
BASEMENT DELINEATION IN INDO-GANGETIC 
ALLUVIAL PLAINS BASED ON GRAVITY DATA 

A DISSERTATION 
Submitted in partial fulfillment of the 

requirements for the award of the degree 
of 

MASTER OF TECHNOLOGY 
in 

GEOPHYSICAL TECHNOLOGY 

PRADIP KUMAR MAURYA 

DEPARTMENT OF EARTH SCIENCES 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE - 247 667 (INDIA) 
JUNE, 2012 



CANDIDATE'S DECLARATION 

I hereby declare that the work which is being presented in this dissertation, entitled `Basement 

Delineation in Indo-Gangetic Alluvial Plains Based on Gravity Data' in the partial 

fulfillment of the requirement for the award Master of Technology in Geophysical Technology 

submitted in Department of Earth Sciences, Indian Institute of Technology, Roorkee, carried 

out during a period of July 2011 to April 2012 under the supervision of Dr. Rambhatla G. 

Sastry, Professor, Department of the Earth Sciences, Indian Institute of Technology, Roorkee. 

The matter embodied in this dissertation has not been submitted by me for the award of any other 

degree. 

Dated: 15'h  June 2012 
Place: 1FF Roorkee 
	 Pradip Kumar Maurya 

This is to certify that the above statement made by the candidate is correct to the best of my 

knowledge. 

Dated: (+/O(/t_ 
Place: IIT Roorkee 

Dr. Rambhatla G. Sastry 
(Supervisor) 

Professor of Geophysics 
Department of Earth Sciences 

Indian Institute of Technology 
Roorkee-India 

Pa 



Abstract 

Till date, basement .tectonics delineation through gravity in Indo-Gangetic Plains is 

limited to constant density contrast models. Here, an attempt is made to use variable 

density variation with depths for basement delineation in IGP using gravity. 

Based on published Bouguer gravity anomaly data, the basement configuration of a part 

of Indo-Gangetic Plains is deciphered with the help of 3D gravity inversion algorithm. 

This algorithm accounts for variable density contrast variation with depth, and calculate 

the depth of density interface using the residual anomaly data. Basement depth map has 

been derived from the gravity. The basement exhibits a block structure bounded by many 

faults and having several local highs and lows. The proposed Delhi-Haridwar ridge seems 

to be simplistic concept and it extends upto Muzaffamagar. Several depocentres have 

been observed in the study region. A NW-SE trending fault parallel to HFT has also been 

demarcated 

The study indicates that basement faults run parallel to HFT and orthogonal to it thereby 

leading to blocky structure with various depocentres. These basement faults can be linked 

to Himalayan orogeny 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Thanks to natural physical field mapping including gravity, it has enabled us to gather 

information about interior of the earth. 

Gravity anomaly, which we record, is always a composite of contributions from all 

depths within the usual range of exploration interest (Dobrin and Savit, 1988). Our 

objective in interpretation is to gain information about the individual contributing 

sources. This is very difficult task considering the fact that gravity prospecting focus the 

problem of non-uniqueness. Thus the gravity data demands the great deal of intuition, 

both physical and geological, and it is useful if the information from the other 

geophysical sources are available. Without taking into account additional information 

from available geophysical and geological methods, gravity interpretation may be wrong. 

However the gravity method is important not just from exploration point of view, but it 

became an important tool to study geodynamics problems. The Indo-Gangetic plain is a 

case in point. 

1.2 Review of literature 

The Indo-Gangetic plains are regarded as a major unit in Indian sub-continent lying 

between the peninsular India and extra Peninsular India (Fig 1.1). The origin of the 

Himalayas and the alluvium covered plains has been studying in the past to present. 

Edward Suess was first to suggest that the Indo-Gangetic depression is a `fore deep' 



200 0 200 400 Kilometers  
Lj 

Fig.(1.1) Location Of Indo-Gangetic Plains In Map of India 

(source- http://www.iitk.ac.in/gangetic/images/subsurf lindo-gang%28crop%29.jpg) 

formed in front of high crust wave of the Himalaya as they are registered in their 

southward advance by the rigid landmass of the peninsular (Wadia, 1957). On the basis 

of the geodetic observation, Bullard (1915) suggested that the Himalayan folds are the 

results of the under thrusting of the Indian sub-crust below the land mass of the central 

Asia and the Gangetic area has been represented by a rift or fracture that runs several 

thousand feet in the earth sub crust which has been filled up by detrital deposits. 
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Fig (1.2) Basement structure and depths of Indo-gangetic plains as estimated from 

airborne magnetometer survey (after Agocs, 1956) 

Like the structure and the tectonics of the Indo-Gangetic plains has drawn the attention of 

geoscientists, the question regarding the basement configuration (Sengupta, 1977 

Ramchandra Rao, 1973 Agrawal, 1977, Sastry et al., 1971). Earth scientists have been 

exploring about the deep structures in the area. ONGC has carried out a lot of 
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geophysical work in this area (sengupta, 1977 ;Agrawal,1977; Rao,1973). Later the Indo-

Gangetic plain has gained the importance in geodynamics. 

By .considering the regional gravity data, Molnar (1988) has suggested that the Indo-

Gangetic plain is not in isostatic equilibrium. The negative anomaly over the plains is 

caused by the low density sediments as well as the flexture of the Indian plate below the 

plains. 

The general basement configuration of the plains gained priority in the minds of the earth 

scientist when geophysical work first started in the plains. Agocs (1957) interpreted the 

areo- magnetic survey data in terms of certain local highs and lows of the basement. 

Sengupta (1977) has attempted to estimate the geological implications of the local highs 

and lows of the basement. A look at the basement contour map based on the aero-

magnetic data shows that the basement is not structurally uniform north- west to south-

east and it is segmented by basement knobs or faults or both. The regional trend of the 

contours, which is north-west to south-east (Fig 1.2). As the major part of the basin 

follows the trend of Himalayas and is most probably the effect of Himalayan orogeny. 

Over these regional features are impressed a number of local highs and lows all of which 

plunge to the north-east these trends seem to follow those of Archeans in peninsular 

India. Sengupta (1977) associates these north-east plunging ones to post—Delhi 

movement. The basement depth contour map Fig (1.2) shows the plains has segmented 

into four basins which are follows: 

(I) A basin of shallow to medium depth beginning from north west of Moradabad and 

extending upto the border of west Pakistan or beyond 

(II) A deep basin starting from near Moradabad and extending through Bareily, 

Sahajanpur, Hardoi and Lucknow upto longitude 82° east. The basin is separated from the 

first one by a fault just east of Moradabad. 

(III) A deep basin stretching from NE of Faizabad to Motihari and separated from the 

basin described above by a basement high known as Faizabad ridge. 
12 



(1V) A basin of intermediate depth (upto 1500 feet) east of Darbhanga and Extending 

upto 88°E longitude. This basin is separated from the above basin by a NE-SW fault 

passing north or north east of the Patna and the basement high east of Darbhanga. 
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Fig 1.3 Seismic section along Muzaffarnagar-Roorkee (Agrawal, 1977) 

Agrawal (1977) has summarized the results on the basis of Gravity, Magnetic and seismic 

data. On the basis of oldest sediments overlying the basement, the Indo-Gangetic plains 

can be divided into three basins, where Siwaliks, Vindhyans and Gondwanas respectively 

overlie the basements. In the southern part of the Ganga and Purnea basin (where well 

data is available), the Siwaliks overlie the Vindhyans and Gondwana with a major 

unconformity. In the Punjab plains the seismic survey does not show the presence of any 

major fault affecting either the basement or the overlying sediments. The nature and 

attitude of the basement remains same throughout Punjab plains and to the east upto 

Muzaffarnagar- Roorkee The seismic section along Muzaffarnagar —Roorkee shows some 

minor basement faults.(Fig 1.3). Refraction surveys near Saharanpur have recorded a 
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refractor with a boundary velocity of 5.6 km/sec. This refractor seems to corresponds to 

the basement. The seismic section shows that the thickness of sedimentary column 

increases 1.1 from Budhana in the SE to nearly 3.4 km in the north. The increase in 

sedimentary column is corroborated by fig (1.4) 
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Fig (1.4) Basement structure map of Punjab- Rajasthan Plains based on seismic data 

(after Rao and Gupta 1964, courtesy Indian geophysics union) 

The seismic data of Ganga basin suggests that the possibility of its division into two 

independent basins designated as the west Uttar Pradesh (including Uttarakhand) and 

East Uttar Pradesh basin by a subsurface ridge termed as Faizabad ridge. The Monghyr-

Saharsa ridge separates the Ganga basin and Purnea basin. As regards the western margin 

of the Ganga basin and the Purnea basin, there are a lot of debates. According to 
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Agrawal, (Gupta, 1971) while interpreting the residual anomaly suggest the extension of 

Aravalli under the alluvium divides the Ganga and Punjab basins. This is disputed by 

Agrawal (1977) and Ramchandra Rao (1973), who suggest that the basement high known 

as Kalka-Ambala uplift divides the Punjab and Ganga basins. 

