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Abstract

Through wall imaging (TWI) is one of the most rapidly emerging technologies where

it tries to 'see' through visually opaque material like different types of walls and

detect and image various targets behind the wall. It is a challenge for current

researchers to design TWI system as well as interpret its data. The detection of targets

becomes more challenging when no apriori information of walls and targets is

available. TWI scene may consist of various types of targets with different shapes and

material properties (dielectric). Thus TWI system should have the capability to detect,

locate, classify the objects and should be able to obtain size and shape of objects

present in room whichwill be useful to the end user for interpretation.

It is well known that radar suffers with strong clutter problems. The signal received

from radar consists of desired response of target with other signals arising mainly

from radar system parameters, wall reflections, environment, and multiple reflections.

The undesired component in the received signal is referred as clutter. In spite of

tremendous amount of work by various researchers, it is difficult to select a suitable

clutter reduction technique by which target detection accuracy can be enhanced and

false target detection reduced.

In TWI, with several indoor objects of different material and shapes, robust detection

and classification is an important area of concern to end users. An important step

towards classification of targets is thresholding. Several algorithms have been

proposed by researchers for computing optimum threshold level in order to

discriminate between targets and background. Thresholding becomes difficult when

target and background level posses substantially overlapping distribution. Thus

optimumthresholding technique is required to be explored in TWI images.

There are different levels of obtaining information in TWI system depending on the

application. Basic level which is called as 0-D provides information about presence of
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target only. To get the location of the target, the next level 1-D is used which is also

called as A-scan or range profile. But it does not indicate how many targets are

present in cross range. B-scan system provides this information along with their

locations. B-scan is a collection of A-scans recorded along scanning line. The highest

level of information is provided by C-scanning which adds a third dimension of

height to that of a B-scan system. C-scan is obtained from ensemble of B-scan. Height

information may allow discrimination between targets having different dimension

with price paid for more scanning time. In TWI, one of the major thrust in near future

can be developing more efficient imaging algorithm for getting more information like

size and shape of the target from C-scanning system.

Imaging methods in through wall have gained wide attention. Many imaging

algorithms have been developed for TWI. The most commonly used techniques in

TWI for image formation are back projection, beamforming, tomographic, m-k,

Kirchhoff s etc. These techniques can be analyzed further to find suitable technique

for TWI applications.

The purpose of obtaining images is to extract essential information from images

which should be used for recognition of targets. Many techniques have been

developed to recognize targets based on feature extraction. Features can be obtained

by electromagnetic analysis, time spectral analysis and statistical features. Pattern

recognition technique can also be used to identify and classify targets. Very less work

has been reported on pattern recognition based object classification in TWI.

So, the present thesis is an effort to detect and classify stationary targets present

behind wall as well as to image targets for shape recognition. Therefore the main

objectives are:

• Critical analysis of clutter reduction techniques for detection of metallic as

well as low dielectric targets

• A novel approach to detect and classify targets based on statistical based

techniques

• Study of prevalent imaging techniques for through wall target detection

• Application of pattern analysis techniques for shape recognition

The thesis is divided in seven chapters in which the first chapter provides a basic

platform of research work by presenting a brief introduction, motivation, research

gaps, problem formulations and details of experimental TWI setup. Experimental



setup is ingeniously assembled which consists of a SFCW radar in UWB range (3.95

GHz to 5.85 GHz) and a 2-D scanning frame. SFCW based radar consists of Rohdc

& Schwarz Vector Network Analyzer (VNA) ZVB8 and pyramidal horn antenna

having bandwidth of 1.9 GHz. The scanner is made of wood which is used to scan the

radar in horizontal as well as in vertical direction. SFCW radar system possesses

several advantages over impulse type of radar systems. One of the main advantages of

the SFCW system is that many sources of time varying measurement error including

frequency dependent magnitude and phase variations of connectors, cables,

directional couplers and antennas can be removed through calibration.

Data are collected using the designed TWI system for plywood and brick wall for

different targets like low dielectric and metal of different shapes. The target

considered for low dielectric constant material is Teflon. Different regular shapes like

square, rectangular and circle are considered. Data has been collected by varying

distances between TWI system and wall, between wall and targets to see the effect of

positioning of TWI system on detection of targets. Before data are used for further

processing, pre-processing techniques such as external calibrations and velocity

corrections are applied. To do velocity corrections, knowledge of wall thickness and

dielectric constant is required for which wall characterization has been done.

In Chapter 2, the existing techniques and methods for TWI system are briefly

reviewed. The chapter addresses the development in techniques for improving

detection, imaging and classification of targets.

Study and critical analysis of various clutter reduction techniques and its

implementation on obtained data are presented in Chapter 3. Some of the existing

methods for clutter reduction in TWI rely on background subtraction, time gating and

spatial filtering. But these techniques have drawback. In background subtraction,

clutter remains present if the data is not collected at exactly the same antenna

positions and in addition it is not possible in real scenarios to collect data without

target. Time gating is successful for targets which are far away from wall but for

targets near to wall the target response overlaps in time domain and cannot be

separated in time. A spatial filter is used to notch zero spatial frequency which

represents wall reflections. This filter may subtract low frequency components of

target as well due to practical design constraint of filter. Radar detects high dielectric

discontinuities as presence of high contrast causes the reflected signal to be very
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strong. The problem of distinguishing the targets becomes more difficult if the target

is having dielectric constant near to that of medium of propagation. Thus in TWI if

the scene consists of targets having low dielectric constant then important aspect will

be to detect the target with low false detection. Presence of clutter and attenuation of

signal deepen the problem further. Thus there is a need to provide a solution which

can improve low dielectric constant target detection. Therefore, this chapter explores

the applicability of different clutter reduction techniques based on statistical signal

processing techniques like Singular Value Decomposition (SVD), Principle

Component Analysis (PCA), Factor Analysis (FA) and Independent Component

Analysis (ICA). To critically analyze different clutter reduction techniques two

different data sets were collected in which in first data set a single metal target is kept

behind wall and in second data set two targets, Teflon and metal are placed behind the

wall. From first data set results, it is observed that metal target peak becomes visible

significantly after clutter reduction and false target detection is minimized. The

performance of clutter reduction techniques is compared on the basis of signal to

clutter ratio. In second data set, the important aspect which is considered is detection

of low dielectric constant target in presence of metal target. The raw B-scan image

detects only metal target where as Teflon target is not observed due to weak

reflection. When the raw B-scan image is processed using clutter reduction

techniques, it is observed that only ICA is able to detect Teflon whereas other

techniques fail to detect Teflon.

Chapter 4, focuses on statistical based thresholding approach for target detection as

well as a probability distribution function based algorithm for target classification. An

important step towards detection and good classification result is to extract target

information from raw data by reducing clutter to maximum extent. The focus is to

classify a metal and low dielectric targets behind the wall. Existences of false targets

are observed after clutter reduction technique. After clutter reduction, thresholding is

applied to segment the target from the background. Thresholding becomes difficult

when low dielectric constant target is used as background gray levels and some of the

target pixel intensities are same. Deciding optimum threshold is still a challenge in

segmenting target from the background which is essential for correct classification of

targets. Existing thresholding methods like maximum entropy, minimum cross

entropy, cluster analysis technique, Otsu and statistics based (mean+standard

deviation) are critically analyzed. The performance of algorithms is evaluated by
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computing two performance measures, sensitivity and specificity. Sensitivity is

proportion of pixels correctly identified by algorithms as target and specificity is

proportion of pixels correctly identified as non target. The higher the values of these

two measures (close to one) the more accurate is the algorithm. It is observed that

when threshold value is small, false target detection increases. But detection

sensitivity of low dielectric constant is still not adequate. To improve detection of low

dielectric constant target and to reduce false alarm further, modified statistical based

threshold technique is proposed. It meets the user specified performance requirement

that is sensitivity and specificity in order to find optimum value of threshold.

In this chapter after thresholding target discrimination is approached as a

classification problem. The statistics of thresholded images is obtained and is use to

find probability density functions. Thus statistical method that characterizes radar data

can be used to get the information about targets. In past probability distribution of

various clutters has been modeled as Weibull, Rayleigh and normal from target

detection point of view. But use of probability distribution to classify targets has been

given less attention. In this chapter, image statistics after thresholding is evaluated on

the basis of their probability distribution function and based on this results target are

classified. To obtain statistical analysis of target pixels, various distributions like

Normal, Rayleigh, Cauchy and Weibull are applied and best fit is chosen to model it.

Probability density function is then obtained from them on the basis of Chi-squared

goodness of fit test. It is observed that Weibull distribution fits both targets (metal and

Teflon) more accurately than other three distributions. Once the distribution is known,

parameters are estimated using maximum likelihood estimator and then the groups of

pixels are labeled accordingly. The scale and slope parameter of Weibull distribution

is obtained for metal and Teflon targets. Validations of proposed technique is carried

out for different set of data where the parameters value are observed and class of

target either high dielectric constant material or low dielectric constant material is

classified.

The objective of chapter 5 is to explore some of the existing imaging algorithm like

back projection, frequency wave number (co-k) and delay sum techniques. Normal B-

scan image depicts low resolution features in image. Since the goal is not only to

localize the target but also to improve cross range resolution, synthetic aperture

technique is applied. To compare different imaging algorithm, image quality is
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measured using metric such as entropy and ratio of standard deviation to mean.

Images due to different imaging techniques are obtained on B-scan experimental data.

After applying imaging algorithms, a more focused image is obtained compared to

Raw B-scan image in which no focusing algorithm is applied. It is observed that the

brick wall causes an overall drop in coherence compared to case when plywood wall

is used.

The objectives of chapter 6 are (i) C-scan imaging for target detection and (ii) feature

extraction and shape recognition using neural network. Instead of using C-scan data

for three dimensional image formations, two dimensional images is obtained. This

reduces time complexity of imaging algorithm. After observing range profiles the

location of target is determined. Either the peak magnitude at target location is taken

or energy of pulse obtained by target reflection is taken as value at each grid point in

two dimensional images. The obtained image is enhanced using image processing

techniques like filtering, interpolation, and thresholding and edge detection. The basis

of method of the target detection is thresholding. Though the target can be clearly

detected after clutter reduction, the image obtained is still of poor quality.

Thresholding helps in enhancement of image quality. For edge detection simple Sobel

operator is used. This process detects outlines of an object and boundaries between

objects and background of the image. From the resultant image the centre of target

can be approximately obtained. Though the target image does not corresponds to

actual shape of target, much vital information about the target can be inferred.

To enable reliable recognition of target shape, the essential information or features

must be extracted. Features for two different targets should differ as much as possible.

To recognize target from its shape, features are extracted using different methods like

moment invariant, Fourier descriptor and waveform based technique. The features

obtained by all these techniques for single image are combined to form single feature

vector. These feature sets are used to train the network to recognize various shapes of

targets of obtained data. A simple feed forward network with one hidden layer and

one output layer is used. The number of nodes in output layer depends upon different

types of shapes used. Since three shapes are used, three nodes are used in output layer.

To train neural network on more data, features from images which are synthetically

generated for different shapes with different dimensions are used. It is observed that

the network is able to recognize shape of targets satisfactorily.
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Chapter 7 presents the summary of contributions made in the thesis and future scope

of work.
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Chapter 1

Introduction

1.1 Motivation

Nowadays through wall imaging (TWI) is attracting more attention from various

researchers because of its use in several civilian as well as in military applications. It

is one of the most rapidly emerging technologies where the aim is to 'see' through

visually opaque obstacles like different types of walls and detect as well as image

various targets present behind the wall. TWI system can be based on either an active

or passive technique. Sensors based on ultrasound, millimeter wave radiometry,

infrared, Lidar and X-ray can be used for through wall imaging but the most suitable

technique is Radar sensor. Ultrasound technique can be used to detect and locate

target behind metallic or nonmetallic wall. But the disadvantage is that it cannot be

used for imaging due to high resolution requirement. Millimeter wave radiometer uses

energies radiated by bodies of targets behind the wall for detection but it works only

up to very short distances [97]. Infrared can be used to image target through wall at

very short distance as attenuation through wall is very high. X-ray based sensors



provide good imaging quality but are limited to very short range and are expensive

and not safe.

Therefore, it is a challenge for current researchers to design TWI radar system for

different types of wall i.e., plywood, brick as well as to obtain target information by

processing techniques for interpretation of data. The radar techniques often employed

in TWI are impulse radar, frequency modulation continuous wave (FMCW), step

frequency continuous wave (SFCW) and noise radar that are used to generate wide

band of frequencies for detection of hidden targets. SFCW radar works in frequency

domain whereas pulse radar works in time domain. In SFCW, the frequency of each

signal in the waveform is linearly increased in discrete steps, by a fixed frequency

step whereas in time domain impulse radar transmits a short time pulse and receives

the backscattered signal by using either sampling receiver or extremely fast analog to

digital converters. One of the main differences between both is that impulse radar

measures target frequency response simultaneously while SFCW radar measures

target frequency response sequentially. The idea of using SFCW radar is not new

[124, 185]. But due to its simple design and relatively lower cost, pulse radar

dominated the industry. Now with advancement in technology, the cost of microwave

components has decreased considerably. So it has become viable to design SFCW

based radar system.

SFCW radar system possesses several advantages over impulse type of radar systems.

The main advantage of the stepped frequency technique is that it covers wide

bandwidth with lower signal distortions due to narrow instantaneous bandwidth. The

other advantage of SFCW over impulse is greater measurement accuracy because it is

much easier to synthesize a pure tone at a frequency than to measure a time delay i.e.,

accuracy with which the frequencies are set in SFCW radar is much greater than

measurement time used in impulse radar [89]. SFCW has greater dynamic range and

lower noise because it can transmit at higher power and uses a very narrow IF

bandwidth. High average transmitting power is easier to obtain due to use of

continuous wave signal. In SFCW, calibration procedure removes many sources of

time varying measurement error. Shaping of pulse is also possible with help of

windowing for reducing side lobes. The drawback of SFCW radar is its long data

acquisition time. But for a particular application like detection and imaging of

stationary targets long data acquisition time is generally inacceptable range.

2
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TWI has different challenges to achieve the goal of detection, classification and

recognition of different objects commonly observed behind the wall in a room

environment. To meet the challenges, research in TWI is directed mainly in areas of

signal processing, pattern analysis techniques, antennas and electromagnetic related

issues. One of the challenges in TWI is to produce good quality images that may be

used for classification and recognition. The basic rule for producing a good quality of

image is that the resolving power of radar must be 1/10 times of maximum dimension

of targets [54]. To achieve high resolution, it is important that TWI system is operated

at high frequencies. On the other hand radar should transmit signal at low frequency

to be able to penetrate through walls [53]. Thus, it is a challenging aspect in TWI

radar to produce high quality images with reasonable penetration capability. Based on

this, TWI radar can be classified into two categories: first working on low frequencies

with good wall.penetration capabilities but low spatial resolution and second working

on high frequencies with high resolution but with limited penetration capabilities.

Another challenge in TWI is to understand the effect of presence of wall. The effect

other than attenuation due to presence of wall on propagation of signal, is a shift in

target position. So, TWI system should have the capability to overcome this problem

to detect, locate, classify the objects and should be able to obtain size and shape of

objects present in room which can be useful to the end user for interpretation. The

detection of targets becomes more challenging due to the presence of strong clutter

problems. The signal received from radar consists of addition of desired response of

target with other signals arising mainly from radar system parameters, wall

reflections, environment and multiple reflections. The undesired component in the

received signal is referred to as clutter. In practical cases these clutter problems are

more complex. Researchers have developed various clutter reduction techniques to

enhance the detection accuracy and reduce false target detection [4, 240, 245]. Still, it

is challenging to improve detection of weak target response in presence of strong

unwanted interfering signal.

In TWI, with several indoor objects of different material properties and different

shapes, robust detection and classification is an important area of concern to the end

users. First important step is detection and after detection classification if possible.

Detection is carried out by using thresholding techniques. Several algorithms have

been proposed for computing the optimum threshold level in order to discriminate

3



between targets and background [39]. Thresholding becomes difficult when target and

background level posses substantially overlapping distribution and hence optimum

thresholding technique is required to be explored in TWI images. Preliminary work in

TWI on target classification is reported [112, 143], but very less reported work is

available till now.

One of the major thrust in TWI is to develop efficient imaging algorithm for getting

more information about targets. Many imaging algorithms have been developed for

TWI and have gained wide attention. The most commonly used techniques in TWI for

image formation are back projections [90], beamforming [6] and several other

migration algorithms like co-k, Kirchhoffs migration etc. [162, 244]. These

techniques need further analysis to find their suitability for TWI applications.

Another important aspect in TWI is recognition of targets. Essential information

should be extracted from targets which should be used for recognition of targets.

Many techniques have been developed to recognize a target which is based on feature

extraction. Features can be obtained by electromagnetic analysis [66] and time

spectral analysis [141]. First order and second order statistics such as mean, standard

deviation, entropy and others have been used to recognize target shapes by Mahfouz

et al. [138]. Pattern recognition technique can be used to identify and classify targets

[170]. Pattern recognition based classification of objects in TWI is an area that needs

further exploration.

In nutshell, considerable amount of attention and research is required for dealing

different problems of TWI systems. This motivated to develop processing techniques

to improve detection, localization and recognition of the targets.

1.2 Contribution of thesis

Present thesis embodies extensive investigation on post processing techniques to

detect and classify the stationary targets present behind wall as well as to image the

targets for shape recognition. For this purpose SFCW radar is ingeniously assembled

in the frequency range of 3.95 GHz to 5.85 GHz. Therefore the main objectives are:

1) Critical analysis of clutter reduction techniques for detection of targets

2) To develop an adaptive approach to detect and classify the targets

3) Study of prevalent imaging techniques for through wall target detection
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4) Application of pattern analysis techniques for shape recognition.

1.3 Methodology

Basically, it contains differentparts which are as following,

1. To assemble TWI experimental setup

2. Data collection

3. Wall characterization

4. Pre-processing techniques such as calibration and velocity corrections

5. Post processing techniques like clutter reduction, detection, classification,

imaging andrecognition to obtain the target information.

Explanations up to point four is described in this chapter and the post processing

techniques are explained in subsequent chapters.

1.3.1 Experimental setup

SFCW based radar system in a monostatic mode was ingeniously assembled with the

help of Rohde and Schwarz Vector Network Analyzer (VNA) ZVB8 and antenna

system with scanner as shown in Figure 1.1 for the frequency range of 3.95 GHz to

5.85 GHz. The SFCW radar system parameters are given in Table 1.1. A pyramidal

horn antenna with 20 dB gain having bandwidth of 1.9 GHz is used for transmitting

and receiving signal. The Half Power Beamwidth (HPBW) of antenna at centre

frequency in Azimuthal plane and Elevation plane are found to be 0a = 15.92° and 0,. =
17.02°. The antenna is oriented in vertical polarization for data collection. The

antenna was mounted on 2D-scanning frame made of wood on which the antenna can

slide along horizontal direction and along height. Height of stand on which target is

kept is 1 m and scanning starts at 0.5 m above the ground. Types of walls that are

used in the experiments are plywood and brick wall. After calibrating VNA by

standard two port calibration process i.e., Through Open Short Matched (TOSM), the
scattering parameters S2i was measured in frequency domain for all the observations

[142].

(a) Important parameters ofSFCW based TWI radar system

The important parameters for TWI are such as SFCW radar parameters, image

parameters, type of wall and target parameters.

5



Vector Network

Analyzer

Circulator

Antenna System with Scanner Wall

Figure 1.1 Experimental Setup

Table 1.1 SFCW radar parameters

Sr.No Parameters Value

1 Frequency range 3.95 to 5.85 GHz

2 Transmitted power 20dBm

3 Number of frequency points 4001

4 Bandwidth 1.9 GHz

5 Range resolution in air 7.89 cm

6 Polarization VV

7 Antenna Type Horn Antenna

8 Gain of Antenna 20 dB

9 Beam Width 15.92° and 17.02°

(i) SFCW radar basics with parameters: The waveform for SFCW radar consists of a

group ofKcoherent signals whose frequencies are increased from signal to signal by

a fixed frequency increment A/as shown in Figure 1.2.
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Figure 1.2 Frequency steps over complete bandwidth [210].

SFCW radar measures magnitude and phase of the received signal with respect to the

transmitted signal at each stepped frequency. Let the transmitted signal at frequency/*

is

s(fk) = Ae

where

/t = /0 + *A/\ A/ =

•jlxfki

J K-\ Jo

(1.1)

K-\ ^

where/o is the starting carrier frequency, k=0,l...K-\ with K as number of

frequencies and A/ is the frequency step size, that is, the change in frequency from

pulse to pulse. Each pulse is t seconds wide and the time interval T between the

pulses is adjusted for ambiguous or unambiguous range. Each signal dwells at each
frequency long enough to allow the reflected signal to reach the receiver. Groups ofK
signals, also called a burst, are transmitted and received before any processing is

initiated to realize the high-resolution potential of this waveform. The burst time, that

is, the time corresponding to transmission of K signals will be called the coherent

processing interval (CP1) [210].

The signal propagates toward the medium. Any change, within the propagation media

as well as any object will produce a return signal which will be captured by receiving

system. If only one object is within the unambiguous range then the signal

backscattered by that object can be written as

*(/,',) = [4e~
j2*Mt-t,) a „-j2xf2('-l,) A 0-J2*/k(i-<i)A2e .AKe (1.3)

where AK is the reflection coefficient for the A?h frequency and /, is the two way

propagation delay to the object.



The output of the phase detector canbe modelled as the product of the received signal

with the reference signal followed by a low pass filter. For real sampling the phase

detector output for the Kth signal is ^cos^ and for the complex sampling it is, ^

Ae-* (1-4)

where,

2z

K c (1.5)

Where z is range to the target. -*

SFCW radar determines distance information from the phase shift in a target reflected

signal. The processing of the received signal is further discussed in Section 1.3.4

below.

The SFCW radar parameters for TWI application should be chosen carefully. The

main parameters are number of frequency points and unambiguous range.

Numberoffrequency points

SFCW radar illuminates target with consecutive train of number of frequencies and

processes it coherently after receiving them. Thus the process gain will be high, if

numbers of frequency points are high. The choice of high frequency points result in

small frequency step size for better resolution. If the numbers of points are chosen

smaller then data acquisition time is reduced.

Unambiguous range

The unambiguous range is given by

*,=-£_ (1-6)
2A/

From equation (1.6) if the frequency step is narrow then ambiguous range will be

greater. Frequency step size A/is also calculated as

Af =BW/(K-\) (1 7)

•y



Beam width ofantenna

In monostatic radar system, with synthetic aperture techniques, the beam width of

single antenna should be narrow [232]. If the antenna beam is narrow it is easy to pick

line of sight target signal.

