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ABSTRACT

In past two decades, Internet has revolutionized almost every facet of our lives.

Government, commercial, and educational organizations depend on Internet to such an extent

that day-to-day operations are significantly hindered when the network is "down". Almost all

the important services such as banking, transportation, stock trade, medicine, education, etc

are extended to Internet now. Everything is available on a click of a mouse. But unfortunately

at the same time, the prosperity of the Internet also attracts abusers and malicious attackers.

Since the original aim of Internet was to provide an open network for researchers to share

their research resources, therefore openness and growth of the network were the design

priorities while security issues were of less concern. Abusers and malicious attackers take

advantage of this to launch attacks and intrusions to the Internet based services. Internet based

attacks can be launched anywhere in the world, and unfortunately no Internet based service is

immune to these attacks. These attacks lead to heavy financial losses, delays, and customer

dissatisfaction. Trustworthiness and security of the Internet not only benefits on-line

businesses, but is also an issue for national safety. Denial-of-service (DoS) and distributed

denial-of-service (DDoS) attacks are currently amongst the most problematic Internet security

threats. These attacks are critical as they aim at denying or degrading services for a legitimate

user.

DDoS attacks can be defined as any form of attempt that forces some system

component to limit, or even halt, normal services. The traditional purpose and impact of

DDoS is to prevent or deny the legitimate use of computer or network resources. Regardless

of significant advances that have been made in network management and security, Internet

connected systems face a consistent threat from DDoS attacks. Over the recent years, several

research works have proposed solutions for handling DDoS attacks. A lot of them claim to be

best in absence of benchmarks, but none of them is able to withstand the advancing attack

techniques. Researchers have come up with more and more specific solutions to the DDoS

problem. However, existing DDoS attack tools also keep on improving using new attack

techniques. Hence there is a critical need of addressing this issue to achieve a long lasting

solution. Accordingly, the thesis focuses on the research towards developing a robust and

effective solution to counteract DDoS attacks and is organized as follows.
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In the first part of the thesis, a brief introduction of the research work, motivation, and

problem formulation is given. Then it is followed by a state of the art literature review.

Following that, we describe our proposed approach, 'flow-volume based approach (FVBA)',

for detecting variety of DDoS attacks. In the proposed mechanism, attacks are detected by

monitoring abrupt traffic changes inside ISP network. The flow-volume based approach

(FVBA) constructs profile of the traffic normally seen in the network, and identifies

anomalies whenever traffic goes out of profile. Tolerance factor which is a tunable parameter

is used to make proposed detection system adaptable to the varying network conditions and

attack loads in real time. Proposed scheme is evaluated through extensive simulations using

NS-2 network simulator on Linux platform. Network topologies similar to Internet, used for

simulation, are generated using Transit-Stub model of GT-ITM topology generator. Five

performance metrics, i.e. detection rate, false positive rate and receiver operating

characteristics (ROC), Goodput and NPSR are used to evaluate the performance of proposed

scheme and it is compared with existing volume based approaches. The results show that

proposed scheme gives 10-30% improvement in detection rate over earlier volume based

schemes. For validating performance of proposed scheme, KDD 99, a publicly available

benchmark dataset is used.

The flow-volume based approach (FVBA) though performs better than previous

methods, it can be further improved by taking the hetroskedastic nature of DDoS attack

traffic. Hence in subsequent section, the thesis deals with nonlinear statistical methods for fast

and effective detection of flooding DDoS attacks. In this research work, the Generalized

Autoregressive Conditional Heteroskedastic (GARCH) model, which is a commonly used

statistical modeling technique for financial time series, is used as a new technique for

detecting DDoS attacks. Our studies show that this non linear volatility model gives 4 to 5.5%

improvement in detection performance from earlier models like linear prediction. The results

reveal that time series modeling of DDoS attacks does show a lot of promise. Detection

performance of GARCH model based detection scheme is also compared with FVBA scheme.

Results show that GARCH model based detection scheme shows marginal improvement in

detection rate over FVBA.

The thesis also deals with predicting number of zombies involved in a DDoS attack. A

real time estimation of the number of zombies in DDoS scenario is helpful to suppress the

effect of attack by choosing predicted number of most suspicious attack sources for either
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filtering or rate limiting. We use various regression models i.e. linear, polynomial,

exponential, power, logarithmic and multiple to predict number of zombies in a DDoS attack.

Various statistical performance measures are used to evaluate the performance of various

regression models. A comparative study of different regression models for predicting number

of zombies is performed. Generally the method being promising, simulation results show that

multiple regression model performs better than other regression models.

The other new proposal, which is a different method for predictingnumber of zombies

involved in a DDoS attack, is presented next to the above section. The proposed method uses

feed forward neural networks of different sizes to predict number of zombies. The sample

data used to train and test the feed forward neural networks is generated using NS-2 network

simulator running on Linux platform. Mean square error (MSE) is used to compare the

performance of various feed forward neural networks. For the prediction of the number of

zombies in a DDoS attack, three feed forward neural networks of different sizes have been

tested. For the problem at hand, feed forward networks with 5, 10 and 15 neurons are used.

Selected feed forward networks are compared for their prediction performance. The

simulation results show that feed forward networks with 10 neurons perform better than the

others, as it is able to predict number of zombies involved in a DDoS attack with very less

error. Prediction performance of ANN based scheme has also been compared with regression

based scheme and results show that ANN based scheme performs better than regression based

scheme when attack is more severe.

The other main issue presented in the thesis is our approach for estimating strength of

a DDoS attack. Estimating strength of attack is helpful to suppress the effect of attack, as it

enables a security administrator to effectively equip his arsenal with proper defense

mechanisms for fighting against DDoS threat according to the strength of attack. Hence in this

research work, we use regression analysis to investigate suitability of various regression

models i.e. linear, polynomial, exponential, power, logarithmic and multiple to estimate

strength of a DDoS attack. A comparative study has also been performed using different

regression models for estimating strength of DDoS attack. The simulation results show that

multiple regression model performs better to estimate strength of a DDoS attack.

Lastly summary of the contributions made in the thesis and the future scope of the

work are presented. All in all, the thesis expounds the various approaches we proposed for

defending against variety of DDoS attacks.
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CHAPTER 1

INTRODUCTION

In the past two decades, Internet has revolutionized almost every facet of our lives.

Government, commercial, and educational organizations depend on Internet to such an extent

that day-to-day operations are significantly hindered when the network is "down". Almost all

the important services such as banking, transportation, stock trade, medicine, education, etc

are extended to Internet now. Everything is available on a click of a mouse. But unfortunately

at the same time, the prosperity of the Internet also attracts abusers and malicious attackers.

Internet based attacks can be launched anywhere in the world, and unfortunately no Internet

based services are immune to these attacks. These attacks lead to heavy financial losses,

delays, and customer dissatisfaction. Trustworthiness and security of the Internet not only

benefits on-line businesses, but it is also an issue for national safety. Denial-of-service (DoS)

and distributed denial-of-service (DDoS) attacks are currently amongst the most problematic

Internet security threats. These attacks are critical as they aim at denying or degrading

services for a legitimate user. This chapter gives a brief introduction of the DDoS attacks,

motivation for DDoS defense, problem statement and finally organization of the thesis.

1.1 Introduction

A revolution came into the world of computer and communication with the advent of

Internet. Therefore, Internet has become increasingly important to the current society. It has

changed our way of communication, business mode, and even everyday life [29]. The impact

of Internet on society can be seen from figure 1.1 which shows exponential increase in

number of hosts interconnected through Internet [198]. As, we can see from figure 1.1, there

were only around 1 million Internet host in January 1993, which has increased to more than

775 million Internet hosts in October 2010. Though, it is not easy to manage few millions of

Internet hosts, it is very difficult to manage 775 millions Internet hosts. Poorly managed

machines tend to be easy to compromise. Figure 1.2 shows the size of the Internet users in the

world by various geographic regions. This is the recent information according to the survey of



Mini Watts Marketing Group [95]. According to this survey, the estimated Internet users are

1,966,514,816 for June 30, 2010.
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Internet usage is growing at an exponential rate as organizations, governments and

citizens continue to increase their reliance on this technology. Unfortunately with an increase

in number of host, count of attacks on Internet has also increased incredibly fast. Accordingto

[49], a mere 171 vulnerabilities were reported in 1995 which boomed to 7236 in 2007.

Vulnerabilities for third quarter of 2008 have gone up to 6058 as shown in figure 1.3.

Computer emergency response team (CERT) stopped updating its website after 2008 due to

increasing number of vulnerabilities reported every year. Apart from these, a large number of

vulnerabilities go unreported every year. In particular, denial-of-service (DoS) attack is one of

the most common and major threat to the Internet today. It reveals big loopholes not only in

specific applications, but also in the entire TCP/IP protocol suite.

A DoS attack can be described as an attack designed to render a computer or network

incapable of providing normal services. It is considered to take place only when access to a

computer or network resource is intentionally blocked or degraded as a result of malicious

action taken by another user [37]. Therefore, as defined by Weiler, it includes any of the

following attempts [144]:

• to inhibit legitimate network traffic by flooding the network with useless traffic,

• to deny access to a service by disrupting connections between two parties,

• to block the access of a particular individual to a service, or

• to disrupt the specific system or service itself.
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The main aim of such attacks is to prevent the victim either from the benefit of a

particular service (in case of client being victim) or from providing its services to others (in

case of server being victim). A DDoS attacker uses many machines to launch a coordinated

attack against one or more targets [38]. This attack is launched indirectly through many

compromised computing systems by sending a stream of useless aggregate traffic meant to

explode victim resources. As a side effect, these attacks frequently create network congestion

on the way from the source to the target, thus disrupting normal Internet operations.

The number of DDoS attack has been alarmingly increasing for the last few years [65]. Many

oftoday's DDoS attacks are carried out by organized criminals targeting financial institutions,

e-commerce, gambling sites, etc.

Usually, DDoS attack can be launched in two forms [108, 109]. The first form is to

exploit software vulnerabilities of a target by sending malformed packets and crash the
system. The second form is to use massive volume oflegitimate looking but garbled packets
to clog up computational or communication resources on the target machine so that it can not

serve its legitimate users. The resources consumed by attacks include network bandwidth,

disk space, CPU time, data structures, network connections, etc [127]. While, it is possible to
protect the first form ofattack by patching known vulnerabilities, the second form ofattack
can not be so easily prevented. The targets can be attacked simply because they are connected

to the public Internet.

Figurel.4. Increase inDDoS attack traffic
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Recent trends in the Internet [72, 164] show that the total amount of the DDoS attacks

reached over 100 gigabit per second barrier. It also shows that the amount of DDoS attack

traffic has been increasing in size year by year. A study conducted by Arbor Networks [164]

shows the year by year increase of the DDoS attack traffic on the Internet, from the year 2001

to 2010 as shown in Figure 1.4.

It is immoral to start a DDoS attack on the Internet even if the purpose of it is research

to defensive measures for the future attacks. Also, the results of a DDoS attack staged for

research purposes on the Internet could be unpredictable due to the Internet complexity. Thus,

for the research purposes one must consider either computer/simulation network models or

analysis of various statistical data of real DDoS attacks that happened in the past. In this

thesis, we focus our study on network models and use computer programs to simulate the

DDoS attack on network models and statistical data of real DDoS attack that happened in the

past for the validation. This thesis presents several techniques for defending against DDoS

attacks, and evaluates their effectiveness against a wide range ofDDoS attacks.

1.2 Motivation

DDoS attacks quickly became increasingly popular as communities of crackers

developed and released extremely sophisticated, user friendly and automated toolkits [28, 36,

57, 58, 59, 60, 99, 136, 171] to carry them out. At present, even people with little knowledge

can use them to carry out DDoS attacks. The impact of DoS attacks can vary from minor

inconvenience to users of a website, to serious financial losses for companies that rely on their

on-line availability to do business. Additionally, the problem is aggravated because of huge

base of insecure machines on the Internet.

Various DDoS attacks against some high-profile websites such as Yahoo, Amazon,

CNN news and E*Trade were performed in early 2000 [3, 77, 211], which caused them to go

offline for several hours. In some cases these attacks have produced very high attack traffic

(e.g. in Gbits/s) against a single victim. Series of attacks on GRC.Com in May, 2001 [175], a

highly coordinated attack against CERT in May, 2001 [19], series of attacks against ISP's in

UK in 2002 [103], distributed attack against name servers in Akamai's Content Distribution

Network (CDN) in June 15, 2004 [21, 39], and the text-to-speech translation application

running in the Sun Microsystem's Grid Computing system disabled with a DDoS attack in

5



March, 2006 [148] demonstrate how devastating DDoS attacks are and how defenseless the

Internet is under such attacks. As a proofof these disturbing trends, a computer crime and

security survey conducted by FBI/CSI in the United States for the year 2004 [125] on 251

organizations, DoS attack is the second most widely detected outsider attack type in computer

networks immediately after virus infections. Acomputer crime and security survey conducted

in Australia for the year 2004 [26] shows similar results. A study showed that the number of

DDoS attacks increased by 50% per year [97], and the attacks also increased in sophistication

and severity. The losses caused by DDoS attacks are remarkable particularly to e-commerce

sites. According to Jupiter Communications, 46% of consumers report that the poor site

performance drove them away from their preferred sites. Unacceptable download times often
caused by DDoS attacks have been estimated to cause losses ofup to $4.35 billion in United

States e-commerce sales and worldwide businesses experienced about 3.3% of unplanned

downtime in 1999, translating to $1.6 trillion in lost revenue [52, 186].

A DNS reflection attack on Register.com, which is first major attack involving DNS

servers occurred in January 2001 [89]. This attack, which forged requests for the MX records

of AOL.com lasted about a week before it could be traced back to all attacking hosts and shut

off. It used a large list ofDNS servers at least a year old at the time ofthe attack. Moore et. al.
[65] used the backscatter analysis to assess the number, duration, and focus ofDoS attacks in
the Internet. Backscatter is called the unsolicited response traffic which the victim sends in

response to attack packets with spoofed IP source addresses. The results indicate more than
12,000 attacks against more than 5,000 distinct victims during the 3-week period examined in

February, 2001.

The DNS root servers are constant targets for DDoS attacks. On two occasions to date,

attackers have performed DNS backbone DDoS attacks on the one or more of the thirteen
DNS root servers. These attacks are extremely significant, because the root name servers

translate text-based Internet hostnames into IP addresses and function as the Internet

backbone. Therefore, these two DDoS attacks might be classified as attempts to take down the

entire Internet, rather than specific websites. The first occurred in October 2002, lasted for
approximately one hour and disrupted service at 9 of the 13 root servers [87]. The second
occurred in February 2007, lasted for approximately five hour and caused disruptions at two

ofthe root servers [91]. The botnet responsible for the attack has reportedly been traced to the

Asia-Pacific region.
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An increased attack on financial institutions and other organizations that keep

financial records, auctions, e-commerce and gambling sites are observed and they are

blackmailed before major events are due. For example, in August 2005 the Hamburg-based

gambling site jaxx.de was blackmailed to pay 40,000 Euros to stop an ongoing DDoS attack

[54,113].

In February 2007, more than 10,000 online game servers that were hosting games such

as Return to Castle Wolfenstein, Halo, Counter-Strike, and many others were attacked by

'RUS' hacker group. The Distributed denial of service attack was made from more than a

thousand computer units located across the former republics of the erstwhile Soviet Union

[90]. In September 2008, DDoS attacks on Sa-Mp servers started and became a very huge

problem. All the servers in the official list were being attacked by DDoS attack by a hacker

calledRyan Cleary/Savage [90]. On March 4, 2009 the home page of Game Rating Board was

attacked by DDoS, lasted for approximately five days [88]. The incident was the first case for

the public agency to be inflicted by a serious damage from DDoS.

Above examples of DDoS attacks show that the main motives behind these attacks are

criminal, commercial or ideological nature. There exist few reasons, which make DDoS

y attacks inevitable: the Internet is designed to keep intermediate network as simple as possible

to optimize it for packet forwarding [129]. This pushes the complexity to the end hosts and

causes one unfortunate implication. If one party in two-way communication misbehaves, it

can result in arbitrary damage to its peer. No one in the intermediate network will step in and

stop it, because Internet is not designed to police traffic. Moreover, the Internet security is

highly interdependent. Even though, we can use some traditional security mechanisms like

firewall [140, 161], Intrusion detection system (IDS) [33, 70], access list [39], etc. to protect

victim machine, its susceptibility to DDoS attacks also depends on the position of security in

rest of the global Internet. For example, if an attacker is able to exploit an insecure legitimate

machine which is authorized to communicate with the victim, that machine can be used to

perform attack against the victim, as incoming attack traffic to the victim seems to be normal

traffic. The limited availability of resources acts as an additional benefit for DDoS attackers.

To add on, accountability is not enforced which leads to variety of reflector attacks [74, 204].

One of the most dangerous types of reflector attack that is very difficult to deal with, is Smurf

attack [42, 53]. Thus, there exists no way out to enforce global deployment of a particular

security mechanism [108].
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Existing DDoS defense mechanisms are classified into four broad categories:

prevention, detection, response, and tolerance &mitigation. Attack prevention methods try to
stop all well known signature based and broadcast based DDoS attacks from being launched
at the beginning ofattack or at the edge routers and keep all the machines over Internet up to

date with patches and fix security holes. This approach aims to improve the global security
level and is the best solution to DDoS attacks in theory. However, the disadvantage is that it

needs global cooperation to ensure its effectiveness, which is extremely difficult in reality.
Attack prevention schemes are also vulnerable to novel and mixed attack types for which
signatures and patches do not exist in the database. Therefore, these are considered forensic
defense methods and the challenge is how to develop a scalable mechanism, which can be Y

effective for preventing variety ofattack types with low implementation cost.

Attack detection aims to detect an ongoing attack as soon as possible without

misclassifying and disrupting legitimate traffic. Typical detection techniques fall into three
categories: signature based attack detection, anomaly based attack detection and hybrid attack
detection. The challenge in attack detection is how to detect variety ofattack types quickly

without misclassifying any legitimate traffic.

The goal of the attack response is to relieve the impact of the attack on the victim ^
while imposing minimal collateral damage to legitimate clients. Typical response techniques
fall into four categories: attack source/path identification, filtering, rate throttling and
reconfiguration. The challenge for attack response is how to filter and rate throttle the attack
traffic without disturbing legitimate traffic. Identification of attack sources/paths quickly and
accurately without changing current Internet infrastructure at minimum space and time
complexity is also an immense challenge.

Attack tolerance &mitigation is the final step in defending against DDoS attacks, and

therefore focuses on minimizing the attack impact and tries to provide optimal level ofservice
as per quality of its service requirement to legitimate users while service provider is under
attack. The challenge for attack tolerance & mitigation is how to provide optimal level of
services to legitimate users when attack is performed at very high rate.

Researchers have come up with more and more specific solutions to the DDoS

problem. However, existing DDoS attack tools keep being improved and new attack
techniques are developed. Therefore, cycle of attacking and defending is like a game. When
someone finds away to attack a system, someone else tries to defend against this attack. The

8



attacker then tries harder to defeat the protections. It becomes a cycle that never seems to end.

This motivates us to investigate efficient solutions to current and future DDoS attacks rather

than to react with specific countermeasures. Hence, research in this thesis focuses on

developing robust and effective solutions to counteract variety of DDoS attacks.

1.3 Statement of the Problem

"The objective of this research is to develop efficient mechanisms to detect variety of

DDoS attacks quickly and accurately to ensure reasonable performance of the network or

system under attack". To achieve the above objective, problem has been divided into

V following sub problems:

• To detect a variety of DDoS attacks using flow-volume based approach (FVBA).

• To detect flooding DDoS attacks using GARCH model based approach.

• To predict number zombies involved in a DDoS attack using various regression based

schemes.

• To predict numberzombies involved in a DDoS attack using ANN based scheme.

• To estimate strength of a DDoS attack using regression analysis.

v

1.4 Organization of the Thesis

This thesis comprises of eight chapters including this chapter that introduces the topic

and statesthe problem. The rest of the thesis is organized as follows.

Chapter 2 gives an overview of the DoS and DDoS attacks and classifies them

according to the various criteria. Also, a comprehensive study of a wide range of DDoS

attacks and defense methods proposed to combat them are discussed. It also discusses the

related work and research gaps in the various phases of the defense against DDoS attacks.

Chapter 3 presents a DDoS detection scheme named as FVBA. The flow and volume

based approach (FVBA) utilizes number of flows and volume of incoming traffic to detect a

wide range of DDoS attacks. The approach is scalable and can adapt to varying network

conditions and attack loads using varying tolerance factors. To test the performance of the

proposed approach, extensive simulations have been performed using NS-2 network

simulator. The simulation results are promising and show the supremacy of the proposed
approach over existing volume based approaches. Furthermore, KDD 99 dataset has also been

utilized to validate the proposed approach.
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Chapter 4 presents our efforts in applying Generalized Autoregressive Conditional

Heteroskedastic (GARCH) model, which is a commonly used statistical modeling technique

for financial time series, as a new technique for detecting DDoS attacks. The chapter gives a

brief overview of need for nonlinear time series analysis in modeling DDoS attack and

describes the hetroscedasticity property of DDoS attack traffic. The main part of the chapter

focuses on the development of the model and algorithm for detection of DDoS attack.

MATLAB routines were used for testing hetroskedastic nature of traffic and simulation of

detection algorithm. In the last part ofthe chapter, the comparison between FVBA approach
ofchapter 3 with the nonlinear GARCH based approach is discussed. Results show that this

non linear volatility model not only performs better than earlier models like linear prediction

but also it shows slightly better performance than FVBA approach.

Chapter 5 presents use of various regression methods to predict number of zombies

involved in a DDoS attack. Accurate prediction of number of zombies involved in a DDoS

attack is very important to suppress the effect ofattack by choosing predicted number ofmost
suspicious attack sources for either filtering or rate limiting. To contribute to such an accurate
and easier solution, we established a relationship between number of zombies and observed

deviation in sample traffic using various regression models. A comparative study is
performed among different regression models for effectiveness in predicting number of
zombies. The simulation results are promising as we are able to predict number of zombies

efficiently using various regression models.

Chapter 6 presents a more effective approach for predicting number of zombies
presented in chapter 5. The chapter mainly deals with the use of ANN for the problem at
hand. The underlying assumption for the use of Artificial Neural Network (ANN) in
predicting number of zombies is its nonlinear estimation capacity. Hence network traffic data ^
is used to train and test various sizes offeed forward networks and they are compared for their

estimation performance. The generalization capacity of the trained network is promising and
the network is able to predict number ofzombies involved in aDDoS attack efficiently.

Chapter 7 presents suitability of various regression models to estimate strength ofa
DDoS attack. Estimating strength of attack is helpful to suppress the effect ofattack, as it
enables a security administrator to effectively equip his arsenal with proper defense
mechanisms for fighting against DDoS threat according to the strength ofattack. Regression
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models are very much suitable for this and hence we established relationship between strength

of attack and sample traffic to formulate regression equations. The regressions equations

obtained using curve fitting are tested for their estimation performance and promising results

are obtained.

Chapter 8 concludes our research work and gives directions for future work.
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CHAPTER 2

BACKGROUND AND LITREATURE SURVEY

Today, denial of service (DoS) attacks and particularly the distributed ones (DDoS)

are one of the latest threat and pose a grave danger to users, organizations and infrastructures

of the Internet. In these attacks, goal of the attacker is to tie up chosen key resources at the

victim, usually by sending a high volume of seemingly legitimate traffic requesting some

services from the victim. The first publicly reported DDoS attack appeared in the late 1999

against a university [127]. These attacks quickly became increasingly popular as communities

of crackers developed and released automated tools to carry them out. This made attack by

even inexperienced crackers possible. Thus, these attacks are easiest to implement from an

attacker's point of view and definitely one of the costliest from a business point of view. The

main purpose of this chapter is to give an overview of DDoS attacks, its basic causes, targeted

resources, its modus operandi and available DDoS attack tools. In addition, it presents a

comprehensive study of a wide range of DDoS attacks and defense methods proposed to

combat them. This provides better understanding of the problem, current solution space and

future research scope to defend against DDoS attacks.

2.1 Background and Overview

Security is quite an old concern in the field of computer technology. In early 1950's,

computers incorporated mechanisms to ensure that programs could not use someone else's

memory. During 1960's, several security techniques such as protecting passwords by

encryption or controlling access to files, whose principles are still in use today, were

developed. The raising trend led computer security to be studied as a full discipline during the

beginning of the 1970's. Since then, new security issues have appeared as fast as the old ones

were solved. As research teams were developing new defense mechanisms, the underground

attack field was also maturing and producing more and more sophisticated tools, raising new

problems. The advent of the Internet particularly gave a boost to the importance of computer

security. While often used as a business media, the Internet is a highly non-secure, non-

trustworthy environment from a security point ofview [109].
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2.1.1 Denial of Service Attacks

DoS attack is a computer ornetwork security issue which can affect the availability of

computer or network services by degrading or disrupting their resources. It is commonly
characterized as an event in which a legitimate user or organization is deprived of certain

services, like web, email or network connectivity, that they would normally expect to have

[108].

Legitimate User

Attacker

Figure 2.1. Denial of Service attack scenario

Victim

A DoS attack is considered to take place only when access to a computer or network

resource is intentionally blocked or degraded as a result ofmalicious action taken by another

user [37]. Awide range ofDoS attacks exist and can target individual user, group ofusers,
organizations and infrastructures of the Internet. In denial of service attacks, only one
machine is used by attacker to perform attack. Figure 2.1 depicts a typical denial-of-service
attack scenario in which an attacker sends a stream of malicious packets to a victim, denying

its service to legitimate user.

2.1.2 Distributed Denial of Service Attacks

Today, the most common attack type is the distributed denial-of-service (DDoS). It
can usually cause more significant damage than DoS attack by performing attack from many
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zombie machines. A distributed approach makes the attack prevention more difficult. Figure

2.2 depicts a simple distributed denial-of-service attack scenario in which attacking machines

Al, A2, A3 send streams of malicious packets to victim, denying its services to legitimate

user. A DDoS attack has two phases: a deployment and an attack phase [109]. A DDoS

program must first be deployed on one or more compromised hosts before an attack is

possible. Mitigation ofDDoS attacks thus requires defense mechanisms for both phases [108].

Attacker Attacker Attacker

Figure 2.2. Distributed Denial of Service attack scenario

The distributed DDoS attack model provides the attacker with the following

advantages:

Attack Effect: A well-coordinated attack that originates from multiple locations will have a

devastating effect on the target. Since the attack effect is directly proportional to the number

of zombie machines, the distributed denial of service attack model typically delivers the

desired results from an attacker's point of view.

Anonymity: Since the actual attack is originated from multiple locations, the distributed model

provides the attacker a high ground for covering its tracks.

Hard-to-stop Attacks: The distributed attacks are sometimes referred as hard-to-stop Attack.

