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Abstract

Since the launch of Landsat-1, the first Earthresource satellite in 1972, satellite image

processing has become an increasingly important tool for the inventory, monitoring,

management of earth resources and many other applications (Draeger et al. 1997).

The increasing availability of information products generated from satellite images

has added greatly to our ability to understand the patterns and dynamics of the earth

resource systems at all scales of inquiry (Lambin et al. 2001).

Satellite remote sensors can be divided into two major types of imaging

systems: optical (optical and thermal) and radar imaging systems. Optical imaging

systems operate in the visible and IR (Infra Red) regions of the spectrum. Their

operational use is weather dependent, since clouds are not transparent at visible/IR

wavelengths (0.4-14 urn). Some of the satellite images working on optical and

thermal images can be listed as AVHRR (Advanced Very High Resolution

Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), Landsat

(land Satellite), LISS (Linear Imaging Self Scanner), SPOT (Satellite Pour

L'Observation de la Terra or earth observing satellites) and many others. On the other

hand, radar imaging systems works in microwave region (1 GHz to 30 GHz), and are

very much atmosphere and weather independent. ERS (European remote sensing

satellite), JERS (Japanese earth remote sensing), ENVISAT (Environmental Satellite

Advanced Synthetic Aperture Radar), RADARSAT (Radar Satellite), and PALSAR
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(Phased Array L-band Synthetic Aperture Radar) are some of the radar satellite

sensors available for various applications.

One of the important application of satellite image processing is the generation

of landuse/ land-cover maps (Anderson et al. 1976)'in comparison to more traditional

mapping approaches such as terrestrial survey and basic aerial photo interpretation

which is quite cumbersome. Land-use mapping/ classification using satellite imagery

has the advantages of low cost, large area coverage, repetitively, and computitivity.

Eventually maximum high resolution satellite images is expensive with some extent.

Therefore, it is need of current research to explore some techniques by which

utilization of freely available satellite image may be enhanced. The increasing

availability of satellite imagery with significantly improved spectral and spatial

resolution has offered greater potential for more detailed land cover classification.

The availability of MODIS image with greatly improved spectral, spatial, geometric,

and radiometric attributes provides significant new opportunities and challenges for

remote sensing-based land cover classification (Friedl et al. 2002) as well as other

applications. MODIS has several spectral bands with are useful for various

application in one hand and in other hand its spatial resolution varies from 250 m to

1000 m. This spatial resolution is not so enough to get good classification accuracy on

MODIS images. Therefore, there is a need to explore the possibility of the use of

techniques like fusion that may be helpful to increase the utilization of MODIS image

for land cover classification/ land use maps. Time series analysis is another important

aspect by which changes may be identified in a particular class of the land cover.

Alparone et al. 2004 have demonstrated the benefit of combining optical and

radar image for improved land cover mapping in several studies. With the availability

of multifrequency and high-resolution space borne radar data, such as Advanced Land

Observation Satellite (ALOS) Phase Array L-type Synthetic Aperture Radar

(PALSAR), an increased interest in tools to exploit the full information content of

both image types is arising.

Unsupervised clustering is a fundamental tool in image processing for

geosciences and satellite imaging applications (Stuckens et al. 2000). A well review

of clustering method is reported by Jain et al. in 1999. For example, unsupervised
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clustering is often used to obtain vegetation maps of an area of interest. This approach

is useful when reliable training image are either scarce or expensive, and when

relatively little a priori information about the image is available. Unsupervised

clustering methods play a significant role in the pursuit of unsupervised classification

(Richards and Jia 1999). Eventually this unsupervised clustering can be used for

hotspot and non-hotspot region classification.

Recent advances in satellite image processing have expanded opportunities to

characterize the seasonal and inter-annual dynamics of natural and managed Land

use/ land cover communities. The development of a regional-scale monitoring

procedure is challenging because it requires remotely sensed image that have wide

geographic coverage, high temporal resolution, adequate spatial resolution and

minimal cost. The MODIS offers an opportunity for detailed, large-area Land use/

land cover characterization by providing global coverage of science quality image

with high temporal resolution (1-2 days) and intermediate spatial resolution (Justice

and Townshend 2002). The spatial, spectral, and temporal components of the MODIS

may be appropriate for multitemporal harmonic analysis. Harmonic analysis is useful

for analyzing seasonal and inter-annual variation in land surface condition (Wan et al.

2004). This type of analysis may develop the possibility to quantify and classify some

fundamental characteristics, related to the phenology of vegetation, water and others.

The main aim of this thesis was to study and to maximize the utilization of

low resolution freely available satellite image for various land cover classification.

For this purpose, freely available MODIS image has been used and it is attempted to

develop suitable algorithm for fusion technique for land cover classification and

harmonic analysis.

This thesis is organized in seven chapters. The first chapter presents the

introduction of the thesis which includes motivation, major research gaps, and details

about the study area and satellite image used. Brief review of related work is

presented in chapter II.

We have explored the fusion technique for enhancing the land cover

classification of low resolution satellite image especially freely available satellite

image like MODIS in the chapter III. One of the aim of this chapter is to analyze the
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effect of classification accuracy on major type of land cover types like agriculture,

water and urban bodies with fusion of ASTER image to MODIS image and enhance

the classification accuracy of MODIS image at spatial level. For this purpose, we

have considered to fuse, high resolution i.e., like 15m resolution ASTER image with

moderate resolution i.e., like 250 m MODIS satellite data. MODIS band 1 and band 2

are used as a moderate resolution data, where as ASTER band 2 and band 3 are

considered as high resolution data. Curvelet transformation has been applied for

fusion of these two satellite images and Minimum Distance classification technique

has been applied on the resultant fused image for classifying the fused image in major

land cover classes (i.e., agriculture, urban and water). The fuzzy based fusion is also

applied for fusion of these two satellite images. After the fusion by fuzzy based

approach, the minimum distance classification technique is used to classify the

resultant fused image in major land cover classes (i.e., agriculture, urban and water).

It is quantitatively observed that the overall classification accuracy of MODIS image

after fusion is enhanced at spatial level. The quality of fused image is assessed by

quality indicators. Another important point which one should consider while doing the

time-series analysis, where every MODIS image may require the same number of

high resolution image for fusion in one hand and in another hand every time one has

to carry out the complex computation of fusion. Generally high resolution image i.e.,

ASTER is not freely available. So, it is another point of research to develop such a

methodology or coefficients by which use of high spatial resolution image(i.e.,

ASTER in our case) for fusion for time series analysis may be minimized. Therefore,

in this chapter, we have attempted to explore to find the possible methodology to

search some fusion coefficient by which ASTER image use may be minimized, while

analyzing time series image for observing the land cover classification. For this

purpose, firstly we have carried out fusion of MODIS (band 1 and band 2) image with

ASTER (band 2 and band 3) image using curvelet transform and fuzzy based

technique. After this, we have obtained a fusion coefficient that may be minimizing

the use of ASTER image(i.e., every time of fusion of MODIS image with ASTER

data, we may use this derived coefficient). Another advantage of this fusion

coefficient is that every time we do not have to carry out curvelet transform on

ASTER image by which it reduces the computation complexity up to a certain extent.

We have obtained the fusion coefficient with three MODIS and one ASTER image of
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month March 2001. The obtained coefficient is validated with the MODIS image of

another year and gives the satisfactory result.

In the chapter IV, another important aspect of fusion of different sensors

image like optical and radar images (where both can provide the complimentary

information) is carried out and the quality of fused image is assessed by various

assessment indicators. For this purpose an attempt has been made to fuse the

PALSAR image with MODIS image using curvelet based fusion and quality

assessment of fused image has been done. PALSAR image has a advantage of

availability of image in four different channels. These four channels are HH

(Transmitted horizontal polarization and received also in horizontal polarization),

HV(Transmitted horizontal polarization and received vertical polarization), VH

(Transmitted vertical polarization and received horizontal polarization) and VV

(Transmitted vertical polarization and received vertical polarization)(www2 2009),

which provides various landcover information. We have used the curvelet and fuzzy

based technique for fusing the PALSAR (HH, HV and VV) image to MODIS (band 1

and 2) image in spatial resolution. Each band of PALSAR (i.e., HH, HV and VV) is

individually fused with MODIS band 1 and Band 2 separately in one hand and in

other hand fused image of MODIS band 1 and 2 is individually fused PALSAR (HH,

HV and VV) bands separately. The quality of fused image is assessed by assessment

indicator like Correlation, RMSE (root mean squared error), Relative Mean

Difference, Relative Variation Difference, Deviation Index, PSNR (Peak signal-to-

noise ratio) and Universal Image Quality Index. These indicators are applied to

measure and compare the performance of the fused images. The results are quite

encouraging and we get quite a good overall classification accuracy after fusion.

Thereby in near future it may provide a better platform for the maximize the use of

MODIS images.

Classification of various class is one aspect whereas focus for certain class is

another aspect, therefore in this thesis, we have considered for both type of objective

where in case 1, we have classified image into three major land cover classes

(Agriculture, water and urban) and in second case we have attempted to focus the

subsurface fire (i.e., hotspots) in the image and considered it as one class. We have

considered Jharia, region of India as a test area for this purpose. In the chapter V, we
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have explored the application of MODIS and LISS-III image for hotspot and non-

hotspot regions. Although MODIS provides a special product MOD14A2 for fire

product classification. But this special product is not only sufficient for hotspot and

non-hotspot regions. Therefore objective of this chapter is to use various information

of different corresponding bands to focus the hotspot in the images. For this purpose,

in this chapter, an approach based on Binary Division Algorithm is used for hotspot

and non-hotspot regions using band 1 and band 2 of MODIS and band 2 and band 3 of

LISS - III for the Jharia (India) Region. Results are compared with the MOD14A2,

the exclusive MODIS product for thermal anomalies and fire, and it is found that the

proposed approach gives quite satisfactory results in comparison to MOD14A2

products.

It is important to analyze the changes in the classes from year to year therefore

harmonic analyses is another aspect to see the respective changes in different classes,

hence in the next chapter, i.e., chapter VI, we have tried to characterized the changes

for agricultural and water land use/land cover in Western Utter Pradesh and part of

Uttarakhand of India form the year 2001 to 2008. In this perspective, we have

considered the MODIS NDVI (Normalized difference vegetation index) and NDWI

(Normalized difference water index) images for agricultural and water regions

respectively. Harmonic analysis, also known as Fourier analysis, decomposes a time-

dependent periodic phenomenon into a series of sinusoidal functions in which each

defined by unique additive and amplitude values. In consequence, the additive image

Ao and the amplitude images Ai were produced, respectively. With these images we

have checked the changes in agricultural and water land use/land cover in the test

area, in one hand we have analyzed the changes or variation in agriculture and water

for the whole image, whereas in the other hand, we have analyzed the changes or

variation in agriculture and water for the selected region of interest. Such type of

study is very helpful in near future to optimize the use of MODIS image in one hand

and in another hand to develop monitoring system by which changes during the

particular month may be observed.

Finally in chapter VII, the contributions made in the thesis are summarized

and scope of future work is outlined.
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-r Chapter 1

Introduction

Since, the launch of the first Earth resource satellite, i.e., Landsat-1 in 1972, satellite

image processing has become an increasingly important tool for the inventory,

^ monitoring, management of earth resources and many other applications (Draeger et

al. 1997). The increasing availability of information products generated from satellite

images has added greatly to our ability to understand the patterns and dynamics of the

earth resource systems at all scales of inquiry (Lambin et al. 2001, Goldewijk and

Ramankutty 2004).

The applications of satellite imagery are very diverse and also most of the

image sensors are designed for specific purposes; therefore, for some applications

j^ they are incomplete while for some others are redundant or complementary. For

example the information contained in multispectral datasets provide a valuable basis

for environmental studies while the low spatial resolution characteristics of these

datasets reduce their performances in many applications. Data Fusion (DF) is a formal

framework in which the means and tools for the alliance of data originating from

different sources are summarized. It aims at obtaining information of enhanced

quality where the exact definition of the term "quality" will depend upon the

application of fused datasets (Wald 1999). The satellite instruments provide a huge

number of diverse datasets. Therefore, it is important to use these dataset properly by

which its application avenue can be extended. Nowadays scientist are paying special
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attention for MODIS because its temporal as well as spectral capability. Therefore, in

this thesis, our main concern is concentrated towards enhancing the use of MODIS

image which is moderate or low resolution images. Therefore fusion of high

resolution satellite image may enhance MODIS capability. For this purpose, we have

tested to fuse higher resolution ASTER (Advanced Spaceborne Thermal Emission and

Reflection Radiometer), LISS (Linear Imaging Self-Scanner) and PALSAR (Phased

Array Type L-band SAR) with the MODIS image.The developed methodologies are

multi-sensor frameworks of data fusion using two modalities of datasets:

Multispectral (MS) and Synthetic Aperture Radar (SAR). Due to the nature of satellite

imagery, it could be denoted that diverse physical properties of materials are

measured by different sensors from different points of view. For instance ASTER

images produce data at higher spatial resolution while they suffer from the lack of

high temporal resolution and on the contrary MODIS sensors are providing images

with lower spatial resolution but they have the advantages of higher temporal

resolution. Similarly, the PALSAR provide information that is complementary to that

of MODIS like its penetration capability is more than MODIS. In such circumstances, ^

multi-sensor image fusion to make beneficiary from all available datasets is supposed

to be an effective paradigm for increasing the usability of satellite imagery.

Data fusion is useful for several purposes such as land surface objects and

phenomena detection, recognition, identification, tracking, classification and many

other applications. These objectives maybe encountered in many fields of study like

remote sensing, defense systems, robotics, medicine, space, environmental, urban,

agricultural studies (Pohl and Van Genderen, 1998). Data fusion has been used in 4

many aspects of satellite image analysis: multi sensor fusion (Pohl and Van Genderen,

1998); image processing and analysis (Mascle et al. 1998); classification (Chen et al.

2005a); image sharpen (Chavez et al. 1991); improve geometric corrections (Strobl et

al. 1990); provide stereo-viewing capabilities for stereophotogrammetry (Bloom et al.

1988); land mapping applications (Wald et al. 1997); enhance certain features not

visible in either of the single data alone (Leckie, 1990); complement datasets for

improving classification accuracy (Schistad-Solberg et al. 1994); etc. Single data

sources usually offer limited information due to their limited maneuverabilities in the
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data collection. The ideal of data fusion is getting the highest potential of the fused

images; the highest potential can be defined as any properties of dataset.

The applications of data fusion for civil purposes have a long history as the

availability of the remotely sensed data. The reality of satellite imagery is the

robustness for some applications and shortage in some others. For example

hyperspectral imagers like EO-1/Hyperion have good spectral presentation but

suffering from low spatial resolution and on the contrary the Quickbird /

panchromatic satellite imagery suffering from the lack of high spectral resolution. For

this reason, In any case of application if the different characteristics of images like

high spectral and high spatial resolutions are simultaneously needed, data fusion is an

alternate procedure.

The increasing human-based pressures that are the main causes to the

environmental changes during last two centuries have introduced a couple of new

needs for knowing and understanding of environmental phenomena (Pant et al. 2003).

The principal aspects of environmental investigations like biodiversity loss,

atmospheric pollution, desertification, fire burning, land use changes, sustainable

development, climate changes and many others. Rainfall estimation (Antonio Turiel

et al. 2005, Jacopo et al. 2007 , Varma et al. 2003, Varma and Liu 2004, Varma and

Liu 2006, Varma et al. 2006) is one of the application of environmental phenomena

through satellite images. Thereby, satellite images have also been used extensively by

several researchers for weather analysis (Galletti et al. 2005, Galletti et al. 2007,

Galletti et al. 2008a, Galletti et al. 2008b, Grazzini et al. 2002, Grazzini et al. 2003)

and also the overview of oceans by satellite images was carried by several

researchers (Pandey and Hariharan 1984, Kumar et al. 1999, Lohani et al. 2004, Luis

and Pandey 2005, Pandey et al. 1986, Pandey and Kakar 1982, Lohani and Mason

2005, Gohil et al. 1994). Overview of satellite images with respect to geological

applications are presented in Nagarajan and Venkataraman 1988, Madhavan et al.

1997, Venkataraman et al. 2000. Recent advances in satellite images have expanded

opportunities to characterize the seasonal and interannual dynamics of natural and

managed Land use/ land cover communities. Studies have shown that the temporal

domain of multispectral data frequently provides more information about land cover

and land use than the spatial, spectral, or radiometric domains (Briggs and Nellis
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1991, Kremer and Running 1993, Eastman and Fulk 1993, Samson 1993, Reed et al.

1994). As an important agent of climate change and major disturbance to ecosystems,

sub-surface fire (hotspot) is drawing increased attention from both scientists and the

general public alike. Satellite images plays an important role in obtaining quick and

complete information on the occurrence and development of sub-surface fires (Li et

al. 2001). Huang 2005, states that approximately 320 remotely sensors are available

for studying the Earth including land, ocean, atmosphere, etc. This high numbers of

sensors will provide a tremendous volume of data; the combination of them in a

proper way will cause a lot of advantages. Of course they will include some few >

disadvantages as well. The high dimensionality of multi-sensor datasets will introduce

more complete view of the environmental phenomena. For example Haack and

Bechdol 2000, offered a good insight in the multi-sensor image fusion. Some very

useful recipes in the environmental applications of data fusion is given by Simone et

al. 2002 and Kalluri et al. 2003.

Desertification as the process of land degradation in arid, semi-arid and dry
>

environments could be caused by climatic variations and human activities. With

reference to this fact that desertification is one of the most pressing environmental

issues affecting human life, therefore studying this phenomenon on local, regional and

global scales is one of the most important aspects for environmental studies (Collado

et al. 2002). The fusion of remotely sensed data providing a framework that we can

extend the obtained results of field investigations to higher levels of regional and

probably global scales. The fiised data has enough spatial information needed for

local scale analysis of the relationships between climate change, land degradation and ^

desertification processes. Too many fusion procedures for combining the remotely

sensed and the field collected data have been developed that mostly are in

multitemporal data combination. This multi-temporality characteristic of satellite

image is more useful than other aspects like multi-resolution, multi-frequency, etc for

the monitoring desertification procedures. (Verbyla 1995, Tucker et al. 1994).

Another aspect of data fusion is return to the vegetation monitoring in the dry

environments that is very crucial. Sellers 1989 and Bannari et al. 1995, studied these

phenomena using the combination red and infrared reflectance of vegetation land

covers.
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The application of data fiision in agricultural is a very broad field of study.

Ostermeier et al. 2007, developed a data fusion methodology that high resolution

SPOT (Systeme Pour I'Observation de la Terre)-XS is used to provide spatial

information at the parcels level and very low spatial resolution NOAA-AVHRR

which outputs images of large areas every day. Both datasets were fiised to make the

possibility to daily estimate reflectance of main cultivations at the parcels level.

Due to the high number of sensors most of the natural disastrous phenomena

like flood can be monitored and probably predict. In this outlook, the costal planning

also is considered by the researchers (Lucas et al. 2002, Madhavan et al. 1999 and

Sanjeevi 1996). Singh et al. 2007, introduced a multi sensor remote sensing image

fusion procedure after the Sumatra tsunami and earthquake of 26 December 2004. In

this work multi-sensors datasets were analyzed to study the changes in ocean, land,

meteorological and atmospheric parameters. Based on the prior and after phenomenon

comparison using a data fiision framework it has been cleared that changes in ocean,

atmospheric and meteorological parameters, as useful signs for disaster monitoring,

are detectable. Another example is about the Geometric modeling of buildings in

urban areas, which helps to detecting and interpreting their changes to obtain fast

damage information after earthquakes. This information is valuable inputs for a

disaster management system. For instance in Voegtle and Steinle 2005, airborne laser

scanning data fiision was carried out for earthquake studies. Flood forecasting and

monitoring is of very important in evaluation all aspects of damages from the human

and non-human viewpoints. Almost due to the large size, remoteness and dynamic

^ nature of the flood phenomenon, this procedure can mostly be carried out using

remote sensing. As an example Temimi et al. 2005, introduced an approach that a

combination of microwave data and discharge observations presents a high potential

in flood and discharge prediction. Toyra et al. 2002, evaluated the usefulness of radar

and visible/infrared satellite imagery for mapping the extent of flooded wetland areas.

In their work the extent of standing water in the Peace-Athabasca Delta, Canada,

during May 1996 and May 1998 was mapped using RADARSAT and SPOT imagery.

The RADARSAT scenes and the SPOT scenes separately and in a combination mode

of the two were classified. Using the fiised datasets the results of classification has

increased about 15%. Therefore they showed that the information from radar and
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visible/infrared satellite imagery are complementary and that flood mapping can be

achieved with higher accuracy if the two image types are used in combination.

T

Data fusion application in urban areas is one of the most practical and

common cases. The fusion of spatial and spectral complementary datasets can

facilitate human-based visual and machine-based automatic image interpretation.

Numerous studies have demonstrated the usefulness of fused data for the study of

urban areas (Couloigner et al. 1998). As the urban objects are always heterogeneous

thus the high-quality of the fused spectral content of the MS images, when increasing

the spatial resolution, allows further processing such as classification and image

interpretation.

As the accessibility to military literature was limited, this paragraph is mostly

based on Hall and Llinas 1997. One of the earliest and more common usages of data

fusion is in military and defense operation systems. The main stresses on military

applications, from the imagery viewpoint, are developing the techniques that can give

out some information about the characterization and identification of dynamic entities y

such as emitters, platforms, weapons, high-level inferences for enemy situation and

military units. For the mentioned cases the data fusion has an important role for

combination different sensors like radar, sonar, electronic intelligence, observation of

communications traffic, infrared, passive electronic support measures, infrared

identification friend for sensors, electro-optic image sensors and visual (human)

sightings and Synthetic Aperture Radar (SAR) observations. One of the main

properties for this kind of data fusion is the dynamic nature of targets and fast changes

and also the need for rapid decision making and potentially large combinations of

target sensor pairings.

Battlefield intelligence, surveillance and target acquisition systems attempt to

detect and identify potential ground targets. Examples include the location of land

mines and automatic target recognition. Sensors include airborne surveillance via

SAR, passive electronic support measures, photo reconnaissance, ground-based

acoustic sensors, remotely piloted vehicles, electro-optic sensors and infrared sensors.

The mentioned high numbers of data resources and the complexity of defense systems

make high needs for using very sophisticated data fusion techniques. Multi-sensor

A
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measurement which independently senses the physical properties of an object can be

fused in a data fusion framework. In such circumstances the weaknesses of one sensor

are alleviated by strengths of others. Consequently, a good performance of the

complementary sensors is available for a wide variety of landmine detections. Sanjeev

et al. 1999, introduced a framework for multi-sensor data fusion for the detection and

identification of antipersonnel mines. They have developed hybrid architecture in

order to integrate nonhomogeneous and dissimilar datasets from various sensors.

The goal of image fusion techniques is to combine and preserve all of the

important visual information present in multiple input images in a single output

image. In many applications, the quality of the fiised images is of fundamental

importance and is usually assessed by visual analysis subjective to the interpreter. In

research publications, the widely used image fusion quality evaluation approaches can

be included into two main categories:

• Qualitative approaches, which involve visual comparison of the colour

between original MS and fused images, and the spatial detail between original

high resolution and fused images.

• Quantitative approaches, which involve a set of pre-defined quality

indicators for measuring the spectral and spatial similarities between the fused

image and the original MS and/or high resolution images.

Because qualitative approaches—visual evaluations—may contain subjective factor

and may be influenced by personal preference, quantitative approaches are often

required to prove the correctness of the visual evaluation.

For quantitative evaluation, a variety of fusion quality assessment methods

have been introduced by different authors. The quality indexes/indicators introduced

include, for example, Standard Deviation (SD), Mean Absolute Error (MAE), Root

Mean Square Error (RMSE), Sum Squared Error (SSE) based Index, Agreement

Coefficient based on Sum Squared Error (SSE), Mean Square Error (MSE) and Root

Mean Square Error, Information Entropy, Spatial Distortion Index, Mean Bias Error

(MBE), Bias Index, Correlation Coefficient (CORR), Warping Degree (WD), Spectral

Distortion Index (SDI), Image Fusion Quality Index (IFQI), Spectral Angle Mapper
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(SAM), Relative Dimensionless Global Error (ERGAS), Q Quality Index and Q4

Quality Index (Wald et al. 1997, Buntilov and Bretschneider 2000, Li 2000, Wang

and Bovik 2002, Piella and Heijmans 2003, Wang et al. 2004, Alparone et al. 2004,

Willmott and Matsuura 2005, Wang et al. 2005 and Ji and Gallo 2006).

1.1. Motivation

Earth observation is currently developing more rapidly than ever before. During the

last decade the number of satellites has been growing steadily, and the coverageof the

Earth in space, time, and the electromagnetic spectrum is increasing correspondingly

fast and these earth observation satellites provide data at different spatial and spectral

resolutions also. The increasing availability of information products generated from

satellite images are extending the ability to understand the patterns and dynamics of

the earth resource systems at all scales of inquiry. In which one of the most important

application is the generation of land cover classification from satellite images for

understanding the actual status of various land cover classes. The accuracy in

classifying a scene can be increased by using images from several sensors operating at

different wavelengths of the electromagnetic spectrum. The interaction between the

electromagnetic radiation and the earth's surface is characterized by certain properties

at different frequencies of electromagnetic energy. Sensors with different wavelengths

provide complementary information about the surface. The merging of multi-source

data can create a more consistent interpretation of the scene compared to an

interpretation based on data from a single sensor. This development opens up for a

potential significant change in the approach of analysis of earth observation data.

Traditionally, analysis of such data has been by means of analysis of a single satellite

image. The emerging exceptionally good coverage in space, time, and the spectrum

opens for analysis of time series of data, combining different sensor types, combining

imagery of different scales, and better integration with ancillary data and models.

Thus, data fusion to combine data from several sources is becoming increasingly

more important in many remote-sensing applications (Simone et al., 2002).

Satellite remote sensors can be divided into two major types of imaging

systems: optical(optical and thermal) and radar imaging systems. Optical imaging
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systems operate in the visible and IR (Infra Red) regions of the spectrum. Their

operational use is weather dependent, since clouds are not transparent at visible/IR

wavelengths (0.4-14 urn). Some of the satellite images working on optical and

thermal images can be listed as AVHRR (Advanced Very High Resolution

Radiometer), MODIS(Moderate Resolution Imaging Spectroradiometer), Landsat

(land Satellite), LISS (Linear Imaging Self Scanner) and SPOT (Satellite Pour

L'Observation de la Terra or earth observing satellites). On the other hand, radar

imaging systems works in microwave region (1 GHz to 30 GHz), and are very much

atmosphere and weather independent. ERS (European remote sensing satellite), JERS

(Japanese earth remote sensing), ENVISAT (Environmental Satellite Advanced

Synthetic Aperture Radar), RADARSAT (Radar Satellite), and PALSAR (Phased

Array L-band Synthetic Aperture Radar) are some of the radar satellite sensors

available for various applications.

These two sensor types are very different in terms of the wavelength of their

electromagnetic energy, sensor structure, and image product (Brisco and Brown,

1995, Harris et al., 1990, Raghavawamy et al., 1996, Welch and Ehlers, 1988). In

regions with frequent cloud cover the number of suitable optical image is often

limited. The all weather capability is one major advantage of radar systems with

respect to optical systems. Furthermore, radar sensors provide information that is

complementary to that of visible to infrared imagery. In the optical range of the

electromagnetic spectrum the information depends on reflective and emissive

characteristics of the Earth's surface, whereas the radar system generates image data

by recording microwave signals that are backscattered towards the receiver. Because

of the differences in their data acquisition processes, image data obtained using two

sensor systems often provide dissimilar and unique information over the same surface

target (John and Xiuping, 2005).

A particularly important application of satellite image processing is the

generation of landuse/ land-cover maps from satellite imagery (Anderson et al. 1976)

Compared to more traditional mapping approaches such as terrestrial survey andbasic

aerial photo interpretation, land-use mapping using satellite imagery has the

advantages of low cost, large area coverage, repetitivity, and computitivity.

Consequently, land-use information products obtained from satellite imagery such as
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land-use maps, data and GIS layers have become an essential tool in many operational

programs involving land resource management. Eventually maximum high

resolution satellite image is expensive with some extent. Therefore, it is need of 7

current research to explore some techniques by which utilization of freely available

satellite image may be enhanced. The increasing availability of satellite imagery with

significantly improved spectral and spatial resolution has offered greater potential for

more detailed land cover classification. The availability of moderate resolution

imaging Spectroradiometer (MODIS) image with greatly improved spectral, spatial,

geometric, and radiometric attributes provides significant new opportunities and f*

challenges for remote sensing-based land cover classification (Friedl et al. 2002). But,

only the MODIS image has limited capability for classification of land cover. One of

the main reasons for this is its spatial resolution. To increase the utilization of MODIS

image for land cover classification, there is a need to explore the possibility to use of

some other techniques like a fusion. Spectral and spatial resolutions of images are

very important parameters for fusion. Spatial resolution is also important as spectral

resolution because classification accuracy quite dependent upon it. Therefore, there is >

a need to fuse a high resolution image with low or moderate resolution image to

increase the classification accuracy. Another important aspect is for development of a

land cover monitoring system, where every time one needs a time series image of

both sensor (i.e., low resolution and high resolution images). The high resolution

image is not freely and easily available. Therefore, there is a need to develop such a

methodology where high resolution image uses in fusion can be minimized for time

series analysis.
4,

Subsurface coal fires are a serious and widespread problem in coal producing

countries such as India, China, Indonesia and other developing countries. India

accounts for the world's greatest concentration of coal fires which cause several

devastating environmental effects. Jharia Coal Field (JCF) in Jharkhand (India) alone

contains nearly half of subsurface mine fires (hotspots) in Indian coalfields. Most of

the fires take place due to spontaneous heating of coal and cause a local rise in the

surface temperature, which depends on various mining, geological and coal factors.

Mine fires apart from economic aspects give rise to devastating environmental effects.

Therefore attention is required in this direction for mapping, monitoring and detecting
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these hotspots with less cumbersome and more economic way. Satellite images can be

one of the best solutions for these kinds of problems which offer a cost effective and

time saving technology for mapping various geo-environmental features.

The MODIS instrument has beendesigned to provide improved monitoring for

land, ocean, and atmosphere research. The design of the land imaging component

combines characteristics of the Advanced Very High Resolution Radiometer

(AVHRR) and the Landsat Thematic Mapper, adding spectral bands in the middle and

long-wave infrared (IR) and providing a spatial resolution of 250 m, 500 m, and 1 km.

Spectral channels for improved atmospheric and cloud characterization have been

included to permit both the removal of atmospheric effects on surface observations

and the provision of atmospheric measurements (Barnes et al. 1998). The MODIS

instruments, which began collecting image in February 2000 (Terra) and June 2002

(Aqua), are being used to generate oceanic, atmospheric, and terrestrial data products

(Kaufman et al. 1998, Masuokaetal. 1998).

