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Abstract

Land cover and land use classification on a huge scale, e.g. national or continental

scale, have become more and more important in wide range of applications like urban

planning, farming, study of human impacts on environment, and study of damages

caused by natural disasters like landslides, hurricanes, erosion or earthquakes. Earth

observation using satellite imagery is a challenging tool for land cover monitoring that

may offer a wide coverage efficiently. Automated classification of image into various

land covers like water, urban and agriculture is an imminent necessity for large scale

landscape monitoring. Land cover classification of the image is the process of

segmenting the image into clusters according to desired parameters and labeling each

cluster as various land covers according to characteristics of pixels within clusters.

Therefore, there is a need to analyze satellite images and explore possibilities of using

these images for classification purposes more efficiently.

Radar sensors have specific advantages for land cover classification due to their

operating frequency range: (1) Sensitive to surface characteristics like surface

roughness and dielectric property, (2) Independent of sun illumination, and

(3) Capable of providing all time (day and night) and all weather acquisitions. It's

another advantage is its relatively high spatial resolution. Therefore, by seeing the

advantages of Synthetic Aperture Radar (SAR) image, it is required to explore its

applications for various land cover classification.

Land cover classification of SAR image can be approached as (i) Clustering the pixels

and labeling clusters into various land covers like water, urban and agriculture, and

(ii) classifying land cover in to 'change' and 'no change' areas by comparing SAR

image that are obtained at different time with quantitative assessment of changes. For

classification of single polarized SAR image, backscattering coefficient and texture

are the only information available. Hence, analyzing single polarized SAR image is

still a big challenge.

The present dissertation work is an effort to obtain unsupervised land cover

classification in one hand and on the other hand, to classify 'change' and 'no change'

areas with quantitative measurement of changes. The main aim of this dissertation is
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to study and develop suitable algorithm for unsupervised classification of single

polarized SAR image by (i) identifying textural features that should be most effective

for land cover discrimination and devising techniques to measure features,

(ii) defining algorithm to integrate the features for clustering, (iii) labeling of clusters

with minimum apriori information and (iv) application of image analysis and

interferometry for quantitative and qualitative analysis of changes on land surfaces

(i.e., subsidence).

To test and critically analyze the various land cover classification algorithms, three

imagesets of ERS-2 SARC-band images (5.3 GHz frequency and VV polarization) at

a spatial resolution of -12.5 m are used. The test site selected for this study is

Haridwar region, India (Latitude: 77° 51'E to 77°55'12"E; Longitude: 29°54'N and

29°50'50" N). New Orleans city of USA (Latitude: 30°3'27"N to 29°54'43"N;

Longitude: 90°15'12"W to 89°53'36"W) is taken as the study area for application of

image analysis and interferometric techniques to observe qualitative and quantitative

changes on land surface (i.e., subsidence). For this purpose, 84 Single look complex

(SLC) RADARSAT-1 images were acquired from 15 April, 2002 to 15 March, 2007

with 24 day repeat interval.

First chapter presents the introduction of the thesis which includes motivation, major

research gaps, and details about the study area and satellite image used.

In chapter II of thesis, brief review of related works is presented.

Chapter III explores the analysis of role of various intensity and textural measures for

their discriminative ability for land cover classification (i.e., water, urban and

agriculture areas) of SAR data. In this chapter, suitable algorithm by which various

texture measures can be combined for unsupervised SAR data classification was

proposed and the study of their combined effect on classification accuracy was

presented. Texture, being an important property for describing various land covers in

SAR data has led to analysis of various texture measures for its classification. Till

now, texture measures have been applied individually or combined by K-means for

classification purposes but gave less accuracy (approximately 50%, Dekker, 2003).

There is a need to study the role of various texture measures in classification and to

improvise the algorithm of combining texture measures. In this chapter, various

texture measures namely mean, variance, semivariogram, lacunarity, weighted rank
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fill ratio and wavelet components, and their combined effects for classification, were

analyzed by applying them to synthetic images as well as to SAR data. The focus of

this chapter was to increase classification accuracy by fusion of maximum

information obtained by single polarized SAR data. Individual texture measures have

been analyzed for improving classification accuracy in one hand, whereas in another

hand, to obtain combined effect of these textural measures on classification accuracy,

PCA has been applied and selected principal components were used for further

classification. Because it is well known that PCA has its own advantage of fusing

information from number of various input features, and giving output in terms of

eigen vectors which are orthogonal, capturing information from the input features

(Bajwa and Hyder, 2005; Joliffe, 2002). It was observed that feature set comprising of

mean, variance, wavelet components, semivariogram, lacunarity and weighted rank

fill ratio provided good classification accuracy up to 90.4% than by using individual

textural measures (with individual texture measure, maximum classification accuracy

achievable is approximately 76%) and this increased accuracy justified the complexity

involved in the process (Chamundeeswari et al., 2006a; 2006b; 2009).

An effort of devising adaptive unsupervised classification technique with the help of

wavelets for multi resolution analysis of SAR image has been explored in chapter IV.

Till now, most of the developed research works requires either ancillary image such

as elevation model, ground truth or involves user interaction to decide parameters

involved in classification algorithm. Hence, there is a need to develop user

independent algorithm with minimum apriori information. For multi resolution

analysis, wavelet transform is an excellent tool (Mallat, 1989) and its ability to

capture different textures in SAR image has not yet been fully explored (Leporini and

Pesquet, 1997). Therefore, in this task, an attempt to critically analyze multi

resolution texture by wavelet decomposition has been carried out. Four band wavelet

decomposition is applied on SAR image and textural features are extracted from

wavelet coefficients corresponding to each of these sub-bands. Integrated feature

vector corresponding to every sub-band chosen, is obtained by integrating textural

features corresponding to that band and backscattering coefficient. Adaptive

neuro-fuzzy algorithm ranks and selects important feature vectors for classification

process. This algorithm helps in removing redundant feature bands and choosing

relevant feature vectors for classification. Then, K-means classification is applied on

IV



chosen feature vectors. The proposed classification process involves three user

defined parameters namely (i) window size of local estimator 1, (ii) window size of

local estimator 2 (Local estimator 1 & 2 are used to compute textural features from

sub-bands obtained by wavelet decomposition at level 1 and 2 respectively), and

(iii) number of feature vectors to be chosen for K-means classification from adaptive

neuro-fuzzy algorithm. To make the algorithm adaptive and optimum, user

dependency has to be removed and above mentioned user defined parameters are to

be identified for maximum achievable classification accuracy. For this purpose, an

algorithm is proposed for classification accuracy in terms of the parameters involved

in segmentation process. This will be very helpful to develop automated land cover

monitoring system with SAR image, where optimized parameters are to be developed

only once and these parameters can be applied to SAR image of the scene year after

year for a particular region. Single polarized SAR image is classified into water, and

urban areas using the proposed method and overall classification accuracy is obtained

in the range of 85.92%-93.70% by comparing with ground truth image

(Chamundeeswari et al., 2007a; Chamundeeswari and Singh, 2006).

Labeling of different clusters on SAR image is quite a challenging task. Therefore in

chapter V, the task of how to label these clusters is critically analyzed and studied.

Earlier researchers have used backscattering coefficient for labeling the different

clusters. But it is difficult to get unique value of backscattering coefficient for

different clusters (i.e., major land covers namely water, urban and agriculture areas).

Therefore, roughness parameters, along with backscattering coefficient may be used

for labeling of clusters in SAR image. In this chapter, we have proposed an algorithm

that includes surface roughness as one of the criteria along with backscattering

coefficient, for labeling various clusters. Surface roughness measures RMS height,'^'

(i.e., vertical roughness) and correlation length 7' (i.e., horizontal roughness). This

surface roughness may directly indicate the various major land covers like water,

urban and agriculture areas. First to check the sensitivity of textural measures on

roughness, effect of eight different textural measures namely of mean, variance,

wavelet components, semivariogram, lacunarity and weighted rank fill ratio on

surface roughness is critically analyzed. This analysis has been carried out on

developed synthetic images (approximately 300 images for various combinations of s

and I). Semivariogram, weighted rank fill ratio and wavelet components are found to



be suitable texture measures for retrieving surface roughness parameters. An

empirical relation has been proposed for retrieving surface roughness from these

texture measures. With the help of backscattering coefficient and surface roughness

parameters retrieved from texture measures, clusters can be labeled. The proposed

algorithm is applied on SAR image to label land covers namely water, urban and

agriculture areas. Land cover labels obtained by proposed method are found to be in

good agreement with topographic information.

Unsupervised classification of 'change' and 'no change' pixels and quantitative

analysis of changes, i.e., subsidence are taken as next task in chapter VI. For this

purpose, various image analysis approaches have been studied and critically analyzed

for classifying 'change' and 'no change' pixels, whereas, for quantitative analysis of

changes, i.e., subsidence, interferometric approach has been applied. To classify the

areas of 'change' and 'no-change', various image analysis approaches like image

differencing, minimum ratio detector, Correlation coefficient technique and integrated

intensity, texture and orientation difference maps have been applied. Each approach

has its own advantages and disadvantages. Therefore, it is difficult to get same area of

'change' and 'no-change' with all these approaches. To get the common area of

'change' and 'no-change', an intersection operator method is proposed. This method

is used to obtain more reliable set of 'change' and 'no-change' pixels. By studying the

properties of pixels belonging to such change and no-change areas, Weibull

probability distribution model is proposed. This model includes location, shape and

scale parameter. It is found that this model best suit compared to others like

lognormal, exponential or Gaussian distribution for the distribution of pixels on the

basis of chi square test (Chamundeeswari et al., 2008a; 2008b). The results obtained

by proposed methodology are quite encouraging.