The level of anonymity involved and the dimensions at which the attack is carried out makes

the distributed attack very difficult to stop without bringing down or disconnecting the target
system from the network.
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2.1.3 Distributed Reflector Denial of Service (DRDoS) Attacks

In the DRDoS attacks [204], attacker does not use zombie machines to flood the

victim directly, but uses third-party (e.g. router, web servers, DNS server etc.) called

reflectors. Reflector attacks make distributed denial of service attacks more difficult to defend

because of IP spoofing. IP spoofing refers to forging of source address fields in the packet.

Source address spoofing hides location of an attacker which means packets are send with a

false source IP address. Attacker spoofs requests containing the address of the victim to a

large set of Internet servers that will in turn send their combined replies to the victim. The
combination with the legitimate stream complicates the victim's abilities both to isolate the

attack traffic in order to block it, and to use traceback techniques for locating the source. A

DRDoS attack is more detrimental than a typical DDoS attack as it creates a larger volume of

attack traffic.

2.2 Major Causes Responsible for DDoS Attacks

Internet's design goal is functionality, not security [78]. The network fabric tries to

provide fast, simple and cheap communication at the network level. More complicated

functionalities are assigned to end hosts. Under such an end-to-end paradigm and the so called

best efforts principle, end users are allowed to manage their communication as they wish, and

add complexities while leaving the intermediate network fabric simple and efficient.

However, such design opens several security issues that provide opportunities for the

attackers. Following section summarizes the major causes responsible for DDoS attacks to

occur [108]:

i). Dependency and Lack of centralized control: Internet security is highly interdependent

and has lack of central control. Placing all networks and users under the same control is

infeasible due to its anarchic culture. Hence, it is impossible to guarantee all end hoststo have

the latest security software installed and suitable policies applied. Secondly, DDoS attacks are

commonly launched from systems that are subverted by an intruder via a security-related

compromise rather than from the intruder's own system or systems. Thus, no matter how well
secured the victim system may be, its susceptibility depends on the state ofsecurity ofrest of

the global environment. It is easy for attackers to hide their identities from tracing back in

different networks [48].
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/f). JSac/t individual Internet host owns limitedresources: Each Internet host only has limited

and consumable resources such as bandwidth, processing power, buffer size, memory size, etc

that attracts variety of attacks. When the amount of requests is beyond the capability of the

host, newer requests will not receive the services.

Hi). More the number of zombie machines, morepower attacker has: As long as there are

enough vulnerable machines on the Internet, an attacker is always able to recruit enough

zombies. Considering that the botnet consists of millions of machines [100], theoretically

speaking, it is capable of overpowering any end host in the Internet (if there is no defense).

iv). Dummy intermediate networkfabric: The intermediate network fabric will do nothing to

stop attacking traffic flows. On the contrary, the network passively forwards packets to the

destination under best effort principle. In fact, the network helps attackers to reachtheir goals.

v). Accountability is not enforced: The Internet is not equipped with any mechanism for

making accountability against forged IP addresses in packet header. This creates the

opportunity for source address spoofing. Setting the victim's address in the source field makes

it look like the packet is originally send from the victim. Setting an unused IP address in the

source field forces the victim to try to contact with a non-existing host.

2.3 Targeted Resources by Distributed Denial of Service Attack

Although, DoS attacking strategies may differ, studies show that attackers mainly target

the following resources to cause damage on victims [30, 35, 108].

• Network bandwidth resources: This is related with the capacity of the network links

connecting servers to the wider Internet or connectivity between the clients and their

Internet Service Providers (ISP). The traffic that comes from the Internet to the client may

consume the entire bandwidth of the client's network. As a result, a legitimate request will

not be able to get service from the targeted network. In a DoS attack, the vast majority of

traffic directed at the target network is malicious; generated either directly or indirectly by

an attacker. These attacks prevented 13,000 Bank of America ATMs from providing
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withdraw services and paralyzed such large ISPs as Freetel, SK Telecom, and

KoreaTelecom on January 25, 2003.

• System memory resources: An attack targeting system memory resources typically aims
to crash its network handling software rather than consuming bandwidth with large volume

oftraffic. Specific packets are sent to confuse the operating system or other resources of
the victim's machine. These include temporary buffer used to store arriving packets, tables

of open connections, and similar memory data structures. Another system resource attack
uses packets whose structures trigger a bug in the network software, overloading the target
machine or disabling its communication mechanism, or making a host crash, freeze or

reboot which means the system can no longer communicate over the network until the

software is reloaded.

• System CPU resources: An attack targeting system CPU resources typically aims to
employ a sequence of queries to execute complex commands and then overwhelm the
CPU. The Internet key Exchange protocol (IKE) is the current IETF standard for key

establishment and secure association (SA) parameter negotiation of IPSec. However, IKE's

aggregate mode is still very susceptible to DoS attacks against both computational and
memory resources because the server has to create states for SA and compute Diffie-

Hellman exponential generation [167].

2.4 DDoS Attack: Modus Operandi

Here, we describe a typical DDoS attack scenario, its core elements and strategy. A

DDoS attack is composed offour elements [76]: attack source, control masters, agents, and

victim.

• Attack source: Attack source is machine, handled by attacker who is the mastermind

behind the attack. It is the one who sets every plan about the attack.

• Control masters: Control masters coordinate and control multiple agents and exploit

further agent machines on behalf of attack source. Control masters are deployed on the

hosts on the Internet.
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• Agents: Agents, also known as slaves or attack daemons, are programs that actually

conduct the attack on the victim. Attack daemons are usually deployed on host computers.

These daemons affect both the target and the host computers. The task of deploying these

attack daemons requires the attacker to gain access and infiltrate the host computers.

• Victim: A victim is a target host that has been chosen to receive the impact of the attack.

Figure 2.3 shows how these elements are coordinated to inflict DDoS attack on a targeted

victim machine. DDoS attack is carried out from multiple sources to aim at a single target, in

several phases [48, 75,108]:

Figure 2.3. A hierarchical model of a DDoS attack

coordinating
Communication

i). Recruiting phase:

In order to launch a DDoS attack, the attacker first scans millions of machines for

vulnerable services and other weakness on the Internet through high-bandwidth, always-on
connections that permit penetrations. The scanning can be manual or automatic. The attacker
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uses different host address scanning strategies such as Random, Hitlist, Signpost,

Permutation, or local subnet scanning techniques [66, 108, 143].

ii). Exploiting phase:

In this phase, the discovered vulnerabilities are then exploited to gain access on these

machines, known as handlers, or masters.

iii). Infecting phase:

Here, the attacker installs malicious scripts or Trojans that can be used to create back

doors for future communication with the host. After being installed the malicious scripts, y

these infected machines can repeat the same procedure to recruit more machines, known as

zombies or slaves. These all exploited machines used as attack army, are collectively called

bots and the attack network is known as botnet in the hacker's community. During infecting

phase, the attacker may use different attack propagation mechanisms like central source
propagation, back-chaining propagation, autonomous propagation [48, 108], etc.

iv). Attack phase: y

Once the attacker or control master (by delegation) setup the botnet with the type of

attack, the actual flood may be initiated manually or automatically to the victim by the attack
source. The real attacker sends a command to the masters to initiate a coordinated attack.

When the masters receive the command, they transfer it to the slaves under their control.

Upon receiving attack commands, the zombies or slaves begin the attack on the victim [76].
The real attacker tries to hide himself from detection, for example, by providing spoofed IP

addresses [216].

2.5 DDoS Attack Tools

One ofthe major reason that make the DDoS attacks wide spread and easy to implement

in the Internet is the availability of attacking tools and the powerfulness of these tools to

generate attacking traffic. There are a variety of different DDoS attack tools on the Internet
that allow attackers to execute attacks on the target system. Some of the most common tools

are discussed below:
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Trinoo [57, 108] can be used to launch a coordinated UDP flooding attack against target

system. Trinoo uses master/slave architecture and attacker controls a number of Trinoo

master machines. Communication between attacker and master and between master and

slave is performed through TCP and UDP protocol, respectively. Both master and slaves

are password protected to prevent them from being taken over by another attacker.

Wintrinoo is a Windows version of trinoo that was first reported to CERT on February 16,

2000.

TFN [59] uses a command line interface to communicate between the attack source and

the control master program. Communication between the control masters and slaves is

done via ICMP echo reply packets. But, it does not offer any kind of encryption between

attack source and masters or between masters and slaves. It can implement Smurf, SYN

flood, UDP flood, and ICMP flood attacks. Detailed discussion about the various types of

attack i.e. Smurf, SYN flood, UDP flood, TCP RST, TCP ACK and ICMP flood attack is

given in the next section.

TFN2K [38, 45, 99] is a more advanced version of the primitive TFN network. It uses

TCP, UDP, ICMP or all three to communicate between the control master program and

the slave machines. TFN2K can implement Smurf, SYN flood, UDP, and ICMP flood

attacks. Communication between the real attacker and control master is encrypted using a

key-based CAST-256 algorithm. In addition to flooding, TFN2K can also perform some

vulnerability attacks by sending malformed or invalid packets.

Stacheldraht [58] combines best features ofboth Trinoo and TFN. It also has the ability to

perform updates on the slave machines automatically. It uses an encrypted TCP

connection for communication between the attacker and master control program.

Communication between the master control program and attack daemons is conducted

using TCP and ICMP. Stacheldraht can implement Smurf, SYN flood, UDP flood, and
ICMP flood attacks.
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Shaft [171] has been modeled on Trinoo network. Other than the port numbers being used
for communication purpose, working of it is very similar to that of Trinoo. Thus,

distinctive feature of Shaft is the ability to switch control master servers and ports in real

time, hence making detection by intrusion detection tools difficult. Communication

between the control masters and slave machines is achieved using UDP packets. The

control masters and the attacker communicate via a simple TCP telnet connection. Shaft

can implement UDP, ICMP, and TCP flooding attack.

Table 2.1. Summery of DDoS attack Tools

DDoS Encrypted/Unencrypted Types of Attacks Communication Protocols

attack tool communication Generated

Trinoo Not encrypted UDP flooding Attacker to handler- TCP

Handler to agent- UDP

Agent to handler - UDP

TFN Numeric code and not ICMP flooding Attacker to handler-required third-party

encrypted TCP flooding program

UDP flooding Handler to agent- ICMP

SMURF Agent to handler - none

TFN2K Encrypted ICMP flooding Handler to agent- can be mixture of TCP,

TCP flooding UDP and ICMP

UDP flooding Agent to handler - none

SMURF

Mix flood

Stacheldraht Encrypted ICMP flooding Attacker to handler- TCP

TCP flooding Handler to agent- UDP

UDP flooding Agent to handler - none

SMURF

Shaft Not encrypted ICMP flooding Attacker to handler- TCP

TCP flooding Handler to agent- TCP or ICMP

UDP flooding Agent to handler - UDP

Mix flood

Mstream Not encrypted TCP flooding Attacker to handler- TCP

Handler to agent- UDP

Agent to handler - UDP

Knight Not encrypted TCP flooding

UDP Flood attacks an

urgent pointer flooder

Uses IRC as its communication method

Trinity Not encrypted TCP flooding

UDP flooding

Uses IRC as its communication method
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• Mstream [60] is more primitive than any of the other DDoS tools. It attacks target

machine with a TCP ACK flood. Communication is not encrypted and is performed

through TCP and UDP packets and the master connects via telnet to zombies. Masters can

be controlled remotely by one or more attackers using a password protected interactive

login. Source addresses in attack packets are spoofed at random. Unlike other DDoS

attack tools, here, masters are informed ofaccess, successful or not, by competing parties.

• Knight [36, 46] uses Internet relay chat (IRC) as a control channel. It has been reported

that this tool is commonly installed on machines that were previously compromised by the

BackOrifice Trojan horse program. Knight can implement SYN attacks, UDP flood

attacks, and an urgent pointer flooder [36]. It is designed to run on Windows operating

systems and has features such as an automatic updater via http or ftp, a checksum

generator and more.

• Trinity [28, 136] is also IRC based DDoS attack tool. It can implement UDP flood, TCP

SYN, TCP RST, TCP ACK, and other flooding attacks. Each trinity compromised

machine joins a specified IRC channel and waits for commands. Use of legitimate IRC

service for communication between attacker and agents eliminates the need for a master

machine and elevates the level of the threat [38].

Source code of these attack tools can be easily downloaded from the Internet. Even

though these attack tools differ in the commands used, types of attacks performed,

communication techniques, and the presence ofbackdoors orself-upgrade capability, all share

the common objective of attempting to overwhelm a victim with an abundant amount of

traffic that is difficult to detect or filter. Table 2.1 shows a summary of different attack tools.

2.6 Classification of Attack Mechanisms

Here, a classification of a wide range of DDoS attacks, that users and Internet service

providers need tobe aware of, is presented. The classification is illustrated in figure 2.4 and is
described below in detail:
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2.6.1 Based on Attacking Methods

2.6.1.1 Flooding

Currently, most ofthe DDoS attacks performed are flooding type. In flooding DDoS

attack, also known as brute force attack [108], legitimate looking but garbled packets are sent

to victim machine to clog up computational or communication resources on the target

machine so that it can not serve its legitimates users. The resources consumed by attacks

include network bandwidth, disk space, CPU time, buffers, data structures, etc. The flood

packets can be any ofthe following protocol types: TCP, UDP, ICMP or other protocol. Here,
attackers need large number ofcompromised machines which can generate sufficient volume
oftraffic that can overload the victim's resources. In addition to compromised machines, there

must be a control master that can synchronize the attacks.

-Flooding

-Logical

-High rate disruptive

-Diluted lowrate degrading

-Varied rate

'TCP SYN flooding
-TCP reset

-UDP flooding

-ICMP attack

-DNSrequest Attack
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o*"%V
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<

-Data Packet

-Control Packet

DDoS Attack

Mechanisms
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w
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-Non-isotropic
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-UDP based DDoS Attack
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Figure 2.4. Classification ofDDoS attack Mechanisms
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2.6.1.2 Logical

Logical attacks exploit a specific feature or implementation bug of some protocol or

application installed at the target machine in order to consume excess amount of its resources

[109]. For example, in the TCP SYN attack, the exploited feature is the allocation of

substantial space in a connection queue immediately upon receipt ofaTCP SYN request. The

attacker initiates multiple connections that are never completed, thus filling up the connection
queue.

The attacker designs abnormal orbogus packets that can confuse the victim's system by

exploiting the "natural" weakness of a system. Such weakness can be in protocol design, in

operating system, in specific application, or inservice of the victim's system. It is sufficient to

use few packets (not necessarily a flood) to cause damage on a victim machine.

2.6.2 Based on Weaknesses Exploited

2.6.2.1 TCP SYN flooding

Any system providing TCP-based network services ispotentially subject to this attack.

V In normal case, TCP 3-way handshaking is performed as shown in figure 2.5 (a). First the

client sends a SYN request to the server. After receiving such request, server replies with a

packet, which contains both the acknowledgement ACK and the synchronization request SYN

(denoted as ACK/SYN). Then the client sends ACK back to establish the connection. The

attacker sends a flood of TCP/SYN packets, often with a forged sender address. Each of these

packets are handled like a connection request, causing the server to spawn a half-open
connection, by sending back a TCP/SYN-ACK packet, and waiting for a TCP/ACK packet in
response from the sender address.

However, because the sender address is forged, the response never comes. These half-

open connections consume resources on the server and limit the number of connections the

server is able to make, reducing the server's ability to respond to legitimate requests until after

the attack ends. The result would be system crash or system inoperative. As shown in figure
2.5 (b) an attacker B initiates a SYN flooding attack by sending many connection requests
with spoofed source addresses to the victim machine D. That causes D to allocate resources

and, once the limit of half-open connections is reached, it refuses all successive connection

establishment attempts [44, 157, 50].
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(a) Normal TCP handshake

Malicious Uste„
.TCPClient £>a„ .,

s^H

Victim

TCP Server

(b) TCP handshake duringSYN flooding attack

Figure 2.5. (a) TCP 3-way handshaking (b) TCP SYN attack

2.6.2.2 TCP reset

TCP reset also exploit the characteristics of TCP protocol. The main idea behind a

TCP reset attack is to falsely terminate an established TCP connection without the consent of

the two parties which own the endpoints [153, 196]. Let's imagine an established TCP
connection from host A to host D. Now, a third host, B, spoofs a packet that matches the

source port and IP address of host A, the destination port and IP address of host D, and the
current sequence number of the active TCP connection between host Aand host D. Then, host
B sets the RST bit on the spoofed packet and when this packet is received by host D, host D
immediately terminates the connection. This results in adenial of service, until the connection

is reestablished.

2.6.2.3 UDP flooding

AUDP flood attack is possible when an attacker sends aUDP packet to a random port

on the victim system. When the victim system receives a UDP packet, it will determine what
application is waiting on the destination port. When it realizes that there is no application
waiting on the port, it will generate an ICMP packet of destination unreachable to the forged
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source address. If enough UDP packets are delivered to ports on victim, the system will go

down.

This type of attack, most commonly exploits the chargen or echo services, creating an

infinite loop betweentwo UDP services [114, 153].

~>- ICMP ECHO (Spoofed source address of victim)
send to IP broadcast address

*" ICMP ECHO reply

Figure 2.6. Smurf attack

2.6.2.4 ICMP attack

Smurf attack, as shown in figure 2.6, is ICMP flooding attack. The attacker directs a

stream of ICMP ECHO requests to broadcast addresses in intermediary networks, spoofing

the victim's IP address in their source address fields. A multitude of machines then reply to
the victim, overwhelming its network [42, 53, 153].

2.6.2.5 DNS request Attack

In this attack scenario, the attacker sends a large number of UDP-based DNS requests

to a name server using a spoofed source IP address i.e. victim address. Then, the name server,

acting as an intermediate party inthe attack, responds by sending back replies to the victim. In

a DNS request, attack small queries can generate larger UDP packets in response, which is
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known as amplification effect ofDNS response. Because ofthis amplification effect ofDNS
response, it can cause serious bandwidth attack [170], For example, in the initial DNS
specification, UDP packets were limited to 512 bytes. At most, a60 byte query could generate
a512 byte response for an amplification factor of 8.5. This amplification effect has been used
in DNS based attacks for some time [111].

2.6.2.6 Ping of Death

The Ping of Death is a typical TCP/IP implementation attack. In this assault, the
DDoS attacker creates an IP packet that exceeds the IP standard's maximum 65,536 byte size.

When this fat packet arrives, it crashes systems that are using a vulnerable TCP/IP stack. No
modern operating system or stack is vulnerable to the simple Ping ofDeath attack [134].

2.6.2.7 CGI request

By simply sending multiple CGI request to the target server, the attacker consumes the
CPU resource ofthe victim. Finally, the server is forced to terminate its services [51].

2.6.2.8 Mail bomb

A mail bomb is the sending of a massive amount of e-mails to a specific system. A

huge amount of mails may simply fill up the recipient's disk space on the server or, in some
cases, may be too much for a server to handle and may cause the server to stop functioning.
This attack is also a kind of flood attack [47].

2.6.2.9 Land Attacks

A Land attack is similar to a SYN attack, the only difference being that, instead of a

bad IP Address, the IP address ofthe target system itself is used. What this means is that, in a
land attack, the attacker sends SYN packets to aparticular port of the target system with the
source address and source port number ofthese SYN packets, being same as the destination
IP address and port number. This creates an infinite loop between the target system and the
target system itself and hangs or crashes it.
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2.6.2.10 Teardrop attack

Teardrop attack exploits the vulnerability present in the reassembling of data packets.

It involves sending invalid or garbage IP fragments with overlapping, over-sized, payloads to

the target machine. A bug in the TCP/IP fragmentation re-assembly code of various operating

systems causes the fragments to be improperly handled and forced them to crash, hang or

reboot [197].

2.6.2.11 Hybrid attack

With the large number of countermeasures being employed by a number of

$ organizations on the Internet, recently there has been an emergence of hybrid forms of DDoS

attacks. In such attacks, the attacker combines two or more attack types to form a hybrid

variety of DDoS attack. Example: teardrop spoofing attack, overlapping land attack etc.

Teardrop spoofing attack involves spoofed mangled IP fragments with overlapping,

over-sized, payloads to the target machine to crash, hang or reboot it. Similarly, overlapping

land attack involves mangled IP fragments with overlapping, over-sized payloads andwith the

source address and source port number of these mangled IP fragments, being same as the

V destination IP Address and port number to the target machine to crash, hang or reboot it.

2.6.3 Based on Connection Establishment

2.6.3.1 Direct

In this case, zombies send huge amount of packets directly targeting victim machine.

To serve this purpose, attackers often compromise and gain control over thousands or even

millions of vulnerable machines. The attacking packets are routed to the victim from zombies

distributed widely on the Internet.

2.6.3.2 Reflector

It is more complicated and harder to trace back compared to direct attacks. Instead of

sending packets to victims directly, the zombies take advantage of the TCP three-way

handshake mechanism. Zombies are instructed to continuously send TCP connection-

requesting SYN packets to other innocent IP hosts. Those SYN packets carry a spoofed

source IP belonging to the victim. As the second phase of the TCP connection handshake,
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these innocent hosts reply to the victim with SYN/ACK packets according to the source IP

address in the requesting packets they received. In this manner, malicious SYN packets are

being "reflected" off innocent nodes and their SYN/ACK responses are being used to flood

and attack the victim [204].

2.6.4 Based on Attack Rate

2.6.4.1 High rate disruptive

In high rate disruptive attacks, sheer volume of packets at very high rate are sent from

distributed locations in a coordinated manner to completely disrupt the availability of Internet f

services. As these attacks have direct impact on ISP networks, they are easy to detect and

characterize.

2.6.4.2 Diluted low rate degrading

In diluted low rate degrading attacks, packets are sent from a large number of infected

machines i.e. zombie machines, at low rate in a coordinated manner to gracefully degrade

network performance. As these attacks degrade Quality of Service (QoS) of the network 4

slowly, thus they are very difficult to detect and characterize.

2.6.4.3 Varied rate

To make detection of attacks more difficult, attackers can use some sophisticated

attack tools to generate varied rate attacks in which they use some ofthe zombie machines to

generate packets at high rate while remaining machines to generate packets at low rate.

2.6.5 Based on Attack Traffic Distribution

In order to defeat aggregate based defense, attackers try to distribute attack traffic

uniformly throughout all ingress points of attacked autonomous system. This is called

isotropic distribution ofattack traffic whereas if attack traffic is aggregated more in certain
parts ofInternet, then it is called non-isotropic distribution ofattack traffic [120, 170].
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2.6.6 Based on Attack Packets Used

Logical DDoS attacks are normally launched with control packets like TCP SYN, TCP

FIN, ICMP echo packets whereas for launching flooding DDoS attacks control as well as data

packets like HTTP, FTP (involving TCP), UDP, and ICMP bogus packets can be used [120].

2.6.7 Based on Protocol Used

Network protocols based classification of DDoS attacks basically divides DDoS

attacks into TCP, UDP and ICMP protocol based attacks, as either of these protocol's packets

can be used for flooding and logical attacks [120].

2.7 Defense Challenges and Principles

Launching DDoS attacks on the victim machine is only a matter of few keystrokes for

the attacker. The victim can prevent these attacks at its network boundary by configuring

some sort of traditional security tools like access list [166], firewall [140, 161], or intrusion

detection system [33, 70] at its end. But the traffic coming from legitimate user, which is

under control of the attacker, looks normal and can not be detected using these traditional

^ methods.

With the present technology, many challenges are involved in designing and

implementing an effective DDoS defense mechanism. Some ofthem are as follows [120]:

(a) Large numberof unwitting participants,

(b) No common characteristics of DDoS streams,

(c) Use of legitimate traffic modelsby attackers,

(d) No administrative domain cooperation,

(e) Automated tools,

(f) Hidden identity of participants,

(g) Persistent security holes on the Internet,

(h) Lack of attack information and

(i) Absence of standardized evaluation and testing approaches.

1
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Following five principles are recommended by robinson et al. [137] in order to build

an effective solution:

• Since, DDoS is a distributed attack and because of high volume and rate of attack packets,

distributed instead of centralized defense is the first principle ofDDoS defense.

• Secondly, High Normal Packet Survival Ratio (NPSR) hence less collateral damage is the

prime requirement for a DDoS defense.

• Third, a DDoS defense method should provide secure communication for control

messages in terms of confidentiality, authentication of sources, integrity and freshness of

exchanged messages between defense nodes.

• Fourth, a partially and incrementally deployable defense model is successful as there is no

centralized control for autonomous systems (AS) in Internet.

• Fifth, a defense system must take into account future compatibility issues such as

interfacing with other systems and negotiating different defense policies.

Similarly, Tupakula et. al. [199] presented following characteristics that an ideal

effective model against DDoS attacks should have:

• It should be invoked only during the attack times and at other times, it must allow the

system to work normally. So, it should readily integrate with existing architecture with

minimum modifications.

• It must provide simple, easy and effective solution to counteract the attacking sources in

preventing the attack.

• It should identify the attack at the victim and prevent the attack near to the attacking

source.

• It should prevent only the attack traffic from reaching victim. That is, the model should be

able to differentiate a malicious traffic flow from a regular benign flow by incorporating

different attack signatures for different attacking sources.

• It should have fast response time and should respond quickly to any changes in attack

traffic pattern.

• It should provide mechanisms for retaining the attack evidence for any future legal

proceedings.
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2.8 Classification of DDoS Defense Mechanisms

Based on the above defense principles and existing DDoS attacks discussed in section

2.6, large numbers of defense methods have been proposed to combat DDoS attacks in the

literature. Figure 2.7 summarizes a classification of various defense mechanisms used by

researchers. Detailed description of the classification is as below:

2.8.1 Based on Activity Deployed:-

Classification based on activity deployed categorizes the DDoS defense mechanisms

in the following four categories:

2.8.1.1 DDoS attack prevention

Attack prevention methods try to stop all well known signature based and broadcast

based DDoS attacks from being launched at edge routers, keeps all the machines over Internet

up to date with patches and fix security holes. Attack prevention schemes are not enough to

stop DDoS attacks, because they are always vulnerable to novel and mixed attack types for

which signatures and patches do not exist in the database. So, these are considered forensic

defense methods.

Techniques for preventing against DDoS can be broadly divided into two categories:

(i) General techniques, which are some common preventive measures [213] i.e. system

protection, replication of resources etc. that individual servers and ISPs should follow so that

they do not become part of DDoS attack process, (ii) Filtering techniques, which include

ingress filtering, egress filtering, router based packet filtering, history based IP filtering,

SAVE protocol, etc.

