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Abstract

In the last few decades, there has been an increasing interest in model based robust

controllers because of two main factors. The first one is technological advances and the other

is due to challenges such as demand for higher level of automation to reduce lifecycle costs,

issues such as maintenance on demand, zero standstill, and fault tolerance. Due to these

challenges linear and decoupled control algorithms have proved to be rather inefficient. On

the other hand advances in the fields of microprocessors, microcontrollers, digital signal

processors and communication have made implementation of complex and advanced control

algorithms very much easier and practical and hence have given an impetus to the field.

Added to this, economic and social factors like market competition and increase in demand

for high quality products have boosted the need for model based robust and adaptive

controllers. This is especially true in control of robotic systems as they are the main

workforce in industrial manufacturing and the quest is to achieve improved interaction of

robotic systems with humans, to design controllers for efficient task coordination between

multiple robots and to design high precision robots having improved rigidity and stiffness.

The latter one can be achieved by using parallel robots such as the Stewart platform

manipulators and utilizing soft computing techniques for their robust control.

Stewart platform manipulators are six DOF parallel robots having fixed base and

movable platform joined by six extensible legs. They have high structural rigidity and

stiffness and are preferred over serial robots for applications such as precision machining,

robotic surgery and so on. However the absence of robust controllers, which are able to

compensate their nonlinear dynamics and uncertainties due to model inaccuracies, parameter

variations, and external disturbances, has limited the real application of the manipulators to

low speed motion simulators only. Presently, only single input single output PID controllers

are in practical use and these controllers have a number of drawbacks including lack of

synchronization and low performance. To tackle these problems, some researchers have



proposed various robust and adaptive controllers which are based on hard computing.

Nevertheless results have shown that the controllers were unable to tolerate the uncertainties

and their performance degrades when the manipulator moves at high speeds. Therefore using

soft computing techniques for the design of a robust controller for Stewart platform

manipulators is expected to result in a better and effective controller.

Soft computing is a word coined by L.A. Zadeh and refers to a methodology which

tends to fuse synergyically the different aspects of fuzzy logic, neural network, genetic

algorithm and other evolutionary algorithms to achieve a system that is tolerant of

imprecision, uncertainty, partial truth and approximation. Researches in the last few decades

have witnessed the successful applications of soft computing to aerospace industry,

communication systems, consumer appliances, electric power systems and manufacturing

automation including serial robots. However, the application of this important tool for the

control of parallel robots has not been investigated. This thesis is a step in this direction. To

this end, the thesis tries to systematically combine and pull together three important areas:

nonlinear robust control, with emphasis on sliding mode control, soft computing and Stewart

platform manipulator control.

The thesis begins by presenting a state of the art literature review on sliding mode

control, on Stewart platform manipulator modeling and control and on application of soft

computing techniques for robust control. Then five important applications ofsoft computing

techniques for robust control are proposed and implemented through simulations. The first

application discussed in the thesis is solving forward kinematics problem ofthe manipulator.
Forward kinematics is the computation ofend-effector/platform position and orientation from

given leg length values and is necessary to close the feedback loop in task space control of
the manipulator. Nonetheless, unlike serial manipulators, in Stewart platform manipulator its
mathematical formulation is highly nonlinear and coupled making computation highly

complex and time taking. To solve this problem, the thesis deals with exhaustive comparison
between the performance oftwo estimation methods, the hard computing Newton Raphson
numerical method and the soft computing neural networks method. The performance metrics

used for the comparison are: estimation error for position and orientation and average time

taken, tolerance to external disturbances and uncertainties present in the manipulator. The
methods are compared using various trajectories. Simulation results showed that, the
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numerical algorithm, irrespective of initial conditions taken, always has more estimation

error than neural network. Moreover, it was found that numerical algorithm takes longer

average time while neural network takes less average time with uniform estimation error for

all trajectories. Hence wefound that using neural network improves control performance.

The second application of soft computing techniques dealt in the thesis is improving

robustness of existing controllers. In Stewart platform manipulator, there are two basic

approaches used for controller design, namely joint space approach and task space approach.

In the joint space approach, the controller is a collection of single input single output (SISO)

systems implemented using local information on each actuator length only and the coupling

between legs is ignored or is considered as a disturbance. The most important and practically

used joint space SISO controller is PID control. The advantage of this approach is that local

information required for feedback is obtained easily using simple sensors and the control

algorithm is easy for parallel implementation. Due to this, the control algorithm is able to

execute reasonably fast. But the performance of such controllers quickly degrades when the

manipulator speed is increased. In the thesis, a solution to this problem is proposed using

fuzzy logic, where the three gain parameters of the PID controller are tuned using fuzzy logic

system. Though using fuzzy logic to tune PID controllers has been proposed by earlier

researchers for other systems, it has not been used for Stewart platform. Moreover, in our

proposed controller, the fuzzy logic system has additional advantage of achieving

synchronization. Hence in our proposal, like the joint space PID control, each leg is

controlled by a PID controller but the gains are varied by a fuzzy logic system. The input to

each fuzzy logic system is a weighted sum of errors in all legs and the rate of change of the

weighted sum of errors. The weight factor is taken based on intuition and it enables to

minimize the coupling error between the legs, which is drawback of independent leg PID

control. Simulation results showed that the controller has better performance than simple PID

controller in terms of tracking accuracy and robustness against parameter uncertainty.

The third application of soft computing techniques discussed in the thesis is in the

design of three types of sliding mode controllers. These are: task space fuzzy sliding mode

controller (TFSMC), fuzzy sliding mode controller with integral loop (FSMCPI) and hybrid

sliding mode controller with synchronization error. The FSMC presented utilizes the full

dynamics of the manipulator and fuzzy logic is used as switching controller. Task space
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position and velocity errors are used as inputs to the fuzzy logic system and their universe of
discourse is selected based on disturbance bounds. Simulation results have shown that it

performs better than joint space PID but it has small control signal chattering which is the
usual problem of sliding mode controllers. To solve this problem, external PI loop is used to
enhance the performance ofthe controller. The assumption taken is that the PI loop serves as
along time average calculator and minimizes chattering. Simulation results have shown that
the FSMCPI performs better than both independent PID controller and fuzzy sliding mode
controller. However, a better result is obtained by using hybrid implementation. The hybrid

sliding mode controller is a combination of task space and joint space approaches. The
switching controller part of the sliding mode controller is implemented in joint space and the
model based equivalent control part is implemented in task space. The hybrid structure
makes the controller easier to implement and avoids the need for forward kinematics

estimation. Moreover the controller uses a newly proposed sliding surface which helps to
drive synchronization error to zero and the controller achieves high performance in task
space.

The fourth application of soft computing used in this thesis is evolutionary computing
technique of genetic algorithm. In this thesis, it is used to solve an important design problem,
viz., design of integral sliding mode controller for systems having unmatched uncertainty.
There are various methods proposed to solve the basic drawbacks of classical sliding mode
controller. These include: higher order sliding modes, boundary layer methods and integral
sliding mode control. Integral sliding mode control (ISMC) is an improvement over
conventional SMC and uses a nonlinear sliding surface having an integral term. It is able to
remove reaching phase problem of conventional sliding mode by using a sliding surface
which is designed to constrain the system states to be on sliding mode from initial time.
Moreover, the sliding surface of ISMC improves the stability of sliding dynamics and it
attempts to enhance robustness against unmatched uncertainties. Nonetheless the design of
sliding surface of ISMC is not a simple task and has no formal methods, especially for
nonlinear systems with unmatched uncertainty. To solve this problem, the design of integral
sliding mode controller is formulated as optimization problem and genetic algorithm is used
for its solution. The application of the method to SISO and MMO systems is discussed using
examples. Finally genetic algorithm based multi-objective optimization is proposed as a
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design method for design of integral sliding mode controller for Stewart platform
manipulators. The simulation results of the controller designed using the proposed method
shows that the method can effectively be used for the design of ISMC for MMO systems
having unmatched uncertainty.

In the last part ofthe thesis, as fifth application ofsoft computing technique, a new
controller having a better robustness and performance is presented. The controller is a

neuro-fuzzy sliding mode controller. The controller has two parts: fuzzy logic system and
neural network. The fuzzy logic and neural network parts are used concurrently but each part
is responsible for one phase ofsliding mode controller. The fuzzy logic system is utilized to
control reaching phase dynamics and the feedforward neural network is employed to keep
the system states on the sliding surface. The neural network is trained online using modified
back propagation algorithm. When the controller is used in a closed loop system, initially the
fuzzy logic system part ofthe controller is dominant and has bigger output but as the system
moves from reaching phase to sliding phase, the neural network part becomes more active as

it learns the dynamics of the system. This hybrid computing paradigm is effective to avoid

chattering and to better handle uncertainties. The stability of the system is analyzed using

Lyapunov's direct method. The proposed controller is implemented to regulate a second

order nonlinear uncertain system and simulation results confirm that the proposed system

reduces chattering and improves transient response.

All in all, the thesis deals with the various ways of using soft computing techniques

for robust and high performance control of Stewart platform manipulator. The stability of all

of the robust controllers designed for Stewart platform manipulator have been analyzed using

Lyapunov's method and were implemented using Simmechanics toolbox of MATLAB and

simulink. The controllers have been checked by taking wide uncertainty limits to minimize

challenges in practical implementation. All of the simulations have shown promising results.

The controllers discussed in the thesis are not only useful for the advancement of the field of

robotics control but also have wider contribution to the field ofnonlinear system control.
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Chapter 1

Introduction

Robots have been in use for more than 60 years to automate industrial manufacturing and
today, in addition to industrial manufacturing, there are more and more robots in various

applications like medicine, military, housekeeping, elder care, and space exploration and so
on[125, 128]. They generally have the following three basic components.

a) mechanical links andjoints

b) sensors and actuators

c) controller

The mechanical links and joints of a robot determine the shape, size, workspace and
other basic characteristics of the robot while the sensors and actuators act as gateways to the
external environment. The controller is the brain of the robot and it is one of the basic driving
forces to the changes made in robotics and is the main subject of the thesis. However, design
of robust and high performance controller needs the study of the mechanical links and joints
and their modeling making it the first step in the design of controller for robotic systems.
There are two basic models that must be derived for any robotic system, the kinematic model

and dynamic model. The kinematic model gives the position and velocity of the end effector
of the robot as a function of the position and velocity of the joints of the robot, while the
dynamic model gives the acceleration of the end effector as afunction of the force required at
the joints. Both the kinematic and dynamic models depend on the mechanical structure ofthe
robot. Based on their mechanical structure, there are two types of robots, namely serial and
parallel robots. The serial robots are the most common ones in industrial applications today,
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to the extent of 90% [73, 80]. They are interconnection of rigid bodies linked one after the
other by one-degree-of-freedom joints. The main advantage of these robots is their large
work space and their kinematic design which reduce the mathematics of the robot geometry.
The drawbacks ofthese robots are low load carrying capacity with respect to their mass and

low precision. For example an Adept 1800 4 DOF SCARA robot has a maximum load
carrying capacity of 5.5kg whereas its mass is 34Kg giving aload/mass ratio of 0.1617 [74].
Their precision is also very low due to accumulation of the errors in the serially connected
links and they suffer from extensive vibration. To solve these problems parallel robots have

been proposed.

Aparallel robot is defined as a closed loop mechanism having afixed base and
moveable platformjoined by extendable legs or kinematic chains. [80]

In parallel manipulators the end effector is connected to the base through multiple
links and hence the load is distributed to the links resulting in a higher mass/load ratio. The

error in the links will also be averaged out rather than being summed and hence they have a

higher precision in positioning. One of the most important members of the family of parallel
robots is Stewart platform manipulator. It is a fully parallel robot having a base and a

platform joined by extensible legs.

1.1 Stewart platform manipulator

The manipulating structure named as Stewart platform first appeared in literature in 1965
when D. Stewart proposed adesign for aflight simulator [15] [38]. In practical applications,
around 1950, V. E. Gough has successfully used a similar structure for tire testing but the
name Stewart platform become more dominant in the literature [38][80]. In some literature
the name Gough-Stewart is also used for the same mechanical structure. The basic
geometrical, kinematics and dynamics of Stewart platform manipulators have been given in
[73], [80], [160-162].

1.1.1 Geometry and kinematics

The Stewart platform manipulator has undergone various generalizing modifications from its
initial proposal by D. Stewart and as it is understood now, it contains two rigid bodies
connected by six extensible legs [38][15]. The first rigid body is known as the base and is

A
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usually fixed. The other one is known as the platform and it is the end effector and is

moveable. The extensible legs are joined at the base by either spherical or universal joints

and to the platform by universal joints [80]. Six degree-of-freedom motion is obtained by

changing the length of the legs. Fig. 1.1. shows the general structure of a 6 DOF Stewart

platform manipulator.

=Y-v.

•^^'^W^

actuated
prismatic

joint

two passive
revotute joints

base

"xL.

end effector

, passive
spherical
joint

Fig. 1.1 A fully parallel 6 DOF Stewart platform manipulator, [65]

The geometry and kinematics of Stewart platform manipulator has been a hot

research topic from 1980's till the end of 1990's. An extensive review can be found in [15]

and a review on some of the latest researches is given in chapter 2. For easy reference and

understanding of the manipulator system, let us consider a Stewart platform with irregular

hexagon base and platform as shown in Fig.1.2. For geometric description of the

manipulator, coordinate frames are assigned to the base and platform as shown below. Let,

the centers of the universal and spherical joints are denoted by Bj(i =1,2 ... 6 ) and Pj(i = 1,

2 , ... 6) respectively and let reference frames Fb and Fp be attached to the base and the

platform. Let also, the position vector of the center of universal joints Bj in frame Fb be bj and

the position vector of the center of spherical joints Pj in frame Fp be pj. Then the position
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vectors for the spherical joints and universal joints the in the platform and base frames

respectively are given as:

Fig.1.2 Coordinate frame assignment for geometric and kinematic description ofStewart

platform manipulator

Pf=[Pix Piy Piz]
=[Rp«»(ti) VinM °] (U)

bf=[bix biy b„]
=[Rbcos(5,) R^fo) o] A-2)

In (1.1) and (1.2), Rp and Rb are radius ofthe platform and base respectively, the angles <j>i
and 8j are angles used to specify location ofjoints in the platform and base. Let r= [rx, ry, rj
be the position of the origin Op offrame Fp with respect to Ob and also let R denote the
orientation matrix of frame Fp with respect to Fb. Thus the Cartesian space position and

orientation of the moveable platform or end effector is specified by X= [rx, ry, rz, a, P, y]

where the three angles a, p, y are three rotation angles that constitute the transformation

matrix R, which is given as:
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CyCp -SyCa+CySp.S'a SySa+CaCySp
CpSy

-SP

CyCjj+SpfSpSy

CpSa

-SaCy+CaSySp
CpCa

(1.3)

Where Cy is cos (y) and Sp is sin (p) and so on. The location ofthe center ofthe spherical

joints P, with respect to the base frame is given by

P,b=R-P,+r (1.4)

where R is the transformation matrix from platform to base and r is position ofcenter ofthe

platform with respect to base frame. Then length of ith leg can be calculated from the vector

closure relation shown in Fg.1.2 by the green and red colors and given as

O.TVB^O.Op+OpP,
(1.5)

Substituting the vectors by their symbols and rewriting the equation, the length of each leg
which is length of vector BjP, is given as

q, =||Rp,+r-bi||

This means that if the desired position and orientation of the platform is given, then the
length of each leg can be uniquely determined. The converse of (1.6) gives the forward
kinematics, which is to calculate the position r and orientation angles of the platform for a
given combination ofleg lengths. This is highly nonlinear and coupled but is very important
for feedback control. The velocity kinematics is obtained by differentiating (1.2) and it gives
the velocity of the legs for a given vector of platform velocities as

q=JX

Where the Jacobian matrix J of the manipulator isgiven as

a, (R.p,+r)xa,

(1.7)

K =
a2 (R.p2+r)xa2

a6 (R-P6+r)xa6
(1.8)

and ai is a unit vector in the direction of each leg.

1.1.2. Dynamics

The Dynamic modeling of Stewart platform manipulator can be done using the Lagrangian
method or recursive Newton Euler method [7][10][15][80][161-162]. The Lagrangian
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formulation gives a closed form equation, which is useful for the design of model based

controllers, and it has been used by most authors. Another important point in the formulation

ofdynamic model ofthe manipulator is the variables used. The dynamic equation and hence

control of the manipulator can be given either in joint space, as a function of the length,

velocity and acceleration of legs (q,q,q) or in task space using the position, velocity and

acceleration ofgeneralized vector X=[x yza(3y] containing Cartesian position ofplatform

center and its orientation. Each approach has its own advantages and disadvantages. The

joint space approach is easier from closed loop control point ofview as it does not need the
use of forward kinematics in feedback loop. In this approach only leg lengths and velocities

are needed. The first one can be easily measured by standard sensors and leg velocity can be

obtained by differentiating the measured leg lengths and filtering it using low pass filter. But

dynamic modeling is complex in joint space because ofanonlinear coordinate transformation
needed [173]. On the other hand task space approach is easier for dynamic modeling but it
needs the highly nonlinear forward kinematics for feedback controller implementation [58].

Using joint space approach, the dynamic equation is given by

A(q)q +B(q,q)q +Q(q) =x-ff-xd (1 Q)

where q is the length oflegs, Ais 6x6 manipulator inertia matrix, B is also 6x6 coriolis and

centrifugal torque/force, Q is 6x1 gravitational torque/force, x is the actuator torque, ff is

torque due to friction and xd is disturbance torque.

In the task space, the dynamic equation is given by ^

M(X)X +C(X,x)X +G(X) =JT(T-ff-xd) (11Q)

where X is the 6DOF generalized Cartesian position and orientation vector of the platform

given by X=[x, y, z, a, p, y]. Mis 6x6 manipulator inertia matrix, Cis also 6x6 coriolis and
centrifugal torque/force, Gis 6x1 gravitational torque/force, J is 6x6 manipulator Jacobian, x

is the actuator torque, ff is torque due to friction and xd is external disturbance torque.

Alternatively, writing platform dynamics and leg dynamics separately, the dynamic equation

can be rewritten as:

(M,(X) +M2(X))X +(ci(X,X) +C2(X,X))x +G1(X) +G2(X) =JT(T-ff-id)
(1.11)
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where parameters with subscript 1are for the platform and parameters with subscript 2are
for leg. This kind of dynamic formulation helps in controller design where the manipulator
dynamics is calculated in task space and the leg dynamics is calculated in joint space for
improved efficiency. An extended version of this formulation has been suggested by Khalil
[161], [162]. In his method, the closed chain is divided into two subsystems, platform and
legs. The dynamics of the platform is calculated as a function of the position, velocity and
acceleration of the platform (x,x,x) whereas the dynamics of the legs is calculated as a
function of the joint position, velocity and acceleration (q,,q,,q,). Then the actuator torque
is calculated as asum of the two, after projecting them into the active joint space. Hence the
active joint torque is given by

( 6 ~N
T= JT Fn+YjTJTH

p / j yi"i xii

V i=l )
(1.12)

where

J is the platform Jacobian matrix

Fp is total force and moment exerted on the platform

JVl is Jacobian matrix that relates the velocity of the origin of the platform frame
to the Cartesian velocity transferred from each leg to the platform.

J, is kinematic Jacobian matrix ofleg iand it gives the velocity transferred to the
platform from each leg i.

Hj is the dynamics of leg i

Another important dynamic formulation is that given in [113] and which is based on
principle of virtual work and includes the actuator dynamics. The actuator torque is given as

^iK^WJq.Wj+c.fx^^w^.J+G.fxet))
k=l / \ /

(1.13)

The parameters x, mand Gare as defined above and the actuator friction is included in C.
There are few assumptions used in the dynamic equations during controller design. These
are:

Assumption 1: Manipulator inertia matrix is non singular

Assumption 2: Manipulator Jacobian matrix is nonsingular throughout the workspace
In addition to the above two assumptions, in the design of robust controllers, there are some
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assumptions aboutthe uncertainties.

Assumption 3: The uncertainties in the dynamic parameters are additive and can be
expressed as nominal and deviation. In analyzing the uncertainty of the inertia matrix, the
payload is assumed to be symmetrical and diagonal terms are mostly ignored. In some
applications where the platform is subject to nonsymmetrical loads such as antennas, the
uncertainty in off diagonal terms can also be significant [132]. The dynamic model including

uncertainties is given as:

,(X)X +CN(X,x)X +GN(X) =JT(x-ff-xd) +d (1H)M.

where d is given by

d=AM(X)X +AC(X,X)X +AG(X) (1 15)

1.1.3 Actuators used to drive legs

Various actuators have been used to drive Gough-Stewart platform depending up on the size,
accuracy or precision required and speed of operation [73][80]. The most important ones are:
hydraulic system, electric motor and piezoelectric systems.

1.1.3.1 Hydraulic Systems

Hydraulic actuators have high power-to-weight ratio and rapid response and they are used for
applications such as flight and other motion simulators and telescopic antenna derives where
the payload is very big. Their input output characteristic is not linear; they exhibit high
nonlinearity. Moreover, hydraulic actuators resemble velocity source rather than force source
and therefore their control is relatively complex than electric motors and their dynamics
cannot be simply neglected rather it has to be modeled and used with platform dynamics if
good motion tracking is to be obtained [7][29][71][67][101][173].

1.1.3.2 Electric motors

Various types of electric motors, including AC and DC servo motors and linear direct drive
motors have been used to drive Gough-Stewart platform manipulators[52][58][89][94][l 13].
In case of AC and DC servo motors, the rotary motion of the electric motor will be converted
to linear motion using gear assembly and lead screw. The interesting feature of electric
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motors is their linear characteristics when they are driven using direct force control (current
control) method. Mostly their dynamics can be neglected without having significant effect on
controller performance.

1.1.3.3 Piezoelectric systems

Piezoelectric actuators are used for small sized micro manipulators used for robotic
intervention [19], force sensing and pointing applications such as in optical communication
[63]. Generally, piezoelectric actuators offer high bandwidth, good control linearity and high
force output with small size. For example, a piezoelectric actuator stack of size

5mmx5mmxl8mm can give 840N output force with deflection of 14um and response time of
50p.s[19].

1.1.4 Applicati on areas

Stewart platform manipulator is generally applied in areas where high precision and/or high
load carrying capacity is required. Some of these are

- Flight and other motion simulation[7][6][15][38][73][80][101][162]

- Medical robots/minimal invasive surgery [19][27][73][80][100][104][166]
- Precision machiningfl 13][145][177][174]

- Force sensor[73][80][131]

- As pointing device[56][72]

- Telescopic Antenna Positioning[20][176][132][133]

1.1.5 Control of Stewart platform

To effectively utilize the structural advantages, namely high rigidity, stiffness and high
precision, of Stewart platform manipulator to the above mentioned applications, a robust and
high performance controller is necessary. Acontroller in Stewart platform manipulator has to
generate torque signals which will be applied at the legs such that the moveable platform
moves in adesired direction at adesired speed. The relationship between these force/torque
which has to be given at the legs and the acceleration of the center of the platform is what is
known as the forward dynamics and it is highly nonlinear and coupled. This makes the
controller design very challenging. There are two approaches to the controller design
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problem. The first one is to convert the desired task space position, velocity and acceleration
of the platform center to desired joint leg lengths and close the loop by using measured leg
lengths as feedback. This approach is known as joint space. In this approach, the individual
leg measurements and desired values are taken separately and control is single input single
output. In the second approach, the desired task space position, velocity and acceleration is
not converted to desired leg length rather it is used directly by taking measured or estimated
task space position, velocity and acceleration as feedback. Hence in this approach, control
signal is calculated in task space and then it will be converted to joint space using the
Jacobian matrix. The manipulator control system in this approach is therefore a multiple
input multiple output system. Simplified block diagram of these two approaches is given in
Fig. 1.3 and Fig. 1.4.
When aStewart platform manipulator is used, it is expected to move without any vibration
and to follow a given trajectory with minimum error and at high speed for all loading
conditions. Acontroller for such an application should be able to handle the nonlinear
dynamics and the various uncertainties such as parameter uncertainty, actuator friction and
modeling errors. Furthermore, if numerical estimation is used to get feedback about end
effector pose, the estimation error brings unmatched uncertainty. Therefore controller design
and stability analysis for this system has to include all these uncertainties. The control
method presently used in the industry is independent leg PFD control [36][43]. This controller
is not effective for high precision and high speed applications. In this method, measured leg
lengths are used for feedback and information from corresponding legs only is used to
generate control signals. This method results in less performance because of lack of
synchronization and the inability of the linear PID controller to compensate the highly
nonlinear coupled dynamics [58].
Few researches have been made to solve this problem and researches in the derivation of
robust control strategies which make use of the in-parallel structure of the manipulator are
highly needed. Astate of the art review on the existing controllers will be presented in
chapter 2.
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12 Robust Control

Limitations of apopular methodology have always been among the factors stimulating new
research. Such is the case with failure of previously famous control techniques such as LQR,
state feedback and adaptive control when they are faced with uncertainties which were not
considered in the design or modeling step [124][140]. Therefore it has now become a
necessity to analyze uncertainties and design robust controllers. Robustness is a property

II



Introduction

which guarantees that essential functions of the designed system are maintained under
adverse conditions in which the model no longer accurately reflects reality [124]. Hence a

robust controller is expected to maintain performance when the uncertainties are within a
determined bounded limit or when they are from a known distribution. Though the idea of
such controllers dates back to the time of classical feedback controllers, which use high gain
feedback to suppress disturbances, present day challenges and the need for operation in
nonlinear regions has resulted in aboost for the need for nonlinear robust controllers [129].
In this regard, a range of nonlinear robust control methods have been suggested in the last
few decades, namely: nonlinear robust controllers based on computed torque method,
Lyapunov based controllers, passivity based controllers, nonlinear H-infinity controllers and
sliding mode controllers [67] [101][128][145][164].