Hence the aforementioned paragraphs initiated us for the critical analysis to be

performed for following tasks:

• To maximize the use of low resolution i.e., Moderate Resolution Imaging

Spectroradiometer (MODIS) image, which are freely available for various

application like land cover classification, harmonic analysis and hotspot and

non-hotspot classification.

• There is a lack of fusion coefficients by which each time of fusion

computational, complexity should be minimized

• Less attention has been given to fuse the MODIS with fully polarimetricdata

• MODIS has veryhigh temporal resolution which maybe useful for developing

monitoring system using different indexes.

• Minimum application of soft-classification tools like fuzzy based approach for

fusion
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1.2. Problem Statement

The present dissertation work is an effort to maximize the use of MODIS images for

the land cover classification, an attempt has been carried out to enhance the

classification accuracy of MODIS image by fusion technique. For this purpose

MODIS image is fused with high resolution optical image like ASTER as well as full

polarimetric RADAR image like PALSAR. It is also attempted to use the MODIS

image for classifying the hotspot and non-hotspot region, where MODIS image is

fused with LISS image. Another landcover application to develop monitoring system

for various land cover, vegetation and water, and to quantify the changes in different

years. Therefore it is concluded and the following major goals have been defined for

the present research work:

• Analysis of Fusion of Optical (MODIS and ASTER) images for land cover

classification

• Study of Fusion of Optical (MODIS) and Radar (PALSAR) images for land

cover classification

• Application of MODIS and LISS-III images for hotspot and non-hotspot

regions classification.

• Multitemporal Harmonic Analysis of MODIS indexes

1.3. Study Area

In this thesis, three study areas have been selected for the application of various tasks

undertaken. Roorkee region of India is chosen for landcover classification and Jharia

region of India is chosen for the single class classification i.e., hotspot and non-

hotspot regions clasification and for the multitemporal harmonic analysis, western

Utter Pradesh and part of Uttarakhand, India is considered.
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1.3.1. Study area for fusion techniques

Solani river catchment around Roorkee town in the state of Uttarakhand, India has

been selected as the test site for landcover classification (fig. 1.1). The area is

relatively flat with a maximum slope of 4° (elevations ranging from 245.5 m to 289.9

m above the sea level). The region extends from 29°77' N and 30° N, and its longitude

ranges from 77°83'E and 78°01' E. The study area basically consists of agricultural,

water and urban classes. The central region of the test site is covered by Upper Ganga

canal which is the main source of water in the area. Urban class is mostly comprised

of residential areas.

1.3.2. Study area for hotspot and non-hotspot classification

The study was carried out in the Jharia Coal field in Jharkhand, state of India,

bounded by latitudes 23° 22' 22" N and 23° 51' 18"N and longitudes 86° 5' 57"E and

86° 45' 50" E. Jharia Coalfield is located about 250 km NW of Kolkata and about

1150 km SE of Delhi (fig. 1.2). The Jharia coal field is sickle shaped in plane. The

maximum length is about 38 km from E to W and 19 km from N to S. The area

covered bythe coal belt is approximately 450 km2.

1.3.3. Study area for multitemporal harmonic analysis

The study for the multitemporal harmonic analysis was carried at western Utter

Pradesh and part of Uttarakhand, India as the study area that lies between latitudes

29° 8' 15" N and 29° 45' 30" N and longitudes 77°29' 3" E and 77° 58' 48" E and is

depicted in fig. 1.3. Western Utter Pradesh and part of Uttaranchal has a blend of

urban, water and agriculture bodies.
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Fig. 1.1. Location of the study area (Roorkee region) for fusion techniques, in the

Haridwar district, India.

AVW msk*7^
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Fig. 1.2. Location of the study area (Jharia region) for hotspot and non-hotspot

regions classification, in the Dhanbad district, Jharkhand state, India.
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Fig. 1.3. Location of the studyarea for multitemporal harmonic analysis is indicated

by the box in the top of the map

1.4. Satellite Data

1.4.1. Satellite data used for land cover classification

Three Satellite images are used for land cover classification purpose, and are listed as

following

• MODIS

• ASTER

• PALSAR
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1.4.1a. MODIS

Identical MODIS instruments are mounted on the Terra (formerly known as EOS

AM-1) and Aqua (EOS PM-1) platforms, launched on December 18th, 1999 and on

May 4th, 2002, respectively (Barnes et al. 1998, Barnes et al. 2003). While Terra

operates on a descending orbit with a mean equatorial crossing time at 10:30 am

(Justice et al. 2002), Aqua runs in an ascending mode and crosses the equator at 1:30

pm (Parkinson 2003). Although the orbit characteristics of both platforms are rather

similar this study will focus on Terra, because of a longer availability of the data.

Terra operates at an altitude of 705 km in a circular, sun-synchronous, near-polar orbit

with 98.1° inclination (Justice et al. 2002, King et al. 2004). The repeat cycle at the

same ground track is 16 days, with an orbit period of 98.9 minutes. Besides MODIS,

four other instruments are onboard Terra including ASTER, CERES, MISR, and

MOPITT. The scan angle of 55° yields a swath width of 2,340 km. Due to its wide

swath the instrument provides daily global coverage above 30° latitude and two day

coverage in the tropics.

MODIS has 36 bands and whose details have been listed in the table 1.1. The

radiometric resolution of all bands is 12 bit. In this thesis, we have used MODIS band

1 and MODIS band 2 for the fusion techniques. The MODIS Band 1 is of spatial

resolution 250m and bandwidth 620 - 670 nm, and Band 2, of spatial resolution of

250m and bandwidth 842 - 876nm. These bands are considered, as these bands have

special features to identifythe agriculture and other land covers.

The MODIS product considered for the fusion techniques is MODIS/Terra

Surface Reflectance 8-Day L3 Global 250m SIN Grid (MOD09Q1). The MODIS

Surface Reflectance products provide an estimate of the surface spectral reflectance as

it would be measured at ground level in the absence of atmospheric scattering or

absorption. MOD09Q1 provides Bands 1 and Band 2 in an 8-day gridded level-3

product in the Sinusoidal projection. Each MOD09Q1 pixel contains the best possible

L2G (local to Global) observation during an 8-day period as selected on the basis of

high observation coverage, low view angle, the absence of clouds or cloud shadow,

and aerosol loading. Version-5 MODIS/Terra Surface Reflectance products are

Validated Stage 2, meaning that accuracy has been assessed over a widely distributed
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set of locations and time periods via several ground-truth and validation efforts.

Therefore it is assumed that the product is geometrically and atmospheric corrected

(wwwl 2008).

Table 1.1. MODIS Band Details

Band
Wavelength

(urn)

Resolution

(m)

1 620 - 670 250

2 841-876 250

3 459 -479 500

4 545 - 565 500

5 1230- 1250 500

6 1628- 1652 500

7 2105-2155 500

8 405 - 420 1000

9 438 -448 1000

10 483 - 493 1000

11 526 - 536 1000

12 546 - 556 1000

13 662 - 672 1000

14 673 - 683 1000

15 743 - 753 1000

16 862 - 877 1000

17 890 - 920 1000

18 931 -941 1000

Band

Wavelength

(urn)

Resolution

(m)

19 915-965 1000

20 3.660-3.840 1000

21 3.929 - 3.989 1000

22 3.929 - 3.989 1000

23 4.020 - 4.080 1000

24 4.433 -4.498 1000

25 4.482 - 4.549 1000

26 1.360- 1.390 1000

27 6.535 - 6.895 1000

28 7.175-7.475 1000

29 8.400 - 8.700 1000

30 9.580-9.880 1000

31 10.780- 11.280 1000

32 11.770- 12.270 1000

33 13.185- 13.485 1000

34 13.485- 13.785 1000

35 13.785- 14.085 1000

36 14.085 - 14.385 1000
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1.4.1b. ASTER

The TERRA platform was launched in December 1999 with a total of five sensors as

part of NASA's Earth Science Enterprise, USA. A key element of the Earth

Observation System (EOS) mission is to develop synergy between the multiple

sensors to improve understanding of land, ocean, and atmospheric processes. One of

the Terra sensors, the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER), colloquially referred to as the zoom lens of the Terra platform

since it has the highest spatial resolution of any sensor on the platform. ASTER has a

60-km swath width with 14 total bands in the visible and near infrared (VNIR),

shortwave infrared (SWIR), and thermal infrared (TIR) (Yamaguchi et al. 1999) and

the details of the bands have been listed in the table 1.2. The sensor also includes a

backward pointing (3B) VNIR band that is used for stereo imaging to produce digital

elevation models. The VNIR and SWIR sensors are pushbroom systems, whereas the

TIR uses a spinning scan mirror for crosstrack coverage.

The Level IB of ASTER image is considered and georeferenced. ASTER

band 2 and ASTER band 3 are used for the fusion techniques. ASTER Band 2 is

having a resolution of 15m and with bandwidth 630 to 690 nm and ASTER Band 3 is

of resolution of 15m and bandwidth 760 - 860 nm. These bands are considered, as

these bands have special features to identify the agriculture and other land covers.

Table 1.2. ASTER Band Details

Band Label
Wavelength

(fim)

Resolut

ion(m)

1 VNIR 0.52 - 0.60 15

2 VNIR 0.63 - 0.69 15

3 VNIR 0.76 - 0.86 15

3B VNIR 0.76 - 0.86 15

4 SWIR 1.60- 1.70 30

5 SWIR 2.145-2.185 30

6 SWIR 2.185-2.225 30

7 SWIR 2.235-2.285 30

Band Label
Wavelength

(urn)

Resolut

ion(m)

8 SWIR 2.295 - 2.365 30

9 SWIR 2.36 - 2.43 30

10 TIR 8.125-8.475 90

11 TIR 8.475 - 8.825 90

12 TIR 8.925 - 9.275 90

13 TIR 10.25 - 10.95 90

14 TIR 10.95- 11.65 90
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1.4.1c. PALSAR

For the landcover classification, PALSAR product L1.0 CEOS which is acquired on

6th April 2009 is used. The PALSAR image has the incidence angle of 21.50 and

approximately 30m resolution in full polarimetric mode has been used. PALSAR

ground data system has been established in ERSDAC (Earth remote sensing data

analysis center) since 1999 and was compiled at JAXA (Japan Aerospace Exploration

agency). The development of PALSAR was a joint project between JAXA and the

JAROS (Japan resources observation system organization). It was launched on 24th

January 2006 as the first fully polarimetric SAR on the platform of ALOS (Advanced

land observing satellite), a Japanese Earth Observation satellite, developed by JAXA.

ALOS follows the Japanese Earth observing satellite-l(JERS-l) and the Advanced

Earth observing satellite (ADEOS) and utilizes advanced land-observing technology.

PALSAR is an active microwave sensor using L-band with a centre frequency of 1.27

GHz (wavelength ?i=23.6 cm) to achieve cloud free and all time land observation. In

its experimental mode, it images a swath 20-65 km wide in full (quad) polarizations,

with a resolution of 24-89 m. PALSAR image are provided by both JAXA and

ERSDAC.

PALSAR can operate in several modes: the fine-beam single (FBS)

polarization mode (HH (Transmitted horizontal polarization and received also in

horizontal polarization)), fine-beam dual (FBD) polarization mode (HH / HV

(Transmitted horizontal polarization and received vertical polarization) or VV

(Transmitted vertical polarization and received vertical polarization)/VH (Transmitted

vertical polarization and received horizontal polarization)), polarimetric (PLR) mode

(HH/HV/VH/VV), and ScanSAR (WB) mode (HH/VV) (Rosenqvist et al., 2007).

Depending on the different modes, PALSAR acquires image at spatial resolutions

ranging from 6.25 to 50 m, with swath widths from 70 to 360 km, and off-nadir

looking angles from 9.70 to 50.80 ((Rosenqvist et al., 2007). In overlapping areas,

PALSAR could reach a temporal resolution higher than the satellite orbit repeat cycle

of 46 days. These features, coupled with the regional observation strategy, make

PALSAR imagery very attractive for spatially and temporally consistent monitoring

system. The PALSAR, which is side-looking Radar will have distortion depends on
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terrain. As the Roorkee region is coming under the flat region so the distortion due to

terrain will not affect the PALSAR image.

1.4.2. Satellite data for hotspot and non-hotspot region classification

MODIS and LISS-III Satellite image of the year 2004 are used for single class

classification. In 1.4.1a the MODIS satellite image is discussed. The MODIS product

considered is MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid

(MOD09Q1), and MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1km SIN

Grid product (MOD14A2). The MOD14A2, is a gridded 1km composite of the most

confident fire pixel detected in each grid cell over an eight-day interval, and which is

used for comparison purpose. MODIS Band 1 and Band 2 are considered form the

MOD09Q1 product and MOD14A2 product is used for most confident fire.

The Linear Imaging Self-Scanner (LISS) -III is a multispectral sensor in the

Indian Remote Sensing Satellite (IRS) - P6. IRS - P6 is also called ResourceSat-1.

The IRS-P6 is a three axis body-stabilized satellite. Launched on October 17, 2003, it

has an operational life of five years, with a near-polar sunsynchronous orbit at a mean

altitude of 817 km. The IRS-P6 payload consists of three sensors: LISS-III, AWiFS,

and a highresolution multispectral sensor (LISS-IV). All three sensors work on the

"pushbroom scanning" concept, using linear arrays of detectors. In this mode of

operation, each line of image data is electronically scanned, and contiguous lines are

imaged by the forward motion of the satellite (Gyanesh et al. 2008).

The LISS-III is operating in four spectral bands, three in the visible and near-

infrared (VNIR) bands and one in the short-wavelength infrared (SWIR) region with

23.5-m spatial resolution and a ground swath of 141 km, and the details of the bands

have been listed in the table 1.3. The P6 LISS-III sensor is a nadir-looking sensor with

a 24-day revisit cycle. LISS Band 2 and LISS Band 3 are considered. The band 2 has

the spectral bandwidth of 620 - 680 nm, and band 3 has the spectral bandwidth of 770

- 860 nm.
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Table 1.3. LISS-III Band Details

Band Label Wavelength (um) Resolution (m)

1 VNIR 0.52 - 0.59 23.5

2 VNIR 0.62 - 0.68 23.5

3 VNIR 0.76-0.86 23.5

4 SWIR 1.55-1.70 23.5

It is supposed that there may be less or no vegetation near by the hotspots. So

characterizing the vegetation in hotspots and non-hotspots region may be able to

classify hotspot and non-hotspot region in satellite image.

1.4.3. Satellite data for multitemporal harmonic analysis

Only MODIS Satellite image is used for multitemporal harmonic analysis. In 1.4.1a

the MODIS satellite image is discussed. The MODIS product considered is

MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid (MOD09A1).

MOD09A1 provides Bands 1-7 at 500-meter resolution in an 8-day gridded level-3

product in the sinusoidal projection. Each MOD09A1 pixel contains the best possible

L2G observation during an 8-day period as selected on the basis of high observation

coverage, low view angle, the absence of clouds or cloud shadow, and aerosol

loading. Science Data Sets provided for this product include reflectance values for

Bands 1-7, quality assessment, and the day of the year for the pixel along with solar,

view, and zenith angles. MODIS band 1, band 2 and band 7 is considered. The band 7

is having spectral resolution of 2105-2155 nm and the spectral resolution of the band

1 and band 2 is indicated in the section 1.4.1.

1.5. Framework of the Research

The emphasis of this thesis is to enhance the use of low resolution satellite images.

The tasks as mentioned in the subsection 1.1 are framed as following.
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Framework of the research is shown in the form of a flow chart (fig. 1.4) which

specifies the essential steps followed in the assessment of the aforementioned tasks of

t the subsection 1.1. The satellite images, whose details are previouslydiscussed in the

section 1.3 are considered. The flowchart clearly points the three main application of

this thesis, which are land cover classification, hotspot and non-hotspot regions

classification and multitemporal harmonic analysis. Different study area are selected

for different task, for eq. Roorkee region is considered for major land cover

classification using fusion techniques. The fusion of low and high resolution optical

^ images such as MODIS and ASTER is carried out. Whereas it is also attempted to

fuse optical image (MODIS) with radar image (PALSAR). MODIS image has a

moderate resolution whereas ASTER (15m - 90m) and PALSAR (30m) have quite

good resolution. The classification accuracy for fused images are computed as well as

Quality index of fused images are checked. Jharia region is selected for classifying

hotspot and non-hotspot region for which fusion of MODIS and LISS-III image is

carried out. The temporal change analysis of NDVI and NDWI is carried out of the

± area of Uttarakhand and western Utter Pradesh region of India and different bands of

MODIS images are used. The land cover classification is accomplished by the fiision

techniques, and thereby the approach of curvelet transform in one hand and in another

hand the fuzzy based approach is considered and thereby land cover classes are

obtained. Binary Division Algorithm is considered for the achievement of the hotspot

and non-hotspot regions classification task. And Fourier Series is applied on NDVI

and NDWI for the attainment of the Multitemporal harmonic analysis task, and

thereby the changes of agricultural and water landuse are analyzed.

i

1.6. Organization of the Thesis

The layout of the structure of the thesis is as follows: Chapter 2 gives a brief review

of literature of the commonly used fusion techniques, followed by a brief review of

literature of the fiision of optical images in one hand and in another hand the fusion of

optical and radar images. This chapter also assembles the pertinent literature on the

hotspot and non-hotspot classification and multitemporal harmonic analysis.
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In Chapter 3, a methodology for the enhancement of overall classification

accuracy of major landcover for the MODIS image is presented. It is extended to

obtain fusion coefficient which reduces the computation complexity of fusion of

images. The high resolution image (i.e., ASTER) is fused with moderate resolution

image (i.e., MODIS) and the resultant fused image is analyzed in the viewpoint of

land cover classification. The curvelet and fuzzy based fiision are used and compared.

The new fusion coefficient is validated with respect to classification accuracy and

quality assessment indicators (Correlation Coefficient, Root Mean squared error,

Relative Mean Difference, Relative Variation Difference, Deviation Index, Peak

signal-to-noise ratio (PSNR), Universal Image Quality Index). Chapter 4 is concerned

with the curvelet transform and fuzzy based fusion is applied for various combination

of PALSAR with MODIS image to assess the quality of fused image. The fused

images are quantitatively analyzed by quality assessment indicators (Correlation

Coefficient, Root Mean squared error, Relative Mean Difference, Relative Variation

Difference, Deviation Index, Peak signal-to-noise ratio (PSNR), Universal Image

Quality Index) in one hand and in another hand land cover classification accuracy is

also compared with fused and without fused image. Chapter 5 is the occupied with the

single class classification of hotspot and non-hotspot regions through binary division

algorithm applied on LISS-III and MODIS image for the Jharia coalfield in

Jharkhand, India. Chapter 6 is dealt with the study of multitemporal changes in the

agriculture and water land use/land cover in western Utter Pradesh and part of

Uttarakhand of India form the year 2001 to 2008 through the use of NDVI and NDWI

of MODIS images by the harmonic analysis. Such type of study is very helpful in near

future to optimize the use of MODIS image in one hand and in another hand to

observe the changes of vegetation and water during the particular month of every year

for the selected area of interest.

Chapter 7 summarizes the obtained results and draws conclusion from a

concise and comparative analysis. Thereupon, utilizing the findings it provides

perspectives for future investigations.
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Chapter 2

Brief Literature Survey

2.1. Introduction

Earth observation satellites provide data at different spatial, temporal and spectral

resolutions. For the full exploitation of increasingly sophisticated multisource data

advanced analytical or numerical data fusion techniques are being developed (Pohl

and van Genderen 1998, Shen 1990). For many applications the information provided

by individual sensors is incomplete, inconsistent, or imprecise (Varshney 1997, hall

and Llinas 1997, Pohl and van Genderen 1998). Additional sources may provide

complementary data, and fusion of different information can produce a better

understanding of the observed site, by decreasing the uncertainty related to the single

sources (Farina et al. 1996, Clement et al. 1993). Fused images may enhance the

interpretation capabilities. The images used for fusion have different temporal and

spatial resolution. Therefore, the fused image provides a more complete view of the

observed objects. It is one of the main aims of image fusion to integrate different data

in order to obtain more information that can be derived from each of the single sensor

data alone. Various application of fusion in which classification accuracy is also one

of the application. In this viewpoint, for classification task, the goal of fused data

from different sensors is to reduce the classification error rate or increase the overall

classification accuracy obtained by single source classification (Anne et al. 1994).
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The fusion of these disparate data contributes to the increasing classification accuracy

(Pohl and Van Genderen, 1998).

Wald (1999) proposed a general definition for data fusion in the context of

earth data and is defined in the chapter 1. This definition equally emphasizes the tools

for combining the data and the quality of the result. Merging, combination, data

assimilation, and integration are other terms that are used to refer to data fusion.

Image fusion is a sub domain of data fusion referring to the fusion of two or more

images. Pohl and Van Genderen (1998) defined image fusion as: "the combination of

two or more different images to form a new image by using a certain algorithm"'

It can refer to any fusion process involving images from sensors of same

satellites or different satellites having different spatial, spectral and temporal

characteristics (e.g. SPOT (Systeme Pour I'Observation de la Terre (French remote

sensing satellite)) PAN (Panchromatic) with Landsat (Land Satellite) TM (Thematic

mapper), SPOT PAN and SPOT XS, ENVISAT (Environmental Satellite) ASAR

(Advanced Synthetic Aperture Radar) with SPOT Vegetation).

2.2. Fusion Processing Levels

Image fusion is generally performed at three different processing levels according to

the stage at which the fusion takes place. Fusion can be either at the pixel, feature or

decision level. The following description and illustrations of fusion levels (Shen

1990) are shown in the fig. 2.1 and in the following paragraph, is briefly explained. +

Image fusion at pixel level means fusion at the lowest processing level

referring to the merging of measured physical parameters. It uses the DN or radiance

values of each pixel from different sources in order to derive the useful information.

An illustration of the concept of pixel based fusion is visualized in fig. 2.1. It uses

raster data that is at least co-registered but most commonly geocoded.
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Fusion at feature level requires the extraction of objects recognized in the

various data sources. Features correspond to characteristics extracted from the initial

images which are depending on their environment such as extent, shape and

neighbourhood. These similar objects from multiple sources are assigned to each

other and then fused for further assessment using statistical approaches.

Decision- or interpretation level fusion represents a method that uses value-

added data where the input images are processed individually for information

extraction. The obtained information is then combined applying decision rules to

reinforce common interpretation and resolve differences and furnishes a better

understanding of the observed objects (Shen 1990).

Compared to feature or decision-level fusion, pixel level fusion can preserve

more original information (Mitianoudis and Stathaki 2007). Feature-level algorithms

typically fuse the source images using their various feature properties, such as regions
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or boundaries (Piella, 2003). Thus, this kind of methods is usually robust to noise and

misregistration. Decision level fusion algorithms combine image descriptions directly,

for example, in the form of relational graphs (Williams et al. 1999). But the decision-

level fusion methods are very much application dependent (Goshtasby and Nikolov

2007). Hence in this thesis, we only focus on the pixel-level image fusion technique.

2.3. Commonly used Fusion Techniques

In this thesis, the referred word 'fusion' implies the pixel based fusion. Many image

fusion methods have been proposed and developed, a detailed review on this issue

was given by Pohl and Van Genderen, 1998. In which some methods, like intensity-

hue-saturation (IHS), Brovey transform and principal component analysis, are

elucidated in the following paragraphs.

2.3.1. Intensity Hue Saturation (IHS)

IHS is a color space, hue is defined as the predominant wavelength of a color,

saturation is defined as the purity or total amount of white light of a color and

intensity relates to the total amount of light that reaches the eye (Harris et al., 1990).

IHS largely explains the popularity of perceptual color space and overcomes the

commonly used RGB color space drawbacks, which does not relate intuitively to the

attribute of human color perception (Schetselaar, 2001).

Because of its simplicity and high sharpening ability, many applications using

IHS transform in image fusion have been reported. Harris et al. 1990, described how

to use IHS in integrating Radar with diverse types of image such as Landsat TM,

airborne geophysical and thematic data. The use of IHS transform was also

demonstrated for displaying the results of quantitative analyses such as change

detection studies and comparison between images characterized by different sensing

parameters. Chavez et al. 1991, compared IHS with PCA and other fusion methodsby

merging the information contents of the Landsat TM and SPOT panchromatic image.

It was claimed that IHS method distorts the spectral characteristics of the data the
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most. Grasso 1993, used the IHS transform for geologic mapping because the IHS

transform could allow diverse forms of spectral and spatial landscape information to

^ be combined into a single data set for analysis. Schetselarr 2001, modified the IHS

transform and presented a new method, that preserves the spectral balance of the

multispectral image data and modulates the IHS coordinate uniformly. The method

takes the limits in the representation of color of the display device into account, which

aids in compromising the amount and spatial distribution of the over-range pixels

against contrast in intensity and saturation. There are other improvements about IHS

M" such as using wavelet (Nunez et al., 1999; King and Wang, 2001; Chibani and

Houacine 2003, Bin et al. 2010). The main advantage of the IHS method is that it

separates the spatial information as an intensity (I) component from the spectral

information represented by the hue (H) and saturation (S) components. The spatial

information can be manipulated independently to enhance the image while

maintaining the overall colour balance of the original images (Carper et al. 1990).

However, there exists color distortion in the fused image because IHS assumes that

X the intensity is formed by even contribution from the RGB bands; thus, all the details

contained in the high resolution image are directly integrated into the intensity

component. The color distortion will become worse when the panchromatic/ higher

resolution image has a low correlation with the multispectral image. Another

limitation of IHS is that it only processes three multispectral bands.

2.3.2. Brovey Transform

The Brovey Transform is based on multiplying ratio images with the panchromatic/

higher resolution image. It was developed to visually increase contrast in the low and

high ends of an image's histogram. The Brovey Transform is good for producing

RGB images with a higher degree of contrast in the low and high ends of the image

histogram and for producing visually appealing images. However, it should not be

used if it is important to preserve the original scene radiometry (Erdas, 2002), because

the Brovey Transform may cause color distortion if the spectral range of the intensity

replacement image is different from the spectral range covered by the three bands

used in the multispectral image. This limitation cannot be avoided in color composites
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that do not use consecutive spectral bands. The spectral distortion incurred by this

fusion technique is difficult to control and quantify, because the high resolution

panchromatic image and the multispectral image are from different sensors or

different dates (Alparone et al.,2004b).

2.3.3. Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a statistical technique that transforms a

multivariate dataset of correlated variables into a dataset of new uncorrelated linear

combinations of the original variables (Pohl and Van Genderen, 1998). PCA is widely

used in signal processing, statistics, and many other applications.

Chavez et al. 1991, used principal component analysis to merge six Landsat

TM bands and SPOT data and concluded that the color distortion in the fusion result

of PCA method is less than the result acquired by IHS fusion method. Teggi et al.

2003, presented a fusion method which combines the principal component analysis \

and "a trous" wavelet and applied it to a pair of images acquired by Thematic Mapper

(TM) and IRS-1C-PAN sensors. Gonzalez-Audicana et al. 2004, presented a new

fusion alternative, which uses the multiresolution wavelet decomposition to extract

the details and principal component analysis to inject the spatial detail of the high

resolution image into the low resolution multispectral image.

The main advantage of PCA method lies in the unlimited multispectral bands

in the fusion process, unlike the IHS method, which uses only three multispectral

bands. The PCA also distorts the spectral characteristics of the multispectral image,

but distortions were less severe than those in the IHS results because the first

component image is more similar to the high resolution than is the intensity image

(Chavez et al., 1991). However, the PCA approach is sensitive to the choice of area to

be analyzed. The correlation coefficient reflects the tightness of a relation for a

homogeneous sample, while shifts in the band values due to markedly different cover

types will influence the correlations and particularly the variances (Pohl and Van

Genderen, 1998). There are other improvements about PCA such as integrating PCA

with high pass filtering (Metwalli et al. 2010)
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The above mentioned methods, intensity-hue-saturation (IHS), Brovey

transform and principal component analysis provide superior visual high-resolution

multispectral fused images, but have a limitation of the need of high-quality spectral

information as input, while these methods are useful for visual interpretation. High-

quality spectral information is very important for most satellite image applications

especially in land cover classification (Liu, 2000). The importance of high-quality

synthesis of spectral information is well suited and implemented for land cover

classification (Garguet-Duport et al. 1996). More recently, an underlying

^f multiresolution analysis employing the discrete wavelet transform has been used in

image fusion. It was found that multisensor image fusion is a tradeoff between the

spectral information from a low resolution multi-spectral images and the spatial

information from a high resolution multi-spectral images. With the wavelet transform

based fusion method, it is easy to control this tradeoff (Gonzalo Pajares and Jesus

Manuel de la Cruz, 2004).

^

2.3.4. Wavelet based fusion techniques

The wavelet transform is an advanced mathematical tool developed in the field of

signal processing. It can decompose a digital image into a set of multi-resolution

images accompanied with wavelet coefficients for each resolution level. The wavelet

coefficients for each level contain the spatial (detail) differences between two

successive resolution levels.

Because the performance of the wavelet based image fusion technique

outperforms the traditional image fusion method, it has caught a lot researchers'

interest; thus, there are so many publications about this technique which cannot be

listed at one time. Some typical waveletbased literature listed as following

Yocky 1995, proposed the two-dimensional discrete wavelet transform to

image merging. The wavelet technique was compared with IHS transform by using

multispectral and panchromatic/ higher resolution images. The comparison showed

that the wavelet technique performs better in combining and preserving spectral-

spatial information. Yocky 1996, proposed a new fusion method based on wavelet
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transform technique, which is a kind of improvement of the method proposed by him

in 1995. The method has been tested by SPOT and Landsat TM. Garguet-Duport et al.

1996, proposed a new method based on wavelet technique to merge a SPOT

panchromatic image and its XS multispectral image. The method was compared with

IHS and other methods; it has the least spectral characteristic distortion. The

distortions are minimal and difficult to detect.

Zhou et al. 1998, presented a multiresolution orthogonal wavelet transform

method to merge the SPOT PAN and TM reflective images. Two destination

resolution levels, one quarter and one eighth of the original image resolution, were

used for decomposition in evaluating the method. Nunez et al. 1999, developed a

multiresolution wavelet decomposition image fusion method, which combines a

higher resolution panchromatic image and a low-resolution multispectral image by the

addition of some wavelet planes of the panchromatic/ higher resolution image to the

intensity component of the low-resolution image. The discrete wavelet transform

known as "a trous" algorithm, which provides a shift-invariant property that is not

available with the orthonormal wavelet system, was used in the wavelet

decomposition process. Ranchin and Wald 2000, designed the ARSIS concept based

on a multiresolution modeling of the information, to improve the spatial resolution

together with a high quality in the spectral content of the synthesized images.

King and Wang 2001, presented a wavelet based fusion method that combines

IHS transformation and biorthogonal wavelet decomposition. The Landsat 7 image

were used to evaluate the proposed fusion method. Chibani and Houacine 2003,

investigated the use of the nonorthogonal (or redundant) wavelet decomposition in

image fusion and concluded that this method is better for image fusion than the

standard orthogonal wavelet decomposition. Zhu 2010, have presented image fusion

based on wavelet and rough set.