Repeat pass SAR interferometry is potentially a unique tool for precise generation of

DEM and large coverage deformation tool. Selection of InSAR image pairs is very

crucial and requires analysis of large image sets to identify suitable image pairs. The

baseline distance, caused by drift in orbit between passes, provides different viewing

angles required for getting interferogram. But if baselines are too large, the accuracy

of D-InSAR will decrease since the removal of the topographic phase term can not be

performed very accurately. Care should be taken that baselines between image pairs

are not too large (<100m). Spatial overlap (>50%) and azimuth spectra overlap
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(>90%) of the two images involved in generation of interferogram are also to be

considered to get good quality interferogram and hence accurate deformation. In

addition, SAR interferometry requires digital elevation models to map deformations 3

occurred. Hence, in this study, D-InSAR using three pass interferometry, that does not

require elevation model or any apriori information is used for subsidence

measurement. The subsidence for major change areas in study site are calculated and

found to be in the range of (0-16) mm per year. These results are found to be in

agreement with earlier findings (Dixon et al., 2006). Dixon has used permanent

scatterers to measure deformation which require DEM, while we have used

differential InSAR approach avoiding the need for such additional information like

elevation model of the study site.

The quantitative analysis of subsidence with image analysis approach is verydifficult.

Therefore, an algorithm is proposed in this chapter by which more information about

the changes like nature of subsidence (low, medium or high) could be retrieved from

image analysis approach. From the Subsidence map obtained by DInSAR, pixels are

categorized as low, medium and high subsidence pixels. To avoid cumbersome ^

method of DInSAR, image analysis approach of image ratioing has been attempted to

classify the image into low, medium and high subsidence pixels. For identifying low,

medium and high subsidence areas, pdf is labeled for each type of subsidence

(Chamundeeswari et al., 2008c, Singh et al., 2008a; 2008b). Results are quite in good

agreement with the results obtainedby DInSAR. Only quantitative analysis cannot be

done by this method and it only highlights low, mediumand high subsidence region.

The results are validated with the ground truth survey undertaken in and around

Haridwar region, India for unsupervised land cover classification. Ground truth

survey of agriculture areas reported by Said (2006) is also taken as reference. For

classifying 'change' and 'no change' areas from multi temporal SAR images, New

Orleans city of USA is considered as study site and comparison of the results is done

with the results published by Dixon et al., (2006) using interferometry based

subsidence for the years 2002-2005.

Finally in chapter VII, the contributions made in the thesis are summarized and scope

of future work is outlined. The obtained analysis and results may give to various users

to design monitoring system for land cover classification as well as classification of
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'change' and 'no change' areas. This type of study and proposed algorithms will

certainly enhance the analytical capability of applications of radar images for end

users.
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Chapter 1

Introduction

Satellite images for land cover and land use mapping is a key to many diverse

applications such as natural resource management, urban planning, farming, soil

study, crop monitoring, study of human impacts on environment, and study of

damages caused by natural disasters like landslides, hurricanes, erosion or

earthquakes and may be applied to many other applications. Satellite images have

become popular since they offer cost effective solution for large scale area while

offering more choice on the basis of different spatial, spectral and temporal

parameters.

Earth observation using satellite imagery is a challenging tool for land cover

monitoring. Automated classification of image into various land covers like water,

urban and agriculture areas is an imminent necessity for large scale landscape

monitoring. Availability of satellite images of earth surface has to be exploited to

extract more information from these images to study the environment and human

impacts on the environment. When discussing about satellite images, mainly, there are

three types of satellite images based on frequency bands used i.e., optical, thermal and

microwave bands. There are a lot of reported works for classification of optical and

thermal bands. But use of microwave images is still limited whereas it has some

advantages over optical and thermal images. To apply the classification technique on

microwave / Synthetic Aperture Radar (SAR) images, a lot of complexities are

involved in the process. Although various techniques and algorithms are reported for

classification of SAR images, but still, uncertainty exists in the classification methods.

Therefore, there is a need to explore the possibility of application of SAR images for

land cover classification more efficiently and effectively in one hand and in other

hand to assess the changes on the land cover observed in qualitative and quantitative

way. Image analysis approaches help in classifying 'change' and 'no change' pixels

giving a qualitative analysisof changes, whereas SAR Interferometry is a suitable tool

to quantify changes like deformation on earth surface.



1.1 Motivation

There are many satellite images available in different operating frequencies. Satellite

images that are available can be listed according to their operating domain as optical,

thermal and microwave images. Optical and thermal images operate in the visible and

IR (Infra Red) regions of the spectrum. Their operational use is weather dependent,

since clouds are not transparent at visible/IR wavelengths (0.4-14 um). Some of the

satellite images working on optical and thermal bands can be listed as AVHRR

(Advanced High Resolution Radiometer), Landsat (Land Satellite), LISS (Linear

Imaging Self Scanner), MODIS (MODerate Imaging Spectroradiometer), IKONOS

(derived from greek word 'EIKON' meaning image), IRS (Indian Remote Sensing

satellite), SPOT (Satellite Pour L'Observation de la Terra or earth observing

satellites) and many others.

On the other hand, radar images, working in microwave region (1 GHz to 30 GHz),

are very much atmosphere and weather independent. Radar sensors have specific

advantages over optical images due to their operating frequency range. The following

advantages can be statedfor radarsensors and microwave images.

Its operating mode is independent from external sources like sunlight. Their operating

frequency bands drastically reduce the impact of clouds, fog and rain on the images

andhence SAR images are less affected by atmospheric and sunlight conditions. This

means that they are capable of monitoring geographical areas regularly (even if

covered by clouds or if only limited sunlight is available). This makes it possible to

plan monitoring of a region with advanced timing defined by the user. These sensors

allow all-time, all-weather imaging, an important aspect desirable for continuous and

global monitoring of Earth's surface. These images are sensitive to surface

characteristics like surface roughness and dielectric property, hence paving way for

betterunderstanding of nature of the terrain from the imageanalysis.

Due to short revisit time provided by SAR based missions like COSMO/SkyMed

(Constellation of Small satellites for Mediterranian basin Observation), TerraSAR-X

(X-band SAR), PALSAR (Phased Array L-band Synthetic Aperture Radar), ERS

(European Remote Sensing satellite), RADARSAT (Radar Satellite), and ENVISAT

(Environmental Satellite), huge amount of multi temporal SAR data is expected to
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become systematically available. With the SAR image, it is possible to get

2-dimensional information, whereas for acquiring 3-dimensional information of

targets, interferometric approach is commonly used. This interferometry is known as

InSAR (Interferometric SAR), whereas to compute changes in height in mm range,

researchers are applying Differential Interferometric SAR (DInSAR) approach so that

temporal changes can be quantified.

ERS, JERS (Japanese Earth Remote Sensing), ENVISAT, RADARSAT, PALSAR,

TerraSAR-X are some of the radar satellite sensors available for various applications.

Each pixel in SAR image contains measure of energy backscattered by a small area in

the observed environment and provides information about the target characteristics

and it is termed as backscattering coefficient. Amplitude of the pixel can also be

termed as intensity. The SAR image consists of mainly two information

(i) backscattering coefficient and (ii) texture. Target characteristics can be defined by

various parameters like shape, structure, roughness, and moisture content. Due to

these parameters, SAR images exhibit different backscattering coefficients and

different texture information for different targets. The main aim is to extract

maximum information of the target and it is quite complex to extract various target

information like shape, orientation, moisture or roughness using backscattering

coefficient alone. Researchers are using different input observation vectors like

multifrequency and multipolarimetric images to solve the ambiguity of various

unknowns involved in the targets. Therefore, it is challenging to use single polarized

SAR image and extract maximum information of targets or make use of single

polarimetric SAR image for various applications like land cover mapping, urban

planning, farming, crop monitoring, and damage assessments.

To increase the amount of information that can be extracted from single band SAR,

texture information within the image has to be looked at in much greater detail.

Texture can be described as spatial property of an image point. In remotely sensed

image, texture can be considered as the visual impression of coarseness or smoothness

caused by the variability or uniformity of the intensity. In SAR image, it is the

variation or uniformity of backscattering coefficient. These texture properties enable

different land cover regions like rocks, water, agriculture, urban area etc., appear as

different textures. The size at which texture measures are computed is an important

parameter. Generally, texture measure is computed using image analysis approach

3



where a window or filter is applied over neighborhood of each pixel in the image. The

size of window applied for computing texture measure is termed as window size.

These texture measures are quite dependent on the applied window size. For example, v

same texture may appear smooth at a lower window size and may appear

coarse/rough with a larger window size. This case occurs when window size is not

fully encompassing a texture pattern in the first case. These parameters,

backscattering coefficient, texture and resolution of analysis, can be effectively put

together for the analysis of SAR images.

Ever since the satellite images have become available, considerable effort has been

devoted to classification of image data with the aim of producing high quality

classified images and establishing accurate inventories of spatial classes.

Classification is regarded as fundamental process in satellite image analysis for land

cover, land use, monitoring crop characteristic, oil spills and many such applications.

It lies at the heart of transformation from available satellite image into useful

geographic product. The end product could be land cover classes, agriculture

mapping, weather forecasting, terrain nature and many others. Segmentation is a

preliminary process of classification. The result of segmentation is a set of regions

that collectively cover the entire image such that each of the pixels in a region are

similar with respect to some characteristic or computed property, such as color,

intensity or texture. Adjacent regions of the image are significantly different with

respect to the same characteristics. The intent ofclassification process is to categorize

all pixels in the image into one of several classes (say, land cover). This is done by

attaching labels to the clusters obtained by segmentation process reflecting the nature

of the group or cluster.

Land cover classification of SAR data can be approached as (i) Clustering the pixels

and labeling clusters into various land covers like water, urban and agriculture, and

(ii) Classification of 'change' and 'no change' pixels, where land cover has to be

classified into two classes, namely, 'change' and 'no change' areas by comparing

SAR data that were obtained at different time.

Classification can be performed in two ways: Supervised and Unsupervised.