In the case of nonlinear robust controllers based on computed torque control method
first the nonlinear system is linearized using computed torque feedback control method and
then linear robust control techniques are applied to control the resulting linear system. The
method is very good but it highly depends on the linearizing computed torque feedback
control part and it fails when there is amismatch between the actual system and linearizing
feedback parts which usually is the case [67][101], The other two methods, Lyapunov
method and passivity based method are very effective for systems having both structured and
unstructured uncertainties [145][164], However, both methods need the matching condition
to be fulfilled [124]. Nonlinear H-infinity is an extension of the linear H-infinity case and is a
very important method but it has an involved mathematics which makes its design and
implementation difficult. Sliding mode control (SMC) is arobust controller design method,
which is effective in controlling systems with significant uncertainties including parameter
variations, unmodeled dynamics and external disturbances [15] [76] [142] [144] [157]. The
design of SMC involves two steps: the design of stable surface or manifold known as sliding
surface and the design of the control law, which is used to drive the system states towards the
sliding surface and keep them on it. In the ideal case, once the system is driven towards this
sliding surface, it is insensitive to all types of uncertainties [15][76] [157], But, practical
SMC has some drawbacks and these are: (i) chattering or high frequency oscillation of
control signal, (ii) lack of robustness during the sliding phase, (iii) reduced life time of
actuators and (iv) is unable to compensate unmatched uncertainties [144], Various

12
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modifications such as boundary control, saturation control, higher order sliding mode and
integral sliding mode have been proposed to solve the above problems [30][42][55][66].
However, there still exist some problems which need to be solved. In this thesis, soft

computing techniques are used to address all ofthese problems and enhance the performance
of basic sliding mode controller.

1.3 Soft computing techniques

Soft computing is the fusion or combination of fuzzy, neural and evolutionary computing. It
is meant for construction of new generation ofartificial intelligence and for solving nonlinear
and mathematically unmodeled systems at a lower cost [144][167]. The potential of soft
computing techniques in solving existing and future challenges has been emphasized by
various researchers including L. A. Zadeh, the pioneer ofthe subject. In his mail broadcast in

May 19, 2009, L. Zadeh stated, "As we move further into the age ofintelligent systems, the
problems that we are faced with become more complex and harder to solve. To address the

problems, we have an array of methodologies - principally fuzzy logic, neurocomputing,
evolutionary computing and probabilistic computing. In large measure, the methodologies
are complementary; and yet, there is an element of competition among them. In this setting,
what makes sense is formation of a coalition. It is this perception that motivated the genesis
of soft computing-a coalition of fuzzy logic, neurocomputing, evolutionary computing,
probabilistic computing and other methodologies"[167].

As pointed by L. A. Zadeh, the individual methods of neural, fuzzy and evolutionary
computing methods have some advantages and also disadvantages which can be minimized

by using one or more of the other method. Neural networks have flexible learning
capabilities and it is possible to develop nonlinear model using only input-output data.
However it is difficult to fine tune the parameters to improve the modeling accuracy. On the
other hand fuzzy logic gives a clear advantage in decision making and representation of
expert knowledge. But it has poor adaptation capabilities. Combining the advantages of these
two gives a more important intelligent system and adaptive neuro fuzzy inference systems
(ANFIS) is one of the possible hybridization methods. Similarly evolutionary computation
methods such as genetic algorithm, particle swarm computing and so on are useful for
optimization of large scale and complex systems. The complexity of the parameter search or
fine tuning of neural network and fuzzy logic systems can be solved by these evolutionary

13
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computation methods. These kinds of hybridization or fusion have made soft computing to be
abest candidate for solving many practical problems which cannot be solved by traditional or
hard computing methods. The various fields ofapplications ofsoft computing are aerospace,

communications, consumer appliances, electric power systems, manufacturing automation

and robotics, power electronics and motion control, process engineering and transportation
and so on. In this thesis, soft computing techniques are used to design robust controller for

robotic system which is one ofthe potential application areas.

The most important property of soft computing techniques which is to be exploited in
robust control systems is tolerance to uncertainty. Unlike traditional computing which is
based on exact concepts, soft computing techniques are based on non exact concepts. This is
similar to computation mechanism of human brain and due to this underlining nature soft
computing techniques have the ability to deal with uncertainties. Hence it is very important
to study the uncertainty tolerance property of soft computing techniques and utilize it for the
design of robust controllers for complex nonlinear systems. This is the main goal of this
thesis.

1.4 Objectives of the research

The main objectives ofthis thesis work can be summarized as
• To study previous works on application of soft computing techniques for

robust control ofnonlinear systems and extend them for the Stewart platform

manipulator control.

• To design cost effective, practically realizable and high performance robust
controller for Stewart platform to enhance its potential application in various

fields.

• To study classical sliding mode control and its recent developments and solve
some ofstill existing problems by using soft computing techniques.

• To study specific control problems of Stewart platform manipulator and
design robust and high performance controller by using soft computing
techniques.

• To study robust control problems of nonlinear systems and find new ways of
soft computing techniques for better control results.

14
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1.5 Motivation

Stewart platform manipulator was first proposed by D. Stewart for flight simulation and
today its application has crossed multiple disciplines like robotic surgery, precision
manufacturing, large telescopic antenna positioning and so on. In robotic surgery
applications Stewart platform is used to achieve force feedback by giving six dimensional
forces sensing capability. This is very important to achieve tactile sensing in remote surgery.
It was also shown that force feedback has a promising potential in compensating
physiological motions such as heart beat and motion due to breathing and improving surgical
accuracy [177]. In precision manufacturing applications, Stewart platform is used for optical
communications, laser weapons pointing, remote sensing and micro manufacturing.

In addition to these specific applications, the manipulator is also used as a test bed for

nonlinear controllers. The highly coupled and nonlinear nature of the dynamic equation
makes the manipulator control problem to be a challenging task. The manipulator control
problem can be formulated as either SISO or MIMO depending up on whether the control is
in joint space or task space. Moreover, the controller design is a multidisciplinary problem
and needs understanding ofthe mechanical system, electrical sensing and actuation methods
of the manipulator and the electronic system components required in addition to the aspects
of control system. Therefore, the research work has multiple contributions to the field of
controls system as well as to the specific applications listed above. The manipulator
considered in the simulation works contained in the thesis is a large one with mass of legs
being 1/4* of the mass of the platform and hence non negligible. This makes the control
problem nontrivial and important.

1.6 Statement of the problem

Given the mechanical structure of a 6DOF Stewart platform manipulator and the limits of
variation ofthe payload, the statement of problem of the thesis is to

- Specify the limits of uncertainty of the dynamic parameters for agiven high speed
trajectory

15
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- Study various soft computing techniques and use them to design various types of
joint space and task space robust, low cost and easier controllers to drive the
manipulator in a given trajectory

- Compare the performance of the various robust controllers in terms of their
robustness, ease of implementation and cost

The organization ofthe thesis is as follows.
. Chapter 1gives abrief introduction of the research work, motivation, and

problem formulation.

. Chapter 2gives astate of the art literature review on sliding mode control, on
Stewart platform manipulator modeling and control and on application of soft
computing techniques for robust control.

. Chapter 3presents adetail analysis of the forward kinematics problem of the
manipulator. The chapter deals with exhaustive comparison between the
performance of two estimation methods, Newton Raphson numerical method
and neural network. The performance metrics used for the comparison are:
estimation error and average time taken. The methods are compared using
various trajectories and simulation result shows that, the numerical algorithm,
irrespective of initial conditions taken, always performs less than neural
network for all trajectories. Moreover, the numerical algorithm takes longer
average time while neural network takes less average time with uniform
estimation error for all trajectories.

. Chapter 4discusses the design and stability analysis of afuzzy logic system
based model less adaptive controller for trajectory tracking control of Stewart
platform manipulator. The basic controller structure is SISO PID type of
controller and the three gain parameters are tuned using fuzzy logic system.
The input to the fuzzy logic is aweighted sum of errors in the leg lengths and
output is asignal used to tune the gains. The control structure helps to achieve
nonlinear PID and due to the weighted sum of errors synchronization error is
minimized. Simulation results show that the controller has agood adaptive
performance and achieves a better tracking accuracy than simple PID
controller.

16
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Chapter 5 of the thesis deals with the design and stability analysis of three

types of sliding mode controllers. These are fuzzy sliding mode controller

implemented in task space, fuzzy sliding mode controller with integral loop

(FSMCPI) and hybrid sliding mode with synchronization error. The task space

fuzzy sliding mode controller has better performance than joint space PID, but

it has some chattering which is the usual problem of sliding mode controllers.

The fuzzy sliding mode controller enhanced with external PI loop shows

better performance than both independent PID controller and fuzzy sliding

mode controller. The hybrid sliding mode controller uses a new sliding

surface which helps to drive synchronization error to zero and the controller

achieves high performance in task space without using the complex forward

kinematics. This has great advantage since it avoids the forward kinematics

problem which is seen as a hindrance to controller implementation in task

space.

Chapter 6 deals with a further improvement to the sliding mode controllers

using genetic algorithm. The chapter deals with integral sliding mode control

(ISMC) and its design problems. ISMC is an improvement to basic sliding

mode which uses sliding surface having an integral term. But its design is not

a simple task and has no formal methods, especially for nonlinear systems.

Hence, in this chapter the problem is formulated as an optimization problem

and genetic algorithm is used. The application of the method to SISO and

MIMO systems is discussed using examples. Finally how to apply multi-

objective optimization using genetic algorithm for design of integral sliding

mode controller for Gough-Stewart platform manipulator is discussed. The

results show that the method can beeffectively for the design of ISMC.

Chapter 7 discusses a more robust and better controller, which is made

from hybrid of fuzzy and neural networks. The controller is named as neuro

fuzzy sliding mode controller and has two parts, viz., fuzzy logic system and

neural network. They are used concurrently but each part is responsible for

one phase of sliding mode controller. The fuzzy logic system is utilized to

control reaching phase dynamics and the feedforward neural network is
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employed to keep the system states on the sliding surface. The neural network
is trained online using modified back propagation algorithm. Initially, fuzzy
logic system is dominant and as the system moves from reaching phase to
sliding phase, neural network becomes more active and hence a hybrid
computing paradigm is achieved. The stability of the system is analyzed
using Lyapunov's direct method. The proposed controller is implemented to
regulate a second order nonlinear uncertain system and simulation results
confirm that the proposed system reduces chattering and improves transient
response. The results for an inverted pendulum system and its application for
Gough-Stewart platform manipulator have confirmed the significant
improvements obtained from the controller.
Chapter 8presents the summary of the contributions made in the thesis and
the future scope of the work.
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Chapter 2

Literature Review

1 Introduction

In this chapter we will establish a background for the research work by presenting a state of

the art review of some of the related researches. In the first section, one of the important

nonlinear robust control methods, sliding mode controller, is discussed. In addition to the

basic or classical structure, proposed modifications and recent advances in solving drawbacks

of the classical sliding mode controller are included. In the second section, an extensive

review of research papers on design and development of controller for Stewart platform

manipulator control is documented. The dynamic models used, the assumptions made and

their advantages and disadvantages are discussed. The third section of the chapter covers

review of soft computing techniques and their application for robust control. Neural network,

fuzzy logic and genetic algorithms and their hybrid implementations are presented. At the

end of the chapter the research gaps identified are listed and the foundation for the research is

laid.

2.1. Sliding mode controllers

2.1.1. Basic sliding mode controllers

Sliding mode controllers are robust controllers effective for systems with significant

uncertainties including parameter variations, unmodelled dynamics and external disturbances

[144][14][142][76][157]. Since 1950, they had been applied for control of various types of

systems including linear and nonlinear ones [142][76]. The problem definition of sliding

mode controller can be stated as follows [87]. Given a nonlinear uncertain system
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x=f(x,t) +g(x,t)u+d(x,t) (2.1)

wherexeffT, f(x, t) is nxl vector valued nonlinear function, g(x, t) is nxm matrix valued

nonlinear function, u is mxl control input and d(x, t) is the uncertainty,

Find m sliding surfaces represented in vector form as

s(x)=Ax (2.2)

- Find a control law u of the form in (2.3) that drive the system states, from any initial

point, towards a surface or manifold (2.2) in a finite time.

u =Ksgn(s) (2.3)

Where x is the state vector of the system, A is mxn dimensional constant gain matrix, K is

the gain of the discontinuous control signal which is responsible to drive the system states

towards the sliding surface and sgn(.) is the switching function given by,

sgn(x) =j1 X>°A (2.4)
5 K' [-1 x<0

The design of the controller involves two steps, the design of stable surface or manifold
known as sliding surface and the design ofthe control law which is used to drive the system

states towards the sliding surface!14][157]. The stable sliding surface determines the

performance of the system during sliding and hence is avery important factor [142][76]. It is
determined based on required specifications and system constraints. The survey paper of[76]

gives a detail discussion on the design of the sliding surface, characterization of the sliding
and reaching modes and the design ofthe control law for linear systems. For linear systems
design methods such as linear quadratic regulator, pole placement and Lyapunov method
have been used to obtain the stable sliding surface[78][81][153]. All of these methods give a

single sliding surface, which results in a single closed loop damping ratio of a system to be
controlled.

The above discussed conventional sliding mode controllers have two phases: (i) reaching

phase, where states of acontrolled system are driven towards astable sliding surface and (ii)
sliding phase, where the system states are constrained on the sliding surface and the system is
insensitive to uncertainties [157]. Such conventional sliding mode controllers have some

basic drawbacks, which motivated various researches on sliding mode controllers. The
basic drawbacks are: (i) high frequency oscillation of the sliding variable near the sliding
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^ surface, which is known as chattering, (ii) lack of robustness during the reaching phase and

(iii) lack of robustness to unmatched uncertainties [144]. In the following sub-sections, we

will review some of the recent and important researches proposed to solve these problems.

2.1.2. Boundary layer and saturation control

One of the serious drawbacks of sliding mode controllers is chattering. This is high

frequency oscillation of the control signal which excites high frequency dynamics of a

controlled system and may result in instability. Because of this, most of the research in

sliding mode control has been aimed at solving the chattering problem. The solutions

proposed differ on the assumption they made on the source of the chattering. Some of these

X assumptions are: the discontinuity of the sgn function, presence of fast actuators and sensors,

the existence of time delay and hysteresis and so on [47][48][65][66]. The boundary layer

control method is proposed based on the assumption that the source of chattering is existence

of delay and hysteresis. Hence in boundary layer control, the controller (2.3) is modified to

the form

u=Ksat(s) (25)
where

u = <

+1 for s > \|/

sfor-<p<s<¥ (26)
-1 for s< v|/

T is a small constant which determines the width of the boundary layer [47][48][65][66][76].

The objective of this kind of controller is to replace the relay like switching by a high slope

smooth function and reduce the chattering. In state space, such controller appears to have a

boundary around the sliding surface which is having width of VF. The problem of this

controller is once the system states are driven to the boundary layer, the dynamic of the states

is not known [47][48].

2.1.3. Second order sliding mode controllers

The use of high slope smoothing devices described in section above was unable to solve the

chattering problem and further research resulted in higher order sliding mode controllers. The

main objective of higher order sliding mode controllers, where second order is the most

famous one, is to influence higher order derivatives of the sliding surface. In conventional
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sliding mode controllers, the first derivative of the sliding surface is driven or influenced by

the control signal. However, in higher order sliding mode controllers, the control signal acts

on the sliding variable and some of its higher order derivatives [47] [65][66]. But such

controllers have two limitations. The first one is actuator saturation. In higher order sliding

modes, the control signal which act on the first order derivative of the sliding surface is

obtained by integrating the discontinuous control [47][48]. This integration may result in

actuator saturation. The other problem of higher order sliding modes is they need systems

having relative degree greater than one. Relative degree of a system is the number of times

the output has to be differentiated before dependence on control signal is reached. This

property limits the applicability ofhigher order sliding mode controllers.

2.1.4. Integral sliding mode controllers

As described above classical sliding mode controllers have two phases, reaching phase and

sliding phase. In the reaching phase, the controller is not insensitive to disturbances and it is
not robust. To solve this problem and get additional benefits integral sliding mode controllers

have been proposed. Integral sliding mode control (ISMC) is an improvement to

conventional SMC and uses a nonlinear sliding surface having an integral term [144] [55],

[81] [156]. It is able to remove reaching phase problem of conventional sliding mode by
using asliding surface which is designed to constrain the system states to be on sliding mode
from initial time [55], [81]. Moreover, the sliding surface of ISMC improves the stability of
sliding dynamics and it enables to enhance robustness against unmatched uncertainties [153].

2.2. Stewart Platform manipulator control

A brief introduction of mechanical structure, modeling and control of Stewart platform

manipulator has been given in the introductory section. In this section, latest researches in
control and modeling of the manipulator are presented. For an extensive review ofkinematics
and dynamics modeling of the manipulator, the reader is referred to areview paper by [15].
In that review paper, control aspects were not discussed stating that control research on
Stewart platform is fresh and untouched. In the last decade, after the review paper, many
research results have been published and a systematic study of the relationship between the

researches and the gaps there is presented as follows.
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2.2.1. Kinematic modeling

The research on kinematics of Stewart platform manipulator has been mainly on its forward
kinematics. This is so because it is very important in the control of the manipulator. In
general there are three basic approaches to the forward kinematics problem: geometric,
analytic and numerical methods [16][15][16-18][60][82][85][91][103][114][120][117]
[147][176][177][178]. Some other approaches include use of rotary and vision sensors [15],
[64][79][105] nonlinear observer based approaches [99] and neural network estimations
[60][91][178]. Arecently proposed method is an estimation method using clustering [103].
The forward kinematics is required in feedback control when controller is implemented in
task space and it has to be computed or measured at servo rate to get the 6DOF platform
position and orientation. There are two problems in this; one is the accuracy of the
measurement or estimation and the other is cost of sensors if measurement is to be used or

speed in calculation if numerical methods are to be used. The problem with analytical
methods is they give multiple solutions (up to 40) or all possible solutions and the exact
solution has to be selected [I5][73][80][85][l 14][117][120][147]. This makes the
implementation complex and impractical for real time control. The numerical methods are
fast to implement but have problems like: reliability, may lead to wrong result, take long time
depending on initial guess. The problem with sensor based methods is high cost [64][73]
[80][79][82], while that of neural networks is reliability. Cascade implementation of neural
networks and numerical methods with the objective of improving reliability and estimation
accuracy is another proposed method and it was reported that it can result in better solutions
[16][32].

Other important kinematics parameters necessary for control and modeling are the joint space
and task space velocities. The velocity kinematics is given as

q=JX
(2-7)

Where J is the Jacobian matrix of the platform given by [16], [159][160]
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1-1

a, (R.P,+r)Xa,

a2 (R.P2+r)Xa2

a6 (R.P6+r)Xa6

\\B,P\

(2.8)

(2.9)

is unit vector in the direction of leg i. In feedback control applications, it is very important to

use high quality velocity signal in order to decrease the effect of measurement disturbances.
In transforming task space desired velocities to leg velocity, it is better to differentiate the leg
displacement instead of using the above relation (2.7). But in task space control, it is better to
differentiate the measured leg lengths and transform it using inverse the Jacobian matrix
[177]. This is so because if the task space positions are obtained using numerical methods,
the differentiation will amplify the measurement disturbance in the leg length and affecting

the stability and performance ofcontrol loop.

2.2.2. Dynamic modeling

Dynamic modeling of Stewart platform manipulator can be done using the Lagrangian
method or recursive Newton Euler method [15][62]. The Lagrangian formulation gives a
closed form equation, which is useful for the design of model based controllers, and it has
been used by most of the authors. The dynamic equation of manipulator can be given either
in task space or joint space, each having certain advantages. The joint space approach is
easier from closed loop control point of view as it does not need the use of forward
kinematics in feedback loop. But dynamic modeling is complex in joint space because of a
nonlinear coordinate transformation needed [177]. On the other hand task space approach is
easier for dynamic modeling but it needs the highly nonlinear forward kinematics for
feedback controller implementation. Using joint space approach, the dynamic equation is

given by

A(q)q +B(q,q)q +Q(q) =T-ff-Td (2.10)
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Where q is the length A is 6x6 manipulator inertia matrix, B is also 6x6 coriolis and

centrifugal torque/force, Q is 6x1 gravitational torque/force, %is the actuator torque, ff is

torque due to friction and Td is the disturbance

In the task space, it is given by

M(X)X +C(X,X)X +G(X) =JT(T-ff-Td)

Where X is the 6DOF Cartesian position and orientation of the platform given by X=[x, y, z,

a, B, y], M is 6x6 manipulator inertia matrix, C is also 6x6 coriolis and centrifugal

torque/force, G is 6x1 gravitational torque/force, J is 6x6 manipulator Jacobian, x is the

actuator torque, ff is torque due to friction and Td is the disturbance.

The above equations of motion have certain properties which are very important for model

based controller design. These are [36], [43], [58], [67], [177]:

1) The number of second order differential equations is equal to the number of DOF of

the robot

2) All elements are defined explicitly

3) The domain of definition of the generalized coordinates X and q is a compact set

which is the subset of the workspace.

4) The inertiamatrix is positive definite, bounded and non-singular. It can be also

assumed to be symmetrical in special cases where the loading is symmetrical.

5) The Jacobian matrix is usually assumed to be nonsingular

Alternatively, writing platform dynamics and leg dynamics separately, the dynamic equation

can be rewritten as:

(M1(X) +M2(X))X-f(v,(x,x) +V2(x,X))x +Gl(X) +G2(X) =JT(T-ff-xd)
(2.12)

where parameters with subscript 1 are for platform and parameters with subscript 2 are for

leg. This kind of dynamic formulation helps in controller design where the manipulator

dynamics is calculated in task space and the leg dynamics is calculated in joint space for

improved efficiency. An extended version of this formulation has been suggested by Khalil

[161-162]. In the method by [162], the closed chain is divided into two subsystems, platform

and legs. The dynamics of the platform is calculated as a function of the position, velocity

and acceleration of the platform (x,x,x) whereas the dynamics of the legs is calculated as a
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function of the joint position, velocity and acceleration (q^q^q;). Then the actuator torque

is calculated as a sum of the two, after projecting them into the active joint space. Hence the

active joint torque is given by

*-l'f.+SWh,
V i-l (2.13)

Where

J is the platform Jacobian matrix

F is total force and moment exerted on the platform

Jvi is Jacobian matrix that relates the velocity of the origin of the platform frame to the

Cartesian velocity transferred from each leg to the platform.

Jj is kinematic Jacobian matrix of leg i and it gives the velocity transferred to the platform

from each leg i.

Hj is the dynamics of leg i

In the above formulation, the platform dynamics and the leg dynamics can be calculated

separately using either Newton Rapson or Lagrangian method. The parameters in this model
do not fulfill the properties mentioned for Lagrangian form. In [44], this model is used for
task space computed torque control. Another important dynamic formulation is that given in
[113] and which is based on principle ofvirtual work and includes the actuator dynamics.

The actuator torque is given as

T, =ZK(x(t))eu(t)}+c,(x(t),i(t),4,)+Gl(x(t))
k=i V-14)

The parameters X, mand Gare as defined above and the actuator friction is included in C.
There are few assumptions used in the dynamic equations during controller design. These

are:

Assumption 1: Manipulator inertia matrix is non singular

Assumption 2: Manipulator Jacobian matrix is nonsingular throughout the workspace
In addition to the above two assumptions, in the design of robust controllers, there are some

assumptions aboutthe uncertainties.