Regional geophysical studies in Ganga Plains fore land basin shows a number of highs 

and ridges as well as faults (Sastri et al., 1973; Rao, 1971;Agrawal,1977). From south 

important basement highs are Delhi-Haridwar-Ridge, Faizabad . Ridge, a poorly 

developed Mirzapur- Ghazipur ridge, Monghyr-Saharsa Ridge, while the Raxual, 

Bahriach and Puranpur regions exist as basement highs in northern part of basin These 

basement highs represent more rigid part and have resisted the down-flexing of the 

foreland basin. Therefore sediment thickness is much reduced over these ridges than in 

adjacent areas. For example, thicknes of alluvium near Lucknow is about 2.0 km. At Rai-

Barielly the basement is found at 474 m in one borehole in the Faizabad ridge. 

The important basement faults are; Muradabad fault, Bareilly fault the Lucknow fault, the 

Patna fault and the Malda fault. There is no surface expressions of these faults or any 

control on geomorphic features and seem to be inactive basement faults (Agrawal 1977) 

A number of workers have delineated the basement structures in western part of Uttar 

Pradesh and Uttarakhand (Sastry,et al.,1971;. Rao,1973;Agrawal 1977). In this context the 

Delhi- Haridwar ridge(DHR) has been described as buried extension of the Aravallis 

(tectonic map of india ONGC,1968) which according to others extends deep into the 

Himalaya and affect the tectonics during the India-Asia collision (Valdia,1973,1978; 

Raiverman et al., 1983) However the bouguer anomaly map of the region shows a nose 

like structure . Based on this observation, Rao (1973) has questioned the extension of the 

DHR beyond Shamili. Further the deep well drilled at Mohand (15km south of Dehradun) 

did not touch the crystalline basement even at a depth of 5.26 km. The work of Rao 
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(1973), Sengupta (1977) and Agrawal (1977) suggests that the basement dips gently 

northwards 

Mishra and Luxman (1997) have carried out spectral analyses of the Bouguer gravity 

anomaly of western part of Ganga basin and concluded that the basement exhibits block 

structure with several basement ridges such as Delhi Haridwar, Delhi-Moradabad and 

Agra —Saharanpur, Which are genetically related to basement blocks uplifts. Ftirther they 

suggested east-west tectonics of the Ganga- Basin might be caused by collision of Indian 

and Eurasian palate (Mishra and Laxman, 1977). This collision has caused the 

development of foreland basin in front of the rising Himalayan belt, where pre- Tertiary 

Lesser Himalayan sequences override the evolving basin along the Main Boundary 

Thrust (MBT). In turn, the dominant Siwalik Group sequences within the basin override 

the Indo-Gangetic Plains along the Himalayan Frontal Thrust (HFT) as results of the 

Himalayans tectonics. 

The geophysical investigation in Indo-Gangetic alluvium plains was carried out by Sastry 

et.al., (1999). Based on the gravity and magnetic observation they suggested that the 

basement exhibits a block structure bounded by many faults, several highs and lows in 

the study regions. According to them widely-held Delhi- Haridwar ridge is too simplistic 

model for the basement structure. The maximum northern limit of extension up to 

Muzaffarnagar towards south. Further they concluded that the HFT related tectonics has 

affected the basement much before the surface expression of the HFT at the geomorphic 

interface between the IGP and the Sub-Himalayan foothills. With the help of two sets of 

parallel regional gravity and magnetic profiles they had shown the presence of two major 

additional faults in the HFT region. Lithological composition of the Pre-Tertairy 

basement around HFT could be inferred based on the correlation between the pair of 

magnetic anomalies (Fig 1.5) 

However, earlier workers have not considered the depth-wise variation of density as 

density contrasts is constant in their analysis 
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Fig 1.5 Inferred location of fault zones from two sets of regional gravity and magnetic 

profiles on the geological map (Sastry et al., 1999) 

17 



1.3 Objectives of the present work 

In view of the above, the main objective of present thesis is aimed at delineation of 

basement configuration of Indo-Gangetic Plains from published Gravity data. 

This involves the generation of 3D Gravity inversion algorithm, where density contrast is 

varying continuously with depth and input residual gravity data with possible regional — 

residual separation. 

1.4 Plan of the Thesis work 

Chapter-1 deals with introduction 

Chapter-2 discuss the forward modeling for 2D, 2.5D and 3D body using variable density 

contrast 

Chapter-3 deals with the 3D gravity inversion algorithm 

Chapter-4 gives a brief account for geology and related tectonics of the Indo-Gangetic 

plains 

Chapter-5 discusses the processing of gravity data 

Chapter-6 outlines of derived results and discussion 

Chapter-7 provides the summary and conclusions 

18 



CHAPTER 2 

FORWARD GRAVITY MODELING 

2.1 General 

Forward modeling of a geophysical geometry involve the computation of the theoretical 

geophysical response of the model. Problems of Gravity interpretation of a sedimentary 

basin could be overcome by assigning a mathematical geometry to the anomaly causing 

body with a known density contrast. Most of the available algorithms that employ 

mathematical geometries, assume that the density of sedimentary rocks above the 

basement interface is uniform, and therefore, a constant density contrast is generally 

taken in the modeling schemes (Morgan and Grant, 1963; Bhattacharya and Navolio, 

1975). However, field studies show that the density of sedimentary rocks increases 

progressively with depth therefore, it creates different density contrast at different depth 

i.e. density contrast varying with depth. So inclusion of density function that depends on 

depth can improve the results in comparison with constant density approach. As already 

discussed in the introduction part various density function were proposed in literature by 

several authors. In which parabolic density function is suited best in recent years. 

Here is outlined forward gravity modeling of 2D, 2.5D and 3D body with variable 

density function. Parabolic density function given by Chakravarthi and Rao (1993), one 

can have, 

Ap(z) = AAo  
(APo — (2.1) 

where Ap(z) is the density contrast of a section of a sedimentary column at any depth z, 

Apo  is the density contrast observed at the ground surface i.e., at z= 0 and a is a constant, 

which needs to be find out from the known density data of the study region. 
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2.2 2D Forward Gravity modeling 

The analytical gravity expression for two-dimensional arbitrary shaped body (shown in 

Fig 2.1) with PDC (parabolic density contrast) can be given as (Visweswara Rao et al., 

1994) 

N 

Ag(0) = L dg(k) 
k=1 	 (2.2) 

Where Ag(0) is the gravity value at any point p(0) on principle profile section and dg(k) 

is the gravity contribution of the kth side of the polygon given by 

 dg(k) = 2Gudpn 	— 	
B(T2 — Ti) ' +l 

s2 	o l 	2 !a + 

C sin i  in  ,S2rj  
A 	91rk+1 
	

(2.3) 

Here 

Si =APO 

S2  = Apo — 

i 

sin i = ( z +1 — ' :k /R, 

cos i = (xk+l — 

C = VI, Sill l — Zk COS 1, 

rA = C2  f/' ± 2Ap0c!C cos i ± Apo, 

OR 



B = --2C + cos i — 2©p0, 

Ti = rct n((ik: + C cos 1)/C sin i), 

T2 = arctan((zk;+i ± C. cos 1)/C sin i.) 

and 

1k+1 — ( +1 ± 2k+i) ., 

(PI _ --17 /2 — O~.s 

(1)' +i =11/2 — 4k+i 

G„ is the universal gravitational constant Here Ok+l and Ok the angles made at the point of 

calculation by the radial vector rk and rk+l, of the vertices of the kt side of the polygon 

with the principal profile. 