Supervised techniques on SAR images suffer from the need for human interaction to

determine classes and training regions (Stathakis and Vasilakos, 2006). In contrast,
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unsupervised methods determine classes automatically, but generally show limited

ability to accurately divide terrain into natural classes. In the case of supervised

classification, prototype pixel samples which are already labeled by virtue of ground

truth, existing maps, or inference from experimental data are used for classification.

Unsupervised classifier automatically classifies without any need of training using the

algorithms which utilize only the information contained in the measured data

themselves (Hara et al., 1994). But in practical applications, unsupervised

classification is attempted with minimum apriori information and fewer user

interactions. Unsupervised algorithm selects natural groupings of pixels based on

some selective property of image such as intensity or texture. This algorithm still

requires user interaction for assigning information classes for the clusters obtained.

Still, some algorithms use parameters like thresholding which are to be provided by

the user. Hence, to apply unsupervised classification on single polarized SAR

images, the algorithm has to be refined such that it requires minimum apriori

information with lesser user interaction.

Usually for remote sensing applications, K-means and Isodata based clustering is used

for unsupervised classification. Both techniques use an input metric like eucledian

distance for measuring likeness or similarity of pixels belonging to each cluster. If an

accurate model for selecting the metric is unavailable, then the chosen metric may be

sub-optimal and the classifier may perform poorly. There are many other

unsupervised classification algorithms for satellite images that are based on

techniques like K-nearest neighbor clustering, fuzzy models, Markov Random Field

(MRF) models, neural networks, genetic algorithms and some others.

Analyzing single polarized SAR data is still a big challenge. For classification of

SAR data, backscattering coefficient and texture (i.e., statistical intensity distribution)

are the only information available. Based on this, various researchers analyzed SAR

data, especially for segmentation purposes (Smits and Dellepiane, 1997; Deng and

Clausi, 2004). Some works were based on texture analysis (Acharyya et al., 2003;

Rignot and Kwok, 1990; Du, 1990; Jain and Farrokhnia, 1991; Chang and

Kuo, 1993). SAR data segmentation is also approached as a problem of identifying

homogenous regions and tracing edges within SAR data (Chamundeeswari et al.,

2007b).



Maximum researchers are designing single metric using apriori knowledge of

probability distribution of pixels for classification. They also analyze the image on

pixel basis and hence failed to suit the needs of SAR data analysis, lacking the texture

or spatial analysis of backscattering coefficient. There are various texture measures

like mean, variance, semivariogram, lacunarity, weighted rank fill ratio and wavelet

components that could be used for SAR texture analysis. Still there are very few

reported works where they have critically analyzed texture measures obtained at

various scales for SAR data. The spatial and scale properties of texture present in

single polarized SAR data require analysis of textures at various scales to identify

land covers like water, urban and agriculture areas. SAR data have both micro and

macro textures, which are important features for texture analysis. Therefore, there is a

need for multi resolution analysis of SAR data for classification and design of

efficient and suitable tool for capturing multi level textures present in it. The main

focus in the texture analysis of SAR data is on the construction of suitable texture

measures at various scales of resolution with the most discriminative ability. Texture

measures to describe the SAR data characteristic for discriminating land cover are to

be identified and an effective means of using these measures for further classification

process is to be designed.

Classification requires labeling of each clusters identified by SAR data segmentation

process. Normally, labeling clusters is performed with the help of ground truth data

for single polarized data. There are many research works that either uses multi band

data or fully polarimetric data for labeling. For single polarized data, there is a dearth

of algorithms for surface discrimination using property of electromagnetic scattering

of radar. With the help of analysis of texture measures for varying surface

characteristics of different land covers, labeling may be done, so that the complete

process of classification may become unsupervised.

Another aspect of classification (that may occur) is classifying 'change' and 'no

change' areas where it can be used to detect damages occurring due to natural
disasters like earthquake, floods or forest fire with an image pair enclosing the event.

Reviews (Lu et al., 2004; Coppin et al., 2004) reveal lack ofthe use ofradar data for

thematic application of classifying 'change' and 'no change' pixels. In the general

context of classification of 'change' and 'no change' areas, many techniques have

been developed: classification of some feature maps, such as image differencing,
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image ratioing, selective principal component analysis (PCA) (Mas, 1999) or mutual

information (Inglada, 2002) into 'change' and 'no-change' pixels. Fuzzy version of

hidden markov chains (Carincotte et al., 2006) are employed for log ratio based

unsupervised classification of 'change' and 'no change' pixels. These image analysis

approaches give two classes of 'change' and 'no change' areas and no quantitative

information about elevation changes or deformation mapping is provided.

Interferometric mapping utilizing phase information acquired by SAR sensors is an

excellent tool for deformation mapping enabling user to obtain subsidence in terms of

millimeter accuracy (Monti-Guarnieri et al., 1993; Ferretti et al., 2007).

Image analysis approaches provide information about presence or absence of changes

occurred in the image. For obtaining classification of 'change' and 'no change' pixels,

various researchers applied suitable threshold for discriminating them, whereas some

others are using the assumption for the distribution of pixels corresponding to

'change' and 'no change' pixels, which is an apriori information required about the

image. So, improved classification algorithms with minimum apriori knowledge

about the data and minimum user interaction are the need of the time. For quantitative

analysis of change pixels, it is also important to explore the possibility of

interferometric techniques, where, nowadays, various researchers are using this

technique. Interferometric mapping of earth deformation for analysis of subsidence

without using elevation data is also to be explored.

In summary, considering the difficulties in unsupervised classification of single

polarized SAR image, considerable amount of research is required to utilize this

image for various land cover/ land use classification and monitoring applications. In

one hand, classification of land cover is important as well as in another hand, it is also

important to identify 'change' and 'no change' areas in SAR image. Forthis purpose,

image analysis approach has to be critically explored. It is also important to know

these changes in a quantitative manner. Therefore, it is required to explore the

possibility of application of DInSAR with some realistic approach by which

quantitative measurement of changes can be obtained for temporal SAR images.

Unsupervised classification remains a challenging task till date due to the inherent

hurdles like suitable selection of metrics for classification, user interaction for setting

parameters involved in the process and requirement of ground truth information for

labeling.



Hence study ofcritical analysis needs to be performed for following tasks:

•

•

Selection of suitable texture measures for single polarized SAR image and

developing algorithm to classify onthebasis of selected measures.

Developing an adaptive approach for computing user defined parameters for

optimum classification accuracy to design an unsupervised algorithm with

minimum user interaction.

Labeling of clusters so that process of classification becomes completely

unsupervised.

Mapping change pixels both qualitatively and quantitatively by analyzing

temporal SAR images in reliable manner.

1.2 Problem Statement

The present dissertation work is an effort to obtain land cover classification in one

hand and on the other hand, to classify 'change' and 'no change' pixels in qualitative

and quantitative way by considering the limitations and assumptions mentioned

(Section 1.1). Furthermore, one of the objectives of the thesis is to extract useful

information from a single polarized SAR image by critically analyzing various

features describing it and means of utilizing the describing features for land cover

classification. The other objective is to study the temporal SAR images and classify

the image into 'change' and 'no change' pixels with quantitative assessments. Key

challenges and issues inherent inanalyzing the SAR images include:

1. Since SAR images contain micro and macro textures, suitable algorithm to

analyze these textures for classification purposes.

2. Developing unsupervised classification algorithm with minimum user

interaction (For example, user interactions to set the parameters involved in

the algorithm which affects classification accuracy has to be minimized).

3. It is very difficult to label the clusters obtained by unsupervised algorithm

without the use of ground truth or topographic information. Efforts must be
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made in this direction to label various clusters from their surface

characteristics.

4. Unsupervised classification of 'change' and 'no change' pixels generally

require thresholding for classifying pixels. The choice of thresholds affects the

accuracy of the results. Hence, method to find a reliable set of 'change' pixels

has to be devised.

5. SAR Interferometry is a precise and valuable tool for mapping deformation on

earth surface. With the help of this technique, changes in vertical height of the

terrain can be mapped. Three pass interferometry helps in quantitatively

mapping these kind of changes with out requiring elevation information. The

critical issue with using this method is selection of suitable InSAR image pairs

for generating good interferogram and hence accurate mapping. Therefore,

applicability of DInSAR for measuring changes is to be explored and means to

obtain nature of subsidence by comparing image analysis and interferometric

approach. Even though, DInSAR provides accurate measurement of surface

changes and is capable of measuring deformation in mm, it is very difficult to

obtain suitable InSAR image pairs from which height or deformation can be

measured. This is because of the fact that for accurate elevation mapping, a

good quality interferogram is required. For generating a good interferogram,

image pairs need to pass through some minimum criteria like baseline distance

(distance between two sensors), coregistration, and spatial overlap. Hence,

these complexities involved in implementing DInSAR call for an alternative

approach for quantitative analysis.

Therefore, the various major tasks undertaken in this thesis are as following:

(i) Identifying texture measures that should be most effective for land cover

discrimination and devising techniques to compute these measures,

(ii) Defining algorithm to integrate the measures for clustering,

(iii) Labeling of clusters with minimum apriori information, and

(iv) Application of image analysis and interferometry for qualitative and

quantitative analysis of changes on land surfaces (i.e., subsidence).



1.3 Study area

In this thesis, two study areas have been selected for the application of various tasks

undertaken. For land cover classification purposes, Indian region is chosen and for

classifying 'change' and 'no change' pixels with quantitative analysis, New Orleans

city of USA is considered.

Figure 1.1. Location and topography of Roorkee, India.

1.3.1 Study area for land cover classification

Solani river catchment around Roorkee town in the state of Uttarakhand, India is

taken as the study area (Figure 1.1). The area is relatively flat with elevations ranging

from 245.5 m to 289.9 m. Its latitude ranges from 29.90° N to 29.83° N, and its

longitude ranges from 77.92° E to 77.85° E. The agriculture varieties in this area are

mainly wheat, sugarcane, and paddy.