(ii) Wallparameters

The wall through which the signal is penetrating plays an important role in detection

and imaging. To ensure signal penetration through wall it is desirable to have

minimum attenuation at the working frequencies. The other parameters of wall which

are important to combat effects of wall such as shift in target position and blurriness

in image are thickness of wall and dielectric constant. These parameters should be

known before hand for processing.

(iii) Target parameters

Behind the wall there are two possibilities of the targets i.e., moving or stationary.

Microwave signal both penetrate and get reflected off from target material. The

composition and thickness of the targets are prime factors for receiving the reflected
signal. If the dielectric constant of target is high then reflection will be high whereas

for low dielectric, reflections are very poor. Every target has unique response to signal

which will be useful for classification and recognition.

(iv) Image parameters

High quality images of targets with reasonable penetration capabilities are required

for general TWI application. To produce high quality images, the closely spaced

targets should be resolved in both down range and a cross range direction.

Down Range Resolution

Down range resolution is the capacity of the radar to discriminate individual elements

that are close to each other in down range as shown in Figure 1.3 (a). High down

range resolution is obtained by using wide bandwidth and is given as equation (1.8)

[4].
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Figure 1.3 Resolution (a) Range resolution (b) Cross range resolution

AR =
2BW

(1.8)

where c is speed of light and BW is operating bandwidth.

The effective bandwidth is determined by the total frequency excursion, i.e., KxAf

The down range resolution of step frequency radar is given by equation (1.9)

AR =
2KAf (1.9)

where K is number of frequency points and A/is step size.

The required bandwidth must be greater than 1 GHz to obtain range resolution in

order to detect object size of few centimeters. The actual value is taken more than

theoretical value.

Cross Range Resolution

Cross range resolution is the capacity of the radar to discriminate individual elements

that are close to each other in cross range as shown in Figure 1.3(b).

Resolution in cross range is a function of wavelength at the lowest operating

frequency, the length of physical antenna aperture and distance to target. Cross range

resolution is defined as

10
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ACR=— (1.10)
D

where X is wavelength, 7? is distance to target in far field from antenna and D is

physical aperture of antenna. Fora real antenna, cross range resolution degrades with

increasing target distance. To achieve high cross range resolution, narrow beam width

is required for which the antenna aperture should be quite large which is physically

unmanageable. Another approach is to introduce the concept of a fixed array or

synthetic array. The idea of synthetic array is that a physical antenna moves to each

point. Processing the data allows us to synthesize an effective aperture many times the

size of a real aperture [91]. Thus, the distance travelled during data observation

determines aperture size, limited by time required to scanning. If fixed array is used

scanning time is reduced with increase in complexity of processing signals.

High frequency range is chosen at which the narrow beam width of antenna is

achieved. Thus high cross range resolution requirement leads to the selection of

higher frequency. But at high frequencies, penetration through the wall is low. Thus

there is inherent tradeoff between resolution and penetration. Better resolution and

penetration are the major challenges being faced in TWI. Various types of wall

materials are used in different parts of the world like wood, asbestos, brick, concrete

and so on. The characterization of common types of wall is described by [150]. The

walls made of wood are approximately transparent to radar frequencies. Thus

frequencies above 10 GHz can be used for imaging. On the other hand in brick wall

attenuation is more. In brick wall, one way attenuation is reported as 5 dB/cm at 5

GHz and in concrete it is 10 dB/cm at 3 GHz [56].

(v) Scanning

Three scanning methods namely, A-scan, B-scan and C-scan were used to collect

data. These are different levels of obtaining information in TWI depending on the

application.

A-scan

Basic level which provides information about presence of target along with

approximate location of the target is called as A-scan or range profile. But it does not

indicate how many targets are present in cross range.
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Figure 1.4 B-scan technique

Data Collected along a
horizontal direction at 26

B-scan

B-scan is a observation of A-scans recorded along scanning line, i.e., in monostatic

case, radar transmits and received the signal and then moves to the next location and

repeat operation along a predefined path in front of wall. B-scan system provides

information about number of targets presents in cross range along with their exact

locations.

Horizontal axis of B-scan data consists of number of antenna position marked as 1,2,

... 26 and vertical axis is downrange distance from antenna as shown in Figure 1.4.

C-scan

C-scan (or three dimensional data presentation) data is obtained from the ensemble of

B-scans, measured by repeated line scans along the plane. Accordingly 20 B-scan data

(images obtained at different heights) is collected to form C-scan data as shown in

Figure 1.5. In addition to range, C-scan provides valuable information about the target

extent in length, width and height. Significant amount of time is required to complete

the scanning.

12
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(b) Selection ofparameterfor assembling TWI system

From these observations, selection of frequency range up to approximately 5 GHz can

be used as attenuation is within acceptable range. On other hand bandwidth is chosen

so as to resolve the targets in down range in tenth of centimeters.

So the selected frequency range of 3.95 GHz to 5.85 GHz with bandwidth of 1.9GHz,

number of frequency points as 4001, gives range resolution of 7.89 cm in air

according to equation (1.9) and cross range resolution at 5 m distance with synthetic

aperture as 1.5 m will be 20 cmat centre frequency according to equation (1.10).

1.3.2 Data collection

Observations were carried out as following,

1. Observations have been taken for single target behind plywood and brick wall

2. Observations have been taken for double target behind plywood and brick wall

All the observations have been carried out for A, B and C-scan.
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o
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Horizontal scan position

Figure 1.5 C-scan technique
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(a) Data collections for single target

Figure 1.6 shows the experimental setup used for taking observations. TWI radar

system with a single antenna is used to transmit and receive SFCW signal at one

location and then is moved to next location at regular interval and same operation is

repeated along the axis parallel to wall. The antenna is aimed normal to the front wall.

The antenna scanner starts scanning at 0.5 m above ground and scans up to 1.5 m

above ground in the regular interval. The system scans the region in two dimensions

in vertical plane parallel to the wall at an interval of 5 cm along cross range and 5 cm

along the height. The observations were taken for X = 26 antenna positions in cross

range (horizontal scanning direction) and Y= 20 antenna positions in height (vertical

scanning direction) means a matrix of 26x20 is scanned by shifting the antenna by 5

cm at each scanning point. The total number of observation points on the scanner for

one target type behind wall is 520. Table 1.2 shows the measurement details with

different type of walls used with single target having different shapes. The distance of

the wall and target from the scanning system is different for plywood and brick walls.

Details of target type, shape and dimensions are given in Table 1.2.

o

o
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Y
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CD
O
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o

2

Hor'*onta( 26 ^

Figure 1.6 Geometrical arrangements for observations when single target is present

behind wall.
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Table 1.2 Data collection for single target

s.

No.
Type of Wall

Type and

Shape of

target

Size of target

Distance

between

wall and

antenna

Distance

between

wall and

target

1 Plywood
Metal

(Rectangle)
0.55 mx 0.60 m 1.9m 0.3 m

2 Plywood
Metal

(Circular)
0.58 m diameter 1.9 m 0.3 m

3 Plywood
Metal

(Square)
0.58 m side 1.9 m 0.3 m

4 Brick
Metal

(Rectangle)
0.55 mx 0.60 m 2.32 m 0.3 m

5 Brick
Metal

(Circular)
0.58 m diameter 2.32 m 0.3 m

o

CD

en

8
C/J

1
CD

Y

20

'n*ont,

y a,r^cti0n

Figure 1.7 Geometrical arrangements for observations when double targets are present

behind wall
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(b) Data collectionfor double targets

Figure 1.7 shows the geometrical arrangement used for data observations when two

targets are present behind the wall. The system scans the region in two dimensions in

vertical plane parallel to the wall at an interval of 5 cm along cross range and 5 cm

along the height.

Table 1.3 Data observation setting for double target

s.

N

0

13

o

H

Target 1 Target 2

Distancebetweenwalland antenna(m) Distancebetweenwalland target(m) Distancebetweentwotargets
(m)

Type Shape with

dimension
Type

Shape with

dimension

1

-a
o
o

i
Metal

Rectangle

0.55 mx

0.60

Teflon
Square

0.58 m2
1.90 0.3 0.3

2

T3
O
O

p Metal

Circular

0.58 m

diameter

Teflon

Circular

0.58 m

diameter

1.90 0.3 0.3

o Metal
Square

0.58 m2
Teflon

Square

0.58 m2
2.32 0.3 0.3

4 o Metal

Circular

0.58 m

diameter

Teflon
Circular

0.58 m
2.32 0.3 0.3
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The scanning position is denoted as (X, Y) where X is horizontal scan position which

varies from 1 to 30 and Fis vertical scan position which varies from 1 to 20. Thus the

scanning length in horizontal direction is 1.5 m and 1 m in vertical scanning length.

Data is collected for 600 scan points.

For 2D scanning, the number of measuring points is increased to 30 points in cross

range. Metallic target plates along with the Teflon target plate with different shapes

and dimensions have been taken as targets. Both targets are separated by a distance of

30 cm in cross range. The distance of the wall and targets from the scanning system

for plywood and brick walls are given in Table 1.3.

1.3.3 Wall characterization

Many researchers have examined propagation through different types of wall

materials [150, 134]. Although building material characteristics are available in the

literature but for accurate assessment, it is necessary to know the exact parameters of

wall which is used in experimentations. So, the characterization of wall is carried out

using Insertion transfer method as described by Muqaibal and Safaai-Jazi, [149]. Then

numerical method is applied to extract attenuation coefficient and dielectric constant

of material. Wall characterization is described in following subsections.

(a) Experimental setup and measurement for wall characterization

Experimental setup for wall characterization is shown in Figure 1.8. It consists of

VNA, transmitting and receiving antennas. Two measurements i.e., without wall (free

space) and with wall present in between transmitting and receiving antennas are

made. Care is taken to maintain same conditions during both measurements. The

distance between transmitting and receiving antennas remain same and wall is kept

exactly at the centre of both antennas. Two different wall materials, plywood and

brick wall are selected for characterization. Table 1.4 shows the details of experiment

which is carried out. The distance between two antennas is taken sufficiently large so

that wall is in far field of each antenna. The height of antenna from ground was lm.

The transmitted power, frequency range and number of frequency points are 20 dBm,

3.95 GHz to 5.85 GHz and 201 respectively. The transmission characteristics for

different wall materials in the given frequency range is observed.

17



S.

No.
Material

Plywood

Brick wall

Table 1.4 Details of characterization of wall

Dimension (cm)

(lengthxwidthxthickness)

182.88x121.92x0.12

365.76x304.8x28

Distance between

transmitting

antenna and wall

265 cm

182 cm

Figure 1.8 Experimental setup
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between wall and

receiving
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265 cm

182 cm >
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Measure S2i without wall in frequency domain
^21(7^0* without wall

Measure S2i with wall in frequency domain

^nJ^Jwith wall

Find insertion transfer function

rr/ x SlxKJWjmth wall
H{co)

Sl\\jM) without wall

T

Use approximate solution to obtain parameters

Figure 1.9 Flowchart of Wall characterization procedures

(b) Dielectric measurements ofwalls

The procedure for processing the measured data and extracting wall parameter is

given in flowchart Figure 1.9. The insertion transfer function is obtained which is

defined as ratio of two radiations transfer function given as

H(co)
S2lUM)with w,all

S2\(Mwithout wall (1.11)

where S2:(jco)withoulwall is measured in absence of wall and S2l(jco)wilhwallis

measured in presence of wall.

A uniform plane wave is assumed to be normally incident on wall with thickness dM

as shown in Figure 1.8. The wall unknown complex dielectric constant £ = e/- j£r"

is required to obtain. A reflected wave in region 1 (air), forward and reflected wave

in region 2 (wall) and transmitted wave in region 3 (air) occurs. Applying boundary

conditions for the electric and magnetic fields at the slab air interfaces, transmission

coefficient can be calculated as
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eK"(2+
^2 7l ^2 7] (1.12)

where

7,= J^ =120;rQ
^ (1.13)

y =a +JP (1.14)

g* (2 +5l+% +e-^» (2 - 3l - %

/ =jcoj[fuoso(sr'-j£r")
(1.15)

where J„, is thickness of wall, y is complex propagation constant, a is attenuation

constant in Np/m, /? denotes the phase constant in rad/m, r)i and i\2 are intrinsic

impedance of medium 1 (air) and medium 2 (material), ca is radian frequency, z and u

are permittivity and permeability of material respectively.

The insertion transfer function is related to transmission coefficient through

+

-*

Te^=H(jco) (U6)

where ,

/3o = —
c (1.17)

Thus

H(jco) = (1.18) *
ex (2 +5l+% +«,-*. (2 - 5l- 2t)

Once the complex insertion transfer function H(jco) is determined by measurements,

equation (1.18) can be solved for complex dielectric constant [149]. In terms of

scattering parameters that can be directly measured, equation (1.18) can be

represented directly in following form, ,
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(x + -) sinh(x/>) + 2 cosh(xP) = 0
x S-,

where

•* V t, complex

p = iMw

Slx(jw) = H(jco)e-JWT"

To=-

'21

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

Equation (1.19) can be solved numerically by two dimensional search algorithm

which may give the complex solution. The convergence of this algorithm is not

always guaranteed. Thus by assuming wall to be low loss such that is £r /er «1,

following expression is given which is now interms of real part ofdielectric i.e., er':

tan[/?A- <H(Ja)] +̂ -^tan(M.) =0 (1.24)
l + QX

where

Q = -

and

\lsr - 1

vxt7 + U

[cos(2^0)(^-l)z+8~-^
H(jco)

-lad
x = e

(1.25)

Sr i lr„„/o/3JV„' n2 , e £r t2 /„' iVr]-j[cos(2^x^ -\y +8—;--2r -(*, -ir

(V^-D4
(1.26)

Solving equation (1.24) numerically, $. ' is obtained and attenuation can be obtained

from equation (1.26) and £r"can be obtained from following expression:

2ca\\s
£ r =

(1.27)
CO
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(c) Results ofdielectric measurements

To observe the signal loss through wall (one way), insertion loss is calculated and

given by (1.28).

/L = 201og10(//(»)

3.5

Frequency (GHz)

(a)

4.5 5

FrwjuencyjGHz)

(C)

5.5

Frequency(GHz)

(b)

45

Frequency (GHz)

(d)

(1.28)

Figure 1.10 Results for brick wall (a) insertion loss versus frequency (b) Attenuation

constant versus frequency (c) dielectric constant versus frequency (d) Loss tangent

versus frequency
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Figure 1.11 Results for plywood wall (a) Insertion loss versus frequency (b)

Attenuation constant versus frequency (c) dielectric constant versus frequency (d)

Loss tangent versus frequency
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It is found that, lower the frequency, lesser will be wall attenuation as observed from

Figure 1.10 (a) for brick wall and Figure 1.11 (a) for plywood wall. The results for

attenuation constant, dielectric constant and loss tangent as observed are shown in

Figure 1.10 b, 1.10 c and 1.10 d for brick wall and Figure 1.11 b, 1.11 c and 1.11 d for

plywood wall. It is observed from figures that these parameters exhibit frequency

dependence as expected. The average value of relative dielectric constant, in case of

brick wall was 3 where as in case of plywood wall it was 5.5. This study of

calculation of attenuation due to brick wall also helps to know the detection capability

of radar. If wall is highly attenuating then the signal would not reach the target.

1.3.4 Pre-processing

Pre-processing step mainly consists of 1) frequency to spatial domain 2) calibration

and 3) velocity correction. Before detection process, pre-processing techniques are

applied. The detailed signal pre-processing steps which are used is given in flow chart

as Figure 1. 12 and are described in the following subsections.

4-

1

Step 1. Frequency to time domain

A-scan signal is obtained by placing an antenna at a specific position. SFCW radar

generates the data in frequency domain, which may be filtered by applying a standard

windowing function, such as the Hamming window [12, 85]. When the hamming

window is applied, the side lobes are reduced which will help to reduce false alarm

rate and will improve dynamic range of detection. But due to windowing, range

resolutions deteriorate, so it is not applied here. After receiving data in frequency

domain, it is converted into time domain by using Inverse Fast Fourier Transform ^

(IFFT). The converted signal is presented as signal strength vs. time delay. The signal

received at one of the antenna location after IFFT is given by Freundorfcr, ct. al., [58J,

K

I
k--\

s(t) = ZS(fk)expU2xfkt) (1-29)

where K is maximum numberof frequency points, S(fk) is the received reflected signal

in frequency domain at k"1 frequency and / varies from 0 to (K-1J/BW with step

interval of I/BW, BW is bandwidth of the system.
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Frequency Domain Data

Step 1. Time Domain (IFFT)

Step 2. Spatial Domain

%z
Step 3: Calibration

Step 4 Velocity Correction

Step 5 Range Profile (A-scan)

Figure 1.12 Flowchart for signal pre-processing

Step 2. Time domain to spatial domain

SFCW radar determines the distance to targets by constructing a synthetic range

profile in the spatial domain. The time domain signal is converted into spatial domain

also called as range profile. Range profile is one dimensional information and given

by expression as

S(z) = Z S(fk)exp(j^ft(2z/c)) 0 < z < zn (1.30)

where z is down range distance given as

z = (c*t)/2 (1.31)
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and c is velocity of light.

The maximum distance is calculated by

-*•

Z =c(K-\)/2BW (1-32)
max V '

which is 315 m. But distance for range profile is taken as per the room dimension i.e.,

5 m, by truncating data after 5 m.

Step 3. Calibration usingmetal sheet •$•

TWI Radar system must be calibrated to remove systematic errors such as uneven

frequency responses, the cables and the antennas. Calibration is performed by placing

a large metallic plate in front of transceiver [156]. The metallic plate is kept at a

known distance i.e., at the location of wall and the range profile is plotted from which

delay due to antenna system is calculated. To find out the exact distance between

antenna systems and wall, the delay due to antenna system is taken into account. This

data can be stored and may be used for future reference. If a large metallic plate

(reference) is located at a known distance of Rref from antenna then one way

propagation delay tref is given by (1.33)

t ,=^L (1.33)
'ref

C

But when plotted with the experimental data, the actual time at which reflection due

to reference plate is observed as lohs and delay is calculated by (1.34)

t =t -t (1-34)'delay 'obs 'ref v

The corrected range profile will be

s(z)=is(fk)exp{j2nfk(2z/c +2Zshifi/c)} (1-35)
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where Zshifi is shift in distance due to tdeiay-

Step 4. Velocity correction

Since the antenna is placed at a standoff distance from wall, the signal travel in air

first, then through wall and then again in air before being reflected from target. The

presence of the wall has to be accounted in processing the signal otherwise shifted

target from their actual position is obtained. For determination of accurate position of

target, velocity correction must be applied on received signal [7]. The delay time

through walls compared to free space propagation is determined by

_DWa,l(yl£mg,l 1) 6
lwall_delay V ' '

where Dwaii is thickness of wall and envau is dielectric constant of wall. The corrected

range profile after calibration and velocity correction is given by (1.37)

s(z)=ZS(fk)cxp{j27rfk(2z/c +2zshlfl/c +2Dwall(J^-\)/c)} (1.37)
k-\

It is assumed that the emitted signal and received signal propagates in perpendicular

direction with respect to wall and multiple reflections are neglected.

(a)Implementation offlow chart Figure 1.1

Results obtained at different stages of pre-processing technique are described in this

section. Two different types of data have been selected for analysis. First data from

Table 1.2, S. No. 1 is taken in which plywood wall is used and second data from

Table 1.2, S. No. 4 is taken in which brick wall is used. Results obtained for single

target made-up of metal that is kept behind plywood wall is discussed first and then

for brick wall.

(i) Implementation of Preprocessing for target behind Plywood wall: Figure 1.13

shows the normalized A-scan plotted at different steps of flow chart Figure 1.12.

Normalization is defined as:
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F-F •if mm
normalization

^max ^min (1.38)

where, E is the prescribed data value and Emin and Emax are minimum and maximum

data values of the range profile respectively. A-scan or Range profiles are observed

for presence and absence of target at different scanning locations.

When the target is absent behind wall only two significant peaks p\ and p2 are

observed as shown in Figure 1.13 (a) with red dashed line. When the target is present

in front of scanner, three peaks due to different scatterers are observed in the range

profile as shown inFigure 1.13 (b) with blue solid line. The first peak marked as pi is

due to weak isolation between transmitting and receiving port of antenna system,

second peak marked as p2 is due to plywood wall and third peak marked as p3 is due

to target. It is observed that the target position is different from the actual distance

taken in measurements. Distance from antenna scanning system to plywood is 1.9 m

and from wall 0.3 m. The total distance from scanner to target is approximately 2.212

m.

As shown inFigure 1.13 (b) the wall is observed at 2.368 m and the target is observed

at approximately 2.684 m from the scanning system in raw range profile plotted at

step 2. Calibration and velocity correction as described in Section 1.6.1 is applied.

After applying calibration (step 3) and velocity correction (step 4) the target position

is shifted towards actual value. In case of plywood wall, range profile as shown in

Figure 1.13 (c) represents raw range profile that is before calibration (red dashed line)

and range profile after calibration (blue solid line). Then applying velocity correction,

position of target is observed at 2.211m which is nearly equal to original position.

Figure 1.13 (d) represents range profile before and after velocity correction. Since the

thickness of plywood wall is very small (0.012 m) the change in distance due to

velocity correction is negligible. It infers that shift in target distance by 0.473 m is

mainly corrected by calibration.

(ii) Implementation ofpreprocessing for target behind brick wall: In case of brick

wall, when the target is absent behind wall only three peaks pi,p2 and p3 are observed

as shown in Figure 1.14 (a) with red dashed line. The first peak marked as p, is due to

weak isolation between transmitting and receiving port of antenna system, second
28



*

peak marked asp2 is due to front side ofwall, third peak marked asp3 is due to other

side of brick wall. When the target is present, four peaks are observed in the raw

range profile (step 2) as shown in Figure 1.14 (b) with blue solid line, the fourth peak

being marked as p4 is due to target. It is noted that, position of the target from the

scanning system is different for the brick wall. Distance from antenna scanning
system to brick wall is 2.32 m and the target is approximately 2.9 m away from the

antenna scanningsystem (Table 1.2, sr. no. 4).

RangeProfile without tefgetlRywooC wall)

Jar.

IJ
I

o.el

;j

3 5

RangeProfile with target(Plywood wall)
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Dowmangeiro)
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Figure 1.13 (a) Raw range profile with target at step 2 (b) Raw range profile without

target at step 2 (c) Range profiles before and after calibration (step 3) (d) Range

profile before andaftervelocity correction (step 4)
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Figure 1.14 (a) Raw range profile without target at step 2 (b) Raw range profile with

target at step 2 (c) Range profile before and after calibration (step 3) (d) Range profile

before and after velocity correction (step 4)

It is observed from Figure 1.14 (b), range profile plotted at step 2, that the target

position is 3.47 m which is greater than actual distance. To obtain the correct position

of target behind brick wall, corrections are applied as described in flowchart Figure

1.12. Observing range profile before and after calibration (step 3) from Figure 1.14

(c), the target is observed at approximately 3 m from the scanning system. Figure 1.14

30

-*

4

1



*

*-

(d) represents range profile after velocity corrections (step 4) on calibrated range

profile. The target is now observed at 2.76 m which is quite near to actual position of

target. The error in range measurement is by an amount equal to range resolution

value that is 0.0789 m. It is observed that signal gets attenuated more in brick wall as

compared to plywood wall. A weaker reflection from target is observed in case of

brick wall compared to plywood wall as expected.

