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ABSTRACT 

This dissertation presents an efficient forward modelling algorithm 

MT 2D_EFDM based on. Exponential Finite Difference Method (EFDM) for 

simulation of magnetotelluric response of 2D earth as a modification of 

Classical Finite Difference Method (CFDM). EFDM employs exponential basis 

functions whose exponent parameter µ must be chosen judiciously to obtain 

optimum results. The near optimal values of µ can be constructed using model 

parameters. Since the electromagnetic response has oscillatory behaviour, 

EFDM handles it better and gives more accurate results in comparison to the 

CFDM for a given grid. Alternatively, using EFDM we can choose coarser grids 

to obtain same accuracy of result as CFDM provides with a given finer grid. As 

a result EFDM reduces the time and cost of computation in comparison to 

CFDM, 
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CHAPTER 1 

INTRODUCTION 

Forward modeling is an essential part in all geophysical problems. Using trial and error 

method, forward modeling itself can be used to find the solution for given field data. It is also 

prime requirements for inversion. The present work deals with the development of a new 

forward modeling algorithm for Magnetotelluric problems. Logical flow diagram of forward 

problem can be sketched as given below in Figure 1.1. 

Physical laws governing the problem 

Partial differential equations with pre-
specified boundary and initial 
conditions 

Application of 
Numerical Methh 

System of simultaneous linear equation 

Apply direct or itee 
matrix solver 

Model response 

Figure Li: Logic diagram for numerical solution of forward problem. 

As mentioned above, in geophysical forward problems generally we encounter partial 

differential equations (PDEs). For an inhomogeneous earth model (2D or 3D), numerical 

methods such as Finite Difference Method (FDM), Finite Element Method (FEM) or Integral 

Equation Method (IEM) (Wannamaker, 1991; Weaver, 1994; Gupta et al., 1999; Mitsuhata 

and Uchida, 2004) are applied to get solutions of these PDEs. In general, these numerical 

methods transform the governing differential equation into a matrix equation which is then 

solved. The quality of solution depends on the numerical methods employed for such a 

,ds 

ative 
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transformation and efficiency of the method is judged by the factors like time of computation, 

accuracy of solution, memory of computer used. The first two factors are complementary. 

The numerical scheme that optimizes these factors is the best one to use. 

In these mentioned numerical methods, Classical Finite Difference Method (CFDM) is one of 

the most widely used methods because it is easily implemented in comparison to FEM and 

IEM. The first CFDM-based 2D forward modelling program was developed by Jones and 

Pascoe (1971). Since then, several researchers have contributed to the refinement of the finite 

difference solution of 2D induction problems. But there are certain limitations of CFDM, 

implicitly it assumes that unknown field, to be solved for, does not have oscillating character 

within the cell and behaves as a low degree polynomial. However, when field has oscillating 

or hyperbolic behavior (as in the case of electromagnetic or seismic) then accuracy of the 

solution obtained using CFDM is not very good unless finely discretized grid is used so that 

within each cell field can be assumed as a low degree polynomial. Thus it leads to a large 

coefficient matrix and will take quite an amount of time to solve. 

In this dissertation, we present a new algorithm MT 2D_EFDM using the Exponential Finite 

Difference Method (EFDM) based on the work of Ixaru (1997), Ixaru and Berghe (2004), 

Ray (2011), where the function is approximated by considering the exponential basis function 

like {1, exp(±µx) , x exp(±px), ...) rather than monomials. EFDM can handle oscillating 

nature of field and we can discretize domain of interest with coarser grid to get same 

accuracy of result as with the CFDM in significantly less time and cost of computations. 

EFDM requires the exponent parameter g that need be chosen properly in accordance with 

the characteristics of field. Estimator of near optimum µ is constructed using model 

parameters so that it will result in small relative errors. 

After presenting the results validating the EFDM algorithm, we present comparison of 

CFDM and EFDM results of different 2D earth models highlighting the efficiency of 

proposed method. 

log Plan of thesis 

The thesis is composed of seven Chapters. The first four chapters are devoted to make the 

theory very clear and to develop understanding about the work. Fifth chapter deals with 
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development of algorithms. The later chapters deal with results and conclusions. The 

subsequent chapters are; 

® Chapter 2 deals with basic theory of Magnetotelluric and its application in 

geophysics. 

® Chapter 3 deals with CFDM where basic understanding about numerical solution 

of differential equations is developed. It also explains the limitations of CFDM 

that leads to the development of proposed EFDM. 

Chapter 4 deals with Exponential Finite Difference Method (EFDM) where theory 

of exponential fitting is given. 

Chapter 5 deals with development and details of algorithms MT 2D_CFDM and 

MT_2D! EFDM. 

® Chapter 6 produces the application part of EFDM and results are obtained. First 

the algorithm is validated on different standard 2D earth models then experiments 

are performed on various standard 2D earth models to established efficiency of 

EFDM in comparison to CFDM. 

Chapter 7 presents the conclusions and scope of future work of this dissertation 

work. 

® Appendix A.1 deals with the generation of input files for a given 2D earth model. 

V Appendix A.2 deals with details of sample output files. 

e Appendix A.3 deals with details of BiCG method of solving Matrix equations. 
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CAPTER 2 

THEORY OF MAGNETOTELLURIC 

Electromagnetic methods are techniques of applied geophysics to obtain information about 

subsurface which are not directly accessible for probing. In particular, frequency domain EM 

measurements are commonly employed to explore the subsurface. The parameter of 

investigation is the distribution of electric conductivity in the earth. 

Using conductivity, one can deduce information about the properties of the subsurface rock. 

Even though there is no non-ambiguous attribution of a conductivity value to a single earth 

materials, one can make advantage of the fact that the electric resistivity of different earth 

material varies over many order of magnitude. This was initially used in mineral exploration 

to locate very conductive ore bodies in their usually much more resistive host rock. 

Electromagnetic methods can be used in two forms as Controlled source EM (CSEM) and 

natural source EM i.e. MT. In CSEM applications, an active source is used . while in 

magnetotelluric method, naturally generated EM waves are used. MT is primarily used to 

delineate the crustal structure of the earth as in MT we can get information upto several 

hundreds of kilometres. EM method is used to map aquifers due to their contrast to the less 

conductive surroundings dry sand and rock, what significantly eases the search for drinking 

water in and areas. In addition, the conductivity parameter allows distinguishing between 

fresh water and the more conductive saline water (Petrick, 2005; Rao, 2008). Now a days MT 

along with CSEM method is widely applied in marine environment for oil and gas 

explorations (Rao et al., 2003). MT method is also widely used in crustal studies like 

determination of depth of crust and different tectonic features (Adam, 1997; Wei et al., 2001; 

Pous et al., 2007; Tyagi, 2007; Israil et al., 2008). MT method is also applied for geothermal 

studies (Hoover et al., 1978; Pellerin et al., 1996; Harinarayana, 2002; Lee et al., 2007). 

Marin Magnetotellurics (MMT) is mainly used as a complement to MCSEM (Marine 

Controlled Source Electromagnetic) to provide the background resistivity of the sub-bottom 

sediments, that is, to constrain the inversions (resistivity vs. depth models) produced from 

MCSEM data. MCSEM has shown great potential in hydrocarbon exploration to detect thin 

resistive layers at depth below the sea floor (MacGreger and Sinha, 2000; Kong et al., 2002, 

Johansen et al., 2005; Weitemeyer, 2006; Fox and Ingerov, 2007). 
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The principle of electromagnetic measurement is based on Maxwell's equations. According 

to these, an EM source induces secondary currents in conductive materials, which themselves 

again generates secondary magnetic fields. The observed field observed as total field that can 

be viewed as a superposition of the primary and secondary fields. Primary fields are 

generated by an external source, while the secondary fields are generated by the induced 

secondary currents in the earth. If the Earth model is a uniform half space, then the induced 

currents and the resulting secondary fields follow a regular pattern. Inhomogeneities present 

in the real earth invariably disturb this regular pattern of secondary currents and of the 

secondary fields leading to perturbation of the total EM fields. These perturbed fields, 

measured on the earth surface, provide an insight into the resistivity distribution within the 

earth. This provides information about the structure of the earth and also helps in 

understanding the ongoing physical processes. 

The mechanism of perturbed fields can be understood only when the capability of generating 

responses of arbitrary resistivity distributions is fully developed. The computation of EM 

response of a given earth model, with prescribed resistivities, is known as the forward 

problem of EM induction. 

A comprehensive knowledge of EM theory, based on the fundamental Maxwell's equations, 

is essential for solving the forward problem. In literature there exists a vast pool of texts on 

EM theory differing in their emphasis on mathematical background, computational aspects 

and applications. One can refer to Smythe (1950), Morse and Feshbach (1953), Jackson 

(1975), Born and Wolf (2005, 7th edition) for fundamentals, to Mitra (1973, 1975), Morgan 

(1990), Zhou (1993) and Taflove (1995) for computational aspects and to Grant and West 

(1965), Rikitake (1966), Ward (1967), Porstendorfer (1975), Wait (1982), Kaufman and 

Keller (1981), Berdichevsky and Zhdanov (1984), and Nabighian (1988, 1991, 2000) for 

geophysical applications. A brief description of EM theory is presented here. 

2.1 Electromagnetic waves in earth 

In simple words the electrical properties of subsurface can be studied by introducing 

electromagnetic waves inside the earth by some source configuration. The problem deals in 

this dissertation work assumes source to be plane wave generator, which is usually the case in 

magnetotelluric where source is natural and very far from earth surface. Meteorological 
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activities and interaction of solar wind with earth's outer atmosphere serve as sources of 

primary electromagnetic field. 

The EM phenomenon is governed by Gauss law for electrostatics, Gauss law for 

magnetostatics (i.e. non-existence of monopoles), Faraday's law of induction and Ampere's 

law for magnetic induction. MaxweIl's equations are the mathematical forms of these laws 

and are given below for a source free case, 

a) V. d = qf , 	 (2.1) 

b) V.b = 0, 	 (2.2) 

c) vxe=— at , 	 (2.3) 

d) Dxb= µl+µ a~. 	 (2.4) 

Here, d is dielectric displacement vector in coulomb/meter2 (C/m2), b is magnetic induction 

vector in tesla (T), e is the electric field intensity vector in volt/meter (V/m) and j is the 

electric current density vector in ampere/mete? (A/m2). aj is the free electric charge density 

in Coulomb/mete? (C/m3) and t is the magnetic permeability in henry/meter (H/m). 

If time dependence is exp(—cot) then the corresponding frequency domain Maxwell's 

equations are, 

i. V.D = q , 	 (2.5) 

ii. V.B = 0 , 	 (2.6) 

iii. VxE=iwB, 	 (2.7) 

iv. V x B = 1tJ — i twD. 	 (2.8) 

Equations 2.1 and 2.4 lead to the equation of continuity, 

(2.9) 

Equations 2.7 and 2.8 involve five vectors, making it an underdetermined system. To make 

the system of vector equations deterministic, the following constitutive relations are 

employed, 

J = a E.  (2.10) 

D=EE, 	 (2.11) 
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and 

H= B. 
J1 

(2.12) 

Here, 6 is the electrical conductivity in Siemens/meter (S/m) and E is the medium dielectric 

permittivity in Farad/meter (F/m). H is the magnetic field intensity vector in ampere/meter 

(A/m). Equation 2.10 may be recognized as Ohm's law. The g and can be respectively 

expressed as, 

FP = µrµo  and E _ Er  EO  . 

Here µr  is the relative permeability and Er  is relative electrical permittivity. Since the primary 

physical property of interest in magnetotelluric is conductivity a, the magnetic permeability 

and dielectric permittivity of the medium are assumed to be equal to corresponding free space 

values po  and Fo  as; 

po =4mrx10-7 H/m, 

and 

io 
E0 =-- 36-  F/m . 

In above Equation 2.8 the first term is conduction current ((YE) and the second term is• 

displacement current (—ieo E) which plays a fundamental role in propagation of 

electromagnetic field. The ratio between the two terms in case of magnetotelluric is very 

small. So, displacement current term can be drooped in comparison to conduction current. 

This can be shown as follows: 

aoW  _ 2-Rp 1 	
p 10-10 a 	T ` 36rr x 10-9  = 2T' 

where T is the time period of the signal used and p is the resistivity. The range of periods 

used in NIT is from 0.001 to .1000 seconds. So, the first term in fourth Maxwell's equation 

(Equation 2.8) can be neglected which in turn means that in magnetotelluric sounding, k2  is 

purely imaginary which immediately implies that magnetotelluric deals with purely diffusion 

phenomenon. (Nabighian, 2000) 
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Now if we take curl of equation fourth Maxwell's equation in time domain and substituting 

Equations 2.2, diffusive wave equation is obtained as shown below 

Vxvxb= µ0®x} + µo  EO ®x at, 

V(V.b) — V2b = t0 V x (ce) + go Eo a(ate) ,  

z Ozb  = µ®6  0(b)+  µ®Eo  as-) . 	 (2.13) 

Similarly, 

z 

Vee  = µo6  aa-) 	a  + µoEo acz) . 	 (2.14) 

If the conductivity of the medium is zero (medium is highly resistive) then Equations 2.13 

and 2.14 reduce to pure wave equation, otherwise wave propagation is diffusive. 

