having

r., r2...rk reliabilities and cost of c± , c2...ck such that basic

reliability of the system be

R - I r. (3.1)
° i=l X

and basic system cost

(3.2)C = > c.
o — l

±=1

The problem is therefore, to find redundancy allocation which

gives minimum cost for the specified system realiability of Rg.

Denoting the number of elements in stage i by m± the reliability

of stage i can be written as /o£>76>0

mm**»>r?!'»mK*
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Ri = 1- qj1 (3.3)

where qi = 1 - r^ , r^ is the reliability of each element in

i stage and R. is the reliability of m. such elements in para

llel. The system reliability therefore would be written as

k

Rs = I R± (3.4)
i=l

Since the cost of i group of parallel elements is m.c, the

total system cost is

s i=l 1 x

The required result can be found by solving equations (3.3), (3.4),

(3.5) as a variational problem and finding the distribution of

m.'s for minimum cost. Introducing another variable a. defined

by

R± = Rg1 (3.6)

It can be shown that a real positive number a. between 0 and 1,

can always be found to satisfy (3.6). Then from (3.3) and (3.6)

each m. can be written as

log(l-R.) log(l-Rai)
m. m _. i__ „ —;^ §— (3.7)l log q± log q± KJ'''

and the system cost and reliability can be given by

k k c log(l-Rai)
C - £_m.c, = Z~ -*-1 S (3.8)s r—- i i f—, log q, u,°'

i=l i=l y ^i



Rs = I Rx =
s i-1 x 1=1

"k '

i=l XJ

In order (3.9) can be valid, it is required that

a = STa. = 1
i=l X
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(3.9)

(3.10)

It is now possible to optimise cost with reliability. This occurs

for distribution of a.'s which gives stationary value for the ratio

C /R . The particular distribution of a.'s is to be found which
s s 1

satisfy

{>(^-) m0 or
Sc ^R

s u s

s
R

m 0

subject to the constraint that oa m 2EI £> a. «= 0
1=1 x

(3.11)

(3.12)

If A is a real constant then simultaneous solution of (3.8), (3.9),

(3.10) and

oC & R
s - A6a = 0

R.
(3.13)

will provide the distribution of a, 's for stationary value of C /
X s

R . Now
s

£r = R (a+£a)-R (a)

R

r k
*£ (a. + 4a. )
i=l i

since k a = ^ 5a. =

r^

- RLX=1 - = R.
s s s

o
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therefore
R

= 0 (3.14)

Similarly the variation of C with a is given by,

6c • C (a+ oa)-C (a)
So 5

k c

i=l lo9^i L s J

£ Sr^ io9<i-Rsai)

SZ c' log
i=l 1

c.

where c' = r^i " log q

_R(ai + oai)
1-R

ai
1 - R

(3.15)

If it is assumed that R is quite high, i.e. very close to 1
s

and q is very small
s

SCg m£c{ log
i

^. c( log

1- (1 - qs)
a. + &a. ,

1 - (l-q±)

1 +
«Sa,

*ij

then to the first approximation

&C
S^l.

C "v~

c.

K
l a.

(3.16)
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Substitution of (3.14) and (3.16) in (3.13) y" elds

c'

r-^-fc»ai-XOai = 0 (3.17)
"7 C a.
i si

This can be satisfied if

c '

au - "#?r- (3.18)1 AC
s

Solving for X, realising £[ = a. = 1

*-c.'

i s

Substituting (3.19) in (3.18),

(3.19)

6* c±/log q±
a, - 7TT -^f *— (3.20)

:./log qji ~ c ' r~" ,
o 2l_c ./log q.

J

Therefore minimum cost can be obtained for the distribution a.
i

given by (3.20) and substitution of (3.20) in

log (1-R i)
_ . a
m. =i " log q±

yields the values of m. (i =1, k): the elements in each stage with

the total cost as

k k log(l-R i)
c = 2Tm-c. = y~~c. —r-

s f—, i i f—.i i 1<, j. j. 1 a. xOg q.
1=1 1 = 1 y ~i

3.2. Procedure for calculating optimum allocations

The general procedure for determining the optimum allocations
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can be outlined as follows:

1. Using the cost and reliability data about ^.ach element type

a. 's using equation (3.20) are calculated and the calculated

values can be checked by finding their sum which should be

equal to unity, i.e.

k

£1 a = 1
1-1 x

2. For the given system reliability R and unreliabilities

of each element type one can calculate the values of m. 's,

the probable number of elements in each stage, using equation

(3.7).

3. Usually the values so calculated for m.'s will not be integers

and as the m.'s can only have integer values, so the values of

m.'s obtained in step 2 are rounded off to the lower integer

values.

4. Now as the reliability of the system will fall short of the

given system reliability due to truncation of the values of

m.'s the further improvement in system reliability can be ob

tained by adding successively the element types that yield

minimum increase in cost for a certain increase in reliability.

5. Therefore the desirability factors F.'s for each stage are

calculated as defined by

X s

where, F. m the desirability factor for adding a unit or element

iU ,th
to the i group;

R , C = system reliability and cost before adding the
s s



. th
unit to i group;

th
c. = cost of adding a unit to i tage.

However it can be shown that
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ARS AR±
R R.

s l

(3.22)

th
where R. is the reliability of i group before the addition

of new unit to that stage and A R. is the increase in reliability

of that stage after new unit has been added. Therefore (3.21)

can be written as

jR./R.
F. = *,_ x (3.23)
l c./C

l s

To show (3.22) holds good one can write that

k

R- - 7T R,-

th
astern K", axuer a unit tu i

s

stage has been added will be

. k R (l +Ar. )

rs - -i- <jiv<bi+*v • 5-

also ^ R m R'-R , therefore,
s s s

3 1.1 x

and the reliability of the system R', after a unit to i
8

AR±
AR • R,s s Ri

r &R± ARC
or

Ri Rs

6. Once all F.'s have been calculated in step 5, a new element is
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added to the stage j for which the F. calculated is maximum.

7. New reliability and cost of the system is calculated if the

reliability of the system is now more than or equal to the

given reliability. The allocation obtained so far is the opti

mum value, otherwise the steps 5 & 7 are repeated till the sys

tem reliability is at least equal to R or greater than this.

The method has been programmed on the computer and the flow chart

for the same is given in Fig. 3.1. All the steps mentioned above

have been shown clearly in the flow chart.

3.2.1. Illustrative Example

For the system reliability of 0.99, it is required to find

the optimum allocations for the system of section (2.3.1). The

results obtained by the procedure described in previous section

(.3.2) and programmed on IBM 1620 Computer, have been listed in

table 3.1.

3.3. Allocations with given cost constraint

It has been pointed out in earlier sections that Moscowitz

and Mclean's method requires a prior estimation of the reliability

of a system. In other words, given the reliability index for

a system the allocations to meet that requirement can be found

by their method. In case the cost constraint on the system is

given, the method described in earlier sections cannot be direct

ly applied. However, the author tackled this problem by roughly

estimating the reliability of a system within the specified cost

constraint and thereby finding the allocation using the method.of

[12J. This allocation will, however, be updated by successive

addition of units to the stages where normalised reliability to



Stage . 1 2 3 4 Remarks

a. 's
1

0.09967 0.25537 0,32786 0.31709 Fa. = 1
c- i

am.'s (calculated) 4.29129 4.95561 4.12391 3.03107

Truncated

m. 's 4 4 4 3

System reliability
0.98321 R < R

s ^ g

System cost (C ) 41.1
Cost ratio (CR=C /c )
3.60526 s

F. 'S
i

0.04391 0.10215 0.03555 0.02629 Maximum F. for stage 2

New allocation
m. 's

1

4 5 4 3

Rs 0.98874 R < R
sN g

C
s

43.4 CR xm 3.80702

F. 's 0.04637 0.03218 0.03754 0.02776 • Maximum F. for stage 1

New allocation

m. 's
i

5 5 4 3

R
S

0.99O0O R =R ; calculation stops
s g • *

Cs 44.6 CR = 3.91228

Table 3.1

CD
CD
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cost ratio is the highest, till the final allocation is nearer

to the boundary of the constraint. This method will provide near-

optimum or optimum solution conveniently fast and without much

complexity involved. In all the cases studied by the author

this method has yielded an optimum solution to the allocation

problem with given cost constraints. Moreover, a fast and approxi

mate solution is much better than slow, complex and an accurate

method.

3.3.1. Example:

Taking the example of section (2.3.1) except that cost

constraint specified is 56 units:

To assess an approximate reliability of the system the

method of section (2.4.2) is used, i.e. one can start with system

allocation as (1, 1, 1, l) and go on adding one unit at a time to

each stage till a constraint is violated. If this procedure is

followed, then for the problem under consideration a table similar

to table 2.9 is developed and the allocation after which cost cons

traint is violated will be (5, 5, 5, 4) and corresponding system

reliability computed is given as 0.99577. With this system

reliability, the allocation using the method described in section

(3.2) is found and successive steps in the solution are provided

in table 3.2.

Table 3 .2

Allocation Reliability

0.99000

Cost

5, 5, 4, 3 44.6

5, 5, 5, 3 0.99291 48.0

5, 6, 5, 3 0.99461 50.3

5, 6, 5, 4 0.99747 54.8

M
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•3.4. Allocations with Multiple Constraints

The variational method of section (3.1/ gives approximately

optimum allocation due to the roundinc.off of the actual allocation

having fractional parts also and then applying trial-and-error

aethod to 'fill-in' the resources available. In fact, it provides

-i shortcut to the optimum in imdominatec sequence method of section

(23). There instead of starting from p, 0, 0...0) redundancy

allocation, one starts from near-optimum allocation by the use of

variational method.

The author makes use of this fact by simultaneous solution

of allocation problem starting from the individual optimal solu

tion of the multiple constraint problem. The basic facts support

ing this approach are:

1. Reliability is an increasing function of allocations and

thereby individual 'cost' variables sucl as cost, weight,

volume etc.

