
'

TOWARDS MULTI-OBJECTIVE SCHEDULING STRATEGIES

FOR GRID COMPUTING ENVIRONMENTS

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

AMIT AGARWAL

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

OCTOBER, 2011

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE - 2011
ALL RIGHTS RESERVED

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in this thesis entitled TOWARDS

MULTI-OBJECTIVE SCHEDULING STRATEGIES IN GRID COMPUTING

ENVIRONMENTS in partial fulfilment of the requirements for the award of the Degree of

DOCTOR OF PHILOSOPHY and submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee, is an authentic record of my own

work carried out during a period from January, 2007 to October, 2011 under the supervision of

Dr. Padam Kumar, Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, Roorkee, India.

The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other Institute.

MIT AGARWAL)

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge.

Date: / '—f6*' 201 cidam Kumar)
Supervisor

The Ph.D. Viva-Voce Examination of Mr. Amit Agarwal, Research Scholar, has been

held on ;2 - f - r2-JD \Q .

Signature of External ExaminerSignature of Supervisor

ACKNOWLEDGEMENTS

This thesis is the culmination of a long journey throughout which I have

received support from many valuable people whom I wish to acknowledge

here. First and foremost, I feel proud to have Dr. Padam Kumar,

Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, as my supervisor, who is abundantly helpful

and offered invaluable assistance, patience guidance and excellent advice

throughout the course of this work. I would like to express my heartfelt

gratitude towards him for encouraging me to carry out my research in the area

of parallel and distributed computing as well as providing me all the necessary

guidance and inspirational support, without which this work would not have

been in the present shape.

I also feel obliged to the Research Committee comprising of Prof. Vinod

Kumar, Prof. A. K. Sarje and Prof. D. K. Mehra for their critical and constructive

suggestions and comments during the initial and final scrutiny of this research

work.

I also extend my sincere thanks to Dr. S. N. Sinha, Professor & Head,

Department of Electronics and Computer Engineering, for providing facilities

and support needed for this work.

I also extend heartily gratitude to Dr. Ankush Mittal (Director Research,

COER, Roorkee) for their valuable suggestions for improving my thesis.

I feel indebted to the staff of Institute Computer Centre and Department

of Electronics & Computer Engineering for providing desired help as and when

required. I have a special word of thanks for Dr. N. K. Gupta, System

Programmer at ICC, IIT" Roorkee for providirtg necessary facilities to carry out

simulation work as well as building grid infrastructure out of the computational

resources of Institute Computer Centre.

I express my deep gratitude to my parents R. K. Agarwal and Reena

Agarwal for always posing great confidence and instilling faith in me. I also owe

respects to my parents-in-law Suresh Chandra and Rekha Singhal, who always

showered their blessing on me.

Finally, I take this opportunity to express my, profound gratitude to my

beloved wife Shikha and my lovely son Divyansh for their moral support and

patience during my study at NT Roorkee.

Above all, I am grateful to the almighty 'God' for his blessings.

(Amit Agarwal)

in

t

ABSTRACT

In recent years, there has been increasing interest in using network-

based resources for large scale data-intensive computation problems. The Grid

computing systems are rapidly gaining importance due to their capability to deal

with the continuously rising demands of computational and storage resources.

A grid may consist of resources owned by a number of different organizations,

within which sharing arrangements have been established. Grid computing can

be defined as coordinated resource sharing and problem solving in dynamic,

multi-institutional collaborations.

Scheduling is an important research topic in Grid computing. The

purpose of grid is to offer high quality services to members of Virtual

Organizations (VOs) based on the efficient use of the available resources. This

goal cannot be achieved without a good scheduling strategy applied to the local

level (clusters) and global level (entire system) of Grids. Since the grid

scheduling problem is NP-hard, we can afford only sub-optimal solutions to

this problem. Grid scheduling scenario has additional complexities due to

scattered data storages and consequent delays in data transfers, coordination

required in the execution of linked tasks and arranging the required data

interchange. Further challenges are related to the dynamic nature of Grid

systems where the changing availability and quality of resources makes the

scheduling decisions still more difficult.

Optimally scheduling a single set of dependent tasks to multiple

heterogeneous resources is an algorithmically hard problem. This problem

becomes even harder when optimization of multiple criteria (at times conflicting)

is required. Quality of Service (QoS) requirements of applications and

resources add an extra layer of complexity to scheduling while matching the

tasks to resources. Due to the dynamic nature of grid resources, the scheduling

of scientific application tasks is still an issue and is an open problem. This

IV

thesis attempts to improve upon these frontages by contributing new single

criteria and multi-criteria scheduling heuristics to satisfy performance objectives

like makespan, economic cost, resource consumption, etc while meeting the

QoS requirements like trustworthiness, availability, network bandwidth, etc.

We have classified the research work in three parts: (1) Single Criteria

Scheduling - Scheduling of application tasks meeting a single objective function

like makespan or economic cost, (2) Bi-Criteria Scheduling - Scheduling of

tasks meeting two objective functions simultaneously, and (3) QoS Oriented

Multi Criteria Scheduling - Scheduling of tasks meeting more than one

objective functions while respecting QoS requirements like bandwidth,

availability and trustworthiness of resources.

The research work in single criteria scheduling has been classified in two

categories: (1) Time based scheduling, and (2) Cost based scheduling. In time

based scheduling, we have developed a new scheduling heuristic called

Scheduling with Heterogeneity using Critical Path (SHCP) algorithm for grid

computing systems. The performance of workflow scheduling greatly depends

on task sequence obtained using b-level (longest directed path considering

average computation and communication cost from concerned task to exit

task). But, in grids, the above approach does not fit due to high heterogeneity in

computation costs of tasks on different resources and communication costs of

data transfers among different tasks (scheduled on different resources) due to

variable network bandwidth. In this research, computation and communication

heterogeneity factors have been formulated based on 'Standard Deviation'

which reflects the spread of execution time/ communication time of a task/ data

transfer in workflow. The expected computation cost of each task is determined

using computation heterogeneity factor and the expected communication cost is

computed using communication heterogeneity factor rather than taking average

computation and communication costs. The priority based task sequence is

generated using these costs. The tasks on critical path in workflow are given

priority in the task sequence. The SHCP algorithm is applied to this task

sequence to generate the schedules. The simulated result analysis shows that

SHCP generates comparatively shorter schedules for large workflow

applications in grids.

In cost based scheduling, task duplication and compaction strategy has

been adopted in scheduling. This strategy adopts a mechanism to minimize the

number of duplications (i.e., duplication cost overhead) to optimize the

schedules. The scheduling algorithms (HED and RD) have been developed and

validated for heterogeneous and homogeneous computing systems

respectively. In this approach, the schedule is obtained using duplication based

scheduling and then useless duplications and unproductive sub-schedules are

removed from the above schedule to minimize the effective consumption of

resources. The simulated result analysis shows that HED (Heterogeneous

Economical Duplication) and RD (Reduced Duplication) algorithms generate

comparable schedules with remarkably less duplication overheads and less

processor consumption in heterogeneous and homogeneous computing

environments respectively. The EDS-G (Economical Duplication Based

Scheduling in Grids) inspired from HED strategy has been developed and

validated in a simulated grid environment.

In bi-criteria scheduling, two heuristics have been suggested i.e.,

compaction based bi-criteria scheduling (SODA) and two phase bi-criteria

scheduling (DBSA). A compaction based scheduling (SODA) comprises two

stages: (1) duplication based scheduling-optimizes the primary criterion, i.e.,

execution time, (2) compaction of schedules - minimizes the processor

requirements and optimizes secondary criterion, i.e., economic cost without

increasing the makespan obtained in primary scheduling. It exploits duplication

strategy to obtain a shorter schedule in primary stage (primary scheduling) in

order to minimize makespan (primary criteria). In secondary scheduling, the

primary schedule is scanned to identify and remove the useless duplications

VI

and unproductive schedules, if any, without letting it to increase the makespan

obtained in primary scheduling. In addition, the above modified schedule is

further improved by swapping tasks among resources (from costlier to cheaper

resource) in order to minimize economic cost (secondary criteria) without

affecting the makespan. The experimental results reveal that the proposed

approach generates schedules with low processor requirements which are fairly

optimized for both economic cost and makespan for executing DAG

applications in the grid environments.

The Two phase bi-criteria scheduling (DBSA) is an extension of SODA

approach which adopts the concept of sliding constraint in secondary

scheduling phase. The primary phase of this approach is similar to SODA

algorithm. In next phase, the primary schedule is first modified in order to

minimize useless duplications and unproductive schedules, then it is improved

by swapping tasks among resources (from costlier to cheaper resource) in

order to minimize economic cost (secondary criteria) while letting the makespan

to deteriorate within sliding constraint limits. This algorithm (DBSA) is

developed and validated in the simulated grid environments. The simulated

results show that DBSA surpasses SODA heuristic in terms of economic cost

due to sliding makespan. It also generates better schedules which are fairly

optimized in respect of both makespan and economic cost.

Further, QoS oriented multi-criteria scheduling is discussed for (a) Trust

based and (b) Availability aware scheduling. The research presented here

considers the QoS constraints (trust, availability) of grid resources for

scheduling application tasks using multiple criteria scheduling approach. This

research work has been classified as trust based multi-criteria scheduling and

availability aware QoS scheduling. In trust based multi-criteria scheduling, trust

has been used as QoS requirement of workflow tasks. Trust is a major concern

of resource users and owners in the grid environment with uncountable and at

times unreliable nodes. An intelligent scheduling mechanism is essential which

vii

may require several different criteria to be considered simultaneously when

evaluating the quality of solution or a schedule. A trust-oriented multi-objective

scheduling (Trust-MOS) heuristic is designed to schedule the tasks to highly

trustworthy resources in the grid environment. This approach has been divided

into two phases. In primary phase, each task is scheduled on to a resource

which fulfills the trust requirements and minimizes the makespan. The schedule

generated in primary phase is then modified using a greedy approach to

minimize the economic cost as well keeping the makespan within specified limit

based on a sliding constraint. The Trust-MOS scheduling algorithm has been

implemented in simulated grid environments. The simulated results reveal that

Trust-MOS generates good quality schedules in terms of trust overheads, and

reduces probabilities of task failure, hence is well suited for executing tasks in a

secure manner.

Availability aware QoS scheduling strategy considers availability as QoS

of compute resource and bandwidth as QoS of underlying network in grid. A

novel availability aware QoS oriented algorithm (AQuA) is developed for

executing applications in grid environment. The application tasks specify the

availability and bandwidth as QoS requirements to select the highly available

compute resource over dedicated network. Such tasks get priority in scheduling

over the qualified resources. After mapping of such tasks, the other tasks not

having QoS requirements are mapped. The AQuA algorithm has been validated

in simulated grid environment and results have been compared with the exiting

QoS Guided Min-Min (QGMM) algorithm. The comparative result analysis

shows that AQuA is able to prioritize the highly available grid resources and

therefore increases the reliability to successfully execute applications without

adversely affecting the makespan. In future, the research has been proposed to

be extended towards the development of multi-criteria scheduling techniques

for simultaneous execution of multiple workflows in grids.

VIII

CONTENTS

CANDIDATE'S DECLARATION i

ACKNOWLEDGEMENTS ij

ABSTRACT iv

CONTENTS ix

LIST OF FIGURES xiv

LIST OF TABLES xviii

CHAPTER 1: Introduction 1

1.1 Overview 1

1.2 Grid Computing 2

1.2.1 Grid Architecture 4

1.2.2 Grid Computing in Research 7

1.2.3 Grid Computing in Business 8

1.3 Grid Scheduling and Research Issues 11

1.4 Motivations and Objectives 16

1.5 Organization of Thesis '. 19

IX

CHAPTER 2: Backgrounds and Literature Review 20

2.1 Review of Scheduling Strategies 20

2.1.1 Independent Task Scheduling 22

2.1.2 Workflow Scheduling 27

2.1.3 Dynamism of Grid 36

2.1.4 Dynamic Rescheduling 39

2.1.5 Nature's Laws Inspired Scheduling 41

2.2 Research Directions 43

CHAPTER 3: Single Criterion Scheduling 45

3.1 Overview 45

3.2 Time Based Scheduling 46

3.2.1 Preamble 46

3.2.2 Grid Resource Model 48

3.2.3 Workflow Application Model 49

3.2.4 Matter of Heterogeneity in Grids 49

3.2.5 Heterogeneity Aware Critical Path Based Scheduling 51

3.2.6 Performance Comparisons and Result Analysis 54

3.3 Cost Based Scheduling 57

3.3.1 Duplication Cost Based Scheduling 57

3.3.2 Resource Model 59

3.3.3 Reducing Duplications - Needs and Approaches 62

3.3.4 Performance Comparisons and Result Analysis 67

3.4 Summary and Discussions 72

CHAPTER 4: Bi-Criteria Scheduling 73

4.1 Overview 73

4.2 Compaction Based Bi-Criteria Scheduling 75

4.2.1 Preamble 75

X
4.2.2 Grid Resource Model 78

4.2.3 Workflow Application Model 79

4.2.4 Performance Metrics 80

4.2.5 SODA Algorithm 82

+ 4.2.6 Performance Comparisons and Result Analysis 87

4.3 Two Phase Bi-Criteria Scheduling 90

4.3.1 Preamble 90

4.3.2 Grid Resource Model 93

4.3.3 Workflow Application Model 93

XI

4.3.4 DBSA Algorithm 93

4.3.5 Performance Comparisons and Result Analysis 97

4.4 Summary and Discussions 101

CHAPTER 5: QoS Oriented Multiple Criteria Scheduling 102

5.1 Overview 102

5.2 Trust Oriented Multi Criteria Scheduling 103

5.2.1 Preamble 103

5.2.2 Trust Model for Grids 106

5.2.3 Performance Metrics 109

5.2.4 Trust-MOS Scheduling Algorithm 111

5.2.5 Performance Comparisons and Result Analysis 116

5.3 Availability Aware QoS Oriented Scheduling 119

5.3.1 Preamble 120

5.3.2 Related Work 121

5.3.3 Grid Resource Model 123

5.3.4 Grid Application Model 125

5.3.5 AQuA Scheduling Algorithm 126

5.3.6 Simulation and Result Analysis 131

xii

5.4 Summary and Discussions 136

CHAPTER 6: Conclusions and Future Directions 138

6.1 Conclusions 138

6.2. Future Research Directions 140

BIBLIOGRAPHY 141

VITAE 160

PUBLICATIONS 161

APPENDIX - A: Simulation Using MATLAB 163

APPENDIX - B: Stepwise Trace of DBSA Algorithm 168

APPENDIX - C: MATLAB Code of AQUA Algorithm 171

XIII

*

LIST OF FIGURES

Figure 1.1: A parallel application represented as DAG 2

Figure 1.2: A LAN can host a local Grid which can itself be

a part of a global Grid 3

Figure 1.3: A four layered architecture of Grid environment 5

Figure 1.4: Classification of Grid scheduling algorithms 12

Figure 1.5: Taxonomy of objective functions in Grid scheduling 13

Figure 1.6: Classification of our research work on grid scheduling

algorithms 18

Figure 2.1: Gantt charts showing schedules of independent

task scheduling algorithms 23

Figure 2.2: A precedence constrained task graph 27

Figure 2.3: (a) DAG and System; (b) HEFT schedule;

(c) A better schedule 29

Figure 2.4: (a) DAG; (b) and (d) Linear clustering;

(c) and (e) Non-linear clustering 34

Figure 2.5: (a) A clustered DAG and its CP shown in thick arrows;

(b) The Gantt chart of a schedule; (c) The scheduled

DAG and the DS shown in thick arrows 35

Figure 3.1: SHCP scheduling algorithm 54

Figure 3.2: Performance comparison of SHCP algorithm 56

XIV

Figure 3.3: Asimple DAG with precedence constraints 60

Figure 3.4: Gantt charts showing the schedules of (a) HLD;

(b) HED for DAG shown in Figure 3.3 63

Figure 3.5: HED algorithm 64

Figure 3.6: Asimple DAG with precedence constraints 66

Figure 3.7: Gantt charts showing the schedules of (a) SD;

(b) RD for DAG shown in Figure 3.6 66

Figure 3.8: Performance comparison of HED on random graph suite

for heterogeneous systems 69

Figure 3.9: Performance comparison of RD on random graph suite

for homogeneous systems 71

Figure 4.1: Effectiveness of duplication based scheduling

over list scheduling 77

Figure 4.2: Asample Grid consists of four resources 78

Figure 4.3: A Grid resource management and

scheduling model (GRMS) 83

Figure 4.4: The pseudo code for primary scheduling in SODA 84

Figure 4.5: The pseudo code for secondary scheduling in SODA 85

Figure 4.6: Effect ofgrid size on effective schedule cost 88

Figure 4.7: Effect ofworkflow size on effective schedule cost 88

Figure 4.8: Effect of workflow size on average NSL 89

Figure4.9: Abi-criteria optimization process 92

XV

. T

f

4

Figure 4.10: The pseudo code of secondary scheduling in DBSA 94

Figure 4.11: Gantt charts showing DBSA schedules (a) to (c) Primary

scheduling; (d) Secondary scheduling with sliding constraints....96

Figure 4.12: Performance comparison of DBSA algorithm 99

Figure 4.13: Real scenario of schedules of Figure 4.11 generated using Grid

scheduling tool '. 101

Figure 5.1: Eigen-Trust algorithm 109

Figure 5.2: Relative schedules of DCA and Trust-MOS in

primary scheduling 112

Figure 5.3: Primary scheduling algorithm of Trust-MOS

113

Figure 5.4: Secondary scheduling algorithm of Trust-MOS

115

Figure 5.5: Comparison of trustworthiness with respect to

(a) number of tasks; (b) number of grid resources 117

Figure 5.6: (a) Comparison of trustworthiness for different

sliding constants; (b) Comparison of trust cost

overhead w.r.t. number of tasks; (c) Relative

makespan w.r.t. number of resources 118

Figure 5.7: QoS based Grid scheduling system 127

Figure 5.8: Gantt chart showing schedule of AQuA 127

Figure 5.9: Gantt chart showing schedule of QGMM 129

Figure 5.10: Gantt chart showing schedule of QGMM-A 129

XVI

Figure 5.11: The pseudo code of AQuA algorithm 130

Figure 5.12: Performance in terms of availability surplus w.r.t.

dedicated nodes 132

Figure 5.13: Performance in terms of makespan w.r.t.

dedicated nodes 132

Figure 5.14: Performance in terms of availability surplus w.r.t.

grid size 133

Figure 5.15: Performance in terms of makespan w.r.t.

grid size 133

Figure 5.16: Performance in terms of QoS satisfaction w.r.t.

grid size 134

Figure 5.17: Performance in terms of QoS satisfaction w.r.t.

application size 135

Figure 5.18: Performance in terms of availability surplus w.r.t.

application size 136

Figure 5.19: Performance in terms of makespan w.r.t.

application size 136

XVII

7

i

LIST OF TABLES

Table 1.1: World-wide utilization of IT resources 8

Table 2.1: Evolution of scheduling algorithms with

parallel and distributed system architecture 21

Table 3.1: Computation Cost Matrix [©J for DAG in Fig. 3.3 61

Table 4.1: Resource capacity 79

Table 4.2: Machine price 79

Table 4.3: Computation cost, b-level and task sequence

for DAG in Figure 1.1 80

Table 4.4: Grid simulation environment layouts 90

Table 5.1: Grid environment layouts 116

Table 5.2: Simulation parameters for schedules

shown in Figures 5.8 to 5.10 128

Table 5.3: Computation cost matrix for schedules shown

in Fig. 5.8 to 5.10 128

Table 5.4: Simulation setup parameters. 131

XVIll

<

CHAPTER 1 Introduction

1.1 Overview

It's hard to imagine modern day research without high performance

computing systems. Scientists, economists and engineers who want to simulate

complex processes need High Performance Computing (HPC). The emergence

of high performance massively parallel computers has triggered the demand for

development of new efficient scheduling algorithms which can take advantage

of this technology [97]. A parallel computer is a multiple processor computer

that enables the concurrent manipulation of data elements belonging to one or

more processes for solving a single problem. A parallel computer can be

categorized as (1) centralized multiprocessor, or (2) multicomputer [97]. A

centralized multiprocessor (also known as symmetric multiprocessor or SMP) is

a highly integrated system in which all processors communicate through a

shared common global memory. On the other hand, a multicomputer system

consists of several autonomous computers and an interconnection network,

where the processors on different computers communicate by passing

messages to each other. In current scenario, Clusters and Grids are the most

common examples for multicomputer systems.

l

Figure 1.1: Aparallel application represented as DAG (values are in Kbytes)

In general, a parallel application could be made up of multiple
independent tasks or precedence-constrained tasks (also known as workflows).
A workflow application is generally modeled as a directed acyclic graph (or

DAG) as shown in Figure 1.1, where nodes represent the application tasks and
edges represent inter task data dependencies [144]. The task scheduling in
multiprocessor computing environment is NP-hard problem [65, 72]. NP may
be equivalents defined as the set of decision problems that can be solved in

polynomial time on a nondeterministic Turing Machine.

1.2 Grid Computing

The purpose of a computation Grid (the term derives from electrical
"power grid") is to provide transparent access to resources such as systems,
data, applications and services via Internet. The idea was that accessing
compute power from a Grid would be as simple as accessing electrical power
from an electrical grid. This kind of Grid delivers an effective and efficient way to

>

*

perform complex tasks over the resources present anywhere regardless of the
organizational boundaries. The most obvious resource included in the Grid is a

processor, but Grids also encompass sensors, data-storage systems, catalogs,
applications and network resources, etc. A computing Grid spans domains of
different dimensions, starting from local Grids made up of resources linked

through LANs, up to global Grids made up of heterogeneous resources owned

by different organizations connected over Internet (Figure 1.2).

(a) Local Grid (b)Global Grid

Figure 1.2: A LAN can host a local Grid which can itself be a part ofa global Grid

One of the first commonly known GRID initiatives was the SETI@Home

[112], which solicited several million volunteers to download a Screensaver that

used idle processor capacity to analyze data in the search for extraterrestrial

life. In SETI (Search for Extraterrestrial Intelligence) @Home project, thousands

of people are sharing the unused processor cycles of their PCs in the vast

search for signs of "rational" signals from outer space. In a more recent

example, the Tele Science Project [123] provides remote access to an

extremely powerful electron microscope at the National Center for Microscopy
and Imaging Research in San Diego. The authorized users of the Grid can

remotely operate the microscope, allowing new levels of access to the

instruments and their capabilities. Many scientific Grids are appearing to
investigate problems such as galactic evolution, climate modeling, aircraft
design, urban planning, molecular dynamics and animation [26, 83].

By definition [44], "A computational grid is a hardware and software
infrastructure that provides dependable, consistent, pervasive, and inexpensive
access to high end computational capabilities". According to Foster's check list,
the minimum expected properties from a Grid system are:

. It coordinates resources that are not subject to centralized control (i.e.,

resources owned by different organizations or under the control of
different administrative units) and at the same time addresses the issues

of security, policy, payment, membership and so forth that arise in these

settings.

• It uses standard, open, general purpose protocols and interfaces. These

protocols address fundamental issues such as authentication,
authorization, resource discovery and resource access.

• It delivers nontrivial quality ofservice i.e., it is able to meet complex user

demands, e.g., response time, throughput, availability, security, etc.

1.2.1 Grid Architecture

The Grid computing infrastructure may be visualized as a four layered
architecture as shown in Figure 1.3. Some companies may have products that
span all tiers of this architecture, while others may be specifically focused on a
particular niche. It is important to realize that grouping products and services
into categories in this manner is far from exact.

Fabric Ware: The fabric layer in this architecture refers to hardware products
that are used to build the Grid infrastructure. These include personal
computers, clusters, high performance systems, storages and networking
devices such as routers, switches, load balancers, caching systems, etc. The
fabric layer also consists of various types of sensors and other scientific
instruments. Companies such as IBM, Hitachi, Fujitsu, Sun Microsystems, HP,

*

Cisco Systems and many others can be categorized as fabric providers in this
taxonomy.

Grid
Application/ Service
Provider

Application
Layer GridResource/

FabricProvider

Service
Ware •*C3

Billing,
QoS
Trading,
Accounting,
Portal

Middleware

Scheduling,
APIs,
ResourceManagement,
Security

Fabric
Ware
(Resource
Pool)

PCs
SMPs
Clusters
WS

Figure 1.3: A four layered architecture of Grid environment

Middleware: The middleware layer consists of software and products that

manage and facilitate access to the resources available at the fabric layer.

These products perform the function of resource management, security,
scheduling, and execution of tasks. The middleware layer also includes the

tools developed to facilitate use of resources by various applications. A

parallelization tool or compiler would reside in this layer of the matrix.

Middleware companies include Avaki, United Devices, Entropia, Grid Systems,

Tsunami Research, and Platform Computing, etc. Additionally, software

companies that help in the development of applications for the Grid, such as

Gridiron Software and Engineered Intelligence, also fall into this category.

Service Ware: The service layer consists of services that provide the

operational support systems for grid computing. These include billing, QoS

trading, accounting and management software. Companies such as

Gridfrastructure, GridXpert and Montague River provide products and services

that fall within this layer.

Application Layer: The application layer consists of all the software
applications and services that utilize the Grid infrastructure. There are
thousands of companies that will eventually adapt their applications for the Grid.
Some early adopters include Wolfram Research (makers of Mathematica), Lion
Biosciences, Fluent Inc, Accerlys, Cadence, Mentor Graphics, and others.

Grid Resource Provider: The Grid Resource Provider (GReP) is an entity that

provides the various resources listed in the fabric layer, middleware and service
ware layers as services that can be leased on variable terms. For example, a
customer may rent CPU cycles from a grid resource provider while running an
especially compute intensive application, while at other times he/ she may want
to rent additional storage capacity. The GReP is not aware of the applications

being executed by the customer on its platforms. Grid Service Providers today
include companies such as Gateway Corporation, ComputingX, IBM, and NTT

Data, etc.

Application Service Provider: The Grid Application Service Provider (GASP)
provides end-to-end Grid computing services to the user of a particular
application. The customer in this case will purchase "application time" from the
provider and will provide the data or parameters to the GASP through an
application portal. In future, it may also be done through published web service
specifications. The GASP may choose to purchase services from the GReP or
may choose to build the infrastructure organically. Grid computing is powering
science across the globe, providing the technology to explore new ways of
doing science. Through Grid, scientists can now share data, data storage
space, computing power and results. Collectively researchers can tackle bigger
questions than ever before: from disease cures and disaster management to
global warming and mysteries ofthe universe.

1.2.2 Grid Computing in Research

Computational Grids in research projects around the world are aiming at

higher and higher throughputs e.g., SETI@Home computes at over 730

TFLOPS as of April 2010 [112], MilkyWay@Home computes at over 1.6

PFLOPS as of April 2010 [86], Einstein@Home is crunching more than 210

TFLOPS as of April 2010 [40] and Folding@Home computes at over 5

PFLOPS, as of March 17, 2009 [43]. Many of these e-Science enabling

projects would be impossible without massive computing power of such Grids.

Scientists are using Grids in various fields such as:

• Biologists are using Grids to simulate thousands of molecular drug

candidates on their computers, aiming to find a molecule able to block

specific disease proteins [39, 43, 120].

• Earth scientists are using Grids to track ozone levels using satellites,

processing hundreds of Gigabytes of data every day (the equivalent of

about 150 CDs a day!) [28].

• High energy physicists are using Grids in search for a better

understanding of the universe, relying on tens of thousands of desktops

to store and analyze the 10 Petabytes of data (equivalent to the data on

about 20 million CDs!) produced by the Large Hadron Collider (LHC)

each year. Thousands of physicists in dozens of universities around the

world want to analyze this data [40, 86, 112].

• Engineers are using Grids to study alternative fuels, such as fusion

energy [48].

• Artists are using Grids to create complex animations for feature films

[21,70].

1.2.3 Grid Computing in Business

Today, business organizations depend on information technology (IT)

more than ever before in the past. Trillions of dollars have been spent in the last

decade by them to improve efficiency and optimize all aspects of their

operations, such as financial, audit, supply chain, back office, sales and

marketing, engineering, manufacturing and product management. Most of the

investments have been made in technology to achieve these objectives.

Despite this, much of the IT infrastructure remains underutilized (Table 1.1)

[61].

Table 1.1: World-wide utilization of IT resources

IT Resource Average Utilization / Day

Windows Servers <5%

Unix Servers 15-20%

Desktops and Workstations <5%

To solve new complex and challenging problems being faced/

discovered, massive computational power is required. The underutilized

computing power available in the existing IT infrastructure may be harnessed
using Grid technologies for solving such problems. Grid computing is
harmonious amalgamation of numerous technologies to provide a valuable and

meaningful service to users. Now, Grid computing has entered into the
commercial market after successfully developing its roots in the global

academic and research communities. Grid computing is offering low cost and

high throughput computing solutions to companies through optimizing and
leveraging existing underutilized IT infrastructure and investments as shown in
the Table 1.1. Grids deployed on exiting infrastructure provide 93% savings in

up-front hardware cost and mitigate the need for additional investments in
hardware, software and maintenance costs, etc. The Grid can be deployed as

quickly as in two days, with little or no disruption to operations while cluster
takes 60-90 days to deploy in an enterprise. It is analyzed that the operational

8

expenses in Grid deployment are 73% less than similar HPC based solution.

y Grid exhibits scalability in adding new resources without increasing functional

complexity.

With the growing complexities of the applications, many Independent

Software Vendors (ISV) are realizing that the cost of maintaining and managing

such applications is deterring clients from purchasing them. For example,

Fluent, the world's largest computational fluid dynamic software company has

started to outsource its products via Application Service Provider (ASP) model.

Their software had an initial cost of US $150,000 and US $28,000 per user

licensing cost, but they are now offering their product for US $15.00 per

CPU/Hour. Now, there is no hardware, software and maintenance costs to the

customers. Similar to ASP model, Grid utility model allows customers to pay-

per-use basis for the amount of computational, storage or network capacity

they use. It helps in reducing the IT costs up to 40-50% in many cases [15].

^ In drug research, Grid computing is being used in the drug discovery

phase to screen suitable drug like molecules against diseases and also for

clinical simulation, healthcare ecosystem modeling and pharmacokinetic

simulations. In short, grid computing is allowing drug companies to get the most

out of their R&D expenditure by developing the right product and getting it to

market in the shortest possible time. Companies can save almost US $5M per

month in R&D expenses for each month shaved off the drug development

T process [34].

Today, large corporations such as IBM, Sun Microsystems, Intel, Hewlett

Packard and some smaller companies such as Platform Computing, Avaki,

Entropia, DataSynapse and United Devices are putting their marketing dollars

to good use and creating the next generation of thought-leadership around grid

computing that is focused on business applications rather than academic and

basic research applications. High performance computing statistics are

extremely important because they tell us which industries already have demand

for tremendous computing power. y

The vision of Grid computing can be implemented by the use of open

standards with common interfaces and protocols for defining, discovering and

using the heterogeneous set of resources. The Global Grid Forum (GGF) [122]

is an organization that has undertaken the mission of creating and documenting

the technical specifications and implementation guidelines that promote and

support the development, deployment and implementation of Grid technologies ^

and applications. Specifically, GGF has published a standard Open Grid

Services Architecture (OGSA) and an Open Grid Services Infrastructure (OGSI

1.0) based on OGSA. The major goal of grid technology is to promote a virtual

computing environment, which allows access to a set of services through

transparent and coordinated use of distributed and heterogeneous resources.