1.4 Organization of the thesis

The organization of thesis work is as following. In Chapter 2, the existing techniques

and methods for TWI system are briefly reviewed. The chapter addresses the

development in techniques for improving detection, imaging and classification of

targets. Study and critical analysis of various clutter reduction techniques and its

implementation on obtained data are presented in Chapter 3.

Chapter 4 critically discusses the statistical based thresholding approach for target

detection and probability distribution function based target classification. The focus is

to classify metal and low dielectric targets behind the wall.

The objective of Chapter 5 is to study and apply some of the existing imaging

focusing algorithms like back projection, frequency wave number (co-k) and delay

sum techniques for obtaining the image. The objective of Chapter 6 is divided into

two parts; first part is C-scan imaging for target detection and second part consists of

feature extraction and shape recognition using neural network. The summary of

contributions made in the thesis and future scope of work is presented in Chapter 7.
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Chapter 2

Brief review of literature

2.1 Introduction

Ferris and Currie presented a state of the art for TWI system in 1998 and expected

that advancement will take place in next ten years [54]. Till today the research in TWI

focuses on the areas of transceiver design, electromagnetic aspects, signal processing,

detection, imaging, classification and identification of targets [14, 51, 154, 223, 241,

242, 243]. It is also a point of research to design high bandwidth antenna with

reasonable gain for various imaging applications [31, 32, 67, 68, 78, 79, 80, 81, 82,

95, 145, 182, 193].

Different technologies like pulse, FMCW, SFCW and UWB random noise that are

used in communication can be used in TWI system [18, 28, 42, 48, 61, 134, 153, 202,

221, 234]. Nowadays researchers are using new approach of compressive sensing in

SFCW to get better resolution by reducing the amount of collected samples [83, 88,

96, 211]. Several radars have been built and tested experimentally for TWI

applications [62, 64, 76, 169, 214, 228]. Selection of frequency range is one of the



important parameter in radar. Selection of higher frequencies allows large bandwidth

at the expense of reduction in penetration capability. So selection should be done

carefully. The researchers have used different frequency ranges for radar. Allan Hunt

[91] has chosen 500 MHz to 2 GHz, Soldovieri et al. [202] worked in frequency range

of 0.8 GHzto 4 GHz, Ahmad et al. [6] have worked in the range of 1 to 12.4 GHz and

Dehmollaian and Sarabandi [42] have worked in the range of 1 to 3 GHz.

Fine range resolution is obtained due to wide bandwidth. One dimensional

information is known as A-scan that only provides range information. Due to fine

resolution, multiple targets in down range can be easily separated and discriminated.

To achieve fine cross range resolution, either array or synthetic aperture radar

imaging concept is used. To emulate a large aperture by moving single antenna in

monostatic mode called as B-scan and is discussed in Figure 1.4 chapter 1. A coherent

summation of data collected over a path will form a high resolution image known as

two dimensional or B-scan image which is useful to know exact location of target and

targets lateral dimension. C-scanning system provides extra information to B-scan

images i.e height (Figure 1.5 chapter 1). The image obtained from C-scanning is 3

dimensional.

Developments in TWI are primarily motivated due to application of ground

penetrating radar (GPR) techniques to TWI system. The review of TWI is quite

exhaustive. So only selected areas given below are considered for review:

• Processing of received signal to remove clutter and to improve target signal

strength

• Detection of target and classification

• Imaging algorithm

• Shape recognition

2.2 Brief review of work related to clutter reduction

Acommon problem for every radar system is the appearance ofclutter in the received

signal. Clutters are undesired component in the received signal i.e., those signals that
are unrelated to the target scattering characteristics but occur in the same sample time

window and have similar spectral characteristics to the target signatures. In TWI,

received signal consists of desired response of target along with addition of other
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signals arising mainly from radar system parameters, wall reflections, environment of

room and multiple reflections. Radar system must be calibrated to remove systematic

errors such as uneven frequency responses due to cables and antennas. Calibration is

an important aspect for any radar system [35]. In satellite SAR images radiometric

calibration is to be done [116, 133, 144, 212] but for TWI system external calibration

has to be carefully carried out. Since the reflected signal from target is small

compared to other reflected signals, the detection of targets become difficult. To

improve the quality of detection and reduce false alarm, signal to clutter ratio must be

increased. For optimal target recognition, clutter removed signal is very helpful.

Researchers have developed various clutter reduction techniques to enhance the

detection accuracy and reduce false target detection [1, 36, 101, 102, 107, 128, 141,

158,175,252].

In general, clutter reduction techniques are classified into two methods, classical

technique and statistical method. Potin et al. [175] used classical digital filter

technique to attenuate the surface reflections from ground. One of the main methods

from this category is classical clutter reduction algorithm (CCRA) [36,102]. The

difficulty with this technique is that the coefficients are not optimized to represent

noise and target. Zoubir et al. [252] explored different signal processing techniques

with emphasis on Kalman filter based approach to detect the target. The drawback of

Kalman filter is that it is computationally intensive.

A parametric clutter suppression method is proposed by Merve et al. [141], which

models the variations in received signal. The drawback of this method is that a

reference signature of target is required which is not always available practically. Ho

et al. [86] computed linear prediction coefficients adaptively. But the problem in this

method is that it makes the assumption of Gaussian noise for the prediction error

which is not yet proven. Other clutter removal approaches based on statistics are

given by Xu et al. [227]. The difficulty with this technique is lack of robust estimate

of these statistics. Non statistical approach that extract response of landmine from

noisy radar was proposed by Lopera et al. [128]. Karlsen et al. [1011 decompose GPR

data into clutter and target signal using Principle Component Analysis (PCA) and

Independent Component Analysis (ICA) techniques. Abuzarad et al. [2] have used

Singular Value Decomposition (SVD) and Factor Analysis technique along with PCA

and ICA, to decomposed GPR data into clutter and target. Verma et al. [217] have
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applied statistical clutter reduction techniques like SVD, PCA, FA and ICA on TWI

images obtained when plywood wall is used. It is found that metal target got detected

easily after applying clutter reduction techniques. Comparison is done among these

techniques by obtaining signal to clutter ratio and it is found that ICA techniques

gives highest signal to clutter ratio. But when low dielectric target such as Teflon is

used then only ICA is able to detect target. Similar results are obtained when plywood

wall is replaced bybrick wall to increase the complexity of detection of low dielectric

target [60].

One of the commonly used methods for clutter reduction in TWI relies on background

subtraction, where two images taken with and without target are subtracted [240]. But

this technique has a drawback because clutter remains present if the data is not

collected at exactly the same antenna positions in both cases. In addition, it is not

possible in real scenarios to collect data without target. Polarization difference

imaging can be used to reduce wall reflections [243]. Time gating is another method

used to reduce clutter [4]. It is successful for targets which are far away from wall but

for targets near to wall the target response overlaps in time domain and cannot be

separated in time. Recently a spatial filter based clutter reduction technique is

developed in which zero spatial frequency which represents wall reflections is

notched from the image [245]. This filter may subtract low frequency components of

target as well. This method removes reflections from wall but does not discuss about

reduction in reflections due to other non target objects (clutters). There exists a need

for further study to explore suitable clutter reduction techniques which can be applied

successfully for detecting the target behind wall with reduced false alarm.

2.3 Review of work related to detection and

classification

2.3.1 Detection

In TWI, with several indoor objects of different material and shapes, robust detection

and classification is an important area of concern to the end users. The key issue of

any microwave based sensor for target detection is probability ofdetection and false

alarm rate [24]. The performance ofa TWI radar system as a detector is governed by

radar cross section of target, its distance from radar, propagation properties of wall
36
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and performances of radar. Daniel [36] presented effect of frequency on probability of

detection and it is observed that as frequency increases, probability of detection

decreases. However, when the comparison of radar images at 1 Gflz and 2 GHz over

the area and depth range was carried out, it was observed that at higher frequency,

spatial information from images increased [205].

Carvevic, D. [23], proposed an algorithm based on wavelet packet decomposition for

detection of shallowly buried targets. Wavelet decomposition has been found to be

useful since it provides a flexible representation of the signal by selectively matching

its time, scale and frequency characteristics. However, wavelet packet decomposition

is not invariant to time shifts of the signal which affect the performance of detectors.

In TWI, detection is possible due to dielectric contrasts between two different kinds of

targets or between target and media. If contrast is very weak then detection becomes

difficult. The electromagnetic waves transmitted by the radar propagate through air,

non metallic wall and other objects. TWI radar detects any object that lie in its line of

sight if the conductivity of object or dielectric constant or permeability is different

from the surrounding medium. Since change in absorption mainly affects absorption

so it is usually the contrast in the permittivity that leads to a reflection of the

electromagnetic waves radiated by the transmit antenna. Metal target will reflect more

energy and appear bright while target having low dielectric constant will reflect less

energy and appear dark. Bright area will indicate presence of target while dark area

will not be detected. One of the important aspects in radar is to detect the target with

low dielectric constant because the radar reflection from the low dielectric constant

target is very weak and reflection from low dielectric target in presence of clutter will

be very difficult to be distinguished. Impulse radar used to detect buried non-metallic

targets was addressed by Brunzell [20]. One of the major problems with GPR is

strong back scattered signal from ground surface. If the object is buried deeply below

the surface then there is no problem since back scattered signal from surface will

arrive earlier than the target signal and using time gating reflection from ground

surface can be removed. But when the objects are shallowly buried time gating is not

possible since backscattered signal from surface and target will arrive almost

simultaneously. Brunzell [20] presented spatial filter based algorithms that separate

weak target signal from strong ground backscattered signal.
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Another technique to detect low contrast was described by Paik et al. [164] in which

review of various mine detection techniques with emphasis on image processing

methods like filtering, enhancement and feature extraction was described. Problem of

detection of target due to low contrast is solved by morphological contrast

enhancement technique and histogram equalization method. For automatic

segmentation techniques using statistical features and regional properties, B-scan

images are used to train neural network to distinguish targets from non targets [192].

Real aperture FMCW radar was developed by Yamaguchi et al. [233] for detection of

objects buried in heavily wet snowpack. In this, synthetic aperture technique for

imaging was not used, i.e., non-coherent B-scan images were obtained for detection of

target. SAR images obtained in different applications use various detection techniques

but in TWI system detection needs more attention [3,11, 30, 33, 38, 103, 110, 207].

Barrie [15] carried out a preliminary study on using ultra wide band synthetic aperture

for through the wall detection with focus on detection of human body without

considering wall effect on detection. For target detection simple data processing

technique is used to extract the data pertaining to reflected fields by target. Bistatic

SFCW based radar with two step strategy was proposed [9, 47, 130, 131, 188]. The

first step is detection and localization and second step is imaging of objects using

linearized microwave tomography algorithm.

Clutter removal is not sufficient to improve detection of targets as quite good amount

of unwanted signal still exists. So for minimizing the unwanted signal after clutter

removal, thresholding technique may be applied. Several thresholding algorithms

have been proposed for computing the optimum threshold level in order to

discriminate between targets and background [63]. Statistical analysis of ground

clutter data has been done to design optimum detection algorithm by Billingsley et al.

[17] in which best fit has been obtained as Weibull model. Similarly statistical
modeling of radar backscattering from sea surface was done by Greco et al., [75].
Detection of target in Weibull clutter was described [71, 191]. Raghavan [178]

proposed a method for estimating the parameters of k-distributed clutter when the
available sample size or the data is limited.

Detection of target based on principles of classical detection theory using Neyman-

Pearson criterion to derive probability of detection and false alarm has been done

[41]. In this method, statistics of radar image was examined to obtain probability
38
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density functions for modelling background noise and target returns. The method

based on statistical binary hypothesis testing in which background model is defined

and all other objects which significantly deviate from this model are detected as

targets. Similar study based on Neyman-Pearson criterion, detection of target was

presented by Lai et al. [112], with a difference that hypothesis is obtained after

applying auto correlation.

A simple method to detect change in TWI scenario was presented by Soldovieri [203,

204]. If access to different sides of structure is possible then fusion of multi view

TWI radar images can generate single image. Fusion of images from multiple

locations improves the probability of detection. Ahmad et al. [5] have presented

multiplicative combining and RCS based direct thresholding scheme for fusing of

TWI images obtained from multiple vantage points along two sides of structure under

consideration. Debes et al. [39] found that fused images obtained using wideband

through the wall synthetic aperture beamforming have high signal strength and

improvement in false target detection compared to individual images. Papson and

Narayanan [168] also presented fusion strategies for multiple location SAR and ISAR

images.

Target detection based on analysis of the polarization characteristics was described by

Yamaguchi and Moriyama [231, 235] where polarimetric synthetic aperture FMCW

radar was used to detect buried objects in actual snowpack. Discussion about

polarimetric filtering principle that uses characteristics polarization states to

discriminate two targets is given [77]. Method based on high order statistical features

has been used to discriminate between landmine targets and the background [192].

Matched filters are commonly used for detection of known targets in presence of

clutter [46]. Landmine detection is done using different techniques like derivative

feature extraction [59], and Radon Transforms [209]. Automatic detection of targets

based on Hough transform was proposed for GPR applications. Statistical signal

processing techniques have also been used to localize target [227]. The goal is to

discriminate target from clutter using Bayesian approach and Hough transform [209].

Hough transform was used in Lidar [125]. Different techniques are available in

literature [45, 54, 70, 74, 93, 100, 108, 109, 110, 122, 123, 126, 127, 135, 140, 152,

160, 163, 165, 166, 167, 176, 180, 181, 198, 199, 200, 213]. Thresholding becomes

difficult when target and background level possess substantially overlapping
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distribution. Thus thresholding technique needs further investigation from TWI point

of view.

2.3.2 Classification of targets

Classification of radar data can be done in three ways; electromagnetic analysis, time

spectral analysis and spatial analysis. Aim of classification technique is to extract

more information with minimum apriori information. Some of the techniques which

have been developed to classify targets based on these techniques are reviewed.

Discrimination of mine target based on estimation of dielectric constant has been

investigated by Spagnolini [208]. Some researchers have used Polarimetric SAR for

classification purpose [37, 231]. Use of polarimetric SAR images enhances the

classification accuracy but these methods require more observation vectors.

Mine features extracted using time spectral analysis was described by Merwe and

Gupta, [141]. The other techniques for extracting features of mine are Karhunen

Loeve Transformation (KLT) and Kittler Young Transformation (KYT)

[164].Preliminary work in TWI on target classification was reported by Debes et al.

[40], and Mobasseri and Rosenbaum [143]. Matched illumination based detection and

classification of objects was considered by Estephan, et al. [49] in which optimized

waveform was designed that maximizes probability of correct target classification. A

scheme in which after segmentation, feature extraction using superquadrics and

classification using nearest neighbor and Support vector machines has been used was

presented by [143]. Quite less work has been reported in classification of targets used

in TWI system. Therefore there is a need to give more attention which can address

these problems.

2.4 Review of work related to imaging

Imaging methods for TWI system receive wide attention. Many imaging algorithms

have been developed for TWI system. One of the challenges in TWI is that the

microwave signal should be able to penetrate through wall with relatively little

attenuation so that reconstruction algorithm should be able to give maximum

information about target. Moreover the fine resolution ofimaging should be obtained.

Reconstruction or image formation can be coherent or non coherent. Non coherent
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imaging is based on envelope of signal and does not include phase information

whereas coherent techniques are based on complex signal amplitude. Non coherent

systems can be useful for localization of target using trilateration techniques [4].

Coherent imaging provides high resolution images. Various imaging techniques are

described by several researchers [6, 16, 27, 90, 117, 120, 151, 250]. TWI radar based

on pulse signals was introduced in which back projection technique was used for

image formation [151]. Hunt [90] has applied back projection technique for image

formation for SFCW based radar system. The blending of ultra wide band short pulse

radar and synthetic aperture radar (SAR) processing for TWI application was

described by Barrie [15]. The broadband content of a radiated pulse provides fine

range resolution, while synthetic processing enhances cross range resolution. Zetik et

al. [248] presented modified cross correlated back projection algorithm and

demonstrated with numerical examples that image quality was improved without

increasing computational complexity compared to back projection.

Delay sum algorithm for image formation approach along with synthetic aperture

radar technique was presented by Ahmad et al. [6]. Dehmollaian and Sarabandi [43]

proposed differential SAR based imaging technique. Researchers have used

polarimetry as a tool for monitoring earth surface with SAR images [26, 98, 99, 136,

174, 177, 230]. Techniques of tomography have been developed for TWI applications

which were originally used in medical imaging [155]. Soldovieri and Solimene, [202]

proposed linear inversion algorithm in which only qualitative information about target

like location and geometrical features were obtained and not the quantitative

information like dielectric constant and conductivity of target.

Unprocessed B-scan image exhibits undesired hyperbola and therefore have low

resolution features. To solve these problems various migration techniques have been

developed and applied to focus the scattered energy at their true spatial location in

object space. Several migration algorithms to focus the reflection signatures back to

their true positions have been reported in the literatures. Ozdemir et al. [161] have

applied hyperbolic summation (HS) type focusing technique to remove distortion

from hyperbolic dispersion in B-scan GPR images. Focused GPR images were

obtained for experimental data. There is a need to adopt this technique to

inhomogeneous, lossy and anisotropic mediums. Also the applicability is limited for

single target detection.
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Morrow and Genderen [147] described techniques to sense low dielectric contrast

object using integration method. Significant improvement in detection performance

and image contrast was obtained by combining this technique with cross polarimetric

images. The algorithm and techniques developed are thought suitable for standalone

ground penetrating radar system. Morrow [148] addressed problem in near field

detection like direct antenna coupling, air/ground coupling receiver noise floor and

degradation in dynamic range due to which loss of target signal, range resolution and

range accuracy may occur. Due to improvement in signal magnitude, range resolution

and range accuracy, even objects with low dielectric contrast were detected. The

results confirmed that it was possible to effectively image a range of buried metallic

and dielectric objects either individually or clustered. The deficiency in IIS was that

some unwanted defocusing effects were generated especially when two or more

buried objects are close to each other.

The survey of focusing algorithms namely hyperbolic summation, and frequency

wave number (co-k) was given by Ozdemir et al. [160, 167]. The proposed techniques

enhances lateral resolution of B-scan GPR images. It was observed that performances

of both techniques were different when same scene was imaged. It was observed that

co-k methods focus the target signatures better than HS method [160]. Yigit et al.

[244] presented frequency domain based imaging algorithm to obtain well focused

GPR images. Because of similarity of data collection scheme between GPR and TWI,

synthetic aperture radar (SAR) based focusing technique could also be applied on

TWI data. These techniques could be analyzed further to decide most appropriate

technique for TWI applications. Targets of interest are generally easier to be

recognized and isolate on three dimensional data sets than on conventional two

dimensional images. For example, 3D images help in discrimination between targets

having different dimensions [19, 69, 84, 111, 194, 195, 247].

Imaging faces a challenge due to the presence of wall. The propagating wave slows

down, encounters refraction and is attenuated as it passes through the wall. The

composition and thickness of wall, its dielectric constant and the angles of incidence

affect the characteristics of signal propagating through the wall. In image formation

techniques, ifpropagation effects are not included in the process, then the propagation

distortions due to signals passing through walls will create ambiguities in imaging the

42

-+

*



scene. Study of wave propagation through wall at microwave frequencies is useful

[13,44,87,115,172, 184,236].

The effects of incorrect estimates of the wall thickness and dielectric constant on

performance of imaging have been investigated [7, 104, 119, 246]. A technique which

can remove ambiguities in wall parameter was proposed [219, 220]. The approach

obtains two images at two standoff distances from wall. For different values of wall

thickness and dielectric constant target position is shifted. The wall parameters

corresponding to the intersection point of target image trajectories for two standoff

distances provide target exact positions. Study on wall parameter ambiguities was

presented by Ahmad et al. [7]. Image quality metrics were used to obtain focus

images. Another study of wall effects on imaging was carried out by Dehmollaian and

Sarabandi [42]. Sensitivity analysis was carried out to study the effect of wall in

particular degradation in imaging.

The information on electromagnetic properties like dielectric constant and loss

tangent of building materials was presented [149, 183]. In TWI, severe multipath

effects are incurred. Due to multipath effect the incorrect target location will be

detected. It will also cause single target to be detected in multiple locations. If in front

of imaging object, undesired object is placed then due to shadow, faithful

representation will not be possible. The internal wall structure also has a large impact

on the propagated signal. A hollow portion in the wall will affect the propagation

through the wall. The propagation effects can be corrected using image focusing

techniques to perform proper signal correction. Propagation diffraction and multipath

have been partially addressed [113, 206, 218, 251].

Burkholder and Browne [21] proposed techniques in which low coherence features

were suppressed by using coherence factor filtering which increases clarity and

uniformity. TWI image obtained through back projection were quantified using

coherence factor to check the wall effect. Coherence factor can be used for correction

in wall parameters to improve focused image. In satellite SAR images for contrast

enhancement different techniques were used [72, 73, 215, 216, 229, 237, 238, 239].
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2.5 Review of work related to shape recognition

The purpose ofobtaining images is to provide target information to end user/operator.

Essential information is extracted from targets which is used for recognition. The

design ofrecognition system requires careful attention to following issues, definition

ofpattern classes sensing environment, pattern representation, feature extraction and

selection, cluster analysis, classifier design and learning, selection of training and test

samples and performance evaluation. Review papers summarize and compare some of
the well known methods used in various stages of pattern recognition system [94].

Pasolli et al, [170] proposed a novel pattern recognition system to identify and

classify buried objects. The complete process consisted of preprocessing,

thresholding, search ofhyperbolic pattern and finally recognition ofmaterial type of

identified objects using support vector machine (SVM). Moriyama et al, [146] discuss

the classification of targets buried underground by radar polarimetry. Two techniques,

one based on power polarization anisotropy coefficient and other based on

polarimetric signature were used for classification.

Yarovoy et al. [242] used frequency spectrum analysis to detect human respiration.

Falconer [50] measured the power spectral density ofavariety ofobjects and used the
difference in the shaping ofthe power spectral density (PSD) to differentiate between

targets and infer the activity level of human targets. Spectrogram based features for
identification of human being was proposed by Gurbaz [83]. Al-Nuaimy et al, [10]

proposed a technique in which neural network was used to identify target reflection
from radar image using Welch power spectral density and Hough transform was then

applied as pattern recognition. ,

Recent research has addressed the topic of time-frequency and Doppler signature

estimation for target classification and identification [173, 179]. Time-frequency

algorithms are only able to estimate linear and stationary signal. GPR target detection
and discrimination using time frequency features was described by Savelyev et al.