A. General Techniques

i). Disabling unused services:

The less there are applications and open ports in hosts, less there are chances to exploit

vulnerabilities by attackers. Therefore, if network services are not needed or are unused, the

services should be disabled to prevent attacks, e.g. UDP echo, character generation services

[213].
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ii). Install latest security patches

Today, many DDoS attacks exploit vulnerabilities in target system. So removing

known security holes by installing all relevant latest security patches prevents re-exploitation

of vulnerabilities in the target system [213].
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Figure 2.7. Classification of DDoS Defense Mechanisms

Hi). Disabling IP broadcast

Defense against attacks that use intermediate broadcasting nodes e.g. ICMP flood

attacks, Smurf attacks etc. will be successful only if host computers and all the neighboring

networks disable IP broadcast [76].

iv). Firewalls

Firewalls can effectively prevent users from launching simple flooding type attacks

from machines behind the firewall. Firewalls have simple rules such as to allow or deny
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protocols, ports or IP addresses. But, some complex attack e.g. if there is an attack on port 80

(web service), firewalls can not prevent that attack because they can not distinguish good

traffic from DoS attack traffic [140, 161].

v). Global defense infrastructure

A global deployable defense infrastructure can prevent from many DDoS attacks by

installing filtering rules in the most important routers of the Internet. As Internet is

administered by various autonomous systems according to their own local security policies,

such type of global defense architecture is possible only in theory [213].

vi). Whopping

DDoS attacks can be prevented by changing location or IP address of the active server

proactively within a pool of homogeneous servers or within a pre-specified set of IP address

ranges [213]. The victim computer's IP address is invalidated by changing it with a new one.

Once the IP address change is completed all internet routers will be informed and edge routers

will drop the attacking packets. Although, this action leaves the computer vulnerable because

y the attacker can launch the attack at the new IP address, this option is practical for DDoS

attacks that are based on IP addresses. On the other hand, attackers can make this technique

useless by adding a domain name service tracing function to the DDoS attack tools.

B. Filtering Techniques

i). Ingress/Egressfiltering

Ingress Filtering, proposed by Ferguson et al. [147], is a restrictive mechanism to drop

traffic with IP addresses that do not match a domain prefix connected to the ingress router.

Egress filter is an outbound filter, which ensures that only assigned or allocated IP address

space leaves the network. A key requirement for ingress or egress filtering is knowledge of

the expected IP addresses at a particular port. For some networks with complicated

topologies, it is not easy to obtain this knowledge.

One technique known as reverse path filtering [34] can help to build this knowledge.

This technique works as follows. Generally, a router always knows which networks are

reachable via any of its interfaces. By looking up source addresses of the incoming traffic, it
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is possible to check whether the return path to that address would flow out of the same
interface as the packet arrived upon. If they do, these packets are allowed. Otherwise, they are

dropped.

Unfortunately, this technique can not operate effectively in real networks, where

asymmetric Internet routes are not uncommon. More importantly, both ingress and egress
filtering can be applied not only to IP addresses, but also to protocol type, port number, or any

other criteria of importance. Both ingress and egress filtering provide some opportunities to

throttle the attack power of DoS attacks. However, it is difficult to deploy ingress/egress

filtering universally. If the attacker carefully chooses a network without ingress/egress
filtering to launch a spoofed DoS attack, the attack can go undetected. Moreover, if an y

attacker spoofs IP addresses from within the subnet, the attack can go undetected as well.

Nowadays DDoS attacks do not need to use source address spoofing to be effective. By

exploiting a large number ofcompromised hosts, attackers do not need to use spoofing to take
advantage ofprotocol vulnerabilities or to hide their locations. For example, each legitimate
HTTP Web page requests from 10,000 compromised hosts can bypass any ingress/egress

filtering, but in combination they can constitute a powerful attack. Hence, ingress and egress

filtering are ineffective to stop DDoS attacks.

ii). Routerbased Packet Filtering (RPF)

Route based filtering, proposed by Park and Lee [122], extends ingress filtering and

uses the route information to filter out spoofed IP packets. It isbased on the principle that for

each link inthe core of the Internet, there is only a limited set of source addresses from which

traffic on the link could have originated.

Ifan unexpected source address appears in an IP packet on a link, then it is assumed
that the source address has been spoofed, and hence the packet can be filtered. RPF uses

information about the BGP routing topology to filter traffic with spoofed source addresses.

Simulation results show that a significant fraction of spoofed IP addresses can be filtered if

RPF is implemented in at least 18% of Autonomous systems (ASs) in the Internet. However,

there are several limitations of this scheme. The first limitation relates to the implementation

ofRPF in practice. Given that the Internet contains more than 10,000 ASs, RPF would need to
be implemented in at least 1800 ASs in order to be effective, which is an onerous task to
accomplish. The second limitation is that RPF may drop legitimate packets if there has
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recently been a route change. The third potential limitation is that RPF relies on valid BGP

messages to configure the filter. If an attacker can hijack a BGP session and disseminate

bogus BGP messages, then it is possible to mislead border routers to update filtering rules in

favor of the attacker. RPF is effective against randomly spoofed DoS attacks. However, the

filtering granularity of RPF is low. This means that the attack traffic can still bypass the RPF

filters by carefully choosing the range of IP addresses to spoof. Hence, RPF is ineffective

against DDoS attacks. The router-based packet filtering is vulnerable to asymmetrical and

dynamic Internet routing as it does not provide a scheme to update the routing information.

f Hi). History based IPfiltering

Generally, the set of source IP addresses that is seen during normal operation tends to

remain stable. In contrast, during DoS attacks, most of the source IP addresses have not been

seen before. Peng et al. [193] relies on the above idea and use IP address database (IAD) to

keep frequent source IP addresses. During an attack, if the source address of a packet is not in

IAD, the packet is dropped. Hash based/Bloom filter techniques are used for fast searching of

IP in IAD. This scheme is robust, and does not need the cooperation of the whole Internet

^ community [193].

However, history based packet filtering scheme is ineffective when the attacks come

from real IP addresses. In addition, it requires an offline database to keep track of IP

addresses. Therefore, cost of storage and information sharing is very high.

iv). Capability based method

Capability based mechanisms provides destination a way to control the traffic directed

towards itself. In this approach, source first sends request packets to its destination. Router

marks (pre-capabilities) are added to request packet while passing through the router. The

destination may or may not grant permission to the source to send packets. If permission is

granted then destination returns the capabilities, if not then it does not supply the capabilities

in the returned packet. The data packets carrying the capabilities are then send to the

destination via router. The main advantage achieved in this architecture is that the destination

can now control the traffic according to its own policy, thereby reducing the chances of DDoS

attack, as packets without capabilities are treated as legacy and might get dropped at the

router when congestion happens [187].
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However, these systems offer strong protection for established network flows, but

responsible to generate a new attack type known as DOC (Denial of Capability), which
prevents new capability-setup packets from reaching the destination, limits the value ofthese
systems. In addition, these systems have high computational complexity and space

requirements.

v). Secure Overlay Service (SOS)

Secure overlay service proposed by Keromytis et al. [11] defines an architecture to

secure the communication between the confirmed users and the victim. All the traffic from a

source point is verified by a secure overlay access point (SOAP). Authenticated traffic will be j
routed to a special overlay node called a beacon in an anonymous manner by consistent hash
mapping. The beacon then forwards traffic to another special overlay node called a secret
servlet for further authentication, and the secret servlet forwards verified traffic to the victim.

The identity ofthe secret servlet is revealed to the beacon via a secure protocol, and remains a
secret to the attacker. Finally, only traffic forwarded by the secret servlet chosen by the victim

can pass through its perimetric routers.

SOS addresses the problem of how to guarantee the communication between

legitimate users and a victim during DoS attacks. SOS can greatly reduce the likelihood of a
successful attack. The power ofSOS is based on the number and distribution level ofSOAPs.

However, wide deployment of SOAPs is a challenge.

Moreover, the power ofSOS is also based on the anonymous routing protocol within

the overlay nodes. Unfortunately, the introduction of a new routing protocol is in itself
another security issue. Ifan attacker is able to breach the security protection ofsome overlay
node, then it can launch the attack from inside the overlay network. Moreover, ifattackers can
gain massive attack power, for example, via worm spread, all the SOAPs can be paralyzed,
and the target's services will be disrupted.

vi). SAVE: Source Address Validity Enforcement

Li et al. [104] have proposed a new protocol called the source address validity
enforcement (SAVE) protocol, which enables routers to update the information ofexpected
source IP addresses on each link and block any IP packet with an unexpected source IP

address. The aim ofthe SAVE protocol isto provide routers with information about the range
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of source IP addresses that should be expected at each interface. Similarly to the existing

routing protocols, SAVE constantly propagates messages containing valid source address

information from the source location to all destinations. Hence, each router along the way is

able to build an incoming table that associates each link of the router with a set of valid source

address blocks. SAVE is a protocol that enables the router to filter packets with spoofed

source addresses using incoming tables. It overcomes the asymmetries of Internet routing by

updating the incoming tables on each router periodically.

However, SAVE needs to change the routing protocol, which will take a long time to

accomplish. If SAVE is not universally deployed, attackers can always spoof the IP addresses

within networks that do not implement SAVE. Moreover, even if SAVE were universally

deployed, attackers could still launch DDoS attacks using non spoofed source addresses.

To conclude, attack prevention aims to solve IP spoofing, a fundamental weakness of

the Internet. However, as attackers gain control of larger number of compromised computers,

attackers can direct these "zombies" to attack using valid source addresses. Since the

communication between attackers and "zombies" is encrypted, only "zombies" can be

exposed instead of attackers. According to the Internet Architecture Working Group [131],

^ the percentage of spoofed attacks is declining. Only four out of 1127 customer-impacting

DDoS attacks on a large network used spoofed sources in 2004. Moreover, security awareness

is still not enough, so expecting installation of security technologies and patches in large base

of Internet seems to be an ambitious goal in near future. To add on, there exists no way out to

enforce global deployment of a particular security mechanism. Therefore, relying on attack

prevention schemes is not enough to stop DDoS attacks.

2.8.1.2 DDoS attack detection

To defend against DDoS attacks efficiently, a real-time detection of network

anomalies is preferred. Attack detection aims to detect an ongoing attack as soon as possible

without disrupting legitimate traffic. We may classify DDoS detection mechanisms using

following different criteria:

A. Based on detection timing

Based on detectiontiming, DDoS detection approaches can be classified as follows
if
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i). Passive detection

Detection is passive if logs are analyzed after attacker fulfills its desire and attack is

over.

ii). On-time detection

Detection is on time, if attack can be detected when attack is going on.

Hi). Proactive detection

Detection is proactive, if attack can bedetected either before it reaches target machine

or before appreciable degradation of service. f

B. Based on detection method

Based on detection method, DDoS detection approaches can be classified as follows:

i). Pattern basedattack detection

Signature based approach employs a priori knowledge of attack signatures. The

signatures are manually constructed by security experts after analyzing previous attacks and

used to match with incoming traffic to detect intrusions. SNORT [138] and Bro [205] are the

two widely used signature based detection approaches. Signature based techniques are only

effective in detecting traffic of known DDoS attacks whereas new attacks or even slight

variations of old attacks go unnoticed.

ii). Anomaly basedattack detection

Anomaly-based system uses a different philosophy. It treats any network connection

violating the normal profile of traffic as an anomaly. A network anomaly is revealed if the

incoming traffic pattern deviates from the normal profiles significantly. Detecting DDoS

attacks involves first knowing normal behavior of the system and then to find deviations from

that behavior. Anomaly based techniques can detect novel attacks; however, it may result in

higher false alarms. The common challenge for all anomaly-based intrusion detection systems

is to accurately train data to provide all types of normal traffic behavior. As a result,

legitimate traffic can be classified as attack traffic, causing false positive. To minimize the
false positive rate, a larger number ofparameters are used to provide more accurate normal
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profiles. However, with increase in number of parameters, the computational overhead to

detect the attack increases. Some of anomaly detection schemes proposed in the literature are

discussed below:

Gil and Poletto [192] proposed a scheme called MULTOPS (MUti-Level Tree for

Online Packet Statistics) to detect denial of service attacks by monitoring the packet rate in

both the up and down links. MULTOPS assumes that packet rates between two hosts are

proportional during normal operation. A significant, disproportional difference between the

packet rate going to and from a host or subnet is a strong indication of a DoS attack.

MULTOPS assumes that the incoming packet rate is proportional to the outgoing packet rate,

which is not always the case. For example, real audio/video streams are highly

disproportional, and with the widespread use of online movies and online news, where the

packet rate from the server is much higher than from the client, false positive rates will

become a serious concern for this scheme. Another countermeasure is to connect to the target

from a large number of attack sources in a legitimate manner (e.g., downloading a file from a

ftp server). Therefore, the packet rate ratio between in flows and out flows during the attack

will appear to be normal and will be undetected by MULTOPS. Thus, this method is also

w ineffective when an attack is launched through multiple distributed sources or the source

spoofing is used.

Normally, an attacker performs a DDoS attack using large number of similar packets

(in terms of their destination address, protocol type, execution pattern etc.) generated from

various locations but intended for the same destination. Thus, there is a lotof similarity in the

traffic pattern. On the other hand, legitimate traffic flows tend to have many different traffic

types. Hence, traffic flows are not highly correlated and appear to be random. Based on this

assumption, Kulkarni et al. [7] proposed a Kolmogorov complexity based detection algorithm

to identify attack traffic. The assumption of the Kolmogorov test is based on the fact that

multiple attack sources use the same DDoS attack tool. Therefore, the resulted traffic is highly
correlated.

Unfortunately, there is no theoretical analysis to support this assumption. Attack

sources can be organized to break the correlation by sending attack traffic at different times,

with different traffic types, packet sizes, and sending rates. This is easy to achieve. For

example, attackers can use the IP address of a compromised computer as the random seed to

-rf
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generate a set of parameters for configuring attack traffic. By doing this, attack traffic will
appear random, which can bypass detection.

Based on the strong correlation between traffic behavior at the target and at the attack

source, Cabrera et al. [116] proposed a scheme to proactively detect DDoS attacks using time
series analysis. There are three steps in to this scheme. The first step is to extract the key
variables from the target. For example, the number ofICMP echo packets is the key variable

for Ping Flood attacks. The second step is to use statistical tools (e.g., Auto Regressive
Model) to find the variables from the potential attackers that are highly related to the key
variable. For example, the number of ICMP echo reply packets at the potential attackers is

highly correlated with the key variable for Ping flood attacks. The third step is to build a ~f
normal profile using the found variables from the potential attackers. Any anomalies from

potential attackers compared with the normal profile are regarded as strong indications of an
attack. Step one and two are completed during the off-line training period and step three is

done on-line.

The vulnerability ofthis scheme is that the efficacy oftraining is based on the features

of known attacks. The attacker can disturb or disable the detection scheme by inventing new

attacks. As DDoS attacks do not necessarily need to use any particular type of traffic, it is ^
easy for the attacker to create anew type of attack just by combining different types of attack
traffics. This causes multiple key variables from the target, and the correlations between the

variables from the potential attackers and the target will become extremely complex, which
complicates the process of building anormal profile and makes the detection less effective.

In Pushback [174], flow belonging to DDoS attacks is identified by considering high

traffic volume to the victim. Then right drop probability for such traffic is calculated by

detection system that conveys this information to the upstream routers, which in turn could
drop packets belonging to the attack traffic themselves. It is effective in countering high rate

disrupting flooding attacks only.

Cheng et al. [41] proposed to use spectral analysis to identify DoS attack flows.

Generally, DoS attack flows are not regulated by TCP flow control protocols as normal flows
are. Hence, DoS attack flows have different statistical features compared with normal flows.
Cheng et al. [41] use this assumption for DDoS detection. In this approach, the number of
packet arrivals in a fixed interval is used as the signal. In the power spectral density of the
signal, a normal TCP flow will exhibit strong periodicity around its round-trip time in both
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flow directions, whereas an attack flow usually does not. Spectral analysis techniques are only

valid for TCP flows. As UDP and ICMP are connectionless protocols, the periodic traffic

behavior is unexpected. Attackers can use UDP or ICMP traffic to confuse the detection

scheme. Moreover, the attacker can mimic the periodicity of normal TCP flows by sending

packets periodically.

Peng et al. [195] have proposed a new DoS attack detection scheme using source IP

address monitoring. Generally, the set of source IP addresses that is seen during normal

operation tends to remain stable. In contrast, during DoS attacks, most of the source IP

addresses have not been seen before. By using a carefully prebuilt IP Address Database, it is

possible to sequentially monitor the proportion of new source IP addresses seen by the target,

and detect any abrupt change using a statistical test. An abrupt change of the proportion of

new source IP addresses is a strong indication of a DoS attack.

Feinstein et al. [126] proposed entropy based DDoS detection scheme in which they

calculated randomness in a particular feature of packet (e. g. source IP address) for normal

flows and whenever entropy crosses threshold in actual scenario, it is termed as an anomaly

and hence attack. It can detect high rate flooding attacks. This approach fail against varied

y. rate attacks wherein intelligent attacker mixes low and high rate zombie machines to generate

attack traffic in such a manner that overall entropy remains unchanged.

Wang et al. [210] proposed SYN detection to detect SYN flooding attack, by

monitoring statistical changes. The ratio of SYN packets to FIN and RST packets was used.

The attack detection is based on the following assumptions. First, the random sequence is

statistically homogeneous. Second, there will be a statistical change when an attack happens.

This approach is based on the fact that a normal TCP connection starts with a SYNpacket and

ends with a FIN or RST packet. When the SYN flood starts, there will be more SYN packets

than FIN and RST packets. The attacker can avoid detection by sending the FIN or RST

packet in conjunction with the SYN packets. Another limitation of the proposed approach is

that it is not applicable for other attacks i.e UDP flooding, ICMP flooding, etc.

Bencsath et al. [27] have given a traffic level measurement based approach, in which

incoming traffic i.e. number of packets or bytes count per unit time is monitored continuously

and dangerous traffic intensity rises are detected. This approach is better suited for isolating

large traffic changes (such as bandwidth flooding attacks), but low rate attacks can not be
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detected and characterized because these attacks do not cause detectable disruptions in traffic

volume.

Mirkovic et al. [106] proposed a system called D-WARD that does DDoS attack

detection at the source based on the idea that DDoS attacks should be stopped as close to the

sources as possible. D-WARD is installed at the edge routers ofa network and monitors the

traffic being sent to and from the hosts in its interior. If an asymmetry in the packet rates

generated by an internal host is noticed, D-WARD rate limits the packet rate.

The drawback ofthis approach is that there is a possibility of numerous false positives

while detecting DDoS conditions near the source, because ofthe asymmetry that there might

be in the packet rates for a short duration. Furthermore, some legitimate flows like real time ~f
UDP flows do exhibit asymmetry. Moreover, at source why all clients use and bear the

expense where the benefit is meant for others?

Blazek et al. [154] proposed batch detection to detect DoS attacks. DoS attack

detection is performed by monitoring statistical changes. The first step for this method is to

choose a parameter for incoming traffic and model it as a random sequence during normal

operation. In this method, avariety ofparameters, such as TCP and UDP traffic volume, were
used. The attack detection is based on the following assumptions. First, the random sequence ^
is statistically homogeneous. Second, there will be a statistical change when an attack
happens. To beat the detection scheme ofBlazek et al. [154], the attacker can carefully mix
different types of traffic to ensure that the proportion ofeach traffic is the same as it is in
normal traffic. Therefore, separating different types oftraffic cannot make the attack behavior

more conspicuous.

Chen et al. [214] used distributed change-point detection (DCD) architecture using

change aggregation trees (CAT) to detect DDoS attack over multiple network domains. The
idea is to detect abrupt traffic changes across multiple network domains at the earliest time.

Early detection of DDoS attacks minimizes the flooding damages to the victim systems

serviced by the provider.

Entropy based approach [119] treats DDoS anomalies as events that disturb the
distribution of traffic features and entropy is used as metric to measure distribution of the

traffic features. Although, by carefully calculating upper and lower threshold values of

entropy, these approaches are successful in countering high rate disruptive and diluted low
i

rate degrading flooding attacks but varied rate attacks are unbeaten for them wherein
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intelligent attacker mixes low and high rate zombie machines to generate attack traffic in such

a manner that overall entropy remains unchanged.

Lee and Stolfo [207] use data mining techniques to discover patterns of systems

features that describe program and user behavior and used a classifier that can recognize

anomalies and intrusions. A mechanism called congestion triggered packet sampling and

filtering is proposed by Huang et al. [215]. According to this approach, a subset of dropped

packets due to congestion for statistical analysis is selected. If anomaly is indicated by the

statistical results, a signal is sent to the router to filter the malicious packets.

Table 2.2. Comparison of various detection approaches classified based on detection method

Detection NPSR Complexity Detection Limitations

Category Accuracy

Pattern High Low High Detection of the novel attacks are not

Detection possible

Anomaly Medium Medium Medium False positives and negatives rate is

Detection very high, since defining normal

system behavior and setting threshold

values is difficult

Hybrid High- High High Complexity and cost of implementation

Detection Medium is very high to be deployed in practice

Hi). Hybrid attack detection

Hybrid attack detection combines the positive features of both pattern and anomaly

based attack detection models to achieve high detection accuracy, low false positives and

negatives, and, thus, a raised level of cyber trust. Though hybrid attack detection approach

decreases false positive rate but complexity and cost of implementation is high [117]. Table

2.2 showsthe comparison of various detection approaches based on detection method.

2.8.1.3 DDoS attack response

The goal of the attack response is to relieve the impact of the attack on the victim

while imposing minimal collateral damage to legitimate clients. We classify attack response

mechanisms as follows:
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A. Attack source/path identification

Once an attack has been detected, an ideal response would be to block the attack

traffic at its source. Unfortunately, there is no easy way to track IP traffic to its source due to

the stateless of the IPprotocol. The attacker can easily spoof the IP source address and send it

to any destination without notice. In order to address this limitation, several enhancements

have been proposed to support IP traceability [128, 183]. Attack source identification

mechanisms provide the victim with information about the identity and path taken by the

machines that are responsible for performing the attack. A brute force solution to traceback

can be obtained by having every router mark every packet as it passes through it. An

alternative brute force solution requires every router to keep a record of every packet that

passes through it. Such solutions are infeasible because: (1) they require a large and

unbounded space in each packet (or router); (2) they require a large overhead at'every router.

Thus, most existing approaches to traceback attempt to reduce the above two effects. Some of

traceback schemes proposed in the literature are discussed below:

Burch and Cheswick [85] propose a controlled flooding of links to determine how this

flooding affects the attack stream. Flooding a link will cause all packets, including packets

from the attacker, to be dropped with the same probability. We can conclude from this that if

a given link was flooded, and packets from the attacker were slowed, then this link must be
part ofthe attack path. Then recursively upstream routers will perform the same test until the
attack path is discovered. This scheme requires considerable knowledge ofnetwork topology
and the ability to generate huge traffic in any network link. The most important problem with

this approach is that it is resource intensive and highly intrusive. In fact, this approach may be

viewed itself as a DoS attack.

ICMP traceback has been proposed by Bellovin [159]. According to this mechanism

every router samples the forwarding packets with a low probability and sends an ICMP
traceback message to the destination. Ifenough traceback messages are gathered at the victim,
the source of traffic can be found by constructing a chain of traceback messages. This

mechanism have several limitations, e.g. ICMP traffic is increasingly differentiated and may

be filtered or rate-limited differently from normal traffic, ICMP messages are transmitted over

already congested channel.

Savage et al [180] suggest probabilistically marking packets as they traverse routers in

the Internet. More specifically, they proposed that the router mark the packet, with low
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probability (say, 1/20,000), with either the router's IP address or the edges of the path that the

packet traversed to reach the router. Song et al. [67] propose an enhanced scheme of

probabilistic packet marking and also set up a scheme for router authentication. However, the

authentication scheme is complex to implement.

Initially, Belenky and Ansari [8] outlined deterministic packet marking. Their idea is

to put, with random probability of 0.5, the upper or lower half of the IP address of the ingress

interface into the fragment id field of the packet, and then set a reserve bit indicating which

portion of the address is contained in the fragment field. By using this approach they claim to

be able to obtain 0 false positives. Unfortunately, their approach is extremely light on details

and fails to address how upstream routers are to account for their marking if they too are also

marked. Also, their approach does not take into account the non-unique status of an IP address

that NAT confers on network topologies. Stone [162] proposes routing suspicious packets on

an overlay network using ISP edge routers. By simplifying the topology, suspicious packets

can easily be re-routed to a specialized network for further analysis.

Snoeren et al. [10] proposed a scheme to let routers store a record of every packet

passing through them and then trace back the origin of the packet by using the history stored

W. in the routers. Although theydescribe a smart scheme to compress the storage, it is still a huge

overhead for the router to implement this scheme, especially with the increasing network

speed.

Some other traceback schemes are Source Path Isolation Engine (SPIE, also called

hash-based traceback) [9], Algebraic-Based Traceback Approach (ATA) [56], deterministic

edge router marking (DERM) [183], control-agent model for single ISP domain [199] and

multiple ISP domains [202]. A survey and analysis of traceback schemes is presented in [201,

220].

In summary, existing solutions to the traceback problems attempt to reduce the state

and processing overheads by a combination of probabilistically generating traceback

information and/or using hash function to reduce the marking state. As such, for these to be

effective traceback requires a colossal number of packets and vast computing resources for

reconstructing the attack graph.
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B. Filtering

Segregating and filtering off malicious flows without hurting legitimate traffic is the
main goal for defenders. Filtering techniques are used to filter out incoming traffic completely
that has been characterized as malicious by the detection mechanism. Examples include

dynamically deployed firewalls [190], and also acommercial system, TrafficMaster [139].
Response schemes based on filtering is much more common. Packet filtering can be done

according to classification rules [104, 122, 193, 213] or can be based on link testing schemes
[85, 96, 162] and pushback schemes [85, 98, 158, 159, 160, 163] that traceback to the source

and drop the attack traffic.

Many routers include a feature called input debugging [96, 162] that allows an -+

operator to filter particular packets on some egress port and determine which ingress port they
arrived on. This capability is used to implement a trace as follows: first, the victim must
recognize that it is being attacked and develop an attack signature. The network operator
installs acorresponding input debugging filter on the victim's upstream egress port. This filter
reveals the associated input port, hence identify which upstream router originated the traffic.
The process is then repeated recursively on the upstream router, until the originating site is
reached. Once this reroute is complete, network operator can then use input debugging at the .

tracking router to investigate where the attack enters the ISP network. The most obvious
problem with the input debugging approach is that it requires considerable management
overhead time, attention and commitment ofboth the victim and the remote personnel and

approximate technical skills.

Roshan Thomas proposed a legitimacy-based DDoS filtering scheme, NetBouncer

[163]. It maintains a legitimacy list to differentiate malicious packets and legitimate packets.
If the packets are not on the list, NetBouncer will proceed to administer a variety of
legitimacy tests to challenge the client to prove its legitimacy. However, this scheme has not
been tested in real network environment.

Another filtering mechanism that has been proposed is Hop-Count Filtering [40]. The

idea is that although the attacker can forge any field in the IP header, the number of hops an
IP packet takes to reach its destination cannot be falsified. So Hop-Count Filtering (HCF)
could be mainly applied to filter the spoofed IP packets. It extracts the TTL information from
the IP head to compute the hop-count, then by comparing the computed hop-count with the
stored hop-count, the likely spoofed packets are identified. Because this method still has a
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false positive rate, it takes no action to defend attacks until in the action state. Steven J.

Templeton also found that the final TTL values from an IP address are generally clustered

around a single value [182], but no solution has been provided yet.