2. The true optimal allocation should be a point on the undominat

ed sequences generated for individual 'cost' variables as the

problem is to optimise reliability with respect to all these

variables.

3. In absence of a point mentioned in 2 above any allocation point

on the higher ridge (reliability) corresponding to any one of

the !cost' variables will be good enough to oe called near

optimum without violating any of the constraints.

Therefore the procedure requires the following steps to be carried

cut in sequence:

1, Within the feasible solution domain, the attainable reliability

can be roughly estimated using a table such as 2.9, by adding
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one unit at a time till some constraint is violated.

2. Using this rough estimate of reliability (which is often too

near to the actual optimal reliability) we find out the indivi

dual optimal allocations with respect to each 'cost' variable

involved by the variational method of section (3.1).

3. From these individual optimal points, we pick up the allocation

which is lying on higher reliability plane and add optimally

(i.e. where the normalised change of reliability to individual

'cost' variable ratio is high) to each allocation other than

the allocation corresponding to this maximum reliability allo

cation, i.e. following maximum gradient path.

4. Obviously, by moving all other allocations to next higher point

we increase the reliability of the allocations corresponding to

all cost variables except one. Now if some allocation other than

the previous one giving maximum reliability provides a higher

reliability point, we do not change that allocation and add

optimally one unit to all other allocations and calculate new

reliabilities corresponding to these new allocations. If after

step 3, the point chosen earlier is still higher, then step

3 is repeated.

5. This process continues till all allocations give the same relia

bility or a common allocation, within the feasible solution

domain and also check whether the allocation if changed to higher

reliability point would violate any constraint or not. If not,

then the process is continued; otherwise stopped. The common

allocation is the optimum allocation.

6. If, on the other hand, the common reliability point is not



92

obtained, then the allocation(within the feasible solution

domain near the boundary) with the highest reliability will

provide a near optimal solution.

A computer program has been written using above approach

and several problems available were tried by this method. In all

cases, the author got the optimal allocation without difficulty.

The flow chart for the procedure described above is given in

Fig. 3.2.

3.4,1, Example

For illustration, the solution to problem of section

2*3*1(11) is presented in the steps enumerated above.

The attainable reliability for the two-'cost' problem of

section (2.3.1) without violating any of the two constraints, i.e.

cost and weight, has been worked out earlier in table 2.9. The

reliability figure thus found has been obtained as 0.99 577 for the

allocation (5, 5, 5, 4). Using this figure for the attainable relia

bility the optimum allocation with respect to cost and weight indivi

dually was found out by variational method as (5, 5, 4, 3) and (4,

6, 4, 3) respectively. Further simultaneous solution has been

shown in table 3.3 in detail, leading to an optimal allocation of

(5, 6, 5, 4).

As is clear from table 3.3, in almost six steps, the final

allocation providing optimum has been obtained. This same computer

program was used for other problems also. The author did not have

any difficulty in arriving at the solution. The process is fast as

there are no complicated Calculations involved in the procedure.

A three linear-constraint problem having cost, weight and volume

as constraint was also tried and the result was arrived at fast.



C o s t - Allocatio n Wei g h t --Alio cation

Step
Allo

cation
Cost

Relia

bility
Max. F.

Stage
changed

Allo

cation

Wei

ght
Relia

bility
Max. F.

stage

changed

0 5 5 4 3 44.6 0.99000 -
4 6 4 3 97.0 0.99042 - -

1 5 5 5 3 48.0 0.99291 0.03858 3 4 6 4 3 97.0 0.99042 *

2 5 5 5 3 48.0 0.99291 -
4 6 4 4 104.0 0.99327 0.03989 4

3 5 6 5 3 50.3 0.99461 0.03559 2 4 6 4 4 104.0 0.99327 -

4 5 6 5 3 50.3 0.99461 - 4 6 5 4 112.0 0.99619 0.03824 3

5 5 6 5 4 54.8 0.99747 0.03218 4 4 6 5 4 112.0 0.99619 -

6 5 6 5 4 54.8 0.99747 - 5 6 5 4 117.0 0.99747 0.02872 1

7 5 6 5 4 54.8 0.99747 - 5 6 5 4 117.0 0,99747 -

Table 3. 3

VO
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The advantage of this method lies in the fact that this procedure

can be applied to any allocation problem hav.i n 7 many linear-

constraints, without much difficulty* However, it should, be men

tioned that the assumption in this procedure is: the system has

multi-component stages with heterogeneous component 'costs'.

3»5c Optimisation Using Maximum Principle

Tillman and others C21] presented a computational procedure
. sere

using Dieeete-Maximum Principle for the optimum design of a multi

stage parallel system. The author observed few drawbacks of this

method which are worth mentioning before one makes a choice of

using the procedure outlined. The objective function [2lj maxi

mised was taken as system profit expressible in the form (using

the notations of C2H)

. k
n -" PRS- % cnen (3.24)

n=l

where N is the net profit accruing out of a system having relia

bility as R , assuming the profit provided on system operating
5

successfully is P, C and © being the cost of a unit and the

number of units, used at n stage. The Hamiltonian and adjoint

variables were defined as

„n n n-1 r. ,, _ruen1 nf n-1 t/_,nan~| , -, ot-\H = z-j^x. 1-(1-R ) +22 L X2 J (3.25)

;.nd

n = 1, 2, ..k

r-|!fer-"5l><«rt*]z

)X

n-1 ~QHn n i9v
Z^ = n —1 *~ Z0 • n — 1, Z,...K

:• x2

—



95

with z, = P , z2 = -1

where x1 and x? are the reliability of n stage and sum cost

upto and including n stage respectively, k is the total -

number of stages and R is the reliability of n type unit.

Further XJ =xj"1[1-(1-Rn)6n]

x£ =xg^-K^e11 n=l, 2, ..k (3.26)

with x-=l and x2 = 0 •

After applying the necessary condition for optimality, i.e.

>Hn . .
—— m 0 and further manipulation Tillman [21j arrives at a
be11
condition

P f(i-yn) = a^l-y1) =a2(l^2) =...= ^^^ (3.27)
n=l y y y

where the different quantities are defined as

yn = U-Rn)&n= (Un)0n . (3.28)

n -C*
a =

loge Un

Tillman [21] proposed to solve for 8n, n=l, 2, ...k in (3,27) by t

the Falsi iteration method and the steps involved can be

summarised as follows:

1, y (1) and y (2) are assumed with the condition 0< y <^ 1.

2, E is computed by

-E * a1(l-y1)/y1

3, From the following expression yn, n= 2, 3..k are computed



4, Compute

n

yn - -•
n

E+a

k

S = P I (l-y11)
n-1

5.. The error ER = s-E is computed.

6. Anew trial value yX(3) is computed from the following
extrapolation:

1 y1(2)-ER(2)y1(l)/Ep(l)
~ 1.0-ER(2)/ER(1)

7. Steps 2-5 are repeated to obtain ER(3).

8. A check is made if -If3 (3) i_e
RmaxR

If the check is satisfied y1(3) is'the required y1 and also
y (3), n= 2, 3..k. 8n can be computed from (3.28). if not,
then y^l) and y1(2) are replaced by y1(2) and yX(3) res
pectively and go to step 6.

The above procedure was programmed on IBM 1620 and tried

and tested using the problems of [21]. The computer program is
given in Appendix F and the results for the eight-stage problem
of Table 3.4 are given in Table 3.5. Starting values of y*(l) and
y (2) were taken as 0.1 and 0.2.

It was observed that with the data given in Table 3.4

as such was used the solution converged to an absurd result with

some 8n being zero thereby giving system reliability as zero.
Table 3.4: P = 100.0

} 0.

Stage 1 2 3 4 5 6 7 8

R 0.90 0.75 0.65 0,80 0.85 0.95 0.75 0.60

C 0.5 0.4 0.9 0.7
-

0.7 0.4 1.0 0.8
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However after slight data manipulation as regards the

order of the stages the solution converged and the Table 3.5(a)

pertains to such a case. The convergence was obtained in 9

steps. It really does not matter which stage comes first and

which last as far as optimisation technique is concerned.

It was observed that if the first stage has low relia

bility the problem really gave sensible results, otherwise not.

Several combinations of stage data were run and the experience

substantiated the above statement. However, it may be noted

that in either case the solution did converge. The values of

y^'d) and y (2) were also changed and interchanged. In some

cases solution may diverge also but the values of y (1) and

y1(2) which converged the solution also may be absurd if the

order of stage reliability was not heeded uoon.

The table 3.5(b) also shows the order of stage data fed

for which the converged solution was optimum. The convergence

track followed is illustrated in Fig.3.4. The 3-stage problem

of [213 was also tried and a typical solution pattern for y is

shown in Fig. 3.3.

The conclusion derived, therefore, is if one 'feeds in'

data without any outsight then he would not know whether the

solution is an optimum one or an absurd one.

3.6. Discrete Maximum Principle with Linear Constraints

The problem of maximising reliability of a system of

ks stages with linear constraints on cost, weight, volume etc.,

is usually encountered in practice than the problem of section

3.5.

Tillman [23J gave analysis and outlined the procedure
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for non-linear constraints. The author-here-presents the-ana

lysis for linear constraints problem usually faced. It must

be mentioned that the procedure would also slightly change with

linear constraints. The problem of usual three constraints is

discussed.

Let cn, wn, vn, Rn be the cost, weight, volume and

reliability of an element, respectively at n stage and 8

be the number of elements in parallel at n stage. If the

three constraints specified are

i: vn9n^ V, ZI cn8n4C and ^1 wnB% W
n=l n=l n=l

then the problem is to maximise the system reliability subject

to above constraints.