Services are the abstraction of resources and they can be computing cycles,

software, documents, data, storages, and so on.
>-

The time and accuracy of various compute-intensive and data-intensive

tasks are limited by the availability of the resources within the silos. Grid

computing allows a pool of heterogeneous resources both within and outside of

an organization to be virtualized and form a large virtual parallel computer. This

virtual parallel computer can be used by a collection of users and/or

organizations in collaboration to solve their problems. This use of a virtual
computer formed from a Grid of shared resources allows the users of the virtual y
organizations to solve complex collaborative problems. This enhanced sharing
allows users and organizations to improve performance, reduce cycle time,

increase availability and improve fault tolerance by distributing both compute-

intensive and data-intensive workloads across several resources forming the

Grid. Further, the sharing of the resources from the individual silos forming the

bigger pool allows the underutilized and available resources to be discovered
and should be used by applications and jobs that have a greater need. This not >

10

<

<

only improves the utilization of underused resources, but also improves the

performance and availability of resource-intensive jobs and applications.

1.3 Grid Scheduling and Research Issues

The success of various applications in making effective use of

underutilized resources is greatly dependant on proper scheduling of

application tasks on grid resources. As a result, scheduling has become one of

the most active areas of research in the Grid community. The problem of

scheduling in the Grid environment is NP-hard, and there is always a possibility

of improvement and optimization. Scheduling is a decision making process by

which application components are matched and assigned to the available

resources to optimize the various performance metrics while respecting the

service level agreements (SLAs).

By definition [95], "Scheduling concerns the allocation of limited

resources to tasks over time. It is a decision-making process that has a goal of

optimization of one or more objectives." The scheduling process may be seen

as consisting of three stages: (1) resource discovering and filtering, (2) resource

selecting and scheduling according to certain objectives, and (3) job submission

[111]. In general, scheduling algorithms concentrate on the second stage i.e.,

resource selection and scheduling. The resources may be robots in

manufacturing process, machines in a workshop, runways at an airport,

programmers in a software development project or processing nodes in a

computing environment and so on [55]. To convey this generalization, the term

"resource" is usually used in place of processor. Similarly, the tasks may be

operations in a manufacturing process, transportations of items from town A to

town B, take-offs and landings at an airport, execution of computer programs

and so on. A metatask (or a set of tasks) must be divided into subtasks which

then have to be scheduled onto the resources while satisfying an objective or a

I i

set of objectives as defined by the given performance measure. The objectives

may be the minimization of the completion time of the last task in a set of

(dependent) tasks, minimizing the average completion time in a set of

(independent) tasks, minimization of the economic cost of executing tasks on

resources, maximizing the resource utilization, etc. There exist several

scheduling algorithms that fall in different categories of the Grid scheduling

taxonomy as illustrated in Figure 1.4.

Independent
Task

Static Dynamic

Grid

Scheduling

List

Based

Static

Cluster

Based

Workflow

Scheduling

Duplication
Based

Dynamic

Dynamic
Rescheduling

Figure 1.4: Classification of Grid scheduling algorithms

In independent task scheduling (or job scheduling), a grid application is

composed of a set of independent tasks (referred as jobs), whereas in workflow
scheduling, the same is modeled as workflow (Figure 1.1). A workflow is a set
of dependent tasks with precedence constraints that have to be executed in a
well defined order to achieve a specific goal [56, 113]. Scheduling algorithms for

workflow applications in grid systems can be classified into three categories,
namely, list based, clustering based, and duplication based algorithms as
depicted in Figure 1.4. Depending on the time at which the scheduling decisions
are made; the algorithms can be static or dynamic. In static scheduling [136],
information regarding the resources available in the Grid and the tasks in an

I?

<

application is assumed to be known a priori before scheduling, whereas, in

dynamic scheduling [11, 47, 71, 88], task allocation is done on the fly as the

application executes. Both static and dynamic scheduling algorithms are widely

adopted in Grid computing.

Grid Scheduling
Objectives

Makespan

Application
Oriented

Deadline

Compliance

Economic Cost

Resource

Oriented

Processor

Utilization

Revenue/Profit

Trustworthiness/

Reliability

Figure 1.5: Taxonomy of objective functions in Grid scheduling

The current research challenges in grid scheduling are to optimize one or

more objectives while respecting constraints to the level necessary. There exist

many different performance objectives to be optimized in grid scenario (Figure

1.5). As said earlier also, the objectives may be the minimization of makespan

or economic cost of schedule of an application, or maximization of processor

utilization, trustworthiness and reliability of resources, etc. There is a shift in

research towards developing scheduling algorithms that meet two or more

objectives at the same time during optimization phase. For example, scheduling

may attempt to map an application on a set of resources in order to achieve

13

good throughput and high reliability. However, the optimization ofone may be at

a lower cost to others. Most part of the current research in literature on y

scheduling problems is dedicated to single criterion approach whereas, the use

of multiple criteria is expected to provide a more realistic solution for the

decision maker.

The Foster's vision, discussed in Section 1.2, is now becoming a reality

as follows:

• The user submits his/her request through a Graphical User Interface

(GUI) just specifying the high level requirements (the kind of application
he wants to use, the operating system, etc.) and possibly providing input

data.

• The Grid finds and allocates suitable resources (computing systems,

storage facilities, etc.) to satisfy the user's request.

>
• The Grid monitors request processing.

• The Grid notifies the user when the results are available allowing their

retrieval.

However, due to the dynamic changes in grid resource properties and

user requirements, the Grid will have to face the following situations:

. Task failure, random arrival of high priority tasks.

• Resource failure, joining of new resources, imbalance in workload on
resources, changing resource properties (number of users, cost, etc.).

• Changing task properties (priority, deadline, dependencies, etc).

Further, many characteristics unique to grid situation make the design of
scheduling algorithms more challenging [90], as seen below: >

14

• Autonomy - Resources in grids are autonomous and the grid scheduler

does not have full control over the resources. The owners of these

resources are free to establish and implement their own policy regarding

scheduling, security, etc. Thus, a Grid Scheduler is required to be

adaptive to different local policies.

• Heterogeneity - Grid resources like processor architectures, operating

systems, networks, applications tools are heterogeneous and distributed

in multiple domains over the Internet. The heterogeneity results in

different capabilities for job processing and data access. The Grid must

define standards, open protocols and interfaces to interact with these

resources so that heterogeneity gets hidden.

• Dynamism - The Internet environment is continuously changing and the

status of grid resources may vary with time. The scheduling algorithm

should take such dynamic behaviors into account.

• Fault Tolerance - Resources may fail at any moment. Robustness with

respect to failure of network, machines, software components, and so on

is a critical issue. The scheduling algorithm should be fault tolerant to

neutralize the effect of resource failure.

• Trustworthiness - Grid is an open distributed computing infrastructure.

When defining a grid, users must be recognizable and the access to

resources must be controlled. The resources forming the Grid must be

trustworthy.

• Scalability - Grid performance must not be affected with the increase in

the number of resources as well as users when it is operative.

During the past decade, the trends indicated by ever faster networks,

distributed systems and multiprocessor computer architectures (even at the

desktop level) clearly show that parallelism is the future of computing. The MPI

15

(Message Passing Interface) [87] and PVM (Parallel Virtual Machine) [50]
environments make it possible to write one distributed task (or application) ^

which runs on a distributed system like Cluster or Grid. Scheduling is a decision

making process concerned with the allocation of resources to the application
tasks over specified time durations in order to optimize one or more

performance metrics [95].

In the late 1960s, computational resources (such as CPU, memory and

I/O devices) were scarce. Efficient utilization of these scarce resources could ^
lower the cost of executing computer programs. This provided the economic

reason for the study of scheduling. It has been observed by several scientists

that a large number of resources (quantity) contributing to a Cluster or Grid
cannot be coordinated to execute an application in an optimal or sub-optimal

way (quality) without using a well developed scheduling strategy.

1.4 Motivations and Objectives

In 1960s, scheduling became two separate research areas, with people

looking at the scheduling of processes, jobs, etc onto CPUs and computers
separating off from people concerned with optimizing timetables, organizing
factory workflows, etc. Scheduling on the Grid presents an excellent opportunity

to reunite these long separated siblings.

Today, different communities with different requirements and objectives
have arrived in the Grid community. People need to be able to dispatch work,

but with an assurance about when the work will be completed, performance and

cost, etc., all negotiated as a part of some service level agreement (SLA). An
SLA is a contract between a resource provider and a client specifying the

quality of service (QoS) that can be expected (i.e., the time by which a task will
be dispatched). These contracts enable both the parties to reach a mutually
satisfactory agreement. So the designer of a Grid based scheduler need to

16

*

analyze "How can we best schedule this work onto grid resources, given that

y each job has an agreed set of constraints, so that we meet as many constraints

as possible while still trying to maximize income?". Grid scheduling is the

mapping of individual tasks to compute resources, while respecting SLAs, etc.

A variety of optimization criteria are of interest in grid scheduling: minimization

of maximum lateness, minimization of economic cost to the user, maximization

of resource utilization, fairness, minimization of variance, maximization of

resource availability, and trustworthiness, etc.
i-

As scheduling in Grid is NP-hard problem, there is no clear choice of

method which will be the best for grid scheduling. This motivates us to design

new scheduling heuristics for Grid computing systems. A heuristic is a

technique that seeks good solution at a reasonable computation cost without

being able to guarantee either feasibility or optimality, or even in many cases to

state how close to optimality a particular feasible solution is [103].

4 Real world scheduling problems are heterogeneous. Heterogeneous

environment may use different data and models, and operate in different

modes. Most recently, the economic approaches have gained popularity in

Grids to satisfy certain criteria like minimization of economic cost to the user,

rather than seeking a solution that offers the best performance with

minimization of execution time. In view of this, we intend to propose new

scheduling techniques for optimizing multiple objectives in grid scheduling.

r

Although task scheduling in parallel and distributed systems has been

extensively studied, new challenges in grid environments still make it an

interesting topic, and many research projects are underway. Through our study

on current scheduling algorithms working in the grid computing, we can find

heterogeneity, dynamism, computation and data separation, trustworthiness,

and fault tolerance as primary challenges for current research in Grids. QoS is

the concern of many grid applications. Most current research concentrates on

how to guarantee the QoS requirements of the applications, but few of them

17

study how the QoS requirements affect the resource assignment and

subsequently the performance of the other parts of the applications. Situation

becomes more complex when there are more tasks having QoS requirements.

In grid computing, two major security issues are often encountered. First,

user programs may contain malicious codes that may endanger or weaken the

grid resources assigned. Second, shared grid resources, once infected by

network attacks or malicious resources, joining the grid may damage the

applications. The research in grid security primarily focuses on existing

cryptographic based mechanisms for the protection of grid resources only.

However, the protection of user applications remains a challenging issue as the

grid resources have the ultimate power of controlling the execution of user

programs or task requests.

Single Criteria
Scheduling

Time Based:

SHCP Algorithm

Our

Research

Bi-Criteria

Scheduling

Compaction Based
SODA Algorithm

QoS Oriented Multi-
Criteria Scheduling

Trust Based:

Trust-MOS

Algorithm

Cost Based: HED &

RD Algorithm
Sliding Constraint:
DBSA Algorithm

Availability Aware:
AQuA Algorithm

Figure 1.6: Classification of our research work on grid schedulingalgorithms

18

f

+

The computational Grid usually has abundant computational resources

> (number of resources is unbounded in some duplication algorithms), but high
communication cost. This can make task duplication very graceful and cost

effective in dynamic and heterogeneous grid environment. We plan to exploit

duplication in selective manner so that schedule length/cost is minimized

without incurring unreasonable overhead costs.

In summary, the objective of this research work is to develop new

I scheduling strategies and validate them though simulation such that they meet

multiple criteria, ensure QoS requirements and secure the applications through

selecting trustworthy resources.

K

1.5 Organization of Thesis

The next chapter discusses several scheduling heuristics proposed by

different researchers in the past. Figure 1.6 shows our research work which can

be classified into three categories namely, Single criteria scheduling, Bi-criteria

scheduling, and QoS Oriented Multi-criteria scheduling. In single criteria

scheduling, time-based and cost-based heuristics are proposed while in multi-

criteria scheduling optimization of both type of objectives has been attempted.

In Chapter 3, the matter of heterogeneity and effectiveness of duplications for

single criterion scheduling in heterogeneous grid environments are discussed.

Chapter 4 deals with scheduling heuristics for multiple criteria scheduling

problems. This research work is extended considering different QoS constraints

like availability and trustworthiness of grid resources in Chapter 5. This chapter

presents QoS based scheduling heuristics for grid computing systems. The

concluding part of this research work is summarized in Chapter 6 indicating our

contributions and proposes future research directions in multi criteria scheduling

for multiple workflows that needs more attention by researchers in future.

19

CHAPTER 2 Backgrounds and

Literature Review

There are three main players in the scheduling problem: computational

resources/communication network, scheduler, and application tasks. In this

chapter, we have discussed some earlier research work that has been done

towards developing scheduling algorithms for optimized performance.

2.1 Review of Scheduling Strategies

As already discussed, scheduling is crucial for an effective utilization of

Grid computing system. In general, scheduling methodology will differ

depending on whether the application to be scheduled is made up of

independent tasks or multiple interactive tasks (dependent tasks). Dependent

tasks are characterized by precedence constrained relationship among tasks

i.e., a task can not start until all of its predecessors are completed. Task

dependency has crucial impact on the design of scheduling algorithms. Further,

scheduling can be static or dynamic (Figure 1.4) [146]. Static scheduling

requires a priori knowledge about tasks and their mapping on suitable

20

resources is done before execution begins which remains unchanged till the

end. In dynamic scheduling, the mapping (or re-assignment) of tasks is

possible during runtime. In addition, some hybrid techniques (static-dynamic

hybrid scheduling) may be designed to take advantage of static schedule, and
at the same time capture uncertain behavior of applications and resources. For

example, some tasks in an application may have QoS requirements. The static

approach is used to schedule these QoS tasks and dynamic scheduling is

applied to the rest of tasks.

In literature, scheduling algorithms have been intensively studied as

basic problem in traditional parallel and distributed computing systems, such as

symmetric multiprocessor machines (SMPs), massively parallel processors

systems (MPPs), and cluster of workstations (COW) [47]. It can be concluded
that scheduling algorithms are evolving with the architecture of parallel and

distributed computing systems. In Table 2.1, we are exploring some important

features of parallel and distributed systems and typical scheduling algorithms

adopted.

Table 2.1: Evolution of scheduling algorithms with parallel and distributed system architecture

Architecture SMP, MPP COw- Grid

Chronology Late 1970s Late 1980s Mid 1990s

Interconnection Network Bus, Switch LAN, ATM WAN/ Internet

Cost ofInterconnection
Very

Low/Negligible
Low but not

negligible
High

Network Heterogeneity None Low High

Compute node heterogeneity None Low High

Single System Image Yes Yes No

Resource Pool Predetermined Predetermined Not Predetermined

Nature of Resource Pool Static Static Dynamic

Resource Management Policy Monotone Monotone Diverse

Scheduling Algorithms
Homogeneous

Scheduling

Heterogeneous
scheduling

Grid Scheduling

The traditional scheduling algorithms cannot be directly fitted in the Grid

computing environment because they produce poor schedules. The
assumptions made by traditional algorithms do not hold in grid circumstances.

21

-f

*

In [25], Casavant and Kuhl proposed a scheduling taxonomy for general

purpose parallel and distributed systems. Since Grid is a special kind of such

systems, the scheduling algorithms for Grid form a subset of general scheduling

taxonomy as shown in Figure 1.4 [129].

2.1.1 Independent Task Scheduling

A set of independent tasks is assigned according to the capacity of

resources in order to achieve high system throughput. In [19], Braun et al.

provided a comparison of 11 static heuristics for scheduling in heterogenous

computing environment in which load balancing was main objective. Some of

these are briefly discussed below:

OLB (Opportunistic Load Balancing): It assigns each task in an arbitrary

order to the processor that is having the shortest schedule, irrespective of the

ETC (expected time to compute) on that processor. Thus, it tries to balance

load on processors, but generates a poor schedule. In Figure 2.1 (b), OLB

schedule is illustrated using Gantt chart. An expected time to compute matrix is

represented in Figure 2.1 (a) which shows the different capabilities of tasks on

different processors. The makespan of a schedule obtained using OLB is 19.

MET (Minimum Execution Time): It assigns each task in an arbitrary order to

the processor on which it is expected to be executed fastest regardless of the

current load on that processor. In other words, it chooses the fastest processor

for the task under consideration. It may generate a better schedule than OLB,

but certainly leads to poor load distribution among processors. Figure 2.1 (c)

shows a schedule of makespan 17 generated with MET approach. The MET

schedule is better that OLB as it tries to schedule tasks over fastest resources

to minimize the execution time.

22

(a) ETC (Expected Time to Compute) Matrix

Processor 1 Processor 2

Taskl 3 5

Task 2 8 11

Task3 11 8

Task 4 6 8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I I || I I I I I I I I I I
PI Taskl Task3

P2 Task2 Task4

(b) OLB Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I I I I i I I I I I I I I I |
PI Taskl Task2 Task4

P2 Task3

(c) MET Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I I I i I I I I I I I I I
PI Taskl Task2 Task4

P2 Task3

(d) MCT Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

| | I I I I I I I I I I I I I
PI Taskl Task4 Task2

P2 Task3

(e) Min-Min Scheduling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I I I I I I I I I I I I I I I I
PI Task2 Task*

P2 Task3 Taskl

(f) Max-Min Scheduling

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Mill!! I I I I I I I I I
PI Task2 Taskl

P2 Task3 Task4

(g) XSufferage Scheduling

Figure 2.1: Ganttcharts showing schedules of independenttask scheduling algorithms

23

•i

y

4

MCT (Minimum Completion Time): It assigns each task in an arbitrary order to

the processor with expected minimum completion time. This causes some tasks

to get assigned to slower machines. The intuition behind MCT is to combine the

benefits of OLB and MET. A schedule is obtained using MCT approach (Figure

2.1 (d)). The schedule length (makespan) is 17, which is same as MET but it

tries to assign tasks in order to minimize overall completion time to shorten the

schedule length.

Min-Min: It does not consider tasks in an arbitrary order. It first determines the

MCT for each unscheduled task and then assigns the task with minimum MCT

(Min-Min) to the processor which offers it this Min-Min time. It can produce

shorter schedule with better load balancing than MCT. In [60], a QoS Guided

Min-Min heuristic has been presented which can guarantee the QoS

requirements of particular tasks and minimize the makespan at the same time.

Figure 2.1 (e) shows a schedule obtained using Min-Min approach.

Wu et al. [134] gave a Segmented Min-Min algorithm, in which tasks are

first ordered by their expected completion time (it could be the maximum ECT,

minimum ECT or average ECT on resources), then the ordered sequence is

segmented, and finally Min-Min is applied to all these segments. The

segmentation improves the performance of typical Min-Min when the lengths of

the tasks are dramatically different by giving a chance to longer tasks to be

executed earlier than in the case where the typical Min-Min is adopted.

Gao et al. [49] presented an Estimation Based Grid Scheduling

Mechanism (EBGSM) which allows the simultaneous running of local and grid

tasks. They apply this method to MCT and Min-Min algorithms and show that

EMCT and EMin-Min outperform MCT and Min-Min in respect of shorter

makespan. But they applied the linear estimation mode which is not suitable to

dynamic grid environment. Therefore, other estimation mode should be

identified which are adaptable to the Grid to produce better schedules.

24

Max-Min: It is similar to Min-Min, but the task with maximum MCT (Max-Min)

is assigned to the processor in order to avoid load imbalance. It allows larger y

jobs to schedule earlier than the smaller ones. Max-Min heuristic may give a

mapping with a more balanced load across machines and a better makespan.

Figure 2.1 (f) shows a Max-Min schedule of makespan 14 which outperforms

the other heuristics.

XSuffrage: One more popular static heuristic for independent task scheduling

is called Suffrage [85]. For a task, its suffrage value is defined as the difference A

between its best MCT and its second best MCT. Tasks with high suffrage value

take precedence in scheduling. In this way, suffrage policy tries to minimize

task suffrage. But when task has I/O data requirements, tasks should be

assigned to the resources as near as possible to the data source to reduce the

overall makespan.

If the resources are clustered and nodes in the same cluster have near

identical performance, then the best and second best MCTs are also nearly >

identical which makes the suffrage close to zero and gives the tasks low

priority. Other tasks might be assigned on these nodes so that the task might be

pushed away from its data source. To fix this problem, Casanova et al. [23]

gave an improvement called XSuffrage, which gives a cluster level suffrage

value to each task. Figure 2.1 (g) shows a schedule obtained using XSuffrage.

The main issue in independent task scheduling is load balancing across

the available processors. Any algorithm that focuses on this matter is likely to

produce a better schedule. This is clearly illustrated in the example above
(Figure 2.1) where Max-Min because of its focus on load balancing gives the

better schedule.

Task Replication: In [114, 117], two algorithms have been proposed that do

not use performance estimate but adopt the idea of duplication, which is also

feasible in the grid environment where computational resources are usually

abundant but mutable. Subramani et al. [117] introduced a simple distributed

25

>

duplication scheme for independent job scheduling in the Grid. Each job is

> distributed to the K least loaded sites where each of these K sites schedules

the job locally. When a job is able to start at any of the sites, the site informs the

scheduler at the job-originating site, which in turn contacts the other K-\ sites

to cancel the jobs from their respective queues. This improves system utilization

and reduces average job makespan. The parameter K can be varied

depending upon the number of resources in the grid.

x Silva et al. [114] proposed a resource information free algorithm called

Work Queue with Replication (WQR) for independent job scheduling in the Grid.

The WQR algorithm uses task replication to cope with the heterogeneity of

hosts and tasks, and also the dynamic variation of resource availability due to

load generated by other users in the Grid. In WQR, an idle resource will

replicate tasks that are still running on other resources. Tasks are replicated

until a predefined maximum number of replicas are reached. When a task

replica finishes, other replicas are cancelled. In this approach, performance is

increased in situations when tasks are assigned to slow/busy hosts because

when a task is replicated, there is a greater chance that a replica is assigned to

a fast/idle host. Another advantage of this scheme is that it increases the

immunity in performance variation, since the probability that all sites are

changing is much smaller than one site [57].

Ritchie and Levine [104] proposed a static scheduling algorithm for

independent jobs in heterogeneous computing environments using Ant Colony

Optimization (ACO) techniques. This algorithm can be applied with some

modification on workflows in dynamic grid environment which may give more

realistic results.

Zhang and Luo [141] proposed a QoS group guided grid scheduling

algorithm with task replicas which makes scheduling decision on the basis of

recent QoS status feedback of resources for independent tasks. This algorithm

divides the tasks into groups, and then schedules them in groups to different

26

resources. Later on, first running task that has not finished execution is

replicated to the available resource. After finishing this task, its replicas on other
resources are cancelled. This algorithm can be applied in DAG scheduling of

tasks in grid computing environments. He et al. [60] proposed QoS Guided Min-
Min (QGMM) scheduling algorithm to achieve high system throughput while
matching applications with the available computing resources. This heuristic
concerns over QoS requirement of tasks, i.e., network bandwidth. Tasks are

classified as tasks with QoS requirements and tasks without QoS requirements.

Tasks with QoS requirements get priority in scheduling.

2.1.2 Workflow Scheduling

Workflows are constituted by multiple tasks having precedence

constraints, thus forming a directed acyclic graph (DAG) with node and edge

weights (the nodes represent the tasks and the directed edges represent the
execution dependencies as well as the amount of communication required) [65].
Figure 2.2 shows an example of precedence constrained task graph where task
n4 cannot start before tasks «,, n2 and »3 have finished. The scheduling

objective is to minimize the program completion time under these constraints.

n.

. 1
J-"

17

^7
^"^—\

n2 n3

I , 1 .

-i 4

n4

. 1 .

Figure 2.2: Aprecedence constrained task graph

27

i

>

There is a trade-off between taking maximum advantage of parallelism

> and minimizing communication delay. This problem is also called the Max-Min

problem [41]. High parallelism means dispatching more tasks simultaneously to

different resources, thus, increasing the communication cost, especially when

the communication delay is very high. However, clustering tasks only on a few

resources means low exploitation of parallelism. To deal with this problem in

heterogeneous computing systems, three kinds of heuristics for static

scheduling have been proposed: (a) List based heuristics [10, 29, 58, 84, 90,

98, 106, 124, 136], (b) Duplication based heuristics [5, 7, 9, 27, 37, 69, 73, 80,

91, 92, 93, 94, 102, 114, 117], and (c) Clustering based heuristics [51, 82, 135].

List based scheduling algorithms are frequently adopted due to their low

time complexity and good results. Here, task nodes are ordered and selected in

non-increasing order of their priorities (or ranks) and scheduled on the

processors in order to optimize various performance metrics. Clustering is an

efficient way to reduce communication delay in DAGs by grouping heavily

communicating tasks to same labeled cluster and then assigning tasks in a

cluster to the same resource. The clustering based scheduling algorithms are

based on unbounded number of processors and therefore are not directly

applicable. In duplication based scheduling algorithms, parents of current

selected task are duplicated to reduce the task finish time.

*

X

<

List based Scheduling

In list scheduling, tasks are assigned with priorities, and placed in non-

increasing order of priority list. Then, the tasks are considered for assignment to

processors according to the order of priority list [27]. Some of the frequently

used priority terms for a workflow task are: s-level (computation cost along the

longest directed path from the concerned task to the exit task in the given

DAG), b-level (same as s-level, but considering communication costs as well),

t-ievel (computation and communication costs along the longest directed path

from the entry task to the concerned task excluding its computation cost), etc.

28

The various list heuristics differ in how the priority is defined, and at what time a

task is considered ready for assignment.

HEFT: Topcuoglu et al. [124] presented a list heuristic called Heterogeneous

Earliest Finish Time (HEFT) algorithm. The HEFT algorithm selects the task

with the highest b-level at each step. The selected task is then assigned to the
processor that minimizes its earliest finish time with an insertion based
approach which considers the possible insertion of a task in an earliest idle time
slot between two already scheduled tasks on the same resource. The time

complexity of HEFT is 0(exp), where e is the number of edges in application

DAG and p is the number of processors. Let us consider an example for which

the HEFT produces a poor schedule. Figure 2.3(a) shows a simple DAG, and a
computing system consisting of two processors connected with a single link

[91]. Here,cow/?(/7,,p;), the computational cost of task n, on processor pr is

assumed to be 100 and comm(elm,l]2), the communication cost between tasks

n and nm, is set to 200. In this example, the communication cost is set high as

large amount of data transfers through a WAN link. The example in Figure 2.3
illustrates that a schedule generated by HEFT may be a poor schedule [67].

'12

(a)

o ioo 200 300 400

ni •n3

n2

(b)

0 100 200 300 400

ni n2 nj

(c)

Figure 2.3: (a) DAG and System: (b) HEFT schedule; (c) Abetter schedule

FCP: Radulescu and Gemund [98] proposed a list heuristic called Fast Critical
Path (FCP), intending to reduce the complexity of the list heuristics while
maintaining the scheduling performance. Basically, a list heuristic has the

2l>

following procedures: the 0(e + n) time for ranking phase, the 0(n\ogn) time

for ordering phase, and finally the 0((e + n)xp) time for resource selecting

phase, where e is the number of edges, n is the number of tasks and p is the

number of resources. Usually the third phase.is larger than the second phase.

The FCP algorithm does not sort all the tasks at the beginning but

maintains only a limited number of tasks sorted at any given time. Instead of

considering all processors as possible targets for a given task, the choice is

restricted to either the processor from which the last data arrives to the given

task or the processor which becomes idle at the earliest. As a result, the time

complexity is reduced to O{n\ogp + e).

LDCP: Daoud and Kharma [29] presented a novel task scheduling algorithm,

called the Longest Dynamic Critical Path (LDCP) for heterogeneous distributed

computing systems (HeDCSs). The LDCP algorithm is a list based scheduling

algorithm that uses a new attribute called Dynamic critical path (DCP) to

effectively compute the priorities of tasks in HeDCSs. The DCP is simply a CP

that considers the cancellation of communication costs among tasks scheduled

in the same processor. At each scheduling step, the LDCP algorithm selects the

task with the highest priority and assigns the selected task to the processor that

minimizes its finish execution time using an insertion-based scheduling policy.

List Heuristics in Grid Computing: A list scheduling algorithm proposed in

[136] is similar to the HEFT algorithm, but it modifies the method to compute the

level of a task node by not only including its longest path to an exit node, but

also taking incoming communication cost from its parents into account.

Ma and Buyya [84] proposed a new list heuristics called Extended

Dynamic Critical Path (xDCP) which is a Grid enabled version of the Dynamic

Critical Path (DCP) algorithm which was applied in homogenous computing

environment. The idea behind DCP is continuously shortening the critical path

*

30

in the task graph by scheduling tasks in the current CP to a resource where a

task on the critical path has an earlier start time. -f

The xDCP algorithm was proposed for scheduling parameter-sweep

applications in a heterogeneous grid. The parameter sweep application (PSA)

executes the same piece of code multiple times with unique sets of input

parameters [128]. The improvements include: (i) initial shuffling of tasks to

multiple resources when the scheduling begins instead of keeping them on one

node, (ii) using the finish time instead of start time to rank task nodes to adapt ^
heterogeneous resources, and (iii) multiple rounds of scheduling to improve the
current scheduling instead of scheduling once. The complexity of xDCP is

0(nl), which is same as that of DCP.

The drift towards new challenges in Grid computing implies the need for

new, robust, multi-criteria scheduling algorithms. It includes execution time, the

cost of running a task on a machine, reliability, and different data quality

metrics. In [130], Wieczorek et al. propose a bi-criterion scheduling heuristic
called Dynamic Constrained Algorithm (DCA) that uses novel requirement
specification method based on a sliding constraint and model the problem as an
extension of the multiple-choice knapsack problem. DCA outperforms existing

algorithms designed for the same problem. It also shows relatively low
scheduling times for workflows of medium size.

Duplication Based Scheduling >

The concept behind duplication based heuristics is to utilize idle time of a
resource to duplicate predecessor tasks. This may reduce the communication
cost in transferring of results from a predecessor to a successor and thus, well
suited for grid environments where communication cost can be very high
between precedence-constrained tasks. Usually, duplication based algorithms
have higher complexity than the algorithms discussed above. Most of the
available duplication based algorithms are designed under the assumption of
unbounded number of fully connected processors.

31

Duplication algorithms like the Critical Path based Full Duplication

> algorithm (CPFD) [5], Duplication First Reduction Next algorithm DFRN [92],

Bottom up Top down Duplication Heuristic BTDH [27], Duplication Scheduling

Heuristic DSH [69], algorithms proposed by Papadimitriou and Yannakakis [91],

and Liou and Palis [82] try to duplicate all possible ancestors of a given node to

improve performance, and in the process, become quite complex and resource

consuming [5].

>. DPD: It is a heuristic strategy called the Dominant Predecessor Duplication

(DPD) scheduling algorithm, which uses system heterogeneities and

communication bandwidth to exploit the potential of parallel processing [73].

The algorithm can improve system utilization and avoid redundant resource

consumption, resulting in better schedules. Tasks are scheduled according to

system heterogeneity, network bandwidth, and communication requirements of

applications. The objective of this approach is to duplicate dominant tasks

(parents of candidate task who is responsible for late start of its successor on

other processors) in order to reduce the candidate's start or finish time by

decreasing the communication overhead.