An aggregation detection algorithm, pushback was proposed by Mahajan et. al [158,

159, 160] which is based on the IP destination addresses of the packets. In the pushback

scheme, a router notifies its upstream routers when it detects an attack, then the upstream

routers drop such packets so that the legitimate traffic will be affected less. When the

congestion level of a network is high, such as the total incoming bandwidth is 1.2 times of the

output bandwidth, the pushback algorithm begins to match the destination address of each

> dropped packet against the routing table and selects the longest matching prefix, which

constitutes the congestion signature. In the router, a rate limiter is added to decide whether a

packet is dropped or forwarded. It takes effect when the incoming traffic exceeds a threshold

and drops the packets matching the congestion signature. The excess packets are also dropped
by the output queue.

A pushback daemon receives drooped packets from both the rate limiter and the output

queue. It analyzes the number ofdropped packets, determines whether there isanattack going

y on and how to react against it. Then it updates the parameters ofthe rate limiter and informs
upstream routers periodically. It also listens to the requests from downstream routers. If

dropping the packets matching this congestion signature can't effectively reduce the incoming

traffic, it is likely that more than one attack is happening. This algorithm needs to be

performed repeatedly to find out more prefixes. If no such prefix can be found, it means the

traffic is not caused by an attack, but by increase in general traffic.

C. Rate throttling

Rate-throttling [25, 55, 106, 159] is a lenient response technique that imposes a rate

throttle on the incoming traffic that has been characterized as malicious by the detection

mechanism, usually deployed when the detection mechanism has a high level of false

positives or can not precisely characterize the malicious traffic. The disadvantage is that such

an approach will allow some attack traffic through, so extremely high-scale attacks might still

be effective even if all traffic streams are rate-limited.

Pushback [158, 159, 160] was proposed as a mean to relieve the Internet from the

congestion induced by bandwidth-flooding attacks or flash crowds. To this end, a receiver
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identifies the last-hop routers that forward to it above a certain rate and ask them to rate-limit

traffic addressed to it; each of these routers can then repeat the same process, i.e. identify the

upstream routers that forward traffic above a certain rate to the receiver and ask them to rate-

limiting traffic addressed to the receiver. Peering domains establish bilateral agreements that
allow routers from one domain to send pushback requests to adjacent routers in the other

domain. Inthis way, rate limiting ofthe bandwidth flood orflash crowd is pushed away from

its target and closer to its sources. Note that the target ofa bandwidth flood does not have to

identify the source of undesired traffic.

Yau et. al. [68] used router throttles to combat DDoS attacks against Internet servers.

Aproactive approach is followed in the sense that before aggressive packets can converge to
overwhelm a server, routers along forwarding paths, regulate the contributing packet rate to

more moderate levels, thus averting an impeding attack. The basic mechanism is for a server

under stress, to install a router throttle at an upstream router several hop away. The throttle

limits the rate at which packets can either be dropped or rerouted to alternative server.

However, attackers can exploit communication part as no secure ways are used to send

throttle messages in same and different domain. In case oflow rate attack, collateral damage

is more as normal packet survival ratio is very low.

Xiong et. al. [217] also took the defense of DDoS attack as a congestion control
problem. They propose to use backward pressure propagation, feedback control scheme to
defend DDoS attack. They used rate-based and queue-length based algorithms to create the

feedback signal accordingly. Once the input traffic rate or the output queue length has exceed
the desired threshold, a feedback signal is sent to adjust the admitted portion of traffic in

different input and output ports to put the rate and queue length below the threshold. The
method is effective to make sure that the network traffic works in a tolerable level during

DDoS attack. However, they don't set up a scheme to discriminate good traffic from bad

traffic.

D. Reconfiguration

Reconfiguration mechanisms change the topology of the victim or the intermediate
network to either add more resources to the victim orto isolate the attack machines. Examples

include reconfigurable overlay networks [62], attack isolation strategies [110], etc.
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2.8.1.4 DDoS attack tolerance and mitigation

Attack tolerance & mitigation focuses on minimizing the attack impact and tries to

provide optimal level of service as per quality of service requirement to legitimate users while

service provider is under attack. This is not a comprehensive solution in any way, however it

can complement other approaches to work in parallel and achieve their goals by providing

sufficient assurance in terms of time to provider so that the legitimate clients arebeing served.

Moreover this approach can itself get complemented from other approaches and then

synergistic effort is best performance for the clients. We classify atta^k^ialgrance and

mitigation mechanisms as follows: /t^ *^r5&.

A. Overprovisioning I **»™/MX.fc..: J
An abundance of resources e.g. apool of servers with load barance£^^^^«iuwidth

linkbetween victim machine and upstream routers are used to tolerate these attacks [108, 155,

156].

Kargl et al [73] have proposed a load balancer based technique in which a cluster of

web servers are sheltered by firewall and load balancer. Firewall applies traditional prevention

measures and filters suggested traffic by load balancer timeto time. Load balancer as per load

works as translator and also allocates requests to appropriate web server. Moreover traffic

monitors at web servers and load balancer in consultation with manager, deduce classification

for packets to be treated by load balancer using class based queuing. The same CBQ is also

used at web servers for sending response to various classes. Sairam et al [16] also worked for

fair bandwidth allocation using load balancing. Overprovisioning [156] works as tolerance

based scheme for node based defense. Nevertheless, due to the absence of attacks most of the

time or at low attackloads, especially when client load is low, it has cost associated with it.

B. Router's queue management

Router's queue management schemes aim to reduce attack impact or congestion

simply without providing fairness between the traffic flows. Therefore, false positive rate is
very high [172, 173].

Random Early Detection (RED) [173] represents this class of algorithms. A router

only maintains a simple FIFO queue for all traffic flow and drops the arriving packet

randomly during congestion. The packet drop probability increases with growth in queue.
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RED can reduce the delay time for the most of traffic flow, by keeping the output queue size

small,

Misbehaving traffic flows can not be penalized by RED. Floyd et al [172] have

proposed a technique to use a lightweight detection algorithm to identify unresponsive flows
and then explicitly manage the bandwidth of these flows, in order to improve the RED's

probability to penalize the misbehaving traffic flows. Their technique performs tests that
identifies flows that are unresponsive, TCP-friendly, or high-bandwidth and regulates them.

Lin et al. [63] propose a technique called Flow Random Early Drop (FRED) to maintain the

fairness between the traffic flows. It only keeps the states for the flows that have packets

buffered in the router. The packet for this flow is dropped randomly once queue length of one

flow in the buffer is between minimum (min) and maximum (max). Once the queue length is

larger than max, the incoming packet is dropped. To count the number oftimes the flow has
failed to respond to congestion notification, the router also keeps the information. Penalties

are taken to the unresponsive flows. These variants of RED incur extra implementation

overhead since they collect certain type of state information. Ott et al. [191] set up another

interesting variant called stabilized RED (SRED).

SRED stabilizes the FIFO buffer occupancy independently of the number of active

flows. It maintains a data structure called Zombie list, which serves as a proxy for information

about the recent flows. By doing this, it can estimate the number ofactive flows and identify

the candidates for the misbehaving flows. Although SRED can identify misbehaving flows, it

hasn't set up a scheme to penalize them. To improve this scheme, a stateless active queue
management scheme called CHOKe (CHOose and Keep for responsive flows, CHOose and
kill for unresponsive flows) [24] was proposed to approximate fair bandwidth allocation.

CHOKe draws a packet from the FIFO buffer at random and compares it with the arriving
packet ifthey both belong to the same flow, they are both dropped: else the randomly chosen
packet is left intact and the arriving packet is dropped with aprobability p which depends on
the congestion level.

Although this scheme is effective in defending the unresponsive traffic flow, it
performs poorly for alarge number of small traffic flows. So it is still vulnerable in defending
flash crowds [101] and DDoS attacks. A new variant ofRED called RED with Preferential
Dropping (RED-PD) to identify high bandwidth flows and control the bandwidth obtained by
these flows is proposed by Mahajan et al [160]. However, it controls the high bandwidth
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flows by estimating their arriving rate, which is not very accurate. Furthermore, the test for

unresponsive traffic flows need to be more accurate to maintain fairness.

Performance of various queuing algorithm implemented in a network router under

flooding DDoS attack are investigated by Lau et al. [76]. They tried to find whether legitimate

users can obtain desired service or not. The simulation results illustrates that RED and class

based queuing (CBQ) are successful in providing a part of bandwidth requested by the

legitimate user during high rate flooding DDoS attack. The topology, traffic generation model

and applications used in the simulation are very simple compared to the realistic network

topology.

y It was suggested that DDoS attacks could be countered by applying resource

allocation techniques on network bandwidth to guarantee fairness. Two approaches namely

Integrated services (IntServ) [209] and Differentiated Service (DiffServ) [169] aimed at

isolating flows with specific QoS requirements from lower-priority traffic. IntServ uses the

resource reservation protocol (RSVP) to coordinate the allocation of resources along the path

that a specific traffic flow will pass. The link bandwidth and buffer space are assured for the

specific traffic flow. In [218], taxonomy of approaches to per-class QoS differentiation is

y presented.

C. router's traffic scheduling

Router's traffic scheduling algorithm can reduce congestion or attack impact with the

fairness between the traffic flows, but they are too expensive in terms of delays and state

monitoring [12, 15, 149]. Fair queuing algorithm (FQ) is a classic example for scheduling

algorithm. FQ requires the router to partition the input traffic into separate queues and use a

separate buffer space for each queue. State for each flow is kept and managed individually by

router. One flow can not degrade the quality of another.

Nevertheless FQ needs, complex per-flow-state, which makes it too expensive to be

widely implemented. Stoica et al. [93] proposed a new scheduling algorithm called core

stateless FQ to categorize the routers into edge and core routers and to reduce the cost of

keeping per flow state in every router. Per flow state information and estimation of the

arriving rate for per flow is maintain by an edge router. These estimates are inserted into the

packet headers and passed on to the core routers. The core routers keep a simple stateless

FrFO queue and drops packet according to the estimates in the packet header during the
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congestion. Although the scheme simplifies FQ, it is still very expensive to keep per flow

state information. However because of lesser metering in core routers, it is better than

previous one. Still extracting packet information from the packet in core, adds to the

complexity of this scheme. To approximate FQ at a smaller implementation cost, Mckenny

[149] proposed stochastic fair queuing (SFQ). SFQ classifies packets into smaller number of

queues than FQ using a hash function. Although it reduces the complexity ofFQ, it still needs

1,000 to 2,000 queues in a typical router to approximate FQ performance.

Fairness between the traffic flows can be ensured using Scheduling algorithms [12, 93,

149], but they are too expensive in terms ofdelays, state monitoring and don't scale well to a

large number ofusers. Moreover large number ofslow rate DDoS traffic can still prove lethal

to victims.

D. Targetroaming

Active server changes its location within distributed homogeneous servers proactively

to eliminate or curtail DDoS attacks impact [178].

Khattab et al [178] proposed proactive server roaming based approach to defend

DDoS attacks, which was further extended by sangpachatanaruk et al [43]. In proactive server

roaming based approach, one server from cluster of servers is made active server at a

particular time. The timing and actual address ofserver is calculated by legitimate clients with
the help ofpreloaded client module. The incomplete connections and sessions are replicated

onthe roamed servers also using secure migration protocols. So by this way, only legitimate

clients can access the server whereas all others are filtered either through dynamically

configured router access lists or firewall. Moreover attackers' packets are logged for further

analysis.

The firewall does not give proper protection from high volume of packets. During

roaming and replication, even legitimate packets suffer. This methodology should be tested on
real Internet like topology using Internet like traffic models running various types of services.

Moreover, various secure communication methods and roaming strategies can also be

explored in simulations to get better results.

Changing victim IP address [108] described earlier methods for node based DDoS

defense.
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E. Others

Based on the system load, dynamic resource pricing [64] imposes dynamically

changing prices on resources. This cost has to be distributed from the requesting client before

the resource is allocated. A special case of such a pricing mechanism is Client puzzles [13,

188], where the client has to solve a cryptographic problem with varying complexity before

the server allocates resources to the request and starts servicing it. Puzzle auctions [212] is

based on similar concepts.

To combat DDoS attacks against Internet servers, Yau et al [68] have used router

throttles. The defense of DDoS attack as a congestion control problem is also obtained by

Xiong et al [217]. They propose to use backward pressure propagation, feedback control

scheme to defend DDoS attack. To create the feedback signal accordingly, they used rate-

based and queue-length-based algorithms. Once the input traffic rate or the output queue

length has exceeded the desired threshold, a feedback signal is sent to adjust the admitted

portion of traffic in different input and output ports to put the rate and queue length below the

threshold. To make sure that the network traffic works in a tolerable level during DDoS

attack, the method is effective.

2.8.2 Based on Degree of Deployment

A typical DDoS defense system consists of detection of attack, characterization of

attack sources, and response to attack traffic. It can be deployed using various ways.

Classification based on degree of deployment categorizes the DDoS defense mechanisms in

the following two categories:

2.8.2.1 Single point or Autonomous defense

Single point or autonomous defense mechanisms [14, 27, 118, 126] consist ofa single

defense node that observes the attack, analyses the traffic and applies response.

2.8.2.2 Multipoint or Distributed defense

Multipoint or distributed defense mechanisms [8, 10, 11, 56, 107, 174, 180, 181, 214]

consist ofmultiple defense nodes, generally with the same functionalities that are deployed at
various locations and organized into network. Nodes communicate through the network and

coordinate their actions to achieve a better overall defense.
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2.8.3 Based on Deployment Point or Location

DDoS attack streams on the Internet originated from geographically distributed

machines, are forwarded by core routers and converge at the victim network. There is

interaction of three types of networks: source networks containing the host attack machines,

several intermediate networks that forward attack traffic to the victim, and the victim network

that host the target. Figure 2.8 illustrates this interaction. Each of the involved networks can

host DDoS defense systems. Classification based on deployment points or locations

categorizes the DDoS defense mechanisms in three categories, namely victim network,

intermediate network, and source network.

2.8.3.1 Victim or target Network

Most of the existing DDoS defenses systems have been designed to work at the

victim's network [14, 27, 118, 126]. This is understandable, because it can closely observe the

victim system's behavior, model its normal behavior that can be used to find variety of
anomalies. So it is best placed to detect DDoS attack, however these systems may themselves

become targets ofDoS attacks, by sending a sheer amount oftraffic from various distributed
attack sources that can overwhelm it. Storage and processing power requirement to store and

examine various statistical measures are very high in these systems.

2.8.3.2 Intermediate Network

These mechanisms [8, 10, 11, 56, 174, 180, 181, 214] are deployed at core routers.

Since core routers can handle large volume, highly aggregated traffic, they are likely to

overlook all but large scale attacks. However, response to attacks is likely to inflict collateral

damages, as core routers can only accommodate simple rate-limiting requests and cannot

dedicate memory or processing cycle to traffic profiling.

At the intermediate network i.e. in the core of Internet, many solutions, such as

pushback, SOS, and traceback are deployed. They all put load on core routers, which are
meant for forwarding packets at high speed as per Internet Design. Besides, intermediate
network is not owned by single administrative domain. Therefore, establishing cooperation

and trust relationship between different domains, such that request originating from one
domain will be honored by the other or not, or the module to be installed in other domain will

be allowed or not, are the concerns that have practically no answers.
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2.8.3.3 Source Network

These mechanisms are deployed at source end i.e. edge routers and detect DDoS

attacks at the source, based on the idea that DDoS attacks should be stopped as close to the

source as possible. At this place attack flows are not so aggregated yet, so it would put less

burden on the defense systemsto analyze them. And since they would be cut off at the source,

it would save transit networks from transporting malicious traffic. This approach however

requires a very large scale deployment in order to be effective. And since attack streams in the

source network usually are small in volume, they may be more difficult to detect and a large

number of false positives and negatives are there [106, 192].

To stop origin of DDoS traffic at source network, prevention methods, such as

ingress/egress filtering and repairing security holes are implemented. Absence of incentives,
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per packet filtering overheads, and security measures awareness stand in the way of DDoS

defense deployed at the source network. D-WARD is an example of source-end defense

scheme. Two hard challenges are faced by it. First, in a highly distributed attack, each source

network is responsible for only a small fraction of the attack traffic, which is unlikely to

generate anomalous statistic. Secondly, a witty DDoS attacker can also control the attack

traffic from each source network to be within normal range because ultimately it is the

aggregation of attack traffic and not individual source traffic which is going to inflict damage

to the victim. Moreover, the biggest problem in source-end defense is requirement of global

deployment, which is impossible to achieve as Internet has no central control.

2.8.4 Based on Degree of Cooperation

DDoS defense mechanisms can perform defensive measures either alone or in

cooperation with other entities in the Internet. Classification based on degree of cooperation

categorizes the DDoS defense mechanisms in the following categories:

2.8.4.1 Independent

As name suggest, independent defense mechanisms [127, 138, 154, 161, 192, 205,

210] work independently at the location where they are deployed. Firewalls and intrusion

detection systems provide easy examples of autonomous mechanisms. Even if a defense

system performs its function in a distributed manner, it would still be considered autonomous

if it can be completely deployed within the network it protects.

2.8.4.2 Cooperative

Cooperative defense mechanisms [11, 107, 174, 214] are capable to work

independently, but can cooperate with other entity to increase performance significantly. The
aggregate congestion control (ACC) system [159] deploying apushback mechanism [98] is an

example of cooperative scheme.

2.8.4.3 Interdependent

Interdependence defense mechanisms [8, 10, 56, 180, 181, 214] can not operate

independently at a single deployment point. They either require deployment at multiple
networks, or rely on other entities for attack prevention, detection or response. Traceback
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mechanisms [8, 9, 10, 56, 67, 162, 180] provide examples of interdependent mechanisms.

Secure overlay services [11] are another example of an interdependent mechanism.

2.9 Predicting Number of Zombies in a DDoS Attack

Anomaly based DDoS detection systems construct profile of the traffic normally seen

in the network, and identify anomalies whenevertraffic deviate from normal profile beyond a

threshold. This deviation in traffic beyond threshold is used in the past for DDoS detection

but not for finding number of zombies. This deviation in traffic can be used to predict number

of zombies. A real time estimation of the number of zombies in DDoS scenario is helpful to

suppress the effect of attack by choosing predicted number of most suspicious attack sources

for either filtering or rate limiting. Moore et. al [65] have already made a similar kind of

attempt, in which they have used backscatter analysis to estimate number of spoofed

addresses involved in DDoS attack. This was an offline analysis based on unsolicited

responses. In another approach [121], authors have used linear regression and correlation

analysis to predict number of zombies. But due to the nonlinear nature of DDoS attack traffic,

this method is unable to predict the number of zombies accurately.

2.10 Research Gaps

One of the primary goal of attack prevention schemes [11, 104, 122, 147, 187, 193] is

to handle IP spoofing, a fundamental weakness of the Internet. However, as attackers gain

control on large number of compromised computers, attackers can direct these "zombies" to

attack using valid source addresses. Since the communication between attackers and

"zombies" is encrypted, only "zombies" can be exposed instead of attackers.

To stop IP spoofing, to repair security holes by patches, and to stop intrusion,

prevention approaches have lots of hurdles in terms of host based incentives, global

deployment, overheads to check extra packet headers, installation of patches as soon as they

are developed and released, and inability to detect new attacks. Moreover, in prevention

techniques, non-spoofing, subnet spoofing, en-route spoofing and DRDoS based attacks have

no reliable solution. In addition, on an average security awareness is still not enough, so

expecting installation of security technologies and patches in large base of Internet looks an

ambitious goal in near future. Therefore, relying only on attack prevention schemes is not

enough to stop DDoS attacks.
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Most of the existing schemes [7, 27, 41, 79, 106, 116, 117, 126, 138, 154, 174, 177,

192, 195, 199, 205, 207, 210, 214, 215] proposed in the literature for detecting DDoS attacks

have certain limitation. These techniques are used to detect attacks eitherat source network or

at victim network. The majority of the existing DDoS defense systems have been designed to

work at the victim network [7, 27, 116, 126, 174, 192, 207]. This is understandable, because

victim network can closely observes the victim system's behavior, model its normal system

profile that can be used to find variety ofanomalies. Therefore, it is best place to detect DDoS

attack. Nevertheless, victim system may itself become target of DDoS attacks, by sending a

sheer amount of traffic from various distributed attack sources that can overwhelm it. Storage

and processing power requirement to store and examine various statistical measures are very

high in these systems.

In contrast, schemes which detect DDoS attack at source network [106, 195, 199] are

not effective, as they require a very large scale deployment in order to be effective. In

addition, since attack streams in the source network usually are small in volume, they may be

more difficult to detect and a large number of false positives and negatives are there.

Detection schemes based on monitoring the volume of traffic [27, 79, 154, 192, 199]

are better suited to detect high rate disrupting attacks (HRD), which completely disrupt the

services to legitimate client. Low rate degrading (LRD) attacks consume a small portion of

victim's resources are not detected using these schemes. However, the accurate detection of

these low rate flooding attacks is very important, as detection closer to source is possible,

which is otherwise very difficult because of lesser volume of attack traffic source. Entropy

based approaches [14, 119, 126] can detect low rate degrading attacks, but fail against varied
rate attacks wherein intelligent attacker mixes low and high rate zombie machines to generate

attack traffic in such a manner that overall entropy remains unchanged.

Signature based schemes [138, 205] employ a priori knowledge of attack signatures.

Signature based techniques are only effective in detecting traffic of known DDoS attacks
whereas new attacks or even slight variations of old attacks go unnoticed. Anomaly based

techniques [20, 41, 102, 106, 116, 174, 195, 199] can detect novel attacks; however, it may
result in higher false alarms. Availability of user friendly attack tool kits and their source

codes give flexibility to attacker to create a variety ofnew attacks by error and trial. Most of
the detection schemes can easily be defeated by developing attacks through this error and trial

method. Even existing variety ofattacks are sufficient to disguise most ofprevailing detection
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methods. Detection models normally have tunable parameters like clustering level (traffic

aggregation for monitoring), sample window size, and thresholds etc. In most cases,

researchers offer no guidance on parameter variations or their effects on detection

performance. Ad hoc training is typically required to tune parameters as per desired detection

performance. But, actually researchers often optimize parameters of their own experimental

test cases so as to show better results. Overall, in all of the detection techniques, high

computational and memory overheads are involved and they are very complex in nature.

Once an attack has been detected, an ideal response would be to block the attack

traffic at its source. Unfortunately, there is no easy way to track IP traffic to its source due to

the statelessness of the IP protocol. The attacker can easily spoof the IP source address and

send it to any destination without notice. Most of the existing solutions to the traceback

problems attempt to reduce the state and processing overheads by a combination of

probabilistically generating traceback information and/or using hash function to reduce the

marking state. As such, for these to be effective, traceback requires a colossal number of

packets and vast computing resources for reconstructing the attack graph. In addition, to

achieve IP traceback, co-operation between ISP's is always difficult to achieve.

Filtering techniques are used to filter out incoming traffic completely that has been

characterized as malicious by the detection mechanism. However, it is always very difficult to

distinguish malicious packets from legitimate packets therefore; these techniques cause high

number of false positives. The disadvantage of rate limiting scheme is that it allows some

attack traffic through, so extremely high-scale attacks might still be effective even if all traffic

streams are rate-limited.

Attack tolerance & mitigation focuses on minimizing the attack impact and tries to

provide optimal level of service as per quality of service requirement to legitimate users while

service provider is under attack. This is not a comprehensive solution in any way, however it

can complement other approaches to work in parallel and achieve their goals by providing

sufficient assurance in terms of time to provider so that the legitimate clients are being served.

For predicting number of zombies, previous approaches [121] have used linear

regression and correlation analysis. But due to the nonlinear nature of DDoS attack traffic,

these methods are unable to predict the number of zombies accurately. Some of the research

gaps mentioned above have been investigated in this thesis.
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2.11 Chapter Summary

DoS attack causes either disruption or degradation on victim's shared resources, as a

result preventing legitimate users from their access right on those resources. DoS attack may

target on a specific component of a computer, entire computer system, certain networking

infrastructure, or even entire Internet infrastructure. Attack can be performed either by

exploiting the natural weakness of a system, which is known as logical attack or overloading

the victim with high volume of traffic, which is called flooding attack. A distributed form of

DoS attack is called DDoS attack, which is generated by many compromised machines to

coordinately hit a victim.

In this chapter, we have covered an overview of the DDoS problem, its basic causes,

targeted resources, attack modus operandi and available DDoS attack tools. However, DDoS

attacks are adversarial and constantly evolving. By the time a particular kind of attack is

successfully countered, a slight variation is designed that bypasses the defense and still

performs an effective attack. In addition, a comprehensive study of a wide range of DDoS

attacks and defense methods proposed to combat them is presented. This provides a better

understanding of the problem, current solution space and future research scope to defend

against DDoS attacks.
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CHAPTER 3

DETECTING DISTRIBUTED DENIAL OF SERVICE

ATTACKS USING FLOW-VOLUME BASED APPROACH

3.1 Introduction

In the previous chapter, we have seen that DDoS attacks are major threat to the Internet
and there is no efficient approach to detect these attacks. Attack detection should aim to detect

an ongoing attack quickly when a network senses any occurrence of these attacks. Timely
detection of DDoS attacks is the only key to respond to these attacks and to protect system
from failure. Most ofthe existing schemes [7, 27, 41, 79, 106, 116, 117, 126, 138, 154, 174,
177, 192, 195, 199, 205, 207, 210, 214, 215] proposed in the literature for detecting DDoS
attacks have certain limitations. Availability ofuser friendly attack tool kits [28, 36, 45, 46, 57,

58, 59, 60, 99, 136, 171] and their source codes gives flexibility to attacker to create a variety
ofnew attacks by error and trial method. Most ofdetection schemes can easily be defeated by
developing attacks through this error and trial method. Existing variety of attacks are also

sufficient to disguise most of prevailing detection methods. In addition to this, in all of the

detection techniques, high computational and memory overheads are involved and they are
very complex in nature.

In this chapter, we introduce a new scheme that deals with the detection of flooding
DDoS attacks by constant monitoring of abrupt traffic changes inside ISP network. Two traffic

parameters namely, volume and flow are used to detect DDoS attacks. For detecting DDoS

attacks, proposed scheme constructs profile of the traffic normally seen in the network, and

identifies anomalies whenever traffic goes out of profile. Consideration ofvarying tolerance
factors, as described in section 3.3, make proposed detection scheme adaptable to varying
network conditions and attack loads in real time. Different attack scenarios are implemented by
varying total number of zombie machines and attack strengths. Proposed scheme has been

extensively evaluated through simulation. Detection thresholds and efficiency are justified
using receiver operating characteristics (ROC) curve [141]. For validation, KDD 99 [142], a
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publicly available benchmark dataset is used. The comparison with existing volume and
entropy based approaches clearly indicates the supremacy of our proposed scheme.

Our scheme uses anomaly based detection in ISP domain for detecting flooding DDoS
attacks. It interprets flooding DDoS attacks as events that disturb distribution of traffic flows.
Here the traffic flow is a set of packets satisfying a 5-tuple (source address, destination
address, source port, destination port and protocol type) qualifier, monitored in a polling
interval. We model Internet as transit-stub network. The NS-2 network simulator is used as
testbed for implementation and evaluation ofour approach.