State variables of the system may be defined as

n-1 ...run J> rt *(volume) xj = x^+vV I x^=0, x^ V

(cost) xj - xf"14*V1 ; x°=0, x^C

(weight) x* =AV ; x°=0, x^W
3 ~ "3

f „ ftn) O(reliability) xj =x" X+ln| 1-(1-Rn)8 j ; x°*
n=l, 2,. .k

The objective function to be maximised is

k f n en, 4 k k
S = y- in Jl-(1-Rn)° I = ^-,cixi = x4

i = l

C±«0 , i=l, 2, 3 and c4=l

The Hamiltonian and adjoint variables of the system are

(3.30)



Steps
8

0.01000 0.02000 0.00747 0.01120 0.00939 0.00890 0.00901 0.00900 0.00900

E
86.4354 42.7811 11.5991 77.0574 92.0111 97.1295 95.9898 96.0380 96.0386

E (J) 9.17437 45.44977 -19.28472 18.03360 3.85825 -1.04755 0.04680 0.00055 -0,00001

Stage No.

n
8

n
8

Table 3.5(a) : E ^ taken as 0.0001

8

5.13977 4.50326 3.53378 4.19151 3.35634 2.93370 2.64667 2.19633

Table 3.5(b) : Cost - 20.6, N = 75.64213, R = 0.962421
p t>

VO
vo



Hn = v— n n2_.z± x±
i=l x x

-n (ir*>"1*i7n»nL j.^nJ vn~1J^nQn] " n f n-1 n.n/'1 |xl +ve|+z2|x2 +cei+z3-{x3 +w e }

+Z |̂x^1+ln(l-(l-Rn)eni
n= 1, 2, ..k

n
n-1 6 H

Z. =
n

zi • i=l, 2, 3, 4 ; z^ = c4 = 1
\ n-1

•X.

Differentiating (3.31) and equating to zero, one gets

^yvz^zV1-^ -a-*")9" m(i-Rn) m0
1234 n fin1-(1-Rn)9

100

(3.31)

(3,32)

(3.33)

Whenever the j constraint, represented by x. is active, this

has the effect of fixing its boundary value. Therefore,

k
z.
l

c.
l

i 4 j

If the first constraint is active, we have

2 ji=ci=o 1=2, 3

z± = 0, n= 1,2,..k, i = 2, 3

Thus (3.33), if Un = 1-Rn provides

and

n 1
z- = —

1 n
v

JJ

(Un)6'ln Un
n

L i-(un)e

n
8 = -^("lntzyVinUn un+znvn)1

lnu"L 1 l J

(3.34)

(3.35)

(3.36)
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Similarly z2 and z3 can be derived and they will be identical

with (3.35) except in place of vn, there will be cn or wn

respectively.

Expression for 8 will also be similar to (3.36).

It may be remembered here that (3.36) although expresses

8 in terms of the known quantities but this does not ease our

labour due to the computational difficulties. The second In

term has argument as negative due to (In Un+z? vn) in (3.36)

and the computer can just not calculate the log of a negative

quantity. Therefore although at first sight it seemed that we

can do away with Newton's method but unfortunately this is not

so . We have to solve (3.35) with known values of z!? and other

quantities for 8 in convenient form by Newton's method. The

rest of the procedure is actually the same as given in Appendix G.

This method was tried by writing a computer program and taking

the problem from reference [26j of three constraints. The

results were highly satisfactory. The input data and output

results are shown in tables 3.6 and 3.7 respectively. The

computer program is shown in Appendix H-l.



Table 3.6 - Input Data

Stage Constraints

Cost 4.0 8.0 6.0 CG = 50.0

Wei ght 6.0 6.0 10.0 WG = 52.0

Volume 10.0 5.0 10.0 PG « 65.0

Reliability 0.86 0.91 0.9 6

Table 3.7 - Output Results

e

Assum

ed

Allocations

(Actual)

6 e-

Al locations

Rounded off

1
S 8'

PS cs

e~

ws

1.0 1.153 0.746 1.0 1.0 1.0 25.0)18.0 22.0

1.3 1.413 0.938 1.0 1.0 1.0 25.0 18.0 22.0

1.6 1.667 1.124 2.0 2„0 1.0 40.0 30.0 34.0

1.9 1,917 1.310 2.0 2.0 1.0 40.-0 30.0 34.0

2,2 2.164 1.495 2.0 2„0 1.0 40.0 30.0 34.0

2.5 2,411 1.680 2.0 2.0 2.0 50.0 36.0 44.0

2.8 2.370 1.705 3.0 2.0 2.0 60.0 40.0 50.0
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CHAPTER 4

OPTIMISATION OF SYSTEM RELIABILITY WITH NON-LINEAR CONSTRAINTS

In Chapter 2, optimising procedures were described which were

formulated for linear constraint problems only. The obvious assump

tion was that the constraint variables increase linearly with the

number of units used in redundancies. This, however, is not true

whenever addition of a new unit to the existing one entails a huge

amount of connecting accessories and the cost, weight or volume of

these connecting accessories increase exponentially or according

to some other law as the number of additional redundant units are

introduced. Tillman [23] suggested some combination of a linear

and exponential terms in the constraints.

4.1. Proschan and Bray Extension

The problem of multiple non-linear constraint can be solved

by Proschan and Bray [15] approach very comfortably. Here instead .

of the usual linear constraint any non-linear constraint can be taken

and still the problem can be solved in the same manner as for linear

constraints. For example, if the problem of section (2.3.1) of

Chapter 2 is taken except that the constraint now specified is a

non-linear cost constraint given by

£«i fcvr*^*} *
•f-Vi

where c. is the cost of i type of component and n. is the number

of redundant units at 1* stage with total system cost not to

exceed C, say 100 units.. The term
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n. >» _

c (exp(_i)l gives the cost of the connecting accessories for

providing n± redundancies. Figs. 4.1 and 4.2 give the undominated
allocation when stages 1-2 and 3-4 are combined. The dominating

sequences arising out of these are shown in tables 4.1 and 4.2.

Finally, table 4.3 provides the dominating sequence for combined

stages 1, 2, 3 and 4. One can pick out the allocation for a parti

cular value of given cost constraint. It is however not difficult

to extend the same procedure for multiple non-linear'constraint such
as weight and volume etc. In preparing table 4.3, no effort has been-

made to put a tolerance on reliability or cost factor. However,

one can specify a tolerance on cost or reliability so that the

length of dominating sequence of table 4.3 can be reduced at will.
The allocation from table 4.3 for cost not to exceed 100 units is

(5, 6, 6, 4).

In calculating the starting values of redundant units in

each stage one can first calculate the term

n± + exp(—)

for all values of n.o^n. (£fej orfw/wj. Obviously,^ one will not
have the same number of redundant units as for linear constraint.

They will be less in case of non-linear constraint than linear for
^ • a ~* &-P+-or- ail thp values of n. and correspondingthe same C specified. After an tne vdiues ^ «^

n.+exp(—) or some such expression have been calculated, we assess
an approximate system reliability by adding one unit at a time till
some constraint is violated or alternatively

[c/cjorjw/wj^ ni+exp(ni/4)

after the process is same as described for linear constraints.



Table 4.1 - Dominating Sequence for Stages 1 & 2

Dominating
sequence

No-M,Pf equipment, Unrelia- Reliabi
atage Stage bilitv litvlity

II

Cost

1 4 4 .0097 .9903 23.74

2 5 4 .0084 .9916 25.70

3 4 5 .0040 .9960 27.57

4 5 5 .0027 ..9973 29.53

5 6 5 .0025 .9975 32.09

6 4 6 .0023 .9977 32.16

7 5 6 .0010 .9980 34.12

8 6 6 .0007 .9993 36.68

Table 4.2 - Dominating Sequence for Stages 3 & 4

Dominating
sequence

1

2

3

4

5

6

No. of equipment Unrelia-
Stage

III

Reliabi

lity Cost

4

5

6

5

6

6

Stage bility
EL.

3 .0073 .9927 45.81

3 .0074 .9956 51.84

3 .0036 .9964 58.61

4 .0015 .9985 58.86

4 .0008 .9992 65.63

5 .0003 .9997 73.81
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Table 4.3 - Dominating Sequence for Stages (1 & 2)

and (3 & 4) combined

No. of equipment jUnrelia.
in stacfes •bilityuence
II III IV

.0100

.0098

6 4 3 .009 6

3 .0084

.0083

Reliabi

lity

.9900

.9902

.9904

.9916

.9917

Cost

75.34

77.90

77.96

79.41

79.93

6 5 5 5 3 .0071 .9929 81.37

7 6 5 5 3 #0069 .9931 83.93

8 4 6 5 3 .0067 .9933 84.00

9 5 6 5 3 .0054 .9946 85.96

10 5 5 5 4 .0042 .9958 88.39

11 6 5 5 4 .004O .99 60 90.95

12 4 6 5 4 .0038 .9962 91.02

13 5 6 5 4 .0025 .9975 92.98

14 6 6 5 4 .0022 .9978 95.54

15 5 6 6 4 .0018 .9982 99.75

16 6 6 6 4 .0015 .9985 102.31

17 5 6 6 5 .0013 .9987 107.93

18 6 6 6 5 .0010 .9990 110.49
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4.2. Discrete Maximum Principle

The maximum principle C23]can also be applied to the problems

of optimisation of reliability with non-linear constraints. The

approach is simple and can be applied to any number of non-linear or
combination of linear and non-linear constraints. As the variable

of number of redundant units is considered as continuous, the method
however does not provide an exact solution or true optimum of the
problem and one has to round off the allocation obtained by this
method to the nearest integer. However, in the absence of any other
fast method, the method has a definite advantage.