1.3.2 Study area for classifying 'change' and 'no change' pixels and

quantitative analysis of changes

For classifying 'change' and 'no change' pixels by comparing two or more SAR

images,New Orleans city of USA is taken as the study area. Since the New Orleans is

undergoing subsidence for the past few years, it is taken as the study area for

qualitatively and quantitatively measuring changes (i.e., subsidence in this context,
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even though, image approaches produce 'change' pixels, mapping all changes that

may occur due to land cover, land use, surface deformation and such factors). New

Orleans is located in Southeastern Louisiana along the Mississippi River of USA.

Figure 1.2 shows the aerial view of New Orleans. The city is bordered by Lake

Pontchartrain to the north and the Gulf of Mexico to the east and is coextensive with

OrleansParish.New Orleans is among the worst affectedarea due to land subsidence.

The extent of study area ranges from latitude of 30°3'27" N to 29°54'43" N and

longitude from 90°15'12" W to 89°53'36" W, with elevation varying from -6 ft to

+20 ft (Burkett et al., 2003). It has long been recognized that New Orleans is

subsiding and is therefore susceptible for catastrophic flooding. Some parts of the

New Orleans underwent a rapid subsidence in the three years before Hurricane

Katrina struck in August 2005 (Amelung et al., 2006). One such area was next to the

Mississippi River-Gulf Outlet (MRGO) canal. Levees have failed here during the
peak storm surge. Another area which has undergone higher subsidence is Lake

Borgne and its surrounding areas. These are important locations to be studied for their

subsidence. Considering these things, study area is chosen such that it encompasses
the locations between Lake Pontchartrain and Mississippi river covering MRGO canal
areas. Ahuge amount ofdatasets ofRADARSAT-1 are provided by Canadian Space
Agency (CSA) that is also one of the reasons to select this area.

LakePonchartrain

Mississippi River

Figure 1.2. Location and aerial view ofNew Orleans (Google Earth, 2008).
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1.4 Satellite data used

1.4.1 Satellite data used for land cover classification

Three ERS-2 SAR C-band images with operating frequency of 5.3 GHz and VV

polarization ata spatial resolution of-12.5 mwere acquired on three dates:

(i) July 23, 2001,

(ii) July 28, 2003, and

(iii) March 29, 2004.

1.4.2 Satellite data used for classifying 'change' and 'no change' pixels

RADARSAT-1 data in SLC (Single Look Complex) form, acquired from 15 April

2002 to 15 March 2007 (84 data) with 24-day repeat interval was used for developing

and checking the algorithm for classifying 'change' and 'no change' pixels and

quantitative analysis ofchanges by interferometry. Standard beam and Fine beam data

types were available for analysis and details of these data types are shown in

Table 1.1.

Table 1.1. Nominal product characteristics of RADARSAT-1 SLC.

Beam mode Beam

position

Product

type

Nominal

incidence

angle
(degrees)

Nominal

resolution

Range x azimuth
(m)

Nominal Image
Coverage
(km x km)

Standard S2 SLC 24-32 11.6x5.1 100x 100

Fine F5 SLC 45-48 4.6x5.1 50x50

The complete data set of 84 SLC images used for analysis is listed in Appendix A.

For implemeting quantitative analysis ofchanges by interferometry, critical selection
ofsuitable InSAR (Interferometric SAR) image pairs is needed. Hence, by analyzing

all the images available, some pairs ofimages are selected and used for unsupervised

classification of'change' and 'nochange' pixels (details are discussed in chapter 6).

12
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1.5 Preprocessing of SAR images

1.5.1 Preprocessing of ERS-2 image

Preprocessing of ERS-2 SAR PRI image consists of three steps (1) Georeferencing,

(ii) despeckling and (iii)calculation of backscattering coefficient (Figure 1.3).

(A) Georeferencing

SAR images are acquired in the microwave region of the electromagnetic spectrum.

Hence, it is very difficult for the identification of ground control points. These images

are georeferenced to geographical coordinates using four comer points and scene

centre latitude and longitudinal points (Greku et al., 2006). The coordinates of four

comer points and scene centre points are given in the leader file of the data. A first

order polynomial transformation function and the nearest neighbor resampling

technique have been used to perform georeferencing. These preprocessing steps

described here were carried out using software ENVI 4.3.

ERS-2 SAR PRI image

I
Georeferencing

iz

Despeckling

I
Calculation of

backscattering coefficient

I
Preprocessed ERS-2 SAR image

Figure 1.3. Preprocessing of ERS-2 SAR image.
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(B) Despeckling

Speckle suppression is carried out on the georeferenced SAR image using the

adaptive Lee filter. Lee filter is able to smooth away noise in flat regions but leaves

fine details unchanged. Lee filter preserves sharp details, thus preserving boundaries

and texture information in SAR image (Lee, 1980).

(C) Calculation of backscattering coefficient

The ERS-2 PRI image has the data in Digital Number (DN) form. The backscattering

coefficient (a0) can be calculated from the DN using the guidelines provided by
European Space Agency (ESA).

The backscattering coefficient canbe computed as (Laur et al., 1997).

a° =
ij=Ni v="

-YDNl
1 sin a ,* ..

k sinany

where N is the number of pixels within the area of interest (i.e. the distributed target),

DNy is the digital number of a pixel at location (ij), kis given as 889201.00, a and

a f are the local incidence angle and ERS-2 SAR mid range incidence angle

respectively.

The local incidence angle ai can be obtained by

{RT +Hf-Rf-R}
COS CC: = - Il -z)

2RtRT

where RT and H are the Earth radius at the first position of the satellite and ERS-2

SAR altitude. Rt is the slant range to a pixel at location '/' (these values are provided

in leader file).

Thus, preprocessing of ERS-2 SAR PRI image is implemented and the processed

SAR image canbe used for further analysis.
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1.5.2 Preprocessing ofRADARSAT-1 image

Flowchart of preprocessing is shown in Figure 1.4.

(A) Georeferencing

Raw RADARSAT data is georeferenced with four comer points and an image centre

point given in the leader file. For the SLC (Single Look Complex) data, each pixel in

the output data is represented by two digital numbers (DNs) which represents the I

and Q component of complex data. Both I and Q component images are

georeferenced individually.

(B) Computation of beta nought

The pixel DNs are converted to beta nought or radar brightness values by extraction

and application of scaling information. For complex (SLC) single beam products, the

radar brightness (B°j) for the/1range pixel is given by

fl°j = 10*log10[(DNIj/A2j)2 +(DNQj/A2j)2] dB

or B°j =20*log,o(DNj/A2j) dB (1.3)

where DNIj and DNOj are the digital values ofthe I and Qcomponents ofthe/1 pixel

from the start of the range line, A2j is the corresponding range dependent gain (these

values are provided in the leader file with data) and DN/ =DNIj2 +DNOj2 . The radar
brightness is also termed as beta nought.

Since the computation of backscattering coefficient c° requires the digital elevation

model, additional information about the data or study site, we prefer to use radar

brightness image itself for the analysis so as to minimize information required for the

unsupervised classification. The fact that radar brightness or beta nought is almost

always the most appropriate radiometric attribute ofradar imagery and sigma nought

or backscattering coefficient can be reserved for situations in which local terrain slope
and illumination incidence angles are known is endorsed by the CEOS SAR

calibration working group (Raney et al., 1994).

Thus the georeferenced radar brigtness image can be used for further analysis.
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In the case of interferometric approach, both I and Q components are used to get

amplitude and phase values so that phase information can be utilized for the anaysis.

RADARSAT-1 SLC image

lz

Georeferencing

12

Calculation ofbeta nought

Preprocessed
RADARSAT-1 image

Figure 1.4. Preprocessing ofRADARSAT-1 image.

1.6 Framework of the Research

In the proposed research work, an unsupervised approach for land cover classification

is critically analyzed for single polarized SAR image. In addition, image analysis and
DInSAR approach have been widely explored for getting qualitative and quantitative

information about 'change' and 'no change' pixels.

Ageneral strategy was followed for solving the selected tasks as mentioned in section

1.2. The steps are as following:

• Understand the issues related to the problem and identify the limitations of

existingclassification techniques.

• Preprocessing of the raw images is carried to obtain radar brightness or

backscattering coefficient.

• Critically analyze various texture measures for their role in discrimination of

various intensity and texture patterns.
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•

•

•

Present a suitable algorithm to combine selective texture measures to obtain

classified SAR image into various major land cover types.

Analyze the single polarized SAR image on multi resolution basis using

wavelets.

Propose an approach by which user interaction to select any parameters

involved in classification process is minimized and to find optimum

parameters.

Labeling of clusters into major land cover types like water, urban or

agriculture areas by analyzing surfacecharacteristics inherent in the image.

Propose a reliable algorithm for the classification of 'change' and 'no change'

pixels by comparing SAR images obtained at different instants, using image

analysis approach.

Use of differential InSAR for measuringquantitative analysis of changes.

Propose a method by which more information about nature of changes (for

example, subsidence) could be obtained by image analysis approach itself

because of the complexities involved in implementing DInSAR.

1.7 Organization of the Thesis

The organization of the thesis is as following.

Chapter 2 gives a brief introduction with review on the existing unsupervised

classification techniques for single polarized SAR image, role of various texture

measures, contribution of wavelet based analysis for SAR image, labeling of clusters

and then classification of 'change' and 'no change' pixels using image analysis as well

interferometric approach. It is very difficult to get a detailed review covering all

above mentioned topics. So, it is tried to present a brief review with relevant works

that are carried out in this thesis. In chapter 3, role of various texture measures for

classifying SAR image is critically analyzed and PCA based fusion of texture

measures is implemented to perform classification. Chapter 4 describes the

multiresolution analysis of SAR image using four band wavelets, selection of suitable
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wavelet features byadaptive neuro fuzzy algorithm, andclassification. In thischapter,

an approach to provide user with optimum defined parameters that can be obtained

with the algorithm for a specific site is provided so that user interaction can be

minimized.

