
RADAR REMOTE SENSING FOR RETRIEVAL OF SOIL

PARAMETERS

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMPUTER ENGINEERING

by

RISHI PRAKASH
^TRALug

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JULY, 2011



©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2011
ALL RIGHTS RESERVED



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled RADAR

REMOTE SENSING FOR RETRIEVAL OF SOIL PARAMETERS in partial fulfilment of

the requirements for the award of the Degree of Doctor of Philosophy and submitted in the

Department of Electronics and Computer Engineering of the Indian Institute of Technology

Roorkee, Roorkee is an authentic record of my own work carried out during a period from July

2006 to July 2011 under the supervision of Dr. Dharmendra Singh, Associate Professor and Dr.

Nagendra Prasad Pathak, Assistant Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other Institute.
^

(RISHI PRAKASH)

This is to certify that the above statement made by the candidate is correct to the best of our

knowledge. . *. / ^V-

Date: \Hft|5«\)

(NageitcJra Prasad Pathak)
Supervisor

(Dharmendra Singh)
Supervisor

on

The Ph.D. Viva-Voce Examination of Mr. Rishi Prakash, Research Scholar, has been held

2././.I..JLIJ

iners



Abstract

Soil moisture, surface roughness and soil texture are important soil parameters

in various applications, such as, agriculture, weather forecasting, soil erosion,

hydrological studies and flood and draught prediction. Studies in the field of active

microwave remote sensing have shown the feasibility to monitor these soil parameters

with ground based, airborne and spaceborne sensors. Therefore, this thesis has two

main objectives. First main aim is to analyze soil parameters, specifically soil texture

which is less reported in bistatic domain because it is well known that bistatic domain

provides several flexibilities over monostatic domain and very lesser experimental

studies have been carried out to characterize the soil parameters in this domain.

Second aim is to retrieve the soil moisture in vegetated area with SAR and optical

satellite data for minimizing the use ofapriori information.

Thesis has been composed of seven chapters. First chapter deals with the

introduction, experiment performed, data used and study area. The second chapter

presents the brief literature review, discussing the studies carried out in the field of

microwave remote sensing for the soil parameters retrieval and its limitations along

with the need of research in the present scenario.

Chapter 3 analyzes the effect of soil texture on specular scattering coefficient

at 10 GHz (X-band) in both like polarizations, i.e., HH- and VV-polarization for

various incidence angles (i.e., 30° to 70° in step of 10°). If ((9, <p) (where, 9 and (p are

the incidence angle and azimuthal angle respectively) define the incident direction of

the transmitted power Pp(6, (p) at polarization p, and (<9,, <ps) is the direction of the

received power Pq{6s, (ps) at polarization q then specular scattering is defined as: 6 =

9S, cp = 0 and <ps = 0. To study the soil texture effect on the specular scattering

coefficient, four different soil texture fields were prepared on the basis of variation in



soil constituent, i.e., the percentage of sand (i.e., 78.14% to 28.72%), silt (i.e., 33.16%

to 9.12%) and clay (i.e., 18.75% to 4.32%) was changed for different fields. The

major changes were observed for sand constituent. It is observed from the study of

dry and smooth soil that by changing soil texture there is a considerable amount of

change in specular scattering coefficient for both like polarizations. The effect was

more prominent at higher incidence angles (i.e., > 50°), i.e., better differentiation in

specular scattering coefficient for different soil texture field was observed at higher

incidence angles. The dynamic range of specular scattering coefficient with incidence

angle changes with the change is sand constituent in soil. The dynamic range of 8.7

dB and 10.5 dB was observed for higher sand content (i.e., 78.14%) and lower sand

content (i.e., 28.72%), respectively for dry and smooth soil in HH-polarization

whereas in case of VV-polarization dynamic range was 18.2 dB and 19.4 dB

respectively. Further, the effect of soil texture on specular scattering coefficient was

examined in the presence of four different soil moisture contents (i.e., dry to 0.21 cm

cm"3) and three different periodic surface roughness conditions (i.e., smooth to 1.4

cm). Thus in order to check the soil texture effect, 48 different field conditions were

considered for the observations of specular scattering coefficient in both like

polarizations at various incidence angles. The effect of soil texture on specular

scattering has been clearly observed at different soil moisture condition. A better

differentiation in specular scattering coefficient was observed for change in soil

texture with the increase in moisture content though the effect is more prominent at

higher incidence angles. Further, the effect of soil texture on specular scattering

coefficient has been observed in the presence of different periodic surface roughness

conditions. The observation has shown the difficulty in analyzing the effect of soil

texture on specular scattering at higher roughness values (i.e., 0.9 cm and 1.4 cm).

Chapter 4 analyzes the effect of soil texture on microwave specular scattering

at 6 GHz (C-band) in both like polarizations, i.e., HH- and VV-polarization. A more

regress analysis was carried out because it is observed that soil constituents with

roughness and moisture are giving more effect on specular scattering coefficient at 6

GHz than 10 GHz. So, ten different soil texture fields were prepared and to check the

angular behavior, the incidence angle was changed from 25° to 70° degree in step of

5°. The percentage of sand (i.e., 85.3% to 2.3%), silt (i.e., 70.6% to 7.5%) and clay

(i.e., 81.6% to 2.5%) was changed for different soil texture fields. Six soil moisture
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and five periodic roughness conditions were studied to get an understanding of the

soil texture effect on specular scattering in presence of various moisture contents and

periodic surface roughness conditions. Therefore, total 300 different field conditions

were analyzed. The study at 6 GHz is important as the longer wavelength is relatively

less sensitive to the roughness variation in comparison to the shorter wavelength.

Although the study of this chapter is concentrated for the bare soil only, it may be

tested for the vegetated area as a future work. The analysis part is subdivide, firstly

analyzing the effect of soil texture on specular scattering coefficient in the presence of

various soil moisture contents (i.e., 0.027 cm3 cm"3 to 0.425 cm3 cm"3) by keeping the

periodic surface roughness condition constant. Secondly, the effect of soil texture on

specular scattering coefficient while varying the periodic surface roughness (i.e., 0.43

cm to 2.46 cm) was studied. Furthermore, the combined effect of soil moisture and

periodic surface roughness on specular scattering coefficient for change in soil texture

has been considered. The observation in HH-polarization with dry and smooth field

has shown that the dynamic range of specular scattering coefficient with high sand

content (i.e., 85.3% sand) was 9.8 dB whereas in case of highclay content (i.e., 81.6%

clay) the dynamic range was 13.6 dB. The differentiation among different soil texture

field based on specular scattering coefficient can be made when the volumetric soil

moisture content is less 0.368 cm3 cm"3 whereas, it is difficult to observe the soil

texture effect for higher soil moisture contents (i.e., > 0.368 cm3 cm"3) in both like
polarizations. Further, the surface roughness does not exhibit such kind of effect and

even at higher periodic roughness value (i.e., < 2.46 cm) the change in specular

scattering coefficient can be observed with the change in soil texture at 6 GHz. The

experimental observations carried out at 6 GHz points out that higher incidence angles

(i.e., > 45°) are more appropriate than the lower incidence angles for the study of soil

texture in presence of soil moisture and periodic surface roughness in both like

polarizations.

Chapter 5 deals with the retrieval of soil parameters at 6 GHz in association to

the observation made in specular direction. Specular scattering data at 6 GHz has been

considered for soil parameters retrieval studies instead of specular scattering data at

10 GHz due to its response for different soil texture field in the presence of periodic

surface roughness whereas, in case of 10 GHz it has been very difficult to distinguish

among different soil texture fields based on specular scattering coefficient in the

ix



presence of periodic surface roughness. Soil parameters retrieval in domain of

microwave remote sensing is a challenging task owing to the dependence of many soil

parameters on one scattering coefficient value only. By the virtue of this, more sensor

parameters were utilized to minimize the effect of one or more soil parameters on

specular scattering coefficient, in consequence of which the desired soil parameters

can be retrieved easily and more accurately. In the first approach, copolarization ratio

has been utilized for minimizing the soil texture effect in order to retrieve the

volumetric soil moisture content. The periodic surface roughness condition during the

observation was kept constant whereas, the changes in soil texture and soil moisture

were considered. There was negligible changes in copolarization ratio with the change

in soil texture whereas, copolarization ratio changes with the change in soil moisture.

In accordance to the observations obtained with the copolarization ratio an empirical

relation between the copolarization ratio and volumetric soil moisture was developed.

The volumetric soil moisture content was retrieved with developed empirical

relationship along with the Kirchhoff scalar approximation (SA) to draw the

comparison. The RMSE for soil moisture retrieval was 0.021, 0.079 and 0.095 for

developed empirical relationship, SA in HH-polarization and VV-polarization,

respectively. The obtained results clearly signify that the developed empirical

relationship performed better than SA for retrieving the bare soil moisture. In next

approach, multi-incidence data have been used to retrieve the soil surface roughness.

These surface roughness values were subsequently used to retrieve the soil moisture

and soil texture. Ratio of specular scattering coefficient at two different incidence

angles provides the normalized specular scattering coefficient which depends on

surface roughness and shows negligible dependency on soil moisture and soil texture.

This property led to the development of a relationship between normalized specular

scattering coefficient and roughness parameters, rms surface height, s and correlation

length, /. The developed empirical relationship in conjunction with SA and empirical

relationship developed by Hallikainen et al. (1985) has been utilized for the retrieval

of roughness parameters, soil moisture and soil texture. The retrieved results were in

good agreement with the ground truth data. Root mean square error (RMSE) for the

retrieval of rms surface height, correlation length, volumetric soil moisture,

percentage of sand, and percentage of clay were 0.027, 0.051, 0.036, 5.94, and 8.15,

respectively. The developed approach reduces the need of apriori information which



is required in form of surface roughness characterization when the objective is to

retrieve the soil moisture and soil texture.

Till now we have concentrated our work for analyzing soil parameters in

bistatic domain but still satellite data for bistatic domain is awaited as TanDEM-X is

inprogress. The satellite data which is available are for the case ofbackscattering. So,

we have considered the satellite data such as PALSAR and MODIS for retrieval of

soil moisture in vegetated area. The retrieval of vegetation covered soil moisture is a

challenging task with the existing SAR sensors. Though, the backscattering

coefficient contains the information of vegetation as well as underlying soil moisture,

the complex scattering behavior of microwave form vegetated area give rise to the

development of complex relationship among backscattering coefficient, vegetation

parameter (e.g., leaf area index, biomass, plant height) and soil parameters (i.e., soil

moisture, surface roughness). The optical data which can characterize the vegetation

may be efficiently utilized in vegetation covered soil moisture retrieval algorithm with

SAR data.

The aim of the chapter 6 is to retrieve the soil moisture in vegetated area with

minimum apriori information by using satellite data like the ALOS-PALSAR

(Advanced Land Observation Satellite- Phased Array type L-band Synthetic

Aperture Radar), a SAR data and MODIS (Moderate-resolution Imaging

Spectroradiometer), an optical data. The PALSAR image is full polarimetric, L-band

(1.27 GHz) image and was acquired on April 06, 2009. The MODIS data used is of

band 1(620-670 nm) and band 2 (841-847 nm) and the date of image acquisition was

April 03, 2009. The area of study was Roorkee city (Uttarakhand, India) and its

surroundings. The first set of images (one PALASR and one MODIS) that lie between

longitudes 77.803° E and 77.980° E and latitudes 30.000° Nand 29.823° N were used

for the algorithm development and subsequently testing the developed algorithm for

soil moisture retrieval. The second set of images that were used for validating the

algorithm lie between longitudes 77.847° E and 78.024° E and latitudes 29.859° N

and 29.682° N. The date of acquisition of PALSAR and MODIS images were April 6,

2009 and April 3, 2009, respectively. The land cover is fairly flat and mostly consists

of the urban, water and agriculture classes. It is always the possibility to find the

mixed land cover classes therefore, as a first step PALSAR data was used to classify

the land cover in urban, water, vegetated land and bare soil by utilizing knowledge
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based approach involving the various polarizations (linear, circular, linear 45°, co-

and cross-polarized ratios for both linear and circular polarization) and subsequently

the urban and water region can be masked. The objective of this chapter is to analyze

the feasibility of the relating the information available from SAR data and optical data

to envisage such an approach that mostly rely on the information content of satellite

image and require minimum apriori information. The concept of such an approach

arises as the vegetation can be modeled through the SAR data as well as the optical

data. In case of SAR data the backscattering is affected by the vegetation cover and

contains the information regarding vegetation whereas, the normalized index

vegetation index (NDVI) provides a good estimate of the crop cover. The utilization

of the information content from the optical data reduces the requirement of apriori

information which is required in the vegetation parameters characterization.

Therefore, two different normalizing approaches have been used for scattering

coefficient of PALSARdata and then the empirical relationships have been developed

with NDVI to incorporate the vegetation effect in soil moisture retrieval. In first

approach, scattering coefficient of image is normalized with the scattering coefficient

of bare soil (calculated with in situ observation of moisture and roughness) making

the normalized data a function of vegetation cover which is represented by the NDVI.

A quadric relationship was observed between the normalized scattering coefficient

data and NDVI with coefficient of determination (R2) 0.83. This quadric relationship

sets the basis for the retrieval of soil moisture with the help of NDVI and normalized

scattering coefficient from the PALSAR image. The root mean square error (RMSE)

is 0.036 and 0.041 for retrieval of soil moisture when the algorithm is applied on test

image and validating image, respectively. In the second approach, scattering

coefficient of PALSAR data was normalized with the scattering coefficient of the dry

soil providing the normalized data as a function of the soil moisture and vegetation

cover defined by the NDVI. The relationship between normalized scattering

coefficient and NDVI was explored which provide a set of lines defining the different

range ofsoil moistures. The coefficient ofdetermination (R2) for all regressed lines
was greater than 0.81. Hence, the soil moisture is retrieved with the developed

empirical relationship between the normalized scattering coefficient of PALSAR data

andNDVI. The root mean square error (RMSE) is 0.039 and 0.052 for retrieval of soil
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moisture when the algorithm is applied on test image and validating image,

respectively.

Finally chapter 7 draws the conclusion and contribution made in the thesis as

well as presents the future work of the study carried out in this thesis.
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Chapter 1

Introduction

RADAR is an acronym for 'RAdio Detection And Ranging'. Radar is used for

several purposes in which it is used as active sensing system which generates and uses

its own energy to illuminate the target and record the scattered energy which carries

the information content. Hertz in 1886 demonstrated the transmission of microwave

and its reflection for various objects. The first fundamental radar was developed for

ship detection. The detection of distant objects were made with ground based pulsed

radar in 1920s and 1930s. The major developments on radar technology were during

World War II and first imaging radar that was developed for detection and positioning

of aircrafts and ships was during this time. After World War II, there was a pause in

the development of new radar technology. The surplus military radars were put into

the service for civilian use, primarily as weather and air traffic control radar. Further

in 1960s, the radar were specifically developed and used for earth mapping purposes.

Since this time, the development of air borne and space borne radar for environmental

and earth mapping purposes has flourished [27].

The terms radar remote sensing and active microwave remote sensing are used

interchangeably when the observations of earth are made in microwave spectrum with



radar technology. The active remote sensing systems that operate in the microwave

region of electromagnetic spectrum include radiation with frequency spectrum ranges

from 0.3 GHz to 300 GHz. This spectrum is subdivided in various bands, which are

designated by letters. For earth observation studies, the most important bands are: L-

band (frequency /= 1 to 2 GHz, wavelength X= 30 to 15 cm), C-band (/"= 4 to 8

GHz, X= 7.5 to 3.8 cm) and X-band (/"= 8 to 12 GHz, X= 3.8 to 2.5 cm) [211]. The

active microwave sensors on the basis of imaging techniques can generally be kept in

two broad categories, i.e., imaging and non-imaging. The imaging active microwave

sensors include the Real Aperture Radar (RAR) and Synthetic Aperture Radar (SAR),

whereas the non-imaging active microwave sensors are Altimeter and Scatterometer.

Microwave active sensors have many advantages like ability to obtain measurements

anytime, regardless of the time of day or season as these systems do not rely on the

solar illumination, and have capability to penetrate through the cloud, moderate rain

and smoke. In addition to this the penetration ability of microwave at low frequency is

such that it can penetrate through the vegetation by which soil characteristic covered

by vegetation can be retrieved through proper inclusion of scattering behaviour of

vegetation. The most commonly used applications of the microwave remote sensing

are soil parameter monitoring, hydrological modeling, watershed mapping, land cover

classification, fractional vegetation cover mapping, drought and flood predictions,

urban modeling, sea surface temperature estimation, weather forecasting,

environmental monitoring, agriculture and several other [33, 47, 52, 61, 63, 65, 79,

89, 99, 102, 109, 111, 112, 147-149, 163, 197, 198, 206, 208, 210, 224].

The active microwave sensors can be subdivided into two configurations

which are based on the receiving mechanism of scattered energy. First configuration

is when the transmitter and receiver are collocated or the transmitting antenna itself

works as the receiving antenna and measures the radiation that is scattered back to its

direction. Such kind of configuration is termed as monostatic active microwave sensor

and second configuration is based on bistatic concept which utilizes the setup in

which the receiver and the transmitter are located on different platforms and receiver

operates passively to collect the scattered signal by the earth surface, originating from

the microwave transmitter [155]. In the last two decades, most of the satellite

missions carrying active microwave sensors are of monostatic configuration. Recently

launched monostatic active microwave sensors are RADARSAT-2 (Radar Satellite,
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Launch Year: 2007), PALSAR (Phased Array Type L-band Synthetic Aperture

Radar, Launch Year: 2007), TerraSAR-X (Terrestrial SAR-X, Launch Year: 2007).

The newly launched satellite mission that operates in bistatic domain is TanDem-X

(TerraSAR-X add-on for Digital Elevation Measurement, Launch Year: 2010) which

has been developed by the German Aerospace Centre (DLR) in association with the

Astrium GmbH [195]. India has planned to launch RISAT-1 (Radar Image Satellite)

at C-band in year 2011.

1.1. Motivation

The prominent soil parameters are soil texture, soil moisture and surface

roughness which can be retrieved with active microwave remote sensing data. The

knowledge of spatial distribution of these soil parameters is desirable in many

applications. Prediction of erosion, irrigation scheduling, improving crop yield,

climatology, meteorology, land use and management are some of the important

applications related to soil texture, soil moisture and surface roughness [22, 83].

Characterization of soil parameters with active microwave remote sensing has

been well documented in the literature when one is interested in monostatic domain

[5, 10, 20, 41, 47, 50, 68, 80, 109, 169, 181, 190, 213, 216]. However, till date, the

research in monostatic domain have been confined to develop an efficient and

accurate tool and algorithm to retrieve soil parameters so that some simplified model

can be developed to circumvent the complexity and need of apriori information.

These requirements emphasize to explore the other domain of active microwave

remote sensing. Scattering behavior in the bistatic configuration may be explored to

investigate the characteristic of the soil parameters. The prime concern in bistatic was

the complexity inherited for having transmitter and receiver on different platform.

But, there has been a renewed interest of the researchers in the field of bistatic due to

the extra degree of freedom gained in remote sensing observations of natural and

manmade targets as well as the low cost of operation by sharing the expensive

transmitter part of the system among several receivers [96, 140]. Along with this

advantage, the bistatic configuration explores the possibility of mapping the earth

with the existing monostatic satellite sensors, e.g., TanDEM-X. The TanDEM-X is



synchronized SAR satellite working in association with TerraSAR-X which is

proposed to provide data in bistatic domain [97].

Soil moisture, surface roughness and soil texture are important soil parameters

and these parameters show potential to be measured with active microwave remote

sensing methods. Soil moisture and surface roughness has gained much attention of
the research community involved in soil parameter characterization. At times the

prime concern has been soil moisture retrieval and researchers have applied the

methodology such as copolarization ratio to minimize the soil roughness and predict

the soil moisture content [115]. Though, in case of soil roughness retrieval, multi-

incidence angle approach has been utilized [159, 232], several other techniques such

as change detection are prevalent in soil moisture and surface roughness retrieval. But

in all these scenarios, more or less, the effect of soil texture has been neglected. Some

of the researchers however incorporated the effect of soil texture in soil moisture

retrieval but less attention has been given to soil texture [191, 212]. In addition to this,

it has been shown that soil dielectric constant is dependent on soil texture. Further, it

has proven that change in dielectric constant with moisture shows its dependency on

soil texture [78, 127, 215]. Therefore, active microwave remote sensing, which is

highly dependent on dielectric constant, may be explored to study the soil texture.

Another important factor in soil parameters analysis in active microwave

remote sensing is soil parameters retrieval. Scattering coefficient, that is the only

measured parameter in active microwave remote sensing, is a function of sensor

parameters and target parameters. Sensor parameters include operating frequency,

incidence angle and polarization whereas, target parameters include mainly dielectric

constant and roughness that means when interest lies in soil parameters

characterization then it will be soil moisture, surface roughness and soil texture. Many

empirical and theoretical relationships exist that determines the dependence of

scattering coefficient on various soil parameters [48, 59, 142, 144, 182, 202]. But, the

inversion of these relations is difficult task due the involvement of many parameters

on single scattering coefficient. To solve the problem of inversion, researchers have

applied multi-incidence, multi-frequency and multi-polarization analysis [21, 100,

115, 122, 159, 180, 232]. Even though the empirical relations have the limitation of

site and data dependency, theoretical models require specifying the surface

characteristic with one or more surface roughness parameter(s); the problem of
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defining optimal parameter for describing surface roughness has been investigated in

many studies [25, 26, 41, 42, 86, 129, 143, 150, 160]. Unfortunately, these models

have failed to accurately account for the complex geometry of natural soil surfaces. In

these models, they have neglected the scattering from vegetation layer [211].

Therefore, there is a need to focus on soil parameters retrieval studies with remote

sensing data.

In natural case, there is very less availability of bare soil fields. Generally,

fields are covered with vegetation/crop/trees or pasture fields. So, the modeling of

scattering and absorption effect in vegetation is another concern for soil moisture

retrieval studies in vegetated areas with active microwave sensors. Scattering from the

vegetated area incorporates the volume scattering from the vegetation cover and

surface scattering from the underlying soil. In addition to this, vegetation provides the

two way attenuation for the signal scattering from the underlying soil. Further, most

of the models for soil moisture retrieval have been developed, tested and validated for

the bare soil surfaces [5, 48, 80, 144, 193, 202]. However, bare fields are only a

special case and agriculture fields are over large periods of their yearly cycle covered

by different types of vegetation [76]. Most of the studies have used the water-cloud

model proposed by Attema and Ulaby [8] to circumvent the problem of vegetation [2,

17, 220]. The other prevalent technique for soil moisture retrieval in vegetated areas

are change detection techniques [131, 137, 145]. These techniques consider the

scattering from the vegetation area to be time invariant. As the scattering contribution

from the vegetation cover is a time variant process therefore, it restricts the

applicability of the change detection techniques [88]. Some of the researchers have

explored the possibility of employing the optical data in conjunction to microwave

data to retrieve the soil moisture [141, 214]. Assumptions made during the

development of these algorithms require quite apriori information. The existing

models whatever methodology they employ, posses the limitation on the operational

applicability. Therefore, more attention should be given to correct the vegetation

effect in soil moisture retrieval studies with satellite data.

With the discussion made in the preceding paragraphs in nutshell following

can be pointed:



4» Active microwave remote sensing in monostatic domain has been widely and

prominently used for soil parameters characterization. Whereas, the
characterization in bistatic domain more or less remains elusive.

4 The analysis of soil moisture and surface roughness has got more attention in

comparison to soil texture.

4 Several theoretical and empirical relationships have been developed to

demonstrate the scattering behavior form different soil conditions but, retrieval

of soil parameters with these developed relations still poses several

limitations.

4> To quantitatively analyze the soil moisture in vegetated area the researchers

have utilized the water-cloud model, change detection techniques and the

information fusion with optical data. Some of these models either require

apriori information or are more complex for their operational applicability.

The applicability of some models in larger domain has to be tested.

1.2. Problem Statement

This thesis deals mostly with the analysis soil parameters in bistatic domain.

Along with the bistatic domain, the attention has also been given to retrieve soil

moisture in vegetated areas with satellite image in monostatic domain. Following

issues are addressed in the thesis.

t Characterization of soil parameters, i.e., soil texture, soil moisture and

periodic surface roughness, in specular direction has been studied which is a

special case of bistatic domain. It has been observed by various researchers

that the strongest signal returns are in specular direction when the

measurements are carried out in bistatic domain for soil parameter

characterization.

4 The response of specular scattering coefficient has been analyzed at 10 GHz

(X-band) and 6 GHz (C-band) for the change is soil texture by varying the

soil moisture and periodic surface roughness. Most of the reported work as

well as the satellite missions that may be available in near future are proposed

in X- and C-band, e.g., TanDEM-X. Therefore in this thesis the observations



of different soil fields in specular direction have been made at 10 GHz (X-

band) and 6 GHz (C-band).

4 Effect of soil texture on microwave scattering is still a less attended problem.

Hence, attention has to be given to know the soil texture effect on microwave

scattering with various field conditions in bistatic domain.

4 Most of the soil parameter retrieval algorithms, both theoretical and empirical,

have been developed and tested for the monostatic domain therefore; their

applicability in bistatic domain has to be examined. However, the developed

or available algorithm needs a quite good number of apriori information or

guess value, like field data (e.g., roughness characterization for moisture

retrieval), for retrieving soil parameters with monostatic or bistatic data. Still,

there is a need to develop the retrieval algorithm specifically for bistatic

domain.

4 The effect of sensor parameters, i.e., polarization, frequency and incidence

angle in bistatic domain for characterization of soil parameters has to be

-f- analyzed along with their utilization in retrieval of soil parameters.

4- Soil moisture retrieval in vegetated area inherits several complexities because

of the difficulties in describing the scattering phenomenon form the vegetation

cover. Therefore there is a need to circumvent the problem of vegetation in

soil moisture retrieval.

Based on these issues the thesis work has divided in four major tasks which

are as following:

(a) To study the soil texture effect on specular scattering (i.e., in bistatic domain)

r at various incidence angles in both like polarizations (i.e., HH- and VV-

polarization) at 10 GHz (X-band) by changing the soil moisture and periodic

surface roughness.

(b) To study the specular scattering response of soil texture with varying soil

moisture and periodic surface roughness at various incidence angles in both

like polarizations at 6 GHz (C-band).

(c) To develop the soil parameters retrieval algorithm for bistatic configuration to

minimize the need of apriori information.

(d) Development of a synergic approach for available satellite data like PALSAR

(Phased Array type L-band Synthetic Aperture Radar) and MODIS (Moderate
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Resolution Imaging Spectroradiometer) to minimize the vegetation effect for

the retrieval of crop/vegetation covered soil moisture.

1.3. Details of Experiment Performed

This thesis concentrates on two major objectives. Firstly, it aims to study the

effect of soil texture on specular scattering coefficient with change in soil moisture

and periodic surface roughness which is performed by the ingeniously developed
ground based scatterometer. The second main objective is to tackles the problem of

soil moisture retrieval in vegetated area using satellite data especially SAR data which

is performed by using PALSAR and MODIS data.

For achieving first objective, a ground based scatterometer is ingeniously

developed whose briefdescription is as following:

1.3.1. Bistatic Scatterometer

Bistatic scatterometer was ingeniously developed in laboratory to operate at 6

GHz (C-band) and 10 GHz (X-band) in both like polarizations, i.e., HH- and VV-

polarization. The designed bistatic scatterometer is capable of performing

observations by changing the incidence angles form 25° to 70°. The schematic

diagram of the bistatic scatterometer used for experimental analysis is shown in

Figure 1.1. The system parameters such as antenna gain, beam width, frequency of

operation, antenna type and cross-polarization isolation are given in Table 1.1. Figure

1.2 represents the coordinate system for scattering geometry. (9, (p) define the incident

direction of the transmitted power Pp(9, (p) at polarization p, and (6S, (ps) is the

direction of the received power Pq(8s, (ps) at polarization q. In case of specular

scattering 9 = 6S, (p = 0 and <ps = 0.

Table 1.1. System parameters

6 GHz 10 GHz

Antenna type
Dual polarized

paramedical horn
Dual polarized

paramedical horn

Central frequency 6 GHz 10 GHz

Beam width in //-plane 16.7° 21.6°

Beam width in /--plane 15.2° 16.8°

Antenna gain 21 dB 20 dB

Cross-polarization isolation 40 dB 35 dB



Isolator
Power Sensor

Signal Generator Power Meter

Figure 1.1. Schematic diagram ofthe bistatic scatterometer used for the specular

scattering measurement.

Pq(6s, cps)

PP(e, q>)

Figure 1.2. Coordinate system of scattering geometry.



To perform the experiment some scatterometer parameters have to be

computed which are given as following:

(a) Illumination Area andits Need

The most important problem in radar measurement system is to maintain the

main lobe of the radiation pattern in the area of interest. The main lobe of the

radiation pattern is generally referred as the illumination area and is approximated by

elliptical shape. The area of interest in case ofcharacterization of soil parameters in

controlled laboratory environment is the artificially generated soil bed. Figure 1.3

shows the geometry of the setup for illumination area [199]. To maintain the

illumination area in the area of interest with the change in incidence angle, the

position ofantenna has to be varied in the x-y plane. In accordance to the Figure 1.3,

the x and y position of the antenna are given by Equations 1.1 and 1.2, respectively

[38].