[190]. Wigner distribution was used as a target signature due to its good properties.
The other conventional time frequency analysis techniques include short time Fourier

transform (STFT), wavelet analysis [114, 141]. A new target recognition technique
based on adaptive joint time frequency such as adaptive Gaussian processing was
proposed by Kim et al. [106]. GPR landmine discrimination based on deconvolution
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algorithm was proposed by [189]. Frigui et al. [59] used edge histogram descriptors

for feature extraction of landmine targets. In through wall radar, human activity

behind wall was detected [112, 157]. Hilbert Huang transform was only able to

analyze non-liner and non-stationary signals. Anthony [86] investigated the

classification and identification of different objects behind wall. The different

materials are defined based on their permittivity, permeability and conductivity and

include concrete, wood, glass and, metal. Many methods decompose the transient

signal into a sum of decaying sinusoids. These sinusoids were represented by their

poles and residues. Detailed analysis of the poles and residues was then carried out

with the aim of classifying them based on material medium of the object.

Classification of received signal was carried out by studying pole patterns obtained by

using Prony's method.

Due to presence of wall, imaging algorithm which uses C-scan data to generate

images are not clear from point of view of target recognition. Thus the user or

operator will face the problem of proper interpretation of image. C-scan images are

highly subjected to degradation due to the fact that antenna beam is not focused. In

post processing filtering, interpolation, thresholding and edge detection techniques

were applied to enhance the detection and visualization [192]. Column filtering

techniques smoothen the transitions from one pixel to another in the image.

Automatic recognition of target by shape will be very useful in TWI to discriminate

between different targets.

To enable reliable recognition of targets, the essential information must be extracted

from the obtained image [225]. In order to recognize target shapes, first order and

second order statistics such as mean, standard deviation, entropy and many others

were proposed as features by Mahfouz et al. [138]. Previous work on target

recognition in TWI was based on micro-Doppler effect [112]. Mobassori and

Rosenbaum used PCAfor object recognition [143]. But the features were not position

invariant. Pattern recognition technique can be used to identify and classify targets

[132, 170]. In the literature related to TWI, very few researchers have mentioned

about recognizing shape of object [121]. So shape detection techniques used in other

application area were searched. Mahtre et al. [139] describes several shapes

determination techniques. Different techniques like chain code based string feature,

Fourier descriptors, region based features and moment based descriptor are used for
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shape description. The complete study and comparison between Fourier descriptors

and curvature scale space descriptors is described by Zhang et al. [249]. Less work

has been reported onpattern recognition based recognition ofobjects for TWI.
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Chapter 3

Critical analysis of clutter reduction

techniques for detection of metallic as

well as low dielectric material behind

wall

3.1 Introduction

The electromagnetic waves that are transmitted by TWI system have to propagate

through air, wall and other objects present in room. So, TWI radar should have

capability to detect any object that lie in its line of sight. It is usually the contrast in

the permittivity that leads to a reflection of the electromagnetic waves radiated by the

transmitting antenna and helps in detection process. The reflected signal also depends

on ratio between size of object and wavelength of signal.

The signal received from TWI system as described in Section 1.3.1 consists of

addition of reflected signal from target with other undesired signals arising mainly



from TWI system parameters i.e. improper isolation between receiving and

transmitting port, wall reflections and multiple reflections. The undesired components

(i.e. unwanted signal) in the received signal are considered as clutter. The large

energy ofreflection from wall that occurs due to high contrast between the dielectric

constant of wall and air leaves very small amount of energy to pass through the wall.

The signal which passes through wall will be reflected from target and again passes

through wall to reach the receiver. Very weak target signal will be observed in the

received signal. Further, if the target dielectric constant value is comparable to

medium (i.e. low dielectric constant target), then the weak target signal may get

obscured due to strong clutter. The presence of high clutter level leads to

unacceptably large number offalse alarms. Thus, the challenge in TWI is to detect the

weak target signal in presence ofheavy clutter. To increase the detection accuracy of

target and reduce false target detection it is therefore necessary to reduce clutter.

Various clutter reduction techniques are used to increase the target signal to clutter

ratio. Mainly statistical clutter reduction techniques have been applied in ground

penetrating radar (GPR) applications successfully by various researchers [36, 141,
227, 252]. Researchers working in TWI have developed various clutter reduction

techniques to enhance the detection accuracy and reduce false target detection [4, 43,

240, 245]. The review of different clutter reduction techniques like back ground

subtraction, time gating or spatial filtering etc. are described in Chapter 2. The

drawbacks of each technique have been discussed. So clutter reduction is still a

challenging task.

The main aim of this chapter is to find suitable clutter reduction technique by which

target information may be enhanced. From statistical category mainly Singular Value
Decomposition (SVD), Principle Component Analysis (PCA), Factor analysis (FA)
and Independent Component Analysis (ICA) clutter reduction techniques have been
chosen. Researchers are using various clutter removal techniques in ground

penetrating radar (GPR) data but in TWI, importance of these techniques is yet to be

explored.

This chapter is organized as follows. Section 3.2 describes brief description of
methodology used for obtaining B-scan images. In this section different statistical
clutter reduction techniques are described. In Section 3.3, the results are illustrated for

metal target behind plywood and brick wall. Detection of low dielectric constant
48
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target behind wall is described in Section 3.4. Concluding remarks are finally reported

in Section 3.5 of the chapter.

3.2 Methodology

The clutter reduction techniques are applied on raw B-scan image. Figure 3.1 gives

the flowchart which describes steps used to obtain clutter reduced B-scan images.

According to flowchart Figure 3.1, following procedure is followed to obtain clutter

reduced B-scan image.

• Formation of raw B-scan image (after step 6 from flowchart)

• Clutter reduction techniques

3.2.1 Formation of raw B-scan image

Before raw B-scan image is obtained, the pre-processing technique as described in

Section 1.3.4 (Figure 1.12) is applied. Technique as described by Yamaguchi et al.

[232] is used to form raw B-scan image from the B-scan data. The method of

collection of B-scan data is described in Section 1.3.1. In short, in this technique for

monostatic case, a single antenna is used to transmit and receive the radar signal at

one location and then moved to the next location in horizontal direction to collect

radar signal. Thus information at more than one A-Scan positions is collected. This

set of A-Scans can thus be assembled together in a two dimensional structure, and

visualized as an image known as raw B-scan image. Raw B-scan can be represented

by (3.1)

/(z,x) =ZS(fk)<sxp(j2nfk(2z Ic+2zshifi Ic+2Dwwall(^~i~ - >)' <0) (3•l)
k = \

where z is distance (down range ) andx is the antenna scanning positions in horizontal

direction.

This raw B-scan image taken represents down range (corresponding to distance)

versus intensity on the plane of scanned width (corresponding to the direction of

antenna scan). On the obtained raw image, different statstical clutter reduction

techniques are applied as described in the following section.
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Frequency Domain Data

%z
Step 1. Time Domain (IFFT)

%z

Step 2. Spatial Domain

Step 3: Calibration

Step 4 Velocity Correction

$z
Step 5 Range Profile (A-scan)

%z

Step 6 Raw B-Scan Image

^
Step 7 B-Scan Image after clutter reductionusing

SVD, PCA, FA,ICA

<^

Step 8 Range profile extraction

Figure 3.1 Flowchart for clutter reduction
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3.2.2 Clutter reduction techniques

In statistical method data is decomposed into suitable subspace components that

•* contain desired target response and clutter. From signal processing point of view, the

techniques used for clutter reduction are called blind source or signal separation

(BSS) methods [22]. BSS means separation of a set of signals called source signals

from their mixture signals without acquaintance of any information (or very little

information) about mixing background and signals. BSS is the separation of a set of

signal in which the regularity between the signals is minimized (correlation is

k minimized) or the regularity between the signals is maximized (statistical

independence is maximized).

In TWI system, it is assumed that the scattered response is composed of superposition

of responses from individual scatterers i.e. linear model of superposition is assumed.

Thus mainly two components are assumed. One is clutter and second is reflection

from desired target. Using clutter reduction techniques, signal can be decomposed

into desired target and clutter. Numerous statistical clutter reduction techniques exist

for ground penetrating radar (GPR) but its application on TWI is yet to be explored.

In this chapter Singular Value Decomposition (SVD), Principle Component Analysis

(PCA), Factor Analysis (FA) and Independent Component Analysis (ICA) are applied

due to ease of implementation on TWI data. Brief descriptions of these techniques are

given in following subsections.

(a) Singular Value Decomposition (SVD)

* The purpose of signal processing techniques in clutter reduction is to separate data

into complementary subspaces called target signal and clutter subspaces in order to

increase target signal to clutter ratio [1]. SVD is one of the most stable and

computationallyeffective techniques in linear algebra.

B-scan image is represented by equation (3.1) whose dimension is M x N ( z = 1, 2,

..., M; x = 1,2, ..., N) where z denotes the distance index (down range) and x denotes

the antenna position index (cross range). The number of discrete distance points is

greater than antenna position index, therefore M > N will be assumed. The SVD of

raw B-scan image represented by equation 3.1 is given as: VTvi*' ^SftN,



I = USVT (3-2)

where U and Fare (M x M) and (N x V) unitary matrices respectively, 5" = diag (07,

o-^,..., o>) and o-, are singular values with order cj,> a2 >...> a,. > 0. The columns of U
and Vare called left and right singular vectors respectively. Basically U and Vare

eigenvectors of{//} and {//}. For (r =N<M), the SVD is given by (3.3-3.5)

f. \

/ = cr, (...Vlr-) +a2
v- /

7 = 1 <T,-w,v,
(=1

l = f+I2 + I3 + ... + I,

f: A

(..,/...)
v- y

r": "\

+ "- + (T» (..../...) (3.3)

\- /

(3.4)

(3.5)

ihwhere // are matrices of same dimensions as / and are called as modes or i

eigenimage of /. After applying SVD on experimental data and analyzing all the

Eigen images, it is found that first Eigen image provides clutter information and

second Eigen image provides target information. The remaining Eigen images are

discarded.

Thus / can be decomposed into two subspace, target and clutter respectively.

l=h argel clutter

Thus clutter can be directly estimated by (3.7) and target by (3.8).

hlutter=h=°\XU\XV\

I,arget=I2=°2xu2xv2

(3.6)

(3.7)

(3.8)

(b) Principle Component Analysis (PCA)

PCA has proven to be an exceedingly popular technique for signal processing, data

compressing, data visualization and pattern recognition and is discussed at length in

most of the texts on multivariate analysis. The advantage of PCA over SVD is that

PCA performs better when signal strength is weak [101]. PCA is second order
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statistical method in which covariance between observed variables are used for

estimation. The goal is to express data set in terms of linear combinations of small set

of factors that are assumed to be uncorrelated and gaussianly distributed. The first

principle component accounts for variability in data as much as possible and each

succeeding component accounts for the remaining variability as much as possible.

Principle component techniques have been applied to GPR data analysis for detection

of landmines by Karlsen et al. [101].

In TWI, for clutter reduction using PCA, B-scan data is represented by a matrix /,

whose dimensions are M x N (z = 1,2, ..., M ; x= 1, 2, ..., N). Here z denotes the

distance index (down range) and x denotes the antenna position index (cross range).

The AT Principal components (K< N) of data matrix /can be given by (3.9).

Y = ArI (3.9)

where / is the zero-mean input data matrix, Fis the output matrix called the vector of

principal components (PCs), and A is an NxK matrix that transforms / into F. PCA

expresses input data variables into smaller number of uncorrelated linear combination

of a set of zero mean random variables while retaining as much of the information

from the original variables as possible. PCA assumes that A is an orthonormal matrix

(AfT.Aj=6ij) such that the covariance matrix of Y, Cy is diagonalized. A can be

computed using covariance matrix. Let / be the data matrix after normalization. Then

covariance matrix C*of lis given by (3.10).

C= —If (3.10)
x N

The Eigen vector and Eigen value matrices of Cx are 0 and A respectively and can be

computed by (3.11).

C/I>= OA (3.11)
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Here A= diag (X,, X2, X3, -.-M) and A,, X2, X3, ...,XK are the Eigen values. After

arranging Eigen values in decreasing order, Xj> X2> X3> ...> Xk the matrix of K

leading Eigen vectors A is given by (3.12).

^ =[O„cp2,03,...OJ (342)

Thus PCAcan be used to detect target and reduce clutter by selecting components that

mainly carry target information say Ap. Rest components represent clutter. The

principle component matrix S canbe given by (3.13).

S = ATI (3-13)

The reconstructed clutter free signal space can be extracted from the raw B-scan

matrix containing target and clutter information. After calculating principle

components, target can be extracted by second column oftransformation matrix Athat

isA2 and principle components matrix S that is S2 and given by (3.14). -4

I =AlS, (3-14)1 target ^2^1

>

A

(c) FactorAnalysis (FA)

The main application of Factor Analysis is to reduce data variables and to classify

them accordingly. Basically Factor Analysis extracts set of factors from data set using

correlation These extracted factors are orthogonal and are ordered according to the

proportion of the variance of original data [29, 226]. Therefore only a subset of
factors is considered as relevant and remaining factors are considered either irrelevant

or clutter.

For clutter reduction, B-scan data is represented by a matrix /, whose dimensions are

MxN,(z= 1,2,...,M ; x =1,2,..., N). Here z denotes the distance index (down range)

and x denotes the antenna position index (cross range). The observed variables are

modeled as linear combinations of the factors plus error terms. ^
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L=Za„xsx+e_ (3.15)
x=\

In the matrix notation it can be written by (3.16).

I = AS + E (3.16)

where / is the matrix consisting of M A-scans in each row with x time samples, S is

the Kx N matrix of factor scores (latent variables), A is the Mx K matrix of factor

loading, and E is a matrix of error terms. The Factor Analysis can be modeled in

terms of variances and covariances given by (3.17).

I = A0Ar+iF (3.17)

where I is the M x M population covariance matrix of the observed variables, 0 is

the K x K covariance matrix of the factors and f is the M x M residual covariance

matrix.

The primary assumption is that factors are uncorrelated which implies that covariance

matrix should be identity matrix i.e.0 = 1, and the M-dimensional e is distributed

according to K (Q\T ), where f is diagonal matrix. The assumption of diagonality of

Wimplies that observed variables are conditionally independent (given the factors).

The distribution of observed variable x must have zero mean and covariance I.

Factor Analysis finds optimal A and ¥ which best describe the covariance structure

of x. The best model ofA and W can be found using Expectation Maximization (EM)

algorithm. The EM algorithm is a two step iterative procedure for maximizing the log

likelihood. A brief explanation of generalized EM algorithm for maximum likelihood

method is discussed in this paper. Detailed explanation of EM algorithm for

maximum likelihood Factor analysis is given by Rubin and Thayer [186].

In expectation step, it calculates the expected value of log likelihood function with

respect to unknown variable z that is given as (3.18).

Q(Y\Y{T))=EzlxY(n[logL{Y\X,z)] (3.18)

55



where Yis the unknown parameter to be estimated under the conditional distribution

ofZwhen Xis given, l(y\X,z) is the likelihood function.

Maximization step finds the optimal parameter values that maximize the expectation

which is computed in Expectation step given by (3.19).

Y(T+,) =argmaxfe(Y\Y{T))\ (3-19)

Apply these two steps iteratively until a converged solution for F is obtained. After

applying FA on experimental data; it is found that it splits data matrix X into factor

score matrix 5" and factor loading matrix A given by (3.16). Target can be extracted by

selecting the factor score and factor loadings components which carry the target

information given by (3.20). Generally the second column of A and S give the

information of target and first column give the information of clutter.

j -Ats (3.20)
^target ~ A2 °2 V

(d) Independent Component Analysis (ICA)

ICA is used to solve blind source separation problem. ICA divides data into

statistically independent components while other techniques such as Principal

component Analysis (PCA) or Factor Analysis represents data into uncorrelated

components. Therefore PCA or FA cannot separate signals efficiently because

uncorrelatedness is not enough. Statistical independence is necessary which takes into

consideration higher order moments which is a stronger statistical property than

decorrelation. Therefore ICA is widely used in many applications such as feature

extraction and noise reduction from the images, finding hidden factors from financial

data and mostly used in telecommunications for separating the original source signal

from interfering signals [1, 34, 92, 101].

Let us consider a B-scan data to be represented by a matrix /, whose dimensions are

M*N, ( z = 1,2, ..., M; x = 1, 2, ..., N ). Where z denote the distance index (down

range) and x denotes the antenna position index (cross range).

ICA assumes that every / is a linear combination of each sx as follows:
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iaySj (3.21)

j= 1, 2, 3, ... , N or in the matrix notation

/ = AS (3.22)

where A is an M x N basis transformation or mixing matrix, and S is the matrix

holding the N independent source signals in rows of N samples. ICA of matrix / can

be found by finding a full rank separating matrix Wsuch that output signal Matrix can

be defined by Y=WI. The estimation of source signal can be done using equation:

N

S

/=1

•j=yj = ZwjiIi (3.23)

j= 1,2,3, ,N or in the matrix notation

S = Y = WI (3.24)

where W is an NxM matrix which makes the outputs from Sfrom the linear

transformation of the dependent sensor signals / as independent as possible.

Formulation of ICA can be done in two steps, first one is to formulate a contrast

function G(y) that estimates the level of statistical independence between the

components of y and second is optimization of contrast function that enables the

calculation of independent components. Contrast function estimates the level of

statistical independence between the components of y means optimization of contrast

function provide the independent components. To apply ICA some preprocessing is

needed. The most basic preprocessing is "centering" in whichmean is subtracted from

each range profile in B-scan matrix /. Second preprocessing is whitening in which

observed vector X is transform into new vector / which is white means its

components are un-correlated and their variance equal unity.
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FASTICA [92] algorithm is used which is fixed point iteration based algorithm that

calculates the separating matrix Wby finding a maximum of non Gaussianity of WI.

After computing separating matrix W, mixing matrix A can be computed by taking

inverse of it i.e. A= W~'. Since mixing matrix is known, corresponding independent

component S matrix can be calculated using (3.22).

After applying ICA on experimental data; the number of independent components is

as much as the number of A-scans obtained. By considering each row of independent

component matrix S and column of mixing matrix A; images have been generated

using (3.22) and observed. Image that contains target information can be chosen and

rests are discarded.

/ =A S (3-25)1 target -"target target v

3.3 Results and discussion

Clutter reduction techniques as discussed in above section are applied to the

experimental data and the resultant images have been compared. Only B-scan data at

one of the height at which target is present is taken for analysis in all the cases. Signal

to noise ratio (SNR) can be given as ratio of average energy of image matrix after

clutter reduction to the average energy of cluttermatrix. The denominator clutter term

is obtained by subtracting the clutter reduced image from raw B-scan image. The final

image after applying clutter reduction is supposed to have information only about

target but actually it is not. Therefore, in the numerator term average energy of image

giving target information is not taken as this contributes more to the numerator term

of SNR and makes it difficult to compare different clutter reduction techniques. Thus

peak signal to noise ratio [222] is calculated by taking the numerator term ofSNR as

the peak value ofnormalized image matrix. It infers that PSNR may be used as a first

hand indicator to compare the results of various clutter reduction techniques. PSNR

can be calculated using (3.26) and (3.27).

PSNR(dB) =\0\og{\/MSE} (3-26)
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MSE=-±—i:z{g(i,j)-f{i,j)f (3.27)
M xN t=\7=1l

where g(i, j) is the original B-scan image;/(/,/) is the image after clutter reduction;

MSE is mean square error; Mand N are dimensions of image.

3.3.1 Clutter reduction for single target behind wall

(a) For plywood wall

Experiment was carried out for detection of a metal plate kept behind a plywood wall.

The data collected as described in Table 1.2, S. No. 1 is used for analysis. The

processing steps as shown in Figure 3.1 are applied to obtain clutter reduced B-scan

image. Calibration and velocity correction (step 3 and step 4) as already explained in

Section 1.3.4, are applied before B-scan image is obtained. Figure 3.2 (a) shows the

B-scan image formed at step 6 of Figure 3.1. The vertical axis corresponds to down

range distance and horizontal axis represents the scanned width (cross range) which is

number of A-scans. Here, one B-scan image consists of 26 A-scans. In the B-scan

image shown in Figure 3.2, a strong reflection marked as p\ which may be due to

isolation problem between transmitting and receiving ports is observed. The reflection

is constant along horizontal scanning line. Similar constant reflection p2 along

horizontal scanning line is observed due to presence of plywood wall. Reflection due

to target is observed and marked as /?3. Since target length is smaller than scanning

length, reflection due to target is not observed throughout the horizontal line. Thus,

the reflectionp\ and/?2 may be called as unwanted signal i.e. clutter.

Then the clutter reduction techniques as discuss above are applied on obtained raw B-

scan image. Results obtained at step 7 i.e., after applying clutter reduction techniques

like SVD, PCA, FA and ICA are shown in Figure 3.2 (b), (c), (d) and (e) respectively.

From these results, it is observed that clutter is suppressed in one hand and in other

hand reflection due to target is enhanced. The image obtained after applying clutter

reduction is supposed to have mainly information about the target but actually it is not

and contains good amount of background noise. Thus signal to noise ratio of final

image i.e. after clutter reduction with different techniques has been computed to

compare the results and the effectiveness of individual clutter reduction techniques is

seen.
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Table 3.1 Performance of clutter reduction technique on basis of PSNR in case of

single metal target behind plywood wall

S. No Clutter reduction technique PSNR(dB)

1 SVD 20.07

2 PCA 19.85

3 FA 21.44

4 ICA 43.69

The PSNR value computed using equation 3.2 and equation 3.3 for different clutter

reduction techniques are shown in Table 3.1. It is clearly observed from Table 3.1 that

ICA has better PSNR compared to other three techniques. By visualizing the results

shown in Figures 3.2 (b), (c), (d) and (e), it is observed that in ICA based technique

target is enhanced more i.e. the contrast between target and background of image is

more.

(b) For brick wall

The performance of various clutter reduction techniques is evaluated by replacing

plywood wall by brick wall in this experiment. The problem of detection of target

increases further when brick wall is used because attenuation of signal due to

presence of brick wall increases. Thus very weak target reflection will reach receiver

making it as absent i.e. missed target. The details of data collection are described in

Table 1.2, S. No. 4. The B-scan image obtained at step 6 is shown in Figure 3.3 (a). It

is observed that clutter dominates and obscures the weak target reflections. Constant

reflection p\ due to problem of isolation between transmitting and receiving ports is

observed. Similar constant reflection/^ along horizontal scanning line is observed due

to front side of brick wall. A constant reflection pi, along horizontal scanning line is

expected even for other side of brick wall as thickness of brick wall is greater than

down range resolution but it is observed that at some places the reflection is very

weak. Though single target is kept behind wall, multiple comparable reflections

indicating that multiple targets are present are observed in the image. These indicate

false targets. After observing these reflections it is difficult to say that there is only

one target without apriory information.
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Table 3.2 Performance of clutter reduction technique on basis of PSNR in case of

single metal target behind brick wall

S.No Clutter reduction technique PSNR(dB)

1 SVD 17.17

2 PCA 16.26

3 FA 15.51

4 ICA 42.84

This false target detection can be minimized with the application of clutter reduction

techniques. Figures 3.3 (b), (c), (d), and (e) show B-scan image obtained at step 7 that

is after applying SVD, PCA, FA and ICA respectively. It is clearly observed that a

good amount of clutter is minimized and target is highlighted. The calculated values

of PSNR are tabulated in Table 3.2 from which it is again observed that ICA based

clutter reduction technique outperform in comparison to other techniques.