Assumption 3: The uncertainties in the dynamic parameters are additive and can be
expressed as nominal and deviation. In the uncertainty of the inertia matrix, the payload is
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assumed to be symmetrical and diagonal terms are mostly ignored. In some applications

where the platform is subject to nonsymmetrical loads such as antennas, the uncertainty in

off diagonal terms can also be significant [133]. The dynamic model including uncertainties

is given as:

MN(X)X +CN(x,X)x +GN(X) =JT(T-ff-xd) +d

Where d is given by

d=AM(X)X +AV(X,x)X +AG(X)
V ; V ; V ' (2.16)

2.2.3. Joint space controllers

In the joint space approach, the controller is a collection of SISO systems implemented using

local information on each actuator length only and the coupling between legs is ignored or is

considered as a disturbance. The advantage of this approach is that local information required

for feedback is obtained easily using simple sensors. Hence the control algorithm can be

executed as fast as possible and the individual SISO controllers can be easily implemented in

parallel. In this mode, there are various classical and modern controllers proposed and still

some authors argue that this is a better method to follow. An early paper by [119] argue that

that model based robust controllers need exact models which is not achievable or is costly

and proposes modification to the existing linear controllers. The authors proposed a P-P-PI

controller which utilizes acceleration feedback. They have shown that their method allows

the setting of desired disturbance rejection factor and recovery time. A state-variable filter is

utilized for reconstructing acceleration measurements. The authors applied their controller to

a delta parallel robot and have shown the validity ofthe controller experimentally. The speed

attained was 2m/sec and maximum acceleration was 88m/sec2. Another early work is that of

[113] which is a sliding mode controller having an observer for disturbance estimation. The

controller is used to drive a manipulator which is used for motion simulation where high

payload and low speed is desired and it is based on a dynamic model whose parameters are

calculated in task space but the switching control is performed based on joint space sliding
variable. Stability analysis for the disturbance estimator and the sliding mode controller is

given and the controller is verified experimentally. Due to the low speed requirement, the
controller has shown good results. In [43] is suggested a joint space controller of PD with

gravity compensation but their controller is not applied for Gough-Stewart platform.
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In [177], a high precision joint space controller is discussed. The authors argued that

high precision can be obtained by using high quality differential signal for PID controllers

and hence their controller uses a nonlinear tracking differentiator (TD) to yield a high quality

differential signal in the presence of disturbances and measurement noise in the feedforward

path, and an extended states observer (ESO) to provide the system's state and the real action

component of the unknown disturbances including nonlinear friction in the feedback path.

The nonlinear PD (N-PD) scheme is used to synthesize the control action. As given in [43]

model less controllers lack guarantee of stability and performance and in [177] also no

stability analysis is given. Especially the stability of the state observer is very critical. The

authors have given experimental results for high speed and low speed applications. In [172]

also, it was argued that high precision control of parallel manipulator can be obtained by

using linear joint space controllers if synchronization error is considered. In joint space

control, individual controllers are using local information only and this has two important

implications. The first one is, ifadisturbance occurs in one ofthe legs, only the controller of
that leg is sensing it and trying to reject the disturbance while the disturbance may affect the
whole system. The other point is since the legs are arranged in parallel lack of
synchronization may result in large unwanted interaction forces. This has been reported by
many authors [36][44][172]. Hence [172] proposes asolution to the synchronization problem
by taking differential position error amongst actuators as feedback and using a saturated PI
controller. The saturated PI controller is integrated to a usual PD controller which uses

position error. The authors have given stability analysis of the controller and also shown the
application ofthe controller for a 3DOF parallel manipulator.

Aslightly different type of controller from all the above is the one proposed in [7].
The controller is a model based inverse dynamics controller and the authors have given the

design and stability analysis of the controller and also simulation results are shown. In [36]
also an adaptive controller which makes use of synchronization error is designed. The
controller is based on a joint space dynamic model and feedback is used to stabilize the
system. Stability proof and simulation results are given as evidence for the controller. But the
above two controllers, [7][36] seem very unrealistic since dynamic modeling in joint space is
very difficult. Amore recent joint space control effort is given by [6]. The authors have given
a joint space PD controller but the parameters of the controller are tuned by a genetic
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algorithm. The genetic algorithm determines the PD parameters using dynamic model of the

manipulator. Simulation results are given. In this thesis, we present several proposed

nonlinear controllers implemented in joint space to improve the drawbacks of some of the

above controllers. One of these is sliding mode controller which considers synchronization

error. The sliding mode controller uses a new sliding surface which is designed to drive both

tracking and synchronization errors to zero. The simulation results obtained are promising.

Another controller proposed is joint space integral sliding mode controller designed using
genetic algorithm [30].

Though authors of [36][177][172] and others proposed and tried to show that joint

space controllers can achieve high performance at high speeds, in [7][52] it was stated that

that simple single-joint controllers cause superproportional errors at velocities over0.4 m/sec

which is simply intolerable, since Stewart platform manipulators are supposed to be

advantageous in the range of high dynamics. To solve this contradiction, some authors have

proposed using model based task space controllers.

2.2.4. Task space controllers

Another controller implementation paradigm is task space or using workspace variable. This

method is supposed to have the ability to solve the drawbacks of joint space control and

achieve superior performance than jointspace control in the presence of various uncertainties

[58]. Most model based robust controllers are designed in task space due to the relative ease

in computing the dynamic model parameters. An earlier attempt of task space control for

6DOF parallel robot is that of [71]. The controller is a fuzzy sliding mode controller with two

inputs, sliding parameter s and its derivative, and one control output. The controller is

designed using dynamics of the actuator and the dynamics of the manipulator is not

considered. An experimental result is given for DELTA robot. Then in [89], a Cartesian

space tracking controller is designed using the passivity principle. In the controller, desired

force is calculated in task space from position control and then using the desired force,

necessary torque is then computed at joints using force convergent principle. The controller
is given as

u=a31Fd-a31(ld+a2JT)F-a3la,J"1X
1 ' (2.17)
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where F is measured force at the motor inputusing motor currents and Fa is is calculated

from dynamic model as

Fd =A(x)xr +B(x,x)xr +G(x)-Ks (2 18)

Where xr and s are variables given by

s = Ae+ e (2.19)

Xr=*-Ae (2.20)

The controller is tested using simulation and also experimental results are given. But

the trajectory followed is very slow. The exponential decay of the task space tracking error

and stability ofthe system has also been given by the authors. At about the same time, [177]

presented an adaptive task space controller together with a stability proof ofthe convergence
oftracking error and the parameter estimation. The controller is verified using simulation and
experimental results and practical application of the same controller for a CNC machine is
given in [174]. Later [67], [101] and [145] developed more elaborate task space controllers
fully based on dynamic model. In [67] and [101] back stepping method is used to design
nonlinear position tracking controller for a hydraulic actuator driving Stewart platform
manipulator. The controller is similar in structure to that of [89] except the type of actuator
used. It has adaptation mechanism to cope with uncertainties and uses two sliding type

observers to avoid acceleration measurement.

The controller is experimentally verified and global asymptotic stability proof is also
given. In the controller, Newton Rapson numerical method is used for forward kinematics. In
[145] a robust controller is proposed by combining a computed torque controller based on
approximate dynamics and h-infinity controller. The h-infinity controller is used to
compensate for the model uncertainty due to the approximate dynamics and is implemented
in joint space. The authors have given experimental results as a proof of the superior
performance of the controller over PID for slow and fast trajectory but have not given
stability proof of the combined controller.

In all the above task space controllers, it was assumed that dynamic parameters of the
manipulator are calculated in task space. Especially the position dependent mass matrix is
very critical and it takes huge computation time and is one of the main problems of model
based controllers. To solve this problem, [52] suggested amethod that simplify and speed up
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the computation of mass matrix for any parallel robot. The main idea of the approach is that

the inertia matrix of the whole manipulator has to be a combination of the mass matrices of

the incorporated kinematic substrings. Based on this approach, for the case of Stewart

platform, the mass/inertia matrix will be a combination of the platform and the legs.

However, none of the practical experiments have used the method.

One of the most important features of model based controllers is availability of

stability proof. In [58] a rigorous stability proof is given for a robust nonlinear task space

controller. The controller given by the authors is designed using Lyapunov redesign method

and is similar in structure to that of [89] and [101] but differs in few important points. The

first difference is that in [58] actuator dynamics is not considered which is reasonable as

electric motors are used. The other difference is in [89] and [101] a simple sliding variable is

used as corrective signal but in [58] a switching kind of controller is used. Moreover, the

uncertainty analysis given in [58] is more rigorous and realistic as it includes uncertainty due

to measurement or estimation of the task space position and angles. The authors used

numerical estimation for the forward kinematics but used a filter to obtain smooth outputs.

They also incorporated friction estimation to make the controller more efficient. The authors

have given experimental verification for the performance of their controller.

A further development in task space control of the manipulator is given in [17] and

[28]. In [131], an inverse dynamics based robust controller using approximate dynamics was

presented. Similar to [145], part of the controller, leg dynamics compensation, is obtained in

joint space and these two controllers can be called hybrid as they mix the two spaces.

Stability analysis of these controllers is given but uncertainty due to friction and

measurement errors were not considered. The controllers given in [44] and [105] give a

different impetus to task space control. The two controllers have a common ground that they

both use vision sensor to close the feedback loop and hence avoid the need for forward

kinematics estimation. However, in [44] a computed torque controller is given while in [105]

a linear decoupled controller is proposed. In the later case decoupling is obtained using a

modified Jacobian matrix and both controllers where implemented in simulations. Another

important task space controller for hydraulic robot is proposed by [67]. The controller is a

model based controller which includes actuator dynamics and is designed based on the

inverse dynamics principle. The proposed controller is verified using simulations.
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Sliding mode controllers are the more recent controllers which were reported in [132][133].

In [132][133] simple sliding mode controllers are used to control a Gough-Stewart platform

manipulator which is used for antenna positioning. In their latter paper [133], the authors

have given detail analysis of the dynamic uncertainties. In this thesis various types of sliding

mode controllers are designed and applied for the control of Stewart platform manipulator.

Analysis for friction and other uncertainties and stability proofs are also given. The

simulation results obtained are promising. Especially the integral sliding mode controller

solves the unmatched uncertainty problem of the forward kinematics estimation mentioned in

[58]. However, for practical implementation, experimental verification of the controllers is

required.

2.3. Soft computing techniques and sliding mode control

It is very well known that fuzzy logic systems are very good in decision making, while

neural networks are good at function approximation. Therefore, combining neural and

fuzzy logic systems with conventional sliding mode controllers can result in a more robust

controller. For this kind of research, the studies of [102][24][98][45][54][50][62]

[60][54][57][74][77] [102][118][122] are worth mentioning. In most of these controllers

a fuzzy logic system has been used to replace the switching function except in [98]

where fuzzy logic system was used to generate nonlinear sliding surface. Similarly, in

[144] [12] neural network was employed to estimate an optimal sliding surface and in

[148], a radial basis function network was utilized to vary the gain of the switching

function of a sliding mode controller. In all the above studies, either neural network or

fuzzy logic system was used to improve the performance of basic sliding mode

controller. But none of the implementations could solve the chattering problem completely.

This is because using fuzzy logic to replace switching function results in a similar effect to

that of saturation control. Therefore, a more important development could be the use of two

artificial intelligence techniques together.

In an attempt to use the said two artificial intelligence techniques with sliding mode

controller, neuro-fuzzy sliding mode controllers had been proposed [2][3][122]. In [122], a

neuro-fuzzy system was used to approximate equivalent control part ofconventional sliding

mode controller but the switching function part was the same with the conventional one. In
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the work of [3] the controller had two parts: a neural network part which was employed
to estimate the equivalent control signal and a fuzzy logic system, which was utilized as

switching function. The output of the fuzzy logic is used to train the neural network. The

work reported by [2] uses an ANFIS network to replace the switching function which
resulted into adjustable boundary layer but in the same paper, it was reported that the system
was sensitive to parameter variation and external disturbance. These latest approaches have
shown better performances and are promising in solving the drawback of classical sliding
mode control. Hence one part of the thesis deals with anew proposal on neuro fuzzy sliding
mode control.

2.4. Gaps identified

From the above literature review, it is clear that there are certain gaps which have to be filled
by research outputs. Some of these gaps are listed as follows

- Though chattering has been a hot research topic in the history of sliding mode
control, a final or lasting solution has not been achieved. Hence one important
direction is to use the important properties of soft computing techniques to reduce
chattering in nonlinear systems.

- Another gap is the restrictive matching condition. The insensitivity of sliding mode
controller to external disturbance and modeling uncertainty needs matching condition

and for unmatched uncertainty the robustness of SMC is not satisfactory. Integral
sliding mode control is a good option but its application to complex systems like
Stewart platform has to be investigated. Moreover, design approach which is easy and
efficient in getting a reasonable sliding surface has to be investigated.

- Though various controllers have been tried for high performance control of Stewart

platform manipulator, a practically implementable and real controller has not been

achieved yet. Hence design of such robust and high performance controller which

uses task space modeling is required in order to utilize the advantages ofthe parallel
kinematics of the manipulator. Sliding mode controller is a best candidate for this.

While trying to find solutions to some ofthe drawbacks ofsliding mode control, at the same

time utilizing its merits for high performance control of Stewart platform manipulator is a
promising option. In the thesis, these kinds ofsolutions are proposed and analyzed.
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Chapter 3

Comparison of Numerical and Neural Network

Forward Kinematics Estimations

To effectively exploit the structural advantages of Stewart platform manipulator, a high
performance controller is required and to do so, the forward kinematics of the manipulator
has to be computed. But unlike serial manipulators, forward kinematics is not direct in case
of Stewart platform manipulator; rather it is nonlinear and complicated. Methods proposed to
solve it can be classified as analytical methods, numerical or other estimation methods and
sensor based methods. The first method gives multiple solutions, up to 40, out of which the
practical and exact solution has to be selected. The last method, sensor based method is to
use extra sensors in addition to 6 leg measurements or to use vision sensor. The method is

costly and is not much favored. In most practical cases or control algorithms, numerical or
observer based methods are used. In this chapter, we will try to exhaustively compare the
performance of two estimation methods, Newton Raphson numerical method and feed
forward neural network. The performance metrics used for the comparison are: estimation
error for position and orientation and average time taken. The methods are compared using
various trajectories. The simulation result shows that, the numerical algorithm, irrespective of
initial conditions taken, always performs less than neural network for trajectories where there
is pitch motion. Moreover, the numerical algorithm takes longer average time while three-
layer feed forward neural network takes less average time with uniform estimation error for
all trajectories.
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3.1. Forward kinematics of Stewart platform

The forward kinematics problem in robotic system is to find the end effector position and
orientation with respect to the base for a given joint angle values of its links. In Stewart
platform manipulator this is to find the actual position and orientation of the moveable
platform with respect to the base for a given set of leg lengths. In serial robots, the
computation of the forward kinematics is direct and linear. For a given set of joint angle
values, the end effector position is unique. This is not the case in parallel robots in general. In
Stewart platform manipulator, for example, there may be multiple orientations or positions
for a given set of leg lengths. This is because of the parallel nature of the structure. The
mathematical formulation of the forward kinematics of Stewart platform manipulators is
highly nonlinear and its computation is complex. Due to this, some authors have proposed
direct measurement of the end effector position and orientation using costly sensors or to use
extra sensors to make the computation easier. In general because of its importance in task
space control, the forward kinematics problem has been acentral research issue in Stewart
platform manipulator for more than two decades [6][15][16-18][99][60][64][74]
[82][85][91][103][114][120][117][147][176][175][178].

The solutions proposed to solve this problem can be classified into three main
catagories: closed form analytical [15][73][80][85][114][120][117][147], numerical or other
estimation [6][15][99][60][73][80][91][103][176][175][178] and sensor based
[64][73][80][74][82]. Whereas numerical solutions like Newton Raphson have problems of
dependence on initial guess, analytical methods give multiple solutions and they are also
computationally complex. The sensor based methods result in high implementation cost. The
requirements for closed loop control application are to get the position and orientation of the
platform fast and to get itwith minimum error.

To solve the problems of numerical and analytical solutions, neural network based
estimation method has been proposed [6][60][91]178]. The ground for the use of neural
network to solve the forward kinematics problem lies in their nonlinear function estimation
capacity. The network will be trained offline using input output data obtained from inverse
kinematics and then it will used for online estimation in afeedback loop. In using neural
network, after network is trained, it has to be tested for generalization capacity. In [60]
training performances were given but generalization is not tested using various trajectories.
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In [99] the output of afeed forward neural network is used as the initial guess for the Newton
Rapson method but Newton Raphson algorithm may take longer time to converge to a
solution, whatever the initial guess is, when aroot is at inflectional tangent; moreover, using
neural network and Newton Raphson in cascade will increase the total estimation time.

In this chapter we study in detail the performance of a feed forward neural network with
enough number of hidden layers and neurons. The main objective is to show that the
performance is better for trajectories where the Newton Raphson method fails to give small
error andto show the reliability of neural network estimation.

3.2. Problem formulation

As described in section above, the forward kinematics problem of Stewart platform
manipulators is to find the position and orientation of the manipulator with respect to the
base for a given set of leg lengths. For the problem formulation we briefly summarize the
kinematic modeling. Fig.3.1. gives the frame assignment and geometrical description of a
general 6 DOF Stewart platform manipulator with hexagonal base and platform. In the
dynamic modeling, such hexagonal platform gives none symmetrical mass matrix. Hence in
the dynamic modeling and simulation throughout the rest of the thesis, the platform is
assumed to be circular and hence the mass and inertia matrices are taken symmetrical. If
irregular hexagon shaped platform is used, the effect of the asymmetry is considered as
disturbance. As shown in the figure, the manipulator consists of abase Bj (i=l, 2, ... 6) and
platform Pj (i=l, 2, 6) joined by six extendable legs. Each leg is attached to the base by
universal joint and to the platform by aspherical joint. The length of legs is controlled by an
actuated prismatic joint. Areference frame Fb (Ob-Xb, Yb, and Zb) and acoordinate frame Fp
(Op-Xp, Yp, Zp) are attached to the base and the platform respectively. The position vector of
the center of universal joints B; in frame Fb is bf =[bix biy blz]and the position vector of the
center of spherical joints P; in frame Fp is pr[pix piy piz]. Let r=[r* ry,rz] be the position of the
origin Op with respect to Ob and also let Rdenote the orientation of frame Fp with respect to
Fb. Thus the Cartesian space position and orientation of the platform is specified by X=[rx,
ry, rz„ a, 3, y] where the three angles a, B, yare the yaw-pitch-roll rotation angles that
constitute the transformation matrix R.

For Fig.3.1, a vectorequation of the form
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O^+BjP-ObOp+OpPi

can be written where

obBj is the vector bj,

(3.1) x

o^ is vector rand o^ is vector p;.

Substituting these symbols and writing all vectors in base frame,

B^ =Rp1+r-bi (3.2)

The magnitude of B^is the length of ith leg. Hence the inverse kinematic equation, which
gives the length of the legs lj for agiven platform position and orientation, is given by

HlRp +r-HI (3.3)

The solution of (3.3) is unique for agiven platform position rand orientation Rand can be
directly calculated. This constitutes the solution of the inverse kinematics problem. The
forward kinematics problem is finding the actual Cartesian space position and orientation
x=[rxi ^ rzj ^ p, y]given aset of leg lengths, \u 12,13, ... U-This is anonlinear equation
and it has no direct solution.

3.3.NUMERICAL ESTIMATION METHOD

Taking the three orientation angles as the standard yaw- pitch- roll angles, the
transformation matrix R can be written as

R=RzWRy(P)Rx(«) (34)
Let rjj be the ith row and j,h column of the transformation matrix, then multiplying and taking
magnitude ofthe vector, (3.3) becomes

(3.5)
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Fig.3.1 Generalized Stewart platform

In the numerical method, first an estimated Cartesian position (rx, ry, rz) and orientation
angles (a, p, y) are taken. Then the corresponding leg lengths are calculated using inverse
kinematics equation (3.5) and the error between the calculated leg lengths and the measured
values is used to adjust the estimated values. The iteration continues until a tolerable error
value is achieved. In the Newton Raphson method [16-18][99][173], the next estimate is
calculated using

X(k +l)=X(k)+J,F(X(k))

where

"f((x(k))-
f2(x(k))

(3.6)

F(X(k)) =

/e(X(k))_
(3.7)
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f;(X(k)) =I,2 -((rllPix +r12piy +r13piz +rx -b,x)2 +(r2lPlx +r22ply +r23p,z +ry -biy)
+(r3,P,x+r32P,y+r33Piz+rz-b,Z)2)

and J is the Jacobian matrix obtained by differentiating (3.7) with respect to kinematics time

and is given by (3.9).

HJH J.2 Ji3 Jl4 Ji5 h] (3.9)

Where

J,1=(r..Pix+r.2P,y+ri3PiZ+rx-b,x)/1,

J,2=(r2.P,x+r22Piy+r23P,z+ry-biy)/1,

Ji3=(r3lPix+r32P,y+r33PiZ+rz-b,z)/1i

i _, 5jn+j ^il+J £oJi4 - Jil +Ji2 ~T +Ji3
3a 5a da

,--,«^+,»^+J^ (3-10)3y &y PY

The Newton Raphson numerical algorithm converges to asolution in four or five iterations in
most cases but it depends up on the initial guess taken and the trajectory followed. This can
be seen from simulation results given in section 3.5.

3.4.Neural Network estimaiton method

Neural networks are massively parallel distributed processing systems made up of highly
interconnected processing elements that have the ability to learn and acquire knowledge and
make it available for use. They are efficient in problems like the forward kinematics problem
where input output data is readily available but it is difficult to get easy and working
mathematical relations. In the forward kinematics problem, input output data can easily be
generated using inverse kinematics, (3.3).

Classical theory of function approximation supports the use of neural networks for
function approximation. Generally afeed forward network with sufficient number of neurons
in hidden layer can approximate any continuous function to any desired accuracy. In the
forward kinematics problem the required functional mapping is from 6measured joint input
values to three Cartesian position and three orientation angle values.
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The effectiveness of a neural network in solving such a problem is measured by the
complexity of the network, which is indicated by the number of neurons and weights, relative
to the complexity ofthe problem itself. Fig.3.2 shows a fully connected feed forward neural
network with three inputs and two outputs. Below two most important points in neural
network implementation are described.

X]

x2

O—.
x3

Fig.3.2 Three layer feed forward neural network

3.4.1. Training data generation

Neural network has to be trained by giving it sample inputs and corresponding output values
and a training algorithm will adjust the connection weight and bias values until a minimum
error or other stopping criteria is reached. The training data has to be taken carefully to
consider the complete input range. Normalization and other preprocessing of the data
improve the training performance.

3.4.2. Selection of network size

The size of anetwork refers to the number of layers and the number of neurons in each layer.
The problem of selecting appropriate network size is one of the draw backs of neural
networks. There is no direct method of deciding the size of anetwork for agiven problem
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and one has to use experience or trial error method. In general, when anetwork is large, the
complexity of the function that it can approximate will also increase. But as the network size
increase, both training time and its implementation cost increase and hence optimum network
size has to be selected for a given problem.

3.5. Simulation results and comparison

For simulation study, ageneral 6DOF Stewart platform manipulator with circular base and
platform having geometric specifications given in table Iis used [7]. As can be seen from the
parameter values of the table, the leg is apiston and cylinder assembly with mass of each leg
being 8Kg. In the controller simulations, the leg is assumed to be driven by electrical motors.
The mass of the platform is 32Kg and its inertia matrix is taken as diagonal matrix with the
assumption that load is symmetrical and platform is circular. The leg inertia is also
symmetrical. From the geometric description, the nominal position of the platform center in
the base frame is given by

R=[0 0 1.563]m

and the position of each of the universal joints and spherical joints of the legs with respect to
the base is given by

bl =[0.6928 0.4000 0] Pl =[0.4830 0.1294 1.5630]
b2= [0.0000 0.8000 0] p2= [-0.1294 0.4830 1.5630]
b,= [-0.6928 0.4000 0] p3 =[-0.3536 0.3536 1.5630]
b4 =[-0.6928 -0.4000 0] p4=[-0.3536 -0.3536 1.5630]
b5= [-0.0000 -0.8000 0] p5=[-0.1294 -0.4830 1.5630]
b6=[ 0.6928 -0.4000 0] p6 =[0.4830 -0.1294 1.5630]

3.5.1. Numerical Method

Newton Raphson numerical algorithm is implemented using MATLAB. Equations (3.6) to
(3.8) are written into an mfile as functions and the nonlinear optimization function fsolve is
used to solve the nonlinear equations. The algorithm implemented is similar to [11][114] and
the pseudo code is described below.
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Table3.1 Geometric Specifications of Stewart platform
Joint 1

Base

Platform ft/
T2

771/
YU

Base radius 0.8m

Platform radius 0.5m

Mass of platform 32kg
Mass of upper leg 4kg
Mass of lower leg 4kg
Initial Height 1.5m

571/ 7tc/ 371,

37C/ 5ti, 1771/
'12

Platform Inertia Ixx=2,Iyy=2 and Izz=4
Leg Inertia upper Ixx=0.75,Iyy=0.75,Izz=0.018
Leg Inertia lower Ixx=0.03, Iyy=0.03, Izz=0.002
CG ofupper leg 0.75m from top
CG of lower leg 0.15m from base

llu,

237t/
'12

Step 1: Start with initial guess

Step 2: Calculate length of six legs for the given position and orientation using (3.5)
Step 3: Calculate the error between given leg length and the calculated value in step 2. If
error isgreater than tolerance go to4 else go to step 6

Step 4: Calculate Jacobian matrix using (3.7)

Step 5: Evaluate new position using (3.6) and go to step 2
Step 6: Stop

The algorithm is tested for the trajectories given in (3.11)-(3.13) The maximum error and the
time to converge for different trajectories is tabulated in table3.2 The result shows that the
numerical algorithm gives very small maximum error for trajectories where there is no pitch
motion but the time taken to converge is relatively longer.