Chapter 5 is concerned with labeling of various clusters into one of major land cover

types namely water, urban or agriculture areas. For this purpose, effect of surface

roughness parameters on various texture measures iscritically analyzed and presented

in chapter 5 so that surface roughness can be retrieved for real SAR image. With the

knowledge of surface roughness parameter and backscattering coefficient, clusters are

labeled. Chapter 6 presents unsupervised classification of 'change' and 'no change'

pixels by comparing two SAR images separated by certain time span. Reliable

method of obtaining 'change' pixels from image analysis methods is presented.

DInSAR is used for obtaining quantitative analysis of changes between image pairs.

In addition, a method is proposed by which more information about the nature of

subsidence canbe retrieved by studying distribution of image ratio pixels belonging to

each class of subsidence. Finally, in chapter 7, a summary of the contribution of the

thesis is presented andconcluding remarks are given.
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Chapter 2

Brief Review of Literature

2.1 Introduction

Satellite images are important for the monitoring of earth surface and atmosphere at a

global, regional and even local scale. Satellite images provide a repetitive and

consistent view of the earth that is invaluable to monitoring the earth system and the

effect of human activities on the earth. At any point of time, day or night, multiple

satellites are imaging the earth's surface, adding to an ever-expanding database of

images that are available to help us for managing and solving the problems involved

in human environments. Satellite image analysis techniques have been investigated

for providing important coverage, mapping and classification of land cover features

such as vegetation, soil, water, forests and urban area.

Land cover and land use classification using satellite image analysis have gained

momentum in their role of importance because of its wide range of applications like

agriculture, forestry, hydrology, natural resource management, environmental

assessment and monitoring (urban growth), damage assessment (effect due to flood,

or surface deformation due to natural disasters like landslides and earthquakes), land

cover mapping, urban planning and monitoring (Henderson and Xia, 1997; Krieger

and Moreira, 2006) and many other applications. Nowadays, various satellite images

are available at different frequency spectrums as discussed in chapter 1. Although,

each satellite image has its own importance, SAR has some upper hand over other

satellite images (Section 1.1). Therefore, it is challenging to interpret SAR images

according to our needs and requirements like classification of land cover, crop

monitoring, soil moisture estimation, flood extent monitoring, subsidence monitoring

and many others. Nowadays, with SAR image, a lot of combinations of observation

vectors are available like different polarizations, frequency bands and incidence

angles. But challenge is that to use minimum observation vector data (i.e. single

frequency and single polarized image) and extract maximum information.
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The review of maximum work related to SAR images is quite lengthy. So, we have

focused the review mainly on selective topics as following, (which is related to work

carried out in this thesis):

• Unsupervised classification of single polarized SAR images based on texture

measures.

• Multiresolution based SAR(Single polarized) image analysis for unsupervised

classification.

• Labeling of clusters into various major land cover types namely water, urban

and agriculture areas.

• Unsupervised classification of 'change' and 'no change' pixels using image

analysis and interferometric approach so that qualitative and quantitative

analysis of changes can be implemented.

The brief reviewis concentrated with respect to these abovementioned topics.

2.2 Brief review of works related to unsupervised

classification of single polarized SAR image

As discussed in chapter 1 (Section 1.1) SAR image contains information in the form

of backscattering coefficient, gray level/ intensity and texture. This information is

quite helpful to interpret the SAR images for various applications. Although

researchers are applying supervised and unsupervised approaches to the classification

of SAR images, unsupervised way of classification is an interesting and challenging

way to classify. The aim is to apply classification and extract more information with

minimum apriori information. In early 1980s, researchers have started segmentation

of SAR images on the basis of thresholding gray levels. Various researchers (Weszka

1978; Fu and Mui, 1980, Sahoo et al., 1980) provide good surveys of the existing

techniques. Basic method for unsupervised segmentation of images based on gray

levels is to select and apply thresholds at the valleys of histogram, if any such valleys

exist in the histogram of their intensity levels (Lee and Jurkevich, 1989). To partition

an image into meaningful segments by choosing the right threshold isone ofthe most

basic image processing techniques and is not an easy task if no valleys are present in
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its histogram or the image is noisy. Several methods like transforming the histogram,

deepening the valleys are employed to enable easier selection of thresholds so that

-t classification accuracy is improved (Rosenfield and Kak, 1982). Image thresholding

based on Expectation-Maximization (EM) algorithm (Bazi et al, 2007) uses

generalized Gaussian distribution for object and background classes to classify

images. Selection of threshold is an important parameter to decide classification

accuracy. These techniques suffer from the limitation of means to choose appropriate

thresholds for segmentation purposes.

^ Another important parameter in SAR image is its backscattering coefficient. Some

researchers have used this parameter for SAR image classification purposes. Eldhuset

(1988) has used thresholding on backscattering coefficient for separation of land and

water areas in coastal regions. It has also been suggested that radar backscattering

coefficient from water is lower and more homogenous than the surrounding areas

(Pandey and Hariharan, 1984). It infers that knowledge of backscattering coefficient

and texture may increase reliability of various classes in output. In the same way,

y- utility of ERS-1 SAR data for discriminating water bodies from vegetation on the

basis of backscattering coefficient is proposed (Dobson et al., 1992; Wu and Linders,

1999) and classification accuracy for measuring the effectiveness of algorithm is

carried out using confusion matrix (Congalton, 1983). Techniques like dynamic local

thresholding (Haverkamp et al., 1993) and application of second order statistics

generated from gray level co-occurrence matrices are used for sea ice classification

methods (Nysteun and Garcia, 1992). Statistical texture measures like energy,

"T correlation, inertia, cluster prominence, local homogeneity, entropy, mean and

standard deviation for rows and columns of gray level co-occurrence matrices were

analyzed to identify statistical measures most useful for discrimination of various

classes of sea ice types.

Wavelet based algorithms for extracting texture feature sets were developed (Unser,

1995; Mecocci et al., 1995; Lindsay et al., 1996; Fukuda and Hirosawa, 1999). Gabor

filter is proposed to extract texture features for successful segmentation of SAR

images (Du, 1990; Clausi and Deng, 2005; Kamarainen et al., 2006) and comparison

of co-occurrence matrices and gaborfiltering for classification purposes. Scaling is an

important parameter for classification of SAR images. The scale at which texture is

computed is crucial for encompassing the complete texture (Levy Vehel et al., 1992;
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Marceau and Hay, 1999; Bovolo and Bruzzone, 2005). Decision tree classifiers and

multi scale texture measures were studied for their use on extracting vegetation cover

(Simard et al., 2000). Discrete cosine transform filtering (Ng et al., 1992), Gabor

wavelets (Jain and Farrokhnia, 1991; Manjunath and Chellappa, 1991), Fuzzy models

for texture characterization (Bellagente et al., 1999), Markov Random Field (MRF)

clustering (Smits and Dellepiane, 1997), Particle filter based segmentation (Chen et

al., 2005) are some of the other popular methods that have been developed for

unsupervised classification techniques (Stathakis andVasilakos, 2006).

Fuzzy clustering on wavelet transform feature inputs was proposed (Chumsamrong et

al., 2000). In this technique, wavelet components are obtained from SAR image and

are given as input to modified fuzzy c-means classifier for segmentation. Modified

fuzzy algorithm used the neighboring pixels to enhance the noisy image clustering

without affecting edges. Unsupervised classification approaches using neural

networks are proposed (Azimi-sadjadi et al., 1993; Hara et al., 1994). Some of the

unsupervised algorithms suitable for SAR classification are Adaptive Resonance

Theory (ART) networks (Rogen et al., 2008), Least Vector Quantization (LVQ)

technique and Self OrganizingMaps (SOM).

Some researchers have used polarimetric SAR for classification purposes (Yanget al.,

2006; Yamaguchi et al., 2005a; Yamaguchi et al., 2006). Use of polarimetric SAR

images enhances the classification accuracy (Yamaguchi et al., 1995) but these

methods require more observation vectors. MRF is considered as a powerful

stochastic tool to model the joint probability distribution of the image pixels in terms

of local spatial interactions. MRF models have been used to extract texture features

and to model the image segmentation problem. Various researchers have used MRF

based image segmentation algorithms (Won and Derin, 1992; Panjwani and Healey,

1995; Melas and Wilson, 2002; Deng and Clausi, 2004, Benyoussef et al., 2008).

A common point of all the applications based on MRF models is that the

segmentation is highly dependent on the representability of MRF parameters

estimated from textures. The MRF based segmentation models may not perform well

in which textures cannot be modeled using MRF models and hence the classification

process requires nature of probability distribution of texture parameters.
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Although researchers are using various techniques for unsupervised classification

purposes on SAR images, but all these techniques have their limitations like need of

-%t user interaction, need of apriori information, and prior knowledge or assumption

about the pixel distribution. Therefore, there is a need to carry out some work that can

be addressed to these limitations.

2.3 Review of works related to texture measures for

unsupervised land cover classification and labeling

-fc 2.3.1 Texture measures and fusion of texture measures for classification

Texture provides significant information in the interpretation of SAR images, in

addition to using backscatter values alone (Tuceryan and Jain, 1993). Several studies

have shown that classification based on texture features can improve the accuracy of

the interpretation (Ulaby et al., 1986a; Barber and LeDrew, 1991; Peddle and

Franklin, 1991; Barber et al., 1993; Kumar et al., 1999). Four different methods of

texture computing namely (i) texture features from gray level cooccurence features

(Rignot and Kwok, 1990), (ii) features based on local statistics like power to mean

ratio, skewness, kurtosis, contrast and homogeneity measure, (iii) fractal features

(Keller et al., 1989), and, (iv) features based on lognormal random field model

(Frankot and Chellappa, 1987) have been compared for their discrimination ability

for SAR image classification (Solberg and Jain, 1997). He has proposed for

investigating neural nets or discriminant analysis for fusion of selective texture

y features. Similarly, various texture measures like semivariogram (Carr and Miranda,

1988; Dell'Acqua et al., 2006) and lacunarity (Henebry 1995; Chandhuri and Sarkari,

1995) were analyzed for their ability in SAR image classification purposes. Other

texture measures like mean, variance, weighted rank fill ratio and wavelet

components were also studied for their role on discriminating properties by many

researchers (Dobson et al., 1997; Dekker 2003).