3.2 DDoS Attack Detection Model

3.2.1 Choice of Traffic Parameter

The main factor that governs the effectiveness ofa detection model is the parameters

used in modeling. In literature, many parameters have been proposed and studied. One of the
most obvious parameter of choice is volume and most of existing solutions use volume based
metrics [27, 79, 154, 192, 199] to detect DDoS attacks. These suffer in the form of large
number of false positives/negatives and hence more collateral damage when attack is carried
at slow rate or when volume per attack flow is not so high as compared to legitimate flow.
Entropy based approaches [14, 119, 126] can detect low rate degrading attacks, but fail
against varied rate attacks wherein intelligent attacker mixes low and high rate zombie
machines to generate attack traffic in such amanner that overall entropy remains unchanged.

Lakhina et al [14] observed that most oftraffic anomalies despite their diversity share
acommon characteristic: they induce achange in distributional aspects of packet header fields
(i.e. source address, source port, destination address, and destination port etc called traffic
features). Our scheme to detect attacks treats DDoS anomalies as events those disturb the
distribution of traffic features. For example, a DDoS attack, regardless of its volume, will
cause the distribution of the destination address to be concentrated on the victim address.
Similarly, a scan for vulnerable port will have a dispersed distribution for destination
addresses, and a skewed distribution for destination ports that is concentrated on the
vulnerable port being scanned. The key question here is to decide which parameter to be used
for measuring distribution of traffic features. We have chosen two parameters namely, volume
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and flow together to detect variety of flooding DDoS attacks efficiently. Before presenting

illustrations to substantiate our assumptions, let us give formal definition of volume and flow.

Let X = {nt,i = 1, N} is the frequency distribution consisting of N flows where

flow / contains «, packets. Let S=^M«, ^e the total numDer of incoming packets. Then,

volume metric and flow metric can be defined as follows:

Volume metric: Volume metric isused to count the total number of bytes occurring during the

polling interval A.

Volume = S\A =£"/!,.| A

Flow metric: Flow metric is used to measure the total number of distinct flows during the
polling interval A.

Flow = Total number ofdistinct flows in polling interval A=N\A

The underlying idea is to exploit changes observed in the distribution of addresses or

ports under attack, as this is directly proportional to volume and flow, to characterize

important traffic anomalies. Two parameters are used together, with the intention that they

can detect variety of flooding DDoS attacks efficiently. Whenever incoming attack traffic

load is high i.e. in high rate attacks, attack alarm is triggered as volume metric shows the

anomaly in the system i.e. total incoming volume is above the threshold. Similarly, when

incoming attack traffic load is low per attacking host using a large number of distributed

zombies i.e. in low rate attacks, attack alarm is triggered, as flow metric shows the anomaly in
the system i.e. total incoming flows are above the threshold. This can be clearly seen from the
illustration below:

Figures 3.1 and figure 3.2 show value of volume and flow in subsequent polling
intervals during normal and different attack scenarios. Figure 3.1 shows temporal variation of
volume measure when system is in normal condition, under low rate DDoS attack and under

high rate DDoS attack. DDoS attack starts at 25th second and ends at 50th second. Total 400

client machines are used to send legitimate traffic. High rate attack is performed using 100
zombie machines with mean attack rate 3Mbps per attacker. To perform low rate attack 100

zombie machines are used with mean attack rate 0.1Mbps per attacker. As shown in figure
3.1, it is clear that low rate attacks are nearly undetectable when using only volume measure.
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Figure 3.1. Temporal variation ofvolume measure when system is in normal condition, under

low rate DDoS attack, and under high rate DDoS attack

For detection of low rate DDoS attack correctly with low false positive rate, flow

measure should also be considered along with volume measure. Figure 3.2 shows temporal

variation of flow measure when system is in normal condition, under low rate DDoS attack,

and under high rate DDoS attack.
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Figure 3.2. Temporal variation of flow measure when system is in normal condition, under
low rate DDoS attack, and under high rate DDoS attack
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As shown in figure 3.2, low rate attacks can be detected easily when flow measure is

used to detect flooding DDoS attack. Therefore, we can conclude that both high rate and low

rate flooding DDoS attacks performed using large number of zombie machines can be

detected easily when both flow and volume measures are taken together.

3.2.2 Choice of Polling Interval

The choice of the polling interval plays an important role in determining number of

false alarm rate and how quickly an attack can be detected. We conducted simulations for

various polling intervals and found that false positive alarm number increases steadily with

increasing polling interval as shown in figure 3.3. Though false positive rate is minimal at

polling interval 100ms but detection rate is also very less i.e. 74 % as shown in figure 3.4.

Therefore, in our experiments, optimum value of the polling interval chosen is 200ms.

100ms 200ms 300ms 400ms 500ms 600ms 800ms 1000ms

Polling Interval

Figure 3.3 Variation of false alarm rate using varying polling intervals

100ms 200ms 300ms 400ms 500ms 600ms 800ms 1000ms

Polling Interval

Figure 3.4. Variation ofDetection rate using varying polling intervals
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Total false positive alarms are minimal with high detection rate using this value of

polling interval. The chosen polling interval tends to keep up the balance between both

aspects. Moreover a short polling interval also helps in reducing the memory overheads at

router as the routers have to store lesser number of packets.

3.3 Flow-Volume based Attack Detection Scheme

In this section, we present our detection scheme to detect an ongoing attack quickly

with minimum false positives and negatives.

3.3.1 System Model

Transit-Stub network model [112] of Internet as shown in figure 3.5 is used for

simulation. Transit-stub model is based on the hierarchical approach of Internet. Every

domain in transit-stub model is classified either as transit network or stub network. Transit

network is service provider and interconnects stub networks. Stub network connects end hosts

to theInternet. Backbone ISPs and regional ISPs are examples of transit networks. As for the

scenario of a DDoS attack, each of the attackers, legitimate users and the victim server are

connected to a stub network. Model used for the simulation is a standard one that is used by

previous researchers, such as [118]. Traffic flows pass through several stub/ transit domains
before reaching to the destination. Monitoring of the traffic directed to protected server is

performed at transit router connected to the server. Our aim is to protect the victim server and
the corresponding network from DDoS attacks. We model the Internet to measure the volume
and flow in transit-stub network. During an attack, the Internet is divided into the two

networks; one for inside to be protected and the other is for outside where attackers may

reside. Detection system is a part ofborder router connecting victim or can belong to separate

unit that interacts with border router to detect attacks and identify attack traffic. Packets are

monitored ina short sized polling interval to minimize memory overheads.

3.3.2 DDoS Detection Scheme

In this section, we will present our proposed detection scheme that may be part of

border router connecting victim orcan belong to separate unit that interacts with border router

to detect attack traffic. The proposed scheme uses a flow-volume based approach (FVBA) to

construct profile of the normal traffic seen in the network and identify anomalies whenever
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traffic goes out of the normal profile. In FVBA, two statistical measures namely volume and

flow are used for profile construction.
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Figure 3.5 Transit-Stub Network Model of Internet

3.3.2.1 Analytical Model

LetX(f) represents the total traffic arriving under normal conditions at the target

machine in polling interval {t-A, t}. X(t) is calculated during polling interval {t -A, t) as

follows:

*(') =2>((0, i =\2..Nj
(=1

(3.1)
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where «,(/) represents total number ofbytes arrived for a flow i in {t- A, f} polling duration

and Nf represents total number of flows. We use total bytes instead of packets to calculate

volume measure, because it provides better accuracy, as different flows may contain packets

ofdifferent sizes. X(t) for a given polling interval {t -A, /}can betreated as a random variable

and the set of these random variables can be considered as a random process (X(t), t

=wA, 1<, w<I,Ie N), where A is a constant polling interval and N is the set of positive

integers. Variable / is the number of polling intervals. We take first moment of X(t) and

designate that as X*n, thenormal traffic volume.

Total trafficXm(Oat any time in polling interval {t-A, t}cm be expressed as follows:

Xin(t) = X(t) + X(t), (3.2)

where X(t)and X(t) are the normal and attack traffic respectively. Similarly we may define

another random variable Fit) whose value at time t is the total number of measured flows in

polling interval {t - A, t) under normal condition. The first moment of random variable

F(t) is designated asF„*. Total number offlows Fin(t) at any time in polling interval {t -A, /}

can be expressed as follows:

Fin(t)=F(t)+F(t), (3-3)

where F(t) and F(t) arethe normal and attack flows.
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Figure 3.6 depicts the FVBA architecture. As it is not possible to measure the amount

of normal and attack traffics separately in a given polling interval, therefore we use first

momentsX*n and F* for detecting the attack. The values of X*nandF* are calculated in

advance when system is not under attack.

Algorithm 1: DDoS attacks Detection Algorithm

Input: X*n: Normal traffic Volume measure

Fn : Normal trafficFlow measure

4„,: Threshold valuefor Volume measure

q^: Thresholdvaluefor Flow measure

Output: DDoS attackalert generation.

Procedure:

01: t = t0

02: Measure Xin{t) andFjn(t)for currentpolling interval usingequation 3.2 and 3.3

03:If(((Xm(t)-X:)>ZJ || ((Fm{t)-F:)>gJ) Then Attack detected.

Generate DDoS attack alarm.

04: t = t+ A

05: Go back to 02

Figure 3.7. DDoS attacks Detection Algorithm

To detect the attack, the value of volume metric Xm{t)and flow metricFm(t)are

measured in successive polling intervals continuously and whenever there is appreciable

deviation from Z*andi^*, flooding DDoS attacks are detected. The algorithm used for

detecting attacks isgiven in figure 3.7. Threshold values 4Aandgth are set as follows:

&=1*0r (3.4)

&=»a*o> (3.5)
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whereavand ^represent standard deviation for volume measure and flow measure,

respectively under normal traffic conditions. ru r2<El represent values oftolerance factors for

volume and flow measure, respectively, where / is the set of integers.

Tolerance factors are tunable parameters, whose values can be chosen after conducting

simulations at different attack strengths. Effectiveness of an anomaly based detection system

highly depends on accuracy of threshold value settings. Inaccurate threshold values cause a
large number of false positives and false negatives. Therefore, various simulations are

performed using different values of tolerance factors.

The choice of tolerance factors vary for different network conditions. Values of

tolerance factors also depend on the composition ofthe normal traffic and the desired degree

ofthe ability to control a DDoS attack. Then, trade-off between detection and false positive
rate using ROC curves provides guidelines for selecting values of tolerance factors for a
particular simulation environment. In our approach, we use different values of tolerance
factors for volume and flow measures, as distribution changes in both volume and flow

measures are not necessary same in varying network conditions and attack loads. This makes

detection ofDDoS attacks more accurate with low false-positives.

3.4 Performance Evaluation

To investigate the effectiveness of the proposed DDoS attack detection scheme,
various simulations are carried out for a large number of scenarios. Detailed experimental

design and performance analysis are discussed in this section.

3.4.1 Simulation Model

Simulations are carried out using NS2 network simulator on Linux platform to

evaluate our proposed detection scheme.

3.4.1.1 System Components

The system consists of the following components:

Clients:- A client is an application or system that accesses a remote service on another

computer system, known as a server, through network [23]. For example, web browsers are
clients that connect to web servers and retrieve web pages for display. Two types of clients

are considered: legitimate clients and attackers. The legitimate clients obey the functionality
of TCP protocol, whereas attackers use UDP and therefore do not adhere to the TCP
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congestion avoidance protocols. The legitimate clients are modeled as user system running

FTP applications. The attackers are modeled by CBR traffic using UDP protocol. A UDP

sender does not need to wait for any acknowledgement from the receiver before sending out

further packets. This property is apt to model an attacker as an attacker would normally send

out large bursts of packets continuously with the aim of flooding the links leading to the

server under attack.

Server:- A server is any combination of hardware or software designed to provide services to

clients. For example, web servers are servers that provide web services to clients. We assume

that the service provided by the server is a generic TCP-based service. The legitimate FTP

clients connect to the server with the aim of downloading files, whereas the attackers aim at

clogging the bottleneck link leading the server to fail and make the service unavailable to the

legitimate clients.

Table 3.1. Simulation parameters

S. No. Parameter Value

1. Simulator Ns-2

2. Traffic arrival process Poisson

3. Simulation time 60 seconds

4. Attack Duration 25-50 seconds

5. Number of legitimate clients 100-400

6. Number of attackers 10-100

7. Polling interval 200ms

8. Packet size 1040 bytes

9. Tolerance factor a 1-10

10. Connection startup time 1-8 seconds

11. Access link bandwidth 1 Mbps

12. Backbone link bandwidth 100Mbps

13. Backbone link delay 0 seconds

14. Bottleneck link bandwidth 310 Mbps

15. Mean attack rate per attacker 0.1-1Mbps (low rate)

2.5-3.5Mbps (high rate)
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Agents:- Agents are software modules deployed at edge routers that runs detection algorithm
to declare attacks. These agents receive packets from the clients (legitimate and attackers) that

are actually aimed for the server and mark them before sending to the server, if attack is

detected.

3.4.1.2 Simulation topology and parameters

The topology considered is similar to the one used traditionally in the Internet for
simulation and validation purpose. A simplified view of topology used for the simulation is

shown in figure 3.5. Total 400 legitimate client machines are used to generate background
traffic. One FTP server is used to provide service to the clients. All FTP requests are

originated randomly from different nodes. Total machines generating attack traffic range

between 10 to 100.

Table 3.1 shows simulation parameters. Similar parameters are used by previous

researchers [118] also. DDoS attacks start at 25th second and end at 50th second. The
simulations are carried for different values of tolerance factors n, r2 and different attack

scenarios are created by varying total number ofzombie machines and the attack strengths. In
our experiments, the polling interval is set to 200ms, as total false positive alarms are minimal
with high detection rate using this value ofpolling interval.

3.4.2 Performance Metrics

For evaluating the performance of our scheme, we used the following performance

metrics used in [118]:

1. Detection rate (PJ):- It isgiven by the following ratio:

R^d/n (36)
where d is the number ofDDoS attack detected during the simulation experiment and n is

the total number of attack generated.

2. False-positive rate (Rfp):- It is given by the following ratio:

Rfp=f/m (37>
where/is total number of false positive alarm raised by attack detection mechanism, and m
is the total number of normal traffic events during the simulation.
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3. Goodput:- Goodput is a measure of average rate of successful legitimate traffic transmitted

over a communication channel and is calculated as the number of bytes transmitted during

specified time interval. We calculate Goodput on the bottleneck link of the transit-stub

network [23].

4. NPSR (normal Packet Survival Ratio):- As packets generated by different applications may

be of different sizes, we also use NPSR as a performance measure. It is given as the ratio of

number of legitimate packets among all packets received during current polling interval.

The ROC (Receiver Operating Characteristic) curve shows the tradeoff between detection rate

and false-positive rate.

3.5 Results and Discussion

Results show that false positives and false negatives triggered by our scheme are very

less. This implies that profiles built are reasonably accurate and are able to detect variety of

DDoS attacks correctly. In following subsections, simulations results are explained.
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Figure 3.8. Temporal variation of Goodput at different attack strengths

3.5.1 Degradation of Goodput with Attack

The aim of any DDoS attack is to minimize legitimate traffic reaching at the server.

Goodput is a measure of legitimate traffic reaching at server. Variation of goodput at different

attack strengths is shown in figure 3.8. Here attack is conducted at attack strengths ranging
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from 0.1Mbps to 1Mbps per zombie machine. In this experiment, 400 client machines are

used to send legitimate traffic to the server while 100 zombie machines are used to send

attack traffic. Figure 3.8 shows that, as attack starts at 25 seconds, goodput decreases. At low

attack rates, number of attack packet drops is almost negligible, however as attack strength

increases number of legitimate as well as attack packet drops also increases.
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Figure 3.9. Temporal variation ofNPSR at different attack strengths

3.5.2 Degradation of NPSR with Attack

In any DDoS attack, increase in attack strength not only decreases goodput but also

affects the normal packet survival ratio (NPSR). Figure 3.9 shows temporal variation of

NPSR at different attack strengths. The simulation scenarios are same as in section 3.5.1.

Similar to Goodput, the NPSR also decreases proportionally as the attack strength increases.

3.5.3 Detection of Attack

As discussed earlier, effectiveness of an anomaly based detection system highly

depends on accuracy of threshold value settings. Inaccurate threshold values cause a large

number of false positives and false negatives. We use two different tolerance factors rlt r2for

volume and flow metrics, respectively to set the threshold values accurately. Tolerance factors

are tunable parameters and depend on network conditions. Thus, it is possible that values of

tolerance factors for a particular network environment are not suitable for other network.

76

*

4

T



>

>

Therefore, various simulations are performed using different values of tolerance factors.

Then, trade-off between detection and false positive rate provides guidelines for selecting

values of tolerance factors for a particular simulation environment.
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Figure 3.10. Effect of detection tolerance factors on the detection and false positive rate

Figure 3.10 illustrates the variation of the detection and false positive rate with respect

to different values of detection tolerance factors r!t r2. Simulation parameters taken are similar

to the one explained in section 3.4.1.2. Additionally, two different attack packet sizes, IK

bytes and 512 bytes, are taken in the simulation to test the relation among detection rate, false

positive rate, detection tolerance factors and packet size. We can see from the figure 3.10 that

as values of tolerance factors increase, detection rate which is nearly 98.8 tend to decrease

when ri>=6 and r2>=6. However, false positive rate is very high when r/<=5 and r2 <=5.

Therefore, by careful investigations, we select values r;=6 and r2=6, which give

detection rate close to 98.8% with less than 3% false positive rate. The ROC curve in figure
3.11 also shows same results.

Therefore, values ofboth tolerance factors ru r2 are taken as 6 in our approach. Values

of r,, r2 can vary for different network conditions and correct values can be selected

depending onthe tradeoff between detection and false positive rate.
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Figure 3.11. ROC curve showing the tradeoff between the detection rate and false positive
rate of DDoS attacks

3.5.4 Results with KDD 99 Dataset

In this section, performance of proposed FVBA scheme is evaluated using KDD 99

dataset [142], which is publicly available dataset. Details about KDD 99 dataset are given in
appendix-A. First, we filter out connection records ofDoS attacks category and then remove
labels from both the training and testing dataset. Then normal profile is set for each protocol

category as each flow is determined by protocol. To set normal profile, volume and flow
measures are calculated using training dataset. In the subsequent sections, training and testing

ofFVBA scheme are explained and results are displayed.

3.5.4.1 Training

Effectiveness of proposed detection system highly depends on accuracy of threshold

value settings. Inaccurate threshold values cause a large number of false positives and false
negatives. Therefore, various simulations are performed using different values of tolerance
factors r7 and r2. During training, best detection rate is 98.08% with 0.35% false positives,
when r7 =1 and r2=5 for TCP connection. For ICMP connection, best detection rate is 100%

with 0.78% false positives, when r} =5 and r2=6. Similarly, for UDP connection, best
detection rate is 100% with 0.87% false positives, when r7 =6 and r2=8. Therefore, optimal
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values of tolerance factors for different protocols to set the normal profile are given in table

3.2.

Table 3.2. Optimal values of tolerance factors to set normal profile

Protocol Tolerance Factors

Category value

TCP r;=l, r2=5

UDP ri=6, r;?=8,

ICMP ri=5, r2=6

3.5.4.2 Testing

After training, we apply proposed detection scheme on test dataset. Figure 3.12

summarizes the overall results of testing for different protocol category.
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Figure 3.12. Overall detection results ontest data for different protocol category

Figure 3.13 contains summary of different types of DoS attacks detected in test

dataset. Above stated results show that our proposed approach yields 96.9 percent detection
accuracy with less than 1 percent false alarms.
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3.5.5Comparison with Volume Based Approaches

Comparison of our proposed approach with VBA (Volume Based Approach) [27] is

reported below. Same parameters are used for evaluating the performance ofboth approaches.

Following DDoS attack scenarios are taken for comparison:

A. Experiment J: High Rate Attack

First we studied the effect of varying number of zombies, where each zombie

performs attack with high rate (i.e. 3 Mbps).
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Figure 3.14. Variation ofdetection rate of VBA and our detection system when attack with
high rate is performed by varying number ofzombie machines
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Figure 3.14 shows the variation in detection rate of VBA and our approach. In this

experiment, total number of zombie machines varies from 10 to 100. It can be seen in figure

3.14 that detection rates are comparable when total number of zombie machines are more, but

when the total number of zombie machines are less, our proposed approach provide better

detection rate compared to volume based approach.

B. Experiment 2: Low Rate Attack

In this experiment, we studied the effect of varying number of zombies when each zombie

performs attack with low rate (i.e. 0.1Mbps). Figure 3.15 shows the variation of detection rate

of VBA and our scheme. It is clear from figure 3.15 that our detection system's performance

is far better than VBA.

100

Number of Zombies

• VBA • Our Approach

Figure 3.15. Variation of detection rate of VBA and our detection system when attack with

low rate is performed by varying number of zombie machines

This is mainly due to the fact that in case of low rate degrading attacks, the total attack

traffic does not exceed even normal fluctuations. But as we have considered total number of

flows too, low rate degrading attacks are easily detected by our approach.

C. Experiment 3: Mixed Rate Attack

In this experiment, total number of zombie machines remain fixed i.e. 100 but the

attack rate is varied to degrade performance of server machine. Figure 3.16 shows that our



detection system's performance is far better than VBA when attack strength is low. This is

mainly because total arrived attack traffic does not exceed even normal fluctuation.
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Figure 3.16. Variation ofdetection rate ofVBA and our detection system when attack with
varying attack rate isperformed using hundred zombie machines

3.5.6 Comparison with Entropy Based Approaches

Comparison ofdetection performance ofour proposed approach with entropy based
DDoS attack detection systems [14, 119, 126] are reported below.

Carefully mixing oflow and high rate zombie machines by attacker can make DDoS
attack undetectable using entropy based approach. Let us assume that during polling interval

A following flow arrive at the server:

k.{f°,f°, , fG) igenuine flows carrying («?,/£ , ,n° )bytes, respectively.

B. (fH ,f", ,f")j high rate attack flows carrying (n" ,n" , ,nj )bytes, respectively.

C.(fL,f2L, , // )klow rate attack flows carrying (n\, n\ , ,n\ )bytes, respectively.
Then, total genuine, high rate attack and low rate attack traffic coming in Atime

duration can be calculated as follows:

XG(t)= X nf (38>

82

*•

4



wf(0

XH(t)= L "j (3-9)
/-i

I^(0=X^ (3.10)

where, XG(t), XH (t) and XL (t) represent total genuine, high rate attack and low rate attack

traffic respectively, coming during A time duration. Total traffic coming during A time

duration, represented by XTotal(t) will be as follows:

XTotal (J) =XG (t) +X" (t) +XL(t) (3.11)

During normal condition when system is attack free, value of entropy is:

N°(t)

HN°""a\t)= -^ fG IXG{t)\og2(fG IXG(t)) (3.12)

Value of entropy during varied rate attack is:

HA«ack{t) =_£ rf/x*"(t)log2(/«/X»"(t)) - £ ff IXT°'al(t)\og2(f? /XT°""(t))

" Z ft /^r°fa'(01og2(// lXTotalit)) (3.13)
»-- /t=i

In equation (3.12) and (3.13) HNormal(t) and //""""*(/)represent values of entropy

when there is no attack and when system is under attack, respectively. By using some

sophistic attack tools, intelligent attacker can mix low and high rate zombie machine in such a

manner that overall entropy remains unchanged, i.e. HNormal(t)~HA"ack (t). If it is so,

detection systems will fail to detect an ongoing attack. The below shows some cases in which

entropy based detection system will not able to detect flooding attacks.

T Ex. I. i=j=k=5, ,f =nG=nG =nG =nG =50, „?=„«=„»=„»=„»=1000000,

«1L =«2L =«3i =«4L =«5z'==20

Ex. II. i=j=k=5, if =nG =nG =nG =nG=\ 000, »f =»2" =»3" =«f =n» =5000000,

n\ =n2=n\=nLA= n\ =20.
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3.6 Chapter Summary

In this chapter, a new approach is proposed that accurately detects a wide range of
DDoS attacks, ensuring good service to legitimate clients. Two metrics, volume and flow
have been used in parallel and an analytical model has been constructed for detecting variety
of flooding DDoS attacks. Consideration of varying tolerance factors make proposed
detection system scalable to the varying network conditions and attack loads in real time.

In addition to controlled test-bed experiments, effectiveness ofthe proposed scheme is

verified through intensive experiments with KDD 99 dataset. Proposed system has
demonstrated an excellent performance in both test-bed experiments and in the real operation.
It is found that combining flow and volume measures is abetter way to find signs ofattack as
compared to volume or entropy measure alone. Entropy based schemes have also been
proposed for detecting DDoS attacks. However to the best of our knowledge [118, maximum
detection rate achieved using these approaches is close to 98% whereas our FVBA based
scheme shows a detection rate upto 98.8%. Performance of proposed scheme is compared
with existing volume based approach. The results show that proposed scheme gives 10-30%
improvement in detection rate over earlier volume based schemes. We have implemented our
approach in single ISP network but it can be easily deployed at multiple ISPs with help of
trusted entities acting as interfaces between two ISPs so that two ISPs can share there
informationand thus more effectively stop the attack.
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CHAPTER 4

DETECTING DISTRIBUTED DENIAL OF SERVICE

ATTACKS USING GARCH MODEL

4.1 Introduction

In chapter 3, we presented flow-volume based approach (FVBA) to detect flooding

DDoS attacks. Though the FVBA approach performs better than previous methods, further

improvements can be made if statistical properties of DDoS attack traffic are considered. In

line with this, some authors have tried to use linear time series models [6, 17, 32] for DDoS

attack detection. However, most network applications generate bursty traffic having long

tailed distribution. For this type of traffic, these models are not suitable as they can not

capture long range dependence (LRD). To solve this problem, nonlinear statistical models can

be used for fast and effective detection of flooding DDoS attacks. One of the most popular

statistical nonlinear time series modeling technique is the Generalized Autoregressive

Conditional Heteroskedastic (GARCH) model [189] which is used for detecting TCP SYN

flooding and RESET/FIN attacks in [146]. In this chapter, we show that the same technique

can be effectively used for detecting flooding DDoS attacks also by appropriately selecting

traffic parameters to generate the time series. From our study, it is found that GARCH model

when used with entropy based time series performs better than linear prediction model

described in [105]. Proposed scheme detects flooding DDoS attacks with high detection rate.