Z 

P(c 

Fig. I. Two-dimensional polygonal cross :section. 

Fig 2.1 Two-dimensional polygon cross-section (Chakravarthi et al., 2001) 

21 



It can be noted that if we want to calculate gravity based on constant density then we 

have to put a=0 in eq.(1)so that Ap(z) becomes Ap(0) and Using eq. (2.2) and (2.3) 

we can calculate gravity response of a two-dimensional polygon with uniform density. To 

avoid the singularity eq. (2.3) can be written as 

dg(k) -- 2GiiAPo 4~+i (zx+ 1 F' 1 + CF2) 
! 	~s2 

ok(zk;F1 ± CF2,) + C'` sin i In (Sb+ ) }  
where 
F1 = Apo + ctC COS i, 

%2 = Apo cos i + a.0 	
(2.4) 

In general, the gravity contribution dgm(k) of the kth side of the polygon at any point xm 

on the principal profile can be calculated by substituting xk-xm and xk+l-xm respectively, 

in eq (4), eq.(2.2) becomes as 

V 

Ag(x,1) = I d , ~(k ). 

(2.5) 

And now by assigning the coordinates and using the eq.(2.4) and eq.(2.5) gravity 

anomaly of a sedimentary basin can be calculated. This is how the forward modeling is 

done using the variable density contrast. 

2.3 2.5D Forward modeling 

The geometry of 2.5D vertical prism is shown in Fig 2.2 considering this Figure let 

vertical axis (z-axis) be perpendicular to the plane of the paper and positive inward with 
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d, and d2 as depths to top and bottom of the prism, respectively. Let the x-axis be the 

transverse to the strike of the prism Let 2S and 2b be the strike length along the y-axis 

and width along the x-axis, respectively Further, let the profile, RR *, be transverse to the 

strike of the model and bisect it. Let us assume R (0,0 ) to be the origin which is placed 

vertically above the Centre of the prism, then the gravity anomaly at any point, P (xk, 0), 

on the profile can be expressed as 

g (xk=, O) = 	 f f 
w=d, v=—S u=—b 

G Ap (w)w du dv d-t 

[(u — xk )" + v2 + 
(2.6) 

where G is universal gravity constant and Ap(w) is the density contrast given by a 

parabolic density function at a given depth same as eq. (2.1). Now using equation 

(2.1) and (2.6) we can obtain expression of gravity anomaly which can be given as 

cl(x , 4) = —2GdpQ cc xIS
( 

1 	1 	is 
-~- i3) lri t6 to 7 2t2 

(R + xk) 
In (R — x) 

xk 
+ 2t3 

(R " S) In (R — S) 

+ Ap/1 
a t, 

SR 1 	_I XkR 
+ — tan — W Xk t3 	WS 

I 	- i Sxk xk+ 

fX t5 	1N R x -b k 	(f~ 

(2.7) 

R = (x +S2 ±w- ), 
2  7 ti = i; +S-, 

t2 = S'-a'` + ©po, 
is = x '" _+ Ap, 
t4 = Jt i x2 + Apa, 

is=Apo — aiv, 

and 
16 = —2(aR t4 + tt a' + Apo a w). 
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x' 

Fig 2.2 Geometry of a 2.5D vertical prism (Chakravarthi et al.,2002) 

Using eq. (2.7) we can compute the gravity anomaly along the profile RR when it is 

running through origin. Gravity anomaly at any point having offset distance ;s, from the 

origin can be obtained by replacing S by S-s and S+s and then averaging it. We can use 

the eq.(2.7) to compute gravity anomaly when density contrast is constant . In this case 

we need to put a=0 in density function. In such a case eq. (2.7) will reduce to 

- 	~2 

~~ ( 'k , 0) = 2. GApQ z tan
1 
	+ 	

x~ 

 1n ( 	— 1n ( 	 . 
xk-b i 

(2.8) 

2.4 3D Forward modeling 
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In this context we assume the sedimentary load is approximated by juxtaposed right 

rectangular prism. The geometry is shown in the Fig (2.3). The analytical expression of 

the sedimentary basin at any grid node (i, j) is of a rectangular mesh is given as 

(Chakravarthi et al. 2002) 

NOY-1 NOY-1 
gthasin(4j, 0) = 	gpRJsMk, 1, 

(2.9) 

Where NOX and NOY are the no. of grid nodes along X and Y axis respectively , and 

gPRISM is the gravity anomaly due to single prism, which can be derived using parabolic 

density function as described below, 

 

MESH 

13(0.0,0) is the origin 

P(x,y,0) is the point of calculation 

T is half. thickness of the block 

Y is half-strike length of the block 

zt  depth to the top of the block 

z, depth to the bottom of the block PA7 

(A) (B) 

(Chakravarthi et. al.,2002) 

Fig. 2.3(A) Geometry of a rectangular/square mesh with top view of a 3-D building block 

(B) Geometry of 3-D building block 

Let us suppose, 2T (width of the prism), 2Y (strike length of the prism), Z1  (1epth  to the 

top of the prism), Z2  (depth to the bottom of the prism) are the dimensions of a 3-D 

vertical prism as shown in Fig. 2.3. Let the density contrast along the prism decreases 



vertically according to Eq. (2.1) Now Placing the origin B(0,0,0) vertically above the 

centre of the prism, the gravity anomaly at a point P(x,0,0) on the XY plane can be 

obtained by integrating the gravity effect of a 3-D element volume x1 y' z1 throughout the 

volume of the prism and can be expressed as 

9FR1SM (, 0,0) 
L 	1F 	} 	zj c , dyl dil 

. fi 	-7' . - y [(ti — 'i1' ±j' -1 + z 	...................'......(2.10) 

Substituting Eq. (1) in (2.10) we can get, 

qi r.51 (. 0, 0) = G Ap p 
f Z2 

, fT,_Y(Apo —ttter) 
z1 dx, dyl dzj 

:+T
=2GApYf [

fz,2~  :x- T ( p0 "' 1)~ 

z1 d Idzj 

Now integrating with respect to x between limits x-T and x+T, we have 

I 

(AP() — 

x tari 
z f (x + T)2 + Y2 + 22 

°(i __ T) 
—tan. 1 	 th. a z/. (-, — 2')2 ± Y' + z 

t 	x,0,0) =2G©3 2 
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After full integration we obtain 

gpRl-,Vm (x, 0, 0) 

aY(- + T)(2Ap 0, o + 2IY2 + (x + T)21)= 2GL~J~0 
L1(Y2o!2 + Ap2 )(Ap2 + l.2lx + 7 12 ) 

x In L3(ar4Ll + Lt — ApO L4) 
L4(arl L1 +Ll — ApOL3) 

Y(x — T)(2ApQ + 2I Y2 + (y — T)2I) 
L (Y c 2 + Apo)(Ap2 + x2lx — Tl2) 

'1 L3(0.T3L2 + L _ Ap0L4) - 

	

Apo 

L~4(at•2L2 ± L'_-,: — Ap0L3) 	a(Apo + Y2 r?) 