2.3.5. Fuzzy based fusion techniques

It's extremely important to explore new techniques for image fusion so as to meet the

needs of industry. Fuzzy Logic is one of the approaches, which are finding
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applications in object recognition, image analysis, automatic control, intelligent

information processing and computer science, etc. Fuzzy approaches are used where

there is uncertainty and no mathematical relations are easily available.

In 1965 Lotfi A. Zadeh published the first paper "Fuzzy Sets" as a novel way

of characterizing non-probabilistic uncertainties by formally defining multi-valued or

fuzzy, set theory. He extended traditional set theory by changing the two-valued

indicator function to a multi-valued membership function. Fuzzy set theory (or Fuzy

logic) starts with and builds on a set of user-supplied human language rules. The

fuzzy systems convert these rules to mathematical equivalents. This simplifies the job

of the system designer and the computer, and results in much more accurate

representations of the way systems behave in the real world. The consequences of the

theory, however, have not been limited to set theory only. Almost immediately, the

connection between fuzzy set theory and a form of logic was recognized, leading to

the introduction of fiizzy logic: a logic based on fuzzy set theory. This relation is

similar to the relation between the conventional set theory and binary logic.

The Fuzzy Logic approach is being utilized in different disciplines (Meitzler et

al. 1996, Labib Arafeh et al. 1999) whereas, presently this approach is used for pixel

level image fiision. This approach forms an alternative to a large number of

conventional approaches, which are based on a host of empirical relations. Empirical

approaches are time consuming and result in a low correlation. Fuzzy logic approach

is based on simple rules, which are easy to apply and take less time. This approach is

becoming more and more popular as is evidenced by a number of recent papers in this

area.

Based on the fiizzy logic of Mamdani model, the medical image fusion

algorithm for Infrared and CCD has been discussed (Singh et al. 2004) and CCD/SAR

image fusion for navigation/guidance application through the fuzzy logic of Mamdani

model was later on discussed (Long Zhao et al. 2005).
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2.4. Fusion of Optical Images

In optical satellite images, with physical and technological constraints, some satellite

sensors supply the spectral bands needed to distinguish features spectrally but not

spatially, while other satellite sensors supply the spatial resolution for distinguishing

features spatially but not spectrally. For many applications, the combination of image

from multiple sensors provides more comprehensive information. Many image fusion

methods have been proposed for combining high resolution images with low

resolution multispectral images. A detailed review on this issue was given by Pohl

and Van Genderen, 1998. The Researchers (Chavez and Bowell 1988, Carper et

al.1990, Edwards and Davis 1994, Schetselaar 1998, Liu 2000, Tu et al. 2001) have

used the intensity-hue-saturation (IHS) methods and Brovey transform (BT) has been

used by researchers (Gillespie et al. 1987, Zhou et al. 1998), and principal component

analysis (PCA) (Zhou et al. 1998, Chavez and Kwarteng 1989). Currently used

wavelet-based image fusion methods are mostly based on two computation

algorithms: the Mallat algorithm (Zhou et al. 1998, Aiazzi et al. 2002, Mallat 1989,

Yocky 1995, Yocky 1996, Ranchin and Wald 2000) and the a trous algorithm (Aiazzi

et al. 2002, Shensa 1992, Nunez et al. 1999, Murtagh and Starck 2000, Ranchin et al.

2003). Shi et al. 2003, used the Mallat algorithm and the M - band WT for the fusion

of SPOT panchromatic and Landsat Thematic Mapper multispectral bands. Hong and

Zhang 2003, integrated IHS and wavelet to fuse Quickbird images and IKONOS

images, and obtained promising results. Jia and Xiao 2010, have used Contourlet

transform for fusing IKONOS PAN image with IKONOS multispectral images.

The results of each implementation of image fusion algorithms are evaluated

through a variety of quality indicators, both physical (statistical and similarity) based,

which are explained in the chapter 1.Indicators that have previously been used to

evaluate fusion results are the mean value and standard deviation (Choi et al. 2003,

Shamshad et al. 2004), the mean gradient (Choi et al. 2003), the spectral and simple

two-dimensional correlation (Bretschneider and Kao 2000, Sanjeevi et al. 2001,

Dehghani 2003, Gungor and Shan 2004, Hong and Zang 2004), the root mean square

error (RMSE) (Bretschneider and Kao 2000, Beaulieu et al. 2003), the universal

quality index (Aiazzi et al. 2004), the peak signal-to-noise ratio (PSNR) (Li et al.

2004).
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2.5. Fusion of Optical and Radar Images

> Multisource data fusion is probably the most difficult aspect in the integration of

remote sensing image data products. In fact, while fusion is relatively straightforward

when using data from the same satellite, the integration of imagery originating from

different satellites carrying different sensors, is quite complicated. Various

Researchers (Alparone et al. 2004b, Amarsaikhan and Douglas 2004, Hegarat-Mascle

et al. 2000, Pal 2007, Yifang et al. 2010, Harish and Singh 2010) have demonstrated

^" the benefit of combining optical and radar image for improved land cover mapping in

several studies. With the availability of multifrequency and high-resolution

spaceborne radar image, such as provided by the Advanced Land Observation

Satellite (ALOS) Phase Array L-type Synthetic Aperture Radar (PALSAR) missions,

an increased interest in tools to exploit the full information content of both image

types is arising. Some of the researchers have used Polarimetric SAR image for

various application like (Danklmayer et al. 2005, Gu et al. 2004, Kamran and Yang

2007, Yang et al. 2006, Yang et al. 2007)

2.6. Hotspot and non-Hotspot Classification

Clustering is the unsupervised classification of patterns (observations, data items, or

feature vectors) into groups (clusters). The clustering problem has been addressed in

many contexts and by researchers in many disciplines; this reflects its broad appeal

and usefulness as one of the steps in exploratory data analysis (Jain et al. 1999).

However, clustering is a difficult problem combinatorially, and differences in

assumptions and contexts in different communities have made the transfer of useful

generic concepts and methodologies slow to occur (Jain et al. 1999). Eventually in

this thesis, the clustering is used for one-class clustering or one class classification.

This one single class classification, is to classify the hotspot (sub surface fires) and

non-hotspot regions.

Several researchers have proposed methods for surface and subsurface fire

monitoring based on satellite data acquired by different optical sensors, such as Along
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Track Scanning Radiometer (ATSR) (Arino and Rosaz, 1999), LANDSAT (Brustet

et al., 1991, Prakash et al., 1997, Prakash and Gupta, 1999, Sarafet al., 1995, Gupta

and Prakash, 1998), Geostationary Operational Environmental Satellite (GOES) *

(Prins and Menzel, 1994), Advanced Very High Resolution Radiometer (AVHRR)

aboard the National Oceanic and Atmospheric Administration's (NOAA) polar

orbiting satellites (Flannigan and Vonder Haar, 1986, Kennedy et al., 1994, Flasse

and Ceccato, 1996, Nakayama et al., 1999, Boles and Verbyla, 2000, Chrysoulakis et

al. 2007, Yahia et al. 2007, Gautam et al. 2007a, Gautam et al. 2007b, Gautam et al.

2007c, Gautam et al. 2008a, Gautam et al. 2008b) and MODIS (li at al., 2004), >

However, most of the algorithms have been designed for the problem of surface fires,

but still uncertainties exists with respect to the subsurface fire problem. In addition,

for subsurface fires, researchers have used Landsat TM , NOAA/AVHRR and other

high resolution satellite images, and MODIS image is very less used for this purpose.

A brief review has been provided below on few existing techniques which have been

designed to solve the problem of subsurface fires.

>
The most frequently used sensor for fire monitoring is the Advanced Very

High Resolution Radiometer (AVHRR) on board the National Oceanic Atmospheric

Administration (NOAA) satellite series. Several algorithms have been proposed

primarily for assessment of biomass burning and forest fire detection using

NOAA/AVHRR image (Aguado et al. 2005, Cuomo et al. 2001, Flasse and Ceccato,

1996, Galindo et al. 2003, Giglio et al. 1999, Justice et al. 1996, Justice et al. 1993,

Kennedy et al. 1994, Kucera et al. 2005, Li et al. 2001, Nakayama et al. 1999, Pozo et

al. 1997, Pu et al. 2004, Gautam et al. 2007a, Gautam et al. 2007b, Gautam et al. ^

2007c, Gautam et al. 2008a, Gautam et al. 2008b ). These algorithms can be classified

broadly into two categories, fixed thresholding algorithms (Most of the classical

AVHRR fire detection algorithms are based on fixed threshold values (Kennedy et al.

1994, Li et al. 2000, Rauste et al. 1997)). and contextual Algorithms (contextual

algorithms were proposed by Lee and Tag 1990, Several authors have proposed this

contextual approach (Boles and Verbyla 2000, Eva and Flasse 1996, Flannigan and

Vonder Haar 1986, Flasse and Ceccato 1996, Giglio et al. 1999, Lee and Tag 1990,

Nakayama et al. 1999). A number of studies have been proposed to detect subsurface

fires with Landsat TM image (Chatterjee 2006, Chatterjee et al. 2007, Gupta and
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Prakash 1998, Martha et al. 2005, Prakash and Gupta 1998, Prakash and Gupta 1999,

Prakash et al. 1997, Prakash et al. 1999, Saraf et al. 1995, Zhang et al. 2004, Zhang et

•^ al. 1999). Prakash et al. 1997, proposed a solution to detect surface and subsurface

coal fires using Landsat TM image in the Jharia coalfield. They used TM-6 image for

subsurface fire detection as the surface temperature above subsurface fire is relatively

high. Recently in 2007, Chatterjee et al. have presented a study on coal fire dynamics

of Jharia Coalfield during the 1990s. They have used medium resolution satellite

thermal IR image such as Landsat-5 TM and Landsat-7 ETM+ image for this purpose.

•^ The dynamics of coal fire was studied in terms of changes in spatial extent of fire

affected areas and propagation of coal fire. Zhang 1998, showed that the spatial

resolution of NOAA-AVHRR image (1km) in general is too low to detect

underground coal fires in northwest China. However, with the partial failure of

LANDSAT ETM+ in May 2003 (Kuenzer et al. 2008), coal fire research based on

Moderate Resolution Imaging Spectroradiometer (MODIS) image is presently a

highly required research area and recently very few researchers (Kuenzer et al. 2008,

^ Ressl et al. 2009, Giglio et al. 2009) have used MODIS image for fire class

classification.

Researchers have used LISS image for fusion with other optical and radar

images for various other applications. Vani et al. 2001, have fused IRS -LISS III and

PAN images at varying resolution ratios of the images and Sanjeevi et al. 2001 have

also fused IRS -LISS III with PAN image with conventional and wavelet transform

techniques, and compared the fused image results. Saraf 1999, also have fused IRS-

* 1C-LISS-III image with PAN image data to improve visual interpretation.

Venkataraman et al. 2004, fused IRS LISS-III image and Radarsat-1 SAR image

using Bayesian formulation of data fusion to improve the classification accuracy of

snow related features in Himalayan region, India. Pal et al. 2007 have fused ERS-2

SAR with IRS-1C LISS III image using Principal Component Analysis fusion

technique to generate False Color Composite images, from which corresponding

geological maps have been prepared and was used for change detection analysis for

geological studies.
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2.7. Multitemporal Harmonic Analysis of MODIS Indexes

Recent advances in satellite image processing have expanded opportunities to

characterize the seasonal and interannual dynamics of natural and managed Land use/

land cover communities. Studies have shown that the temporal domain of

multispectral data frequently provides more information about land cover and land

use than the spatial, spectral, or radiometric domains (Brims and Nellis 1991, Kremer

and Running 1993, Eastman and Fulk 1993, Samson 1993, Reed et al. 1994).

Considerable progress has been made by classifying Land use/ land cover patterns at

the state (Eve et al. 1997) and national (Craig 2001, Homer et al. 2004, Vogelmann et

al. 2001) levels using multispectral, medium resolution image from the Landsat

Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) as a primary input.

Similar advances in Land use/ land cover classification have also been made at

national (Loveland et al. 1991, Lu et al. 2003) to global (DeFries et al. 1998, DeFries

and Townshend, 1994; Hansen et al. 2000, Loveland and Belward 1997, Loveland et

al. 2000) scales using multi-temporal, coarse resolution image (1 and 8 km) from the

Advanced Very High Resolution Radiometer (AVHRR). Significant efforts are also

devoted to address land cover characterization on a global scale by using ERS

scatterometer data. These studies showed that the radar backscattering so was able to

describe the vegetation cycle in a semi-arid region and in boreal forests (Schmullius

1997). A few significant studies for distinguishing land surfaces and estimating

quantitative parameters with the use of spaceborne microwave radiometers were

conducted and this research led to establishing empirical or semi-empirical rules for

land surface classification (Judge et al 1996, Judge et al 1997a, Judge et al 1997b,

Judge et al 1999, Judge et al 2001).

The development of a regional-scale monitoring procedure is challenging

because it requires satellite images that have wide geographic coverage, high temporal

resolution, adequate spatial resolution and minimal cost. Satellite images from

traditional sources such as Landsat and AVHRR have some of these characteristics

and are extensively used. In particular, the AVHRR instruments onboard the NOAA

platforms have been widely used for terrestrial earth surface applications. Since 1981
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they have been acquiring image in five spectral bands including a red and a near

infrared band. The AVHRR instruments are the only long-term data source for

environmental studies, for instance, of phenology (de Beurs and Henebry 2004), land-

surface variability (Anyamba et al. 2002), and land-cover mapping (Hansen and

deFries 2004). AVHRR image are provided as local area coverage (LAC) with 1.1 km

resolution and global area coverage (GAC) with 4 km resolution. Frequently, image

composites are generated to mitigate errors in the acquisition system, to minimize the

influence of atmospheric constituents such as clouds or aerosols, and to eliminate

•f product generation difficulties (Roy et al. 2002). The maximum value compositing

(Holben 1986) has been the method of almost universal choice for AVHRR NDVI.

Several global datasets have been derived (Townshend 1994), including Pathfinder

AVHRR Land (PAL) at 8 km, (James and Kalluri 1994, Maiden and Greco 1994) and

global vegetation index (GVI; Goward et al. 1994) with 25 km resolution. An

overview of time series and approaches to time-series compilation is provided by

Colditz et al. (2008). Recently, successful attempts have been made to generate a

# long-term data record for numerous products spanning from 1981 into the future.

Disadvantages of the AVHRR instruments, such as insufficient cross-calibration, hard

to estimate but known to exist deterioration of the charged coupled device, inaccurate

geolocation, orbit-drifts, or inadequate and insufficient bands for a full atmospheric

correction have been mitigated or eliminated. Having lessons learned from AVHRR

and the long-term experiments of MODIS will continue time series for environmental

applications of polar-orbiting systems (Townshend and Justice 2002).

-^ In this regard, MODIS offers excellent possibilities, as MODIS 36 spectral

bands allow for a full and automated atmospheric correction and detailed cloud

masking. The spatial resolution ranges between 250 m and 1km, and global coverage

is achieved within two days. The fully operational product generation and a wide

range of value added datasets for terrestrial applications following a standardized

production process ensure long-term consistency of global products (Justice et al.

2002a). The MODIS offers an opportunity for detailed, large-area Land use/ land

cover characterization by providing global coverage of science quality image with

high temporal resolution (1-2 days) and intermediate spatial resolution (Justice and

Townshend 2002). The MODIS image sets are available at no cost. The spatial,
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spectral, and temporal components of the MODIS are appropriate for monitoring

procedure. However, few studies have evaluated the potential of these data for

detailed Land use/ land cover characterization (Hansen et al. 2002, Wessels et al.

2004). The researcher (Wessels et al. 2004, Zhan et al. 2002, Friedl et al. 2002) found

that general land cover patterns could be successfully mapped with MODIS image.

These results suggest that the MODIS image would be suitable for the multitemporal

time series analysis.

Several time series have been generated from AVHRR data. Among global

records of 1 km (Eidenshink and Faundeen, 1994), 4 km, and 8-km spatial resolution,

products such as Pathfinder AVHRR Land (PAL) and Global Inventory Modeling and

Mapping Studies (GIMMS) have been used for time-series studies (Townshend

1994). Initially time series have been generated by simply stacking composites. The

GIMMS time series corrects for orbit drifts and its processing has been continued

until today (Tucker et al. 1979). Often mathematical approaches such as harmonic

analysis or filtering functions have been used to smooth the time series with

remaining quality limitations. However, these approaches affect both, signal andnoise

(Jakubauskas et al. 2001, Jonsson and Eklundh 2002). The researchers (Jakubauskas

et al. 2001, Jakubauskas et al. 2002, Westra and De 2007, Margarita Huesca et al.

2009) have used harmonic analysis for time series analysis. A automatic methods to

generate training examples for the classification ofmultitemporal images was dealt by

researchers (Feitosa et al. 2001, Feitosa et al. 2002, Jonathan et al. 2006, Mota et al.

2004, Mota et al. 2007).

After doing comprehensive study and critical analysis of the existing

methodologies, following facts come up as conclusions:

• To maximize the use of low resolution i.e., MODIS which are freely available

satellite images for land cover classification, harmonic analysis and hotspot and

non-hotspot classification

• Focus on cost-effective solution for monitoring land cover changes i.e., harmonic

analysis
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• There are limited reported work for fusion of low and high resolution optical

images as well as fusion of low resolution optical images with radar images

• Numerous studies have been carried out focusing on surface fire detection but less

attention has given to use MODIS band land band 2 for hotspot and non-hotspot

region classification.
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Chapter 3

Analysis of Fusion of Optical (MODIS

and ASTER) Images for Land Cover

Classification

3.1. Introduction

Generation of land cover classification from satellite images for understanding the

status of various land cover classes is one of the most important application of

satellite images. Land cover mapping using satellite imagery has a lot of advantages

such as low cost, large area coverage, repetitively, and computability over the

traditional mapping approaches like terrestrial survey and basic aerial photo

interpretation. The prospect for the use of satellite images in land cover classification

is an extremely promising one. The quality of satellite images available for land-use

mapping is improving rapidly by development of advanced sensor technology.

Particularly noteworthy in this regard is the improved spatial and spectral resolution

of the images captured by satellite sensors like MODIS (Moderate Resolution

Imaging Spectroradiometer), ASTER (Advanced Spaceborne Thermal Emission and
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Reflection Radiometer), Landsat 7 (Land Satellite), and SPOT 5 (Systeme Pour

I'Observation de la Terre (French remote sensing satellite)), LISS (Linear Imaging

Self-Scanner), IKONOS, CARTOSAT etc. But, maximum high resolution satellite

image is highly priced with some extent. Therefore, it is need of current research to

explore some techniques by which utilization of freely available satellite image may

be enhanced. The increasing availability of satellite imagery with significantly

improved spectral and spatial resolution has offered greater potential for more

detailed land cover classification. The availability of moderate resolution imaging

Spectroradiometer (MODIS) imagewith greatly improved spectral, spatial, geometric, ^f

and radiometric attributes provides significant new opportunities and challenges for

remote sensing-based land cover classification (Friedl et al. 2002). MODIS image has

limited capability for classification of land cover. One of the main reasons for this is

its spatial resolution. To increase the utilization of MODIS image for land cover

classification, there is a need to explore the possibility to use of some other techniques

like a fusion. Spectral and spatial resolutions of images are very important parameters

for fusion. Spatial resolution is also important as spectral resolution because iff

classification accuracy quite dependent upon it. Therefore, there is a need to fuse a

high resolution image with low or moderate resolution image to increase the

classification accuracy of low resolution images.

Fusion techniques are being developed for the full exploitation of increasingly

sophisticated multisource data (Shen 1990). Fused images may enhance the

interpretation capabilities. The images used for fusion have different temporal and

spatial resolution. Therefore, the fused image provides a more complete view of the 9

observed objects (Clement et al. 1993, Farina et al. 1996). It is one of the main aims

of image fusion to integrate different data in order to obtain more information that can

be derived from each of the single sensor data alone. A good example of this is the

fusion of images acquired by different sensors having a different spatial resolution

and of different spectral resolution. The fusion of these disparate data contributes to

the increasing classification accuracy as stated by Pohl and Van Genderen 1998, and a

detailed literature survey is carried out at the section 2.3

Many image fusion methods have been proposed and developed, a detailed

review on this issue was given by Pohl and Van Genderen 1998. In which some
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methods, like intensity-hue-saturation (IHS) (Edwards and Davis 1994 Schetselaar

1998), Brovey transform (Gillespie et al. 1987, Zhou et al. 1998), and principal

component analysis (Chavez. P. S. and Kwarteng 1989, Zhou et al. 1998) have been

discussed in the previous section 2.3, and these methods provide superior visual high-

resolution multispectral fused images, but have a limitation of the need of high-

quality spectral information as input, while these methods are useful for visual

interpretation. High-quality spectral information is very important for most remote

sensing applications especially in land cover classification (Liu 2000). The

importance of high-quality synthesis of spectral information is well suited and

implemented for land cover classification (Garguet-Duport et al. 1996). More

recently, an underlying multiresolution analysis employing the discrete wavelet

transform has been used in image fusion, and it is thoroughly discussed in the section

2.3. It was found that multisensor image fusion is a tradeoff between the spectral

information from a low resolution multi-spectral images and the spatial information

from a high resolution multi-spectral images. With the wavelet transform based fiision

method, it is easy to control this tradeoff (Gonzalo Pajares and Jesus Manuel de la

Cruz 2004). Ranchin et al. 2003 propose some successful implementation schemes for

fusion using the spatial resolution enhancement by injection of structures (ARSIS)

concept. Many researchers (Choi 2006, Wang et al. 2005, Alparone et al. 2007,

Fasbender et al. 2008 and Thomas et al. 2008) focused on how to retain the spectral

characteristics of the multispectral image after fusing with higher resolution images.

Recently Ehlers et al. 2010, have fused multispectral remote sensing images with a

panchromatic IKONOS image by proportional additive wavelet fiision (AWLP)

technique.

The wavelet-transform fiision method provides a high spectral quality in fused

satellite images. However, images fused by wavelets have much less spatial

information than those fused by the intensity-hue-saturation, Brovey transform,

principal component analysis (Yocky 1996, Gonza'les et al. 2004). For Land cover

classification, the spatial information of a fused image is just as important as the

spectral information. Therefore, there is a need to develop an advanced method of

image fusion, so that fused images have the same spectral resolution as low resolution
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image (i.e., MODIS image) and the spatial resolution as high resolution image (i.e.,

ASTER image).

Starck et al. 2002 has used a new transform that is curvelet transform. The

curvelet transform is obtained by applying the ridgelet transform (Do and Vetterli

2003) to square blocks of detail frames of undecimated wavelet decomposition. Since

the ridgelet transform possesses basis functions matching directional straight lines

therefore, the curvelet transform is capable of representing piecewise linear contours

on multiple scales through few significant coefficients. This property leads to a better

separation between geometric details and background noise, which may be easily

reduced by thresholding curvelet coefficients before they are used for fusion (Starck

et al. 2002). Therefore, the curvelet transform represents boundaries better than

wavelets and may be well suited for extracting detailed spatial information as well as

spectral information from an image, and hence, can be very useful for clustering the

various targets.

Fuzzy logic is a powerful problem-solving methodology with a myriad of

applications in information processing (Zheru 1996). Fuzzy provides a remarkably

simple way to draw definite conclusions from vague, ambiguous or imprecise

information. In a sense, fuzzy logic resembles human decision making with its ability

to work from approximate data and find precise solutions. Hence fuzzy approach is

used where there is uncertainty and no mathematical relations are easily available

(Zadeh L. A. 1965, proposed fuzzy logic approach). Recently, this approach is being

utilized in different disciplines i.e., in the areas of robotics, automobiles and target

detection (Meitzler et al. 1996, Bushra et al. 2007, Humayun et al. 2009 and Irina and

Martina 2008). Based on the fuzzy logic approach, the medical image fusion

algorithm for Infrared and CCD (Charge-Coupled Device) has been discussed by

Singh et al. 2004 and Zhao et al. 2005. They have used the fuzzy logic based

CCD/SAR image fusion in navigation/guidance application, whereas, in this thesis,

this approach is used for pixel level image fiision i.e., for fusing high resolution

satellite image with low or moderate resolution satellite image. Fuzzy approach has

various advantages in which some of them are as following (Haci 2003):
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> Fuzzy systems are able to blend different types of quantitative and qualitative

information.

> Because of the ability of fuzzy logic to incorporate qualitative information,

fuzzy systems are able to adequately model processes where human reasoning

and decision-making are involved.

> Fuzzysystems can be built on top of the experience of experts.

Quality assessment is a key issue in the image fusion process in order to

compare the quality of the fused images as well as the performance of the approach

used. Attempts to establish a protocol for quality assessment have been published

(Wald et al. 1997, Vrabel 2000; Wald and Ranchin 2002). Quality assessment

Indicators that are most commonly used to evaluate fusion results are the mean value

and standard deviation (Choi et al. 2003), the mean gradient i.e. the contrast between

the detailed variation of pattern on the image and the clarity of the image (Choi et al.

2003), the spectral and simple two-dimensional correlation (Bretschneider and Kao

2000, Sanjeevi et al. 2001), the root mean square error (RMSE) (Bretschneider and

Kao 2000, Beaulieu et al. 2003), the universal quality index (Aiazzi et al. 2004), and

the peaksignal-to-noise ratio (PSNR) (Li et al. 2004).

Ever since the first multispectral imagery became available from civilian

remote sensing satellites in the early 1970s, considerable effort has been devoted to

classification of image data with the aim ofproducing high-quality thematic maps and

establishing accurate inventories of spatial classes. A significant proportion of the

papers published over more than three decades in the field of satellite images concern

classification in one way or another. Some papers have focused on the improvement

of the classification process; others on the use of well-known classification methods

in particular types of satellite image application. Classification is regarded as a

fundamental process in remote sensing, which lies at the heart of the transformation

from satellite image to usable geographic product. At present, there are different

classification procedures used for different purposes by various researchers (Ozesmi
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and Bauer 2002, Dean and Smith 2003, Liu et al 2002). In this thesis, the minimum

distance classifier is used, as minimum distance classifier is more efficient when the

number of training samples per class is limited, since it is based only on the use of the

class mean vector, whose evaluation is more accurate with few samples (Richards and

Jia 2006). Some of the researchers like Akgiin et al. 2004, have used minimum

distance classifier for classifying Landsat 7 ETM+ satellite image and Chavoshi et al.

2007 had used the Quickbird images for classifying using minimum distance has one

of the classifiers

Another important aspect for the development of a land cover monitoring

system, where every time one needs a time series data of both sensor (i.e., low

resolution and high resolution images). The high resolution image is not freely and

easily available. Therefore, there is a need to develop such a methodology where high

resolution image uses in fusion can be minimized for time series analysis, as while

doing the time-series analysis, where every low resolution image (i.e., MODIS image)

may require the same number of high resolution image for fusion in one hand and in

another hand every time one has to carry out the complex computation of fusion. So,

it is another point of research to develop such a methodology by which use of high

spatial resolution image (i.e., ASTER in our case) for fusion for time series analysis

may be minimized and also develop some methodology by which computation

complexity of fiision may be minimized. So that the freely available image like

MODIS use can be enhanced.

Therefore, in this chapter, an attempt has been made to fuse a comparatively

high resolution image (i.e., ASTER) with low or moderate resolution image (i.e.,

MODIS) using curvelet and fiizzy based fiision and the resultant fused imageby both

methods are analyzed in the viewpoint of land cover classification. The fiised image is

assessed by the quality indicators in one hand and in anotherhand we have attempted

to explore some possible methodology to obtain some fusion coefficient by which

high resolution image (i.e., ASTER image) use may be minimized and reduce the

complexity of computation everytime while analyzing time series data.

Although ASTER and MODIS are onboard on the same satellite platform and

both are complementary in spatial and temporal resolutions. But, MODIS image is
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freely and easily available whereas we have to pay for ASTER image. Another

important aspect of MODIS image is that it is highly temporal (i.e., image is available

^ twice a day). Therefore, the MODIS image may be very useful for time series analysis

(i.e., for monitoring the land cover). The spatial resolution of ASTER image is 15m to

90 m while as the spatial resolution of MODIS image is 250 m to 1000 m.

This chapter is organized as following, image used for the study has been

discussed in section 3.2. Section 3.3 deals the theoretical basis where a brief

description of the curvelet based fusion and fuzzy based fusion, as well as the brief of

| Quality Assessment indicators which is used to assess the fused image is presented.

Implementation and results of the used approach is given in section 3.4. In the

subsequent section, i.e., in section 3.5 analysis of experimental results are carried out

and finally this chapter is concluded in the section 3.6.

-/

3.2. Data Used/Study Area

Roorkee Region is located in the Hardwar district of the state of Uttarakhand, India, is

depicted with fig. 1.1, and the details concerning the Roorkee region is given in the

section 1.3.1. The Level IB of ASTER image is considered and whose details are

given in the section 1.4.1b. The date of acquisition of the aster image is listed in the

table 3.1. In this chapter, ASTER Band 2 and ASTER Band 3 is considered. The

MODIS image considered is MODIS/Terra Surface Reflectance 8-Day L3 Global

250m SIN Grid (MOD09Q1). The product details of product MOD09Q1 is given in

the section 1.4.1a MOD09Q1 provides Band 1 and Band 2.

The Band 1 and Band 2 of MODIS and Band 2 and Band 3 of ASTER image

is considered as these bands has special features to identify the agriculture and other

land covers. Both satellite image covers approximate the same spectral range. Three

image of MODIS (image ids dl - d3, table 3.1) and one image of ASTER (asl) are

used and details are given in Table 3.1.
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3.3. Theoretical Basis

3.3.1. Curvelet transform based fusion -*.

The main feature of the curvelet transform is that it is sensitive to directional

boundaries and capable of representing the highpass details of object contours at

different scales through few sparse nonzero coefficients (Stark et la 2002). The

different steps which is used for Curvelet fusion is discussed in the following

subsections

Step 1: ATrous Wavelet Transform fr

Step 2: Ridgelet Transform

Step 3: Curvelet Transform

3.3.1.1. Step 1: ATrous wavelet transform

The ATrous wavelet transform (ATWT) (Shensa 1992, Filippo et al 2007) is a

nonorthogonal multiresolution decomposition defined by a filter bank {hnj and

{gn=8n-hn}, with the Kronecker operator 8n denoting an all pass filter. The filter bank

does not allow perfect reconstruction to be achieved if the output is decimated. In the

absence of decimation, the low pass filter is up sampled by 2/, before processing the

jth level; hence the name "ATrous" which means "with holes". In two dimensions,

the filter bank becomes (hm h„) and {SmS„ -hmhn} which means that the 2-D detail

signals is given by the pixel difference between two successive approximations.