4.2 Time Series Analysis

Time series analysis deals with data values that are collected over time [115, 165]. The

time order of data is important. A major task in time series analysis is to uncover the

probability law that governs the observed time series and the main objectives in such analysis

are to understand the underlying dynamics, forecast future events and control future events

via interventions. There are two types of time series depending up on how they are expressed

mathematically. A time series that is expressible as the output of a linear model is called a

linear time series. In contrast, the output from a nonlinear model is called a nonlinear time

series. To see the difference in mathematical form of the linear and nonlinear time series
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models briefly, consider a time series xt observed at equally spaced intervals. Let us denote

the observations by xt |t=l,...,T where Tis the sample size. Then xt is said to be linear ifit is

expressible as

00

xt=n+]Taiet_i (41)
i=0

where (a is a constant, a; are constants and {et}is an independent and identically distributed

random number. On the other hand, nonlinear time models are expressed as

xt =g Ft_! +Jh Ft_! et/o, (4-2)
where Ft_i is dependent on available information of variance a at time t-1, g and h are

nonlinear functions.
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In this chapter, we will focus on nonlinear time series and nonlinear models. Before
we present the details of time series analysis and the various types of time series models, we
will give abrief account ofthe important property oftime series: stationarity.
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4.2.1 Stationarity

A time series can be stationary or non-stationary. Before doing any time series

analysis, it is important to know about the stationarity of the time series as almost all time

series models require the time series to satisfy this property [115]. We therefore, first check

about the stationarity of our data set. A time series {x,} is said to be stationary if the joint

distribution of (xt],...,xtk)is identical to that of (xt+t,...,xtk+t) for all t, where k is an arbitrary

positive integer and (tl5...,tk) is a collection of £ positive integers [165]. In a stationary time

series, the statistical properties such as mean and variance are constant. On the other hand, if

the stochastic structure of a time series itself changes over time, it is called a nonstationary

time series.

Knowing the stationarity property of a time series data plays a major role in

determining the future development of the series. Figure 4.1 shows stationarity of our network

data set. It shows a snapshot of the data set (entropy of incoming traffic vs simulation time)

and three windows of it at different time interval. It is seen that the mean (u) and standard

deviation (a) is almost constant throughout the different window signifying the fact that the

data is stationary.

4.2.2 Autocorrelation

Another important property of time series is the relation between the random data

values at different time points. This relation is expressed by what is known as autocorrelation.

Fora stochastic process {xt} which can take the form of discrete time series xt, t =0,1,2,...,N,

the autocorrelation coefficient measures the linear dependence between xt andxt+k. For a

stationary time series, the autocorrelation coefficient is constant. Mathematically, the

autocorrelation coefficient is given as [165]

p(k)=E[(xt-.a)(xt+k^)] (43)

where E is the expected value and k is the time shift being considered (usually referred to as

the lag). This function has the attractive property of being in the range [-1, 1] with 1

indicating perfect correlation (the signals exactly overlap when time shifted by k) and -1

indicating perfect anti-correlation Depending up on the value of k, i.e. the time gap between

the data points used for the calculation ofautocorrelation, there are two types ofdependences:
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short range dependence (SRD) and long range dependence (LRD). SRD is a phenomenon in
which the coupling between different times decreases rapidly as the time difference increases.
On the other hand, LRD is a phenomenon in which the coupling between different times

decreases slowly as the time difference increases and shows much stronger coupling. All
short-range dependent processes are characterized by an autocorrelation function which
decays exponentially fast; processes with long-range dependence exhibit amuch slower decay

of the correlations.

4.3 Non-linear Time Series Modeling

One important objective in time series analysis is modeling ofthe time series. In time
series modeling, we capture the stochastic structure of time series by identifying an
appropriate model. Since there are various types of time series, it is necessary to select an
adequate model class and to estimate parameters included in the model, depending on the
characteristics of the time series and the objective of the time series analysis. There are two

important classes of models, namely linear and nonlinear model. Linear models have been
used for long time and are very popular. An interested reader may refer well documented
books like [115, 165]. However, linear models have certain limitations in modeling nonlinear
time series due to their basic assumption. In linear time series modeling, it is assumed that the

difference between actual value and predicted value follow a Gaussian white noise

distribution with mean zero and constant variance. However, this is not the case in many

practical situations like network traffic. Network traffic generally has leptokurtic distribution
with long tail instead of normal distribution. For checking leptokurtic distribution of data,
hetroskedastic properties, size ofwindow and for finding order of GARCH model, authors in
[146] have used certain tests; similar tests have been performed on our dataset consisting of
entropy based time series. We computed kurtosis (using histogram plot) using our dataset
(entropy of incoming traffic per simulation time). From figure 4.2, it is clearly seen that it is
skewed, with kurtosis being 31.28.

To strengthen this approach, below we apply standard tests to check the
hetroskedasticity of our network traffic data. A synthetic data is used for the test and the
abnormal traffic data is generated with different attack rates starting from 10Mbps to
100Mbps. For each time slot, entropy of incoming packets is calculated as explained in
section 4.6.1. Since the data is simulated, it can be labeled, that is the exact time at which
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attack happen is known a priori. Hence the values in the datasets constitute entropy of

incoming traffic over 200ms intervals.

30Q

Figure 4.2. Kurtosis for the sample dataset

4.4 GARCH Model

GARCH is a type of nonlinear time series model which is concerned with the

evolution of the square of conditional variance. It uses an exact function to describe the

manner in which the square of the conditional mean evolves over time [189]. The name

GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity. The term

heteroskedasticity refers to the time-varying variance or volatility of the time series

considered. Conditional implies a dependence on the observations of the immediate past.

Autoregressive describes a feedback mechanism that incorporates past observation into

present. The formal definition of the model is given below.

Definition: A generalized autoregressive conditional hetroskedasticity (GARCH)

model of order (p>0) and (q>0) is defined as [115, 165]
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Xt =otet and of =c0 +2J>ix2t_i +Xaj°H (4.4)

j-i

where c0 > 0, b, > 0, and a, >0 are constants, {et} is independent and identically distributed
with mean 0 and variance 1, and et is independent of {xt-k, k > 1} for all t. A stochastic

process {xt} defined by the equations above is called a GARCH (p, q) process. These
conditions on the coefficients 'a' and 'b' ensure that the conditional variance is always

positive.

Unlike its predecessor, the Autoregressive Conditional Heteroskedasticity (ARCH
process), which takes the weighted average of the square of past observations only as an
estimate ofthe square of the variance, the GARCH model given above takes the average of
not only square of past observations x2 but also square of past conditional variance o2,s. This
explains why simple GARCH models, such as GARCH(1, 1), may provide a cost effective
representation for some complex autodependence structure of {xt2}, that can only be
accommodated by an ARCH(p) model with large p. In fact, the GARCH(1, 1) model has been
tremendously successful in empirical work and is regarded as the benchmark model by many

econometricians.

The necessary and sufficient condition for the above model to define a unique and

stationary process is that

1=1 H

4.5. Test for Hetroskedasticity

Modeling conditional heteroskedasticity amounts to augmenting a dynamic equation,
which governs the time evolution of the conditional variance of a time series data, to atime
series model. The first step in building such a nonlinear time series model is to test for
conditional hetroskedasticity which is also known as ARCH effect. There are various standard
experimental analyses that could be performed to test conditional hetroskedasticity of a
collected data. The most important ones are the Engle's ARCH test and the Ljung-Box-Pierce
Q-test. These two tests show that there is sufficient evidence to confirm that network data is
heteroskedastic in nature. We also perform these tests on our data set and our results show
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that network traffic is heteroskedastic in nature. Because of this, we use GARCH as the model

of choice. Below we will describe these two tests and our test results.

4.5.1 Engle's ARCH Test

We used archtest function in MATLAB for Engle's ARCH test [4] to test the

heteroskedasticity of our data set. Given sample residuals obtained from a curve fit (for

example, a regression model), ARCH-test check for the presence of Mth order ARCH effect.

This is to mean that it tests if the first Mlags ofthe ACF ofxt2 are zero or not. It does so by
regressing the squared residuals on a constant and the lagged values of the previous M

squared residuals. In our experiments, MATLAB commands are used to performing Engle's

ARCH test and result shows significant evidence in support of GARCH effects (i.e

heteroskedasticity). Table 4.1 is a snapshot of the ARCH-test for our data set.

In Table 4.1, H is a boolean decision vector for the hypothesis. In the Engle's test, the

null hypothesis is that the first M lags of the ACF are zero, i.e. the first M a; coefficients of

equation 4.4 are zero. Accordingly in table 4.1, H=0 indicates acceptance of the null

hypothesis that no ARCH effect exist while H=l indicates rejection of the null hypothesis.

The field "pValue" signifies a vector of P-values (significance levels) at which ARCH-test

rejects the null hypothesis of no ARCH effects at each lag. "ARCHstat" denotes a vector of

ARCH test statistics for each input lag. "CriticalValue" signifies a vector of critical values of

the chi-square distribution for comparison with the corresponding element of "ARCHstat".

The values are computed for three different lags of 10, 15 and 20. The value ofH=l clearly
indicates the existence of ARCH effects on thegiven data set.

Table 4.1. Engle ARCH Test

Lags H pValue ARCHstat CriticalValue

10 1 0 283.1350 15.9872

15 1 0 274.4596 22.3071

20 1 0 256.4146 28.4120
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4.5.2 Ljung-Box-Pierce Q-Test

Ljung-Box-Pierce Q-Test [4] is ameasure for the departure from randomness based on
the ACF of the data. Using LBQ-test, we can verify at least approximately, that no significant
correlation is present in the data sets when tested for 10, 15, and 20 lags of the ACF at the
0.05 level of significance. Table 4.2 is a snapshot of what the LBQ-test-test gives the data.
Similar to the ARCH test, His the Boolean decision variable for the hypothesis to be tested,
pValue is avector ofP-values (significance levels). The last two columns of the table 4.2 also
have same meaning to that of the Engle's test.

Table 4.2. Ljung-Box-Pierce Q-Test

Lag H pValue ARCHstat CriticalValue

10 1 0 453.1352 18.3070

15 1 0 457.7174 24.9958

20 1 0 457.8511 31.4104

From the above tests, it can be concluded that network exhibits indeed

heteroskedasticity. Hence it does not fit the normal distribution for the residual while
modeling this data set. Therefore, for such types of time series data, nonlinear models like
ARCH/GARCH model which take into account dependency of second order moments are

effective. This is the underlying fact for our assumption to use GARCH model for DDoS

attack detection.

4.6 GARCH Model based DDoS Attack Detection

4.6.1 Choice of Parameter for Modeling Flooding Attacks

An attacker can generate a flooding attack using many different type of protocols.
Therefore, if our objective is to detect a variety of flooding attacks, the properties of a
particular protocol can not be used for detecting the attack and we have to depend on the
properties of the incoming traffic for detecting the attack. Therefore, in this work, we have
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chosen entropy as a metric to model the flooding attacks. A metric that captures the degree of

dispersal or concentration of a distribution is called sample entropy. Sample entropy H(X)

[118] is calculated using the following formula:

H(X) =-Y,pM2(Pl) (4.6)
;=i

where pi is nt/S. Here nt represent total number of bytes arrivals for a flow /' in duration {t -

A, t} and Nf represents total number of flows. S=]>]«, J =1,2 ,Nf . The value of sample
i

entropy lies in the range 0-log2 Nf.

4.6.1.1 Choice of polling interval

Polling interval of 200ms is used in thiswork as this result in lowest false positive and

highest detection rate. The results of our experiments and detailed discussion for the choice of

this pooling interval are given in chapter 3.

4.6.1.2 Choice of the order of model and size of window

To decide order of model in statistical modeling, many criterions are used. Akaike

Information Criteria (AIC) developed by Hirotsugu Akaike, [1] is most commonly used

information criterion. It was originally proposed for time-series models, but has also been

used in regression. AIC provides a measure of model quality by simulating the situation

where the model is tested on a different data set. After computing several different models,

you can compare them using this criterion. According to Akaike's theory, the most accurate

model has the smallest AIC. Akaike's Information Criterion (AIC) is defined by the following
equation:

AIC =-2logp(L) +2p (4.7)

where L refers to likelihood under fitted model and p is the number of parameters in the

model. In addition to AIC, another important information criterion that is also widely used is

Bayesian Information Criteria (BIC) [2], BIC is developed by Gideon E. Schwarz. BIC is a

criterion for model selection among a class of parametric models with different numbers of

parameters. Bayesian Information Criteria (BIC) is defined by the following equation:

BIC =-2 log p(L) +p log(/i) (4.8)
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where L refers to likelihood under fitted model and p is the number of parameters in the

model. In the equation 4.8, n is used to represents the sample size. In our experiments, we use

both AIC and BIC to decide order of GARCH model. Table 4.3 shows the results of our test.

From the table, we can see that GARCH(1,1) fits better than any other order. In most ofthe

cases GARCH(1,1) performs better than other orders of the model. When the family of
competing models are compared to the GARCH(1,1) model, it can be inferred that none of the
competing models are better than the GARCH(U) [150]. Also, it is believed that according
to the principle of parsimony, "lesser the parameters to estimate, lesser can we go wrong" [5].
Hence GARCH (1,1) is chosen to model the network traffic. Hence, we model the network

traffic data using GARCH(1,1).

Table 4.3. Prediction errors using GARCH(P,Q) for various value ofP and Q

Framesize P=l, Q=l P=2, Q=l P=l, Q=2 P=2, Q=2

10 0.03810 0.0390 0.0387 0.0391

20 0.0203 0.0204 0.0215 0.0200

30 0.0160 0.0185 0.0173 0.0165

40 0.0164 0.0180 0.0163 0.0171

For predicting attacks, in our experiments, we divided the dataset into frames
containing N=40 samples. Adjacent frames are separated by M (in our experiment M=5)
samples so they overlap with each other by N-M. For example, ifthe first frame contains
samples s, to si+40, next frame starts from sample si+5 and contains samples up to si+45. We then
computed GARCH coefficients for each of the overlapping frames in the dataset. After the
coefficients are computed, we can predict the variance of entropy ofthe series [124]. The
error between the actual variance ofentropy (oa) and the predicted variance ofentropy (ot) is

given by:
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et=(°a-°,)/°a (4.9)

where the actual variance of entropy is given by:

aa2=(x,-X)2 (4-10)

where xt is the entropy value at time t and X is the mean value of entropy taken for frame

size.

For the selection of optimal window seize, we performed a comparison of the

prediction error values with frame size starting from 10 to 40. Table 4.3 shows the result of

the comparison and we can see that there is a gradual decrease in the error with increase in

frame size. However as evident from the table 4.3, the decrease in error from frame size 30 to

40 is not much. Beyond this, there is only a slight decrease in error values as we increase the

frame size further. Therefore, we selected a frame size of N=40 to achieve an appreciable

number of frames with the total data set size under consideration. As stated above, we model

the network traffic data using GARCH (1,1) because of its versatility [123].

4.6.2 Detection Algorithm

The detection algorithm performs time series analysis on the input network traffic to

detect any flooding attack. It computes GARCH(1,1) coefficients and predict the variance of

entropy. The data set is divided into overlapping frames of size N.

In this detection algorithm, frames containing N consecutive samples are given as

input, where each sample corresponds to one polling interval. We assume a to be the

threshold value on the error. For detecting flooding DDoS attacks, we have used same steps as

given in [146] with different frame size and frame overlapping on entropy based time series

generated by us. These steps are given below.

• for each polling interval

o Calculate volume in each flow

o Compute the entropy using equation 4.6

• Initialize i=0, M=5, N=40.

• LI: Construct frame for entropy values Xj to xi+N

o Compute GARCH(1,1) coefficients for the frame using equation 4.4
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o Compute next stepactual variance

o Compute next step predicted variance

o Compute the prediction error e, using equation 4.9 &4.10

o Calculate average prediction error s using e,, e,_, and e

o If £ >a Then

• Raise alarm informinga possible attack

• Discard these attack samples

o Else

• i = i + M

o End If

• Go to L1 if not end of data

4.7 Performance Evaluation

4.7.1 Experimental Setup

The topology and simulation parameters discussed in chapter 3 are used again for
these experiments given in this chapter. The simulations are repeated and the results obtained
using GARCH model are compared with linear prediction for different attack scenarios
generated by varying attack strengths at fixed total number of zombie machines.

4.7.2 Performance Metrics

For evaluating the performance of this approach, we used the detection and false
positive rate performance metrics discussed in chapter 3.

4.7.3 Prediction Error

A very important measure in evaluating the performance of GARCH model is
prediction error. In our model, we calculate the prediction error and compare it with LP
model. The error increases from normal to anomalous frames. It settles down to acceptable
values when normal behavior resumes. When we compare the prediction error value of
GARCH(U) with linear prediction of order 4, for the same data sets and frame size, it is
observed that the error values using GARCH(l.l) is lower than that of the LP. Table 4.4

96

t-1



shows the mean prediction error values using GARCH(1,1) and LP models. From the table

4.4, we can clearly conclude that GARCH(1,1) fits the data well and shows lower prediction

error than LP. Figure 4.3 shows a plot comparing GARCH(1,1) and LP. Although both model

shows almost a linear increase, the prediction error for the LP is higher that of GARCH(1,1).
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Figure 4.3 Comparison of prediction error values

4.7.4 Results and Discussion

Using normal frames, we set approximate threshold limit a on error values for

GARCH(1,1). Using this threshold, we detected the attacks using algorithm discussed for

GARCH(1,1) in section 4.6.2.

4.7.4.1. Detection Rate

We collected traces of normal traffic from the simulations in NS-2 network simulator

to evaluate GARCH model based detection scheme. The abnormal traffic is generated with

different attack strengths ranging from 10Mbps to 100Mbps. Detection rate for GARCH(1,1)

and LP for various attack strengths are shown in table 4.5 and table 4.6, respectively. As we

can see from the table 4.5 and table 4.6, detection rate for the GARCH(1,1) model is much

better than LP model for all attack strength values considered.
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Table 4.4. Mean prediction errorfor GARCH (1,1) and LP

Attack Strength

(Mbps)

GARCH(U) LP

10 0.0194 0.0512

20 0.0202 0.0568

30 0.0224 0.0523

40 0.0232 0.0576

50 0.0343 0.0584

60 0.0256 0.0547

70 0.0234 0.0542

80 0.0201 0.0534

90 0.0174 0.0545

100 0.0164 0.0528
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Table 4.5. Detection rate and false positive rate for GARCH (1,1)

Attack Strength

(Mbps)

Detection

rate

False

positive rate

10 92.4 6.0588

20 94.7 7.6471

30 95.3 8.2353

40 96 8.8235

50 98.2 8.2353

60 98.2 8.8235

70 98.8 9.4118

80 99.4 9.2532

90 99.6 11.641

100 99.6 11.695
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Table 4.6. Detection rate and false positive rate for LP

Attack Strength

(Mbps)

Detection

rate

False

positive rate

10 87.6 4.9364

20 89.2 5.6426

30 91.7 5.2329

40 92.5 6.3215

50 92.9 6.8303

60 94.0 7.8235

70 94.3 8.710

80 94.8 9.132

90 94.8 9.132

100 95.4 9.896

4.7.4.2. False positive rate

The analysis for false positive rate is performed similar to the detection rate. We
collected traces ofnormal traffic from the simulations in NS-2 network simulator to evaluate
the detection mechanism. The abnormal traffic is generated with different attack strengths
ranging from 10Mbps to 100Mbps. The false positive rate for GARCH(1,1) and LP models
for various attack strengths are shown in table 4.5 and table 4.6, respectively. The results in
table 4.5 and 4.6 show that the false positive rate ofGARCH(1,1) is slightly greater than LP
model. This can be mentioned as one ofthe drawback of GARCH model. However, false-
positive rate shows the rate at which the model will give alarm while there is no attack. This is
less serious drawback considering its superior performance in detecting real attack.
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4.7.4.3. Detection delay

The detection delay for the GARCH(1,1) model based attack detection and LP are

shown in table 4.7 and table 4.8, respectively. In the table, best, average and worst case

detection delays are given. It can be vividly seen that GARCH(1,1) has lesser detection delay

compared to the LP model for all attack strength values. This is a very important performance

of the model. The same result is displayed in figure 4.4. The figure shows the average

detection delay in case of GARCH(1,1) and LP models and the superior performance of

former is clear.

Table 4.7. Detection Delay in seconds using GARCH (1,1) for flooding attacks

Attack Strength

(Mbps)

Best Avg. Worst

10 0.0930 0.1264 0.2030

20 0.0930 0.1405 3.6560

30 0.0930 0.1263 0.2030

40 0.0930 0.1393 3.8130

50 0.0930 0.1257 0.2190

60 0.0930 0.1230 0.2180

70 0.0930 0.1260 0.2030

80 0.0930 0.1241 0.2030

90 0.1090 0.1250 0.2030

100 0.0940 0.1259 0.2030
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Table 4.8. Detection Delay in seconds using LP for flooding attacks

Attack Strength

(Mbps)

Best Avg. Worst

10 0.0930 0.1528 0.2820

20 0.0930 0.1725 3.2650

30 0.0930 0.1420 0.2480

40 0.0910 0.1420 3.8130

50 0.0910 0.1545 0.2190

60 0.1010 0.1445 0.2480

70 0.1010 0.1510 0.2820

80 0.0930 0.1345 0.2480

90 0.9850 0.1265 0.2820

100 0.1010 0.1297 0.2820
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Rate of flooding attack (Mbps)
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Figure 4.4 Detection delay in both GARCH(1,1) and LP model
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4.8 Comparison between FVBA and GARCH Model based DDoS Attack Detection

Schemes

In this section, detection performance of FVBA scheme proposed in previous chapter

is compared with GARCH model based detection scheme proposed in this chapter.

Table 4.9. Comparison between FVBA and GARCH model based scheme for DDoS attack

detection

Scheme considered Detection rate False positive rate
•

FVBA scheme 98.8% 3%

GARCH model based scheme 99.6% 11.69%

Table 4.9 gives the detection rate and false positive rate for both schemes. It can be

seen that detection performance of GARCH model based detection scheme is marginally

better than FVBA but false positive rate is more in GARCH based scheme. One may consider

the slight increase in false positive rate of GARCH as a drawback but the fact is that false

positive simply means that the system gives an alert for attack while there is none. This is less

serious than having an attack and not detecting it. GARCH model has a better detection

performance and detection of DDoS attacks using non-linear time series may be preferable in

critical applications.

4.9 Chapter Summery

In this chapter, we have shown how nonlinear time series model can be used to detect

flooding DDoS attacks efficiently. Specifically, we used the GARCH model. The model is an

autoregressive one and makes use of the hetroskedastic nature of network traffic data. A

detailed discussion on the selection of order of model has been given based on the AIC and

BIC criteria and it was found that GARCH(1,1) is able to detect flooding DDoS attack with

acceptable error limit. The simulation results show that it is able to capture long range

dependence and hence is more efficient in detecting flooding DDoS attack than other models

like linear prediction. We have also compared performance of the GARCH model with flow-

volume based approach (FVBA) and results show that it marginally outperforms FVBA.

103



CHAPTER 5

PREDICTING NUMBER OF ZOMBIES IN A DDOS

ATTACK USING VARIOUS REGRESSION MODELS

Anomaly based DDoS detection systems construct profile of the traffic normally seen

in the network, and identify anomalies whenever traffic deviate from normal profile beyond a

threshold. This deviation in traffic beyond threshold is used in the past for DDoS detection

but not for finding number of zombies. This chapter presents an approach that utilizes this

deviation in traffic to predict number of zombies using various regression models i.e. linear,

polynomial, exponential, power, logarithmic and multiple. A relationship is established

between number of zombies and observed deviation in sample entropy and between number

of zombies and observed deviation in volume and flow for simple and multiple regression,

respectively. Various statistical performance measures, such as coefficient of determination

(R ), coefficient of correlation (CC), sum of square error (SSE), mean square error (MSE),

normalized mean square error (NMSE) and nash-sutcliffe efficiency index (n) [22, 133] are

used to study the strength of various regression models for predicting number of zombies.

Network topologies similar to Internet are used for simulation and are generated using

Transit-Stub model of GT-ITM topology generator. NS-2 network simulator on Linux

platform is used for launching DDoS attacks with varied number of zombies. A comparative

study of different regression models for predicting number of zombies is performed. The

simulation results are promising as we are able to predict number of zombies efficiently using

various regression models.

5.1 Introduction

In anomaly basedDDoS detection mechanisms, the profile of the traffic normally seen

in the network is constructed and anomalies are identified whenever traffic deviates from

normal profile beyond a threshold. Proposed approach utilizes this deviation in traffic beyond

threshold to predict number of zombies using various regression models. A real time

estimation of the number of zombies in DDoS scenario is helpful to suppress the effect of
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attack by choosing predicted number ofmost suspicious attack sources for either filtering or
rate limiting. Moore et. al [65] have already made a similar kind ofattempt, in which they
have used backscatter analysis to estimate number of spoofed addresses involved in DDoS

attack. This was an offline analysis based on unsolicited responses. In another approach [121],

authors have used linear regression and correlation analysis to predict number ofzombies. But

due to the nonlinear nature ofDDoS attack traffic, this method isunable to predict the number

of zombies accurately.

Our objective is to find the relationship between number of zombies involved in a
flooding DDoS attack and deviation in sample entropy and number of zombies and observed
deviation in volume and flow for simple and multiple regression, respectively. In order to

predict number of zombies, several models are developed using various regression techniques.
Acomparative study is performed between different regression models for predicting number

of zombies.

5.2 Regression Models

Regression analysis [69, 86, 130] is a statistical tool used to investigate relationships
between variables. Usually, the investigator seeks to find out the causal effect ofone variable
upon another. More specifically, regression analysis helps to understand how the typical value
of the dependent variable changes when any one of the independent variables is varied, while
the other independent variables are held constant. Variables which are used to explain other
variables are called explanatory variables. Variables which are explained are called response
variables. Aresponse variable is also called adependent variable and an explanatory variable
is called an independent variable. When there is only one explanatory variable the regression
model is called simple regression, whereas ifthere are more than one explanatory variables,
the regression model is called multiple regression.

5.2.1 Types of Regression Model Used

A. Simple Regression Models

1. Linear regression: Linear regression [71, 184] includes any approach to model the
relationship between a dependent variable Yand an independent variable X, such that the
model depends linearly on the unknown parameter to be estimated from the data. Such a
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model is called a linear model. On the other hand, multiple regression uses two or more

independent variables to predict the outcome. The general form of linear regression is:

Mi:r,=r,+ff, (5.i)

where

- Yt is dependent variable

- X{ is independent variable

- J30 is intercept

- $ is slope

- e is regression residual

2. Polynomial regression: Polynomial regression [179, 194] is a form of regression in which

the relationship between the independent variable X and the dependent variable Y is modeled

as an t order polynomial. The general form of this regression model is as follows:

M2:l=Yt +s, (5.2)

Yi = 30+frX+B2X2 + +8nX"

where, /?, is i'h regression coefficient and Xand Yt are given above.

3. Logarithmic regression: A logarithmic regression [18, 81, 83] is also known as

logarithmic least squares fittings. For the relation between dependent and independent

variables, it finds the logarithmic function that best fits a given set of data points. Logarithmic

data will exhibit a straight-line relationship when graphed with the X values on a log scale

and the Y valueson a linear scale. A logarithmic regression has the following general form:

M3:Y1=Yi+s, (5.3)

Y = R,Ln{X^Rx

where, /?0and Bx are regression coefficients and X. and Yi are givenabove.
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4. Power regression: Power regression [152, 203], also known as log-log regression, takes
the input signal and fits the function to it where X is the variable along the x-axis. The
function is based on the linear regression, with both axes scaled logarithmically. Power

regressions will not allow an independent variable value of zero. Apower regression has the
following general form:

Where, B0, Bx, X,and Yt are given above.