(c) Extracted range profile for brick wall

Performance of various clutter reduction techniques was also evaluated by extracting

the range profile from the clutter reduced B-scan image when brick wall was used. In

Figure 3.4, range profiles are plotted for antenna position x=16. It represents target

signal before applying clutter reduction techniques (blue solid line) and after applying

clutter reduction (red dashed line). Reflection due to target is clearly visible as other

reflections have been reduced in clutter reduced range profile. Figure 3.4 (a, b, c, and

d) represent range profiles after step 4 and after step 7 by applying SVD, PCA, FA

and ICA. One can see a strong target peak at around 2.763 m in each range profile

after applying clutter reduction techniques. It is observed that signal to clutter ratio is

quite improved for all applied clutter reduction techniques. The probability of false

alarm is also reduced after minimisation of false peaks by application of these clutter

reduction techniques which is clearly shown by the dashed line in Figures 3.4 (a), (b),

(c) and (d). Data points are shown at each peak from which signal strength can be

read. In range profile without clutter reduction, strongest peak amplitude of 0.9053 is

observed which may be due to the isolation problem between transmitting port and

receiving port. It is marked in Figure 3.4 (a) aspi.
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Similarly target peak which is weak and has amplitude of 0.692 is markedasp4. After

clutter reduction the target peak is expected to be the highest. The target peak is

observed in each technique from Figures 3.4 (a), (b), (c), and (d) and is marked as T

in each case. In case of SVD the maximum amplitude difference between target peak

and undesired peak is 0.5633 whereas in PCA, FA and ICA it is 0.5888, 0.3111 and

0.9479 respectively. It is inferred that target peak is enhanced more by the application

of ICA as compared to other techniques.
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3.3.2 Clutter reduction for double target behind the wall

In TWI, detection is possible due to dielectric contrast between target and room

environment. Detection of low dielectric constant material becomes more difficult due

to weak reflection from such targets. To verify detection of low dielectric constant

material, Teflon whose dielectric constant is approximately 2.0 is taken as target.

(a) For plywood wall

In this experiment, to verify detection capability, both metal and Teflon targets are

kept at same distance in down range behind plywood wall with separation in cross

range distance by 0.3 m between them. The geometrical setup is as described in

Figure 1.7 (Chapter 1) with the data collection details as in Table 1.3, S. No. 1.

After plotting raw B-scan image as shown in Figure 3.5, only one target is observed

and it is due to stronger reflection from metal target. The second target (Teflon) is not

observed due to weak reflections. Weak reflection occurred due to low dielectric

contrast between air and Teflon and reflection level of Teflon may be difficult to

distinguish with the level of clutter being so high. So, the raw image is processed

using clutter reduction techniques to reduce clutter and enhance target information.

From results as shown in Figure 3.5 (b), (c), (d) and (e), it is observed that all the

considered clutter reduction techniques have clearly resulted in improvement in

detection of metal target while Teflon target is detected only after the application of

ICA.

Table 3.3 Performance of clutter reduction technique on basis of PSNR in case of

double target behind plywood wall

S.No Clutter reduction

technique

PSNR(dB) Results

1 SVD 29.07 Only metal target detected

2 PCA 29.23 Only metal target detected

3 FA 33.89 Only metal target detected

4 ICA 35.59 Both metal and Teflon target

detected
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(b) For brick wall

Since detection of Teflon target is possible only due to ICA clutter reduction

technique, only ICA is further evaluated for detecting Teflon target behind brick wall.

In this experiment, two targets i.e. a metal plate and a Teflon plate are used. The

details of target dimension and separation between them are given in Table 1.3. S. No.

3. After plotting raw B-scan image, only one stronger reflection from metal target is

observed. Second target is not observed due to weak reflection from Teflon. After

processing using ICA clutter reduction technique, the detection of Teflon target is

possible. Results before and after clutter reduction using ICA are shown in Figure 3.6

(a) and (b) respectively.

To further analyze the effectof clutterreduction, range profiles after step 7 at antenna

scan position at which target is present is observed. Comparison of range profiles

obtained with and without applying clutter reduction is carried out. It is observed from

range profiles at different antenna scan positions that the target peak amplitude varies

considerably with antenna scan position in horizontal scanning direction. From B-

scan, the lateral position of the point of strong reflection is observed at x=5, which is

the position of metal target and x=25 is the position of Teflon target.

B-scan image after pre-processing B-scan imageafterdirtierreduction usingICA

Reflection from Teflon target
Reflection frommetaltarget

0.5

crossrange im)

(a) (b)

Figure 3.6 B-scan image plotted for double target behind brick wall (a) After

(b) After step 7 using ICA
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The range profiles are extracted from B-scan image (Figure 3.6 (b)) for antenna scan

position at which target is present. Since the metal target is detected quite

significantly after clutter reduction techique, the range profile for metal plate is not

shown here. Range profile is observed for antenna scan position x= 25, which

represent Teflon target. Figure 3.7 represent range profiles afterstep4 andafter step7

by applying ICA. Data points are shown at target and clutter peak from which the

signal strength can be read. As discussed in Section 1.3.4, and observed here in the

range profile without clutter reduction (blue solid line), the first peak marked asp\ is

due to weak isolation between transmitting and receiving port of antenna system,

second peak marked as pi is due to front side of brick wall, third peak p3 is due to

back side of brick wall and the fourth peak p4 is due to target. Since the first peak is

strongest it is considered as highest clutter signal. The observed signal strength at

clutter peak (p\) and weak Teflon target peak (pi) are 0.6583 and 0.1682 respectively.

After applying clutter reduction technique ICA, the peak due to Teflon target (red

dashed line) is quite enhanced as shown in Figure 3.7. The strong target peak is

observed around 2.763 m in range profile after applying clutter reduction techniques.

The peak is marked as T. The level of clutter is less than 0.1 and the peak of Teflon

target is enhanced to approximately 1.0. Thus the difference between amplitude of

target and clutter is enhanced from 0.4901 to 0.9 by using ICA clutter reduction

technique.

Rangeprofiles

Figure 3.7 Represents range profile for Teflon target with and without application of

clutter reduction techniques.
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It infers that ICA has capability to reduce clutter more efficiently and increase the

detection capability of low dielectric target behind the wall.

3.4 Concluding remarks

The focus of this chapter is to explore the possibility of application of various existing

clutter removal techniques for TWI data and also to check the possibility of detection

of low dielectric target. After applying clutter reduction techniques, clutters are

successfully minimized which implies that the techniques are powerful. Detection of

metal target kept behind wall is improved using all the clutter removal techniques

described here. It is found that ICA based technique gives better result in comparison

to other clutter removal techniques like SVD, PCA and FA. PSNR for B-scan image

obtained by using ICA clutter removal technique is quite high when compared to B-

Scan images obtained by using other clutter removal techniques.

SVD, PCA and FA are not able to detect the target having low dielectric constant, like

Teflon behind the plywood wall and for brick wall. On the other hand ICA based

clutter removal technique has a better potential to detect low dielectric constant target

like Teflon behind the plywood wall and even for brick wall. Thus ICA based

technique may be applied to enhance the target signal detection. Processing using

clutter reduction increases target signal strength which increases the probability of

correct target detection and hence it is useful for further process of identification.
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Chapter 4

A novel approach to detect and classify

the targets

4.1 Introduction

The objective of this chapter is to address two issues i.e. target detection and

classification. Preprocessing and application of clutter reduction techniques on B-scan

images were discussed in Chapter 1 and 3. The detection of targets as well as

classification of the targets with TWI system evokes high practical importance. Thus

after detection certain dominant characteristics of target of interest should be

extracted which will be different from other objects present in TWI scene. Detection

of targets is addressed in [39] using principles of classical detection theory to TWI.

Neyman-Pearson criterion is used to derive probability of detection and false alarm.

FMCW radar based detection of target buried in wet snowpack is presented by

Yamaguchi et al. [233]. For classification, radar data can be interpreted broadly in

three ways, electromagnetic analysis, time-spectral analysis and spatial analysis.

Discrimination of target based on estimation of dielectric constant has been



investigated [208]. Savelyev et al. [190] used time-frequency features of an ultra
wideband target response for discrimination between landmine and other targets. In
most of the cases, particularly in ground penetrating radar (GPR), pattern recognition
technique is used to identify and classify buried targets [170]. Since learning process
is statistical in nature, statistical classification has been widely used [94, 227]. Shihab

et al. [192] has used high order statistical features to discriminate between targets and
background. Mine targets were classified by extracting features using Karhunen
Loeve transformation (KLT) and Kittler Young transformation (KYT) [164]. Other

feature based techniques used for classification are Hough transform, Radon

transforms [209] and Wavelet transforms [23]. Most of the techniques described
above are either sensitive to shift in time due to changes in position of target and

changes in antenna position from wall or sensitive to propagation effect. Some
techniques require large set of training data or are computationally intensive. Thus
utmost care should be taken for selection of feature extraction method. In this chapter,

target material discrimination is approached as a classification problem.
The chapter is organized as following. Section 4.2 describes the existing different
thresholding techniques. Section 4.3 compares the results of different thresholding
technique. Further the statistics oftypical TWI thresholded images is examined and
thresholding model development for detection oflow dielectric constant material with
fixed false alarm rate (FAR) is proposed in Section 4.4. In Section 4.5, appropriate

pdf for modelling of multiple targets is obtained. Concluding remarks are mentioned

in Section 4.6.

4.2 Existing thresholding techniques
B-scan image is thresholded after clutter removal to discriminate between targets and
background. Several algorithms have been proposed for computing optimum
threshold value in order to segment target information [187]. The pixels with value

below threshold are pertaining to background and pixels with values above threshold
represent target. Thresholding becomes difficult when the target and background gray
levels possess substantially overlapping distribution. Various thresholding methods
based on information such as space clustering, entropy and spatial information were

exploited by various researchers and are discussed in this section. Five methods,
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namely as cluster based thresholding given by Ridler and Calvard [137], Otsu's

thresholding [159], cross entropy [118], maximum entropy [224] and thresholding
based on statistics (mean and standard deviation) [28] have been implemented and
compared.

4.2.1 Cluster based thresholding method

In this method, gray levels samples are clustered in two parts, background and

foreground [137]. Threshold may becalculated by using equation (4.1)

>=^L~L (4.1)

where ju0 and /// are means of each of the two components of the histogram separated

by the threshold. An iterative algorithm is as follow:

• An initial threshold value is selected

• Two means for two distributions on either side of threshold are calculated

• New threshold is obtained using equation 4.1

• The process is continueduntil the value of threshold converges

4.2.2 Otsu's thresholding method

Otsu's method [159] is a very popular global automatic thresholding technique, in

which a threshold is determined by maximizing discriminant measure. Otsu's method

maximizes the aposteriori between class variance cr^t), which is given by

a2B(t) = co0(t)co](t)[pl(t)-Mo(t)f (4.2)

This expression is reduced to equation (4.3) with the terms defined in (4.4)

W) = *>„(')[!-«„(')]
l-coo(t) coo(t)

(4.3)
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where n, represents the number of pixels with gray level i , Lis the number of gray
levels and Visthe total number ofpixels in the image. Optimal threshold top is found

through asequential search for the maximum of JB(t) for the values of /, where 0<t
< L. The advantage of this method is its simplicity and optimal value is selected
automatically based on global properties and not on local properties.

4.2.3 Iterative method for minimum cross entropy thresholding

Aniterative method to obtain the threshold that minimizes the minimum cross entropy

is used in [118]. For a histogram, the zeroth and the first moments of the foreground
and background portions ofthe thresholded histogram are respectively

M

mQa(t) = lLW)
1=0

mob(t) =JLh(Q

ill lc(t) = ±Zi*h(i)

L

s
/=0

mQd(t) = 2Zi*h(i)

And the portions' means are defined as

Ma(0 =

Mh(0 =

mXa(f)

mxh(t)

mob(t)

(4.5)

(4.6)
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The minimum cross entropy method selects the threshold which minimizes the cross

entropy of the image and its segmented version. The criterion function is found to be

rf(t) = -mUl(t)\og{/ta(t)}-mlb(t)\og{ftb(t)} (4.7)

The optimal threshold top is given by the minimiserof equation (4.7)

f0/?=argmin, 77(f) (4.8)

The calculation of the optimal threshold involves the evaluation of rj(t) for all

possible threshold values. The computation can be significantly reduced by

developing a numerical method for the minimization. A necessary condition for the

minimum of rj(t) is obtained by setting the derivative of r/(t) to zero. The derivative of

jj(t) is given as equation (4.9).

r]'(t) = h(t) tlog^-{pa(t)-ph(t)} (4.9)

For Tj'(t)to be zero, either h(t)=0 or the second term in equation (4.9) is zero. As

h(t)=0 is satisfied only by those threshold values where the image does not contain

such gray values, these solutions can be considered as trivial solutions to the

thresholding problem. Thus the solution is sought at the zero of the second term in

equation (4.9). Setting the second term to zero and simplifying results in,

t= ttW-"«('> (4.10)
log{ph(t)-Ma(t)}

Applying the one-point iteration method to (4.11), the following iterative procedure is

obtained for calculating the optimal threshold

t„+l=round\ tt(0-g,(0 } (4.
\\og{Mh(t)-pa(t)}j
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where n > 0 with an initial guess to until the iteration converges. The convergence is

the conditions where tn+,=tn. The round (x) function is generally used to round x to its

nearest integer. Additional description of this algorithm has been given by Li et al.

[118].

4.2.4 Maximum entropy-based thresholding method

This method is based on the maximum entropy principle in which both spatial

information and gray level distributions of image are used. The optimal threshold

value is determined by maximizing aposteriori entropy that is subject to certain

inequality constraints which are derived by means ofspecial measures characterizing

uniformity and shape of the regions in the image. The maximum entropy principle

serves as a certain criterion to select apriori probability distributions when very little

or nothing is known. It states that, for a given amount of information, the probability

distribution, which best describes the knowledge, is the one that maximizes the

Shannon entropy subject to the given evidence as constraints.

A bi-level image is obtained after thresholding the image by a threshold value t.

Aposteriori probability ofthe pixels with gray values less than t is given by

F(t) =ip, (4-12)
;=0

where p=— and N= flni (4.13)
' N t-o

where N is total number of pixels in the image and L is the total number of gray

levels.

Similarly, the aposteriori probability of all those pixels with values greater than or

equal to t is 1-F(t). Thus, the Shannon entropy of image is

H(F(t)) =-F{t) log F(t) - {1 - Fit)} log{l - Fit)} (4.14)

Logarithm is taken with respect to base 2, and OlogO is assumed to be zero as
described by Wong and Sahoo [224]. The goal is to maximize (4.14) in order to
obtain the optimal threshold value for the image while satisfying constraints that is
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derived from the spatial information of the image. These measures provide constraints

for the probability of the pixels corresponding to both classes. The two measures are

as following: (1) uniformity measure and (2) shape measure. The details regarding

these measures are given by Wong and Sahoo [224].

Maximization of H(F(t)) subject to the obtained constraints always yields a unique

solution; thus, the optimal threshold t* is determined from

t* = arg max H(F(t)) (4.15)

such that the threshold image will have maximum uniformity as well as maximum

shape information.

4.2.5 Statistics based thresholding

Following technique is used for statistics based thresholding [28].

t = ju + cr (4.16)

where u is mean of image pixel and o is standard deviation of image pixel.

4.3 Results of thresholding techniques

4.3.1 Data used

Figure 1.7 shows the geometrical arrangement used for the observation taken in the

experiment. The details of the experiment are described in Chapter 1, Table 1.3.

Metallic and non metallic (Teflon) targets (flat surface plates) are used for analysis.

Teflon target (approximately dielectric constant is equal to 2) with low dielectric

contrast with air is chosen to check the performance of the technique, as it would be

difficult to detect and image the low dielectric target behind the wall. Shape of targets

is square with dimension 0.58 m each side. Since the B-scan images contain

reflections from the scanning area where target is present behind wall, only ten set of

TWI B-scan images are selected for analysis.
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/ Reflection due toTeflon target

0.5 1
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Figure 4.1 B-scan images for double target at different stages after applying Clutter
reduction technique

These ten B-scan images are obtained at different heights for which target size and
shape does not change within the scanning portion i.e. scanning position 10 to 20. The
obtained observations are used to assess the performance of target detection and

classification. Figure 4. 1shows one of the B-scan image at one of the height (height
number 11) after applying calibration technique, velocity corrections and clutter
reduction using ICA technique as described in Chapter 3. The reflection due to metal
target is significantly higher when compared to reflection due to Teflon target.

4.3.2 Comparison ofexisting thresholding techniques
For comparison between different thresholding techniques, normalized B-scan image
is obtained after clutter reduction. Normalization is done to remove dependence on

target dimension and distance between antenna and target. It is defined as:

E-E„
^normalization

F -E

(4.17)

Where, Eis the prescribed data value and Emm and Emax are minimum and maximum
data values of the image respectively.
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To compare the thresholding algorithms, the performance of algorithms was evaluated

by computing performance measures. Two performance measures i.e. sensitivity (SN)

and specificity (SP) as given in (4.18) and (4.19) were used

w _ Correctly detected target pixels
(4.18)

1otal target pixels

„p_ Correctly detected non target pixels
Total number of pixels - Total number of target pixels that exist

Since sensitivity is proportion of pixels correctly identified by algorithms as target

and specificity is the proportion of pixels correctly identified by the algorithms as

non-target, the higher value of these two measures (closer to one), results in greater

accuracy of algorithm. This study helps to choose a technique based on performance

on both measures i.e. sensitivity and specificity, particularly for Teflon targets. The

total number of existing pixels for each target is determined with the help of apriori

information i.e. known size of targets, resolution of image and position of targets. The

antenna position x=3 to 13 represent metal target and 20 to 30 represent Teflon target.

Out of 11 positions, in case of metal target, most of them are detected whereas in case

of Teflon few are detected.

Table 4.1 shows comparison of the performances of all five thresholding techniques

in terms of sensitivity and specificity for detecting metal and non metallic target at

different heights.

Significant sensitivity was achieved for metal target by all the thresholding methods,

whereas in case of Teflon target Otsu thresholding technique was unable to detect

pixels successfully. Results show that cross entropy and iterative algorithm

thresholding techniques detect Teflon significantly. But, when compared with respect

to sensitivity and specificity, maximum entropy outperforms other techniques.
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Results obtained after applying all the described thresholding techniques on B-scan

image are shown in Figure4.2. The threshold values obtained for B-scan image due to

different thresholding techniques are 1) Cluster based = 0.2401; 2) Otsu = 0.4501 ;3)

Cross entropy = 0.2399; 4) Maximum entropy = 0.2700; 5) Statistic based (mean+std)

= 0.2688. As observed from Figure 4.2 (a) and (c) that if the threshold value is small,

number of pixels detected for Teflon target is more but number of false targets also

increases. The pixel intensities which do not represent target may be due to noise or

remaining clutter data. These pixels are called false target. If the threshold value is too

high then target detection is missed as observed from Figure 4.2 (b). Due to high

threshold value obtained using Otsu algorithm, Teflon target is missing. Maximum

entropy based thresholding performs better than statistics based (mean+std) method,

as it is observed from Figure 4.2 (d) and (e) that number of pixels detected for Teflon

target are more in maximum entropy based thresholding than statistics based method.

Detection of pixels representing Teflon as well as false alarm is better in maximum

entropy than all other methods as observed from results. It is observed that all the

methods discussed above have some limitation due to either higher or lower threshold

values. Therefore, a statistical thresholding model is proposed to detect the target

while computing the user defined threshold values.

4.4 Development of adaptive thresholding model

An image statistics based thresholding technique is modified for detection of target,

particularly for non metallic target. As an example, B-scan image obtained after

thresholding according to equation (4.16) is shown in Figure 4.2 (e). From results it

can be seen that the number of pixels detected corresponding to Teflon is lower than

the metal pixels. In order to achieve more accurate Teflon detection, threshold value

should be set accordingly. It is also observed that all the intensity values

corresponding to Teflon (low dielectric constant) are not greater than background

pixels. If detection of low dielectric constant is improved then false alarm rate will

also increase. Thus difficulty is in detection of target pixels representing low

dielectric constant and not in high dielectric constant. Therefore, optimum threshold

value should be selected to increase detection and reduce false alarm. To segment the

image, thresholding technique is modified as:
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Table 4.1 Comparison of the performances of all five thresholding techniques in terms of sensitivity and specificity for detecting metal and non
metal target at different heights.

Height

No.

Mean+std Maximum Entropy Iterative method Cross entropy Otsu Cluster based

Metal Teflon Metal Teflon Metal Teflon Metal Teflon Metal Teflon

SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP SN SP

10

0.8182 0.9979 0.1818 0.9979 0.9910 0.9888 0.3636 0.9888 0.991 0.4532 0.4545 0.9532 0.8182 0.9995 0 0.9995 0.9091 0.9548 0.4545 0.9548

11 0.7272 0.9968 0.3636 0.9968 0.7272 0.9968 0.3636 0.9968 0.7273 0.9005 0.4545 0.9005 0.5455 0.9995 0 0.9995 0.7273 0.9026 0.4545 0.9026

12 0.8182 0.9963 0.1818 0.9963 0.8182 0.9936 0.1818 0.9936 0.8182 0.9782 0.2727 0.9782 0.5455 0 0.8172 0.9787 0.2727 0.9787

13 0.9984 0.0909 0.9984 0.9952 0.1818 0.9952 0.892 0.2727 0.892 0.7273 0 0.8941 0.2727 0.8941

14 0.9984 0.0909 0.9984 0.9888 0.1818 0.9888 0.9255 0.1818 0.9255 0.8182 0 0.9303 0.1818 0.9303

15 0.9979 0 0.9979 0.9915 0 0.9915 0.9095 0.0909 0.9095 0.6364 0 0.9143 0.0909 O.y 143

16 0.9952 0.0909 0.9952 0.9713 0.1818 0.9713 0.9415 0.1818 0.9415 1 0 0.9447 0.1818 0.944/

17 0.9968 0 0.9968 0.9659 0 0.9659 0.8792 0 0.8792 0.9091 0 0.8893 0 0.8oy3

18 0.9963 0 0.9963 0.9798 0 0.9798 0.9718 0 0.9718 1 0 0.9798 0 0.97v8

19 0.9947 0 0.9947 0.9622 0 0.9622 0.9526 0 0.9526 0.8182 0 0.9542 0 u.yjtz

82

A



t = ju-(n-l)<j (4.20)

Value of n is constant and chosen suitably. For lower value of n all the pixels

representing higher dielectric constant target are detected whereas if high value of n is

chosen then pixels representing low dielectric constant target are detected.