3.5.2 Feed Forward Neural Network

There are various types of neural network architectures which could be used for nonlinear
function estimation. For example, radial basis, feedforward neural networks, adaptive neuro
fuzzy inference systems (ANFIS) and cerebella model arithmetic computer networks. In this
chapter the simplest and most common fully connected feedforward neural networks are
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used. They are selected based on space and time complexity requirements. It is very well
known that the size of radial bases network increases with the training data size. Hence with
the large trainig size required for Stewart platform, due to their large size they were not
suitable. ANFIS networks have been used for serial robots in [130] but were not selected
because of their size problem. Hence two layer and three layer feed forward neural network
trained with back propagation algorithm are used to estimate the forward kinematics.

3.5.2.1. Training data generation

Data used for the training of the neural networks is generated using inverse kinematics
formula (3.3). Randomly selected platform positions and orientations are given to the inverse
kinematics formula and corresponding leg lengths are generated. The leg lengths are taken as
input to the neural network and the randomly generated positions and orientations as output
and the network is trained. The training process is shown in Fig.3.3.

3.5.2.2. Network size selection

To select the most optimal network size, networks with different sizes and training data are
taken and trained offline. The training data is generated by taking random Cartesian space
positions and orientations and then calculating corresponding leg lengths using inverse
kinematics formula given in (3.3). The range of values for the work space is given in
table3.3. The performance of different networks with respect to training time and mean
squared error is given in table3.4. Generally, three layer networks have better performance
than two layer networks but they have longer training time. Among the three layer networks
taken training performance improves as the number of hidden layer neurons increase which
is expected but the trend stops after some time. The MSE of the last network, having 30 and
35 neurons, is bigger compared to the one having 25-35 neurons. One reason for this is, for a
good training performance the ration of number of tunable parameters to that of training data
size has to be very small and in here network size has increased but training data size is the
same For the last network, the number of tunable parameters is 1511 and ration is 0.252.
increasing the training data size increases the training time and the required memory size
drastically.
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Fig3.3 Neural network training

Therefore for the rest of the simulation, the network with 25-35-hidden layer neurons is
taken. Fig.3.5 shows the training performance ofthis three layer network.

The above network is then tested and compared for its estimation performance when the

manipulator is moving in different trajectories and table3.4 gives result in comparison with
the output of the numerical. Trajectories 1-3 are circular trajectories on X-Y plane with
various orientation angles, 4-6 are helical trajectories with various orientation angles and 7 is
linear. The numerical algorithm gives better result, in terms of estimation error, for all

trajectories except 2, 5 and 7. These trajectories contain pitching motion ofthe platform and

they have bigger errors. The algorithm has been checked with various initial conditions and

with a different geometry given by [176]. The result is found to be the same. The trained

neural network gives more or less a constant estimation error for all trajectories and the time
taken is always less than the numerical. Therefore the neural network can be used to estimate

forward kinematics better than the numerical for application that need higher accuracy.
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3.6.CONCLUSION

The forward kinematics problem of a general Stewart platform manipulator with planar
base and platform is formulated and two important solutions, numerical Newton Raphson
method and neural network method, were compared using seven different trajectories.

TABLE 3.2 Cartesian position and Orientation Limits of Center
of Platform

Limiting values

X [-0.15m 0.15m]

y [-0.15m 0.15m]

z [1.3m 1.83m]

a [-71/18 7C/18]

P [-re/18 rt/18]

7

[-re/18 rt/18]

The numerical algorithm performs very well for a trajectory that does not have pitching

motion butgives bigger error when thetrajectory has pitching motion. On the other hand, the

numerical algorithm gives consistent estimation error for all trajectories. When the average

time taken is compared, the neural network responds faster than the numerical algorithm

which shows that the neural network can be used for faster manipulators. Hence a feed

forward neural network can be used to estimate the forward kinematics of Stewart platform

manipulator for faster application
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Table 3.3 Comparison ofdifferent networks based on their
training performance

Network

used

2 layer
network

3 layer
network

Network MSE

size

10-6

15-6

40-6

1.38X10"

-6
1.64X10

9.1X10"7

10-10-6 2.90X10'6

15-15-6 5.89X10"7

15-25-6 2.90X10"7

17-35-6 6.25X10-8

25-35-6 3.64X10

30-35-6 2.35X10

-9

-7
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Training
time(sec)

T
1.58X10

2.49X10J

8.5X10J

3.1X10J

3.5X10"

1.19X10*

2.06X104

2.89X104

4.38X10"
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Table 3.4 Comparison between the performance ofnumerical and
NN methods with respect to trajectory tracking

Numerical

error (mm,

10"3 rad )

NN error

(mm,10"3rad)
Average

time(m sec)

Max

errorl

Max

error

2

Max

error

1

Max

error2

num

erica

1

NN

1 0 0 0.12 0.15 15.2 9.4

2 5.8 32.5 0.53 0.38 20.5 10.6

3 0 0 1.4 0.9 18 9.8

4 0 0 1.1 0.9 20 11.6

5 5.6 31.6 1.1 0.9 20 11.8

6 0 0 1.2 1.0 19.1 11.8

7 5.4 31.4 0.086 0.052 21.8 11.0

errorl and error2 are position error and orientation angle errors
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Chapter 4

Fuzzy Tuned Joint Space Pid Controller For

Stewart Platform Manipulators

In the last chapter, we proposed a soft computing solution for the forward kinematic

estimation problem of Stewart platform manipulator. This forward kinematic estimation is

needed when a controller is implemented in task space. Before we discuss task space
controllers which utilize the forward kinematic estimation methods, it is necessary to
investigate if soft computing techniques can be used to improve existing joint space
controllers. The best candidate for this is the industrially famous joint space PID control.

Therefore, in the following sections, we will discuss how a fuzzy logic system can be used to

solve the synchronization problem of independent leg PID control and compensate
uncertainties. It is well documented that one of the promising techniques used to handle

uncertainties is fuzzy logic system [26], The field offuzzy sets and logic was first introduced

by Lotfi Zadeh and fuzzy control was first introduced by E. Mamdani. Since then, fuzzy
logic systems have gained great popularity in handling uncertainty. In this chapter, we
present the design and stability analysis of a fuzzy logic system based modeless adaptive
controller used for trajectory tracking of Stewart platform manipulator. The basic controller

structure is SISO PID type of controller and the three gain parameters are tuned using fuzzy
logic system. Like the independent PID control, each leg is controlled by a PID controller but
the gains are varied by a fuzzy logic system. The input to each fuzzy logic system is a
weighted sum oferrors in all legs and the rate ofchange ofthe weighted sum oferrors. The
weight factor is taken based on intuition and it enables to minimize the coupling error
between the legs, which is drawback of independent leg PID control. Simulation results
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revealed that the controller has agood adaptive performance and achieves abetter tracking
accuracy than simple PID controller.

4.1. Introduction

The various types of controllers designed for Stewart platform manipulator can be broadly
classified as modeless and modelbased controllers [36][43]. The model based controllers
such as computed torque controllers [7], sliding mode controllers [113] and passivity based
controllers [173] have the potential of giving higher precision in trajectory tracking and
global asymptotic stability can be achieved if the dynamic model parameters are identified
exactly But the complexity of the control algorithms has delayed their use in practical
application and PLD controllers are still in use. Hence it may be better to try to improve these
controllers before starting a newer design.
PID controllers, which are mostly implemented in join, space in SISO, do no. guarantee high
performance because they are unable to compensate the highly nonlinear dynam.es of the
system and the uncertainty due to vanation of the payload [7], Therefore we propose here to
use fuzzy logic to tune the gains of PID controller to improve their performance. Fuzzy logtc
controllers have been used for various applications and [8][13][6][63][164] discus the use of
fuzzy logic for tuning the gams of aPID controller. In [6] the performance of aconventual
PID controller tuned by Ziegler Nichols method, afuzzy logic PID like controller and aPID
controller whose gains are tuned by fuzzy logic have been compared and it was venfied that
tuning the gains of PID controller nsing fuzzy logic results in abetter controller when the
controlled system has nonlinearity In [.64] the use of fuzzy logie for toning PID controller
for non hnear systems with H-infinity tracking performance is well reported and the paper
has shown that using fuzzy logic to tone PID controller gains will give abetter trackmg
accuracy for nonlinear systems. Therefore in this chapter we will investigate the apphcahon
of fuzzy logic based PID tuning for Stewart p.atfonn manipulator control. In our proposed
controller, the fuzzy logic system has additional advantage of achieving synchromzahon.
,n most of the above mentioned fuzzy logic based tuning algorithms [8][,3][6][631[,641, the
fuzzy nde base is obtained from step response of the controlled system with the objechve of
minimizing settling time. In our rmp.ementation also similar steps are fol.owe bu, a
weighted sum of errors is taken as input of the fuzzy logic ,0 consider the couphng between
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the legs. Hence in our proposal, like the joint space PID control, each leg is controlled by a
PID controller but the gains are varied by afuzzy logic system. The input to each fuzzy logic
system is a weighted sum of errors in all legs and the rate of change of the weighted sum of
errors. The weight factor is taken based on intuition and it enables to minimize the coupling
error between the legs, which is drawback ofindependent leg PID control. Simulation results
have shown that the controller drives the Stewart platform in adesired trajectory with avery
good precision.

4.2. Design of Controller

A PID controller in its standard form is given as

u(t) =K, (.\ , „ de(t) 1rje(.)d.
i 0

dt T:
(4.1)

Multiplying the gain term outside the bracket by the derivative and integral time constants,
the equation can also be written as

u(t)=Kpe(t) +K] de(t)
dt

t

-KIJe(t)dt
(4.2)

Hence the parameters to be tuned are the three gains Kp, KD and KL There are different tuning
algorithms designed for linear systems that aim at achieving control specifications such as set

point following, disturbance rejection, robustness to model uncertainty and rejection of

measurement noise. The traditional tuning algorithms try to achieve one of these

specifications. In the current application the system is required to follow a desired trajectory,
which means control objective is not regulation but tracking, and moreover the system is

required to operate at different payload conditions. Therefore the control system should be

robust to model uncertainty and for that we use fuzzy logic to tune the three gains.

4.2.1 Fuzzy logic system

Fuzzy logic provides a formal methodology for representing, manipulating and implementing
a human heuristic's knowledge about how to control a system [26]. The heuristic's

knowledge is embedded into the controller in the form of IF... THEN rules. Hence the fuzzy
PID controller will have IF.. THEN rules and an inference engine. The inference engine uses
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the rules to produce an output for agiven input. The rules are of the following type.
IfE is PS and ER is NB then a is PS

where Eand ER are inputs to the fuzzy logic system, a is the output, PS and NB are linguistic
values of the inputs and output.

Error, Eand rate of error, ER are inputs to the controller and the output a is the change in
control gains. The terms PS and NB stand for positive small and negative big respectively.
Then adecision is made about the current output value using an inference mechanism and the
rule base which contains IF... THEN rules. Afinal output interface part converts the decision
to anumerical value. The fuzzy logic tuned PID control system discussed in this chapter is
shown in Fig.4.1. Figure4.2. shows MATLAB Simulink implementation of the controller for
asingle leg. The input to the block, which is represented as 1, is not asingle error but it is
weighted sum of the errors from other legs also. This means, the fuzzy logic system tunes the
parameters of the PID controller based on absolute error of each leg and the coupling errors
from other legs.

M,,

Error from

other tegs
C

d.'dt
Fuzzy
Louie

Leg i Stewart
Platform

Fig.4.1 Fuzzy tuned joint space PID control of asingle leg
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controlsignal

Integrator

Fig.4.2 Simulink block diagram model of single leg PID tuned controller

4.2.2 Tuning algorithm

For the fuzzy logic gain tuning, error E and rate of error ER are each divided into five

linguistic values of negative big (NB), negative smallfNS), Zero(Z), positive big(PB) and

positive small (PS). The membership functions used are symmetric triangular functions and

they are shown in Fig.4.3-Fig.4.5. The output ofthe fuzzy controller afis then used to change
the gains of the PID controller asgiven by thefollowing algorithm.

Kp(k +l)=Kp(k) +af(k)e(k)Kp(0)

KD(k+ l) = KD(k) + af(k)e(k)KD(0)

K,(k+1) = K,(k) +af (k)e(k)e(k)Kj (0)

(4.3)

(4.4)

(4.5)

The initial values Kp(0), KD(0) and Ki(0) and their ranges are determined taken from a

separate PID controller tuned manually and which gives acceptable output.

4.3 Simulation results and discussion

For the simulation study ofthe performance ofthe controller, a typical 6-6 geometry Stewart

platform with the geometric parameters given in table3.1 ofchapter 3 is implemented using
simmechanics tool box ofMATLAB. The fuzzy logic tuner is also implemented using fuzzy
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Fig.4.3 Graph of membership functions for error E

Fig.4.4 Graph of membership functions for error rate, ER

Fig.4.5 Membership functions for output variable
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logic toolbox of MATLAB and three mfile sfunctions were written to implement the discrete
difference equation given in (4.3)-(4.5). The trajectory taken to test the performance of the
controller is as given by (4.6)-(4.8). It has a heave or uplift motion in z direction for 2.5 sec

followed by circular motion in the x-y plane. To make the trajectory twice differentiable, the
trajectories are joined with parabolic blend. The desired trajectories are plotted in Fig.4.6a-c
and the actual trajectories for the simple PID and fuzzy tuned PID controllers are given in
Figs.4.7-Fig.4.10. The superior performance of the fuzzy tuned PID is clear when we
compare the PID controlled manipulator's joint space tracking errors of three legs shown in
Fig.4.7 with the tracking errors of the same legs when the manipulator is controlled by fuzzy
tuned PID as given in Fig.4.8. The controller performance is improved by 50% as the error
decreased from lOum to 5p.m. Similarly the task space tracking performance of the fuzzy
tuned PID appears to be better when we compare the results shown in Fig.4.9 and Fig.4.10.
The joint space PID tracking error is in the order of±150um while the fuzzy tuned PID has

reduced the error to ±40um. This shows the bigger performance advantage obtained by using
fuzzy logic system to tune simple PID controller.

fO 0<t<0.35sec
x(t)

y(0

.(/)

c,/5 +c,/ +c]3t3+cut2 +cj +c16 0.35<t <0.5
t>0.5

0 < t<0.25sec

0.25 < t<0.35

t>0.35

0<t<0.35

0.15sin(w(t-0.35))

c21t5+cBt4+cBt3+c24t2+c2Jt,+ca6
0.l5cos(co(t-0.35))

\c3f+c3/+c3/+c34
0 t>0.25

(4.6)

(4.7)

(4.8)

The control signals ofthe two controllers were also compared and the fuzzy logic tuned PID
controller has a control signal similar to the simple PID controller in its smoothness and

magnitude. The gains of the controller used for the simulation are KP= 8.5xl07, KD=9xl05,
and Kr100.
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4.4 Conclusion

In this chapter we have seen how a fuzzy logic system can be used totune an independent leg

PID controller. The results have shown that the fuzzy logic system is able to improve the

performance of the PID controller and tracking error has reduced by an appreciable amount.

However it is clear that the linear PID controller still has limitations in compensating the

nonlinear leg dynamics. This shows that the linear PID controller has to be changed by a

nonlinear and more robust controller. In the next chapters, we will discuss sliding mode

controllers and their implementation.
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Chapter 5

Sliding Mode Control and improvements for high

performance

In chapter 4, we have seen the implementation of a modeless controller in joint space. The

controller basically is a linear SISO controller with enhancement offuzzy logic system. The

fuzzy logic system is used to minimize the coupling error between legs and to enhance linear

PID controllers to compensate for leg dynamics. Though the fuzzy logic tuning has enhanced

the performance of the simple PID controller, the performance improvement is not much.

Further improvements can be obtained by using nonlinear controllers such as sliding mode

controller. This chapter presents design and stability analysis of various types of sliding

mode controllers. As discussed in chapter 2, compared with task space approach, joint space

control has limitations in achieving high performance. Hence, the controllers discussed in

this chapter aremainly task space except the last section which deals with hybrid approach.

In the first section the design and stability analysis of task space fuzzy sliding mode

controller is given. Then section two presents an improvement to the fuzzy sliding mode

controller. The controller is fuzzy sliding mode controller with integral loop which uses a PI

loop in parallel to with the fuzzy sliding mode controller. The last section deals with a new

kind of sliding mode controller which is a hybrid of task space and joint space controllers.

The sliding mode controller uses a new sliding surface which helps to drive synchronization

error to zero and the controller achieves high performance in task space without using the

complex forward kinematics.

60



Simple sliding mode control and improvements

5.1. Task space fuzzy sliding mode controller

In task space approach, the control of Stewart platform is MIMO and has the potential to
drive a6DOF parallel robot at high speed with high accuracy. However, it has two major
implementation problems. First one is it needs forward kinematics measurement or
estimation and second one is parallel implementation is difficult and controller to be used has
to be simple to decrease the burden. With these considerations, a fuzzy sliding mode
controller is proposed in this section. The main assumption taken is, due to the robustness of
SMC against uncertainties [14], [66], estimation errors can be compensated and an easier
estimation method can be used for forward kinematics. Moreover the same robust
characteristics of sliding mode controller avoid the need for explicit friction estimation unlike
the robust nonlinear controller of [58] and implementation becomes easier. Next we will
discuss the design of the controller.

5.1.1 Design of the Controller

The dynamic equation of the system in state space without considering actuator friction and
external disturbance is given as

*1=X2

x2=M-1(j;Tx-C(x1,x2)X2-G(x1)) (51)

Where x, is (6x1) state vector of Cartesian space positions and orientations and x2 is (6x1)
state vector of the Cartesian space velocities. Let xd be (6x1) vector of desired task space
trajectories. Then, the task space tracking error and its rate vector are given as

(5.2)
e = xd-x

. . . (5-3)
e = xd-x

Then the control objective is to find acontrol signal t that can drive system (5.1) towards a
sliding manifold and keep it there so that the error eand its derivative asymptotically move to
zero. The sliding manifold is given by

(5.4)
S = Ae + e v

where Ais adiagonal matrix, and it determines the rate at which the system moves towards
the sliding manifold. By taking Ato be diagonal matrix, we have decoupled the system into a

61



Simple sliding mode control and improvements

second order system and hence one may be tempted to think that the system has lost its

coupling and synchronization or cross coupling errors may degrade performance. But since

the sliding variable is calculated in the task space, it has to be transformed to joint space

using manipulator Jacobian. And this step will bring back the coupling effect back into effect

and the controller has better performance.

Taking the derivative of (5.4) with respect to time,

S = Ae + e (5.5)

when the system is in sliding mode, S =0 and using (5.1), (5.2) and (5.3) and nominal values

of the system dynamics, the equivalent control signal, which is the torque required to keep

the system on the sliding manifold, is obtained as

Teq=jT {MN(A(Xd-X2)+Xd)K:N(X1,X2)X2K}N(X1)} (5.7)

Note: X2 is the velocity signal obtained by differentiating the output of the forward

kinematics estimation methods.

To drive the system states towards the sliding surface and compensate for the disturbances,

we use a discontinuous controller given by

xs=JT(Kff(S)) (5.8)

Where K is a diagonal matrix chosen based on the disturbance bounds and ff is fuzzy logic

switching system. Hence the combined control signal we propose is given by

x= xeq + xs (5.9)

where xeq is given by (5.7) and xsis given by (5.8).

The block diagram representation of the control system is given in Fig.5.2. In the figure, X is

vector of the estimated Cartesian position and orientation and Xis vector of the

corresponding velocities obtained by numerical differentiation of X. Similarly Xa, is vector

of the desired position and orientation while Xdand Xdare desired velocity and acceleration.

Next we analyze the stability of the system under the given controller, i.e. we will show that

the system has a finite reaching time and its error decays to zero asymptotically.
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Fig.5.1 Block diagram representation of task space fuzzy sliding mode control system.

5.1.2 Stability analysis

Consider a Lyapunov candidate function given by

V=Is2 (5-10)
2

then

V =SS (511)

V=ST(Ae +e) (512)

Then substituting the expressions for the tracking error and its derivative from (5.2) and (5.3)
and using the dynamic system model given in (5.1), (5.12) can be written as

V=ST(A(xd-x2)+xd-M-(jTx-C(x1,x2)-G(x1))) (5.13)
Substituting the expression for the control signal from (5.9) in to (5.13) and simplifying

V=ST(AM(A(xd-x2)+xd)-AC(x1,x2)x2-AG(x1)-Kff(S)) (5.14)
For the system to reach to the sliding manifold in afinite time, V<-y, where Vis apositive
constant. This can befulfilled ifwe impose the following condition on K

K>Gm+Cm+Mm|A(xd-x2) +xd| (5.15)

The gain value Kin (5.15) depends on the maximum acceleration and velocity and the
maximum uncertainties of the dynamics of the system. In section 5, the determination of the
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value of K for a typical manipulator will be given. In the derivation of the controller, the

actuator dynamics and friction were not considered.

5.1.3. Fuzzy logic switching surface

In the controller given in (5.9), the discontinuous control part used to drive the system

towards the sliding mode is implemented using fuzzy logic. As has been described in chapter

four fuzzy logic system provides a formal methodology for representing, manipulating and

implementing a human heuristic's knowledge about how to control a system. They have been

used for control of various systems as standalone controllers and also with sliding mode

controllers. Particularly in sliding mode controllers, a fuzzy logic system has the advantage

of suppressing chattering. In [71] a fuzzy logic system is used as a nonlinear switching

function to control the HEXA robot. In the paper, the sliding variable and its derivative,

where used as two inputs and control signal was the output.

For the present case, a single input single output fuzzy logic system is used to control each of

the task space dimensions. The input is the sliding variable and the output is the control

signal. Hence 6 SISO fuzzy systems are used. The universe of discourse for the input and

output is normalized to [-1 1] and tuning parameters are used. Particularly the output tuning

term is selected to fulfill the condition given in (5.15). The membership functions used for

the input S and the output u are given in Fig.5.2 and Fig.5.3.

Seven linguistic terms are used for both input and output variables and the linguistic terms

are NB-Negative Big, Negative-Medium, NS-Negative Small, ZE-Zero, PS-Positive Small,

Positive-medium and PB-positive Big. The rule base contains only seven rules as listed

below and min/max fuzzification and center of area deffuzification methods are used for the

system.

Fig.5.2 Graph of membership functions for the input S
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Fig.5.3 Membership functions ofthe output variable U

IF S is NB THEN U is NB

IF S is NM THEN U is NM

IFSisNSTHENUisNS

IF S is ZE THEN U is ZE

IF S is PS THEN U is PS

IFSisPMTHENUisPM

IFSisPBTHENUisPB

5.1.4 Simulation study

For the simulation study of the performance of the controller, atypical 6-6 geometry Stewart
platform with the geometric parameters given in table3.1 of chapter is again used and
implemented using simmechanics tool box of MATLAB. The dynamic parameters are
calculated using Lagrangian method and the desired trajectory, given by (5.16), is the same
trajectory used in chapter 4and is afast trajectory where the platform moves vertically up
and down and rotates in an XY plane. It is designed to achieve zero velocity and acceleration

at the start of the trajectory.

x(t) =0.15{l-exp(-7rt)}cos(l.887rt),m

y(t) =0.15{l-exp(-7tt)}sin(l.887rt),m

0 02 f (0.1+5.9U 7i

a(t) =0,deg

p(t) =p0 {l-exp(-Trt)}sin(0.867it),deg
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'Kt) ='ro{1-exp(-7rt)}sin(0.747ct),deg

5.1.4.1 Controller Implementation and Performance

The controller given in (5.9) is implemented using MATLAB and Simulink. The fuzzy logic

system used for the sliding mode controller is implemented using MATLAB fuzzy logic tool

box in Simulink. The tracking performance of the controller is tested for two different cases,

no payload and 200kg payload and the results are shown in Fig.5.5-Fig.5.8 below. The

parameters of the fuzzy sliding mode controller are determined using a tuning method similar

to the Taguchi method. First, the controller is used for single direction regulation control and

the step response is observed.

The controller gains are tuned until a desired step response in terms of settling time,

overshoot and steady stateerroris obtained. Then the controller parameters used to obtain the

best and worst step responses are used as starting point in the tuning. The initial value for

the sliding gain K is obtained from (5.15), i.e. the gain K has to overcome the gravitational,

coriolis /centrifugal and inertia uncertainties and these are estimated from the mass variation

for the given desired speed as follows. The vertical Z direction motion from nominal value is

0.2m and maximum expected load is 200Kg and hence

gmz =200*0.2*9.81 =392.4NM (5.17)

The maximum speed and acceleration for the desired trajectory are 0.6m/sec and 5.23m/sec2

in each direction and using this into the third expression of (32) with the sliding gain being

200, the diagonal elements of the gain K are

km =200x (0.6x200+ 5.23) =2.504x104 (5.18)

Where kra is a diagonal element for

Mm||A(xd-X2) +Xd| (5.19)
Then the total gain for the sliding surface for each task space direction is the sum of (5.17)

and (5.18). Taking this as initial values, the step response analysis was done and the result is

given in table5.1. The values of A and K in the table are as follows. The step response in x

direction is shown in Fig.5.5. It has a rise time less than 0.05sec and zero overshoot with

smallest settling time.