<p6 (Halfpowerbeam width elevationangle)

<paz (Halfpower beam widthazimuthal angle)

Figure 1.3. Illumination geometry to calculate the antenna position in the x-yplane.
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x = /?sinf9 (1.1)

and

y = RcosO (L2)
where R is the distance from the antenna to the center point of the ellipse and 9 is the

incidence angle.

The major axis of the ellipse (a) is calculated by using Equation 1.3.

where

a = a, +a2

a, = Rs'm

a2 = Rs'm

sec(6> +^)
2

\^ J

sec(<9-^)
2

where <pe is the elevation angle.

The minor axis (b) is calculated by Equation 1.6.

b=2Rtm(P2-)
2

(1.3)

(1.4)

(1.5)

(1.6)

where, (paz is the azimuthal angle.

The area of Illumination (/) is equal to the area of ellipse and calculated by Equation

1.7.

ra\<
I = n

v^y

Therefore,

, nR1
I = tan

V * )

fq> \. r- ^
sin

V2y

( m\

sec 0 +
9,

V *• )

(1.7)

f ~\

+ sec 0-
V, (1.8)

K *• J
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It is evident from Equation 1.8 that / depends on R. In our experiment, we

have kept / constant at approximately 1 m2 and computed Rby substituting antenna
parameters, i.e., <pe, <paz and 9 and according to that antenna position in x-y plain has

been fixed.

(b) Computation ofSpecular Scattering CoefficientforBistatic Scatterometer

Specular scattering coefficient was calculated at various incidence angles for

different soil texture fields. Moisture and periodic surface roughness conditions were

also considered. Following steps were involved in retrieval of specular scattering

coefficient:

1) Calibration: Calibration is required to provide accurate quantitative results

from the data collected. For the purpose, amplitude calibration was performed

using absolute calibration technique [38]. Reference target used for calibration

was aluminum sheet. Radar Cross Section (RCS) of flat aluminum sheet is

given by Equation 1.9 [38]:

a (e)=
AkA'

X1

sin(&6sin#)
kb sin 0

cos2 9 (1.9)

whereG is radar cross section of aluminum sheet,A is area of aluminum sheet, Xis
PPm

wavelength used, 9 is the incidence angle, b is the dimension of square aluminum

sheet, ppemploys for HH- orVV-polarization and k= 2n/X.

Indecibel (dB), RCS of aluminum sheet can be written as Equation 1.10.

<T(o){dB)=ioiogn<rmm(e) (1.10)

2) Radar cross section for soil can now be computed as given by Equation 1.11.

a (0)-.

12

/

P (0)
pp.„„i v *

yP iP)V PPAI v ' .

a (e)
PPm v /

(1.11)



where, a iO) is radar cross section for soil, p (0) is power received for soil at

various incidence angles and P (0) is the corresponding power received for

aluminum sheet at various incidence angles.

Scattering coefficient is defined as the radar cross section per unit area. In

present case the illumination cell size was kept 1m2. Therefore, the division of radar
cross section for soil by illumination area provides scattering coefficient [38].

Scattering coefficient for soil is represented by a' (&)• Scattering coefficient ofsoil

in decibel (dB) Can be written as Equation 1.12.

<t; (0)(dB)=ioiogloor; (e) O-12)

(c) Response ofSensor Parameters

Wavelength or Frequency, incidence angle and polarization are important

sensor parameters that affect the scattering coefficient.

(i) Wavelength or Frequency: Wavelength is an important sensor parameter that

decides the roughness and smoothness ofthe surface. Asurface may be considered as

smooth for one particular wavelength whereas the surface may be considered as rough

for other particular wavelength. Two criterions are generally used to define the

roughness or smoothness of the surface that is Rayleigh criterion and Fraunhofer

criterion. Rayleigh criterion for characterizing the surface as smooth or rough is used

in case of optical region, while for modeling the scattering behavior of natural

surfaces in microwave region we use Fraunhofer criterion for characterizing the

surface roughness [202]. Rayleigh criterion lays down the following criterion for

characterizing a surface as smooth that is based on rms surface height (s).

s<(X/8cos9) 0.13)

and the Fraunhofer criterion is given by Equation 1.14.

s < (A/32 cos9) (1.14)
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where, Xand 9 is the operating wavelength and incidence angle, respectively. Further,

penetration ofwave into the medium is also a wavelength dependent parameter. The

penetration depth is the depth below the surface at which the wave's power has been
reduced to 37% of its value at the point just below the boundary [86]. The penetration

depth represents a measure ofpenetrability ofa radar wave into the soil medium and
the depth over which one would expect radar reflection [202]. A shorter wavelength

penetrate less into the medium whereas, a longer wavelength penetrates more.

(ii) Incidence angle: Incidence angle is another important sensor parameter that
determines the scattering coefficient. Incidence angle describe the angular relationship

between the radar beam and the target. The incidence angle causes variation in radar

backscattering. The higher incidence angle returns less backscattering than the lower

incidence angle from the same observed area. The incidence angle, usually considered

different in the case of an inclined surface, is the angle between the incident radar

beam and a line that is normal to inclined surface.

(Hi) Polarization: The polarization ofa uniform plane wave refers to the time varying

behavior of the electric field strength vector at some fixed point in space. The

horizontal and vertical polarizations are defined based on the direction of electric

vector to the plane of incidence. The plane of incidence is the plane containing the

incidence ray and normal to the surface. Therefore, when the electric vector is

perpendicular to the plane ofincidence, it is defined as the horizontal polarization (H-

polarization) and when the electric vector is parallel to the plane of incidence, it is
defined as the vertical polarization (V-polarization) [86]. Figures 1.4(a) and (b) show

the wave having horizontal and vertical polarization respectively. The active

microwave systems are capable of measuring the scattering response from target

using different polarization configurations such as copolarized (HH and VV) and
crosspolarized (HV and VH). The first term corresponds to the transmitted radiation

from antenna whereas the second term corresponds to the received radiation by the

antenna. The polarization configurations are used to retrieve more accurate

information from the soil target. The need of multi-polarization is required for

accurate retrieval of soil moisture [17, 144].
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Figure 1.4. (a) Horizontal polarization and (b) vertical polarization.

1.3.2. Soil Texture Measurement

Soil texture is a term commonly used to designate the proportionate

distribution of the different sizes of particles in a soil. According to United States

Department of Agriculture (USDA) system of nomenclature these soil particles are

categorized as sand, silt and clay. The characterization of soil particles in differed

categories is based ontheir diameter limits. The details on soil particle distribution are

given in Table 1.2 [24, 55]. Different soil texture fields were artificially prepared by

changing the percentage of soil constituent, i.e., sand, silt and clay. Sieve analysis and

hydrometric tests were conducted to find out the percentage of sand, silt, and clay in

soil. Sieve analysis using various sieves of different mesh opening (4.75 mm to 0.075

mm) were used to calculate the percentage of sand. The percentage of soil retained on

each sieve is calculated on the basis of the total mass of the soil sample. In addition,

soil fraction finer than 0.075 mm were separated out for further hydrometric test.

Hydrometric test was carried out for particle size lesser than 0.075 mm to determine

the percentage of silt and clay in soil [6].

Table 1.2. Nomenclature of soil constituent

Name of soil constituent Diameter limit$ (mm)

Sand 2-0.05

Silt 0.05-0.002

Clay Less than 0.002
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1.3.3. Soil Moisture Measurement

Soil moisture is represented as the volumetric water content and defined as the

fraction of the total volume of soil that is occupied by water contained in soil. Ten soil

samples ofup to 5 cm depth were chosen randomly to measure the soil moisture and

average value of soil moisture were reported. Firstly these moist samples were

weighted, afterwards kept for 24 hours at 110° C in oven and subsequently these dry

samples were weighed. Volumetric soil moisture (mv cm3 cm"3) was measured with the
help of Equation 1.15 [42].

(1.15)

where wmoist and wdry are weight of moist and dry soil sample, respectively and pb is

the dry soil bulk density.

1.3.4. Surface Roughness Measurement

(a) Characterization ofSurface Roughness

Figure 1.5(a) shows the photograph of the periodic surface roughness

generated with a wooden harrow. The aim of this thesis is to give more attention to

characterize the soil texture by varying the moisture and roughness condition for

bistatic domain. It is very difficult to generate the same isotropic surface for different

soil texture fields in a controlled condition. Similar periodic surface roughness may be

generated for different texture fields. Therefore, periodic roughness is considered for

observing the effect of soil texture on specular scattering coefficient. The surface

roughness can be explained based on horizontal roughness (i.e., x roughness) and

vertical roughness (i.e., y roughness). The estimate of horizontal roughness is made

with the correlation length, whereas the estimate of vertical roughness is made with

rms surface height. The changes in surface roughness conditions, i.e., x and y

roughness were made in controlled way with the ingeniously designed wooden spiked

harrow [100, 129, 183]. The characterization of the soil surface roughness, i.e., the

measurement of the rms surface height (s) and correlation length (/) were made with

the help of pin profilometer. Figures 1.5(b) and 1.5(c) represent the example of
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I



surface height profile and corresponding autocorrelation function respectively [202].

The rms surface height, s is defined by the mean height of the surface along with its

second moment and given by Equation 1.16.

=<?-7f (1.16)

The autocorrelation function measures the similarity between the height z at a

point x and at a point x' distant from x. The normalized autocorrelation function in

discreet case is given by Equation 1.17.

N+l-j

J+l-l (1.17)

Y.<

where x'= (j - l)Ax and/ is an integer > 1. The surface correlation length / is defined

as the displacement x' for which pix1) is equal to lie. The autocorrelation length of a

surface explains the statistical independence of two points on the surface; if the two

points are separated by a horizontal distance greater than /, then their heights may be

considered to be approximately statistically independent of one another [202]. The

autocorrelation function of each surface roughness condition was measured and

exponential autocorrelation function was observed for each surface roughness profile.

The exponential autocorrelation has been observed by several researchers for their

measurements of roughness profile [26, 41, 177, 209]. Davidson et al. [41] have

observed that the experimental correlation function and the exponential model are in

very good agreement, whereas the match in the case of a Gaussian autocorrelation

function is not as good.

x roughness

•1HHH

(a)
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Figure 1.5. (a) Photograph of periodic surface roughness (b) example of surface

height profile (c) corresponding autocorrelation function [202].

(b) Wooden Harrowfor Creating the Periodic Surface Roughness

The periodic surface roughness of the soil fields was made with the help of the

wooden harrow. Figure 1.6(a) depicts the photo of wooden harrow used during

experimental investigation and Figure 1.6(b) shows a sample field roughness created

by the wooden harrow. The design of wooden harrow provides the flexibility to

increase or decrease the length of the spikes. This property of the wooden harrow is

utilized to change the vertical roughness of soil field. Similar types of wooden

harrows were designed so as to have different spacing between the consecutive

spikes. Such measure provides the opportunity to vary the horizontal roughness ofthe

field.

IX

I



<

(a)

(b)

Figure 1.6. (a) Wooden harrow (b) Surface roughness created by the wooden harrow.

(c) Pin Profilometerfor Measurement ofRoughness

The measurement of the surface roughness parameters, s and /, was made with

the help of pin profilometer of 1 m profile length [160]. Figure 1.7 shows the

photograph of pin profilometer. The pin profilometer consist of equally spaced pin

with separation of 1 cm in successive pins. The surface height variations were traced

by the pin profilometer on a long graph paper. These values were subsequently used

to retrieve the value of rms height and correlation length. The autocorrelation function

of the each surface roughness condition was measured and exponential

autocorrelation function was observed for each surface roughness profile.
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Figure 1.7. Pin profilometer for measurement of roughness.

1.4. Experimental Data Set

The objective of soil parameter characterization in bistatic domain has been

achieved by analyzing the response of specular scattering coefficient whereas, the

study of soil moisture retrieval in vegetated area has been performed by acquiring the

satellite data.

1.4.1. Data in Bistatic Domain

The analysis for characterization of soil parameters in bistatic domain have

been studied at 10 GHz (X-band) as well as at 6 GHz (C-band). Specular scattering

coefficients at 10 GHz have been computed for four different soil texture fields (the

sand, silt and clay constituents were varied from 78.4% to 38.7%, 33.1% to 9.1% and

18.7%) to 4.3%, respectively) by changing the moisture contents from dry soil to 0.21
-3 -5

cm cm" and periodic surface roughness from smooth surface to rms surface height

1.4 cm in both like polarizations (i.e., HH- and W-polarization). The angular

variation of these fields was analyzed by changing the incidence angle form 30° to

70° in 10° steps. A detailed discussion regarding the specular scattering data at 10
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GHz and their analysis have been presented in Chapter 3. The response of specular

scattering coefficient at 6 GHz has been checked in both like polarizations by

changing the incidence angle from 25° to 70° in 5° steps for ten different soil texture

fields (the sand, silt and clay constituent were varied from 85.3% to 2.3%, 70.6% to

7.5% and 81.6% to 2.5%, respectively) by varying the soil moisture content from dry

soil to 0.425 cm3 cm"3and periodic surface roughness from smooth surface to rms

surface height 2.45 cm. A detailed description of data and their analysis at 6 GHz has

been given in Chapter 4.

The response of soil texture for specular scattering coefficient at 10 GHz was

first analyzed. The observations revealed that it is difficult to observe change in

specular scattering coefficient with change in soil texture for rough surfaces at 10

GHz. Therefore, less number of fields (i.e., 48 different fields conditions) as well as

less number of incident angles (i.e., 30° to 70° in 10° steps) were observed to check

the response of specular scattering coefficient (details arc given in Chapter 3).

Further, observations were made at 6 GHz with same number of fields and incidence

+ angles and it was noticed that the differentiation among different soil texture fields

can be made based on specular scattering coefficient at different periodic surface

roughness conditions. Therefore more rigorous analysis was made at 6 GHz by

observing 360 different field conditions and the incidence angle was changed from

25° to 70° in 5° steps which was earlier 30° to 70° in 10° steps at 10 GHz. Detailed

field conditions of observations carried out at 10 GHz and 6 GHz have been given in

Chapter 3 (Tables 3.1 and 3.2) and Chapter 4 (Tables 4.1, 4.2 and 4.3) respectively.

<

1.4.2. Satellite Data

Synthetic aperture radar (SAR) and optical data were used to effectively

retrieve soil moisture in agriculture area. PALSAR (Phased array L-type synthetic

aperture radar) is a polarimetric SAR sensor (i.e., contains HH-, HV-, VH- and VV-

polarization) onboard Japan's Advanced Land Observing Satellite (ALOS). PALSAR

sensor operates at 1.27 GHz frequency. Raw data was acquired on April 6, 2009 at an

incidence angle 23.766°. Japan Aerospace Exploration agency (JAXA) and Earth

remote sensing data analysis center (ERSDAC) are the two PALSAR data provider

agencies. April 6, 2009 data was procured through the ERSDAC and is of VEXCEL

1.1 data format.
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MODIS (Moderate Resolution Imaging Spectroradiometer) on board Terra

(formerly EOS AM) and Aqua (formerly known as EOS PM) satellites provides data

in optical, near infrared, shortwave infrared and thermal band. The instrument
captures data in 36 bands and the data availability is at various resolution, i.e., 2bands
at 250 m, 5 bands at 500 m and 29 bands at 1 km. Band-1 (620-670 nm) and band-2

(842-876 nm) data of spatial resolution 250 m acquired by the Terra satellite were

utilized in conjunction with the PALSAR data of 25 m spatial resolution. The

temporal resolution of PALSAR data is 46 days whereas MODIS data is available

every day.

(a) Study Areafor Satellite Data

Roorkee city of Uttarakhand state of India and its surrounding areas were

chosen for the study of soil moisture with satellite data. Figures 1.8(a)-(d) show the

map of India, map of Uttarakhand, topographic map of study area and Google earth

image ofstudy area, respectively. Two different areas were chosen for the study. The

first study area lies between longitudes 77.803° Eand 77.980° E and latitudes 30.000°

N and 29.823° N. The second study area lies between longitudes 77.847° E and

78.024° E and latitudes 29.859° N and 29.682° N. The land cover of both the study

areas is fairly flat and mainly consists of urban, water and agriculture classes. The

major water bodies are Solani River and Upper Ganga Canal. Sugarcane, wheat and

mustard were prominent vegetation cover in agriculture land along with barren land at

the time of image acquisition (first week of April 2009). The key urban area in the

study site is Roorkee city besides small villages scattered throughout the study site.

1.5. Framework of Research

The proposed research work has been carried out in two major domains.

Firstly, the applicability of bistatic domain for soil parameters characterization have

been analyzed and secondly, the problem of soil moisture retrieval in vegetated area

has been investigated in monostatic domain for which satellite based SAR images

with MODIS images have been used. Following steps were involved to accomplish

the said task.
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Figure 1.8. Study area (a) India (b) Uttarakhand (c) Toposheet of the study area (d)

Google earth image of study area.

(a) TaskPerformed in Bistatic Domain

1. Bistatic scatterometer was developed for 6 GHz and 10 GHz that is capable of

taking observations at various incidence angles in both like polarizations.

2. The experiment was carried out at 10 GHz for four different soil texture fields

by observing four different moisture condition and three different periodic
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surface roughness conditions. Therefore, total 48 field conditions were

prepared for the observations.

3. The analysis of data observed as specular scattering coefficient was firstly

studied for different soil texture fields. Secondly, the changes in soil moisture

and periodic surface roughness were made to study the effect of specular

scattering coefficient for different soil texture fields.

4. The response of specular scattering coefficient for different soil parameters was

analyzed at 6 GHz by observing ten different soil texture fields and varying

their moisture (6 moisture condition) and periodic roughness conditions (one

smooth and 5 periodic roughness conditions). Therefore, total 360 field

conditions were prepared for the observations.

5. The copolarization ratio was studied to check its response for various soil

parameters. The study emphasizes the minimization of soil texture effect with

copolarization ratio. This strategy was applied for retrieval of soil moisture

whereas the periodic surface roughness of different soil fields was kept

constant.

6. The effect of periodic surface roughness has major effect on scattering in

microwave domain. The multi-incidence angle approach was studied which

shows that the ratio of specular scattering coefficient at two incidence angle

varies only with the surface roughness values whereas, its value is

approximately same for change in soil moisture and soil texture. This strategy

was followed for the retrieval of soil moisture, periodic surface roughness and

soil texture.

(b) Satellite Datafor SoilMoisture Retrieval in Vegetated Area

1. PALSAR data of level 1.1 VEXCEL format was preprocessed to calibrate and

geocode.

2. MODIS optical data of band-1 and band-2 were utilized to generate the NDVI

image.

3. Study was carried out to check the feasibility of retrieving the soil moisture in

vegetated area with the information available through SAR and optical data in

order to minimize the requirement of apriori information (like plant parameters

i.e., leaf area index, crop height, biomass etc).
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4. Different schemes were devised to normalize the scattering coefficient of the

image and then relations between the normalized scattering coefficient and the

NDVI (Normalized Difference Vegetation Index) obtained from MODIS data

were developed to facilitate the retrieval of soil moisture crop/vegetation

covered.

1.6. Organization of Thesis

Figure 1.9 show the flow chart of work carried out in this thesis. The

organization of the thesis is as following:

A brief literature review consisting of research conducted in monostatic and

bistatic domain for soil parameter characterization has been presented in Chapter 2. In

continuation, this chapter discusses problems in soil parameters characterization,

scheme for retrieval of soil parameters and their limitations. Chapter 3 discusses the

experiments carried out to study the effect of soil texture on specular scattering

coefficient with different soil moisture and periodic surface roughness conditions at

10 GHz in both like polarizations. The observations were made at different incidence

angles to analyze the angular behavior of specular scattering coefficient for different

fields (four different soil texture fields, four moisture conditions and three periodic

roughness conditions and therefore a total of 48 different field conditions were

analyzed). The problem encountered at 10 GHz was the study with periodic surface

roughness. It was difficult to observe the change in specular scattering coefficient

with change in soil texture for rough surfaces in both like polarizations at all

incidence angles. Therefore, the experiments were carried out at 6 GHz (C-band) to

circumvent the problem of surface roughness on specular scattering coefficient while

observing the soil texture. A detailed analysis of change in specular scattering

coefficient for change is soil texture with different moisture and periodic roughness

conditions (ten different soil texture fields, six moisture conditions and six periodic

roughness conditions and therefore a total of 360 different field conditions were

analyzed) in both like polarizations for various incidence angles is made at 6 GHz and

discussed in Chapter 4. The problem of soil parameter retrieval is taken in Chapter 5.

Two methodologies based on copolarization ratio and multi-incidence angle have

been utilized to retrieve soil parameters. Further, Chapter 6 presents a synergistic
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approach based on satellite data (PALSAR and MODIS images) to retrieve soil
moisture in vegetated area. This chapter discusses the importance of the SAR data in

concurrence with optical data to retrieve the soil moisture incorporating vegetation

effect with the requirement of minimum apriori information. Finally, Chapter 7

includes the contribution along with the future prospect of the work carried out in the

thesis.

Study of soil parameters
in bistatic domain

Study of soil parameters
with radar remote sensing;,

Study of soil parameters
in monostatic domain

Study at X-band Study at C-band PALSAR data MODIS data
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Figure 1.9. Flow chart of the organization of thesis.



Chapter 2

Brief Literature Review

This thesis aims to characterize the soil parameters in the bistatic domain as

well as soil moisture retrieval in vegetated area with the fusion of information from

synthetic aperture radar and optical data. Therefore, this chapter will present a brief

review on the studies carried out for soil parameter characterization and its retrieval

with active microwave remote sensing. For last forty years (approximately),

researchers have been working in this field, but, still lots of challenges exist.

Researchers have used various sensors like ground based, airborne and spaceborne

sensors to study various parameters for earth, atmosphere and ocean. For analyzing

the data, various theoretical, empirical and semi-empirical models have been

developed and work is still going on. It is already mentioned that this thesis is

focused to characterize soil parameters with active microwave remote sensing data.

Therefore, the brief review on theoretical models, empirical and semi-empirical

models for soil parameters characterization is presented first. Further, the matters

related to the soil moisture retrieval in vegetated area with satellite data has been

reviewed along with the various methodologies used to circumvent the problem in

vegetation characterization for soil moisture retrieval.
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2.1. Theoretical Models

The measurement in active remote sensing is in the form of scattering

coefficient. The scattering coefficient is the fraction that describes the amount of
average scattered energy in the direction of receiver compared to the energy of the
incident field. Sensor parameters (i.e., frequency, incidence angle and polarization)

and soil parameters (i.e., soil texture, soil moisture and surface roughness) are the
deciding factors for the intensity of scattering coefficient [124, 165, 201, 202]. The
knowledge of soil parameter, i.e., surface parameters and dielectric constant, was

exploited to develop the models based on the scattering laws [170, 175]. The surface
parameters are generally defined by the rms surface height, s, and correlation length,
/. Adetailed discussion regarding the surface parameters has been given in Chapter 1.

The most popular theoretical models based on scattering laws are Kirchhoff
Approximation (KA), Small Perturbation Model (SPM) and Integral Equation Model
(IEM) with its amendment to Advanced Integral Equation Model (AIEM) [15, 35, 51,
168, 202, 209]. Kirchhoff Approximation considers the horizontal dimension of the
surface to be larger than the wavelength whereas, no such restriction is required on

the surface standerd deviation. KA is further divided in two parts viz., Kirchhoff

Stationary Phase Approximation (SPA) that is also known as Geometrical Optics
model (GO) and Kirchhoff Scalar Approximation (SA) that is also known as Physical
Optics model (PO), based on the surface standard deviation [15, 202]. SPA works for
the large surface standard deviation and considers purely noncoherent scattering
whereas, SA can be applied where the surfaces generate both coherent and

noncoherent scattering. The validity range for SPA is ks > 2 and SA is ks < 1 and
rmssiope < 0.25, where k, s and rmss]ope are the wave number, surface standard
deviation and rms surface slope, respectively [202]. The consideration of SPM is

made when both the surface standard deviation and correlation length are smaller than

the wavelength [51, 168, 202]. The validity range for the SPM is ks <0.3 and rmss]ope
< 0.3 [202]. The IEM encompasses the validity range of both the KA and SPM
therefore; it is capable ofcharacterizing the scattering coefficient for a wide range of
surface roughness values [57, 59, 218]. The IEM model considers surface scattering
term only whereas, second order scattering is not considered. However, Fung et al.
[58] improved the model to take into account multiple scattering terms but due to the
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complexity inherited the original version is rarely used and often replaced by the

approximate solutions [15].

These theoretical models have been employed by several researchers for

retrieval of soil parameters with active microwave remote sensing data [2, 3, 18, 25,

35, 37, 39, 86, 107, 141, 156, 157, 160, 177, 189, 202]. Franceschetti et al. [56] has

explored the SA and SPM to retrieve the soil dielectric constant and surface geometry

while defining the surface geometry with fractal parameters, i.e., fractal dimension,

Hurst coefficient and topothesy. They have used the fractal parameter instead of the

conventional surface roughness parameters, i.e., correlation length and surface

standard deviation, as these parameters better represent the natural surfaces [66, 67,

164, 200, 222]. The copolarization ratio approach has been used to minimize the

roughness effect and to retrieve of dielectric constant the copolarization ratio at two

incidence angel was used to optimize. This retrieved dielectric constant was used with

theoretical model to give the estimate of the surface roughness values [56]. Collaro et

al. [35] have retrieved the mean radius of curvature for Gaussian rough surfaces with

the utilization of Kirchhoff Approximation. The retrieval of soil parameters with IEM

generally includes the fitting of IEM numerical simulation for a verity of soil moisture

and roughness conditions, including look up tables [25, 196], neural networks [141,

174], Bayesian approaches [141] and minimization techniques [11, 146].

Some of the researchers had pointed out the difficulty in simulating the radar

scattering coefficient from the theoretical model as two fold. Firstly, the mathematical

modeling of the natural surfaces is still insufficient and secondly, the physical

approximations introduced in the model are not aposteriori verified [209, 230]. These

theoretical models have been generally validated in the laboratory environment

therefore, providing quite satisfactory results [82, 113, 116]. However, in case of

natural surfaces some contradictory results have also been reported [1, 13, 161]. This

may arise due to the large intra field variability in surface roughness and moisture

content of the agriculture fields which is not encountered in the laboratory conditions

[209]. The inversion of theoretical models is another area of concern due to their

complexity as well the need of apriori information.

These theoretical models have been basically developed with consideration of

the soil surface roughness and soil moisture, whereas very less attention has been

provided to include the soil texture effect in these developed models. Nevertheless,

the studies have shown the dependency of scattering behavior on soil constituents. It
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has been shown that the scattering coefficient changes with the change in soil

constituents [202]. Singh and Kathpalia [181] have retrieved the soil texture map

based on backscattering coefficient data that was acquired with ERS-2. Aubert et al.
[9] has studied the effect of soil texture on TerraSAR-X data and have analyzed the
change in backscattering coefficient with change in soil composition. Prakash et al.
[156, 157] have conducted the experiment with bistatic scatterometer and shown the
dependency of specular scattering coefficient on soil constituents. Some other
researchers have also shown the feasibility of studying the soil texture with active

microwave data [32, 78, 84, 119, 127, 162, 179, 191, 212, 215, 228, 229], Although,

these theoretical models have been solved based on scattering laws, they have been

developed, tested and validated in monostatic domain [2, 3, 25, 35, 37, 56, 88, 107,
141, 158, 177, 189] and their applicability have lesser been checked in bistatic domain

[30,43,90,140,155,156,157].

2.2. Empirical Models
The inherent complexity ofthe theoretical models as well as other difficulties

encountered in the retrieval of soil parameters led to the development ofthe empirical

and semi-empirical models. Several researchers have developed empirical
relationships between soil parameters and scattering coefficient [26, 31, 34, 80, 101,
114, 123, 135, 136, 141, 145, 150, 157, 167, 171, 182, 193, 202, 207, 231]. In case of
bare soil, a linear relationship was observed between the scattering coefficient and
soil moisture with the assumption ofthe constant surface roughness over the different

span of observation of the same field [132]. Some other forms of the relationships
have also been devised. But, the inconsistency has been generally observed in the

empirical coefficients, as well as, these coefficients vary for the different fields.
Therefore, the applicability of these models can not be confirmed for the study area
other than the area where they have been developed. However, to employ the

empirical relation to the environmental condition where they have not been
developed, the empirical relationships have to be again calibrated or the empirical
coefficients have to be again established with data set ofthat particular study region.

This kind of approach will always need a substantial amount of data. Further, the
empirical relationships are solely developed based on the available data and in situ
measurements therefore; their robustness cannot be ascertained.
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2.3. Semi-Empirical Models

Semi-empirical models represent a compromise between the complexity of

the theoretical models and simplicity of empirical models. The semi-empirical

models are developed initially with the theoretical foundation and then the simulated

or the experimental data sets are used to simplify the theoretical model [15, 19, 138,

209]. These models are more robust than empirical model. The most widely used

semi-empirical models for soil parameters retrieval studies are Oh et al. [144] and

Dubois et al. [48]. Some other semi-empirical models are Shi et al. [177], Loew and

Mauser [108], Song et al. [189]. Oh et al. [144], Tabatabaeenejad and Moghaddam

[194] and Kseneman et al. [98] carried out the experiment with truck mounted

scatterometer in L-, C- and X-band. The experiment was carried out in polarimetric

mode, calculating the scattering coefficient in HH-polarization (<j° ), HV-

polarization (rj° ) and VV-polarization (a° ). This model relates the dielectric

constant of soil and rms surface height to the copolarization ratio/? (=cr°m /<T°V) and

crosspolarization ratio q (=o"°v/cr°v). The validity range of the model is 0.09 <mv<

0.31 and 0.1 < ks < 6. Where mv is volumetric soil moisture, k is wave number and s is

rms surface height. Dubois et al. [48] developed a model that relates the scattering

coefficient in HH- and VV-polarization to the dielectric constant of soil and rms

surface height. The model development was based on the data acquired through the

scatterometer in the frequency range 1.5 GHz and 11 GHz. The model is best

applicable to the bare soil whereas significant amount of vegetation cause the under

estimation of soil moisture and overestimation of rms surface height. Dubois et al.

restricted the validity of the model to ks < 2.5 and mv < 0.35. Shi et al. [177]

developed a semi-empirical model based on the Integral Equation Model (IEM).