For ./-level decomposition, the ATWT accommodates a number of coefficients

J + 1 times greater than the number of pixels. Due to the absence of decimation, the

synthesis is simply obtained by summing details levels to the approximation, thereby

the ATWT for the f(m, n) is given by

j

f{m,n) =Cj(m,n)+Y.dj(m,n) (3.1)
7=1
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Table 3.1. Image sets Details for the fusion of Optical (MODIS and ASTER) images

Image
id

Image set
Date of

Acquisition

asl Ast_llb_003_03172001054637_01082002073656.img
March 21

2001

dl MOD09Ql.A2001057.h24v06.005.2006365121814.hdf Feb 26 2001

d2 MOD09Ql.A2001081.h24v06.005.2007009180425.hdf
March 22

2001

d3 MOD09Q1.A2009081.h24v06.005.2009092060857.hdf
March 22

2009

Where, cj(m,n) and d/m,n),j = 1,. . . ,J are obtained through 2-D separable linear

convolution with the equivalent lowpass and highpass filters, respectively

3.3.1.2. Step 2: Ridgelet transform

The next step is finding a transformation capable of representing boundaries

with different slopes and orientations. A possible solution is the ridgelet transform

(Do and Vetterli 2003), which may be interpreted as the 7-D wavelet transform of the

Radon transform. This is the basic idea behind the digital implementation of the

ridgelet transform. The ridgelet basis function is given by (Filippo et al. 2007, Choi et

al. 2004, Choi et al. 2005):

-i
, (x, cos 0 + X, sin 0 - b)

Va.bAXl>X2) = a V(— "
a

) (3.2)

for each a > 0, each be R and each 6 e [0, 2k). This function is constant along lines

jc, cos 0 + x2 sin 0 = const.

Thus, the ridgelet coefficients of an imagef(xj ,x^, are represented by

Rf(a,b,0)= J \it/ab0{x^x2)f(X\,x2)dxxdx2

This transform is invertible and the reconstruction formula is given by:

2/T =0 0O rfQ ^Q
f(xl,x2)= | J lRf(a,b,0)if/aJb/>(xltx2)—jdb—-

o -oo o a 4tt
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The Radon transform for an object f is the collection of line integrals indexed by 0 £

[0, 2k) x R and is given by:

CO x

Rf{0,t)= j lf(xi,x2)*S(xicos0 + x2sin0-t)dxldx2 (3.5)
— CO —CO

Thus, the ridgelet transform can be represented in terms of the Radon transform as

follows:

Rf(a,b,0) =\Rf{0,t)a 2y,{^J±)dt (3.6)
i. a

The ridgelet transform is the application of the 7-D wavelet transform to the slices of

the Radon transform where the angular variable 6 is constant and t is varying.

3.3.1.3. Step 3: Curvelet transform

The curvelet transform (Cand'es and Donoho, 1999, Starck et al., 2002, Starck

et al., 2003) is given by filtering and applying multiscale ridgelet transform on each

bandpass filters which is described as following in different steps

/. Subband Decomposition

The image is filtered into subbands

f-+(P0f,Axf,A2f, ) (3-7)

where a filter, P0 deals with frequencies £ < 7 and the bandpass filter As is

concentrated near the frequencies [2s, 22s+ J, e.g.,

As=V2s*f,%M)=v(2-2st) (3-8)

ii Smooth Partitioning

Each subband is smoothly windowed into "squares" of an appropriate scale.

Asf-+(wQAj)QeQs (3.9)
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Hi Renormalization

Each resulting square is renonnalized to unit scale

gQ={TQY(^QAsf\QeQs (3.10)

iv Ridgelet Analysis

Each square is analyzed via the discrete ridgelet transform. For improved visual and

numerical results of the digital curvelet transform, Starck et al, 2002 presented the

following discrete curvelet transform algorithm:

iv-a) apply the ATWT algorithm with J scales as implied in Eq. (3.1)

j

i.e., f(m,n) = Cj(m,n)+Y,dj(m,n)

iv-b) set 5/=£„„„;

iv-c) forj=l,...j do

A) partition the subband wj with a block size Bj and apply the digital ridgelet

transform to each block;

B) if/ modulo 2=1 then Bj+i=2Bj;

else Bj+j=Bj.

iv-d) Apply the ridgelet transform to each block

Fig. 3.1, depicts the flow chart of Curvelet Transform which explains the

decomposition of the original image into subbands followed by the spatial partitioning

of each subband. The Ridgelet transform is then applied to each block (Starck et al,

2002)
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Fig. 3.1. Curvelet transform flowgraph. The figure illustrates the decomposition of the

original image into subbands followed by the spatial partitioning of each subband(i.e.,

each subband is decomposed into blocks). The ridgelet transform is then applied to

each block (Choi et al, 2005).

3.3.2. Fuzzy based fusion

3.3.2.1. Fuzzy logic approach

Fuzzy logic is a powerful problem-solving methodology with a myriad of applications

in information processing (Tizhoosh and HauBecker, 2000). Fuzzy provides a

remarkably simple way to draw definite conclusions from vague, ambiguous or

imprecise information. In a sense fuzzy logic resembles human decision making with
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its ability to work from approximate image and find precise solutions. Hence fuzzy

logic is used where there is uncertainty and no mathematical relations are easily

available.

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a

crisp, clearly defined boundary (Klir and Folger, 1988). A fuzzy set admits the

possibility of partial membership such as Friday is sort of a weekend day and the

weather is rather hot. A classical set might be expressed as

\l.VxeA
[oyxeA (311)

A fuzzy set is an extension of this classical set. If X is the universe of

discourse and its elements are denoted by x, then a fuzzy set A in X is defined as a set

of ordered pairs:

•y A-{x,fiA(x)\xe X} (3.12)

where ha(x) is called the membership function (MF) ofx in A.

Fuzzy logic models, called fuzzy inference systems (FISs), consist of a

number of conditional "if-then" rules. For the designer who understands the system,

these rules are easy to write, and as many rules as necessary can be supplied to

describe the system adequately. Not only do the rule-based approach and flexible

membership function scheme make fuzzy systems straightforward to create, but they

also simplify the design of systems and ensure that one can easily update and maintain

the system over time. Gradual transitions (i.e., from "belongs to a set" to "does not

belong to a set") characterized by membership functions give fuzzy sets flexibility in

modeling commonly used linguistic expressions, such as "the travel time is high.".

Since the mid-1970s, fuzzy logic has become integrated within various fields

and methodologies such as fuzzy graphs, calculus of fuzzy if-then rules, fuzzy

interpolation, fuzzy topology, fuzzy inference system, fuzzy modeling, and fuzzy

reasoning. The earliest applications, and perhaps still the most prevalent today, were

led by the research of Mamdani 1974. Multi-disciplinary applications of fuzzy logic
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include automatic control, electronics, pattern recognition, approximate reasoning,

robotics, time-series prediction, information retrieval, database management and

querying, data classification, natural language and image understanding, decision

making and machine learning (Zimmermann 1991, Meitzler et al. 1996, Bushra et al.

2007, Humayun et al. 2009 and Irina and Martina 2008)

Fuzzy set theory provides a formal system to make inferences about vague

rules describing the relation between imprecise, qualitative linguistic expressions of

the inputs and outputs of a system (Klir and Folger 1988). The control rules usually

correspond to the knowledge of an expert and provide an easily comprehended pattern

of knowledge representation. The major advantage of this approach is being able to

introduce and use rules from experience, heuristics, intuition.

In this thesis, the fuzzy logic approach is used for pixel level image fusion i.e.,

for fusing high resolution satellite image with low or moderate resolution satellite

image.

Some important steps of fuzzy set theory are as following

i. Fuzzy Membership Functions

Designing membership functions is a key issue in fuzzy sets (Zadeh 1965). They

should be suitable for the problem at hand and easy to calculate. The outcomes of

fuzzy systems may yield different results by changing the parameters of the

membership functions. The selection of appropriate membership functions is an

important issue. A membership function (MF) is a curve that defines how each point

in the input space is mapped to a membership value. The only condition a

membership function must really satisfy is that it must vary between 0 and 1.

Membership functions are built from several basic functions: piecewise linear

function, Gaussian distribution function, sigmoid curve, and quadratic and cubic

polynomial curves (McNeill and Freiberger 1993). Samples of fuzzy membership

functions (Jang and Sun 1995) are Triangular, Trapezoidal, Gaussian and Bell.

Conclusions about a certain phenomenon characterized by fuzziness are determined

largely by the shape of its membership function. By using membership functions,

Page | 56

r

v



T

membership grade or truth-value of a member in a particular fizzy set is determined.

The simplest membership functions are formed using straight lines.

ii. Fuzzy Inference Systems

Fuzzy inference systems (FISs) (Jang and Sun 1995; Wang 1994) are popular

computing frameworks based on the concepts of fuzzy set theory, fuzzy if-then rules,

and fuzzy reasoning. It is the process of deriving conclusions from a given set of

fiizzy rules acting on fuzzified data. Basically, a FIS is composed of four functional

blocks as shown in fig. 3.2.

Fuzzification maps crisp inputs into fuzzy sets, which are subsequently used as

inputs to the inference engine. A fuzzy set U is characterized by a membership

function (MF) fi: U—* {0,1}. Membership functions are labeled by linguistic terms

such as "small" or "large" (Mendel and Mouzouris 1997). Several classes of

-. parameterized functions widely used to define membership functions such as

Gaussian, Generalized bell, and Trapezoidal functions (Mendel and Mouzouris 1997).

A Fuzzy rule base is a set of fuzzy rules in the form of if-then clauses. For a

multi input single output case, the i rule can be expressed by (Mendel and Mouzouris

1997)

R': ifx isA' andy isBl then z is C (3.13)

where x and y are the input variables, z is the output variable, and A' and B' are the

labels of membership functions associated to the input variables and C is the label of

the membership function associated with the output variable, z, in the rule i.

A Fuzzy inference engine is a decision-making logic, which performs the

inference operations on the rules and a given condition to derive a reasonable output

or conclusion (Mathworks 2006). Thus fuzzy inference is the process of formulating

the mapping from a given input to an output using fiizzy logic. The mapping then

provides a basis from which decisions can be made, or patterns discerned. The

process of fuzzy inference involves the Membership Functions (MF), Logical

Operations like logical operation AND, OR, and NOT, and If-Then Rules (eq. 3.13).
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Fuzzy Inference
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Fig. 3.2. Basic fuzzy inference system

Output(s)

Two types of FISs (Jang and Sun 1995): Mamdani fuzzy model and Sugeno fuzzy

model, have been widely employed in various applications. These two types of

inference systems vary somewhat in the way outputs are determined.

Mamdani's fuzzy inference method is the most commonly seen fuzzy

methodology. Mamdani's method was among the first control systems built using

fiizzy set theory. It was proposed in 1975 by Ebrahim Mamdani (Mamdani and

Assilian 1975) as an attempt to control a steam engine and boiler combination by

synthesizing a set of linguistic control rules obtained from experienced human

operators. Mamdani's effort was based on Lotfi Zadeh's 1973 paper on fuzzy

algorithms for complex systems and decision processes (Zadeh 1973). Mamdani-type

inference, expects the output MF to be fuzzy sets. After the aggregation process, there

is a fuzzy set for each output variable that needs defuzzification. It is possible, and in

many cases much more efficient, to use a single spike as the output MF rather than a

distributed fiizzy set. This type of output is sometimes known as a singleton output

MF, and it can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency

of the defuzzification process because it greatly simplifies the computation required

by the more general Mamdani method, which finds the centroid of a two-dimensional

function. Rather than integrating across the two-dimensional function to find the

centroid, we use the weighted average of a few data points. Sugeno-type (Sugeno

1985) systems support this type of model. In general, Sugeno-type systems can be

used to model any inference system in which the output MF are either linear or

constant.
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Defuzzification transforms the fuzzy results of the inference into a crisp

output. The most popular defuzzification method is the centroid of area. Other

defuzzification strategies arise for specific applications, which include bisector of

area, mean of maximum, largest of maximum, and smallest of maximum (Jang and

Sun, 1995). The essential part of a typical fuzzy system is formed by a knowledge

base in which the process of the fuzzy system is explained as a set of fuzzy if-then

rules. An inference mechanism compares the inputs of the system against the

knowledge stored in the knowledge base and generates a system's output by using the

given inputs and the available knowledge in the knowledge base. Conventional fizzy

systems are static; rules are acquired off-line and the system components do not

change once operation begins.

3.3.3. Quality assessment indicators

In order to assess the quality of the fused image by means other than simple

visual inspection of the images, some quantitative assessment criteria have been

defined by comparing the fused product and the low spatial resolution multispectral

images (Wald et al. 1997). A series of indicators have been used for this purpose:

i Correlation coefficient

The correlation coefficient (Vijayaraj et al. 2004) of two images is often used

to indicate their closeness between the images. Comparing the original image with the

fused image, one can find the degree of differences. The correlation coefficient ranges

from 7 to +7. A correlation coefficient of +7 indicates that the two images are

highly correlated, i.e., very close to one another and a correlation coefficient of -7

indicates that the two images are exactly opposite each other. The correlation

coefficient is given by
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Xlk;-//(^)K;-M5))
corr(A,B) = -. /="=' (3.14)

,IZk,-/^))TZ(-v;J-/«fi))2

where A and 5 are two images, xq and x',y the elements of the image A and the image

B, respectively. fi(A) and jjl(B) stand for their mean values. The fused image which

will best preserve the spectral information of the original low resolution multispectral

image is the one that has the maximum correlation with the initial low resolution

multispectral image (Karathanassi et al. 2007).

ii. Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE)( Li et al. 2002) measures the spectral fidelity

between the original and the fused image. It measures the amount of change per pixel

due to the processing and is described by

itlxij-x'ij
RMSE(A,B) =\\^^ (3.15)

n* m

where A and B are two images, x,j and x',-y the elements of the image A and the image

B, respectively.

iii. Relative Difference of Means (RMD)

The Relative Difference of Means (RMD) (Karathanassi et al. 2007) between the

fused product and the original low spatial resolution multispectral image is given by

f~Tr
RMD(F,LR) = _ (3.16)

LR

Where F is the mean value of the fused image and LR is the mean value of the

original low spatial resolution image.
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The fused image which will best preserve the spectral information of the

original low resolution multispectral image is the one that has the smallest possible

relative difference of means.

iv. Relative Variation Difference (RVD)

The Relative Variation Difference (RVD) (Karathanassi et al. 2007) between

the fused product a2F and the original low spatial resolution multispectral image cj2Lr

2 _ 2

RVD(F,LR)= F LR (3.17)

Where a2F =— Y (Fi - F)2, a\R = —— Y (LR, - LR)2

Where N = number of pixels in the image and F is the mean value of the fused image

and LR is the mean value of the original low spatial resolution image. F is the fused

image and 7,7? is the original low spatial resolution image. The fused image which will

best preserve the spectral information of the original low resolution multispectral

image is the one that has the smallest possible relative variation difference.

v. Deviation Index(DI)

The Deviation Index (Dl) (De Bethune et al. 1998), measuring the normalized

global absolute difference of the fused image (F) with the low spatial resolution

multispectral image (LR):

i n n \f —LRDI(F,LR) =—^—tf^ 'A (3 18)

The fused image which will best preserve the spectral information of the original low

resolution multispectral image is the one that has the smallest possible deviation

index.
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vi. Peak signal to noise ratio (PSNR)

The peak signal to noise ratio (PSNR) (Li and Hu 2004) index reveals the radiometric

distortion of the final image compared to the original.

psm=m°*«im ai9)

Where MSE =—Y (P. - LR,)

where F, is the fused image pixel i value, LR, is the low spatial resolution image pixel

i value, N is the number of non-null imagepixels, Peak is the maximum possible pixel

value. The fused image which will best preserve the spectral information of the

original low resolution multispectral image is the one that has the highest possible

PSNR.

vii. Universal Image Quality Index (UQI)

The Universal Image Quality Index (UQI) [34] introduced by

UQI= **WFLR
^f+<IfJ+{lr1.

i N 1 N

(3.20)

Where F=i-£^„ LR =j~^LRl. ,a2F =—Itf ~F)\

<=^tw-LRf, aF,LR =^±(Fi-F)(LR,-LR)

Where N implies the number of image pixels. The fused image which will best

preserve the spectral information of the original low resolution multispectral image is

the one that has the highest possible UQI.
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3.3.4. Minimum distance classification technique

The minimum distance technique uses the mean vectors of each end member and

calculates the Euclidean distance from each unknown pixel to the mean vector for

each class. All pixels are classified to the nearest class unless a standard deviation or

distance threshold is specified, in which case some pixels may be unclassified if they

do not meet the selected criteria. An image data can be commonly represented in the

form of a column vector as;

x=

X]

x.

(3-21)

Where xj, xi, x$, xn are the spectral values of the pixel vector X in bands 7 to n

respectively. Discriminant function for minimum distance classifier is defined from

the expression of the squared Euclidean distance between the position of the generic

pixel Xto be classified and the mean value m, of/th class (Richards and Jia 2006):

d(X,mi)2={X,mi)'(X,mi) (3.22)

Classification is performed on the basis of:

Xe w, if d(X,m,)2 >d(X,m} )2 V/ * i (3.23)

Minimum distance algorithm is more efficient when the number of training samples

per class is limited, since it is based only on the use of the class mean vector im>

whose evaluation is more accurate with few samples. The main disadvantage of the

classifier lies with the fact that it can model only symmetric classes in multi-spectral

space (i.e., assumes distribution of samples about the centre of mass in a spherical

manner).
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3.4. Implementation and Results:

3.4.1. Curvelet based fusion ->

The basis of curvelet transform used for the fusion of ASTER and MODIS image is

shown in the fig. 3.1 whereas fig. 3.3 shows the flowchart of the applied

methodology for the curvelet fusion of ASTER image and MODIS image. MODIS

and ASTER image are subsetted to Roorkee region for this study and the care is taken

so that area of sub-set region of both satellite images should be approximately equal.

Therefore, MODIS has 87*87 pixels and ASTER has 1186*1186 no of pixels after

subsetting, by which both are acquiring approximately the same area. The flowchart,

fig. 3.3 is deciphered in the following steps

i. Fusion of MODIS band 1 and Band 2

MODIS Band 1 and Band 2 are considered initially. The Band 1 is fused with the

Band 2, through the curvelet transform (For ATWT transform, eq. (3.1) is computed

for Band 2, thereby Band 2 is decomposed into J + 1 subbands, which includes Cj

and dj, where Cj is a coarse or smooth version of Band 2, and dj is the details of Band

2 at scale 2~\ herey'=2. Cj is replaced by Band 1 and then the Ridgelets transform (eq.

3.2 to eq. 3.6) is applied to all the decomposed subbands i.e., dj bands, thereby

obtained ridgelet coefficients are hard-thresholded in order to enhance boundaries in

the fused image and inverse ridgelet transforms (IRT) is carried out to obtain a new

image which reflects the fused image (MOD 12) of Band 1 and Band 2 i.e., the

resultant fused image MOD12 of 87*87 pixels. This MOD12 image is interpolated

through bi-linear interpolation technique (Thomas et al. 1999) to the scale of the

ASTER image of 1186* 1186 pixels. The commonly used linear methods, such as

bilinear interpolation and bicubic convolution interpolation, have advantages in

simplicity and fast implementation (Vrcelj B. andVaidyanathan 2001). Muhammad et

al. 2008, have used non-linear interpolation technique for increasing the spatial

resolution of Quickbird multispectral image to the spatial resolution of Quickbird

panchromatic image.
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ii. Fusion of ASTER band 2 and Band 3

Similarly subsetted ASTER image of Band 2 and Band 3 are considered. It is

georeferenced and it is also subset to the Roorkee region and hence the numbers of

pixels are 1186*1186 pixels. The Band 2 is fused with the Band 3, through the

curvelet transform as shown in fig. 3.3. Similar fiision process as discussed above has

been applied for fusion of ASTER band 2 and band 3. ATWT transformation is

applied for band 3 and Cj is replaced by band 2. Here7 is 2, as the number of pixels of

ASTER image is 1186*1186 pixels. Then ASTER fused image is obtained as AST23

which has 1186*1186 pixels.

iii. Fusion of AST23 and MOD12

The AST23 is the fused image of the ASTER bands of 1186*1186 pixels and MOD12

is the bilinear interpolated fused image of MODIS bands of 1186*1186 pixels. AST12

Y and MOD 12 are considered for the fusion through curvelet transform as shown in fig.

3.3. Similar fusion process has been applied for fusion of AST23 and MOD12.

ATWT transformation is applied for AST23 and Cj(j=2 for present case) is replaced

by MOD 12 which gives the resultant fused image ASMO that has 1186*1186 pixels.

3.4.2. Fuzzy based fusion

Fuzzy Interference System (FIS) based Mamdani Model is a computing process by

using fuzzy logic from input space to output space is being used in this thesis, because

Mamdani FIS has advantages (Abdelwahab and Nicolas 2008) like Expressive power,

easy formalization and interpretability, reasonable results with relatively simple

structure, intuitive and interpretable nature of the rule base and Output can either be

fuzzy or a crisp output. For this reason Mamdani FIS is widely used in particular for

decision support application

Fuzzy Interference System Editor for the fusion of ASTER and MODIS image

is emphasized in fig. 3.4. Fig. 3.5 shows the selection of Membership Fusion (MF)

plots using Membership Fusion Editor and fig. 3.6 indicates the Rule Editor, for
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accentuating the rules that are used for the fusion of ASTER image with the MODIS

image.

Fig. 3.7 shows the flowchart of the proposed methodology for the fuzzy based

fiision of ASTER image and MODIS image for analyzing the classification of the

MODIS image before and after the fusion. MODIS and ASTER image are subsetted

to Roorkee region for this study and the care is taken so that area of sub-set region of

both satellite images should be approximately equal. The flowchart fig. 3.7 is

deciphered in the following steps

MODIS

Bandl

Georeferene

Subset

(87*87)

\

—p.

Band 2

Georeferene

^L

Subset

(87*87)

»

Curvelet

M0D12

(87*87)

Interpolate
(1186*1186)

_«|c^i_:

Band 2

Georeferene

Subset

(1186*1186)

ASTER

"~~~—•

—

Band 3

Georeferene

f

Subset

(1186*1186)

f

Curvelet

AST23

(1186*1186)

AS_MO

(1186*1186)

Fig. 3.3. Flowchart for fusion of ASTER and MODIS image through curvelet based

fusion
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FIS Editor: fuse final

File Edit View
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ast3

FIS Name:

And method

Or method

Implication
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Defuzzification

fuse final
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fusejinal

(mamdani)
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Current Variable

Name

Type

Range

Help

aster

mamdani
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input

[0 255]

Close

System "fuse_ftrtaJ": 2 inputs, 1 output, and 4 rules

Fig. 3.4. Fuzzy Interference System Editor for the fusion of ASTER and MODIS
images

Membership Function Editor: fuse_final

File Edit View

FIS Variables
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:XX
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Current Variable

Name ast2

Type input

[0 255]
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Ready
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Current Membership Function (clck on MFto select)
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Params ' [17.88 1.21 8.88e-016]

Help

Fig. 3.5. Membership Fusion Editor implying the Membership Fusion(MF) for the
ASTER and MODIS images

Page | 67



Rule Editor: fuse_fina|
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Fig. 3.6. Rule Editor for the fusion of ASTER and MODIS images
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Fig. 3.7. Flowchart for thefusion of ASTER and MODIS image through fuzzy based
fusion
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i. Fusion of MODIS band 1 and Band 2

MODIS Band 1 and Band 2 are considered initially. The Band 1 is fused with the

Band 2, through the fuzzy based fusion. The FIS of the matlab is used for fusion, and

fig. 3.4, 3.5 and 3.6 are used for the fusion. A new image which reflects the fused

image (MOD12) of Band 1 and Band 2 i.e., the resultant fused image MOD12 of

87*87 pixels. This MOD12 image is interpolated through bi-linear interpolation

technique to the scale of the ASTER image of 1186* 1186 pixels.

ii. Fusion of ASTER band 2 and Band 3

Simultaneously subsetted ASTER image of Band 2 and Band 3 are considered. It is

georeferenced and it is also subset to the Roorkee region and hence the number of

pixels are 1186*1186 pixels. The Band 2 is fused with the Band 3, through the FIS of

the matlab and fig. 3.4, 3.5 and 3.6 are used for the fusion, then ASTER fused image

is obtained as AST23 which has 1186*1186 pixels.

iii. Fusion of AST23 and MOD12

The AST23 is the fused image of the ASTER image of 1186*1186 pixels and MOD12

is the interpolated fused image of bilinear interpolated MODIS image of 1186* 1186

pixels. AST12 and MOD12 are considered for the fusion through the FIS of the

matlab and fig. 3.4, 3.5 and 3.6 are used for the fusion, and therebygives the resultant

fused image ASMO that has 1186*1186 pixels.

3.4.3. Fusion coefficients

3.4.3.1. Methodology for deriving the Fusion coefficient

The use of fusion coefficient may avoid procuring the high resolution image every

year. So, this chapter is the first step in that direction where MODIS and ASTER

image will be fused for improvement of classification accuracy of MODIS image and

also attempted to obtain the fusion coefficient (eq. 3.24). This fusion coefficient has
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been obtained by averaging the dl and d2 image of the year 2001 and obtained

coefficient is validated with image id d3 of the year 2009 and quite encouraging result

is obtained.

The obtained fusion coefficient may be the season specific. Therefore we have

considered the image of month March only. The following steps have been carried out

to derive the Fusion coefficient

Step 1: ASTER averaged (ASTavg) is computed first, and is derived as shown in

the eq. 3.24. To accomplish this, we need to fuse the MODIS image dl and d2 (table

3.1) with ASTER image. ASMOdl and AS_MO_d2, is the resultant fused image

ASMO with respect to MODIS image dl and d2 (table 3.1) respectively

AST_avg = (AS_MO_d1 + AS_MO_d2) / 2 (3.24)

Step 2: Eq. 3.1 is applied for the ASTavg (eq. 3.24). The derived dj the ridgelet

transformation (as shown in the dotted rectangle of fig. 3.8) is applied and the

resultant dj is proposed as fusion coefficient. This fusion coefficient dj is then further

used for fusion of MODIS image as shown in fig 3.8. This fusion coefficient is

reducing the computation complexity, because now, we can directly use this fusion

coefficient for fusing the MODIS image as stated by eq. 3.1. Only we have to replace

the Cj by image dl and d2 respectively.

To test our methodology, the sections 3.4.1. i. - iii. are applied for image dl,

and d2 (table 3.1) and the corresponding resultant fused images are AST_avg_dl, and

AST_avg_d2 respectively. The d3 image is considered to validate the proposed

fiision coefficient. The sections 3.4.1 ( i. - iii.) are carried for d3. Here, we have

compared the result with fusion of MODIS image to real ASTER image which

resultant is AS_MO_d3 and fusion of MODIS image with ASTavg (derived from eq.

3.24) image which resultant is AST_avg_d3.
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Fig. 3.8. The flowchart implying the fusion of the MODIS image withthe AST_avg

3.5. Analysis of Experimental Results

The ASTER band 2 and ASTER band 3 which is georeferenced and subset to the

Roorkee region is shown in the fig. 3.9a and 3.9b. MODIS band 1 and MODIS band 2

images of imaged2 are shown in Fig. 3.10a3.10brespectively which is georeferenced

and subset to the Roorkee region.

3.5.1. Classification Accuracy

The Minimum Distance classification technique has been applied for obtaining the

major type of land cover classification i.e. urban, agriculture and water. ENVI 4.3 and

MATLAB 7.0 are used for whole processing and algorithm implementation.

We have identified 235 Ground Control points (GCP) for agriculture, 216

GCP for urban and 255 GCP for water bodies from Toposheet of Roorkee region (Fig.
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Fig. 3.9a. ASTER band 2 image of asl image

*T

Fig. 3.9b. ASTER band 3 imageof asl image
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Fig. 3.10a. MODIS band 1 image of d2 image

Fig. 3.10b. MODIS band 2 image of d2 image
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Fig. 3.11. Toposheet of the study area (Roorkee region) in theHaridwar district, India

>

Fig.3.12a. Spectral Response of ASTER Band 2 (asl) for different class

Page | 74



y

SI I I •* •( . «
J 1 S!I - •

Fig. 3.12b. Spectral Response of ASTER Band 3 (asl) for different class

Fig.3.13a. Spectral Response of MODIS Band 1(d2) for different class
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Fig. 3.13b. Spectral Response of MODIS Band2 (d2) for different class

Table 3.2. Classification Accuracy for ASTER and MODIS Images

Ima

geid
Images

Users Accuracy (%)
Producers

Accuracy(%)
Overall

Classificatio

n Accuracy

(%)
Agric
ulture

Urban Water
Agric
ulture

Urban Water

asl

ASTER

band 2
19.16 84.97 84.66 27.23 68.06 80.94 72.02

ASTER

band 3
99.85 94.09 99.29 99.67 95.83 98.98 98.73

d2

MODIS

band 1
61.76 37.50 26.86 9.29 56.13 51.18 34.06

MODIS

band 2
65.23 34.58 42.07 73.89 23.87 48.03 52.17

Table 3.3. ClassificationAccuracy of fusion of MODIS (d2) and ASTER (asl)
through curvelet transform

Images

Users Accuracy (%)
Producers Accuracy

(%)

Overall

Classification

Accuracy

(%) '
Agric
ulture

Urban Water
Agric
ulture

Urban Water

MOD 12 51.90 38.46 31.02 54.42 6.45 59.84 41.14

AST23 99.57 98.56 96.18 99.74 95.37 98.82 98.17

AS MO 47.65 11.69 88.24 82.13 29.17 54.12 54.81
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Fig. 3.14a. Minimum distance classified image ofASTER band 2 image ofasl

4'.'v'.< *T'» .'v

' Agriculture
i Urban

ftter

Fig. 3.14b. Minimum distance classified image ofASTER band 3image ofas]
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Fig. 3.15a. Minimum distance classified image of MODIS band 1 image of d2
V

Fig. 3.15b. Minimum distance classified image of MODIS band 2 image of d2
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3.11), Google earth, and ground survey points. The control points were basically

collected by ground survey with the use of GPS and more than 100 points were

separately collected for each classes, and these points were overlapped on Google

Earth and Toposheet for visual interpretation of the points. On the basis of these

GCPs, we have computed the classification accuracy. The Spectral response for this

GCP for ASTER band 2, band 3 and MODIS band 1and 2 are shown in the fig. 3.12a,

fig. 3.12b, fig. 3.13a and fig. 3.13b respectively (x-axis represents the GCPs

considered and y-axis represents the surface reflectance values of corresponding

y bands).

The Minimum Distance classified image of ASTER band 2 and ASTER band

3 i.e., fig. 3.9a and 3.9b are shown in the figs. 3.14a and 3.14b respectively. Similarly

the minimum distance classified image of MODIS band 1 and band 2 i.e., fig. 3.10a

and 3.10b are shown in the figs. 3.15a and 3.15b respectively. The producers and

users classification accuracies of these classes for MODIS band 1, MODIS band 2,

ASTER Band 2, ASTER Band 3 have been tabulated in Table 3.2. The overall

classification accuracy for MODIS band 1, MODIS band 2 for d2 image is 34.06%

and 52.17% respectively. In other hand ASTER band 2, ASTER band 3 of asl image

has overall accuracy of 72.02% and 98.73% respectively. It is clear from fig. 3.12b

(i.e., ASTER Band 3's spectral response) that GCPs have a distinct spectral response

for agriculture, urban and water bodies. Hence the classification accuracy is good for

ASTER band 3, whereas the same GCPs in ASTER Band 2 (which is shown in fig.