For example when n value is 0.05, then threshold value is 0.2670 whereas when n=\,

threshold is 0.2336. The B-scan images after applying different threshold values

obtaind by varying n are shown in Figure 4.3 (a), (b) and (c) for n=0, 0.05, and 1

respectively where dependence of n is clearly observed.
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To optimize the performance of proposed algorithm for optimum detection for both
metallic and non metallic targets with low false alarm rate (FAR), it is important to

select the value ofncarefully. The algorithm should behave in such a manner that it ^
should give the highest sensitivity (SN) while maintaining an upper bound on FAR. In
order to get the desired performance, the performance of the algorithm is computed
terms of sensitivity and specificity. The performance parameters, sensitivity and
specificity for metallic target pixels as well as non-metallic target pixels were
observed with changes in value of n.

It is observed that the sensitivity of metallic target remains almost constant for all ^

values of n where as for non metallic target; the sensitivity varies with n. So

concentration on analysis of non metallic target having low dielectric constant (i.e.

Teflon) is done. When the value of n reaches to say m, the total number of pixels
representing low dielectric constant target becomes zero while when the value of n
increases to n2, the number ofcorrectly detected pixels of target with low dielectric
constant becomes constant. If the value of n increases then the false alarm rate

increases Thus the optimum value ofnshould be such that detection oflow dielectric

constant target is maximized and the false alarm rate is minimized.
To obtain the optimum value of'«', the plot ofsensitivity and specificity with respect
to n is analyzed as shown in Figure 4.4. It is observed that the behavior of these
performance parameters is similar to exponential function. Thus an empirical
relationship can be developed. Sensitivity and specificity can be easily described in
mathematical form using curve fitting technique with very high value of Rr
(coefficient of determination), i.e. 0.999 and 0.925 respectively as given in equations
(4.21) and (4.22) y

semitivity(n) =a/'" +c/<" (4-21)

specijicity(n) =a2eh" +c2ed>n <4-22)

where ah bh c,, du a2, b2, c2 and d2 are constants and values of these constants are
obtained from the curve fitting method. The mathematical functions ofsensitivity and
specificity obtained for heights with their corresponding R2 values are given in Table
4.2. The level of confidence is 95%. It is observed that the R2 value obtained for each
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image at different height is throughout greater than 0.75 leading to conclusion that

proposed relationship is quite acceptable.
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Figure 4.4 Analysis of Teflon target for different values of n a) Sensitivity b)
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Table 4.2 Empirical function of specificity and sensitivity with corresponding R~

values

o

Z

ex

X

Sensitivity

f(x)=aixexp(bixx)+cixexp(dixx)

Specificity

f(x)=a2xexp(b2xx)+c2xexp(d2xx)

ai b. Cl d, R2 a2 b2 C2 d2 R2

12 7170 0.7973 -7169 0.7974 0.8658 4.57E-07 7.132 0.1662 0.5079 0.8332

13 6118 0.7887 -6117 0.7889 0.8985 -.1727 -22.39 0.1356 0.7183 0.9016

14 1599 0.795 -1558 0.7955 0.8941 0.1229 0.4518 -0.0601 -2.589 0.7589

15 -2797 0.8225 2798 0.8222 0.9088 -29.31 3.806 29.32 3.805 0.8476

16 2822 0.8241 -2821 0.8243 0.8971 0.08422 0.816 0.0003 4.62 0.9407

17 -1180 0.8265 1181 0.8259 0.9210 163.2 0.9834 -163.3 0.9829 0.8954

18 2575 0.7967 -2874 0.7969 0.8582 886 0.0802 -886.1 0.0798 0.8296

19 1.88E+04 0.7833 1.88E+04 0.7832 0.8869 169.4 0.54 -169.4 0.5395 0.8051
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4.4.1 Mathematical formulation to obtain the optimum value of n
There is need to maximize sensitivity to increase the detection oftarget and minimize

false alarm rate. The optimum value particularly for target having low dielectric
constant, should satisfy user specified constraint. Two constraints are required to be
satisfied. These are: 1. sensitivity should be greater than user specified lower bound

and 2. FAR should always be lesser than user specified upper bound. It is observed

that for detection ofmetal target, even high value ofthreshold is able to detect it. But

detection ofnon metallic target having low dielectric constant material, target will be

missed due to high threshold value. So threshold value should be low enough to detect
low dielectric constant target. On the contrary, it should not be too low as it will

increase FAR. The performance of algorithm is analyzed in terms of sensitivity and
specificity for different values of nin case of low dielectric constant target as shown
in Figure 4.4. Mathematical formulation to obtain value of'«' is carried out after user
has fixed the lower bound of sensitivity and upper bound of FAR. FAR is equal to

(1-specificity). It is described mathematically as nonlinear constraint multiobjective
optimization problem and iswritten as equation (4.23).
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minF(«) =
/200

where, f(n) =- sensitivity(n)

f2(n) = FAR(n)

subject to f (n) > lbsemilivily, f (n) < ubFAR, Q<n<\

(4.23)

For example to get the value of n, equations 4.21 and 4.22 is used, where user fixes

the value of sensitivity and specificity. In this case, lower bound on sensitivity for

Teflon is set as 0.4545 and lower bound set on specificity as 0.9947. Because for low

dielectric target behind the wall the reflected signal is generally in the range of clutter,

lower and upper bound are fixed. Once user provides the value of sensitivity and

specificity, n value can be obtained from equation 4.21 and 4.22. The obtained

optimum value of n is found to be 0.1. For this value of n, the threshold value is equal

to 0.2653. The B-Scan image after applying this threshold value is shown in Figure

4.5. Number of detected pixels for Teflon targets are increased in Figure 4.5

compared to Figure 4.3 (a).

4.5 Classification based on probability distribution

function

Statistical model that will characterize TWI data can be used to get the information

about targets. It is therefore important to investigate the distribution of all the targets

in order to detect and differentiate them more accurately. Generally statistics of TWI

image is examined to obtain probability distribution functions for modelling

background noise and all other objects which significantly deviate from this model are

detected as targets. The target image statistics at wide bandwidth frequency range will

be more helpful for classification [40]. But use of probability distribution to

differentiate targets or classify targets is given less attention. Therefore, in this

section, TWI image statistics have been evaluated and based on these results, targets

are classified.

B-scan image shown in Figure 4.1, is used for analysis after thresholding by the

technique described in earlier section to get the information about presence of targets.

Then the probability distribution function of image is obtained. Image data is grouped
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into parts in case of multiple targets i.e. after thresholding, pixels representing
different targets are separated. These set of pixels are used for analyzing distribution
of pixels corresponding to each class. Apriory information like size of target, location
of target in image and distance between two targets is used to decide number of pixels
representing metal and Teflon target. There are thirty pixels in one row in which pixel
position 3to 13 represent metal target and 20 to 30 represent Teflon target. Out of 11
pixels, most of them are detected in case of metal target, whereas in case of Teflon
few are detected.

This procedure is applied to all ten B-scan images (images obtained at different
heights). When image is obtained by illuminating the scene of interest from multiple
heights, target appears at same location in all images. Areliable set of pixels of metal
and Teflon target are obtained from all images at different heights. These set of pixels
are used for analyzing distribution of pixels corresponding to each class. The
probability density function of TWI data is obtained from 110 pixels values for metal
and 50 pixels for Teflon targets. Four common distribution models i.e. Normal,
Rayleigh, Cauchy and Weibull are applied on the obtained image data and best fit has
been checked. The respective pdfs ofthese distributions for x as pixel intensity have

been given below [25, 171, 178, 191]:

/(*) =

, (x-M)\
exp( 5—)

2cr2 (4.24)
<j\2n

Where, a is continuous scale parameter (a>0) and \i is continuous location parameter.

/•(*) =̂ exp(-i(-T^) (4-25)
a" 2 a

Where, a is continuous scale parameter (o>0) and yis continuous location parameter.

/(*) = ^77- (4'26)
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Where, a is continuous scale parameter (a>0) and p. is continuous location parameter.

/(*) = -0
fx^

kPj
exp

(4.27)

where, a is shape parameter and B is scale parameters. Both a and /J must be greater

than zero.

In TWI, numbers of target pixels are limited so Normal distribution cannot be

assumed. An empirical study of target statistics is required to be carried out for target

classification. Researchers have used distributions either to represent noise or target

for detection purposes. Probability distribution to differentiate different targets is still

given less attention.

Probability distribution function is then obtained on the basis of Chi-squared

goodness of fit test. The Chi-squared goodness of fit test has been largely used to

determine which distribution best fits the data. The Chi-squared statistics is given by

Pecketal. [171].

^.Ifcil (4.28)
1-1 E,

where O is observed frequency for bin /, E is expected frequency for bin i and k is

total number of bins.

Chi-squared test is used to determine whether the sample comes from the population

with specific distribution. Chi-squared statistics is compared with all distributions and

the distribution which has lesser chi-square statistics is chosen. Thus chi-squared

statistics, which is a function of data value, reflects in some way the level of

agreement between the data and the hypothesis. The goodness of fit is quantified by

giving /?-value. If the hypothesis used to compute the /?-value is true, then for

continuous data, p will be uniformly distributed between zero and one, with a value

closer to one indicating better fit. Figure 4.6 shows comparison of pdf curves

(Weibull, Cauchy, Rayleigh and Normal) for Teflon and metal respectively. It shows
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appearance of pdf of Teflon and metal when plotted on same graph. It is observed that
metal pdf is significantly separated from Teflon and Teflon pdf is spikier than metal

pdf.
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lable 4.3 Chi-squared statistics for various distributions

S.No Data Distribution Chi-squared statistics with 5 % significance level

Chi square-Statistics p-value Critical value

1 Teflon Normal 2.9591 0.3979 7.81

Rayleigh(2p) 2.081 0.555 7.81

Cauchy 1.7379 0.6285 7.81

Weibull 0.5910 0.9640 9.48

2 Metal Normal 8.83 0.1826 12.59

Rayleigh (2p) 5.87 0.1649 12.59

Cauchy 4.52 0.6065 12.59

Weibull 3.84 0.7031 12.59

Table 4.4 Parameters for Weibull distribution fitting

Distribution Teflon Metal

Weibull a P a B

3.207 0.2708 3.256 0.7446

Table 4.3 shows chi-squared statistics for various distributions applied on Teflon and

metal target data. This test is used to determine which distribution provides the best fit

to the data. It is observed from Table 4.3 that Weibull distribution fits both targets

(Teflon and metal) more accurately than other three distributions. The statistics value

and p-value for Teflon data and metal data are 0.5910, 0.9640 and 3.84, 0.7031

respectively.

The observed values of Weibull distribution parameters are given in Table 4.4. It is

inferred that probability distribution function appears to consistently follow a Weibull

distribution for target like Teflon and metal. The Weibull function [17] is a

probability distribution function that takes a number of different shapes depending on

its parameters. It is important to see the effect of shape and scale parameter on the

distribution curve. The shape parameter is also called as slope parameter. Different

values of shape parameter will change pdf distribution and indicate whether the

function increases with x, remains constant or decreasing. If a is less than one then

function decreases with x and if a is greater than one then, function increases with x.
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If a =1, then Weibull distribution becomes exponential distribution function. The
scale parameter Bis ameasure of spread in the distribution of data, i.e. where the bulk
ofdistribution lies. The scale parameter has the same effect on distribution as change

in abscissa scale. If a is kept constant and B is increased then pdf is stretched out.

Since the area under pdf curve remains constant, the peak of curve decreases. The
scale parameter Bhas significant difference for Teflon and metal with values 0.2708
and 0.7446 respectively. The scale parameter Bfor metal is increased so ils height is
reduced and plot is stretched to the right. Thus Bmay be used to distinguish between

Teflon and metal.

4.5.1 Parameter estimation

Once the distribution is known, parameters are estimated using maximum likelihood

estimator and then from this parameter, the groups ofpixels are labeled as Teflon or

metal. Maximum likelihood decision rule is used to discriminate the targets. Thus

after target detection, pixels are classified as metal or low dielectric material based on
the estimated parameters. Group of pixels which gives sufficient statistics are chosen
for classification. Estimation of parameter of each image formed at each height is

carried out and results are shown in Table 4.5. The average values of scale and shape

parameter for metal and Teflon are 0.5995, 2.06 and 0.16, 4.5 respectively. The
standard deviation values of scale and shape parameter for metal and Teflon are

0.069, 0.26 and 0.060, 3.65 respectively. Based on this, the scale parameter can be set
to either 0.5995+0.069=0.7595 or 0.5995-0.069=0.5305 for Metal and

0.16+0.069=0.229 or 0.16-0.069=0.091 for Teflon. If the value of B is less than

0.5305 then it will represent Teflon and if value is greater than 0.5305 then it

represents metal.

4.5.2 Validation

Once the statistical distribution of the target signature is known, the discrimination
between targets can be examined from the output of maximum likelihood method.
Data from different experimental setup is chosen for validation. Here the frequency
range is kept same. The distance between wall and target is increased to 1mand
distance between antenna and wall is reduced to 0.8 m. Cross range distance between
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two targets is kept same. Orientation of target is not changed. Figure 4.7 shows the

resultant image obtained after applying clutter reduction technique. Normalization as

described in Section 4.3.2 equation (4.17) is applied. Normalization is done to remove

dependence on target dimension and distance between antenna and target. Thus actual

amplitude information is lost and classification process will rely on targets dielectric

characteristics. After thresholding is applied on the normalize image, the group of

pixels representing targets are used to estimate parameter. Care should be taken while

selecting group of pixels representing target, i.e. non zero pixel values should be used

for estimating parameter. Even after optimum thresholding some unknown reflections

of same magnitude as of Teflon target are observed in resultant images. The

remaining unwanted signal can also be taken for classification and may be classified

as target which will be false information. In Table 4.6, the maximum likelihood

estimates for Teflon data and metal data are shown. Thus the pixels for which the

scale parameter value is obtained as /?=0.08 is classified as Teflon and pixels for

which scale parameter is 0.82 is classified as metal. The entire testing was repeated in

order to evaluate classification to the variation of number of pixels representing

targets. Thus Weibull distribution parameters are used to differentiate between Teflon

and metal target.

Table 4.5 Parameters for Weibull distribution fitting estimated at each height

Height

No.
Metal Teflon

a P a P

10 2.09 0.57 1.68 0.21

11 1.94 0.53 2.68 0.29

12 1.71 0.51 2.73 0.19

13 1.76 0.52 2.71 0.17

14 1.81 0.55 1.87 0.13

15 2.03 0.58 1.58 0.12

16 2.27 0.68 13.7 0.15

17 2.28 0.68 3.21 0.10

18 2.48 0.65 5.75 0.11

19 2.28 0.67 5.21 0.10
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Table 4.6 Validation ofmetal and Teflon discrimination based on Weibull distribution

Distribution Teflon Metal

Weibull a P a P

7.31 0.08 4.7 0.82
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Figure 4.7 B-scan image after thresholding used for validation

4.6 Concluding remarks

The task of reliable, efficient and robust target parameter extraction for TWI is of
great importance in order to enable discrimination between different targets. Optimum
threshold to separate objects from background is still a challenge in segmentation.
Different techniques based on entropy, cluster analysis, spatial information and
statistics are studied and compared for computing the threshold values. There are

some constraints to obtain the threshold values with these methods. So, a modified
statistical based threshold method is proposed and it is found that it performs quite
well from point of view of detection of pixels representing Teflon as well as false
alarm rate. After detection, model based on pdf is proposed for target classification
(i.e. metallic and non metallic targets). Weibull distribution is quite suitable to
classify the targets as metallic and non-metallic.
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Chapter 5

Study of prevalent imaging techniques

for through wall target detection

5.1 Introduction

Researchers in TWI are interested in surveillance as well as in imaging applications.

Imaging is required to acquire more information about target which will be useful for

recognition of targets whereas, in surveillance, detection of target is sufficient.

Imaging describes the process of obtaining an image of the spatial distribution of

reflectivity of target from TWI system scattered field. For these purposes, different

scanning techniques have been used such as A, B and C scanning as described earlier

in Chapter 1, Section 1.3.1. Normal unfocused B-scan image is sufficient when only

detection of target and its approximate position is required. But for highly accurate

information about target location and its shape, high resolution image is required.

Thus, one of the major thrust in TWI involves development of more efficient imaging

algorithms which give maximum information about obscured target [14]. Many

imaging algorithms are reported in literature and it is important to explore the use of



these algorithms with TWI data [6, 43, 90]. The most commonly used techniques in
TWI for image formations are back projection and delay sum (DS). Several migration
algorithms have been reported in GPR [244]. Migration techniques were developed
for seismic applications [65]. Synthetic aperture system based focusing technique has
been applied to GPR data [162]. Because of similarity of data collection scheme
between GPR and TWI, SAR based focusing technique can also be applied on TWI

data. Till now very limited work has been reported on the considered popular imaging
techniques i.e., back projection, delay sum and (O-k. Therefore, these techniques were
evaluated for the same experimental data and their performance is critically analyzed
in this chapter. Section 5.2 describes need of B-scan imaging and different imaging
techniques commonly used in TWI. Comparisons of different techniques are given in
Section 5.3. Section 5.4 shows results obtained from different imaging algorithms

which is followed by conclusions in Section 5.5.

5.2 Need for B-scan imaging

5.2.1 Back projection

In this section, comparison of the results when different imaging techniques are

applied on A-scan data (data at single position) and on B-scan data is carried out. The
general idea behind imaging is that grid is assumed according to antenna swath. The
grid chosen may be horizontal or vertical. Then for various pixel values on the grid,
intensity values are calculated using various imaging algorithms.
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Figure 5.1 Horizontal and vertical grid
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Figure 5.1 explains the concept of a vertical and horizontal grid. The horizontal grid is

created in the cross range - down range plane and the vertical grid is created in the

cross range - height plane. The concept and the use of imaging using different types of

data (A-scan, B-scan and C-scan) will be explained in this section.

Figure 5.2 shows the back projected A-scans for TWI system locations 3, 4, 15 and 25

along the horizontal direction on the scanner. Reflections due to weak isolation can be

observed in all the four images. The second reflection observed can be attributed to

the plywood wall. For the target, a locus is formed which confirms the presence of the

target behind the wall.
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5.2 Back projected A-scans at locations (a) 3, (b) 4, (c) 15, (d) 25
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Hence, detection can be achieved using A-scan data. However, the precise location of
the target behind the wall cannot be ascertained as alocus is formed and the target can
lie on any point on that locus. It is observed that the orientation of the locus changes
as the TWI system is placed at locations 3, 4, 15 and 25 along the horizontal direction
on the scanner. This is expected as the distance ofthe target from the TWI system will

change when it is kept at different locations.

So it is observed that using the information ofa single A-scan, it is not possible to
precisely localize the target behind the wall. Hence, aB-scan is required for this task,
which is a combination of A-scans taken at different locations in the azimuth
(horizontal) direction. Back projected image is obtained, but now a number of A-
scans are used instead ofa single A-scan. Extra information is added when more A-
scans are used and the target locus decreases in its extent as well as the target location
gets more precise. To study this, first A-scans obtained at locations 13 to 16 were
used to generate the back projected image. As can be observed from Figure 5.3(a) that
the locus of the target gets smaller and tails appear at the ends. The tails appear due to
inherent properties of the back projection algorithm [15]. When complete B-scan data
is used, as is shown in Figure 5.3(b) which comprises of 26 A-scans along the
azimuth, the complete back projected image is generated. The precise location of the
target can be found out using this image. The lateral extent of the target can also be
obtained using this image.
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Therefore only for rough detection, A-scan image may be useful otherwise B-scan

image will certainly provide better target information. Thus B-scan data is used or if

evenmore information i.e. the heightof the target is required then C-scan is required.

5.2.2 Delay sum algorithm

It is observed from Figure 5.4, target locus is generated for A-scan images when the

TWI system is kept at different locations along the azimuth. This has been illustrated

using A-scans for locations 5, 8, 17 and 18. The results are as expected, and similar

to back projected image results.
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Figure 5.4 Delay sum A-scans at locations (a) 5, (b) 8, (c) 17, (d) 18
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DSImaging

0 0.2 0.4 0.6 0.8 1 1.2
crossrange (i

DS imaging

0 0.2 0.4 0.6 08 1 1.2
crossrange (m)

(a) (b)
Figure 5.5 Delay sum B-scan from A-scan locations (a) 14-15 (b) 1-26

From Figure 5.5(a), it can be observed that the target locus extent reduces when more
than a single A-scan is used, similar to the back projection case. The target location
also gets more precise. From the final image Figure 5.5(b), it is observed that using
the complete B-scan, the target is localized more precisely behind the wall. The lateral
extent of the target can also be obtained.

(a) Explanation using avertical grid along height using backprojection
To illustrate the concept ofimaging, and the need for C-scan, avertical grid has been
taken as the scene to be imaged. The distance ofthe grid in the downrange direction
has been taken to be equal to distance of the target from the TWI system. First, only
A-scans have been 'back projected' on the grid. A-scans at target locations 2,5,10 and
25 are chosen for illustration purpose as they cover the entire range on the scanner

along the azimuth direction. For Figure 5.6(a) and 5.6(d), the images formed are
similar but the orientation of the high intensity area strip is changed, which is as
expected because they correspond to TWI system locations 2and 25, and the target
lies to the right of the TWI system when it is at 2nd position and to the left of the TWI
system when it is at 25th position. For Figure 5.6(b) and 5.6(c), the area which has
high intensity is circular, as the TWI system and the target are almost in front of each
other in the azimuth direction.
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Figure 5.6 Images obtained using A-scan data for positions (a) 2, (b) 5, (c) 10, (d) 25

It was observed using a horizontal grid in the downrange-crossrange direction earlier,

in Figures 5.1 through Figure 5.3, that using A-scan information, only detection of the

target is possible, but the target cannot be localized precisely.

Figure 5.7 shows the B-scan image back projected on the vertical grid. The image has

been generated using the complete B-scan data, comprising of 26 A-scans in the

azimuth direction. The target's precise location in the azimuth direction as well as the

lateral extent of the target can be obtained using this image.
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Raw image after Back-Projection
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Figure 5.7 B-scan image on vertical grid

This is the same observation as was obtained for the case ofhorizontal grid in Figure

5.2. It should be noted that the vertical grid was created at the downrange distance

corresponding to the target location since the information regarding the target position
is available. The vertical grid was constructed to illustrate how imaging takes place
and the target information is added as data is increased for imaging. If the target's
exact extent along the height and shape of the 2-D target is desired, more data will be
required. B-scans taken at different heights will be required, that is called as C-scan.