HLD: Bansal et al. [9] proposed another duplication-based heuristics based on

limited duplication, known as Heterogeneous Limited Duplication (HLD) for

interconnection constrained networks to avoid the useless or redundant

duplications in full duplication based algorithms. Here, if at any stage, it is found

that duplication might increase the finish time of a task, then the duplication is

not performed. The algorithm works efficiently with limited interconnection

constrained multiprocessors and at high CCR (communication to computation

ratio).

TANH: A task duplication-based algorithm called TANH (Task duplication-

based scheduling algorithm for network of heterogeneous systems) is

presented in [7, 102]. Compared to the version for homogeneous resources, the

heterogeneous version has higher complexity, which is ()(n2xp). This is

32

<

reasonable since the execution time of a task differs on different resources. A

new parameter is introduced for each task: the favorite processor (fp), which y

can complete the task earliest. Other parameters of a task are computed based

on the value of fp. In the clustering step, the initial task ofa cluster is assigned

to its first fp, and if the first fp has already been assigned, then to the second

and so on. A processor reduction algorithm is used to merge clusters when the

number of processors is less than the clusters generated [7].

The computational Grid usually has abundant computational and high 4

communication cost resources (recall that the number of resources is

unbounded in some duplication algorithms). This can make task duplication

quite cost effective in grid environments. Duplication has already received some

attention [114,117], but current duplication based scheduling algorithms in the

Grid only deal with independent jobs. There are opportunities to create new

algorithms for complicated DAGs scheduling in an environment that is not only

heterogeneous, but also dynamic. f

Clustering Based Scheduling

In parallel and distributed systems, clustering is an efficient way to

reduce communication delay in DAGs by grouping heavily communicating tasks

to the same labeled clusters, and then assigning tasks in a cluster to the same

resource. In general, clustering algorithms have two phases: the task clustering
phase that partitions the original task graph into clusters, and a post clustering >
phase which can refine the clusters produced in the previous phase and get the

final task-to-resource map.

Clustering algorithms map tasks in a given DAG to the unlimited number

of resources. In practice, an additional cluster merging step is needed after

clusters are generated, so that the number of clusters generated can be equal
to the number of processors. A task cluster could be linear or nonlinear. A

clustering is called nonlinear if two independent tasks are mapped in the same

33

>

i

cluster; otherwise it is called linear. Figure 2.4 (a) shows a DAG with

communication costs among tasks. The computation cost of tasks are

{h, =\,n2 =5,«3 = 1,«4 =2,n5 =2,n6 = \,n1 =1). Figure 2.4 (b) shows a linear

clustering with three clusters {nvn2,n7}, {n3,n4,n6}, and {n5} and Figure 2.4(c)

presents a nonlinear clustering with clusters {nvn2}, {«,,«4,«5,«6}, and {n7} [51].

The problem of obtaining an optimal clustering of a general task graph is NP-

complete, so heuristics are designed to deal with this problem [51, 81, 82,135].

(a) (b)

C3

(c) (d) (e)

Figure 2.4: (a) DAG; (b)and(d) Linear clustering;(c)and(e) Non-linear clustering [51]

34

CI

10

(a)

PI P2 P3

ni

"2

n3

n4

ns

n6

n7

(b)

Figure 2.5: (a) Aclustered DAG and its CP shown in thick arrows; (b) The Gantt chart of a
schedule; (c) The scheduled DAG and the DS shown in thick arrows [51]

DSC: Yang and Gerasoulis [135] proposed a clustering heuristic called
Dominant Sequence Clustering (DSC) algorithm. The critical path of a

scheduled DAG is called Dominant Sequence (DS) to distinguish it from the

critical path of a clustered DAG. The critical path of a clustered graph is the

longest path in that graph, including both non-zero communication edge cost
and task weights in that path. The makespan in executing a clustered DAG is
determined by the Dominant Sequence, not by the critical path of the clustered

DAG. Figure 2.5 (a) shows a critical path {nrn2,n7} with a length of 9 of

clustered graph. Figure 2.5(b) is showing a schedule of this clustered graph,
and Figure 2.5 (c) gives the DS of the scheduled task graph, which consists of

{/7,,^,«4,«5,«6,«7} with a length of 10 [51].

In DSC algorithm, tasks priorities are dynamically computed as the sum of
their t-level and b-level. The t-level and b-level are the sum of the computation

35

r

and communication costs along the longest path from the given task to an entry

task and an exit task, respectively. While the b-level is statically computed at

the beginning, the t-level is computed incrementally during the scheduling

process.

Tasks are scheduled in the order of their priorities. The current node is an

unassigned node with highest priority. Since the entry node always has the

longest path to the exit node, clustering always begins with the entry node. The

current node is merged with the cluster of one of its predecessors so that the

top level value of this node can be minimized. If all possible merging increases

the t-level value, the current node will remain in its own cluster. After the current

node is clustered, priorities of all its successors will be updated.

The time complexity of DSC is 0((e + n)\ogn), in which 0(log«) comes

from priority updating at each step using a binary heap, and 0(e + n) is for

graph traversal in the clustering iterations. So for a dense task graph, the

complexity is roughly 0(n2 logn).

2.1.3 Dynamism of Grid

There is an important issue for Grid computing which has not been

discussed: Resource Performance Dynamism. All algorithms that we have

discussed work under the assumption that the resource performance remains

fixed, which may not necessarily be true in grid environment due to resource

performance fluctuations during the execution. This problem could be

reconciled by considering the possibility of conflict when a scheduling decision

is made. He et al. [59] presented an example of this approach. Their algorithm

considers the optimization of DAG makespan on multi-clusters which have their

own local schedulers and queues shared by other background workloads,

which arrive as a linear function of time.

36

The motivation is to map as many tasks as possible to the same cluster

in order to fully utilize the parallel processing capability, and at the same time y

reduce the inter-cluster communication. The schedulers have a hierarchical

structure: Global Scheduler is responsible for mapping tasks to different

clusters according to their latest finish time in order to minimize the excess over

the length of critical path. The Local Scheduler on each multi-cluster provides

the estimated finish time of a particular task on this cluster, reports it to the

Global Scheduler upon queries, and manages its local queue in a FIFO way.

The time complexity of the global mapping algorithm is 0(p(n +\)n/2 +e),

where p is the number of multi-clusters.

Another approach to deal with dynamism is using dynamic algorithms. In

[84], the authors propose a pM-S algorithm which extends a traditional dynamic

Master-Slave scheduling model. In the pM-S algorithm, two queues are used

by the master: the Unscheduled Queue, and the Ready Queue. The tasks in the
ready queue can be directly dispatched to slave nodes, and a task in the ^
unscheduled queue can be put into the ready queue when all of its parents

have been in the ready queue or dispatched. The dispatching order in the ready

queue is based on tasks' priorities. When a task is finished, the priorities of all

its children's ancestors will be dynamically promoted.

In [63], another dynamic algorithm is proposed for scheduling DAGs in a

shared heterogeneous distributed system. Unlike the previous works in which a

unique global scheduler exists, in this work, the authors consider multiple
independent schedulers which have no knowledge about other jobs. So there is
the danger of conflicts on resources. This algorithm is derived from a static list
algorithm: the Dynamic Level Scheduling (DLS). In the original DLS, the
dynamic level of a task in a DAG is used to adapt to the heterogeneity in
resources, while in the newly proposed algorithm, the dynamic length of the

queue on each resource is also taken into account for computing a task's level.
To estimate the length of the queue, it is assumed that jobs are coming

following a Poisson distribution. The research also discusses how to choose the

37

>

time when the scheduling decision is made and the time when a task should be

> put into resource local queue in a dynamic system. Ready task queuing

probabilities, which are computed following the Poisson distribution, are used to

make these decisions.

All DAG scheduling algorithms that have been discussed so far have the

same goal: minimizing the makespan of a task graph. In [140], Yu et al.

consider the scheduling problem in a "pay-per-use" service grid. Their

k. objective is to minimize the total cost for executing a workflow on such a Grid,

and at the same time QoS, which is interpreted as a deadline, is provided. The

algorithm firstly partitions the original DAG into sub-workflows, which consist of

a sequential set of tasks between two synchronized tasks (the nodes from

which at least one sub-workflow starts and/or ends) in the graph, and assigns a

sub-deadline to each partition by a combinational Breadth First Search and

Depth First Search with critical path analysis. For each partition, a planning

process is applied to find the optimal mapping for which the cost is the lowest

and the deadline is met. Rescheduling is also provided when a sub-workflow

misses its sub-deadline. But only the sub-workflow's children will be

rescheduled to reduce the rescheduling cost.

A similar problem is also considered by Sample et al. [109]. They

adopted similar scheduling approach as used by Yu et al. [140]. The scheduling

begins with the selection of an initial schedule based on service providers'

estimates for completion time and cost. If the certainty of the completion time

and cost is dropped to a threshold, which is usually caused by performance

fluctuation, rescheduling will be carried out. To find an initial scheduling, the

scheduler requests bids from resource providers for the services they can

provide. The bid request is based on the service needed, the expected start

time for the service, and information about the size and complexity of the input

parameters to the service.

38

The uncertainty introduced by the dynamism also brings opportunities for

application of a new approach in the Grid: the Data and Control dependency
task Graph (DCG) scheduling [35]. Different to a DAG, a DCG has two types of

edges denoting data dependency and control dependency among task nodes.

A control-dependency edge usually represents some condition relying on the

results of its starting node, so in a DCG, users can predefine adaptive rules for

dynamic adaptation in their task graph. For example, a rule can be duplicating

all the successors of a node if its real execution time fails to match its predicted

one. The research [35] shows an example of how to schedule such conditional

task graphs in terms of reducing the final possible makespan. However, no

research, that adopts this idea in the grid environment, exists at this time.

2.1.4 Dynamic Rescheduling

When there is no resource prediction service available or the resource

prediction cannot provide an accurate forecast, rescheduling which changes

previous schedule taking current resource into account can bring some

improvement. With the efforts of system designers and developers, more and

more grid infrastructures now support job migration, which is one precondition

of rescheduling [74, 126].

In [133], a self-adaptive scheduling algorithm is given to reschedule

tasks on the processors showing "abnormal" performance. Abnormal

performance means that the behaviors of those processors violate the
performance model with an unexpected high local job arrival rate that delays
remote grid jobs. The algorithm uses a prediction error threshold to trigger the
rescheduling process. If the estimated completion time of a grid task is

shortened after migration, the task will be migrated to the processor which gives

minimum completion time according to current prediction. The key problem in

this algorithm is to find a proper threshold to determine whether a processor is

39

abnormal. The problem with this algorithm was that it ignored the migration

> overheads when it computed the benefits of migrations.

The above methods only consider the rescheduling of independent tasks

in the Grid. Sakellariou and Zhao [107] proposed a novel low cost rescheduling

policy to improve the initial static schedule of a DAG. This algorithm only

considered a selective set of tasks for rescheduling based on measurable

properties. The key idea of this selective rescheduling policy is to evaluate (at

^ run-time, before each task starts execution) the starting time of each node

against its estimated starting time in the static scheduling and the maximum

allowable delay in order to make a decision for rescheduling.

The maximum allowable delay could be the slack of a task, or the

minimal spare time. The slack of a task is defined as the maximal value that can

be added to the execution time of a task without affecting the overall makespan

of the schedule. The minimal spare time is the maximum value that can be

added to the execution time of a task without delaying its successors'

execution. As the tasks of the DAG are running, the re-scheduler maintains two

schedules: One for the static scheduling using estimated values, and the other

for keeping track of the status of the tasks executed so that the gap between

the original schedule and the real run can be known. Once the gap is beyond

the slack or the minimal spare time, rescheduling of all unexecuted tasks will be

triggered and a new slack or minimal spare time for each task is computed. This

rescheduling policy is applied to some list heuristics discussed in Section 2.1.2

such as HEFT, FCP, etc. Simulation resultsshow that this policy can achieve

comparable performance with the policy that reschedules all tasks in the DAG

while dramatically reducing the rescheduling overhead.

Lee et al. [76] proposed a Dynamic HEFT (DH) algorithm to enhance the

functions of the original static HEFT (SH) algorithm. Instead of dispatching

j tasks to physical processors directly, the DH algorithm dispatches tasks to

multiple queues. During runtime, the DH algorithm continues to dispatch the

40

scheduled tasks to corresponding physical processor and predicts the transfer

rate. Once the difference between two consecutive transfer rates is greater than y

the threshold value, rescheduling will be performed. The experimental results

show that the proposed DH algorithm performs better than the SH algorithm,

especially under the Grid computing environment with fluctuant transfer rates

and high bandwidth differences.

2.1.5 Nature's Laws Inspired Scheduling

The nature's heuristics were only relatively introduced into scheduling

area and more research needs to be done to fit them in the grid context.

Several analogies from natural phenomena have been introduced to form

powerful heuristics, which have proven to be highly successful. Abraham et al.

[3] and Braun et al. [19] presented three basic meta-heuristics implied by

nature for grid scheduling, namely, Genetic Algorithm (GA), Simulated

Annealing (SA), and Tabu Search (TS), and heuristics derived by a combination

of these three algorithms. Meta-heuristics are high level heuristics that guide

local search heuristics to escape from local optima.

Genetic Algorithm (GA): Genetic algorithms are most widely studied guided

random search techniques for task scheduling [30]. It executes in generations,

producing better and better solutions using crossover and mutation operators in
each generation and randomly producing new solutions (offspring) for the next

generation based on the solutions (parents) in the current solution [62, 132]. In
a genetic algorithm, historical knowledge can be used to guide the chromosome

selection, crossover, or mutation process so that the search process can

converge quickly. GA produces good quality of schedules but their execution
times are significantly higher than the other. It is found that GA based heuristics
require around a minute to produce a solution, while the other heuristics require

an execution of few seconds.

41

Simulated Annealing (SA): SA is a general random search technique based

> on the physical process of annealing involving repeated heating and cooling

[19, 68]. By analogy, the thermal equilibrium is an optimal task-machine

mapping (optimization goal), the temperature is the total completion time of a

mapping (cost function), and the change of temperature is the process of

mapping change. If the next temperature is higher, which means a worse

mapping, the next state is accepted with certain probability. This is because the

acceptance of some "worse" states provides a way to escape local optimality

which occurs often in local search. In SA, the cooling rate is usually set to a

fixed value to control the number of iterations the search process will perform.

Here the question is "How to select this value as the threshold value for

accepting a poorer mutation?" Second, there is a trade-off between the search

cost and the degree of optimality of solutions found.

Tabu Search (TS): TS is a method of keeping track of the regions of the

solution space that have already been searched in order to avoid repeating the

search near these areas [19, 32]. Next, a new random mapping is generated,

and it must differ from each mapping in the tabu list by at least half of the

machine assignments (a successful long hop). The intuitive purpose of a long

hop is to move to a new region of the solution space that has not already been

searched. After each successful long hop, the short hop procedure is repeated.

The stopping criterion for the entire heuristic is when the sum of the total

number of successful short hops and successful long hops equals limit hops.

Then, the best mapping from the tabu list will be the final solution.4

Combined Heuristics: GA can be combined with SA and TS to create

combinational heuristics. For example, The Genetic Simulated Annealing (GSA)

heuristic is a combination of the GA and SA techniques [3]. In general, GSA

follows procedures similar to the GA outlined above. However, for the selection

process, GSA uses the SA cooling schedule, system temperature, and a

< simplified SA decision process for accepting or rejecting a new chromosome.

42

There exist few algorithms which show how QoS requirements affect the

resource assignment in the Grids. The grid resource broker does not own the y

control of local schedules which introduces the load imbalance over the

resources. Hence, a good policy is needed to uniformly distribute the tasks to

resources and maintain the work load over resources.

2.2 Research Directions

From literature survey, it was seen that researchers have worked on two

types of applications, namely independent task scheduling and workflow
applications modeled as DAGs. This research work is also focusing on these
two types of applications. Some observations from the survey which guided our

thought process are discussed below.

It has been observed (Section 2.1.1) that OLB algorithm is well suited as

far as load balancing is concerned for independent task scheduling. Also, Max-

Min and XSuffrage produce good schedules for independent tasks. It would be
expected that these algorithms may work well in heterogeneous grid
environments also. In case of workflow applications, list scheduling heuristics

are widely adopted due to their easy implementation, but they produce less
efficient schedules. Duplication based algorithms have opportunity to improve

list based schedules though with higher complexity and resource consumption.

Thus, duplication strategy can be useful in scheduling workflow application in
grids if the schedules generated can be further optimized to reduce the
resource consumption. The matter of higher complexity in duplication based
scheduling heuristics can be tolerated due to the static nature of tasks and
these tasks are submitted offline to the Grid. In case of online job submission,

duplication may not be very useful. But, duplication can be a useful strategy for
static workflow scheduling in grids.

43

<

Further, single objective scheduling techniques cannot fulfill all the

demands of grid scheduling, and at times, the different objectives cannot be

improved simultaneously due to conflicting requirements. Resource owners in

grid are interested in maximizing resource utilization and economic profit,

whereas resource consumers are aiming to, minimize the execution time and

economic cost for running their applications. This multi-objective nature of

scheduling in grids motivates us to develop new multi-objective scheduling

algorithms for grid computing systems. A multi-objective scenario can be

minimization of execution time and economic cost of application tasks,

minimization of processor consumption of grid resources, maximization of

trustworthiness/reliability of grid resources, and maximization of QoS

requirements of tasks.

The research efforts in this thesis are guided by the above gaps or

directions that have been identified through literature study. Specifically, our

research work addresses the following:

(a) Modeling of resource (processor and network) heterogeneity in grid for

workflow scheduling.

(b) Improving existing duplication-based scheduling algorithms for workflow

applications in heterogeneous grid environment.

(c) Development of bi-criteria scheduling algorithms for workflows (DAGs)

while exploiting duplication to optimize schedule length without letting it

increase the economic cost.

(d) Development of multi criteria scheduling algorithms for optimizing

execution time and economic cost while meeting QoS requirements such

as trustworthiness, resource availability, and communication bandwidth.

44

Chapter 3 Single Criterion Scheduling

3.1 Overview

i In Grid scheduling, a variety of optimization criteria are of interest e.g.,

minimization of total execution time (makespan), minimization of total economic

cost as per resource usage, maximization of resource availability, maximization

of resource trustworthiness and application reliability, etc. The recent research

trends reveal that execution time, economic cost, trustworthiness, and reliability

are the primary objectives of researchers to design more efficient scheduling

techniques to build robust and reliable distributed computing environment. In

this chapter, we have investigated new heuristics for time-based and cost-

based scheduling objectives. In time-based scheduling, heterogeneity of

resources has been focused and schedule length has been optimized with an

effective scheduling strategy. In cost-based scheduling, schedule cost or

processor consumption is an objective in which new duplication-based

heuristics have been proposed for heterogeneous and homogeneous

environments in order to minimize processor consumption.

45

3.2 Time Based Scheduling

3.2.1 Preamble

Heterogeneity is not new to scheduling algorithms but it is a big

challenge for scheduling tasks in grid computing environments. In Grid

computing, resources (both computational and storage) are distributed in

multiple domains, and the underlying networks connecting them are

heterogeneous. The heterogeneity reflects the different capabilities for task ^
execution and data access. A study [85] shows that if high performance is

required in a computational grid, the scheduler should have the ability to adapt

different application/resource heterogeneity. Thus; heterogeneity of tasks/

resources cannot be neglected while scheduling an application in Grid

computing environment. In this chapter, a list-based task scheduling algorithm,

known as Scheduling with Heterogeneity using Critical Path (SHCP) has been

presented and discussed. The objective of a task scheduling problem is to map

(match and schedule) tasks onto the suitable resources, and to order their

execution on each resource such that precedence relationships between tasks

are not violated and the overall execution time (makespan) could be minimized.

The heterogeneous resources (e.g., processors, data storages, catalogs,

network resources, and sensors) in the grid are spread over large geographical

region connected through arbitrary topology. It causes challenges for
scheduling applications because exact estimation of computation and >

communication costs, at times, may not be possible due to its dependence on

multi-variable parameters and on run-time input data. Although, dynamic

scheduling algorithms [76] are more realistic as they consider the actual costs
at run time and may offer a better load balancing and system utilization. The

static compile time task scheduling algorithm (SHCP) presented here does not

incur the run time scheduling overheads as is the case with the dynamic

scheduling techniques. >

46

•f

Bote-Lorenzo et al. [17] pointed out that a grid system has the

characteristics of heterogeneity, large scale and geographical distribution. It has

been observed that there exists a high level of heterogeneity among internet

routers, peer-to-peer and grid systems. Scheduling precedence constrained

task graphs (DAGs) becomes more complex in grid environment and the

increasing heterogeneity may be quite detrimental if not handled properly. Zhao

and Sakellariou [143] showed that length of the schedule produced may be

affected significantly with appropriate selection of task and edge weight in the

DAG using mean, median, best or worst values.

In literature [9,106, 124, 143], researchers have considered the task

node value in heterogeneous system as an average, median, best or worst

value etc. Most of the research work done on scheduling DAG in distributed

heterogeneous environment is based on list based heuristics like

Heterogeneous Earliest Finish Time (HEFT) [124], Critical Path on Processor

(CPOP) [124] and Hybrid Heuristic Scheduling (HHS) [106]. Zhang et al. [142]

presented a relative performance comparison of scheduling algorithms in the

Grid environment. It shows that HEFT and HHS algorithms perform better than

level based scheduling methods on many combination of computing

environments and DAGs in the Grid [37].

The HEFT algorithm is an insertion based static list scheduling heuristic

that assigns priorities of task nodes on the basis of higher b-level. The highest

priority task is scheduled on the processor which finishes its execution at the

earliest. Scheduling holes are also exploited if needed to improve the start time

of a task. The HHS is a class of algorithms that uses hybrid version of the list

based and level-based scheduling [37] approaches. It partitions the DAG into

different levels of independent tasks. The tasks in each level are ordered and

scheduled as used by HEFT. In this thesis, a new approach for computing the

priority of task nodes is adopted considering heterogeneity of computing

resources and underlying networks which have not been considered in the

literature till now. The priorities of task nodes decide the execution order of

47

tasks which reflects the schedule length of task graph. The experimental results

show that SHCP algorithm performs better for running large task graphs r
(workflows) in Grid based heterogeneous environment at high CCRs. A high
CCR (communication to computation ratio) indicates the communication
intensive nature of a problem, whereas, low CCR represents the computation

intensive problem.

3.2.2 Grid Resource Model

A Grid resource model (GRM) has been considered where

heterogeneous resources are connected through arbitrary topology and network
bandwidth varies from link to link. A Grid resource model can be represented by

G=(P,Q,A,B), where P={pi\piePfor /=1,2,...p}is the set of p highly available

bounded number of computing resources, A={a(pi)\a(pi)eA for i =1,2,.../?}is

the set of processing rates, where a(p,)\s the processing rate of resourcePl

(i.e., the unit is instruction counts/time, such as one million instructions/second),
Q={q(p,,pJ)\q(P„Pl)eQ for ij =\,2,-p} is the set of communication links

connecting pairs of distinct resources, q(Pl,Pl)\s the communication link

between Pl and Pj, and B={j3(Pl,pl)\/3(p,,pl)e Bfor ij =\,2,...P} is the set

of data transfer rates, where p{p,,Pl)\s the data transfer rate between p, and

p. (i.e., the unit is volume/time, such as Kbytes/second).

In this model, it is assumed that each processor has co-processor to

deal with communications, which allows computation and communication to

overlap each other. Additionally, task executions are assumed to be non-
preemptive and intra-processor communication cost between two tasks
scheduled over the same resource is considered as zero.

48

<

3.2.3 Workflow Application Model

A workflow application model (WAM) may be represented by a DAG,

W=(N,E,T,C) as shown in Figure 1.1, where TV is a set of « computation

tasks, T is a set of task computation volumes (i.e., one unit of computation

volume is one million instructions), £ is a set of communication edges that

shows precedence constraint among the tasks and C is the set of

communication volumes (i.e., one unit of communication volume is one Kbyte).

The value of r, e T is the computation volume for taskn, eN. The value of

Cy e Cis the communication volume occurring along the edgee,,, wheree, e E is

an edge between task nt and nl for nllnl e N. A task node without any parent

node is called entry node, and a task node without any child node is called exit

node.

3.2.4 Matter of Heterogeneity in Grids

In SHCP, the expected execution cost of tasks and expected

communication costs between the different pairs of tasks are computed using

processor and network heterogeneity factors formulated by us. In this model, a

priority based task sequence is generated using critical path. A Critical Path

(CP) can be defined as the longest directed path in terms of computation and

communication costs in the DAG in depth first search manner. In SHCP, an

unscheduled task is selected from the CP-based task sequence and scheduled

on the processor (or resource) that minimizes its earliest finish time with an

insertion-based approach. The comparison study shows that SHCP algorithm

performs better in terms of performance metrics in Grid based heterogeneous

environment for large task graphs of different sizes and at high CCRs.

Heterogeneity is a type of variability in characteristics (execution rate,

communication bandwidth, etc) of the resources (computational, storage,

49

network, etc) of any distributed computing system [17]. In this section, a
heterogeneity model is considered which defines two terminologies (processor
heterogeneity factor and network heterogeneity factor) to estimate the expected
computation costs of tasks and expected communication costs of edges in the
given DAG [96]. The processor heterogeneity factor p can be computed as:

£(a(A)-a(p,))2
2x

P = max{a(p,)}

where «(/?,) is the mean processing rate. It can be computed as:

i

X«(p,)
a(P,) =

(3.1)

(3.2)

Ahigh value of a shows the high heterogeneity among the resources. Similarly,
the network heterogeneity factor a can be computed as:

2x

p p

^2lifi(PnPj)-fi(PnPj)y
i=\ i=i+\

(p2-p)/2
max{ptp„Pj)}

here 6(p,,p,) is the mean transfer rate. It can be computed as:w

PiPnPi)

p p

II
1=1 /=i +l
E2>a./>,)

(p2-p)/2

50

(3.3)

(3.4)

r

A

It is assumed that data transfer rate between two computing resources without

any direct link is zero. Thus, the expected computation cost of task nodes can

be computed as:

&i= ' (3.5)
p x min{a(p,)} + (1 -p)x max{a(p,)}

Similarly, expected communication cost of edge from task—zn-te--jl can be

computed as: /©• r oseo. 7 W\

-^. ROO^^(3.6)a a x min {/?(/?,, Pj)} + (1 - a) xm'ax{0(p,, Pj)}

3.2.5 Heterogeneity Aware Critical Path Based Scheduling

The whole process of task scheduling onto the Grid resources can be

divided in two phases: (a) Critical Path Based Task Sequence Generation, and

(b) Resource Selection and Task Assignment.

(a) Critical Path Based Task Sequence Generation

In this phase, a critical path based task sequence is generated using

expected computation and communication costs obtained from Equations (3.5)

and (3.6). The nodes along this critical path are abbreviated as CP nodes. After

constituting the critical path, other nodes are added to keep the precedence

constraint order of task execution. The predecessor nodes are added on the

basis of higher b-level, and ties being broken on the basis of lower t-level [9].

Other remaining nodes are added using the same priority as assigned to them

at the end of task sequence. The b-level of task «, is the longest directed path

51

considering computation cost and communication cost from n, to the exit node

in the DAG. It can be computed recursively using the following formula:

b, =5>, +ma\{bl +?„} Vw, esucc(n,) (3.7)

where succ{n,) refers to the immediate successors of task node n, in the DAG.

Similarly, the t-level of n, is the longest directed path considering computation

cost and communication cost from node nt to entry node in the DAG excluding

its computation cost. It can be calculated as follows:

t, =max{/; +£„} Vm, e pred(nt) (3.8)

The first unscheduled task in the task sequence is known as candidate task.

(b) Resource Selection and Task Assignment

In this phase, the unscheduled selected candidate task is mapped to the
processor in the processor network which allows it to finish at the earliest using
insertion based approach. The task n, can start its execution on the candidate

processor if and only if data arrives from all of its immediate parents so as to
meet the precedence constraints. To select the best processor for the candidate

task, it is necessary to define the earliest start time (est) and earliest finish time

(eft) of task W(on processor/?,.. The est of entry task node nenlry on processor

p;can be calculated as:

est(ne„lry,Pj) =0 (3-9)

52

Similarly, eft and est must be computed recursively for the remaining tasks. To

compute the eft of task nl, all immediate predecessors of task n, must have

been scheduled.

est(r,„Pl) =max{p';,max J(„ {aft{nm) +—^-}} (3.10)
B(pk,Pj)

eft(ni,pj) =-^-+est<ni,pj) (3.11)

where aft(nm)\s the actual finish time of task nm (scheduled on processor pk)

which is equal to earliest finish time eft(nm)oi task nm after successfully

assignment on processor pk. Also, p" is the time when processor pt is ready

to execute new task in non-insertion based scheduling policy. After assignment

+ of all tasks in a DAG, the makespan of the schedule will be the actual finish

time of the exit task nexil which can be computed as:

makespan = max{aft(nexll)} (3.12)

The pseudo code of the SHCP algorithm is presented in Figure 3.1. The

SHCP works in two phases: (1) CP based task sequence generation phase for

4 computing the priorities of tasks using processor and network heterogeneity

factors, and (2) Task scheduling phase for selecting the tasks in order of their

priorities and schedule on to a resource which minimizes the task's finish time.

This algorithm critically evaluates the average computation and communication

costs for generating the task sequence. This order of tasks in this sequence

differs from task sequence obtained using HEFT [124] which affects the

workflow schedule and consequently the schedule length of application.

53

Algorithm 3.1: SHCP

1. Compute computation and communication heterogeneity factors using Equations (3.1)
and (3.3).

2. Set the weights oftask nodes in DAG with the expected computation cost using Equation
(3.5).

3. Set the weights of communication edges with expected communication cost using
Equation (3.6).

4. Construct a critical path based tasksequence.

5. while there are unscheduled tasks in task sequence (n, e N) do

6. Select the first unscheduled task n, from the task sequence

7. /or each processor p , (pf e P) do

8. Compute eft(n,,p) with insertion based task scheduling using Equation (3.11).

9. Assign task n: to processor pj which minimizes eft oftask ni.

10. end while

Figure 3.1: SHCP scheduling algorithm

3.2.6 Performance Comparisons and Result Analysis

We have implemented the scheduling algorithms (SHCP, HEFT and

HHS) in the simulated Grid environment and tested with random DAGs to
generate schedules produced on to the Grid of heterogeneous resources. The
performance of SHCP is compared with the well known HEFT and HHS
algorithms using the following performance metrics:

Schedule Length Ratio (SLR): Since a large set of task graph with different

properties is used, it becomes necessary to normalize the schedule length
(makespan) to a lower bound, called the Schedule Length Ratio (SLR) which

can be computed as:

54

4

<

SLR = makespm t • (3.13)
/ min„c„{ '-—}

The denominator is the summation of the minimum execution costs of tasks on

the critical path CPmm as discussed in [124]. The average values of SLR over

several random task graphs are used in the simulation.

Speedup: It can be computed by dividing the minimal sequential execution time

(cumulative computation costs of tasks on processor p/ that minimizes it) with

the parallel execution time (makespan) which can be defined as:

mmn e/'{y •— }
P< ^ a(D)Speedup = ».e»a(Pt> (3.14)

makespan

The results are obtained with respect to average SLR and average

speedup over different workflows of various sizes and CCRs. Each result,

obtained with respect to workflow size (i.e., number of tasks in a workflow) and

CCR, is an average of 100 different task graphs. Different DAGs of order 50 to

200 are randomly generated in the simulation. The out degree of each task

varies from 2 to 5. The CCR for different DAG applications varies from 0.1 to

10. The experimental results (Figure 3.2) show that SHCP algorithm surpasses

the HEFT and HHS algorithms for large task graphs and at high CCRs in the

simulated Grid computing environment. For small DAG applications, SHCP

show ineffectiveness as effect of heterogeneity is very less to divert the task

sequence and generated schedules become slightly worse while in case of

large DAG applications, SHCP exceeds the HEFT and HHS. Figures 3.2 (a to

c) show the improvement of our strategy with the earlier list based scheduling

heuristics.