Itan-1 	Y 4 	— tan-1 	Y 1 	+ 	, 
Apo 

t jx + 7 I 	 Z1 jx + TI 	a.(Ap2 + Y o; ) 

—t 	Yr~3 	_1 	Yr 	 Apo I tan 	 —Lan 	 -  
L2J —TI 	 ziIx—TI 	.o(Ap2+Ix+TI 	2)' 

tan -1 Jx+Tjr4 —tan —n 1 Ix+TI' i 
	— 	Apo 

Y 	 L, Y 	joe(Apo +I x-- TI'd22) 

-1 I — 71"3 — tan- 	— Tjr7 	 1' 

Itan 
	 iln 

y 	 1 ' 	+ 2(Ap + Y22) 

In 

 

(Ix +7I —l`4) (lx +TI +r",) _ 	Y 
(Ix + T'I + r4) (lx + TI — r'i) 	2(Ap2 + Y2a2) 

In 
(Ix — TI — r3) (OX — TI + r2) + 	~- — T 
(Ix — TI + 1'3) (Ix — TI — r2) 	2(Ap2 + Ix — T1-a2) 

In (Y-'"3)(Y+i'2) F 	x+T 
(Y + 1

.3) (1'— 12) 	2(Apfl + 1x + Tl2 pr2) 

In 
(Y — r4)(V+r.i) 
(V+i4)(V—r1) 
1 	1 	-~YIx+TI 	-  i YIx — I 

tare 	- tan
+ J! Lupo — DMZ? 	Z7l'4 	 Z21'3 
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1 	1 	Ylx + T) 	-1 YIx — TI — 	(tan-' — tan 
a. L o0 — o., I 	zlr-1 	 zlr) 

............(2.11) 

Here the expression for the terms used in this main expressions are given below 

L 1 = {[(x +- T)' + Y2]17.—" + Ap2}1'2, 

. L2 -- {[(x — )2 -4 Y 2 ] o2 + 

L3. = Apo — 

L4 = Apo — a~ 

and 

= [(x — T)2 + V' ± ]1/'-, 

. 	~ 	~? 1.,12 
13 	[(mil — )`

'a 
+ Y~ -} `  

r4 = [(x + )2 
	+ ? 2 

G is universal gravitational constant 

Eq. (2.11) is used to compute the theoretical gravity response of one prism and Eq. (2.10) 

is used to compute total gravity response of the sedimentary basin at point of calculation. 

Eq. (2.10) is valid for the profile passing through origin . The gravity anomaly at any 

point offset by a distance y from the origin of the Cartesian co-ordinate system is 

obtained by averaging the gravity contributions of the prism calculated by putting Y-y 

and Y+y for - Y In Eq. (2.11) . 
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CHAPTER 3 

3D GRAVITY INVERSION ALGORITHM 

3.1 General 

In gravity prospecting, the study related to regional and hydrocarbon exploration involves 

the depth calculation of density interfaces from residual gravity fields that are generally 

attributed to basement relief. Thus, calculating basement depths where the density 

contrast varies significantly with depth is a problem. Negative gravity anomalies are 

generally observed over sedimentary basins having a large thickness of low density 

rocks. It is well known, however, that the interpretation of gravity anomalies is non 

unique in the sense that the gravity anomalies on the plane of observation can be 

explained by a variety of density distributions. One way to tackle the ambiguity is to 

assign an approximate mathematical geometry to the anomalous mass with a known 

density and then to invert the gravity anomalies for the parameters of the model 

(Chakravarthi and Sundararajan, 2004 ). Many continental sedimentary basins have 

limited strike lengths and finite widths; therefore, approximations of such sedimentary 

basins by 3D geometries are often justified in the quantitative interpretation of gravity 

anomalies. Talwani and Ewing (1960), Gotze and Lahmeyer (1988), Holstein and 

Ketteridge (1996), and Singh and Gupta sarma (2001) derive expressions for gravity 

anomalies attributable to 3D polyhedral bodies using constant density. However, the 

practical utility of these expressions in analyzing gravity anomalies from sedimentary 

basins is very limited because (1) the density of sedimentary rocks varies with depth (Li, 

2001), Nagihara and Hall(2001), Adriasyah and McMechan( 2002), Hinze( 2003), 

Garcia-Ab-deslem (2005) and (2) the depth to the floor of a sedimentary basin is not 

known a prior information. In general, the density of sedimentary rocks in-creases more 

rapidly at shallower depths than at deeper depths; hence, variable density functions in 

modeling and inversion often improve results. 
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Inversion of gravity anomalies due to a sedimentary basin involves a mathematical 

calculation in which we try to fit the calculated gravity anomalies with the observed one 

by adjusting the parameters of the model in an iterative manner using the principle of 

least square. The present algorithm is based on Marquardt algorithm which estimates the 

depth of density interface in the sedimentary basin. The forward modeling that is used by 

the present, algorithm has been already described in chapter 3 (section 3.3). 

Marquardt Inversion algorithm 

The present algorithm has been illustrated by Chakravarthi and Sundararajan !(2006), the 

process of inversion begins by calculating initial depths of the density interface at all 

inner grid nodes of a rectangular mesh as shown in the following picture 

node 

Fig 3.1 Square mesh grid 

It is assumed that the observed gravity anomaly It is assumed that the observed gravity 

anomaly at each grid node (m , n) is being generated by a horizontal infinite slab below 

the node in which the density contrast varies parabolically with -depth (Chakravarthi et 
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al., 2002 ). The initial depth to the density interface is then calculated based on the 

expression given by Chakravarthi et al. (2002) as 

x,(1]2, r].) _ 
41. 89iX p(} + agobs(m, n) 

gahs(in, n) • .APO 

(3.1) 

Where m = 2,3........NX-1 and n = 2,3 ......NY-1. Here NX and NY are the no. of grid 

node along X-axis and Y-axis respectively, gobs  is our recorded gravity anomaly. 

Now the The theoretical gravity anomaly of the density interface g mod(m,  n) at any point 

(xR,, yr,) of a grid node(m ,n) is then calculated using the initial depths given by the Eq. 

4.1 as 

NY-I NX- I 

k2 C=2 	 (3.2) 

Where PRISM  is the gravity response of a single prism. In general, the modeled gravity 

anomaly g mod(m ,n) in equation 3.2 deviates from the observed anomaly gobs  (m , n) 

because equation 3.1 calculate only approximate depths. The amount of difference 

between modeled and observed gravity anomalies at any grid node can be expressed in 

the following manner 

GgDbs(111,H) —  

NY-1 NX-1 
gPricm  

dz(,, - 
,z=2 :n=2 	t Z (3.3) 

Here dz(n,,n)  is the improvement in the depth estimates (our model parameter) 
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An equation similar to equation 3.3 is constructed for each observation, and (NX — 2)( 

NY — 2) normal equations are framed and solved for the increments to(NX — 2)( NY — 2) 

prisms by minimizing the quantum of misfit function J, defined by 

NY NX 

Lev 	Ig.bs(,ra n) — 9 ncat (ni,n)12 
ga l zea l 

Now applying the Marquardt's algorithm the system of normal eq. is given by 

IVY NX tN 
(~+. dP 

	

rt=.1rti ; ,1 dP 	oP 

NY NX 

Lgobs(rla,n) — I od nxj 	., s 
~a 1 anal 	 d Pi, 

j{ _ 	. 

(3.4) 

Where N is the no. of parameters to be solved and dl's are improvements to the depth 

estimates . ?, is the damping factor S is given by the following manner 

I for j' _ k 
0 for j` 	k 

The partial derivative required in the above Eq. (3.4) are given by the following 

analytical expressions that is derived by differentiating the formula of gravity anomaly of 

a prism and can be written as 	 . 
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= 2GApI 
Ya2 + 	+ a2T1 ) 

iJZ 	I3L 	L, T6 

< ( T4r1  + L4(L1 z + Ap0r4 ) 
L4r4T4  

(x -T)(2p + cE2T,) 
L.T7  

> (T
sr + L4(L7z + . PoT3) 

L4r3T5 

T1(x+7) 
+ a73  [r4(z(x : T)2  + Y2r) 

T2(x - T) 
+ .Y2r) 

ApY 	T, (x + T) 
+ 	L T6r4z2Y2 + (x + 7)2r) 

- T7r3(z2Y2 + (x - T)2r) 

— yz[ 	(x +  7,) - 	(r — T) 	

] T3((x-i-T)—) r4((x—T)—r) 

- Y7 _(x - T) 	(x•+ 7)  
- r1T7(Y2  - i) i 4T(Y2  - r) 

1 	1 ( ( x - 	+ r) 
a(Ap0 - crz) L 1'I\ 

r3(z2r + Y2(v - 7)2) 
( X  - 	+ 	+ r) 

) r4(zr + Y(x + 7)) 

f 1 Y(x+T)  
± 	 tan 	- tan 

- az) \ 	Zr4 	 Zr3  

(3.5) 
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This approach involves the calculation of the rate of change of the gravity anomaly with 

respect to each parameter which is to solved. Initially the value of a, is set to an arbitrary 

value and then eq. (3.4) is solved for increment or decrement of the parameters. 