The sliding surface slopes
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A1=diag6x6(200)

A2=diag6x6(250)

A3=diag6x6(300)

And the gain K is as given below.

K = 30xl04x

1 0 0 0 0 0

0 0.03 0 0 0 0

0 0 1 0 0 0

0 0 0 0.03 0 0

0 0 0 0 0.03 0

0 0 0 0 0 o.c

Table5.1 Step response and parameters used
test K A %

overshoot

ess Ts(sec)

No

load

K A! 0.166 1.61e-3 0.124

K A2 0.114 1.14e-3 0.104

K A3 0.1026 1.3e-3 0.118

200Kg
load

K Ai 0.1683 1.4e-3 0.122

K A2 0.158 1.37e-3 0.11

K A3 0.1532 1.32e-3 0.124

(5.19)

(5.20)

(5.21)

(5.22)

From the table it can be inferred that, as the value of Aincreases, overshoot and settling time
decrease as expected. This is because, the sliding surface gain determines the error decay rate
and in the equivalent controller, it introduces avelocity damping. But on the other hand, as
the value of the sliding surface increases, an oscillation occurs at the point where the system
reaches the sliding surface. For the. above cases, for A3 of the no load case, the chattering in
the control signal is sustained but for loaded case the chattering vanish after some time.
Hence for the trajectory tracking case, the first sliding surface gain is used. The result of the
trajectory tracking using the above gain and sliding surface slops is shown in Fig. 5.5, 5.6
and 5.7.

To compare its performance with respect to other controllers, ajoint space PID controller and
SMC in sliding mode controller are implemented. The PID controller parameters are GA
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tuned optimal values as used in [6] and are given below. The joint space sliding mode

controller gains and sliding surface slop are same as the task space one.

kp =[7.25 2.54 3.45 7.46 2.54 3.15]xl05

kd =[9.12 9.35 8.45 7.88 6.87 5.15]xl04
L J (5.24)

5.1.4.2 Discussion of results

From the figures one can observe that, the tracking performance of the new controller is

better than joint space SMC not only in terms of the tracking accuracy but also in terms of

the smoothness of the control signals. The results arebetterthan the one given in [113], [132]

and [133], The comparison of the control performance of SMC in joint space, a PID

controller and the new controller is given in Fig.5.6 and Fig.5.7.

Figures 5.6a-f shows the tracking performance of the three controllers for the given

trajectory. In all cases the error is not asymptotically decaying but is bounded. In the case of

the PID, the gains are big and its control force is very large but the error is bounded to only

±15mm. For the joint space SMC, the error is bounded with in ±5mm but for the task space

sliding mode controller (TSMC) the error is very much smaller in all direction, ±0.1mm.

Considering the speed of operation taken, which is 600mm/sec, this tracking error is very

good. The performance of the controller for loaded conditions is also checked using a 200Kg

load. The result is shown in Fig.5.7a and Fig.5.7b. From the figures it can be seen that the

controller performance has not been degraded much as tracking error is bounded within

±lmm. The control force of the task space controller, after it is transformed in to joint space,

is shown in Fig.5.8 and it is clear that the signal is not excessive and is also smooth without

any chattering. Actually at the start of the trajectory, a small oscillation occurs and then the

control force is very smooth.
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Fig. 5.4a) Estimation error of the task space positions using numerical algorithm

X~

Fig. 5.4b) Estimation error of the task space orientation angles when using numerical
algorithm only
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Fig. 5.5 Step response error in xdirection used for parameter selection, desired is rise time
less than 50msec with no overshoot
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Fig.5.6b) No load trajectory tracking performance ofthe task space sliding mode controller

(TSMC), joint space sliding mode controller (JSMC) and simple PID controller in ydirection
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Fig.5.6c) No load trajectory tracking performance ofthe task space sliding mode controller

(TSMC), joint space sliding mode controller (JSMC) and simple PID controller inz direction

72



Simple sliding mode control and improvements

x 10'

2 2.5 3

time (sec)

Fig.5.6d) No load trajectory tracking performance of the task space sliding mode controller
(TSMC), joint space sliding mode controller (JSMC) and simple PID controller, roll angle
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Fig.5.6e) No load trajectory tracking performance of the task space sliding mode controller
sliding mode controller (JSMC) and simple PID controller, pitch angle(TSMC), joint space
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Fig.5.6f) No load trajectory tracking performance ofthe task space sliding mode controller

(TSMC), joint space sliding mode controller (JSMC) and simple PID controller, yaw angle
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Fig.5.7a) Full load trajectory tracking performance of the task space sliding mode controller

(TSMC), joint space sliding mode controller (JSMC) and simple PID controller, x direction
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5.2. Fuzzy Sliding Mode Controller With Integral Loop (FSMCPI)

In the previous section, we have seen fuzzy sliding mode controller applied for Stewart
platform control. Though the FSMC has shown good performance, it has some chattering in
its control signal. In this section, we present our proposal which enhance performance of
fuzzy sliding mode controller. The controller is designed to improve the chattering problem
of fuzzy sliding mode controller. As in section one, the fuzzy logic is used as the switching
device that generates the desired control signal to drive the system towards the sliding
surface. An equivalent control signal composed of feed forward and feedback parts
calculated using nominal system dynamics is used.

5.2.1 Source ofchattering in fuzzy sliding mode control and proposed approach

Fuzzy sliding mode controllers in effect are similar to saturation control and are unable to

restrict the system in the sliding surface [65]. In analyzing the source ofchattering in sliding

mode controllers, [65] showed that fuzzy sliding mode controllers can only result in

continuous control signal. This is because source of chattering is not only because of the

discontinuity of control signal but also due to lack of exact control effort which is able to

keep the system to remain on sliding surface once it reached there. When the system is in the

sliding surface, the output ofthe switching function iszero and if the control signal necessary

to keep the system in the sliding surface is not correct, then the system will leave the surface

and it may continue to oscillate within a small boundary. Hence to solve this problem and

achieve a stable chatter free operation, we propose a new type of fuzzy sliding mode

controller, viz fuzzy sliding mode controller with integral loop. The external PI loop acts as

long term average of the distance variable and helps in keeping the system on the sliding
surface.

The new controller retains the basic sliding mode control scheme and hence is robust.

Moreover, the external integral loop together with the control signal calculated using the

nominal dynamics of the platform helps to keep the system in the sliding surface. Therefore

the controller achieves the desired high performance. Simulation results showed that the

controller has a smooth and reasonable control signal with a very good tracking performance.

5.2.2 Design of the controller

The new controller proposed in this chapter is to use fuzzy sliding mode controller with PI
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loop. The control signal is given by (5.25). The fuzzy switching logic given in section two is
used with an integral loop to achieve a robust and chatter free controller for the Stewart

platform. The block diagram ofthe FSMCIP is as shown below.

Trajectory

Generator

+

PI

<
4-

Sliding

surface

Fuzzy

i Switching

Equivalent

Control

Forward

Kinematics

Stewart

Platform
J

—• Manipul

ator

Fig.5.9 Block diagram representation ofthe control system

T= Teq+Ts

where the equivalent controller Teq isgiven by (5.9) and

xs=JT(Kff(S)+KIjSdt)

(5.25)

(5.26)

5.2.3. Simulation results and discussion

For the simulation study, the same type of desired trajectory used in previous section, (5.16)
is employed. The same fuzzy switching logic is also implemented using MATLAB fuzzy
logic tool box in Simulink and the other control algorithms are written as mfile. To check for
the robustness of the controller against friction, static friction and viscous friction terms have
been added to the SimMechanics model and the controller has shown robust performance.
The x, yand zdirection tracking performance of the fuzzy sliding mode controller (FSMC)
and the proposed fuzzy sliding mode controller with integral loop (FSMCIP) is given in
Fig.5.10-Fig.5.12. The slope of the sliding surface A, the gain of the switching function in
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the SMC K and the integral gain constant of FSMCIP K] used for the simulation are as
follows.

A =

6 0 • • 0"

0 6 • • 0

0 0 • • 6

K = 1000

6 0 ••• 0

0 6 ••• 0

0 0 ••• 6

K^diag^OOO 5000 5000 5000 5000 5000]

2 75

Time(sec)

(5.27)

(5.28)

(5.29)

Fig.5.10 Comparison ofx direction tracking performance ofFSMC and the new controller,

FSMCIP
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x10

Fig.5.11 Comparison of ydirection tracking performance of FSMCIP with fussy SMC
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Fig.5.12 Comparison of Tracking performance in Zdirection of new controller (FSMCIP)
and fuzzy SMC
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From the figures, one can observe that the tracking performance of the new controller,
FSMCIP, is slightly better than FSMC in terms ofthe tracking accuracy. However, the most
important advantage of the new controller is observed when the manipulator is driven in a
helical trajectory given in chapter 4 by (4.6)-(4.7). The trajectory is redrawn in Fig.5.13 for
ease ofreference. The control signals ofthe two controllers when the manipulator is driven in
this trajectory carrying a load of200Kg are plotted separately in Fig.5.14 and Fig.5.15. The
FSMC has bigger control signals with more chattering which cannot be generated by a real
actuator.

1.8-

1.754'"

1.7- '"

165- "'

1.6-

Startingpoint. t,-*

02 0.2

Fig.5.13 Three dimensional view ofthe helical trajectory used to compare the performance of

FSMC and FSMCIP

From the simulation results it can be seen that the FSMCIP has shown a better performance

in tracking desired trajectory than the simple fuzzy SMC. In the simulation, it was further

noticed that the control system needs a small simulation time, fixed simulation time of

0.1msec. With this simulation time, the calculated velocity and acceleration values for the

equivalent control part were initially very big. This may have some constraint on practical
implementation.
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D5 i 15

time(sec)

25

Fig. 5.14a) Control signal of SMC for leg 1and 2when carrying 200Kg payload
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Fig. 5.14b) Control signal of FSMC for leg 3and 4when carrying 200Kg payload
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Fig. 5.14c) Control signal of FSMC for leg 5and 6when carrying 200Kg payload
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Fig.5.15a) Control force on leg 1, 2, 3of the FSMCIP when carrying payload of 200Kg
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time(sec)

Fig. 5.15b) control force on leg 4, 5, 6of the FSMCIP when carrying a200Kg payload

5.3. Hybrid sliding mode control with anewly proposed sliding surface to reduce
synchronization error

In the above section, we have seen two different task space sliding mode controllers and
discussed that their performance is good. However, task space approach needs 6DOF end
effector pose, which is either very costly or computationally intensive [58]. To solve the
above mentioned problem, many researchers have proposed joint space feedback control
methods improved by using feedforward loops. In [177], atracking differentiator is used as a
feedforward controller to improve joint space PID controller performance. In [36], an
adaptive controller having feedback and feedforward parts is designed to compensate for
synchronization error of joint space control. But the above schemes cannot achieve high
performance, especially at high speeds because the linear PD or PID controllers cannot
compensate leg dynamics. To improve drawbacks of joint space, other authors have proposed
model based control methods which utilize advantages of task space approach. In [89], the
author proposed acontrol method for an electrically driven manipulator were the desired
force is calculated in task space using desired position and velocity signals and the leg
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^ dynamics compensation is achieved by aforce convergent principle. The authors of [131]
proposed ahybrid control algorithm where the platform dynamics is calculated in task space
and the leg dynamics is compensated in joint space by calculating leg dynamics using
Newton Euler method. But the method needs task space positions and orientations and the
authors did not specify the method used to get the pose of the end effector. Similarly, the
authors of [145] used inverse dynamics control with approximate dynamics as afeedforward
controller and they employed a linear H-infinity controller in the feedback path to
compensate for the approximation error. The last two proposals are promising since they are
robust and can achieve high performance due to the model based feedforward part.

With this background, anew kind of hybrid controller based on sliding mode control
is proposed. The control scheme presented in this section has similar structure to that of
[89][131][145] in the sense that it combines task space feedforward with joint space
feedback. But the controller presented here has three basic differences. The first difference is
the feedforward controller part, which is implemented in task space, is an equivalent control
signal ofasliding mode controller. SMC law is formulated in joint space but the model based
equivalent control part is transformed to task space because of the ease in computation of
model parameters in task space. The second main difference is the nonlinear controller used
in the joint space. In the current controller, the uncertainty in the manipulator leg dynamics is
compensated by using sliding mode control, which is arobust and easier control technique
[34]. Because of its robustness against uncertainties, SMC has been proposed for the control
of various systems including Stewart platform manipulator [30][113][133],
The third and other most important advantage of the controller proposed in this section is, it
solves the problem of synchronization using anew sliding surface. The joint space sliding
mode controller used here has anewly proposed sliding surface that considers tracking error
and synchronization error. It is alinear sliding surface, which is designed to drive both errors
to zero. This new sliding surface improves the task space trajectory tracking performance of
the controller and reduces the problems ofjoint space control. The structure of the controller
is as shown in Fig.5.16.

Unlike conventional sliding mode controllers, the joint space sliding mode controller
uses information from other legs through the synchronization error and hence solves the
synchronization problem. Moreover, the sliding mode controller improves the reliability of

*
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the controller to track task space trajectory. ^

5.3.1 Design ofthe hybrid sliding mode controller

The task space dynamic model given in (5.1) can be rewritten by including actuator friction
and writing the platform and leg dynamic parameters separately as in (5.30) below.

(M](x) +M2(x))x +(ci(x,x)+C2(X,X))x+G1(x) +G2(x) =JpT(T-ff) (5JQ)
In the above equation, Mi(X), C,(X,X) and Gi(X) are inertia matrix, coriolis/centrifugal
coefficient matrix and gravitational torque of the platform, M2(X), C2(X,X) and G2(X) are
corresponding parameters of the legs. The dynamic equation can be converted to joint space
using the following transformations.

i.rVH4 (5'32)
And then the joint space dynamic model becomes

A(q)q+B(q,q)q +Q=T-ff (533)
Where the inertia, corioles centrifugal and gravitational torque matrix and vectors are related

by

A(q) =JT(MI+M2)rT (534)
B(q,q) =JT((C1+C2)FT+(M1+M2)J-T) <5'35)

(5.36)
Q=JTG v

The joint space leg length error vector is given by

e = qd-q-

where qd is the desired leg length and qis measured leg length
If a non zero coupling factors Cj such that

Cje, = c2e2 = c3e3 = c4e4 = c5e5 = c6e6

is present, then the synchronization error is defined by[36]
s1=c,e1-c1+1e1+1
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xd.xd.*d
Xdr

Platform

dynamics

IK Joint

Space SMC CH Manipulator

Fig.5.16 Task space feedforward and joint space feedback with SMC control

Combining the tracking error and synchronization errors, a single variable referred as cross
coupling error is obtained and it is defined as [36]

i

Xd =cie1+n|(e1-e,_1)dt (5.40)

for i-1,2,... 6 and i-l=6 when i=l and p. is coupling parameter

In vector form, (5.40) can be represented as

Xe=Ce+uJ"f(e) (541)

Using this cross coupling and the tracking error, the error dynamics ofthe Gough-Stewart
platform manipulator is rewritten as a system with three state variables at each leg and is
given as

Xj =x2

X2=qd-A(q)~l(T-ff-B(q,q)-Q(q)) (5.42)
X3=CX2+nf(X1)

where the states Xi and X2 are the tracking error e and its derivative eand X3 is the cross
coupling error %e.

In sliding mode control, there are two basic steps and the first step is the design ofa stable
sliding surface which is formed from the states of a system to be controlled and the second

step is the design of control law which will drive the system states towards the stable sliding
surface. The sliding surface has to be designed such that when the states are on the sliding
surface, the system has to be insensitive to external disturbances and the states should move
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towards an equilibrium point. In the present case, the system dynamics (5.42) is formulated
in terms oftracking error and synchronization error. If a new sliding surface containing the

three states is proposed so that when the system is on that sliding surface, both

synchronization error and tracking error asymptotically move to zero, then we can drive both
synchronization error and tracking error to zero by using an appropriate control law. Hence,
the following new sliding surface, which is used to constrain tracking error and
synchronization error, is defined for joint space sliding mode control

S=A1X1+A2X2 +A3X3 (5-43)

The matrices A,, A2 and A3 are 6x6 and without loss of generality, A2 is assumed to be

identity matrix. From (5.43) it is clear that, when s=0, the sliding surface is a plane in 3D
which passes through the origin and ifacontrol signal is designed properly, both the tracking
error and synchronization error can bedriven to zero.

Taking the derivative of Sand equating it to zero, the following equivalent controller is

obtained,

x=A(q)(qd+A1X2+A3(CX2+uf(X1)))+B(q,q)q +Q(q) (544)
Substituting (5.44) into (5.42) and assuming that the dynamic parameters are computed
exactly, the sliding dynamics ofthe system becomes

X, =x2

X2=-A1X2-A3(CX1+af(X1))-A(qr1ff (545)
X3=CX2+nf(X,)

If friction is neglected, the sliding dynamics is a second order ordinary differential equation
and both the tracking error and the synchronization error can be made to zero and asymptotic
stability can be achieved. But in practical systems, friction is acritical factor and it cannot be
neglected. Hence the sliding dynamics cannot achieve asymptotic stability but the tracking
error and synchronization errors can be made to be bounded with in atolerable limit. Another
point to be noted is, the parameters of the equivalent controller (5.44) are in joint space and it
has been reported by various researchers that computation of these model parameters in joint
space is difficult and needs complex coordinate transformations [173]. Using the
transformations given in 5.31 and 5.32, the task space equivalent of these model parameters
can be obtained and the equivalent control signal can be calculated in task space as shown

below.
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T=JT(M1+M2)jT(qd+A1X2+A3(CX2+Mf(X1)))+JT((C1+C2)j-T+(M1+M2)rT)q+JTG
(5.46)

Thiscan be rewritten again as

i =JTTf+JT(M1+M2)j-T(A1X2+A3(CX2+uf(X1))) (5.47)
Where

Tf =(M, +M2) (jTqd +rTq) +(C, +C2)J Tq +G, +G2 (5.48)

If qis replaced byqd, if can be rewritten as

i, =(Mt +M2)Xd +(C} +C2)Xd +G, +G2 (5.49)

and it can be easily calculated in task space without the need for estimating ofthe pose of the
end effector. Replacing q by qdhas certain effects on the sliding dynamics and the effect of

the change and presence ofother uncertainties is analyzed in the next section.

5.3.2 Robustness analysis

The uncertainties in the Gough-Stewart manipulator include parameter variation, actuator
fnction and backlash. The uncertainties are assumed to be bounded and parameter
uncertainties are assumed to be additive so that the parameters are given as nominal and
deviation. Therefore, the following assumption is used.

Assumption: The uncertainties in the inertia, Coriolis and centrifugal and gravitational
matrices are bounded and can be given as nominal and deviation as:

Mj =M1N+AMj

M2 = M2N+AM2

Cj = Cjn + AC]

^2 = C2n + AC2

G,=G1N+AG

G2 =G2N + AG

Using this assumption, the uncertain dynamic model of(5.30) can be rewritten as

(M]N(x)+M2N(x))x +(ciN(x,x) +C2N(x,x))x +G1N(x)+G2N(x) =JpT(r-ff)-d(X)
(5.50)
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Where d is parametric uncertainty given by ^
d(X) =(AM1+AM2)X+(AC1+AC2)X+AG1+AG2 (551)

Given the nonsingular and positive definiteness assumption on the mass matrix and assuming
that the manipulator Jacobian Jp to be also nonsingular over the work space, the control law
(5.52) is proposed to stabilize the uncertain dynamic system (5.50), i.e. the controller is able
to drive the system towards the sliding surface in afinite time and will keep the system states
on the sliding surface with the tracking and synchronization errors decaying to zero

asymptotically.

t =JTxfN+JT(M1N +M2N)JT(AIX2 +A3(CX2 +uf(XI))) +JT(Kfs(s)) (552)

where f,(s) is switching control signal and XfN is the task space equivalent controller A
calculated using nominal parameters. To analyze the stability of the system under the given
controller, the control signal has to be rewritten in joint space as the errors are in joint space.
Using the conversion matrices given in (5.31) and (5.32), the control signal can be written as

x-DN(q)qd+BN(q,q)qd+QN(q) +DN(q)(A1X2+A3(CX1+uf(X1))) +Kf(s) (5.53)

Taking the Lyapunov function

„ 1 x (5.54)
V = -s s v '

2

Taking the derivative of V

v =ss <5'55>
and Sis calculated from (5.43) as -4

S=A1X1 +A2X2+A3X3 (5-55)
and substituting for the state derivatives from (5.45)

S=A1X2-A2(qd-q)+A3(CX2 +Mf(X1)) (5-56)
Substituting for q from (5.33) into (5.56) and using the result into (5.55)

V=s(A2(qd-A-1(T-ff-B-Q))+AIX2+A3(CX2 +Mf(X1))) (5-57)
Then substituting the control signal from (5.52)

/'qd-A'(AN(q)qd+VN(q.q)qd+QN(q))-A-1(AN(q)(A,X2+A3(CX2+^(X1))))
vKf(S)-ff-V-Q +A1X2+A3(CX2+nf(X1))

(5.58)

v = s
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V=s((qd+A1X2+A3(CX2+nf(X1)))(l-A-1AN(q))+A-1(AV+AQ)+A-,(Kf(S)-ff))
(5.59)

In (5.59) the matrix A is the uncertain inertia matrix which can be written as nominal and
deviation, as

A=AN +AA , and using the Sherman-Morrison formula, the inverse of A can be written as

A1 =(AN +AA)"1 =Ai,1 -^-A^AAA^ (5.60)

where g is tr (AnAA)"1. Then, using (5.60) into (5.59), we can rewrite

V=-AS A(qd+A1X2+A3(CX2 +Mf(X1))) AN*AA +AV +AQ +Kf (S)-ff (5.61)
v V1 +g J J

Hence the system can be stable and the sliding surface is attractive if the gain of the
switching function is selected as

K>||AV| +||AQ||+||ff|| +|h| (562)

h=A(qd+A1X2+A3(CX2+Mf(X1)))f-^AN1AAJ (5.63)
The term h is due to the parameter uncertainty in the inertia matrix, which is mainly due to
position of end effector and payload. To avoid the need for excessively high value of gain,
which main excite high frequency oscillation or vibration of the platform, friction torque can
be separately compensated.

5.3.3. Simulation results and discussion

For the simulation study ofthe performance ofthe controller, the Gough-Stewart platform
with the geometric parameters given in table I of chapter 3 is implemented using
simmechanics tool box of MATLAB. A friction model containing viscous friction and
coulomb friction, which is used in most robotic controllers, is included into the

simmechanics model to simulate the effect of actuator friction. The model equation is given
as

ff =kvq +kcsign(q) (SM)

and also a random disturbance torque is added to simulate other external disturbance effects.

Actuator dynamics is neglected assuming that electric motors with current/torque control are
to be used. It is to be reminded that the practical performance of sliding mode controller is
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also affected by back lash effects. Therefore, a nonlinear backlash simulator is connected in
series with the joint actuator to test the chattering that may occur when the sliding mode
controller is implemented digitally. To test for robustness against load variation, the
controller is allowed to work with payload variations from no load to 200Kg.