55

3.0 i

2.8

a
2.6

3
•o 2.4

0>
0) 2.2
a.

</> 2.0
0)
o 1.8
E
o 1.6
>

< 1.4

1.2

1.0 -

CO

JS
a>

3

14

12

10

8

6

4

2 -

0

O.l

100 150

Number of Tasks

(b)

1 5

CCR

10

(c)

Figure 3.2: Performance comparison ofSHCP algorithm

56

4

The performance of schedules depends on the estimation of computation

costs of tasks and communication costs of data transfer between tasks. The

SHCP algorithm considers the heterogeneity of nodes and edges in application

DAG and compute the computation and communication heterogeneity factors

which are helpful in building a better task sequence based on b-level. The order

of tasks in a task sequence ultimately affects the schedule length. The

formulation of heterogeneity factors in Equations (3.1) and (3.3) is based on

'Standard Deviation' which reflects the spread of execution times of a task in

workflow. This is helpful in more accurate prediction of expected computation

and communication costs at compile time in the grid environment.

The experimental results show that the proposed single criterion

scheduling algorithm (SHCP) improves with the increase of workflow sizes and

CCRs. In general, CCR is high in grid computing environment. The schedules

produced using SHCP for large task graphs at higher CCRs are shorter than

HEFT and HHS in Grids. SHCP minimizes the execution cost (makespan) of

large sized workflow applications (communication-intensive) and hence is

better suited to be adopted for grid computing environment.

3.3 Cost Based Scheduling

4 3.3.1 Duplication Cost Based Scheduling

In current economic market, users have to pay execution cost to run their

applications over the grid resources which is computed as per the total run time

consumed by them. Task duplication based scheduling algorithms generate

shorter schedules without sacrificing efficiency but leave the computing

resources over consumed due to heavy duplications which increases the

execution cost [5, 8, 9, 37, 92]. We have presented two efficient duplication

based scheduling algorithms (1) Heterogeneous Economical Duplication (HED)

for heterogeneous (e.g., Grids), and (2) Reduced Duplication (RD) for

57

homogeneous (e.g., Clusters) computing systems. These algorithms reduce the
processor/resource consumption without affecting the overall schedule length/ +

makespan.

Duplication heuristics are more effective for fine grain task graphs and
for networks with high communication latencies. Duplication plays its role more

effectively at higher CCRs, as the formation of large sized scheduling holes
increases with higher communication costs, which can be exploited to

accommodate fine grain tasks conveniently [8]. The primary objectives of these ^
algorithms (HED and RD) are to minimize duplications after duplicating tasks on
processors selectively and minimize the overall schedule cost (Processor
Consumption). Processor Consumption (PC,) of a processor Pl is defined as

the fraction of its total time involvement for an application that the processor is

actually busy executing some tasks of this application. Overall percentage

processor consumption (PC) of a schedule is then calculated as the average of

the individual processor consumption. ,

y pc
PC = feasi ' x 100 (3.15)

Number of processorbooked

In homogeneous computing systems, selective duplication (SD)

scheduling algorithm duplicates the parent tasks selectively to start the
execution of dependent tasks earliest, which results in lower duplications and

lower time and space complexity [8]. Inter-process communication imposes

performance limitations on scheduling algorithms. Duplication of tasks on more
than one processor reduces the waiting time of dependent tasks. Most of the
duplication-based scheduling algorithms try to duplicate all possible
predecessors of a given task to improve the performance [5, 27, 69, 91, 92].

In heterogeneous computing systems, heterogeneity of computational
resources and communication mechanisms poses some major obstacles to

58

achieve high parallel efficiency. The performance of the scheduling algorithms

•+ tends to degrade with an increase in heterogeneity and CCR which results in an

inappropriate task/processor selection. In this case, duplication is very graceful

to overcome these 'stresses' and 'strains' of heterogeneity by replicating the

crucial tasks and thereby improving the finish time on processor, but it

increases scheduling cost due to overheads of duplicated tasks.

Savina et al. [9] suggested a heterogeneous limited duplication (HLD)

^ scheduling algorithm that adapts the SD algorithm [8] in heterogeneous

environment, and then assessed the usefulness of limited duplication approach

in dealing with the stresses of heterogeneity in a system. Dogan and Ozguner

[37] proposed a level sorting algorithm (LDBS) to arrange the tasks in DAG into

various precedence levels. The tasks, belonging to the same level have no data

dependencies, can be executed concurrently. In LDBS, tasks are scheduled

level by level starting from the top.

3.3.2 Resource Model

A target computing system can be represented by M = (P,Q), where

P = {p,\p,eP for i = \,2,...,p}\s the set of p fully connected bounded processors,

Q={q(p,,pl)\q(pl,pl)eQ for i,j =\,2,...,p} is the set of communication links

where q(pi,pJ)'\s the communication link from p, to pr In heterogeneous

computing system, task execution cost on different processors may be different

due to the processor heterogeneity (different processing rates) and similarly,

the data transfer rates (bandwidths) between different pair of processors may

be different due to network heterogeneity (see Section 3.2.4). In this model, it is

assumed that each processor has co-processor to deal with communications,

which allows computation and communication to overlap each other.

Additionally, task executions are assumed to be non-preemptive and

communication overhead between two tasks scheduled on the same processor

59

is considered as zero. After completing execution of a task, the associated

processor sends output data to all of its child tasks in parallel.

Heterogeneous processing is an abstract model with wide

manifestations. Savina et al. [9] have categorized the heterogeneity models into

two broad categories (1) Mixed heterogeneity machine model (MHM Model)

and (2) Fixed heterogeneity machine model (FHM Model). In MHM model, the
target machine consists of a mixed suite of p processors that are best suited to
process a particular type of program code. Therefore, execution time of a task rn
on processor pk will depend on, how well the architecture of pk matches «, 's

processing requirements. A task scheduled on its best-suited processor will
take lesser execution time, as compared to the one scheduled on a less-suited

processor. It is to be noted that the best processor for one task may be the
worst processor (one that takes maximum execution time/or does not execute

at all the particular code type task) for the other. This type of model represents

the heterogeneous machine suite as described by Khokhar et al. [66] and

covers the type of heterogeneity modeled in [99, 101, 124], corresponding to a

task having different execution times on different processors.

Figure 3.3: Asimple DAG with precedence constraints

60

*

+

A

A homogeneous computing system is a special case of a heterogeneous

computing system, in which all processors compute at the same execution rate

and the communication overhead between any two processors is the also

same. Figure 3.3 shows a DAG for workflow application model (see Section

3.2.3). The mean computation cost Wt of task n, and mean communication cost

Sy between task n, and task nt can be calculated as:

COi
z;. CO,,

V 1 < / < n (3.16)

£,= mean data transfer rate over all links in processor network
V \<i*j<n

(3.17)

where coll is computation cost of task nl on processor pi. Figure 3.3 is showing

a DAG where nodes represent mean computation costs (io,) of task nodes and

edges represent the mean communication costs {e) between task nodes.

Table 3.1: Computation cost matrix [<y„] for DAG in Fig. 3.3

Task

Node

Computation costs on different processors, CO
Mean cost, CD,

Pl P2 P3 P4

nl 1 1 2 1 1.25

n2 3 2 4 2 2.75

"3 5 6 3 4 4.5

n4 2 4 4 2 3.0

n5 4 8 7 8 6.75

n6 3 3 1 2 2.25

"7 5 5 5 5 5.0

n8 1 2 2 2 1.75

61

3.3.3 Reducing Duplications - Needs and Approaches

This section presents the economical scheduling algorithms (HED and

RD) based on duplication approach on a bounded number of fully connected
processors in heterogeneous and homogeneous computing systems
respectively. The HED and RD algorithm include two mechanisms, first is a
lower-bound complexity mechanism for scheduling based on insertion-based

task duplication and second is modifying schedule after removing some

duplicated and unproductive tasks from the schedule without affecting the

makespan.

In HED (Heterogeneous Economical Duplication), a priority based task

sequence is generated by ordering the tasks in non-increasing order of their b-
level. Now, the first unscheduled task in the task sequence is selected and

scheduled on a processor that can finish its execution at the earliest using

duplication. This algorithm uses insertion based scheduling policy which
considers the possible insertion of a task/ duplicated task in an earliest idle time

slot (scheduling hole) between two already scheduled tasks on the processor. A
task on the processor can start execution only after the data arrived from all of
its immediate predecessors. The parent of task n, whose data arrives last of all

is termed as the most important immediate parent (MIIP). Data arrival time for

task n, on processor Pk is given by:

DAT(nl,Pk) =max„epn,JI„){mm{Flk,Flk.+£ll}} (3.18)

where FJs the finish time of task » on processor Pk. ej; is the actual

communication time of data transfer from task n, to n,. Here, pk, refers to a

processor that hosts originally scheduled task nf.

62

-»

3 2 4
I 1

6 8 10 12
I I i i

14

1

16
1

18 20
I I

Pl "l "5 ////// "> • 1 "8
n

f 1/
"2

p, | n3 Y///M////A -
p^

0

L

n4

2 4
i I

(a)

6 8 10 12
ill

14
1

16
i

18 20
I 1

:\«1 | "5 //^// * ' • | "8
• "3 //////////// *

(b)

Duplicated Task Scheduling Hole

Figure 3.4: Gantt charts showing the schedules of (a) HLD (Duplications = 4, PC= 84.4%, P=4);
(b) HED (Duplications = 2, PC=80.8%, P=2) for DAG shown in Figure 3.3

Due to the non-availability of data earlier, owing to precedence

constraints or communication delay, a processor may remain idle leading to the

formation of scheduling holes. These scheduling holes may be exploited to

duplicate tasks to minimize data arrival time. The start time (Sik) of task n, on

processor pk is limited by the data arrival from its MIIP (say task A/,) and

availability of a suitable scheduling hole. If suitable scheduling hole is not

available then task n, can start after the completion of last scheduled task on

processorpk, i.e., the ready time (pk) of processor^ . The start time of task n,

on processor pk is given by:

Slk =m&x{DAT{Ml,pk\mm{pRk,Gs;}} (3.19)

where G;s is the start time of first suitable scheduling hole Grto accommodate

task >7, on the processor pk, if exist. The finish time (Fik) is calculated as:

Fik=sik+toik (3.20)

63

The finish time is calculated for all the available processors and task n,

is scheduled on the processor that gives earliest finish time. After scheduling all

the tasks, makespan is calculated as:

makespan = m&x{Flk} V 1 < i < n and \<k < p (3.21)

Algorithm 3.2: HED

Begin
1: Construct a prioritybased task sequence§;
2: do [

3: Select the first unscheduled task n, in the task sequence £ .

4: for (all pk in processor list P) {

5: Compute finish time Flk of «, on pk and sort the list ofimmediate parents of tt, in non-

increasingorder of data arrival time;

for all immediate parents, select the first immediate parent' nj from the list at Step 5{

9:

10:

11: |

12: Find the minimum earliest finish time of task n,

//duplication of n can reduce the finish time Fjk oftask n, on pk

Duplicate n .

Compute the earliest finish time Flk of n, on pk .

13: Assign task n, on processor pk with minimum Flk in schedule S;

14:) while (there areunscheduled tasks in thetask sequence g):
15: Maintain a list Xof tasks which have been duplicated later and list Yof duplicated tasks in non-

increasing order of their earliest start time;

16: for (each duplicated task n, in list Y){

17: //(no change in makespan ofschedule Safter removing duplicated task n,)

18: Remove this duplicated task n, from the schedule S and update list X;

19: !

20: for (each task n, in list X) {

21: //task n is unproductive task in schedule Sdue to its duplication; remove this task «, from

the schedule S

22: j

End

Figure 3.5: HED Algorithm

64

•+•

-r

Further, we maintain a list X of tasks (original version of tasks in the

> schedule) and list r of duplicated tasks (duplicated version of tasks in the

schedule) in non-increasing order of earliest start time. The above schedule is

modified only if the removal of the duplicated task from list Y does not affect the

makespan adversely. Similarly, the tasks in list X that are unproductive are

removed from the schedule. This modified schedule contains lesser number of

duplications and remarkably less processor consumption as compared with

HLD and LDBS for heterogeneous computing systems.

Gantt charts for the schedule generated by HLD and HED have been

shown in Figure 3.4. In the schedule generated by HLD, task n2 on processor

p2 and task w4 on processor p4 are unproductive after being duplicated on

processor p3 and p, respectively. Hence in HED schedule, tasks n, (which was

scheduled on p2 for n2), n2 from processor p2 and task nx (which was

scheduled on p4 for n4), n4 from processor pA have been removed. It shows

that HED uses less duplications and lesser number of processors with reduced

processor consumption as compared to HLD for the same makespan.

The RD considers the same scheduling policy for homogeneous system

of multiprocessors as described in HED (Figure 3.5). In this, a task sequence is

generated using critical path based priority (Section 3.2.5(a)). A task sequence

{«,,«7,«9}constructs the CP for the DAG shown in Figure 3.6. To satisfy the

^ precedence constraints, predecessor nodes are added in the CP sequence with

priority decided on higher b-level and ties being broken on the basis of lower t-

level to get a critical path based task sequence {«1(«3,n2,n7,«6,n3,«4,«g,«9}for

the DAG (Figure 3.6). Since the execution costs of all processors and the data

transfer rates (bandwidths) between the processors are same in the

homogeneous computing environment, the tasks are scheduled on to the

processors that give minimum earliest start time instead of earliest finish time

y using an insertion-based duplication scheme. The pseudo code for the RD

algorithm is same as HED except that a task sequence is generated using

65

critical path priority instead of using b-level and tasks are assigned on to the
processor that minimizes earliest start timers,*) instead of earliest finish

time(Ftt).

207

V
/

5

rt6
n7

4
4

10ir>

—— •»

nS

r>3 r>4

5

4
3 I)

Figure 3.6: Asimple DAG with precedenceconstraints

L

pi n,

P2

pi

;>4

^^^ «s

*M

Duplicated Task

(a)

10

(b)

14

l

- • .-••'•-•

20

1 •• v/^/////M ^

Scheduling Hole

Figure 37' Gantt charts showing the schedules of (a) SD (Duplications =5, PC - 91.5%)
(b) RD (Duplications =2, PC =78%) for DAG shown in Figure 3.6

66

-f

>

A

An application DAG is illustrated (n Figure 3.6 for homogeneous

computing system. Gantt charts for the schedule generated by SD and RD

algorithms for this application DAG are presented in Figure 3.7. In SD schedule,

task «7 on processor p, is unproductive after being duplicated on processor p3,

while in RD schedule, both tasks n2 (which was scheduled on Pl for «7) and «7

have been removed from processor Pl. The SD schedule has been further

modified without affecting the makespan after removing duplicated copies of

task «, on processors p3 and p4. It indicates that RD algorithm generates a

better schedule as compared to SD algorithm with lesser number of

duplications and remarkably lesser processor consumption.

3.3.4 Performance Comparisons and Result Analysis

Simulation results for the random task graphs are presented in Figures

3.8 and 3.9 for the clique topology for different task graph sizes and CCRs. The

performances of the proposed scheduling algorithms (HED and RD) have been

evaluated with respect to various workflow application characteristics (task

sizes, CCRs). The experimental results have been compared in terms of

average number of duplications and processor consumptions for

heterogeneous computing systems (Figure 3.8) and homogeneous computing

systems (Figure 3.9). Each result obtained, with respect to CCR, is an average

of 25 graphs (over 5 sizes and 5 average parallelisms), and with respect to

graph size, is an average of 20 graphs (over 4 CCRs and five average

parallelisms). In these experiments, the HED outperforms the HLD, LDBS in

heterogeneous computing environments, and RD outperforms the SD, CPFD in

homogeneous computing environments for different workflow sizes and CCRs.

67

0
0

C
D

(c)

(d)

Figure 3.8: (a) to (d): Performance comparison of HED on random graph suite for
heterogeneous systems

69

o

A
v

g
.

D
u

p
li

c
a
ti

o
n

O
N

J
-
t
^

c
n

o
o

o
N

J
-
t
^

c
r
i
O

o

1251
CCR

\v
o

4
M

p
o

e
n

O
O

O
-
o

-
n

O

C
D

+
+

*

(c)

(d)

Figure 3.9 (a) to (d): Performance comparison of RD on random graph suite for
homogeneous systems

71

3.4 Summary and Discussions

Heterogeneity of computing and network resources plays an important

role in scheduling of workflow tasks over the heterogeneous computing

environments. Tasks are scheduled in order of task sequence generated using

b-level. In SHCP, we have formulated computation and network heterogeneity

factors to obtain the task sequence. SHCP algorithm deviates the task

sequence obtained using b-level. It efficiently considers the heterogeneity in
resources and schedules the tasks on to the resources which produce better

makespan. The experimental results show that SHCP generates shorter
schedules for large workflow applications.

A duplication based strategy has been found momentous for
homogeneous and heterogeneous computing systems to improve the
performance. Duplication improves performance and reliability of such systems
by duplicating critical tasks with higher communication costs. In HED and RD
algorithms, the impact of duplications over makespan has been analyzed and
the schedules are further improved by eliminating some duplicated and
unproductive tasks as much as possible without affecting the makespan. These
scheduling algorithms show that they are very useful in the distributed systems
to reduce the scheduling cost and improving the performance of workflows.

The approaches presented optimize schedule by reducing duplications
as much as possible without affecting the makespan and improve the system
performance so that application execution cost and duplication overhead can be
reduced. Performance comparisons with best known duplications algorithms

such as CPFD and SD for homogeneous system and LDBS and HLD for
heterogeneous computing system show that RD and HED scheduling
algorithms generate comparable schedules with remarkably less duplications
and less processor consumption.

72

CHAPTER 4 Bi-Criteria Scheduling

4.1 Overview

Multi-objective formulations are realistic models for many complex

engineering optimization problems [14, 54]. The objectives are generally

conflicting, preventing simultaneous improvement of each objective. Most

real world engineering problems do have multiple objectives, i.e., minimize

cost, maximize performance, maximize reliability, etc. In general, we can

separate the optimization criteria of scheduling into two categories: those

relating to completion time and those relating to monetary cost. The matter of

time is concerned with the total execution time of whole workflow whereas

the cost is about the monetary cost of resource usage and cost associated

with waiting time of operations before and/or after they are processed.

"How to combine these objectives?" is a critical matter. One approach

is to combine all objectives into a single objective function and then try to

optimize the combined objective function. This leads to so called Pareto

optimality [130], where an entire solution space is spanned. The other

approach is to fix one or more parameters before hand and optimizes the

other parameter. The second approach can be useful because the different

73

parameters are generally conflicting and incomparable. Thus, in bi-criteria
scheduling, one parameter is optimized and then allowing a slack in its value,
the other parameter is optimized to get a final schedule [84, 130]. In this
research work, the second approach has been explored for developing a

scheduling algorithm for workflows where duplication is adopted in a

selective manner to optimize one objective.

In general, minimization of total execution time or makespan of the
schedule is considered as the most important scheduling criteria [9, 37, 106,

124]. The convergence of Grid computing towards a service-oriented

approach (Utility Grid) is fostering a new vision where economic aspects

have become other equally important criteria [100, 108]. Utility Grids enable

users to consume utility services transparently over a secure, shared,

scalable and standard world-wide network environment and pay for access

services based on their usage and the level of QoS provided. In such 'pay-

per-use' Grids, workflow execution cost (economic cost) must be considered

during scheduling. In several economic market models [42, 78, 66],

economic cost has been considered as an important scheduling criterion.

Therefore, our research interest has been directed towards multi-

objective optimization approach in scheduling the application tasks. Since,

these objectives are conflicting, therefore it is an issue to design an efficient

multi-objective scheduling algorithm. In this chapter, we have proposed two

bi-criteria scheduling algorithms (SODA and DBSA), for executing workflow

applications in grids.

74

4.2 Compaction Based Bi-Criteria Scheduling

4.2.1 Preamble

In general, minimization of makespan of an application schedule is the

most important scheduling criteria. Most of the existing grid computing

systems are based on system-centric policies whose objectives are to

optimize the system-wide metrics of performance i.e., makespan. The other

factor to be considered simultaneously is the economic cost to take care of

user-centric policies [42, 100], since different resources, belonging to

different organizations, may have different polices for payments.

A majority of problems addressed in the literature show that the

schedulers have been generated keeping a single criterion [9, 37, 106, 124].

Considering multiple criteria enables us to propose a more realistic solution.

Therefore, an efficient multi criteria scheduling heuristic is required for

execution of workflow on Grid while assuring the high speed of

communication, reducing the tasks execution time and economic cost. As the

DAG scheduling problem in Grid is NP-hard, we have emphasized on

heuristics for scheduling rather than the exact methods. In literature, many

bi-criteria scheduling algorithms have been proposed [18, 36, 78, 125, 130,

138], which minimize both makespan and economic cost of the schedule but

only few of them address the workflow type of applications.

Tsiakkouri et al. [125] proposed a scheduling algorithm for DAGs in

heterogeneous environments under budget constraints. Yu and Buyya [137,

138] proposed the multi-objective planning for workflow scheduling

approaches for utility Grids. Dogan and Ozguner [36] gave another trade-off

between makespan and reliability using a sophisticated reliability model

assuming computation and network performance. In [78], quality of service

(QoS) optimization strategy for multi criteria scheduling on the Grid has been

presented for QoS criteria namely payment, deadline and reliability, but they

75

do not address the workflow type of applications. We propose an approach

where processor requirement is minimized under two criteria (i.e., makespan y
and economic cost) for workflows. The study also shows that heuristics

performing best in static environment [9, 106] have the highest potential to
perform better in more accurately modeled Grid environment.

Scheduling heuristics proposed in the literature offer trade-offs
between the quality and the time complexity of schedules. Most existing multi
criteria scheduling approaches adopted the list scheduling heuristics [113,
124] as a primary scheduling, which is a low time complexity technique that
produces relatively low quality solutions. In our survey, it has been observed
that duplication based heuristics [9, 37] generate remarkably much shorter
schedules as compared with the list and clustering heuristics by assigning

some of the tasks redundantly on multiple resources reducing inter-

processor communication.

The duplication strategy enables us to utilize the idle time-slots which >

are rarely occupied by other application tasks. Comparative schedules of an
application DAG are presented in Figure 4.1 to illustrate our assertion about
duplication-based heuristic [9, 18] over list scheduling heuristic [113, 124]. In
Figure 4.1 (b), computation cost matrix represents the execution time of
tasks on processors. The computation cost 'infinity' indicates that some tasks
cannot be executed on some processors. This motivates us to adopt an

efficient duplication based approach for primary scheduling to generate the •
initial schedule which gives 'makespan' (primary criterion) much lesser than

any other list scheduling heuristic.

76

Task Pl P2 P3
Pl P2 P3

ni 1 2 2

Pl 0 1 1
n2 2 00 1

"3 00 2 4 P2 1 0 1

"4 5 3 oo P3 1 1 0

(a) Sample DAG (b) Computation Cost Matrix (c) Communication Cost Matrix

Pl

P2

P3

Pl

P2

P3

III 12 14
L

16
_l

nl "2 , '

n3 n4

(d) Schedule without Duplication (HEFT-List Scheduling, makespan=16)

in 12 14 16

"2

n4

nl "3

(e) Schedule without Duplication (SDC-List Scheduling, makespan=14)

in 12 14 ll»

Pl n

P2

P3

(f) Schedule with Duplication (Duplication-based Scheduling, makespan=8)

Scheduling Holegj Duplicated Task

Figure 4.1: Effectiveness of duplication based scheduling over list scheduling

In literature [125], two approaches i.e., LOSS and GAIN were

proposed to compute the weight values for a given DAG. In LOSS, initial

assignment is done for optimal makespan using an efficient DAG scheduling

[124] whereas, in GAIN, initial assignment is done by allocating tasks to

cheapest machines in order to reduce the economic cost as much as

possible. We consider the LOSS approach where initial assignment is done

using duplication-based scheduling approach inspired from our earlier work

discussed in Section 3.3 rather than HEFT [124] since duplication-based

77

heuristic produces shorter makespan. In secondary scheduling, we target the
processor requirements by removing redundant duplicated tasks from
schedule and thereby optimize the 'economic cost' (secondary criterion) of
the schedule without affecting the makespan obtained in primary scheduling.

In this work, LOSS approach [125] has been used to reduce the economic

cost in secondary scheduling.

4.2.2 Grid Resource Model

A Grid resource model has already been discussed in Section 3.2.2.

The processing capacities of resources (in MIPS) and machine price per

MIPS execution are shown by Tables 4.1 and 4.2 for the sample grid

resource model illustrated in Figure 4.2. In Figure 4.2, the solid lines indicate

the direct path between resources while the dotted lines show that there is no

direct path and communication between these resources is done through

alternative paths. The values on these lines are showing the maximum data

transfer rates (or bandwidth) available between the grid resources. Table 4.1

presents the resource capacity (computation speed of processor in terms of
MIPS rating) of executing tasks (in MIPS rating). Table 4.2 shows the

monetary execution cost (in grid Dollar) of grid resource per MIPS for

executing tasks.

•+• Direct Path •-• Indirect Path

Figure 4.2: Asample Grid consists of four resources (Bandwidths are in Kbps)

78

Table 4.1: Resource capacity

Resources Pl P2 P3 P4

Processing Capacity,

a(Pi)
(in MIPS)

220 350 450 310

Table 4.2: Machine price

Resource p
Machine cost per MIPS M,

(in g$)
1 1.0

2 2.5

3 3.0

4 2.0

4.2.3 Workflow Application Model

In the context of Grid computing, there exist several applications such

as bioinformatics, financial analysis etc. that can be constructed as

workflows. A scheduling problem can be defined as the assignment of

different Grid services to different workflow tasks. Every workflow can be

modeled as DAG, as shown in Figure 1.1. The application model has already

been discussed in Section 3.2.3.

Most of the existing scheduling algorithms consider that all the

available resources are equally capable, i.e., each resource can execute all

the tasks with possibly different processing rates. While some of them do not

make the assumption explicitly as they do not consider the potential effect of

different capabilities [106, 124]. Thus, these algorithms suffer in performance

and may become inapplicable without modification such as CPOP [124]

assign all tasks onto a single processor in an attempt to minimize the

execution time of critical tasks. This algorithm fails if none of the processor is

able to execute all the tasks (see Table 4.3). The computation cost of task n,

79

on resource Pl is co,r If the resource Pj is not capable to process the task

n,, then o)y = oo.

Table 4.3: Computation cost, b-level and task sequence for DAG in Fig. 1.1

Task

Node

Computation Cost CO, (in msec) Mean

Time

(ms)

b-level
Task

Sequence

Pl P2 P3 P4

"1 1 1 OO 1 1 35 nl

n2 OO 2 4 3 3 19 n5

n3 5 OO 3 4 4 20 n4

n4 2 OO 5 2 3 28 n3

n5 4 8 OO 6 6 29 n2

n6 3 OO 1 2 2 9 n7

n7 5 5 OO 5 5 15 n6

n8 1 3 2 oo 2 2 n8

The optimization goal of bi-criteria scheduling is to obtain the

schedule with minimum schedule cost. It can be expressed in terms of

performance metrics called effective schedule cost (ESC) which can be

computed using Equation (4.6). Another performance metrics is normalized
schedule length (NSL) (see Equation (4.4)) of the schedules by our

approach and compared with the existing bi-criteria scheduling algorithms.

4.2.4 Performance Metrics

The proposed bi-criteria algorithm focuses on two objectives:
makespan and economic cost. The makespan is the total time between finish
time of exit task and the start time of entry task in the given DAG. The

economic cost (EC) is the summation of the economic costs of all workflow

tasks scheduled on different resources which is computed as:

80

EC =lLDi (4.1)
7=1

where m is the total number of available resources in the Grid and D is the

execution costofthe tasks scheduled on a resource p , D is given as:

DJ=PBTjxa(pJ)xMJ (4.2)

where Mf is the per MIPS machine (processor) cost (in grid Dollar or g$) of

executing task on a resource Pj, and PBTl is the total busy time consumed

by tasks scheduled on a resource Pl. In this model, the cost of idle time slots

between the scheduled tasks on any resource is also considered in the

economic cost as it is difficult for the grid scheduler to schedule other

workflow tasks in these idle time slots. Thus, the total execution time

(makespan) can be expressed as:

makespan = AFT(nexii) - AST(nmry) (4.3)

where AFT and AST are the actual finish and actual start time of the exit task

and the entry task respectively. The normalized schedule length (NSL) of a

schedule can be calculated as:

NSL=makespan_
Zj mmH}

The denominator is the summation of the minimum execution costs of tasks

on the CPmm[M4] in the given DAG. In the Grid, some resources may not

always be in a fully connected topology. Therefore, bandwidths between

such resources can be computed by searching alternative paths between

them with maximum allowable bandwidths. The communication cost between

the task n, scheduled on the resource Pm and the task nt scheduled on the

resource p„ can be computed as:

e = CJL (4.5)
" B(pm,P„)

In this model, we avoid the communication startup costs of resources

and intra-processor communication cost is negligible. Aworkflow of tasks is
submitted to the Grid Scheduler [84] where tasks are queued in non-

decreasing order of their b-level. The b-level (bottom level) of task n, can be

defined as the longest directed path including execution time and
communication time from task n, to the exit task in the given DAG. The

optimization goal of bi-criteria scheduling is to obtain the schedule with
minimum schedule cost. It can be expressed in terms of performance metrics

called effective schedule cost (ESC) which can be computed as:

ESC = NSLxEC (4.6)

4.2.5 SODA Algorithm

In this work, a fairly static methodology has been adopted for defining

the weights of the computational tasks and communicating edges. The
'execution time (makespan)' is the total time between the finish time of exit
task and start time of the entry task in the given DAG. Similarly, the

'economic cost' (EC) is the summation of the economic costs of all workflow
tasks scheduled on different resources which can be calculated using

Equation (4.1).

In our model, the cost ofthe idle slots between the scheduled tasks on

any resource is also considered as part of economic cost as it is difficult for
the Grid scheduler to schedule other workflow tasks in these idle slots. After

82

assignment of all tasks in a DAG on Grid resources, the makespan of the

schedule will be the actual finish time of the exit task nau which can be

computed using Equation (4.3). Since a large set of task graphs with

different properties is used, it becomes necessary to normalize the schedule

length (makespan) to a lower bound, called the normalized schedule length

(NSL) which is calculated using Equation (4.4). A resource management and

scheduling model is shown in Figure 4.3.

DAG

IT.
Primary Scheduler K

V
Secondary Scheduler

Grid Meta Scheduler

:>

Grid

Information

System (CIS)

<^=^>

Job Launching and
Monitoring ^>

Grid

Resource

Pool

Figure 4.3: A Grid resource management and scheduling model (GRMS)

In this algorithm, we consider the makespan as the primary criterion

and economic cost as the secondary criterion. The primary scheduler (Figure

4.3) is used to generate a schedule that minimizes the makespan. The

scheduler adopts an efficient duplication scheduling approach to optimize the

makespan as much as possible. Further, this schedule is forwarded to the

secondary scheduler (Figure 4.3) while the primary scheduler simultaneously

gets another workflow for scheduling. Therefore, the primary and secondary

scheduler can work in parallel on different workflows. The secondary

scheduler optimizes the primary schedule to minimize the number of

processors and thus economic cost subsequently.