Firstly, backscattering coefficients were simulated by IEM and then a regression

analysis was applied to provide more simplified model in order to make the

implementation of the IEM more practical as well as inversion more cohesive. The

model development was based on the data observed in L-band and the model is valid

for copolarized terms. Song et al. [189] has simplified the complicated the IEM model

so that the radar backscattering coefficient becomes an explicit function of soil

dielectric constant or the soil dielectric constant is an explicit function of radar
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backscattering coefficient. This model had been named empirical adopted IEM (EA-
IEM). The average difference of the backscattering coefficient between EA-IEM and
original IEM was 0.14 dB in HH-polarization and 0.12 dB in VV-polarization. They
have used this model to retrieve the soil moisture directly from radar backscattering

coefficient. Tabatabaeenejad and Moghaddam [194] have studied the retrieval of soil
moisture by developing the algorithm based on small perturbation model. They
modeled soil as a layered structure with a rough boundary on top and a stratified
medium below to represent moisture profile and retrieval has been carried out by
simulated annealing. Kseneman et al. [98] have modified the Shi et al. [177] model to
retrieve the soil moisture. They have utilized the high-resolution and dual polarized

Spotlight TerraSAR-X images for soil moisture parameter retrieval.
The semi-empirical models mentioned above, like theoretical and empirical

model, have been developed to retrieve the soil parameters in monostatic domain. The
basic concept of the semi-empirical model is based on the simplification of complex
theoretical models to make the retrieval of soil parameters more practical and

cohesive. Therefore, to simplify the theoretical model the experimental data set is
used in a way to develop some new algorithm whose foundation lies on theoretical
model. Because of the experimental data evolved in the processes of algorithm

development and ifthe experimental data belong to monostatic domain, the developed
algorithm cannot be directly applied for the data in bistatic domain. In this regard,
semi-empirical model, that should be applicable in bistatic domain, have to be
developed based on the data set obtained in bistatic domain. Further, as discussed in
Section 2.1 that soil texture is an important soil parameter and more or less has been

neglected in development of theoretical models. Similar is the case of semi-empirical
model where the effect ofsoil texture in the model development has been overlooked.

2.4. Research in Bistatic Domain

The characterization of soil parameters has been prominently established for

monostatic system [42, 48, 50, 146, 174, 181, 182] and lesser studies have been
performed for bistatic system [30, 129, 140, 180]. Chapter 1has discussed in detail
the need and advantage of bistatic domain for characterization of soil parameters. The
research in bistatic domain for characterization of soil parameters has mostly been
performed with theoretical model and simulation study. The prevalent theoretical
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models, i.e., SPM, SPA, KA, IEM and AIEM, have been solved to provide the

scattering coefficient in bistatic domain. Wu et al. [219] studied the bistatic scattering

using AIEM. The bistatic scattering coefficient was obtained by keeping all the

surface current term in the Kirchhoff surface field. Additionally, they compared the

SPM, SPA and SA models at their respective validity region. The scattering

coefficients were computed by keeping the transmitted angle and received angle

constant whereas, changes in received azimuthal angles were made [219]. They have

concluded that the AIEM predictions for bistatic scattering are in good agreement

with the known models at respective valid regions in term of angular, frequency and

polarization. Pierdicca et al. [155] has analyzed the contribution of bistatic radar

measurement for bare soil moisture retrieval. They performed a simulation study

based on AIEM model and discussed the feasibility of soil moisture analysis in

specular direction. Ceraldi et al. [30] provided a copolarization ratio based scheme for

the retrieval of soil dielectric constant in bistatic case minimizing the effect of surface

roughness. The proposed scheme is based on the use of the ratio of power densities

scattered at HH- and VV-polarization along the specular direction and it has been

shown that in the specular case SPM, SA and SPA all leads to the same expression of

the copolarization ratio; therefore, the proposed method is expected to hold a wide

range of surface roughness. Further, they have used the method of moment simulation

to support their theoretical analysis. Khenchaf [93] has analyzed scattering in bistatic

domain from randomly rough surface using Kirchhoff approximation (stationary

approximation and scalar approximation) and small perturbation model. They have

also established the validity of the Kirchhoff and small-perturbation rough surface

scattering models in bistatic domain. A comparison between the numerical

calculations and the models has been made for various surface heights and correlation

lengths. Xu and Tsang [221] have studied the bistatic scattering and emissivities of

surfaces with exponential correlation function by numerical simulation. They have

utilized the Maxwell model with 2-D simulation. Brogioni et al. [23] have

investigated the bistatic scattering coefficient to soil moisture and surface roughness.

The simulation has been carried out with advanced integral equation model and small

perturbation model. These models where then validated with the numerical simulation

carried out with FDTD (Finite Difference Time Domain). The study was carried out

for L- and C-band. Some other researchers have carried out the theoretical as well as

simulation study to describe the scattering in bistatic domain [29, 36, 44, 46, 49, 53,
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60, 94, 95, 104, 117, 120, 121, 130, 180, 225] as well as the system conceptualization
such as antenna design, resolution [62, 64, 70-74, 151]. The experimental analysis in
bistatic domain for characterization ofsoil parameter has been less reported. Very few
researchers have made the experimental measurements in controlled environment to

verify the simulated and theoretical results. Such kind of experiments are very much
necessary when the observations are made in natural conditions for soil parameters,
i.e., soil moisture, surface roughness and soil texture, because these parameters are
highly variable in space and time. In addition to this, all the simulation and theoretical
studies rely on the parameterization of surface roughness and utilizes rms surface
height and correlation length as surface parameter but, studies have shown that
correlation length is a highly variable parameter. Nashashibi and Ulaby [139, 140]
explored the nature of bistatic scattering from soil surface by performing the
measurement at 35 GHz. The acquired data was analyzed to determine the angular

sensitivities of several attributes ofthe scattered field, including amplitude and phase

different of the polarized scattering coefficient and their copolarized and
crosspolarized ratios. They have observed the strongest bistatic returns along the
specular direction. In addition to this, it has also been shown that the calculation based
on Kirchhoff Scalar Approximation provides good agreement between the theory and
observations. Khadhra et al. [90] has carried out the well controlled experiment in

bistatic domain at X-band for different roughness and moisture values. They have

utilized the copolarization ratio approach develop by Ceraldi et al. [30] to retrieve the
soil moisture and subsequently the IEM to retrieve the surface roughness. De Roo and
Ulaby [43] conducted the experiment to determine the nature of the bistatic scattering
from rough dielectric surface at 10 GHz. The observation was obtained for specular
scattering with incidence angle varying from 20° to 60° in both HH- and VV-
polarization for different moisture and roughness conditions. They have shown that
the Kirchhoff Scalar Approximation provide good agreement with the experimental
data. Therefore, it may be said that studies in bistatic domain for characterization of
soil parameters should be made in specular direction due to the strongest bistatic
return in this direction [30, 139, 140].
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2.5. Retrieval of Soil Parameters

Empirical, semiempirical or theoretical model generally describe the behavior

of scattering coefficient at different polarization, frequency and incidence angle as a

function of soil parameters, i.e., soil texture, soil moisture and surface roughness. But,

the main objective is to retrieve soil parameters from radar observations, i.e.,

scattering coefficient at different polarizations, incidence angles and frequencies. The

major research work, till date, is in the direction of monostatic domain and there exist

several ground based, airborne and spaceborne data in monostatic domain. Therefore,

substantial amount of studies have followed this path by developing the direct model,

i.e., scattering coefficient as function of soil parameters, and their inverse analysis.

The retrieval of soil parameters with inversion of direct relationship is generally

referred as the ill-posed problem because the direct relationship explain the

dependency of single scattering coefficient on several soil parameters, i.e., soil

texture, soil moisture and surface roughness. Therefore, researchers have utilized the

data available at different polarization, incidence angel and different frequency to

solve the problem of soil parameters retrieval [77, 118, 152]. In addition to this,

several researches have applied the change detection techniques [5, 153, 211, 231].

Srivastava et al. [192] have proposed an approach based on scattering

coefficient data at two incidence angels to incorporate the effect of surface roughness

in the estimation of soil moisture. The scattering coefficient data of RADARSAT-1 at

low incidence angle (= 25°) was normalized with high incidence angle (= 50°) to

incorporate the effect of soil roughness in retrieve the soil moisture. Zribi et al. [232,

233] has demonstrated the use of multiincidence angle data to retrieve the rms surface

height. They have shown that the normalization of data at one incidence angle to other

incidence angle provides the normalized scattering data that varies only with rms

surface height and independent to the changes in soil moisture content. They have

utilized this methodology to retrieve the soil moisture with ERS (Scatterometer and

SAR) and ENVISAT-ASAR data. Rahman et al. [159] have shown with IEM

simulation that normalized scattering coefficient data with two incidence angles is

function of surface roughness only. Further, they utilized this concept in retrieval of

surface roughness and subsequently used IEM model to retrieve soil moisture.

Several researchers have proposed the use of multi-polarization data to

minimize the roughness effect in order to retrieve the soil moisture without
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characterizing surface roughness [30, 56, 115, 156]. Franceschetti et al. [56] has
shown the potential of theoretical models, SPM and KA, to retrieve the dielectric
constant with minimizing the roughness effect by copolarization ratio approach.
Whereas, Ceraldi et al. [30], Prakash et al. [156] and Singh and Dubey [180] have
shown the strength of copolarization ratio for minimization of roughness effect in
bistatic domain with theoretical models, e.g., SPM, SPA and SA. Magagi and Kerr

[115] investigated the semi-empirical model developed by Oh et al. [144] to
minimize the soil roughness effect in soil moisture retrieval by copolarization ratio

approach. Therefore, the use of SAR data with both like polarization, i.e., HH- and
VV-polarization, (e.g., PALSAR) will provide an upper hand in soil moisture
retrieval incomparison to single polarization SAR data, e.g., ERS data.

Scattering coefficient data at different frequencies have also been utilized to

retrieve soil parameters [21, 31, 54, 100, 116, 122, 146]. Paloscia et al. [146] has
utilized the microwave emission data at L-band to retrieve the soil moisture whereas

the data at X-band has been utilized to correct the effect of vegetation. Ferrazzoli et

al. [541 has investigated the use of SAR data at different frequency in discriminating ^
among various vegetations and its sensitivity to agriculture. It has been shown that a
combined use of P- and L-band data allow to discriminate between agriculture field

and other targets while a combined use ofL- and C-band data allows discriminating

within agriculture area. L-band data is useful for crop with low plant density, while
crop with high plant density, both L-and C-band are useful. Mattia et al. [122] have
analyzed effect ofthe multi-frequency, polarimetric SAR data over the Matera (Italy)
test site. They have studied the possibility of extracting relevant information about

surface roughness using multi-frequency and polarimetry.

Most of the theoretical or empirical models have been developed and tested

for monostatic case and consider back scattering. Empirical relationship developed for

monostatic case cannot be applied for bistatic case as they are highly data dependent

and scattering for both the cases follow different set of rules. Whereas, theoretical
models based on scattering laws can be solved for bistatic case. But the problem with

the theoretical model is that they describe the surface in terms of rms surface height

and correlation length and studies have shown that the precision of correlation length
measurement is very poor and highly variable [12, 41]. In addition, the complexity

inherited with the theoretical models make the inversion a tedious job. Neural

Network, a machine learning approach and Bayesian, a statistical based approach
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finds it's application in many fields such as predication of ground vibration in mines,

multi-target tracking [91, 92, 184, 185, 227]. These approaches have also been

utilized for retrieval of soil parameters [15, 146, 209].

The algorithms for retrieval of soil parameters has been mostly dealt in

monostatic domain because maximum researchers used various experimental studies

(i.e., ground based, air borne) in monostatic domain due to easy implement in the

hardware. Therefore, the general trend of research is directed in the analysis of soil

parameters in monostatic domain. But, due to several advantages of bistatic domain

such as low cost of operation, integration with existing satellite constellation have

made the interest of researchers in bistatic domain. Theoretical models deal with the

fundamental of scattering laws and have been solved for monostatic case whereas for

the interest on bistatic these models can be solved to provide the scattering coefficient

in bistatic domain. Further, the soil parameters retrieval scheme carried out in

monostatic domain with multi-incidence, multi-polarization and multi-frequency can

also be checked for their applicability in bistatic domain with theoretical models. The

empirical and semi-empirical approach developed in monostatic domain is

fundamentally based on the data in monostatic domain; hence they cannot be directly

applicable in bistatic domain. However, the basic principle involved in the

development of algorithm in the monostatic approach can be carried out for bistatic

data and their applicability can be tested and validated.

2.6. Soil Moisture Retrieval in Vegetated Areas with

Satellite Data

Most of the techniques for soil moisture retrieval through active microwave

remote sensing have been developed for bare soil [5, 16, 48, 80, 144, 193, 205]. These

techniques cannot be directly applied in the vegetated areas as the vegetation provides

the multiple scattering effects. Due to this multiple scattering effect the observed

backscatter is highly nonlinear [141, 173]. Now the problem arises in the separation

of the scattering contribution of the vegetation and scattering contribution of the soil

moisture from the observed backscattering coefficient. Some advances have been

made to characterize the vegetation. Most of the technique to retrieve the soil

moisture in presence of vegetation utilizes semi-empirical water cloud model [2, 17,

178, 220]. Water cloud model represents the canopy as a cloud of water droplet and
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higher order scattering contribution are neglected. Bindlish and Barros [17]
incorporated water cloud model to retrieve the soil moisture in vegetated area. They
have introduced the concept of the vegetation correlation length to model the
vegetation spacing within the water cloud model. To implement the proposed model
several vegetation parameter have to be estimated or one should have apriori
information of these vegetation parameters. Xu et al. [220] has utilized the water
cloud mode to remove the vegetation effect from the observed backscattering

coefficient, while having the knowledge of vegetation parameters, i.e., vegetation
height, vegetation water content etc. Several other researchers [2, 18, 40, 105, 204]
have also attempted to retrieve the soil moisture while utilizing the water cloud model
to characterize scattering from vegetation but, the measurement of the vegetation
parameter is of main concern in the applicability of these approaches. The vegetation
parameters show temporal behavior and to characterize these parameter field visit
have to made each time, as well as, these parameters differ from one crop to other

crop. The other techniques used frequently for soil moisture retrieval in vegetated area
are the change detection technique. These techniques consider the scattering from the
vegetation area to be time invariant. Whereas the scattering contribution from the
vegetation cover is very much dependent on the vegetation parameters and these
parameters are time variant therefore the scattering contribution from the vegetation
cover will be a time variant process and it will be restrict the applicability of the

change detection techniques [88]. Several researchers have utilized the passive
microwave data to retrieve the vegetation covered soil moisture [28].

The problem of vegetation parameterization in soil moisture retrieval has been
primarily dealt with the microwave data by characterizing the scattering form
vegetated area. However, some other form of the remote sensing has also been
exploited to parameterize the vegetation and subsequently this information may be
fused with the microwave data to retrieve the soil moisture. Optical data has been

utilized to parameterize the vegetation [7]. The red, near-infrared (NIR) and
shortwave-infrared (SWIR), are commonly employed to the retrieve the vegetation
water content, canopy height, leaf area index etc. [4, 33, 226]. Optical data with
fusion ofSAR data is used to yield the crop information [125, 126]. These studies led
us to conclude that the information available with optical data may be efficiently
employed with SAR data to provide the soil moisture information in vegetated area.
Some studies have been performed to use SAR and optical data in soil moisture
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retrieval [141, 214]. Wang et al. [214] made use of ERS-2 (European remote sensing

satellite-2) and TM (Thematic Mapper) imagery for retrieval of soil moisture. They

have used multi-temporal ERS data, i.e., one image of dry season and the other of wet

season. The dry season image was used to normalize the wet season image and the

several empirical relationships with NDVI were developed based on isomoisture

lines. The developed empirical relationship does not provide the absolute value of soil

moisture rather it gives a range within which the moisture value may lie. Further, the

assumption has been made that the surface roughness in the wet season and the dry

season does not change remarkably, which limits it applicability. Notarnicola et al.

[141] calculated the probability density function (pdf) for the various corps to

parameterize the vegetation and then investigated its correlation with the normalized

difference water index (NDWI). This information has been used in the inversion

model to retrieve the soil moisture. The developed model employs pdf and its value

differs from crop to crop, as well as, in development phase apriori information is

needed.

The classification of the SAR data is an important task to accurately demarcate

the land cover and choose the area of interest while masking the other. Vegetated and

bare soil is the area of interest in soil moisture retrieval studies. Several image

processing techniques such as supervised classification, unsupervised classification,

and knowledge based approach have been utilized to classify the SAR data [110, 128,

166, 172, 176, 186, 187]. In addition to this, polarimetric techniques have also been

utilized to classifythe SAR images [45, 102, 118, 175, 223].

Following conclusion may be drawn after exhaustive literature review in

monostatic and bistatic domain for soil parameters studies and retrieval.

4 Existing studies for soil parameters retrieval have been mainly devoted to the

monostatic domain whereas, less attention has been given to characterize the soil

parameters in bistatic domain.

4 Characterization of soil parameters in bistatic domain has been limited to the

simulation studies, whereas lesser experimental work has been reported.

4 The utilization of various sensor parameters, i.e., multi-incidence, multi-

polarization and multi-frequency has been established for retrieval of soil

parameters in monostatic domain. The applicability of these schemes has to be

tested for bistatic domain.
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4 The developed theoretical, empirical, semi-empirical models in monostatic or
bistatic domain consider the soil moisture and surface roughness as soil

parameters and the role of soil texture has been mostly neglected. Even though,
the studies have shown the significant effect of soil texture on microwave

scattering.

4 The developed available models are quite complex like IEM or needs a lot of
apriori information to solve for retrieval ofsoil parameters.

4- Retrieval of soil moisture in vegetated area with active microwave data has been

generally carried out with water-cloud model and change detection techniques.
However, water cloud model requires a lot of apriori information and change

detection technique suffers with the temporal behaviour ofvegetation parameters.

Some of the researchers have tried to incorporate the information available

through optical data with SAR data to retrieve the vegetation covered soil
moisture. So, the fusion of optical data and SAR data for soil moisture retrieval

has to be given more attention.
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Chapter 3

Study of Specular Scattering Response

for Soil Texture at 10 GHz

Several applications regarding the estimation of soil parameters, i.e., soil
texture, soil moisture and surface roughness have been discussed in Chapter 1 and
Chapter 2. Radar remote sensing is capable of providing agood estimate of these soil
parameters due to the sensitivity of microwave radiation towards soil texture, soil
moisture and surface roughness. These active sensors do not measure the soil
parameters directly, a relationship has to be developed between soil parameters and
measured signal intensity that is scattering coefficient in case of radar remote sensing.
Usually, such kind of relationship is termed as forward relationship and describes the
change in scattering coefficient for corresponding change in soil parameters. These
developed models may be theoretical, empirical or semiempirical. Whatsoever be the
case, experiments are always necessary to validate the theoretical models and develop
empirical or semiempirical models. Study ofsoil parameters with active microwave
remote sensing has been mostly dealt in monostatic domain and a fairer literature has
been discussed in Chapter 2 with its advantages and limitations. In this regard the
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experiments carried out to describe and validate the models available in monostatic
domain. Whereas, with the advancement ofthe technology, researchers have renewed
interest in bistatic domain and some ofthe researchers have performed the simulation

studies to check the response of soil parameters in bistatic domain. But, still less

experimental studies have been reported. Therefore, there is a need to perform
experiments to analyze the effects of soil parameters on microwave scattering in
bistatic domain. This chapter discusses the experimental analysis carried out at 10

GHz (X-band) in special case of bistatic domain (i.e., specular direction) to analyze
the effect of soil texture on specular scattering coefficient with change in soil

moisture and periodic surface roughness.

Soil texture is an important soil parameter and is defined based on their

particle size. Particles are characterized based on their diameter limits and divided in
sand, silt and clay constituents. Table 1.2 gives the detail description of these soil
constituents. Most of the work for soil parameter characterization considers soil

moisture and surface roughness whereas the role of soil texture has been neglected.

However, studies have shown that the dielectric constant is a function of soil texture

and the change in dielectric constant with soil moisture is very much dependent on

soil texture [78, 127, 215]. In addition to this, some of the researchers have tried to
incorporate the effect ofsoil texture in soil moisture and surface roughness retrieval

[191,212].

3.1. Introduction

Different studies on radar remote sensing have been realized in the resent

years in order to retrieve and monitor the soil parameters from satellite measurement.
It has been discussed in Chapter 2 that studies to parameterize the soil parameters

have been extensively planned in monostatic domain. Therefore, most of the existing

models, theoretical, empirical or semiempirical, discuss the behavior of scattering
coefficient for different soil parameters in monostatic domain. In addition to this, the

retrieval of soil parameters with several techniques have been discussed, developed,
tested and validated owing to the parameters of the monostatic domain. Although

considerable research had been reported in the literature in monostatic domain and

most of the satellite missions carrying active microwave sensors operate in monostatic
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domain, still uncertainty exists. Alternative to the monostatic domain, bistatic domain

may serve the purpose efficiently. The major advantage with the bistatic domain
includes the low cost operation, because in bistatic domain the expensive transmitter

can be shared by several receivers. Also, the existing monostatic constellation can

also be explored to provide the data in bistatic domain as with the case ofTanDEM-X
that operates in association with TerraSAR-X. In this regard, the bistatic domain will
provide a good alternative to the monostatic domain as well as strengthen the existing
technology in active microwave remote sensing. Recent trends in bistatic domain have
extended from examining the fundamentals of bistatic radar to the signal design and

processing of different types of radars, including bistatic synthetic aperture radar, to
the application of bistatic radar to specific problems, such as air target detection,
short-range anticollision warning and detection of buried objects [140]. Still, less
attention has been provided to study the behavior ofsoil parameter in bistatic domain.
The existing studies for characterization of soil parameters are mostly dealt with
simulation studies and Chapter 2 has discussed in the detail about these

phenomenology. Even less experimental observation has been carried in bistatic
domain. Therefore, there is a need to carry out experimental observations to gain the

knowledge of the scattering behavior on bistatic domain. Experimental observations
are necessary as they play significant role in developing the new remote sensing
methods and these observations are important to validate various scattering models.

Experiments carried out in the controlled laboratory environment sets the basis for
their application on the data obtained through airborne or spaceborne sensors. The
controlled experimental analysis are more important when the concerned parameters
are nature parameter as in the case ofsoil parameters, i.e., soil texture, soil moisture
and surface roughness. These soil parameters, being the nature parameter, show

significant spatial and temporal variations and these variations cannot be controlled in
nature. In this regard, controlled experiments are more necessary where the variation
in one parameter can be made while keeping the other parameters constant to check
their effect on the measurable quantity which in radar remote sensing is scattering

coefficient. This chapter presents the experiments carried out in controlled

environment at 10 GHz in both like polarization at various incidence angles for soil

parameters studies in bistatic domain. Changes in soil texture, soil moisture, and
periodic surface roughness were made artificially to analyze the effect ofsoil texture
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on specular scattering coefficient with change in moisture and periodic roughness
conditions of the field.

The chapter is organized as following:

Section 3.2 discusses about various field conditions chosen for observations

and Section 3.3 presents the methodology used to carry out the experiments. The
results and discussions part have been analyzed in Section 3.4 and finally, Section 3.5

gives the conclusion of the study.

3.2. Test Fields and Observations Carried out

Four different soil texture fields were considered for study of scattering

behavior in specular direction. Field size ofdifferent soil fields was 2 m x 2 m (It is

chosen such that swath area is more than 1 m2 so that for every incidence angle the

swath is inside the soil bed). These different soil texture fields were artificially

prepared in the laboratory by varying the soil constituents, i.e., the percentage of sand
silt and clay were changed to prepare different fields. Soil texture information ofthese
fields is given in Table 3.1. Changes in soil moisture condition of these different soil
texture fields were made to analyze the moisture effect on the specular scattering

coefficient when the objective is to study different soil texture field. Therefore, for

each field, one dry and three moisture values were taken into account. Five

independent measurements were taken to estimate the volumetric soil moisture
content of each moisture contents. The mean values of soil moisture were taken into

account which ranges from 0.10 cm3 cm"3 to 0.21 cm3 cm"3 with standard deviation of
0.016. Table 3.2 gives the details of soil moisture contents. Surface roughness is

another important soil parameter that significantly affects the scattering phenomenon

in microwave spectrum. In this regard, for each soil texture field with one dry and
three moisture conditions, one smooth (s\) and two periodic roughness values (s2 and

s3) were considered. Periodic surface roughness was prepared with the help of
wooden harrow and measurements were made with pin profilometer (as given in

Section 1.3.4(c)). Table 3.2 provides the values of measured rms surface height for
different fields. It means each field with four conditions of moisture and three

conditions of periodic roughness were analyzed and a total of 48 different field

conditions were taken for study.
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Table 3.1. Soil texture information of fields used for observation

% of Sand % of Silt % of Clay % of Gravels

Field 1 78.4 9.1 4.3 8.1

Field 2 58.8 23.1 8.5 9.3

Field 3 44.3 35.8 11.7 7.5

Field 4 38.7 33.1 18.7 9.1

Table 3.2. Moisture and periodic roughness values used for the study of each field

Moisture

cm" cm"'

RMS Surface Height i

5'i *2 "

mvl =Dry Smooth 0.9 1.4

mv2=0.\0 Smooth 0.9 1.4

mv3=0.\5 Smooth 0.9 1.4

mV4=0.2\ Smooth 0.9 1.4

Table 3.3. Different combination of fields (48) prepared for the observations

Field 1 Field 2 Field 3 Field 4 Field 1 Field 2 Field 3 Field 4

s\ si S\ S\ S\ S\ S\ S\

S2 ft S2 ft S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3

Field 1 Field 2 Field 3 Field 4 Field 1 Field 2 Field 3 Field 4

si S\ s\ si S\ S\ S\ Sl

S2 S2 S2 ft ft S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3
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3.3. Methodology

The specular scattering response of different fields as discussed in Section 3.2
has been studied. Experiments with bistatic scatterometer were carried out in both like
polarizations, i.e., HH- and VV-polarization at different incidence angles (as
discussed in Section 1.3). Incidence angles were varied from 30° to 70° in step of10°.
Specular scattering coefficient has been computed with Equation 1.12. The details of
computation ofspecular scattering have been given in Section 1.3.1(b).

3.4. Results and Discussions

3.4.1. Response ofSpecular Scattering Coefficient for Soil Texture

(a) Dry and Smooth Soil Surface in HH-Polarization
In order to analyze the response of microwave scattering for different soil

texture fields, specular scattering coefficient were plotted with varying incidence

angles for both like polarizations. It is clearly evident from Figure 3.1(a) that the
change in specular scattering coefficient occurs with change in soil texture field.
Dynamic range ofspecular scattering (i.e., change with incidence angle) changes in
soil texture field. The dynamic range of specular scattering for Field 1(sand = 78.4%,

silt = 9.1% and clay = 4.3%), Field 2 (sand = 58.8%, silt = 23.1% and clay = 8.5%),

Field 3 (sand =44.3%, silt =35.8% and clay = 11.7%) and Field 4 (sand = 38.7%, silt
= 33.1% and clay = 18.7%) is 8.4 dB, 9.1 dB, 9.8 dB and 11.5 dB, respectively. It is

difficult to distinguish different soil texture fields at lower incidence angles as vey

less change have been observed in specular scattering coefficient for change in soil
texture at lower incidence angles (i.e., < 50°). However, higher incidence angles are

suitable to discriminate different soil texture fields based on specular scattering

coefficient which can be observed form Figure 3.1(a) where significant changes have

been observed in specular scattering coefficient at higher incidence angles (i.e., >

50°). Therefore, higher incidence angles are better suited than lower incidence angles
to observe different soil texture fields based on specular scattering coefficient in HH-

polarization at 10 GHz.
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(b) Dry and Smooth Soil Surface in VV-Polarization
The behavior of specular scattering coefficient with incidence angle is shown

in Figure 3.1(b) for four different soil texture fields in VV-polarization at 10 GHz.
Less changes in specular scattering coefficient have been observed for change in soil
texture in VV-polarization whereas, significant changes were observed in HH-
polarization. The dynamic range of specular scattering coefficient for Field l(sand =
78.4%, silt =9.1% and clay =4.3%) and Field 4 (sand =38.7%, silt =33.1% and clay
= 18.7%) is 19.2 dB and 20.4 dB respectively. However, the dynamic range for Field
2 (sand = 58.8%, silt = 23.1% and clay = 8.5%) and Field 3 (sand = 44.3%, silt =
35.8% and clay = 11.7%) is approximately 19.7 dB. The response of specular
scattering coefficient for different soil texture fields is approximately same at all
incidence angles. A dip in specular scattering coefficient at 60° incidence angle in
VV-polarization can be observed from Figure 3.1(b). This phenomenon may be
explained by Brewster angle effect. At Brewster angle, there is no reflected wave
when the incidence wave is vertically polarized. The experimental and simulation

study conducted by De Roo and Ulaby [43] also show asimilar behavior for dry and
smooth soil in VV-polarization.