The trajectory considered contains translational motions of heave, surge and sway including
rotational motions of roll and yaw. The most important thing to be considered in the
trajectory is its speed. It is a fast trajectory where the platform moves heave at
(400mm/1.98Hz), surge and sway at (150mm/5.9Hz). The rotational motions are also fast
with rate of roll and yaw motions at (10°/2.7Hz, 10°/2.3Hz) and the maximum desired
acceleration is lOg. The trajectories are designed to achieve zero velocity and acceleration
initially and are as give in (5.16) and repeated here for convenience.

x(t) =0.10{l-exp(-37t){0)}cos(l.887tt),m

y(t) =0.10{l-exp(-37tt/10)}sin(l.887rt),m

0 15 L„ fO.1 +5.90 n\

a(t) =0.15{l-exp(-7rt)}sin(0.867rt),rad

p(t)=0,deg

y(t) =0.15{l-exp(-7rt)}sin(0.747rt),rad

To compare the performance of the controller with existing controllers, a standard PID
controller, with its parameters tuned using genetic algorithm, is implemented. Moreover, a
simple sliding mode controller, which has been suggested by many authors and contains joint
error and error rate, is also implemented and compared with the new controller. The
simulation results are shown in fig. 5.17-5.33. The performance of the controllers for no load
case is shown in figs. 5.17-5.22 while the figs.5.23-5.29 show the performance of the
controllers when the platform is caring full load of 200Kg and friction is considered. The
friction force considered is given by (5.64) with kv=50 and kc=20 and adisturbance torque
taken from auniform random distribution with maximum value of 50NM is also added to
each leg. To see the performance of the controllers in task space, their performance is
compared in task space by using anumerical forward kinematic estimation algorithm which
is not used for control but only for comparison of outputs.
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The controller parameters used and summary of tracking errors in percentage of the
maximum translation and rotations of the manipulator are given in table I. As can be seen
from the table and the figures, the new sliding mode controller, which employs anew sliding
surface containing synchronization error, is performing better than simple sliding mode
controller. In the simple sliding mode controller, the tracking errors in x, y and z directions
increased by 10, 10 and 5.34 percent respectively when the platform is fully loaded and
friction is considered but in the new sliding mode controller, the corresponding values are
only 8,6 and 2.66. Generally, in both no load and full load cases, the new sliding mode
controller is more than 10% better in tracking error performance. The control effort of the

three controllers is given in figs. 14-19 and the figures reveal that the control signals are
smooth and practically realizable. The signals for the simple sliding mode control and the

new sliding mode control are almost the same and have slight oscillations at the beginning.
This is because; both of them make use of the desired acceleration which is very high, lOg.
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Fig.5.17 Task space tracking control in x direction
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Table5.2 No load tracking performance of the three controllers

Controller

parameters

PID

Kp=lxl06

Kd-lxlO4

Ki=lxl03

Simple

SMC

Al=1000

A2=l

A3=0

K=1000

New SMC

Al=1000

A2=l

A3=500

K=1000

Translational

motion errors

ex=ey=4%

ez=0.4%

Ex=ey=0.5%

Ez=0.05%

Ex=ey=0.25%

Ez=0.05%

Rotational

motion errors

roll=l%

pitch=l%

yaw=1.2%

Roll=0.133%

Pitch=0.133%

Yaw=1.2xl0"3

Roll=0.067%

Pitch=0.067%

Yaw=2xl0"4
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Yaw angle

error is

absolute

error

Yaw angle

error is

absolute

error
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Table5.3 Tracking error performance of the three controllers when platform is carrying
payload of 200Kg and actuator friction is considered

Controller

parameters

PID

Kp=lxl06

Kd=lxl04

Ki=lxl03

Simple

SMC

Al=1000

A2=l

A3=0

K=1000

New SMC

Al=1000

A2=l

A3=500

K=1000

Translational

motion

errors

ex=ey=25%

ez=2%

ex=ey=5%

ez=0.267%

ex=3.5%

ey=4.5%

ez=0.133%

Rotational

motion errors

roll=6%

pitch=6%

yaw=5x!0"

Roll=l%

Pitch=l%

Yaw=lxlO"

Roll=3%

Pitch=3%

Yaw=5xl0"
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Yaw angle error

is absolute error

Yaw angle error

is absolute error

Yaw angle error

is absolute error
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Fig.5.24 Task space tracking control in ydirection with full load and friction
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5.4 Discussion and conclusion ^
In this chapter we have seen three different controllers designed for high performance control
of Stewart platform manipulator. The first one is task space fuzzy sliding mode controller
(TFSMC); the second one is task space fuzzy sliding mode controller with integral loop
(TSFSMCIP) and the last one is asliding mode controller implemented as hybrid of task
space and joint space with anewly proposed sliding surface. The performance of all three
controllers is better than joint space PID controller with the performance of the task space
fuzzy sliding mode controller with integral loop having slightly better performance than the
other two.

The hybrid implementation has advantages of avoiding forward kinematics estimation and is
very much cost effective. Its performance is also comparable to the task space controllers.
The newly proposed sliding surface is able to drive the synchronization error to zero and
hence solves the problem of joint space control. One important point to be noted here is, in
all of the three controllers, the sliding mode controller is aclassical one and hence has the
drawbacks mentioned in chapter 2. To enhance the performance of task space controller's
integral sliding controller has to be used. In the next chapter we will discuss the design and
implementation of integral sliding mode controllers in detail.
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Chapter 6

Genetic algorithm based integral sliding mode

CONTROL

6.1 Introduction

In chapter 5, we discussed various implementations of basic sliding mode controller used to

improve the performance of Gough-Stewart platform manipulator. Though it shows better

performance compared to joint space independent leg PID controllers, classical sliding mode

control has certain drawbacks. These are: (i) chattering or high frequency oscillation of

control signal, (ii) lack of robustness during the sliding phase, (iii) reduced life time of

actuators and (iv) is unable to compensate unmatched uncertainties [144].

Integral sliding mode controller is an improvement of the conventional SMC that can solve

the reaching phase problem and improve the robustness against unmatched uncertainties. Its

basic structure and advantages has been discussed in [76] [150] [151] [156]. The reaching

phase problem of conventional SMC is solved by integral SMC because, integral SMC has a

nonlinear sliding surface with an integral term that constrain the system states to be on

sliding mode from the initial time[55]. The other important advantage of the integral sliding

surface is it helps to achieve a stable sliding dynamics and gives enables to design a control

signal that completely compensates matched uncertainties and minimize unmatched

uncertainty to any desired level [42]. This improves robustness to unmatched uncertainty.

Therefore, the central point in the design of integral SMC is the design of the integral sliding

surface.

In the case of classical SMC, there are various established methods used for the design of

sliding surface such as: eigenstructure assignment, Lyapunov based method and pole
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assignment method [153]. But, there is no any established method for the design of integral
sliding surface. There are few methods suggested in the literature. In [81], Lyapunov's direct
method was used, while the authors of [153] suggested matrix fraction description method
for MIMO systems described using polynomial matrix. In [78], a design method based on
equivalent transfer function was proposed and in [141], fuzzy logic based integral sliding
mode controller was implemented but no formal design method is given. In all of the above
methods, the systems were assumed to have matched uncertainty only and hence the methods
cannot be used for systems with unmatched uncertainty. The only methods proposed for
systems having unmatched uncertainty are that of [42] and [55]. The authors of [42]
proposed to use the transpose of the output matrix as again of integral sliding surface. But,
there method needs a system with constant input matrix. In [55], linear matrix inequality
(LM1) technique was employed to design an integral sliding mode controller for a system
having matched and unmatched uncertainties in both input and state matrix. The method is
complex due to the mathematical complexity of LMI. Therefore in this chapter, an important
design method used to determine parameters of the integral sliding surface is presented.

In section one, basics of integral sliding mode control is discussed. Then in section
two, the application of genetic algorithm for the design of integral sliding mode controllers is
presented. In the third section, genetic algorithm based integral sliding mode controller
application to the Gough-Stewart platform is given. In the last section, the extension of the
method to multi-objective optimization using genetic algorithm and its application to Stewart
platform manipulator is discussed.

6.2. Integral sliding mode controller

Consider an uncertain nonlinear system given as

x=f(x) +g(x)u +d(x,t) <6.1)
Where xe*n is state vector, f(x) and g(x) are nxl and nxm dimensional vector valued and
matrix valued smooth nonlinear functions, uis mxl dimensional vector of control signal, dis
lumped uncertainty term which includes matched and unmatched uncertainties due to
parameter variations and unmodeled dynamics. The following assumptions are taken:
Assumption 1: The nominal system x=f(x) +g(x)u0 is stabilizable through a nominal
controller uo.
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Assumption 2: The matched and unmatched uncertainties are not known but bounded.

The control signal in integral sliding mode control is given by

u = u0+u, (6.2)

where u0 is the nominal control input designed to stabilize the nominal system and ui is a

discontinuous control input given by

"i =Kifs (s) (6.3)

fg(s) being a switching function and Ki is constant gain value. The integral switching surface

is given as follows [119].

s(x,t) =Gs x-x(O)- J (f(x) +g(x)u0)dT
t=0

Where s is the sliding parameter and Gs is mxn gain vector (when system is SISO and m=l)

or matrix( when the system is MPMO).

In (6.4), the term in the bracket can be seen as the miss match between actual plant output x

and desired or nominal response. This can be shown in block diagram as displayed in Fig.6.1.

At t=0, s(x,0)=0 and hence the system starts on the sliding surface avoiding the non robust

reaching phase and sliding mode exists for all time. If the controller (6.2) is able to drive the

actual system as desired, the deviation becomes zero and s=0 for all time. But due to the

presence of disturbances, this may not occur and there will be some dynamics of sliding. The

effect of the integral sliding surface on the sliding dynamics can be analyzed as follows.

Taking the derivative of s,

s=Gsx-Gs(f(x) +g(x)u0) (6.5)

Substituting the system dynamics from (6.1) into (6.5)

a=G.f(x) +Gsg(x)u +Gsd (x, t) - G,f(x)- Gsg (x)u0 (6.6)

And then the equivalent control signal becomes,

%=^(Gsg)"1Gsd(x,t) +u0 (6.7)

Substituting the equivalent controller into the system dynamics (6.1), the sliding dynamics or

sliding manifold becomes

x=f(x) +g(x){-(Gsg(x)y1d +u0} +d (6.8)
This can be rewritten as,
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x=f(x) +g(x)u0-rg(x)(Gsg(x))1G d + d (6.9)

From (6.9) one can see that, ifthe gain Gs of the integral sliding surface is optimally selected
so that the term in the square bracket is 1, then the uncertainty term will be totally rejected

and a stable sliding surface is obtained.

Hence the objective of this chapter is to show how genetic algorithm and multi-objective
optimization can be used to optimally select the gains Gs and K, of integral sliding mode
controller to stabilize and control an MPMO uncertain nonlinear system having unmatched
uncertainty. Note that (6.7) and (6.9) need the condition that Gsg is nonsingular and this is
always true for mechanical systems.
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Fig.6.1 Block diagram representation of integral sliding mode control

6.3 Integral sliding mode controller design using genetic algorithm

6.3.1 Genetic Algorithm

Genetic algorithm (GA) is an evolutionary algorithm based on Darwin's theory of selection
of the fittest. It is a multidimensional search algorithm which solves the local minima
problem of classical algorithms. In the literature, the basic element of agenetic algorithm is
known the chromosome as it is based on the evolutionary theory of Darwin [9]. The
chromosome contains the genetic information for agiven solution and can be coded by using
either binary or real string. The algorithm starts by generating randomly some number of
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chromosomes as candidate solutions to a given problem. A fitness function which in effect is

a performance index is used to select the best solution in the population to be parents to the

offspring that comprises the next generation. The more fit the parent is, it will have greater
probability of selection.

The selection of parent chromosomes is done using various methods including the roulette

wheel method. Then offsprings are produced by selecting parent chromosomes for breeding

and crossing over some of the genetic material. This process is known as crossover. Another

operator which is used to introduce some element of randomness into the solution is

mutation. In the process of mutation a randomly selected gene of an offspring is changed.

A„ Mutation occurs in not all offsprings but very few ones and it is used to introduce some

randomness. This process continuous until a global solution is obtained. Figure 2 shows the

algorithm described above. Therefore, in a GA optimization, parameters such as, the initial

population size, crossover rate and mutation rate, coding size of chromosomes and fitness

function, have to be selected. The most important one which determines the problem at hand

is the fitness function and below we will study how to select the fitness function.

6.3.2 Fitness function

The most important parameter in a GA optimization is the fitness function since it determines

the objective of the optimization itself. A poorly selected objective function may give a

completely wrong result. In [81], the main objective was to decrease chattering and obtain

^ fast response and the authors used fitness function given by

fobi=e-(,"/W>)2xe-(C-/W^2 (6.10)

where th is the time to hit the sliding surface, Cm is the amount of chattering and wi and w2

are weight factors. In the current discussion, the first term is not needed because the system

is on the sliding surface from the initial time. The main objective here is to keep the system

on the sliding surface from the initial time. Another objective is to minimize chattering and

the effect of the unmatched uncertainty as shown in (6.9). Hence for the fitness function, the

product of two terms is taken: the first one used to constrain the states on the sliding surface

and the second one is to minimize the effectof unmatched uncertainty. The fitness function is

formulated as in (6.11) below.
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Fig.6.2 Steps of Genetic Algorithm tuning for integral sliding mode controller design

, -(cs/w02x >m/w2)2 (6.H)
lobj

Where c;
is the term used to constrain the states to the sliding surface and is taken as

N

i=l

(6.12)
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Sj is the value of the sliding variable in iteration i. In the implementation, a chromosome

which has an initial value of s greater than zero by some upper limit is given a big penalty.

Similarly the um is the term which is used to minimize the effect of unmatched uncertainty

and is taken as the norm of

l+g(x)(Gsg(x))"1Gs
(6.13)

6.3.3 Coding of Genes
In searching for the optimal value of gain, the genetic algorithm will be initialized by

candidate values of the gain matrix G. For a general nonlinear system given in (6.1), the gain

matrix G is n by m. Each chromosome in the GA optimization will have a certain value for

each of the nm parameters. The gain parameters or values have to be coded by some number

of genes, which can be either binary or real. While binary coding results in a long

chromosome, real coding results in a shorter length. Hence each chromosome will have nmp

genes, wherep is the number of digits used to represent each gain parameter. For the current

problem, we consider coding the genes using real numbers.

Hence the i chromosome containing nm gains each coded by/? digits can be represented as

^si = ^§11812813 '" •8(n-l)m8nl8n2 "• 'Smn J (6 14}

Where each g is coded using p decimal digits as

gjk =djkldjk2djk3 ••-djkp (6 15)

Remark: The gain Ki of the discontinuous control signal (6.3) can also be tuned togetherwith

the parameters of the sliding surface. This is another advantageof the GA tuning method.

6.3.4 Determining range of values for the parameters

The range of values for the parameters to be tuned is an important factor in the application of

GA and hence it has to be analyzed carefully. Some combinations may result in positive

feedback and result in unstable system. The range of values to be taken depends on the

particular application for which the GA is used. Generally the range of values can be decided

from prior information on system performance or from some preliminary tests. For example

for robotic control, the range of values can be decided from step response test of individual

joints.
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In particular, the minimum value of the gain Ki of the discontinuous control (3) can be
determined from stability analysis ofthe closed loop system. Lyapunov's direct method and
the uncertainty bounds of the uncertain terms can be used to determine the lower bound
while the upper bound is determined by the maximum value of the control signal or by the
saturation limit of actuators. Hence, takinga Lyapunov function

v=IsTs (616)
2

Taking the derivative along the trajectory where s is zero,

V=ss (617)

=s{G(x-f(x)-g(x)u0)} (6-18)
This can be simplified by substituting the expression (6.1). For asymptotic stability of the

system,

V<-y <619>
where yis apositive constant. Therefore, to achieve the above stability condition, the gain of
the discontinuous control u, has to be selected so that (6.21) is fulfilled. If the discontinuous

control signal is taken as

u, =<

0 if s=0

Then the gain K has to be

K>Gs||dm|| (621)
where dm is the maximum value of the lumped uncertainty containing both matched and
unmatched uncertainties.

6.3.5 SISO system example with constant input and state matrix

Consider an uncertain system with the following dynamic equation as given in [55].

x=(f(x)+Af(x))x+(g(x)+Ag(x))(u+h(t))

The nominal system parameters are

111



V

GA and integral sliding mode control

f(x)

-I 1 0"

0 0 1

0 0 0

and g(x) =

The uncertainties in f(x) and input matrix B(x) are given as

0 pjcos(u) 0
Af p2cos(x1) 0 0

0 0 0

Ag(x) =

0

p3cos(x,)
0

and

Where pi, p2 and p3 are given by

Pj =0.2sin(l07rt), p2 =0.2sin(207rt) and p3 =0.1sin(307rt)

The disturbance d is also given as

h(t) =0.6sin(607rt)

and the initial value of the states is xi(0) =0, x2(0) =0 and x3(0) =1. The above dynamic

system has both matched and unmatched uncertainties and cannot be controlled by classical

sliding mode controller. In [55] an integral sliding mode controller was designed for this

system using LMI method. Here we use genetic algorithm to design an efficient integral

sliding mode controller. The dynamic system can be rewritten in the form of (6.1) by taking

d =Af(x)x +AB(x)h +h

Note: In the expression above, the first two terms are the unmatched uncertainty parts and the

last term h is the matched uncertainty.

The nominal controller uo is designed using LQR method by taking the linear nominal

system. In the LQR design Q and R matrixes are taken as

Q

1 0 0'

0 1 0

0 0 1
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and R=l. Then the gain for the nominal control u0 =-Kxis obtained as K=[0.1176 1.2966

1.8956]. Then based on the response of the nominal control and disturbance bounds, the
range of values for the gain of the sliding surface Gand the gain of the discontinuous control
are set in the genetic algorithm as

Range of values for G

-2 2

-2 2

-2 2

and for the gain of the discontinuous control Ki- [1 20],

The parameters of the genetic algorithm were set as crossover rate 0.8, mutation rate 0.2,
initial population 20 and generation 100. The optimal values obtained are

Gs=[1.12 0.188 0.577]

K,= 6.9109. The simulation result using the above values is given in Fig. 6.3-Fig.6.5. The
decay rate for the states is very much close to the desired compared with the LMI design of
[55]. However, the sliding parameter is not zero initially but it comes to zero with in a
negligible time and remains constantly zero as shown in Fig.6.6. The control signal shown in
Fig.6.7 is smooth and chatter free.

6.4 Multi-objective genetic algorithm optimization and integral sliding mode controller
6.4.1 Multi-objective optimization

Multi-objective optimization is an optimization problem where there are multiple conflicting
objectives to be fulfilled and usually asingle solution that satisfies all objectives may not be
obtained [9]. But a set of optimal solutions, which are optimal in the sense that no
improvement can be made in any objective without sacrificing the others, can be found. A
practical example of multi objective optimization is the robust control of Stewart platform
manipulator. Specifically in integral sliding mode control, robustness against unmatched
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uncertainty has to be improved and non robust reaching phase of classical SMC should also

be avoided. At the same time good performance has to be achieved which is a conflicting

requirement with the previous one. There are various methods used to solve multi-objective

optimization problems and in [9], a tutorial has been given about the use of genetic algorithm

for multi-objective optimization. In this section, we will use genetic algorithm and multi-

objective optimization to design integral sliding mode controller for Stewart platform

manipulator.

As discussed in section 6.2, in genetic algorithm fitness function is used to select the best

solution out of the candidates. Out of the candidate solutions, some of them may be unfit. For

example, for the integral sliding mode controller case, the values to be used for Kj have to

fulfill the condition for stability. Hence a chromosome containing a value which makes the

system unstable has to be removed.
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The most important step in using genetic algorithm for multi-objective optimization is how to
formulate the single fitness function required in genetic algorithm out of the multiple
objectives. There are various methods used including weighted sum of the individual
objective functions [9].In this section we present the design of the projection matrix Gs and
the control law tobeused to drive a Stewart platform manipulator.

6.4.2. Selectionof objective functions

As explained in section two, in the design of ISMC, the main objective is to avoid the non-
robust reaching phase and to minimize the effect of unmatched uncertainty. Moreover, as in
any control system, the closed loop stability of the system has to be insured. This is achieved
through proper selection of the objective functions and this is done as follows. To remove the
non-robust reaching phase, we have to minimize the deviation of the actual system from
nominal value, i.e. we should minimize the value of s, which is the sliding parameter. To
decrease the effect of unmatched uncertainty and chattering, we should minimize the rate of
change of s. Hence the following objective functions are taken. To minimize the deviation of
the actual system from nominal value, objective function is taken as:

f =e"(Csl/w)2 (6.22)
Where wis weight value for the given objective and c., is the term used to constrain the
states to be on the sliding surface and is taken as

£ (6.23)

Sl is the value of the sliding variable in iteration i, Nis the number of samples in the
trajectory used. Note that, evaluating the objective functions needs running the closed loop
control system for the given trajectory using the candidate solution values for Gs and K,. In
the implementation, achromosome which has an initial value of sgreater than zero by some
upper limit is given abig penalty. To minimize the rate of change of s, asimilar objective
function to that of (10) is formulated using the rate of change of the sliding parameter as

f =e-(°s2M2 (6.24)
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Where w again is the weight vector and cS2 is given by

N

cs2=E^i
i=1 (6.25)

Therefore, for MIMO system having m control outputs, there will be 2m objective functions

and a weighted sum of these 2m objective functions should be taken as the final objective

function for the optimization.

To insure stability, the value of Ki has to be checked for the condition given in (6.21), i.e. all

candidate chromosomes will be checked for their value of Ki before evaluating the objective

X function, which needs running the closed-loop system. The non singularity of Gg will also be

tested mathematically and all chromosomes which fail to fulfill the stability condition and

other conditions will be given high objective function value so that they are not selected for

next steps.

6.5 Application to Stewart platform manipulator

In this section we will make use of the above steps of genetic algorithm based integral sliding

mode controller design to design an integral sliding mode controller for Stewart platform

manipulator. We design the controller both in joint space and task space and compare the

performances.

6.5.1 Integral sliding mode controller design in joint space

6.5.1.1 Design and analysis of controller

Consider the dynamic model of a Stewart manipulator given in (2.10) with actuator friction

and external disturbance included.

A(q)q +B(q,q)q +Q(q) =x-ff-xd (6 26)

Where q is vector of joint parameter, i.e. vector of elongations of six legs, A is 6x6

manipulator inertia matrix, B is also 6x6 coriolis and centrifugal torque/force, Q is 6x1

gravitational torque/force, x is the actuator torque, ff is torque due to friction and Xd is the

disturbance. The same assumptions on the mass matrix and manipulator Jacobian as given in

chapter 2 and other chapters are considered. The assumption on the uncertainty of the

dynamic parameters is also same.

The joint space tracking error can be given as
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e=qd-q <6-27>
where qd is the desired joint elongation. Then, the joint space error dynamics is given as:

(6.28)ei — e2

e2=qd-ANI(T-BN(q,q)q-QN(q))+d21
Where the nominal joint space parameters are obtained from task space values by using

an=jtmnj-t

BN=jT(MNrT+vNrT)

Qn=J'g

d21 =-A,,1JT (AMJ Tq+(aMJt +AVLT )q+AG) +ANTff
Comparing (6.28) and (6.1),

x =

f = qd+A;,(BN(q,q)q+QN(q))

and

and d is

J6xl

d21

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

Following the same procedure as in section 6.2, the integral sliding surface for the Stewart
platform manipulator is given as

S=Gs(x-x(0)-j;(f(x,o)+g(x,©)x0)da))
and x(0) is the initial condition of the errorwhere x0 is the nominal control torque, x

dynamics and fand gare as given in (6.34) and (6.35) above. If the nominal controller to be
used is chosen as
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*o=DN(qd+Kpe +Kde) +BN(q,q)q+QN (6 38)

for some positive diagonal matrices Kp and Kd, then the sliding dynamics of the system

becomes,

(6.39)
e, - e2

e-, = -K e-K,e
1 pa

which shows a stable sliding dynamics. The completecontrol signal is given as

x=T0+Kfs(S) (6.40)

where x0 is the nominal control signal given by (6.38), K is gain of switching function, fs(S)

is switching function.

The magnitude of K required to achieve stability is

K> -AN1JT(AMTTq+(AMTT +AVJT)q+AG|+|AN1ff | (6.41)

6.5.1.2 Simulation results and discussion

The integral sliding surface given in (6.37) is implemented after the expressions (6.33)-(6.36)

are substituted and after simplification it becomes

S=Gsl(e-e(0)-}eN) +Gs2(e-e(0) +|Kpe+Kde)

where Gsi and GS2 are 6x6 diagonal matrices forming the 6x12 matrix Gs given in (27). There

initial values are determined from step response and there values is

Gsl=diag(500 500 500 500 500 500)

Gs2=diag(l 11111)

Kp and Kd are diagonal matrices of the proportional and derivative gains used in the nominal

controller. Assuming a damping factor of 0.7 so that

Kd=2^/K7

and The values used are

Kp=diag(4 4 4 4 4 4)xl04

Kd=diag(400 400 400 400 400 400)

The simple sliding mode controller used for comparison has a sliding surface given by

S = Gsle+Gs2e
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With Gsi and GS2 being as given above. For both simple sliding mode controller and integral

sliding mode controllers, the gain of the switching control signal is calculated from the

maximum values of uncertainties and is taken as

K=diag(6 6 6 6 6 6)xl03

The smoothness and magnitude of the control signal for different values of the sliding

surface parameters and the switching control gain K is studied and the effect ofadding the

fuzzy friction estimator is investigated.

The tracking error in task space for the integral sliding mode controller and the other two

controllers mentioned above is shown in Fig.6.8-Fig.6.25. The task space error is obtained

using numerical estimation for forward kinematics. The results reveal that the task space
tracking performance of the integral sliding mode controller with friction estimation is very
much better than that of the simple sliding mode controller and the well known PID

controller. The results are summarized in table 6.1 and table 6.2. The tables show no load

tracking performance of the three controllers, which is also given in Fig.6.8-Fig.6.13.
Generally, the no load tracking error improvement obtained by the integral sliding mode
controller is more than 15 times compared with PID and 12 times compared with simple

SMC. Especially the tracking error in the Zaxis has been improved drastically and is in the
order of urn. This indicates that the integral sliding mode controller is able to compensate

gravitational torque better than the simple SMC and PID controllers. Compared with Xand
Y directions, the error in Z is small and this is due to the fact that the desired speed of
vertical oscillation is small compared to x and y directions and tracking error generally
increase when the speed of motion increase. But for the given frequency, the integral sliding
mode controller is able to track the trajectory in all directions as shown in the other figures

also.