Subsequently increment or decrements in the parameters are added to get new parameters 

and new misfit function is calculated. If the new misfit function is greater than the 

previous one the value of damping factor is set to doubled and if it is less than it is 

decreased by ?J2 New misfit function will replace previous one . In this way process will 

repeat to desired iterations . The algorithm automatically terminates in case i) the 

specified number of iterations completed or ii) the misfit function falls below a 

predefmed allowable error or iii) the damping factor assumes an unusually large value. 
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CHAPTER 4 

STUDY REGION 

4.1 General 

Our study region comprises the part of Indo-Gangetic plains in western up and 

Uttarakhand state. Major places that comprises the study region are Muzaffamagar, 

Saharanpur, Haridwar area. Published Bouguer gravity map(After rao, 1973) of this area 

has been taken for the study. In Fig 4.1, the study region is shown with marked rectangle 

ABCD on a geological map. 

4.2 Geology of the area 

The Indo-Gangetic alluvial plains are located to the south of Sub-Himalaya and extends 

upto the Aravalli in the west, Satpura and Vindhyan ranges in the south. This basin was 

considered to be a foredeep by Suess. 

The origin of Indo-Gangetic plains has been a subject of interest since the early 1900s 

when Burrard(1915) published a paper on the origin of the Indo-gangetic trough or 

Himalaya foredeep. The Indo-Gangetic Plain is divided into two drainage basins by the 

Delhi Ridge; the western part consists of the Punjab Plain and the Haryana Plain, and the 

eastern part consists of the Ganges—Bramaputra drainage systems. This divide; is only 300 

metres above sea level, causing the perception that the Indo-Gangetic Plain appears to be 

continuous between the two drainage basins. 

The crystalline rocks underlying the basin represents the extension of structural elements 

of the Indian peninsular shield. Over a large part of the Ganga basin the continental 

Neogene to Quaternary sediments belonging to the Siwalik formation rest directly over a 

regional unconformity over the underlying, gently folded Vindhyan sequence. However, 
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underneath the Punjab plains the Siwalik rest directly over the crystalline basement 

(Agrawal, 1977: Sastry,1976) 

The entire area is covered with a thick blanket of alluvium. The Siwalik Group of rocks 

range in age from middle Miocene to E. Pleistocene. The rocks are predominantly of 

continental origin, characterized by a series of orange- coloured clays, coarse grain 

sandstone and conglomerates, which has been subdivided into the the Lower, middle and 

upper Siwaliks. 

43 Tectonics of the Indo-Gangetic plains 

The Himalayan mountain chain is a product of continent- continent collision between 

Indian and Asian plates in which Indian plate is under thrusting the Asian plate. One of 

the landscape formed in this context is the Indo-Gangetic Plain the foreland basin system 

which is an actively subsiding peripheral foreland basin system. 

Indo-Gangetic plain foreland basin (Fig 4.1) is already in mature stage, where the 

orogenward part of the basin has been uplifted and moved as thrust sheets to produce the 

Siwalik hills, making a few km to many tens of km wide belt abutting against fluvial 

plain. Thus Siwalik sediment represents deposits of earlier stages of Himalayan foreland 

basin which has been deformed The present-day Indo-Gangetic plain is an area of active 

sedimentation subjected to compressional stress. 
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Fig 4.2 Indo-gangetic basin system 1- Punjab- Rajasthan plains 2-Ganga plains 3-Bengal 

plains 4- Bramhaputra plains (Singh ,1999) 

4.4 Basement controls in the Indo-Gangetic plains 

The Indian crust beneath the Indo-Gangetic Plains are very old, cold rigid and have many 

inhomogeneity in the form of basement highs and lows At the same time foreland basin is 

located at a considerable distance from the Indus suture. Hence despite large scale thrust 

fold loading in the Himalayas the down flexing of the crust in the Ganga plain is 

insufficient. The basin fill show only a moderate thickness. As the sediment input in the 

basement is high, the basin always remained overfilled above see level. Regional 

geophysical studies shows a number of highs and ridges as well as faults (Sastri et al., 

1973) From south ,important basement highs are Delhi-Haridwar-Ridge, Faizabad Ridge, 

a poorly developed Mirzapur-Ghazipur ridge, Monghyr-Saharsa Ridge, while the Raxual, 

Bahriach and Puranpur regions exist as basement highs in northern part of basin (Fig 2.3) 

These basement highs represent more rigid part and have resisted the down-flexing of the 
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foreland basin The important basement faults are; Muradabad faults, Bareilly faults the 

Lucknow faults, the Patna faults and the malda faults. 

	

6,151" 1 k: IV'I' I)LPT} I CON`OU R7tNOAPOLF INI:),C)fi,ANG1'l'l ttilN
100' T09KM 	 .iMH BOUNDARY IAUlT 

It U4I.UI II 
. - 	r 	~• 	a 	a{ 	 —v— 	 ' FAULT 

/ 
	 -t -1— POSTULATEO fALn.T  

_ 	s ' 	3 	\O ~; 	DI•IfRaUI)N 	 --=— _, '$OUlNERN ACTUN(MRY OF BRON1Al FQlD I(?t#E, 

+ 	 \ 	1 	 11 	' 	CONTOURS (IN HAIRS) 

-1 '' t 	 ti y 	NA INI IAI. 	- 	 ll 	"WILLS ORIIUO  

	

' X--v 	MR~N 	~ .4F SURFACI MASSIFS 

14!lJtt "`~' 	 ~ 	= 	BOUT 	SUBSURFACE MASSIFS1UPLIFTS 

/yY.  

` ~ ~ ~~''~~ "~ .~~~ ~Y •~f~~~c,K~~~ ,. w ``, ~.Irc~~atic—. 	,~ ~ 	%~ ~ ~j ' `t~ I~,t~ ~w--~~ 	! i..,...,...: 	:k~#., c̀̀ ,~..:, 	~... 	v::i?' 	 '. `....~'..~- 	..ts 	w".\ •.. 	
~""°
- .V..,,'.

-.=1.~`/rr t`~•h{t=s;+r`••-ttdtlik. 

# 	AItAIRII.I 	 r~THr  
`i, 	JQ' 	3r^.- a~, ,,-rte 	 '`A~.~v vY 	a 	 `Fb.~r 	It 	 r 	Ent GaCM=R P 	 ,g r BUNDELKHAN~~ 	 I 

~~

' 

 

Fig 4.3 Basement map of Ganga Plain showing major basement highs, and depth 

contours (Simplified after Karunakaran and Ranga Rao) 
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CHAPTER 5 

GRAVITY DATA ANALYSIS 

5.1 Gravity data source 

For the present work gravity data is taken from a published Bouguer anomaly map of 

Muzaffarnagar, Saharanpur, Haridwar Area, western U.P (After Rao, 1973). The bouguer 

anomaly map is shown in Fig (5.1). Here the contour interval is 2mgals and the map scale 

is lcm = 10 km. 