83

Algorithm 4.1: Primary Scheduling in SODA

(1) Input: Aworkflow (w) or DAG with task computation and communication costs. Set of available
resources P along with thecost of execution perunit time.

(2) Construct apriority based task sequence £ based on highest b-level first.

(3) For (each unscheduled task n, in the task sequence £)

Assume thefinish time F, of task n, is Infinite.

For (each capable resource p f)

(3a) Compute finish time F, of task n, on resource pr

(3b)Construct taskpredecessor listpred_list(n,).

(3c) Initialize temp_list(n,,Pj)to zero.

(3d) //(pred list)

For (each predecessor dk not scheduled on pf)

//duplication of dk on pf reduces the finish time Flf

Add dk in temp_list(n,,Pj).

Update finish time Fy

Endlf

EndFor

Endlf

(3e) // Fy < Ft

F = F .

r, =/>/•

//(temp list)

Copy tempjist(n, ,pf) into duplicate list(n,. p,).

Endlf

Endlf

EndFor

Assign task «, on resource r, and update the schedule S .
//(duplicatejist)

Duplicate tasks from duplicatejist to r; and update schedule S .
Endlf

EndFor

(4) Compute makespan cf1'' (Eq. 4.3) and economic cost cfc' (Eq. 4.1) from schedule 5.

Figure 4.4: The pseudo code of primary scheduling in SODA

84

Algorithm 4.2: Secondary Scheduling in SODA

(1) Input: Aworkflow (w) orDAG with task computation and communication cost, set ofavailable resources P

along with the cost of execution per unit time. Consider makespan c(nl and economic cost C2P"' obtained from
primary scheduling using Algorithm 4.1 (Figure 4.4). Aschedule S and duplicatejist from Algorithm 4.1.
(2) If(duplicatejist)

(2a) Copy tasks from duplicatejist into list A and sort them in non-decreasing
order of their start time.

(2b)For(each duplicated task a, in A)

Compute schedule length SL without considering ai in schedule S .

if(SL<cfn")
c{mal = SL.
Remove a, from schedule S and update list A .
Endlf

EndFor

(2c)Construct list B of tasks from list A that were duplicated onother resources.
(2d)Sort list B in non-decreasing orderof taskstart time.
(2e) For (each task b, in B)

Compute schedule length SL without considering b, in schedule S .

Endlf

if(SL<cr')
,final

SL.

Remove bi from schedule S and update list B .
Endlf

EndFor

, fmal(4) Compute economic cost C2 of the optimized schedule S .

(5) For (each task n, scheduledon resource p, in schedule S)

(5a)Construct list R of capable resources innon-decreasing order whose machine
cost is lessthan M . (Table 4.2).

(5b) For (each alternative resource pk in R)

i. Reschedule task n, to resource ph for C, " < cfn .
ii. Compute economic cost EC (Eq. 4.1).

iii.//(EC<C final
2

EndFor

EndFor

Update schedule S.

'2
c{'""' = EC.

Endlf

Figure 4.5: The pseudo code of secondary scheduling in SODA

85

We have adopted three phases to balance the makespan and

economic cost in secondary scheduling: +

1. Removal of useless duplicated tasks

2. Removal of unproductive schedules

3. Shifting of tasks to cheaper resources without affecting makespan

First, it investigates the duplicated tasks in the schedule and modifies
the schedule after removing those duplications whose removal keeps the

makespan unaffected. Second, it analyses those tasks in the schedule which
have been duplicated on other resources. Sometimes, such tasks or

schedules may become unproductive if their descendent tasks are receiving
input data from their duplicated version. Thus, such unproductive tasks or
schedules are removed in order to minimize the processor requirements and

reduce the economic cost. Then, each task in the above schedule is tried to

reschedule from current processor to other capable processor in order to

minimize the economic cost while keeping the makespan of the schedule

unaffected.

The pseudo code of the proposed algorithm (SODA) is described in
Algorithm 4.1 (Figure 4.4) and Algorithm 4.2 (Figure 4.5). It is divided into two

major phases:

1. Primary scheduling - optimization for the primary criterion only

2. Secondary scheduling - minimization of processor requirements
and optimization for the secondary criterion without affecting the

makespan obtained in primary scheduling.

An efficient duplication-based heuristic has been applied for the
primary scheduling for optimizing the primary criterion (makespan). It r

86

*

generates a preliminary solution Sol™ e SC with the total costs of primary

criterion (i.e., makespan) and the secondary criterion (i.e., economic cost)

which can be denoted as c[rel and cf', respectively. The set sc contains all

possible schedules for workflows to be executed [130].

4.2.6 Performance Comparisons and Result Analysis

The SODA algorithm has been implemented in MATLAB using

TORSCHE scheduling toolbox (see Appendix - A) for the evaluation of

different random task graphs or DAGs of different graph sizes (100, 200,

300, 400, 500) and different parallelisms (2, 4, 6, 8, 10). The proposed

approach has been compared with DCA [130]. The algorithms have been

executed and compared in a Grid of different resource size (20, 40, 60, 80,

100). The SODA algorithm has been compared with DCA for performance

evaluation of effective schedule cost (ESQ, economic cost and NSL with

respect to various random workflows of different sizes. The algorithms have

been run under the same conditions for fair comparison: for each workflow,

each algorithm is run to find best possible second criteria cost without

altering the makespan in primary scheduling.

The simulated results and graphs reveal that the proposed bi-criteria

scheduling approach (SODA) outperforms the DCA algorithm in terms of

both economic cost and schedule length. In Figure 4.6, SODA algorithm

yields reduced economic cost (EC) as compared to DCA for different

workflow applications. Figure 4.7 depicts, the improvement of SODA over

DCA in terms of effective schedule cost for different workflows. Further,

SODA algorithm performs better in terms of average NSL (Figure 4.8) for the

schedules generated in secondary scheduling. As duplication strategy has

been adopted in an efficient manner, our approach shows improvement over

the DCA algorithm to be adopted for grid scheduling.

87

130

"a no

f 90
o

« 70

E

§ 50
o
u

" 30

10

Grid size =100
t-(< _-*<.!

^ "

/
/ _

, i 1 1

200 300 400 500

1600

Y>- 1400
BO

=- 1200

is
U 1000
ju

•3 800

S 600
01

» 400
u
O)

tt 200

100

Number of Workflow Tasks

Figure 4.6: Effect ofworkflow size on economic cost

Grid size =100

<>
x' <."

/>'
_„_____J __—

100 200 300 400

Number of Workflow Tasks

500

•--SODA

— DCA

—♦—SODA

DCA

Figure 4.7: Effect ofworkflow size on effective schedule cost

88

>

>

30
Grid size = 100

—♦—SODA

DCA

_J 25
</>

z 20
<l»
cuo IS
ro
i-

<u 10
>

< 5

0 i r-—~ 1 ' 1 1

100 200 300 400 500

Number of Workflow Tasks

Figure 4.8: Effect of workflow size on Average NSL

Table 4.4: Grid simulation environment layouts

Number of grid resources
Resource Bandwidth

Number of tasks

Computation cost of tasks

Data Transfer Size

Resource Capability (MIPS)

Execution Cost (Per MIPS)

[20, 100]

[100 Mbps, lGbps]
[100,500]

[5 msec, 200 msec]

[20 Kbytes, 2 Mbytes]
[220,580]

[1-5 grid dollar per MIPS]

In this research, a novel bi-criteria workflow scheduling approach has

been presented and analyzed. We have proposed an efficient scheduling

algorithm called 'schedule optimization with duplication-based bi-criteria

scheduling algorithm' (SODA) which optimizes the makespan and economic

cost of the schedule and minimizes the requirements of processors. The

schedule generated by SODA algorithm is better than other related bi-criteria

algorithms in respect of both makespan and economic cost. This algorithm

decouples processor economization from schedule length minimization. In

89

next section, we extended this approach using sliding constraints for yielding

much better schedules.

4.3 Two Phase Bi-Criteria Scheduling

4.3.1 Preamble

This section extends the previous bi-criteria research work by

considering sliding constraints. It introduces a new bi-criteria scheduling
heuristic called Duplication-based Bi-criteria Scheduling Algorithm (DBSA)

for Grid computing environments. The proposed scheduling approach works

in two phases: (1) Duplication-based Schedule Optimization for the primary

criterion i.e., execution time, (2) Sliding Constrained Schedule Optimization -

Optimizes secondary criterion i.e., economic cost while keeping primary
criterion within the allowable slack (sliding constraint). The sliding constraint

can be defined as a function of the primary criterion to determine how much

the final solution can differ from the primary solution for primary criteria. The

experimental results show that the proposed approach generates schedules
which are fairly optimized for both economic cost and makespan while
keeping the makespan within defined constraints for executing workflow

applications in the grid environment.

In [36, 78, 138, 139, 130], several scheduling algorithms have been
proposed which minimize the makespan and the economic cost of the
schedule but only few of them address the workflow type of applications. The
research work [138, 139] presented the multi-objective planning for workflow
scheduling approaches for utility grids. Wieczorek et al. [130] presented bi-
criterion scheduling algorithm known as Dynamic Constraint Algorithm (DCA)
based on a sliding constraint. It adopted list-based scheduling heuristic for
primary scheduling. Our work takes a different approach for the two specific

90

*

criteria (i.e., makespan and economic cost) while utilizing the effectiveness of

duplications in minimizing makespan in Grids which has not been explored in

any of the related work till date.

Deelman et al. [33] described the three different workflow scheduling

strategies namely, full-plan ahead scheduling, in-time local scheduling, and

in-time global scheduling. In in-time local (or global) scheduling, scheduling

decision for an individual task is postponed as long as possible and

performed before the task execution starts (fully dynamic approach). In full-

plan ahead scheduling, the whole workflow is scheduled before its execution

starts (fully static approach). We have adopted full-plan ahead scheduling as

it does not incur the run time overheads and the associated scheduling

complexity. The research study shows that heuristics performing best in the

static environments (e.g., HLD [9], HBMCT [106]) have the highest potential

to perform better in a more accurately modeled grid environment.

In extensive literature survey, it has been observed that duplication-

based heuristics [9, 37] generate remarkably much shorter schedules as

compare to the list based and cluster based heuristics. The duplication

approach utilizes the idle time slots (scheduling holes) for task duplication

which, in turn, reduces the communication time. This motivates us to adopt

duplication-based approach for primary scheduling to optimize the

makespan (Primary criterion).

In secondary scheduling, the objective is to optimize the economic

cost (Secondary criterion) of the schedule while keeping the makespan within

a defined sliding constraint. Figure 4.9 illustrates that the primary solution

(M1, C1) can be obtained considering primary criterion i.e., makespan in the

primary scheduling that yields makespan of length M1 while the economic

cost is C1. In secondary scheduling, the above schedule is optimized for the

economic cost allowing the makespan to increase from M1 to M2 (M2 is the

maximum allowable schedule length) that yields the schedule with makespan

91

M2 and the reduced economic cost C2. The sliding constraint approach

generates schedules which are better both in terms of the execution time and

the economic cost [130].

a
o

•rl ^
U -P
(1) CO

•P o
H CJ
u
u o

•rl

>i B
M O
to a

Tj O
a o
O H
O "-'
a>

C/}

ci-

C2-

Primary Solution (Ml, CI)

Local

Search |
^ Direction |

Ml M2

Primary Criterion (Makespan)

Solution (M2, C2)

Sliding Constraint

Figure 4.9: A bi-criteria optimization process

In general, bi-criteria optimization yields a set of solutions (a Pareto
set) rather than a single solution. Each solution in a Pareto set is called
Pareto optimum and when these solutions are plotted in the objective space
they are collectively known as Pareto front. The main objective of multi
criteria optimization problem is to obtain a Pareto front. In this research, we
consider LOSS approach in secondary scheduling to optimize economic cost

while increasing makespan within constraint limits.

92

4.3.2 Grid Resource Model

The Grid resource model is illustrated in Figure 4.2 which is already

discussed in Section 3.2.2. The processing capacities of Grid resources have

been shown in Table 4.1. In Table 4.2, machine execution prices per MIPS

are given for the resources working in the Grid as illustrated by Figure 4.2.

4.3.3 Workflow Application Model

The workflow application model has been discussed earlier in Section

3.2.3. Table 4.3 shows the computation costs of workflow tasks on different

processors and task sequence based on b-level computing for each task for

application DAG shown in Figure 1.1. Some tasks may not be executed on

some processors because processing time is infinite (e.g., ni on p3, n2 on p^.

4.3.4 DBSA Algorithm

In this scheduling approach, makespan is the primary criterion and

economic cost is the secondary criterion. Sliding constraint for the primary

criterion would represent how much the final solution may differ from the best

solution found for the primary criterion in first phase of scheduling. The

primary scheduler works on duplication-based scheduling approach to

minimize the total schedule length (makespan) as much as possible. Then,

this schedule is forwarded to the secondary scheduler. The secondary

scheduler optimizes the above schedule to minimize the economic cost while

letting makespan increase up to sliding constraint limit. In secondary

scheduling, some duplicated tasks may be removed and the primary

schedule is modified such that makespan of the schedule, after removing

useless duplications, remains within maximum allowable execution length.

93

Algorithm 4.3: Secondary Scheduling in DBSA

(1) Input: Aworkflow (w) or DAG with task computation and communication cost, set of available resources P
along with thecost ofexecution perunit time.
Assume sliding constraint Z(i.e. 10%, 25%, 50%. 75% of the makespan c/"*' obtained from Algorithm 4.1).
Aschedule S and duplicatejist from Algorithm 4.1 (Figure 4.4).

(2) Let i>LNm. - C,cr"" + io% of c[

(3)//(duplicatejist && c/"* <SLNew)
(3a) Copy tasks from duplicatejist into list A and sort them in non-decreasing

order of their start time.

(3b) for (each duplicated task a, m A)

Compute schedule length SL without considering a, in schedule S .

lf(SL<SLNew)

c{mal =SL.
Remove a, from schedule S and update list A.
Endlf

EndFor

(3c) Construct list B oftasks from list A that were duplicated onother resources.
(3d)Sortlist B in non-decreasing orderof taskstarttime.

(3e) For (each task b, in B)
Compute schedule length SL without considering b, in schedule S .

lf(SL<SLNew)
, final _

Endlf
EndFor

Remove b, from schedule S and update list B .

Endlf

(4) Compute economic cost C2""' of the optimized schedule S.
(5) For (each task nt scheduled on resource pf in schedule S)

(5a) Construct list R ofcapable resources in non-decreasing order whose machine

cost is less than M (Table 4.2).

(5 b)For (each resource pk in R)
frnuli. Reschedule task n, to resource pk for c, < SL

ii. Compute economic cost EC (Eq. 4.1).
New •

... *r, T^r^\ ^ final .iii. //(EC < c2)
Update schedule S .

final
= EC.

Endlf
EndFor

EndFor

Figure 4.10: The pseudo code for secondary scheduling in DBSA

94

>

>

r

The proposed algorithm can be divided into two phases: (1) Primary

Scheduling - optimizing the makespan, (2) Secondary Scheduling -

optimizing economic cost, while keeping the makespan within the defined

sliding constraint limit. An efficient duplication-based scheduling heuristic

has been applied for the primary scheduling [102]. It generates a preliminary

solution solprel £sc, with the total costs of primary criterion and the

secondary criterion denoted as cf" and cf', respectively. The set sc

contains all possible schedules for workflow (w) to be executed over the Grid

[130].

The secondary scheduling optimizes the primary solution for the

secondary criterion, generating the best possible solution sol£nal e sc and the

total costs cf""' and c{wal for primary and secondary criteria. The sliding

constraint is equal to L such that the primary criterion cost can be increased

from c/"*' to cf"' +L. We can calculate the maximum allowable execution

time r,™x and minimum economic cost cmm of workflow application using cost

optimization algorithm such as GreedyCost [138]. Similarly, maximum

allowable economic cost Cmax of a workflow with shortest possible execution

time Tmm can be computed using time optimization algorithm such as HED

(see Section 3.3.3).

The schedule produced by primary scheduling is illustrated in Figure

4.11(a) for the workflow as shown in Figure 1.1. The makespan of this

schedule is 16. This schedule yields the total economic cost of 18.81 g$

computed as per machine cost described in Table 4.2 using Equations (4.1)

and (4.2). Further, we apply the secondary scheduling to optimize the

economic cost while keeping the makespan within maximum allowable limit

considering sliding constraint.

QS

Pl

I>2

Vi

l'4

n

l'2

P3

l»4

I'l

l»2

P3

1'4

(a) Gantt chart showing a schedule by duplication-based scheduling (EC-18.81 g$)

E2% W/
*1- •»

V/%.^WM *

in

u

12 14 16

(b) Gantt chart showing a schedule after removing useless duplications (EC-17.31 g$)

10 14

-~-n. wmk±

(c) Primary schedule after removing unproductive sub-schedules (EC-14.32 g$)

--. «5 wnM^

- -• n. > ru

hi

i

• n,.

12

i

14

16

16 17

_l I

(d) Gantt chart showing a schedule after applying Greedy approach (EC-9.32 g$)

Figure 4 11: Gantt charts showing DBSA schedules (a) to (c) Primary scheduling;
(d) Secondary scheduling with sliding constraints (+10% of makespan in primary scheduling)

In Figure 4.11(b), the above schedule is optimized after removing
some duplications (n,onp2,n,onp,) whose removal keeps the makespan

within maximum allowable limit. It reduces the economic cost of the schedule
to 17.31 g$ because of the removal of redundant duplications. Again, we
identify those tasks or sub-schedules which have been duplicated over other

96

resources in primary scheduling. We try to remove them whose descendent

tasks are receiving input data from their duplicated version. Such sub-

schedules or tasks may be removed which reduces the economic cost of the

schedule further to 14.32 g$ as shown in Figure 4.11(c). The tasks in the

above schedule are then tried to reschedule over cheaper resources if it

reduces the economic cost while keeping the makespan within maximum

allowable limit. The schedule in Figure 4.11(c) is modified in order to

reschedule tasks from resource P3 to P4 which reduces the economic cost to

9.32 g$ while makespan is kept below 18 (+10% of makespan in primary

scheduling) yielding a schedule shown in Figure 4.11(d). The real scenarios

of schedules shown in Figure 4.11 are obtained through simulation and

presented in Figure 4.13. Full calculations for this example have been

explained in Appendix - B.

4.3.5 Performance Comparisons and Result Analysis

The pseudo code of DBSA for primary scheduling is same as in SODA

(see Figure 4.4). The pseudo code for secondary scheduling is presented in

Figure 4.10. The DBSA is implemented in the simulated grid environments

for the evaluation of different graph sizes (100, 200, 300, 400 and 500) with

different parallelism i.e., maximum out degree of nodes in the DAG (2, 4, 6, 8

A and 10). The DBSA has been tested in the Grid of heterogeneous resources

(20, 40, 60, 80 and 100). The DBSA has been compared with SODA and

DCA. The results are analyzed for the performance metrics, i.e., effective

schedule cost (ESC) and normalized schedule length. The simulation has

been implemented in MATLAB using scheduling toolbox (see Appendix-A).

97

300

vv 250
.55

3 200

3

15 150
.c

u

.110°
u

I
uJ 50

ttO

c

VI

o
u

_a>
3

•a
0)
-c

u

a)
>

u

I

1600

1400

1200

1000

800

600

400

200

0

20

Application size = 100

40 60 80

Number of Resources

(a)

Grid size = 100

.j—,-/.—-•-

100 200 300 400

Number of Workflow Tasks

(b)

98

100

£4
4

500

—4—-SODA

•••••••• DBSA

DCA

-♦-SODA

-—DCA

*••• DBSA

A

30

25

20

01

CD

0)
>

<* 10

5

0

Grid size = 100 ,

::z:::::^

w

100 200 300 400 500

Number of Workflow Tasks

SODA

DCA

DBSA

(c)

Figure 4.12: Performance comparison of DBSA algorithm

The DBSA is run for primary scheduling for both the criteria (i.e.,

makespan and economic cost) to find the best and worst solutions for

primary criteria (c*« and c™n') which yield the maximum sliding constraint,

i.e., the difference \c;ors'- c^\. The algorithms are run for three different

sliding constraint values: 25%, 50% and 75% of |c1"w*- c^"\. The simulated

results and graphs reveal that the proposed bi-criteria scheduling approach

outperforms the SODA and DCA algorithm in terms of both economic cost

and schedule length. In Figures 4.12(a) and 4.12(b), the DBSA yields the

reduced effective schedule cost (ESC) as compared to SODA and DCA w.r.t.

different grid size (i.e., 20, 40, 60, 80, 100) and workflow size (i.e., 100, 200,

300, 400, 500) while Figure 4.12(c) illustrates that DBSA generates longer

schedules as compared to SODA due to sliding constraints in makespan.

The simulation parameters for modeling workflows and Grid computing

system are presented in Table 4.4. It exploits duplications to obtain shorter

schedules and then improves the schedules using sliding constraints in order

to remove useless and unproductive duplications to minimize economic cost.

This, DBSA is able to be adopted for scheduling workflow applications in grid
computing environments.

99

Processorl

Processed

1

I
Processor

Processor

.•

,

nl "A n5 M n7
n8

l>~ =>
**J

nl

r, I
V

—«.

Hi

ne

y1,2 ^"^
,

m "**> *-
2 4 6 8 10 12

TtoK

14 16

(a) Primary schedule by duplication-based scheduling heuristic

10 12 14 16

(b) Modified primary schedule after removal of useless duplications

n9-"

10 12 14

(c) Modified primary schedule after removal ofunproductive sub-schedules

100

A

n7

>_

m

^.c#
nl

k

V\ "*
^

(d) Aseconadary schedule aftersliding makespan (+10%<18) to minimize economic cost

Figure 4.13: Real scenario of schedules of Figure 4.11 generated using Grid scheduling tool

4.4 Summary and Discussions

The work presented in SODA and DBSA shows that such multi criteria

approach is quite beneficial in scheduling of workflow applications in grid

environments. To exploit the grid resources without increasing scheduling
time and cost, duplication approach significantly improve schedules. Loss

approach, used to minimize the execution cost, is very graceful if the effect

on makespan after migrating task to cheaper resource is minimal. The overall

worst case computational complexity of these algorithms (SODA and DBSA)

comes out to be 0(pn2dmax +e) where dmax is the maximum in/out degree ofa

task in application DAG. In the next chapter, we are working to extend our

algorithms by applying different QoS constraints posed in heterogeneous
Grid environments. Also, in future we intended to implement and test the

performance of our algorithm in real world Grid environment.

101

Chapter 5 QoS Oriented

Multiple Criteria Scheduling

5.1 Overview

Single criteria and multiple criteria workflow scheduling heuristics have

been discussed in previous chapters. They optimize execution time and

monetary cost (economic cost) using duplication based approach. Quality of

Service (QoS) is a concern in many grid applications. In many situations, user's

tasks may need more information such as QoS levels of available resources

and associated costs before making decisions. Furthermore, QoS levels and

prices offered by service providers may be highly diverse and may not be

directly correlated with the utility perceived by the users. For example, users

may prefer some assignments which have slightly longer execution times but

offer large savings in execution cost. Workflows have been recognized as an

important application for Grid systems. However, composing and deploying

such workflows on dynamic and heterogeneous distributed Grid resources to

meet users' QoS requirements is a challenging task. Most parts of current

research are concentrating on how the QoS requirements affect the resource

assignment and then the performance of the other parts of the applications.

102

This chapter has been addressed to introduce two new scheduling heuristics
(Trust-MOS, AQuA) for QoS requirements of tasks such as Trustworthiness and ^
Availability of grid resources.

5.2 Trust Oriented Multi Criteria Scheduling

5.2.1 Preamble

Trust has been recognized as an important factor for task scheduling in
Grid environments. Managing trust is crucial in a dynamic grid environment
where grid nodes and users keep joining and leaving the system. Considering
trust in comparatively open structures like Grids is a very relevant topic.
Although, all computational Grids and their toolboxes include certain secure
techniques such as GSI [22] in Globus which supports single-sign credentials
and the collaboration between local secure strategy and that of whole system,
there is a need to obtain a trustworthy resource as the resources in Grid are
inevitably unreliable and unsafe. Therefore, there must be a mechanism to
evaluate and manage the trust levels of Grid nodes while scheduling the tasks.
Security considerations may increase the cost of executing applications in Grid.
The objective of the current security solutions is to provide the Grid system
participants with certain degree of trust so that their resource provider nodes or
user programs will be secure.

The resource sharing in Grid may lead to the illegal users acquiring
much higher trust level to access the resources that they have no right to
access. These illegal users may destroy certain resources and their information
for ever. This chapter addresses the Grid Trust Model to get solutions for these
problems. Areliable trust mechanism is applied for management of dynamic
trust level of resources based on a trust function. This trust model is integrated
with Grid Resource Management and Scheduling Model to obtain more realistic
schedule. Scheduling of tasks in grid with the characteristics of dynamism,

103

heterogeneity, distribution, openness, voluntariness, uncertainty, and deception,

> is a complex optimization problem and several different criteria are needed to

be considered simultaneously to obtain a realistic schedule. Usually, execution

time and economic cost (cost of executing a task on grid resource) are taken

important criteria [124, 139].

A majority of problems in the literature address a single criterion

scheduling [116, 124]. Considering multiple criteria with trust-oriented

A scheduling enables the decision maker to propose a better solution. Users in

the areas such as in national intelligent analysis, banking, and financial data

analysis etc will be greatly benefitted by trust oriented management and

scheduling of grid resources. Traditionally, to cope up with these security

issues, several methods such as to encrypt the data of execution and analysis,

or isolate them from the Internet, and then schedule them on local resources

have been used. Therefore, an efficient scheduling algorithm is needed to

execute tasks on trustworthy resources while assuring the high speed of

communication, reduce the task execution time and economic cost, lower the

ratio of task failure execution, and improve the security of important data

execution.

In literature, the problem of multi-objective scheduling considers the

execution time (or makespan) and the economic cost as two independent

criteria [130]. But, very few research efforts have been done towards trust-

oriented approach in multi-objective workflow scheduling. Existing scheduling

algorithms largely ignore the security induced risks involved in dispatching tasks

to remote sites. In [130], a bi-criterion scheduling algorithm (DCA) based on

sliding constraints has been introduced for workflow applications in grid

environments. But, it does not address the trust-oriented issues of Grid

resources. In [145], Zhu et al. proposed a Grid Economic Model in which they

presented two scheduling algorithms for independent tasks: trust-aware time

optimization scheduling algorithm within budget constraints, and trust-aware

104

cost optimization scheduling algorithm within deadline constraints. But, they do
not address the scheduling for workflows.

In [6], a trust-aware model between the resource producers and
consumers has been proposed. In [2], a model based on experience and
reputation for supporting trust has been proposed. This model allows entities to
decide which other entities are trustworthy. Song et al. [116] enhanced the Min-
Min and Suffrage heuristics and proposed a novel space-time genetic algorithm
for trusted job scheduling. Abawajy [1] presented a Distributed Fault-Tolerant
Scheduling (DFTS) algorithm to provide fault-tolerance to task execution in
Grid systems. But, they do not focus on multi-criteria approach in scheduling.

This chapter presents a trust-based multi-criteria optimization model for
task scheduling in grid environment. Three criteria namely execution time,
economic cost, and trustworthiness are evaluated to compute the quality of the
schedule for workflow applications. Trustworthiness is an indicator of the quality
of the resource's service. It is often used to predict the future behavior of the
resource. Intuitively, if a resource is trustworthy, it is likely that it will provide
good services in future transactions too. The scheduler must carefully evaluate
the compromise involved in considering multiple criteria in scheduling
applications. In this research work, a new hybrid multi-objective scheduling
strategy is used to evaluate a trust-oriented time and cost optimized schedule
in Grid. The important issue for executing an application in the Grid is how to
obtain trustworthy resource for the task to be executed over it.

A trust-based decision in a specific domain is a multi-stage process.

The first stage consists of identifying and selecting the proper input data, i.e. the
trust evidences. In general, these are domain- specific and they result from an
analysis conducted over the application involved. In the next stage, a
computation is performed over evidences to produce trust values i.e., the
estimation of the trustworthiness of resources in that particular domain. The
selection of evidences and the subsequent trust computation are informed by a

105

notion of trust, defined in the Grid Trust Model (Section 5.2.2). Finally, the trust

decision is taken by considering the computed values and exogenous factors,

like disposition or risk assessments.

5.2.2 Trust Model for Grids

As definition [31, 79, 118, 145]: "Trust is the firm belief in the

competence of an entity to act as expected such that this firm belief is not a

fixed value associated with the entity but rather it is subject to the entity's

behavior and applies only within a specific context at a given time". Trust value

of any resource is computed on past experiences of resources in a specific

context. There are several issues that arise in a real grid environment. First,

malicious nodes, which may damage resources or act against a protocol and try

to attack the Grid system, can degrade the performance of system drastically

[31]. Second, selfish nodes or free riders, which may consume but do not

contribute resources, have been a serious issue [4].

The trust life cycle is composed of three different phases: trust formation

phase, trust negotiation phase, and trust evaluation phase. The trust formation

phase is done before any trusted group is formed. It contains mechanism to

develop trust functions and policies. The trust negotiation phase is activated

when a new untrusted system joins the current distributed system. The trust

evaluation phase reevaluates and updates the trust values based on

transactions performed in the system. In this work, a trust model based on

Eigen-Trust Model [64, 118] is used to distinguish trustable nodes from

malicious nodes in the grid environment. In Grid, local trust values of nodes are

assigned by other nodes after each transaction. For example, when resource p,

executes a task after receiving data from resource p}, it may rate the

transaction as successful x,f =\ , or unsuccessful xtJ =-i. The local trust value

106

(Itv,) can be defined as the sum of the ratings of each transaction that node p,

has executed tasks from node pl.

The system should select a very few number of pre-trusted nodes. In order to
aggregate local trust values, it is essential to normalize them. Otherwise,
malicious nodes may obtain arbitrarily high local trust values from other
malicious nodes, and assign arbitrarily low local trust values to good quality

nodes, easily subverting the system. We can define a normalized local trust

value v,, as follows:

v = s
11

max(/fv„,0) , v ,< n, n^ " , if Y max(//v„,0)*0
£ max(/rv/7,0) ^' (5-2)

'•/
otherwise

Here, r, can be defined as:

rj Y\' JeR (5-3)
0 , otherwise

where R is a set containing pre-trusted nodes. Now, we wish to aggregate the
normalized local trust values. In Grid, node P, could get recommendations from

its acquaintances about other nodes:

'.-2>A <54)

107

4

where tSj represents the trust that node p, places on node p, based on asking

its friends. If we write Equation (5.4) in matrix notation, then we obtain a trust

vector ti =VTvi, where Vrepresents the matrix [vy], v, =[v,,,v/2, v,J7 contains

Vy, and I =[/,,,tn, t,„f contains /„. To gain a wider view, node p, may wish to

ask its friends' friends, then r, =(Kr)2v,. If node p, continues in this manner

(f. =(j/7)"v,), where v is irreducible and aperiodic, it will have a complete view

of the global Grid environment after n large iterations.