The problem of maximisation and its condition of optimality
has been discussed in Appendix G. The detailed flow chart for the

procedure of solution on computer for a three-constraint problem is
given in Fig. 4.3

The 5 stage problem solved for illustration is given as

Stage
No.

n

Reliabili

Rn1 . C

ty Volume

Pn

Cost

n
c

Wei ght

n
w

Constraints

1 0.80 1 7 7 Volume 110

2 0.85 2 7 8 Cost 175

3 0.90 3 5 8 Weight 200

4 0.65 4 9 6

5 0.75 2 4 9

The constraints are of the form in the notations of Appendix G.
(1) on weight and volume

2Ta>n) = £Pn(8V< P
n=l

,n n.n

n=l
ST

where p -wv is the product of weight per unit and volume per



th
unit at the n stage.

(2) on cost

108

IIS? (<f) =£cn(9n+exp(0n/4)) 4c
n=l n=l

where cn8n is the cost of units at nth stage and cn(e) ^4

cost of additional connecting equipment.

(3) on weight

is the

Hg" (9n) =£wn6n exp(^/4)^W
n=l n=l

where w e is the weight of the total units at the nth stage.

This is increased by the factor exp(en/4) due to the weight of inter

connecting accessories.

The detailed computer program along with Newton's method subroutine

is given in Appendix H. The results obtained by taking different

values of© are shown in table 4.4 where for the value of ©1 equal

to 3 the solution is obtained and the final system allocation of

(3* 2, 2, 3, 3) with volume, cost and weight of 83, 146.12 and

192.48 respectively. The redundancy allocation to each stage is

therefore (2, 1, 1, 2, 2) with system reliability of 0.9045

>le 4.4

1
System
volume

Sys tern
cost

System
wei ght

Allocation to other staoes
e1 82 e3 e4 e5

1.0 6.31 6.32 35.61 0.7495 0.6136 0.6569 0.8177

1.5 15.91 81.76 62.09 1.1485 0.9413 1.1167 1.2996

2.0 31.35 102.16 96.33 1.5568 1.2770 1.6602 1.8153

2.5 53.58 124.3 140.08 1.9707 1.6176 2.2713 2.3534

3.0 83.19 148.22 195.44 2.3881 1.9612 2.9311 2.9054



CHAPTER 5

INTEGER PROGRAMMING FORMULATION

5.1. Introduction

Basically the redundancy allocation problem is an Integer

programming problem where the allocations are restricted to

integer values only. From previous chapters it is clear that

the objective function to be optimised is non-linear and the

constraints specified may be linear or non-linear. The problem

therefore is that of Non-linear programming where the objective

function and constraints are expressible in separable form.

Many investigators [26, 27, 28, 3X2 have used different formu

lations using either some approximations or elaborate and

complex formulations. However, in the opinion of the author there

does noJ-. seem to be a convincingly straight and simpler

approach to the problem of redundancy allocation. Where, there

are exact or accurate formulations, the complexity of the problem

in computations increses tremendously. For example, the 5-stage

problem of [27^ required 27 constraints specified for formulation,

thereby handling* of such a large system for a small problem is

definitely not economical. Moreover, the system size that can be

handled might be one of the shortcomings.

For the sake of completeness a brief review of all the

approaches is being given here.

5.2*. Mizukami Formulation [26]

The formulation suggested by Mizukami requires the
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objective function to be replaced by the approximate straight

lines between any two values of x. as is shown in Fig. 5.1(b).

The objective function to be optimised is actually the reliabi

lity of the system as shown by 0\(x.) curve in Fig. 5.1. (a).

It is found convenient to maximise the log of reliability func

tion as shown in Fig. 5.1(b). Maximisation with a separable

convex function is equivalent to that of maximisation with

separable concave function of Fig. 5.1(b). Therefore the problem

can be stated as follows:

Maximise

A

z

k A

- Zl JZUx.) (5.1)
j=l J J

subject to the constraints

K

Z> (1+X )^b
j=l J J %

x.^0 and all x. to be integers

s =1, 2, ...n; i =1, 2, ...m;

j =i, z, ...k

where 0Ax.) is the linear function approximation to the concave

function j0.(x.) in the section lying between x . ., and x
J J s, j-1 s,j

and such n sections have been chosen. All x. are required to

integers, x. being the redundancies at the stage j and k is the

total number of stages. X -,- and // . are defined as
sj /^sj

^sj <^j(xj,s^^j^j, s-l>]/UJ,s-j,s-l>
(5.2)
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The problem (5.1) is solved by means of simplex method

as it is purely a linear programming problem if the integer

condition of x. is removed. If the solution happens to be an

integer one then the original problem is solved; otherwise,

Gomory's [29J algorithm can be applied to.obtain the solution.

Infact, Mizukami [26j| used the Mixed-Integer linear programming

technique (also due to Gomory) [19] as the variables jZL(x.) and

z are allowed to be continuous whereas the x.'s are restricted

to be integers for all j = 1, 2, ...k. The results obtained

by Mizukami [26] are certainly satisfactory but an error due

to large computation and approximation of actual function by

broken lines, might certainly cause some discomfort.

The author is afraid to comment how far such an approach

will be useful for large systems where there are more number of

stages involved.

5.3. Tillman Formulation [27]

Tillman, however, used a different formulation for the

integer programming formulation. His approach can be applied

to reliability problem without much difficulty and it is all the

more useful for problems where the constraints are non-linear

also. Both versions are available for the optimisation technique,

i.e. maximising reliability of a system subject to some given

constraints and the other one is minimisation of cost with a

specified index of reliability. Thus, any type of configuration,

i.e. parallel or series is allowed while considering the the

optimisation problem. The only requirement seems to be that the

objective function and the constraint functions should necessarily

be of separable form and need not satisfy any convexity or
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concavity conditions.

The general optimisation problem can be formally stated

as:

Optimise

z = z:0Axi)
3=1 J J

subject to the condition

k

,m (5.3)£.g±j(x )4b. 1=1,...
j=l J J

k

¥ R,>M
j=l J

and Xj » 0, 1, ...xl j = 1, 2, ...k

where 0.(x.) is any objective function at stage j as a function of

x. , the number of redundant units;

g,4(x.) are the constraint functions linear or non-linear
*J%~J

in x. 7

b. the amount of i resource available;
l

M being the minimum level of reliability acceptable!

r. is the stage reliability given by

where q. is unreliability of an element of j type

x' is the maximum number of units allowed at

stage j.

Tillman [27] finally converts the above problem (5.3) to a

problem of integer programming problem where the variables xjn



threpresent the n redundancy at stage j where x^n

n^x. and x. - 0 for x,< n^xj .

The problem therefore can be written as

Optimise

x!

k j
jn jn

subject to

aiso

j=l n=0

* XJ
^T y Ag. . x. <b. i=l, 2, ..m
3=1 n=0

x!k "j

j=l n=0
Am Rjn xjn>ln M

(5.4)

and x =1 for n=0 (i.e. there should be at
jn

least one unit in each stage)

x, - x. _x^.O n=l, 2,.. .x<

J=l, 2,...£

x:
J

. >,0 for all j and n

where x
= 5— x /is the number of redundant units at

j £—. jn
J n=l J

A 0 • 0.
jn

stage j;

for n = 0

=0.-0. . for n=l,...x!
jn *j,n-l j

- is the change in objective function when n

redundancy is added.

th
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Similarly,

/\Q- j = g. . for n=0-*—^ijn yijn

= g. -g. . . for n=l,...x.
yijn yij, n-1 3

also,

AlnRJn = lnRjn for n=0

= InR. -InR. .
jn jn,n-l

represents the change in reliability due to the addition
4_ Vi

of n redundancy.

xjn - Xj,n-1^° f°r n=1""xj

ensures that at each stage j, the n^ redundant unit x-n equals

one if it is in the solution and that it is in the solution only

if the (n-1) unit is included.

The formulation is of course elaborate but easy and straight

forward.

For example the problem of page 102 originally from Mizukami

[26} paper can be formulated in a tabular form as given in Table

5.1. In this table, the Group 1, II & III equalities and in

equalities represent the constraints specified. Group I repre

sent that there should be at least one unt in each stage. Group

II represent the constraints xjn-xj ,n_i^° and finally Group III
represent the three constraints on cost, weight and volume,

respectively. Finally, AlnRjn are the coefficients of the
linear separable function of x. for j=l,...k and n=l,...Xj

x! being 3 here. The obvious solution to the above problem

using integer programming technique would be as follows:

m10 = l ' mU = 1 ' ml2 = 1 ' m20 = X' m21 = X'
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Group I

Group II

Group III

A lnR

stage 1 Stage 2 Staoe 3
•

X10 Xll X12 x13 x20 X21 X22 x23 X30 X31 x32 X33

1

1

1

•

-1 1

-1 1

-1 1

-1 1

-1 1

-1 1

-1 1

-1 1

-1 1

4 4 4 8 8 8 6 6 6

6 6 6 6 6 6 10 10 10

10 10 10 5 5 5 10 10 10

i l 1
o o o o o O O o O o o o

. • • • • » • • a • . .

h-> H O o o O O o o o o o
cn CO (-* o VD 00 O o £ CO O o
o M -J ro «k cn 00 o O VO J-1 o
00 o o co co M CO ON 00 M cn M
CO CO vo M H CTi *> H> CO r\j H» o

Table 5.1 - Integer Programming Formulation

= 1

= 1

= 1

4o

4o

4o

£o

40

4o

4o

^o

4°
^.32

^30

4-40

H
Cn
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m30 • X ' m31 = X

Signifying that the redundancy allocation to each stage would

be (2, 1, 1) respectively.

Here, it can be seen that even for a small problem like

this the number of constraints specified totally comes to 15

besides the objective function consisting of 12 variables in

all.

However, the advantage of this formulation lies in the

fact that different kinds of optimisation problems can be

handled with ease. Tillmanls another paper [28] justifies this

statement. There it has been possible to .take different types

of modes of failure also into account due to the fact that

objective function can be any arbitrary function regardless

of convexity or concavity requirement. The same can be stated

about the constraint functions. Non-linear constraints not

satisfying these requirements could be handled. Infact, Barlow

and Hunter's paper [6] can be considered as a special case of

optimisation formulation as given by Tillman [28J . Minimisation
of cost in case of series type system is also a special case.