The most important characteristic of the controller is its robustness against parameter
variation and actuator friction. Robustness against parameter uncertainty is studied by
varying the payload mass from no load to 200Kg and effect of actuator friction is studied by
simulating viscous and coulomb frictions in the simmechanics model.
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Table6.1 Task space % error comparison (no load and no friction case)

Controller Translational Rotational Remarks

parameters motion errors motion errors

(%) (%)

PID Ey=3.65% roll=l% Yaw

Kp=lxl06 Ex=3.5% pitch=l% angle

Kd=5xl03 Ez=2% yaw=±lxlO"3 error is

Ki=lxl03 absolute

error

Simple Ex=ey=0.5% Roll=0.133% Yaw

SMC Ez=0.05% Pitch=0.133% angle

Gsi=500 Yaw= 1.2x10" error is

Gs2=l
3

absolute

K=6000 error

Integral Ex=ey=0.25% Roll=0.067% Yaw

SMC Ez=0.05% Pitch=0.067% angle

Gsi=500 Yaw=2xl0"4 error is

Gs2=l absolute

K=6000 error

Kp=4xl04

Kd=400
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Table6.2 Task space %error comparison (full load and friction case)

Controller Translational Rotational Remarks

parameters motion errors motion errors

(%) (%)

PID Ey=27.7 roll=21.2% Yaw

Kp=lxl06 Ex=26.8 pitch=25.4 angle

Kd=lxl04 Ez=21.33 yaw=+0.007 error is

Ki=lxl03 absolute

error

Simple Ex=4% Roll=1.27% Yaw

SMC ey=4.7% Pitch=1.27% angle

A1=500 Ez=0.33% Yaw=2xl0"3 error is

A2=l
absolute

K=6000
error

Integral Ex=ey=0.31% Roll=0.202% Yaw

SMC Ez=0.0978% Pitch=0.084% angle

Gsi=1000 Yaw=l.78x10" error is

Gs2=l
4 absolute

K=6000 error

Kp=4xl04

Kd=400

V . V- onrl \i arp fivfi Hi aeon al matrices and 1 le values g
*Gsi, GS2, Kp,

elements

As can be seen from Fig.6.14-Fig.6.19, the performance of the integral sliding mode
controller is better than simple sliding mode and PID controllers. The result is also
summarized in table II and it can be seen that in the case of PID controller and simple sliding
mode controller, tracking error increased 9times and 8times respectively while the tracking
error has increased by only 1.24 times in case of the integral sliding mode controller.
Another important performance measure to be noted, in addition to the tracking error, is the
smoothness of the motion of the manipulator when it is carrying aload. Stewart platform
manipulator is mostly used for precision applications and vibration of the platform when it is
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carrying a load is undesired and a controller has to drive the manipulator smoothly. This

smooth operation has also been achieved by the integral sliding mode controller. This can

be seen from the smooth and bounded oscillation of the error signal as shown in Fig.6.14-

Fig.6.19. The control torque applied at the joints for full load condition is shown in Fig.6.20-

Fig.6.25. The simulation results show that the control signal in the integral sliding mode

controller is smooth and chattering has been reduced.
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Fig.6.8 Task spaceerror in x direction, without load
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Fig.6.9 Task space error in ydirection, without load
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6.5.2. Integral sliding mode control for Stewart platform in task space
6.5.2.1. Design and analysis ofthe controller

Consider the task space dynamic equation given in 2.11,

M(X)X +C(x,x)X+G(X) =JT(x-ff-Td) (642a)

The same assumptions are again used.
Assumption 6.1: The uncertainties in the inertia, Coriolis and centrifugal and gravitational
matrices are bounded and can be given as nominal and deviation as:

M=MN+AM (6.42b)

C= CN+AC (6.42c)

G=GN+AG, ^
with the perturbations AM, AC and AG having bounds, ||am| <Mm, |ac| <Cm, |ag|| <Gm

Using (6.42b-d) into (6.42a), the dynamic equation can be rewritten as
MN(X)x +CN(x,x)q+GN(X) =JpT(T-ff-Td) +h (6.43)
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where h is given by

h = -AMX-ACX-AG (6.44)

Let Xd be (6x1) vector of desired task space trajectories. Then, the task space tracking error

vector and its rate vector are given as

(6.45)

(6.46)

Using (6.45) and (6.46) into (6.43) and changing to state space form, the error dynamics of

the system in state space is given as

e =Xd-X

e = Xd-X

x,-x2

^2=^d-MN(JpT(T-ff-Td)-CN(X^)q-GN(X)+h) (6.47)

Where Xi=e is (6x1) state vector of Cartesian space tracking error in positions and

orientations and X2=e is (6x1) state vector of the Cartesian space velocity errors. Equation

(6.47) can be rewritten as in (6.1) by using x=[Xi X2] T, x(0) =[Xi(0) X2(0)] and rearranging

the terms. This gives

f =

x,

Xd +MN'(CN(X,X)X +GN)

and combining all the disturbance terms: parameter uncertainties, friction and external

disturbance terms, the lumped disturbance term is given by

(V,^6x1

J6xl

-MnV

M -i (_AMX -ACX - AG +JpT (ff +Td ))

(6.48)

(6.49)

In the case of the Stewart platform manipulator, in task space also the input matrix g is a

function of the states as given by (6.48) and is not constant. Hence the method given in [42]

cannot be used and hence we use genetic algorithm optimization to obtain Gs. This is done as

follows. From (6.4), the integral sliding surface for the Stewart platform manipulator is given

as

S=Gs(x-X0-{^f(x,T)+g(x,v)T0)h) , (6.50)
where X0 is the initial condition of the states and To is the nominal control torque obtained

using the computed torque control method and is given by
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Xo=Jp(MN(Xd+KpX1+KdX2)+CN(x>X)X +GN) (6 51) >

In (6.51), Kp and Kd are 6x6 constant diagonal matrixes determined from stiffness of material
and desired transient performance. Following a similar procedure as in section 6.3.2, the

equivalent controllerbecomes

Using this equivalent controller into (6.30), the sliding mode dynamics of the system in task

space becomes

X, - Xj
(6.53)

' +d21X2=qd-MN1(jpT(T0+(Gsgr1Gsd)-CN(q,q)q-GN(q))-
Substituting for the nominal controller from (6.51), the sliding dynamics becomes

X2 =-KpX, -KdX2 -(d2I -M-J-T (Gsg) !Gsd) (6.54)
This shows that the uncertainty can be compensated and the sliding mode dynamics is stable
if the gain matrix Gs is selected such that the last term in the bracket is made to be zero.
However since the disturbance is not exactly known but only its bounds, the equivalent
controller given by (6.52) cannot be realized. Moreover the value of the Jacobian matrix
varies as the position of the manipulator varies. Therefore, the controller given by (6.52) is
replaced by a switching function as follows

T=T,rTK s _ (6.55)
lls+

Where q> is asmall positive boundary value and Kis chosen such that

K>||dm|=|M-1(AminX+ACmXH-AGm)|| (6 56)
The nominal control signal T0is calculated from the unperturbed model of the system in a

feed forward manner as given in (6.52).

6.5.2.2. Simulation study and discussion

The controller given by (6.55) is implemented using MATLAB and Simulink. The integral
sliding surface (6.50) is implemented after it is rewritten as in (6.52) by substituting the
nominal controller (6.52) and system dynamics functions into (6.51). The last expression
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jo'e2dco
{(-K^-K^dco

(6.57)

where Gs is a 6x12 matrix to be determined using the multi objective genetic algorithm of

section 6.4.1 and Kp and Kd are 6x6 diagonal matrixes used in the nominal control signal.

The gain matrix Gs can be partitioned into two 6x6 square matrices as Gs= [Gi G2]. Without

loss of generality, we can assume G2S to be identity matrix and Gis to be a diagonal matrix.

This helps in reducing the number of parameters to be optimized by the genetic algorithm

and also reduces the time required for computation. Moreover, it decouples the six sliding

surfaces and speed up the computation of control signal. Then (6.52) can be rewritten as

1

S=GlsX1+X2-GlsX1(0)-X2(0) +J(-GlsX2+KpX1+KdX2)daD
(6.58)

The range of values used in the genetic algorithm optimization for parameters of the

integral sliding surface and gains are determined using step response of each dimension. The

controller is first used for single direction regulation control and the step response is

observed. Then the controller gains are tuned until a desired step in terms of settling time,

overshoot and steady state error is obtained. Then the controller parameters used to obtain the

best and worst step responses are used as range of values in the genetic algorithm

optimization. Step response obtained when diagonal values of Gis are 200 is shown in

Fig.6.14. Hence, the diagonal elements of Gi are allowed to vary between 100 and 400 and

the gain value Kj of the switching function is allowed to vary between 5000 and 15000. The

parameters used in the genetic algorithm are as follows.

Initial population 20

Crossover rate =0.8

Mutation rate =0.01

Maximum number of generations 20

With these parameters, one of the Pareto optimal solutions obtained using multi-objective

genetic algorithm is given below.

The parameters of the integral sliding surface are

Gl =diag(ll7 113 87 155 157 150) f6 59^>
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And the gain value used for the switching function is >

k=diag(7983 7218 13074 6563 8468 6739) ^6 60^

The Kp and Kd values used in the nominal controller are

Kp=diag[4 4 4 4 4 4]xl04 (6 61)

Kd=[2 2 2 2 2 2]xl02 (6 62)

The tracking performance ofthe controller for no load and loaded cases with friction

and back lash considered are given in Fig.6.26-Fig.6.40. To compare the performance ofthe

task space integral sliding mode controller with existing standard controller, simple sliding
mode controller is implemented. The best gain values obtained and the simulation outputs are

compared. From the figures one can observe that, the tracking performance of the integral
sliding mode controller is far better than simple SMC not only in terms of the tracking
accuracy but also in terms of the smoothness of the control signals. Figures 6.26-Fig.6.31
show the no load task space tracking performance of the ISMC and simple SMC in the 6
DOF's for the given trajectory. In all cases the error is not asymptotically decaying but is
bounded. In the case of the integral sliding mode controller, the error is much smaller.

Especially the integral SMC is able to compensate gravitational torque which can be easily
seen from the tracking performance in zdirection. In all directions, the tracking error for the
integral SMC is below 0.05mm and considering the speed of operation taken, which is
600mm/sec, this tracking error is very good. The orientation angle errors are slightly greater
than the translational motion error of x, y and z. This is due to the error in the numerical
algorithm. The initial guess taken for the numerical algorithm is same for all trajectory
positions.

The performance of the controller for loaded conditions is also checked using a
200Kg load. The result is shown in Figs.6.32-Fig.6.38. From the figures it can be seen that
the controller performance has not been degraded much, even in the presence of 200Kg load,
simulated friction torque in actuator and random external disturbance torque. The tracking
error is bounded within ±0.1mm. The most important aspect in control of Gough-Stewart
platform manipulator carrying aload is to maintain stiffness and avoid vibration. The results
show that the system is moving without vibration as the tracking error is smooth. The control
force of the task space controller, after it is transformed to joint space, is shown in Fig.6.39

137



GA and integral sliding mode control

V and Fig.6.40. It is clear that the magnitude of the control torque is reasonable and is also

smooth without any chattering. The initial swing is having frequency less than 50Hz and can

be implemented by actuator motors.
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Fig. 6.26 Step response error in x direction used for parameter selection, desired is rise

time less than 50msec with no overshoot
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Fig.6.27 Trajectory tracking performance in x direction of simple task space slidingmode

controller and integral sliding mode controller with no load
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Fig.6.28 Trajectory tracking performance in ydirection of simple sliding mode controller and
integral sliding mode controller with no load
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Fig.6.30 Trajectory tracking performance for roll angle of simple sliding mode controller and
integral sliding mode controller with no load
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Fig.6.33 X direction trajectory tracking performance of simple task space sliding mode
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controller and integral sliding mode controller when carrying load of 200Kg

xlO

I 4
"5
a>

<§ 2
n

c

o

2 3

Time(sec)

Simple SMC

•Integral SMC

Fig.6.35 Zdirection trajectory tracking performance of simple task space sliding mode
controller and integral sliding mode controller when carrying load of 200Kg

xlO"

3 0
«
"of
» -5
id

B -10

-15

-20
0 0.5 1 5

Simple SMC
•Integral SMC

2 2.5 3 3.5 4 4.5
Time(seo)

Fig.6.36 Roll angle trajectory tracking performance of simple task space sliding mode
controller and integral sliding mode controller when carrying load of 200Kg
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6.6 Comparison between joint space and task space ISMC
The results of the integral sliding mode controllers designed in joint space and task space
have been in Fig.6.8-Fig.6.25 and Fig.6.26-Fig.6.40 respectively. In both cases the trajectory
tracking results are given in task space and the control forces are given in joint space.
Actually, the nominal control part of the joint space ISMC has been implemented in task
space and only the switching controller is implemented in joint space. This is done to make
the simulation more close to practical implementation since implementing dynamic
parameters in joint space is difficult and in practical application it is not used. Another point
to be noted when comparing the results is the number of controllers compared in each case.
In the case of the joint space three controllers are compared: PID, simple SMC and integral
SMC. But in the task space, only two controllers are compared. This is so because, due to the
big difference between the PID and task space integral SMC, trying to plot them together
makes the companion between simple SMC and integral SMC invisible. So in the task space
case only two controllers are plotted.

Comparing the respective trajectory tracking performances, the task space controller
generally shows better tracking performance than the joint space one. The order of tracking
errors is in micro. This is as expected. But apoint to be noted is the magnitude of the control
force in the two cases. The joint space control signals are very small. This shows that the
joint space approach has more practical advantages than the task space. As stated above, in
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y reality the joint space is a hybride oftask space and joint space and it has better result than
the purely task space implementation.

6.7 Conclusion

In this chapter, the design ofintegral sliding model controller using genetic algorithm and we
implemented the method for simple SISO system and for a 6 DOF Stewart platform
manipulator. The details ofthe design ofthe controller are given and its stability has been
analyzed. The comparison between the LMI method and the genetic algorithm based

methods shows that genetic algorithm design method gives better results. Because of its

easiness and considering the results obtained, we can conclude that genetic algorithm can be
i^ effectively used for the design ofintegral sliding mode controller for any system.
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Chapter 7

Neuro-Fuzzy Sliding Mode Controller

In the previous chapters, we have seen various types of sliding mode controllers used

together with genetic algorithm and fuzzy logic system. The improvements obtained are

encouraging. In this chapter we will discuss a more robust and better controller, which is

made from hybrid of fuzzy and neural networks. In the following sections, the design and

stability analysis of neuro-fuzzy sliding mode controller is discussed. The controller has

two parts: fuzzy logic system and neural network. They are used concurrently but each part is

responsible for one phase of sliding mode controller. The fuzzy logic system is utilized to

control reaching phase dynamics and the feedforward neural network is employed to keep

the system states on the sliding surface. The neural network is trained online using modified

back propagation algorithm. Initially, fuzzy logic system is dominant and as the system

moves from reaching phase to sliding phase, neural network becomes more active and hence

a hybrid computing paradigm is achieved. The stability of the system is analyzed using

Lyapunov's direct method. The proposed controller is implemented to regulate a second

order nonlinear uncertain system and simulation results confirm that the proposed system

reduces chattering and improves transient response.

^ 7.1. Neuro-fuzzy hybridization and sliding mode control

It is very well known that fuzzy logic systems are very good in decision making, while

neural networks are good at function approximation. Therefore, combining neural and

fuzzy logic systems with conventional sliding mode controllers can result in a more robust

controller. For this kind of research, the studies of [24][77] and [102] are worth

mentioning. In [24] and [77], a fuzzy logic system had been used to replace the

switching function, while in [102] fuzzy logic system was used to generate nonlinear

sliding surface. Similarly, in [149], a neural network was employed to estimate an

optimal sliding surface and in [148], a radial basis function network was utilized to vary the

gain of the switching function of a sliding mode controller. In all the above studies, either

neural network or fuzzy logic system was used to improve the performance of basic

sliding mode controller. But none of the implementations could solve the chattering
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problem completely. This is because using fuzzy logic to replace switching function results
in a similar effect to that of saturation control. Therefore, a more important development

could be the use of two artificial intelligencetechniques together.

In an attempt to use the said two artificial intelligence techniques with sliding mode
controller, neuro-fuzzy sliding mode controllers had been proposed [2][3][122]. In [122], a
neuro-fuzzy system was used to approximate equivalent control part of conventional sliding
mode controller but the switching function part was the same with the conventional one. The
work reported by [2] used an ANFIS network to replace the switching function which
resulted into adjustable boundary layer but in the same paper, itwas reported that the system
was sensitive to parameter variation and external disturbance. In the work of [3], the
controller had two parts: a neural network part which was employed to estimate the
equivalent control signal and a fuzzy logic system, which was utilized as switching
function. The output ofthe fuzzy logic is used to train the neural network.

Our approach is similar to the work of [3]. But, there are three main differences. First, in
the former case, the signal used to train the neural network was the output of the fuzzy logic.
This might lead to adelay in synchronizing the outputs of the neural network and fuzzy logic
systems. In our proposal, we have used the sliding variable to train the neural network. The
second main difference is in the sliding surface used. In [3], a nonlinear surface was used,
while in the present case a linear surface was used. One basic advantage of sliding mode
controllers is the system order reduction achieved when the sliding surface is linear.
Moreover, a linear sliding surface gives a stable and robust performance with respect to
parameter variation and external disturbance, which is the basic objective of sliding mode
control. The third and main difference lies in the fact that our system is designed for a
general second order nonlinear uncertain system, while the work of [3] is shown for a
specific system.

Therefore, the objective of this thesis is to design and analyze the stability and
performance of a neuro-fuzzy sliding mode controller for a general second order
uncertain system. In the controller, neural network and fuzzy logic system are used
concurrently but each part is mainly responsible to control one of the two phases of sliding
mode controller. The fuzzy logic system was utilized as a switching function to control
the reaching phase dynamics and the neural network was used to estimate the equivalent
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^ control signal. Initially fuzzy logic system is dominant and drives the system towards the

sliding surface. As the system moves from reaching phase to sliding phase, the output of the
fuzzy decreases and the neural network weights are adjusted so that an exact equivalent
controller is estimated to keep the system on the sliding surface. The neural network learning
rate is inversely related to the sliding parameter and therefore the neural network becomes

more dominant in the controller in the sliding phase. Because of this smooth transformation

in control action, a hybrid computing structure is achieved. The sliding surface used is linear

and the online weight adjustment is done using modified back propagation
algorithm. Stability analysis and simulation results have shown that the system is stable
and has superior performance than other types of sliding mode controllers.

7.2. Problem statement

Consider a general second order uncertain nonlinear system given by

Xj — Xn

x2=(f +Af) +(g +Ag)(u +d(t)) (71)

where X=[Xl x2] is the state vector, f and g are nonlinear functions in R2, u is the

control input, Af and Ag are bounded uncertainties and d is disturbance. The following

assumptions are taken.

Assumption 1: The nominal system

x, = xn

x2 =f(x) +g(x)u (72)
is known and stabilizable.

Assumption 2: The uncertainty Af is matched and Af, Ag and disturbance signal d are

assumed to have the following bounds.

||Af||<f
II II rn

NNSm (7.3)
lldll < dm
II II rn

Then, the objective here is to show that the control law,

u=uNN(x>xd)+uf (7.4)

147



Neuro-fuzzy sliding mode control

unn being the equivalent control signal obtained from neural network and uf being the output \
of fuzzy logic system, are smooth and stabilize system (7.1) with tracking error decaying

asymptotically to zeroas given below.

Consider a smooth and twice differentiable trajectory xd, then the trajectory tracking error e

is given by

e= xd-Xl. (7.5)

Consider also a linear sliding surface given by

s = Ae +e, (7.6)

where Xis a strictly positive design parameter. The derivative of the sliding surface swill be
s =Xe+e (7-7) A-

From (7.5), e=xd -x, and using (7.1) e=xd -x2 . Substituting for x2 from (7.1), (7.7) can

be written as

s=Xe +xd-(f +Af +(g +Ag)u +d(g +Ag)) (7.8)

On the sliding surface both s and its time derivative are zero and hence the equivalent

controller is:

ueq=(g+Ag)'I(Ae^d-f-Af-d(g+Ag)). (7.9)
This equivalent controller cannot be generated directly because of the unknown uncertainties.
But (7.9) can be considered as amapping from 9?2^R. It is to be noted that neural networks
are universal approximators which can learn such mappings. We can readily generate the
equivalent control signal using aneural network and adjust its weights online such that the
control signal keeps the system on the sliding surface. Hence, the equivalent controller can be
written as follows:

u„„ = u™ - fi•*eq UNN

N

j=i

r „ "\

Iwl;xl+bJ
i=l

>

+ b0

)•>
(7.10)

where Nis the number of hidden layer neurons, pis the number of input units, bj is the bias
for hidden layer neurons, b0 is the bias of the output neuron, fj is the activation function of
hidden layer neurons, Wh and W'are ideal network connection weight matrices for hidden
layer to output and input to hidden layer, respectively. The universal approximation theory
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confirms that we can obtain weight matrices, Wh and W1, which are very close to the ideal

weight matrices such that (7.10) sufficiently approximates (7.9). This means that there exists
a small real number s, such that

(g +Ag)"1 (?te+xd -f-Af-d (g +Ag)) =fo
N

E«tt
j i

Swi;x,+bj
i-i

+ b„ +s (7.11)

The weight estimation error is given by

[W, W2] =[W* Wh]-[w' Wh] (7.12)

This implies that, ifthe weight estimation error is zero, the estimated weight matrices will be
the same as the ideal weight matrices and the neural network estimation error reduces tozero.

This confirms that the neural network gives the desired equivalent control signal, which will
keep the system on the sliding surface rejecting all disturbances. The complete block diagram
of the controller system is shown in Fig. 1and stability and reaching condition of the system
under thegiven control law (7.4) is analyzed as follows.

7.3. Stability Analysis

Let us chose a Lyapunov function of the form:

Then, its time derivative will be

v l 2V = —s
2

V = ss

Using (7.1), (7.5) and (7.6), we have

V=s(Xe+xd-f-Af-(g +Ag)(uNN +uf)-d(g +Ag))
Now, using (7.11) into (7.15), we can rewrite

V-s(Xe+xd-f-Af-(g+Ag)((g+Ag)",(}^+xd-f-Af-d(g+Ag))-E+uf)-d(g+Ag)) (7.16)
Where e is the neural network estimation error. After simplifying the terms, we have

V=-s((g +Ag)(e+uf)) (7.17)
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Linear sliding

surface

Fuzzy Logc

System U,

Plant

Fig.7.1 Structure ofthe neuro-fuzzy controller

From (7.17), we can see that V<0 Vt>0 ^if the neural network is trained to approximate the

equivalent controller with minimum error so that INI <||uf II. This can be achieved if the fuzzy
logic output is designed to fulfill

llu ll>f +e d + ||e||d (7.18)||uf|| m °mum 11=11 m

7.4. Neural network equivalent control estimation

Neural networks are massively parallel distributed processing systems made up of highly
interconnected processing elements that have the ability to learn and acquire knowledge.
They have been used for function approximation and pattern classification problems.
Recently, a radial basis function network has been used in conventional sliding mode
controller to estimate the gain of the switching function. The motivation for the use of neural
networks in sliding mode control is their ability to estimate unknown functions. Generally, a
feedforward network with sufficient number of neurons in hidden layer can approximate any
continuous function to any desired accuracy. With this background, atwo-layer feedforward
network is used to estimate the equivalent control signal of conventional sliding mode
controller, as shown in fig.7.2. The output of the neural network is given by (7.9) and can be
written as

uNN=f0(net1) <719>

where neti is the net input to the output layer given by
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net,«2Xf; £wJX,+bj
j=i Vi=l

+bn (7.20)

Fig.7.2 Neural network used for equivalent control estimation

Sliding mode controllers in general have two phases: a reaching phase where the system

states are driven towards the sliding surface and a sliding phase where the states are

constrained on the sliding surface. The drawback of classical sliding mode controllers is the

states come close to the sliding surface and remain within a small region of the sliding

surface, which is known as boundary region. The dynamics inside the boundary region is

mostly unknown and the high gain of the switching signal may trigger high frequency
oscillation ofthe system, when there are disturbances [65]. Therefore, one ofthe advantages
of neural network is to tune the system in this boundary region, so that the system
asymptotically moves towards the sliding surface. In this boundary region the fuzzy system
has small gain. Hence we consider two cases, as explained below.

Case 1: reaching phase

In this phase, the distance term s is high and the output ofthe fuzzy controller is also high, so
that it drives the system towards the sliding surface. Therefore, the output of the fuzzy
controller is taken to be proportional to the magnitude of this distance variable. The

maximum and minimum values of the output of the fuzzy controller are chosen based on the
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bounds of uncertainties and disturbance. During this time, the neural network weight

updating rate is very small so that output of neural network is smaller than the output of the
fuzzy logic to fulfill the stability condition of (7.17). Therefore, the learning rate qis taken as

n=J—. (7.23)
H +l

to make it always less than 1and inversely related to the sliding variable s.