In Grid, there is a potential for malicious collectives to form. A malicious

collective is a group of malicious nodes who know each other, who give each

other high local trust values and give other nodes low local trust values in order

to subvert the system order and acquire high global trust values. This problem

can be resolved by taking:

tM=(\-(p)VTt(k)+<pr (5.5)

where <p is a constant between 0 and 1. This is a way to break collective by

having each node place at least some trust on the accessible nodes in Grid that

are not the parts of collective. Here, it is important that no pre-trusted node

should be a member of malicious collective. In the Grid environment, V and i

are stored in each node and node p, can compute its own global trust value t,

as follows:

t)k^=(\-cp)(v^+v2l,r+vn,C) + <pr, (5.6)

The global trust value (/,) of each resource is computed using Equation (5.6)

and updated dynamically. The algorithm to compute /, is shown in Figure 5.1.

108

Algorithm 5.1: Eigen-Trust

Initial: r{ the initial trust value ofnode i
Eigen-Trust()

I. for each node I do {

2.

3.

•I.

5.

6.

7.

for all nodes j, where j + i, t, —Tj
repeat

compute t,ik +]) =(1 - cp)(cj^ + +Cj[k)) +Cpf
send CJ, +'to all nodes

(*+l)Wait for all nodes return Cjf
(k+\) Ak)

until | t

8. endfor

9. endfor

I < 8

Figure 5.1: Eigen-Trust algorithm

In [64], Kamvar et al. define a probability ^, known as the teleport probability
(the probability of visiting random nodes) for historical reasons, which measures
how much trust the pre-trusted nodes receive due to their pre-trusted status.

The default value of e is 0.15.

5.2.3 Performance Metrics

Aworkflow application model, described in section 3.2.3, is used in this
scheduling approach. The Grid resource model presented in section 3.2.2 has
been used to simulate the proposed trust oriented multi-objective scheduling
approach. Afairly static methodology has been used for defining the weights of
the computational tasks and communicating edges in-the DAG. In scheduling, a
workflow of tasks is submitted to the Grid meta-scheduler where tasks are

queued in non-decreasing order of their b-levels.

The economic cost (EC) is the summation of the economic costs of all
workflow tasks scheduled on different resources which can be computed as:

109

V

P n

EC =YLD:, (5-7)
./=! 1=1

where Dv is the economic cost of executing task n, onto trusted resource p . It

can be computed as:

Dy=MJxa(pJ)xa)iJ (5.8)

where Mt is the per MIPS machine cost (in grid Dollar or g$) of executing task

on resource pt and coi: is the execution time that task n, takes to run on

resource pr In this research, trustworthiness [16] of grid resources has been

used as performance metrics for comparing trust-oriented multi-objective

scheduling heuristic (Trust-MOS) with DCA algorithm. It is an average of the

global trust values of the resources used in scheduling a workflow.

The simulated analysis and results reveal that trust oriented approach

strengthens the multi-objective scheduling problems yielding better make span

and reducing the economic cost. Another performance metrics is trust cost

overhead (TC) which can be computed using Equation (5.10) for the tasks

scheduled on different resources in the Grid. It is found that Trust-MOS

generates less trust cost overhead as compared to DCA algorithm and reduces

the execution time and economic cost overhead subsequently in multi-objective

optimization process. It reflects that the resources with higher global trust

values reduce the task failure ratio and produces good quality schedules with

lesser economic cost.

5.2.4 Trust-MOS Scheduling Algorithm

We have proposed an intelligent scheduling algorithm called trust-
oriented multi-objective scheduling algorithm (Trust-MOS) to address the
multi-objective optimization problem. The pseudo code of the proposed
algorithm is described in Algorithm 5.2 and 5.3 (Figures 5.3 and 5.4). It is
divided into two major phases: (1) Primary Scheduling - Optimization for the
primary criterion considering trust, (2) Secondary Scheduling - Optimization for
the secondary criterion while keeping the primary criterion within the defined
sliding constraint limit. The total execution time (makespan) is selected as
primary criterion while the economic cost is selected as secondary criterion. An
efficient list-based scheduling heuristic [124] has been applied for execution
time optimization. Acost optimization algorithm such as GreedyCost [139] has
been used for selecting the cheapest resources for scheduling. We apply an
efficient sliding constraint method to define the user requirements [130]. The
user is expected to define "sliding constraint" for the primary criterion i.e., how
much the final solution may differ from the best solution found for the primary
criterion. Figure 5.2 illustrates the schedules produced by Trust-MOS and DCA
algorithms for primary criteria i.e., makespan. It is clearly indicated in this
example that Trust-MOS assigns the tasks to most trustworthy resources than
DCA at the cost of execution time. The makespan is better in case of DCA but if
we add the overhead of rescheduling if the resource is malicious than the actual
makespan will improve in our case.

Ill

(a) A sample DAG

P, P2 P.
T, 5 6 4

T2 8 9 7

T3 7 6 5

T4 3 4 5

Trust Level 0.5 0.9 0.3

(b) Expected Time to Compute Matrix withTrust Levels

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21

I I I I I I | | I I I I j
H,

H2 T3 T4
Hs T, T2

(c) Primary schedule of DCA algorithm (Trustworthiness=0.60, Makespan=18)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161718 19 20 21

Pi

^" t, | t7~ I I t«
p3 -i %

(d) Primary schedule ofTrust-MOS algorithm (Trustworthiness=0.75, Makespan=21)

Figure 5.2: Relative schedules of DCA and Trust-MOS in primary scheduling

[A] Primary Scheduling

The objective of primary scheduling is to obtain the optimal schedule of

workflow for the primary criterion (i.e., makespan) only while considering the
trustworthiness of resources. It generates a preliminary solution with the total

costs of the primary and the secondary criterions which can be are denoted as

cfe/and cfe/ respectively. The task nt is scheduled on to the resource P which

minimizes the trust-based finish time (TFTtJ) for the primary criterion. It can be

computed as:

112

TFTy =TCy +EFTy (5.9)

where TC, is the trust cost overhead of assigning task n, on resource Pl and

EFT, is the expected finish time of task n, on resource P]. The trust cost

overhead can be computed as:

TCy=(\-tj)XG)y (5.10)

where t/ is the global trust value of resource pt

Algorithm 5.2: Primary Scheduling in Trust-MOS

Compute global trust value t for each resource Pj using Eigen-Trust Algorithm 5.1

Construct apriority based task sequence £ based on higher b-level

for (each unscheduled task n, in task sequence E,)
for (each trusted resource p inthe Grid)

Compute Trust Cost Overhead (TC„) using Equation (5.10)
Compute trust based finish time (TFTtj)using Equation (5.9)

endfor
Assign task n, on resource p) which minimizes TFTlf

endfor

10. Calculate execution time c/"*' using Equation (5.12) and economic cost cf' using Equation (5.7).

Figure 5.3: Primary scheduling algorithm of Trust-MOS

The pseudo code of the Algorithm 5.2 for primary scheduling (Figure 5.3)
presents the primary scheduling based on trust oriented approach for primary
criterion only. First, we compute the global trust values of available resources in
Grid using the Grid Trust Model as described in section 5.2.2. These values are
periodically updated. Then, we generate a priority based task sequence based
on b-levels. Further, we compute the trust based finish time of each task on
every resource and schedule task on to the resource which minimizes trust

113

based finish time. Finally, we compute the total execution time (of"') and total

economic cost (c^el) of the schedule generated for the primary criterion.

[B] Secondary Scheduling

The secondary scheduling optimizes primary solution for the secondary

criterion (i.e., economic cost) while keeping the primary criterion within defined

sliding constraint. It produces the best possible solution with the total costs of

primary and secondary criteria which can be denoted as c('"al and c{mal. The

sliding constraint is equal to LT such that the primary criterion cost can be

increased from cf~el to c]pre! + LT in respect of reducing the secondary criteria

cost in secondary scheduling. We assume that the maximum allowable

execution time TGfeedy of workflow with cheapest economic cost CGreedy can be

computed using cost optimization algorithm GreedyCost [139]. Similarly,

maximum allowable economic cost CHefi of workflow with shortest execution

time THeft can be computed using time optimization algorithm HEFT [124]. Thus,

the sliding constraint for makespan can be computed as:

^=kx(TGmdy-THeft) (5.11)

where k is the sliding constant. The value of k varies from 0.1 to 1.0 to provide

us the sliding constraints that lie in ten equally distanced points for the

makespan. In general, HEFT generated schedule contains shorter makespan

as compared to GreedyCost algorithm. The makespan for the schedule may be

computed as:

makespan = max(7777,//) V 1<i<n and 1<j<p (5.12)

14

The Algorithm 5.3 (Figure 5.4) presents secondary scheduling which
optimizes both primary and secondary criteria. First, we compute the sliding
constraints using Equation (5.11) that lie in ten equally distanced points for total
execution time. This algorithm finds the alternative services (resources) for
rescheduling already scheduled task such that makespan should not increase
beyond the maximum allowable execution time limit (cC'+Tr) and economic
cost is lesser on these services. The task is rescheduled on to the resource
which maximizes netprofll as specified in Figure 5.4. Finally, total execution time

c/""" and total economic cost cf' is estimated for optimized schedule re
generated for both criteria considering trustworthiness of grid resources.

Algorithm 5.3: Secondary Scheduling in Trust-MOS
1. set Sliding constraint LT using Equation (5.11)

2. for each task n, in scheduled on resource p} in the schedule of primary scheduling

3. set netprofil =0. COS tpmfll =0. timehss =0. optimal_node=0

4. compute xi ofcheaper resources p in grid

5. for (each resource p^ in p)

6.

7.

8.

9.

compute D,' from Eq. (5.8) and compute c'mp (new makespan) using Eq. (5.12)

,/£>.'<£>, and C'™p <|CPxrel+LT I
, ,-. »~» ii l temp „Prelcost^^Dy-DyXttme^^c, p-cj

netprof,rcostprofilltimelms

10. endif

11. endfor

12. optimal node- p/ that maximizes netprofll

13. migrate task n,from resource P/ to p.' for optimal ,node>0

14. endfor

15. Re-calculate execution time c/""" using Eq. (5.12) and economic cost cf " using Eq. (5.71i final

Figure 5.4: Secondary scheduling algorithm of Trust-MOS

115

5.2.5 Performance Comparisons and Result Analysis

The algorithms shown in section 5.2.4 have been evaluated and

validated with the help of simulated grid scheduling tool generated by us to run

on a variety of random workflows. The experiments have been implemented for

randomly generated DAGs on simulated grids of different sizes. The

specification layout for simulation is given in Table 5.1. The proposed algorithm

(Trust-MOS) has been executed and compared with bi-criteria scheduling

algorithm i.e., Dynamic Constraint Algorithm (DCA) [130] for different workflows

in Grids of different sizes. The DCA algorithm does not focus on trust related

issues of resources in the Grid. Both the algorithms have been run under the

same conditions for fair comparison i.e., each algorithm is run for each workflow

to find best possible second criteria cost while keeping the primary criterion

within the defined sliding constraint in the same grid environment.

Table 5.1: Grid environment layouts

Number of Grid Resources [20, 100]

Resource Bandwidth [100 Mbps, 1 Gbps]

Number of Tasks [100,500]

Computation Cost of Tasks [5 msec, 200 msec]

Data Transfer Size [20 Kbytes, 2 Mbytes]

Resource Capacity (MIPS) [220, 580]

Execution Cost (per MIPS) [1-5 grid dollar per MIPS]

Sliding Constant [0.1 - 1.0]

The Algorithm 5.2 (Figure 5.3) has been run for primary scheduling for

both the criteria (i.e., makespan and economic cost) to find the best and worst

solutions (assumed) for primary criterion (THeft and TGreedy) which yield the

maximum sliding constraint i.e. the difference \TGreedy-THeft\. The Algorithm 5.3

(Figure 5.4) is run for ten equally spaced different sliding constraint values to

obtain the optimized execution time and economic cost. In Figure 5.5(a) and

Figure 5.5(b), Trust-MOS algorithm excels the DCA algorithm in terms of

trustworthiness of Grid resources used in executing the given workflow.

116

Trustworthiness of both algorithms has been compared using workflows of
different sizes (100, 200, 300, 400 and 500) as depicted in Figure 5.5(a), and
using grids of different sizes (20, 40, 60, 80 and 100) as depicted in Figure
5.5(b). In Figure 5.6(a), the comparison has been illustrated for trustworthiness
with respect to different sliding constants ranging from 0.1 to 1.0 which
produces the ten equally spaced sliding constraints for primary criterion cost.

g 0.50 i

100 200 300 400

Number of Tasks

(a)

500

0.7 -
^

0.6 -

c

1 •

1 I

""1—-•—1—•
jz 0.4 -
t:
o

| 0.3-
i/i

3
1

*~ 0.2 -
-♦-iTrust-MOS j-»-MOS

0.1 -

0 1 1 1 1

20 40 60 80

Number of Grid Resources

100

(b)

Figure 5.5: Comparison of trustworthiness w.r.t. (a) Number of tasks;
(b) Number of grid resources

117

06 •

</> 0.5 -
V)
V

.£ 0.4 -
JC

1 0.3 -
3
tt 0.2 -

£ 0.1-
o -

•^j^ 1 • ' 1 1 1 !

-•"
1 ' 1 1 1 |

----J

1

1 1 1 I |
' > I 1 1 I

; -*-|rrust-}VIOS |-B-IJVIOS |
''III!

1 1 t 1 1

0.1 0.2 0.3 0.4

1 1 t 1 1 1

0.5 0.6 0.7 0.8 0.9 1

1400

1200

1000
c
(O

a 800

<D

« 600

S
400

200

0

Sliding Constant (k)

(a)

200 300 400

Number of Tasks

(b)

20 40 60 80

No. of Resources

100

•Trust-MOS

•DCA

(c)

Figure 5.6: (a) Comparison of trustworthiness for different sliding constants; (b) Comparison of
trust cost overhead w.r.t. number oftasks; (c) Relative makespan w.r.t. number ofresources

118

In this research, an intelligent trust-based multi-objective workflow

scheduling approach has been presented and analyzed. To the best of our
knowledge, this is the first trust-based multi criteria algorithm for workflow
scheduling in Grid environment. The algorithm has been implemented to
schedule different random DAGs onto the Grids of different sizes. Different

variants of the algorithm were modeled and evaluated.

5.3 Availability Aware QoS Oriented Scheduling

A major challenge in task scheduling is the availability of resources as
they are highly dynamic, heterogeneous and unpredictable in Grid computing
systems. The task-resource mapping in such a non-deterministic computing
environment leads to concern over Quality-of-Service (QoS) constraints

imposed by application tasks to identify capable resources. To achieve a better
makespan is a key issue as Grid resources exhibit different capabilities and are
not continuously available for computation. In this section, resource availability
and bandwidth have been considered as QoS parameters of Grid resources.

We modify the QoS guided Min-Min (QGMM) heuristic [60] to introduce a
multidimensional QoS scheduling strategy called Availability aware QoS
oriented Algorithm (AQuA) for task scheduling in grids to fulfill the availability
and bandwidth requirements of application tasks. This approach gives priority to
high QoS tasks to get scheduled first to meet the QoS tasks as much as
possible. The time and accuracy of various computing and data-intensive tasks
are limited by the availability of the resources within the silos. The proposed
strategy is able to prioritize the utilization of highly available resources in the
Grids and therefore increases the availability of grid computing systems to
successfully execute applications without adversely affecting the makespan.

119

5.3.1 Preamble

In grid, resources exhibit different availability properties and patterns

over time due to administrative polices belonging to different domains. There

exist many high performance applications like healthcare applications, finance

management applications, military applications etc which may require resources

with high availability since severe damage or fatal errors could occur when even

only one computing resource becomes unavailable.

The basic assumption in scheduling theory is that resources are always

available for computation [105, 110]. This assumption might be reasonable in

few cases, but it is not valid in grid scenario where resources are not

continuously available due to several reasons such as maintenance

requirements, breakdowns, administrative polices or other constraints.

Availability can be defined as the total time a computing resource is functional

during a given interval. A large number of grid resources may be unavailable at

any time due to wide range of polices for when and how to make these

resources available to the Grid. These policies are based on resource usage

patterns and owner's other preferences, like shutting down the resources during

night. To obtain a highly available resource is an issue as resource is inevitably

unreliable and dynamic in Grid computing environment. Therefore, there must

be a mechanism to evaluate and manage the availability levels of grid

resources while scheduling the tasks.

In this research, task scheduling focuses on a set of independent tasks

with QoS constraints. For example, some critical tasks may require bandwidth

not less than 1.0 Giga bits/sec and availability of computing resources should

be greater than 90% for their execution. The Grid Scheduler needs to consider

the QoS requirements of application tasks to discover a set of potential

resources that meets QoS requirements. Then, application tasks are assigned

over grid resources in order to get a better match between tasks and resources

which meets predefined scheduling criteria such as minimizing the makespan.

120

The meaning of QoS is highly dependent on particular applications, from
hardware capacity to software existence. Usually, QoS is a constraint imposed
on the scheduling process instead of the final objective function [10, 77].

To address the challenges of non-dedicated computing and network

resources in the Grid, we adopt the prediction models [89, 119]. A newly
proposed long term application level prediction model [53] is exploited to predict
the task execution time for a task/resource pair in a dynamic running
environment for large applications. In this work, we embedded the QoS
information into the scheduling algorithm to make a better match among
different levels of QoS request/ supply. The grid schedulers and resource
brokers need information about resource availability properties and predictions

about their future availability.

Most conventional scheduling algorithms have concentrated only on high
throughput with the goal of reducing makespan, completely ignoring the
availability and bandwidth requirements of tasks. To obtain a resource with high
availability is an open issue in the Grid as the resources are inevitably
unreliable and dynamic [46]. This motivates us to adopt the availability and
bandwidth constraints of tasks while scheduling in grid scenario. Our scheduling
model addresses the match of QoS request from application to the QoS
provided by the grid resources. The involvement of QoS has an effect on the
resource selection step in the scheduling which influences the final objective

function.

5.3.2 Related Work

QoS resource management and scheduling is an important component
of the Grid. In literature [20, 23, 24, 85], many heuristics have been proposed to
obtain the optimal match between application tasks and resources. The
scheduling is performed in multiple steps to solve the problem of matching

121

application requirements with resource availability while providing quality of

service. It is challenging to achieve high throughput and high availability

requirements simultaneously, because they are two conflicting objectives. For

example, it is unacceptable to assign a critical task with high availability

requirements to a computing resource that offers high speed but low availability.

An efficient scheduling scheme is desirable to guarantee the tasks' availability

requirements while reducing the completion time.

A task allocation scheme is investigated for scheduling tasks with

availability constraints [110]. In [12, 13, 127], a Multi-Resource Scheduling

(MRS) algorithm has been proposed. The main objective of this algorithm is to

obtain a minimal execution schedule through efficient management of available

Grid resources. They introduce the concept of a two dimensional virtual map

and resource potential using a co-ordinate based system. To further develop

this concept, a third dimension was added to include resource availabilities in

the Grid environment. Smith [115] introduced a mathematical model for

resource availability and proposed a method to maintain availability information

as new reservations or assignments are made. Lee [75] addressed two

machine scheduling problem in which an availability constraint is imposed on

one machine as well as on both machines. A dynamic programming strategy for

parallel machine scheduling problem with availability constraints is proposed.

He et al. [60] presented a QoS guided Min-Min (QGMM) heuristic for

independent task scheduling problems, but it does not consider the availability

requirements imposed by application tasks for scheduling. Foster et al. [45]

presented general purpose architecture for reservation and allocation (GARA)

that supports flow-specific QoS specification, immediate and advance

reservation, and online monitoring and control of both individual resources and

heterogeneous resource ensembles.

Dogan and Ozguner [38] considered the problem of scheduling a set of

independent tasks with multiple QoS requirements, which may include

timeliness, reliability, security, version, and priority in a grid in which resource

122

prices can vary with time during scheduling time intervals. Golconda and
Ozguner [52] compared five QoS-based scheduling heuristic from the literature
in terms of three performance parameters, namely number of satisfied users,

makespan, and total utility of meta-task.

The main contribution of this research is to consider QoS constraints

(i.e., availability of computing nodes and bandwidth of network resources) of
applications while selecting the suitable resources in the grid environments. The
experimental analysis and results show that the proposed algorithm (AQuA) is
able to utilize the highly available resources in grid and therefore increases the
reliability to successfully execute applications without adversely affecting the
makespan.

Embedding multi-dimensional QoS into task scheduling is an open
problem and an issue which has been addressed in this work. Availability and
bandwidth are two QoS constraints in resource selection for successful
execution of tasks. The primary objective of any scheduling problem is to obtain
a schedule with minimum execution time (or makespan). The makespan is the
maximum completion time i.e., the maximum between the start time of the first
task and the finish time of the last task in a task set scheduled on different grid
resources. In independent task scheduling, the makespan of the complete
schedule is defined as max, eT(CT,) and it is a measure of throughput. The

objective of grid scheduling is to increase availability of grid computing systems
while meeting the QoS requirements of tasks without affecting the makespan

adversely.

5.3.3 Grid Resource Model

Most existing scheduling heuristics developed for distributed computing
systems do not factor in availability requirements imposed by application tasks.
To explore this issue, each computing node in grid is modeled using nodes'

123

A

computing capacity and availability. A Grid system can be modeled as a finite

set of heterogeneous computing resources as:

* = {>*,,r2, ,rn) (5.13)

Each resource is characterized by its bandwidth capacity and availability

level. These resources are not entirely dedicated to the Grid. Based on

resource availability policies, we can classify them in three main categories as

in Austrian Grid [121]: (1) the dedicated resources, which are meant to be

always available to grid users; (2) the non-dedicated resources, which are

available in grid as long as they are turned on; and (3) the on-demand

resources, which are made available to grid only on demand from the users for

executing large scale applications or experiments. This classification in turn

reflects the availability of the resources.

1. Availability. It can be defined as the total time a computing resource is

functional during a given interval. It is a probability that the system is

continuously performing at any random period of time. It can be

computed as:

availability^ where 0 <Ar < r (5-14)

where Aris the time during which a resource is functional and x is total time of

monitoring the availability of resource.

2. Bandwidth. It is the network capacity (in bits per second) to access a

computational resource for data transfer.

124

The availability and capacity of grid resources, e.g. number of hosts and
network links, fluctuates. Thus, to determine a priori the completion time of a
task on a particular resource is difficult. Moreover, a task may fail to complete
the execution due to failure of the resource or network link. We assume that an
entity (or distributed entities) exists that computes and provides prediction
information of resources' availability and links' bandwidth in the grid. If the
resource behavior follows a certain distribution, stochastic process analysis can
be used to predict the future resource measurements on a fixed time point or
during a certain interval of time. In case of network bandwidth, we consider the
dynamically forecasted prediction information by facilities such as the Network
Weather Service (NWS) [131]. NWS is an agent system deployed on the Grid to
periodically monitor resource performance. Usually, NWS monitors certain
performance measurement in 10 second intervals.

The objective of the proposed scheduling algorithm is to obtain a good
task allocation decision for application tasks to satisfy their multidimensional
QoS requirements and maintain an ideal performance of makespan.

5.3.4 Grid Application Model

An application is modeled as a set of independent tasks (or meta-task)
as follows:

T={n],n2, ,nm) (5-15)

The expected execution time for each task on different resource is
known prior to task execution which can be represented by a ETC (expected
time to compute) matrix. The above prediction is true for dedicated resources
where availability of resources is 100% (i.e., 1). But, in practical, this
assumption may not be true as grid resources are highly dynamic and

125

unpredictable. Therefore, the ETC of task n, can be modified to add availability

overhead.

ETCETCy^—-f- (5.16)
avail (r)

where ova//(ry)is the availability level of resource rr The completion time of

task n, on resource rj can be computed as:

CT,/=AT(rl)+ ETC,/ (5.17)

where AT(r/) is the earliest time when resource r is available to take up task

n,. Initially, AT(rt) =0 for all resources rJ e R.

5.3.5 AQuA Scheduling Algorithm

QoS-based Grid scheduling system architecture is depicted in Figure

5.7. In this model, users' tasks with QoS constraints are submitted to the grid

scheduler that builds a set of potential resources for each task meet its QoS

request and then, schedule the tasks over these resources using Min-Min

approach [60]. A task set Tcan be divided into two task sets 7j and T such

that Tx contains w, tasks with QoS requirements and T2 contains m2 tasks

without QoS requirements respectively. It is assumed that there exist few tasks

(or critical tasks) with QoS requirements in an application. The tasks in task set

Tt get priority in scheduling over those in T2., For every task, a resource from a

set of potential resources is selected that provides the minimum completion

time. The task with minimum MCT is selected to be scheduled first and so on.

126

Applications
+

QoS
Constraints

Grid Scheduler

&

Resource

Broker (GSRB)

Grid

Resource

Pool

Figure 5.7: QoS based Grid scheduling system

task6

Makespan = 76
Availability Surplus =14.4 %
QoS Req. Meet =100%

task5

task?

Figure 5.8: Ganttchart showing schedule ofAQuA

The pseudo code ofthe proposed scheduling algorithm (AQuA) is shown

in Figure 5.11. The algorithm is based on QGMM scheduling approach
proposed by He et al. [60]. Initially, a set of potential resources meeting the
availability and bandwidth requirements of each application task is identified. A
task-resource match providing minimum MCT (Min-Min) among other task-

resource pairs is scheduled first. After assignment of tasks (with QoS requests),
the scheduler maps the remaining tasks (without QoS requests) over the grid

resources while minimizing the earliest completion time. A real scenario of

simulated environment for scheduling application tasks is illustrated in Figures

127

5.8 to 5.10. The simulation parameters for an application and Grid computing
system are shown in Table 5.2.

Table 5.2: Simulation parameters for schedules shown in Fig. 5.8 to 5.10

Number of grid resources |4|

Number of independent tasks [8]

Resource availability [0.25 0.55 0.75 1.0]

Resource bandwidth availability [300 500 600 1000]

Task availability demand [0.9 0.5 0.75 0.8 0.5 0.95 0.8 0.9]

Task bandwidth demand [100 800 500 400 350 675 700 250]

%ageof dedicated resources in grid [25%]

Table 5.3: Computation cost matrix for schedules shown in Fig. 5.8 to 5.10

Pl P2 P3 P4

Taskl 50 80 40 27

Task2 25 40 20 14

Task3 13 20 10 7

Task4 25 40 20 14

Task5 50 80 40 27

Task6 25 40 20 14

Task7 25 40 20 14

Task8 13 20 10 7

In this example, a grid system consists of four resources where 25%

resources are dedicated. An application consisting of 8 tasks has been

considered for scheduling. Each task has QoS demands for availability and

bandwidth. Figure 5.8 presents a schedule using AQuA approach where

makespan is 76 and availability surplus is 14.4% while meeting 100% QoS

requests of tasks. In Figure 5.9, a schedule is generated with QGMM heuristic

which ignores the availability concerns of tasks. It yields a schedule of same

makespan (i.e., makespan=76) but meets only 62% QoS requirements. The

system availability surplus is 5.6% which is very less as compared to AQuA.

Table 5.3 shows task computation time on different processors for application

and grid modeling parameters given in Table 5.2.

128

A—

*

_i—i—i—i—a—

task3

task4

task6

10 20

task7

Makespan = 76
Availability Surplus = 5.6%
QoS Req. Meet = 62.5%

task5

30 m 60 &> 70 90

Figure 5.9: Gantt chartshowing scheduleof QGMM

lask3

task4

A A A

Iask6
task7 task5

« 60

Makespan = 200
Availability Surplus = 5.6%
QoS Req. Meet = 62.5%

J j L. J i I

gj 100 120 1« 160 180 200

Figure 5.10: Gantt chart showing schedule ofQGMM-A

129

In Figure 5.10, schedule is generated using a variation of QGMM known

as QGMM-A which includes availability overhead of resources. In QGMM-A,

initial schedule is obtained using QGMM and then, schedule length on each

resource is modified using Equation (5.16) to add the effect of resource

availability. In this case, the schedule length (makespan) increases to 200

which prove that QGMM is ineffective where resources exhibit different

availability patterns.

Algorithm 5.4: AQuA

All tasks n, in /are grouped into sets 7^ and 7;. Set Tt consists of m, tasks with QoS requests while set 7*

consists of m2 tasks without QoS requests.

I. for all tasks in set T (in an arbitrary order)

for all resources (in a fixed arbitrary order)

CT^ATir^+ETC,;
endfor

endfor

do until there is any task in T,

for each task n,

find a resource r in the QoS qualified resource set that obtains the earliest completion time

endfor

find a task n, with minimum earliest completion time (ECT)

assign task n, to the resource r that givesminimum ECT

9.

10.

II.

12.

13

14.

18

19

20

21

22

23

delete task n, from 7;

update the available time ^jir \ of resource r

update CT for task n,

15. end do

16. do until there is any task in t

17. for each task n,

find a resource r in the resource set that obtains the earliest completion time

endfor

find &task n, with minimum earliest completiontime (ECT)

assign task n, to the resource r that gives minimum ECT

delete task n, from 7;

update the available time of resource r

24. update CT for task nj

25 end do

Figure 5.11: The pseudo code of AQuA algorithm

130

Considering availability as QoS eliminates the risks of tasks to be
scheduled on unreliable resources and encourages highly available resources

to participate in scheduling to provide robustness, stability and reliability of grid
computing systems.

5.3.6 Simulation and Result Analysis

The proposed algorithm (AQuA) has been validated in the simulated grid
environment and the results have been compared with the existing QGMM [60]
heuristic and QGMM-A approach (a variation of QGMM including availability

overhead). The experimental results have been depicted in Figures 5.12 - 5.19
that illustrate the comparative analysis for the performance metrics i.e.
availability surplus of resources and makespan. Different scenarios have been
used in simulation testing which affect the performance of task scheduling.

Table 5.4 shows the parameters ofsimulated grid computing systems.

In what follows, we briefly introduce the performance metrics used to

evaluate the performance of proposed availability-aware scheduling strategy:

1. Availability Surplus. It is the excess amount of availability of a resource
as computed to the availability requested from a task scheduled over it.
Availability surplus of a system quantifies the excess of availability

offered over demand.

2. Makespan. It is duration of time between the start time of first task and
the finish time of last task in a schedule.

3. Percentage of tasks meeting QoS. It is a ratio of tasks meeting QoS
requests to the total number of tasks.

131

Table 5.4: Simulation setup parameters

Number ofgrid resources [100,500]
Number of independent tasks [200,1000]

Resourceavailability [0.1,1.0]

Resource bandwidth availability [10,1000] Mbps
Taskavailabilitydemand [0.1,1.0]
Task bandwidth demand [10,1000] Mbps

%ageof dedicated resources ingrid [5%, 50%]
Task Computation Time [1,100]

ResourceCapacity [0.1,1.0]

l/l 0.25
3

a
0.20

3
in

> 0.15
4->

• Mi

MM

JO 0.10
ro

"ro 0.05
>

<
0.00

Grid Size= 100

Application Size=1000

5% 10% 20% 25% 50%

Percentageof Dedicated Nodes in Grid
J

Figure 5.12: Performance in terms of availability surplusw.r.t. dedicated nodes

10000

«=8000
CO

Q.

£6000
.*:

^4000

2000

0

Grid Sizes 100

ApplicationSize=1000

I I I

5% 10% 20% 25% 50%

Percentage of Dedicated Nodes in Grid

-AQUA

-QGMM

-QGMM-A

Figure 5.13: Performance in terms of makespan w.r.t. dedicated nodes

132

In first group of experiments, we vary the percentage of dedicated nodes
from 5% to 50%. In Figure 5.12, the comparative results show that AQuA

produces better availability surplus than QGMM when non-dedicated resources
are larger in a grid system (Tasks = 1000, Resources = 100) which is true for
dynamic grids where non-dedicated resources are usually large. A node with
100% availability (availability level=1) connected over a network of bandwidth
no less than 1 Giga bits per second is considered as dedicated node. In Figure

5.13, the makespan is compared for AQuA, QGMM and QGMM-A.