It is observed from the study of dry and smooth soil that by changing soil

texture there is a change in specular scattering coefficient for both like polarizations.
The effect is more prominent in HH-polarization than in VV-polarization and in case
of HH-polarization at higher incidence angles (i.e., > 50°) better differentiation in
specular scattering coefficient is observed for different soil texture fields. It may be
due to the reason that HH-polarized wave interacts with different soil texture fields
more prominently than VV-polarized wave in specular direction [43, 140].
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Figure 3.1. Response ofspecular scattering coefficient for different soil texture fields
with varying incidence angle for smooth and dry soil (a) HH-polarization (b) VV-

polarization.

3.4.2. Moisture Effect on Response of Specular Scattering from Different

Soil Texture Fields

(a) HH-Polarization

Figure 3.2(a)-(c) show the behavior of specular scattering for four different

soil texture fields with moisture 0.10 cm3 cm"3, 0.15 cm3 cm"3, and 0.21 cm3 cm"3,
respectively in HH-polarization. With different soil texture fields, change in specular
scattering coefficient are difficult to observe at 30° incidence angle, but as the

incidence angle is increased, changes in scattering coefficient are observed. At higher

incidence angles better differentiation in specular scattering coefficient are obtained,
i.e., changing sand percentage from 78.14% to 58.87%, 58.87% to 44.35% and further
from 44.35% to 38.72%, change in specular scattering coefficient is obtained at 50°,

60° and 70° incidence angles for moisture variation of 0.10 cm cm" to 0.21 cm cm

3. At volumetric soil moisture contents 0.15 cm3 cm"3 and 0.21 cm3 cm"3, a continuous
decrease in specular scattering coefficient is observed from 30° to 50° incidence

angles for all four fields, but in contrast an increase is observed at 60° incidence
angle. Increase in specular scattering coefficient at 60° incidence angle was also
observed by Nashashibi and Ulaby [139, 140]. Effect of soil texture on specular

scattering in the presence of soil moisture is noticed from the change in specular

48

I



-1 -1

scattering coefficient that is valid for a range ofsoil moisture (0.10 cm cm" to 0.21
cm3 cm"3). These observations can be clearly seen from the Figures 3.2(a)-(c).
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Figure 3.2. Response ofspecular scattering coefficient for different soil texture fields
with varying incidence angle for smooth surface in HH-polarization (a) volumetric

soil moisture 0.10 cm3 cm"3 (b) volumetric soil moisture 0.15 cm3 cm"3 (c) volumetric
soil moisture 0.21 cm cm" .

(b) W-Polarization

Figure 3.3(a)-(c) show the scattering behavior of four different soil texture

fields in specular direction for VV-polarization having soil moisture values 0.10 cm

cm"3, 0.15 cm3 cm"3 and 0.21 cm3 cm"3, respectively. For VV-polarization, at lower

incidence angle (i.e., < 50°), less changes are observed in specular scattering

coefficient with the change in soil texture field for all moisture conditions. But, better

differentiation in specular scattering coefficient was observed at 50° and 60°

incidence angle. With the study of moisture effect it is noticed that the change in

specular scattering coefficient is better observed with moist soil than for dry soil for

both like polarizations (Figure 3.2 and 3.3). Further, at higher incidence angles (i.e., >

50°), differentiation in specular scattering coefficients are better than lower incidence

angles for all considered moisture values. It can be observed form Figure 3.3(a) that
specular scattering coefficient differentiation is more at 60° incidence angle when the

percentage of sand changes from 78.3% to 38.7%. The percentage of sand decreases
from 78.4% to 38.7% from Field 1 to Field 4 and with decrease in percentage of sand,

a decrease in specular scattering coefficient can be observed at 60° incidence angle
3 3(Figure 3.3(a)). In a similar manner, for higher moisture content, i.e., 0.15 cm cm

and 0.21 cm3 cm"3, it can be observed form Figure 3.3(b) and (c) that the specular

3
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y

V

scattering coefficient decreases with the decrease in sand percentage at 60° incidence

angle.

If we compare the angular variation results of HH-polarization and VV-

polarization, similar decreasing behavior of specular scattering coefficient with
incidence angle at low soil moisture values (volumetric soil moisture 0.10 cm cm")
is observed for both like polarizations (Figure 3.2(a) and 3.3(a)). Whereas, due to

increase in moisture content from 0.15 cm3 cm"3 to 0.21 cm3 cm"3, an increment of
specular scattering coefficient is observed at higher incidence angles (i.e., > 50°) for
HH-polarization (Fig. 3.2(b) and 3.2(c)). Very less changes were observed (Fig.
3.3(b) and (c)) for VV-polarization.
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Figure 3.3. Response ofspecular scattering coefficient for different soil texture fields
with varying incidence angle for smooth surface in VV-polarization (a) volumetric

soil moisture 0.10 cm3 cm"3 (b) volumetric soil moisture 0.15 cm3 cm"3 (c) volumetric
soil moisture 0.21 cm cm" .

3.4.3. Periodic Surface Roughness Effect on Response of Specular

Scattering from Different Soil Texture Fields

(a) HH-polarization

Figures 3.4 and 3.5 show the specular scattering response in HH-polarization

for four different soil texture fields at various soil moisture contents when the rms

surface height is 0.9 cm. It can be observed form Figure 3.4(a) that it is difficult to

observe any change in specular scattering coefficient for different soil texture fields at
rms surface height 0.9 cm for dry soil at all incidence angles. The change in specular

scattering coefficient can be observed for different soil texture fields at all incidence

angles for different soil moisture contents (0.10, 0.15 and 0.21 cm3 cm"3) at rms
surface height 0.9 cm (Figure 3.4(b) to 3.4 (d)). However, it is difficult to define any
trend ofspecular scattering coefficient, i.e., there is no any certainty in the behavior of
specular scattering coefficient with change in soil texture. The specular scattering
coefficient, at one particular incidence angle show a decreasing behavior (e.g., 70°)
for the change in soil texture (Field 1to Field 4) whereas, at any other incidence angle
it shows an entirely different trend. Therefore, it is difficult to describe any changing

trend of specular scattering coefficient with change in soil texture at rms height 0.9
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cm for different soil moisture contents. Figure 3.5 explains that for specular scattering

behavior at rms surface height 1.4 cm, similar conclusion can be drawn. In this regard,

it may be inferred that it is difficult to make any decision regarding the change in
specular scattering coefficient with change in soil texture at different periodic
roughness values (i.e., 0.9 and 1.4 cm) in HH-polarization for various soil moisture

contents (i.e., dry soil to volumetric soil moisture 0.21 cm cm" ).
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Figure 3.4. Response ofspecular scattering coefficient for different soil texture fields

with varying incidence angle for rms surface height 0.9 cm in HH-polarization (a)

Dry soil (b) volumetric soil moisture 0.10 cm3 cm"3 (c) volumetric soil moisture 0.15
cm3 cm"3 (d) volumetric soil moisture 0.21 cm cm" .
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Figure 3.5. Response of specular scattering coefficient for different soil texture fields

with varying incidence angle for rms surface height 1.4 cm in HH-polarization (a)

Dry soil (b) volumetric soil moisture 0.10 cm3 cm"3 (c) volumetric soil moisture 0.15
cm3 cm"3 (d) volumetric soil moisture 0.21 cm cm" .
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(b) VV-Polarization

The specular scattering response in VV-polarization at rms surface height 0.9
cm and 1.4 cm has been shown in Figures 3.6 and 3.7 respectively for four different

soil texture fields at different soil moisture content. It can be observed form Figure

3.6(a) and 3.7(a) that approximately same specular scattering coefficient has been
observed for different soil texture fields at all incidence angles for dry soil. The rms

surface height ofthese fields was 0.9 cm and 1.4 cm respectively. Change in moisture
condition (i.e., 0.10 cm3 cm"3 to 0.21 cm3 cm"3), causes change in specular scattering
coefficient for different soil texture fields (Figures 3.6(b)-3.6(d) and Figures 3.7(b)-

3.7(d)). However, again, as with the case of HH-polarization, in VV-polarization
also, it has been difficult to observe a clear trend in specular scattering coefficient

with change in soil texture for periodic surface roughness 0.9 cm and 1.4 cm.

Therefore, the observation of specular scattering coefficient at different soil

periodic surface roughness conditions (i.e., 0.9 cm and 1.4 cm) when the objective is
to check the effect of soil texture, it is difficult to analyze the soil texture effect on

specular scattering coefficient in both like polarizations at 10 GHz. Although, the
change in specular scattering coefficient can be observed at different incidence angles,
a clear behavior is difficult to be inferred. It infers that it is difficult to make the

distinction among different soil texture fields based on specular scattering coefficient

in presence ofperiodic surface roughness in both like polarizations at 10 GHz. The
difficulty in observing the soil texture effect in presence of surface roughness at 10

GHz may be the shorter wave length (i.e., 3cm) that is comparable to the rms surface

height (i.e., 0.9 and 1.4 cm).
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Figure 3.6. Response of specular scattering coefficient for different soil texture fields
with varying incidence angle for rms surface height 0.9 cm in VV-polarization (a)

Dry soil (b) volumetric soil moisture 0.10 cm3 cm"3 (c) volumetric soil moisture 0.15
cm3 cm"3 (d) volumetric soil moisture 0.21 cm cm" .
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Figure 3.7. Response ofspecular scattering coefficient for different soil texture fields
with varying incidence angle for rms surface height 1.4 cm in VV-polarization (a)

Dry soil (b) volumetric soil moisture 0.10 cm3 cm"3 (c) volumetric soil moisture 0.15
cm3 cm"3 (d) volumetric soil moisture 0.21 cm cm" .

3.5. Conclusion

This chapter analyses the angular with like polarization specular scattering
response for different soil texture fields at various soil moisture and periodic surface
roughness conditions at X-band. Significant changes in specular scattering coefficient
were observed with change in soil texture in HH-polarization whereas, lesser changes

in specular scattering coefficient were observed in VV-polarization for the dry and
smooth soil. It was observed that change in soil texture, i.e., percentage of sand, silt

and clay causes change in specular scattering coefficient in HH-polarization more
prominently at higher incidence angles (i.e., > 50°) whereas, it was difficult to
observe the changes in specular scattering coefficient at lower incidence angles (i.e., <

50°). Moisture conditions of different soil texture fields were changed in controlled
environment to check the effect of specular scattering coefficient with change in soil

texture in presence of soil moisture. The observations revealed that the change in
specular scattering coefficient occurs for change in percentage of sand from 78.4 to
38.7 at various soil moisture contents (i.e., 0.10 cm3 cm"3 to 0.21 cm3 cm" ) and
smooth surface. Periodic surface roughness of different fields were changed to study

its effect on specular scattering coefficient for different soil texture fields. Change in

59

I



periodic surface roughness has major effect on specular scattering coefficient at 10
GHz when the objective is to analyze different soil texture fields with specular

scattering coefficient. It has been difficult to observe a specified trend in change of
specular scattering coefficient for change in soil texture at different periodic surface
roughness values (i.e., 0.9 and 1.4 cm) inboth like polarizations.

Therefore, the study points out that soil texture information can be obtained

with specular scattering coefficient at 10 GHz for moist and smooth surface whereas
no significant change in specular scattering coefficient have been observed for
periodic surface in both like polarizations. The effect of soil texture is easily
observable for smooth surface at various soil moisture contents in both like

polarizations at higher incidence angles whereas, it is difficult to observe aclear trend
in specular scattering coefficient with change in soil texture in both like polarizations

at all incidence, whatever be the soil moisture content.
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Chapter 4

Study of Specular Scattering Response

for Soil Texture at 6 GHz (C-band)

with the Change in Soil Moisture and

Surface Roughness Conditions

Wavelength contributes a major role in radar remote sensing observations

along with the other sensor parameters, i.e., polarization and incidence angle. It is the

wavelength that decides the roughness and smoothness of the surface. A surface that

is considered as smooth for one particular wavelength may be considered as rough for

other particular wavelength. Rayleigh criterion for characterizing the surface as

smooth or rough is used in case of optical region, while for modeling the scattering

behavior of natural surfaces in microwave region we use Fraunhofer criterion for

characterizing the surface roughness [202]. A surface is considered smooth according

to Rayleigh criterion if the rms surface height is less than (A/8 cos9) whereas,

according to Fraunhofer criterion surface is smooth if rms surface height < (A/32 cos#)

I



[202], where, Xand 9 are the operating wavelength and incidence angel, respectively

as discussed in Section 1.3.1(c). Further, penetration of wave into the medium is also

a wavelength dependent parameter. A shorter wavelength penetrate less into the

medium whereas, a longer wavelength penetrates more as discussed in Section

1.3.1(c). Therefore, it is always of considerable interest to analyze the response of soil

parameters, i.e., soil texture, soil moisture and surface roughness at different

wavelength. A study of specular scattering coefficient at X-band (10 GHz frequency

or 3 cm wavelength) has been carried out in Chapter 3 and it is observed that this

frequency is not so suitable for observing the soil texture at high periodic roughness

and moisture conditions. So, to explore bi-static aspect further, we have considered

C-band (frequency = 6 GHz) for soil texture analysis. Therefore, in this chapter the

change in specular scattering coefficient for different soil texture with variation in soil

moisture and periodic surface roughness has been studied at 6 GFIz frequency of C-

band.

4.1. Introduction

The significance of experimental analysis has been discussed in Chapter 3

whereas in Chapter 2 the importance of observation in bistatic domain has been

discussed. The specular scattering coefficient is a function of sensor parameters as

well as soil parameters. The objective of the study is to analyze and retrieve the soil

parameters which can be fulfilled by optimized selection of sensor parameters. The

study in Chapter 2 at X-band was carried out at 10 GHz in both like polarizations at

various incidence angles. The major objective was to check the response of soil

texture on specular scattering coefficient and it was observed that for dry soil with

smooth surface, the effect of soil texture was clearly observed on specular scattering

coefficient at 10 GHz. The study of change in moisture while keeping the periodic

surface roughness smooth led to the conclusion that at different moisture values the

effect of soil texture on specular scattering is quite significant at 10 GHz. Whereas,

the change in periodic surface roughness has drastic effect on the observations of soil

texture effect for specular scattering coefficient, i.e., it was difficult to observe the

clear behavior of change in specular scattering coefficient for change in soil texture at

10 GHz. This kind of observation led to study the behavior of soil parameters at other
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wavelengths. Therefore, the study was carried out at 6 GHz in both like polarizations

at various incidence angles. In the initial phase the study was carried out for some of

the soil texture fields only to check the behavior of soil texture on specular scattering

coefficient in the presence of periodic roughness and moisture. The obtained results

were quite encouraging and it was observed that the effect of soil texture on specular

scattering coefficient can be observed at different soil moisture contents as well as at

different periodic surface roughness conditions which was not the case at 10 GHz.

Therefore, a wider range of periodic surface roughness and moisture conditions were

considered, i.e., ten different soil texture fields were studied at 6 GHz where each

field has six moisture and five periodic roughness conditions.

This chapter has been organized as following:

A detailed description of different field conditions has been given in Section

4.2. The methodology of experiment performed is discussed in Section 4.3. Section

4.4 presents the results and analysis part and finally Section 4.5 draws the conclusion.

4.2. Test Fields and Observations Carried Out

Ten different soil texture fields were prepared on the basis of change in its

constituent, i.e., percentage of sand silt and clay. Field size of different soil fields was

2 m x 2 m. Table 4.1 provides the quantitative values of soil constituent of ten

different fields. Soil moisture and surface roughness are inherent soil parameters for

natural soil therefore, it is very much important to check the effect of soil moisture

and surface roughness on specular scattering coefficient for different soil texture

fields. In this regard, the analysis of soil texture for specular scattering coefficient was

carried out for six different soil moisture conditions with one smooth and five

periodic roughness conditions. Table 4.2 and 4.3 give details of soil moisture and

periodic surface roughness conditions, respectively. Table 4.4 shows the different

combination of fields prepared for the observations.

4.3. Methodology

The experiment was carried out to compute specular scattering coefficient at 6

GHz with Equation 1.12 as discussed in Chapter 1. The response of specular

scattering coefficient was studied in both like polarizations, i.e., HH- and VV-

63

I



polarization, by varying incidence angle form 25° to 70° in step of 5° for different

fields. The description offield conditions are given inTables 4.1, 4.2 and 4.3 and total

360 fields conditions have been analyzed to study the response of specular scattering

coefficient. A detailed description of experimental setup and computation of specular

scattering coefficient has been given in Section 1.3.

Table 4.1. Soil constituent of 10 different soil texture fields used for observations

% of Sand % of Silt % of Clay % of Gravels

Field 1 85.3 7.5 2.5 4.1

Field 2 62.6 26.1 5.3 5.2

Field 3 47.2 32.7 15.4 4.5

Field 4 24.6 20.1 48.7 6.3

Field 5 25.5 41.3 21.7 11.2

Field 6 17.4 51.2 20.8 10.4

Field 7 11.2 70.6 4.8 13.1

Field 8 12.8 29.3 51.5 5.6

Field 9 7.5 23.4 64.2 4.8

Field 10 2.3 10.3 81.6 5.6

Table 4.2. Volumetric soil moisture values used for each field

I»v7

cm" cm"3

mv2 mv3 mv4 mr,

cm3 cm"3 cm3 cm"3 cm3 cm"3 cm3 cm"3 J^
Field 1 0.028 0.083 0.201 0.265 0.346 0.420

Field 2 0.030 0.096 0.183 0.281 0.379 0.403

Field 3 0.031 0.104 0.174 0.240 0.351 0.441

Field 4 0.023 0.108 0.197 0.255 0.395 0.415

Field 5 0.028 0.114 0.181 0.270 0.380 0.411

Field 6 0.024 0.091 0.207 0.258 0.373 0.426

Field 7 0.025 0.097 0.168 0.261 0.361 0.408

Field 8 0.027 0.084 0.212 0.274 0.382 0.434

Field 9 0.023 0.081 0.176 0.252 0.386 0.441

Field 10 0.026 0.098 0.185 0.255 0.390 0.455

mean 0.027 0.096 0.188 0.261 0.374 0.425

STDEV 0.003 0.011 0.015 0.012 0.017 0.017
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Table 4.3. Periodic roughness measurement for different fields

rms surface Correlation

height (.v) cm length (7) cm

S]

(smooth surface)

h

(smooth surface)

52 = 0.43 h = 4.68

s3 = 0.94 h = 5.66

54=1.51 /4 = 5.39

55 = 2.11 /5 = 4.47

56 = 2.46 /6 = 4.55

Table 4.4. Different combination of fields (360) prepared for the observations

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(*i, A) (*i,/i) (*i, h) (*,/i) (su /.) (su /,) (*i, /.) (sh h) (*.,/|) (*i,/|)

fob h) (s2, h) fe h) (** h) fe, h) (s2, h) (S2, h) (S2, h) (s2, h) (S2, k)

(S3, h) (S3, h) fe, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, l4) (s4, l4) (s4, U) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, U) (s4, U) (s4, h)

(*, Is) (ss, h) (ss, h) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, h)

(s6, k) (Sb, k) (sb, k) (S6, k) (sb, k) (Sb, k) (Sb, k) (Sb, k) (Sb, k) (Sb, U)

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(su /,) (su h) G»i, /.) (sh /.) (su h) (su /.) (su /,) (su h) (*>, /.) (su /.)

(S2, h) (S2, h) (S2, h) (s2, k) (s2, h) (S2, h) (s2, h) (s2, h) (s2, h) (Si, h)

(S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, U) (s4, U) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, U)

(ss, Is)(ss, h) (ss, Is) (Si, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is)

(Sb, k) (Sb, lb) (Sb, k) (Sb, lb) (Sb, k) (Sb, k) (Sb, lb) (Sb, lb) (Sb, k) (Sb, k)

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(SU /|) (*i, h) (su /,) (*i,/|) (sx,h) (*i, h) (*i, h) (suh) (Suh) (Su /,)

(S2, h) (St, h) (S2, k) (si, h) (S2, h) (S2, h) (s2, h) (s2, h) (s2, h) (s2, h)

(S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, l4) (s4, l4) (s4, U) (s4, l4) (s4, l4) (s4, U) (s4, k) (s4, U) (s4, U) (s4, k)

(ss, Is) (ss, h) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, h) (ss, Is) (ss, Is) (ss, Is)

(Sb, k) (Sb, k) (Sb, k) (Sb, U) (s6, lb) (Sb, lb) (Sb, lb) (Sb, lb) (Sb, lb) (Sb, k)
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Table 4.4. Continued...

m W

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(*i, h) C*i, h) (Su h) (*i. h) (*i, h) (su h) (su h) (su h) fa, h) (suh)

(s2, h) (S2, h) (S2, h) (S2, h) (s2, h) (S2, h) (s2, h) (S2, h) (S2, h) (Si, h)

(S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, l4) (s4, l4) (s4, U) (s4, U) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, U) (s4, h)

(ss, Is) (ss, h) (ss, h) (ss, Is) (ss, Is) (Si, Is) (ss, h) (ss, Is) (ss, Is) (Si, Is)

(sb, k) (Sb, lb) (Sb, k) (Sb, lb) (Sb, k) (Sb, k) (Sb, k) (s6, k) (Sb, lb) (Sb, k)

m vS

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(su h) (Suh) (sult) C»i, h) (Su h) (su h) (suh) (suh) (*i, h) (*i, h)

(s2, h) (S2, h) (S2, h) (s2, h) (S2, h) (s2, h) (s2, h) (s2, h) (s2, h) (s2, h)

(S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, U) (s4, U) (s4, L) (s4, U) (s4, l4) (s4, l4) (s4, h) (s4, l4) (s4, U) (s4, U)

(ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is)

(Sb, lb) (Sb, k) (Sb, k) (Sb, U) (Sb, lb) (Sb, lb) (Sb, lb) (s6, lb) .(^6, 4) (Sb, lb)

m v6 \

Fl F2 F3 F4 F5 F6 F7 F8 F9 F10

(su h) (su h) (Su h) (suh) (su h) C»i, h) (su h) (Su h) (*i, h) (MO

(s2, h) (s2, h) (S2, h) (s2, h) (S2, h) (s2, h) (s2, h) (s2, h) (s2, h) (s2, h)

(S3, h) (S3J3) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h) (S3, h)

(s4, h) (s4, U) (s4, U) (s4, l4) (s4, l4) (s4, l4) (s4, l4) (s4, U) (s4, h) (s4, h)

(ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, Is) (ss, h) (ss, Is) (Si, Is) (ss, Is)

(Sb, k) (s6, k) (Sb, k) (Sb, k) (Sb, k) (Sb, lb) (Sb, k) (Sb, h) (Sb, k) (sb, lb)

Fl to F10 denotes the Field 1 to Field 10

4.4. Results and Discussions

4.4.1. Specular Scattering Analysis for Smooth Surface

Angular variation of specular scattering coefficient for different soil texture

and moisture for both like polarizations are shown in Figures 4.2 and 4.3 and details

about the fields are given in Tables 4.2 and 4.3.
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(a) Specular Scattering Response for Different Dry Soil Texture fields in HH-

Polarization

Discrimination in specular scattering coefficient can be observed in different

soil texture fields at 6 GHz for dry soil, i.e., mv =0.027 cm3 cm"3 (Figure 4.1(a)). Field

1(sand = 85.3%, silt = 7.5%, and clay = 2.5%) which consists of maximum amount of

sand have Angular Dynamic range in Specular Scattering Coefficient (ADSSC) of 9.8

dB while Field 10 (sand = 2.3%, silt = 10.3%, and clay = 81.6%) which contains the

maximum amount of clay have ADSSC of 13.6 dB with incidence angle. The

observation suggests that the discrimination between sandy soil and clay soil can be

made on the basis of the specular scattering coefficient. It was observed that with the

decrease of sand percentage in soil (Field 1 to Field 4) the ADSSC increases, whereas

the increase in ADSSC occurs with the increase in clay percentage in soil (Field 7 to

field 10). Further, major changes in silt percentage (Field 5 to Field 7) have lesser

effect on specular scattering coefficient and the ADSSC remain approximately 12.2

dB. These observations are clearly evident in Figure 4.1(a). Therefore, it may be

inferred that when the silt constituent in the soil is changed from the 41.3% to 70.6%

it has the minimum effect on the specular scattering coefficient for 6 GHz in HH-

polarization. Further, in case of higher incidence angle (i.e., > 45°) decrease in

specular scattering coefficient is observed with the decrease in sand percentage, i.e.,

decreasing the sand percentage from 85.3% to 24.6%, whereas keeping the percentage

of sand and clay lower in soil and making the changes in silt percentage in major

amount does not affect the specular scattering coefficient significantly and provides a

kind of saturation in specular scattering coefficient (Figure 4.1(a)). Additionally, a

decrease in specular scattering coefficient is again observed with the increase in clay

percentage from 51.5% to 81.6%> (Figure 4.1(a)).

The observations made with different soil texture field for dry soil at 6 GHz in

HH-polarization suggest that the higher incidence angle (> 45°) better discriminate

between different soil texture fields and the changes made in sand constituent and

clay constituent have greater effect on the specular scattering coefficient, whereas the

change in silt constituent has very less effect on specular scattering coefficient [157].
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(b) Specular Scattering Response for Different Moist Soil Texture Fields in HH-

Polarization

To study the effect of soil moisture on different soil texture fields, fields were

irrigated artificially. The details about the fields are given in Table 4.2. Figures

4.1(b)-(f) explain the angular behavior of specular scattering coefficient when the

volumetric soil moisture contents were 0.096 cm3 cm"3, 0.188 cm3 cm"3, 0.261 cm

cm"3, 0.374 cm3 cm"3 and 0.425 cm3 cm"3, respectively for 10 different soil texture

fields. The effect of soil texture on specular scattering can be noticed for lower soil

moisture contents, i.e., with the change in soil texture field, significant changes in

specular scattering coefficient can be observed (Figures 4.1(b)-(d)). The ADSSC of

11.2 dB, 12.3 dB, and 13.4 dB was observed at volumetric soil moisture contents

0.096 cm3 cm"3 for Field 1, Field 2 and Field 3, respectively. The ADSSC for Field 4

to Field 8 is approximately 14 dB and in case of Field 9 and Field 10 the ADSSC is

14.5 dB and 15.7 dB respectively (Figure 4.1(b)). These observations clearly signify

the soil texture effect on specular scattering coefficient in the presence of lower soil

moisture (i.e., 0.096 cm3 cm"3) and infer that the Field 1 to Field 3 and Fields 9, 10

which has the higher amount of the sand and clay respectively may be the key factors

for changes inspecular scattering coefficient while Field 4 to Field 8 which has higher

amount of the silt has almost same response for the specular scattering coefficient.

Further, with the increase in soil moisture content, it was observed that the ADSSC

for Field 3 to field 8 were approximately same at volumetric soil moisture content

0.188 cm3 cm"3 and 0.261 cm3 cm"3, whereas Field 1 and Field 2 that possess the high

amount of sand (85.3% and 62.6% respectively) have lowest ADSSC while Field 9

and Field 10 that possess the high amount of clay content (64.2% and 81.6%

respectively) have maximum ADSSC (Figures 4.1(c) and (d)). The effect of soil

texture on specular scattering coefficient is difficult to observe at high moisture

content (mv = 0.374 cm3 cm"3 and 0.425 cm3 cm"3), i.e., with the change in soil texture
very less changes occur in specular scattering coefficient (Figures 4.1(e) and (f)). The

effect may arise due to high dielectric constant of water, i.e., after some particular soil

moisture content saturation occurs and moisture effect dominates the soil texture

effect. Further, Figure 4.1(b)-(d) suggest that for soil moisture less than or equal to

0.261 cm3 cm"3, higher incidence angle (> 45°) provide the better changes in specular
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scattering coefficient for the change in sand constituent (Field 1 to Field 3) and clay

constituent (Field 8 to Field 10) but lesser changes have been observed for the change

in silt constituent (Field 4 to Field 7).

Observation with the moisture content in soil for different soil texture field at

6 GHz in HH-polarization infer that the sand and clay constituent of the soil has its
3 -3effect on specular scattering coefficient for soil moisture content up to 0.261 cm cm"

whereas the silt constituent has the minimum effect at 6 GHz. The effect is more

prominent at higher incidence angel (i.e., > 45°). Soil moisture content higher than
0.261 cm3 cm"3 provides minimum changes in specular scattering coefficient with

change in soil texture and only the angular variation was observed.
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Figure 4.1. Specular scattering coefficient behavior with incidence angle for 10

different soil texture fields in HH-polarization. (a), (b), (c), (d), (e), and (f) show
volumetric soil moisture content 0.027 cm3 cm"3, 0.096 cm3 cm"3, 0.188 cm cm" ,

0.261 cm3 cm"3, 0.374 cm3 cm"3, and 0.425 cm3 cm"3 respectively.

(c) Specular Scattering Response for Different Dry Soil Texture fields in VV-

Polarization

Figure 4.2(a) provides the insight for the variation in specular scattering

coefficient with incidence angle in VV-polarization for 10 different soil texture fields

for dry soil (i.e. volumetric soil moisture is 0.027 cm3 cm"3). The change in specular
scattering coefficient was observed with the change in soil texture in VV-polarization
also, as was the case with HH-polarization. Figure 4.2(a) explains the behavior of

specular scattering coefficient for dry soil and the observation infers that higher
incidence angle (i.e., > 45°) has better discrimination for different soil texture field

than at lower incidence angle. It can be observed from Figure 4.2(a) that a sharp

decrease in specular scattering coefficient occur for all 10 different soil texture fields

at 60° incidence angle. This phenomenon may be due to Brewster angle effect in VV-

polarization. Brewster angle is characterized as the incidence angle at which all the
incident power is transmitted and theoretically there should be no reflected power.