Case 2: near the sliding surface

In this region the fuzzy output is constant and at its minimum value. The neural network
weights are updated to drive the system further to the sliding surface as a fine tuning that
calculate the exact equivalent control signal, which keeps the system on the sliding surface.
This means that as far as the neural network approximation error does not become greater

than the gain of the fuzzy controller, the system remains stable. To ensure the stability of the
system, the initial gain of uf has to be greater than the sum of bounded uncertainties and
disturbance, refer to equation (7.18).

7.5 Modified backpropagation training using sliding parameter

The training algorithm used to update the weights of the neural network is amodification of
the standard back-propagation algorithm. The standard back-propagation algorithm is an
offline algorithm, which needs a set of input-output pairs. The goal of tuning the neural
network is to keep the system on the sliding surface, and hence avoid chattering, i.e. high
frequency oscillation of sliding variable s. Therefore, in the weight updating algorithm, we
use sas the error for training and its square as the performance criteria to be minimized as
given in equation (7.22).

J=!(s)2 (7-22)
2V '

Then, using the steepest decent algorithm, the weights are updated as

Wnew=Wold-q^ , (723)
where r, is alearning rate determined using the distance function s, refer equation (7.23).
Applying the chain rule and using (7.8), (7.19) and (7.20), for output layer weights, we have

iL=^.A=£_^-^i-=.(s)f(:(neti)yh, (7-24)
5W 5s 5W ds dnet; 5W

152

A



Neuro-fuzzy sliding mode control

where yh is the output of hidden layer, fo is the derivative of output activation function and

neti is the net input to the output layer. Similarly, for the hidden layer,

-(s)f>eth)f0'(neti)whxi (7.25)
dW

Where x; is the input to the neural network, fhis the derivative of hidden layer neuron

activation function, neth is net input to hidden layer neuron and wh is the connection weight
matrix from hidden layer to output layer.

7.6. Application to SISO system

The neuro-fuzzy sliding mode controller explained above has been implemented using

jX MATLAB for control of a nonlinear second order system having parameter variation and
disturbance. The system dynamics is given as:

Xj — x2

x2 =-bx2 - acos (x!)+u+d '

where theparameter variations and thedisturbances are given by

(7.27)

b=0.5+0.2 sin (t) (7.28)

a = 3.5+0.5 sin (t) (7.29)

d =sin(3t) (7.30)

Below we will compare the performance of conventional sliding mode controller, fuzzy

sliding mode controller and neuro-fuzzy sliding mode controller. In all cases, the sliding

surface used is linear and is given by (6.6). Assuming a 20% decay rate for the error, the

sliding surface parameter will be A,=5. Then for each of the controllers, the rest of the

parameters will be designed as follows:

i) Classical sliding mode controller- in the classical sliding mode controller, the
controller used is given by

u=Ksat(s/\|/) (7.31)

where K>0 is gain, ¥ is width of boundary layer and sat is the saturation function

given by
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' 1 x>l

sat(x) = - x -1<x<1

-1 if x<-l (7.32)

The value of the gain K is determined from the parameter variation and

disturbance bound. Taking ¥=0.05 and K=40, the performance of the classical

sliding mode controller is shown in Figs. 7.6, 7.7 and 7.8.

ii) For the fuzzy sliding mode controller, we have to determine the membership

function types and their parameters for the input and output variables and also we

have to determine the rule base. Hence, triangular membership functions are used

for ease of calculation. Three parameters have to be decided for each

membership function. Particularly, the width of the membership function used to
represent the linguistic variable ZERO decides the width of the boundary layer and is
very important to avoid chattering. Hence, with the above consideration, the
membership functions shown in Fig.7.3 and Fig.7.4 are used. The resulting control
surface of the fuzzy logic system is graphically shown in Fig.7.5. The above
fuzzy logic system is implemented using fuzzy logic toolbox of MATLAB. The
performance of the controller is given in Fig.7.6, Fig.7.7 and Fig.7.8.

iii) Neuro-fuzzy sliding mode controller- As discussed in section 3, the neural
network system is used to implement the equivalent controller. A two layer
feedforward neural network controller, trained with the online training algorithm

explained in section 3, is implemented in MATLAB and is used in parallel with
the fuzzy logic system designed in (ii) above. The performance of the neuro-fuzzy
controller is shown in Fig.7.6, Fig.7.7 and Fig.7.8.
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Figure.7.3 Membership functions for input variable

t
ZERO

50 IT

Figure7. 4 Membership functions for the outputvariable

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig.7.5 Nonlinear control surface of the fuzzy logic system

155



Neuro-fuzzy sliding mode control

From Fig 7 6 it is clear that the tracking performance of the controllers goes on

improving from classical SMC to FSMC and then to the NFSMC. A more important
advantage of the NFSMC is shown in Fig.7.7, which displays the control signals for the
three controllers. The figure shows that the FSMC has an appreciable chattering at some

points. The same fuzzy logic controller is used with aneural network in the NFSMC and
the same figure reveals that the chattering has been suppressed in the NFSMC.
Figure7.8 displays the tracking error for the three controllers. From the figure, it is clear that
the tracking performance of the NFSMC is better than that of classical SMC and is the
same with that of FSMC but with improved control signal. But the cost for the NFSMC

is the slight delay in the error decay as it can beseen from Fig.7.8.

7.7. Discussion and Conclusion

In this chapter, we have reported how neural network and fuzzy logic system can be used
together to reduce the problem of chattering of classical sliding mode controllers. The
design of neural network and fuzzy logic part is given in detail and the stability analysis of
the closed loop system is done using Lyaponov's technique. A second order system
having parameter variation and disturbance is taken as an example and the controller is
implemented using MATLAB and Simulink. Simulation results showed that the system
performance is better than classical sliding mode controller and problem of chattering
decreased compared to the fuzzy sliding mode controller.
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Fig.7.6 Tracking performance of the three controllers (SMC, FSMC and NFSMC) for the

position variable xl of the inverted pendulum
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Fig.7.7 Thecontrol signals of the three controllers. TheChattering in FSMC is shown in

details. The NFSMC has avoided the chattering with improved control performance
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Fig.7. 8 Tacking error for the three controllers, SMC, FSMC and NFSMC

The structure of the controller may initially seem bulky as both neural network and fuzzy

logic are used concurrently and implementation may look uneconomical. However, with
the development of high speed microprocessors and software technologies, this
problem will vanish. The future work of this research is to analyze the performance of the
hybrid system in the presence of unmatched uncertainties. Moreover, we have also a plan to
see the system performance for higher order systems.
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Conclusions

Conclusions and future work
From the research work, we can draw the following conclusions:

Chapter 8

1. For Stewart platform used in low speed, low precision applications improving
individual leg joint space controllers is effective and fuzzy tuned PID controller
works well.

2. For high speed application or when high precision is required, task space control has
I to be used and sliding mode control in task space gives abetter result as seen in fuzzy

sliding mode control and integral sliding mode control.

3. Feed forward neural networks result in a better estimation of forward kinematics of

Stewart platform and can be used for task space control implementation.

4. We have shown how Genetic algorithm can solve the design problem ofISMC and it
is a betterand easierdesign method.

5. To reduce cost of implementation improvements to independent leg PID Joint space
controller can be achieved by using hybrid sliding mode controller with our newly
proposed SMC.

6. Task space fuzzy sliding mode performs better than joint space SMC or PID but fuzzy
sliding mode with an integral loop performs much better.

7. An integral sliding mode controller designed using the GA method we propose has

the best performance. It can result in urn precision for a large Stewart platform which

can carry a 200Kg load. This means for small sized platforms the precision can be
very high.

8. A hybrid implementation which avoids the complex forward kinematics is another

alternative which can result in a better performance.

9. Neuro-fuzzy sliding mode controller has the potential to reduce chattering and
achieve a better sliding dynamics. Integrating GA designed integral sliding mode
controller with neuro-fuzzy design may result in a bestcontroller.

10. We have tried to address all problems of classical SMC by using soft computing.
t - Chattering - Neuro-fuzzy sliding mode controller

159



Conclusions

- Reaching phase - Integral sliding mode control using GA

- Unmatched uncertainty- using GA

- Smoothness of control signal - Neuro-fuzzy controller

Future work

1. Further investigation regarding the performance of support vector machines and other
hybrid algorithms for forward kinematics in order that better reliability and reduced
space complexity is achieved afirst step for future direction.

2. The study of application of interpretable fuzzy logic system for friction estimation is
another good starting point to enhance the performance of the controllers designed.

3. It is clear that all the controllers have finally to be implemented in adigital hard ware
where sampling and reconstruction is amust. Hence as aforward step in the direction
of practical implementation, study the effect of sampling and delay on tolerance
behavior of soft computing techniques and on the sliding mode controllers designed is
a third option we are planning for.

4. Rigorous stability analysis of fuzzy logic based sliding mode controllers using
Popov's method is one important point that could be added. Stability analysis for
robust controllers is mostly performed using Lyapunove based methods but the
method needs mathematical representation of fuzzy logic systems. Though
mathematical representation of fuzzy logic systems is available, using Popov's
method will give a much more intuition.

5. The study of the GA based design method proposed in this thesis has to be further
tested with various examples to see its applicability and limitations. Awork in this
direction is useful both for the soft computing and control system fields and hence is
our step in the future.

6. Practical implementation of the algorithms for aStewart platform manipulator.
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Replies to examiners queries and suggestions
Report Aqueries and replies

0 Eq. (3.3) why does not it have direet solution? What solutions are yon gettin.
ZLnllTRaphson ,echnique! Wha*model you are '*•"*'» •"•"•»»
Answer: Equation (3.3) is as follows

1, =|Rpi+r-bi|
" (3 3)

And the statement in the thesis about the equation is as follows.

The solution of (3.3) is unique for agiven platform position rand orientation Rand
llel Th "f a,:d ™S COm,itUteS the S°'Uti0n °f ,he «~» «—•««problem. The forward kmemat.es problem is finding the actual Cartesian space

posmon and onentation X-fo r„ r2„ a, p, y]given aset of leg lengths, 1„ ,2, *
k-1 his is anonlinear equation and it has no direct solution.

With great excuse for the expression and miss understanding Icreated, the sense of
he statement. no, to say that equation (3.3) has no direct solution. Equation (3 3) is
he inverse kinematics problem which computes the length of legs given platform

center rand orientation R. So this has aunique solution and has direct solution

The inverse of equation (3.3) is what we call the forward kinematics problem It is to
find the value of orientation matrix Rand position of platform center rgiven six legengths. tis to problem which is non]inear and wh.ch ^ ^ d.rectgsolut- f
direct solution, we mean unique solution. For agive„ measurement of legs there are
many possibte orientations and platform center positions. And analytica me,hod
have found that there are around 40 possible solutions for agiven se of leg ngl
me_ However, some of these solutions are no, practically poss.L and
hence on, of the analyhcal solutions one has to select the practically feasible ones.
Using Newton Raphson technique, we get an approximate solution and i, ,s no,
umque. If we take adifferent starting point, the solution will be slightly different
This is what wc mean by-it does not have direct solution'.

From the solution of Eq. (3.3) we obtain leg lengths for a given position and
orientation of platform. However, from the inverse of equation 3.3 we ge, o"
and position of the p.atfonn for ag.ven measured .eg lengths. This Ted
feedback signal mcontrol loops and hence it is very important



Platform position r

and orientation R

Has direct solution or unique solution

Eq. 3.3,
Length of

legs 1 to 6

Has no direct solution or has multiple solutions

Inverse of

equation (3.3)

ii) Ref. to page 44, what is so important about the less time?
The total time taken for the closed loop control system depends on the time used for
the forward and backward paths. The less time in the neural network means, a less
time in the backward loop which decreases the closed loop time and this again means
afast control algorithm which can track fast trajectory with abetter accuracy

iii) What is meant by leg PID controller?
The Stewart manipulator has afixed base and moveable platform which are joined by
six prismatic and actuated joints. These prismatic joints which connect the base to the
top platform are known as legs. APID controller which controls the length ofasingle
leg is what we call leg PID controller. Hence there are six PID controllers. The PID
controllers used to control each leg are independent from each other, i.e. the input to
each PID controller depends on the concerned leg only.

iv) How do you guarantee the stability ofthe system in this method?
The stability of the system is guaranteed by keeping the range of variation of the PID
parameters within a specified limit. The range of variation of each parameter is
separately checked with the PID controllers alone. The detail code of the S-function
which implements the tuning algorithm takes care that the tuned value is not out of
these range. The code used in the s-function sfunfuzzy which is used to insure that Kp
always remains within bound is shown below. Similar code is used in Kd and Ki.

function sys=mdlDerivatives(t,x,u)
temp=x+u(l)*u(2)*KpO;
if (temp>Kpmax)

sys=[Kpmax];

else if (temp<Kpmin)
sys=[Kpmin];
else

sys = [temp];



end

end

v) qj and qid are not defined in the text

It is by mistake that I forget to define it.
qi is actual measured leg length for the ith leg and qid is the desired leg length ofthe i*
leg.

vi) What are AM, AC and AG? Similarly what are Gm, Cm and Mm?
It is by mistake.

The parameters AM, AC and AG are the uncertainties in manipulator inertia matrix,
Coriolis/centrifugal torque and gravitational torque respectively. It is assumed that the
maximum values of these uncertainties are known. And hence, the parameters Gm,
Cm and Mm are the maximum values of the uncertainties for Gravitational torque.
Coriolis/Centrifugal torque and the manipulators Inertia matrix respectively.

vii) The proof for the guaranteed reaching of the sliding surface in a finite time is
not clear. Explain more clearly.

The proofwas not clear because some terms were not defined, as given in Vi above
and some steps have also been omitted assuming that they were implied. The
complete proof is given below.

Consider the dynamic equation of a Stewart platform manipulator
X, = Xt

-i iM•(j;Tt-C(x„x2)X2-G(x1))
\j. i)

Where xi is (6x1) state vector ofCartesian space positions and orientations and x2 is (6x1) state

vector ofthe Cartesian space velocities. Moreover, M is 6x6 manipulator inertia matrix, C is also

6x6 coriolis and centrifugal torque/force, G is 6x1 gravitational torque/force, Jp is 6x6
manipulator Jacobian, x is the actuator torque

Let xd be (6x1) vector ofdesired task space trajectories. Then, the task space tracking error and
its rate vector are given as

e = xd~x (5.2)

6=xd~x (5.3)

The following assumptions are taken

Assumption 1: Manipulator inertia matrix is non singular

Assumption 2: Manipulator Jacobian matrix is nonsingular throughout the workspace



In addition to the above two assumptions, in the design of robust controllers, there are some

assumptions about the uncertainties.

Assumption 3: The uncertainties in the dynamic parameters are additive and can be expressed as

nominal and deviation as shown below

M = MN+AM

C = CN+AC

G = GN+AG

Where MN, CN and GN are nominal values of inertia matrix, coriolis/centrifugal torque and

gravitational torques respectively and AM, AC and AG are the corresponding uncertainties. It is

also assumed that the maximum values of the uncertainties are bounded as

||AM| <Mm

|AC| <Cm

||AG|| <Gm

Taking these uncertainties and the assumptions above and considering also external disturbance

torque and actuator friction, the dynamic equation can be rewritten as

x, = x2

x2=(MN+AM)-'(j-,T-(CN+AC)x2-(GN+AG))+d(54)
Where d is the sum of actuator friction and external disturbance torque

The above equation can be rewritten as

x, = x2

x2=(MN)"1(j"1T-CNx2-GN)+h (5>5x
Where

h =-(MN +AM)"1 (ACx2 +AG) +d+res

res is the residual error due to the approximations made in the inverse of inertia matrix.

The sliding manifold is given by

S= Ae+e (5.6)

Where e and e are as defined in (5.2) and (5.3)

Taking a Lyapunov function given by



1 T
V = -STS

2

Hence its derivative is

V = STS

=ST(^e +e)

Differentiating (5.6) and using it in (5.9)

=ST(/Vxd -A,x +xd -x)

Using the dynamic equation (5.5) and the fact that x = x, and x2 = x

=ST(lxd -hi, +xd -MN'(j-Tx-CN -GN)+h)

The control torque is given as

T= Teq+Ts

Where

=JT(Kff(S))

and

xeq=JT{MN(A(xd-x2)+xd) +CNx2+GN}

Hence using (5.12)-(5.14) into (5.11)

= S" A,x„ -hi, +xH -M:,1
2 ' ^d lviN

fjTJT{MN(X(xD-x2)+xD)+CNx2+GN} +
JT(-Kfs(8))V v

Rearranging andcollecting like terms and simplifying

=ST(M-'(-(Kfs(s)))+h)

Substituting for h from (5.5)

=STM-,(-Kfs(s)-MN((MN+AM)-1(ACx2+AG)+d +res))

=-STMN1(Kfs(s)+ACx2 +AG +d+res)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

-CN_GN

(5.15)

(5.16)

(5.17)

(5.18)

+ h



Hence for guaranteed reaching to the sliding surface, the following condition should hold true:

K>|(ACx2+AG) +d+res||

Which means,

K> ACx2 + AG + d + res

K>Cmx2 +Gm+d + res

viii) What is the new sliding surface proposed as mentioned in section 5.3

Previous methods use sliding surface formulated from two parameters, the leg length

error and its derivative. Hence they were not able to drive the synchronization error to

zero. In our new method the new sliding surface that we proposed has three

parameters: leg length error, its derivative and the cross coupling or synchronization

error. Hence by forcing the system to move to the sliding surface and keeping it there,

we are trying to achieve zero error in leg length of each leg and we are also making

the synchronization error zero. And this helps to achieve a better tracking and

improves the system's safe operation.

ix) Page 105, please check the statement that' the transpose of the output matrix as

gain of the sliding surface'

It is not the author of the thesis who states that the use of the transpose of the output

matrix as gain of the sliding surface, rather it is reference no. [42], which is a paper in

an IEEE transaction. We have also commented on that stating, such a method needs a

system with constant output matrix.
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Report B queries and replies

I. Concerning main results and unresolved issues

Chapter 3

• The idea of using neural networks for estimation and particularly the application of
neural networks for estimation of forward kinematics of Stewart platform is not new.
However, neural networks have not been used in any controller implementation though
the work on controllers itself is limited. The main reason for this is the issue ofreliability.
And hence, the main objective in this research is to strengthen the results obtained by
other authors and to evaluate their performances when they are used in a closed loop
control implementation. Accordingly, the research has summarized some ofthe previous
works and we have used neural networks in closed loop control implementation and have
shown their performances.

• The Stewart platform manipulator used in the research is completely different from the
one existing in MATLAB toolbox. The one used in MATLAB is a very big one where
the leg mass is very small compared to platform mass and can be neglected, both of the
joints connecting the legs to the base and platform are universal joints and the actuated
joint is cylindrical. In our research work, we used a medium sized Stewart platform were
the mass of each leg is lA of the mass of the platform and it cannot be neglected in
controller design. Moreover, the joint structure in our case is UPS (universal, prismatic
and spherical). These being the main differences, we have tried to show the list of
differences in Table 1. In addition to the mechanical structural differences, as our
research was aimed at designing model based controllers, a complete inverse dynamic
model of the system was necessary and we have done this completely by ourselves by
taking mechanical parameters from papers sited as references. Therefore, the MATLAB
SimMechanics toolbox has been used to implement the forward dynamic model of the
Stewart platform manipulator which we analyzed and we have not used the existing one.
At this point we would like to stress that it is not either lack of interest or inability to
implement practically which prevented the authors from doing so. It is only lack offunds.
The author has tried his best to find ways of practically implementing the control
algorithms proposed. Some of these were, searching for internships in other universities,
trying to test the performance of the controllers on single DOF robots such as inverted
pendulum.
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Comparison of neural networks was made with Newton Raphson numerical method
because it is the method which is used in all of the task space control algorithms
available. Newton Raphson method is widely used because it is easier to implement and
is faster than other numerical algorithms. It also needs small number ofiteration if initial
guess is properly selected. Some of the opponents of the use of neural network for
forward kinematics accept the use of Newton Raphson method and therefore, in our
research we compared neural network estimation with Newton Raphson method
considering it as a bench mark algorithm. The idea ofusing RBF neural network has been
explored but it is totally unacceptable. It is clear that the number of neurons in RBF
networks proportionally increases with the number of samples used. For good
approximation, especially for the precision work which we have been investigating, a
large number of training samples have to be used. In our case, we used 6000 training
samples. With this huge size of training samples, the number of RBF neurons was
extremely big and hence it isnot suitable for the application athand.

Table 1 Mechanical parameters of Stewart platform used in our research and its
comparison with the one in MATLAB toolbox

Items or parameters

Base radius

Platform radius

Height
Mass of upper leg
Mass of lower leg
Inertia of lower leg
Inertia of upper leg
Mass of platform
Inertia of platform
Top thickness

Stewart platform in MATLAB

3m

lm

2m

143.9229Kg
92.1107Kg

Diag(43.02 43.02 0.15) KgM2"
Diag(67.19 67.19 0.18) KgM2"

10952.3414Kg
Diag(304.5 304.5 608.5) KgM2

0.05m

Stewart platform used in our
research

0.8m

0.5m

1.5m

4Kg
92.1107Kg

Diag(0.03 0.03 0.002)KgM2
Diag(0.75 0.75 0.018) KgM2

32Kg
Diag(2 2 4) KgM2

0.02m



Chapter 4

In our research we followed two main directions in applying soft computing techniques

for the control of Stewart platform manipulator. The first one is to improve existing

methods. And hence the industrially accepted and widely used controller is independent

leg PID controller. Therefore our fuzzy logic based tuning was aimed at improving the

performance of independent leg PID controllers. Though the idea of tuning PID

controllers using fuzzy logic is not a new idea, its application for Stewart platform

control is new. Moreover, unlike fuzzy tuned PID controllers designed for other systems

and which are available in the literature, the fuzzy logic tuned PID controller has one new

feature which is used to consider the coupling effect of legs. A coefficient matrix C is

used to multiply the error from each leg and the result is used as an input to the fuzzy

logic. This structure is used to solve the problem of synchronization which is another

drawback of independent leg PID.

The fuzzy logic system used is Mamdani type and for each leg a separate fuzzy logic
controller is used. Hence the parallel structure of the complete control system has been

maintained. For each fuzzy logic block, two inputs and one output were used. The inputs
were weighted sum of errors and its rate, the output is a value used for tuning the PID

parameters. Each of the inputs and the output were divided into five linguistic classes and

triangular membership functions were used for all of them. Three and seven classes have

been tested but they have drawbacks of less performance and decrease in speed of
operation respectively. The membership functions have been tuned manually for optimal
performance and slightly skewed membership functions resulted in better performance.
The triangular membership functions were selected to speed up the algorithm. The rule
base used is as shown in Table 2. The rule base is derived from step response analysis
though the control objective is trajectory tracking.

Table 2 Rule base of the fuzzy logic PID tuner used for each le£
Error rate

Error

NB NS z PS PB

NB NB NB NS NS Z

NS NB NS NS z PS

Z NS NS Z PS PS

PS NS Z PS PS PS

PB Z PS PS PB PB



The tuning algorithm used in the research is as follows. The algorithm is a modification ofsome
of the algorithms reported in the literature for other systems. The proportional gain is tuned
based on the present error while the derivative constant is tuned based on the error rate. This is
derived from the basic objective ofthe two parameters. That is, proportional constant takes care
of present effects while derivative constant takes care of future predictions. The integrator is
tuned proportional to the product of the error and error rate. This three algorithms are separately
written as s-functions in MATLAB

Kp(k +l)=Kp(k) +af(k)e(k)Kp(0)
KD(k +l) = KD(k) +af(k)e(k)KD(0)

K,(k+l) =KI(k)+af(k)e(k)e(k)K,(0)
Initially, the proportional, derivative and integral parameters are set to nominal values. The
variation of the parameters with respect to the fuzzy logic rule base can be analyzed from the
rule base and the algorithm. For example, ifboth error and error rate are zero, the output of the
fuzzy logic system will be zero and the values of the parameters remain the same. If error
increases to positive small and error rate is negative, then the proportional parameter increases
and the derivative and integral parameters are decreased. The simple PID controller used for
comparison has the same parameters with the nominal parameters used in the tuning. This
nominal parameter values are obtained through manual tuning.

• The stability issue raised is a real and important concern. We share and agree that
stability analysis has to be done. But it was not overlooked in our research also. Though
formal mathematical proof was not presented, the algorithm has carefully considered in
its implementation. This is done as follows. The block which implements the tuning
algorithm is implemented in MATLAB using s-function and the values ofthe parameters,
Kp, KD, and Ki are increased or decreased between an upper limit and lower limit
respectively. And the stability of the manipulator with worst case conditions has been
checked separately. Hence it is guaranteed that the manipulator will remain stable in
spite of the parameter variations.
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