0.08

0.07

_ 0.06

J> 0.05

~ 0.04

3
.2 0.03
'io
| 0.02

0.01

0

in

3

Application Size=1000

100 200 300 400

No. of Grid Nodes

500

•AQUA

•QGMM

Figure 5.14: Performance in terms of availability surplus w.r.t. grid size

9000

8000
Application Size==1000

7000
—•—AQUA

c
ro

6000
—•—QGMM

1
ro

5000

4000
A QGMM-A

2 3000

2000

1000
• 1

0

100 200 300 400 500

No. of Grid Nodes

Figure 5.15: Performance in terms ofmakespan w.r.t. grid size

133

In general, QGMM is able to produce better makespan than AQuA as it
is not considering availability concerns. AQuA generates poor schedules due
increased ETC (Equation (5.17)) whereas QGMM-A generates schedules
which are poor as compared to AQuA. Therefore, AQuA is able to obtain highly
available resources in scheduling without affecting the makespan too adversely.

The second group of experiments is focused on the scalability of grid
system. The same application of 1000 tasks is tested to be scheduled on a grid
system with varying number of nodes i.e., 100 to 500. In Figure 5.14, the results

show that availability surplus is high initially when grid size is small and it is

decreasing with the increase of grid size. AQuA has increased availability
surplus than QGMM. As grid size increases, a set of potential resources

increases for each task so that each task has better option to select a resource
which can minimize the task completion time. The Figure 5.15 justifies the
above statement. It shows that QGMM has better makespan than AQuA which

decreases with the increase in number of grid resources, but QGMM-A

generates unpredictable schedules of poorer makespan than AQuA. Another

comparison is shown in Figure 5.16 which indicates that AQuA meets 100%

QoS whereas QGMM meets nearly 50% QoS requests.

V)
+••

QO C
c <u

v £
s ff

JS 8"
v> or

si
a> -Q

flj =

<

120%

100%

80%

60%

40%

20%

0%

Application Size=1000

100 200 300 400

No. of Nodes

-AQUA

-QGMM

500

Figure 5.16: Performance in terms of QoS satisfaction w.r.t. grid size

134

120%

J= 100%
00 Si
= E

at .is

E cr
*/» cu

52 >*ro •*-*

ra
>
ro

80%

60%

40%

20%

0%

AQUA

•QGMM

200 400 600 800 1000

No. of application tasks

Figure 5.17: Performance in terms of QoS satisfaction w.r.t. application size

The next group of experiments is modeled on the scalability of
application size. The Figure 5.17 indicates that AQuA meets the QoS of all
tasks while QGMM has approximately 50% QoS qualified tasks. Figure 5.18

shows AQuA yields higher availability surplus than QGMM which tends to
decrease as application size increases. The results shown in Figure 5.19
indicate that makespan increases with the increase in application sizes (grid
size is fixed at 100 nodes). The result analysis shows that QGMM produces

better schedules than AQuA but its variation QGMM-A generates very poor

schedule than AQuA. The results show that AQuA produces better availability

as number of tasks with QoS requirements increases without affecting the

makespan. Thus, the AQuA algorithm generates more reliable schedule than
QGMM in highly dynamic grid environment at small cost of makespan which is
affordable to lessen the risks associated for executing the applications in grids.

135

•i

(fl 0.08
T

3

0.0/

0.06
(A)

> 0.0b
£

0.04

J3
ro 0.03

"fo 0.02
>

< 0.01

Grid Size= 100

200 400 600 800

No. of Tasks

•AQUA

QGMM

1000

Figure 5.18: Performance in terms of availability surplus w.r.t. application size

12000

10000
s

"8000
«/>

Is 6000
co

2 4000

2000

0

Grid Size= 100

200 400 600 800

No. of Tasks

1000

AQUA

•QGMM

QGMM-A

Figure 5.19: Performance in terms of makespan w.r.t. application size

5.4 Summary and Discussions

New challenges have been raised with the evolution of grid computing
systems. The objectives need to be revised. To obtain a schedule with

136

minimum makespan is still an objective but the nature of resources in grid is
highly dynamic and unreliable. This research work addresses the notion of trust
in selecting hopefully trustworthy resources and executing tasks on these
resources in Grid computing environment. The trust criterion has been

combined with other criterion like cost and execution time for considering such
a multi criteria scheme for Grid scheduling algorithms. We have presented a
novel scheduling algorithm called Trust-oriented Multi-objective Scheduling
algorithm (Trust-MOS) which optimizes both the makespan and economic cost
of the schedule while maximizing the total trust (or reliability) of Grid resources

for executing applications. Our approach remarkably lessens the risks in task
scheduling while considering multiple criteria and reduces task failure ratio that
can be best suited for executing tasks in a secure manner in Grids.

Similarly, selection of highly available resources is an important issue
while scheduling the tasks. We have proposed an effective scheduling
algorithm (AQuA) which discovers the resources meeting the QoS requirements
of tasks and then schedules the task over the resources minimizing the overall
completion time (makespan) while maximizing the availability of grid systems.
We have addressed two-dimensional QoS issues i.e., availability and
bandwidth requirements of tasks. These constraints have major impact on the
performance of scheduling applications in grid computing systems. The QoS
components are added to the traditional Min-Min heuristic to form the proposed
heuristic (AQuA). Asimulated grid scheduling system is developed to test the
performances of AQuA and QGMM. The result analysis shows that AQuA
algorithm gives preference to highly available resources in scheduling tasks
while meeting the QoS requirements and increases the availability of grid to
successfully execute applications without adversely affecting the makespan.

137

Chapter 6 Conclusions and

Future Directions

6.1 Conclusions

In this research, we have presented both single criterion and multiple

criteria scheduling algorithms for executing workflows (one workflow after

another) in grids. We have proposed duplication based single criterion

economic scheduling algorithms for homogeneous (RD) and heterogeneous

(HED) environments. These algorithms adopt an efficient duplication strategy to

optimize makespan and to reduce average processor consumption after

minimizing the number of duplications and removal of unproductive schedules

over different resources. These algorithms prove their usefulness over existing

duplication based scheduling heuristics for heterogeneous (e.g., Grids) and

homogeneous (e.g., Clusters) computing systems. Another single criteria

scheduling algorithm i.e., SHCP has been proposed for grid computing

systems. In this, a heterogeneity model has been suggested to account for the

heterogeneity of computational resources and communication networks in grid.

A critical path based task sequence is generated considering the processor and

network heterogeneity factors for workflow applications. This strategy is able to

I38

generate a better task sequence for producing shorter schedules for large
workflows. -^

Coming to multi criteria, two stage bi-criteria scheduling approaches
(DBSA, SODA) are suggested to fairly optimize both the economic cost and
makespan for executing DAG applications (one DAG after another) in the grid
environments. At primary stage, duplication strategy has been exploited in an
intelligent way to find better schedules in terms of execution time. In secondary
stage, the above schedules are investigated to minimize the economic cost ^
without affecting the makespan or sliding (or increasing) the makespan up to a
specified limit. The comparative analysis shows the goodness of these
heuristics. The duplication strategy has been rarely used in bi-criteria
scheduling which has been used intelligently to optimize both economic cost
and execution time.

Trust is also equally important factor for users and resources while
allocating the tasks on to the resources in the grid. If the resources are not ^
trustworthy then the results may be suspicious and applications may be
damaged. Therefore, resources must be selectively chosen which exhibit high
trust levels. Atrust-oriented multiple criteria scheduling algorithm (Trust-MOS)
for executing workflow tasks in a secure way over grid resources has been
proposed. The results show the schedules obtained using Trust-MOS are more
reliable as they are schedules over trustworthy resources at the small cost of
execution time to the users.

Further, the research has been focused towards considering availability
and bandwidth of resources as QoS constraints (AQuA) in scheduling.
Extensive simulations of above scheduling algorithms indicate their fitness in
the current grid scheduling systems. The comparative result analysis reveals
that these scheduling strategies can be better utilized to increase the
performance of grid scheduling system and also able to reduce economic cost ^
for grid users while providing the potential resources for running applications.

139

y

6.2 Future Research Directions

The research work can be extended to analytically investigate the
proposed algorithms in the dynamic heterogeneous environment where

processor load, capability and network condition vary during the execution of

workflow applications. The workflow paradigm has become the standard to

represent the scientific applications and their execution flows. The need of a

scheduler which deals with multiple workflows is an open problem in grids.
Optimizing multiple objectives in scheduling over multiple workflows makes this

problem even harder. There exist very few scheduling approaches which can

optimize the execution of more than one workflow at a time [144], A future
research work can be to investigate new efficient multi-criteria scheduling
strategies for executing multiple workflows in grid computing environments.

The multi criteria scheduling technique for executing multiple scientific
workflows in grids should have following objectives:

• The scheduling algorithm must be able to schedule tasks in multiple
workflows based on resources required to avoid bottlenecks and delays.

• The constraints (e.g., deadline and budget) of every workflow should be
satisfied.

• Application objectives (execution time, economic cost) should be
minimized while maximizing the trust and reliability of executing
application on the grids.

140

*

BIBLIOGRAPHY

[1] Abawajy, J. H., "Fault-Tolerant Scheduling Policy for Grid Computing

Systems", Proc. of IEEE Int'l. Parallel and Distributed Symposium, April
2004.

[2] Abdul-Rahman, A., and Hailes, S., "Supporting Trust in Virtual

Communities", Proc. of the 33rd Hawaii Int'l Conference on System

Sciences, January 2000.

[3] Abraham, A., Buyya, R., and Nath, B., "Nature's Heuristics for

Scheduling Jobs on Computational Grids", Proc. of 8th IEEE Int'l

Conference on Advanced Computing and Communications (ADCOM

2000), pp. 45-52, Cochin, India, December 2000.

[4] Adar, E., and Huberman, B., "Free Riding on Gnutella", First Monday,

5(10), 2000.

[5] Ahmed, I., and Kwok, Y. -K., "On Exploiting Task Duplication in Parallel

Program Scheduling", IEEE Transactions on Parallel and Distributed

Systems, 9(9): pp. 872-892, Sept 1998.

[6] Azzedin, F., and Maheswaran, M., "Integrating Trust into Grid Resource

Management Systems", Proc. of the 2002 Int'l Conference on Parallel

Processing (ICPP2002), pp. 47-54. IEEE Press, Canada, 2002.

[7] Bajaj, R., and Agrawal, D. P., "Improving Scheduling of Tasks in A

Heterogeneous Environment", IEEE Transactions on Parallel and

Distributed Systems, vol.15, no. 2, pp.107-118, February 2004.

[8] Bansal, S., Kumar, P., and Singh, K., "An improved Duplication Strategy

for Scheduling Precedence Constrained Graphs in Multiprocessor

141

Systems", IEEE Transactions on Parallel and Distributed Systems, 14(6),

pp. 533-544, 2003. >

[9] Bansal, S., Kumar, P., and Singh, K., "Dealing with Heterogeneity
through Limited Duplication for Scheduling Precedence Constrained
Task Graphs", Journal of Parallel and Distributed Computing, 65(4), pp.

479-491, April 2005.

[10] Baraglia, R., Ferrini, R., Ricci, L, Tonellotto, N., and Yahyapour, R.,
"QoS-constrained List Scheduling Heuristics for Parallel Applications on

Grids", Julien Bourgeois and Didier El Baz editors, Proc. of the 16th
Euromicro Conference on Parallel, Distributed and Network-based

Processing (PDP2008), IEEE Computer Society Press, Toulouse,

France, February 2008.

[11] Baruah, S., and Burns, A., "Sustainable Scheduling Analysis", Proc. of
the 27th IEEE Real-Time Systems Symposium, pp. 159-168, 2006. y

[12] Benjamin, K. B. T., and Bharadwaj, V., "An Adaptive Co-ordinate based
Scheduling Mechanism for Grid Resource Management with Resource
Availabilities for Grid Computing Environments", To appear in an edited
Book by Fatos Xhafa and Ajith Abraham on Meta-heuristics for
Scheduling in Emergent Computational Systems, Series in Studies in
Computational Intelligence, Springer-Verlag, USA, 2008. ^

[13] Benjamin, K. B. T., Bharadwaj, V., Terence Hung, and Simon See, "A
Multi-Dimensional Scheduling Scheme in a Grid Computing
Environment", Journal ofParallel and Distributed Computing (JPDC), vol.

67, no. 6, pp. 659-673, 2007.

[14] Bernat, G., and Burns, A., "Three Obstacles to Flexible Scheduling",
Proc. of the 13th Euromicro Int'l Conference on Real Time Systems, pp. >

11-18,2001.

142

[15] Berryman, K., Herbermann, J., and Richardson, J., "An Internet based

+ System to Reduce Travel Costs, Enhance Human Resource Services,

and reduce overall IT cost", A Report on Application Service Providers,

pp. 1-16, September 28, 2006.

[16] Bertino, E., Crispo, B., and Mazzoleni, P., "Supporting Multi-Dimensional

Trustworthiness for Grid Workflows", DELOS Workshop: Digital Library
Architectures, pp. 195-204, 2004.

[17] Bote-Lorenzo, M. L, Dimitriadis, Y. A., and Gomez-Sanchez, Eduado,

"Grid Characteristics and Uses: a Grid Definition", First European Across

Grids Conference, pp. 291-298, 2004.

[18] Bozdag, D., Ozguner, F., and Catalyurek, U., "Compaction of Schedules

and a Two-stage Approach for Duplication-based DAG Scheduling",

IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6,

> pp. 857-871, 2009.

[19] Braun, R., Siegel, H., Beck, N., Boloni, L, Maheswaran, M., Reuther, A.,

Robertson, J., Theys, M., Yao, B., Hensgen, D., and Freund, R., "A

Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing

Systems", Journal of Parallel and Distributed Computing, vol. 61, no. 6,

^ pp. 810-837, 2001.

[20] Braun, T. D., Siegel, H. J., and Beck et al., "A Taxonomy for Describing

Matching and Scheduling Heuristics for Mixed-Machine Heterogeneous

Computing Systems", IEEE Workshop on Advances in Parallel and

Distributed Systems, West Lafayette, pp. 330-335, 1998.

[21] BURP, http://burp.renderfarming.net/

143

[22] Butt, A. R., Adabala, S., Kapadia, N. H., Figueiredo, R. J., and Fortes, J.
A. B., "Grid-Computing Portals and Security Issues", Journal of Parallel >
and Distributed Computing, 63(10), 1006-1014, 2003.

[23] Casanova, H., Legrand, A., Zagorodnov, D., and Berman, F., "Heuristics
for Scheduling Parameter Sweep Applications in Grid Environments",
Proc. of the 9th Heterogeneous Computing Workshop (HCW'00), pp.

349-363, Cancun, Mexico, May 2000.

[24]

[25]

Casanova, H., Obertelii, G., Berman, F., and Wolski, R„ "The AppLeS
Parameter Sweep Template: User-level Middleware for the Grid", Proc.
the Super Computing Conference (SC'2000), 2000.

Casavant, T., and Kuhl, J., "A Taxonomy of Scheduling in general
Purpose Distributed Computing Systems", IEEE Transactions on
Software Engineering, vol. 14, no. 2, pp. 141-154, 1988.

[26] Chong, A., Sourin, A., and Levinski, K., "Grid-based Computer
Animation Rendering", Proc. of the 4th Int'l Conference on Computer
Graphics and Interactive Techniques in Australasia and Southeast Asia,
Malaysia, GRAPHITE '06, ACM, New York, 39-47, 2006.

[27] Chung, Y. -C, and Ranka, S., "Application and Performance Analysis of
a Compile-Time Optimization Approach for List Scheduling Algorithms
on Distributed Memory Multiprocessors", Proc. on Supercomputing, pp.

512-521, Nov 1992.

[28] Climateprediction.net, http://climateprediction.net/

[29] Daoud, M. I., and Kharma, N. N., "Efficient Compile-Time Task
Scheduling for Heterogeneous Distributed Computing Systems", Proc. of
the 12th IEEE Int'l Conference on Parallel and Distributed Systems, pp.

11-22,2006.

144

*

[30] Daoud, M., and Kharma, N., "GATS 1.0: a novel GA-based scheduling
jc algorithm for task scheduling on heterogeneous processor nets", Proc. of

the 2005 Conference on Genetic and Evolutionary Computation (GECCO

'05), Hans-Georg Beyer (Ed.), ACM, New York, NY, USA, 2209-2210,
2005.

[31] DaSilva, L., and Srivastava, V., "Node Participation in Ad Hoc and Peer-

to-Peer Networks: A Game-Theoretic Formulation", Workshop on

^ Games and Emergent Behavior in Distributed Computing Environments,
Birmingham, 2004.

[32] De Falco, I., Del Balio, R., Tarantino, E. and Vaccaro, R., "Improving

Search by Incorporating Evolution Principles in Parallel Tabu Search",

IEEE Conference on Evolutionary Computation, 1994.

[33] Deelman, E., BIythe, J., Gil, Y., and Kesselman, C, "Workflow

Y Management in GriPhyN", Grid Resource Management, State of the Art

and Future Trends, pp. 99-116, 2004.

[34] DiMasi, J. A., "The Price of Innovation: New Estimates of Drug

Development Costs", Journal of Health Economics, (22):151-185, 2003.

[35] Doboli, A. and Eles, P., "Scheduling Under Data and Control

Dependencies for Heterogeneous Architectures", Proc. of the Int'l

Conference on Computer Design (ICCD'98), pp. 602-608, Austin, Texas

USA, October 1998.

[36] Dogan, A. and Ozguner, F., "Biobjective Scheduling Algorithms for

Execution Time-Reliability Trade-off in Heterogeneous Computing

Systems", Journal of Computers, vol. 48, no. 3, pp. 300-314, 2005.

145

[37] Dogan, A. and Ozguner, F., "LDBS: A Duplication Based Scheduling
Algorithm for Heterogeneous Computing Systems", Proc. of the Int'l
Conference on Parallel Processing (ICPP'02). pp. 352-359, Aug 2002.

[38] Dogan, A. and Ozguner, F., "Scheduling Independent Tasks with QoS
requirements in Grid Computing with Time-varying Resource Prices",
Proc. of GRID 2002, Lecture Notes in Computer Science, vol. 2536,

Springer, Berlin, pp. 58-69, 2002.

[39] DrugDiscovery@Home, http://www.drugdiscoveryathome.com/

[40] Einstein@Home, http://www.einsteinathome.org/

[41] El-Rewini, H., Lewis, T., and Ali, H., "Task Scheduling in Parallel and
Distributed Systems", ISBN: 0130992356, PTR Prentice Hall, 1994.

[42] Ernemann, C, Hamscher, V., and Yahyapour, R., "Economic Scheduling
in Grid Computing", Proc. of the 8th Workshop on Job Scheduling
Strategies for Parallel Processing, LNCS, vol. 2537, Springer, pp. 128-

152, 2002.

[43] Folding@Home, http://folding.stanford.edu/

[44] Foster, I., and Kesselman, C, "The GRID 2: Blueprint for a New
Computing Infrastructure", Morgan Kaufmann Publishers, Elsevier Inc.,

2004.

[45] Foster, I., Fidler, M., Roy, A., Sander, V., and Winkler, L, "End-to-end
Quality of Service for High-end Applications", Elsevier Comput. Comm.
J., 27(14), pp. 1375-1388, 2004.

[46] Foster, I., Roy, A., and Sander, V., "A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation", Proc. of

146

the 8th Int'l Workshop on Quality of Serivice, Pittsburgh, PA, USA, pp.
181-188, June 5-7, 2000.

[47] Franke, C, Lepping, J., and Schwiegelshohn, U., "Greedy Scheduling

with Complex Objectives", Proc. of the 2007 IEEE Symposium on

Computational Intelligence in Scheduling (Cl-Sched 2007), pp. 113-120,

IEEE Press, April, 2007.

[48] Fusion Grid, http://www.fusiongrid.org/

[49] Gao, Z., Luo, S., and Ding, D., "A Scheduling Mechanism Considering

Simultaneously Running of Grid Tasks and Local Tasks in the

Computational Grid", Proc. of Int'l. Conference on Multimedia and

Ubiquitous Engineering (MUE'07), 2007.

[50] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and

Sunderam, V., "PVM: Parallel Virtual Machine", MIT press, 1994.

[51] Gerasoulis, A., and Yang, T., "A Comparison of Clustering Heuristics for

Scheduling Directed Acyclic Graphs on Multiprocessors", Journal of

Parallel and Distributed Computing, 16(4): pp. 276-291, 1992.

[52] Golconda, K. S., and Ozguner, F., "A Comparison of Static QoS-based

Scheduling Heuristics for a Meta-task with Multiple QoS Dimensions in

Heterogeneous Computing", Proc. of the 18th Int. Parallel and

Distributed Processing Symposium (IPDPS'04), 2004.

[53] Gong, L, Sun, X. H., and Waston, E., "Performance Modeling and

Prediction of Non-dedicated Network Computing", IEEE Transactions on

Computer, 51(9): 1041-1055, 2002.

[54] Grimme, C, Lepping, J., and Papaspyrou, A., "Discovering Performance

Bounds for Grid Scheduling by using Evolutionary Multiobjective

Optimization", Proc. of the Genetic and Evolutionary Computation

147

Conference (GECCO 2008), pp. 1491-1498, Atlanta, Georgio, USA,

ACM Press, July, 2008.

[55] Gupta, A., Ahire, S., Greenwood, G., and Terwiliger, M., "Workforce-
Constrained Preventive Maintenance Scheduling using Evolution

Strategies", Decision Sciences, 31(4):1-27, 2001.

[56] Gupta, A., Greenwood, G., and McSweeney, K., "Scheduling Tasks in
Multiprocessor Systems using Evolutionary Strategies", Proc. of the IEEE
Int'l Conference on Evolutionary Computation, pp. 345-349, 1994.

[57] Gupta, A., Greenwood, G., and Terwilliger, M., "Scheduling Replicated
Critical Tasks in Faulty Networks Using Evolutionary Strategies", Proc. of
the 1995 IEEE Int'l Conf. on Evolutionary Computing, pp. 152-156, 1995.

[58] Hagras, T., and Janecek, J., "A High Performance Low Complexity
Algorithm for Compile-Time Job Scheduling in Homogeneous
Computing Environments", Proc. of Int'l Conference on Parallel
Processing Workshops, pp. 149-155, Oct 2003.

[59] He, L, Jarvis, S. A., Spooner, D. P., Bacigalupo, D., Tan, G., and Nudd,
G. R., "Mapping DAG-based Applications to Multiclusters with
Background Workload", Proc. of IEEE Int'l Symposium on Cluster
Computing and the Grid (CCGrid'05), pp. 855-862, May 2005.

[60] He, X., Sun, X., and Laszewski, G., "QoS Guided Min-Min Heuristic for
Grid Task Scheduling", Journal of Computer Science and Technology,
Special Issue on Grid Computing, vol. 18, no. 4, pp. 442-451, July 2003.

[61] Heap, D., "Scorpion: Simplifying the Corporate IT Infrastructure", IBM®
Research White Paper, 2000.

148

[62] Hou, E., Ansari, N., and Ren, H., "A Genetic Algorithm for Multiprocessor

Scheduling", IEEE Transactions on Parallel and Distributed Systems,

5(2): 113-120, Feb 1994.

[63] Iverson, M., and Ozguner, F., "Dynamic, Competitive Scheduling of

Multiple DAGs in a Distributed Heterogeneous Environment", Proc. of

Seventh Heterogeneous Computing Workshop, pp. 70-78, Orlando,

Florida USA, March 1998.

[64] Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H., "The Eigentrust

Algorithm for Reputation Management in P2P Networks", Proc. of the

12th Int'l Conference on World Wide Web, pp. 640-651, 2003.

[65] Khan, A. A., McCreary, C, and Jones, M. S., "A Comparison of

Multiprocessor Scheduling Heuristics", ICPP, pp. 243-250, 1994.

[66] Khokhar, A. A., Prasanna, V. K., Shaaban, M. E., Wang, C.-L,

"Heterogeneous Computing: Challenges and Opportunities", IEEE

Comput, 26 (6), 18-27, 1993.

[67] Kim, S. C, Lee, S., and Hahm, J., "Push-Pull: Deterministic Search-

Based DAG Scheduling for Heterogeneous Cluster Systems", IEEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 11,

November 2007.

[68] Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P., "Optimization using

Simulated Annealing", Science Journal, vol. 220, no. 4598, 1983.

[69] Kruatrachue, B., and Lewis, T.G., "Grain Size Determination for Parallel

Processing", IEEE Software, 5(1), pp. 23-32, Jan 1988.

[70] Kung Fu Panda, http://www.kungfupanda.com/

149

[71] Kuruwski, K., Ludwiezak, B., Nabrzyski, J., Oleksiak, A., and Pukaeki, J.,
"Improving Grid Level Throughput Using Job Migration And 4
Rescheduling", Scientific Programming, vol. 12, no. 4, pp. 263-273,

2004.

[72] Kwok, Y., and Ahmed, I., "Benchmarking and Comparison of the Task
Graph Scheduling Algorithms", Journal of Parallel and Distributed
Computing, 59(3): 381^122, 1999.

[73] Lai, Kuan-Chou, and Yang, Chao-Tung, "A Dominant Predecessor
Duplication Scheduling Algorithm for Heterogeneous Systems", Journal
of Supercomputing, 44(2): pp. 126-145, 2008.

[74] Lanfermann, G., Allen, G., Radke, T., and Seidel, E., "Nomadic
Migration: A New Tool for Dynamic Grid Computing", Proc. of the 10th
IEEE Int'l Symposium on High Performance Distributed Computing
(HPDC'01), pp. 429-430, San Francisco, California USA, August 2001. ^

[75] Lee, C.-Y., "Two-Machine Flowshop Scheduling with Availability
Constraints", European J. Operational Research, vol. 114, no. 2, pp.

420-429, April 1999.

[76] Lee, L.-T., Chang, H. -Y., Liu, K. -Y., Chang, G. -M., and Lien, C. -C,
"A Dynamic Scheduling Algorithm in Heterogeneous Computing
Environments", Int'l Sym. on Communications and Information

Technologies (ISCIT06), pp. 313-318, 2006.

[77] Li, Chunlin, and Li, Layuan, "A Pricing Aproach for Grid Resource
Scheduling with QoS Guarantees", Fundamenta Informaticae, 76(2007),

pp. 59-73, 2007.

I50

[78] Li, Chunlin, and Li, Layuan, "Utility-based QoS Optimization Strategy for

Multi-criteria Scheduling in Grid", Journal of Parallel and Distributed

Computing, 2006.

[79] Li, H., and Singhal, M., "Trust Management in Distributed Systems",
Computer, vol. 40, no. 2, pp. 45-53, 2007.

[80] Lin, Wei-Ming, and Gu, Q., "An Efficient Clustering-Based Task

Scheduling Algorithm for Parallel Programs with Task Duplication",

Journal of Information Science and Engineering, vol. 23, no. 2, pp. 589-
604, 2007.

[81] Liou, J., and Palis, M. A., "A Comparison of General Approaches to

Multiprocessor Scheduling", Proc. of the 11th Int'l Symposium on Parallel

Processing, pp. 152-156, April 1997.

[82] Liou, J., and Palis, M. A., "An Efficient Task Clustering Heuristic for

Scheduling DAGs on Multiprocessors", Proc. of Workshop on Resource

Management, Symposium of Parallel and Distributed Processing, pp.

152-156, Oct 1996.

[83] Luo, Y., Xue, Y., and Zhong, S., "Road Extraction from IKONOS Image

using Grid Computing Platform", Proc. of IEEE Int'l Geoscience and

Remote Sensing Symposium (IGARSS '05), vol. 6, no., pp. 3895- 3898,

July 2005.

[84] Ma, T., and Buyya, R., "Critical-Path and Priority based Algorithms for

Scheduling Workflows with Parameter Sweep Tasks on Global Grids",

Proc. of the 17th Int'l Symposium on Computer Architecture and High
Performance Computing, Rio de Janeiro, Brazil, October 2005.

[85] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., and Freund, R. F.,

"Dynamic Matching and Scheduling of a Class of Independent Tasks

I5l

onto Heterogeneous Computing Systems", Journal of Parallel and
Distributed Computing, vol. 59, No. 2, pp. 107-131, November 1999.

[86] MilkyWay@Home, http://milkyway.cs.rpi.edu/milkyway/

[87] MPI Forum, "MPI: AMessage Passing Interface Standard". International
Journal ofSupercomputer Application, 8 (3/4), pp. 165-416, 1994.

[88] Muthuvelu, N., Liu, J., Soe, N. L, Venugopal, S., Sulistio, A., and Buyya,
R., "A Dynamic Job Grouping-based Scheduling for Developing
Applications with Fine-Grained Tasks on Global Grids", Proc. of the
Third Australasian Workshop on Grid Computing and e-Research

(AusGrid 2005), Newcastle, Australia, 2005.

[89] Nadeem, F., Prodan, R., and Fahringer, T., "Characterizing, Modeling
and Predicting Dynamic Resource Availability in a Large Scale Multi

purpose Grid", Proc. ofCCGrid, Lyon, France, 2008.

[90] Olivier, B., Vinecent, B., and Yves, R., "The Iso-level Scheduling
Heuristic for Heterogeneous Processors", Proc. of the 10th Euromicro
workshop on parallel, distributed and network-based processing, pp.

335-342, 2002.

[91] Papadimitriou, C. H., and Yannakakis, M., "Towards an Architecture-
Independent Analysis of Parallel Algorithms", SIAM Journal of
Computing, 19(2), pp. 322-328, April 1990.

[92]

[93]

Park, G.-L., Shirazi, B., and Marquis, J., "DFRN: A New Approach for
Duplication Based Scheduling for Distributed Memory Multiprocessor
Systems", Proc. of the 11th Int'l Parallel Processing Symposium, pp.
157-166, April 1997.

Pasham, S., and Lin, Wei-Ming, "Efficient Task Scheduling with
Duplication for Bounded Number of Processors", The IEEE 11th Int'l

152

Conference on Parallel and Distributed Systems (ICPADS-2005),
Fukuoka, Japan, 2005.

[94] Pasham, S., and Lin, Wei-Ming, "Task Scheduling Algorithm with

Duplication for Distributed Computing", 17th Int'l Conference on

Computer Applications in Industry and Engineering, Orlando, FL., 2004.

[95] Pinedo, M., "Scheduling: Theory, Algorithms and Systems", Prentice

Hall, 1995.

[96] Qin, X., and Xie, T., "An Availability-Aware Task Scheduling Strategy for

Heterogeneous Systems", IEEE Transaction on Computers, vol. 57(2),

pp. 188-199,2008.

[97] Quinn, M. J., "Parallel Computing: Theory and Practice", Tata McGRAW

Hill, 1994.

[98] Radulescu, A., and Gemund, A. J. C. van, "On the Complexity of List

Scheduling Algorithms for Distributed Memory Systems", Proc. of 13th

Int'l Conference on Supercomputing, pp. 68-75, Portland, Oregon, USA,

November 1999.

[99] Radulescu, A., Gemund, A.J.C. van, "Fast and Effective Task Scheduling

in Heterogeneous Systems", Proceedings of the Ninth International

Heterogeneous Computing Workshop, 2000.

[100] Ranaldo, N., and Zimeo, E., "Time and Cost-Driven Scheduling of Data

Parallel Tasks in Grid Workflows", IEEE Systems Journal, vol. 3, no. 1,

pp. 104-120, March 2009.