3.12a) have some overlap spectral response, and hence there is a reduction in the

y accuracy. In another hand, the spectral response of MODIS Band 1 and MODIS Band

2 (Fig. 3.13a and Fig. 3.13b), represents no clear distinction of different land cover.

This may be one of the main reasons for having poor classification accuracy of
MODIS 1 and 2 image.

3.5.1.1. Curvelet based fusion

The overall methodology of the fusion of MODIS and ASTER image, through the

curvelet based fusion is shown in the flowchart fig. 3.3, and the experimental results

concern to it is deciphered in the following steps
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Fig. 3.16a. Resultant curvelet based fused MOD12 image of d2
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Fig 3.16b. Minimum distance classified of the resultant curvelet based fused MOD12
image of d2
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Fig. 3.17a. Resultant curvelet based fused AST23 image of asl

-:->.,,^£jsl-;«si.* 1!3 m Urban

iWjW

Fig 3.17b. Minimum distance classified of the resultant curvelet based fused AST23
image of asl
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i. Fusion of MODIS band 1 and Band 2

The resultant fused image of MODIS band 1 and band 2 of image d2 i.e., MOD12 is

depicted in the fig. 3.16a, and MOD 12 is classified by minimum distance

classification technique and the minimum distance classified MOD 12 is shown in the

fig. 3.16b. It's classification accuracy is tabulated in the table 3.3 and its overall

classification accuracy is 41.14%, and form the table 3.2, overall classification

accuracy for MODIS band 1 and band 2 for d2 image is 34.06% and 52.17%.

ii. Fusion of ASTER band 2 and Band 3

AST23, the resultant fused image of ASTER band 2 and band 3 is depicted in the fig.

3.17a, and it is classified by the application of minimum distance classification

technique, and the minimum distance classified AST23 is shown in the fig. 3.17b, and

it's classification accuracy is tabulated in the table 3.3, and it implies that the overall

classification accuracy is 98.17%, and whereas the overall classification accuracy for

ASTER band 2, ASTER band 3 is 72.02% and 98.73% respectively, and is tabulated

in the table 3.2.

iii. Fusion of AST23 and MOD12

The resultant fused image AST23 (fig. 3.17a) and MOD12 (fig. 3.16a, and it is

interpolated to the size of ASTER. That is MOD 12, is of size 87*87, it is interpolated

to the size of 1186*1186, and it is depicted in the fig. 3.18a) is considered and it is

fused by curvelet based transform, and the resultant fused image is ASMO and it is

depicted in the fig. 3.18b and it is classified by the application of minimum distance

classification technique, and the minimum distance classified ASMO is shown in the

fig. 3.18c, and it's classification accuracy is tabulated in the table 3.3, and it implies

that the overall classification accuracy is 54.81%, and whereas the overall

classification accuracy for AST23 and MOD 12 is 98.17% and 41.14% respectively.

It is observed that the resultant fused image i.e., ASMO has better accuracy

than the MODIS image of band 1 and 2. It is also observed that the fused image has
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enhanced the classification accuracy incomparison to MODIS band 1image where as

with MODIS band 2 it is moderately enhanced the classification accuracy. Overall as

well as individual classification of each considered land cover has enhanced in the

fused image.

3.5.1.2. Fuzzy based fusion

The overall methodology of the fusion of MODIS and ASTER image, through the

fuzzy based fusion is shown in the flowchart fig. 3.7, and the experimental results

concern to it is deciphered in the following steps

Fig. 3.18a. Interpolated resultant curvelet based fused MOD12 (1186*1186) image of
d2
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Fig. 3.18b. Resultant curvelet based fused ASMO

77-50T 77-52'E 77-54-E 77*56'E 77'58'E

77°SO-E 77'54-E

Fig. 3.18c. Minimum Distance classified of the resultant curvelet based fused
AS MO
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i. Fusion of MODIS band 1 and Band 2

The resultant fuzzy based fused image of MODIS band 1 and band 2 of image d2 i.e.,

MOD12 is depicted in the fig. 3.19a, and MOD12 is classified by the application of

minimum distance classification technique, and the minimum distance classified

MOD12 is shown in the fig. 3.19b, and it's classification accuracy is tabulated in the

table 3.4, and it implies that the overall classification accuracy is 41.70, and whereas

the overall classification accuracy for MODIS band 1, MODIS band 2 for d2 imageis

34.06% and 52.17% is tabulated in the table 3.2.

ii. Fusion of ASTER band 2 and Band 3

AST23, the resultant fuzzy based fused image of ASTER band 2 and band 3 is

depicted in the fig. 3.20a, and it is classified by the application of minimum distance

classification technique, and the minimum distance classified AST23 is shown in the

fig. 3.20b, and it's classification accuracy is tabulated in the table 3.4, and it implies

that the overall classification accuracy is 96.89, and whereas the overall classification

accuracy for ASTER band 2, ASTER band 3 is 72.02% and 98.73% respectively, and

is tabulated in the table 3.2.

iii. Fusion of AST23 and MOD12

The resultant fuzzy based fused image of AST23 (fig. 3.20a) and MOD 12 (fig. 3.19a,

and it is interpolated to the size of ASTER. That is MOD 12, is of size 87*87, it is

interpolated to the size of 1186*1186, and its depicted in the fig. 3.21a) is considered

and it is fused and the resultant fused image is ASMO and its depicted in the fig.

3.21b, and it is classified by the application of minimum distance classification

technique, and the minimum distance classified ASMO is shown in the fig. 3.21c,

and it's classification accuracy is tabulated in the table 3.4, and it implies that the

overall classification accuracy is 85.71%, and whereas the overall classification

accuracy for AST23 and MOD 12 is 96.89% and 41.70% respectively.

The Resultant Fused image ASMO, has an enhancement of 51.65% overall
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classification accuracy with respect to MODIS Band 1, and 33.54% overall

classification accuracy with respect to MODIS Band 2. The Producers accuracy of

fused Image has an increase of 89.02%, 23.5% and 28.04% of agriculture, urban and

water classes respectively with respect to MODIS Band 1 and 24.42%, 55.76% and

31.19% of agriculture, urban and water classes with respect to MODIS Band 2. The

Users accuracy of fused Image has been enhanced i.e., of 37.39%, 37.94% and

55.59% of agriculture, urban and water classes with respect to MODIS Band 1 and

33.92%, 40.86% and 40.38% of agriculture, urban and water classes with respect to

MODIS Band 2.

It is observed in the classified images of MODIS Band 1, Band 2 and MOD 12

(resultant MODIS Band 1 fused with MODIS band 2) and as well as the fused

classified images of MODIS and ASTER image that it is difficult to classify the

different major classes (agriculture, water and urban) accurately it may be due to the

reason as MODIS images have quite low resolution as compared with ASTER image.

A graph is plotted in the fig. 3.22, for the comparison of the classification accuracy of

MODIS band 1, MODIS band 2, curvelet based fusion and fuzzy based fusion and

also it infers from tables 3.2, 3.3 and 3.4 that the overall classification accuracy for

the fused image (fuzzy and curvelet based) is better than the MODIS band 1 and band

2 and as well as with MOD 12. It is also observed that the overall classification

accuracy for the fuzzy based fusion is more than the curvelet based fusion.

Table 3.4. Classification Accuracy of fusion of MODIS (d2) and ASTER (asl)

through fuzzy transform

Images

Users Accuracy Producers Accuracy Overall

Classification

Accuracy

Agric

ulture
Urban Water

Agric

ulture
Urban Water

MOD12 55.11 34.38 34.89 42.92 14.19 70.80 41.70

AST23 98.74 97.09 95.04 100.00 92.59 97.65 96.89

AS_MO 99.15 75.44 82.45 98.31 79.63 79.22 85.71
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Fig. 3.19a. Resultant fuzzy based fused MOD12 image of d2
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Fig. 3.19b. Minimum distance classified of the resultant fuzzy based fused MOD12
image of d2
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Fig. 3.20a. Resultant fuzzy based fused AST23 image of asl

Fig. 3.20b. Minimum distance classified of the resultant fuzzy based fused AST23
image of as 1
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Fig. 3.21a. Interpolated resultant fuzzy based fused MOD12 (1186*1186) image of
d2

Fig. 3.21b. Resultant fuzzy based fused AS MO
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Fig. 3.21c. Minimum Distance classified ofthe resultant fuzzy based fused AS_MO
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3.5.1.3. Fusion coefficients

Eq. 3.24 indicates the computation of fusion coefficients, which is the average of the

resultant fused image of ASMOdl and AS MO d2. AS MO dl and AS_MO_d2

has to be computed first as given in the section 3.5.1.1, the computation of

AS_MO_d2 is shown in the fig. 3.18b. For the computation of ASMOdl, the

MOD 12 of image dl has to be fused with the AST23 image. The MOD 12 of image dl

is shown in the fig. 3.23a, and its minimum distance classified image is shown in the

fig. 3.23b, and its classification accuracy is tabulated in the table 3.5, and it implies

that the overall classification accuracy is 44.40%, and whereas the overall

classification accuracy for MODIS band 1, MODIS band 2 for dl image is 34.06%

and 52.17%. The MOD 12 (fig. 3.23a, and it is interpolated to the size of ASTER, i.e.,

MOD 12, is of size 87*87, it is interpolated to the size of 1186*1186), is fused with

AST23 (fig. 3.17a), and their resultant fiised image is ASMOdl, and its depicted in

the fig. 3.24a, and it is classified by the application of minimum distance

classification technique, and the minimum distance classified ASMOdl is shown in

the fig. 3.24b, and it's classification accuracy is tabulated in the table 3.5, and it

implies that the overall classification accuracy is 56.23%, and whereas the overall

classification accuracy for AST23 and MOD12 is 98.17% and 44.40% respectively.

The resultant fused image ASMOdl, has an enhancement of 22.17% overall

classification accuracy with respect to MODIS Band 1, and 4.06% overall

classification accuracy with respect to MODIS Band 2. The producers accuracy of

fused image has an increase of 76.24% and 2.15% of agriculture and water classes

with respect to MODIS Band 1 and 11.64%, 3.91% and 5.3% of agriculture, urban

and water classes with respect to MODIS Band 2. The users accuracyof Fused Image

has an enhancement of 8.52% and 28.65% of agriculture and water classes with

respect to MODIS Band 1 and 5.05% and 13.44% of agriculture and water classes

with respect to MODIS Band 2.

Once the ASMOdl and AS_MO_d2 are computed, the fusion coefficients is

computed by eq. 3.24, and the resultant fusion coefficient is shown in the fig. 3.25.

Once the fusion coefficients is computed, it is again fused with the MODIS image dl

and d2, and its corresponding classification accuracy is computed. The resultant fused
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image ASTavgdl, of the fusion of fusion coefficients with MODIS dl image, is

shown in the fig. 3.26a, and its minimum distance classified image is shown in the fig.

3.26b, and their classification accuracy is tabulated in the table 3.7.

Similarly, image d2, is fused with fusion coefficients, and resultant fused

image AST_avg_d2 is shown in the fig. 3.27a, and its minimum distance classified

image is shown in the fig. 3.27b, and their classification accuracy is tabulated in the

table 3.7.

Fig. 3.23a. Resultant curvelet based fused MOD12 of image dl
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Fig. 3.23b. Minimum distance classified of the resultant curvelet based fiised MOD12
of image dl

Fig. 3.24a. Resultant curvelet based fused ASMO of image dl
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Fig. 3.24b. Minimum distance classified of the resultant curvelet based fused ASMO
of image dl

Fig. 3.25. AST_avg (fusion coefficients)
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Table 3.5. Classification Accuracy of fusion of MODIS image dl and ASTER
through curvelet transform

Ima

geid
Images

Users Accuracy Producers Accuracy Overall

Classificatio

n Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

dl

MODIS

band 1
61.76 37.50 26.86 9.29 56.13 51.18 34.06

MODIS

band 2
65.23 34.58 42.07 73.89 23.87 48.03 52.17

MOD 12 57.08 26.51 38.43 55.31 14.19 60.58 44.40

AS MO 70.28 34.29 55.51 85.53 27.78 53.33 56.23

A different year is considered for testing the fusion coefficients, that is the

MODIS d3 (i.e., year 2009) image is fused with the ASTER image and also with the

fusion coefficients. The MOD12 of image d3 is shown in the fig. 3.28a, and its

minimum distance classified image is shown in the fig. 3.28b. Its classification

accuracy is tabulated in the table 3.6 which implies that the overall classification

accuracy is 42.77%, and whereas the overall classification accuracy for MODIS band

1, MODIS band 2 for d3 image is 38.65%and 52.53%. MOD12 of image d3 is fused

with AST23 (fig. 3.17a) which resultant fused image is AS_MO_d3 (fig. 3.29a). It is

classified by the application of minimum distance classification technique and the

minimum distance classified AS_MO_d3 is shown in the fig. 3.29b. It's classification

accuracy is tabulated in the table 3.6 which implies that the overall classification

accuracy is 55.52% whereas the overall classification accuracy for AST23 and

MOD 12 is 98.17% and 42.77% respectively.

Simultaneously the MODIS image d3 is also fused with the fusion coefficients

and resultant fused image AST_avg_d3 is shown in the fig. 3.30a, and its minimum

distance classified image is shown in the fig. 3.30b, and their classification accuracy

is tabulated in the table 3.7.

Fig. 3.31 shows the graph implying the classification accuracy of fused

MODIS image dl, d2 and d3 with ASTER image in one hand in another hand it is

fused with AST_avg (fusion coefficients). The classification accuracy obtained by

both approaches of fusion (i.e., directly with ASTER and ASTERavg) is quite

encouraging which focus that the proposed methodology of fusion coefficient may be
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used in near future for analyzing time series MODIS image. The proposed

methodology may reduce the computational complexity because we have to compute

only once the fiision coefficient and after that this coefficient may be useful for fusion

with MODIS image for year to year for the month March.

Table 3.6. Classification Accuracy of fusion of MODIS imaj
through curvelet transform

ie d3 and ASTER

Ima

geid
Images

Users Accuracy Producers Accuracy Overall

Classification

Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

d3

MODIS

band 1
55.41 36.85 37.12 33.63 55.16 28.88 38.65

MODIS

band 2
63.68 42.15 36.10 73.23 39.36 33.14 52.53

MOD 12 54.49 32.49 34.73 54.87 10.32 60.21 42.77

AS MO 58.97 22.99 71.88 83.83 28.48 53.73 55.52

Table 3.7. Classification Accuracy

Ima

geid
Images

Users Accuracy Producers Accuracy Overall

Classification

Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

dl

AS MO

dl
70.28 34.29 55.51 85.53 27.78 53.33 56.23

AST avg
dl

70.03 34.29 55.33 85.53 27.78 52.94 56.09

d2

AS MO

d2
47.65 11.69 88.24 82.13 29.17 54.12 54.81

AST avg
d2

66.10 29.56 52.78 82.98 21.76 52.16 53.12

d3

AS MO

d3
58.96 22.99 71.87 83.83 28.47 53.72 55.52

AST avg
d3

56.87 20.62 70.51 82.55 25.46 53.14 53.96
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Fig. 3.26a. ASTavg curveletbased fused with MOD12 of image dl (i.e.,
AST_avg_dl)

77*50* 77*52* 77*54* 77*56* 77*58*

77*54*

Fig. 3.26b. Minimum distance classified AST_avg_dl
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Fig. 3.27a. AST_avg curvelet based fused with M0D12 ofimage d2 (i.e.,
AST_avg_d2)

77*50* 77*52* 77*54* 77*56* 77*58*

77*50* 77*54* 77*58*

Fig. 3.27b. Minimum distance classified AST_avg_d2
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Fig. 3.28a. Resultant curveletbased MOD12of image d3

Fig. 3.28b. Minimum distance classified MOD12 of image d3
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Fig. 3.39a. AS_MO ofimage d3 (i.e., MOD12 ofd3 is fused with AST23)

77*50* 77*52* 77*56* 77*58*

Fig. 3.29b. Minimum distance classified ASMO ofimage d3
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Fig. 3.30a. AST_avg curvelet based fused with MOD12 of image d3 (i.e.,
AST_avg_d3)

77*50* 77*52* 77*54* 77*56* 77*58*

77*52* 77*54* 77*56* 77*58*

Fig. 3.30b. Minimum distance classified AST_avg_d3~
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Fig. 3.31. Graph implying the classification accuracy of fused MODIS image with
ASTER image and MODIS image with ASTavg (fusion coefficients)

Tahle 3.8. Oualitv assessment indicators for fused images with 1respect to MOD 12

MOD12

Corr RMSE RMD RVD Dl PSNR UQI

AS MO

dl

0.9656 49.6871 -1.4090e-004 0.1129 0.0523 14.2059 5.0348e-

005

AS MO

d2

0.9805 34.9941 -2.2529e-004 0.0615 0.0280 17.2509 6.0104e-

005

AS MO

d3

0.9780 27.5457 -2.0349e-004 0.0681 0.0219 19.3297 1.0889e-

004

AST av

g dl

0.9657 49.6473 -1.4090e-004 0.1128 0.0522 14.2129 5.0359e-

005

AST av

g d2

0.9806 34.9365 -2.2529e-004 0.0614 0.0279 17.2652 6.0119e-

005

AST av

g d3
0.9779 27.5776 -2.0349e-004 0.0683 0.0220 19.3197 1.0887e-

004
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3.5.2. Quality assessment

The correlation coefficient, RMSE, RMD, RVD, Dl, PSNR and UQI is computed as

by the eq. 3.14, 3.15, 3.16, 3.17, 3.18, 3.19 and 3.20 respectively. These quality

assessment indicators have been calculated for the fused images with respect to

ASTER and fusion Coefficients. In Table 3.8 the quality assessment indicators are

tabulated for the fused images ASMOdl, AS_MO_d2, AS_MO_d3, ASTavgdl,

AST_avg_d2 and AST_avg_d3 with respect to the MOD 12 of the corresponding

MODIS image i.e., for the ASMOdl, and ASTavgdl the quality assessment

indicators are calculated with respect to the MODIS image dl and similarly with

respect to MODIS image d2 and image d3 the quality assessment indicators are

calculated for AS_MO_d2, AS_MO_d3, AST_avg_d2 and AST_avg_d3 respectively.

From the table 3.8 it clearly points out that there exists a high closeness between

MOD 12 of image dl and ASMOdl, AST_avg_dl. Similarly there exists a higher

closeness of MOD12 of image d2 and AS_MO_d2, AST_avg_d2 and also there

exists a higher closeness of MOD 12 of image d3 and AS_MO_d3, AST_avg_d3.

Similarly, for the quality assessment indicators RMSE, RMD, RVD, Dl, PSNR and

UQI also implies that there doesn't exists more differences for the fused images of

ASMOdl, ASTavgdl for the image dl and for the fused images of AS_MO_d2,

AST_avg_d2 for the image d2 and also for the fused images of AS_MO_d3,

AST_avg_d3 for the image d3. Approximately the value of different quality indicators

are same once we are computing these indicators with respect to ASMO with

MOD 12 and ASTavg with MOD 12. It infers that fusion coefficients may be

alternative choice for reducing the computational complexity of the fusion processing

for classification purpose.

3.6. Conclusion

A methodology for the enhancement of overall classification accuracy for the MODIS

image is presented in one hand and in another hand a fusion coefficient is derived

which reduces the computation complexity. The high resolution image (i.e., ASTER)

is fiised with low or moderate resolution image (i.e., MODIS) and the resultant fused

image is analyzed in the viewpoint of land cover classification through the curvelet
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based and fuzzy based fusion. The classification accuracy implies that the overall

classification accuracy for the fuzzy based fusion is more than the curvelet based

fusion, and also it points that the overall classification accuracy for the fused image is

better than the MODIS band 1 and MODIS band 2. We have also attempted to obtain

a fusion coefficient for the particular month (i.e., March) that may be useful for the

further years. By this we can avoid to purchase the ASTER image or higher resolution

every year. We have found that fusion coefficient may be obtained and that may be

quite useful for the fusion of MODIS image. The new fusion coefficient is validated

with respect to classification accuracy and quality assessment indicators (Correlation

Coefficient, Root Mean squared error, Relative Mean Difference, Relative Variation

Difference, Deviation Index, Peak signal-to-noise ratio (PSNR), Universal Image

Quality Index). It implies the proposed methodology with fusion coefficient may be

used to develop a land cover monitoring system with MODIS image (because it is free

and temporal acquisition is high).
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Chapter 4

Optical (MODIS) and Radar

(PALSAR) Image Fusion for Land

Cover Classification

In the previous chapter, analysis of fusion of optical images for land cover

classification was dealt. In this chapter, analysis of fusion of optical and radar images

in the viewpoint of land cover classification is carried out. For this purpose, we have

considered the MODIS and PALSAR (Phased Array Type L-band SAR) images.

Likewise the previous chapter, the fusion methodologies i.e., curvelet and fuzzy based

fusion techniques are used in one hand and in another hand, Quality assessment

indicators have been computed, in order to assess the quality of the fused image.

Thereby we have attempted to analyze the fusion of optical and radar images, along

with the inspection of the resultant fused image in terms of classification accuracy.
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4.1. Introduction

Recent development in land-cover classification of satellite images was to a great

extent driven by the increased availability of data from different, often

complementary, sensors and sources. Richards, 2005 mentions the trend of enhanced

numbers of bands and spectral resolution for optical sensors as well as the availability

of multidimensional synthetic aperture radar (SAR) image at different wavelengths,

polarizations, and incident angles as driving factors for the generation of land cover

classification for understanding the actual status of various land cover classes. Land

cover mapping using satellite imagery has a lot of advantages such as low cost, large

area coverage, repetitively, and computability over the traditional mapping

approaches like terrestrial survey and basic aerial photo interpretation which is well

known fact nowadays.

Satellite remote sensors can be divided into two major types of imaging

systems: optical and radar imaging systems. These two sensor types are verydifferent

in terms of the wavelength of their electromagnetic energy, sensor structure, and

image product (Brisco and Brown, 1995, Harris et al., 1990, Raghavawamy et al.,

1996, Welch and Ehlers, 1988), and the advantage of fusing optical and radar is

explained in the section 1.1, and its literature survey is dealt in the section 2.5.

In this chapter, analysis of land cover classification is dealt after the fiision of

optical and radar images. The curvelet and fuzzy based techniques have been used for

fusion as discussed in the previous chapter 3. This chapter is structured as follows:

image used for thestudy has been discussed in section 4.2. Section 4.3 briefly reviews

the curvelet based fusion and fuzzy based fusion, as well as the quality assessment

indicators for optical and radar images. Implementation and results of the used

approach is given in section 4.4. In the subsequent section, i.e., in section 4.5 analysis

of experimental results are carried out and finally this chapter is concluded in the

section 4.6.
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4.2. Data Used/Study Area

Roorkee Region as discussed in the section 1.3.1 is considered for the fusion of

optical and radar images. The MOD09Q1 product of the MODIS image is considered

and whose details are given in the section 1.4.1a. In this chapter, the MODIS product

MOD09Q1 of April 7th 2009 is used. The MODIS Band 1 and Band 2 are considered

as these bands have special features to identify the agriculture and other land covers

and radar image and PALSAR product L1.0 CEOS which is acquired on 6th April

2009 is used for fusion purpose. The PALSAR image has the incidence angle of 21.5°

and approximately 30m resolution and details are give in section 1.4.1c.

4.3. Theoretical Basis

4.3.1. Curvelet transform based Fusion

The main feature of the curvelet transform is that it is sensitive to directional

boundaries and capable of representing the highpass details of object contours at

different scales through few sparse nonzero coefficients (Stark et al. 2002). The

different steps which is used for Curvelet fusion is discussed in the section 3.3.1, and

fig. 3.1 depicts the flow chart of Curvelet Transform.

4.3.2. Fuzzy based Fusion

Fuzzy logic is a powerful problem-solving methodology with a myriad of applications

in information processing (Tizhoosh and HauBecker, 2000). Fuzzy provides a

remarkably simple way to draw definite conclusions from vague, ambiguous or

imprecise information. In a sense, fuzzy logic resembles human decision making with

its ability to work from approximate data and find precise solutions. The detailed

descriptions of the fuzzy approach is elucidated in the section 3.3.2.
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4.3.3. Quality assessment indicators

In order to assess the quality of the fused product some quantitative assessment

criteria have been defined by comparing the fused product and the low spatial

resolution multispectral images (Wald et al., 1997). A series of indicators have been

used for this purpose, and is thoroughly reviewed in the section 3.3.3.

4.4. Implementation and Results:

The raw MODIS image is initially geo-referenced and the raw PALSAR image are

also geo- referenced. The Wishart Gamma Map Filter is a polarimetric filer which is

suitable for polarimetric image to remove the speckles. It performs well in the

presence of regular texture and moderate relief. The filter operates under the

assumption of target reciprocity (i.e., HV=VH) (SARSCAPE help document). This

filter has ability of preserving polarimetric information after removing the speckle

(Nezry and Yakam-Simen 1999). Hence, for the PALSAR image Wishart Gamma

Map Filter is applied and three filtered images are obtained (HH, HV and VV).

Consequently MODIS and PALSAR image are subsetted to Roorkee region and the

care is taken so that area of sub-set region of both satellite images should be

approximately equal. Therefore, MODIS has 108*108 pixels and PALSAR has

1071*1071 number of pixels after subsetting, by which both are acquiring

approximately the same area.

4.4.1. Curvelet based fusion

Fig. 4.1, fig. 4.2 and fig. 4.3 show the flowchart of the proposed methodology for the

curvelet fusion of MODIS and PALSAR images for land cover classification.

i. Fusion of MODIS band 1 and Band 2

MODIS Band 1 and Band 2 is fused as discussed in the section 3.4.1 to obtain a new

image which reflects the fused image (MOD 12) of Band 1 and Band 2 i.e., the
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resultant fiised image MOD 12 of 108*108 pixels. The flowchart is depicted in the fig.

4.3. This MOD 12 image is interpolated through bi-linear interpolation technique

(Thomas et al., 1999) to the scale of the PALSAR image of 1071*1071 pixels. The

flowcharts for the fusion of PALSAR images with the MODIS images are deciphered

in the following steps

Step 1: Fusion of MODIS band 1 with the PALSAR images. Fig. 4.1 implies the

proposed methodology for the fusion of MODIS band 1 and PALSAR image. MODIS

Band 1 and PALSAR image are considered initially and MODIS band 1 is

interpolated through bi-linear interpolation technique to the scale of the PALSAR

image of 1071*1071 pixels. ATWT transformation is applied for PALSAR and Cj

(j=3 for present case) is replaced by MODIS band 1 and finally the resultant fused

image MOl PA is obtained and has 1071*1071 pixels. The PALSAR HH-Pol band is

fused with the MODIS band 1 and the resultant fiised is M01_PA(HH). Similarly we

^ obtained the fused image of PALSAR HV-Pol band that is MOIPA(HV) and the

fused image ofPALSAR VV-Pol band i.e., MOIPA(VV).

Step 2: Fusion of MODIS band 2 with the PALSAR images. The proposed

methodology for the fusion of MODIS band 2 and PALSAR image is shown in the

fig. 4.2. MODIS Band 2 and PALSAR image are considered initially and MODIS

band 2 is interpolated through bi-linear interpolation technique to the scale of the

PALSAR image of 1071*1071 pixels. ATWT transformation is applied for all the

PALSAR bands and Cj (j=3 for present case) is replaced by MODIS band 2 which

gives the resultant fused image M02PA that has 1071*1071 pixels. The PALSAR

HH-Pol band is fused with the MODIS band 2 and the resultant fused is

M02_PA(HH). Similarly, we obtained the fused image of PALSAR HV-Pol band

with MODIS band 2 i.e., M02_PA(HV) and the fused image of PALSAR VV-Pol

band with MODIS band 2 i.e., M02_PA(VV).
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Fig. 4.1. Flowchart for fusion of MODIS (Band 1) on PALSAR images
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Fig. 4.2. Flowchart for fusion of MODIS (Band 2) on PALSAR images
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Fig. 4.3. Flowchart for fusion of MODIS (Band 1 and Band 2) on PALSAR

images

Step 3: Fusion of MOD12 image with the PALSAR images. In the flowchart of

fig. 4.3, the MOD 12, the interpolated fused image of MODIS bands and PALSAR

bands are considered for the fiision. ATWT transformation is applied for all the

PALSAR bands and Cj (j=3 for present case) is replaced by MOD 12 which gives the

resultant fused image MO PA that has 1071*1071 pixels. The PALSAR HH-Pol

band is fused with the MOD 12 and the resultant fused is MOPA(HH). Similarly the

fused image of MOD 12 with PALSAR HV-Pol band is M012_PA(HV) and the fused

image of PALSAR VV-Pol band is M012_PA(VV).
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4.4.2. Fuzzy based fusion

Fuzzy Interference System (FIS) Based Mamdani Model is a computing process by

using fuzzy logic from input space to output space is being used in this chapter, as the

advantages of using Mamdani FIS are described in the section 3.4.2

Fuzzy Interference System Editor for the fusion of MODIS and PALSAR

image is emphasized in fig. 4.4. Fig. 4.5 shows the selection of Membership Fusion

(MF) plots using Membership Fusion Editor and fig. 4.6 indicates the Rule Editor, for

accentuating the rules that are used for the fusion of PALSAR image with the

MODIS image.

Fig. 4.7, fig. 4.8 and fig. 4.9 shows the flowchart of the proposed methodology

for the fuzzy based fusion of MODIS and PALSAR image for analyzing the

classificationof the MODIS image before and after the fusion. The subsetted MODIS

has 108*108 and PALSAR has 1071*1071 pixels and the care is taken so that area of

sub-set regionof both satellite images shouldbe approximately equal.

i. Fusion of MODIS band 1 and Band 2

MODIS Band 1 and Band 2 are considered initially. The Band 1 is fused with the

Band 2, through the fuzzy based fusion. The FIS of the matlab is used for fusion and

is deciphered by the figs. 4.4, 4.5 and 4.6. A new image which reflects the fused

image (MOD 12) of Band 1 and Band 2 i.e., the resultant fused image MOD 12 of

108*108 pixels. This MOD12 image is interpolated through bi-linear interpolation

technique to the scaleof the PALSAR of 1071 *1071 pixels.

The flowcharts for the fusion of PALSAR images with the MODIS images are

deciphered in the following steps

Step 1: Fusion of MODIS band 1 with the PALSAR images. Fig. 4.7 implies the

proposed methodology for the fusion of MODIS band 1 and PALSAR images.

MODIS Band 1 and PALSAR image are considered initially and MODIS band 1 is
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interpolated through bi-linear interpolation technique to the scale of the PALSAR

image of 1071*1071 pixels. The interpolated MODIS band 1 and PALSAR are

considered for the fusion through the FIS of the matlab and fig. 4.4, 4.5 and 4.6 are

used for the fusion, and thereby gives the resultant fused image M01_PA that has

1071*1071 pixels. The PALSAR HH-Pol band is fused with the MODIS band 1 and

the resultant fused is MOIPA(HH). Similarly the fused image of MODIS band 1

with PALSAR HV-Pol band is MOIPA(HV) and the fused image of MODIS band 1

with PALSAR VV-Pol band is MOIPA(VV).