(b) Explanation using avertical grid along height using delay sum
Vertical grid was constructed at the target's location in the down range similar to the
back projection case. As can be seen from Figure 5.8 and Figure 5.9, the results
obtained are similar to the back projection case. B-scan helps to localize the target in
the azimuth direction and the target's lateral extent in the azimuth can be obtained.
For determination of target's exact extent along the height and the target's shape, C-

scandata maybe more appropriate.
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Figure 5.8 Delay sum (DS) images obtained using A-scan data for positions (a) 1 (b)
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Figure 5.9 Delay sum images obtained using A-scan data for total positions

5.3 Different image formation techniques
Imaging algorithms are applied on TWI data after the data collection has been carried
out. Asynthetic aperture TWI system (SAR) model is used for data collection in
monostatic mode in which single antenna at one location transmits and receives the

signal and then moves to next location as shown in Figure 5.10. The data collected at
different positions can be combined to produce image of target using different
imaging techniques. The most widely used methods are co-k, back projection and
delay sum which are briefly discussed. Only B-scan data is considered for applying
different imaging techniques.

Figure 5.10 illustrates the SAR model of data collection. Here xdenotes the different
positions of antenna. In SFCW TWI system, wideband signal is generated using step
frequency approach in which system sweeps through the allocated signal bandwidth
via a series of narrowband signals of uniformly spaced centre frequencies. Let Qbe
the number ofnarrow band signals and Nbe the number ofantenna locations for data
collection. TWI system measures the magnitude and phase of the received field for
various frequencies at each spatial point. Assuming that the first starting frequency in
SFCW TWI system is f with a constant increment of Af the frequency of the t\
sample in the received sequence is given by equation (5.1).
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Target

Wall

Antenna

Figure 5.10 SAR model to collect data

f = f0 + (q-\)Af g = l,2,...Q (5.1)

The signal received in frequency domain backscattered from thepl point scatterer at

distance d from the nth antenna location will have the form of

S(f) =pQxp(-jAK^-)
c

(5.2)

where p is strength of scattered electric field from the point target and c is the velocity

of the electromagnetic wave in the propagation medium. Depending on the type of

imaging technique, received signal is either converted into time domain or kept as it is

in frequency domain. In B-scan, the signal is recorded at each synthetic aperture

position to obtain image in space frequency matrix. After Fourier transformation this

space frequency B-scan data is transformed to space time image. If the single point

scatterer is present in imaging scene then hyperbolic curve is produced in resultant

image. This low resolution feature may be corrected using different imaging

techniques.
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5.3.1 Frequency-wave number (co-k) migration technique
Image formation using co-k, which is modeled as convolution in spatial domain, is
explained here. The signal received is represented in terms of wavenumber as [162,
244]

S(f) = p.exp(-j2kd) (5.3)

where k=Inf/c is the wave number vector ofQpoints. This static measurement at

single spatial point is nothing but an A-scan measurement. B-scan data are obtained
by collecting a series of A-scan measurement along Xaxis as shown in Figure 5.1.
The scattered signal is summed for each discrete point as the TWI system antenna

moves along a straight path. For a measurement point x, on the Xaxis, the distance d
from the point target at (x0, z0) to the TWI system is equal to

d=^z0 +(xj-x0) j =1,2-N (54)

where N is total number of antenna position in B-scan.

So, the total received field can be given as below for point targets located at different
(xit z,) positions by assuming homogeneous wall, and is represented as equation (5.5)

1 2+(x-xA2) (5.5)S(x,f)= Ip,.exp(^(2^,z +(*-*,-) )
i=l

Taking one-dimensional (ID) Fourier transform (FFT) of equation (5.5) along the x-
direction, which will give the field in the spatial frequency kx domain as

S(kx,f) =IaJ exp(-jk(2A7} +(x-x,)2)).exp(jkxx)dx (5-6)
1=1 -00

By utilizing the principle of stationary phase, above integral can be solved as

e-Jx/4 P
S(kx, f) == I fl.expWMi - A/4*2"** -z<) (5'7)

4^2-k]^

106



Here the ratio e jn^j^Ak2 -k2 is the complex amplitude term and has a constant
phase. Therefore, it can be neglected for image displaying purposes. Thus, equation
(5.7) can be normalized as

S(kx,f)=ZPi.exp(-jkx.xi-jA4k2 -klx.zt) (5.8)
1=1

This is the received signal data in two dimension ^-/domain and has a linear phase

term in x and z. However, it is obvious that a total of P point scatterers should be

ideally imaged in real coordinates as

p

s(x,z)=Y.PrS(x-x,,z-zt) (5.9)
/=1

where S(x,z) is the two dimensional impulse function. Now, taking the two

dimensional Fourier transform of this image data with respect to x and z, following

scattered field value in two dimensional spatial-frequency domain is obtained as

p

S(kx,k,)= Zpi.exp(-jkxxl-jki:zi) (5.10)
i=]

Thus if the received data is transformed to kx- k-_ domain as in the form of equation

(5.10), then focused-image data is obtained by taking two dimensional inverse Fourier

transform of the data in kx- k- domain. It follows that when equations (5. 8) and (5.10)

are compared with each other for accommodation, the transformation or spatial

frequency mapping of k, =yj4k2 -k] must be done. Applying this critical mapping,

one can get the equality

~S(kx,kz) =S(kx,f) (5.11)
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This implies that one must relate values of S(kx,f) at each /point to the values of

S(kx,k2) at kz points with the help of the frequency mapping equation of

k.=j4k2-k2 . On the other hand, when the field data in the fe_/domain is being

transferred to the kx- k-_ domain, the points that are evenly spaced in the /'domain will

be mapped to unevenly spaced points in the kz domain due to the nonlinear behavior
of the mapping equation. To exploit the fast computation opportunity using FFT,

S(kx,t) should lie on auniform cartesian grid. Therefore, an interpolation procedure

has to be applied in k-_ domain to distribute data into a rectangular grid in kx-k-_
domain. Consequently, the final focused two dimensional B-scan image spotting the
true locations of the target can be obtained by taking the two dimensional IFFT of

equation (5.11) as

s(x,z)
(In)1

J | S(kx, k: )xxp(jkx .x +jkz .z))dkxdk: (5.12)

After summarizing B-scan algorithm, the flowchart for implementation of the

algorithm as given in Figure 5.11 is discussed below:
i. Collect the B-scan back-scattered electric field S(x, f ) in the frequency

domain

ii. Take one dimensional Fourier transform of S(x, /') along x to get S(KX. f)

and normalize it. (equation 5.7)

SFCW radar data

observed at nth location
to obtain B-scan

Take 2D IFFT

I(x,z)(eqn. 5.12)

Take 1D Fourier

transform to get
S(kx,f)(eqn. 5.7)

Interpolate mapping to
obtain

S(kx, k2) (eqn. 5.10-
5.11)

Figure 5.11 Flowchart for implementation of co-k imaging
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In. Interpolate S(x, f) on to a rectangular mesh in kx- k: domain to obtain

S(kx,kz). (equation 5.10-5.11)

iv. Take two dimensional IFFT S(kx,kz) to form the final focused two

dimension image; s(x, z) in Cartesian coordinates, (equation 5.12)

Thus image formation, modelled as a convolution in the spatial domain, is performed

in the wave number (k) domain. The ^-domain inversion methods have the main

advantage of exploiting fast Fourier transform (FFF) which provides significant

computational savings.

5.3.2 Back projection

Back projection imaging algorithm is widely used in through wall imaging for image

generation [91]. The back projectionalgorithm forms an image of target reflectivity as

a function of position on a two dimensional map. Calculations are carried out in the

space time domain, contrasting with the previous co-k techniques employing Fourier

transforms at the expense of processing time. Artifacts are localized; with noise levels

lower than that of Fourier transform methods. Since FFTs require equally spaced data,

any variation via off-track motion or changes in velocity will result in degraded

images. Also, transmission through differing media such as an air wall dielectric

result in propagation velocity differences, again difficult to handle in FFT based

techniques. These can be compensated with back projection methods by a time shift.

This method correlates the spatial coordinates of the transmit antenna, receive

antennas and the pixels of the images to the range profiles of the receivers. The idea is

to correlate data collected at each position as a function of round-trip delay time. Back

projection coherently sums the sampled TWI system returns for each antenna

position. Phase coherent summation is a process whereby the signal obtained at each

aperture position is time shifted to match, or align, it to a particular pixel element in

the image map. Following this, the responses across all aperture positions are

combined.

To facilitate further, first define three related coordinate systems. These are object,

data and image spaces, as shown in Figure 5.12. The object space g(x, z) is the actual

physical space illuminated by the TWI system. Although g(x, z), the object space is
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illustrated, this is essentially unknown from the perspective of the collected TWI
system data. Here x denotes cross range, or azimuth, and z the range coordinates
(Figure 5.12a). By collecting and processing TWI system data, one attempts to +
reconstruct an image of the objects contained within this area. Back projection can be
explained as: consider adiscrete set of Ppoint-reflectors with reflectivity ap, (p =1, 2
...P). The location of each point is given by the spatial coordinates (x,, yj}. Next
consider a short-time (broadband) pulse s(t) transmitted from a TWI system located at

(u„, 0), where nis the system platform position index (n = 1, ..., AO with atotal of N
positions in the array. Spatial separation between the nth system position and the pth +
point target is [15]

R,i«,) =yl*,+<H,-x,y (5J3)

In turn the round trip delay becomes

f,(«0*-*,GO (5'14)' c

tf-o-Vv^V (515)

The return from a target located at distance Rp(un) is therefore proportional to s(t-

tp(u„)). Therefore the echo from the/rth target is

s(u„,t) =2Zcjps(t-^zp+(un-xr) )
p c

(5.16)

Since a single TWI system receive antenna at position u, cannot distinguish angle of
arrival, the scattering center could be located anywhere on a cylinder surrounding u,

with radius

R c (5-17)
' 2 '
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fc=(2/c)R,
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u, Xj ^ X/U Xj x/u u, Xq u2 x/u

(a) (b) (c)

Figure 5.12 Coordinate systems used in imaging (a) Object space: g(x, z) (b) data

space: d(x, t) (c) Image space f(x, z)

corresponding to time delay /,. As the TWI system platform traverses, signals

containing combined echoes from all targets are received at each x position. The

collection of data over all element positions defines the data space,

d(u,t) = ±Zs(un,t) (5.18)

This is the data used to construct the image map f(x, z). At this point it must be

understood that d (u, t) is not sampled directly. Instead, it represents the first step in

image formation where individual data sets s (u„ t), collected at each element are

combined over the entire region of support forming the x - I plane. In other words,

each data set is sampled sequentially s (u„ 1), s (un+j, t), s (u„+2, t) ....but they are

aligned in data space based on return-time delay. In data space, the echoes for a given

point target trace out a hyperbola due to the motion of the TWI system. The two-

dimensional function representing this "spreading" of signal energy is called the point

spread response (PSR). Figure 5.12(b) is a very simple representation of how a single

target forms a PSR. The PSR acts as an impulse response in data space with respect to

a point target in object space. For this reason, the curve is often denoted h (u, t).

Energy contained within the PSR must be collected, or focused back to the original

point function (Figure 5.12(c)). The "optimum" focusing of data is obtained by
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correlating d (u, t) with the PSR. In effect, a space-time domain matched filter is
required with respect to h (u, t). Obviously, coordinates of individual targets are
unknown to form an image map; consider the set of2D grid points (x„Zj). The impulse
response is correlated with measured data to compute ameasure of the reflectivity at

that point:

f(xi,zj) =\\diu,t)h'\t—A'zj+(u-xlfdudt (5-19)

The PSR is expressed here as a complex conjugate h*, although for real quantities,
this notation makes no difference. In practice, the correlation integral is not computed

directly. Due to the incremental nature of both aperture positions and time samples, a
two-dimensional discrete summation is performed. Further, a portion of the

calculation requires interpolation since the recorded time samples do not correspond
exactly to grid locations. There are Npoints along cross-range, and Mpoints in the
range dimension. This will produce an NxM pixel image of reflectivity. In short, a
separate image map is constructed for each aperture position. As successive images
(corresponding to individual element positions) are added, points where the arcs
overlap tend to reinforce while the other regions fade into background noise and
shadowing. Coherent summation then, is simply an instance of constructive
interference. To obtain a focused image, each of the arrays is added pixel-by-pixel. In

each step of summation the magnitude of signal increases. The overall behavior is that
points corresponding to target locations are continually reinforced while other areas
display low-value intensity, or shadowing.

(a) Implementation ofbackprojection on SFCW TWI system data
Inverse Fourier Transform has been carried out on data obtained at each antenna

position to produce range profile. For each pixel in the desired image-map the
propagation range from TWI system to the pixel and then back to the TWI system is
calculated and used to index into the range profile to find value of the in phase and

quadrature components of the scattered field from that range. The values of the
scattered fields from all the TWI system positions are summed for each pixel in the
image- map. Where there are objects in the image that result in scattering, the
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individual observations from the TWI system will be in phase and sum to a large

value. If there is no target, the individual observations will be out ofphase and tend to

sum toward zero. The magnitude of summation depends on TWI system cross section

of scattering objects and the distance from TWI system.

In short the flowchart of back projection algorithm is given in Figure 5.13 and the

steps are as follows,

1. Divide the whole region into small pixels.

2. For each pixel, calculate the flight time from TWI system to pixel and pixel to

TWI system.

3. Record the corresponding received time bin amplitude for each pixel after

converting received frequency domain data of SFCW TWI system into time

domain using IFFT.

4. Repeat step 2 and 3 for all position of TWI system. Sum the recorded

amplitudes on the spatial grid.

Divide the region to be
image into small pixel

coordinate (xj, z()

SFCW radar data

observed at nth location

r

i r

i

IFFT

Calculate round trip
delay from each pixel to

each radar position
i r

Find amplitude
corresponding to time

bin

' r

Calculate time bin value

1

, s(n,tv)

I{x,,zl) = Yus{n,tlj{n))

Figure 5.13 Flow chart of Back projection algorithm
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5.3.3 Delay sum

Imaging technique is applied on frequency domain data received through SFCW TWI
system. The signal received at one of the antenna location is given by

p-\

s(n,t)= Iff/<-Tv) (5.20)
p=0

where s(t) is the transmitted signal, ap is the reflection coefficient ofpth target and tn,p
is the two way travelling time between the nth antenna and the pth target.

If there is no wall, the signal path between the antenna and the target will constitute

the line of sight. In this case

r», =-V(*,-*.>2 +̂ -*.>! <5-21)

where c is speed of wave propagation and (xp, zp) and (x», z„) are the location of the
pth target and nth antenna respectively. When asolid homogeneous wall is present the
signal path can be computed using both dielectric constant and the thickness of the
wall [4]. The delay sum (DS) imaging is relatively simple and robust image formation
method for TWI. The value for the pixel located at (x, z) is given by:

I(x,z) =±-N±Zs(n,t +T„ixz)) (5-22>
N n=0

where v„,(x,z) is the two way travelling time through the air and wall between the nth
antenna and the (x. z) pixel position. With the transmitted signal chosen as stepped
frequency waveform consisting of Qnarrowband signals, equation 5.22 becomes.

I(x,z) =-iis(n,fq)exp{-j2xfqTn(x,z)} (5-23)
N n=\ </=l

where S(n, f) is the signal received at the nth antenna at frequency fq. Various steps
for implementation of algorithm are given in flowchart shown in Figure 5.14.
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Initialize image
matrix l(x,z)=0,

x=l to X, z= 1 to

Z

Calculate distance from

each pixel to all n radar
location

Compute focusing delay
T

n loop

Figure 5.14 Flowchart of delay sum

Raw Data
Stepped

Frequencies

For each grid point in image space
apply exp(70,,r)

Corresponding to kth frequency to
the output of nth radar location to

obtain s(x, z)

Add to image matrix
I(x,z)=I(x,z)+s(x,z)

q loop

Final Image

Steps for implementation of the delay sum algorithm as given in Figure 5.14 are:

• Select the 2D image space and divide the region to be imaged into pixels.

• Calculate the distance from TWI system locations to each pixel location.

• Calculate the focusing delays using the calculated distance values, (equation.

5.21)

• For each pixel value, apply the focusing delay to the raw SFCW data for each

frequency point obtained at a particular TWI system locations.

• Sum the terms for individual point for all frequency points.
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• Add the summation of terms corresponding to different frequency points to

the image matrix, (equation 5.23)

• Repeat the above three steps for all the TWI system locations to obtain the

final image matrix.

5.4 Comparison ofdifferent imaging techniques
The quality of image formation technique is checked by measuring metrics as given
below. If the process of formation of image is not coherent, distortion occurs. Several
criteria have been used to measure image quality in the literature [7]. Following two

metrics are used to measure quality for TWI. Both the metrics used are contrast based
metrics. Contrast based metrics have been chosen because for TWI images, if good

contrast is present between the pixels corresponding to the target and the background
pixels not corresponding to the target, the target detection becomes easier. If the
contrast is not good, target detection becomes difficult and the exact extent of the

target might notbe clearly visible.

5.4.1 Metric 1: Negative of image entropy

The negative ofthe entropy ofthe image is defined as [7]

Metricl =I ss(xil,zi/)log(ss(xq,zil)) (5-24)

where

i I2
K^-VM (5.25)

9=1

where I(xq , zq) represents qlh image pixel value and Qis total number of pixels in
image. It can be seen that the value of this metric will vary from 0to - (log (Q)). The
upper bound (-(log (Q))) is achieved when all the pixels have the same intensity
value. The lower bound of zero will be achieved when only one pixel value is non
zero. The closer the value is to zero, the higher will be the contrast in the image.
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5.4.2 Metric 2: Ratio of standard deviation to mean

This metric is defined as [7]

1 £ ^I(xq,zq)--l\lixq,zq)\
q . (5.26)
t\lixq,zq)\

As this metric is the ratio of standard deviation to mean, the higher value it achieves,

the better will be the contrast in the image which is desirable.

Both the metrics defined above measure the contrast of the image. A good measure of

the contrast would be one for which the contrast reaches a maximum value only for

undistorted image. Maximization of metric 2 will ensure good image quality.

5.5 Results and discussion

In order to test the image formation algorithms, B-scan data is used to generate the

images. In this section, three different B-scan observation data are selected to see the

performance of imaging algorithms. In the first observation, plywood wall is used for

analysis (Table 1.2, S. No. 1). In second analysis, instead of plywood wall, brick wall

data is used to see its effect on imaging (Table 1.2, S. No. 4). In the last, detection of

two targets is checked using different imaging techniques using data described in

Table 1.3, S. No. 3 and the results are compared using the contrast measures described

above using equations 5.24 and 5.26.

5.5.1 Single target behind plywood

In the first observation a metal plate of 0.55 m x 0.60 m with thickness of 2mm is

placed behind plywood wall. The B Scan data used for application of various imaging

algorithms is collected as explained in Chapter 1.

Then by taking the ID IFFT of this measured frequency data ID range profile is

obtained. Then one can easily construct a 2D B-scan image in spatial time domain by
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putting all range profiles side by side. After applying preprocessing techniques as
described in Section 1.3.4, B-scan image as shown in Figure 5.15 (a) is obtained. This
type of formation of image is not coherent. Instead of this different focusing methods
as presented above are applied on measured B-scan data. It is seen from all B-scan
images obtained through imaging reasonable focusing is achieved compared to
normal B-scan image (Figure 5.15). After applying co-k algorithm, back projection

and delay sum, the focused images as depicted in Figure 5.15 are obtained.
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Figure 5.15 (a) Raw B-scan image and image after implementation of (b) co-k (c) back
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Table 5.1 Plywood wall single target

Sr. No. Measure co-k BP DS

1 Metric 1 -5.8221 -9.8823 -5.6017

2 Metric 2 0.1284 0.0164 0.1363

As discussed in Section 5.4, values obtained for both the metrics are shown in Table

5.1. Both metrics value are the maximum for delay sum that means delay sum is

better than all other techniques. The next technique is co-k as values obtained by delay

sum are very close to the values obtained for co-k algorithm. Figure 5.16 represents B-

scan images obtained using different imaging technique after application of ICA

clutter reduction technique. Then, the target reflection is well enhanced and

concentrated around the exact locations in all images. The image quality of different

algorithm can be visibly observed from results. The co-k domain SAR focusing

method and delay sum give more effective results than Back projection as observed

from Figures 5.16.
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Figure 5.16 B-scan image after clutter reduction (a) Normal and, after implementation
of (b) co-k (c) back projection (d) delay sum

5.5.2 Single target behind brick wall
Similar observations are taken when instead of plywood wall brick wall is used. A

metal plate of 0.55 mx0.60 mwith thickness of 2mm is placed behind brick wall at
a distance of 0.3 m. After applying co-k algorithm, focusing image as depicted in

Figure 5.17 (a) is obtained.
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Figure 5.17 Raw B-scan image after implementation of (a) co-k (b) back projection (c)

delay sum

Table 5.2 Brick wall single target

Sr. No. Measure co-k BP DS

1 Metric 1 -6.3764 -10.2280 -6.1976

2 Metric 2 0.0739 0.0134 0.1217

It is observed that the scattered energies are more concentrated around the respective

scatterer that is reflection due to weak isolation and reflection from front of wall,

reflection from wall and a weak reflection due to target. Similar observations can be

made from Figures 5.17 (b) and 5.17 (c).

The values of both the metrics are best for delay sum but are again very close to the

values obtained for m-k as observed from Table 5.2. Figure 5.18 represents B-scan

images obtained after applying clutter reduction technique using ICA. The co-k

domain SAR focusing method and delay sum again give more effective results than

Back projection as can be visibly observed from Figures 5.18.
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Figure 5.18 B-scan image after clutter reduction and implementation of (a) co-k (b)
backprojection (c) delay sum

5.5.3 Double target behind brick wall
The data corresponding to S. No. 3in Table 1.3 is used for the case of double targets
behind the brick wall. Raw B-scan images are generated using different image
formation algorithms, i.e. co-k ,Back projection and delay sum algorithm as shown in
Figure 5.19. For the images generated using different imaging algorithms, values for
both the metrics described above are calculated and the results are compared.
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Figure 5.19 Raw B-scan images for double target case after implementation of (a) co-k

(b) back projection (c) delay sum

Table 5.3 Brick wall double target

Sr. No. Measure co-k BP DS

1 Metric 1 -6.6514 -10.45 -6.4691

2 Metric 2 0.0762 0.0113 0.1383

The values obtained for both the metrics are as shown in Table 5.3. The values of both

the metrics are best for delay sum but are very close to the values obtained for co-k for
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the double target case also. Clutter reduction is also applied and the values for both
the metrics are calculated for images formed using different imaging algorithms. The
co-k domain SAR focusing method and delay sum again give more effective results

than Back projection as can be visibly observed from Figures 5.20.
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5.6 Concluding remarks

Different imaging techniques have been applied on TWI data. A comparison of

obtained images has been carried out using different metrics. The algorithms are

tested with the experimental data. Measured B-scan images of metallic target after

applying the algorithm demonstrate the performance of the methods.