5.4. Future Approaches

There are some other approaches also applicable to the

problem of redundancy applications. The method proposed by

Lawler [34] and also by Lawler and Wood [30] are worth investi
gating. The author infact feels that the method of Lawler [34j
as suggested for discrete optimisation technique is quite
promising. Asimple formulation even if it requires somewhat
lengthy and time-consuming computations is welcome than a

complex formulation with not much time advantage.
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5.4.1. Lawler's Approach [34]

Lawler [34], infact, describes a simple, easily programmed

method for solving discrete optimisation problems with monotone

objective functions and arbitrary (possible non-convex) cons

traints. The problem can be stated as

e z = gQ(x)minimis

subject to

gn(x) - g12(x)>0

g21(x) - g22(x)^0 (5.5)

9ml(x) " 9m2(x)>°

where x = (x. / x2 ...x^)

and x.=0 or 1 (j=l, 2 — n)

with the restrictions that each of the functions gQ / gn •••

a is monotone non-decreasing in each of the variables ix± , x2
^m2

.x ). Here it is possible to transform non-negative integers
n

into binary variables also and if necessary an arbitrary object

ive function of the form

minimise gQ(x)

can be replaced by a monotone non-increasing objective function

by the formulation as

minimise z

subject to

z - g0(x)^>0

An arbitrary inequality constraint of the form g^(x)>0

be replaced by an inequality constraint g^x^O involving
can
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FIG. 5-2 FLOW CHART OF COMPUTATION.
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a polynomial of degree 2n~1. This polynomial can be separated
into two monotone parts, g^Cx) and g±2(x) of (5.5). Thus any
problem can be transformed to atype of (5.5), provided its vari
ables can be made to assume a finite number of discrete values.

The algorithm begins afeasible vector x= (©, 0, 0..0)
and examines 2n possible solution vectors in numerical order.
But the labour of examination is cut down considerably by follow
ing some rules. As the examination proceeds one can keep the
least costly uptodate solution. If x be this solution having
cost as gQ(x) and let xbe the vector currently being examined
then the following rules indicate the conditions under which
certain vectors may be skipped over. Let x* be the first vector
following xin the numerical order, that has the property that

x^x*,

then

Rule la .If g0(x)>g0(x), skip to x*

Rule 2: If xis afeasible solution, i.e. g±1(x)-gi2(x) >0
for all i=l,...m then skip to x*.

Rule 3: If for any i, (1=1, 2.. .m), gil(x*-l)-gi2 <*> > °'
skip to x*.

All the steps in the search method discussed above are indicated

in Flowchart of computation of Fig. 5.2.

The actual formulation of reliability problem along this

method is possible and is being explored by the author. This
has the same advantage as the method of search discussed in
earlier section. Once the formulation of the problem is done the
computation is much easier to program and may be applied conven
iently. Only drawback might be that the problem of large number



119

of stages could not be solved possibly by this method. >How

ever, this certainly would be the case with others also.

5.4.2. Branch and Bound Method

Branch and Bound method has found application to reliabi

lity problem and one such application appears in the report by

L. J. Jacobson submitted to the University of California.

Jacobson [3l"J utilised this method to the problem of minimising

cost of a system subject to the constraint on reliability, i.e.

^ an index of reliability of the system using variables of zero

and one type. The algorithm suggests (although not tried) the

use of simplex technique successively each time branching takes

place. The author is currently working on this problem and

hopes to provide some useful conclusions in future only.



CHAPTER 6

CONCLUSI ONS

Designing reliability into electronic circuits is often

required when these are to perform some important functions and

where their mal-functioning may cause heavy loss of money and

time. The same applies to the electronic relay circuits where,

for the successful .operation and maintenance of the system they

protect, their reliability is of prime importance.

Proper reliability evaluation of such circuits when they

are designed will help to provide more satisfactory operation

than otherwise. As..long as the components they employ cannot be

made 100 percent reliable, recourse has to be taken to having

some redundant arrangements. The present thesis, therefore,

had the aim of providing general techniques for systematic appli

cation of redundancies to these circuits.

Prior to any reliability studies modelling of the system

under consideration is often needed. With the reliability para

meters available for each of the constituent elements, the system

reliability can be evaluated once the modelling of the system

is completed. The model of the system will fall in either of

the types discussed in Chapter 1, i.e. series, parallel or non

series-parallel (planar or non-planar). With the usual existing

methods actual evaluation of overall reliability parameter or

polynomial of the system is quite tedious. The flow-graph method

and thereby the method of inspection described herein is easier

to solve such problems directly without much mathematical
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manipulations. For large and complex systems specially non-

series networks the approach discussed is found to be straight

forward and easier than that by the method of Factoring Theorem.

The correctness of the results can be checked and necessary

changes, if required, could be made at any stage.

The method given in this thesis for the analysis of networks

whose elements can short or open (such as diodes etc.) is also

easier to apply and can be directly used for any network configur

ation, series-parallel or non series-parallel as well.

Using the same modelling, the method can be extended to

the systems where the elements have more than one mode of failure.

Further application is to the analysis of selective and non

selective operation of relays with any configuration.

The algorithm described in section 1.9 is quite convenient

for use on computer for large networks of any type mentioned above.

This is simple and requires minimum effort on the part of the

user in data-preparation.

One can obtain high reliability figure for a system by

providing as many redundancies as possible but to ensure that

this does not become a very costly, heavy or bulky system the

question of optimisation of system reliability with respect to

cost, weight or volume arises. The other problem (usually for

series type redundancies) is to minimise the cost of a system

maintaining a pre-assigned index for the system reliability.

Therefore a study was undertaken to comparatively assess the

usefulness of the methods used in optimisation problem.

The other special reqairement of the redundancy allocation

problem is that the number of redundancies at any stage can only
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be integers. This makes the problem all the more difficult.

The usual methods of optimisation, assuming continuous variables

cannot be directly used. Since treating the variable contin-

nuous and arriving at an optimum value may not be a true

optimum if the final result obtained is rounded off. One can

still use the methods devised for continuous variable but the

results thus obtained will only be approximate ones.

The methods discussed in section 2.3 are all approximate

ones, however to arrive at a reasonably good result without much

manipulation is preferred than otherwise. In most of the cases

one may get a true optimum allocation by the use of the method

of 2.3. This is due to the reason that our objective function

is not a bad-behaved function. The choice of for multiple

cost problem usually causes some difficulty initially. The

techniques given in that section if used however make it easier

to assess and arrive at an answer quickly.

The method of section 2.4, is indeed a search method

where all the combinations of stage redundancies within the

feasible solution are made. •A dominating sequence with

tolerance specified on unreliability and cost or weight (for

multiple cost problem) provides much of the information needed

in selecting a proper allocation and its alternatives if desired.

The computation is usually more as all possible combinations

are tried. This method can be .called as direct method of solu

tion. The number of combinations to be tried can be reduced if

initially the minimum redundancies at each stage are determined

as described therein. The maximum error in the unreliability

of the whole system is less than its square if the approximation

stated in 2.4 is used for each entry.
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Dynamic programming formulation of 2.5 provides an alter

native search method of section 2.4. The search is made syste

matic starting with first stage to the last stage for different

values of the resources available. The method is definitely

an easier one but requires extensive calculation procedure.

The original formulation suggested by Bellman [16] took almost

four times than that as described in 2.5 of this thesis.

Instead of using reliability of the system as objective function,

the log of reliability is used which happens to be a concave

function and maximising the system reliability is same as maxi

mising the log function. Dynamic programming method becomes

difficult to use when the constraints are more than one. One

has again to try several values of lagrangian multiplier

before arriving at a correct value using extrapolation or intra

polation. This may be stated here that the formulation used

in this thesis is more helpful in this respect than the other

as has been mentioned in 2.5. If the lagrangian multipliers are

not used, the computations become formidably huge to make this

method less appealing. Specially with large number of stages,

this may be prohibitory.

An algorithm presented in section 2.6 using the general

conditions of optimality has been presented for constrained

optimisation problems. The algorithm makes the assumption that

the number of constraints is less than the number of stages. The

algorithm described is computationally feasible.

Variational method of 3.2 is easier to use but this is

available only for single constraint problems. However an algo

rithm has been devised in the thesis for use with multiple-coat

constraints. This method infact is computationally feasible and
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less laborious but offers an approximate solution to the problem.

One can of course 'fill in' the slacks left by rounding off the

answer obtained by this method by a systematic trial-and-error

method. The method also requires a pre-assigned value of reliabi

lity of the system for which minimum cost could be found. in

absence of any direct and less laborious methods, this method

offers results quickly, however approximate. Although for all

the problems tried by this method, the result always comes out

as true optimum.

Discrete maximum principle although versatile offers once

again an approximate solution to the problem. However, one can

use either linear or non-linear separable constraints with this

method. The programming of such a method is usually difficult

and requires more labour in formulation. The programming and

the formulation would be tremendous for large number of cons

traints specified and infact the programming cannot be general

ised for the type and number of constraints used.

The direct search method of section 2.4 can also be applied

to the problem of maximising reliability subject to non-linear

constraints. Non-linear constraints arise due to the extra

interconnecting equipment or auxiliaries required when the number

of redundancies increases. The above method is easier to apply

and subject to limitations as mentioned for the method of 2.4.

However, tolerance in cost, weight etc. has to be specified clearly

due to non-linearity of the constraints, if the length of dominat

ing sequence is to be restricted.

Integer programming formulation provides an appropriate

answer to the allocation problem but the system becomes compu

tationally large even for small number of stages as has been
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pointed out in Chapter 5. Moreover, the computational algorithm

(Gomory's) for all integer or for the mixed integer-continuous

variable case converge in finite steps, however the experience

with these algorithms has been rather disappointing. The number

of iterations required may be huge even for modest size of the

problem. It cannot be claimed at the present time that efficient

numerical techniques are available for solving integer programm

ing problems. However the most interesting integer programming

problems are those for which the integer variable can be either

zero or one.