Step 2: Fusion of MODIS band 2 with the PALSAR images. The proposed

methodology for the fiision of MODIS band 2 and PALSAR image is shown in the

fig. 4.8. MODIS Band 2 and PALSAR image are considered initially and MODIS

band 2 is interpolated through bi-linear interpolation technique to the scale of the

PALSAR image of 1071*1071 pixels. The FIS of the matlab and fig. 4.4, 4.5 and 4.6

are used for the fusion, and thereby gives the resultant fused image M02_PA that has

1071*1071 pixels. The PALSAR HH-Pol band is fused with the MODIS band 2 and

the resultant fused is M02PA (HH). Similarly the fused image of MODIS band 2

with PALSAR HV-Pol band is M02_PA(HV) and the fused image of MODIS band 2

with PALSAR VV-Pol band is M02_PA(VV).

Step 3: Fusion of MODI2 image with the PALSAR images. In the flowchart of

fig. 4.11, the MOD 12, the interpolated fused image of MODIS bands and PALSAR

bands are considered for the fusion. The FIS of the matlab and fig. 4.4, 4.5 and 4.6 are

used for the fusion, and thereby gives the resultant fused image MOPA that has

1071*1071 pixels. The PALSAR HH-Pol band is fused with the MOD 12 and the

resultant fused is MOPA(HH). Similarly the fiised image of MOD 12 with PALSAR

HV-Pol band is MOPA(HV) and the fused image of MOD 12 with PALSAR VV-Pol

band is MOPA(VV).

Page | 113



FIS Editor: fuse finaI2

File Edit View

PALSAR

MODIS

FIS Name:

And method

Or method

Implication

Defuzzification

fuse finaC

centroid

fuse final2

(mamdani)

FIS Type:

Current Variable

Name

Type

Range

Help

MO PA

mamdani

PALSAR

input

(0 255]

Close

System "fuse fina!2": 2 inputs, 1 output, and 4 rules

Fig. 4.4. Fuzzy Interference System Editor for the fusion of PALSAR and MODIS
image

Membeiship Function Editor: fuse final2

File Edit View

FIS Variables

Mi

IS
MODIS

PALSAR MO PA

Current Variable

Name PALSAR

Type input

Range [0255]

Display Range ,Q 2551

Ready

Membership function plots I** points: 181 j

mf3 mf4

input variable "PALSAR"

Current Membership Function (click on MFto select)

Name mf1

^P8 jgbellmf

; [17.88 1.21 8.88e-016]Params

Help

Fig. 4.5. Membership Fusion Editor implying the Membership Fusion(MF) for the
PALSAR and MODIS image

P a g e | 114

*

-V



*

Rule Editor: fuse final

File Edit View Options

1. If (PALSAR is mf1) or (MODIS is mf1) then (MO_PA is mf1) (1)
2. If (PALSAR is mf2) or (MODISis mf2) then (MO_PA is mf2) (1)
3. If (PALSAR is mf3) or (MODIS is mf3) then (MO_PA is rnf3) (1)
4. If (PALSAR is mf4) or (MODIS is mf4) then (MO_PA is mf4) (1)

PALSAR i:

:mf2

mf3

mf4

none

• not

r Connection -,

or

; and

Renamed FIS to "fuse finaf"

Delete rule Add rule

\m M IX

Change rule

Help Close

Fig. 4.6. Rule Editor for the fusion of PALSAR and MODIS image

MODIS Band 1
PALSAR

t

Georeferene

w

Georeferene

* +
Subset

(108*108)
Wishart Gamma

Map Filter

J_ %

Interpolate
(1071*1071)

\

Subset

(1071*1071)

4
4 Fuzzy

+
M01_PA

(1071*1071)

Fig. 4.7. Flowchart for fusion of MODIS(Band 1)on PALSAR images

Page | 115



MODIS Band 2
PALSAR

1

Georeferene
Georeferene

4 f
Subset

(108*108)
Wishart Gamma

Map Filter

f

\

f

Interpolate
(1071*1071)

Subset

(1071*1071)

f

\ Fuzzy

A
M02_PA

(1071*1071)

Fig. 4.8. Flowchart for the fusion of MODIS(Band 2) on PALSAR images

MODIS PALSAR

.-'" N f

*""

Georeferene
Bandl Band 2

t
f Wishart Gamma

Map FilterGeoreferene Georeferene

f

i Subset

(1071*1071)Subset

(108*108 1

Su

(108
Dset

*108)

Fuzzy

MOD12

(108*108)

Interpolate
(1071*1071)

Fuzzy

MO_PA
(1071*1071)

Fig. 4.9. Flowchart for the fusion of MODIS(Band 1and Band 2) on
PALSAR images

Page | 116

4

>



Fig. 4.10a. PALSAR HH-Pol image

^

*

Fig. 4.10b. PALSAR HV-Pol image
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Fig. 4.10c. PALSAR VV-Pol image
>

±

Fig. 4.11a. MODIS Band 1 image
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Fig. 4.11b. MODIS Band 2 image

4.5. Analysis of Experimental Results

The subsetted PALSAR HH-Pol, HV-Pol and VV-Pol images are shown in the fig.

4.10a, fig. 4.10b and fig. 4.10c respectively and the subsetted MODIS band 1 and

band 2 are shown in the fig. 4.1 la and fig. 4.1 lb respectively. The toposheet for the

Roorkee region is shown in the fig. 3.11.

4.5.1. Curvelet based fusion

The proposed methodology for the fusion of MODIS and PALSAR image, through

the curvelet based fusion is shown in the flowchart fig. 4.1, fig. 4.2 and fig. 4.3, and

the concerned experimental results is deciphered in the following steps
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Step 1: Fusion of MODIS band 1 with the PALSAR images. Fig. 4.1 implies the

proposed methodology for the fusion of MODIS band 1 and PALSAR image.

MOIPA(HH) is shown in the fig. 4.12a, and fig 4.12b, MOIPA(HV) is depicted

and MOIPA(VV) is shown in fig. 4.12c.

Step 2: Fusion of MODIS band 2 with the PALSAR images. The proposed

methodology for the fusion of MODIS band 2 and PALSAR image is shown in the

fig. 4.2. M02_PA(HH) is shown in the fig. 4.13a, and fig 4.13b M02_PA(HV) is

depicted and M02_PA(VV) is shown in fig. 4.13c.

Step 3: Fusion of MOD12 image with the PALSAR images. In the flowchart of fig.

4.3, the MOD12 (The resultant curvelet based fiision of MODIS band 1 and band 2

i.e., MOD12 is depicted in the fig. 4.14a) is bilinear interpolated and fused with

PALSAR bands. MOPA(HH) is shown in the fig. 4.14b, and fig 4.14c, MOPA(HV)

is depicted and MOPA(VV) is shown in fig. 4.14d.

4.5.2. Fuzzy based fusion

The proposed methodology for the fusion of MODIS and PALSAR images, through

the fuzzy based fusion is shown in the flowchart fig. 4.7, fig. 4.8 and fig. 4.9, and the

concerned experimental results is deciphered in the following steps

Step 1: Fusion of MODIS band 1 with the PALSAR polarized images. Fig. 4.7

implies the proposed methodology for the fuzzy based fusion of MODIS band 1 and

PALSAR polarized image. MOIPA(HH) is shown in the fig. 4.15a, and fig 4.15b,

MOIPA(HV) is depicted and M01_PA(VV) is shown in fig. 4.15c.
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Fig. 4.12a. MOIPA(HH), the resultant fused image of MODIS Band 1 and
HH-Pol image fused by curvelet based fiision .

Fig. 4.12b. MOIPA(HV), the resultant fused image of MODIS Band 1 and
HV-Pol image fused by curvelet based fusion.
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Fig. 4.12c. MOIPA(VV), the resultant fiised image of MODIS Band 1and
VV-Pol image fused by curvelet based fusion.

Fig. 4.13a. M02_PA(HH), the resultant fused image ofMODIS Band 2 and
HH-Pol image fused by curvelet based fusion.
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Fig. 4.13b. M02_PA(HV), the resultant fused image of MODIS Band 2 and
HV-Pol image fused by curvelet based fusion.

Fig. 4.13c. M02_PA(VV), the resultant fused image of MODIS Band2 and
VV-Pol image fused by curvelet based fusion.
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Fig. 4.14a. MOD 12, the resultant fiised imageof MODIS band 1 and MODIS
band 2 fused by curvelet based fiision.

Fig. 4.14b. MOPA(HH), the resultant fused image of MOD 12 and HH-Pol
image fused by curvelet based fusion.
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Fig. 4.14c. MOPA(HV), the resultant fused image of MOD 12 and HV-Pol
image fused by curvelet based fusion.

Fig. 4.14d. MOPA(VV), the resultant fiised image of MOD12 and VV-Pol
image fused by curvelet based fusion.
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Fig. 4.15a. M01_PA(HH), the resultant fused image of MODIS Band 1 and
HH-Pol image fused by fuzzy based fusion.

7
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Fig. 4.15b. MOIPA(HV), the resultant fiised image of MODIS Band 1 and
HV-Pol image fused by fuzzy based fusion.
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Fig. 4.15c. MOIPA(VV), the resultant fused image of MODIS Band 1 and
W-Pol image fused by fuzzy based fusion.

Fig. 4.16a. M02_PA(HH), the resultant fused image of MODIS Band 2 and
HH-Pol image fused by fuzzy based fusion.
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Fig. 4.16b. M02_PA(HV), the resultant fused image of MODIS Band 2 and
HV-Pol image fused by fuzzy based fusion.

Fig. 4.16c. M02_PA(VV), the resultant fused image of MODIS Band 2 and
VV-Pol image fused by fuzzy based fusion.
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Fig. 4.17a. MOD12, the resultant fused image of MODIS band 1 and MODIS
band 2 fused by fuzzy based fusion.

Fig. 4.17b. MOPA(HH), the resultant fiised image of MOD12 and HH-Pol
image fused by fuzzy based fusion.
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Fig. 4.17c. MO_PA(HV), the resultant fused image of M0D12 and HV-Pol
image fused by fuzzy based fusion.

Fig.4.17d. MO_PA(VV), theresultant fiised image of MOD 12 and VV-Pol
image fused by fuzzy based fusion.
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Step 2: Fusion of MODIS band 2 with the PALSAR polarized images.

Methodology for fuzzy fusion of MODIS band 2 and PALSAR images is shown in

the fig. 4.8, and the resultant images M02_PA(HH), M02_PA(HV) and

M02_PA(VV) are shown in figs. 4.16a, 4.16b and 4.16c respectively.

Step 3: Fusion of MOD 12 image with the PALSAR images. In the flowchart of

fig. 4.9, the MOD12 (The resultant fuzzy based fusion of MODIS band 1 and band 2

i.e., MOD 12 is depicted in the fig. 4.17a) is bilinear interpolated and fiised with

PALSAR bands. MOPA(HH) MOPA(HV) and MOPA(VV) are shown in fig.

4.17b, 4.17c and 4.17d respectively.

In order to assess the quality of the fused image by some quantitative

assessment criteria have been defined by comparing the fused product and the low

spatial resolution multispectral images (Wald et al., 1997) in one hand and in another

hand the classification accuracy is also computed to review the significance of the

fused images in the direction of land cover classification. In the following paragraphs,

the quantitative assessment criteria indicators, and classification accuracy are

discussed.

i. Classification Accuracy.

The Minimum Distance classification technique has been applied for obtaining the

major type of land cover classification, i.e., urban, agriculture and water. ENVI 4.3

software is used for georeferencing and classification purpose where as we have

developed codes in MATLAB 7.0for fusion methodology.

We have identified 392 GCPs for agriculture, 358 GCP for urban and 311

GCP for water bodies for training and for testing 209 GCP for agriculture, 318 GCP

for urban and 223 GCP for water bodies from Toposheet of Roorkee region (Fig.

3.11), Google earth and Ground Survey points. The Control points were basically

collected by ground survey with the use of GPS and more than 100 points were

separately collected for each classes, and these points were overlapped on Google
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Earth and Toposheet for visual interpretation of the points. On the basis of these

GCPs, we have computed the classification accuracy for PALSAR Bands.

Similarly for MODIS bands, we have identified 35 GCP for agriculture, 22

GCP for urban and 30 GCP for water bodies for training and for testing 38 GCP for

agriculture, 27 GCP for urban and 28 GCP for water bodies. It has resolution 250 m

so less GCPs are considered in this study area. We have identified 355 GCP for

agriculture, 309 GCP for urban and 333 GCP for water bodies for training and for

testing 217 GCP for agriculture, 202 GCP for urban and 165 GCP for water bodies for

fused image. On the basis of these GCPs, the Minimum Distance classification is

applied and therebyclassification accuracy is computed.

The minimum distance classified image of PALSAR HH-Pol, HV-Pol and

VV-Pol Bands are shown in the figs. 4.18a, 4.18b and 4.18c respectively. In figs.

4.19a, 4.19b, shows the minimum distance classified image of MODIS Band 1 and

Band 2 respectively. The producers, users, and overall classification accuracies of

agriculture, urban and water classes for MODIS band 1, MODIS band 2, PALSAR

HH-Pol, HV-Pol and VV-Pol bands has been tabulated in Table 4.1. The overall

classification accuracy for MODIS band 1, MODIS band 2 is 47.31% and 67.74%

respectively. In other hand PALSAR HH-Pol, HV-Pol and VV-Pol bands has overall

accuracy of 66.27%, 85.47% and 65.07% respectively.

Table 4.1. Classification Accuracy

Images

Producers Accuracy Users Accuracy Overall

Classification

Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

MODIS Band 1 23.68 44.44 82.14 42.86 48.00 48.94 47.31

MODIS Band 2 63.16 48.15 92.86 60.00 54.17 89.66 67.74

HH 28.71 79.87 82.06 36.59 100.0 55.12 66.27

HV 58.85 96.23 95.07 84.25 100.0 71.14 85.47

W 31.58 80.50 74.44 35.68 100.0 53.72 65.07
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Fig. 4.18a. Minimum Distance classified PALSAR HH-Pol image.

Fig. 4.18b. Minimum Distance classified PALSAR HV-Pol image.
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Fig. 4.18c. Minimum Distance classified PALSAR VV-Pol image.

Fig. 4.19a. Minimum Distance classified MODIS band 1.
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Fig. 4.19b. Minimum Distance classified MODIS band 2.

Curvelet based Fusion. The resultant minimum distance curvelet based classified

image ofMODIS band 1and PALSAR bands i.e., MOIPA(HH), MOIPA(HV) and

MOIPA(VV), is depicted in figs 4.20a, 4.20b and 4.20c respectively. In figs 4.21a,

4.21b and 4.21c shows the minimum distance classified image of M02_PA(HH),

M02_PA(HV) and M02_PA(W) respectively, the resultant fused image of

PALSAR (HH, HV and VV) and MODIS band 2. The minimum distance classified

image of MOD 12, the resultant curvelet based fused image of MODIS band 1 and

band 2, is depicted in fig 4.22a. The resultant fused image of MOD 12 and

PALSAR(HH, HV and VV) bands are MOPA(HH), MOPA(HV) and

MOPA(VV), and its minimum distance classified image is depicted in the figs 4.22b,
4.22c and 4.22d respectively.

The classification accuracy for the curvelet based fusion is calculated and

tabulated in the table 4.2. The fused image of MODIS band 1 and PALSAR bands are
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MOl PA(HH), MOIPA(HV) and MOl PA(VV), and there overall classification

accuracy are 78.60%, 77.40% and 78.08% respectively. M02 PA(HH),

M02 PA(HV) and M02_PA(VV), the resultant fused image of MODIS band 2 and

PALSAR bands, and there overall classification accuracy are 78.60%, 80.82% and

78.25% respectively. The fused image of MOD 12 and PALSAR bands are

MOPA(HH), MOPA(HV) and MOPA(VV), and there overall classification

accuracy are 86.30%, 84.76% and 84.60% respectively. It is observed that the overall

classification accuracy for the fused images of PALSAR with MOD 12 is better that

the overall classification accuracy for the fused images of PALSAR with MODIS

band 2 or MODIS band 1.

From table 4.2, it is observed that the producers accuracy of agriculture for the

images MO_PA(HH), MO_PA(HV) and MOPA(VV) are 96.31%, 94.47% and

96.31% respectively, and it is better than the producers accuracy of agriculture for

M02_PA(HH), M02_PA(HV), M02_PA(VV) , M01_PA(HH), M01_PA(HV) and

M01_PA(VV)

The producers accuracy of urban for the fused image with MODIS band 1i.e.,

MOIPA(HH), MOIPA(HV) and M01_PA(VV) are 76.73%, 73.76% and 76.24%

respectively (table 4.2) and it is better than the producers accuracy of urban for the

fused image with MOD 12 i.e., MO_PA(HH), MO_PA(HV) and MO_PA(VV) and

there producers accuracy are 72.77%, 71.29% and 71.78% respectively, and which is

better than the producers accuracy of urban for the fiised image with MODIS band 2

i.e., M02_PA(HH), M02_PA(HV) and M02_PA(VV) and there producers accuracy

are 54.95%, 58.91% and 55.94% respectively.

The producers accuracy ofwater for the fused image with MODIS band 2 i.e.,

M02_PA(HH), M02_PA(HV) and M02_PA(VV) are 95.15%, 95.76% and 94.55%

respectively (table 4.2), and it is better than the producers accuracy ofwater for the

fused image with MOD 12 i.e., MO_PA(HH), MO_PA(HV) and MO_PA(VV) and

there producers accuracy are 89.70%, 88.48% and 84.85% respectively, and which is

better than the producers accuracy of water for the fused image with MODIS band 1

i.e., MOIPA(HH), M01_PA(HV) and MOIPA(VV) and there producers accuracy

are 75.15%, 75.15% and 75.15% respectively.
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Fig. 4.20a. Minimum Distanceclassifiedof the curvelet based fused resultant
MOIPA(HH).
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Fig. 4.20b. Minimum Distance classified of the curvelet based fused resultant
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Fig. 4.21a. Minimum Distance classified of the curvelet based fused resultant
M02_PA(HH).
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Fig. 4.21b. Minimum Distance classified of the curvelet based fused resu tant
M02_PA(HV).
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Fig. 4.21c. Minimum Distance classified of the curvelet based fused resu tant
M02_PA(VV).
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Fig. 4.22a. Minimum Distance classified of the curvelet based fused resultant
MOD 12
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Fig. 4.22b. Minimum Distance classified of thecurvelet based fused resultant
MO_PA(HH).
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Fig. 4.22c. Minimum Distance classified ofthe curvelet based fused resultant
MO_PA(HV).
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Fig. 4.22d. Minimum Distance classified of the curvelet based fused resultant
MO_PA(VV).
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Table 4.2. Classification Accuracy for Curvelet based fusion

Images

Producers Accuracy Users Accuracy Overall

Classification

Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

MOD12 39.47 59.26 82.14 57.69 53.33 62.16 58.07

MOl PA(HH) 82.95 76.73 75.15 68.18 99.90 75.15 78.60

MOl PA(HV) 82.49 73.76 75.15 66.79 98.75 74.25 77.40

MOl PA(VV) 82.03 76.24 75.15 66.92 99.35 76.07 78.08

M02 PA(HH) 88.02 54.95 95.15 66.55 82.84 96.32 78.60

M02 PA(HV) 89.86 58.91 95.76 70.14 85.00 95.18 80.82

M02 PA(VV) 86.64 55.94 94.55 66.67 82.48 94.55 78.25

MO PA(HH) 96.31 72.77 89.70 74.38 98.92 94.87 86.30

MO PA(HV) 94.47 71.29 88.48 72.70 99.80 92.41 84.76

MO PA(W) 96.31 71.78 84.85 71.82 99.55 94.59 84.60

The users accuracy of agriculture for the fused image with MOD12 i.e.,

MO_PA(HH), MO_PA(HV) and MO_PA(VV) are 74.38%, 72.70% and 71.82%

respectively (table 4.2), and it is better than the users accuracy of agriculture for the

fused image with MODIS band 2 i.e., M02_PA(HH), M02_PA(HV) and

M02_PA(VV) and there users accuracy are 66.55%, 70.14% and 66.67%

respectively, and which is better than the users accuracy of agriculture for the fused

image with MODIS band 1 i.e., M01_PA(HH), M01_PA(HV) and M01_PA(VV)

andthereusers accuracy are 68.18%, 66.79% and 66.92% respectively.

The user accuracy for urban areas after fusion are quite good and it is observed

from the table 4.2 that the MO_PA(HH), MO_PA(HV) and MO_PA(VV) are giving

better result than other fused image.

The users accuracy of water for the fused image with MODIS band 2 i.e.,

M02_PA(HH), M02_PA(HV) and M02_PA(VV) are 96.32%, 95.18% and 94.55%

respectively (table 4.2), and it is better than the users accuracy of water for the fused

image with MOD12 i.e., MO_PA(HH), MO_PA(HV) and MO_PA(VV) and there

users accuracy are 94.87%, 92.41% and 94.59% respectively, andwhich is better than

the users accuracy of water for the fused image with MODIS band 1 i.e.,

MOIPA(HH), M01_PA(HV) and MOIPA(VV) and there users accuracy are

75.15%, 74.25% and 76.07% respectively.

MO_PA(HH) the resultant image of fusion of MOD12 (Resultant image of
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MODIS band 1 and band 2) and HH-Pal PALSAR band is exemplifying the highest

overall classification accuracy of 86.30%.

Fuzzy based Fusion. The resultant minimum distance fuzzy based classified image of

MODIS band 1 and PALSAR bands i.e., MOIPA(HH), MOIPA(HV) and

M01_PA(VV), is depicted in figs 4.23a, 4.23b and 4.23c respectively. In figs 4.24a,

4.24b and 4.24c shows the minimum distance classified image of M02_PA(HH),

M02_PA(HV) and M02_PA(VV) respectively The minimum distance classified

image of MOD12, the resultant fuzzy based fused image of MODIS band 1 and band

2, is depicted in fig 4.25a. The resultant fused image of MOD12 and PALSAR(HH,

HV and VV) bands are MOPA(HH), MOPA(HV) and MOPA(VV), and its

minimum distance classified image is depicted in the figs 4.25b, 4.25c and 4.25d

respectively.

The classification accuracy for the fuzzy based fusion is calculated and

tabulated in the table 4.3. The fused image of MODIS band 1 and PALSAR bands are

MOIPA(HH), MOIPA(HV) and M01_PA(VV), and there overall classification

accuracy are 69.18%, 69.35% and 71.75% respectively. M02_PA(HH),

M02_PA(HV) and M02_PA(VV), the resultant fused image of MODIS band 2 and

PALSAR bands, and there overall classification accuracies are 65.41%, 61.99% and

50.51% respectively. The fused image of MOD 12 and PALSAR bands are

MOPA(HH), MOPA(HV) and MO_PA(VV), and there overall classification

accuracy are 82.88%, 82.71% and 83.22% respectively. The overall classification

accuracy for the fused images with MOD 12 is better that the overall classification

accuracy for the fused images with MODIS band 1, and which is better than the

overall classification accuracy for the fused images with MODIS band2.

The producers accuracy of agriculture for the fused image with MOD12 i.e.,

MO_PA(HH), MO_PA(HV) and MO_PA(VV) are 64.98%, 65.44% and 67.28%

respectively (table 4.3), and it is better than the producers accuracy of agriculture for

the fused image with MODIS band 1 i.e., MOIPA(HH), MOIPA(HV) and

MOIPA(W) and there producers accuracy are 52.07%, 53.46% and 56.68%

respectively. Which is better than the producers accuracy of agriculture for the fused
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image with MODIS band 2 i.e., M02_PA(HH), M02_PA(HV) and M02 PA(VV)

and there producers accuracy are 76.50%, 51.61% and 41.47% respectively.

The producers accuracy of urban for the fused image with MOD12 i.e.,

MO PA(HH), MOPA(HV) and MO_PA(VV) are 96.04%, 95.54% and 95.54%

respectively (table 4.3), and it is better than the producers accuracy of urban for the

fused image with MODIS Band 1 i.e., MOIPA(HH), MOIPA(HV) and

MOIPA(VV) and there producers accuracy are 80.69%, 79.21% and 83.66%

respectively, and which is better than the producers accuracy of urban for the fused

image with MODIS band 2 i.e., M02_PA(HH), M02_PA(HV) and M02_PA(VV)

and there producers accuracy are 49.01%, 65.84% and 42.57% respectively.

The producers accuracy of water for the fused image with MOD12 i.e.,

MOPA(HH), MO_PA(HV) and MO_PA(VV) are 90.30%, 89.70% and 89.09%

respectively (table 4.3), and it is better than the producers accuracy of water for the

fused image with MODIS band 1 i.e., MOIPA(HH), MOIPA(HV) and

M01_PA(VV) and there producers accuracy are 77.58%, 78.18% and 76.97%

respectively, and which is better than the producers accuracy of water for the fused

image with MODIS band 2 i.e., M02_PA(HH), M02_PA(HV) and M02_PA(VV)

and there producers accuracy are 70.91%, 70.91% and 72.12% respectively.

Table 4.3. Classification Accuracy for fuzzy based fusion

Images

Producers Accuracy Users Accuracy Overall

Classification

Accuracy
Agric
ulture

Urban Water
Agric
ulture

Urban Water

MOD12 26.32 59.26 85.71 47.62 48.48 61.54 53.76

MOl PA(HH) 52.07 80.69 77.58 61.41 72.44 73.14 69.18

MOl PA(HV) 53.46 79.21 78.18 62.03 71.43 74.57 69.35

MOl PA(VV) 56.68 83.66 76.97 64.74 75.45 74.71 71.75

M02 PA(HH) 76.50 49.01 70.91 57.44 55.62 99.92 65.41

M02 PA(HV) 51.61 65.84 70.91 57.44 48.90 99.80 61.99

M02 PA(VV) 41.47 42.57 72.12 36.29 39.63 99.49 50.51

MO PA(HH) 64.98 96.04 90.30 85.98 87.78 74.87 82.88

MO PA(HV) 65.44 95.54 89.70 84.52 85.78 77.49 82.71

MO PA(W) 67.28 95.54 89.09 84.39 87.33 77.37 83.22
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Fig. 4.23a. Minimum Distance classified of the fuzzy based fused resultant
M01_PA(HH).
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Fig. 4.23b. Minimum Distance classified of the fuzzy based fused resultant
M01_PA(HV).
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Fig. 4.23c. Minimum Distance classified of the fuzzy based fused resultant
M01_PA(VV).
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Fig. 4.24a. Minimum Distance classified of the fuzzy based fused resultant
M02_PA(HH).
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Fig. 4.24b. Minimum Distance classified of the fuzzy based fused resultant
M02_PA(HV).
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Fig. 4.24c. Minimum Distance classified of the fuzzy based fused resultant
M02_PA(VV).
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Fig. 4.25a. Minimum Distance classified of the fuzzy based fused resultant
MOD 12

77-52-30-E 77*55'E 7

52"30"E

Fig. 4.25b. Minimum Distance classified of the fuzzy based fused resu tant
MO_PA(HH).
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Fig. 4.25c. Minimum Distance classified of the fuzzy based fused resultant
MO_PA(HV).
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Fig. 4.25d. Minimum Distance classified of the fuzzy based fused resultant
MO_PA(VV).
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It is observed from the table 4.3 that user accuracies for agricultural and urban

are quite enhanced in the case of MO_PA(HH), MO_PA(HV) and MO_PA(VV)

images in comparison to the other fused image while as for the water class

M02_PA(HH), M02_PA(HV) and M02_PA(VV) are giving the better result. But

overall accuracy is certainly quite high for MOPA(HH), MOPA(HV) and

MOPA(VV) in comparison to other fused images (table 4.3).

It is observed from the table 4.2 that the PALSAR images after curvelet based

fusion with MODIS individual bands i.e., MODIS band 1 and band 2 and as well as

MOD 12 (resultant fused image of MODIS band 1 and band 2) are giving quite

satisfactory classification accuracy and more than 75% overall classification accuracy

for all the fused image. In another hand table 4.3 indicates that for fuzzy based fusion

good classification accuracy is achieved for MOD 12 and all individual PALSAR

bands (HH-Pol, HV-Pol and VV-Pol)

ii. Quality Assessment.

Quality assessment indicators represents that after fusion what is preserved

information in the fused image with original image. The correlation coefficient,

RMSE, RMD, RVD, Dl, PSNR and UQI are computed as by the eq. 3.14, 3.15, 3.16,

3.17, 3.18, 3.19 and 3.20 respectively. These quality assessment indicators have been

calculated for the fused images with respect to MODIS Bands.

Curvelet based Fusion. In table 4.4 the quality assessment indicators are tabulated

for the curvelet based fused images M01_PA(HH), M01_PA(HV), M01_PA(VV),

with respect to MODIS band 1. The quality assessment indicators for the curvelet

fused images M02_PA(HH), M02_PA(HV), M02_PA(VV) with respect to MODIS

band 2 is tabulated in the table 4.5, and in table 4.6 the quality assessment indicators

are tabulated for the curvelet fused images MOPA(HH), MOPA(HV),

MOPA(VV) with respect to MOD12(Resultant fused image of MODIS band 1 and

band 2).
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From the tables 4.4, 4.5 and 4.6, it is observed that there is a good closeness

between resultant fused images i.e., MO_PA(HH), MOPA(HV), MOPA(VV) with

MOD12 and MOIPA(HH), MOIPA(HV), MOIPA(VV) with MODIS band 1 and

M02_PA(HH), M02_PA(HV), M02_PA(VV) with MODIS band 2 (while as

MOPA(HH) and MOD 12 has higher closeness in comparison to other fused images).

Similar results have been obtained with other quality indicators like RMSE, RMD,

RVD, Dl, PSNR and UQI. This type of analysis resembles the advantages of fusion

with curvelet based technique.

Fuzzy based Fusion. The quality assessment indicators for the fuzzy based fused

images MOIPA(HH), M01_PA(HV), MOIPA(W), with respect to MODIS band

1 are tabulated in table 4.7 and in table 4.8, the quality assessment indicators for the

fuzzy based fused images M02_PA(HH), M02_PA(HV), M02_PA(VV) with respect

to MODIS band 2 are tabulated. The quality assessment indicators are tabulated for

the fused images MOPA(HH), MOPA(HV), MOPA(VV) with respect to

MOD12(Resultant fused image of MODIS band 1 and band 2) in table 4.9.

Fuzzy based fusion is giving some different result in comparison to the

curvelet based fusion from the tables 4.7, 4.8 and 4.9. The correlation coefficient for

MOIPA(HH), MOIPA(HV), MOIPA(VV) with MODIS band 1 and

MOPA(HH), MO_PA(HV), MOPA(VV) with MOD 12 are quite high in

comparison to M02_PA(HH), M02_PA(HV), M02_PA(VV), while as a good

correlation coefficient in all combination in case of curvelet based fusion from the

tables 4.4, 4.5 and 4.6. it is noticed that other quality indicators are strengthening the

interference obtained by correlation coefficient value. It clearly indicates that these

type of fusion may be used for various application.