Efforts were made to enhance the classification accuracy by fusing the texture

measures. K-means algorithm and Isodata algorithm are commonly used for this

purpose since these methods are suitable to handle large data sets due to their

efficiency and ability to handle numeric variables in real databases (Ohanian and

Dubes, 1992; Huang 1998, Adem et al, 2006). This algorithm use equal weight for all
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variables while clustering. Hence, various techniques were proposed to enhance K-

means algorithm so that automatic weighing of variables is included according to their

importance in clustering (Gnanadesikan et al., 1999; Friedman and Meulman, 2002;

Modha and Sprangler, 2003).

Other methods using machine learning (Blum and Langley, 1997), feature similarity

(Mitra et al., 2002), and cue selection and integration (Dupuis and Vasseur, 2006) are

proposed for classification on the basis of texture measures. Since SAR image is

having texture as its important property for discrimination of classes, there are many

texture measures to compute texture by different approaches. Use of different

techniques like gabor filters and co-occurrence probabilities (Clausi and Deng, 2005),

Independent component analysis (Gilmore, 2004; Mitianoudis and Stathaki, 2005),

fischer discriminant analysis (Yang et al., 2005) were proposed to fuse the texture

measures to combine various texture feature. It is observed that these methods are

giving some promising results, but unable to explain various role of texture measures

and their combined effect. Component analysis approaches the problem of clustering

by finding the 'right' features from the data. Principal component analysis (PCA)

projects'cT dimensional data onto a lower dimensional subspace in a way that is

optimal in a sum-squared error sense. PCA can be used for fusion of various input

variables corresponding to texturemeasures in SAR images.

2.3.2 Multiresolution analysis of SAR images

In the case of single polarized SAR image, texture is an important property reflecting

the nature of the terrain or reflective surface. Texture plays the essential role in

assessing the nature of land cover. Wavelet transform is a promising tool for texture

analysis because of its ability to examine image at different resolutions (Mallat, 1989;

Chang and Kuo, 1993; Laine and Fan, 1993; Greenspan et al., 1994; Yamaguchi et al.,

1995b; Lu et al., 1997; Duits et al., 2007). Extraction of wavelet based texture feature

set is proposed by Fukuda and Hirosawa (1999) for analyzing SAR images. These

proposed feature sets consists of energy of subband images obtained from wavelet

decomposition. Energy of subband image can be a texture feature since it represents

dominant spatial frequency channels of the original image (Porter and Canagarajah,

1996). Minimum distance classifier calculates the Euclidean distance between the

feature vectors of a pixel and template vector representing texture of a class. Then
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classifier assigns pixel to the class which has minimum distance. This infers that

energy of subbands obtained by wavelet decomposition is a suitable parameter for

-t wavelet based classification algorithms. Till now, researchers are using wavelet

decomposition for multi resolution analysis and classification purposes successfully.

But for this purpose, they are making various assumptions like size of the local

estimator for measuring textures and selection of sub bands. These assumptions make

the algorithm highly user dependent. Therefore, this issue has to be undertaken and

analyzed properly.

a. Octave band wavelet decomposition for texture segmentation is studied (Espinal et

al., 1988; Niedermeier et al, 2000). Octave band wavelet transform usually provides

an efficient representation for frequency in images. But its fixed space frequency

tiling does not always match the spectrum of input images. In fact, it has been

demonstrated that wavelet coefficients efficiently decorrelates only the images with

exponentially decaying power spectra (Davis and Nosratinia, 1998). M-band wavelets

provide a solution to overcome this problem. These M-band wavelets provide a

Y mixture of logarithmic and linear frequency resolution and hence these are suitable for

characterizing textures of SAR images more efficiently (Steffen et al., 1993; Alkin

and Caglar, 1995; Chaux et al., 2006). Although M-band wavelet analysis is suitable

for representing textures of SAR images, it results in large number of subbands. For

example, if four band wavelet decomposition is used for SAR image, it results in 16

subbands at level 1 and for wavelet decomposition of second level, it results in 256

subbands, 16 subbands from each of subbands at level l.Thus, a four band wavelet

T decomposition of a single SARimage results in 272 (i.e.,16at level 1 +256 at level 2)

images and is quite a large number for analysis. Moreover, these subbands may have

repetitive information among them.

Many algorithms were proposed to prune the wavelet decomposition tree so that

sparse representation is generated (Acharyya and Kundu, 2001; Skretting and Husoy,

2006). Suitable subband selection on the basis of energy computed for subbands

(Coifman and Wickerhauser, 1992), neuro fuzzy method for selection (Acharyya and

Kundu, 2003), and information-theoretic measure, mutual information (Huang and

Selin, 2006), are some of the techniques proposed for sparse representation of

textures. Several other systems that provide multiscale and directional image

representations include 2D gabor wavelets (Daugman, 1980), the cortex transform
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(Watson, 1987), the steerable pyramids (Simoncelli, 1992), brushlets (Meyer and

Coifman, 1997) and contourlet transform (Do and Vetterli, 2005). The suitability of

M-band wavelet transform for texture based segmentation is emphasized by many -k

works (Liu and Zhou, 2004; Kim and Kang, 2007). It infers that M-band wavelet

transform can be used effectively for the analysis of SAR images.

2.3.3 Labeling ofvarious clusters

One of the interesting points in unsupervised classification of SAR image is to label

the various classes / clusters (i.e., identification of various clusters). This issue is very

challenging. For this purpose, backscattering coefficient has been used and this

parameter is dependent on many factors such as radar system parameters like its

operating frequency, surface feature parameters like moisture content/ dielectric

constant, and surface roughness, and environmental variables. Soil and vegetation

properties of the surface is analyzed using SAR images (Dobson et al., 1992, Gohil et

al., 1994; Singh, 2006; Dobson et al., 1995, Galletti et al., 2008). The sensitivity of

backscattering coefficient to various parameters like soil moisture, canopy and surface

roughness is studied (Abdel Messiah and Quegan, 2000; Yamada et al., 2001).

Empirical models are developed to retrieve soil moisture from backscattering

coefficient (Pandey and Kakar, 1982; Ratha and Venkatraman, 1997). There are many

works accomplished in an effort to classify vegetation biomass using multi frequency

data (Oh et al., 1992; Pierce et al., 1994; Paloscia et al., 1999; Ferrazzoli et al., 1997;

Lucas et al., 2007; Lang et al., 2008). These studies emphasize that backscattering

coefficient can play a role to estimate various earth surface properties like moisture,

roughness, and vegetation. Generally, researchers are using these parameters to label

the clusters. But it is observed that backscattering coefficient alone may not able to

clearly label the clusters because it is difficult to set the range of backscattering

coefficient for various clusters.

InSAR image, surface roughness is also playing an important role. Surface roughness

is an important parameter to study about the surface (Didascaloy et al., 2003). Range

of surface roughness parameters namely RMS height and correlation length are -+

associated with each agricultural roughness state is estimated and presented

(Davidson et al., 2000; Van der wal et al., 2005). Surface roughness helps in
differentiating land covers like water (calm water areas), urban and agriculture areas.
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Calm water areas are characterized by smooth surfaces and their backscattering

coefficient (Narain et al., 2006). General range of surface roughness for agriculture

-f crops depends on the nature of crops in the study site. Similarly, surface roughness

and backscattering coefficient of urban areas are site specific for labeling purposes.

This study infers that a detailed analysis is required to analyze the role of surface

roughness with backscattering coefficient to label the various clusters.

2.4 Unsupervised classification of 'change' and 'no change'

4 pixels from temporal SAR images and quantitative

assessment of changes

In several applications like disaster management and assessment of land erosion,

deforestation, environmental monitoring, analysis of forest or vegetation changes,

damage assessment, urban growth, agricultural surveys and analysis of urban changes,

the contribution of SAR imaging can become valuable, in particular, if classifying

-tr 'change' and 'no change' pixels between two observation dates is undertaken in

study area. Unsupervised classification of SAR image in to 'change pixels' ('cp') and

'no change pixels' ('«cp') is characterized by minimum apriori knowledge of the

ground truth concerning the area to be investigated. The difficulty in collecting

ground truth information regularly in time makes it mandatory to develop

unsupervised classification techniques to support the analysis of temporal sequences

of SAR images (Carlotto, 1997; Coppin et al., 2004).

%
Image differencing is a simple widely used approach for classifying 'cp' and "ncp" in

SAR images. There are many examples of its use for analyzing satellite images to

measure soil erosion, deforestation etc., (Singh, 1989; Simoes et al., 2003; Richards,

2005; Wilkinson, 2005). Image ratioing is suitable for SAR classification of changes

compared to image differencing since the ratio image obtained by dividing pixel-by-

pixel the gray levels at one date by another date cancels common errors (Rignot and

Van Zyl, 1993; Villasenor et al., 1993; Oliver and Quegan, 1998; Wu et al., 2007).