But, the undulation and inhomogeneity in the medium provide lower values of

specular scattering coefficient.

The observations at 6 GHz in VV-polarization for dry soil with different soil

texture fields suggest the utilization of the higher incidence angles (i.e., > 45°) for soil

texture characterization.
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(d) Specular Scattering Response for Different Moist Soil Texture Fields in VV~

Polarization

Figure 4.2(b)-(f) explains the angular behavior of specular scattering
-1-3 3

coefficient when volumetric soil moisture contents were 0.096 cm cm" , 0.188 cm

cm"3, 0.261 cm3 cm"3, 0.374 cm3 cm"3 and 0.425 cm3 cm"3, respectively for 10
different soil texture fields in VV-polarization. A shift in Brewster angle from 60° to

65° is observed with the increase in soil moisture, i.e., mv = 0.096 cm cm" (Figure

4.2(b)). This occurs due to change in dielectric constant of soil with moisture content

that causes the shift in Brewster angle. Further, at volumetric soil moisture content

0.188 cm3 cm"3 only the soil with higher clay content (Field 8, Field 9, and Field 10)

exhibits the Brewster angle effect while the soil with higher sand or silt content (Field

1 to Field 7) does not exhibit Brewster angle (Figure 4.2(c)). This may be due to the

lower dielectric constant of soil having greater amount of clay constituent and high

dielectric constant of soil having high amount of sand or silt constituent. Similar

results were also found by De Roo and Ulaby [43] and Nashashibi and Ulaby [140].

The Brewster angle effect is not observed at high moisture values (Figure 4.2(d)-(f)).

Further, it may benoticed from Figure 4.2(e) and (f) that when the moisture content in

soil is high (mv = 0.374 cm3 cm"3 and 0.425 cm3 cm"3 respectively), approximately
same specular scattering coefficient values have been obtained with the change in soil

texture at all incidence angle. Albeit, at these high moisture contents the ADSSC for

soil having high amount of sand (Field 1) and high amount of clay (Field 10) show

significant changes. ADSSC for Field 1 (sand = 85.3%, silt = 7.5%, and clay = 2.5%)

is 22.9 dB and ADSSC for Field 10 (sand = 2.3%, silt = 10.3%, and clay = 81.6%) is

26.6 dB.

The observation made with moist soil for different soil texture field at 6 GHz

in VV-polarization suggest the use of higher incidence angle (i.e., > 45°) as was the

case with HH-polarization. The Brewster angle effect has not been observed for soil

moisture content equal to or greater than 0.261 cm3 cm"3 and the discrimination for

the high amount of sand in soil (Field1) and high amount ofclay in soil (Field 10) can

be made at all soil moisture values. Further, the effect of silt constituent on specular

scattering coefficient is minimum as was observed inHH-polarization.
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Figure 4.2. Specular scattering coefficient behavior with incidence angle for 10
different soil texture fields in VV-polarization. (a), (b), (c), (d), (e), and (f) show
volumetric soil moisture content 0.027 cm3 cm"3, 0.096 cm3 cm"3, 0.188 cm3 cm"3,

0.261 cm3 cm"3, 0.374 cm3 cm"3, and 0.425 cm3 cm"3 respectively.
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4.4.2. Specular Scattering Analysis for Rough and Moist Soil Surfaces
Figures 4.3 to 4.12 show the angular response of specular scattering

coefficient for different soil texture fields at various soil moisture and periodic surface

roughness conditions for both like polarizations, i.e., HH- and VV-polarization at 6

GHz.

(a) Specular Scattering Response with Change in Soil Moisture Content in HH-

Polarizationfor Constant Roughness

Figures 4.3(a)-(f) show the angular response of specular scattering coefficient

for different soil textures and soil moisture at rms surface height 0.43 cm and

correlation length 4.68 cm in HH-polarization. The ADSSC (i.e., minimum to

maximum value of specular scattering coefficient for all incidence angle) for Field

l(sand = 85.3%, silt = 7.5% and clay =2.5%) which consists of the maximum amount

of sand is 11.04 dB, whereas for Field 10 (sand = 2.3%, silt = 10.3%, and clay

=81.6%) which consist of maximum amount of clay percentage the ADSSC is 14.26

dB at volumetric soil moisture 0.028 cm3 cm"3 (Figure 4.3(a)). This observation

indicates that the separation between the sandy soil and clay soil can be done based on

the specular scattering coefficient. It can be observed from the Figure 4.3(a) that the

ADSSC increases with the decrease in sand percentage, e.g., the ADSSC for the Field

l(sand = 85.3%, silt = 7.5%, and clay =2.5%) is 11.04 dB, for Field 2 (sand = 62.6%,

silt = 26.1%, and clay =5.3%) is 11.35 dB and for Field 3 (sand = 47.2%, silt =

32.7%, and clay = 15.4%) is 11.47 dB, whereas the ADSSC again increases with the

increase in clay percentage in soil, e.g., the ADSSC for the Field 9 (sand = 7.5%, silt

= 23.4%, and clay =64.2%) is 13.81 dB and for Field 10 (sand = 2.3%, silt = 10.3%,

and clay =81.6%) is 14.28 dB. However, the major changes in silt percentage have

very less effect on specular scattering coefficient. Further, the observations (Figures

4.3(a)-(d)) at lower incidence angel (i.e., 9 < 45°) show almost same specular

scattering coefficient for different soil texture fields, whereas the distinction among

different soil texture fields can be done at higher incidence angle (i.e., > 45°). Use of

higher incidence angle for soil parameters characterization has also been

recommended by various researches [30, 140, 156, 180] for scattering in specular

direction. Very less angular variation of specular scattering coefficient at lower

incidence angle (i.e., 9 < 45°) was observed for all ten soil texture fields at volumetric
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soil moisture 0.258 cm3 cm"3 and higher (Figures 4.3(d)-(f)) whereas, significant

angular variation in specular scattering coefficient was observed for higher incidence

angles (i.e., > 45°) (Figures 4.3(d)-(f)). In addition, the observation from Figures

4.3(e) and (f) revealed approximately the same specular scattering coefficient for

different soil texture fields at all incidence angles when soil moisture content is more

than or equal to 0.368 (i.e., mv > 0.368). The higher soil moisture values signify the

higher amount of water in soil medium, therefore this high amount of water has

greater effect onthe specular scattering coefficient and may minimize the contribution

of the soil texture on the specular scattering coefficient.
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Figure 4.3. Represents the change in specular scattering coefficient with incidence
angel for five different soil textue fields in HH-polarization at rms surfcace height

0.43 and correlation length 4.68 when volumetric soil moisture (cm cm") is (a)
0.027, (b) 0.092, (c) 0.195, (d) 0.258, (e) 0.368, and (f) 0.435.

(b) Specular Scattering Response in HH-Polarizationfor Change in Periodic Surface

Roughness andMoisture Content

Figures 4.3 to 4.7 explain the angular behaviour of the specular scattering

coefficient for five different soil texture fields at six soil moisture contents in HH-

polarization when the rms surface heights and correlation lengths (s, I) are (0.43 cm,
4.68 cm), (0.94 cm, 5.66 cm), (1.51 cm 5.39 cm), (2.11 cm, 4.47 cm) and (2.46 cm

4.55 cm) respectively. Fields were prepared as discussed in Chapter 1. It is noticed
that the ADSSC for the Field 1(sand = 85.3%, silt = 7.5%, and clay =2.5%) and Field

10 (sand = 2.3%, silt = 10.3%, and clay =81.6%) for periodic roughness (s2, h) is
11.04 dB and 14.26 dB, respectively (Figure 4.3(a)), at volumetric soil moisture 0.027

cm3 cm"3. Similarly, the ADSSC for the Field 1 and Field 10 for periodic roughness

(s3, h) is 10.58 dB and 13.08 dB (Figure 4.4(a)), for periodic roughness (s4, U) is
10.27 dB and 12.45 dB (Figure 4.5(a)), for periodic roughness (s5, h) is 7.27 dB and

10.43 dB (Figure 4.6(a)), for periodic roughness (s6, h) is 2.48 dB and 5.63 dB
(Figure 4.7(a)), respectively. These observations suggest that the separation between
the sandy soil and the clay soil can be made on the basis of the specular scattering
coefficient even at the moderately high periodic surface roughness values when the

soil moisture content is 0.027 cm3 cm"3. Observations made at other volumetric soil

moisture contents (0.092 cm3 cm"3, 0.195 cm3 cm"3, and 0.258 cm3 cm"3) also show
the similar behavior, i.e., differentiation in the sandy soil and clay soil can easily be
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made on the basis of the specular scattering coefficient for a range of periodic

roughness values (s =0.43 to 2.46 cm and /=4.47 to 5.66 cm). Such as, at volumetric
soil moisture 0.258 cm3 cm"3 the ADSSC for the sandy soil (Field 1) with the

incidence angle for periodic roughness (s2, h), fa, h), (s4, U), fa, h), and fa, h) are
11.95 dB, 11.67 dB, 11.11 dB, 10.82 dB, and 6.05 dB, respectively and for the clay

soil (Field 10) the ADSSC is 14.56 dB, 13.12 dB, 13.72 dB, 7.80 dB and 3.71 dB,

respectively. The observations at the higher soil moisture content, i.e., mv =0.368 cm
cm"3 and mv = 0.435 cm3 cm"3, imply that there are negligible changes in the specular

scattering coefficient with the change in soil texture, irrespective of the periodic

surface roughness condition. The effect may arise due to the increased amount of
water in the soil medium which minimizes the effect of soil texture on specular

scattering.

Additionally, it is noticed that the ADSSC decreases with the increase in rms

surface height, e.g., for the Field 1 at volumetric soil moisture 0.027 cm cm" the

ADSSC for periodic roughness fa, h), (S3, h), fa, h), fa, h), and fa, k) are 11.04 dB,
10.58 dB, 10.27 dB, 7.27 dB, and 2.48 dB, respectively. Similar results were observed

for the different soil texture fields and at all soil moisture conditions, i.e., the decrease

in the ADSSC with increase in rms surface height and vice versa.
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(c) Specular Scattering Response with Change in Soil Moisture Content in VV-
Polarizationfor Constant Roughness

Figures 4.8^1.12 explain the angular behavior of the specular scattering
coefficient for five different soil texture fields at various moisture contents and

periodic surface roughness conditions at 6GHz in VV-polarization. The ADSSC with
incidence angel when s = 0.43 cm and / = 4.68 cm and volumetric soil moisture
content 0.027 cm3 cm"3, for higher sand constituent in soil i.e., Field 1 and Field 2 are

20.62 dB, 21.16 dB (Figure 4.8(a)), respectively, whereas for high clay content in soil,

i.e., for Field 9 and Field 10 are 23.65 dB and 24.37 dB (Figure 4.8(a)), respectively.

The change in specular scattering coefficient is less for higher silt constituent in soil.
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Therefore, it can be concluded with these observations that the specular scattering

coefficient at 6 GHz is capable of discriminating different soil texture fields in VV-

polarization. The observations suggest that the discrimination among different soil
texture fields is more prominent at higher incidence angel (i.e., 9> 45°) than at lower

incidence angles (i.e., 9 < 45°). Therefore, it may be inferred that higher incidence

angles are more suitable than lower incidence angles for observing soil parameters. It

is noticed that specular scattering coefficient for the different soil texture fields are

approximately same in case ofVV-polarization at higher soil moisture content (i.e.,

0.368 cm3 cm"3 and 0.435 cm3 cm"3) (Figures 4.8(e)-(f)).
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Figure 4.8. Represents the change in specular scattering coefficient with incidence
angel for five different soil textue fields in VV-polarization at rms surfcace height
0.43 and correlation length 4.68 when volumetric soil moisture (cm cm" ) is (a)

0.027, (b) 0.092, (c) 0.195, (d) 0.258, (e) 0.368, and (f) 0.435.

(d) Specular Scattering Response in VV-Polarization for Change in Periodic Surface

Roughness and Moisture Content

Figures 4.8-4.12 explain the behaviour of specular scattering coefficient for

periodic roughness fa, h), fa, h), fa, h), fa, h), and (s$, h), respectively for various

soil moisture contents in VV-polarization at 6 GHz. The change in specular scattering

coefficient was observed for the change in soil texture at all periodic roughness

condition for fixed soil moisture, i.e., the ADSSC for Field 1 and Field 10 for periodic

roughness fa, lj) are 20.62 dB and 24.37 dB, respectively, whereas for periodic

roughness fa, l6) the ADSSC for Field 1 and Field 10 are 18.75 dB and 21.79 dB,

respectively, at volumetric soil moisture content 0.027 cm cm" . Further, the change

in specular scattering coefficient with the change in soil texture for a range of periodic

roughness values are observed up to particular soil moisture content (i.e., mv < 0.258

cm3 cm3). Whereas, negligible changes in specular scattering coefficient with change

in soil texture for a range of periodic surface roughness were observed for the higher

soil moisture content (i.e., 0.368 cm cm" and 0.435 cm cm").

The observations made at HH- and VV-polarization suggest the use of higher

incidence angle to characterize the soil parameters with specular scattering response

at 6 GHz. It was noticed from the 'e' and 'f part of the Figures 4.3-4.12 that there is

no clear cut distinction in specular scattering coefficient with change in soil texture at

all incidence angles in both like polarizations when volumetric soil moisture, mv, is >
90

Hr



0.368. In addition, it was observed in HH-polarization as well as in VV-polarization

that soil periodic surface roughness has very less affect on the response of the

specular scattering coefficient for different soil texture fields, i.e., the differentiation

in different soil texture fields based on specular scattering coefficient can be noticed

for a wide range ofperiodic surface roughness, i.e., s = 0.43 to 2.46 cm and / = 4.47 to

5.66 cm (Figures 4.3-4.12). In case of HH-polarization, it was noticed that the

ADSSC decreases with increases in the rms surface height whereas, such effect was

not observed in the case of VV-polarization.
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Figure 4.10. Represents the change in specular scattering coefficient with incidence
aneel for five different soil textue fields in VV-polarization at rms surfcace height

1.51 and correlation length 5.39 when volumetric soil moisture (cm cm" ) is (a)
0.027, (b) 0.092, (c) 0.195, (d) 0.258, (e) 0.368, and (f) 0.435.
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Figure 4.11. Represents the change in specular scattering coefficient with incidence
angel for five different soil textue fields in VV-polarization at rms surfcace height

2.11 and correlation length 4.47 when volumetric soil moisture (cm cm" ) is (a)
0.027, (b) 0.092, (c) 0.195, (d) 0.258, (e) 0.368, and (f) 0.435.
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Figure 4.12. Represents the change in specular scattering coefficient with incidence
aneel for five different soil textue fields in VV-polarization at rms surfcace height

"IT.

2.46 and correlation length 4.55 when volumetric soil moisture (cm cm" ) is (a)
0.027, (b) 0.092, (c) 0.195, (d) 0.258, (e) 0.368, and (f) 0.435.

4.5. Conclusion

This chapter has analyzed the effect of soil texture on specular scattering

coefficient in the presence ofvarious soil moisture and periodic roughness conditions
at 6 GHz frequency of C-band. Experiments with scatterometer were carried out to
compute the specular scattering coefficient in both like polarizations at different
incidence angles. The analysis ofspecular scattering coefficient have been made for

3 -3
ten different soil texture fields by varying its moisture content from 0.027 cm cm to

0.425 cm3 cm"3 and periodic surface roughness from smooth surface to 2.46 cm rms

height. The change in specular scattering coefficient was observed with change in soil
texture. Sand and clay constituents of soil have major effect on specular scattering

coefficient whereas, very less effect on specular scattering coefficient was observed

for change in silt constituent. The aforementioned observations were made for dry and
smooth soil. It has been an important point to note that the differentiation among

different soil texture fields based on specular scattering coefficient may be prominent

at higher incidence angles (i.e., > 45°) than lower incidence angles (i.e., < 45°).

Presence of soil moisture and periodic surface roughness is quite normal in natural

conditions therefore effect of these parameters has also been studied. Firstly, moisture

contents of the fields have been changed while retaining the surface smoothness. The

observations led to conclude that the differentiation in specular scattering coefficient
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3 -3for change in soil texture can be made up to soil moisture content 0.261 cm cm

whereas, it is difficult to observe the change in specular scattering coefficient for

different soil texture fields for higher moisture content, i.e., mv > 0.374. Further, it

was noticed that the change in periodic surface roughness have very less effect on the

specular scattering coefficient when the interest is in the observation of soil texture,

i.e., the change in specular scattering coefficient can be observed for the change in

soil texture at different surface roughness conditions (i.e., S\ to s6). All these

observations are equally noticeable in both like polarizations (i.e., HH- and VV-

polarization) except for smooth soil in VV-polarization, where at lower soil moisture

(i.e., 0.027 cm3 cm"3, 0.096 cm3 cm"3 and 0.188 cm3 cm"3); Brewster angle effect can
be observed. In a nutshell, it can be inferred that the soil texture has prominent effect

on specular scattering coefficient and different soil texture fields can be distinguished

based on specular scattering coefficient in both like polarizations at higher incidence

angles (i.e., > 45°) for periodic roughness conditions (i.e., s < 2.46 cm) and moisture

content, mv < 0.261 cm3 cm"3 at 6 GHz. Sand and clay constituents have major impact

whereas silt constituent has very less effect on specular scattering coefficient. It was

observed that the specular scattering coefficient decreases with the decrease in

percentage of sand in soil whereas an opposite behavior was observed for clay

constituent, i.e., specular scattering coefficient decreases with the increase in

percentage of clay in soil. This effect has been observed at higher incidence angles

(i.e., > 45°).
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Chapter 5

Retrieval of Soil Parameters for

Bistatic Data over Bare Field

The experimental analysis carried out explains the dependency of the specular

scattering coefficient on soil parameters, i.e., soil texture, soil moisture and periodic

surface roughness. Such observations led to the development of relationship between

the specular scattering coefficient and soil parameters. This will be known as forward

relationship which discusses the change in specular scattering coefficient with the

change in soil texture, soil moisture and surface roughness and can be modeled based

on the empirical developments or theoretical formulations. But, it is always a

challenging task to develop algorithms to retrieve these soil parameters with the

knowledge of scattering coefficient. Because several soil parameters depend on single

scattering coefficient value. The algorithm should be developed in such a way which

should be efficient to provide the promising solution for retrieval of soil parameters

and at the same time should be simple enough to be applied on the data and it should

require less apriori information. Therefore, after a rigorous study of various

algorithms which are available for retrieval of soil parameters over bare fields, this



chapter discusses two approaches based on the copolarization ratio and multi-

incidence angle to retrieve the soil parameters with requirement of less apriori

information.

5.1. Introduction

Different soil parameters, i.e., soil moisture, surface roughness and soil texture

play different roles in various applications. The information about the distribution of

soil moisture plays key role in prediction of erosion, irrigation scheduling, improving

crop yield prediction, climatology, meteorology as well as works as the indicator of

general plant health [132, 135, 153, 169, 174]. Soil surface roughness is a significant

factor in predicting infiltration, soil runoff, and flooding. It traps the water, due to

which infiltration increases which in turn prevents soil runoff [80,115, 150, 182].

Further, texture is one of the most important soil characteristics because it influences

many other properties of great significance to land use and management, such as

porosity, infiltration, water holding capacity, and erodibility [32, 55, 119, 156]. These

diversities in applications prompt to have the knowledge of spatial distribution of soil

parameters. It has been discussed in Chapter 1 and Chapter 2. Quantitative analysis of

these parameters canbe obtained by the conventional methods which include the field

visits and the measurements made during the field visits are type of point

measurement. Conventional methods have two major limitations. Firstly, these are the

point measurements and difficult to extend for a wide area due to the spatial

variability in soil parameters and secondly, soil parameters especially soil moisture

and surface roughness show temporal behavior and it is very cumbersome task to

make field visits in frequent intervals of time to monitor these changes. The solution

to these limitations lie with the radar remote sensing that has the capability to measure

these soil parameters and it is much versatile to give the spatial distribution of soil

parameters with the satellite based sensors as well as its temporal revisit can provide

the estimation of soil parameters in frequent intervals. Most of the active microwave

sensors on board satellite are in monostatic domain. Though, significant research is

going on to retrieve the soil parameters in monostatic domain still the desired

accuracy have to be obtained. It is discussed in Chapter 2 that the bistatic domain may

prove itself worthy for retrieval of soil parameters because of its several advantage
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over monostatic domain. Therefore, this chapter discusses the methodology based on

the experiment carried out in bistatic domain. Details regarding the experiment and

the methodology to retrieve the specular scattering coefficient have been discussed in

Chapter 1. In Chapters 3 and 4 the analysis of specular scattering coefficient for

change in soil texture with the variation in soil moisture and periodic surface

roughness conditions at 10 GHz and 6 GHz has been discussed, respectively. Change

in specular scattering coefficient was observed for change in soil texture for smooth

and dry soil at 10 GHz frequency as well as at 6 GHz frequency for both like

polarizations, i.e., HH- and VV-polarization. But, 10 GHz (X-band) possesses the

limitation of periodic surface roughness. Even at lower periodic surface roughness

(i.e., rms height = 0.9 cm) it is difficult to observe the change in specular scattering

coefficient for change in soil texture at 10 GHz whereas this is not the case when the

observation is carried out at 6 GHz. Therefore, this chapter utilizes the experimentally

obtained specular scattering coefficient data at 6 GHz for the retrieval of soil

parameters. Chapter 4 has analyzed in detail the response of specular scattering

coefficient for soil texture with different field conditions (i.e., periodic roughness and

moisture).

The specular scattering coefficient is a function of physical and dielectric

property of the target, along with the frequency, polarization and incidence angle of

the radar. In case of soil as the target, the parameters will be soil texture, soil moisture

and surface roughness. Now, to interpret the characteristic of soil texture, soil

moisture and surface roughness from the specular scattering coefficient is difficult

and generally refereed as ill posed problem. Soil parameters, i.e., soil texture, soil

moisture and surface roughness are earth's surface parameter and cannot be

controlled. Therefore, the radar parameters, i.e., frequency, polarization and incidence

angle can be optimized to provide good estimate of soil parameters. In this regard

after a thorough study of various available algorithms as discussed in Chapter 2

(Section 2.5), this chapter discusses two approaches that involve the multi-

polarization and multi-incidence angle data to retrieve the soil parameters by which

requirement of apriori information may be minimized. The first approach that

considers the copolarization ratio data minimizes the soil texture effect on specular

scattering coefficient in retrieval of soil moisture. The second approach utilizes the

multi-incidence angle data to retrieve the periodic surface roughness by minimizing
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the soil texture and soil moisture effect. These retrieved periodic surface roughness

values are subsequently used to estimate soil texture and soil moisture.

The use of scattering coefficient in different polarization and at different

incidence angles has been widely used by several researchers to minimize the use of

at least one soil parameter in retrieval of other soil parameters [30, 56, 115, 156, 159,

192, 232, 233,]. The copolarization approach has been used by the researchers to

minimize the surface roughness when the objective is to retrieve the soil moisture [56,

30, 115]. The multi-incidence angle approach has been widely used to retrieve the

rms surface height by minimizing the soil moisture effect [159, 192, 232, 233]. Both

of these techniques have been frequently used for monostatic data whereas, the

applicability of these approaches in bistatic domain has to be tested. Further, the

copolarization ratio approach has been applied for rough surface to minimize the

roughness however; the behaviour of copolarized data for smooth surface has to be

tested. Therefore, in this chapter the copolarization ratio approach has been

considered for retrieval of soil moisture for smooth surface with specular scattering

data as well as the multi-incidence angle data has been utilized to retrieve the soil

texture, soil moisture and periodic surface roughness.

The organization of the chapter is as following:

Section 5.2 presents theoretical background along with the formulation of

Kirchhoff Scalar Approximation to compute the specular scattering coefficient in

HH- and VV-polarization. Section 5.3 discusses the copolarization ratio approach for

soil moisture retrieval as well as presents multi-incidence angle approach for retrieval

of soil parameters, i.e., soil texture, soil moisture and periodic surface roughness.

Finally, concluding remarks are made in section 5.4.

5.2 Theoretical Background

It is observed after the thorough literature review as discussed in chapter 2 that

application of polarization and multi incidence angle approach may help to minimize

the need of apriori information for retrieval of soil parameters from bistatic data.

Therefore, two approaches have been considered in this chapter. Firstly, it was the

aim to retrieve soil moisture of different fields with minimization of soil texture

effect. Because, it is known from Equation 5.14 that radar wave interacts with
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dielectric and dielectric is a function of moisture and soil texture. It is challenging to

retrieve both parameters with single scattering coefficient. So, it is considered to

minimize the soil texture effect for retrieving soil moisture directly from specular

scattering data. For this purpose, we have considered the copolarization ratio

approach after reviewing the literature as discussed in Chapter 2 and the behavior of

the copolarized data for specular scattering case has been analyzed for the smooth

field. It was observed that the copolarized data minimizes the soil texture effect and

varies with the moisture content of soil (details are in Section 5.3.1(b)). The analysis

shows the potentiality to use copolarized ratio for soil moisture retrieval. An empirical

approach has been developed between the copolarized data and soil moisture which is

further used for the retrieval of soil moisture. In addition to this, soil moisture is

retrieved with commonly used theoretical model for bistatic, i.e., Kirchhoff scalar

approximation and results have been compared.

But, the main aim was to retrieve the soil parameters (i.e., soil texture, soil

moisture and surface roughness) with specular scattering coefficient. Therefore, the

second approach involves the multi-incidence angle approach for retrieval of soil

parameters with the need of minimum apriori information. This approach has been

used because the applicability of first approach, i.e., copolarization ratio approach, is

only for the smooth field and capable of retrieving the soil moisture only. However,

the multi-incidence angle approach can been utilized to retrieve the periodic surface

roughness parameters, i.e., rms height (s) and correlation length (I), and subsequently

these retrieved values have been used in the Kirchhoff scalar approximation to

retrieve the soil dielectric constant. Section 5.2.1 describes the equation for the

computation of specular scattering coefficient with Kirchhoff scalar approximation. A

simulation study based on Kirchhoff scalar approximation has been demonstrated in

Section 5.3.2(a) which shows that the normalization of specular scattering data at one

incidence angle to the other incidence angle provides the normalized specular

scattering coefficient that is a function of periodic surface roughness and shows

negligible change with soil moisture and soil texture. It has been discussed in Chapter

4 and 5 that specular scattering coefficient shows angular behavior for different fields

(i.e., Field 1 to Field 10). Therefore, proper analysis of this behavior can be used to

minimize the effect of some soil parameter while retrieving the others. It has been

observed that normalization of specular scattering coefficient with reference incidence
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angle (reference incidence angel the best incidence angle where maximum texture

effect in observed, i.e., 60° as discussed in Section 5.3.2(c)) minimizes the soil texture

and soil moisture effect and varies with surface roughness only. It gives strength to

use such normalized specular scattering coefficient for observing surface roughness

only. Some researchers have carried out the normalization of scattering coefficient

data at one incidence angle to the other incidence angle in monostatic domain and

observed that the normalized scattering coefficient is a function of roughness only

whereas it shows very less dependency on soil moisture [159, 192, 232, 233].

5.2.1. Kirchhoff Scalar Approximation (SA) for Computation of

Theoretical Specular Scattering Coefficient

The Kirchhoff Scalar Approximation provides a reasonable good fit to the

experimental data in specular direction [43, 139, 140, 155, 156]. The formulation has

been used to retrieve the soil moisture with apriori information of rms surface height

andcorrelation length and the results were compared with the proposed approach.

Figure 1.2 (Chapter 1) shows the coordinate system for scattering geometry.

Scattering coefficient under the scalar approximation is given by Equation 5.1 [202],

<j -<j +a +a
m pv Pi" i'is

(5.1)

where apqc, apqn and opqs represent scattering coefficient due to coherent scattering ,

non-coherent scattering and scattering from surface slope, respectively.

arr =^k2\a,fS(qx)s(qy)e-,i''

amn=(\a.\kl/2)1exp(-qy)i
f

exp -fey)
nm j V

(<?:+<?;)/
An

cr =-(hi )2 (q, /2)exp (q's1 )Re {a„(q,a[ +qa\)}

*Z
»=i

fey)
n\n

r-l \

exp
An

2 \

(5.2)

(5.3)

(5.4)

Detailed expression regarding symbols in Equations 5.2, 5.3 and 5.4 can be

found from the reference Ulaby et al. [202]. Here k = 2n/X where Xis wavelength, s
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and / are the rms surface height and correlation length respectively. S(qx) and S(qy) are

Dirac delta functions. In case of specular scattering 9 = 6S, <p = 0 and aa = 0.

qx =£(sin# cos#? -sin#cos<p) =0 P-5)

qv =k(pm6ssin^ -sin#sin<77) =0 (5.6)

qz=k(cos0s-cos0) =2kcos0 (5-7)

Final expression of specular scattering coefficient for the Kirchhoff Scalar

Approximation is given by Equation 5.8.

a , =;r*,|aT<y(0)y(0y,-v +(jaJ<W/2)2exp(-(2£costf)V)l; ((2£cos6>)V)"

(5.8)

n\n J

Expression for a0 is polarization dependent. In case of HH-polarization a0 is

given by Equation 5.9.

a =-RL(cos 0 +cos 0s)cos(<p, - cp) (5.9)
= -R±X2cos 0)= -2RL.cos 0

where R±0 is the Fresnel reflection coefficient for horizontal polarization and is given

by Equation 5.10.

cos 0 - Vg - sin 20 (5.10)
cos 9 + *Je - sin 2#

In case of VV-polarization a0 is give by Equation 5.11.

ao =fl„(cos 0+cos #,)cosfe\ ~#>) (5.11)
= fl (2cos0)=2/?,.cos0
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where R\\0 is the Fresnel reflection coefficient for vertical polarization and is given by

Equation 5.12.