5. Exponential regression: An exponential regression [84, 206] is also known as exponential
least square fitting. For the relation between two variables, it finds the exponential function
that best fits agiven set of data points. Exponential regression takes the input signal and fits
an exponential function to it where X is the variable along the x-axis. An exponential
regression has thefollowing general form:

M5:Y=Y +£I (55>
/ i

Where, B0,p\, Xt and Y, are given above.

B. Multiple Regression Model

The general purpose of multiple regression [61, 86] is to learn more about the
relationship between several independent variables and a dependent variable. In the
multivariate case, when there is more than one independent variable, the regression line can
not be visualized in the two dimensional space, but can be computed just as easily. In general

form of multiple regression given in equation 5.6, there arep independent variables:

Y, =Yt+£, (5'6>

where

-Y is dependent variable

-Xi, X2, , Xp are p independent variables
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- B0 is intercept

-B],B2,....,Bp are the coefficients ofp independent variables

- e is regression residual

5.2.2 Estimating Number of Zombies

A Using Simple Regression

To predict number of zombies, we established relationship between number of

zombies Y (output) and observed deviation in entropy X (input). For different given (known)

zombies, deviation in sample entropy X is calculated as (Hc-Hn), where Hc and Hn are entropy

values at the time of attack detection and for normal profile, respectively. Regression

equations are then determined by the process of curve fitting. These equations are used for

predicting number of zombies.

B Using Multiple Regression

For the case of multiple regression, similar procedure as described above is used. To

predict number of zombies, we established relationship between number of zombies Y

(output) and observed deviation in volume Xi (input) and flow X2 (input). Regression

equation is then determined by the process of curve fitting. This equation is used for

predicting number ofzombies.

5.3 Statistical Performance Measures

Various statistical performance measures, such as coefficient of determination (R2),

coefficient of correlation (CC), sum of square error (SSE), mean square error (MSE),

normalized mean square error (NMSE) and nash-sutcliffe efficiency index (n) [22, 133] are

used to evaluate the performance of various regression models. These measures are defined

below. In the definitions, N represents the number of feature vectors prepared, Y0 and

Yc denote the actual and the predicted values ofdependent variable, respectively, Yo and <rL

are the mean and the standard deviation ofthe actual dependent variable, respectively.
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i). Coefficient of Determination (R2): Coefficient of determination (R2) is a descriptive
measure ofthe strength ofthe regression relationship, a measure how well the regression line

fit to the data [22], R2 is the proportion of variance in dependent variable which can be

predicted from independent variable. The coefficient of determination (R2) can be defined as:

;=1

R*

Zcn-^)a-Zcn-n)a

(5.7)

ii). Coefficient ofCorrelation (CC): The Coefficient ofCorrelation (CC) [22] can be defined

as:

cc =
(5.8)

'ZiY0-70f-^<xc-Ycf

iii). Sum ofSquared Errors (SSE): The Sum of Squared Errors (SSE) [22] can be defined

as:

N

SSE =^(Y0-Yey (5.9)

i 1

iv). Mean Square Error (MSE): The Mean Square Error (MSE) [22] can be defined as:

MSE = i=i

N

(5.10)

v). Normalized Mean Square Error (NMSE): The Normalized Mean Square Error (NMSE)

[219] can be defined as:

NMSE =

1 NJ_y(7 _7 y
Nt! c

a obs

(5.11)
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vi). Nash-Sutcliffe efficiency index (tj): The Nash-Sutcliffe efficiency index (n) [145] can

be defined as:

f,(Yc-Y0f
rj =l-f — (5.12)

TVo-Yof

5.4 Simulation Setup

The topology and simulation parameters as discussed in chapter 3 are used in this

work also. However, the simulation experiments are done in different manner i.e. earlier the

number of zombies were kept constant, but in this case attack strength is kept constant and

number of zombies are varied. In our simulation experiments, attack traffic rate is fixed to

25Mbps in total; and, mean attack rate per zombie varies from 0.25Mbps to 2.5Mbps as total

number of zombie machines range between 10 and 100 to generate attack traffic. The

simulations are repeated and different attack scenarios are generated by varying total number

of zombie machines and at fixed attack strength. Figure 5.1 shows entropy variation with time

for 10-100 numbers of zombies, where H(n) is the entropy value for n zombies. Figure 5.2

and figure 5.3 show flow and volume variation with time for 10 to 100 numbers of zombies,

where F(n) and X(ri) arethe flow and volume values for n zombies, respectively.

5.5 Model Development and Experimental Analysis

In this section, we describe ourexperiments to study the strength of various regression

models for predicting number of zombies involved in a DDoS attack. For simple regression

models, we collected deviation in entropy by varying total number of zombies from 10to 100

and the data is shown in table 5.1. Similarly, for multiple regression model, volume and flow

data is collected by varying number of zombies as shown in table 5.2. The inputs to the

multiple regression model are number ofzombies Y and observed deviation in sample volume

Xi and flow X2. Coefficients of regression equations are determined through a process of

curve fitting. The main objective in the process of the curve fitting is to minimize the error

between the actual number ofzombies and the predicted number of zombies. Figure 5.4 to 5.8

show the regression equation and coefficient of determination for simple regression models
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(Ml to M5) as discussed in section 5.2. Using these equations and deviation in entropy
values, predicted number ofzombies are calculated.
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Figure 5.1. Entropy variation with varied number ofzombies
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Figure 5.3. Volume variation with varied number of zombies

Table 5.1. Deviation in entropy with actual number of zombies

Actual Number of

Zombies (Y)

Deviation in Entropy

(X) (H..HJ

10 0.045

15 0.046

20 0.048

25 0.050

30 0.068

35 0.087

40 0.099

45 0.111

50 0.121

55 0.130

60 0.139

65 0.148

70 0.157

75 0.163

80 0.170

85 0.176

90 0.182

95 0.189

100 0.192
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In a similar fashion, using flow and volume as inputs to the multiple regression
equation, predicted number of zombies are obtained. For the multiple regression, the
regression equation is given in equation 5.13. The coefficient of determination for the
multiple regression model is 0.99.

Y=Xx *(1.389£ -05)+X2*1.984-19.25 (513)
where J^and X2 represent deviation in sample volume and flow, respectively.

Table 5.2. Deviation involume and flow with actual number of zombies

Actual Number

of Zombies (Y)

Deviation in

volume (Xi)

Deviation in Flow

(X2)

10 126288.57 13.69

15 134290.16 16.15

20 140013.65 18.77

25 150433.33 21.14

30 141798.73 24.64

35 144329.52 26.91

40 139543.17 28.90

45 139947.94 31.60

50 144346.03 33.69

55 144883.17 35.86

60 141096.51 38.23

65 142149.84 41.25

70 133992.06 44.18

75 142261.27 46.38

80 132418.73 48.93

85 138190.159 51.85

90 133394.286 54.17

95 140716.825 57.10

100 143495.873 58.81
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From the above figures, it can be inferred that from all basic regression models, the

polynomial regression model M2 has the best curve fitting. However, an exhaustive

comparison of the suitability of both the basic and multiple regression model is discussed in

the following section.

5.6 Results and Discussion

Below we give the results of the comparison of the simple and multiple regression

models. For clarity of the presentation, first simple regression models are separately compared

and then the comparison of best found polynomial regression model with multiple regression
is given.

A. Simple regression models

In this section, simulation results of models Ml to M5 given in section 5.5 are

presented. The comparison between actual number of zombies and predicted number of

zombies using various regression models (Ml to M5) is depicted in figures 5.9 to 5.13.
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Figure 5.10. Comparison between actual number of zombies and predicted number of
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Figure 5.11. Comparison between actual number ofzombies and predicted number of

zombies using logarithmic regression based model M3
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Figure 5.12. Comparison between actual number of zombies and predicted number of

zombies using power regression based model M4
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Figure 5.14 shows comparison between actual number of zombies and predicted
number of zombies using various regression models Ml to M5.
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To represent false positive (falsely predicted normal clients as zombies) and false

negative (zombies are identified as normal client), we plot residual error [121] for various

regression models. Table 5.3 shows residual error for various regression models (Ml to M5).

Figure 5.15 depicts summary of residual error in various regression models. Figures 5.16 to

5.21 show values of R2' CC, SSE, MSE, NMSE and n for various regression models (Ml to

M5).

Table 5.3. Summary of residual error for various regression models

(X)

Entropy

Variation

00

Number

of

Zombies

Residual error

Model

Ml

Model

M2

Model

M3

Model

M4

Model

M5

0.045 10 4.07 7.69 -0.53 5.62 8.27

0.046 15 -0.31 3.06 -4.22 1.12 3.53

0.048 20 -4.46 -1.43 -7.45 -3.19 -1.10

0.050 25 -8.39 -5.78 -10.33 -7.31 -5.64

0.068 30 -3.91 -4.46 0.43 -4.22 -5.97

0.087 35 1.14 -1.68 8.11 -0.08 -4.80

0.099 40 2.53 -1.15 9.81 0.99 -5.06

0.111 45 4.17 0.08 10.96 2.49 -4.36

0.121 50 4.51 0.45 10.42 2.84 -4.10

0.130 55 4.22 0.43 9.05 2.63 -3.91

0.139 60 4.12 0.88 7.58 2.71 -2.88

0.148 65 3.51 1.00 5.55 2.33 -1.87

0.157 70 3.75 2.37 3.88 2.91 1.13

0.163 75 1.94 1.40 0.81 1.35 1.49

0.170 80 0.23 0.67 -2.27 -0.07 2.43

0.176 85 -1.17 0.50 -5.25 -1.11 4.50

0.182 90 -3.40 -0.70 -8.75 -3.05 5.31

0.189 95 -4.75 -0.56 -11.84 -3.98 8.57

0.192 100 -7.80 -2.76 -15.85 -6.79 8.27
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Figure 5.15. Summary ofResidual error in various regression models
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Table 5.4. Summary of various performance measures for simple regression models

Linear Polynomial Logarithmic Power Exponential

R2 0.98 0.99 0.91 0.95 0.92

CC 0.99 0.99 0.95 0.99 0.99

SSE 328.88 146.88 1257.90 231.85 460.81

MSE 17.31 7.73 66.21 12.20 24.25

NMSE 0.62 0.27 2.35 0.43 0.86

Tl 0.98 0.99 0.91 0.98 0.97

Table 5.4 shows summary of various performance measures for simple regression

models. As described in section 5.3, coefficient ofdetermination (R2) isa descriptive measure

of the strength of the regression relationship, a measure how well the regression line fit to the

data. R is the proportion of variance in dependent variable which can be predicted from

independent variable and CC is its square root. The Nash—Sutcliffe efficiency index is a

widely used and potentially reliable statistic for assessing the goodness of fit of models.

Essentially, the closer the model efficiency is to 1, the more accurate the model is. On the

other hand, values of SSE, MSE and NMSE quantify the error in the prediction using various
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regression models. Therefore, when comparing various regression models, model is selected
with highest value of coefficient of determination, coefficient of correlation and Nash-
Sutcliffe efficiency index and lowest values of SSE, MSE and NMSE. Accordingly, it can be
seen from table 5.4 and figures 5.16 to 5.21 that polynomial regression based model M2 has
highest value of coefficient of determination, coefficient of correlation and Nash-Sutcliffe
efficiency index and lowest values of SSE, MSE and NMSE. Thus, it can be concluded that it
performs better than other models.
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Figure 5.22. Comparison between actual number of zombies and predicted number
zombies using multiple regression model

of

To compare the performance of the various regression models (Ml to M5), the actual
and predicted number of zombies are shown in figures 5.9 to 5.13. Observing the difference
between the actual and predicted number of zombies in each figure, it can be verified that the
polynomial regression based model M2 shown in figure 5.10 has the least difference between
the actual and predicted number of zombies compared to other regression based models. The
residual error for various regression model given in table 5.3 also verify the same fact.
Though for some entropy values, residual errors in polynomial regression model are high but
for most entropy values, it is having least residual errors. Hence, we can conclude that,
number of zombies predicted by polynomial regression model is closest to the actual number

of the zombies.
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B. Multiple regression model

In this section, simulation results of the multiple regression model developed in

section 5.5 are presented. The comparison between actual number of zombies and predicted

number of zombies using multiple regression model is depicted in figure 5.22. To represent

false positive and false negative, we plot residual error in figure 5.23 for multiple regression

model. Table 5.5 shows values of various performance measures for multiple regression

model.

Table 5.5. Values of various performance measures for multiple regression model

R2 0.99

CC 0.99

SSE 9.74

MSE 0.51

NMSE 0.018

*1 0.99

Figure 5.23. Residual error in multiple regression model

C. Comparison between Polynomial andmultiple regression

Here performance between polynomial and multiple regression model is compared to

predict number ofzombies involve in a DDoS attack. Polynomial regression is compared with
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multiple regression as it gives best performance among the simple regression models
discussed in section 5.2.

It can be seen from table 5.6 that multiple regression model has higher value of

coefficient of determination, coefficient of correlation and N-S efficiency index and lower
values of SSE, MSE and NMSE. Thus, it can be concluded that it performs better than other
models. It can also be verified from figure 5.24 that the difference between the actual and
predicted number of zombies in multiple regression model is lower compared to that of the
polynomial regression based model. Hence, we can conclude that, number of zombies
predicted by multiple regression model is closest to the actual number of the zombies.

Table 5.6. Summary ofvarious performance measures for polynomial and multiple regression
Model

Polynomial Multiple

R2 0.99 0.99

CC 0.99 0.99

SSE 146.88 9.74

MSE 7.73 0.51

NMSE 0.27 0.018

H 0.99 0.99
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Figure 5.24. Comparison between actual number of zombies and predicted number of
zombies using polynomial and multiple regression model
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5.7 Chapter Summary

This chapter investigated suitability of various regression models to predict number of

zombies involved in a flooding DDoS attack from deviation in sample entropy when simple

regression models are used and from deviation in volume and flow values when multiple

regression model is used, respectively. In order to predict number of zombies, several models

are developed using various regression techniques. For each regression model, we have

calculated various statistical performance measures. Based on the statistical measures, we

found that multiple regression based model performs better than any other model explored in

this study. Therefore, the total number of predicted zombies using multiple regression model

are close to actual number of zombies.
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CHAPTER 6

ANN BASED SCHEME TO PREDICT NUMBER OF ZOMBIES

IN A DDOS ATTACK

Inthe previous chapter, we discussed the importance ofpredicting number ofzombies.

Areal time estimation of the number of zombies in DDoS scenario is helpful to suppress the

effect of attack by choosing predicted number of most suspicious attack sources for either

filtering or rate limiting. Because of this importance, we have taken a step further to the

concept of predicting number of zombies. In this chapter, we discuss how feed forward neural

networks of different sizes (i.e. architectures) are used to estimate number of zombies

involved in a DDoS attack, and compare its performance with the method proposed in

previous chapter. The sample data used to train the feed forward neural networks is generated

using network simulator running on Linux platform. The generated sample data is divided

into training data and test data and mean square error (MSE) is used to compare the

performance of various feed forward neural networks. Various sizes of feed forward networks

are compared for their estimation performance. The generalization capacity of the trained

network is promising and the network is able to predict number of zombies involved in a

DDoS attack more efficiently.

6.1 Introduction

Artificial Neural Network (ANN) is interconnection of massively parallel computing

elements which are effective in nonlinear estimation. Several authors have used ANN in

anomaly based DDOS attack detection. In [185] ANN is used to classify a network while

under attack. In their implementation, data extracted in a network probing phase is fed to a

feed forward neural network and it is trained to output 1 when there is attack and 0 when there

is no attack. In [94], feed forward neural network is used to detect different DoS attacks.

Recently [80] have proposed an approach to enhance the detection capacity ofANN. In all the

above approaches, ANN is trained using normal and attack traffic data and ANN decides the

presence or absence of an attack. In our approach, ANN is used to decide the number of
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zombies used in aDDoS attack. To measure the performance of the proposed approach, we
have calculated mean square error (MSE) and test error. Training and test data are generated
using simulation. DDoS attacks are launched with varied number of zombies and the data
collected through simulation is used to train the neural network. In our simulation
experiments, attack traffic rate is fixed to 25Mbps in total; therefore, mean attack rate per
zombie is varied from 0.25Mbps to 2.5Mbps and total number of zombie machines used to
generate attack traffic range between 10 and 100. Varies sizes of feed forward neural
networks are compared for their estimation performance. The result obtained is very
promising as we are able to predict number of zombies involved in DDoS attack effectively.

6.2 Artificial Neural Network (ANN)

An Artificial Neural Network (ANN) [31, 200] is an information processing paradigm
that is inspired by the way biological nervous systems, such as the brain, process information.
The key element of this paradigm is the novel structure of the information processing system.
It is composed of a large number of highly interconnected processing elements (neurons)
working in unison to solve specific problems. ANNs, like people, learn by example. An ANN
is configured for a specific application, such as pattern recognition or data classification,
through a learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the neurons. This is true for ANNs as well. Neural
networks, with their remarkable ability to derive meaning from complicated or imprecise data,
can be used to extract patterns and detect trends that are too complex to be noticed by either
humans or other computer techniques. Atrained neural network can be thought of as an
"expert" in the category of information it has been given to analyze. This expert can then be
used to provide projections given new situations of interest and answer "what if questions.
Other advantages include:

a) Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

b) Self-Organization: An ANN can create its own organization or representation of the
information it receives during learning time.
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c) Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

d) Fault Tolerance via Redundant Information Coding: Partial destruction of a network

leads to the corresponding degradation of performance. However, some network

capabilities may be retained even with major network damage

A. Operation ofa single artificial neuron

Synaptic
Connections

Weighted
Summer

Figure 6.1. Operation of single neuron

In the single neuron shown above in figure 6.1,

-Xi, X2, X3... X; represent the inputs to the neuron

-bj and wj; represent the connection weights to the individual inputs

-The summation units calculates the weight sum of the inputs

-The activation function f; calculates the output of the neuron
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Mathematically the output is given as:

The activation function determines the type ofneuron and the application where the
neuron is to be used. But the sigmoid activation function as shown in figure 6.2, is famous for

most neural networks and is given by

1 (6.2)
f: S =•

l + e~

f(s)

Figure 6.2. Sigmoid function

(6.1)

B. Network Architecture

Artificial neural networks (ANNs) are interconnections of individual neurons. There
are various network architectures based on the type of connection. Amost important type of
network is the feed forward neural network shown in figure 6.3. It is a three layer neural
network: an input layer with three inputs, ahidden layer with four neurons and an output layer
with two neurons. This three layer network with enough number of hidden layer neurons and
sigmoid activation function has the capacity to learn any nonlinear mapping. The neurons in
the layers are interconnected by strength called weights. The name feed forward is given to
this network because signal flows in forward manner without any feedback.
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C. Learning in neuralnetworks

Learning in the context ofneural networks is the process ofadjusting the connection
weights and biases such that for a given input a desired output is achieved. There are two
basic training modes.

1) Supervised learning - This is a learning paradigm where the neural network is given
samples ofthe input and desired output and the error between the desired output and the
actual output ofthe neural network is used to adjust the connection weights. Afamous
algorithm ofsupervised learning isback propagation.

ii) Unsupervised learning - This does not need any feedback for adjustment of the weights.

Input
layer

Hidden

layer

£>=bias

Output
layer

Figure 6.3. Fully connected, three layers feed forward network

• Xi

+ y2

The output yk of the feed forward neural network is generated as shown in the
following equation:

yk=fk
( N ( p

iPift iPfr+bj
M \ i»l

ko + &. (6.3)
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where

- Wh is connectionweight from hidden layer to output

- W* is connection weight from input to hidden layer

-b0 is bias of output

-bj is bias of hidden layer

-ft is activation function ofhidden layer, and

- f is activation function of output layer
to

D. Backpropagation algorithm

Back propagation is a famous algorithm used to train neural networks. It uses the
gradient decent optimization method to train a network. In most cases the sum of squared
error is used as objective function.

(6.4)i M

where dj and yj are the desired and actual network outputs.

Weight update algorithm is given by:

' new old

dl
where AW = -u,—

aw

(6.5)

E. Input and Output

In feed forward neural network, a relationship is developed between number of

zombies Y(output) and observed deviation in sample entropy Xas input. Here Xis equal to
(Hc-Hn). Our proposed feed forward neural network based approach utilizes this deviation in
sample entropy Xto predict number ofzombies.

6.3 Experimental Setup and Performance Analysis
The topology and simulation parameters discussed in chapter 3are used again in this

work. However, the simulation experiments are done in different manner i.e. earlier the
number ofzombies was kept constant, but in this case attack strength is kept constant and

136



number of zombies is varied. The simulations are repeated and different attack scenarios are

taken by varying total number of zombie machines and at fixed attack strengths.

6.4 Results and Discussion

A. TrainingData generation

Neural network has to be trained by giving sample inputs and corresponding output

values and a training algorithm will adjust the connection weight and bias values until a

minimum error or other stopping criteria is reached. The training data has to be taken

carefully to consider the complete input range. Normalization and other preprocessing of the

data improve the training performance.

In this chapter, in order to predict number of zombies ( Y) from deviation (Hc - Hn) in

entropy value, training and testing data samples are generated using simulation experiments in

NS-2 network simulator. Simulation experiments are done atthe same attack strength 25Mbps

in total and varying number of zombies from 10 to 100. We have performed several

experiments of ANN model development on a number of data sets. The sample datasets for

training and testing out of a whole dataset are shown in Table 6.1 and Table 6.2

respectively.

B. Network Training

For the prediction of the number of zombies in a DDoS attack, three feed forward

neural networks have been tested. The feed forward networks used have different sizes. The

size of a network refers to the number of layers and the number of neurons in each layer.

There is no direct method ofdeciding the size of a network for a given problem and one has to

use experience or trial error method.
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Table 6.1. Training Data-Deviation in entropy with actual number of zombies

Actual Number

ofZombies (Y)

Deviation in

Entropy (X)

10 0.045

15 0.046

25 0.050

30 0.068

35 0.087

40 0.099

45 0.111

55 0.130

60 0.139

65 0.148

75 0.163

80 0.170

85 0.176

90 0.182

100 0.192

Table 6.2. Testing Data-Deviation in entropy with actual number of zombies

Actual Number

ofZombies (Y)

Deviation in

Entropy (X)

20 0.048

50 0.121

70 0.157

95 0.189

In general, when a network is large, the complexity of the function that it can
approximate will also increase. But as the network size increases, both training time and its
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implementation cost increase and hence optimum network size has to be selected for a given

problem. For the current problem, feed forward networks with 5, 10 and 15 hidden layer

neurons are compared. The training algorithm used is the Levenberg-Marquardt back

propagation algorithm of MATLAB's neural network toolbox. The training results are given

in Table 6.3. Figure 6.4 shows the training performance of the feed forward networks used.

Table 6.3. Training results of various feed forward networks

Network

Used

Network

Size

Number of

Epochs

MSE

in training

Feed forward

Network

5-1 400 6.86

10-1 400 0.36

15-1 400 0.0025

SO

Performance is 6.86423, Goal is O

lOO 1 SO 200 250

400 Epochs
300 350

Figure 6.4 Training performance of feed forward network (5-1)
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C. Network Testing

Table 6.4 shows the result ofthe testing ofthe networks using the test data values

given in Table 6.2.

Table 6.4. Test results of various feed forward networks

Network

Used

Network

Size

MSE in

Testing

Feed forward

Network

5-1 2.91

10-1 2.59

15-1 3.14

From the result of table 6.3, we can see that the MSE in training decreases linearly as
the network size increase. This is as expected. But in table 6.4, we can see that in spite of the
smaller MSE in training and the increase in network size, the test result for the feed forward
network having 15 hidden layer neurons is greater than the networks having 5and 10 neurons.
One reason for this is, for a good network performance, the ration of number of tunable
parameters to that of training data size has to be very small. Here network size has increased
but training data size has remained same. For the last network, the number of tunable
parameters are 31 and ration is 1.63. Due to this, over fitting has occurred and the
generalization performance of the last network is poor though it has good training
performance. The training performance is measured using the mean square error (MSE). MSE
is the difference between the actual and the neural network's estimated output. So, the best
MSE is the closest to 0. IfMSE is 0, this indicates neural network's output is equal to the

actual value, which is the best situation.

Numbers of zombies of the individual networks have been compared with actual
number of zombies for each test data values oftable 6.2 and the results are given in figures

6.5, 6.6 and 6.7.
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0.048 0.121 0.157

Deviation in Entropy
0.189

• Observed number ofZombies • Pridicted number ofzombies using Feed Forword neural networkofSize 5-1

Figure 6.5. Comparison between actual number of zombies and predicted number of zombies

using feed forward neural network of size 5-1

120

0.048 0.121 0.157

Deviation in Entropy

0.189

• Observed number ofZombies • Pridicted number ofzombies using Feed Forword neural network ofSize 10-1

Figure 6.6. Comparison between actual number ofzombies and predicted number ofzombies

using Feed forward neural network of size 10-1
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0.048

O Observed number

0.121 0.157

Deviation in Entropy

0.189

of Zombies • Pridicted number of zombies using Feed Forword neural network of Size 15-1

Figure 6.7. Comparison between actual number of zombies and predicted number of zombies
using Feed forward neural network ofsize 15-1

To represent false positive i.e. falsely predicted normal clients as zombies and false
negative i.e. zombies are identified as normal client, we plot test error. Positive cycle of test
error curve represents false positive, while negative cycle represents false negative. The test
error of the individual network is calculated for each test data values of table 6.2 and the
results are given in table 6.5, 6.6 and 6.7. The results show that the prediction capacity of the
neural networks is very close to the actual number of zombies and hence neural networks
have the potential to be used to predict number of zombies in real DDoS attack scenarios.
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Table 6.5. Summary of test error for feed forward neural network for network size 5-1

(X) Entropy

Variation

(Y) Number of

Zombies

test error

0.048 20 -1.79

0.121 50 1.31

0.157 70 2.59

0.189 95 -0.07

Table 6.6. Summary of test error for feed forward neural network for network size 10-1

(X) Entropy

Variation

(Y) Number

ofZombies

test error

0.048 20 1.33

0.121 50 2.88

0.157 70 0.40

0.189 95 0.36

Table 6.7. Summary of test error for feed forward neural network for network size 15-1

(X) Entropy

Variation

(Y) Number

ofZombies

test error

0.048 20 1.88

0.121 50 2.20

0.157 70 0.85

0.189 95 1.86
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6.5 Comparison between Regression and ANN based schemes for Predicting number of
Zombies in a DDoS attack •

In this section, performance of regression based scheme, proposed in the previous
chapter for predicting number of zombies in aDDoS attack, is compared with ANN based
scheme proposed in this chapter. The comparison is done for randomly taken sample data
values shown in table 6.8 below. The criteria used for the comparison is absolute prediction

error.