5.2 Gravity data processing 

Since the gravity anomaly value is needed at every grid nodes i.e the gravity value at 

centre of assumed prism, gravity map is discretize to get the gravity anomaly at each 

grid nodes taking the grid spacing interval = lkm. The process of digitizing was done 

manually. The contour map of the digitized data was obtained using the Matlab program 

and is shown in the Fig (5.2). Further data was extrapolated in required area using Matlab 

program using spline interpolation model. In Fig.5.2 the extrapolated area has been 

marked by boundary line around Mohand to Dehradun region and in Barout to south of 

Sardhana region 

Since our algorithm takes the residual value separated from the regional value as input 

data, we need to further process the data as regional —residual separation from the 

observed gravity anomaly. 

W1, 



Fig 5.1 Bouguer anomaly map of Muzaffarnagar, Saharanpur, Haridwar Area, western 

U.P & Uttarakhand (After Rao, 1973) 
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Fig 5.2 Bouguer anomaly map after discretizing the published map with extra-polated 

regions marked 
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Overview of Regional — Residual Separation method 

The gravity field is produced generally by the superposition of overlapping gravitational 

effects of many sources, whose individual anomalies may be difficult to isolate. The 

terms "residual" and "regional" commonly are used to differentiate between anomalies 

from local, near surface masses and those arising from larger and generally deeper 

features, respectively. In many cases, the choice of regional depends on the residual 

anomalies targeted for interpretation. There are many methods to separate the regional 

field from the gravity field. According to Nettleton (1976), regional-residual techniques 

in the analysis of potential field data may be grouped into graphical, spectral, and 

polynomial fitting method. 

The graphical method is slow and cannot be automated. The only constraint imposed on 

the regional field, besides the interpreter's intuition, is the smoothness. As a result, there 

will be several solutions to the separation problem, and the inherent subjectivity may be 

either an advantage or a drawback depending on the interpreter's experience and ability 

to incorporate relevant geologic information about the regional 

Spectral methods on the other hand, provide more quantitative means to characterize the 

smoothness of a regional field, namely, by its predominantly low-frequency spectral 

content. They are faster and less subjective than the graphical method because the 

separation is performed by filtering the total field with a suitable low-pass filter. In 

applying spectral methods, regional fields may be assumed to be produced either by wide 

or deep-seated sources. However, due to the overlap of the regional and residual spectra, 

a complete separation is not possible and two kinds of errors, signal distortion and noise 

transmission, are always present. Signal distortion is the elimination of part of the signal 

spectral content by a filtering operation. Noise transmission is the incomplete removal of 

the noise by a filtering procedure. The total sum of these two errors can be minimized by 

using a Wiener filter, as shown by Jacobsen (1987). However, any spectral method which 
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assigns null spectral content to the zero frequency in the residual (and this is the rule) will 

produce residuals contaminated by pseudo anomalies (Ulrych, 1968). These pseudo 

anomalies have the opposite sign from the real residual anomaly. They arise because 

assigning a null spectral content to the residual zero frequency is equivalent to obtaining 

a residual with a null spatial mean. In other words, there must always be residual 

anomalies of both signs even though the real residual anomaly may be of just one sign. 

Polynomial fitting methods assume that a polynomial surface adequately models the 

regional field whose smoothness is controlled by the polynomial order (Agocs, 1951; 

Simpson, 1954), Here the observed data are used to compute, usually by least squares, 

mathematically describe the surface giving the closest fit to the gravity anomaly that can 

be obtained within a specified degree of details. This surface is considered to be regional 

gravity field and is separated from the observed one to get residual anomaly 

In the present work the regional —residual separation has been done using 

I) Fitting the regional field as a first order polynomial, i.e, considering the regional field 

is being produced by planner surface (Fig 5.3) 

II) Fitting the regional field as a second order polynomial, i.e., considering the regional 

fields being produced by second order curved surface (Fig 5.4) 

A computer program has been designed to compute the residual value using above two 

methods and is included in Annexture-I. 
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Fig 5.3 Regional gravity map (derived using First order Polynomial) 
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5.3 Application of variable density 3D gravity inversion algorithm to IGP Data 

To process the prepared residual anomaly data a rectangular mesh grid of dimension 

108x164 sq. km is taken. So total 17712 grid nodes available for the processing of data. 

The grid spacing along x-axis and y-axis was taken 1 km for both. The value of constant 

of density function a was derived by fitting the known depth verses density data. It was 

carried out to be 0 .1 lgm/cc/km. Surface density contrast was taken to be -0.60gm/cc. 

The adopted density model is shown in Fig 5.7. The value of damping factor was set 

initially 0.5, and the depth estimates improved iteratively according to algorithm. The 

modeled gravity data was again plotted in form of contour lines (shown in Fig 5.6) and 

the basement depth contour map has been also prepared for the interpretation part of the 

work 

Computer program 

A inversion code based on Matlab, has been given in the Appendix-1 Using this code one 

can obtain the depth contour map by providing necessary parameters. 
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CHAPTER -6 

RESULTS AND DISCUSSIONS 

6.1 Nature of residuals 

The Bouguer anomaly map has been digitized and after digitization it has been 

reproduced using Matlab software and shown in Fig 5.2. The residual anomaly map has 

been produced using first order as well as second order polynomials and shown in Fig 5.5 

and Fig 5.6 respectively. In Fig 5.6 one can see the positive centers in residual anomaly 

map. These positive centers in residual anomaly map seem to align themselves in an 

approximately NE-SW trend, suggesting a ridge-like feature. This kind of observation 

had led the previous authors to coin a term Delhi-Haridwar ridge. However a detailed 

interpretation could have revealed the complex nature of basement. 

6.2 Basement Topography 

To understand the nature of basement in the proposed area, the depth values at each grid 

node has been determined by the 3D inversion algorithm and a depth contour map (Fig 

6.1) has been prepared using the Matlab Software. The depth contour map suggest that 

the basement is very complex 

In the following some salient features of basement depth contour map are outlined: 

(1) It can be seen clearly in the depth contour map that basement is having very complex 

nature, which is ridden with many faults, local highs and lows This makes basement 

exhibiting the block like structures bounded by the various faults. 
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(2) Areas which are bounded by the faults have become the center of deposition of 

sediments. The depocentres are in the region around Gangoh(GNIT) and Nanuta (NNT) , 

area around Deoband(DBN) and Muzaffarnagar (MFN) 

(3) A large scale faults in the SW of Muzaffarnagar (MFN) and passing near to Budhana 

(BDH) follow the trend of HFT (Himalayan Frontal Thrust). This NW-SE trending fault 

at pre-tertiary basement level seems to cut orthogonally the nature across the supposed 

strike of Delhi- Haridwar Ridge. 

(4) Transverse faults orthogonal to HFT are in the region around Deoband, Saharanpur 

and Behat. 

(5) Presence of local highs and valleys make the basement look like Host and Graben like 

structures trend around Gangoh, Nanuta, Deoband and Muzaffarnagar area. 

6.3 Limits and Nature of Delhi-Haridwar Ridge 

To understand the nature of Deihi-Haridwar Ridge a profile AA' has been taken. This 

profile passes through Baraut(BRT), Budhna(BDH), Muzaffarnagar(MZN,-

Roorkee(RKE)-Mohand(MHD). Along this profile basement depth has been worked out 

and shown in Fig 6.2 with corresponding residual gravity anomaly value. A first look to 

residual anomaly map (Fig 5.4), the positive centers of residual anomaly seem to align 

themselves in an approximately NE-SW trend. This observation suggests a ridge like 

structures that was named in the literature as Delhi- Haridwar ridge. A close investigation 

has revealed the complex nature of the basement regarding this ridge. 