Formulation of one Non-linear problem into that of 'zero'

or 'one' type of integer programming problem, would again increase

the size of the system of equations to be handled as prohibi-

torily large enough to be used on small computations for a few

stage problems.

Branch and bound methods are in the wake of development

and although academically they may be promising, computationally

how far they might be efficient can only be judged after they

have been tried on a variety of problems. The author infact is

working on the branch and bound method of solution and hopes to

give certain definite conclusions in future only.

Therefore in conclusion one can only say that a method

which requires minimum effort and time on computer or otherwise,

to arrive at a solution (however approximate) is welcome than

in comparison to the method requiring elaborate formulation and

tedious computation. Making complex problems simple is well

received than making simple ones complex.
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APPENDIX A

Theorem: If log R(n) is concave, each redundancy allocation

generated by the procedure of 2.3 is undominated.

Proof: Let i be the index of the last component type added

in arriving at n* by the procedure of 2.3 and that

=——i [log R (n* ) - log R (n* -1)1
Z- •• o o o o J
> a. .c.

j=l J oj

Let n be any other allocation such that R(n)> R(n*). Designat

ing the set of indices for which n.y nf by I and the set of indi

ces for which n.Z n* by I-,. Then
i^ l J 2

0<(log R(n)-log R(n*) = 21 log R (n.)-log R. (n*)
j^TL ii X x j±e 1±

ie i2
log R. (n*)-log R,(n.)

n.-nt n*-n.-1
*<*•• v i i — -i ,

= 71 2— lQg rh (n*+h)-log R. (n*+h-l) -^iTlj h=l L ii ii Jif3l2 h=0

[log Ri(nf-h)-log R±(nf-h-l) |

^ XI (n.-n*)[log R. (n^+D-log R.(n*)J-2_ (n*-ni>
i€ ij^ i£ i2

[log Ri(n^)-log R^n^-1)] (1)

by concavity Qf each log R.(n) but (1) does not exceed

r r

> (n.-n*. )X ST a.c .-> (n*-n. )A 51 a .c. .*Tix x x f=i J XJ iTi2 x i j«i J iJ



since in procedure 2.3 increments in long reliability are

decreasing. As/\ > 0

°<5~ai X ciini-^'ai ^ ciini
f=i J r=i 1J j=i J i=i J

It is obvious that for some index j

y~ c . .n. > > c . . n *
iTi ^ i=i1J x
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Similarly, assuming R(n)=R(n*), it can be prove* that either

k k k k
S~ c. .n. > T~c, .n* for some j or 2l1 c. .n. = S~c. .n* for .
f^! ij i^iTx U i i=i ^ x i=l 1J x

all j., Thus n* is undominated.
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APPENDIX B

C K.B.MISRA. UNDOMINATED ALLOCATIONS SINGLE COST PROBLEM

DIMENSION R(10).Q(10),C(10),F(10),M1(10).M2(10)
N IS NO OF STAGES AND RG IS GIVEN RELIABILITY

READ1*N»RG

1 FORMATtI3.F10.5)
R(I)AND CU) ARE STAGE RELIABILITIES AND COSTS RESPTLY

READ2,(R(I),C<I).1=1,N)

2 FORMATC8F8.5)

PUNCH2»(R(I)»C(I)»I=1»N)

DO 3 1=1»N

Q( I )= 1.-R{I)

MIC I ) IS ALLOCATION

Ml( I) = l

3 M2(I)=2

K=l

12 CS = 0.

RS=1.

DO 4 1=1»N

AM1=M1(I)

CS=CS+C(I)*AM1

GOTO (13.14).K

13 RS=RS*R(I)

GOTO 4

14 QI=Q(I)

M11=M1(I)

RP=(l.-QI**Mll)

RS*RS*RP

4 CONTINUE

RS*CS ARE SYSTEM RELIABILITY AND COST

PUNCH5,RS»CS

5 FORMAT(2F10.5)

PUNCH 6,(MIC I),I = 1»N)

6 FORMAT(8 15)

IFCRS-RGJ10.11.11

10 DO 7 1= 1.N

QI=Q( I )

M11=M1( I )

M22=M2C I )

CI=C( I )
7 F(I)=(L06F(1.-QI**M2 2)-L0GF(1.-QJ**M11))/CI

F(I) ARE DESIRABILITY FACTORS

PUNCH2,(F(I).I=1,N)

X=F(1)

N1=N-1

Jl = l

DO 9 J=1,N1

IFCX-FCJ + l) )8,8.9

8 X=F(J+1)

J1=J+1

9 CONTINUE

PUNCH1tJl.FCJl)

MICJ1)=M1(J1)+l

M2CJ1)=M2(Jl)+l

K = 2

GOTO 12

11 STOP

END
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APPENDIX C

C C K.B. MISRA UNDOMINATED ALLOCATIONS MULTIPLE FACTOR
DIMENSION R( 10) ,Q( 10) ,CUO) »W( 10)»M1 C10 )»M2(10) .FflO)

C N NO OF STAGES.CG GIVEN COST.WG GIVEN WEIGHT
READ! .N.CG.WG

1 FORMATCI3.2F10.5)
READ2 ,CR(I }»ctn»wcn»i«i »NJ

2 FORMAT{9F8.5)
PUNCH2. !R( I)»C( I).V'( I )»I= 1.N)

D03I=1,N

Q(I)=1.-R(I)

MICI)=l

3 M2(I)=2

K=l

Al=0.25

A2=0.75

12 CS=0.

PUNCH2»A1»A2
V.'S = 0.

RS = 1.

D04I=1.N

AM1=M1<I)

CS=CS+C(I>*AM1

WS*WS+W<I)*AM1
GOTOt13*14)»K

13 RS=RS*RCI)

G0T04

14 QI=Q( I )
M11=M1( I 5
RP =(X,-QI»*Mll)

RS»RS*RP
4 CONTINUE

PUNCH5.RS.CS.WS

5 FORMATC3F10.5)
PUNCH6.(MIC I)♦1 = 1»N)

6 FORMAT(815)
IF(CS-CG)10.10,11

10 IF(WS-WG)15.15.11
15 007 I=1.N

QI = 0( I )



M11=M1(I)

M22=M2(I)

CI=C(I)

WI=W(I)

D«A1*CI+A2*WI
7 F( I >*{L06FM,-QI**M22>-L0GF(l»-0I**Mli ) )/D

PUNCH2tCFCI).I=1»N)

X=F(1)

N1=N-1

Jl = l

D09 J=1»N1

IFCX-FCJ + 1) )8,8,9

8 X=F(J+1)

J1=J+1

9 CONTINUE
PUNCH1.J1.FCJl)

Ml<Jl )=M1(Jl) + l

M2C J1)=M2( JD+1

K = 2

GOTO 12

11 A1=A1+C.?5

A2=1.-A1

D021I=1.N
Ml( I) = l

21 M2(I)=2
K=l

IFCA1-1.)12.12.20
20 STOP

END

130
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APPENDIX D

c c SWISS S^^a^^^i^S.,™,,,,..
DIMENSION MC5.101)»XC5I
READ1.N.CG.WG.ALMDA.DALMD

1 FORMAT(I3.4F10.6)
D02I=1»N
READ30.RCI)»CII)»W(I)

30 FORMAK3F10.6)
(JC I ) = 1.-R( I )

2 PUNCH3.RU ) »Q( I ) »C< I ) »W( I )
3 F0RMATC4F10.6)

ACG=CG+1.

NCG=ACG

2n D027I=1»N
11=1-1
CI = 1./C( I)

PUNCH11.I
11 FORMAT(12H STAGE NO IS»I5)

AIA=CG*CI

IA=AIA+1.
D04MJ=1.IA .

AMJ=MJ-1

BR=ALMDA*W(I)*AMJ
BR=-BR

PM(MJ)=BR

XY=1.-Q<I>**MJ
FIJ(MJ)=LOGF(XY)

l. FP(MJ)=FIJ(MJ)+PM(MJ)PUNCH5.(PM(MJ),FIJ(MJ).FP(MJ).MJ=1.IA)
5 F0RMATC3E19.8)

DO10J=l.NCG

AJ=J-1
AU = AJ*CI

IJ=AU
IF(IJ)7»7.8

7 PUNCH12»J.U»AU
12 FORMATCUH MJ IS ZERO.215 ,F30.61

XLM=0.

NN = 2

8 r.mo
B=-1.E30

19 AK=K
MJ=K+1

IFC1-1)9.9»13
9 XXX=FP(MJ)

G0T016
13 EPS=CG-AK*C<I)

IP=EPS+1.



GO TOC31.32).NN

31 XLM= F(11 .IP)

32 XXX = FP(r"J)+XLM

NN=1

16 IFC8-XXXJ14,15.15

14 B = XXX

MMK = K

15 IFCK-IJ)17,18,18

17 K = K + 1

G0T019

18 F( I ,J)=B

M(I»J)»MMK

10 CONTINUE

PUNCH2 0,(F(I.J)»M( I »J)

20 F0RMAT(2(E?0.8»I4))

2 7 CONTINUE

C CALCULATES ALLOCATION

X(N )=M<N ,NCG)

N1=N-1

AACG=ACG

D021I=1,N1

N2=N-T

N3=N2+1

AACG= AACG-C <N3)*X CN3)

NACG=AACG

21 XCN2)=M(N2»NACG)

ws=o.