Three different coherent image formation techniques are studied for through wall

application. As coherent imaging uses many spatial antenna positions, target

information is increased. The image quality of different algorithm can be visibly

observed from the obtained results. There is a considerable difference between the

output images of algorithms from the focusing point of view. Drawback of back

projection method is that it produces ghost tails from the focused point as observed

from results, co-k method better focuses the target signature compared with back

projection. Therefore the energy level in final focused image will not correspond to

true energy levels of each reflection. This can be seen from the images obtained for

double target case. The values of both the metrics, which are a measure of image

contrast, are best for delay sum, closely followed by co-k algorithm for all the cases.

Due to the use of FFT, faster formation of desired image is possible. But when

multiple targets are present artifacts are produced. Back projection technique is

advantageous when large synthetic aperture and large bandwidth is used compared to

co-k in which problem is faced for mapping and interpolation. In conclusion, delay

sum algorithm gives the best results and co-k closely follows. Flowever, the processing

time required for the delay sum algorithm is high as compared to the co-k algorithm.

125



Chapter 6

Application of pattern analysis

techniques on TWI data for target

shape recognition

6.1 Introduction

The aim of this chapter is to explore the possibilities of feature extraction techniques

for shape detection. B-scan image provides the information in cross range and down

range where hight and size of the target can not be obtained. To recognize target and

its complete image, height information of target is very much required. C-scan data

can be use to obtain a good three-dimensional (3D) images [8]. Here in this chapter

instead of using C-scan data for three dimensional image formations, two

dimensional image is obtained from it. This will reduce time complexity of imaging

algorithm.

To enable reliable recognition of targets based on shape, the essential information

must be extracted from the obtained image. This essential information form features



of the target. Feature extraction is the process of mapping target shape to number of
coefficients, which in some sense represents the target shape. Features for two
different targets should differ as much as possible. The feature should thus extract the i
information from the target that is essential for determining the shape of target. It is
also desirable that features should have certain invariance properties, such as time
shift invariance, invariance to scaling, insensitive to multiple reflections and to noise
also. Some of feature extraction techniques which are used in TWI are reviewed in
Chapter 2where researchers have used first order and second order statistics such as
mean, standard deviation, entropy, contrast [138]. PCA is used as feature for object

recognition [143].

In this chapter feature based algorithm for shape detection is proposed to discriminate
the target which will be useful to differentiate the targets. To recognize target shape,
features are extracted using region based, contour based and pattern based techniques.
From region based methods, moment based descriptor is used to describe shape [139].
Contour shape representation includes global shape descriptor from which Fourier
descriptor is selected. Global shape descriptors are very in-accurate shape descriptors.
Pattern generation [196] along with Fourier descriptor and moment descriptor are
used as features of image. The main purpose of this chapter is to obtain a C-scan

image of atarget and recognize its shape. The shape may be recognized by two way
(i) by visualization, where shape of target can be observed and (ii) Quantitatively,
where features ofdifferent shape may be obtained and further it use for detection of
shape. In this chapter, focused is on feature based shape recognition technique by
which regular shapes like circle, rectangle and square may be detected. Orinetation of
the regular shape targets were parallel to wall. Rotation of target is not considered. y
The chapter is organised in following way. The methodology used in this paper is
described in Section 6.2. In Section 6.3, C-scan imaging algorithm has been described
with all the different signal processing steps required to enhanced the image. Section
6.4 describes different feature extraction techniques used for recognition of targets.
The results are discussed in Section 6.5. Section 6.6 presents conclusions.
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Figure 6.1 Flowchart for target shape recognition

6.2 Methodology

The developed methodology consists of image formation using C-scan data and use

of different features with neural network for automatic shape recognition. Figure 6.1

gives the methodology to recognize target. According to flowchart, first the C-scan

image is obtained, and then features are extracted using different techniques. The

primary aim is formation of 2D image from C-scan data.

Feature extraction reduced the image data to a lower dimensional data space which

represents the salient features of images. These features are obtained for different

target shapes and used as input to neural network.

6.2.1 C-scan image formation

C-scan image is obtained from the ensemble of B-scans, measured by repeated line

scans along the plane as described in Chapter 1 (Figure 1.5). The algorithm to obtain

image with different processing steps are described with the help of flow chart in

Figure 6.2. The algorithm can be describes as,

• B-scan image according to Equation 3.1 is obtained at each vertical height i.e.

after clutter reduction obtained B-scan image is taken as first step.

• After applying thresholding technique all the B-scan images are stacked.

• The spatial grid will consist of number of vertical scanning position x number

of horizontal scanning positions.

• At each grid point the region of interest is decided from which peak value at

that position will be the placed.
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. Since the image formed will have Xx Fpixels, this will be a low resolution
image.The image resolution is increased by the interpolation. Shape-
preserving (pchip) interpolation is used.

Formation of B-scan image after preprocessing steps and clutter reduction techniques
are described earlier in Section 1.3.4 and Chapter 3 and therefore are not discussed
here. Thus in other words, the two dimensional image from C-scan data is formed by
taking a fixed target plane (z =zlargel) which is selected by observing range profile.
The peak data value at target location is selected. Raw two dimensional image
obtained from C-scan data is plotted by taking a fixed target plane (z =zlarget) which

is expressed by (6.1)

I (x, y,z = z,mge,J -
(6.1)

I S(fk)cxp{j2nfk(2z Ic +2zshlft Ic +2DwaU(y]srwan -1) /c)}
k=\

where xis antenna scan position in horizontal direction and vary from 1to Xand vis
antenna scan position in vertical direction and vary from 1to F.
C-scan data are highly subjected to degradation due to the feet that antenna beam
width is not focused. Due to presence of wall, two dimensional image which is
obtained is not optimal from point of view of target recognition. Thus the user or
operator will face the problem of proper interpretation of image. Image enhancement
techniques are required to improve the raw C-scan image. This will help user to
discriminate between different targets.

In processing, filtering, thresholding and edge detection techniques are applied to
enhance the detection and visualization [197], Shape preserving filter is required to
remove undesired components from the raw image. Filtering techniques enhances the
image and provides the smooth transition across the edges of target. Due to the swath
of antenna the illumination area of antenna is not limited to the pixel size of the image
so there is significant contribution from the neighbouring pixels [57]. In order to
minimize the effect of overlap of the scattered field from neighbouring pixels
convolution kernel filter is applied to image. The basis of the method of target
detection is thresholding algorithm which is described in Chapter 4. For edge
detection simple Sobel operator is used. This process detects outlines of an object and
boundaries between objects and the background ofthe image.
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Figure 6.2 Flowchart showing the C-scan imaging algorithm

Sobel operator are used because they are products of multiplication of a one

dimensional differential filter and one dimensional low pass filter. Differential filter is

required to find edge and low pass filter provides smoothing effect.

6.2.2 Feature extraction techniques

To recognize target shapes, features that gives description of target is required. Since

target is a collection of pixels in image, target description will be just numbers known

as descriptors. Recognition of target can be achieved by comparing and matching the
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descriptors of target in image with descriptors of known image. Descriptors should
have four important properties.

• Two targets must have same descriptors iftheir shape is same.
• If similar descriptors are obtained then it should be recognized it as similar

objects.

• Descriptors should have invariant properties w.r.t., scaling, position, rotation
andalso invariance to affine andperspective changes.

• Descriptors should contain information that makes target unique or different
from other objects.

Also number of features which describes objects should be less than the complete
information of objects. Unfortunately there are no set of complete and compact
descriptors to characterize objects. Since single descriptor for recognition is not
efficient, combined features can be used. In this chapter, features of targets are
extracted using region and contour based descriptors along with pattern generation
techniques. From region based methods, moment based descriptor is selected to
describe shape. Contour shape representation includes global shape descriptor from
which Fourier descriptor is selected [139]. Brief description about this techniques is

given below.

(a) Fourier descriptor

In 1972, Granlund introduced the concept of complex Fourier descriptors in which the
boundary of atarget is defined based on complex Fourier coefficients. This Fourier
coefficients are called Fourier descriptor. Fourier descriptor essentially gives set of
spatial frequencies that fits the boundary points. With these descriptors one can V
identify the original image depending upon the number of frequencies being used.
Ten percent of the Fourier descriptors are able to generate approximate plot of the
image. When very less Fourier descriptors are used, the recognition performance
degrades. The obtained Fourier coefficients are translation invariant due to
transformation. Further the coefficients are normalized to make them rotation, scaling
and start point independent. Fourier descriptors derived for different shapes are
significantly different from each other due to which it can be used in shape v
recognition. The detailed explanation can be obtained from [139]. If the boundary
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trace of shape is taken then a pair of one dimensional waveforms x(t), y(t) can be

generated. If /V samplesof a closed boundary are taken then,

u(n) = x(n) + jy(n) n = 0,\,...N-\ (6.3)

This will be periodic witha period N. Its discrete Fourier transform representation is

/(*)=lV")exp( j2Plkn), 0<k<N-\ (6.4)
»=o yV

The complex coefficients/(ft) are called the Fourier descriptors of the boundary. Only

the magnitudes of the Fourier coefficients have been used as features.

(b) Moment invariants

Moment in image analysis is defined as a particular weighted average of the image

pixels intensities or a function of such moments, usually chosen to have some

attractive property or interpretation. These moments of an image are useful for

defining some simple properties of an image such as its area, centroid and information

about its orientation as well. Upon performing the image analysis and later deriving

mathematical equations for the images, seven moments of an image which are

invariant to rotation, scaling and translation can be obtained. The seven moment

invariant equations given by Hu [139] are used to obtain the seven values of the

original images. These values are used as features for shape recognition.

The 2-D moments of order (p, q) of some function fix, y) are defined by

mpq=\\xpyqf(x,y)dxdy (6.5)

The first moment p00 is denoted by m. Setting x =^-,y =^- the central moments
m m

of order (p, q) are defined as

M„ = TZ(x-xr(y-y)"f(x,y) (6.6)
x y
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The normalized central moments is denoted by r\pq =—B-

where

7' 2
=I(p+9) +l for p+q=2,3,... (6-7)

From the second and third order moments, a set of seven invariants moments can be

derived. They are given by:

m] = (?72o + *7ra)

m2 =(n20-?]02)2 +Wn
m, =(r]i0 - r]02)2 +(3^2, - ^
m4=(T]30 +r]u)2+(3rl2] + ?]m)2
m5 =(7730 "3»faX%o +fa) t(%o +Vuf -3(%i +^3)2] (6-8>
+(3/72, "faXfa +1703) [3(^30 +In? -(%i +%3)2)
m6 =(Ife, - 7702) K%, +fa)' -(%1 +^)2]+ 4^„(^30 +faX%, +»to)
w7 =(3/;21 - ifoX^. +fa) Klao +7i2>2 "3(fa "7m)2]
+[(3 fa -3/730X^1 +fa)[3(fa +fa)2 "(fa +^3)2]

Thus the shape feature vector using moment invariants is/m= (i»i, m2, w3, ...mi). It
may be noted that the invariant moments as shape measure have desirable properties
[139].

(c) Pattern generation basedfeature detection
The three common shapes viz rectangular, square and circle binary images are
generated using Boolean values as shown in Figure 6.3 (a), (c) and (e) respectively.
Pattern for each target shape is generated and used as feature. Similar method has
been used for GPR but in TWI case it is not yet explored [196]. Each target has
different pattern according to its shape. To extract pattern every element in the rows
and then columns of the target image are added. After this awaveform is obtained as
summed value of elements vs. columns and rows. This waveform will provide identity
of the shape of target. Waveforms of standard shapes such as rectangle, square and
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Figure 6.4 General neural network structure
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6.2.3 Neural network classifier

After training feature vectors are obtained, classifier is design to identify the target
shape. Although many classical pattern recognition algorithms are available for this
purpose, neural networks are very promising due to their advantages over
conventional pattern classification. It can approximate any target function and can
handle even redundant features.

The main reason for the feasibility of neural networks is their ability to generalize
after learning from training data. That is, they can identify atest pattern even when
that particular pattern is not used for training. Figure 6.4 shows afully connected
three layer perception network with one hidden layer having number of neurons. The
number of neurons in the input layer is equal to the feature vector dimension / and the
number of neurons in the output layer is equal to the number of target classes. The
neurons in the network give anonlinear transform between their inputs and outputs by
the use of sigmoidal activation functions. The network in Figure 6.4 is trained until its
mean squared error (MSE) between the desired outputs and its actual outputs is less
than acertain threshold level. The training strategy is based on the well-known back-
propagation learning rule, which is an iterative algorithm updating each neuron's
weight by searching the local gradient of the error surface. After asufficient number
of training iterations using training patterns, a classifier having the ability to
discriminate all target types can be formed, and it can identify atest feature vector at
any aspect of any target among all targets. In order to train the network to achieve the
best classification accuracy, alarge number of training iterations (i.e. alow MSE) are
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required in general. However, a simply low MSE value does not guarantee the best

performance of the network. When the network is trained using too many training

patterns, it may memorize the training data and therefore be less able to generalize

test data, yielding degradation in classification performance. To prevent them from

overtraining, the maximum number of iterations is usually defined to stop the training

of the network. Therefore, the network should be stopped when the MSE is less than a

certain threshold level, or the maximum number of iterations is reached.

6.3 Results and discussion

The experimental data is first used to obtained C-scan image, then feature are

extracted and lastly shape recognition technique is applied.

6.3.1 Data used

Metal target with regular shapes behind plywood wall is taken for analysis. The data

collection details are given in Section 1.3.2 and Table 1.2 (S.No. 1,2 and 3). To obtain

image of target kept behind wall, a full C-scan data was measured manually with the

help of scanning system in which both horizontal and vertical scanning spacing was

kept as 5 cm. In this experiment, twenty B-scans were measured each containing

twenty six A-scans covering an area of 1.3><1 m . In the test area that is behind wall,

targets having different shapes (circle, square and rectangular) were kept and data was

collected. C-scan data is acquired for three different regular shapes that is circular,

square and rectangle.. Apart from experimental data synthetic images with binary

values for different dimensions were generated for three regular shapes i.e. circle,

square and rectangle.

6.3.2 C-scan imaging

C-scan image can be considered as a 2D image in which local contrast in pixel

intensity provides information about existence and size of target at a particular

location of target. The results of the imaging algorithms described in Section 5.2 for

plywood type of wall are observed. From raw C-scan, it is not possible to get the

exact shape and dimension of target as shown in Figure 6.5. Results are obtained of
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Figure 6.5 Raw C-scan image (a) Circle (b) Square (c) Rectangle

front view ofa C-scan image for target having regular shapes such as circular, square

and rectangular kept behind plywood wall. The local contrast in the pixel intensity
provides a clue for potential existence of target with approximate shape. Observing
raw image indicates for the requirement of enhancement using image processing
techniques. The reasons for degradation may be due to various factors such as low
resolution due to limited performance of TWI system, low contrast due to limited

dynamic range of TWI system.

For enhancement thresholding and edge detection techniques are applied so that target

detection can be enhanced. For filtering, window size 3 is taken as smaller window
size preserved the edges of targets. After filtering, thresholding is applied to detect the
shape of target. The thresholded images are shown in Figure 6.6(a), (c) and (e) for
circular, square targets and rectangular which gives the basic idea of shape of target.
An edge detection technique is also applied to enhance the shape of regular targets.
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Figure 6.6 C-scan image in case of plywood wall (a) Circular metal plate target after

applying thresholding (b) Circular metal plate target after applying edge detection (c)

Square metal plate target after applying thresholding (d) Square metal plate after

applying edge detection (e) Rectangular metal plate target after applying thresholding

(f) Rectangular metal plate after applying edge detection
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Figure 6.6 shows the edge extraction after applying Sobel operator where the shape of
target is almost observed. The results have been obtained in case of circular target,
square target and rectangular target when place behind plywood wall as shown in
Figure 6.6 (b), (d) and (f) respectively. Though the target image does not correspond
to the actual shape of the target but much vital information about the target can be
inferred namely its approximate shape, height and extent along cross range. Instead of
applying edge detection, neural network can be used to recognize the shape of target.
The applicability of this approach is not restricted to regular target shapes. The
features can be obtained for any target shape and neural network can be trained

accordingly.

6.3.3 Recognition of shape of targets

(a) Feature extraction

For target shape recognition, first step is to obtain features for training data. Features
of three standard images (Circle, square and rectangle) are obtained. Instead of
selecting only one feature type, all the feature extraction techniques described above
are used to obtain single feature vector of particular target shape. It improves

robustness of algorithm. After getting all the features of the image, they are arranged
in a column vector form for each shape. Dimension must be same for each target

shape.

Features are extracted using Fourier descriptor, moment invariants and pattern

generation techniques. To generate sufficient target features synthetic images are used
to obtained features. After getting all the features ofthe image, they are arranged in a
column vector form for each shape. It is for certain that no two images will always
have the same number of Fourier descriptor, thus to take care of this problem the
minimum number of Fourier descriptor obtained from image shape is kept same for
remaining shapes. For example, in a 191-by-251 size image if 82 Fourier descriptors
are obtained for the circle, 90 are obtained for the square and 86 are obtained for the
rectangle then only first 82 Fourier descriptors are considered from all target shapes.
The number of features obtained from moment invariant are 7 for each target shape.
The number of features from the third technique i.e pattern generator will depend on
dimension of image. If the dimension of image is 191x251 then number of feature
from pattern generator will be 442. Total number of features obtained for aparticular
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shape of target will be 82+442+7=531. These number of features are obtained for

each shape.

(b) Neural networkfor training and testing

A simple two layer feed-forward neural network is trained using standard back

propagation algorithm. The network receives 531 feature values as input vector for

single target. Each target provides different features according to its shapes.The input

layer does not require computing neuron. The neurons in hidden layer detects the

features with associated weights of neuron in input patterns. The number of neurons

in hidden layer is determined to be 10. Neurons in hidden layer and output layer uses

logsig transfer function. The output layer contains three neurons to indicate three

target shapes. The output values at each node are coded as (1,0,0), (0,1,0) and (0,0,1)

respectively for circular, square and rectangular shapes. These features are then used

by output layer in determining output shape. The network is trained for maximum

5000 epochs or until network errors fall below 0.01. The network is trained on seven

sets of experimental and synthetic images for each target shape. As soon as the neural

network training is successfully completed the neural network is tested on ten sets of

images including training sets.

(c) Validation

For validation, the real image that of a rectangular metal sheet of dimension 25 cm by

30 cm as shown in Figure 6.7 is used to test the network. It is observed that the neural

network recognized the target correctly in most of the cases.
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Figure 6.7 C-scan image of rectangular metal plate after applying thresholding
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Table 6.1 Recognition Results

Actual shape of Target Error

Circle 0/10

Square 1/10

Rectangular 2/10

In case if the shape is different then an error is recorded. The results have been
tabulated in Table 6.1. The results for each shape have been obtained separately. The
numerator shows the number of time an error occurred and denominator shows the
number of experiments/ different images. Since number of real images (obtained from
experiment are few, synthetic images obtained for different shapes are used. It is
observed that for real images, the recognition error is more compared to synthetic
images. Image information system where output will be the shape information of a
target can be designed.

6.4 Concluding remarks
Results on experimental data show that the proposed imaging algorithm along with
recognition exhibits promising performances in terms of detection and recognition.
The proposed imaging algorithm will be very meaningful when first hand information
about the target approximate shape is required quickly. These results which are
obtained do not exactly resemble shape of target. So shape information can be

confirmed afterusingrecognition technique.

After using three feature extraction techniques, correct recognition of target shape is
obtained. The major limitation of all these techniques is that their performance gets
drastically affected by the presence of noise. After using this features, neural network
can categorized different targets based on shape in most of the cases. This technique
can be extended to discriminate between standing and sitting human or between
animal and human in through wall imaging applications. In future the orientation
effects as well as targets other than metal can be checked for shape recognition.
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Chapter 7

Concluding remarks and Future Work

This section aims to provide a summary of structure, central ideas, results and key

contributions of this thesis.

The first focus of the research is to explore the possibility of application of various

existing clutter removal techniques for TWI data and to check the possibility of

detection of low dielectric targets. After applying clutter reduction techniques like

SVD, PCA, FA and ICA clutters are successfully minimized. This implies that the

techniques are powerful. Signal strength of target kept behind wall is improved by

applying clutter removal techniques. It is found that ICA based technique gives better

result in comparison to other clutter removal techniques like SVD, PCA and FA.

SVD, PCA and FA are not able to detect the target having low dielectric constant, like

Teflon behind the wall. On the other hand ICA based clutter removal technique has a

better potential to detect low dielectric constant target like Teflon behind the wall.

Thus ICA based technique may be applied to enhance the target signal detection.

Processing using clutter reduction increases target signal strength which increases the

probability of correct target detection and hence it is useful for further process of

classification and recognition.



The problem of detection and classification of low dielectric and high dielectric
constant stationary target are considered and a possible solution is proposed. The v
concentration is mainly on detecting low dielectric constant material. Modified
statistical based threshold method is proposed and it is found that it performs quite
well from point of view of detection of pixels representing low dielectric as well as
with less false alarm rate. After detection, pdf based model is proposed for target

classification (i.e., metallic and non metallic targets). Weibull distribution is quite
suitable to classify thetargets as metallic and Teflon targets. 4

The suitable imaging techniques for TWI system is another important problem.

Therefore, techniques like co-k, back projection and delay sum are applied. Different
techniques have been compared using different image contrast measure metric like
entropy and ratio of standard deviation to mean. Obtained images are evaluated with
respect to both the metrics, which are a measure of image contrast. Results are best
for delay sum, closely followed by co-k algorithm and back projection for all the cases.

From computational point of view co-k algorithm technique outperforms other ^

techniques.

The last chapter presents development oftarget recognition technique based on shape.
The shape based features are extracted preserving as much information for classifying
targets as possible. The resulting features are passed to classifier stage based on
multilayer perception neural network. Result shows that the proposed technique has
significant potential for target recognition even for slightly noisy images.

7.2 Future work

Present thesis work has scope and possibilities which can be extended further. A few

can be listed as following.

Real time analysis for detection and classification is one of the major interests of
users. The developed techniques may be explored to be applied for real time analysis.
The orientation of targets should be considered in future for identifying different

targets. v

The effects of wall such as wave refraction, attenuation and multiple reflections on

imaging can be studied further. In this study, brick wall is used which is assumed to

144



be homogeneous. Instead, different complex type of walls like concrete with metal

inside can be considered and its effect on imaging can be studied. The accuracy of

classification of target can be increased by fusing more discriminant features. An

extensive study of different features based on geometries, parametric models, texture

etc., should be investigated. In future emphasis should be given to generate 3D

images with less complex operation.
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