Transforming above equations in frequency domain by taking Fourier transform following 

result is obtained: 

— µ0 Eo(02E, 

V2 E = — (µ0 E0 (U 2  +iwµoa)E, 

V2E + k2E =0. 	 (2.15) 

Similarly, 

V213 + k213 = 0 . 	 (2.16) 

Where, 

k2  = µoF-oaa Z  +  

Equations 2.15 or 2.16 are known as Helmholtz equation. When k is purely real then it 

becomes wave equation, otherwise if imaginary part is too dominating then it behaves as 

diffusion equation. As mention above for magnetotelluric, k is pure imaginary and given 

by k2  =  
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2.1.1 Electromagnetic waves in layered earth 

In this model for subsurface is assumed to be layered earth model where resistivity of 

different layers is different but within a particular layer resistivity does not vary. Medium is 

assumed.  to be linear, isotropic, homogeneous and electrical properties are independent of 

time, temperature or pressure. This is shown in Figure 2.1. 

Z = 0, Earth Snrface 

tn5, (half space) 

Figure 2.1: Layered earth model 

The primary electromagnetic field is assumed to be varying only with depth axis (i.e. z- axis) 

and does not depend on horizontal coordinates (i.e. x and y axes). The primary electric and 

magnetic field are assumed to be oriented along x and y axes respectively as shown in Figure 

2.2. The primary electric field causes current in the conducting medium which serves as the 

source of secondary EM field. Density of induced current does not change over horizontal 

plane so secondary field components do not vary along horizontal coordinates. So total field 

is: E= (Er, 0, 0) and FI= (0, HY, 0). Another assumption is taken that fields are linearly 

polarised. This means that direction of electric and magnetic field does not change with time. 

In this dissertation it is assumed that depth is along z-axis and z=0 corresponds to earth's 

surface. Electric field is polarised along x-axis and magnetic field is polarised along y-axis. 
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Y, f 

x, Ex 
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Figure 2.2 Coordinate axes orientation and direction of field 

Therefore for layered Earth with field components (E,,, 0, 0) and (0, Hy, 0), Helmholtz 

Equation 2.15 becomes, (Kaufman and Keller, 1981) 

d2 " + k2 EX = 0 , 	 (2.17) 
dz2 

d
dZ'' + k2 Hy = 0 , 	 (2.18) 

where, 

k2 = ipwu.  (2.19) 

The above three Equations 2.17, 2.18 and 2.19 are written assuming uniform half space but in 

case of layered earth the above set of equations are valid for each layer. The solution for 

uniform half-space assumes following form 

EX(z) = Aexp(—ikz) + Bexp(ikz) . 	 (2.20) 

Since for homogenous Earth, there is no boundary hence no field is propagate in upward 

direction therefore the coefficient A has to be zero. Applying boundary condition at z = 

0, E(z) = Eo coefficient B turns out to be E0 . So, the solution for half space is 

Euniform(z) = Eo exp(ikz) . 	 (2.21) 

When medium is layered as shown in Figure 2.1, then Equations 2.17 and 2.18 is obeyed by 

each layer, which has a solution as in Equation 2.20. For two layer earth model with interface 

at depth d, the solution looks like: (Kaufman and Keller, 1981) 
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E(z) — [A-,exp(—ikjz) + B1exp(ik1z), z < d1 	 (2.22) A2 exp(—ik2 z), z >_ dl  

where, Al = 	
Eo (kl+kz) 

(k1+k2)+(k1—k2) exp(2ik jd1) 

_ (kl—k2) exp(2ikld1) 
Bl 	(k1+k2) 	Al 

A2 = Al exp(ikldl) + Bl exp(—ikldl). 

Similarly we can solve Helmholtz equation for three layers but for more than three layers 

obtaining analytical solution is very difficult or not possible at all. In such situations 

numerical methods are applied to get a solution. Chapter 3 explains this in detail. 

2.1.2 Attenuation of electromagnetic waves in subsurface 

Electromagnetic waves get attenuated with depth in the subsurface due to finite resistivity of 

the earth materials. This can be easily seen from the uniform half space solution and complex 

nature of k. Assuming k = k,. + ik,,,, and substituting in half space solution following result 

is obtained: 

E(z) = Eo exp(i(kr + ikm )z) , 

E(z) = Eo exp(—knz). exp(ikz). 	 (2.23) 

The second factor in Equation 2.23 which depends on imaginary part of k is responsible for 

amplitude decay of EM waves inside the surface. The depth at which the amplitude becomes 

1/e (nearly one third) times the maximum amplitude is called as skin depth (S). The skin 

depth is an important parameter in electromagnetic wave propagation. It depends on the 

frequency of incident signal and on the medium resistivity. In magnetotelluric, k = km _ 

iw~t6. Skin depth is given by S = 	. It is related with k as 

k
1+i = 
8 (2.24) 

Also, skin depth can be expressed in terms of time period of signal and resistivity of the 

medium. Taking permeability equal to that of free space, skin depth comes out to be: 
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Liii 503 x pT . 	 (2.25) 

Equation 2.25 shows that with increasing period of oscillations (decreasing frequency), the 

depth of investigation increases. Also, signals decay faster when it encounters layer with low 

resistivity and goes almost unattenuated when skin depth is very high compared to depth of 

the layer. If Equation 2.20 is substituted in half space solution it can be seen that it is the ratio 

of thickness and skin depth of the layer which determines the fate of the signal. Following 

equation explains it: 

E(z) = Eo exp (` S `~ z) = Eo exp ( s) ex p () . 	 (2.26) 

2.1.3 Electromagnetic waves in 2D earth 

This model of subsurface assumes that inhomogeneity presents in layered earth or half space 

as shown in Figure 2.3. 

Up 

Figure 2.3: Anomalous conductive block in a half space 

Consider Helmholtz Equation 2.15 for 2D Earth models, 
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V2E + k2 E = 0 . 	 (2.27) 

Figure 2.3 shows 2D inhomogeneity present in the half space. 6p and cr respectively are the 

conductivities of half space and anomalous region present in it. Thus, the total conductivity is 

defined as sum, 

QT = 6p+Qs . 	 (2.28) 

So in wave number domain one can define k~ as 

(2.29) 

where k2 = icujto6 

similarly, total field ET = Ep + Es. 	 (2.30) 

Substituting Equations 2.28, 2.29 and 2.30 into 2.27, we get 

V2 (Ep + Es) + (kp + ks) (Ep + Es) = 0 D 

V 2 Ep + V 2 E5 + k 2 Ep + k 2 Es + kkEp + kkE5 = 0. 	 (2.31) 

Primary field Ep satisfies following equation 

V 2 Ep + k 2 Ep = 0, 	 (2.32) 

Using Equation 2.31 and 2.32, we get 

®2 Es +(kp+ks)E,ç= —kkE~, 

V 2 E5 + kTE5 = —ksEp ~ 	 (2.33) 
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Since host model is either layered earth model or half space thus Ep can be easily obtained 

from ID formulation of Equation 2.32 i.e., 

daZ P  + kQ Ep = 0 
	 (2.34) 

Having obtained Ep, secondary field ES  can be obtained using 2D Helmholtz Equation 2.33. 

In this dissertation all fields EP, ES and ET  are obtained using both the method Classical 

Finite Difference Method as well as Exponential Finite Difference Method. The CFDM and 

EFDM used for obtaining these fields are discussed in subsequent chapters. 

However, these field component values do not directly reflect the effect of changes in the 

subsurface resistivity in a perceptible manner. So, more representative response function, 

derived from these field values are discussed in the following sections. 

202 MT Response Functions 

Although the response functions derived from the fields values also do not present a direct 

functional relationship with the subsurface resistivity yet these reflect the bulk information 

about the resistivity distribution. 

The appropriate choice of response function is governed by the objective of the study, 

whether lateral or vertical variation in resistivity is desired. The spatial variation can be 

studied in two modes, (i) profiling mode, for a given frequency, the observations are taken at 

points along a profile, and (ii) sounding mode, the observations are taken at a single point for 

different frequencies. Profiling delineates the lateral variations while sounding helps in 

deciphering the vertical variation of resistivity. 

2.2.1 MT apparent resistivity and phase 

The magnetotelluric method was first described by Tikhonov in 1950 and Cagniard in 1953 

independently (Kaufinan and Keller, 1981). Using the assumption of a plane wave source, the 



ratio of observed horizontal electric field (Ex or Ey ) and the orthogonal magnetic field 

component (H yorH X ), is called the impedance; 

(2.35) 
Y 

H-field can be easily computed from E-field using third Maxwell's equation (2.7) as; 

VxE=icoµ0 H° 

Since E = (Ex, 0, 0) and H= (0, H y, 0) thus 

Hy = a aEX 	
(2.36) 

iwµo az ° 

Using Equation 2.36 we can compute H-field from calculated E-field. Once the E-fields and 

H-fields are obtained we can easily compute impedance from Equation 2.35 and other MT 

responses apparent resistivity and phase can be computed from impedance in following ways. 

The impedance values are used to define the commonly used MT response function as 

apparent resistivity, which may be defined as the resistivity of equivalent fictitious half space. 

The apparent resistivity, pQ, and the impedance phase, 0, are respectively given by the 

relation 

Pa = u~ IZI2, 	 (2.37) 

im and 	0 = tan-1F e (z)], 	 (2.38) 

where —900 < 0 < 0° 

For a homogeneous half space, phase will always be —450. For a conductive body in half 

space phase varies from —450 to —900, while for a resistive body it varies from 0° to —450 . 
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The variation of resistivity in the earth is rarely one-dimensional, therefore above definition 

of apparent resistivity and phase has only limited utility. To describe higher dimensionality or 

anisotropy, we have a rank 2 impedance tensor Z; 

[Ex]

Ey — LZyx ZyyJ[Hx]H ' 
	 (2.39) 

where ZXy, Zy,, are principal impedances and Z,_,, Z},~, are additional impedances. For a 1D 

Earth, 

Zxy = Zyx , 

zxX = Zyy = 0. 

In case of 2D, we have TE and TM mode, 

ETE _ (Ex , 0, 0), and HTE = (0, H y, Hi ), 	 (2.40) 

and 

ETM = (0, E y, EZ ), and HTE = (Hx , 0, 0). 	 (2.41) 

For Epol (2D TE), the impedance and apparent resistivity and phase are defined as 

ZXy=Hy, 	Px y= u1 1zxY ICO 
Elm (Zx ) ~b -1 	y xy =tan  
[ Re (Z ) 

,  (2.42) 

Similarly for Hpol (2D TM) 

Ey 
zy,, = — Hx , 

_ 1 Z I2 
Pyx uow .l yx 1 = tan-1 rim (Zyx)1 

yx 	Re (Zyx)j 
(2.43) 

and Z=Z»,=0. 

In this dissertation E-field, H-fields and apparent resistivities are computed for different 2D 

earth models using both CFDM and EFDM to observe the efficiency of proposed EFDM in 

comparison to CFDM. 
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CHAPTER 3 

CLASSICAL FINITE DIFFERENCE METHOD (CFDM) 

Classical Finite difference method (CFDM) is widely used methods to approximate the 

derivative of a function. CFDM is broadly used to solve partial differential equations by 

replacing derivatives by finite difference equations. In CFDM, the derivatives are 

approximated by fuxite difference and the partial differential equation is converted into a 

large algebraic system of equations (matrix equation) to be solved simultaneously in place of 

differential equation. For detailed description of CFDM, one can refer to standard texts like 

Forsythe and Wasow (1964), Hildebrand (1974), Mitchell and Griffiths (1980) and Taflove 

(1995). 

3el FD Approximation of first order derivative 

First order derivative of u(x) i.e. u' (x) can be approximated using finite difference 

approximation. This can be done in following ways, 

The Taylor's series expansion of u(x) is given as, 

u (x + h,) = u (x) + h.u' (x) + ZZ  u" (x) + - u" (x) + ...., 	 (3.1) 

u (x — h) = u (x) — hu, (x)  + ZZ u,► (x)  _ 33 
 U ,,, (x) + .... 	 (3.2) 

If we neglect higher order term then we can write, 

u' (x) 	u(x+h)-u(x)  (Forward difference) 	 (3.3)Ii  

u'(x)b  - u(x)-u(x-h)  , 
h 	(Backward difference) 	 (3.4) 

u'(x) 
	u(x+h)-u(x-h) 

 = 2 
	 ,F + u'(X)h). (Central difference) 	(3.5) 2h  

Forward difference and backward difference formulas are first order 'approximation of 

derivative of u. On the other hand, central difference formula of u'(x) is second order 

approximation (Press et al., 1993). 
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Equation 3.3 is obtained by truncating Taylor series after first two terms and hence truncation 

error is of the order 0(h). Same argument holds for Equation 3:4. But central difference 

formula Equation 3.5 is obtained by subtracting Equations 3.1 and 3.2 and hence truncation 

error is of the order 0(h2). 

3.2 FD approximation of second order derivatives 

If we add Equations 3.1 and 3.2 then we get finite difference approximation for double 

derivative of u(x); 

u"(x) N  u(x-h)-2u(x)+u(x+h) 
h2  

(3.6) 

This result can be achieved in other way like taking forward difference of u' (X)b  that is 

taking forward difference of backward difference formula of first derivative (Press et al., 

1993). This is three point formula of second derivative. The truncation error is of the order of 

o(h2 ). 

U(x 

a° xx x2 x3 x4 x5 x6  x7 ...................... 	....... x12 x13 x14 x15 =r 

Figure 3.1 Grid discretization of interval Ii for an oscillating function. 