These two techniques generate a difference image and a ratio image respectively and

by applying suitable thresholds on the difference and ratio image yields a classified

image of "cp" and incp\ Trial and error procedures are typically adopted for threshold

selection (Singh, 1989; Rignot and Van Zyl, 1993; Dierking and Skriver, 2002).
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Automatizing threshold selection task is addressed (Moser and Serpico, 2006) and in

this proposed method, solution is developed for three different parametric models

postulated for 'change' and 'no change' hypothesis i.e. Nakagami ratio, Weibull ratio -k

and Log normal models. Hence, implementation of automatic threshold selection for

this proposed method uses assumption of any of the three distribution for 'cp' and

'«cp' (Ridd and Liu, 1998; Rogerson, 2002). There are various works reporting

preprocessing operations like block averaging, gamma MAP filter, followed by log

ratioing and manual thresholding according to a desired probability of false alarms

(Dekker 1998; Grover and Quegan, 1999). There are reported works on selection of
-4.

thresholds for automatic classification of 'cp' and 'nop' (Bazi et al., 2005; Moser and

Serpico, 2006). Correlation coefficient can also be used to find change pixels by

comparing two images (Rignot and vanZyl, 1993; Radke et al., 2005). Various

intensity, texture and orientation saliency maps is used by fusing them for image

classification purposes (Itti et al, 1998; Bouzidi et al., 1998a). Multicomponent

Hidden Markov Chains (HMC) (Derrode et al., 2003), Fuzzy hidden markov chains

(Carincotte et al., 2006), multi scale based approach (Bovolo and Bruzzone, 2005)

are some of the other methods used to classify 'change' are used for classifying

'change' and 'no change' pixels,. These techniques give classified image of 'change'

and 'no change' pixels but no quantitative information about the changes could be

retrieved from the above discussed image analysis approaches.

Interferometric SAR (InSAR) offers a promising solution for quantitative

measurement of changes on earth surface covering wide area economically and

efficiently (Gabriel et al., 1989; Massonnet et al., 1993; Prats et al., 2008). InSAR -+

derives information byusing the interferograms, formed byphase differences between

two complex SAR images ofthe same area but obtained atslightly different positions.
Using this concept, interferometry can be used to measure elevation ofterrain (Rao et

al., 2003; Kumar et al., 2006). Due to the nature of InSAR imaging, the phase in

InSAR images is wrapped to the interval [0, 2k]. Reconstruction ofabsolute oractual

phase is termed as phase unwrapping. This process is the principal stage in
constructing digital elevation models from interferometry (Constantini et al., 1999). It ^

has been demonstrated that digital elevation with approximately 2 m relative height

accuracy can be achieved suing TerraSAR-X (Moreira et al., 2004; Lenz et al., 2005a;

2005b). There are some papers combining polarimetry and interferometry based on
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the analysis of a fully polarimetric radar data acquired in an interferometric mode

using a fully polarimetric system (Cloude and Papathanassiou, 1998; Chandra and

^ Keydel, 1999; Alberga and Chandra, 2002; Alberga et al., 2003; Gu et al., 2004).

Another impressive application of radar interferometry is application of Differential

Interferometry (DInSAR). This technique enables the mapping of geodynamic

phenomena. The principle idea is using two interferometric image pairs of the same

area separated in time, and assuming a dynamic deformation occurring in time

between the two acquisitions, it is possible to form a differential interferogram where

_^ the underlying topography is cancelled and remaining is only the phase information

from the deformation itself. It is a technique capable of measuring terrain changes on

a wide area (Strozzi et al., 2000; Grey et al., 2003). This fact is emphasized by some

successful case studies for application of DInSAR to measure landslide movements

(Frunneau et al., 1996; Kimura and Yamaguchi, 2000; Berardino et al., 2002;

Colesanti et al., 2003; Hitley et al., 2004; Strozzi et al., 2005; Bovenga et al., 2006).

Generally, surface deformation can be measured by applying stacking interferograms

or permanent scatterer techniques,. Stacked interferograms provide an effective means

to reduce the atmospheric effects in the deformation map with improvement in

accuracy (Yen et al., 2008). Permanent scatterer technique is used to map deformation

close to one millimetre (Ferretti et al., 2001; Colesanti et al., 2003). Permanent

scatterer technique requires a large number of SAR acquisitions for analysis.

Successful mapping of continuous slow landslide movements has been reported by

many researchers (Berardino et al., 2002; Prati et al., 2004; Amelung et al., 2006).
T

These techniques require large image stockings available so that critical selection of

InSAR image pairs could be performed and accurate deformation be achieved. The

main limitation with applying interferometry is the requirement of large image

stockings to analyze and find the images with less geometric decorrelation. Due to

this fact, analysis of low coherence areas cannot be performed successfully using

interferometry. Particularly, in the case of permanent scatterer technique, the

technique may be ineffective wherever the density of stable radar targets is relatively

low.

All these studies have implied that DInSAR is a successful tool for measuring

deformation on earth surface or changes quantitatively. Some critical issues, like
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availability and selection of suitable interferometric pairs, and sufficient level of

coherence between the selected image pairs for analysis, are involved in the

implementation of DInSAR.

Some inferences can be made after doing comprehensive study and critical analysis of

the existingmethodologies that are as following:

•

•

•

Selection of texture measures suitable for efficient classification of SAR images

is imminent and an effective means of using the chosen texture features has to

be critically analyzed.

There is a need for multiresolution analysis of SAR data. M-band wavelet

transform is a suitable approach for capturing micro and macro textures present

in SAR image. Due to over complete decomposition by M-bands, suitable

technique for optimal choice of subbands is required.

There is a need to enhance unsupervised classification algorithm that can be

used with minimum apriori information of the particular site (It means less

interaction from the user).

There is a need to explore some suitable methods to label the various clusters.

Classification of 'change' and 'no change' pixels on the basis of image analysis

approach so that ad-hoc selection of thresholding may be avoided. Various

image analysis and statistical measures have to be analyzed for classification of

'change' and 'no change' pixels with temporal SAR imagery. By that,

uncertainty in 'change' and 'no change' pixels can beminimized.

There is a need to explore the possibility of interferometric technique for

quantitative measurement ofchanges like subsidence and efforts should be made

to correlate both results that are obtained from image analysis and

interferometric approach, so that interferometric complexity can be avoided to

produce first hand results of low, medium orhigh subsidence areas.
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Chapter 3

Analysis of Texture Measures for Unsupervised

Classification of SAR Images

3.1 Introduction

A digital image can usually be characterized by intensity and textures present in it.

The texture of the image represents the intrinsic spatial variability of neighboring

pixel values for each pixel within the image, whereas intensity corresponds to pixel

value. For SAR images, each pixel value corresponds to mean of backscattering

coefficient exists in it and texture corresponds to the spatial pattern of variability of

reflectivity. These two properties of image may be quite helpful to carry out

classification of SAR images.

Two types of intensity variations within the SAR image are to be considered while

applying them for land cover classification:

(i) Variations in average intensities from one land cover into another (i.e. such as

between water and urban, or urban and agriculture areas), and

(ii) Variations within a land cover related to spatial variance in geometrical

attributes of the surface and overlying agriculture or built-up areas, termed as

texture variations.

Textural measures of SAR image helps in computing these variations. Therefore,

these texture measures are important elements for SAR image interpretation,

particularly for single polarized SAR image. It means that texture may play an

important role for SAR image classification. Therefore, our focus in this chapter is to

choose suitable texture measures for unsupervised classification of single polarized

SAR image and to propose an approach to combine the chosen texture measures so

that overall classification accuracy can be enhanced.

Statistical characterization of texture requires measurement from a finite sampling

window (window is a filter or mask applied with a defined function for each pixel in

an image) rather than a single pixel to identify the spatial pattern of the texture.

31



For measuring textures, usually, moving window is applied to all over the image and

for every position of the window on the image, texture measure is computed and

centre pixel of the window is replaced by the computed texture measure. Size of the

window is a very important parameter for measuring texture. Window size has to be

larger than the size of texture pattern to capture the texture (Dell'Acqua et al., 2006).

Therefore, care should be taken to find the optimum window size suitable for

application.

Researchers are using various texture measures for SAR image classification (Liu,

2008; Song et al., 2007; Gupta et al., 2006). The application of sum and difference

histograms is presented for texture based classification (Unser, 1986). A comparative

study of various techniques for texture classification like Gabor filters, Wavelet

transforms, Discrete cosine transform (DCT) methods, Co-occurrence matrices is

presented (Randen and Husoy, 1999). These techniques were compared on the basis

of classification errors and computational complexity. It is concluded that wavelets

performed better than Gabor filters. Co-occurrence features, Gabor and MRF

(Markov Random Field) features were compared and fused for sea SAR imagery

classification (Clausi, 2001) and it infers that fusion of various texture features is

quite helpful for SAR image classification. Aujol et al., (2003) has demonstrated that

wavelet coefficients can be used to identify textures as classes in image. Dekker

(2003) has used texture measures like histogram measures, lacunarity,

semivariogram, wavelet energy, and fractal dimensions for updating the land cover.

Dekker has applied these textural measures individually and in combination using

nonparametric distance measures for discrimination of land cover types. He has noted

that the classification accuracy improves when adding any of the selected textures or

combinations. So, there is a need to critically analyze the role of various texture

measures like mean, variance, semivariogram, lacunarity, weighted rank fill ratio and

wavelet components for SAR image classification, individually as well as their

combined effect on classification accuracy. In addition, there is a need to improvise

the algorithm of combining texture measures. Various techniques like K-nearest

neighbor classifier, wavelet transforms, PCA approach are used for fusion oftexture

measures (Solberg and Jain, 1997; Clausi, 2001; Cao et al., 2003). One of the basic

principles of PCA is that it fuses information from various input features, gives

output as principal components (PCs) in terms ofeigen vectors which are orthogonal,
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and captures maximum information from the input features (Joliffe, 2002; Bajwa and

Hyder, 2005). On the one hand, PCA is used for dimensionality reduction, and on the

other hand, it can be used to enhance classification accuracy by fusion of maximum

information obtained by single band single polarized SAR image. Therefore, seeing

these advantages of PCA, we are focused in this chapter to see the applicability of

PCA in enhancing classification accuracy.

For efficient land cover classification, two factors namely (i) choice of texture

measures, and (ii) an algorithm to combine the selected texture measures are

important. Every texture measure identifies texture patterns by different approaches.