D022I=1»N

22 WS=WS+W( I )*X < I )

C COMPARES SYSTEM WEIGHT

IF(WS-WG)23,24.25

23 ALMDA=ALMDA-DAL4D

GOT026

25 ALMDA=ALMDA+DALMD

GOT026

24 PUNCH3,(X(I ) ,I = 1»N)

STOP

END

.J=1»NCG)

1*
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Appendix E

Kuhn-Tucker Condition of Optimali•fey-

133

Neglecting the integer requirement of the variables x if
j

the following general Non-linear programming problem is consi

dered

gi (xl,,xn^4bi i=l/«.u

g± (x1..xn)^bjL i=u+l,..-

g. (x, .. x^) =b
n

1= v..,m

(1)

x \ 0; max z = £<x...x )

where gi *s are the constraint function and f is objective

function to be optimised, then we can deduce a condition of

optimality including lagrangian multipler by the use of Kuhn-

Tucker Theorem. If it is assumed that f and g.'s alongwith their

first derivatives are continuous in the entire non-negative
orthant, then one can write after adding positive surplus and

slack variables, ( 1 ) as

g±(x) + xsi = b± i=l,..u

g±(x) - xs± = b± i=u+l, ...v

= b. i=v+l,.. .m

Ix , xl ^ 0 ; max i = f (x)

g±(x) (2)

Assuming that f (x) takes absolute maximum at y* and the rank of

CG] is equal to rank of (g^ at x* where [g] and fjs 1 are

defined as

[G] = \\~dg±/%x.\\ and [Gfj =

9 f/$ Xj ... "to£/ "fc xn

(3)
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and [G] contains columns for positive x* , x f so that one
J si

can form lagrangian function such that X* = 1 [19]. Let J

be the subset of the indices j, j=l,..n containing the indices j

for which x* \ 0 and J be the subset containing the indices j

for which x* = 0. Similarly I be the subject of the indices i,

1=1,..7 containing the indices i for which constraint i is active

- A
at X* and I be the subset containing i for which constraint i

is Inactive then it can be proved 0-9] that there exists a set

of m Lagrange multipliers X- which are unique if r[G] is rank

of [G]=m at x* and not unique otherwise, such that

df(x*) A \ "o^i^*) . . +
axj 1=1 1 °X3

About the sign of

0f(x*) v1- \ ^%(X*) ^A*KX ; - H A* 1 ; j £ J
*> xj iti x &xj

it can be shown as in £19} that

^> xj i=r ^ axj *

(5)

The above results can be put in the form given below.

If X* is the absolute maximum of f(x), it is necessary that

there exist a A* such that

m

V F(x*, A*) - V f(x*)- T* X SJg (X*)40 (6)
x i=1 1 1

with strict equality holding for j £J, where f(X, A) is the

Lagrangian function

F(x, A) •» f(x) +E \ [V5!^] (7)
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Also

„ - - N_ n f^f(x*) v1- ^gi(x*)-)V f(x*, A*)x* = ZlxH-^^--Z>jf -^—J =° (8)
x j=i -> L 3xj 1=1*0 xj j

Simil airly, the first u components of

V F(X*, A*) = (b1-g1(x*),..., bm-gm(X*)) (9)

are non negative, while components u+1, ...v are non positive

and components v+1, ...m vanish. Furthermore

V, F(X*, A*) A* = 5-A* b.-g, (X*) = 0 (10)
-A i=l -1- L J- -L J

If the point [x*, A*] satisfies the necessary condition then

the Lagrangian functions have a saddle point at [X*, A*].

Also, if f(x) is concave over the non-negative orthant, while

g, (X) is convex if ^X* >0 and g±(X) is concave if X* C.0,
1=1,...m, then f(x*) is the absolute maximum of f(x).
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c

10

11

1,2

K.B. MISRA

DISCRETE M

DIMENSION

DO 51 MM=1

READ10.N.P
FORMAT( 13.

D012I=1,N

READ11,R(I

FORMAT(2F2

U( I )= 1.-R(

A(I)=-C(I)

PUNCH50,(R

50 FORMAT(8F9

READ11.Z1,

Z(l )=Z1

Z(2)=Z2

Y(l )=Z(1 )

Sl = l.

D015J=1.2

E=A(1)*(l.-Y(l))/Y(1)

PUNCH52«E

D014I=2.N

Y(I )=A( I )/(E+A(I) )

14 S1=S1*(l.-YCI))

S=P*S1*(l.-Y(l))

ER(J)=S-E

PUNCH24,ER(J)
X=ABSF(ER(J))

IF(X-ERM)16.16.17
17 Y(1)=Z(2)

15 CONTINUE

K = 2

20 Z(K+1)=(Z(K)-ER(K)*Z(K-1)/ER(K-1))/(1.•

Yd )=Z(K+1)

PUNCH24.Y(1)

E = A tl>*< l.-YC1) )/V(l)
PUNCH?2. E

52 FORMAT(4E20.8)

Sl = l.

D018I=2.N

Y( I )=A( I )/(E + A(I ) )

18 S1=S1*(l.-YCI))

S=P*S1*(l.-Y(l))

ER(K+1)=S-E
K1=K+1

PUNCH24,ER(K1)

X=ABSF(ER(K+1))

IF(X-ERM)16,16,19
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APPENDIX F

OPTIMIZATION OF SYSTE'1 RELIABILITY
AX. PRINCIPLE (LINEAR CONSTS)

R(10),C(10),U(10)»TH(10),Z(30),ER(30).A(10),Y(30)
♦ 4

,ERM

2F20.8)

)»C( I )

0.8)

I )

/LOGF(U(I))

( I ) ,C( I ) ,I = 1»N)

.4)

Z2

•ER(K)/ER(K-1 ) )



19 K=K+1

PUNCH10.K.X
GOTO20

16 PUNCHIO.K.X
D02ll = l, N

TH(I)=LOGF(Y(I))/LOGFCU(I))
PUNCH24.THCI)
IT=THCI)

T=IT

B=TH(I)-T

IF(B-0.5)25,22.22
22 THCI)=T+1.

G0T021
25 TH(I)=T
21 CONTINUE

PUNCH26,(TH(I),I=1,N)
26 FORMATC8F9.2)

0=1.

0=0.

D023I=1,N
M =TH( I )

RG=1.-U(I)**M
Q=Q*RG

23 D=D+C{I)*TH(I)
PUNCH11.Q.D

PR=P*Q-D

PUNCH24.PR
24 FORMATCF20.8)

51 CONTINUE
STOP

END
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APPENDIX G

Maximise

s
J (l-(l-Rn)Gn) (!)

n=l

subject to

where

k

r g?(e ) 4b. 1.1, 2, ...r (2)
n=l X x

R system reliability

k total number of stage

reliability of one element at n stagesR

138

Gn number of elements at n stage,

(8 -1) is the number of redundant units,

n /c.n \ _ , . . th
g^e ) function representing amount of i resource consumed

at n stage as a function of 8

r number of constraints

b^ total amount of i resource available

Let x^ be the i lresource corresponding to the ith constraint

which is consumed in first n stages, i=l, ...r.

Then, the performance equations for the k-stage system may be

written as

xi - xrx +y±{Qn) n=i- 2> •••*
(3)

and x° = 0 , x^b. i=l, 2, ...r

By defining



n

cr+l

kr+l

xn"l +log(l-(l-Rn)en)
r+1

. 0

n=l, 2...k

the objective function to be optimised is

where c.

k r+1 kS.log R «xr+1 =gc^

= 0, i=l, 2...r and c +1=1
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(4)

(5)

The Hamiltonian and the adjoint variables of the system can be

defined as

Hn .
r+1 „ „,-— n n
Z_- z. x.
. . i i
i = l

.fx4{^M^J <+i {4>^a-^ -Rn)Q )

n=l, 2, ...k

n-1 1hL_= zn n=l, 2, ...k
^ n-1

x.

1.1, 2, r, r+1

*r+l - Cr+1 - 1

From equation (7) and (8)

2 =1 n . 1, 2,...k
r+1

(6)

(7)

(8)

(9)

Assuming that nontrivial and unique Hamiltonian and adjoint vari
ables exist, the condition for local optimality can be given as
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JUi^o^nMlfX-a-K^Wi-.")
*e 1=1 de i-(i-Rn)e

Here 8 are assumed to be a continuous variable although they are

in fact integers.

Now if one of the constraints in (2), say the j constraint, is

active and rest are free, i.e. the end condition corresponding to

j constraint is fixed

Then zk . c. =0 i = 1/ 2, ...r (11^
1* j

From (7) and (11),

1.1, 2, ...r

n « . / .z± - 0 i^ j

n = 1, 2, ..". k

Therefore (10) becomes

a^.g-R^ioqg-^.o

The procedure for solving the problem involves the following steps

a. Assuming a value for 8 in (12), obtain z. and therefrom z. ,

n = 2,...k as z. = z. due to (7).

b. 8 for n = 2, ...k is calculated from (12) using the values of

z. calculated from a.

c. x^ , i = 1, 2, ..,r is computed from (3).

d. One of the conditions will occur:

k
(i) If x. ^.b. for all 1.1, 2, ...r, then a higher value
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of 8 is assumed and return to step a.

(ii) If Xj^b, and xk<b± for i=^ j, j=l, 2, ...r then a
smaller value of 8 is assumed and return to step a.

k k(iii) If xrn>bm m*^ j and Xj^b^ for 1=1, 2, ...j, ...r,

i=^j where j is the active constraint, then go to step e.

(iv) If xk . b. and x*^^ ,for i. 1, 2, ...r, i=£ j,
i.e. the j constraint reaches its limit while none of

the other constraints are violated, we have a case

for optimal solution.

e. Replace constraint j by constraint m. Accordingly j is replaced

by m in (12) and in steps a and b and procedure is repeated from

a - d.