The important assumption in evaluating derivative of a function using n-point finite 

difference formula is that the function to be differentiated should behave as a polynomial of 

degree at most (n-1), between n nodes. Therefore to get the derivative of a function at a point 

x by three point finite difference formula, it should behave as a quadratic function between (x 

- h), x and (x + h). Expressing in more appropriate terms: "to get derivative of a function at a 

point x = x0, the interval size `h' should be chosen in such a manner,- that the function 

behaves as a second degree polynomial between (xo  - h), xo  and (x0 + h)". This shows that 

most crucial part in FDM is the choice of interval length W. If the chosen interval size is too 
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coarse the result may not be faithful. Grid size should be selected in accordance with the 

nature of the function to be differentiated. If the function happens to be rapidly oscillating 

throughout the domain and second order derivative is to be taken, then grid size required to 

be small enough, so that the function behaves as a second degree polynomial between any 

three grids. 

3.2.1 FD approximation of derivatives using non-uniform grid system 

There are situation which demand finer grid alignment in certain part compared to grids in 

other parts of the domain. In such a case finite difference method is to be formulated for non-

uniform grid spacing. Again from Taylor series expansion of u(x): 

~ -Z u(x -1) = u(xi) + (xi_1 — xt)u'(x 	xi-lZ xi) 

	

i) + 	u" (x1) (Xi) + 	l 	u" (x) + ..., 

u(xi-1) = u(xi) — (hi-1)u'(xj) + 
(hi-1)? .uII( xi ) — (hi-I)3 u,rr( Xi ) -F....' 	(3.7) 

3! 

u(x 	u(x) + (X 	X•)u'( x ) + (xi+1-Xd' u►r( x ) + (xt+1 3 ,urrr (X•)+ ... L+1) = ([ +1 	L 	L 	Z 	C 	31  

u( xi+l) _ u(xi) + (h3u' (x1) + (h 2 u"(xi) + Lhl)3 u...(xt) + .... 	 (3.8) 

Using Equation 3.7 and 3.8; 

u(xt-i) + u(xi+i) = (u(xi) + / 
+ (hi-x+ hi) 

hi-1 	hi 	hi-i 	ht 	2 

u(Xi-i) 	(J... 
-i-) 

	) 
+ 

u(Xi+1) _ 	phi--1+ h 	iCi) 	
rr (Xi)r hi-i — 	 + hi) tl Xi 	hL 	 2  

hiu(xi-1) — (hi -1 + hi)u(xi) + h1-1u(xj+1) = 	u (Xi) 2 

Let (hi-1 + hi) = ni which is length of the neighbourhood about point x = x i. The double 

derivative u"(x) becomes: 

u" (x) = h Z h [n` u(xi-1) — u(xi) + hn.l u(xi+i)1 	 (3.9) 
i 1. i 	i 

ur' (Xi) = 1z [h` u() — u(xi) + 	u(xi+1)] ➢ 	 (3.10) 
Hi ni 	ni 
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where Ha = Z (hi_1  x h1 ) 

u( 

	

^i-1 	 ^i 	^1+1 	 X 

ni 

Figure 3.21 Non uniform grid around x j  with length of neighbourhood nL 

The Equation 3.10 is used for classical finite difference approximation of second derivative 

with non-uniform discretization. This is substituted in Helmholtz equation to solve for fields 

as discussed in following section. 

3.3 Solving partial differential equations (PDEs) using Classical Finite 

Difference Method (CFDM) 

In this dissertation, both one dimensional Helmholtz equation as well as 2D Helmholtz 

equation needed to be solved using CFDM and EFDM. The details of CFDM are discussed 

below and, of EFDM are discussed in Chapter 4; 

Referring to chapter 2, the primary field Ep  can be obtained by solving 1D Helmholtz 

Equation 2.34; 

dZdz2ZI 
+ k2u (z) = 0. 	 (3.11) 

Having obtained E 9  secondary field Es  can be obtained using 2D Helmholtz Equation 2.33; 

	

®eus  + k2U5  = —ksup., 	 (3.12) 

The details of solving these differential equations using CFDM are as follows. 
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3.3.1 Solving ID Helmholtz equation with CFDM using uniform grids for 
primary field 

First the domain is discretized as shown in the Figure 3.3 such that (z;+1 — z;) = h, is constant 

throughout. 

Earth Surface z = () 

Figure 3.3: Layered earth model and grid generation. Thin lines show nodal lane9  thick 

lines show layer interfaces and points show the nodes. 

The task is to obtain u(z) for i=1,2, .... n. The boundary condition is up (z0) = ua  and up(zn+i) 

= u„+,. At i h̀  nodes Equation 3.11 can be written as: 

h2 [up(z - h) - 2up(z1) + up(zi + h)] + ki 2up(zi) = 0  

h2 Lupi -% - 2up1 + upi+1J + ki2upi 0, 

upi-1 + ( ki2h2 - Z)upi + upi+1 - 0. 	 (3.13) 
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Equation 3.13 is to be solved simultaneously for i=I to nz which reduces to solving a matrix 
equation as shown in the below: 

• (k12hz  — 2) 	1 0 0 0 0 ............o 	u  
P1 

1 	(k22h2 -2) 1 00 0...,....... 0 	u  
PZ 

0 	1 	(k3 2h2  — 2) 1 0 ........... 0 	u  P3 

0 0 	1 (k42h2  — 2) 1 0 ...... 0 	uP4  

0 0 0 0 ......... 0 1 (kn 2h2  — 2) 1 [u 

M. Up = b, 

uo  

0 

0 
(3.14) 

0 

Un+1 

(3.15) 

where M is an nz-by-nz tridiagonal matrix. The point to be noted is that k, is a medium 
property, and its value depends on the layer where ith  node is located if it is located on 
interface its value is taken as weighted average of k of surrounding layers. The matrix 

equation can be solved by LU decomposition method or any other matrix equation solver 
methods. 

3.3.2 Solving ID Helmholtz equation with CFDM using non-uniform grids 
for primary field 

Figure 3.4 shows the layered earth model and its discretization with non-uniform grid. 

Helmholtz equation will be written at each point including at layer interfaces. Having the 

information about resistivity (p) and layer thickness grids are generated. Grid generation is an 

important task because it is the grid size which determines the quality of the solution. If grids 

are too fine then the size of matrix M (Equation 3.14 or 3.15) will be very large and hence 

will require more time to solve for field vector,'though large M will give a very accurate 

solution vector. The Figure 3.4 shows a coarse grid system and size of matrix M will be very 

small. Positions of grids along x axis are determined by the skin depth of each layer. The 

grids are placed about an interface at a distance of one fourth of skin depth. 
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Figure 3.4: Layered earth model and non-uniform grid generation. Thin lines show grid 

points and thick lines are layer interfaces. 

For i h̀  nodes Equation 3.11 with non-uniform grid can be written with the help of Equation 

3.10 as follows; 

1 
Niz [h'+l  up(Zi-1) - up(Zi) +ni-  up(zi+1) J + kt2up(zt) = 0  

- upi-i + (k 2Hi - 1)2uP1 + hiUPi+1 = 0, 	 (3.16) ni 	 ni 

1 where h; (z;+l - z;), Hi = Z (hi+1.  hi) and n; (h ;+ hi+l) 

In Equation 3.16 above i run from I to n. So, uo and u„+, act as boundary conditions which 

are needed to be supplied to solve system of Equations 3.16 which is a matrix equation as 

follows; 
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(ki Hl - 1) 	hx 	0 	0 	0 	0 ........................ 	0 upi 
nl 

h3 nZ (kZH2 - 1) h2 0 0 0 nZ ........ 	. ......... 	.. 	0 up 2 

0 n3 (k3 H3 - 1) n3 0 0 	................. 	0 MP3 

0 0 	0 ... 	h`±1 	(k?H? 1) 	h~ 	0 ...... 0 ni 	t 	[ ni U pi 

0 0 0 ......... 	hn 	• (kn-1Hn-1 - 1) 	hn-1 Up-1 
nn-i nn-i 

0 0 0 0 	0. 0 hnnl 	(knHn - 1) uPn 

h2 

n uo l 

0 

0 

_ 	(3.17) 
0 

0 

hn un+l nn 

M.up=b, 	 (3.18) 

M is an nz-by-nz matrix and has a tridiagonal structure. Size of matrix depends on the 
number of grids generated. The situation where analytical solution is not available or 

cumbersome to get one (e.g. over four layered earth model) then very fine grid structure is 

used, so that obtained field vector E is very close to analytical result. 

3.3.3 Solving 2D Helmholtz equation with CFDM using non-uniform grids 
for Secondary field 

From Equation 3.12; 

V2us + k2US = -ksup , 

aZ ay zl + a2 aZ~ zl + k 2us(y, z) = -ks~z~ , 	 (3.19) 

where u5(y, z). is secondary field value we seek to obtain. 

The first step of solving 21) PDEs is discretization of domain of interest as shown in Figure 

3.5. Then the field is computed at all nodes (shown in Figure 3.5 as solid black points). 
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bhp!) 
 

bUl')  	b(j) 	_... -> 

Figure 3.5(a) Schematic 2D grid used for finite difference. (b) FL) situation at node (j, k) 

with its area of averaged conductivity Q(j, k). 

Let we consider a 2D conducting box in the region 0 <_ y <_ Ly  and 0 <_ z <_ LZ  with 

perfectly conducting (a = oo) bounding wall except at z = 0, shown in Figure 3.5. 

The box is divided into (ny  x nZ) regular cells of size b(j) X c(j) and with conductivity 

c(j,k), for j= 1,.... ny  , k= 1,2,3... nZ . 

The conductivity at each node (j, k) is obtained from the area weighted average of the 

conductivity of four surrounding cells, (j-1, k), (j+1, k), (j, k-1) and (j, k+1); (Brewitt-Taylor 

and Weaver, 1976) as, 
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(j, k) = 	1 4bh fchk [bfCk?j,k +bj-ICkcj-1.k +bj-1Ck-1oj-1,k-1 +bJCk-16j,k-1}. 

where, bh j = 2 [bj_1 + bj ] and chk = [ck _1 + Ck ]. 

Utilizing the Equation 3.10, the central difference formula for second derivative is, 

a2u 	 i-1 bj
8yz B12

[7b 
bhj uj+1,k -' Uj,k + 2bhj U1-1.k 

where b~= (y~ — yy-1), B/ = 2 (bj_1. b j ) and bhj = Z (bj_1 + bj ). 

Similarly, 

a2u  1 fck_1 	Ck 

OZZ 	ck2 L2chk Uj.k+i - Uj,k + 2chk of •k-1] , 

(3.20) 

(3.21) 

where Ck= (Zk- Zk-1), Ck = 2 (Ck-1. Ck) and thk = Z (Ck-1 + Ck). 

Using Equations 3.19, 3.20 and 3.21 

1 bj_1 	bj  1 Ck-1  c  2 
® uj.k + h 2bj u j-1,k + C- C2chk uj•k+1 ® Uj,k + 

k 

2chk Uj'k-1] + kj.k u j.k = 

2 

2 _1 	 b~ 	 2 ck_1 	 Ck 

bj_lbj 

[Tb 

b12j Uj+l,k - Uj,k + 2bhj Uj-1,k J + Ck-1Ck l2 ch uj'k+1 Uj,k + 2chk Uj,k-11 

z  2 + kj,k U j.k =  

bh j 	chk 	chk 	bh j 	 bh _ chk chk bh. j 
ck-i ~j k-1 + bj-1 ~j-1,k +' bj uj+1,k + Ck uj.k+l + 	ck-1 bj_1 	bj 	Ck 

k 2j,k, bhj. chj) uj,k =  

This equation can be written as, 

Auj.k_1 + BUj_1,k + Cuj+l,k + Duj.k+l + PUj,k .= 0. 

(3.22) 

(3.23) 

(3.24) 

In Equation 3.24, j= 1, 2. ....., ny and, k= 1, 2, 3,...n, and this gives system of equations, 

MCI. uSc1 = lice ➢ 	 (3.25) 
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where M, is an ny  by-nz  pentadiagonal matrix of following form, 

P, CI  0 0 D1  0 0 0 0 u1  
B2  P2  C2  0 0 D2  0 0 0 u2  
0 B3  P3  C3  0 0 D3 0 0 U3  

0 0 B4  P4  C4  0 0 D4 0 U4  

As  0 0 B5  P5  C5  0 0 D5 U5  

0 A6  0 0 B6  P6  C6  0 0 U6  

0 0 4  0 0 B7  P7  C7  0 u7  
0 0 0 Ag  0 0 B8  Pg  C8  u8  
0 0 0 0 49  0 0 B9  P9  U9  

— AI  uo  — B1  uo  
0 
0 
0 
0 
0 
0 
0 

- C9 U10 - D9 U10 

This pentadiagonal matrix equation is to be solved to get fields at all nodes using CFDM. 

Size of matrix depends on the number of nodes generated, more is the number of nodes large 

is the size of matrix and requires large amount of time and cost of computations. The 

situation where analytical solution is not available or cumbersome to get then very fine grid 

structure is used, so that obtained field vector u is very close to analytical result. 

304 Limitation of CFDM 

The main problem with CFDM is its assumption that field to be solved does not have 

oscillating character and behaves as low degree polynomial within each cell. However, when 

field has very oscillating nature (as in the case of Electromagnetic or Seismic) then accuracy 

of the solution obtained using CFDM is not very good. It will give good result only when 

domain of interest is very finely discretized so that within each cell field can be assumed as 

low degree polynomial. Therefore if we have field like Figure 3.6 then CFDM requires very 

fine discretization so that within each cell field behaves as low degree polynomial. 