(1) DHR seems to extend clearly upto Muzaffarnagar (MFN) in NE-SW direction (Sastry 

et al.,). Beyond that it can be seen along the profile that there is sudden change in 

basement depth. It can suggest that the tectonic forces came into play ' and it has 

influenced the nature of Pre-tertiary basement. 
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(2) It has been observed that SW of Deoband and Muzaffarnagar area, a major regional 

NW-SE trending fault at pre tertiary basement level is present which cut orthogonally 

across the supposed strike of DHR. This mean that DHR is best extended upto Deoband 

in NW-SE direction and the HFT related tectonics have been prevalent in Pre- tertiary 

basement much before its surface expression as the HFT 

(3) Between Muzaffarnagar and Deoband the DHR turns gradually towards NW 

indicating a dextral oblique-slip component along the postulated fault. The similar 

interpretation was made in past by Sastry et.al (1999), which supports the results obtained 

here 

(4) Interpreting the profile AA' suggests the general basement dipping trends in the NE-

SW direction. This can also be observed by investigating the regional gravity map of first 

order polynomial. The negative anomaly is increasing in the NE-SW direction supporting 

the fact that basement has a general dipping trends along profile AA' 

(5) Apart from the general trend of the DHR there are local upliftment and depressions in 

the ridge. 

(6) In fig 6.2, along the profile AA' the obtained basement depth has been compared with 

the published one by Verma (1991). Red lines show the results obtained by the present 

work and green line shows basement depth given by Verma (1991). It is seen that 

basement topography along this profile is nearly similar in both cases. 

(7) In Mohand area the estimated depth along this profile is around 4.4 km which is 

supported by the available depth (4.2 km) information from Mohand Deep well (Verma, 

1991) 

(8) Another geological control along profile BB' was provided by the seismic section 

near Muzaffarnagar area (Agrawal, 1977). The comparison of the results with the seismic 

information has been shown in the Fig 6.3 
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Fig 6.2 Basement Topography along Profile AA' (DHR) 

(9) The available seismic section (Agrawal, 1977) suggest that the basement depth varies 

from 0.8 km for Budhana to 1.32 km for Muzaffarnagar and 2.0 km for Purkaji, Further it 

assumes a P- wave velocity of 5.6 km/sec for the basement. The basement depth obtained 

by the gravity data, is 1.0 km for the Budhana, 1.84 km for the Muzaffarnagar, 2.32 km 

for Purkaji and it increases towards Roorkee- Haridwar area. 
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Fig 6.3 Comparison of basement depth along profile BB' with available seismic section 

(Agarwal, 1977)  

a) Seismic section (Agarwal, 1977) 

b) Gravity derived basement depths (BDH-Budhana, MZN-Muzaffarngar, PUR-Purkaji, 

RKE-Roorkee, HRD-Haridwar  
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6.4 Structural- fabric derived from the Gravity data in the study region 

With the help of the obtained basement depth contour map locations of faults traces in the 

study region has been marked and shown in the Fig. 6.4. The major faults in, this region 

are described below: 

(1) There is a large scale regional fault (Fl) having trend of NW-SE that cuts across the 

DHR, this fault is at shallow depth passing through Shamli (SML), Budhana (BDH), and 

Sardhana (SDH). The average depth of the fault is about 0.8 km. 

(2) Faults F2 and F3 are around the Deoband giving Horst- like structure in the basement. 

Same kind of fault pattern is seen between Mohand (MHD) and Behat (BHT) area 

(F6&F7) 

(4) Jagathri (JGI) region is also bounded by faults giving block like structure (F5). This 

area has become depocentre due to this fault. 

(3) Fault (F4) surrounding the Nanauta (NNT) and Gangoh (GNH) area give the 

basement a block like structure. Due to this deep seated fault, this region has become 

center of large sedimentation. Average depth of this fault in this region is 4.3 km. 

(4) There is another large scale fault passing through north of Bijnaur (BJN) passing in 

the west of Roorkee and extends in curviplanner manner upto Mohand area. The depth of 

the fault is varying, at Roorkee it is at 3.1 km, in east of Mohand it is about 4.7 km. 

In Fig. 6.5 locations of faults zone has been delineated on a geological map. This area is a 

portion of our study region comprising Dehradun and Mohand region. The existence of 

regional faults prior to MBT in HFT region has been inferred. These faults zones were 

also inferred by Sastry et.al.(1999) from two sets of regional gravity and magnetic 

profiles on the geological map (Fig 1.5) 
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SAHARANPUR, MHD-MOHAND, DDN-DEHRADUN, BHT- BAHAT, PNT-PAONTA), F1-F8 

(Gravity interpreted basement fault) 
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Chapter- 7 

Summary and Conclusion 

Summary of the work 

The whole thesis work can be summarized as follows: 

(1) 3D Gravity inversion algorithm based on prism model that incorporates variable 

density contrast with depth of sedimentary basin (Parabolically) 

(2) A published Bouguer anomaly data in Indo- Gangetic Plains was taken for the study 

of basement structure in the study region. Bouguer anomaly map has been digitized at 1 

Km grid spacing in both East and North direction to make gravity value available on each 

grid nodes 

(4)Two versions of residual anomaly maps have been separated from the regional 

anomaly using polynomial fitting method. 

(5) Residual anomaly has been inverted by the algorithm and depths at each;  grid nodes 

have been obtained. Based on these depth values basement depth contour map has been 

prepared for the interpretation 

Conclusions 

(1) The interpretation of earlier obtained' basement depth map reveals the general 

complex behavior of the basement. The basement exhibits block tectonics. It has very 

complex in nature and is composed of many faults, several local highs and lows. 

(2) The basement depth values fairly agree with the available seismic section along the 

profile BB' (Fig) 

(3) Existence of regional NW-SE trending fault in SW of Deoband and passing through 

near Budhana (Fig 6.4), seem to affect the Pre-tertiary basement. This suggest that the 
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HFT- related tectonics has affected the basement well before the surface expression of 

HFT 

(4)The proposed Delhi-Haridwar ridge was studied and It was noticed that maximum 

northern limit of the DHR is upto Deoband region with clear expression upto 

Muzaffarnagar towards south. (Fig 6.1) 

(5) Presence of regional thrust faults in ITT region are inferred from the Fig 6r1 

(6) There sedimentary depocentres are inferred around Gangoh, Deoband, Jagathri and 

Behat area. (Fig 6.4) 
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Appendix-I 

Computer program listing (Matlab) for gravity inversion and regional —residual 

separation 

1) For 3D inversion Algorithm the code for Matlab Program is listed here 

There are one main program and two supporting sub programs 

(A) Main Program 
clear all 
cic 
load Res; 
load Gobs; 
[M,N]=size(Gobs);SD=-0.6o;A=.11;K=M*N; 
Z=-(SD*Res)./(41.89*SD+A*Gobs); 
for s=l:P; 

[ gcal ] =GCAL (Z, SD, A) 
Jc= (Res (M, N) -gcal (M, N)) ."2; 
J(s)=sum(sum(Jc) );  
if s-=1 

if J(s)-J(s-1)>O 
lemda=2*lemda; 

else 
lemda=.5*lemda; 

end 
else 

lemda=0.5; 
end 
[GDIFFI]=Subp(Z,SD,Y-y,A); 
[GDIFF2 ] =Subp (Z, SD, y+y, A) ; 
GDIFF=.5*(GDIFF1+GDIFF2); 
of=1; 
for u=l:N 

for v=l:M 
w=1; 
sh=GDIFF(:,:,u,v); 
B= (GOBS-gcal) *sh; 
BS (ef)=sum(sum(B)) ; 
for j=l:N 

for k=l:M 
if ((j==u) && (k==v) ) 