142

APPENDIX H

C C DIMENSION 5fi?f2fTLK? PRINCIPLE NONLINEAR CONSTRAINTS

READl.N.PG.CG.WG.EPSL,XIN
1 FORMAKI5.5F15.8)

READ2,(R(I),P(I),C(I),W(I),I=l,N)
2 FORMATC8F10.5)

READ2,(X0CI),I=1,N)
XOI=XO(I)
D03I=1,N

3 Q(I)=1.-R(I)
K=l

100 ZP=Q(1)#*X0I
ZL=LOGFCQ(l))
ZN=ZP*ZL
ZN2=1.-ZP

ZD=2.*P(l)*XOI*ZN2
Z(l )=ZN/ZD

ZD1=EXPF(XOI*0.25)
ZD2=CC1)*(1.+ZD1*0.25)*ZN2
Z(2)=ZN/ZD2

ZD3=W(1)*(ZD1+XOI*0.25*ZD1)*ZN2
Z(3)=ZN/ZD3

300 CALL NEWTON
X1 = 0.

X2 = 0.

X3 = 0.

AX(l)=XOI

D04I=1,N

X1=X1+P<I)*AX(I)*AX(I)
X2=X2+C( I)*(AX(I)+EXPF(AX(I)*0.25))

4 X3=X3+W( I)*AX<I)*EXPF(AX( I>*0.25)
PUNCH50,X1,X2,X3.X0I

50 FORMAT(4E20.8)
GOTOCll,12,18) ,K

11 IF(X1-PG)5,6,13
5 IF(X2-CG)7,14,16
7 IF(X3-WG)8,10,17
8 XOI=XOI+XIN

GOTO100

6 IF(X2-CG)9,9,16
9 IF(X3-WG)10,10,17
10 PUNCH2,(AX(I),I=1,N)

GOTO200

13 XOI=XOI-XIN
GOTO1O0

14 IF(X3-WG)10,10,17
16 K = 2



17

12

19

20

21

22

23

18

24

25

26

27

200

32

31

30

33

1

6

GOTO300
K = 3

GOTO300

IFCX1-PG)19,21,23
IF(X2-CG)20,22,13
IFCX3-WG)8,10,17
IF(X2-CG)22.22.13
IF(X3-WG)10,10,17
K = l

G0TO300

IF(X1-PG>24,26,23
IF(X2-CG)25,27,16
IF(X3-WG)8,10,13
IF(X2-CG)27,27,16
IF(X3-WG)10,10,8
D030I=1,N
IX=AX(I)

XXX=IX

XDF=AX(I)-XXX

IFCXDF-0.5)31,32,32
M(I)«IX+1
GOTO30

MCI )= IX

CONTINUE
RS=1.

00331=1,N
RP=1.-Q(I)*#M(i)
RS=RS*RP

PUNCH50,RS
END

SUBROUTINE NEWTON

X=XO(I)
AxQCI)

AA=LOGF(Q(I))
GOTOCl.2,3),K
AD=2.*Z(l)*P(i)
A1=AA/AD

A2=A**X
A3=X+A1

F=X-A2*A3

FD=1.-A2*(1.+A3*AA)
FM=F/FD
X1 = X

X=X-FM

TEST=ABSF(X1-X)
IF(TEST-EPSL)5,5,6
AX( I)=X
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8

7

3

10

9

20

30

40

GOTO20

BD*Z<2)*C<I)
B4=AA/GD

B1=EXPF(G.25#X>*0.25
B2*0.25*81
B3=1.+C1

A2=A#*X

F=B3*(1.-A2)+04
FD=82-A2*(B3*AA+B2)
FM=F/FD

X1 = X

X=X-FM

TEST=A3SF(X1*-X)
IF(TEST-FPSL)7,7.8
AX( I)=X

G0T02C

CD =Z(3)*l.( I )
C1=AA/CD

C2=l.+C.25*x
C3=EXPF(0.25*X)
A2«A**X

C4=C2*C3

C5=0.25*C3
C6=0.25*C4

C7=C4+C1

F*C4-A2*C7
C8=C6+C5

FD=C3-A2*(C7*AA+C8>
FM=F/FD

X1 = X

X=X-FM

TEST=A3SF(X1-X)
IF(TEST-EPSL)9,9,10
AX(I)=X

CONTINUE

PUNCH3 0.K

PUNCH40,(AX(I),I=2.N)
FORMAT(110)

FORMAT(7F10.4)
RETURN

END
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C C K B MISRA

DIMENSION

READl.N.PG.CG.WG.EPSL.XIN

1 FORMAT(I5.5F13.8)

READ2.(R(I)»PCI),CCI)»W(I),I=1,N)

2 FORMATCCF9.5)

READ2.XOI,CXOCI).1=2,N)

DO 3I=1,N

3 Q ( I )= 1. - R ( I >

K=l

100 ZP=Q(l)**XOI

AX(l)=XOI

KEY = 2

TEST = XOI

ZL=LOGF(Q(l))

ZN«ZP*ZL

ZN2=1.-ZP

ZD=P(1)»ZN2

Z(l )=ZN/ZD

ZD2=C(1)*ZN2

Z(2 )=ZN/ZD2

ZD3=W(1J*ZN2

Z(3 )=ZN/ZD3

300 D039I=2»N

PUNCH1.K

GO TO(35.36.37),K

35 ZPN»Z(1)*PCI)
GO TO 38

36 ZPN«ZC2)*C(I)

GO TO 38

37 ZPN = Z(3)*W«I )

38 YX=XO(I)

FL=LOGF(Q(I))

42 FX=Q(IJ**YX

FXN«FX-ZPN/(ZPN+FL)

FXDN=FX*FL

YXD=FXN/FXDN

IF(ABSF(YXD)-EPSL)40,40,41
41 YX=YX-YXD

GO TO 42

40 PUNCH2.YX

NYX=YX+0.55

AXCI)=NYX

39 CONTINUE

PUNCH2,(AXCI ),I-l.N)

GO TOC110,120).KEY

110 IFCABSF(TEST-AX(1)))150,140.150

140 XIN=Co5*XIN

150 KEY=2
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APPENDIX H-l

LINEAR CONSTRAINTS DISCRETE MAX. PRINCIPLE

(5) ,P(5) ,C(5),W(5) ,Q(5)»X(5) ,Z(3) .AX(5) »M(5) ,XO(5)



TEST=AX(1)
GO TO 130

120 KEY=1

13 0 X1= 0.
X2 = 0e

X3 = 0„

D04I=1,N

X1=X1 +PC I)*AX< I)
X2=X2+C(I)#AX<I)

4 X3=X3+W( I)*AX( I)
PUNCH50.X1.X2.X3

50 FORMAT(3E20.8)
GO TO( 11,12,18), K
REST OF THE PROGRAM IS SAME AS THAT OF

C APPENDIX H FROM STATEMENT NO 11 ONWARDS.
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APPENDIX I

C C K B. MISRA SUBROUTINE SIMPLEX
DIMENSION A(10,20),V,|(1C),L(10>
COMMON II,JJ,III,A,L,W
KKK = 0

22 1= 1

23 1= 1+ 1 .

IF( I-I II)24, 40,40

24 IF(LCI))23,25,23
25 DO 27 J=1,JJ

IFCA< I,J) )26,27,26
26 A(III,J)=A(III,J)-A(I,J)
27 CONTINUE

GOTO 23
40 <= I I I

44 J=0

W(K)=0. .

LK = 0

42 J=J+1

IFCJ-JJ)41,45,45
41 IF( A(,K,J) )43,42,42
43 IF(''/(K)-A<K»J) )42,42, 47
47 W(K)=A(K,J)

L(K)=J

GOTO 42

^5 IF(LCK))46,62,46
46 KJ=L(K)

DO 120 1=2,11

IFCAC I,KJ) )120,]20,1?1
120 CONTINUE

PUNCH 130

103 FORMAT(8HFEASIBLE)
GOTO 70

121 1=1

JK = 0

50 1=1+1

IF(I-H)52,52,56
52 IF (AC I.JK) )5'..-, 50, 51
51 X=A( I,JJ)/A( I,KJ)

IF(JK)55,53,55

55 IF(X-XMIN)53,50,50
53 XMIN=X

JK = 1

GOTO 50

56 X=A(JK,KJ)
L(JK)=KJ
DO 57 1=1,111

57 W(I)=A(I,KJ)
IJ = J,K-1
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DO 59 I = 1,1 J

DO 59 J=1,JJ

IFCACJK*J))58,59*58

58 IFCWCI))580*59*580

580 AC I ,J)=A(I,J)-W( I )*CA(JK»J)/X)

59 CONTINUE

IJ=JK+1

DO 61 I= IJ , I I I
DO 61 J=1,JJ

IFCACJK*J))60,61,60

60 IFCWC I ) )600,61,600

600 AC I »J)=A(I ,J)-W(I)*(ACJK.JJ/X)

61 CONTINUE

DO 205 J=1,JJ

205 ACJK,J)=A(JK,J)/X

KKK=KKK+1

PUNCH 105,KKK.A(K.JJ)»L(JK)

10 5 FORMAT(1X , 14 ,6X,F15.2,10X,I 4)

G0T044

6 2 IF(K-1)70,70,63

63 IJ=JJ-1

DO 65 J=1,IJ

IFCA IK»J )-.0001)65*65*66
65 CONTINUE

PUNCH 103

130 FORMAT(9HUNB0UNDED)

PUNCH 10 1

101 F0RMATC46HITERATI0N OBJ. FUNCTION NEW BASIC VAR.)

DO 140 J=1,JJ

140 A(III,J)=Oo

K=l

KKK=0

G0T044

66 PUNCH 6

6 FORMAT(10HINFEASIBLE)

70 PUNCH8»A(l.JJ)

8 FORMATC ///13H0BJ. FUNCTI ON,F20.0/)

PUNCH 7

7 FORMAT(23HVARIABLE VALUE)

DO 71 1=2,11

71 PUNCH 5,L(I),A(I»JJ)

5 FORMATCI4,F20.8)

PUNCH ICO

DO 70 1=1,111

100 FORMATC////16HTHE FINAL MATRIX)
PUNCH150.I

150 FORMAT(//35X.4HR0W,12/)

78 PUNCH 4, (AC I ,J),J=1,JJ)

RETURN

END
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