Thus it leads to large number of nodes as a result a coefficient matrix of very large size and 

will take quite an amount of time to solve. As in the case of geophysical problems we are 

dealing with several kilometre of depth and on surfaces therefore size of matrix will become 

enormous and CFDM requires huge -amount of time and cost to solve. Therefore Classical 

Finite Difference Method is not expected to handle oscillating functions with coarse grid 

system. 
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Fine Grid 

Figure 3.6e Fine discretization required for CFDM to get better results 

Coarse Grid 

a 

x 

1i 

Figure 17: Coarse discretization for EFOM to get better results. 
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This dissertation aims to answer the question that: "Can a coarse grid system be used to 

evaluate double derivative of a function with oscillating behaviour (as in Figure 3.7)?" 

Here comes exponential fitting technique (Ixaru, 1997; Ixaru and Berghe, 2004), where it is 

assumed that between any three nodes the function is exponential in nature i.e. exp(±px) 

where µ may be imaginary, real or complex. Choosing basis {1, exp(1ux), exp(—,ux) } instead 

of {1, x, x 2 ) between three nodes can allow working with coarse grid with a different 

formulation of fmite difference method known as Exponential Finite Difference scheme. 

Details of Exponential Finite Difference technique is dealt in detail in Chapter 4. 
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CHAPTER 4 

EXPONENTIAL FINITE DIFFERENCE METHOD 
(EFDM) 

The CFDM formulation derived in Chapter 3 holds good only when u(x) can be approximated 

by a.  low degree polynomial within cells. The situation where u(x) is a weighted sum of 

exponential or trigonometric or hyperbolic functions,. it will give approximate results only 

when nodes are very closely spaced. This implies that size of matrix will increase by many 

times and in the case of 2D/3D, this problem will become more severe. Exponential fitting 

approach deals with such a class of functions that have oscillatory or hyperbolic behavior. 

The central difference formula for second order derivative can be written as: 

u"(x) Z  [Au(x — h) + Bu(x) + Cu(x + h)] . 	 (4.1) 

In CFDM, u(x) -is assumed to be low degree polynomial with basis {1, x, x 2 , .. } while in 

Exponential Finite Difference Method (EFDM) the basis functions on which u(x) is 

expressed are {x"` . exp(±µix) , where m = 0,1,2,3 ... and i = 1,2,3..) (Ixaru and Berghe, 

2004). To obtain the dimensionless coefficients {a - [A, B, C]} in Equation 4.1 an operator 

L[h, a] is defined as follows (Ixaru, 1997); 

L[h, a]u(x) = u"(x) — hZ  [Au(x — h) + Bu(x) + Cu(x + h)] . 	 (4.2) 

Here operator L [h, a] measures the misfit between approximations in Equation 4.1. Our main 

objective is to fmd out a set of coefficients {a - [A, B, C]} such that L[h, a]u(x) = 0, it 

means approximation in 4.1 will be appropriate. 

401 Classical Finite difference method revisited 

For CFDM, u(x) is considered to be some combination of [1, x, x 2 , x 3.. } and we want to find 

such a set a=a*9  so that L[h, a]u(x) is equal to zero. Following equations show how 

application of operator L on different monomials yield; 

L[h, a]1 = —hZ  (A + B + C) 
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L[h,a]x= —h2 (A+B+C)+h(A —C), 

L[h,a]x z = hz ( A+B+C)+ h (A—C)+(2—A—C), 

3  
3

2 
L[h,a]x3  = —hZ (A+B+C)+ h  (A—C)-3x(2—A—C)—h(A—C) 

o ... etc 	 (4.3) 

The expressions in set of Equations 4.3 is also required to be evaluated at x=0 and, are known 

as moments of operator L[h, a]xm. These will be denoted as Lm  (h, a) which is equal to 

L[h, a]xm at x = 0, where m = 1,2,3, ... 

L0(h,a) = —I (A+B +C), 

L1(h,a)=h(A —C), 

£2(h, a) _ (2—A— C), 

L3(h, a) = —h(A — C), 	etc. 	 (4.4) 

If 	u(x) _ (u0  + u1x1  + u2 X 2  + u3x3  + ......... ) 

Then, 	L[h, a]u(x) = Zm=o - — Lm(h, a)® mu(x) . 	 (4.5) 

Equation 4.5 is derived in Ixaru and Berghe (2004). From Equations 4.3 and 4.5 it can be 

verified that making L[h, a]u(x)=0 is equivalent to making; 

Lm(h,a) = 0, 	 (4.6) 

for rn = 0,1,2,3, ...., (M — 1) and LM  (h, a) * 0, which is a set of M linear equations for 

three unknowns. 

Equation 4.6 gives us a maximum number of equations for which condition ,fes  (h, a) = 0 is 

valid. The task is now to find the biggest M for which system of Equations 4.6 is compatible. 

For uniform h, it can be verified that condition (4,6) is satisfied only for first four equations 

i.e. M = 4 (Ixaru, 2004). This is obtained by solving first three equations (L„m(h, a) = 
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0, for m = 0,1,2) which gives A = C = 1 and B = - 2.This is in accordance with the result as 

derived in previous section for CFDM. The values of A, B and C satisfies the fourth equation 

(m = 3) but does not satisfy the equations beyond m = 3. 

4.2 Theory of Exponential Finite Difference Method (EFDM) 

As in previous section, first an operator £[h, a] is defined as in Equation 4.2; 

L[h, a]u(x) = u"(x) — hZ  [Au(x — It) + Bu(x) + Cu(x + h)]. 	 (4.7) 

In exponential fitting procedure, the basis functions are (xm  exp (it1x) , where m = 

0,1,2.. and i = 1,2,3 ... } and u(x) is a linear combination of these basis functions. In 

exponential fitting method the application of operator L on functions of the form u(x) _ 

xm exp(µ x), for m=0, 1, 2, 3.. plays a central role. A quantity is define as; 

Em.(h,  it, a) = L[h, a]xm  expo x) I x=o 
	 (4.8) 

This expression is known as p.-moment of order m of operator L in Ixaru and Berghe (2004). 

The classical moment L,,,,is a particular case with µ=0 (Ixaru, 1997). If m=0 is put in the 

Equation 4.8 then 

E0(h, t, a) = L[h, a] exp(µx) I x=o 
	 (4.9) 

It is shown in Ixam and Berghe (2004) that higher order µ-moments can be derived from 

E0  (h, t, a) by the following expression: 

Lm — agm 	 (4.10) 

The expression (4.8) can be expressed in more compact form with the help of dimensional 

analysis. Dimensional consistency demands that: 

dim(E(h, t, a)} = dim[L[h, a]) . dim(xm  exp(µ x)} . 

Page 1 32 



If the definition of operator L[h, a] (Equation 4.7) is viewed carefully, then it can be figured 

out that dim{L[h, a]) is ht  where, 1 is the negative of the order of derivative (Ixaru and 

Berghe, 2004). The second factor in above equation has the dimension of h. The final 

expression for Em (h, it, a) can be written as: 

Em (h, u, a) = h''Ej(z, a). 	 (4.11) 

Where z = ph, a dimensionless quantity. 

Similar result can be derived for classical moment L „,(h, a) which can be written as: 

L m  (h, a) = ht  L`. ( a) . 	 (4.12) 

Starred moments are E,, (z, a) and L77 ,, ( a) are equivalent to E,,,, (h, y, a) and L ,,,. (h, a) 
respectively. 

4.2.1 Method to determine coefficients for EFUM 

In section (4.1) we have seen how CFDM. coefficients can be derived by the application of 

operator L on different monomials. Now we assume that, we have a hybrid set of basis 

functions, and u(x) can be expressed as linear combination of these functions. The set of 

functions which is assumed to be appropriate for given form of u(x) is; 

(1,x,x2,x3, .......,x", exp(±px), x exp(±px),x2  exp(±µx) ......x" exp(±µx)} 

(4.13) 

Having seen the application of operator L on classical set, let us see what operator L[h, a] 
with definition as in Equation 4.7 yields when applied on exp(±µx). 

L[h, a] exp(± z x) = u2  exp(px) - nZ  [Aexp(ux). exp(Tyh)Bexp(yx) + 

Cexp (µx). exp (± ih) ], 

L[h, a] exp(±p x) = hZ  exp(px) [µ2h2  — A exp(+Ech) — B — Cexp(±ph)] (4.14) 

If we see definition (4.9) and compare expressions in Equation 4.11 and Equation 4.14 we get 

that: 
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Eo(±z, a) = z Z — Aexp(+z) — B — Cexp(±z), 

where z = ±uh 
	

(4.15) 

The higher order p-moments can be obtained by the, help of Equation 4.10. In the frame of 

the general exponential fitting procedure, the coefficients to be determined for a problem 

have to satisfy the system; 

Ep (±z, a) = 0, f or p = 0,1, ... , P 

There is an equivalent representation of above expression. In Ixaru (1997), two functions 

G±(Z, a) are introduced which are defined as follows (Z = z2); 

G+(Z, a) = 2 [Eo (z, a) + Eo ( —z, a)] , 

G (Z, ca) = ZZ [Eo (z, a) — Eo (—z, a)] . 	 (4.16) 

Then p h̀ derivative with respect to Z of G±(Z, a) is denoted as G+~'(Z, a). It has been 

showed in Ixaru and Berghe (2004) that system of equations represented by 

E; (±z, a) = 0, for p = 0,1,...,P 

is system equivalent to the of equations; 

Gfp(Z, a). = 0, f or p = 0,1,2, ... P 	 (4.17) 

Now the task is to find. maximal P such that Equation 4.17 is valid. This will give us the 

coefficients {a - [A, B, C]}. However there is a condition on the maximal P, this is called as 

self consistency condition (Ixaru and Berghe, 2004). This is explained as follows: 

Firstly, classical moments are solved and maximum number of equations M is found for 

which Equation 4.6 is compatible. The basis set (4.13) then must satisfy following condition: 

(K+1)+2(P+1) = M 

K+2P=M-3 	 (4.18) 
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The reference set is thus characterized by two integer parameters K and P. The set in which 

there is no classical component is identified by K = -1 while the set in which there is no 

exponential fitting component is identified by P = -1. Once K and P are decided, then 

Equations 4.6 and 4.17 are solved simultaneously to get the coefficients {a - [A, B, Cl}. 

It has been showed at the end of section (4.1) that maximum number of equations satisfied by 

classical moment is M = 4. This is obtained by solving £,,,,(h, a) = 0, for m = 0,1,2. Also, 

L3 (h, a) = 0 but L4(h, a) * 0. So M = 4 is the maximum number of compatible equations 

satisfying Equation 4.6. From self-consistency relation (4.18) we get that, K+2P = 1. Thus 

there are three possible integer solutions of this -equation, 

1. K=3 and P= -1. This means we do not have any exponential component in our basis i.e., set 

is purely classical= {1, x, x 2 , x 3}. Hence to obtain coefficients, only Lm  (h, a) = 0, for m = 

0,1,2, are needed to be solved. This gives A=C=1 and B= -2 which is in accordance with 

CFDM result. 

2. K = 1 and P = 0. This means we have a hybrid set containing both classical and 

exponential terms {1, x, exp(µx), exp(—px)}. Hence to obtain the coefficients we need to 

solve £,,,,(h, a) = 0, for m = 0,1 and G±(Z, a) = 0. The expression for G±(Z, a) can be 

easily obtained from Equations 4.16 and 4.17. The coefficients obtained have the form, 

Z 
A=C=2

(77-1(Z)— 1) 
—Z 

B= (n-1(Z)— 1). 

where Z = zZ  = µ2h2  and _1(Z) = Z [exp (Zz) + exp (—ZZ )] o 	 (4.19) 

3. K= -1 and P = 1. This suggests that basis set does not have any classical component and is 

given by { exp(ux), exp(—ix), xexp(px), xexp(—px)}. The coefficients are obtained by 

solving G - (Z, a) = 0 and G t1(Z, a) = 0. And this is given by following expressions, 
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A=C= 1 andB= 
710 (Z) 

ZnO (Z) — 2r7_1 (Z) 

770 (Z) 

where Z = z2 = µ2 h2 and p0 (Z) = 2z [exp (ZZ) — exp (—Zz )] 	 (4.20) 

This means that if u(x) is known to have either oscillatory or hyperbolic character, then above 
expressions in (Equations 4.19 and 4.20) yield coefficients which better approximate second 

order derivative of u(x). Depending upon whether u(x) is oscillatory or hyperbolic, g will be 

either an imaginary or a real quantity. If u(x) has both the characteristics µ should be chosen 

as a complex number. The above coefficients are derived in Ixaru and Berghe (2004). 

4.2.2 Expressions for coefficients using non-uniform grid spacing 

In section 4.2.1, the coefficients are derived assuming uniform grid spacing h. But in many 
situations we actually work with non-uniform grid spacing. For instance, in case of solving 

one dimensional Helmholtz equation for layered earth model using CFDM, grid spacing 

required to be finer near the interfaces compared to other parts. So it requires evaluating the 

coefficients occurring in second order derivative for exponential FDM with non-uniform grid 

system. From our discussion in section (3.2.1) and Equation 3.10 we can approximate second 

order derivative for non-uniform grid system as: 

u"(xi) = — [Au(xi — hi-1) + Bu(xi ) + C u(xi + h1)], 

where H2 = 2 (h1_1. hi) 
	

(4.21) 

To evaluate the coefficients (a [A, B, C]) we follow the steps mentioned in section (4.2.1). 