[101] Ranaweera, S., Agrawal, D. P., "A Scalable Task Duplication based

Scheduling Algorithm for Heterogeneous Systems", Proc. of the Int'l

I53

Conference on Parallel Processing, Toronto, Canada, pp. 383-390, 2000.

[102] Ranaweera, S., and Agrawal, D. P., "A Task Duplication Based
Scheduling Algorithm for Heterogeneous Systems", Proc. of 14th Int'l
Parallel and Distributed Processing Symposium (IPDPS'00), pp. 445-

450, Cancun, Mexico, May 2000.

[103] Reeves, C. R., "Modern Heuristic Techniques for Combinatorial
Problems", John Wiley &Sons, McGraw-Hill International (UK) Limited,

1995.

[104] Ritchie, G., and Levine, J., "A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments", Proc. of
the 23rd Workshop of the UK Planning and Scheduling Special Interest

Group, Dec, 2004.

[105] Sadfi, C, and Ouarda, Y., "Parallel Machine Scheduling Problem with
Availability Constraints", Proc. of the 9th Int'l Workshop Project
Management and Scheduling (PMS '04), 2004.

[106] Sakellariou, R., and Zhao, H„ "A Hybrid Heuristic for DAG Scheduling on
Heterogeneous Systems", Proc. of 18th IEEE Int'l Parallel and Distributed
Processing Symposium, 2004.

[107] Sakellariou, R., and Zhao, H., "A Low-cost Rescheduling Policy for
Efficient Mapping of Workflows on Grid Systems", Journal of Scientific
Programming, vol. 12, no. 4, pp. 253-262, 2004.

[108] Sakellariou, R., Zhao, H., Tsiakkouri, E., and Dikaiakos, M. D.,
"Scheduling Workflows with Budget Constraints", Sergei Gorlatch and
Marco Danelutto (Eds.): Integrated Research in GRID Computing

,54

(CoerGRID Integration Workshop 2005), Springer-Verlag, CoerGRID
Series, pp. 189-202, 2007.

[109] Sample, N., Keyani, P., and Wiederhold, G., "Scheduling Under

Uncertainty: Planning for the Ubiquitous Grid", Proc. of the 5th Int'l

Conference on Coordination Models and Languages, Lecture Notes In

Computer Science; vol. 2315, pp. 300-316, York, UK, April 2002.

[110] Sanlaville, E., and Schidt, G., "Machine Scheduling with Availability

Constraints", Acta Informatica, vol. 35, no. 9, pp. 795-811, Sept. 1998.

[111] Schopf, J., "Ten Actions When SuperScheduling", Document of

Scheduling Working Group, Global Grid Forum, July 2001.

http://www.ggf.Org/documents/GFD.4.pdf

[112] SETI@Home, http://setiathome.ssl.berkeley.edu/

[113] Shi, Z., and Dongarra, J. J., "Scheduling Workflow Applications on

Processors with Different Capabilities", Future Generation Computer

Systems, vol. 22, no. 6, pp. 665-675, Elsevier, 2005.

[114] Silva, D. P., Cirne, W., and Brasileiro, F. V., "Trading Cycles for

Information: Using Replication to Schedule Bag-of-Tasks Applications

on Computational Grids", Proc. of Euro-Par 2003, pp.169-180,

Klagenfurt, Austria, August 2003.

[115] Smith, S. P., "An Efficient Method to Maintain Resource Availability

Information for Scheduling Applications", Proc. IEEE Int'l Conf. Robotics

and Automation (ICRA '92), vol. 2, pp. 1214-1219, May 1992.

[116] Song, S., Kwok, Y. K., and Hwang, K., "Security-Driven Heuristics and A

Fast Genetic Algorithm for Trusted Grid Job Scheduling", Proc. of the

19th IEEE Int'l Parallel and Distributed Processing Symposium, 2005.

155

[117] Subramani, V., Kettimuthu, R., Srinivasan, S., and Sadayappan, P.,
"Distributed Job Scheduling on Computational Grids using Multiple

Simultaneous Requests", Proc. of 11th IEEE Symposium on High
Performance Distributed Computing (HPDC 2002), pp. 359-366,

Edinburgh, Scotland, July 2002.

[118] Sun, M., Zeng, G., Yuan, L, and Wang, W., "A Trust-Oriented Heuristic
Scheduling Algorithm for Grid Computing", Malyshkin, V.E. (ed.) PaCT
2007, LNCS, vol. 4671, pp. 608-614. Springer, Heidelberg, 2007.

[119] Sun, Xian-He, and Ming, W., "GHS: Aperformance prediction and task
scheduling system for Grid computing", Proc. of IEEE Int'l Parallel and
Distributed Processing Symposium, Nice, France, 2003.

[120] Superlink@Technion, http://cbl-link02.cs.technion.ac.il/superlinkattechnion/

[121] The Austrian Grid Consortium, http://www.austriangrid.at

[122] The Global Grid Forum (GGF), http://www.gridforum.org/

[123] The Tele Science Project, http://www.sdsc.edu/

[124] Topcuoglu, H., Hariri, S., and Wu, M. Y., "Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing", IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.

260-274, March 2002.

[125] Tsiakkouri, H. Z. E., Sakellariou, R., and Dikaiakos, M. D., "Scheduling
Workflows with Budget Constraints", Proceedings of the CoreGRID
Workshop on Integrated research in Grid Computing, S. Gorlatch and M.
Danelutto, Eds., pp. 347-357, 2005.

[126] Vadhiyar, S., and Dongarra, J., "A Performance Oriented Migration
Framework for the Grid", Proc. of the 3rd Int'l Symposium on Cluster

156

Computing and the Grid (CCGrid'03), pp. 130-139, Tokyo, Japan, May

2003.

[127] Viswanathan, S., Bharadwaj, V., and Robertazi, T. G., "Resource Aware

Distributed Scheduling Strategies for Large-Scale Computational

Cluster/Grid Systems", IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 10, Oct 2007.

[128] Wibisono, A., Zhao, Z., Belloum, A., and Bubak, M., "A Framework for

Interactive Parameter Sweep Applications", Lecture Notes in Computer

Science, 2008, vol. 5103, pp. 481-490, 2008.

[129] Wieczorek, M., Hoheisel, A., and Prodan, R., "Taxonomy of the Multi

Criteria Grid Workflow Scheduling Problem", CoreGRID Workshop, 2007.

[130] Wieczorek, M., Podlipnig, S., Prodan, R., and Fahringer, T., "Bi-criteria

Scheduling of Scientific Workflows for the Grid", 8th IEEE International

Symposium on Cluster Computing and the Grid (CCGRID '08), vol., no.,

pp. 9-16, 19-22 May 2008.

[131] Wolski, R., Spring, N., and Hayes, J., "The Network Weather Service: A

Distributed Resource Performance Forecasting Service for

Metacomputing", Future Generation Computing Systems, 15(5-6):757-

768, 1999.

[132] Woo, S.-H., Yang, S.-B., Kim, S.-D., and Han, T.-D., "Task Scheduling

in Distributed Computing Systems with a Genetic Algorithm", High

Performance Computing on the Information Superhighway (HPC

Asia'97), pp. 301-305, May 1997.

[133] Wu, M., and Sun, X., "Self-adaptive Task Allocation and Scheduling of

Meta-tasks in Non-dedicated Heterogeneous Computing", International

I57

J. of High Performance Computing and Networking (IJHPCN), vol. 2, pp.

186-197,2004.

[134] Wu, M., Shu, W., and Zhang, H., "Segmented Min-Min: AStatic Mapping
Algorithm for Meta-Tasks on Heterogeneous Computing Systems", Proc.
of the 9th Heterogeneous Computing Workshop (HCW'00), pp. 375-385,

Cancun, Mexico, May 2000.

[135] Yang, T., and Gerasoulis, A., "DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors", IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 9, pp. 951-967, 1994.

[136] You, S. Y., Kim, H. Y., Hwang, D. H., and Kim, S. C, "Task Scheduling
Algorithm in GRID Considering Heterogeneous Environment",
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA '04), pp. 240-245,

Nevada, USA, June, 2004.

[137] Yu, J., and Buyya, R., "A Budget Constrained Scheduling of Workflow
Applications on Utility Grids using Genetic Algorithms", Proc. of the 15th
IEEE Int'l Symposium on High Performance Distributed Computing
(HPDC 2006), Paris, France, IEEE, IEEE CS Press, June 2006.

[138] Yu, J., and Buyya, R., "Scheduling Scientific Workflow Applications with
Deadline and Budget Constraints using Genetic Algorithms", Scientific
Programming Journal, vol. 14, no. 1, pp. 217-230, 2006.

[139] Yu, J., Buyya, R., and Tham, C. K., "Cost-based Scheduling of Scientific
Workflow Applications on Utility Grids", Proc. of the 1st IEEE Int'l
Conference on e-Science and Grid Computing (e-Science 2005), IEEE.
Melbourne, Australia: IEEE CS Press, pp. 140-147, Dec. 2005.

158

[140] Yu, J., Buyya, R., and Tham, C. K., "QoS-based Scheduling of Workflow
Applications on Service Grids", Proc. ofthe 1st IEEE Int'l Conference on
e-Science and Grid Computing (e-Science'05), Melbourne, Australia,
December 2005.

[141] Zhang, J., and Luo, J., "An Adaptive QoS Group Guided Grid Scheduling
Algorithm with Task Replicas", Proc. of the 11th Int'l Conference on
Computer Supported Cooperative Work in Design, 2007.

[142] Zhang, Y., Koelbel, C, and Kennedy, K., "Relative Performance of

Scheduling Algorithms in Grid Environments", 7th IEEE Int'l Symposium
on Cluster Computing and the Grid, pp. 521-528, May 2007.

[143] Zhao, H., and Sakellariou, R., "An Experimental Investigation into the
Rank Function of the Heterogeneous Earliest Finish Time Scheduling
Algorithm", Lecture Notes in Computer Science (Springer), vol. 2790, pp.
189-194, August 2003.

[144] Zhao, H., and Sakellariou, R., "Scheduling Multiple DAGs onto

Heterogeneous Systems", 15th Heterogeneous Computing Workshop
(HCW'06), Greece, IEEE, IEEE CS Press, April 2006.

[145] Zhu, C, Tang, X., Li, K., Han, X., Zhu, X., and Qi, X., "Integrating Trust
into Grid Economic Model Scheduling Algorithm", R. Meersman, Z. Tari

(eds.) OTM 2006, LNCS, vol. 4276, pp. 1263-1272. Springer,
Heidelberg, 2006.

[146] Zuhily, A., and Burns, A., "Exact Scheduling Analysis of Non-

Accumulatively Monotonic Multiframe Tasks", Real Time Systems
Journal, vol. 43, pp. 119-146, 2009.

159

VITAE

Born on March 27, 1977 at Roorkee, he did his B.E. with Honors in

Computer Science &Engineering in 1999 from G. B. Pant Engineering College,

Pauri, India. Later, he did his M.Tech. in Information Technology in 2005 from

Punjabi University, Patiala. He served College of Engineering Roorkee, Gurukul

Kangri University, Graphic Era Institute of Technology (Presently known as

Graphic Era University) and Dehradun Institute of Technology and GRD

Institute of Management and Technology, Dehradun at various faculty positions.

Currently, he is working with College of Engineering Roorkee, India as

Professor & Dean (Computing). He pursued Doctoral Research in the

Department of Electronics and Computer Engineering at Indian Institute of

Technology Roorkee, India from 2007 to 2011 under MHRD scholarship of

Government of India. He is a member of IEEE, member of Computer Society of

India. His current areas of interest include Parallel & Distributed Computing,

Grid Computing, Real Time Systems and Cloud Computing.

160

PUBLICATIONS

Refereed International Journals:

1. Amit Agarwal and Padam Kumar, "An Effective Compaction Strategy for
Bi-Criteria DAG Scheduling in Grids", International Journal of

Communication Networks and Distributed Systems (IJCNDS), Vol. 5, No.
3, pp. 331-346, Inderscience Publications, 2010.

Amit Agarwal and Padam Kumar, "Economical Task Scheduling
Algorithm for Grid Computing Systems", Global Journal of Computer
Science and Technology, Vol. 10, No. 11, pp. 48-53, 2010.

3. Amit Agarwal and Padam Kumar, "Multidimensional QOS Oriented Task

Scheduling in Grid Environments", International Journal of Grid

Computing and Applications (IJGCA), Vol. 2, No.1, pp. 28-37, 2011.

4. Amit Agarwal and Padam Kumar, "An Availability-Aware QoS Oriented

Task Scheduling Strategy for Grid Computing Systems", Int. J. of

Computers and Electrical Engineering, Elsevier, (under review)

Refereed International Conferences:

5. Amit Agarwal and Padam Kumar, "Heterogeneity-Aware Task

Scheduling Using Critical Path in Grid Environments", Proceedings of
International Conference on Signal Processing Systems (ICCDA),
Singapore, vol., no., pp. 479^83, 15-17 May 2009.

6. Amit Agarwal and Padam Kumar, "Economical Duplication Based Task

Scheduling for Heterogeneous and Homogeneous Computing Systems",
Proceedings of IEEE International Advance Computing Conference
(IACC 2009), Patiala, vol., no., pp. 87-93, 6-7 March, 2009.

161

7. Amit Agarwal and Padam Kumar, "Trust-oriented Multi-objective
Workflow Scheduling in Grids", Proceedings of International Conference
on Grid and Distributed Computing (GDC 2009), South Korea, CCIS 63,
pp. 96-107, Springer-Verlag Berlin Heidelberg, 2009.

8. Amit Agarwal and Padam Kumar, "A Two-phase Bi-criteria Workflow
Scheduling Algorithm in Grid Environments", Proceedings of 17th
International Conference on Advanced Computing and Communications
(ADCOM 2009), Bangalore, pp. 168-173, 14-17 December 2009.
(Accepted)

9. Amit Agarwal and Padam Kumar, "Multicriteria Scheduling for Multiple
Workflows in Grids", Proceedings of First International Conference on
Advanced Computing and Communication Technologies, India, pp. 289-

291,2011.

162

X

Appendix-A Simulation

using MATLAB

This Appendix introduces different methods used in simulation to analyze

the performance of proposed scheduling heuristics. The performance analysis

of the proposed scheduling strategies with the related scheduling heuristics is

simulated in MATLAB using TORSCHE scheduling toolbox [SCH]. Some new

functions are implemented to design grid scheduling simulation environment.

Some of the functions are described below for clarification.

A.1 Random Directed Acyclic Graph (DAG) Generation

A supplementary function 'randdfgfj' allows generating random directed

acyclic graph (DAG). This function has been implemented by modifying

'randdfgfj' function (random data flow graph generator) available in TORSCHE

scheduling toolbox [SCH] in order to generate DAGs. This function is as follows:

Synopsis: g=randdfg(n, m, degmax, ne)

163

The first parameter 'n' is the number of tasks in the DAG. The 'm' is the number
of processing nodes (or processors) available in the grid. Parameter 'degmax' j,
restricts the upper bound of outdegree of vertices in the DAG. Parameter ne is
the number of edges in the DAG. The output parameter 'g' represents the

generated DAG.

A.2 Transformations from DAG to task set

The object directed acyclic graph 'g' can be transformed to the object

'taskset' as follows:

Synopsis: T=taskset(g)

Each node from graph 'g' will be converted to a task. Tasks properties (e.g.,
Processing Time, Deadline . . .), are taken from node 'UserParam' attribute.
Default order of 'UserParam' attribute is:

{'ProcTime','ReleaseTime'/Deadline','DueDate','Weight','Processor', 'UserParam'}

All edges are automatically transformed to the task precedence
constrains. Their parameters are saved to the cell array in
'T.TSUserParam.EdgesParam'. The edge list from DAG g' can be computed as

follows:

% Get edge list from graph g
edge_mathx=getdata(g, 'edl'f,

A.3 Finding b-level of each task in DAG

The b-level of each task node in DAG has been computed recursively
from exit task to entry task using the following MATLAB code:

164

I

% Calculate b-level of each node in graph g
b_level=T.ProcTim e;
for i=n-l:-l:l

for j-line
if edge_matrix(j,l)==i

temp=bJeveI(edge_matrix(j,2))+edge_matrix(j,3)+T.ProcTime(i);
iftemp>b_level(i)

b_ievei{i)-temp;
end;

end;

end;
end;

A.4 Finding t-level of each task in DAG

The t-level of each task node in DAG has been computed using the

MATLAB code as follows:

% Calculate t-level of each node in graph g
t_level(n)=0;
for i=2:n

forj=line
if edge_matrix(j,2)==i

temp=t_level(edge_matrix(j, l))+edge_matrix(j, 3)+T.ProcTime(edge_matrix(j, 1));
iftemp>t_level(i)

t_level(i)=temp;
end;

end;

end;
end;

end;

A.5 Structure of scheduling algorithms in the toolbox

Scheduling algorithm in TORSCHE is a MATLAB function with at least

two input parameters and at least one output parameter. The first input

parameter must be taskset, with tasks to be scheduled. The second one must

be an instance of problem object describing the required scheduling problem in

(a | (3 | y) notation. Taskset containing resulting schedule must be the first

output parameter. Common syntax of the scheduling algorithms is as follows:

165

Synopsis: TS =name(T, problemf, processors!, parameters]])

Name command name of algorithm

TS set of tasks with schedule inside

T set of tasks to be scheduled

Problem object problem describing the classification of scheduling problems
Processors number ofprocessors for which schedule iscomputed
Parameters additional information for algorithms, e.g. parameters of mathematical solvers etc.

The algorithm should perform initialization of variables like 'n' (number of 4
tasks), 'p' (vector of processing times) Then, a scheduling algorithm
calculates start time of tasks (starts) and processor assignment (processor) - if
required. Finally the resulting schedule is derived from the original taskset using
function 'add schedule'. The structure of scheduling algorithms in the scheduling

toolbox is depicted as follows [SKS06]:

%Structure ofscheduling algorithms in the toolbox
function [TS] =schalg(T, problem) f
%function description
%scheduling problem check
if~(is(prob,'alpha','P2') && is(prob,'betha','rj,prec') &&...
is(prob, 'gamma', 'Cmax'))
errorf'Can not solve this problem.');
end
%initialization ofvariables
n=count(T); %number oftasks
p=T.ProcTi'me %vector ofprocessing time
%scheduling algorithm

starts = %assignemen ofresulting start times >
processor =... %processor assignemen
%output schedule construction
description = 'a scheduling algorithm';
TS = T;
add_schedule(TS, description, starts, p, processor);
%end offile

The above structure has been used to implement the proposed
scheduling heuristics in the thesis. The list scheduling algorithm is implemented
in the toolbox as follows: r

166

I

Synopsis: TS =IistschfT, problem, processors [strategy])

Strategy Strategy ofthe list scheduling algorithm

It is possible to define own strategy for LS algorithm according to the following
model of function. Function with the same name as the optional parameter
(name of strategy function) is called from List Scheduling algorithm:

Synopsis: TS =listschfT, problem, processors, 'OwnStrategy')

In this case, strategy algorithm is called in each iteration of List

Scheduling algorithm upon the set of unscheduled task. Strategy algorithm is a
standalone function with following parameters:

Synopsis: [TS, order] =OwnStrategy(T[, iteration, processor]);

T set of tasks

Order indexvector representing new order oftasks

Iteration actual iteration ofList Scheduling algorithm

Processor selected processor

A.6 Generate Gantt Chart of the Schedule

The 'plotrj' function is used to generate the Gantt chart of the output schedule TS. The
syntax is as follows:

Synopsis: plot(TS) %TS isasetof tasks with schedule inside

REFERENCES:

[SCH] Scheduling Toolbox, http://rtime.felk.cvut.cz/scheduling-toolbox/).

[SKS06] SVcha, P., Kutil, M., Sojka, M. and Hanza'Iek, Z., "TORSCHE

Scheduling Toolbox for Matlab", IEEE International Symposium on

Computer-Aided Control Systems Design, Germany, 2006.

167

>

A

Appendix-B Stepwise Trace
of DBSA Algorithm

In Chapter 1, Figure 1.1 depicts a directed acyclic graph of eight task
nodes and eleven communication edges (grid application model). The edge
weights are represented with amount (volume) of data (in Kbytes) being
transferred between the concerned tasks. Figure 4.2 illustrates a GRID of four

resources connected arbitrary. The solid lines show the edges among the

resources whereas dotted lines represent that there is no direct communication

path between the resources. Such resources may communicate using
alternative path with maximum bandwidth. The communication edges of GRID
are labeled with bandwidth (in Kbps). The bandwidth on indirect path can be

computed by selecting a path in alternative path set which is providing the
maximum bandwidth.

In Figure 4.2, resource p, and resource p3 may communicate through
P1-P2-P3 yielding the maximum available bandwidth between p-i and p3 as 100

Kbps (minimum bandwidth of a link on the path). Similarly, the bandwidth
between p3 and p4 may be computed by selecting a path p4-p1-p2-p3 which

168

yields a bandwidth of 100 Kbps between these resources. The mean
communication rate (bandwidth) for this grid can be computed as an average
bandwidth of grid. The mean communication rate is 100 Kbps for the grid
depicted in Figure 4.2. Therefore, the DAG depicted in Figure 1.1 can be
represented as:

The nodes are labeled with mean computation time (computed in Table
4.3) and edges are labeled as mean communication time (computed by dividing
data volume by mean bandwidth). With these values, the b-level can be
computed using Equation (3.7) as shown in Table 4.3. The priority task
sequence generated using highest b-level is ^-u5-n4-n3-n2-n7-n&-n8. The
tasks are scheduled over the capable resources in order of task sequence

using duplication based strategy.

Figure 4.11 (a) shows the primary schedule obtained by duplication
based scheduling strategy. The makespan of this schedule is 16 ms
(milliseconds). The economic cost can be computed using Equation (4.1) and
Equation (4.2).

For Figure 4.11(a), various processor busy times are (see Section 4.2.4):
PBT(pi) =16, PBT(p2) =3, PBT(p3) =8, PBT(p4) =3;

169

i

Economic cost can be computed for the primary schedule as:

EC = (16x220x1 +3x350x2.5 +8x450x3 + 3x310x2)/1000 = 18.81 g$

Similarly, the economic cost after removal of useless duplications from the
primary schedule in Figure 4.11(b) would be:

EC =(16x220x1 +2x350x2.5 +8x450x3 +2x310x2)/1000 = 17.31 g$

Further, the economic cost can be computed after removal of unproductive sub-
schedules (if any) from the primary schedule in Figure 4.11 (c) as:

EC = (16x220x1 + 8x450x3)/1000 = 14.32 g$

In Figure 4.11 (d), the primary schedule length may be relaxed to 18 ms

providing 2 ms sliding constraint (10% of makespan (16 ms)). The secondary
schedule is showing a makespan of 17 ms while the tasks from resource p3 can
be migrated to p4. The economic cost of this schedule can be computed as:

PBT(P1) = 17, PBT(p2) = 0, PBT(p3) = 0, PBT(p4) = 9;

EC = (17x220x1 + 9x310x2)/1000 = 9.32 g$

The tasks (^-n5-r\7-r\8) show the critical path in the DAG. The NSL is

computed using Equation (4.4) where denominator is the sum of minimum

execution costs of tasks on critical path (i.e., 11 as per Table 4.3). therefore,
NSL is as follows:

NSL= 17/11 = 1.55;

Now, the effective schedule cost using Equation (4.6) can be computed as:

ESC= 1.55x9.32 = 14.4 g$

170

X

Appendix-C MATLAB Code

of AQUA Algorithm

In chapter 5, we have proposed a QoS based scheduling heuristic for

scheduling independent task applications in the grid computing systems. The

proposed approach (AQUA) has been simulated in MATLAB for validating with

the existing QGMM approach. The code has been presented below:

Function

QGMMl(x,network_bandwidth_avail,network_bandwidth_demand,node_avail,task_avail_demand,TC,m,n)

%m is the numberof task classes and n is the numberofcomputingnode, x is the %age of
%dedicated nodes in the grid

node_avail_time=zeros(l,n);
nc=unifrnd(0.1,l,n);
fori-l:m

forj-l:n
ETC(i,j)=ceil[TC(i)/ncQ));

end;
end;

r=floor(n*100/x);
fori=l:r
node_avail(i*l 00/x)=l;
network_bandwidth_avaiI(i*l 00/x)=l 000,
end;

% initialize nodes to zeros

% resource computing capacity

% x=25% nodes are dedicated

171

task_avail_demand_temp=task_avail_demand;
task_queue=zeros(l,m);
fori=l:m
[ploc]-max(task_avail_demandJemp);

task_queue(i)-loc;
task_avail_demandjemp(loc)=0;

end;

queue_high-0;
queue_low-0;
high=0;low=0;

Zftask_availdemand(task_queue(i))>0.5&network_bandwidth_demand(task_queue(i))>100
high=high+l;
queue_h\gh(high)=task_queue(i);

else

low=low+l;
queue_low(low)-task_queue(i);

end;

end;

queue_high_Q=0;
queue_low_Q=0;
high_Q=0;low_Q=0;
fori=l:m

ifnetwork_bandwidth_demand(task_queue(i))>100
high_Q=high_Q+l;
queue_high_Q(high_Q)=task_queue(i);

else

low_Q=Iow_Q+l;
queueJow_Q(low_Q)=task_queue(i);

end;

end;

% Compute suitable node set based on availability (AQUA Approach)

suitable_node-zeros(m,n);
s=sum(queue_high);
ifs>0 *
for i=l:length(queue_high)

P=l;
forj-lin

ifnode_avail(j)>^task_avail_demand(queue_high(i))&
network_bandwidth,availQ)>network_bandwidth_demand(i)

suitable_node(queue_high(i),p)=j;
p=p+l;

end;

end;

end;

end;
s=sum(queue_low); ^
ifs>0
fori=l:length(queueJow)

p=l;

172

I

for j=l:n
ifnode_avail(])>=task_avail_demand(queue_low(i))

suitable_node(queue_low(i),p)=j;
p=p+l;

end;
end;

end;

end;

% Compute suitable node set based on availability (QGMMApproach)

suitable_node_ Q=zeros(m,n);
s=sum(queue_high_Q);
ifs>0
for i=l:length(queue_high_Q)

P=l;
forj=l:n

ifnetwork_bandwidth_avail(j)>network_bandwidth_demand(i)
suitable_node_Q(queue_high_Q(i),p)=j;
p=p+l;

end;
end;

end;

end;

s-sum(queue_low_Q);
ifs>0
for i=l:length(queue_low_Q)

P=l;
forj=l:n

suitable_node_Q(queue_ low_Q(i),p)=j;
p=p+l;

end;

end;
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Scheduling Algorithm: AQUA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

allocate=zeros(6,m);
exp_response_time=zeros(l,h igh);
for i=l:high %schedule high QoStasksfirst

response_ time=Inf;
class-queue_high(i);
nodeJength=nnz(suitable_node(class,l:n));

for]~l:node_length
k=suitable_node(class,j);
ert-ETC(class,k)+node_avail_time(k);
exp_respo nse_time (class)=ert;
ifexp_response_time(class)<response_time

response_time=exp_response_time(class);
node=k;

end;
end;

173

allocate(l,queue_highp))=node;
allocate(2,queue_high(i))=node_avail_time(node);
node_availJime(node)=response_time; X
allocate(3,queue_high(i))-response_time-allocate(2,queue_high(i));
allocate(4,queue_high(i))=response_time;
allocate(5,queue_high(i))=node_avail(node);
allocate(6,queue_high(i))=task_avail_demand(queue_high(i));

end;

exp_response_time=zeros(l,low);
fori=l:low %schedule low QoS tasks next

response_time=Inf;
class=queue_low(i);
node_length=nnz(suitable_node(class,l:n));

forj=l:node_length f
k=suitable_node(class,j);
ert=ETC(class,k)+node_avail_time(k);
exp_response_time(class)-ert;
ifexp_response_time(class)<responseJime

response_ time=exp_response^ time(class);
node=k;

end;

end;
allocate(l,queue_low(i))=node;
allocate(2,queue_low(i))=node_avail_time(node);
node_avail_time(node)=response_time;
allocate(3,queuejow(i))=responsejime-allocate(2,queue_low(i));
allocate(4,queue_low(i))=response_time; y
aIlocate(5,queueJow(i))-node_avail(node);
allocate(6,queue_low(i))=task_avail_demand(queueJow(i));

end;

%End ofschedulingalgorithm
makespan=max(node_avail_time);

temp=0;
fori-l:n

temp=temp+makespan-node_availJime(i);
end; .
util=l-temp/(n*makespan); >

grid_avail=0; %surplus availabilityfor AQUA
fori=l:m

grid_avail=grid_avail+allocate(5,i)-allocate(6,i);
end;
grid_avail=ghd_avail/m;

success=0;

fori=l:m
ifallocate(5,i)>allocate(6,i)

success-success+1;

end; y
end;

174

% % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Scheduling Algorithm: QGMM
4. %

node_avail_time_Q=zeros(l,n); % initialize nodes to zeros
allocate_Q-zeros(6,m);
exp_response_time=zeros(l,high_Q);
for i=l:high_Q %schedule high QoStasks first

response_time=Inf;
class-queue_high_Q(i);
nodeJength=nnz(suitable_node_Q(class,l:n));

for j=l:node_length
k=suitable_node_Q(class,j);
ert=ETC(class,k)+node_avail_ time_Q(k);

•j exp_response_time(class)=ert;
ifexp_response_time(class)<response_time

response_ time=exp_ response_ time(class);
node-k;

end;

end;

allocate_Q(l,queue_high_Q(i))-node;
allocate_Q(2,queue_high_Q(i))=node_avail_time_Q(node);
node_avail_time_Q(node)-response_time;
allocate_Q(3,queue_high_Q(i))=response_time-allocate_Q(2,queue_high_Q(i));
allocateJl(4,queue_high_Q(\))-response_time;
allocate_Q(5,queue_high_Q(i))=node_avail(node);
allocate_Q(6,queue_high_Q(i))=task_avail_demand(queue_high_Q(i));

k end;

exp_response_time=zeros(l,low_Q);
for i=l:low_Q %schedule low QoS tasks next

response_ time=Inf;
class=queue_low_Q(i);
nodeJength-nnz(suitable_node_Q(class,l:n));

for j=l:nodeJength
k=suitable_node_Q(class,j);
ert=ETC(class,k)+node_avail_time_Q(k);
exp_response_ time(class)-ert;
ifexp_response_time(class)<response_time

\ response_time=exp_response_time(class);
node-k;

end;
end;

allocate_Q(l,queue_iow_Q(i))-node;
allocate_Q(2,queue_low_Q(i))=node_avail_time_Q(node);
node_avail_time_Q(node)=response_time;
allocate_Q(3,queue_low_Q(i))-response_time-allocate_Q(2,queue_low_Q(i));
allocate_Q(4,queue_low_Q(i))-response_time;
allocate_Q(5,queue_low_Q(i))=node_avail(node);
allocate_Q(6,queue_low_Q(i))=task_avail_demand(queue_Iow_Q(i));

end;

% End ofscheduling algorithm

175

	TOWARDS MULTI-OBJECTIVE SCHEDULING STRATEGIES FOR GRID COMPUTING ENVIRONMENTS
	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 Introduction
	CHAPTER 2 Backgrounds and Literature Review
	Chapter 3 Single Criterion Scheduling
	CHAPTER 4 Bi-Criteria Scheduling
	Chapter 5 QoS Oriented Multiple Criteria Scheduling
	Chapter 6 Conclusions and Future Directions
	Appendix