Table 4.4. Quality Assessment Indicators between MODIS Band 1 and resultant
curvelet based fusion of PALSAR Bands with MODIS Band 1

M< 3DIS Band 1

Corr RMSE RMD RVD Dl PSNR UQI
MOl PA(HH) 0.9917 4.0861 -0.3044 -0.6249 0.2965 16.6188 0.0080

MOl PA(HV) 0.9802 6.3747 -0.2434 -0.5399 0.3691 16.5318 0.0060

MOl PA(VV) 0.9722 7.6103 -0.1974 -0.5933 0.3222 19.4116 0.0072
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Table 4.5. Quality Assessment Indicators between MODIS Band 2 and resultant
curvelet based fiision of PALSAR Bands with MODIS Band 2

MODIS Band 2

Corr RMSE RMD RVD Dl PSNR UQI
M02 PA(HH) 0.9838 4.0841 -0.2739 -0.5428 0.1932 16.2280 0.0078

M02 PA(HV) 0.9620 6.3744 -0.2758 -0.5174 0.2748 14.8443 0.0062

M02 PA(VV) 0.9471 7.6093 -0.1917 -0.5070 0.3036 15.9705 0.0075

Table 4.6. Quality Assessment Indicators between MOD 12 and resultant curvelet
based fusion of PALSAR Bands with MOD 12

MOD12

Corr RMSE RMD RVD Dl PSNR UQI
MOPA(HH) 0.9920 4.0749 -0.3717 -0.6388 0.1896 20.8267 0.0118

MOPA(HV) 0.9807 6.3681 -0.3246 -0.5753 0.2373 17.9525 0.0106

MO_PA(W) 0.9728 7.6042 -0.3098 -0.6250 0.2724 19.7172 0.0104

Table 4.7. Quality Assessment Indicators between MODIS Band 1 and resultant
fuzzy based fusion of PALSAR Bands with MODIS Band 1

MODIS Band 1

Corr RMSE RMD RVD Dl PSNR UQI
MOl PA(HH) 0.8333 26.7137 -0.2239 -0.9139 0.2980 19.5961 0.0517

MOIPA(HV) 0.8234 27.1745 -0.2260 -0.9200 0.3008 19.4476 0.0551

M01_PA(W) 0.8415 26.0684 -0.2241 -0.9000 0.2894 19.8085 0.0441

Table 4.8. Quality Assessment Indicators between MODIS Band 2 and resultant
fuzzy based fusion of PALSAR Bands with MODIS Band 2

M(DDIS Band 2

Corr RMSE RMD RVD Dl PSNR UQI
M02 PA(HH) 0.4507 46.7041 -0.1111 -0.5441 0.2213 14.7437 0.0208

M02 PA(HV) 0.4479 47.1527 -0.1147 -0.5763 0.2231 14.6607 0.0230

M02 PA(VV) 0.5469 45.5941 -0.1089 -0.4746 0.2226 14.9526 0.0171

Table 4.9. Quality Assessment Indicators between MOD 12 and resultant fuzzy based
fusion of PALSAR Bands with MOD 12

MOD12

Corr RMSE RMD RVD Dl PSNR UQI

MO PA(HH) 0.8837 25.4357 -0.3108 -0.9699 0.1820 20.0219 0.0595

MO PA(HV) 0.8789 25.7404 -0.3140 -0.9730 0.1830 19.9185 0.0567

MO PA(VV) 0.8911 25.3167 -0.3027 -0.9756 0.1711 20.0627 0.0712
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4.6. Conclusion

A curvelet transform and fuzzy based fusion is applied for various combination of

PALSAR with MODIS image to assess the quality of fused image. The fused images

are quantitatively analyzed by quality assessment indicators (Correlation Coefficient,

Root Mean squared error, Relative Mean Difference, Relative Variation Difference,

Deviation Index, Peak signal-to-noise ratio (PSNR), Universal Image Quality Index)

in one hand and in another hand land cover classification accuracy is computed and

compared with fused and without fused image. It is clearly observed that, the resultant

curvelet fused image of HH-Pol PALSAR image with MOD12 (Resultant fused

image of MODIS Band 1 and Band 2), i.e., MOPA(HH) is providing maximum

classification accuracy in comparison to other combination of fused images with the

curvelet based fusion, and it is supported with the quality assessment indicators with

also indicate MOPA(HH) has the better fused image in comparison with other

combination of PALSAR and MODIS fusions. And thereby it is observed that the

overall classification accuracy of fused image is quite enhanced in comparison to the

classification accuracy of individual MODIS images, i.e., MODIS Band 1 and

MODIS Band 2. Similarly in the outline of fuzzy based fusion it is observed that, the

resultant curvelet fused image of VV-Pol PALSAR image with MOD12 (Resultant

fused image of MODIS Band 1 and Band 2), i.e., MOPA(VV) is providing

maximum classification accuracy in comparison to other combination of fused

images. This type of fusion may be helpful in near future to maximize the use of

MODIS images.
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Chapter 5

MODIS Image Application for Hotspot

and non-Hotspot Region Classification
*"" *

5.1. Introduction

MODIS has 36 bands and each band has their own individual characteristic which are

useful for particular application. In this thesis, we are very much interested to enhance

the use of MODIS images for various applications. Therefore, in this chapter we have

taken a task to classify the landcover in a single class and this single class we have

taken as a subsurface fire (i.e., hotspot) region. So, an attempt has been made to

classify the single class i.e., subsurface fire with MODIS image especially using

MODIS band 1 and MODIS band 2 using Binary Division Algorithm.

Subsurface coal fires are a serious and widespread problem in coal producing

countries such as India, China, Indonesia and other developing countries. India

accounts for the world's greatest concentration of coal fires which cause several

devastating environmental effects. Jharia Coal Field (JCF) in Jharkhand (India) alone

contains nearly half of subsurface mine fires (hotspots) in Indian coalfields. Most of

the fires take place due to spontaneous heating of coal and cause a local rise in the
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surface temperature, which depends on various mining, geological and coal factors.

Mine fires apart from economic aspects give rise to devastating environmental effects.

Therefore attention is required in this direction for mapping, monitoring and detecting

these hotspots with less cumbersome and more economic way (Agarwal et al.,2006).

Satellite images can be one of the best solutions for these kinds of problems which

offer a cost effective and time saving technology for mapping various geo-

environmental features.

As discussed in the review section (i.e., section 2.6) that several researchers

proposed various methodologies to detect hot spots. MODIS has also the one special

product i.e., MOD14A2 for fire product which is also not providing satisfactory

results. But still uncertainties exist. Because, we are interested to increase the use of

MODIS images, so we have made an attempt to classify hotspots and non hotspot

regions using MODIS as one of the data.

Humans learn from the past. We learn by experience, by mistakes or

successes. But what is this experience and how can it be formalized to make machines

to learn. Probably most important: how do we generalize from these experiences, and

how do we make decisions and how can we build it into a machine. Pattern '

recognition is concerned with the learning from experience, learning from examples,

and making decisions (Bishop 1995, Jain et al. 2000, Duda et al. 2001). Pattern

Recognition has a long history within engineering, especially for military

applications. But it has long been a rather specialized subject due to the cost of

hardware for acquiring the image and to compute the answers. In recent years, the

advances made in hardware, made the concerns of pattern recognition of much wider

applicability. According to Jain et al. 2000, pattern recognition is a general term to

describe a wide range of problems like recognition, description, classification, and

grouping of patterns. These problems are important in a variety of engineering and

scientific disciplines such as biology, psychology, medicine, marketing, artificial

intelligence, computer vision and remote sensing.

Unsupervised clustering is a fundamental tool in image processing for

geosciences and satellite imaging applications (Aplin et al. 1999, Stuckens et al. 2000,

Franklin et al. 2002, Gallego 2004). For example, unsupervised clustering is often
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used to obtain vegetation maps of an area of interest. This approach is useful when

reliable training data are either scarce or expensive, and when relatively little a priori

information about the data is available. Unsupervised clustering methods play a

significant role in the pursuit of unsupervised classification (Richards and Jia 2006).

Eventually this unsupervised clustering can be used for one-class clustering or one

class classification. The unsupervised clustering is roughly divided into three groups :

agglomerative, partitioning, and agglomerative-partitioning methods (Hanaizumi and

Chino, 1995). The key point in clustering is efficiency as well as accuracy, because

they have an enormous volume of data, as the clustering of satellite images involves

enormous volume of data. For efficiency and accuracy point of view, the methods

proposed still need more attention. The agglomerative methods have high efficiency

but have low accuracy. On the other hand, the partitioning methods are accurate and

efficient, but they require huge memory and much time. The agglomerative-

partitioning methods, such as ISODATA (Ball and Hall, 1965), improve the

performance in accuracy by using iterative processing, which makes the method

inefficient. Hanaizumi et al. 1995 developed an algorithm with high speed and high

accuracy for clustering remotely sensed multispectral images with a partitioning

method which" is known as Binary Division Clustering (BDC) for clustering. This

method has a binary division process and image data are repeatedly divided into two

groups until the group consists of a single cluster.

The main objective of this chapter is to classify hotspots and non-hotspots

region using MODIS image. Generally researcher (Boles and Verbyla, 2000, Kennedy

et al., 1994, Nakayama et al., 1999) are using thermal bands for classifying hotspot

and non- hotspot regions. MODIS has also a separate product i.e., MOD14A2 for the

fire detection, but we have observed this product has limited capability to classify

hotspot such as subsurface fire and non-hotspots regions. Another problem of MODIS

image is its resolution therefore there is a need of research by which we may able to

use MODIS images for classification of hotspot and non-hotspot regions. Therefore in

this chapter, an attempt has been made to develop such an technique by which

MODIS can be useful for these type of classification. For this purpose, to enhance the

spatial resolution of MODIS image, we have fused the MODIS image with the LISS

(Linear Imaging Self-Scanner) image which have quite good resolution. For selection

Page | 157



of the bands which may be useful for separating hotspots and non-hotspots, we have

checked some bands of MODIS. After exhaustive study, we found that MODIS band

1 and MODIS band 2 may be useful to classify hotspots and non-hotspots regions. It

may be due to the reason that these bands represents the vegetation or greenness of

the particular region and it is known factor that in the hotspots region the possibility

of greenness i.e., vegetation is very minimum. So, these bands may be helpful to

classify the hotspot and non-hotspot regions. The spectral response of hotspot and

non-hotspot regions in the MODIS Band 1 is shown in the fig. 5.1a and the spectral

response for the MODIS Band 2 is shown in the fig. 5.1b. It infers that the hotspot and

non-hotspot regions can be easily classified as there is a distinct spectral response of

hotspot and non-hotspots regions. Similarly, the spectral response of hotspot and non-

hotspot regions for the LISS Band 2 is shown in the fig. 5.2a, and the spectral

response for the LISS Band 3 is shown in the fig. 5.2b, and it also implies that the

hotspot and non-hotspot regions can be easily classified because there is a distinct

spectral response of hotspot and non-hotspots regions. The NDVI (Normalized

Difference Vegetation Index) is an important indicator which defines the presence of

vegetation. So this may be also useful for classifying these hotspot and non-hot spot

regions as the spectral response of the NDVI of MODIS (fig. 5.3) indicates the

distinct response between hot spot and non-hot spot regions.

Another advantage of selecting these bands i.e., MODIS band 1 and MODIS

band 2 is that these bands wavelength is quite similar to the LISS Band 2 and band 3

images. After selecting these bands for single class classification i.e., hotspot and non-

hotspot region, a pattern recognition based technique BDA has been applied.

This chapter is structured as follows: data used for the study has been

discussed in section 5.2. Section 5.3 briefly reviews the BDC Algorithm (BDA).

Implementation and results of the used approach is given in section 5.4. In the

subsequent section, i.e., in section 5.5 analyses of experimental results and finally this

chapter is concluded in the section 5.6.

Page | 158



5.2. Data Used/Study Area

Jharia coal field is located in Jharkhand state, India and is named after the main

mining area of Jharia. It is situated at the heart of the Damodar valley and is depicted

with fig. 1.2, and the details concerning the Jharia coal field is clarified in the section

1.3.2.

The area covered by the coal belt is about 450 km2. The Jharia coal field is an

exclusive storehouse of prime coke coal in the country, consisting of 23 large

underground and nine large open cast mines (Agarwal et al. 2006). The mining

activities in these coal fields started in 1894 and were intensified in 1925. The history

of coal-mine fire in Jharia coal field can be traced back to 1916 when the first fire was

detected. The Subsurface fire coordinates i.e., hotspots infonnation are provided by

BCCL (Bharat Coking Coal Limited, India) and by CIMFR (Central Institute of

Mining and Fuel Research), Dhanbad, India and these coordinates are listed in the

table 5.1 (Prakash, 1996, Prakash et al., 1997). The hotspot pixels were identified

from the ground observations using location (Latitude, Longitude) information and

therefore projected easily on georeferenced MODIS images.

MOD09Q1 is used to extract MODIS band 1 and MODIS band 2 information,

where as MOD14A2 which is the fire product of MODIS is used for comparison

purpose. IRS-P6 LISS-III is used to extract LISS band 2 and LISS band 3

information. The MOD09Q1 provides Band 1 of spatial resolution 250m and

bandwidth 620 - 670 nm, and Band 2 of spatial resolution of 250m and bandwidth

842 - 876nm, and details of the product is covered in the section 1.4.1a. The IRS

(Indian Remote-Sensing Satellite) - P6, LISS (Linear Imaging Self-Scanner) -III band

2 and band 3 are considered in this chapter. The Band 2 has the spectral bandwidth of

620 - 680 nm, and band 3 has the spectral bandwidth of 770 - 860 nm. The details of

the data set used for this chapter is given in table 5.2.
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Table 5.1. Latitude and longitude of important hotspots in Jharia coalfield (Prakash,

1996, Prakash et al., 1997)

Latitude Longitude

23.80625 86.143752

23.80625 86.377086

23.797916 86.452086

23.797916 86.218752

23.797916 86.264585

23.79375 86.314585

23.79375 86.343752

23.789583 86.197919

23.789583 86.289585

23.785416 86.277085

23.785416 86.314585

23.777083 86.322919

23.772916 86.164585

23.76875 86.360419

Latitude Longitude

23.752083 86.122918

23.752083 86.410419

23.74375 86.406252

23.735416 86.368752

23.735416 86.427086

23.73125 86.443752

23.714583 86.389586

23.710416 86.422919

23.710416 86.452086

23.70625 86.427086

23.702083 86.427086

23.689583 86.377086

23.689583 86.389586

23.660416 86.452086

Table 5.2. Data Details

Data id Data set Date of Acquisition

MOD09Ql.A2004057.h25v06.005.2007251185548.hdf IFFebruary 26m 2004

d2 MOD09Ql.A2004329.h25v06.005.2007337162720.hdf November 24th 2004

d3 MOD 14A2.A2004057.h25v06.005.2007251151130.hdf
nrFebruary 26in 2004

d4 MOD 14A2.A2004329.h25v06.005.2007337114507.hdf November 24l" 2004

LI IMAGERY.L-3(LISS) February 25m 2004
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5.3. Theoretical Basis

It is introduced in the introduction that MODIS band 1, band 2 and corresponding

LISS band 2 and band 3 may be useful for classification of hotspots and non-hotspot

regions. It is also represented in the spectral response of hotspots and non-hotspots of

fig. 5.1a, 5.1b, 5.2a, 5.2b. We have done fusion to enhance the information in spatial

level. It is seen that MODIS band 2 (fig 5.1b) and LISS band 3 (fig 5.2b) have better

separability to classify hotspots and non-hotspots in one hand, and in another hand

NDVI of MODIS (fig 5.3) has also a good spectral response of hotspots and non-

hotspots regions. We have done considerable amount of study like checking the

spectral response in various images of different years. Therefore in this chapter, we

have selected NDVI of MODIS and LISS image, LISS band 3 and MODIS band 2 for

classification of hotspot and non-hotspot region. It is also assumed that nearby hotspot

regions vegetation (i.e., greenness) possibility will be very less. Therefore the selected

bands and NDVI values may classify the hotspot and non-hotspot regions. Flowchart

of the proposed methodology is given in the fig. 5.4. Following steps have been
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involved to implement the proposed methodology.

Step 1: MODIS band 1, band 2, LISS band 2, band 3 are geo-referenced and are

subsetted to Jharia region.

Step 2: NDVI of MODIS and LISS images are calculated as given in the eq. 5.13.

Step 3: Masking water bodies: Firstly the computed MODIS NDVI image is

considered for masking the water bodies in the image. For this purpose, the following

criteria has been applied (Zhang et al. 2007)

• NDVI < 0.04

• (MODIS Band 4 - MODIS Band 5) > 2.0

with the above criteria, water bodies pixel are extracted for further processing. The

product MOD09A1 are downloaded of the corresponding date, February 2004

(MOD09Al.A2004057.h25v06.005.2007251185548.hdf) and November 2004

(MOD09Al.A2004329.h25v06.005.2007337162719.hdf) for MODIS band 4 and

MODIS band 5. The above mentioned criteria are applied in these images for

extracting the water pixels and these pixels were masked in MODIS NDVI and

MODIS band 3 images. Because the MODIS and LISS images has approximately the

same area, so corresponding water pixels has been masked in LISSNDVI and LISS

band 3 images. Then masked water pixel LISS NDVI images and MODIS NDVI

images has been fused with curvelet fiision in one hand, and in another hand, the

masked water pixel of LISS band 3 and MODIS band 2 are fused with curvelet

fusion.

Step 4: BDA is applied for both the fused images to classify both hotspot and non-

hotspot regions.

5.3.1. Curvelet transform

The main feature of the curvelet transform is that it is sensitive to directional

boundaries and capable of representing the highpass details of object contours at
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different scales through few sparse nonzero coefficients (Stark et al. 2002). The

different steps which is used for Curvelet fusion is discussed in the section 3.3.1. Fig.

3.1 depicts the flow chart of Curvelet Transform.

5.3.2. Binary Division Algorithm

In the binary division (Hanaizumi et al., 1995, Hanaizumi and Chino., 1995), it is

essential to determine the cluster to be divided. The subset of the feature space to be

used for the division and the division threshold in the subspace. These steps have been

shown in the fig 5.5.
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i. Selection of Division Cluster:

The methodology by which the binary division Algorithm works is explained through

an example and it is shown in the fig 5.6. In this example, image data are divided into

clusters 1 and 2 at node no, and those in cluster 2 into clusters 3 and 4 at a node n?.

Cluster 3 is selected for the next division among all terminal clusters 1, 3, and 4.

Clustering in Binary division Algorithm is regarded as a minimization process

of the total within-group sum of squares (WGSS) of the image data. In this Algorithm,

image data are clustered so that the maximum reduction is obtained in the intragroup

sum of squares (IGSS) among child clusters produced by the division. It is known that

a mixed cluster c0 of clusters c/ and c? has the variance (Hanaizumi et al. 1995)

Var(co) = Var(ci) + Var(c?) + [mean (cj) - mean (c2)]~ (5.1)

Using the same manner, we obtain the relation for the sum of squares in N-

dimensional feature space as

'Parent Schikll + SchiM2 + Sbetween (5-2)

where SPan,nl is an N x N matrix for the WGSS of a parent cluster, Sckiidi and Schiid2 are

those for child clusters produced by the division, and Sbetween means the IGSS between

the child clusters. We select the division cluster among all terminal clusters so that the

WGSS efficiently falls to the minimum. We define a matrix D for evaluation of the

reduction of the WGSS, as

D= Sparent ~ (Schildl + ^childl) (5.3)

The reduction D, however, depends on the sum of squares of the parent cluster. So we

define the reduction rate A as a normalized index

A=trace(SE'2DSE!/2) (5.4)

where SE is the total WGSS of all terminal nodes clusters, and is Si + Sj + S4 in the

example shown in fig. 5.6. Thus, next cluster among all terminal clusters is selected

so that a maximum reduction rate is obtained. Next, algorithm for selecting the

optimal subspace to divide the cluster into two subclusters are described and for

determination of the threshold in the subspace.
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ii. Subsets of Feature Space and Boundary Search: Search areas in which the

optimal boundary will be selected become larger as the dimension (the number of

spectral bands) increases. In order to achieve higher efficiency, we decrease the

dimension by projecting image data onto a small number of the feature spaces. The

first two canonical components ps and p: has to be adopted to form the two-

dimensional subspace as canonical correlation analysis is useful in data compression
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Fig 5.5. BDA flowgraph.
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Fig 5.6. Binary Division Algorithm (Hanaizumi et al., 1995).
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and in noise reduction. Then, following six projection functions defined on a two-

dimensional subspace (Hanaizumi et al. 1995).

/i(pl)i MP2)
hiPi +p2). UiPi -P2)
h(P1 x Pa) > hit»n"* (P1 /Pa I) (5 5)

Let Vj be the variance-covariance matrix of data in a cluster and Ve be that of noise.

Then compute the eigenvector matrix B which makes BVpB and BVeB diagonal

matrices. The first two canonical components/?/ and/?_? are derived from eigenvectors

related to the larger two eigenvalues. An element cry of the matrix Ve is estimated

from differential values

ai =ms_2){t_2)_l}l2ZuWk, (5.6)

it'ki - dk-u+dk,i+\+ dk+u +dk,i-\ ~~ 4dk,i
(5.7)

Where it is assumed that -the image has s columns and t lines (s x t = M), and- cfkj

means spectral density ofa pixel at the position ofthe £th column and the r line in an

image of the ilh band. Next is the boundary search in the subspaces. Data projected

onto the subspaces are reassigned to integer values from 0 to 255 for the following

processing. The histogram of these values were used to search a candidate for the

optimal boundary. For this purpose an index Q is employed which is a kind of pixel

density, in a cluster for boundary search as

e=J^T) <5-8)
Where L means the number of pixels in a cluster, Vis variance of data in the cluster,

and constant 1 is added to avoid the divergence of Q. The index changes from Qparent

to Qchiidi + Qchtm with division. As the division decreases Shetween in eq. 5.3, the

density increases with division as

Qparent <Qchiidi + Qchiidi (5-9)
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The equality holds when data in the parent cluster are uniformly distributed. The

candidate for the optimal boundary is selected among all possible boundaries so that

the sum of densities of child clusters has the maximum, that is

Q,(X)+Q2(X)=max{Q,(x)+Q2(x)} (5.10)
V

Where, we suppose cluster 0 is divided into clusters 1 and 2, x is a boundary number,

and X the selected boundary. The optimal boundary is selected among these

candidates obtained from all the subspaces. The normalized density G is used for

comparison as

c[=MMW (I.M> (5Al)

Where i specifies the subspace. The boundary Xj in the jth subspace is the optimal

boundary for division of a terminal cluster when

Gj=max{Gi} (5.12)

iii. Procedures for applying BDA: The procedures of Binary Division Algorithm

are summarized below and we have developed the code in MATLAB 7.0. As

algorithm has no stopping rule yet, the algorithm is stopped when the number of

clusters is equal to a specified number Nic.(Here, in this chapter, the clusters are only

2, hotspot and non-hotspot regions).

1) Specify the number of clusters to be obtained.

2) Apply procedure 3) for all terminal clusters, and select a cluster for the next

division.

3) Apply canonical correlation analysis to a terminal cluster and project the first two

canonical components to the subspaces. Select the optimal boundary among all

possible boundaries in the spaces.

4) Divide the cluster at the boundary.
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5) Repeat procedures 2)-4) until the number of clusters is equal to N,c

6) Calculate the mean vectors of all terminal clusters, and replace the density of pixels

with the mean vector.

7) Yield the resultant image.

5.3.3. Normalized Difference Vegetation Index (NDVI). NDVI values were

computed using spectral reflectance values in the red (R) channel (620-670 nm) and

the near-infrared (NIR) channel (841-876 nm) using the eq. 5.13.

,rr^, (NIR - R) Band 2 - Band 1 ,<.,-,.
NDVI-1 - = (5.13)

(NIR + R) Band2 + Band1

For the MODIS image the NIR channel corresponds to Band 2 and whose spectral

resolution is 842 - 876nm and R indicates red channel corresponds to band 1, and

whose spectral resolution is 620 - 670 nm. LISS image has NIR channel corresponds

to Band 3, whose spectral resolution is 770 - 860 nm and R channel corresponds to

band 2, whose spectral resolution is 620 - 680 nm. These bands are used to calculate

the NDVI

5.4. Implementation and Results:

The raw data (dl, d2, d3, d4 and LI) are geo-referenced and are subsetted to Jharia

region and the care is taken so that area of sub-set region of all the satellite images

should be approximately equal. As discussed in the flowchart of the fig 5.4 and details

of steps, it is applied on the data id dl, d3 and LI for the February 2004 initially and

consequently again it is applied onthe id d2, d4 and LI for theNovember 2004 (table.

5.2) in the following manner.

Page | 170



Step 1. MODIS NDVI (MODIS ndvi)

The georeferenced and subset MODIS image (MOD09Q1) is considered initially.

From this data, Band 1 and band 2 are considered and thereby the NDVI is computed

using the eq. 5.13. The resultant NDVI is MODISndvi and from this MODISndvi

the pixels that corresponds to water pixels are masked as step 3 of section 5.3.

Step 2. LISS NDVI (LISS ndvi)

The georeferenced and subset LISS image is considered initially. From this image, the

Band 2 and band 3 are considered and thereby the NDVI is computed using the eq.

5.13. The resultant NDVI is LISSndvi, and from this LISSndvi, the pixels that

corresponds to water pixels are masked as step 3 of section 5.3.

Step 3. Curvelet based fusion of LISS band 3 with MODIS band 2

The fusion process is given in flow chart fig. 5.4. MODIS Band 2 and LISS Band 3

are considered initially. Before fusion, from the MODIS band 2, the water pixels are

masked as step 3 of section 5.3. Similarly for the LISS Band 3 also the water pixels

are masked as step 3 of section 5.3. The masked water pixels MODIS band 2 and

LISS Band 3 is fused, through the curvelet transform (LISS band 3 is decomposed

into J+ 1 subbands by ATWT transform as eq. 3.1. The J+l subbands includes Cj

and dj, herej=4. Initially the MODIS band 2 has 247*309 pixels and it is bilinear

interpolated (Thomas et al., 1999) to the size of LISS image i.e., the MODIS band 2 is

now having 2040*2550 pixels and this interpolated MODIS band 2 replaces Cj.

Consequently the Ridgelets transform (eq. 3.2 to eq. 3.6) is applied to all the

decomposed subbands i.e., dj bands, thereby obtained ridgelet coefficients are hard-

thresholded in order to enhance boundaries in the fused image and inverse ridgelet

transforms (IRT) is carried out to obtain a new image which reflects the fused image

(L3M2) of LISS Band 3 and MODIS Band 2.
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Step 4. Curvelet based fusion of LISS ndvi and MODIS ndvi

In this step, computed LISSndvi and MODISndvi are considered. Before fusion, the

corresponding water pixels are masked as step 3 of section 5.3 from LISS ndvi and

MODISndvi and are fused through the curvelet transform (LISSndvi is decomposed

into J + I subbands by ATWT transform as eq. 3.1. The J+l subbands includes Cj

and dj, here j=4. Initially the MODISndvi has 247*309 pixels and it is bilinear

interpolated (Thomas et al., 1999) to the size of LISS image i.e., the MODISndvi is

now having 2040*2550 pixels, and this interpolated MODISndvi replaces Cj.

Consequently the Ridgelets transform (eq. 3.2 to eq. 3.6) is applied to all the

decomposed subbands i.e., d, bands, thereby obtained ridgelet coefficients are hard-

thresholded in order to enhance boundaries in the fused image and inverse ridgelet

transforms (IRT) is carried out to obtain a new image which reflects the fused image

(LMndvi) of LISSndvi and MODISndvi.

Step 5. BDA for hotspot and non-hotspot region classification

The binary division algorithm is applied as discussed in section 5.3 on obtained

LM_ndvi and L3M2 images. On the resultant binary division image, the image

processing techniques i.e., (Median filtering, Morphologically open operator) are

applied which produce finally the hotspot and non-hotspot regions. The presence of

noise enabled us to use Median filtering (Tong and Yrjo 1994) because median

filtering is a nonlinear operation often used as it is more effective when the goal is to

simultaneously reduce noise and preserve boundaries. Consequently to remove small

objects from an image while preserving the shape and size of larger objects in the

image, morphologically open operator (Maragos et al. 1996) is used. The classified

hotspot were validated with the hotspots information provided by BCCL (Bharat

Coking Coal Limited, India) and by CIMFR (Central Institute of Mining and Fuel

Research), Dhanbad, India. Table 5.1 gives the latitude and longitude of hotspots

observed from ground (Prakash 1996, CIMFR). Hotspot classification accuracy
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(HCA) (eq. 5.14) were computed pixel by pixel with the help of location infonnation

of ground observations (Table 5.1).

., „, .„ . Correctly reported hotspots
Hotpsot Ltassification Accuracy =

Total hotspots that exist (5 14)

5.5. Analysis of Experimental Results:

We have checked the process for two different data sets, February and November

2004, approximately has the similar temperature. The MODIS Band 1 and Band 2 of

data id dl and d2 are georeferenced and subset to the Jharia region which is shown in

the fig. 5.7a, 5.7b, 5.8a and 5.8b respectively. Concurrently the LISS band 2 and

band 3 which is of the month of February 2004 is georeferenced and subset to the

Jharia region (fig. 5.9a and 5.9b respectively). A region is encircled and is marked as

a region A that is the Damodar river basin (figs. 5.7a, 5.7b, 5.8a, 5.8b, 5.9a and 5.9b).

i. MODIS NDVI (MODIS ndvi)

The subsetted MODIS band 1 and band 2 of the month of February are considered to

compute the NDVI, thereby, the computed NDVI is MODISndvifeb, and it is

shown in the fig. 5.10a. Similarly for the month of November, MODIS band 1 and

band 2 are considered to compute the NDVI, thereby, the computed NDVI is

MODISndvinov, and is shown in the fig. 5.10b. In these figs (5.10a and 5.10b) also

the region is encircled and is marked as a region A, which indicates the Damodar river

basin
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Fig. 5.11. LISS NDVI (LISS ndvi)

ii. LISS NDVI (LISS ndvi)

The subsetted LISS image is considered and consequently the NDVI is computed

from the LISS band 2 and band 3 image. The corresponding resultant LISSndvi is

shown inthe fig. 5.11 and similarly a clear distinguished small region is identified and

is encircled and marked as a region A, which is Damodarriver basin.

iii. curvelet based fusion of LISS band 3 with MODIS band 2

The subsetted MODIS band 2 of the month of February2004 is considered alongwith

the LISS band 3. Before fusion from the MODIS band 2 the water pixels are masked

as step 3 of section 5.3. Similarly for the LISS Band 3 also the water pixels are

masked as step 3 of section 5.3. The masked water pixels MODIS band 2 and LISS
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Band 3 are fused through the curvelet based fusion, whose resultant fused image is
L3M2_feb. Likewise from the MODIS band 3 of the month of November the water

pixels are masked as step 3 of section 5.3 and then it is fused with the masked water

pixels LISS band 3and the corresponding resultant fused image is L3M2_nov.

iv. curvelet based fusion of LISS_ndvi with MODIS_ndvi

The computed MODISndvifeb ofthe month ofFebruary 2004 is considered along
with the LISSndvi. And these images are fused through the curvelet based fusion

whose resultant fused image is LMndvifeb. Likewise the computed
MODISndvinov of the month ofNovember is fused with the LISS_ndvi and the
corresponding resultant fused image is LMndvinov.

v. BDA for classification

The LMndvifeb and L3M2_feb were considered. The Binary Division algorithm is
applied on these images and the resultant image is BDAfeb and consequently the
image processing techniques (dashed line box labeled image processing in the fig.
5.4) are applied for the noise removal and final resultant image obtained as shown in

the fig. 5.12 which classifies the hotspot and non-hotspot for the month ofFebruary.
The Hotspot Classification Accuracy (HCA) is computed from the eq. 5.14, where in

the eq. 5.14, for the "Total hotspots that exist", totally 28 hotspots were reported and

which is tabulated in the table 5.1, and for the "correctly reported hotspot" for the

month of February 2004, the classified hotspots are 24 and it is marked as red dots in

the fig. 5.12. Thereby HCA is computed and it is 85.7%.