First an operator L[h1_1, hi, a]u(xi) is defined as follows; 

£[hi-1, hi, a]u(xi) = u"(xi) — Hz [Au(x — hi-1) + Bu(xi) + C u(xi + hi)] 

(4.22) 

Now we apply operator £[h~_1, hi , a] on different terms of classical basis {1, x, x Z , x3, ... } to 

get expressions for classical moments. (Ray, 2011) 
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1 
L[hi-11 hi , a]1 = — HZ  (A + B + C) , 

x 	 1 
£[hi-11 hi , a]x = — Z  (A + B + C) + H2  (Ahi_1  — Chi ) , 

x2 	 2x 	 1 
£[hi_1, hi , a]x2  = — ( A + B + C) + H2  (Ah1_1  —Chi ) + HZ  (2H 2  —Ahs 1  —  

x3 	 3x2 	 •3x 
£[hi_1, hi , a]x3  = — HZ  (A + B + C) + jp (Ahi_1 — Chi ) + jZ  (2H 2  — Ah _1  — Ch) 

1 
+ z (Ah 1 —Chi). 

(4.23) 
Using definition for classical moments we get: 

1 
£o(hi-l,hi,a) = —W2 (A+B+C), 

1 
£1(hi-1,  hi, a) = HZ  (Ahi-1  — Ch), 

G2(hi-1,  hi, a) _ z  ( 2 H 2  — Ah? 1  — Ch), 

L3 (hi-1, hi, a) = 1  (Ah3 1  — Ch), 	etc 	(4.24) 

Solving first three equations above for A, B and 'C we get A = ni  , B = —1, and C =  hn 1  
which is in well accordance with the CFDM with non-uniform grid spacing (Equation 3.10). 
The solution obtained does not satisfy the fourth equation of set of equations (4.24). This 
means maximum number of equations satisfied by classical moments is M = 3. But as shown 
in previous section that M = 4 for uniform grids. So, results of uniform grids and non-
uniform grids are expected to be different. So from self-consistency equation we get K+2P=O 
which has only two sets of integer solution (K=2, P= -1) and (K=O, P=O). The first set will 
give classical solution with no exponential component whose solution we found already. 

The second solution with K=P=O constitutes a hybrid basis {1, exp(px), exp(—Fix)}. It 
implies that we have to solve three simultaneous equations to get the coefficients. These are 

L0(hi-1• hi, a) = 0 and G±(Z, a) = 0. To construct G±(Z, a) = 0 we operate £(h1 _1, h1, a) 

on exp(±px) to get Eo(z, a). This is shown in following steps: 
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L[hi_1,  hi, a] exp(±pxi) = y' exp(±#xi) - 	[A exp(±µxi)  . exp(+phi_1) + 

Bexp(±µxi ) + Cexp(± xi ). exp(±yhi )] , 

£[hi-1,  hi, a] exp(+µxi) = Hz  exp(±µx1) [NZHZ — Aexp(+µhi-1) — B — C exp( i' µhi)] 

Assuming z 2  = µ2H 2, zi  = 1h1, zi-1 = µhi-1 we get 

E(  z1_1, zi, a) = z 2  — Aexp ( —zi_1) — B — Cexp(zi) , 

EE ( —zi-1, —zi, a) = z 2  — Aexp(zi-1) — B — Cexp(—zi ) . 

Now we can construct G±(2, a) from above two expressions and using 2 = z 2  = µ2H2 

i G+( 2, a) = 1  [Eo (zi-1, zi, a) + Eo ( —zi-i , —zi, a)] , 

G( 2, a) = Z — Ai?-1(Zi=1) — C7]-1(Zi) — B. 	 (4.25) 

Similarly, 

G-( 2,  a) 2z  [Eo (zi-1, zi, a) — Eo ( —zi-1, —zi,  a)] , 

G-(Z,a)= ZZ1 A.rno(Zi-1) — zC•770(Zi) . 	 (4.26) 

From first expression in Equation 4.24 we have; 

Lo (hi-1, hi , a) _ — 	(A + B + C) . 	 (4.27) 

Here q_1(Zi) and i70(Zi) are defined earlier in Equations 4.19 and 4.20. After constructing 

expressions for G±(  2, a), we solve L0(hi_1, hi, a) = 0 and G±(2, a) = 0 using Equations 

4.25,4.26, and 4.27. The coefficients obtained are given below (Ray, 2011) 

C= 

	

	 , 
(17-1(Zi) 

 -1) + (i 1(Z1) 
1) i70(ZZ11) 

Zi  
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A __ 0 (Z1) Z1  

B = —C [1 +)= no(zi) 	zi =— A — C . 	 (4.28) 
zi 1   

The set of Equation 4.28 is an important development which was obtained in Ray (2011); it 

extends the existing results of EFDM for uniform grid, to non-uniform grid system. When 

grid spacing is made equal throughout the domain, then it matches existing result of Ixaru and 

Berghe (2004). The above Equation set (4.28) gives the coefficients for exponential finite 

difference method with non-uniform grid system. 

4.2.3 Exponential Finite Difference Method for 2D case 

In section 4.2.1 and 4.2.2, the coefficients are derived for ID case but for 2D case basis 

functions are [(y.z)"exp{µ(y+z)}, where i=09 1,2.....] and coefficients can be obtained in 

following manners, 

The central difference formula for partial derivative for non-uniform gridding can be 

approximated as, 

Z ( 
ayz (Yl ,  zk) B jz [aluj-1,k + a2Uj,k + a3uj+l,k] . (4.29) 

As in the previous sections, to evaluate the coefficients a= [a1, a2 , a3] an operator 

Ly  [bi-1, bj, a] is defined as follows, 

2u 	1 
£ [bj-1° bj ,  a]u(yJ , Zk) = ayz (Yj ,  Zk) Biz [aluj-1,k + a2uj,k + a3uj+l.k]  . ( 4.30) 

Now we apply this operator G y [bj_1, bj, a]on different terms of classical basis 

{1, (yz), (yz)2 } to get expressions for classical moments. 
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= — B1 (al + a2 + a3), 
I 

Ly[bj-1' bj , a](YfZk) _ — B'1Z (al + a2 + a3) + B- (albj_1 — a3b3 ) , 

zZ z 	2 Zz 
Ly [bj-1, bj , a] V JZk)Z = —YB~z (a1 + a2 + a3) + B1zk (albj_1  - 	agbj) + 

B~ (2Bj2 — albj 1 — a3b/ ) 

(4.31) 

Using definition for classical moments at yj = 0, we get: 

£0 [b_1, bj , a] = — T1 dal + a2 + a3 ), 
B~ 

£1[b1 _1, b, a] = B~ (a,bj _1 — 

L2 [b j_l , b j, a] =B Z (2B.2 — aib/ 1 — a3b~) , 	etc. 	 (4.32) 

Since for 2D case the exponential basis functions are [1, exp{µ(y + z)}, exp{—µ(y + z)}] 

therefor let u(yj, Zk ) = exp{±µ(yj + zk )}; 

Ly[bj_1, bj, a] exp{±µ(yj + Zk )} = µ2 exp[±y(yj + Zk)} — B 2 [a1 exp f ±p(y j + 

Zk)} exp(+µbj_1) + a2 exp{±µ(yj + Zk)} + 

a3 exp{±µ(yd + Zk)} exp(±pbj)] , 

Ly [b1_1, bj, a] exp(±y(yj + Zk)) = B1 exp[± L(yj + zk))[112Bj2 — a1 exp(+µbj_i) — a2 — 

a3 exp(±pbj)] . 

(4.33) 

Assuming = µ2812 Y = .µ2b 2 , 1 j_1 = 1t2b21_1 we get 

Eo (Y -i, Yj , a) = Y — a1 exp — J -1 — a2 — a3 exp Y , 

EE(-1-1, —Y, a) = 7j — al exp( -1) — a2 — a3 exp(—fl)). 

Now we can construct G±( , a) from above two expressions; 
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G+~Y , a ) = [E(  i_1, Y, a) + Eo(-Y_1, -Y, a)] , 

G+(i, a) = Y - ai ry-i(Y-1) - a3 _1(Y) - a2 . 	 (4.34) 

where, r7_1(Y) = Z [exp (Y  Z) + exp (-YZ )I. 

Similarly, 

G-(,  a) = 21- {Eo(Y-1, Y, a) - Eo(-Y_1, -Y, a)] , 

G-(Y , a) = 	
ai• 7]o (Zi-i) - Y' as• 770(Zi) • 	 (4.35) 

YJ 	 ~j 

where, rjo (Y) = — [exp (vi) - exp (-Yz )] -. 

After constructing expressions for G±(Y, a), we solve £0 [b~_1, b1, a] = 0 and G1(g, a) = 

0 using Equations 4.31,4.34, and 4.35. The coefficients obtained are given below, 

fj . 
	 77o(Y1) iiii1 

a3 
= 

 lr!-Y(Yj)-1}+{r1-1(Y1-1)-1 no( 	
ri_i 

flo(Y1) J1 
aa 

 _ 77o(Yj-i)   

aZ _ 	'io(Y1) 	Y j 

	

— 1i+ 
  ~lo(Yj-i) Yj_1 a3 =—a3 — a1. 	 (4.36) 

where, Y = 112b j. 	Y = µ2 E12, Ej2 = Z (b~-x X 

rlo(Y) = a~ [exp (Ya) _' exp (-Y!2 )J 	and 

= z exp (Y2) + exp (-vi)]. 
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Z 

Similarly, we can approximate aZZ (yj, zk ) using EFDM 

z 	 1  
02 (yj, Zk) ^' Ckz [a4uJ,k-1 + a5uj,k + a6uj,k+1] . 	 (4.37) 

__  ~k 

a6 	[{~!-1(Zk)-1)+{~l-1(Zk-i)-1) no(Zkki) Z !! 1 

a4 	 ?7o(Zk) 	Zk a and a5 	 a 	a 	 4.38 
4 	no (Zk-1) Zk-1 6 , 	5 — 	6 	4° 	 (4.38) 

The above Equations 4.36 and 4.38 give the coefficient for EFDM with non-uniform grid 
system. These coefficients are required to be placed in the 2D Helmholtz 'equation to obtain 

fields u(y, z) using EFDM, 

Using Equations 3.11, 4.29, 4.36, 4.37 and 4.38 

Aeuj+l,k + Beuj,k+1 + Ceuj,k-1 + Deuj-1,k + Peuj,k = 0. 

This results in following matrix equation similar to the case of CFDM, 

Mex. LYex _ bex , 	 (4.39) 

The structure of this matrix is also pentadiagonal (as in CFDM) and bands will contain 

coefficients [A,, Be, Ce, De, Pe ] corresponding to different nodes. The pentadiagonal matrix 

Equation 4.39 needs to be solved to get field values at all nodes using EFDM. Time and cost 

of computations depend on the size of matrices Mc, and M4 which in turn depend on number 

of nodes taken. Large is the number of nodes more will be the time and cost. 
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CHAPTER 5 

DEVELOPMEMNT AND DETAILS OF ALGORITHMS 

5.1 Introduction 

In this dissertation we have developed two forward modeling algorithms (i) MT 2D_CFDM 

based on Classical Finite Difference Method and (ii) NIT 2D EFDM based on Exponential 

Finite Difference Method using Fortran 90. Integral boundary condition is applied at the air-

earth interface (Stuntebeck. 2003) and asymptotic boundary conditions (Weaver and Brewitt-

Taylor. 1978) are applied at the vertical sides of model. The bottom boundary is assumed to 

be perfectly conducting. Both the algorithms are used for solving. 1D and 2D Helmholtz 

equation as applied to simulate NIT response of 2D earth models. First, both the algorithms 

are used to solve Helmholtz equation to synthesize the electric field vector which, in turn, is 

used to obtain the magnetic field vector and the derived MT response functions impedance, 

apparent resistivity and phase. The details of development of algorithm are presented below. 

5.,2 Salient Features of MT 2D CFDM and MT 2D EFDM Algorithms 

The developed algorithms have a compact modular structure; any subroutine can be plugged 

in or taken out easily without affecting the remaining program. The features to enhance 

versatility or efficiency are discussed below. 

5.2.1 Grid generation 

The algorithm is developed to generate uniform grids as well as manual grid. Skin depth 

based automatic grid generator is also used in this algorithm which was developed by Weaver 

(1994). The subroutine gridgen is used for generating automatic grid points. 

5.2.2 Response functions 

These algorithms are presently developed to get the responses for magnetotelluric profiling. 

The responses are computed at the surface for a single frequency. The algorithms are 

developed to compute response functions like impedance, apparent resistivity and phase, for 
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2D-TE mode only. The response functions apparent resistivity and phase are computed in 

subroutine output2. 

5.2.3 Source term 

The algorithms are so structured that the computations are carried out in terms of secondary 

fields. Later on, for total field computations, the primary fields are added to these secondary 

fields. Thus, in order to incorporate the source effect, only a subroutine computing the 

responses of primary layered earth model in the presence of given source, is added in lieu of 

the existing subroutines primary which compute the 1D field due to a plane wave source. 

5.2.4 Tridiagonal Method- 

The subroutine tridag given in Numerical Recipes by Press et al. (1993) is used to solve 

tridigonal system of matrix equation encountered for 1D computation of primary fields. 

5.2.5 BiCGStab Method 

Bi Conjugate Gradient Stabilized (BiCGStab) is used to solve pentadiagonal equation 

encountered for computation of secondary fields because with appropriate preconditioner it 

provides the solution in optimal time and best one to use. The subroutine bicgstab developed 

by Rastogi, A. (1997) and Krishna Kumar (2009) is used in these algorithms for this purpose. 

Appendix A.3 explains the details of BiCGStab method. 