£cos0--js-s'm20 (5.12)
R„

ii• s cos 0 + -Js -s'm20

5.3. Soil Parameters Retrieval Approaches

5.3.1. Approach 1: Copolarization Ratio Approach for Soil Moisture

Retrieval

The approach has been developed considering the soil periodic surface

roughness constant while varying the soil moisture and soil texture. In Chapter 4 the

dependency of specular scattering coefficient on soil parameters, i.e., soil texture, soil

moisture and periodic surface roughness has been discussed in detail. If the

consideration is made to keep the soil periodic roughness constant while the

observation is made by changing the moisture and soil texture, the specular scattering

coefficient will be a function of soil moisture and soil texture only. It is quite difficult

to retrieve the moisture and texture both with only one specular scattering coefficient.

Therefore, if one parameter's effect on specular scattering coefficient is minimized

then it will be easy to retrieve one parameter from one specular scattering coefficient.

The minimization of soil texture effect can be obtained by utilizing the different

sensor parameters, i.e., polarization, frequency and incidence angle. Therefore, to

develop the retrieval algorithm for soil moisture, copolarization ratio approach has

been utilized to minimize the soil texture effect.

The methodology has been developed based on ten different soil texture fields

(Table 4.1) and six moisture conditions (Table 4.2) while the periodic surface

roughness was kept constant (s = 0.43 and / = 4.68). Details regarding the different

soil texture fields and soil moisture contents are provided in Chapter 4 (Table 4.1 and

4.2).

(a) Modeling Approachfor Copolarization

Figure 5.1 illustrates the flow chart of the modeling approach to carry out the

soil moisture retrieval by minimizing the soil texture effect. Following points discuss
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in detail the approach that has been followed in the development of the proposed

algorithm.

Angular response of specular scattering
coefficient for five soil texture fields at

various moisture in HH- and VV-

polarization

I

Best incidence angle selection

I
Copolarization ratio computation for all

field data at best incidence angle

Development of empirical relationship
between the copolarization ratio and

volumetric soil moisture

I
Soil moisture retrieval through proposed

empirical relationship

I
Comparison between the results of

empirically retrieved and theoretically
calculated soil moisture

Specular scattering coefficient of
remaining fields at best incidence

angle in both like polarizations

I
Soil moisture retrieval through

Kirchhoff Scalar Approximation

Figure 5.1. Flow chart for the proposed algorithm.

(i) Angular Response of Specular Scattering Coefficient: Change in specular

scattering coefficient with incidence angle has been observed for all fields at 6 GHz in

both like polarization as discussed in Chapter 4. The angular scattering response has

been observed for different soil texture fields at various periodic surface roughness

and moisture content.

[09



(ii) Regression Analysis for Selection ofBest Incidence Angle: Angle ofincidence is
an important dependent parameter for deciding the sensor parameters and retrieval

algorithm. It has been shown in Chapter 4 that specular scattering coefficient shows
the angular behavior for different soil texture and moisture conditions. It is difficult to

segregate the individual effects like incidence angle effect on texture and moisture on

specular scattering coefficient therefore there is a need to carry out statistical analysis

by which the effect of the surface parameters on specular scattering coefficient on

different incidence angles may be observed. One ofthe methods is regression analysis

where coefficient of determination (R2) tells about the percentage of dependence

variable on independent variables. In our case, dependent variable is specular

scattering coefficient and independent variables are soil texture and soil moisture.

Therefore, multiple regression analysis was performed to realize the best incidence

angle at which the specular scattering coefficient is more dependent on soil

parameters.

(Hi) Analysis ofCopolarization Ratio Response: The effect of soil texture on specular

scattering coefficient prompts one to minimize its effect for soil moisture retrieval.

Therefore, it is important to carry out the copolarization ratio (alJa'm) study and

check how it may be helpful to minimize the soil texture effect on the specular

scattering. Adetailed analysis ofcopolarization was performed for various soil texture

fields with different moisture content. The obtained results are quite encouraging and

imply that soil texture has negligible effect on copolarization ratio and the change in

the copolarization ratio is obtained only with the soil moisture.

(iv) Development of Empirical Relation and Retrieval of Soil Moisture: The best

incidence angle selection (step 1) and the minimization of the soil texture effect on

copolarization ratio as well as its dependence on soil moisture content only (step 2),

suggest a relationship between the copolarization ratio and volumetric soil moisture

content. An empirical relationship has been developed between the copolarization

ratio and soil moisture with good coefficient of determination. The soil moisture

content can be retrieved by the inversion of this empirical relationship.
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(b) Copolarization Ratio Response for Soil Texture with Different Soil Moisture

Contents

Figures 5.2(a) and (b) represent the change in specular scattering coefficient

with different soil texture at various soil moistures and constant periodic surface

roughness in HH- and VV-polarization respectively at 60° incidence angle which is

obtained through the regression analysis and detail regarding the regression analysis is

discussed in Section 5.3.1(c). The change in specular scattering coefficient for

different field is clearly evident for the both like polarizations. This signifies the effect

of soil texture on the specular scattering coefficient. The copolarization ratio study

was carried out to check the effect of soil texture on copolarization ratio. Figure 5.3

explains the behavior of the copolarization ratio for the change in soil texture field. It

is evident from the figure that the value of copolarization ratio is approximately

constant or there is very less variation with variation of soil texture at constant soil

moisture is observed which indicates that copolarization ratio may be used to

minimize the soil texture effect. The change in copolarization ratio is observed with

the change in soil moisture content. The higher value of copolarization ratio is found

for the lower value of soil moisture content and vice versa.
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Figure 5.2. Specular scattering coefficient variation with change in soil texture field at

different moisture condition for (a) HH-polarization (b) VV-polarization.
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Figure 5.3. Copolarization ratio variation with change in soil texture field at different

moisture condition.

(c) Implementation of Developed Soil Moisture Retrieval Approach based on

Copolarization

Stepl: The angular response of fields (Field 1 to Field 10) is discussed in

Chapter 4 Figures 4.1-4.12. This shows quit good angular variation of specular
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scattering coefficient for different fields at constant roughness is observed. So, as per

our approach there is a need to select best incidence angel for observing the soil

texture at 6 GHz.

Step2: It was discussed in Chapter 4 that specular scattering coefficient is

highly dependent on angular variation for all soil texture fields in both like

polarizations. Now in accordance with step 2 of modeling approach (Section 5.3.1(a)),

multiple regression analysis was carried out keeping the soil texture (i.e., percentage

of sand, silt, and clay) and soil moisture as independent variable and specular

scattering coefficient as dependent variable. Results of regression analysis are shown

in Table 5.1. Adjusted R2 which shows the percentage of dependence of both soil

parameters, i.e., soil moisture and soil texture on specular scattering coefficient along

with the SE values are given in Table 5.1 for different incidence angle. Incidence

angle greater than 45° provides the R2 values that are always greater than 0.85 and

0.80 and SE is less than 1.01 and 1.50 in HH- and VV-polarization respectively, from

which we may infer that higher incidence angle has better dependence on the specular

scattering coefficient with soil texture and soil moisture as was observed

experimentally also (Section 4.4.1 and Figures 4.2 and 4.3). The lower value of R

and higher value of SE (Standard error of Estimate) for VV-polarization in

comparison to HH-polarization at higher incidence angle may be due to the Brewster

angle effect observed in VV-polarization. The observation at lower incidence angle

provides low R2 and high SE, which led to the conclusion that lower incidence angles

may not be quite suitable for characterizing the soil parameters when observations are

made in specular direction at 6 GHz. Use of higher incidence angle for soil parameter

characterization has also been recommended by Singh and Dubey [180], Cereldi et al.

[30], Nashashibi and Ulaby [139, 140], Prakash et al. [156] for scattering in specular

direction. The maximum value of R2 is obtained at 60° incidence angle for both like

polarizations. Hence, 60° incidence angle has been considered as the best suitable

incidence angle for observing soil texture and soil moisture at 6 GHz in specular

direction for the considered type of fields.
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Table 5.1. Regression analysis results

HH~Polarization VV-Polarization

z 1 z
25 0.80 1.46 25 0.75 1.43

30 0.78 1.48 30 0.76 1.50

35 0.76 1.00 35 0.70 1.55

40 0.80 1.07 40 0.80 1.74

45 0.86 0.90 45 0.80 1.48

50 0.85 0.96 50 0.81 1.42

55 0.89 0.98 55 0.84 1.37

60 0.92 0.78 60 0.89 1.05

65 0.86 0.91 65 0.80 1.44

70 0.85 1.01 70 0.83 1.49

Step 3: Once the best incidence angle is obtained in step 2 then copolarization

ratio at best incidence is computed for all considered fields. In our case best incidence

angle is 60° for both like polarizations. The computed copolarization ratio for

different fields is plotted in Figure 5.3. As it is discussed in Section 5.3.1(b) that

copolarization ratio minimizes the effect soil texture and it can also be observed form

Figure 5.4. Five different soil texture fields (Field 1, Field 3, Field 6, Field 8 and Field

10) with various soil moisture values were chosen for the development of the

empirical relationship and the remaining five fields (Field 2, Field 4, Field 5, Field 7

and Field 9) were kept for the validation purposes (Table 4.2). Figure 5.4 shows the

graph that has been plotted between the copolarization ratio and volumetric soil

moisture content for five different soil texture fields. The empirical relation has been
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developed between copolarization ratio (P) and volumetric soil moisture (mv) based

on these five soil texture fields with six moisture variation (i.e., total 30 different

fields conditions were analyzed). The developed empirical relationship is given in

Equation 5.13 where R2 values are always greater than 0.95 and SE is less than 0.51.

P =axln(m )+b (5.13)

The values of constants a and b are respectively -6.562 and -0.4658. These values are

average of all the fields with the standard deviation of 0.081 and 0.1477 respectively

for a and b.

(d) Validation and Comparison with KA Model

The developed empirical relationship is tested for retrieval of soil moisture

content with the same set of fields and RMSE was 0.015 for retrieved soil moisture

content. Furthermore, validation of this model has been carried out for different fields

(Field 2, Field 4, Field 5, Field 7 and Field 9). The retrieved results for the volumetric

soil moisture provide the good agreement with the observed soil moisture with RMSE

of 0.021 between retrieved and observed soil moisture Figure 5.5.
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Figure 5.4. Change in copolarization ratio with volumetric soil moisture for different

soil texture field.
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In addition, F-test has been carried out to check the validity of retrieved results

through empirical relationship. F-test determines how unlikely the result would have

been if the two values compared really weren't different. The level of statistical

significance was kept 0.05. The critical F value for the measurement was 1.86 and the

F value for retrieved result of mv in case of testing data is 1.33 and for validation data

was 1.23. The F values are smaller than the critical F value which approves the

significance of the developed empirical relationship.

A comparison has been drawn between soil moisture values retrieved through

empirical relationship and Kirchhoff Scalar Approximation (SA). Equations 5.8 to

5.12 have been solved to retrieve the soil moisture content for both like polarization.

The input parameters which are used to solve KA are observed specular scattering

coefficient at 60° incidence angle for Fields Field 2, Field 4, Field 5, Field 7 and

Field 9 with constant rms surface height (s = 0.43) and correlation length (/ = 4.68).

Figure 5.5 shows the comparison for observed values and the retrieved values of mv

through developed empirical relationship and SA in HH-polarization and VV-

polarization. The RMSE are 0.021, 0.079 and 0.095 for empirical relationship, SA in

HH-polarization and SA in W-polarization respectively. The results clearly show

that developed relationship performed better than the SA in both like polarizations.
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Figure 5.5. Comprasion between observed value ofsoil mooisture and soil moisture

retrieved through developed emprical relationship, Kirchhoff Scalar Aproximation in
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5.3.2. Approach 2: Multi-Incidence Angle Approach for Retrieval of Soil

Parameters, i.e., Soil Texture, Soil moisture and Surface Roughness

The proposed copolarization ratio approach in Section 5.3.1 poses the

limitation of constant periodic surface roughness during the observation and is

capable of retrieving the soil moisture content only. Therefore, there is a need to

overcome the limitation applied on the periodic surface roughness condition and

devise such a methodology that is capable of retrieving all the soil parameters, i.e.,

soil texture, soil moisture and periodic surface roughness. Multi-incidence angle

approach serves the purpose very well. To develop the methodology based on the

multi-incidence angle approach, ten different soil texture fields (Table 4.1) with six

moisture (Table 4.2) and five periodic roughness conditions (Table 4.3) were chosen.

(a) Theoretical Approach

Scattering from the soil parameter is basically dependent on the soil dielectric

constant and surface roughness. Therefore, the specular scattering coefficient can be

represented with the product of the two functions defining the soil dielectric constant

(e) and the soil periodic surface roughness. The dielectric constant of the soil is

dependent on the soil moisture (mv) and the soil texture (i.e., sand, s, silt, si, and clay,

c). The soil surface roughness is defined based on the rms surface height (s) and

correlation length (/). Therefore, the specular scattering coefficient can be defined as

the function soil dielectric constant and roughness as given in Equation 5.14.

a=f(mv,s,si,c)g(s,l) (5.14)

It means that for retrieval of soil parameters, we have one dependent variable

and 6 independent variables which is again a complex problem and is difficult to

solve. Researchers have tried the various sensors parameters, i.e., multi-polarization,

multi-incidence and multi-frequency to retrieve the soil parameters. So, it will be a

good approach if it is possible to minimize the one or two dependent parameters and

retrieve other parameters. The minimization of dependent parameters only is possible

to use of sensor parameters i.e., different polarization, different frequency or multi-

incidence angle. Because multi frequency again includes a lot of complexity [202], so
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we have considered the multi-incidence angle approach. For this purpose, first we

have carried out the simulation studies which are discussed as following:

Kirchhoff Scalar Approximation (Equation 5.8) was used to perform the

simulation to check the multi-incidence effect for change in soil moisture, soil

periodic surface roughness and soil texture. Earlier studies have shown that the SA

works well in case of specular scattering for a range of soil surface parameters [43,

140]. In addition to this, the studies have shown that the scattering behavior described

by the SA for periodic surface roughness is in good agreement to the scattering
>

behavour described by the random rough surface [43]. Final expression of specular

scattering coefficient for the Kirchhoff Scalar Approximation is given in Equation 5.8

[157,202].

Soil texture and soil moisture explains the dielectric constant of the soil-water

medium. Therefore in the simulation the effect of rms surface height, s, correlation

length, /, and dielectric constant, e, was analyzed. As we have observed from Table

5.1 that 60° is the best incidence angle, so we have considered 60° as reference angle. ^

Now it important to check the individual effect, i.e., soil moisture, soil texture and

surface roughness on normalized specular scattering coefficient as discussed in

Section 5.2. We have considered 60° incidence angle as reference incidence angle and

normalization has been carried out for other higher incidence angle (i.e., > 45°) as it is

observed that soil parameters effect is more prominent at higher incidence angle. HH-

polarization has been considered based on regression analysis because better R

values were obtained than VV-polarization (Table 5.2). We have carried out the

simulation for different Arj° values (i.e., Aa'0_w(dB) =a"0{dB)-a'm{dB), where 9=45°,

50°, 55°, 65°, 70°) but here we are showing only one result (i.e.,

Act' {dB)=a'iXdB)-a'lXdB))- Tne simulation was made for five different rms

surface height (s = 0.5 cm to 2.5 cm in step of 0.5 cm), six different dielectric constant

(e = 5 to 30 instep of 5) and four correlation length values (/ = 3 cm to 6 cm instep of

1 cm). The selection of the field condition for the simulation study is based on the

field conditions noticed during the experimental observations. Figure 5.6(a) depict the ^

behaviour of the ratio of specular scattering coefficient (difference was taken for dB

values) at 45° incidence angle to 60° incidence angle and referred as the normalized
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specular scattering coefficient. It shows the negligible changes in normalized specular

scattering coefficient values for the change in soil moisture content whereas, the

significant changes can be noticed in normalized scattering coefficient values with

rms surface height, s. Figure 5.6(b) represents the normalized scattering coefficient

with the change in correlation length at various soil moisture content for constant rms

surface height (s = 0.5 cm). The observation implies that a small change in normalized

specular scattering coefficient values occurs with the change in correlation length, /.

The dynamic range of normalized specular scattering coefficient with s is more

prominent than / (Figures 5.6(a) and (b)). The dynamic range of normalized specular

scattering coefficient with rms surface height is approximately 5.27 dB whereas the

dynamic range of normalized scattering coefficient with correlation length is

approximately 1.0 dB. Observations from Figures 5.6(a) and (b) suggest that the

normalized scattering coefficient values are quite dependent on the soil periodic

surface roughness, i.e., s and / whereas, negligible changes were observed with the

change in dielectric constant of soil-water medium. Similar study was carried out by

normalizing the specular scattering coefficient at some other incidence angle (i.e.,

50°, 55°, 65° and 70°) while the specular scattering coefficient used to normalize was

the specular scattering coefficient at 60° incidence angle. Conclusions made with

these results were in good agreement with previously discussed results, i.e., the

normalized specular scattering coefficient changes with the periodic roughness

parameters (s and /) whereas, negligible changes were observed with soil moisture

and soil texture. Studies carried out by the other researchers in monostatic domain

have reported that the normalized scattering coefficient values varies with the soil

periodic surface roughness and negligible changes were observed with the change in

dielectric constant [159, 230, 232]. From these results we can infer that a empirical

relationship can be developed among normalized specular scattering coefficient, s and

/ which can be further utilized to retrieve the periodic roughness parameters (s and /)

and subsequently utilized with SA to provide the soil dielectric constant.
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(b) Modeling Approach with Multi-Incidence Angle Approach

Figure 5.7 depicts the flow chart for the retrieval of soil parameters, i.e., soil

texture, soil moisture, and periodic surface roughness. Approach involved in the

retrieval of soil parameters is explained in the following steps:

Angular response of specular scattering coefficient
for different combination of soil texture, soil

moisture and surface roughness in both like
polarizations.

Regression analysis to select the best sensor
parameter, i.e., incidence angle and the

polarization.

Normalization of data with best

incidence angle.

Selection of best Ao° based on the

R2 and SE values.

Retrieval of m from the developed
empirical relationship

SPA to retrieve the dielectric

constant.

Moisture and texture retrieval

through empirical relationship
given by Hallikainen et al.

Figure 5.7. Flow chart for the retrieval algorthim of soil parameters.
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Step 1. Response ofspecular scattering coefficient was analyzed for change in soil

parameters (i.e., soil texture, soil moisture, and periodic surface roughness)

and sensor parameters (i.e., incidence angle and polarization).

Step 2. It is important to choose the sensor parameters that best represent the

change in specular scattering coefficient with soil parameters. The angular

behavior of specular scattering coefficient along with the dependency of

specular scattering coefficient on soil texture, soil moisture and periodic

surface roughness has been discussed in Chapter 4 (Section 4.4). For this

purpose a multiple regression analysis has been carried out where <x° is
considered as dependent and rms surface height, correlation length and

moisture are considered as independent. The adjusted R value and SE

have been computed and based on maximum R2 and minimum SE the best

incidence angle can be selected.

Step 3. The specular scattering coefficient values at higher incidence angle (9 =
45°, 50°, 55°, 65°, 70°) were normalized with the specular scattering

coefficient values at reference incidence angle (i.e., 60°), i.e.,

Aa;_m(dB)= a;(dB)-a'm{dB), where 9=45°, 50°, 55°, 65°, 70°. Because,

higher incidence angles are showing more dependence of specular

scattering coefficient on soil parameters as discussed in Chapter 4. The

analysis of the Acr° reviled that the change in soil texture and soil moisture

has negligible effect on the Aer° values, where as Arj° changes with the

change in soil periodic surface roughness, described by its rms surface

height, s, and correlation length, / (Detailed description is made in Section

5.3.2(c)). A quadratic relationship was observed among Acr°(dB), s and /

and the selection of best combination of incidence angle was based on the

maximum R2 and minimum SE value.

Step 4. The developed empirical relationship provides s and / values based on the

Act0 values. These s and / values are used as the input to Kirchhoff Scalar

Approximation, SA to retrieve the dielectric constant of the soil.

Step 5. The empirical relationship developed by the Hallikainen et al. [78] was

used to retrieve the soil moisture and soil texture values.
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(c) Implementation for Retrieval of Soil Parameters with Proposed Approach of

Multi-Incidence

In accordance with step 1 of the modeling approach, Chapter 4 describes the

specular scattering coefficient response for soil texture, soil moisture and periodic

surface roughness in both like polarizations and explain the angular variation as well.

Step 2: Regression analysis to choose the best sensor parameters, i.e.,

incidence angle and the polarization. Therefore, regression analysis was performed

and the results of regression analysis are given in Table 5.2. Regression analysis was

performed by taking the soil parameters as independent parameter and specular

scattering coefficient as dependent parameter. It can be noticed from Table 5.2 that

the value of R2 is greater than 0.85 and SE is less than 0.11 for the higher incidence

angles (9 > 45°) in HH-polarization. Similar is the case for VV-polarization, where

R2 values are always greater than the 0.78 and SE is lesser than 1.52 for higher

incidence angles (9 > 45°).

Table 5.2. Multiple regression analysis results

HI rization on

BfiwfiBlTOPM
!

| :
angle

(degree,

SE

(degree)

25 0.70 1.66 25 0.70 1.71

30 0.74 1.52 30 0.74 1.63

35 0.71 1.41 35 0.69 1.58

40 0.78 1.28 40 0.74 1.59

45 0.87 1.08 45 0.79 1.38

50 0.86 0.99 50 0.81 1.52

55 0.88 0.91 55 0.80 1.35

60 0.91 0.81 60 0.89 1.11

65 0.85 0.96 65 0.81 1.34

70 0.86 1.11 70 0.81 1.41
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It can be infered that higher incidence angle may be more suitable for observing soil

parameters (i.e., soil texture, soil moisture and periodic surface roughness) with
specular scattering at 6GHz. The maximum value of R2 is 0.91 and minimum value
of SE is 0.81 at 60° incidence angle in HH-polarization (in comparison to both like

polarization). Therefore, scattering coefficient at 60° in HH-polarization has been

considered as reference for further steps.

Step 3: Normalization ofthe specular scattering coefficient at higher incidence angles,

i.e., 45°, 50°, 55°, 65°, and 70° (as these incidence angles are more suitable than the

lower incidence angle to observe the soil parameters) with the specular scattering

coefficient at reference incidence angle (60°) in HH-polarization is carried out which

gives the Act"(i.e., agi -a'l)2, where 6?, is 45°, 50°, 55°, 65°, or 70° and 92 is 60°).

The behavour of specular scattering coefficient at different incidence angles was

analyzed for 10 different soil texture fields, 6 moisture contents and 5 periodic

roughness conditions. The total number of field conditions studied was 300. Out of

these 300 field conditions, 75 field conditions have been chosen for the development

ofempirical relationship while remaining field conditions were kept for the validation

process.

Figures 5.8(a)-(e) represent variation of normalized specular scattering

coefficient (le.^^JdB), Aa^dB), Aa'^dB), A^JdB), and Aa—(dB)) with
soil periodic surface roughness. It can be observed from these figures that the

normalized specular scattering coefficient varies with the soil periodic surface

roughness while there is negligible change in the normalized specular scattering

coefficient with the change in soil moisture and soil texture. The maximum change

noticed in normalized specular scattering coefficient value for the change in soil

texture and soil moisture is 0.59 dB, 0.63 dB, 0.54 dB, 0.52 dB, and 0.58 dB for

Ao-° , Act" , Act" , Acr° , and Act" , respectively whereas the dynamic
^AL'45-60' ^Vso-m' ^U 55-60 ' '-'^ 65-60' "v/ 70-60' r

range of normalized specular scattering coefficient for the change in rms surface

height is 5.95 dB, 4.37 dB, 1.79 dB, 1.02 dB, and 1.21 dB for Aa'45.m, Act;,,,,

Arr° A<t° , and Ac" , respectively. These observations suggest the strong
Z"lt7 55-60 ' 65-60' 70-61) ' r

dependence ofnormalized scattering coefficient on the rms surface height and a weak

dependence on soil texture and soil moisture content.
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Figure 5.8. Response of Acr° (dB) for rms surface height when the normalization was

performed with (a) 45°, (b) 50° (c) 55°, (d) 65°, and (e) 70°.

The simulation study discussed in Section 5.3.2(a) emphasizes the dependence

of Aa'(dB) on rms surface height and correlation length which confirms the

experimental findings (Figure 5.8). Therefore, on the basis of curve fitting method,

various relations have been analyzed to develop an empirical formula for s, I and

Aa'idB) and aquadratic relationship was observed among Aa'(dB), s and /. R and

SE values for normalized specular scattering coefficient at different incidence angles

are provided in Table 5.3. It can be noticed from Table 5.3 that Aovr„(c//i) have the

highest value of R2 (0.97) and lowest value of SE (0.43). Therefore, the quadratic

relationship betweenA<j"^m(dB), s and / was used as an empirical relationship for the
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Table 5.3. R2 and SE values for normalized data

AtT_,(</5) 0.97 0.43

^iJdB) 0.93 0.76

&<r'SiJ<®) 0.90 0.81

act;_6„W 0.87 1.83

&°°mJdB) 0.82 1.44

retrieval of soil periodic surface roughness (i.e., s and I). The empirical relationship is

give by Equation 5.15.

Aa;5_m{dB)=axs +pxr+y (5.15)

where a, B and y are the empirical constant and the value of a, B and y are -2.4545,

0.0447 and 5.7387 respectively.

Step 4 of the modeling approach discusses the retrieval of the periodic

roughness parameters, i.e., s and / with the help of developed empirical relationship

(Equation 5.15). The developed empirical equation provides a relationship between

the normalized specular scattering coefficient (specular scattering coefficient at 45°

incidence angle normalized with the specular scattering coefficient at 60° incidence

angle) and periodic roughness parameters (i.e., s and /) in HH-polarization. To

retrieve the s and / value from Equation 5.15, Nelder-Mead simplex algorithm is

used. For the purpose fminsearch function of Matlab 7 was utilized. The Nelder-

Mead simplex algorithm is a popular search method for multidimensional

unconstrained minimization. It attempts to minimize a scalar-valued nonlinear

function of n real variables using only function values, without any derivative

information. The Nelder-Mead method thus falls in the general class of direct search

methods and commonly used in nonlinear regression problems [146]. The developed

empirical relationship was tested for the retrieval of the s and / with the same set of

fields that were used to develop the empirical relationship. The Root mean square

error (RMSE) was 0.019 and 0.042 for the retrieval of s and /, respectively. The
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validation of the empirical relationship was made with the remaining 225 field

conditions. Figure 5.9(a) and (b) show the plot between the retrieved and observed

value of the rms surface height (s) and correlation length (/), respectively. The RMSE

for the retrieval of s and / is 0.027 and 0.051, respectively. The retrieved results give

the strength that the periodic roughness condition of the field can be retrieved with

multi-incidence angle data (i.e., normalized specular scattering coefficient) thus

minimizing the apriori information (i.e., periodic roughness conditions of the field)

required for the retrieval of the soil moisture and soil texture.

The retrieved periodic surface roughness values are subsequently used as an

input to the Kirchhoff Scalar Approximation for the retrieval of dielectric constant of

soil. The retrieved s and / values were used in Equation 5.16 to compute the Fresnel

reflection coefficient in HH-polarization.

1 0"
R = x

7rk2S(0)S{0)e-,l's' +(kl/2)2exp(-(2kcos0ys2)Z ((2kcos0)2s2)
n\n

(5.16)

Equation 5.10 (Fresnel reflection coefficient in HH-polarization) was utilized

to retrieve the dielectric constant of the soil by substituting the value of Rx0 retrieved

through Equation 5.16. To solve the equation 7', fsolve function of Matlab 7 was

employed.

Step 5: The retrieved dielectric constant value in step 4 is used in step 5 for the

retrieval of soil moisture and soil texture. The empirical relationship developed by the

Hallikainen et al. [78] and given in Equation 5.17 describes the dielectric constant of

soil as the function of soil moisture and soil texture. Therefore, this relationship was

used to retrieve the soil moisture and soil texture.

s =(a0+ a,S +a2C)+(b0 +b^S +b2C)mr +(c0 +cxS +c2C)m; (5.17)

where a„ bh and c, (i=0 to 2) are empirical constants. S and C respectively are sand

and clay texture components of soil in percent by weight and mv is volumetric soil
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moisture content. The Nelder-Mead simplex algorithm was used for the retrieval of

sand percentage, clay percentage and volumetric soil moisture content. The rest part

of the soil constituents may include silt and gravel.