E 

del=l; 
else 

del=0; 
end 

Al=GDIFF (: , : , u, v) *GDIFF (: , : , j , k) * (l+lemda*del) ; 
AS (ef,w) =sum( sum (Al)) ; 
w=w+1; 

end 
end 
ef=ef+l; 

end 
end 
dz=AS . ^ (-1) *B5'; 
dzt=reshape(dz,M,N); 
dzm=(dzt)'; 
Z = Z+dzm; 

end 

(B) Sub program Gcal calculate theoretical gravity of basin 

function [gcal]=GCAL(Z,SD,A) 
[M,N]=size(Z); 
for n=l:N; 

for m=1:M; 
SG=O; 
for k=1:N; 

for 1=1:M; 
Z1=Z (1, k) ; 
dx=1; 
dy=l; 
X=abs (n-k) *dx; 
Y=abs (m-1) *dy; 
T=dx/2; 
HY=dy/2; 
Yl=HY-Y; 
Y2=HY+Y; 
[GPRM1] =GPRM (X, T, Y1, Z1, SD,A) ; 
[GPRM2] =GPRM (X, T, Y2, Z1, SD,A) ; 
GPRM=.5*(GPRM1+GPRM2); 
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SG=SG+GPRM; 
end 

end 
gcal (m, n) =SG; 

end 
end 

(C)Subprogram GPRM that calculate the gravity response of a 
single prism 

function [GPRM] =GPRM (X, T, Y, Z, SD, A) 
if Z==O 

Z2=.0001; 
else 

Z2=Z; 
end 
DC=13.33*(-0.67).^3; 
Zl=0.0001; 
AL5=SD-A*Z1; 
AL6=SD-A*Z2; 
Ql=X+T; 
Q2=X-T; 
Rl=(Ql.^2+Y.^2+Z1.^2).^(.5); 
R2=(Q2.^2+Y.^2+Z1.^2).^(.5); 
R3=(Q2.^2+Y.^2+Z2.^2) .^ (.5) ; 
R4=(Ql.^2+Y.^2+Z2.^2).^(.5); 
T1=1/A; 
T2= (atan ((Y*Q1) / (Z2*R4))) /AL6- (atan ((Y*Q1) / (Z1*R1)) ),/AL5; 
TTR1=T1*T2; 
TT2= (atan ((Y*Q2) / (Z2*R3)) )/AL6- (atan ((Y*Q2) / (Z1*R2) )') /AL5; 
TTR2=Tl*TT2; 
TER1=TTR1-TTR2; 
T3=Y*Q1; 
AL8=sgrt((Q1.^2+Y.^2)*A.^2+SD.^2); 
T41=A*(2*SD.^2+A.^2*(Q1.^2+Y.^2)); 
T42=AL8*(Y.^2*A.^2+SD.^2)*(Q1.^2*A.^2+SD.^2); 
T4=T41/T42; 
T51=AL5*(A*R4*AL8+AL8.^2-SD*AL6); 
T52=AL6*(A*R1*AL8+AL8.^2-SD*AL5); 
T5=1og(T51/T52); 
TER2=T3*T4*T5; 
T61=SD/(A*(SD.^2+Y.^2*A.^2)); 
T62=atan((Y*R4)/(Z2*Q1))-atan_((Y*R1)/(Z1*Q1)); 
TER3=T61*T62; 
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T71=SD/(A*(SD.^2+Q1.^2*A.^2)); 
T72=atan((Q1*R4)/(Z2*Y))-atan((Q1*Rl)/(Z1*Y)); 
TER4=T71*T72; 
T81=Y/(2*(SD.^2+Y.^2*A.^2)); 
T82=log(((Ql-R4)*(Q1+R1))/((Q1+R4)*(Q1-R1))); 
TER5=T81*T82; 
T91=Ql/(2*(SD.^2+Q1.^2*A.^2)); 
T92=log (((Y-R4) * (Y+R1)) / ((Y+R4) * (Y-R1))) ; 
TER6=T91*T92; 
T101=SD/(A*( SD. ^2+Y.^2*A.^2)); 
T102=atan((Y*R3)/(Z2*Q2))-atan((Y*R2)/(Z1*Q2)); 
TER7=T101*T102; 
T111=SD/.(A*(SD.^2+Q2.^2*A.^2)); 
T112=atan((Q2*R3)/(Z2*Y))-atan((Q2*R2)/(Zl*Y)); 
TER8=Tlll*T112; 
T122=log (((Q2-R3) * (Q2+R2)) / ((Q2+R3) * (Q2-R2))) ; 
TER9=T81*T122; 
T131=Q2/(2*(SD.^2+Q2.^2*A.^2)); 
T132=log (((Y-R3) * (Y+R2)) / ((Y+R3) * (Y-R2))) ; 
TER10=T131*T132; 
AL4=sgrt((Q2.^2+Y.^2)*A.^2+SD.^2); 
T141=Y*Q2; 
T142=A*(2*SD.^2+A.^2*(Q2.^2+Y.^2)); 
T143=AL4*(Y.^2*A.^2+SD.^2)*(Q2.^2*A.^2+SD.^2); 
T144=AL5*(A*R3*AL4+AL4.^2-SD*AL6); 
T145=AL6*(A*R2*AL4+AL4.^2-SD*AL5); 
TER11=((T141*T142)/(T143))*log(T144/T145); 
G=TER1+TER2-TER3-TER4+TER5+TER6+TER7+TER8-TER9-TER10=TER11; 
GPRM=DC*G; 

(2) 

Program for Regional residual -speration 

2a) For first order polynomial fitting for regional 

load g 
m=108; 
n=206; 
[x, y] = meshgrid (1:1:108, 1 : 1 :206) ; 
sg=sum(sum(g)) ; 
sx=sum_(sum (x)) ; 



sy=sum(sum(y)) ; 
x2=x.*x; 
Y2 =Y• *y; 
xy=x.*y; 
gx=g.*x; 
gY=g.*y; 

sx2=sum (sum (x2)) ; 
sy2=sum(sum(y2)); 
sxy=sum(sum(xy)); 
s-gx=sum (sum (gx)) ; 
sgy=sum(sum(gy)); 
cl= [ sx, sy, m*n; sx2, sxy, sx; sxy, sy2, sy] ; 
c2= [ sg; sgx; sgy] ; 
c3=cl^ (-1) *c2; 
A=c3(1,1); 
B=c3(2,1); 
C=c3(3,1); 
R=A*x+B*y+C; 
Res=g-R; 

2b) Program for Second order polynomial fitting for regional 

Second Order polynomial(A*x2+B*y2+C*.xy+D*x+E*y+F=R) 
load gdata 
[m, n] =size (gdata) ; 
mn=m*n; 
[x, y] = meshgrid (1:1:108, 1: 1 :206) ; 
x2=x.*x; 	y2=y.*y; 	xy=x.*y; 
x3=x2.*x; x2y=x2.*y; xy2=x.*y2; 
y3=y2.*y; x4=x3.*x; x2y2=x2.*y2; 
x3y=x3.*y; xy3=x.*y3; y4=y3.*y; 
g=gdata; 	gx=g•*x; 	gY=g•*Y; 
gx2=g.*x2; gy2=g•*Y2; gxY=g.*xy; 
sg=sum(sum(g)) ; sgx=sum(sum(gx)) ; sgy=sum(sum(gy)) ; 
sgx2=sum(sum(gx2)) ; sgxy=sum(sunm(gxy)) ; sgy2=sum(sum~(gy2)) ; 
sx=sum(sum(x)) ; sy=sum(sum(y)) ; sxy=sum(sum(xy)) ; 
sx2=sum (sum (x2)) ; 	sy2=sum (sum (y2)) ; 	sx3=sum (sum (x3)) ; 
sx2y=sum(sum(x2y)) ; sy3=sum(sum(y3)) ; 	sx4=sum(sum(x4)) ; 
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sx2y2=sum(sum(x2y2)); 	sx3y= sum(sum(x3y)); 
sxy3=sum (sum (xy3)) ; 
sy4=sum(sum(y4));sxy2= sum(sum(xy2)); 
G=[sx2, 	sy2, sxy, sx, sy, 

sx3, 	sxy2, sx2y, sx2, sxy, 
sx2y, 	sy3, sxy2, sxy, sy2, 
sx4, 	sx2y2, sx3y, sx3, sx2y, 
sx2y2, 	sy4, sxy3, sxy2, sy3, 
sx3y, 	sxy3, sx2y2, sx2y, sxy2, 

SGD=[sg; 	sgx; 	sgy; sgx2; 	sgy2; 	sgxy]; 
M=G^(-1)*SGD; 

mn; 
sx; 
sy; 
sx2; 
sy2; 
sxy] ; 

A=M(1); B=M(2); C=M(3); D=M(4); E=M(5); F=M(6); 
R=A*x2+B*y2+C*xy+D*x+E*y+F; 
RESS=R—g; 
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