5.3 Description of MT 2D_CFDM and MT_2D_EFDM Algorithms 

The algorithm, MT 2D CFDM, employs Classical Finite Difference Method for solving the 

EM field vectors to compute the 2D MT responses while MT 2D EFDM, employs 

Exponential Finite Difference Method for the same. The MT 2D CFDM . algorithm 

comprises 3936 lines and 14 subroutines while MT_2D EFDM algorithm comprises 4082 

lines and 14 subroutines. The basic statistics and salient features are emphasised in the Figure 

5.1. 

Total five 1/0 units;- one input unit and four output units are opened in the program. The 

parameters and data controls are read from the input file. The remaining four output files are 

used for different outputs helpful in analysing the results. All the descriptions about how to 

generate input file are given in the Appendix A. 1. 
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Basic Algorithm Statistics 
MT-2D—CFDM - 3936 Lines 

Main program - 241 Lines 
	 CFDM Algorithm 

Subroutines - 3695 Lines 

14= (8+6*) 

* Adapted from other program 

Methodology 
Classical Finite Difference Method to transform the Helmholtz equation to 

matrix equation 

Bi-CGStab method to solve above transformed matrix equation. 

Field continuation at air-earth interface 

Basic Algorithm Statistics 
MT-2D—EFDM - 4082 Lines 

Main program - 253 Lines 

Subroutines - 3829 Lines 

14= (8+6*) 

* Adapted from other program 

Methodology 

EFDM Algorithm 

Exponential Finite Difference Method to transform the Helmholtz equation to 

matrix equation 

Bi-CGStab method to solve above transformed matrix equation. 

Field continuation at air-earth interface 

Figure 501: MT 2D_CFDM and I IT 2D EFDM Algorithms in nutshell 

504 Structure of MT-2D—CFDM and MT 2D EFDM Algorithms 

In the main program the control parameters are defined, input and output files are opened and 

the subroutines are called as shown in Figure 5.2. Input data and other parameters are reads in 

the subroutine input. 
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START 

Supply Input resistivity, time period, 
dimensions of block, and different 

control parameters in input file. 

Define variable, array dimension and 
parameter in main program 

I 	 Open UO units 

Call input to read input parameter and 
generates grid points 

Call sigma2 to store conductivity values 
at all nodes in the model 

I Call primary to solve for primary fields 
Ep  

Call weight to obtain elements of 
coefficient matrix for secondary fields 

Call righthandvec to generate RHS 
using boundary condition for matrix Eq. 

Call bicgstab to obtain secondary fields 
by solving pentadiagonal matrix Eq. 

Call output2 to generate MT responces 
for analysis 

Figure 502: Flow chart of main program for both. MT 2D_CFDM and I IT 2D_EFDMo 
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The grid can be generated in three ways. First, by reading manually generated grid values, 

second by uniform grid generator by giving the values of uniform nodes spacing in y and z 

directions, third by using automatic grid generator based on skin depth developed by Weaver 

(1994). The counter gridcount is used to control the choice of grid generation. 

The resistivity values are read for the half space and for the anomalous body from input file 

(see appendix Ad for details) and fmally stored in conductivity array sx using subroutine 

sigma2. Calculations of the elements of coefficient matrix, for all primary electric field 

components EP , are carried out in subroutine Ianczosl. This subroutine lanczosl is also used 

for solving primary fields Ep  for layered earth model. 

Subroutine weight is used to generate elements of coefficient matrix for all secondary field 

components E. The only difference in algorithms MT_2D CFDM and MT 2D EFDM is in 

the subroutine weight. Subroutine weight in MT_2D_CFDM employs classical finite 

difference approximation while subroutine weight in MT-2D EFDM employs exponential 

finite difference approximation. 

Subroutine righthandvec is used to generate the right hand side array using boundary 

condition for matrix equation to compute secondary fields. Subroutine bicgstab is used to 

solve pentadiagonal matrix equation to get secondary field values Es. Finally subroutine 

output2 is used to generate the MT response like total electric fields ET , magnetic fields, 

apparent resistivities and phase responses. Figure 5.2 shows flow charts for main program. 

The control parameters and their purpose and numerical value for different options are listed 

in Table A.1.1 of Appendix A.I. The remaining input parameters used in different 

subprograms are described in Table A. 1.2 of Appendix A. 1. The description of development 

of algorithm is completed. The results of experiments performed for checking and validation 

of MT 2D CFDM and MT 2D EFDM are presented in the succeeding chapter. 
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CHAPTER 6 

RESULTS AND APPLICATIONS 

This dissertation work is principally based on numerical simulation of 2D Helmholtz 

equation as appears. in Magnetotelluric. As mentioned earlier the main aim of this dissertation 

is to develop algorithms for two numerical schemes employed namely Exponential Finite 

Difference Method (MT_2D_EFDM) and Classical Finite Difference Method 

(MT 2D_CFDM) to solve 2D Helmholtz equation and then, to test these algorithms in order 

to observe efficiency of proposed EFDM algorithm in comparison to CFDM. After 

development of EFDM algorithm, a question is raised what value of exponent µ is to be 

chosen to get optimum results since µ is prime requirement for the development of EFDM 

algorithm. Following section explains the estimation of near optimal g. 

6.1 Estimation of optimum value of µ 

A significant point of discussion in EFDM is the exponent p which is hidden in Y = µ2b2  or 

Z= µ2c2. The coefficients [A, Be, Ce, Be, Pe ] depend on Y or Z (Equations 4.36 or 4.38), 

hence these, in turn, depend on µ. Let the electromagnetic field is assumed to be a linear 

combination of basis functions [1, exp{±µ(y + z)}]. Now, if field has some other frequency 

µ (µlamµ) then coefficients will not give the best response. So, the choice of µ is a crucial in 

EFDM. If we have prior knowledge about field then µ can be chosen accordingly. 

After conducting exhaustive experiments on random 2D earth models, an estimator for µ 

through model parameters is defined as follows, 

(Zj
n_ 

	

	 1 + i) x real(k(j)} 
(— 	dy()dz(1))  

1 
dy(1)dz(1) 

(6.1) 
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Here, i = TT and j runs from l sl  conductivity block to n f̀' conductivity block (Appendix 

A.1), k(j) is wave number of j h̀  block, dy(j) is width of j h̀  block and dz(,j) is thickness of j h̀  

block. It can be noted that the µ is some sort of area weighted average of k. 

This estimator of It is used in all the 2D models to solve the 2D Helmholtz equation using 

MT 2D_EFDM algorithm. Same formula is also used to find out near optimum value of µ for 

layered earth to find out primary fields. For this we have to put dy(j)=1 and each layer is 

taken as a block of thickness dz(k). 

After developing MT-2D—EFDM using this estimator of µ our natural task is to test the both 

algorithms. In respect to this, firstly the experiments are performed to validate the accuracy of 

developed. algorithms (MT 2D_CFDM and MT-2D—EFDM) on standard 2D models results 

then we carried experiments on different 2D earth models for solving 2D Helmholtz equation 

using both algorithms, MT-2D—CFDM as well as MT-2D—EFDM to observe the efficiency 

of proposed EFDM in comparison to CFDM. 

6.2 Algorithm Testing 

It is desirable that an algorithm is exhaustively validated with some analytical solution and 

established published results. In this context, we first tested the developed algorithms for 

uniform half space then validation is carried out for some standard 2D earth models. 

6.2.1 Homogeneous half space model 

In Magnetotelluric source is assumed to be very far away from the surface of the earth. 

Electromagnetic waves propagate through the surface of the earth to the subsurface as 

discussed in Chapter 2. For uniform half space, analytical solution is derived in section 

(2.1.1) and from Equation 2.21 we get, E(z) = Eo  exp(ikz), where Eo  is field at surface and 

z is depth values. 

Experiments are performed for uniform half space with resistivity p=100 ohm-m (Figure 6.1). 

Time period of the signal is taken to be T = 0.1 s. The electric fields and apparent 

resistivities obtained using both developed algorithms MT 2D EFDM and MT 2D_CFDM 

are identical with the analytical results at the surface almost everywhere in the horizontal 

direction (y-direction). The variation of fields with depth (z-direction) is also nearly identical 

with the analytical results and shown in Figure 6.2 and 6.3. 
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Figure 6.1: Homogeneous half space of resistivity p=i00 3Bm. 
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Figure 6.2: Comparison of real component of electric fields obtained using analytical 
result, CFDM and EFDM for homogeneous half space having resistivity of p = 100 gym. 

It is clear form Figure 6.2 and 6.3 that both the developed algorithms MT 2D_CFDM and 
MT 2I? EFDM give results nearly similar to analytical results. Here one point should be 

noted that these fields are computed using CFDM or EFDM with fine gridding or with 

large number of nodes in this model. 
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Figure 603: Comparison of Imaginary component of electric field obtained using 
analytical results, CFDM and EFDM for homogeneous half space having resistivity of p 
= 100 gm. 

The next validation of these algorithms is the reproduction of established published results. In 

this exercise, two 2D models have been selected from (a) 2D-1 from COMMEMI. 

(Comparison of Modeling Methods for Electro-Magnetic Induction) report by Zhdanov et al. 

(1997) and (b) Brewitt-Taylor and Weaver (1976) Model. In COMMEMI report the results 

obtained using different algorithms based on Finite Difference, Finite Element, and Integral 

Equation methods are given for comparison while in Brewitt-Taylor and Weaver (1976), the 

results obtained using Finite Difference Method. The comparisons for apparent resistivity 

values are presented for validation of algorithm. 

622 Model M1: 2D4 Model from COMMEMI 

Model 2D-1 in the COMMEMI report by Zhdanov et al. (1997) is reproduced in Figure 6.4. 

It comprises a symmetrical rectangular block embedded in homogeneous half space. The 

resistivity of the inserted block is 0.5 fZm while that of the half space is 100 Stm. The block, 

placed at a depth of 250 m from the earth surface, has a width of 1 km and thickness of 2 km. 

The MT responses such as electric field and apparent resistivity are computed for a period of 

0.1 S. 
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Figure 6.4: Model MI: 2D-1 of COMMEMI, (distances in km and resistivity in Sm). 
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Figure 6.5: Apparent resistivities plot; comparison of COMMEMI (Zhdanov et al., 

1997), EFDM and CFDM at 0.1 s with finer gridding. 

In Figure 6.5 apparent resistivity values obtained using proposed EFDM and CFDM both 

with finer gridding are plotted and compared with the average value of apparent resistivity 

from COMMEMI report. The RMS error between EFDM and COMEMMI is about 0.4 % 

and CFDM and COMMEMI is about 0.6 % that shows the validation of our algorithms with 

standard algorithms. 
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6.2.3 Model M2: Model from Brewitt-Taylor and Weaver (1976) 

Brewitt-Taylor and Weaver (1976) model is reproduced in Figure 6.6. It comprises a 

rectangular block embedded in homogeneous half space. The resistivity of the inserted block 

is 0.1 f2m while that of the half space is 1 i2m. The block, placed at a depth of 100 m from 

the earth surface, has a width and thickness of 0.5 km. The MT responses such as electric 

field and apparent resistivity are computed for a period of 1 s. 

2.25 2.5 2.75 fes) 

Figure 6.6: Model M2: Brewitt-Taylor and Weaver (1976) model9  (distances in km and 

resistivity in SZm). 

In Figure 6.7 apparent resistivity values, obtained using proposed EFDM and CFDM using 

finer gridding, are plotted and compared with the apparent resistivities from Brewitt-Taylor 

and Weaver (1976). The RMS error between Brewitt-Taylor and Weaver, 1976 results and 

EFDM or CFDM is about 0.9 % or 1.1 % respectively that again shows the validation of our 

algorithm with standard algorithms. 
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Figure 6.7: Apparent resistivities plot; comparison of Brewitt-Taylor and Weaver 
(1976), EFDM and CFDM results at 1 s with finer gridding. 

603 Experiments to establish efficiency of EFDM 

Several experiments have been performed on 2D earth models in order to observe the 

efficiency of proposed EFDM in comparison to CFDM. 2D Helmholtz equation is solved 

using both CFDM and EFDM for different number of nodes. After computing the field with 

both algorithms, L, norm of relative error [i. e. , k = Yn  tlucal-uanll)]  is computed for different 
ri.Uanl 

number of nodes. Here ural is computed field with either CFDM or EFDM and uaz,1 is 

analytical solution that we obtained using CFDM with very fine discretization or with very 

large number of nodes (about 5000 nodes). L1 norm of relative error (4) is plotted against 

different number of nodes used in model for solving 2D Helmholtz equation to observe 

efficiency of EFDM. 

In this context, first the developed algorithm is tested for uniform half space then experiments 

are carried out for standard 2D earth models. 
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6°3°1 Homogeneous half space model 

In this, same homogeneous half space is considered as in the section 6.2.1 and . fields are 

computed using both MT-2D—CFDM and MT 2D_EFDM algorithms for different number 

of nodes for signal period of T=O.is. Plot of relative error against different number of nodes 

used in homogeneous half space model is shown in Figure 6.8 for both CFDM and EFDM. 

0.14 
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a, 0.1 
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4) 

o 0.06 
E 
C 0.04 

0.02 

0 

10000  1000  100  10 

Number of Nodes in modes 

Figure 6.8: Variation of 4 (L1 norm of relative error) with node spacing for 
homogeneous half space. Continuous line with circle marker shows error in EFDM and 
dotted line with triangle marker shows error in CFDM. 

Figure 6.8 illustrate that L, norm of relative error in EFDM is far less than CFDM, and nearly 

equals to zero. Therefore, for homogeneous half space, EFDM gives nearly exact analytical 

solution. 