(d) Validation

Figures 5.9(a)-(e) represent the graph between the observed versus retrieved

results for rms surface height, correlation length, volumetric soil moisture, percentage

of sand, percentage of silt and percentage of clay. The retrieved results are in good

agreement with the ground truth data. Root mean square error (RMSE) for the

retrieval of rms surface height, correlation length, volumetric soil moisture,

percentage of sand, and percentage of clay are 0.027, 0.051, 0.036, 5.94, and 8.15

respectively.
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Figure 5.9. Represent the graph between the observed verses retrieved result for (a)

rms surface height, (b) correlation length, (c) volumetric soil moisture, (d) percentage

of sand, and (e) percentage of clay.

5.4. Conclusion

This chapter analyzes the role of various sensor parameters (multi-

polarization and multi-incidence) in retrieval of soil parameters, i.e., soil texture, soil

moisture and periodic surface roughness by which the need of apriori information can

be minimized. It was noticed that generally in the models soil texture effect is not

considered for retrieving the soil moisture which may affect the accuracy of the

retrieved soil moisture because texture is quit dependent on specular scattering

coefficient. Therefore copolarization ratio study was performed to minimize the soil

texture effect at constant roughness. Copolarization ratio study revealed that the

change in soil constituent has the least effect on the copolarization ratio and

approximately same copolarization ratio was observed for all soil texture fields at

constant soil moisture. It was also observed that the change in copolarization ratio is

obtained with the change in soil moisture content. It indicates that the use of

copolarization ratio may help in retrieval of the soil moisture quit accurately because

it is less dependent to soil texture. Therefore, an empirical relationship has been

developed between copolarization ratio and volumetric soil moisture. The retrieved

results of soil moisture are in good agreement with ground truth data. Further a

comparison of retrieved soil moisture with proposed copolarization ratio approach and
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Kirchhoff Scalar Approximation approach has been carried out and it was found that

the proposed copolarization approach performed better than the Kirchhoff Scalar

Approximation.

The developed copolarization ratio technique was capable of retrieving the soil

moisture content only as it considers constant periodic surface roughness throughout

the observation. Therefore, multi-incidence angle approach was developed to retrieve

soil parameters, i.e., soil texture, soil moisture and periodic surface roughness. For the

applicability of the multi-incidence angle approach, 60° incidence angle and HH-

polarization was found to be the most appropriate sensor parameter at 6 GHz to

observe the considered fields. A normalization process was carried out and it was

observed that Arj° has negligible effect for the variation of soil texture and soil

moisture where as it varies with the periodic surface roughness. A quadric

relationship was observed between Ao° and periodic roughness parameters (i.e., s and

/). The retrieval of soil parameters was made using developed empirical relationship,

Kirchhoff Scalar Approximation, and empirical relationship developed by Hallikainen

et al. [78]. The obtained results are quite encouraging and the study may be explored

for future bistatic airborne/spaceborne missions.
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Chapter 6

Fusion of Information Approach to

Retrieve Soil Moisture with Two

Different Satellite Data: SAR and

Optical

Chapter 3 and 4 discussed about the specular scattering response of soil

texture in presence of soil moisture and surface roughness at X- and C-band,

respectively. However, Chapter 5 has utilized the copolarization ratio and multi-

incidence angle approach to retrieve soil parameters, i.e., soil texture, soil moisture

and surface roughness in bistatic domain. The study in bistatic domain has been

carried out due to its several advantages as discussed in Chapter 1 and 2. But in

present scenario, most of the existing airborne and spaceborne sensors are in

monostatic domain and soil moisture retrieval is still a challenging task in vegetation

covered areas. Therefore, in this chapter, efforts have been made to retrieve the soil

moisture in vegetated area with data available from satellite based sensors.



Soil moisture retrieval in the vegetated area is a cumbersome process due to

the involved scattering phenomenon that inherits the volume scattering from the

vegetation and surface scattering from the underlying soil. This chapter deals with this
problem by fusing the information available from synthetic aperture radar data and
optical data in order to circumvent the vegetation characterization that is needed to

explain the scattering phenomenon from the vegetation.

6.1. Introduction

Estimation of spatial distribution of soil moisture is important in many

applications such as hydrology, meteorology, agronomy, climatology and many other

earth sciences [153]. Active microwave remote sensing provides us avenue to

estimate the spatial distribution of soil moisture over a large area [132, 146, 154, 193,

211]. Alternatively, soil moisture can be measured by various methods. The most

direct methods are in situ measurements. They are usually reasonably accurate and

can provide the good estimates of soil moisture, but they are point measurements.

Therefore, it is very difficult to generalize the estimate of soil moisture for a large

area of study from such point estimates because of the immense spatial variability of

soil moisture at small scales. Also, because of logistic constraints, the spatial coverage

of in situ measurements is usually rather limited.

Synthetic aperture radar (SAR) images are capable of providing the estimate

of soil moisture because the measured data in SAR is scattering coefficient which is

highly dielectric dependent parameter and the studies have shown that the dielectric

constant of soil changes with soil moisture condition [15, 202], SAR technique

provides the images with high spatial resolution therefore, the moisture estimation

with SAR images can be mapped with local variations which is not possible in case of

measurement with scatterometer. The retrieval of soil moisture is an ill-posed

problem because scattering coefficient depends on several other parameters, e.g., in

case of vegetated area, the scattering coefficient is affected not only by the vegetation

parameters but also by the underlying surface roughness. The SAR images available

before 2002 were in single configuration (i.e., single frequency, polarization and

incidence angle) but from the launch of ENVISAT ASAR after that PALSAR sensor

multi-configuration (i.e., multi-incidence, multi-polarization) data in now available.
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Presently the SAR satellites are available with high spatial resolution with short

revisit time which offers the estimation of soil moisture at local scale in regular

interval, e.g., RADARSAT-2, ENVISAT, TerraSAR-X, PALSAR.

The most prevalent techniques for soil moisture retrieval in vegetated areas are

the techniques based on the water cloud model and change detection [2, 17, 131, 137,

145, 220]. Some researchers have utilized the optical data to characterize the

vegetation and subsequently applied this information with SAR data to retrieve soil

moisture [141, 214]. Major points of all these techniques along with their limitation

have been discussed in Chapter 2. Besides the vegetation, soil surface roughness is

another factor of concern in soil moisture retrieval studies. The minimization of

surface roughness in most of the cases has been dealt with the copolarization

approach and this has been discussed in Chapter 2.

© Direct Backscattering from Plants
© Direct Backscattering from Soil

(Includes Two-Way Attenuation by Canopy)

©Plant/Soil Multiple Scattering

Figure 6.1. Backscattering behavior of microwave form vegetated area [203].

The dependency of scattering coefficient on soil moisture proves its usefulness

in retrieval studies of soil moisture but, the presence of vegetation hampers the

accuracy drastically. Microwave has the capability to penetrate the vegetation,

therefore providing the estimate of soil moisture, but the complex behavior of

scattering coefficient in presence of vegetation makes the task difficult. Figure 6.1

shows backscattering of microwave in vegetated area. Therefore, the backscattered

signal is total sum of the volume scattering from the canopy, surface scattering by the
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underlying soil surface and multiple interaction involving both the canopy and the soil
surface [203]. Still it is challenging to minimize the vegetation effect for retrieval of

vegetation covered soil moisture with SAR images. In this regard, optical data which
provides the information of vegetation cover may be used as complementary

information for retrieval of vegetation covered soil moisture. Therefore, the

information available from SAR and optical data can be fused to provide the

estimation of vegetation covered soil moisture. The objective of this chapter is

therefore to analyze the feasibility of relating the information available from SAR

data and optical data to envisage such an approach that mostly rely on the information

content of satellite images and require minimum apriori information. The concept of

such an approach arises as the vegetation can be modeled through the SAR data as

well as the optical data. In case of SAR data the backscattering is affected by the

vegetation cover and contains the information regarding vegetation whereas, the

normalized difference vegetation index (NDVI) provides a good estimate of the crop

cover [214]. The utilization of the information content from the optical data reduces

the requirement of the apriori information which is required in the vegetation ^

parameters characterization. Therefore, this chapter focuses these problems of

vegetation for retrieving the vegetation covered soil moisture and emphasizes on two

approaches by developing empirical relationship between the normalized scattering

coefficient and NDVI to incorporate the vegetation effect in soil moisture retrieval.

Chapter has been organized as following:

Section 6.2 provides the brief discussion about the data used along with the

study area. The preprocessing of the data acquired is presented in Section 6.3. Section

6.4 describes the model development for soil moisture retrieval in vegetated areas.

Section 6.5 deals with the first approach of soil moisture retrieval whereas, Section

6.6 presents second approach of soil moisture retrieval in vegetated areas. A

comparison has been made between the first and second approach in Section 6.7 and

finally Section 6.8 draws the conclusion of the study performed.

6.2. Study Area and Data Used

Two sets of satellite images comprising Roorkee city, Manglaur town

(Uttarakhand, India) and its surrounding areas were chosen for the study. The satellite
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images used for the development of algorithm and the validation are ALOS-PALSAR

(Advanced Land Observing Satellite - Phased Array type L-band Synthetic Aperture

Radar), a SAR data and MODIS (Moderate-resolution Imaging Spectroradiometer),

an optical data. The detailed description of the study area and data used are provided

in Chapter 1. Summary of data used is provided in Table 6.1.

Extensive ground truth survey was carried out to measure the soil moisture

and surface roughness. Total 60 areas were selected to measure the volumetric soil

moisture and rms surface height. In these 60 areas, 30 areas belongs to the PAL-1

image that has been used to develop and test the algorithm whereas, remaining 30

area belongs to the PAL-2 image and has been used to validate the developed

algorithm. The study area is mostly flat and consist of water, urban, vegetation and

bare soil classes. Wheat, sugarcane and mustard are the crop of the April month.

6.3. Preprocessing of PALSAR and MODIS Data

6.3.1. PALSAR Data

ALOS-PALSAR data acquired was of level 1.1 VEXCEL format data. Figure

6.2 illustrate the flow chart of the preprocessing the PALSAR level 1.1 VEXCEL

format data. SARSCAPE 4.1, dedicated SAR data processing software developed by

SARMAP and works with the integration with ENVI (Environment for Visualizing

Images) used for data preprocessing. The data provided by the ERSDAC (Earth

Remote Sensing Data Analysis Center) is single look complex slant range full

polarimetric focused data. The data is imported through SARSCAPE. The imported

SLC files were calibrated using defined polarimetric calibration matrices using

SARSCAP. Polarimetric calibration minimizes the impact of non ideal behavior of a

full-polarimetric SAR acquisition system in order to obtain an estimate of the

scattering matrix of the imaged objects as accurate as possible from their available

measurement. Polarization synthesis function of SARSCAPE allow the synthesizing a

new set of SLC data in desired orthogonal basis. In the present case, it has been used

for synthesizing SLC data in circular basis (Left Left-, Left Right- Right Left- and

Right Right-polarization) from the linear basis (Horizontal Horizontal-, Horizontal

Vertical- Vertical Horizontal- and Vertical Vertical-polarization).
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Table 6.1. Description of data used

cd

Q

g
ca

Q

Acquisition

ID
Date

Pixel

spacing

Image size

(pixels)

Area

covered

(Km)

Upper left Lower right

Latitude Longitude Latitude Longitude

Pi
<

<

PAL-1
(Test image)

PASL110090

40617112609

08110063

April 06,

2009
25 m 850 x 850

21.25

X

21.25

30.000° N 77.803° E 29.823° N 77.980° E

PAL-2 (Validate image)

PASL110090

40617111809

08110062

April 06,

2009
25 m 850 x 850

21.25

X

21.25

29.859° N 77.847° E 29.682° N 78.024° E

5
o

MOD-1 (Band-1andBand-2) (Testimage)

MOD09Q1.A

2009093.h24

v06.005.2009

099200537

April 03,

2009
250 m 85 x 85

21.25

X

21.25

30.000° N 77.803° E 29.823° N 77.980° E

MOD-2 (Band-1andBand-2) (Validateimage)

MOD09Q1.A

2009093.h24

v06.005.2009

099200537

April 03,

2009
250 m 85 x 85

21.25 x

21.25
29.859° N 77.847° E 29.682° N 78.024° E



Speckle, which looks like the "salt and pepper" noise, is a result of

interference among the coherent echoes of the individual scatterers within a resolution

cell and it is an inherent problem in SAR images [69, 103, 217]; therefore to reduce

the speckle Wishart Gamma map filter was used. 5 x 5 window size was chosen due

to its suitability of preserving the texture information [128]. Target reciprocity (i.e.,

HV = VH and LR = RL) is assumed in filter operation. Further the multilooking is

performed to improve the radiometric resolution. For ALOS PALSAR data

multilooked factor was selected as 7, in order to avoid oversampling effect in

geocoding. The digital elevation model was extracted using technique GTOPO 30 for

terrain correction prior to geocoding. Then nearest neighbor resampling method was

applied to data for radiometric calibration [128].

6.3.2. MODIS Data

MODIS data was acquired from sensor Terra for 8 days composite reflectance

product (MOD09) at 250 m spatial resolution. This contains the red (645 nm) and

near-infrared (858 nm) surface reflectance product. Both the bands were calibrated

and geometrically rectified to UTM coordinates [81, 85] with ENVI 4.6 software.

PALSAR level 1.1 VEXCEL
format SLC data (HH- HV-,

Importing of PALSAR
data

^>

Polanmetnc cal

•HP
' !

Filtering

r

Multilookinq 1
J

Geocoding and
radiometric calibration

DEM Extr

Figure 6.2. Flow chart for preprocessing the PALSAR data.
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6.4. Model Development

As discussed in above section that exiting approaches like water cloud model

or change detection need a lot of apriori information or complex to solve it for soil

moisture retrieval under vegetation cover. Therefore, attempt has been made to

minimize these problems. A theoretical background behind the proposed model is

discussed here and after that its implementation with satellite data. Two different

approaches have been formulized for soil moisture retrieval over vegetated areas with

satellite data.

6.5. Approach 1

6.5.1. Theoretical Background for Soil Moisture Retrieval Algorithm

It has been discussed in Section 6.1 that scattering from vegetated area is

affected by the vegetation cover and underlying soil characteristics (Figure 6.1). Soil

characteristics are generally defined by soil moisture and surface roughness.

Therefore, the retrieval of soil moisture can be made with proper knowledge of

surface roughness and vegetation cover. It has also been briefly discussed in Section

6.1 and in detail in Chapter 2 that optical data has been utilized to describe the various

vegetation parameters and NDVI which describe the vegetation abundance can be

efficiently included in algorithm development to model vegetation in association with

scattering coefficient value to retrieve soil moisture. Therefore, Approach 1 makes

use of NDVI in conjunction with scattering coefficient to retrieve soil moisture.

Theoretical, empirical and semi-empirical models have been developed by

several researchers that describe the dependence of scattering coefficient of bare soil

on moisture and roughness condition of soil [5, 48, 80, 144, 193, 202]. The advantage

and their limitations have been discussed with fairer detail in Chapter 2. The model

developed by Dubois et al. [48] has been used due to its simplicity and wide range of

applicability. Details regarding it have been provided in Chapter 2. Further, the

Dubois model can be solved to provide the dielectric constant of soil without

enquiring about the surface roughness conditions.

Therefore, Approach 1 utilizes the NDVI to include the vegetation effect in

algorithm development and Dubois equation has been used to compute the bare soil

scattering coefficient to normalize the scattering coefficient of vegetated area. A flow
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chart is given in Figure 6.3 for the retrieval of soil moisture in the vegetated area.

Following sections will discuss the detailed procedure.

Polarimetric SAR data (i.e., HH-, HV-, VV-
polarization)

v

Region identification, i.e., water, urban,
vegetated agriculture land and bare soil

ir

Masking of the water and urban area

In case of vegetated
soil

r

i i case of bare

soil
V

Development of empirical relationship
between normalized scattering coefficient

of SAR image data and NDVI (MODIS
data), i.e.,

Cr""- = f{NDVI )

Scattering coefficient of soil

\r

Retrieval of scattering coefficient of soil
from empirical relationship

} '

Figure 6.3. Flow chart for the retrieval of soil moisture: Approach
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6.5.2 Development ofVegetation Covered Soil Moisture Algorithm

Different steps involved in development and implementation are discussed as

following.

(a) Step I

As it is shown in the flow chart 6.3, SAR data is preprocessed as given in

Section 6.3.1.

(b) Step 2

It is important to mask the water bodies and urban areas in the image to avoid

the uncertainties. So, decision tree classifier [128] is used which is discussed below.

(i) Classification of PALSAR Image with Decision Tree Classifier: In study areas,

there is no clear cut demarcation between the various land cover classes, i.e., it is very

difficult to find out the agriculture or urban area for a large stretch (tens of kilometers)

therefore, it is always the possibility to find the mixed land cover classes. In general

one may obtain the urban areas (e.g., villages) along with the water bodies (e.g.,

canals, ponds) within the stretch of agriculture land and such type of other mixed

classes. Due to this the satellite image of any area of interest will contain all these

land cover classes mixed. This arise the need as a prerequisite to classify the image in

various land cover classes so that the region of interest in the image can be clearly

marked. In present case, a knowledge based approach has been applied to classify the

PALSAR image and find out the vegetated and bare land remarkably. The PALSAR

image classification has been carried out based on decision tree classifier [128]. It is

an efficient tool for land cover classification and based on data mining technique [54,

128, 133, 134, 188]. The decision tree classifier uses knowledge based approach that

is developed through knowledge of data obtained by empirical evidence and their

experimental validation. Figure 6.4 illustrates the flow chart of the classification

scheme. Backscattering coefficient that involves the various polarization

characteristic (linear, circular, linear 45°, co- and cross-polarized ratios for both

linear and circular polarization) have been utilized to classify the image in urban,

water, vegetated land (tall vegetation and short vegetation) and bare soil. The decision

limits in the knowledge based approach were based on the empirical evidence and the
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experimental validation. First of all, the water bodies were distinguished from other

classes by the condition <j°m, < -30 dB and C7°45x < -25 dB. The case when <j°m.<

-18 dB and a0 Ja° .. > -11 dB [48, 54], the classified area can be characterized as

tall vegetation or urban. Therefore, urban and tall vegetation were separated on the

basis of cross polarization ratio of circular polarization which is negative for urban

and positive for forest [188]. The bare soil which exhibit the surface scattering can be

distinguished with the condition <j°hhIg°„ <0dB, a°HV <-21 dB and <J°RR <-10

dB [14, 54]. Further, the short vegetation can be classified based on the criterion

cr0 Ia0 greater than or equal to -11 dB and rj°m is less than orequal to -18 dB

[48]. Pixels that do not satisfy any of the said conditions have been termed as

unclassified. The developed classification algorithm was tested on pixel-by-pixel

basis [128]. The overall accuracy was estimated 92.52% and 90.14% for PAL-1 and

PAL-2 image, respectively. Classification of urban and water areas will help to mask

these areas in SAR images while retrievingthe vegetation covered soil moisture.

No

No

<r;;r<-18(dB)

^>-ll(dB)

No

aw<-10(dB)

o-;;, <-27(dB)

5^<0(dB)

No

CT;„,<-i8(dB)

^>-ll(dB)

a"m. <-30(dB)

o-;„. <-25(dB)

Yes

No

Tall Vegetation

Yes

""1
Yes

Yes

<0(dB)

Yes

Unclassified • Short Vegetation Bare Soil

Yes

Figure 6.4. Flow chart for the decision tree classifier.
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(c) Step 3

As discussed in previous sections and Figure 6.1 that vegetation over the soil

has an important role for retrieving the vegetation covered soil moisture. So,

vegetation effect is minimized by using optical (MODIS) data and it is modeled as

following.

(i) Vegetation Modeling in SAR Data: As a first step to the algorithm development,

there is emphasis to model vegetation with scattering coefficient of the obtained

image. The semi-imperial approach, proposed by Attema and Ulaby [8], which is

based on water cloud to determine the backscattering coefficient of vegetation

covered area has been utilized by several researchers [2, 17, 178, 220]. This approach

requires the parameterization of vegetation and the parameterization may include

vegetation height, vegetation water content, leaf area index, biomass and other

vegetation parameters. The change detection techniques are the other SAR based

techniques to retrieve soil moisture in vegetated area and consider the scattering from

vegetated area as time invariant process, which restrict its applicability [131, 137,

145]. In this regard, problem of vegetation should be solved for the retrieval of

vegetation covered soil moisture. Therefore, as an alternative to the vegetation

parameterization and change detection techniques, a more simplified approach in the

form of normalizing the backscattering coefficient of the image has been utilized

[88].This approach mostly rely on the information content of the image and the

vegetation characterization is fulfilled with the utilization of the optical data. Joseph

et al. [88] has modeled the vegetation effect by considering the Vegetation Water

Content (VWC) and developed an empirical relation between normalized scattering

coefficient and VWC. Nevertheless, the Approach 1 considered in this chapter utilizes

the NDVI as the vegetation modeling for retrieval of vegetation covered soil moisture

with PALSAR data.

In general, the scattering coefficient depends on sensor parameters and target

parameters. Now in particular, if the sensor parameters are fixed, the scattering

coefficient will depend on the target parameters, e.g., in case of vegetated area,

scattering coefficient will depend on vegetation characteristic as well as underlying

soil parameters, i.e., soil moisture and surface roughness. The soil moisture is

generally computed based on the dielectric constant of the moist soil. Therefore,
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scattering coefficient obtained from SAR data (<t° ) from the vegetated area can
° PP Image

be represented by Equation 6.1.

<j" = /"(Vegetation, dielectric constant of moist soil, surface roughness)
PP Image J \ o *w *

(6.1)

Dielectric constant of moist soil and surface roughness may be represented by soil

parameters and Equation 6.1 can be rewritten as Equation 6.2.

cr" c=/(Vegetation, Soil parameters) (6-2)

It is known that the scattering coefficient of the bare soil (i.e., crp°PSoil) depends

only on the soil parameters, i.e., dielectric constant and surface roughness and may be

represented as Equation 6.3.

<C« =/(Soil parameters) (6-3)

Equation 6.2 and 6.3 suggest that the normalization of scattering coefficient of

the vegetated area to the scattering coefficient of the bare soil will provide the

normalized value that will be the function of the vegetation characteristic [87, 88]. In

the case of PALSAR image, the observation frequency is fixed throughout the image

acquisition whereas, incidence angle depends on the local topography. The study area

considered for the present study is fairly flat therefore, the incidence angle is

considered constant throughout the study area. The different images available for the

same area of interest are with the different polarization (HH- HV-, VH- and VV-

polarization). So that, in the case of PALSAR image, with the availability of different

polarization images, the normalized scattering coefficient (Actpp) can be written as

Equation6.4, where PP represent for HH- VV- or HV-polarization.

Cpp, (Vegetation , Soil parameters ) . (f- d.
Act" = pp""aecV—— r - =/(Vegetation ) (bA>

a°„ So„ (Soil parameters )
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Act0 represents only the function of vegetation that gives an impact that this

vegetation function Actpp can be correlated with other vegetation parameter like

NDVI, which represent the vegetation function only. So, there is a need to develop

relationship between Acrpp and NDVI for characterization of Act,!,,. In the present

case for the development of the soil moisture retrieval in vegetation covered area,

HH- and VV-polarization have been taken into account. Therefore, PP will represent

either HH- or VV-polarization only.

Computation ofBare Soil Backscattering Coefficient

The approach developed in the Section 6.5.2(c) (Equation 6.4) to characterize

the vegetation with the normalized scattering coefficient will require the apriori

knowledge of scattering coefficient of bare soil at the time of model development.

Therefore, 30 test areas were chosen for in situ measurement of soil moisture and

surface roughness under the vegetation cover at the time of image acquisition. The

field survey was carried out with GPS and the measurement methodology of soil

moisture and surface roughness has been discussed in Section 1.3.3 and Section 1.3.4

respectively. The backscattering coefficient of the bare soil was computed with the

help ofDubois model [48] inHH-polarization (aamioA) and VV-polarization (cr°VSoil )•

Dubois et al. [48] model has been utilized as it provides the direct relationship

between the scattering coefficient in HH- and VV-polarization and soil parameters

(i.e., soil moisture and surface). Further, Dubois et al. [48] model can be solved to

provide the dielectric constant ofsoil as function ofscattering coefficient in HH- and

VV-polarization and does not require the characterization of soil surface roughness

(This has been discussed in Section 6.5.2(d)). Equations 6.5 and 6.6 provide the

expression for <r° and a0 .,, respectively as described by Dubois et al. [48].
r HHSoil VVSoil
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The required input parameters in Dubois equations are rms surface height (s)

and dielectric constant (e) as soil parameters and incidence angle (9) and wavelength

(X) as sensor parameters. Incidence angle and wavelength are 24° and 23.6 cm,

respectively for PALSAR image of the study area. The dielectric constant (e) of soil

can be measured with the empirical relationship provided by Equation 6.7 [75].

s = 3.03 4- 9.3m + 146m2 - 16.1m] (6.7)

where mv is the volumetric soil moisture content and to estimate volumetric soil

moisture content, field survey was carried out. Eight to ten samples were collected

from each test area (total 30 test areas were chosen) to measure the volumetric soil

moisture at a field scale.

Equations 6.5 and 6.6 require the characterization of surface roughness in

form of rms surface height (s). Therefore, during the field visit, the soil surface

roughness was estimated with the help of pin profilometer as given by Rahman et al.

[158]. The roughness of the field during the observation was found to be

approximately constant and the average rms surface height was observed 0.53 cm

with standard deviation 0.06 cm.

(ii) Use ofNDVI as the Vegetation Parameter: The Normalized Difference Vegetation

Index (NDVI) is almost linearly related to the vegetation abundance and therefore,

canrepresent the vegetation effect in the soil moisture retrieval studies [214]. NDVI is

defined as the ratio of the difference and sum of the spectral response at the infrared

wavelength (band 2 for MODIS) and red wavelength (band 1 for MODIS) which is

written as Equation 6.8.

NDVI =A«» ~Prep =Band 2~Band \ (6-8)
Pn.r+Pred Band 2 +Band 1

where pnir and /9red are the reflectance at NIR band and RED band respectively.

The possible ranges of the NDVI values are -1 to +1. In the case of vegetation

the NDVI values typically ranges from 0.1 to 0.6, where the lower values indicate the

lower density of vegetation and the higher values represent the higher density of
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vegetation i.e., more greenness of the vegetation. The negative values of the NDVI
represent the water bodies whereas the values approximate to zero indicate the

presence of the soil and rock [106].

(Hi) Development of Relationship Between Aa% and NDVI as Equation 6.4: It is

discussed in Section 6.5.2(c) that normalized scattering coefficient (Acr^,) is a

function of vegetation parameter and can be retrieved with PALSAR image whereas

NDVI which characterizes the vegetation in optical data can be retrieved with MODIS

data. Therefore, this section investigates the relationship between the Aa°PP (Equation

6.4) and NDVI (Equation 6.8). Following steps explain the detailed procedure.

•I Test images (PAL-1 and MOD-1) were utilized to monitor the change in

normalized scattering coefficient with NDVI and for the purpose 30 test areas

were taken into account to develop the empirical relationships.

4 The spatial resolution of PALSAR and MODIS image is 25 m and 250 m,

respectively. Therefore, the averaging of 10 x 10 pixel of PALSAR image has

been performed to match the resolution of PALSAR image with MODIS image.

4 The rescaled PALSAR image was co-registered with MODIS image.

I Changes in Aa°PP with the NDVI have been checked as NDVI is the descriptor of

the vegetation and normalized scattering coefficient explains the vegetation effect

in SAR (as discussed in Section 6.5.2(c)).

4* The NDVI values have been obtained through the MODIS data and Acr°PP have

been retrieved through the PALSAR data.

4 In the development of the empirical relationship between Aa%, and NDVI, the

considered value of AcrPj, is in decibel (dB). The developed empirical relationship

Act",, (dB) is a function of NDVI and is given as Equation 6.9.

A<t°pp (dB) - Pi x(NDVI)2 +P2 x(NDVI) +P3 (6.9)

The detailed description of empirical relationship along with empirical

coefficients (Pi, P2 and P3) and its values have been made in Section 6.5.3(a)).
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(d) Step 4

(i) Retrieval ofSoil Moisture: The retrieval of soil moisture with PALSAR and NDVI

(retrieved by MODIS image) data has been discussed in the following steps.

4- The relationship between Act^ and NDVI developed in Equation 6.9 will provide

the value of Acr^, (dB) with the known values of NDVI.

4- The bare soil scattering coefficient in HH- and VV-polarization can be retrieved

with the relationship Act0 = (7° /<j\q , (Equation 6.4). Therefore, bare soil
1 PP PP Image PP Soil

scattering coefficient can be written as Equation 6.10.

.0 , 1T-.x ^.0 /jt>\ /n /Jimr/n2CTpup So„ (dB) = CT„ Image (dB) - (P, x(ND Vlf +P2 *(ND VI) +P3) (6.10)

4 Equation 6.10 will provide the scattering coefficient of bare soil in HH- and VV-

polarization with the normalized scattering coefficient obtained through the

PALSARimage and NDVI values obtained through the MODIS data.

4- The retrieved scattering coefficient values of the bare soil will contain the

information of the soil moisture as well as surface roughness. Therefore, to

minimize the roughness effect in the retrieval of soil moisture, copolarization

approach has been utilized [30, 56, 115, 156] and Dubois equations in HH- and

VV-polarization have been solved to provide an equation that is the function of

dielectric constant only and independent to surface roughness.

4* This solution of equation provides the flexibility to apply the retrieval algorithm

over a wide range of roughness conditions without requirement of characterizing

the surface roughness. The solution is given by Equation 6.11.

_10 xct:„;(dB)-11 xct;„,„(dB) +110 xlog(C,)-100x log(C2) (6U)
1.52xtan(<9)

where

and

C,=10275CO^(£sin'4#)r
sin 9$.