Table 6.8. Comparison between Regression and ANN based schemes for predicting number
of zombies in a DDoS attack

Scheme used Actual

number of

zombies

Predicted

number of

zombies

Absolute

error

ANN based

scheme

20 21.33 1.33

50 52.88 2.88

70 70.4 0.4

95 95.36 0.36

Regression
based scheme

20 19.95 0.05

50 49.63 0.37

70 70.30 0.3

95 96.04 1.04 |

Table 6.8 shows actual number of zombies, predicted number of zombies and values
of absolute error, when regression and ANN based schemes are used. Figure 6.8 presents the
comparison of absolute error using ANN and regression based scheme. As shown in figure
6.8, in regression based scheme, value of absolute error increases when total number of
zombies increase. But in ANN based scheme, error value decreases when total number of
zombies increase. This shows that when attack is serious i.e. total number of zombies
performing attack is more, prediction performance of ANN based scheme is better than
regression based scheme.
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20 50 70

Number ofZombies

Regression based scheme -ANN based scheme

95

Figure 6.8. Comparison of Absolute error using ANN and Regression based scheme

6.6 Chapter Summary

The potential of feed forward neural network for predicting number of zombies

involved in a flooding DDoS attack is investigated. The deviation in sample entropy is used as

an input and MSE is used as the performance measure. Feed forward networks with hidden

neurons 5, 10 and 15 have shown maximum mean square error (MSE) of 2.91, 2.59 and 3.14

respectively, in predicting the number ofzombies. Various sizes of feed forward networks are

compared for their estimation performance. The simulation results show that feed forward

neural networks with 10 neurons in hidden layer performs best and is able to predict number

of zombies in a DDoS attack efficiently. Prediction performance of ANN based scheme is

compared with regression based scheme. It can be concluded that the selection of ANN and

regression based scheme is based on the severity of attack. When attack is more severe, ANN

based scheme performed better than regression based scheme and if attack is not much severe,

regression based scheme performed better than ANN based scheme. However, simulation

results are promising as we are able to predict number of zombies efficiently, experimental

study using a real time test bed can strongly validate our claim.
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CHAPTER 7

ESTIMATING STRENGTH OF A DDOS ATTACK USING

REGRESSION MODELS

This chapter presents an approach for estimating strength of a DDoS attack using

various regression models. Strength of a DDoS attack is the rate of attack traffic which is

coming to the victim. Estimating strength of attack is helpful to suppress the effect of attack,

as it enables a security administrator to effectively equip his arsenal with proper defense

mechanisms for fighting against DDoS threat according to the strength of attack. If attack

strength is very high, i.e. attack is very serious, best available defense mechanisms can be

used to handle the attack; otherwise other cheaply available defense mechanisms can be used.

Hence, in this chapter, to estimate strength of attack, a relationship is established between

strength of attack and observed deviation in sample entropy and strength of attack and

observed deviation in volume and flow for simple and multiple regression, respectively.

Various statistical performance measures are used to evaluate the performance of several

regression models. Internet type topologies used for simulation are generated using Transit-

Stub model of GT-ITM topology generator. NS-2 network simulator on Linux platform is

used as simulation test bed for launching DDoS attacks with varied attack strength. A

comparative study is performed using different regression models for estimating strength of

DDoS attack. The simulation results are promising as we are able to estimate strength of

DDoS attack efficiently using various regression models. The simulation results show that

multiple regression models are most suitable for estimating strength of DDoS attacks.

7.1 Introduction

Kumar [118] in his research work has discussed the advantage of estimating strength

of DDoS attack. Kumar mentioned that estimating strength of DDoS attack can be helpful to

suppress the effect of attack. Our objective is to find the relationship between strength of

DDoS attack and deviation in sample entropy and strength of DDoS attack and observed

deviation in volume and flow for simple and multiple regression, respectively. In order to

estimate strength of DDoS attack, several models are developed using various regression
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techniques. A comparative study is performed between different regression models for
estimating strength of a DDoS attack.

7.2 Regression Models

In estimating the strength of attack, various regression models have been utilized. As
described in chapter 5, two different types ofregression models are employed. The first one is
simple regression model and the second one is multiple regression model. Simple regression
model establishes a relation between two variables only, one dependent and one independent

variable. In our analysis, we used five types of simple regression models, namely: linear,
polynomial, logarithmic, power and exponential. In the case of multiple regression, there can
be more than one independent variables. In our analysis, we used two independent variables.
In the model development, curve fitting using mean square error minimization is used.

7.3. Statistical Performance Measures

Statistical performance measures are important in analyzing the suitability of a
regression model for agiven problem. Accordingly, various performance measures such as,
coefficient of determination, coefficient of correlation, sum of square error, mean square

error, normalized mean square error and Nash-Sutcliffe efficiency index are used to evaluate
the performance of regression models explored in this study. The detail mathematical
descriptions for these performance measures have been given in chapter 5. As stated there, a
regression model is best suited if it has highest value of coefficient of determination and
coefficient of correlation and Nash-Sutcliffe efficiency index. Moreover, an efficient model
should have lowest value ofsum of square error, mean square error, and normalized mean

square error.

7.4. Simulation Setup

The topology and simulation parameters discussed in chapter 3are used again in this
work. As described in chapter 3, the topology considered is similar to the one used
traditionally in the Internet for simulation and validation purposes. Atotal of 400 legitimate
client machines are used to generate background traffic. One FTP server is used to provide
service to the clients. All FTP requests are originated randomly from different nodes. The
simulation parameters used in this experiment are shown in table 7.1. As we can see from the
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table, simulation runs for 60 seconds and DDoS attacks start at 25th second and end at 50th

second. The simulations are repeated and deviation in entropy and volume/flow for simple

and multiple regression, respectively are calculated for different attack strengths and at fixed

total number of zombie machines, i.e. 100. Figure 7.1 shows entropy variation with time for

attack strength 10Mbps-100Mbps. Figure 7.2 and figure 7.3 show flow and volume variation

with time for attack strength 10Mbps-100Mbps.

Table 7.1. Simulation parameters

S. No. Parameter Value

1. Simulator ns-2

2. Traffic arrival process Poisson

3. Simulation time 60 seconds

4. Attack Duration 25-50 seconds

5. Number of legitimate clients 100-400

6. Number of attackers 100

7. Polling interval 200ms

8. Packet size 1040 bytes

9. Tolerance factor a 1-10

10. Connection startup time 1-8 seconds

11. Access link bandwidth 1 Mbps

12. Backbone link bandwidth 100Mbps

13. Backbone link delay 0 seconds

14. Bottleneck link bandwidth 310 Mbps

15. Mean attack rate per attacker 0.1-lMbps

7.5. Model Development and Experimental Analysis

In this section, we describe our experiments to study the use of various regression

models for estimating strength of a DDoS attack. For simple regression models, we collected

deviation in entropy by varying total strength of DDoS attack from 10Mbps to 100Mbps and

the data is shown in table 7.2. Similarly, for multiple regression model, volume and flow data
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is collected by varying total strength ofDDoS attack as shown in table 7.3. The inputs to the
multiple regression model are strength ofDDoS attack Y and observed deviation in sample
volume Xi and flow X2. In our simulation experiment, number of zombies is fixed to 100.

Regression equations are determined through aprocess ofcurve fitting. The main objective in
the process ofthe curve fitting is to minimize the error between the actual strength ofDDoS
attack and the predicted strength of DDoS attack. Figures 7.4 to 7.8 show the regression

equation and coefficient of determination for simple regression models as discussed in section
7.2. Using these equations and deviation in entropy values, predicted strength ofDDoS attack
is calculated. In a similar fashion, using flow and volume as inputs to the multiple regression

equation, predicted strength of DDoS attack is obtained. For the multiple regression, the
regression equation is given in equation 7.1. The coefficient of determination for the multiple

regression model is 0.97.

Y=Xx *0.000504-X2*(-1.80)+66.76 (71)
where Xxand Jf2 represent deviation in sample volume and flow, respectively.
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Figure 7.1. Entropy variation with varied attack strength
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Table 7.2 Deviation in entropy with actual strength ofDDoS attack

Actual strength of

DDoS attack (Y)

Deviation in

Entropy (X)

10M 0.149

15M 0.169

20M 0.184

25M 0.192

30M 0.199

35M 0.197

40M 0.195

45M 0.195

50M 0.208

55M 0.212

60M 0.233

65M 0.241

70M 0.244

75M 0.253

80M 0.279

85M 0.280

90M 0.299

95M 0.296

100M 0.319
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Table 7.3 Deviation in volume and flow with DDoS attack strength

Attack

Strength (Y)

Deviation in

volume (Xi)

Deviation in Flow

(X2)

10M 90855.56 59.96

15M 109515.24 59.13

20M 133721.59 59.37

25M 143495.87 58.81

30M 146886.67 59.10

35M 144870.16 58.28

40M 156592.38 57.23

45M 160320.63 58.67

50M 213209.52 56.64

55M 178804.44 57.58

60M 181885.71 57.61

65M 187367.94 56.24

70M 199750.48 57.48

75M 209413.33 57.25

80M 219707.62 56.82

85M 227447.30 53.72

90M 227771.75 55.23

95M 249654.60 54.71

100M 269721.59 53.09
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From the above figures, it can be inferred that among all basic regression models, the
polynomial regression model has the best curve fitting. However, an exhaustive comparison
of the suitability of both the basic and multiple regression models is discussed in the
following section.

7.6 Results and Discussion

Here we give the results of the comparison of the simple and multiple regression
models. For clarity of the presentation, first the simple regression models are separately
compared and then the comparison of best found polynomial regression model with multiple
regression is given.

A. Simple regression models
In this section, simulation results of models Ml to M5 given in section 7.5 are

presented. The comparison between actual strength of DDoS attack and predicted strength of
DDoS attack using various regression models is depicted in figures 7.9 to 7.13. Figure 7.14
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shows comparison between actual strength of DDoS attack and predicted strength of DDoS

attack using various regression models Ml to M5.
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Figure 7.9. Comparison between actual Strength ofDDoS attack and predicted Strength of

DDoS attack using linear regression based model Ml
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Figure 7.10. Comparison between actual Strength of DDoS attack and predicted Strength of

DDoS attack using polynomial regression based model M2
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Figure 7.11. Comparison between actual Strength ofDDoS attack and predicted Strength of
DDoS attack using logarithmic regression based model M3
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Figure 7.12. Comparison between actual Strength ofDDoS attack and predicted Strength of
DDoS attack using power regression based model M4
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Figure 7.13. Comparison between actual Strength ofDDoS attack and predicted Strength of

DDoS attack using exponential regression based model M5
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Figure 7.14. Comparison between actual Strength ofDDoS attack and predicted Strength of

DDoS attack using various regression models M1-M5
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Table 7.4 shows residual error [118] for various regression models (Ml to M5). Figure
7.15 depicts summary of residual error in various regression models (Ml to M5).

Table 7.4 Summary of residual error for various regression models

(X)

Entropy

Variation

Actual

strength of

DDoS attack

(Y)

Residual error

Model

Ml

Model

M2

Model

M3

Model

M4

Model

M5

0.149 10M -0.37 -7.37 -8.40 3.99 7.29

0.169 15M 6.10 3.14 3.22 5.32 7.20

0.184 20M 9.77 9.17 9.52 6.20 6.82

0.192 25M 9.28 9.67 10.03 4.65 4.59

0.199 30M 8.30 9.44 9.76 2.98 2.30

0.197 35M 2.20 3.15 3.48 -2.95 -3.47

0.195 40M -4.23 -3.54 -3.19 -9.14 -9.43

0.195 45M -8.90 -8.15 -7.80 -13.87 -14.21

0.208 50M -6.96 -5.11 -4.88 -12.80 -14.19

0.212 55M -9.70 -7.57 -7.41 -15.67 -17.38

0.233 60M -2.69 0.24 0.04 -7.98 -11.13

0.241 65M -2.90 0.03 -0.31 -7.25 -10.75

0.244 70M -6.49 -3.60 -3.97 -10.48 -14.06

0.253 75M -6.02 -3.41 -3.90 -8.30 -11.97

0.279 80M 3.62 4.29 3.76 8.65 6.72

0.280 85M -0.61 -0.09 -0.60 4.93 3.19

0.299 90M 5.04 3.01 2.85 18.74 21.21

0.296 95M -1.73 -3.27 -3.52 10.45 12.00

0.319 100M 6.32 0.61 1.25 31.34 42.21
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• Residual error using model M1
• Residual error using model M5
• Residual error using model M4
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Residual error using model M3

Figure 7.15. Summary of Residual error in various regression models

Table 7.5 shows summary of various performance measures calculated for simple

regression models Ml to M5.

Table 7.5. Summary of various performance measures for simple regression model

Linear Polynomial Logarithmic Power Exponential

R2 0.95 0.96 0.96 0.89 0.84

CC 0.97 0.98 0.98 0.94 0.92

SSE 708.13 566.31 596.96 2643.90 3995.70

MSE 37.27 29.81 31.42 139.15 210.30

NMSE 1.32 1.06 1.12 4.95 7.47

*1 0.95 0.96 0.96 0.81 0.72

As described in chapter 5, coefficient of determination (R2) is the proportion of

variance in dependent variable which can be predicted from independent variable and CC is

its square root. The Nash—Sutcliffe efficiency index (n) is a widely used and potentially
reliable statistic for assessing the goodness offit ofmodels. On the other hand, values ofSSE,

MSE and NMSE quantify the error in the estimation using various regression models.

Therefore, when comparing various regression models, we have to select amodel with highest
value of coefficient of determination, coefficient of correlation and n and lowest values of

SSE, MSE and NMSE. Accordingly, it can be seen from table 7.5 that polynomial regression
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based model M2 has highest value of coefficient of determination, coefficient of correlation
and n and lowest values of SSE, MSE and NMSE. Thus, it can be concluded that it performs

better than other models.

To compare the performance of the various regression models, the actual and
estimated strength of attack are shown in figures 7.9 to 7.13. Observing the difference
between the actual and predicted strength of attack in each figure, it can be verified that the
polynomial regression based model M2 shown in figure 7.10 has the least difference between
the actual and predicted strength of attack compared to other regression based models. The
residual error for various regression models given in table 7.4 also verifies the same fact.
Hence, we can conclude that, estimating strength of attack by polynomial regression model is
closest to the actual strength of attack.

B. Multiple regression model
In this section, simulation results of the multiple regression model developed in

section 7.5 are presented. The comparison between actual strength of DDoS attack and
predicted strength ofDDoS attack using multiple regression model is depicted in figures 7.16.
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• Actual DDoS attack Strength HPredicted DDoS attack strength

Figure 7.16. Comparison between actual DDoS attack strength and predicted DDoS attack
strength using multiple regression model
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Figure 7.17 represents residual error for multiple regression model. Table 7.6 shows

values ofvarious performance measures for multiple regression model.

Figure 7.17. Residual error in multiple regression model

Table 7.6. Values of various performance measures for multiple regression model

R2 0.97

CC 0.98

SSE 341.02

MSE 17.94

NMSE 0.63

n 0.97

C. Comparison between Polynomial andmultiple regression

Here performance between polynomial and multiple regression model is compared to

estimate strength of attack. Polynomial regression is compared with multiple regression as it

gives the best performance among the simple regression models discussed in section 7.2. It

can be seen from table 7.7 that multiple regression model has higher value of coefficient of

determination, coefficient of correlation and n and lower values of SSE, MSE and NMSE.
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Thus, it can be concluded that it performs better than other models. It can also be verified
from figure 7.18 that the difference between the actual strength and predicted strength of
attack in multiple regression model is lower compared to that ofthe polynomial regression
based model. Hence, we can conclude that, strength ofattack estimated by multiple regression

model is closest to the actual strength of attack.

Table 7.7. Summary ofvarious performance measures for polynomial and multiple regression

model

Polynomial Multiple

R2 0.96 0.97

CC 0.98 0.98

SSE 566.31 341.02

MSE 29.81 17.94

NMSE 1.06 0.63

Tl 0.96 0.97

0.15 0.17 0.18 0.19 0.2 0.2 0.19 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.11 0.1 0.09 0.07
Deviation in Entropy (X)

D Actual DDoS attack Strength
• Predicted DDoS attack strength using polynomial regression model
a Predicted DDoS attack strength using multiple regression model

Figure 7.18. Comparison between actual strength ofaDDoS attack and predicted strength of
a DDoS attack using polynomial and multiple regression model
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7.7 Chapter Summary

This chapter investigated suitability of various regression models to estimate strength

of DDoS attack from deviation in sample entropy when simple regression models are used

and deviation in volume and flow when multiple regression model is used, respectively. In

order to estimate strength of DDoS attack, several models are developed using various

regression techniques. For each regression model, we have calculated several statistical

performance measures. Based on the statistical measures, it was found that multiple

regression based model perform better than any other model explored in this study. Predicted

strength of DDoS attack using multiple regression is close to actual strength of DDoS attack.

It has also been observed that there is a relation between number of zombies and strength of

attack. When number of zombie increases, strength of attack also increases.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

DDoS attacks are an impending threat to Internet related applications. This chapter
summarizes the major contributions of the research described in this thesis and discusses

further directions for research. Section 8.1 highlights the key research contributions and
section 8.2 discusses avenues for future research.

8.1 Contributions of the Thesis

As the survey shows, DDoS attacks are currently one ofthe major threats in computer
network security. Even if some tools like IDSs can help to defend systems against some
DDoS attacks, there is no effective solution yet. In this research, we developed the various
efficient approaches to defend against variety ofDDoS attacks. The major contributions of
our work can be summarized as follows:

• We presented a comprehensive study of a wide range of DDoS attacks and defense

methods proposed to combat them and analyzed strengths and weaknesses of existing
defense mechanisms.

• We developed and evaluated a real time defense mechanism for variety of flooding
DDoS attacks i.e. low rate degrading, high rate disruptive, mixed rate, etc, that detects

attacks by the constant monitoring ofabrupt traffic changes inside ISP network. For this,
a newly designed flow-volume based approach (FVBA) is used to construct profile of
the traffic normally seen in the network and identify anomalies whenever traffic goes
out of profile. Consideration of varying tolerance factors make proposed detection
system scalable to the changeable network conditions and attack loads in real time.

Proposed scheme is evaluated through extensive simulations using NS-2 network
simulator on Linux platform. Performance of proposed scheme is compared with
existing volume based approaches. The results show that proposed scheme gives 10-
30% improvement in detection rate over earlier volume based schemes. For validating
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performance of proposed scheme, KDD 99, a publicly available benchmark dataset is

used.

• We analyzed DDoS attack using time series analysis and found important results. In our
analysis, we made use of one of the most popular statistical nonlinear time series
modeling technique, Generalized Autoregressive Conditional Heteroskedastic
(GARCH) model, for detecting flooding DDoS attacks. Simulation data is generated
using NS2 network simulator and MATLAB routines are used for hetroskedasticity tests
and implementation of the GARCH model for detection. Proposed scheme detects
flooding DDoS attacks, even if they exist over a very short time interval. Our studies
show that this non linear volatility model gives 4 to 5.5% improvement in detection
performance from earlier models like linear prediction. Detection performance of
GARCH model based detection scheme is also compared with FVBA scheme. Results

show that GARCH model based detection scheme shows marginal improvement in

detection rate over FVBA.

• We used various regression models i.e. linear, polynomial, exponential, power,

logarithmic, multiple etc to find relationship between number of zombies involved in a
DDoS attack and deviation in traffic from detection threshold. Various statistical

performance measures are used to evaluate the performance of these regression models.
Network topologies similar to Internet are used for simulation and are generated using
Transit-Stub model of GT-ITM topology generator. NS-2 network simulator on Linux

platform is used for launching DDoS attacks with varied number of zombies. A
comparative study of different regression models for predicting number of zombies is
performed. The simulation results show that multiple regression model performs best.

• We employed ANN based scheme to predict number of zombies involved in aDDoS
attack. The sample data used to train the feed forward neural networks is generated
using NS-2 network simulator running on Linux platform. Mean square error (MSE) is
used to compare the performance of various feed forward neural networks. For the
prediction ofthe number of zombies in aDDOS attack, feed forward neural networks of
different sizes have been tested. Various sizes of feed forward networks are compared
for their estimation performance. The simulation results show that feed forward neural
networks with 10 neurons in hidden layer performs best and is able to predict number of
zombies in aDDoS attack efficiently. Prediction performance of ANN based scheme is
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compared with regression based scheme. It can be concluded that the selection of ANN

and regression based scheme is based on the severity of attack. When attack is more

severe, ANN based scheme performed better than regression based scheme and if attack

is not much severe, regression based scheme performed better than ANN based scheme.

• Regression analysis is used to investigate suitability of various regression models i.e.

linear, polynomial, exponential, power, logarithmic and multiple to estimate strength of

a DDoS attack. NS-2 network simulator on Linux platform is used for launching DDoS

attacks with varied strength of attacks. A comparative study is performed using different

regression models for estimating strength of DDoS attack. The simulation results show

that multiple regression model performs best to estimate strength of a DDoS attack.

8.2 Scope for Future Work

Though our research provides efficient solutions for defending against DDoS attacks,

but at the same time there are number of research issues which spring up from our work

which need to be addressed. Some of them are as follows:

• The long-term challenge for defense against DDoS attacks is to find a technical and

economic model to achieve cooperation between ISPs, in order to combat a wide range

ofDDoS attacks collaboratively.

• A large number of simulation based schemes are proposed in the literature but an

effective analytical solution to defend against DDoS attacks is still a pending issue.

• Better hashing and flow classification techniques should be designed to reduce packet

handling overheads, thus enabling DDoS defense to handle higher packet rates in a

better manner.

• The mammoth volume generated by DDoS attacks pose the biggest challenge in terms

of memory and computational overheads as far as monitoring and analysis of traffic at

single point connecting the victim is concerned. To address this problem, an effective

distributed cooperative technique is required to be proposed that distributes memory and

computational overheads to many points e.g. all edge routers for detecting a wide range

ofDDoS attacks at early stage.

• Currently, proposed defense scheme is limited to single ISP domain, but it can be

extended to multiple ISP domains with the help of trusted entities acting as interfaces
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between two ISPs so that two ISPs can share their information and thus more effectively

stop the attack.

Simulation experiments in NS-2 testbed have been used for validation, as a proof of
concept and for evaluation of the proposed schemes, but deployment and investigations
using real time testbeds or real time attack traces will be more useful.
In the present work, KDD 99 attack data has been used. Moreover, more recent attack
data as and when available can be used in future.
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Appendix-A

KDD 99 Dataset Description

MIT Lincoln Lab's DARPA intrusion detection evaluation datasets have been

employed to design and test intrusion detection systems [208]. In 1999, Stofo et. al. [176]

summarized recorded network traffic from the DARPA 98 Lincoln Lab dataset into network

connections with 41-features per connection [142, 176]. This formed the KDD 99 intrusion

detection benchmark dataset that is most popular dataset used to test and evaluate a large

number of IDSs. KDD dataset covers following four major categories of attacks:

• Denial of Service (DoS) attacks (deny legitimate requests to a system), e.g. ping-of-

death, SYN flood

• Probing attacks (information gathering attacks), e.g. Port scanning

• Remote-to-Local (R2L) attacks (unauthorized local access from a remote machine),

e.g. guessing password

• User-to-Root (U2R) attacks (unauthorized access to local super-user or root), e.g.

various buffer overflow attacks

KDD dataset is divided into labeled and unlabeled records. Each labeled record

consisted of 41 features and one target value. KDD dataset contains several data files, from

which two files are chosen: kddcup.data_10_percent.gz and corrected.gz. In

kddcup.data_10_percent.gz, there are around 5 million (494021) records and it was used for

training and validating DDoS detection system. In corrected.gz, there are around 3 million

(311029) records and it was used for testing DDoS detection system.
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Figure A.l Distribution of TCP, UDP and ICMP connections in (a) training dataset, (b)
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Table A.l. Distribution ofTCP, UDP and ICMP connections in normal connections in (a)

training dataset, (b) testing dataset

Connections

Total Normal

Connections

TCP Normal

Connections

UDP Normal

Connections

ICMP Normal

Connections

(a)

Instances

97278

76813

19177

1288

172

Connections

Total Normal

Connections

TCP Normal

Connections

UDP Normal

Connections

ICMP Normal

Connections

(b)

Instances

60593

44118

16097

378
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Table A.2. Distribution of TCP, UDP and ICMP connections in attack connections in (a)

training dataset, (b) testing dataset

(a)

Connections Instances

Total Attack Connections 396743

TCP Attack Connections 113252

UDP Attack Connections 1177

ICMP Attack

Connections

282314

Connections

Total Attack

Connections

TCP Attack

Connections

UDP Attack

Connections

ICMP Attack

Connections

(b)

Instances

250436

75239

10606

164591

Table A.3 Distribution of TCP, UDP and ICMP connections in DoS attack connections in (a)

training dataset, (b) testing dataset

(a)

Connections

Total DoS Attack

Connections

TCP DoS Attack

Connections

UDP DoS Attack

Connections

ICMP DoS Attack

Connections

Instances

391458

109425

979

281054

173

(b)

Connections

Total DoS Attack

Connections

TCP DoS Attack

Connections

UDP DoS Attack

Connections

ICMP DoS Attack

Connections

Instances

229853

65661

14

164178



Three types of connections are there in KDD dataset. TCP connections, UDP
connections and ICMP connections. Distribution of these connections in both training and
testing datasets is shown in figure A.l. Table A.l, table A.2 and table A.3 show distribution
ofnormal, attack and DoS attack connections, respectively, in training and testing datasets.

Distribution of DoS and other types of attack connections are shown in figure A.2.

Total 22 and 37 attack types are there in training and testing datasets respectively. Table A.4
list the DoS attack types, protocol categories and instances in both training and testing

datasets.

DoS Attack

Connections,
391458

(a) (b)

Figure A.2 Distribution of total DoS and other attack connections in (a) training dataset, (b)
testing dataset

We can see that there are 6 and 10 different types of DoS attacks in training and

testing dataset respectively. After analyzing Tables A.l to A.4 and Figures A.l to A.2, we
infer the following results:

• Most of the Internet traffic is based on TCP.

• Among all attack types, DoS attack is most serious one as maximum part of attack
traffic is of DoS type.
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Each record in dataset has 41 extracted features, in which 38 features are continuous

and others are symbolic. There are four categories of derived features, which are 9 intrinsic

features, 13 content features, 9 traffic features and 10 host features.

Table A.4 Attacks Distribution in (a) training dataset, (b) testing dataset

(a) (b)

DDoS Attack Protocol Instances DDoS Attack Protocol Instances

Types Category Types Category

back TCP 2203 apache2 TCP 794

back TCP 1098

land TCP 21
land TCP 9

neptune TCP 107201 mailbomb TCP 5000

neptune TCP 58001

pod ICMP 264 pod ICMP 87

smurf ICMP 280790

processtable

smurf

TCP

ICMP

759

164091

teardrop UDP 979
teardrop UDP 12

udpstorm UDP 2
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