6.3.2 Model leg o 2D4 Model from COMMEMI 

In this, the same model M1 is considered as in the section 6.2.2 and fields are computed using 

both MT-2D—CFDM and MT-2D—EFDM for different number of nodes. Plot of relative 

error () against different number of nodes used in model Mi is shown in Figure 6.9 using 
both MT 2D CFDM and MT 2D_EFDM. It is very clear from Figure 6.9 that the relative 

error in EFDM is much less than error in CFDM hence EFDM gives more accurate result in 
comparison to CFDM for a given number of nodes. Alternatively, we can use coarser grid in 

Homogeneous Half Space 

° •e• ° CFDM Q~ 

o EFDM 
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EFDM to get same accuracy of results as we get with CFDM with finer grid and this is 

demonstrated in Table 6.1 from Figure 6.9. 

O 
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Number of nodes in model 

Figure 6.9: Variation of 4 (L1  norm of relative error) with different number of nodes 
for model ISI. 

Table 6.1: Number of nodes required for same accuracy using both CFDM and EFDM in M1. 

S.N. Relative error 
No. of nodes used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  5% 600 220 63% 

2.  7% 480 160 67% 

3.  10% 300 100 67% 

Table 6.1 represents that about 65% less number of nodes require in EFDM to get same 

accuracy of results as we obtained using CFDM with a given nodes, illustrating that EFDM 

requires less time and cost of computations in comparison to CFDM. 

633 Model M2  Model from Brewitt-Taylor and Weaver (1976) 

The same model M2 is considered as in the section 6.2.3 and fields are computed using both 

CFDM and EFDM for different number of nodes. 
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Figure 6.10: Variation of (Ll  norm of relative error) with different number of nodes 
for model M2. 

It is clear from relative error plot (Figure 6.10) that the relative error in EFDM is less than 

error in CFDM therefore EFDM gives more accurate result in comparison to CFDM for a 

given number of nodes. Instead, we can use coarser grid in EFDM to get same accuracy of 

results as we get with CFDM with finer grid and this is demonstrated in Table 6.2 from 

Figure 6.10. 

Table 6.2: Number of nodes required for same accuracy using both CFDM and EFDM in M2. 

S.N. Relative error % 
No. of node s used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  - 	2% 400 150 63% 

2.  4% 190 80 58% 

3.  6% 150 56 .63% 

Table 6.2 implies that about 61% less number of nodes requires in EFDM to get same 

accuracy of results as we obtained using CFDM with a given nodes, illustrating that EFDM 

requires less time and cost of computations in comparison to CFDM. 
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6.3.4 Model M3  

This test model comprises a symmetrical rectangular block embedded in homogeneous half 

space. The resistivity of the inserted block is-5 Sim while that of the half space is 50 S2m. The 

block, placed at a depth of 50 m from the earth surface, has a width of 3 km and thickness of 

2 km. The MT responses such as electric field and apparent resistivity are computed for a 

period of 0.1 s. Plot of relative error against different number of nodes for model M3 is shown 

in Figure 6.12 using both CFDM and EFDM. 

-1.5 0 1.5 (kin) 

Figure 6.11: Test Model M3 (distance in km and resistivity in fm). 
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Figure 6.12: Variation of with different number of nodes for model M3. 

Figure 6.12 clearly shows that the relative error in EFDM is less than error in CFDM hence 

EFDM gives more accurate result in comparison to CFDM for a given number of nodes. In 
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other way, we can use coarser grid in EFDM to get same accuracy of results as we get with 

CFDM with finer grid and this is demonstrated in Table 6.3 from Figure 6.12. 

Table 6.3: Number of nodes required for same accuracy using both CFDM and EFDM in M3. 

S.N. Relative error 
No. of nodes used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  4% 900 300 67% 

2.  8% 400 130 67% 

3.  12% 200 66 67% 

Table 6.3 clearly shows that about 67% less number of nodes requires in EFDM to get same 

accuracy of results as we obtained using CFDM with a given nodes, illustrating that EFDM 

requires less time and cost of computations in comparison to CFDM. 

6.3.5 Model M4  

-2.5 	-1.5 	1.5 	2.5 (km) 

0.25 

0.5 	 10© 
S2-m 	 11-m 

2.2 

10 ?.m 

Figure 6.13: Model 14 (distance in km and resistivity in Sim). 

This model comprises two rectangular blocks embedded in homogeneous half space. The 

resistivities of the inserted blocks are 0.5 Sam and 100 Sm while that of the half space is 10 

am. The blocks, placed at a depth of 250 m from the earth surface, have a width of I km and 
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thickness of 2 km each. The MT responses such as electric field and apparent resistivity are 

computed for a period of 0.1 s. Plot of relative error (~) against different number of nodes for 

model M4 is shown in Figure 6.14 using both CFDM and EFDM. 

Figure 6014: Variation of 4 (Ll norm of relative error) with different number of nodes 
for model M 

Similar to previous models, we can see that relative error in EFDM is much less than error in 

CFDM hence EFDM gives more accurate result in comparison to CFDM for a given 

discretization. 

Table 6.4: Number of nodes required for same accuracy using both CFDM and EFDM in M4. 

S.N. Relative error 
No. of nodes used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  4% 1700 1100 35% 

2.  7% 1200 400 67% 

3.  10% 500 280 44% 

Table 6.4 clearly illustrate that EFDM required 40-50% less number of nodes to get results 

having same accuracy as results obtained from CFDM with a given number of nodes, implies 

that using EFDM we can reduce time and cost of computations in comparison to CFDM. 
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2. 

6.3.6 Model M5  

Again this model has two rectangular blocks embedded in homogeneous half space. The 

resistivities of the inserted blocks are 2 12m and 200 i2m while that of the half space is 20 

f2m. The blocks, placed at a depth of.l km from the earth surface, each have a width of 1 km 

and thicknesses of 1.5 km and 3 km respectively. The MT responses such as electric field and 

apparent resistivity are computed for a period of 0.1 s. Plot of against different number of 

nodes for model M5 is shown in Figure 6.16 using both CFDM and EFDM. 

5 	6 	 8 	9 (km) 

Figure 6.15: Test Model M5 (distance in km and resistivity in 92m). 

Similar to previous models, we again see that relative error in EFDM is much less than error 

in CFDM hence EFDM gives more accurate results in comparison to CFDM for a given 

discretization. Alternatively, we can use coarser grid in EFDM to get same accuracy of 

results as we get with CFDM with finer grid and this is demonstrated in Table 6.5 from 

Figure 6.16. 

Table 6.5 clearly illustrate that EFDM required 90% less number of nodes to get results 

having same accuracy as results obtained from CFDM with a given number of nodes, implies 

that using EFDM we can sufficiently reduce time and cost of computations in comparison to 

CFDM. 
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Figure 6.16: Variation of -(L1 norm of relative error) with different number of nodes 
for model M5. 

Table 6.5: Number of nodes required for same accuracy using both CFDM and EFDM in M5. 

S.N. Relative error 
No. of nodes used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  4% 1600 220 85% 

2.  7% 1000 90 90% 

3.  9% 500 55 89% 

6.3.7 Model M6  

Model M6 (Figure 6.17 (a)) is similar to M5 except for a two layered host instead of uniform 

half space. The resistivities of these two layered are 2.0 SZ-m and 100 SZ-m. The first layer has 

thickness of 4 km. The MT responses are computed for a period of 0.1 s. Plot of against 

different number of nodes for model M6 is shown in Figure 6.17 (b) using both CFDM and 

EFDM. The same experiment demonstrate that EFDM requires about 40-70% less number of 

nodes (Table 6.6) in comparison to nodes required for CFDM to get same accuracy of results, 

again illustrating that EFDM requires less time and cost of computations in comparison to 

CFDM. 
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Figure 6J7 (a) Test Model M6 (distance in km and resistivity in Im). (b) Variation of 
(Ly norm of relative error) with different number of nodes for model M6. 

Table 6.6: Number of nodes required for same accuracy using both CFDM and EFDM in M5. 

S.N. Relative error 
No. of nodes used in 

Reduction of no. of nodes 
CFDM EFDM 

1.  5% 2100 1200 43% 

2.  7% 1800 800 55% 

3.  10% 1500 400 73% 
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From these error plots for different 2D Earth models, we can easily see that relative 

error in EFDM is less in comparison to CFDM hence EFDM gives more accurate result 

in comparison to CFDM for a given number of nodes. Above experiments also reveals 

that, EFDM requires 50-80% less number of nodes in comparison to CFDM to get 

same accuracy of results, illustrate that we can use coarse grid for EFDM to obtain 

same accuracy of result as we get using CFDM with fine grid. As a result EFDM 

sufficiently reduces the time and cost of computation as compared to CFDM. 
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CHAPTER 7 

CONCLUSIONS AND DISCUSSIONS 

In this dissertation we have developed two forward modeling algorithms, 2D Classical Finite 

Difference Method algorithm (MT-2D—CFDM) based on monomials as basis function and 

2D Exponential Finite Difference Method algorithm (MT-2D—EFDM) using exponential 

basis function. The crucial part in EFDM is the selection of optimum value of g. Using model 

parameters we defined formula for µ that gives near optimal results. Both the developed 

numerical algorithm MT-2D—CFDM and MT-2D—EFDM are applied on different 2D earth 

models for solving 2D Helmholtz equation. From the experiments we observed that proposed 

EFDM gives more accurate results than CFDM with a given grid. Alternatively, EFDM 

employs 50-80 % less number of nodes to obtain results identical to CFDM with a given 

number of nodes. Therefore, using EFDM we can sufficiently reduce time and cost of 

computation in comparison to CFDM. If we deal with 3D problems, the superiority of 

proposed EFDM would be much greater than CFDM in respect of time and cost of 

computations. If we choose same number of nodes in both CFDM and EFDM then we have 

more accurate forward model responses using EFDM implies that inversion results gives 

more accurate model using EFDM in comparison to CFDM. 

71 Limitations of the Algorithms 

There are certain limitations of the algorithm identified during testing are as follows, 

a In EFDM, only near optimal value of g is used by model parameters and for very 

complex models this estimator does not gives much better results. 

® At the bottom of the modeling domain, perfectly conducting boundary condition is 

employed in the algorithm. This constraint forces one to take bottom at sufficient 

distance so that the tangential electric field will be zero at the domain boundary. 

Presently the algorithm can be used only for the plane wave source. 

702 Suggestions for future work 

This dissertation opens up more interesting prospects for future research work. The work 

presented so far to compute magnetotelluric response of 2D earth models. 
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There are things that can be done for future developments of proposed EFDM. These are 

listed below: 

7.2.1 Modification of algorithm for Controlled Source EM 

The algorithm can be modified for the computation of responses in case of controlled source 

EM methods simply by replacing the present primary field response computation subprogram 

with one corresponding to the given EM source. 

7.2.2 Extending to 3D models 

From this dissertation work, as EFDM shows more improve result in comparison to CFDM in 

2D model, then for 3D models, the improvements will get multiplied and will give a lot better 

result as compared to existing CFDM results. It is highly probable that EFDM will 

significantly reduce the number of node points in three dimensions earth modelling therefore 

EFDM will make matrix size very small as compared to matrix size obtained by CFDM 

hence the superiority of proposed EFDM would be much greater than CFDM in respect of 

time and cost of computations. 

7.2.3 Application of EFDM for another field of Geophysics 

Since other many geophysical fields have oscillatory behaviours therefore apart from 

Magnetotelluric, the proposed scheme can be tested in other.  disciplines like Geophysical 

Fluid Dynamics, Seismology, and Seismic Prospecting etc. 

7.2.4 Experiments to obtained optimum µ 

In this dissertation the near optimal p is obtained using model parameters but there can be 

scope to get better estimator of g for 2D Earth models. Eigenvalue Analysis of coefficient 

matrix based on Young's work of Young (1950) or Maximum Entropy Method can be used 

to get better estimator of g. 

7.2.5 Experiments with self-consistency equation 

It is also possible to play with self-consistency equation (Equation 4.18) and to look for the 

scope of incorporating more exponential terms in basis function to set up EFDM for 2D and 

3D earth models. 
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APPENDIX A.1 

SAMPLE INPUT FILE & ALGORITHM 

PARAMETERS 

The complete descriptions about development of algorithms are given in Chapter 5. The 

generation of input files from the 2D earth model shown in Figure A. 1, is explained below. 

Figure A.L1: Labelled 2D Earth Model for generation of Input file. Thin line is used to 

divide whole model into different conductive rectangular blocks. 

6P Host conductivity and aS Anomalous body conductivity 

Other details of labelling used in this model and input parameters are given in Table A. 1.2. 

The input data and other parameters are also controlled by different counters. The details of 

these counters along with their values and descriptions are presented in Table A. 1. Sample 

input file is presented after the descriptions of these parameters. 
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Table A.1.1: Description of control parameters. 

Parameter Controls Value Descriptions 

fcount Field continuation 
0 No field continuation 

1 Field continuation 

sbcount Side boundary condition 

0 
Neumann boundary 

condition 

1 
Dirichlet boundary 

condition 

2 Mixed boundary condition 

gridcount Grid generator 

0 Uniform grid 

1 Skin depth based grid 

2 Manual grid 

ncond Input data type 
0 Data in conductivity 

I Data in resistivity 

Table A.1.2: Description of parameters in input file. 