In the same way for the month of November, the hotspots are classified.

Hence, in this scenario, the BDA is applied on LMndvinov and L3M2_nov and the

resultant image is BDAnov. Eventually on the BDAnov, the image processing

techniques are applied. The final resultant image is shown in the fig. 5.13, and

correctly reported hotspot are 22 and are marked as red dots in the fig. 5.13, hence the

HCA is 75%.
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In due course, the Most Confident Fire product data id d3 and d4 are

georeferenced and subset to the Jharia region (fig. 5.14a and fig. 5.14b respectively).

HCA is computed and it shows that HCA is zero, as the correctly classified hotspot is

zero for both images d3 and d4. It infers that the most confident fire product of

MODIS i.e., MOD14A2 is giving false hotspot region whereas fusion of MODIS

band with LISS bands are giving quite good accuracy to classify hotspot and non-

hotspot regions.

5.6. Conclusion

In this chapter, classification of hotspot and hotspot regions through binary division

algorithm for the Jharia coalfield in Jharkhand is presented. The subsurface fire is one

of the most important problem of the Jharia region of India, where large amount of

coal is burning and giving a lot of problem to environment, economy etc. Therefore,

in this chapter, the MODIS band 1and band2, LISS-III band 2 and band 3 images are

considered to dealt with hotspot and non-hotspot regions classification. Although

MODIS provides a special product MOD14A2 for fire product classification. But this

special product is not only sufficient for hotspot and non-hotspot regions

classification. This chapter, thereby provides the necessary technique for classifying

hotspot and non-hotspot region with the MODIS images. A quite satisfactory results

have been observed which enforce to enhance the applicability of MODIS images.

Page | 182



Chapter 6

Multitemporal Harmonic Analysis of

MODIS Indexes

6.1. Introduction

»

Nowadays mankind is interfering in nature everywhere on Earth. Sometimes even in

not easily reachable regions. Some of these manmade changes have enormous effects

on nature and whole ecosystems. Recent advances in remote sensing technology and

theory have expanded opportunities to characterize the seasonal and interannual

dynamics of natural and managed Land use/ land cover communities. Studies have

shown that the temporal domain of multispectral image frequently provides more

information about land cover and land use than the spatial, spectral, or radiometric

domains (Briggs and Nellis 1991, Kremer and Running 1993, Eastman and Fulk

1993, Samson 1993, Reed et al. 1994) and the detailed literature survey is carried out

at the section 2.7

The normalized difference vegetation index (NDVI), which is the normalized

reflectance difference between the near infrared (NIR) and visible red bands (Rouse et

al. 1973, Tucker 1979) is used extensively in ecosystem monitoring. NDVI measures

the changes in chlorophyll content (via absorption of visible red radiation) and in

spongy mesophyll (via reflected NIR radiation) within the vegetation canopy. As a
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result, higher NDVI values usually represent greater vigor and photosynthetic

capacity (or greenness) of vegetation canopy (Tucker 1979, Chen and Brutsaert,

1998). A major advantage of the NDVI is that because of its ratioing properties, it is

able to naturally cancel out a large proportion of signal variations due to calibration,

noise, and changing irradiance conditions caused by varying sun angles, topography,

clouds, shadows and atmospheric conditions NDVfs role in ecosytem monitoring and

assessment has been described several times during the last decade (Yang et al. 1998).

The normalized difference water index (NDWI) is another satellite-derived

index from the NIR and short wave infrared (SWIR) channels that measures the liquid

water molecules that interacted with the incoming solar radiation (McFeeters 1996). It

is less sensitive to atmospheric scattering effects than NDVI and NDWI is

complementary too, but not a substitute for NDVI (Gao, 1996). NDWI calculated

from the 500-m SWIR band of MODIS has recently been used to detect and monitor

the moisture condition over large areas (Xiao et al. 2002, Jackson et al. 2004, Maki et

al. 2004, Chen et al. 2005b, Delbart et al. 2005).

Harmonic analysis is useful in highlighting the seasonal and intra-seasonal

cycles and offers great promise for analyzing seasonal and inter-annual variation in

land surface condition as recorded by various indexes (i.e., NDVI and NDWI)

calculated from time series remotely sensed image such as the MODIS (Wan et al.

2004, Yingxin Gu et al. 2007). The main objective of this chapter is to quantify the

changes related to the vegetation and water in the study area using harmonic analysis.

This chapter is structured as follows: data used for the study has been

discussed in section 6.2. Section 6.3 briefly reviews the Fourier analysis.

Implementation and results of the used approach is given in section 6.4. In the

subsequent section, i.e., in section 6.5 analysis of experimental results are carried out

and finally this chapter is concluded in the section 6.6.

6.2. Data Used/Study Area

Western Utter Pradesh and part of Uttarakhand, India is considered as the study area

and the detailed clarification about the study area is given in the section 1.3.3.
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6.2.1. Data used

The MODIS image considered is MODIS/Terra Surface Reflectance 8-Day L3 Global

500m SIN Grid (MOD09A1) and totally 40 images from 2001 to 2008 are considered

in this analysis and the image acquired details are tabulated in the table 6.1.

Table 6.1. Data sets Details

Data id Data set Date of Acquisition

1.1 MOD09A1 .A2001057.h24v06.005.2006365121813.hdf 26th February 2001

1.2 MOD09A1 .A2001065.h24v06.005.2007002183549.hdf 6th March 2001

1.3 MOD09A1 .A2001073.h24v06.005.2007005151635.hdf 14th March 2001

1.4 MOD09A1 .A2001081 .h24v06.005.2007009180424.hdf 22th March 2001

1.5 MOD09A1.A2001089.h24v06.005.2008277183431 .hdf 30th March 2001

2.1 MOD09Al.A2002057.h24v06.005.2008236065943.hdf 26th February 2002

2.2 MOD09Al.A2002065.h24v06.005.2008238031637.hdf 6th March 2002 .

2.3 MOD09Al.A2002073.h24v06.005.2008239100154.hdf 14th March 2002

2.4 MOD09A1 .A2002081 .h24v06.005.2007136042309.hdf 22th March 2002

2.5 MOD09A1 .A2002089.h24v06.005.2007137102718.hdf 30th March 2002

3.1 MOD09Al.A2003057.h24v06.005.2007286074626.hdf 26th February 2003

3.2 MOD09Al.A2003065.h24v06.005.2008300163445.hdf 6th March 2003

3.3 MOD09A1 .A2003073.h24v06.005.2007292074115.hdf 14th March 2003

3.4 MOD09Al.A2003081.h24v06.005.2008307195247.hdf 22th March 2003

3.5 MOD09Al.A2003089.h24v06.005.2007300163248.hdf 30"1 March 2003

4.1 MOD09A1.A2004057.h24v06.005.2007251185417.hdf 26th February 2004

4.2 MOD09Al.A2004065.h24v06.005.2007255053021.hdf 5th March 2004

4.3 MOD09A1 .A2004073.h24v06.005.2007258043831 .hdf 13th March 2004

4.4 MOD09A1 .A2004081 .h24v06.005.2007261150328.hdf 21th March 2004

4.5 MOD09A1 .A2004089.h24v06.005.2007264062800.hdf 29th March 2004

5.1 MOD09Al.A2005057.h24v06.005.2008200033550.hdf 26th February 2005
5.2 MOD09Al.A2005065.h24v06.005.2008011023701.hdf 6th March 2005
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5.3 MOD09Al.A2005073.h24v06.005.2008011211036.hdf 14th March 2005

5.4 MOD09A1 .A2005081 .h24v06.005.2008013050946.hdf 22th March 2005

5.5 MOD09A1.A2005089.h24v06.005.2008013131059.hdf 30lh March 2005

6.1 MOD09Al.A2006057.h24v06.005.2008085013438.hdf 26th February 2006

6.2 MOD09A1 .A2006065.h24v06.005.2008087085529.hdf 6th March 2006

6.3 MOD09A1 .A2006073.h24v06.005.2008092222722.hdf 14th March 2006

6.4 MOD09A1 .A2006081 .h24v06.005.2008095053310.hdf 22th March 2006

6.5 MOD09A1 .A2006089.h24v06.005.2008097124026.hdf 30th March 2006

7.1 MOD09Al.A2007057.h24v06.005.2007087150042.hdf 26th February 2007

7.2 MOD09A1 .A2007065.h24v06.005.2007088103122.hdf 6th March 2007

7.3 MOD09Al.A2007073.h24v06.005.2007098184729.hdf 14th March 2007

7.4 MOD09A1.A2007081 .h24v06.005.2007096012108.hdf 22th March 2007

7.5 MOD09A1 .A2007081 .h24v06.005.2007096012108.hdf 30th March 2007

8.1 MOD09A1 .A2008057.h24v06.005.2008067153432.hdf 26th February 2008

8.2 MOD09A1 .A2008065.h24v06.005.2008076025452.hdf 5th March 2008

8.3 MOD09A1.A2008073 .h24v06.005.2008082161414.hdf 13th March 2008

8.4 MOD09A1 .A2008081 .h24v06.005.2008093154953.hdf 21th March 2008

8.5 MOD09Al.A2008089.h24v06.005.2008099223434.hdf 29th March 2008

In this chapter, Band 1, Band 2 and Band 7 of the MOD09Alare considered.

The MOD09A1 generates only 500m resolution for all bands hence band 1, band 2

and band 7 are having resolution of 500m. Band 1 is having spectral resolution of

620-670 nm and 841-876 nm is the spectral resolution of band 2 and 2105-2155 nm is

the spectral resolution of the band 7.

6.3. Theoretical Basis

6.3.1. Normalized Difference Vegetation Index (NDVI). The detailed discussion is

carried out in the section 5.3.3 and hence from this section, NDVI values were

computed using eq. 5.13, and this equation is repeated here as the eq. 6.1

NDVI =
(NIR - R) _ Band 2 - Band 1
(NIR +R)~ Band 2+Band 1
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6.3.2. Normalized Difference Water Index (NDWI). The spectral reflectance values

in the infrared (NIR) channel (841-876 nm) and the short wave infrared (SWIR)

channel (2105-2155 nm) are used for the computation of NDWI values, as per the eq.

6.2 (Yingxin et al. 2007)

N m _ (NIR - SWIR) _ Band 2- Band 7
(NIR + SWIR) Band 2 + Band1

NDWI values also ranges between -1 and 1, with values above 0 indicating presence

of water (Yingxin Gu et al. 2007).

6.3.3. Harmonic Analysis

Harmonic analysis also termed spectral analysis or Fourier analysis is performed to

quantify some fundamental characteristics related to the phenology of vegetation and

water from time series of MODIS image. Harmonic analysis permits a complex curve

to be expressed as the sum of a series of cosine waves (terms) and an additive term

(Davis 1986, Rayner 1971, Jakubauskas et al. 2001, Jakubauskas et al. 2002). Each

wave is defined by a unique amplitude and a phase angle where the amplitude value is

half the height of a wave and the phase angle (or simply, phase) defines the offset

between the origin and the peak of the wave over the range 0 - lit (fig. 6.1a). Each

term designates the number of complete cycles completed by a wave over the defined

interval (e.g., the second term completes two cycles, fig. 6.1b). Successive harmonic

terms are added to produce a complex curve (fig. 6.1c) and each component curve or

term accounts for a percentage of the total variance in the original time-series data set.

Letf(x) be a continuous function on [0.TJ, the Fourier series representation for

f(x) is defined as eq. 6.3 (Davis 1986, Rayner 1971, Jakubauskas et al. 2001,

Jakubauskas et al. 2002).

r/ \ ao vm 2mix , . 27tnxs
f(x) =-f +2J fl«cos^r^sin-^ (6.3)

z »=i v * I )

Two waves in eq. 6.3 are combined into a single cosine wave, which has

characteristic amplitude (size of the wave) and phase angle (offset of the wave)
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(Davis 1986, Rayner 1971, Jakubauskas et al. 2001, Jakubauskas et al. 2002).

f(x) =A0+YjAn cos 2 mix

T
-0

0 =

Va» +bl(n =\,2,-)
Ss. (n =0)

fb^
arctan

0
\anj

(» = 1,2,...)

(n = 0)

(6.4)

(6.5)

(6.6)

Fourier coefficients a„ and b„ are computed for each term and are then used to

calculate the value of the additive term (Ao) and the amplitudes value (An) for each of

the harmonic components for each pixel in the MODIS NDVI and NDWI data set.

For a finite data set \y(j); j = 1,2,..., N}, Fourier coefficient a„ and b„ are defined as

follows (Davis 1986, Rayner 1971, Jakubauskas et al. 2001, Jakubauskas et al. 2002)

a.. =
N-\

N-\

y(\) +y(N) +2^y(j).cos2im(j-\)

7=2 N-\
(n > 0) (6.7)

b.. =
N-

N-\

2ZvO')sisin

2mi(j-l)

V 7=2 7V-1
(«>1) (6.8)

In this study, N=5, as in this chapter, only 5 images is considered for the March

month for every years from 2001 to 2008. The value of the additive term, A0 implies

the arithmetic mean of NDVI over the time-series (5 periods) and represents the

overall greenness of a land-cover type of particular month March. Similarly for the

NDWI, it represents the water land cover type of particular month March of every

year. The amplitude term, A, of one year period measures the maximum variability of

the NDVI and NDWI values from the minimum to the maximum values. In this

thesis, March month is considered, therefore Ai in this thesis measures the maximum

variability of the NDVI and NDWI values from the minimum to the maximum values

of the month March from year 2001 to 2008.
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Phase

Fig. 6.1a. Simple cosine curve representative of the first harmonic
(Jakubauskas etal, 2001)

1st term 2nd term 3rd term

Fig. 6.1b. curves for harmonic terms 1, 2, and 3 (Jakubauskas et al, 2001)

z~•\
/ \

y V. X

Fig. 6.1c. curve produced by addition ofcurves in (6.1b) (Jakubauskas et al, 2001)
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6.4. Implementation of Proposed Approach

Fig. 6.2a and 6.2b shows the methodologies used in this chapter. The downloaded

MODIS image is georeferenced then subset to the western Utter Pradesh and

Uttarakhand region. The subsetted MODIS Band 1, Band 2 and Band 7 are considered

for the calculation of NDVI and NDWI using eq. 6.1 and 6.2 respectively. From the

year 2001 to 2008, totally 40 MODIS images for the month of March is considered

(for every year, 5 images are considered, in which one image is of last week of

February and the other four image is of the month March and it is assumed that last

week February image may be similar to the month March). Eventually the harmonic

analysis for every year of month March is carried out and A(, and A| tenns are

computed using the eq. 6.5 for each year separately. Hence forth, the analysis of

agricultural and water changes is carriedout for month March.

2001 2002

• *

Raw MODIS Data Raw MODIS Data

1

Subset Subset

y
—

X Xt

Band 1 Band 2 Band 1 Band 2

1 7
/

NDVI NDVI

__

Harmonic Analysis Harmonic Analysis

/
\

Ai Ao Ai

2008

Raw MODIS Data

Subset

-^

Band 1 Band 2

/

NDVI

Harmonic Analysis

___

Ai

Fig. 6.2a. flow graph for NDVI harmonic analysis
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\t..si> \
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NDWI NDWI

i

Harmonic Analysis Harmonic Analysis

1

1

/ •

X

Ao Ai Ao Ai

2008

Raw MODIS Data

Subset

Band 2 Band 7

;&»

NDWI

Harmonic Analysis

Ao Ai

Fig. 6.2b. flow graph for NDWI harmonic analysis

6.5. Experimental Results

The MODIS Band 1, Band 2 and Band 7 for all the data id as given in table 6.1, are

considered. They are georeferenced and consequently subsetted to the study area, as

an example the subsetted MODIS Band 1, Band 2 and Band 7 for the data id 1.1 is

shown in the fig. 6.3a, 6.3b and 6.3c respectively. The NDVI and NDWI are

calculated from equation 6.1 and 6.2 respectively and applied to the data id 1.1 and

results are shown in the fig. 6.3d and 6.3e. Fig. 6.3d, the NDVI values range between

-1 and 1, where values above 0 indicating presence of vegetation (Ma et al. 2007,

Stow et al. 2003), and in the fig. 6.3e, the NDWI values also ranges between -1 and

1, where values above 0 indicating presence of water (Yingxin Gu et al. 2007).

Similarly, for all the data id in the table 6.1, NDVI and NDWI are computed.
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For every year 5 data sets (for example for year 2001, the data sets 1.1, 1.2,

1.3, 1.4 and 1.5) have been considered for harmonic analysis using NDVI and NDWI

and additive term A0 and amplitude term A| for each year separately are calculated

from eq. 6.5. Eventually, the additive term A0 and amplitude term A| for NDVI, and

NDWI for every year from 2001 to 2008 are calculated. The Corresponding additive

term A0 and amplitude term A| for NDVI is NDVI A0 and NDVI A| respectively.

Similarly for NDWI, the additive term A0 and amplitude term A| are NDWI_A0,

NDWI_A,. The NDVI_A0 , NDWI_A0, NDVI_A, and NDWIA, for every year

from 2001 to 2008 are calculated i.e., we have totally 8 images of NDVI_A0 ,

NDWI_A0, NDVIA, and NDWIA,. In this chapter, only for the year 2008, the

figures are depicted and the corresponding figures for NDVI_A0 , NDWI_A0,

NDVIA, and NDWI_Ai are shown in the figs 6.4, 6.5, 6.6 and 6.7 respectively for

the year 2008.

For all the year (2001-2008), we have considered the response of greenness

and water of the whole area in one hand and in another hand the response of

greenness and water of the particular location as considered through the help of

Ground Control points (GCPs) thereby we have considered 60 GCPs which represents

agriculture and 102 GCPs for water Bodies. These points have been considered on the

basis of Ground Survey points and Google earth.

The Ao and A| are computed for these GCPs in one hand and in another hand,

the average A0 and A] for whole NDVI and NDWI image is computed. In first case, it

represents the effect of Ao and Ai on particular GCPs for different year, in second

case it tells about the response on the whole region considered.

The average of the A0 and A, of the 60 GCPs (GCP) identified for the

agriculture with respect to NDVI are NDVIR_A0 and NDVIR_A] for the year 2001 to

2008 are computed and are plotted in the figs. 6.8 and 6.10 respectively. Similarly,

the average of the A0 and Ai of the water GCPs with respect to NDWI are NDWIR_A0

and NDWIR_A|, are computed for every year from 2001 to 2008 and are plotted in the

fig. 6.8 and 6.10 respectively.
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Fig 6.3a. Subset raw MODIS Band 1 imageof
MOD09A1 .A2001057.h24v06.005.2006365121813 .hdf

Fig 6.3b. Subset raw MODIS Band 2 image of
MOD09A1.A2001057.h24v06.005.2006365121813.hdf
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Fig 6.3c. Subset raw MODIS Band 7 image of
MOD09A1 .A2001057.h24v06.005.2006365121813 .hdf

'••»:.,

flfc

Fig 6.3d. NDVI of fig 6.3a and 6.3b
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Fig 6.3e. NDWI of fig 6.3b and 6.3c
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Fig 6.4 NDVI Additive term(A0) of the year 2008
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Fig 6.7 NDWI Amplitudes (A,) of the year 2008

The average for the whole image of the NDVI and NDWI Additive term(A0)

are NDVIA_Ao and NDWIA_Ao and are computed for every year from 2001 to 2008

and is plotted in the fig. 6.9. Similarly the average of the NDVI and NDWI

Amplitudes term (Ai) are NDVIA_Ai and NDWU_Ai and are computed for every

year from 2001 to 2008 and are plotted in the fig. 6.11.

The overall greenness in response to the agricultural GCPs, in NDVI Additive

term (Ao) (NDVIrAo) was maximum in the year 2005 and was at the minimum in

the year 2001 as per the fig. 6.8 and the same pattern followed, i.e., the overall

greenness was at the maximum in the year 2005 and minimum in the year 2001, when

the whole area is considered, and that is obtained by the average of the NDVI

Additive term (A0) (NDVIA_Ao) and is plotted as in the fig. 6.9.
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The overall water in response to the water GCPs in NDWI Additive term (A0)

(NDWIr_A0) was maximum in the year 2007 and was at the minimum in the year
2008 as per the fig. 6.8 whereas for the whole considered area the overall water
response was maximum in the year 2005 and minimum in the year 2004 that is
obtained by the average ofthe NDWI Additive term(A0) (NDWIA_A0) and is plotted

in the fig. 6.9.

High amplitude values for a given term indicate a high level of variation in
temporal NDVI and the term in which that variation occurs indicates the periodicity
of the event. High first-term amplitude values indicate a unimodal temporal NDVI

pattern where a land-use/land-cover has a wide annual range in NDVI values
(Jakubauskas et al. 2001). The average of the high NDVI first term amplitude(Ai)
(NDVIA_Ai) values was observed in the year 2004 and low first term amplitude (A,)
(NDVIA_Ai) values was observed in the year 2003 as per the plotted fig. 6.11,
whereas when the response ofthe agricultural GCPs are considered a high NDVI first

term amplitude (Ai) (NDVIR_Ai) values was also observed in the year 2004 whereas

the low NDVI first term amplitude (A,) (NDVIR_Ai) values was observed inthe year

2001, as shown in the fig. 6.10.

A high NDWI first term amplitudefA,) (NDWL^AO values was observed in

the year 2004 and low first term amplitude (Ai) (NDWIA_Ai) values was observed
in the year 2003 as per the plotted in fig. 6.11, whereas when the response of the
water GCPs are considered, a high NDWI first term amplitude (Ai) (NDWIR_Ai)

values was observed in the year 2007, whereas the low NDWI first term amplitude

(Ai) (NDWIR_Ai) values was observed in the year 2001, as shown in the fig. 6.10.

These results shows that there is some changes occurred during the year 2001

to 2008 and which is quite observable with the harmonic analysis of MODIS image.

This chapter has main aim to show the utility ofMODIS images with the application

of Fourier analysis for observing the land cover changes in which it shows that the

applied method on MODIS images may be quite useful in near future for observing
the changes over the various land cover. In future, we are trying to get the ground

truth information about changes for various classes and will try to check the results.
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6.6. Conclusion

A methodology for study of multitemporal changes in the agriculture and water areas

is presented in this chapter, through the use of NDVI and NDWI of MODIS images

from year 2001 to 2008 by the harmonic analysis. This type of analysis is quite useful

for observing the particular changes in the particular month. The considered area of

interest for agriculture shows maximum greenness in one hand and in another hand

the overall greenness of the whole area was also maximum in the year 2005 where as

in the other years changes are observed, but the minimum in the greenness was

observed in the year2001 for the considered area of interest for agriculture andalso in

the whole area considered. The overall water in response to the water area of interest

was maximum in the year 2007 and was at the minimum in the year 2008, whereas

the overall water response for the whole considered areas was maximum in the year

2005 and minimum in the year 2004. It shows that particular water areas of interest

may be more water in year 2007, whereas overall water in whole considered image is

maximum in 2005.

This type of work is giving strength to carry out region specific study for

knowing specific changes in particular region.
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Chapter 7

Conclusions and Future Scope
This chapter presents the succinct overview of the layout, results and major inferences

of the research work. Scope of thework and possibilities to extend it further constitute

the later part of the chapter.

7.1. Contributions of the Thesis

The Present work in this thesis started from the observation that a number of satellite

images are available for various applications especially land cover application but it

is important to select a propersatellite image for the land coverclassification. Satellite

image properties like resolution and band values are main important parameters for

classification. It is also an important challenge to provide this information for various

agencies like Govt, planning agency, farmers, Agro-economic developers etc. at

minimum cost. Therefore the main aim of this project work is to maximize the use of

freely available satellite image especially MODIS. MODIS has 36 bands and each

band as designed such as to observe special properties of land, atmosphere, etc. but

for land cover classification its resolution is not adequate. Therefore we are not
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getting a very good classification accuracy with the MODIS image itself, so it is need

of current research to enhance the classification accuracy of MODIS image. Therefore

the research work was divided into three main parts for maximizing the use of

MODIS image.

1. To enhance the classification accuracy of MODIS image with the fusion of

optical as well as radar images.

2. To check the application of MODIS image for particular class enhancement in

a single class like hotspot and non-hotspot regions.

3. Application of MODIS images for quantifying the changes in tenns of

greenness of the particular region as well as amount of water presence in that

region.

These three major parts are divided in four chapters in this thesis i.e., chapter 3,

chapter 4, chapter 5 and chapter 6. For fulfilling these major task MODIS, ASTER,

PALSAR and LISS-III images are used.

• Chapter 3, presents the method of fusion of MODIS and ASTER image for

enhancement of classification of the MODIS image as well as the derivation of

the fusion coefficient by which fusion complexity may be reduced. The

curvelet based and fuzzy based fusion techniques are used for the fusion of

high resolution image (i.e., ASTER) with low or moderate resolution image

(i.e., MODIS) and the resultant fiised image is analyzed in the viewpoint of

land cover classification. The fuzzy based fusion technique obtained the

higher classification accuracy than the curvelet based fusion. The overall

classification accuracy for the fused image is better than the MODIS band 1

and MODIS band 2 for both fusion techniques i.e., curvelet based and fuzzy

based fusion. We have also attempted to obtain a fusion coefficient for the

particular month (i.e., March) that may be useful for the further years. By this

we can avoid to purchase the ASTER image orhigher resolution every year. It

is found that fusion coefficient may be obtained and that may be quite useful

for the fusion of MODIS images of preceding years. The new fusion

coefficient is validated with respect to classification accuracy and quality

assessment indicators (Correlation Coefficient, Root Mean squared error,
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Relative Mean Difference, Relative Variation Difference, Deviation Index.

Peak signal-to-noise ratio (PSNR), Universal Image Quality Index). It implies

the proposed methodology with fusion coefficient may be used to develop a

land cover monitoring system with MODIS image (because it is free and

temporal acquisition is high).

Nowadays synthetic aperture radar (SAR) images are having a lot of attention

of various researchers, due to its server advantages over optical images in

which SAR with full polarimetric image is providing four band information's

like HH, HV, VV and VH, and these hands have spatial characteristic for land

cover application therefore chapter 4 is an attempt to fuse to MODIS image

with full polarimetric PALSAR images to analyze the fusion effect on

classification accuracy. For this purpose, various combination of PALSAR

with MODIS images are fused with curvelet based and fuzzy based fusion

techniques for assessing the quality of fused images. The fused images are

quantitatively analyzed by quality assessment indicators (Correlation

Coefficient, Root Mean squared error, Relative Mean Difference, Relative

Variation Difference, Deviation Index, Peak signal-to-noise ratio (PSNR),

Universal Image Quality Index) in one hand and in another hand land cover

classification accuracy is computed. It is observed that both fusion technique

i.e., fuzzy and curvelet based are quite enhancing the overall classification

accuracy of the fused image in comparison to MODIS band 1 and band 2

images. Curvelet based fusion of MOD 12 (Resultant fused image of MODIS

band 1 and band 2) with HH PALSAR band which gives the resultant image

MOPA(HH) are providing the maximum overall classification accuracy. The

fused image is also assessed by the various quality assessment indicators

which shows that fused image are having quite closer information with

MOD 12 image, which is the main advantages of these two fusion techniques.

The Jharia coalfield in Jharkhand is the richest coal bearing area in India

which contains a large number of coal mine fires (Hotspot) which have been

burning for several decades. This problem paved us, to classify hotspot and

non-hotspot regions. Hence in this thesis, chapter 5 is dedicated to this

particular problem. The classification of hotspot and non-hotspot regions
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through binary division algorithm for the Jharia coalfield in Jharkhand is

envisioned. MODIS band 1 and band2, LISS-III band 2 and band 3 images are

considered to dealt with hotspot and non-hotspot regions classification.

Although MODIS provides a special product MOD14A2 for tire

classification. But it is observed that this product has limited capability to

classify hotspot and non-hotspot regions. Hence, we have developed the

methodologies to classify hotspot and non-hotspot regions and thereby

maximizing the use of MODIS images and a good classification of hotspot and

non-hotspot regions has been obtained.

The study of multitemporal changes in the agriculture and water areas through

the use of NDVI and NDWI of MODIS images from year 2001 to 2008, by the

harmonic analysis. For observing the particular changes in the particular

month in the agriculture and water areas, this type of analysis is quite useful.

Forty MODIS images from year 2001 to 2008 have been used for

multitemporal change analysis in this chapter 6. We are interested to highlight

the changes in agriculture and water areas of particular month March from

year 2001 to 2008. We have taken some specific region of agriculture and

water areas and for this we have seen the temporal changes, while we have

also computed change in the whole considered image. It is found that the

harmonic analysis of MODIS is quite useful for quantative analyzing the

changes in greenness and overall water in the area

7.2. Future Scope

Taking the ground of findings from the implementation of the problems stated in

section 1.2, following scope for the research may be outlined:

• The present study is strengthening the concept of enhancement of utilization

of MODIS images. It is clearly observed that the classification accuracy of

MODIS image will be enhanced by fusing it with high resolution images.

Fusin coefficients is one of the better option to the use of number of higher

resolution images. But these fusion coefficients will be very much seasonal
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and regional specific because satellite images are very much dependant on

seasons. So it is important to tune the fusion coefficient. For this purpose more

number of higher resolution image may be used to tune the fusion coefficients.

This fusion coefficients, may be very helpful for developing a land cover

monitoring system.

It is further required to enhance the use of polarimetric SAR data by

developing a method for obtaining fusion coefficients. It may also possible to

use radar wave interaction concept with target labeling the various class

Based on the solutions proposed in the classification of hotspot and non-

hotspot in this thesis, a decision support system can be developed which

provides automated functionalities for area estimation and monitoring. This

system will take input as the satellite image of the affected area and will

provide the desired results and infonnation as output.

A methodology for study of multitemporal changes in the agriculture and

water areas was presented in this thesis, only for the month of march only, and

in near fiiture it is desired to develop a monitoring system for observing the

particular changes in all seasons and in all the month also.
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