C2=lO-"5COS^(£sin30)"A"7
sin#

149



4- The Dubois equations have been solved to provide the dielectric constant of the

soil (Equation 6.11) and volumetric soil moisture is retrieved by Equation 6.12

[75].

m = -5.3xl0-2 + 2.92xl0-2£-5.5xl0-V4-4.3xl(TV (6.12)

where e is the dielectric constant of soil. It is assumed that soil texture has

negligible effect on backscattering coefficient from crop covered soil because

many researchers are using directly this from for retrieving soil moisture [75-77].

6.5.3. Implementation of Approach 1 on SAR Image

(a) Implementation on the Test Image (PAL-1 and MOD-1)

The developed algorithm is tested on the images PAL-1 and MOD-1 and

various steps involved in this are given as following.

4- PALSAR image of the test region (PAL-1) is classified into various land cover

features, according to the procedure discussed in Section 6.5.2(b).

4 Figure 6.5(a)-(c) show the color composite PALSAR image (HH = red, HV =

green, VV = blue), corresponding classified PALSAR image and location of

different classes on the classified image, respectively. The image has been

classified into urban (red), water (blue), short vegetation (green), long vegetation

(sea green) and bare soil (sienna). The overall classification accuracy was

estimated as 92.52%.

4 The regions which are considered has crops like wheat, sugarcane and mustered at

that time.

4 The urban and water region of the classified image is masked. The masking is

performed with the intent to demarcate the vegetation and bare soil region, as the

algorithm have been developed for the vegetated areas and bare soil for soil

moisture retrieval.

4 Figure 6.6 shows the classified masked image. The size of the PAL-1 image

considered was 850 x 850, i.e., the total number of pixel was 722500. After
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masking the image, 515313 pixels correspond to the vegetated area and 11084

pixels correspond to the bare soil.

4» Figure 6.7 (a) and 6.7 (b) show the MODIS band-1 and band-2 image of the test

area respectively and Figure 6.7 (c) shows the corresponding NDVI image. The

NDVI values of the test region ranges from 0.25 to 0.43.

•4 Due to the difference in the spatial resolution of the PALSAR image (25 m) and

MODIS (250 m) data, PALSAR image pixel values corresponding to the MODIS

pixel value were averaged as explained in Section 6.5.2(c)(iii).

77°50'E 77"52'E 77°54'E 77'56'E 77'58'E

77'50'E 77-52'E 77'54'E 77°56'E 77°58'E

(a)

Solani

River

Ganga
t Canal

Roorkee

tj City §

77*50'E 77°52'E 77'54'E 77'56'E 77'58'E

Short vegetation

Long vegetation

Urban

Water

Bare soil

Figure 6.5. PALSARtest image (PAL-1, pixel spacing= 25 m) (a) color composite

image (HH = red, HV = green, W = blue) (b) classified image (red = urban, blue =

water, green = short vegetation, sea green = long vegetation and sienna bare soil) (c)

Location of different classes on the classified image.
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Figure 6.6. Classified masked image of thePALSAR testdata(PAL-1) showing some

of the test areas(in circle)used for in situ measurement of the soil moisture and

surface roughnessfor developmentof algorithm.

•

(a)
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Figure 6.7. Test image of MODIS (MOD-1) of (a) band-1 image (b) band-2 image

(c) NDVI image.
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Figure 6.8. Response ofnormalized scattering coefficient (a) in HH-polarization (b)
in VV-polarization.

4 The variation of the normalized scattering coefficient in the HH-polarization

(Aa°HH varies -3.64 dB to -8.82 dB) and VV-polarization (Act,0,, varies -2.82 dB

to -8.53 dB) with NDVI (varies 0.25 to 0.43) is shown in Figures 6.8(a) and (b),

respectively. The change in the normalized scattering coefficient with the NDVI

led to the development of the empirical relation provided by Equation 6.9.

4 The developed empirical relationship is quadric in HH-polarization as well as in

VV-polarization, except the difference in the empirical coefficients. The

empirical coefficients Pi, P2 and P3 in case ofthe HH-polarization were -218.1,
172.2 and -38.41, respectively with coefficient of determination (R2) 0.83 and
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root mean square error (RMSE) 0.5313. Further, in case of the VV-polarization

Pi, P2 and P3 were -241.7, 201.3 and -41.8, respectively with R2 = 0.81 and

RMSE = 0.7241.

4> The developed empirical relationship (Equation 6.9) facilitates to retrieve

AtT^ (dB) and Acr^ (dB) with the NDVI values ofMODIS image (MOD-1).

4> These normalized scattering coefficients in conjunction with the scattering

coefficients of PALSAR image (<j° (dB) and a0 (dB)) provides the
° v HH Image v ' W Image v " r

scattering coefficient of the soil (cT^^dB) and <T^,Soil (dB)) with help of

Equation 6.10.

4> The dielectric constant of the soil is retrieved by Equation 6.11 by substituting

ct° . (dB) and a^ (dB) and the corresponding volumetric soil moisture

constant is obtained from Equation 6.12.

4> The retrieved soil moisture map is shown in Figure 6.9 where black areas of

image are the masked pixels. Figure 6.10 shows the volumetric soil moisture

values retrieved through the developed algorithm and the observed volumetric soil

moisture values. The root mean square error (RMSE) for the retrieval of the soil

moisture is 0.036.

J

* »-•.#•
ci~"

•

Figure 6.9. Soil moisture map of the test area. Pixels with black colour represent

masked area.
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Figure 6.10. Graph between the observed and retrieved value ofvolumetric soil
moisture for the test area.

(b) Validation ofApproach 1

The developed algorithm has been validated on PAL-2 and MOD-2 images.

In this region also the similar type of crops were found. A detailed analysis is as

following.

4- The land cover was approximately similar to the land cover of test area. The

classification of the PALSAR image of the validating region (PAL-2) was carried

out with the procedure laid down in Section 6.5.2(c) and image was classified into

urban (red), water (blue), short vegetation (green), long vegetation (sea green) and

bare soil (sienna). The overall accuracy was estimated 90.14%.

4 Figures 6.11(a)-(c) show the color composite PALSAR image (HH = red, HV =
green, VV = blue), corresponding classified PALSAR image and the masked
image (urban and water region masked), respectively, respectively. The PAL-2
image was also ofsize 850 x 850, i.e. contains the 722500 pixel. After masking
the image the number ofpixel for vegetation area and bare soil are 595653 and

12091 respectively.

4- Figure 6.12 shows the corresponding NDVI image retrieved through the MODIS

data(MOD-2), which varies from 0.25 to 0.44.
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4» The PALSAR pixels corresponding to the MODIS pixel were averaged as the

procedure was performed in the case of test PALSAR image and explained in

Section 6.5.2(c)(iii).

4> The empirical relationship developed for the test region was used in case of

validating region also (i.e., the retrieved empirical coefficient Pi, P2, and P3 were

same as for the test image) and similar procedure was carried out to retrieve the

soil moisture values.

4> The retrieved soil moisture image is shown in Figure 6.13 whereas Figure 6.14

shows the volumetric soil moisture retrieved through the developed algorithm and

the observed volumetric soil moisture values. The root mean square error (RMSE)

for the retrieval of the soil moisture was 0.041.

The retrieved soil moisture values in the case of test area as well as the

validating area show quite good agreement with the observed ground truth values.

77°52'E 77°54'E 77"56'E 77"58'E 78°E

77°52'E 77*54'E 77*56'E 77'58'E 78"E

(a)

77*52'E 77-54'E 77°56'E 77"58'E 78*E

77*52'E 77*54,£ 77"56'E 77°58'E 78'E

(b)
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(c)

Figure 6.11. PALSAR validating image (PAL-2, pixel spacing = 25 m) (a) color

composite image (HH = red, HV = green, VV = blue) (b) classified image (red =

urban, blue = water, green = short vegetation, sea green = long vegetation and sienna

bare soil) (c) classified masked image with some of the area marked with circle that

was used for in situ measurmet of moisture and roughness to validate the results.

Figure 6.12. NDVI image of validating region.
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Figure 6.13. Soil moisture map of the validating image. Pixelswith blackcolour

represent masked area.
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Figure 6.14. Observed and retrieved value of volumetric soil moisture for the

validating area.

6.6. Model Development: Approach 2

Soil moisture retrieval methodology discussed in Approach 1 provides quite

satisfactory results and proves the use of share of information from SAR and MODIS

data for soil moisture retrieval over vegetated areas. The approach adopted in this

method was to normalize the scattering coefficient of vegetated area obtained from
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PALSAR data with scattering coefficient of bare soil computed with Dubois

equations in HH- and VV-polarization. The in situ measurements of soil moisture
and surface roughness have been used for the computation of scattering coefficient of
bare soil of the corresponding area. Thus, the adopted approach provided the

normalized scattering coefficient as function ofNDVI (detailed discussion has been

presented in Section 6.5).

To minimize the dependency of field knowledge a second approach based on

dry soil is considered and tested for soil moisture retrieval in vegetated areas. It means
that the normalization of scattering coefficient of vegetated area can also be

performed with the scattering coefficient of dry soil [214]. This normalization scheme
will provide the normalized scattering coefficient as a function of soil moisture and
vegetation characteristic defined by NDVI. This approach has been developed in the
following sections. Figure 6.15 depict the flowchart ofthe soil moisture retrieval in
vegetated areas. The classified masked image obtained for Approach 1has been used

to develop the model for soil moisture retrieval.

6.6.1. Theoretical Background

(a) Vegetation Modeling in SAR Image

As discussed in Section 6.5.2(c)(i) the scattering coefficient from vegetated

area depends on the scattering from the vegetation and the underlying soil. The
scattering from the soil is basically a function ofthe soil dielectric constant defined by
dielectric constant of the soil and its moisture content and surface roughness.

Therefore the scattering coefficient form a vegetated area can be written as a function

ofvegetation, dielectric constant ofmoist soil and surface roughness (Equation 6.13).

a0 = /"(Vegetation, dielectric constant of moist soil, surface roughness)
v PP[mage J \ O

(6.13)

The scattering coefficient of bare dry soil (crp0PDiySoil) is dependent on the

dielectric constant of dry soil and surface roughness and can be written as Equation

6.14.
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Polarimetric SAR data (i.e., HH-, HV-, VV-
polarization)
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Figure 6.15. Flow chart for the retrieval of soil moisture: Approach 2.



a" =/'(dielectric constant ofdry soil, surface roughness) (6.14)
PPDrysoil J V

It can be inferred from Equations 6.13 and 6.14 that the normalization of the

scattering coefficient from the vegetation area to the scattering coefficient of the dry
soil would let to the development of a function which will depend on soil moisture

and vegetation [214]. Therefore the normalized scattering coefficient can be written as

Equation 6.15.

a" (Vegetation, dielectric constant of moist soil, surface roughness)
PP Image V P I

aB„ (dielectric constant of dry soil, surface roughness)
. ii PP Image

PP Image-Dry soil

therefore

^tj0 = f(Vegetation, soil moisture) (645)
L-%KJ PPImage-Drysoil J V © ^

where PP represents the polarization ofthe SAR image. The algorithm development

in the present case has been dealt with the HH-polarization.

(b) Computation ofthe Bare Soil Scattering Coefficient
The development of the algorithm is based on the normalization of the

scattering coefficient of the vegetated area that is available through the PALSAR
image to the scattering coefficient of the dry soil which can be calculated by Dubois
et al. model (Equation 6.5) directly as it is known that the dielectric constant ofdry
soil is 3.03 (Equation 6.7). The sensor parameter used for the computation of
scattering coefficient were the PALSAR sensor parameters, i.e., the incidence angle
and wavelength with values 24° and 23.6 cm, respectively. The rms surface height
observed was 0.53 cm, as discussed in Section 6.5.2(c)(i), as well as, the dielectric

constant of dry soil was considered to be 3.03.

(c) Vegetation Modeling with Optical Image
NDVI is used to describe the vegetation with optical image. MODIS band-1

and band-2 image have been acquired for the computation ofNDVI. The description
ofvegetation with NDVI has been provided in Equation 6.8.
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6.6.2. Development of Relationship between A<r°p andNDVI

It is discussed in Section 6.6.1(a) by Equation 6.15 that a<t° is a
* ' * » PPImage -Drysoil

function of soil moisture and vegetation and vegetation can be described by the NDVI

as discussed in Section 6.6.1(c). Therefore the relationship between Act0 and
' * PP Image -Drysoil

NDVI has been explored. The development of relationship is based on the in situ

measurements of soil moisture made during the field visit in the test region (PAL-1

image). The moisture values obtained during the field visit were grouped in range,

i.e., mvj < 0.10, 0.10 <mv2 <0.15, 0.15 < mv3 < 0.20, 0.20 < mv4 <0.25 andmv5>

0.25. Based on these values a set of isometric lines were observe between

Act0 and NDVI as shown in Figure 6.16. The Act0 values changed
v PPImage -Drysoil ° PPImage -Drysoil °

from 4.28 dB to 1.48 dB, from 3.11 dB to -0.42 dB, from 3.03 dB to -0.20 dB, from

0.81 dB to -1.07 dB and from -0.51 dB to -1.49 dB for mvl to mv5, respectively. The

NDVI values changed from 0.29 to 0.40, from 0.29 to -0.50, from 0.24 to 0.38, from

0.27 to 0.48 and from 0.34 to 0.43 for mvi to mvs, respectively. It can be observed

from the Figure 6.16 that for each NDVI the variation in Act0 in vertical
Image -Dry soil

direction is due to soil moisture. The vertical variation decreases as the NDVI

increases, signifying that the sensitivity of An-0 decrease for soil moisture with
Image -Dry soil

the increase in NDVI [214]. The set of isometric line were regressed and a series of

soil moisture equations (6.16A-6.16E) were obtained. The coefficient of

determination (R2) for all regressed isometric lines was greater than 0.81.

0.35 0.4

NDVI

Figure 6.16. Response of normalized scattering coefficient for NDVI at different soil

moisture contents.

163



mvl <0.10; Aa°< -165.5 (NDVI)3 +263.7 (NDVI)2 -149.2 (NDVI) +29.72
(6.16A)

0.10 <mv2 <0.15; Ao° < 60.8 (NDVI)3 - 14.83 (NDVI)2 - 34.49 (NDVI) + 12.97
(6.16B)

0.15 <mv3 <0.20; Aa° < 96.22 (NDVI)3 - 38.16 (NDVI)2 - 28.7 (NDVI) + 11
(6.16C)

0.20 <mv4 <0.25; Ao° < -28.52 (NDVI)3 +73.32 (NDVI)2 - 52.32 (NDVI) + 10.3
(6.16D)

mv5 >0.25; Aa° < -107 (NDVI)3 + 172.4 (NDVI)2 - 91.4 (NDVI) + 14.46
(6.16E)

Similar result were obtained by Wang et al. [214]. Wang et al. [2141 have

carried out the study by normalizaing the scattering coefficient of the wet season

image to the dry season image and they have developed the emprical relationship

between the normalized scattering coefficient and the NDVI. Howerve, for the

Approach 2, the normalization of the scattering coefficent have been carried out by

computing the scattering coefficnent ofdry soil with Dubois et al. [48] Model by this

the data of dry season may be not required.

6.6.3. Retrieval of Soil Moisture with Approach 2

Equations 6.18A-6.18E provides a set of equation relating normalized

scattering coefficient with NDVI for different range of soil moisture. The volumetric

soil moisture can be retrieved utilizing these equations provided the normalized

scattering coefficient and NDVI of the area of interest. The normalized scattering

coefficient has been obtained from the PALSAR image by normalizing the scattering

coefficient of PALSAR datawith scattering coefficient of dry soil whereas, the NDVI

values has been obtained from the MODIS band-1 and band-2 images. Following

scheme has been adopted in the retrieval of soil moisture.
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First of all, the NDVI value obtained from the MODIS has been substituted in

Equation 6.16E and checked the condition of validity. If the condition is satisfied the

moisture lie for mv$ range otherwise the validity condition of Equation 6.17D is

checked and the procedure is followed up to the condition ofEquation 6.16A.

6.6.4. Implementation ofApproach 2 on SAR Image

(a) Implementation on the TestArea

Classified masked image of PALSAR data (PAL-1) along with NDVI values

retrieved from MODIS image (MOD-1) of test region has been utilized to retrieve the

volumetric soil moisture content (Figure 6.6 and 6.7(c), respectively).

-4 Scattering coefficient of PAL-1 image was normalized with scattering coefficient

of the dry soil computed with the Dubois et al. [48] model (Equation 6.15).

4 NDVI values were computed with the band-1 and band-2 of the MOD-1 image.

4 The empirical relationship developed in Section 6.6.2 (Equation 6.16) was utilized

to retrieve the soil moisture as described in Section 6.6.3.

*L Figure 6.17 shows the retrieved soil moisture map of the test region. The RMSE

for the estimation of volumetric soil moisture was 0.039. Figure 6.18 shows the

observed and retrieved values of volumetric soil moisture.

0.3

0.25

0.05

Figure 6.17. Moisture image of test region retrieved by Approach -2. Pixels with

black colour represent masked area.
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Figure 6.18. Observed and retrieved values ofvolumetric soil moisture oftest area.

(b) Validation ofAlgorithm

Classified masked image of PALSAR data (PAL-2) along with NDVI values

retrieved from the MODIS image (MOD-2) of validating region has been utilized to

retrieve the volumetric soil moisture content. Figure 6.19 shows the retrieved soil

moisture map of the test region. The RMSE for the estimation of volumetric soil

moisture was 0.052. Figure 6.20 shows the observed and retrieved values of

volumetric soil moisture.

.
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Figure 6.19. Moisture image oftest region retrieved by Approach -2. Pixels with
black colour represent masked area.

166

•4



•o

0.3

0.2

0.1

0 0.1 0.2

Observed soil moisture (cm'cm j)

0.3

Figure 6.20. Observed and retrieved values of volumetric soil moisture of validating

area.

6.7. Comparison of Approach 1 and Approach 2

Approach 1 and Approach 2 of soil moisture retrieval in vegetation area

presents two different normalizing schemes that have been devised to normalize the

scattering coefficient of PALSAR image of vegetated area by which MODIS data can

be used. The first approach employs in situ measurement of soil moisture as well as

surface roughness for computation of bare soil scattering coefficient and subsequently

utilized this value to normalize the scattering coefficient of vegetated area. It is

difficult to measure the surface roughness in the fields. The second approach does not

require the in situ measurement of soil moisture and normalizes the scattering

coefficient of the vegetated area with scattering coefficient of dry bare soil however

the in situ measurements are required at the later stage of algorithm development. The

scattering coefficient of the bare soil has been computed with Dubois equation. In

both the approaches, empirical relationship between normalized scattering coefficient

and NDVI was developed. First approach utilizes both like polarization, i.e., HH- and

VV-polarization whereas; the second approach utilizes only the HH-polarization. The

apriori knowledge of surface roughness is required in the phase of the algorithm

development in both the approaches. But, the first approach which utilizes HH- as

well as VV-polarization minimizes the roughness effect in retrieval of soil moisture

by solving the Dubois equation in HH- and VV- polarization utilizing the
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copolarization ratio approach. The second approach does not apply such an approach

and considers the surface roughness of the development phase. The Approach 1

provides a simple relationship between the normalized scattering coefficient and

NDVI whereas; Approach 2 provides a set of equations which are tested for their

validity range to provide the moisture value. Though, both the approaches require the

apriori information of soil moisture and surface roughness at the time of algorithm

development, the Approach 1 provide an upper hand in implementation as it does not

require the surface roughness as an input parameter for moisture retrieval in vegetated

area and rely only on the information content of satellite images, i.e., SAR and NDVI

data.

The empirical coefficients in the both the approaches have been computed for

the vegetation cover of the test area. Though, the validation of the developed

approaches has been made for different area and provides good results, the area of

validation contains approximately similar land cover and vegetation type. Therefore,

there may be the possibility of the site dependency when the approach is applied in

different land cover with different vegetation type, but being a conceptual approach

their empirical coefficient can be computed for respective test region and their

applicability can be ensured.

6.8. Conclusion

The study carried out in this chapter acknowledges the problem of soil

moisture retrieval in vegetated region and develop algorithms based on the

information fusion approach of PALSAR, a SAR data and MODIS, an optical data.

The emphasis of the fusion approach is due to the complementary information

available by the SAR and optical data. SAR data contains the information of

vegetation characteristic as well as the underlying soil characteristic that includes the

soil moisture. But due to the complex scattering behavior of microwave data it is very

much difficult to segregate the vegetation effect from the scattering value when the

aim is to retrieve vegetation covered soil moisture. Now, at this point, the optical data,

especially NDVI values that are computed from optical data and explain the
abundance of vegetation, can be efficiently utilized to incorporate the vegetation

effect inSAR modeling. In this manner, the fusion approach provides good alternative
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to retrieve vegetation covered soil moisture which is very complex task when dealt

with SAR data only. Therefore, in this chapter fusion approach has been utilized with

PALSAR, a SAR data and MODIS, an optical data. The PALSAR data was efficiently

utilized with polarimetric capability to classify the land cover in urban, water,

vegetation and bare soil and subsequently to mask the urban and water region. The

problem of vegetation characterization in retrieval of soil moisture from SAR images

has been dealt with optical image by appropriately utilizing the NDVI, a vegetation

index. Two different approaches have been developed that discusses the relationship

between normalized scattering coefficient and NDVI. Both the approaches provide

different set of relationship between normalized scattering coefficient and NDVI due

to different normalization process adopted. The developed algorithms for both the

approaches were tested on the first set of images (PAL-1 and MOD-1) on which the

algorithm was developed and thereafter validated on the second set of images (PAL-2

and MOD-2). The obtained results are in good agreement with the ground truth data

and approaches have potential to retrieve soil moisture under vegetation cover to with

minimum need of apriori.
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Chapter 7

Conclusion and Future Scope

This chapter aims to provide the key conclusion of the research carried out in

this thesis and the future scope has been given in later part of this chapter.

7.1. Contribution of the Thesis

Present thesis has emphasized to study and critically analyze the soil texture

effect in bistatic domain at 10 GHz and 6 GHz and develop the retrieval algorithm for

minimum need of apriori information. It also emphasized to retrieve soil moisture

over vegetated area with satellite data. To fullfil these studies a ground based bistatic

scatterometer is ingeniously designed at 10 GHz and 6 GHz which had the capability

to change the polarization and incidence angle. By this soil parameters effect is

critically analyzed and retrieval algorithm is developed. Also, two different kinds of

satellite data, i.e., PALSAR based on active microwave remote sensing concept and

MODIS data on optical domain have been used to develop fusion approach for soil

moisture retrieval over vegetated area. The main conclusions and contributions of the

thesis are as following:



1 The research in characterization of soil parameters, i.e., soil texture, soil

moisture and surface roughness has been devoted to monostatic domain but

still the uncertainty exists. Further, soil moisture and surface roughness have

been prominently used as soil parameters in active microwave remote sensing

studies whereas the role of soil texture has been neglected. But, studies have

demonstrated a significant effect of soil texture on microwave scattering.

Therefore, the study was carried out to observe the soil texture effect

(changing the percentage of sand from 38.7% to78.4%, percentage of silt from

9.1% to 35.8% and percentage of sand from 4.3% to 18.7%) on specular

scattering while varying soil moisture (i.e., 0.10 cm cm" to 0.21 cm cm" )

and periodic surface roughness (i.e., 0.9 and 1.4 cm) at 10 GHz. It was

observed that specular scattering coefficient changes with the change in soil

texture and the effect was clearly observable for smooth soil at different

moisture conditions for higher incidence angles (i.e., > 50°). The surface

roughness has major effect on specular scattering coefficient when objective is

to observe the soil texture effect on specular scattering. It was difficult to

observe the change in specular scattering coefficient with change in soil

texture for different surface roughness values at 10 GHz. Therefore, it may be

inferred that effect of soil texture with specular scattering coefficient at 10

GHz can be observed for smooth surface at different soil moisture content but

it is difficult to observe the soil texture effect on specular scattering coefficient

at different surface roughness conditions.

«k The difficulty in observing the effect of soil texture on specular scattering

coefficient at 10 GHz for rough surface led to carry out experiments at 6 GHz.

It was observed that change in specular scattering coefficient occurs with

change in soil texture at different roughness conditions (i.e., smooth surface to

s = 2.46 cm) at 6 GHz. Sand and clay constituents of soil have more effect

than silt constituent of soil on the specular scattering coefficient. It was

observed that due to decrease in sand percentage, specular scattering

coefficient decreases, but on the contrary, decrease in percentage of clay in

soil increases the specular scattering coefficient. The change in percentage of

silt has negligible effect on the specular scattering coefficient. All these

observations were noticed for higher incidence angles (i.e., > 45°) whereas at
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lower incidence angles (i.e., < 45°) it was difficult to observe the change in

specular scattering coefficient with change in soil texture, i.e., with percentage

change in sand, silt and clay constituents. The change in specular scattering

coefficient with change in soil texture was observed for lower soil moisture

contents (mv < 0.261 cm cm" ) whereas for higher soil moisture contents (mv <
7 7 t

0.261 cm cm") it was difficult to observe change in specular scattering

coefficient with change in soil texture.

4 Retrieval of soil parameters form the observed scattering coefficient is another

important task. In general, theoretical, empirical and semi-empirical equations

provide the direct relationship, i.e., scattering coefficient as the function of soil

parameters. The retrieval of soil parameters, i.e., soil texture, soil moisture and

surface roughness is complex processes due to the dependency of several soil

parameters on single scattering coefficient. Therefore, various sensor

parameters (i.e., incidence angle, polarization and frequency) can be utilized to

minimizes the effect of one or more soil parameters to retrieve the other soil

parameter. In this regard, copolarization ratio study was explored and it was

observed that the copolarization ratio minimize the soil texture effect and

varies only with soil moisture content when the surface roughness was kept

constant. This approach was utilized to retrieve the soil moisture content by

minimizing the soil texture effect. The copolarization ratio posses the

limitation of constant surface roughness. Therefore, multi-incidence angle

approach have been studied and it was observed that the normalized specular

scattering coefficient (i.e., specular scattering coefficient at one incidence

divided by scattering coefficient at other incidence angles) changes with the

change in surface roughness, whereas negligible changes were observed with

the change in soil moisture and soil texture. This approach was firstly

exploited to retrieve surface roughness (i.e., s and /) and subsequently these

roughness values were used to retrieve soil texture and soil moisture.

4 Till now the satellite data is available in monostatic domain and in future the

availability of data will be in bistatic domain. So, by seeing the availability of

satellite data, another task to retrieve the soil moisture over vegetated area

with satellite data has been considered which is still a challenging task. Timely

estimation of soil moisture at local and global scale is required in many
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applications such as environmental modeling, weather forecasting, agriculture
and many more. Most of the soil moisture retrieval algorithms, applicable on

existing satellite data, have been developed for bare soil. Bare soil is a special
case because for most of time in a year soil is covered with vegetation.

Therefore, the accuracy of these approaches suffers severely when applied in

vegetated area. In this regard, Fusion based approaches, utilizing the SAR and

optical data, have been developed to retrieve the vegetation covered soil
moisture. The potential of fusion approach is from the ability of SAR and

optical data to characterize the vegetation. SAR data has capability to

characterize the vegetation as well as underlying soil parameters, i.e., soil

moisture and surface roughness. But, the scattering coefficient that is the

measured parameter becomes the function of vegetation and soil parameters.

Therefore, it becomes complex task to retrieve the vegetation covered soil

moisture with SAR data only. Further, the optical remote sensing, especially

the NDVI, explains the abundance of vegetation and therefore can be utilized

to model vegetation parameter in soil moisture retrieval scheme with SAR

data. The PALSAR, a SAR data and MODIS, an optical data have been

efficiently utilized to retrieve vegetation covered soil moisture. The MODIS

data has been used to compute the NDVI map of the respective area. Two

fusion approaches have developed with PALSAR and NDVI data. The first

approach normalizes the scattering coefficient of vegetated area with the

scattering coefficient of bare soil retrieved through the Dubois et al. model and

for the purpose in situ measurement of soil moisture and surface roughness

were carried out. The second approach normalizes the scattering coefficient of

the vegetated area with scattering coefficient of dry soil which has been

computed with Dubois et al. model. Different empirical relationships have

been developed for both the approaches that involve normalized scattering

coefficient and NDVI. These empirical relationships have been used to

retrieve the vegetation covered soil moisture. The obtained results were in

good agreement with the observed data and the approach can be utilized with

minimum apriori information with data available from satellite based sensors

only.
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7.2. Future Scope

Based on the research work carried out and its applicability in various

domains, following are the points that may be carried out in future:

4 The experimental work which was conducted to characterize the soil

parameters in specular direction, that is specific case of bistatic domain, may

be useful for future bistatic mission such as TandEM-X and cartwheel satellite

system.

4- The other major objective of the study was to check the response of soil

texture on specular scattering and this study may be helpful in near future to

generate soil texture map with the availability of data in specular direction.

4> The applicability of multi-incidence angle approach for retrieval of soil

parameters with specular scattering data has been tested and validated. This

approach can be explored for future bistatic missions to retrieve soil

parameters, i.e., soil texture, soil moisture and surface roughness.

4- The problerh of soil moisture retrieval in vegetated area has been dealt with

fusion approach. The PALSAR and MODIS data have been efficiently utilized

to retrieve vegetation covered soil moisture. This approach can be explored to

develop soil moisture monitoring system with satellite data only.
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