Parameters Descriptions 

itmax Maximum number of iterations for BiCGStab convergence 

to! Tolerance parameter for BiCGStab 

scale 
Scale for data e.g. if y and z coordinates are in km then scale = 1000 and if 

in meter scale = I 

nobs Number of observation points in y or z direction 

ynobs Co-ordinated of observation points in y direction 

znobs Co-ordinated of observation points in z direction 

cy The horizontal location of the left edge of each block 

cz The vertical location of the top left corner, of each block 

dy The horizontal width of each block 

dz the vertical depth of each block 

yyl, yy2 The horizontal location of the left and right edge of host block 

zz 1, zz2 The vertical location of the top Ieft corner and bottom left comer host block 

blk Number of anomalous body 
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nb Block number of anomalous body 

nrperiod Number of reference frequency used in automatic grid generator 

refperiod Reference period for automatic grid generator 

period Period of signal used in MT model 

A010 Sample Input File 

Input..dat 

Test Model M ! Title of Model 

1 	!fcount(=0 or 1) 
1 	! sbcount(=0 or 1 or 2) 
2 	!gridcount( =0 or 1 or 2) 

10000 	!itmax (for BiCGStab) 
1.0e-10 	!tol (for BiCGStab) 

1 	 !ncond 
1000.0 	 !scale 

6 !nobs 
0.0,0.5,1.0,2.0,4.0,5.0 !ynobs (km) 
0.0,0.0,0.0,0.0,0.0,0.0 !mobs (km) 

-8. 0. 16. 0.25 100. 
-8. 0.25. 7.5 2.0 100. 
-8.0 2.25 16.0 9.75 100. 
-0.5 0.25 1.0 2.0 0.5 
0.5 0.25 7.5 2.0 100. 
-8.0 12.0 16.0 2.0 0.001 
5555 0 0 0 0 

!cyl ezl dyl dzl Pp  
!cy2 cz2 dy2 dz2 Pp  
!cy3 cz3 dy3 dz3 PP  
! cy4 cz4 dy4 dz4 Ps  
!cy5 ez5 dy5 dz5 PP  
! last block taken as highly conducting 

!end of data 

-8,8 	! yy-y domain(left right co-ordinate) 
0,12 	! zz-z domain (z co-ordinates of Host) 

I 	!blk- number of anomalous body 
4 	!nb-block no. of anomalous body 

1,1 	!nrperiod,mpr 
0.1 	!refperiod 

1 	!nperiod 
0.1 	!period 
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APPENDIX A.2 

SAMPLE OUTPUT FILES 

out main.dat 

'r_~Ili~l~i~7~1 

I 	! fcount(=0 or 1) 

I 	! sbcount(=0 or 1 or 2) (side-boundary cond) 

2 	! gridcount( =0 or 1 or 2) 

10000 	! itmax (for BiCG) 

1.0e-10 	! tol (for BiCG) 

1 	! ncond 

1000.0 	! scale 

6 	! nobs 

0.0, 0.5, 1.0, 2.0, 4.0, 5.0 	! ynobs (km) 

0.0, 0.0, 0.0, 0.0, 0.0, 0.0 	! znobs (km) 

-8. 0. 16. 0.25 100. 

-8. 0.25 7.5 2.0 100. 

-8.0 2.25 16.0 9.75 100. 

-0.5 0.25 1.0 2.0 0.5 

0.5 0.25 7.5 2.0 100. 

-8.0 12.0 16.0 2.0 0.001 

5555 0 0 0 0 

-8,8 	! y domain(lefl-right co-ordinate) 

0,12 	! z domain (z co-ordinates of Host) 

I 	! number of anomalous body 

4 	!block no. of anomalous body 

!end of data 
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!nrperiod,mpr 

!refperiod 

1 
	!nperiod 

0.1 
	! period 

i, b(i), bh(i) 

1 2.000E+03 2.000E+03 

2 8.100E+02 1.405E+03 

3 3.190E+03 2.000E+03 

4 1.275E+03 2.233E+03 

5 2.250E+02 7.500E+02 

6 2.530E+02 2.390E+02 

7 5.600E+01 1.545E+02 

8 1.910E+02 1.235E+02 

9 2.470E+02 2.190E+02 

10 1.970E+02 2.220E+02 

11 5.600E+01 1.265E+02 

12 5.600E+01 5.600E+01 

13 1.194E+03 6.250E+02 

14 2.500E+02 7.220E+02 

15 2.000E+03 1.125E+03 

16 2.000E+03 2.000E+03 

17 2.000E+03 2.000E+03 

18 0.000E+00 2.000E+03 

i, c(i), ch(i) 

1 2.220E+02 2.220E+02 

2 2.800E+01 1.250E+02 

3 2.800E+01 2.800E+01 

4 3.940E+02 2.110E+02 

5 1.268E+03 8.310E+02 
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6 1.500E+02 7.090E+02 

7 4.000E+01 9.500E+01 

8 9.000E+01 6.500E+01 

9 3.000E+01 6.000E+01 

10 1.050E+03 5.400E+02 

11 3.300E+02 6.900E+02 

12 1.370E+03 8.500E+02 

13 1.110E+03 .1.240E+03 

14 6.900E+02 9.000E+02 

15 1.500E+02 4.200E+02 

16 9.200E+02 5.350E+02 

17 3.300E+02 6.250E+02 

18 3.000E+02 3.150E+02 

19 1.220E+03 7.600E+02 

20 8.000E+01 6.500E+02 

21 1.400E+03 7.400E+02 

22 3.000E+02 8.500E+02 

23 4.000E+02 3.500E+02 

24 1.000E+02 2.500E+02 

25 0.000E+00 1.000E+02 

the counter for res./cond." ncond " = 	1 

scaling factor" scale" = 	1.00E+03 

Primary field {efield} 

1 6.28319E-02 6.28319E-02 

2 6.17191 E-02 4.65222E-02 

3 6.14375E-02 4.46370E-02 

4 6.11283E-02 4.27898E-02 

5 5.44540E-02 2.06939E-02 

6 2.38317E-02 -1.10320E-02 

7 2.06471E-02 -1.20362E-02 

8 1.98333E-02 -1.22398E-02 
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9 1.805 92E-02 -1.26077E-02 

10 1.74856E-02 -1.27041E-02 

11 3.11724E-03 -1.07303E-02 

12 6.83870E-04 -9.05583E-03 

13 -2.71530E-03 -2.71578E-03 

14 -1.90374E-03 -1.68948E-04 

15 -1.16445E-03 4.18754E-04 

16 -1.01868E-03 4.79219E-04 

17 -3.28738E-04 5.38651E-04 

18 -1.70008E-04 4.84995E-04 

19 -6.19506E-05 4.22983E-04 

20 1.16944E-04 1.72885E-04 

21 1.18629E-04 1.60055E-04 

22 6.19748E-05 2.60809E-05 

23 3.94714E-05 1.42766E-052766E-05 

out6_result.dat 

5346 

384 

i z 	y 	Re(E) Im(E) Re(H) 	Im(H) App. Res 	Phase 

I 0.00E+00 -6.00E+03 6.28E-02 6.28E-02 9.97E-01 -6.00E-02 1.00E+02 4.84E+01 

2 0.00E+00 -5.19E+03 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

3 0.00E+00 -2.00E+03 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

4 0.00E+00 -7.25E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

5 0.00E+00 -5.00E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

6 0.00E+00 -2.47E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

7 0.00E+00 -1.91E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

8 0.00E+00 0.00E+00 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

9 0.00E+00 2.47E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

10 0.00E+00 4.44E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

11 0.00E+00 5.00E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 
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12 0.00E±00 5.56E+02 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02, 4.67E+01 

13 0.00E+00 1.75E+03 6.28E-02 6.28E-02 9-65E-01 -2.86E-02 1.07E+02 4.67E+01 

14 0.00E+00 2.00E+03 6.28E-02 6.28E-02 9-65E-01 -2.86E-02 1.07E+02 4.67E+01 

15 0.00E+00 4.00E+03 6.28E-02 6.28E-02 9.65E-01 -2.86E-02 1.07E+02 4.67E+01 

16 0.00E+00 6.00E+03 6.28E-02 6.28E-02 9.71E-01 -2.90E-02 1.06E+02 4.67E+01 

17 2.22E+02 -6.00E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

18 2.22E+02 -5.19E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

19 2.22E+02 -2.00E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

20 2.22E+02 -7.25E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

21 2.22E+02 -5.00E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

22 2.22E+02 -2.47E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

23 2.22E+02 -1.91E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

24 2.22E+02 0.00E+00 6.17E-02 4.65E-02 9.22E-0I -7.06E-02 8.85E+01 4.14E+01 

25 2.22E+02 2.47E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

26 2.22E+02 4.44E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

27 2.22E+02 5.00E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

28 2.22E+02 5.56E+02 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

29 2.22E+02 1.75E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

30 2.22E+02 2.00E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

31 2.22E+02 4.00E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

32 2.22E+02 6.00E+03 6.17E-02 4.65E-02 9.22E-01 -7.06E-02 8.85E+01 4.14E+01 

33 2.50E+02 -6.00E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1A0E+02 4.50E+01 

34 2.50E+02 -5.19E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1 AOE+02 4.50E+01 

35 2.50E+02 -2.00E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1 AOE+02 4.50E+01 

36 2.50E+02 -7.25E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

37 2.50E+02 -5.00E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

38 2.50E+02 -2.47E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

39 2.50E+02 -1.91E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

40 2.50E+02 0.00E+00 6,14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

41 2.50E+02 2.47E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

42 2.50E+02 4.44E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 
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43 2.50E+02 5.00E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

44 2.50E+02 5.56E+02 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

45 2.50E+02 1.75E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

46 2.50E+02 2.00E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

47 2.50E+02 4.00E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

48 2.50E+02 6.00E+03 6.14E-02 4.46E-02 8.44E-01 -1.34E-01 1.00E+02 4.50E+01 

49 2.78E+02 -6.00E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

50 2.78E+02 -5.19E+03 6.1 1 E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

51 2.78E+02 -2.00E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

52 2.78E+02 -7.25E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

53 2.78E+02 -5.00E+02 6.1 1 E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

54 2.78E+02 -2.47E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

55 2.78E+02 -1.91E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

56 2.78E+02 0.00E+00 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

57 2.78E+02 2.47E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

58 2.78E+02 4.44E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

59 2.78E+02 5.00E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

60 2.78E+02 5.56E+02 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

61 2.78E+02 1.75E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

62 2.78E+02 2.00E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

63 2.78E+02 4.00E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

64 2.78E+02 6.00E+03 6.11E-02 4.28E-02 7.19E-01 -2.10E-01 1.26E+02 5.13E+01 

65 6.72E+02 -6.00E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

66 6.72E+02 -5.19E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

67 6.72E+02 -2.00E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

68 6.72E+02 -7.25E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

69 6.72E+02 -5.00E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

70 6.72E+02 -2.47E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

71 6.72E+02 -1.91E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

72 6.72E+02 0.00E+00 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

73 6.72E+02 2.47E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 
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74 6.72E+02 4.44E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

75 6.72E+02 5.00E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

76 6.72E+02 5.56E+02 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

77 6.72E+02 1.75E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-0I 1.73E+02 5.55E+01 

78 6.72E+02 2.00E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

79 6.72E+02 4.00E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

80 6.72E+02 6.00E+03 5.45E-02 2.07E-02 4.10E-01 -2.84E-01 1.73E+02 5.55E+01 

81 1.94E+03 -6.00E+03 2.3 8E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+0 1 

82 1.94E+03 -5.19E+03 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

83 1.94E+03 -2.00E+03 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

84 1.94E+03 -7.25E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

85 1.94E+03 -5.00E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

86 1.94E+03 -2.47E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

87 1.94E+03 -1.91E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

88 1.94E+03 0.00E+00 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.1 1E+01 

89 1.94E+03 2.47E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

90 1.94E+03 4.44E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+0 1 2.11E+01 

91 1.94E+03 5.00E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 494E+01 2.11E+01 

92 1.94E+03 5.56E+02 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

93 1.94E+03 1.75E+03 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 - 2.1IE+01 

94 1.94E+03 2.00E+03 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

95 1.94E+03 4.00E+03 2.38E-02 -1.10E-02 2.92E-01 -3.02E-01 4.94E+01 2.11E+01 

96 1.94E+03 6.00E+03 2.38E-02 -1.10E-02 2.92E-0 1 -3.02E-01 4.94E+0 1 2.11E+01 

97 2.09E+03 -6.00E+03 2.06E-02 -1.20E-02 8.05E-02 -2.67E-01 9.33E+01 4.30E+01 

Contd. till 384 h̀  node .......................................................................................... 

383 1.19E+04 4.00E+03 7.98E-06 2.60E-06 3.30E-04 -1.01E-03 7.90E-0l -9.00E+01 

384 1.19E+04 6.00E+03 7.98E-06 2.60E-06 3.30E-04 -1.01E-03 7.90E-01 -9.00E+01 
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APPENDIX A.3 

BICG Method 

Basic steps of Bi-conjugate gradient method to solve matrix equation Ax=b 

Consider: Ax = b 

Start with: xo = an initial estimate of solution 

Residual: ro  = b — Axo  

Bi-residual: fo  = ro 
Initial search vector: po  = ro  

Bi-search vector: po  = po 

For iterations i = 0, 1, 2 ,3, ......... 

Step length coefficients 

(t ,ri)  
(j3D Api) t 

New estimate: xi+1  = xi  + ai pi  

New residual: ri+1  = ri  — aiApi  

Bi-residual: fi+1  = f"i  — a%A"fii 

Bi-conjugate coefficient: 

(AH Pt, ri+i) 
= (Pi,  Api) 

New search vector: pi +i = ri+1 + f3ipi 

Bi-search vector: pi+z = ti+1 + P*ipi 

Continue until ri+i  = 0 

In above steps, H indicates Hermitian conjugate, the inner product .(x,y) = xny and 
denotes the complex conjugate. 
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