In this chapter, texture measures namely, mean, variance, semivariogram, lacunarity,

weighted rank fill ratio, and wavelet components are individually critically analyzed

for its effect on classifying SAR image for various major land covers like water,

urban and agriculture areas. It is also important to know the combined effect of these

features on classification accuracy. Therefore, in this chapter, an approach to

integrate texture measures using PCA for classification process is proposed. The

applicability of PCA for fusing texture measures is analyzed and presented in this

chapter.

This chapter is organized as follows. Section 3.2 describes the analysis of contribution

of individual texture measures for SAR image classification using synthetic images

and real SAR image. This analysis helps in choosing suitable combinations of texture

measures for SAR classification. Section 3.3 explains general methodology for

unsupervised classification of SAR images using PCA based fusion of texture

measures. Results and critical analysis of the proposed algorithm are presented in

section 3.4. Conclusion for the chapter is presented in section 3.5.

3.2 Analysis of contribution of individual texture measures

Mean, variance, semivariogram, lacunarity, weighted rank fill ratio, and wavelet

components have their own importance in SAR image analysis and its application for

land cover classification. Therefore, these texture measures are analyzed for their role

in major land cover classification of SAR image into water, urban and agriculture

areas.
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3.2.1 Texture measures

3.2.1.1 Mean: Mean computes the average intensity over the window and replaces

centre pixel by the mean. Therefore, in the process, mean smoothens outnoisy pixels. >

The mean feature image extracted for SAR image captures local fluctuation of

amplitude and distributes intensity of impulse noise spikes among surrounding pixels,

making noisy pixels less noticeable (Gonzalez and Woods, 2002). For SAR image,

mean computes mean backscattering coefficient and thus, helps in discriminating

smooth texturedareas according to their backscattering coefficient. Mean is given by

x,j
M = -^ (3.1)

n

where Xy is the intensity ofpixel at location (/,/), n is the number ofpixels over which

mean is computed, and // is the mean calculated over V number of pixels.

3.2.1.2 Variance: The best option to capture boundaries and edges is by computing

variance. Value of variance corresponds to the level of heterogeneity. It helps in

identifying boundary and heterogeneous areas (Gonzalez and Woods, 2002). In case

of SAR images, variance may help in locating boundary regions of smooth textured

areas and classifying various textured areas on the basis of their heterogeneity.

Variance is given by

I(*,;-/0:
a (3.2)

(ii-1)

where xv is the intensity ofpixel at location (ij), n is the number ofpixels over which

variance is computed, and a1 is the variance calculated for 'n' number ofpixels.

3.2.1.3 Semivariogram: This is the most common type of variogram. Variogram

relates the variance of pixels to its spatial location and describes the scale and pattern

ofspatial variability. Semivariogram is an effective measure for identifying different

texture patterns present in SAR images. It relates the distance or range over which
spatial dependence exists. In other words, semivariogram indicates the extent of a
texture pattern in an image. Lag distance '/?' of 'n-1' is selected for computing
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semivariogram. For studying the effect of window size on classification accuracy and

for finding optimum window size, window size 'n' is varied from 3 to 15 at the

interval of 2. When window size is varied from 3 to 15, lag distance 'h' is varied from

2 to 14 (Carr and Miranda, 1988). Hence, effect of varying lag distance is studied by

varying the window size for measuring textures.

r(h) =^-fi(xi-xl+hy

f*(r)}'
Mr)

2N ti v ' ""' (3'3)

where xt stands for intensityat pixel /, and xi+h stands for intensity of pixel at distance

h from pixel /, and 'N' is the number of pixel pairs at lag distance 'h' within the

chosen window of size 'n x«'.

3.2.1.4 Lacunarity: Lacunarity analysis is a multi scaled method for describing

patterns of spatial dispersion (Plotnick et al., 1996). The technique of computing

lacunarityfor scalar data has been defined (Dobson et al., 1997)as

A(r) = + l (3-4)

where V is the center pixel over 'n x«' window, /j. is the mean calculated over 'n'

number ofpixels, and a is the standard deviation calculated for 'n' number of pixels.

Lacunarity features reflect the spatial distribution of gap sizes in texture images. This

measure is immensely helpful in the image classification of SAR images that contain

rich textures. Lacunarity is computed using the ratio of standard deviation to mean

and hence it is dependent on the mean intensity over the window as well as the

variation of pixel values from the mean within the window. Therefore lacunarity can

be used for discriminating both smooth and coarse textures.

3.2.1.5 Weighted Rank fill ratio: This ratio is an order statistic, which is defined as

the ratio of power of 5 % of brightest pixels of the window and the total power of all

pixels present in it (Dobson et al., 1997). This factor of texture measure captures

brightest pixels present in the window area and fills any data gaps that might have

introduced within brighter pixels due to sensor interference or any such factors of
noise.
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sum of k% brightest pixels

sum of all pixels
TJ = (3.5)

where, k- is taken as 5 to consider 5% of brightest pixels in the pixel area considered.

3.2.1.6. Wavelet Components: Daubechies wavelets(db4) can be expected to result in

high classification accuracy as reported (Bellagente et al, 1999). Daubechies wavelet

(db4) function is used for wavelet decomposition. Wavelets from daubechies family

are used because of its desirable properties of orthogonality, approximation quality

and numerical stability. These properties ensure that no significant information is lost

in the decomposition of SARimagein to its wavelet components.

Scalmg function 'g'
0 2 4*

Wavelet function 2r'

Figure 3.1. Scaling and wavelet function offourth order daubechies wavelet transform (db4).

Table 3.1. Filter coefficients of db4 wavelet transform.

Scaling function, g(n)

-0.2304

0.7148

-0.6309

-0.0280

0.1870

0.0308

-0.0329

-0.0106
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Wavelet function, h(n)

-0.0106

0.0329

0.0308

-0.1870

-0.0280

0.6309

0.7148

0.2304
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Figure 3.2. Implementation of db4 wavelet transformon SAR input image.

Scaling function ig> and wavelet function 'h' (Figure 3.1) are used to apply

daubechies wavelet transform on SAR image to obtain db4 wavelet components

(Strang and Nguyen, 1996). The filter coefficients corresponding to scaling and

wavelet functions for fourth order daubechies wavelet db4 are given in Table 3.1

(Ismail and Asfour, 1999). Asymmetric scaling and wavelet functions, g' and 'h\ are

used to decompose SAR image by applying them to rows and columns and convolve

them to get four wavelet components as approximation, horizontal, vertical and

diagonal coefficients (Figure 3.2).

When wavelet components (i.e., approximation, horizontal, vertical and diagonal

coefficient) are computed for SAR image, mean backscattering coefficient is

computed by approximation coefficient, whereas, spatial variations of pixel along

horizontal, vertical and diagonal directions are computed by horizontal, vertical and

diagonal coefficients respectively. Therefore, texture based classification can be

performed effectively using all the fourwavelet components.
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3.2.2 Role of texture measures for image classification

To check the roles of texture measures on classification, two synthetic images based

on intensity (SI) and texture (S2) are generated that are shown as Figure 3.3 (a, b).

Synthetic image SI having different intensity levels, is chosen to represent smooth

textures and synthetic image S2 is chosen such that it comprises of four different

rough textures. These images are acting as test images to analyze how individual

texture measure discriminates different texture patterns.

(a) Synthetic image SI

••••••

:•:••••:

(b) Synthetic image S2

Figure 3.3. Synthetic images.

All texture measures listed in section 3.2.1 are computed individually for both the

synthetic images. Here, we are interested only to check the role of individual textures

on classification. A sliding window of size '5^5' has been used to compute texture

measures. Images of texture measures are obtained with same size as the input

images. In synthetic image SI, there are four levels of intensity and hence can be

represented as four classes. Similarly, synthetic image S2 has four classes according

to four texture patterns. K-means clustering of four classes is performed on the texture

measures and classification accuracy is computed as shown in Table 3.2.

Inferences about the role of texture measures can be obtained from Table 3.2. Mean

help in differentiating test image with smooth textures because mean computes

average intensity over the window smoothing out isolated pixels. Error is introduced

in mean image due to the blurred boundaries and edges. The classified image using

mean has approximately 10% of error for image SI and it may be contributed by

blurred boundaries. Image S2 has four different textures in it. Since mean computes
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only average intensity over the window, mean helps in distinguishing only smooth

textures efficiently. Therefore, meanproduces an accuracy of 35.99% for image S2.

Table 3.2. Classification accuracy for individual texture features computed for synthetic

images, SI, S2 and real SAR image.

Sl.No. Texture measures

Classification Accuracy (%)
Synthetic
image S1

Synthetic
image S2

Real SAR

image
1 Mean 90.11 35.99 76.29
2 Variance 49.85 26.56 49.85

3 Semivariogram 50.05 62.04 52.05
4 Lacunarity 81.25 86.87 46.55
5 Weighted rank fill ratio 97.86 43.05 76.10

Wavelet components
6 Approximation

coefficient

16.09 47.67 48.52

7 Horizontal coefficient 48.24 74.56 37.83
8 Vertical coefficient 48.24 74.55 41.81
9 Diagonal detail

coefficient

48.15 75.36 43.35

Variance measure gives zero intensity within the four classes of image SI and

therefore, all the constant intensity level areas corresponding to four classes in SI are

grouped as a single class. This leads to 49.85% accuracy with boundaries of all four

classes and only one class, being identified properly. When variance is computed for

image S2, all spatial variations of gray level with in texture pattern are identified and

hence patterns could not be differentiated by using only variance. Thus, variance

helps in identifying boundaries in SI, giving an accuracy of49.85% but does not help

in differentiating patterns in S2, giving lesseraccuracy of 26.56%.

Semivariogram results in zero value for equal intensity area within SI.

Semivariogram gives the same value for all four classes in image SI having smooth

textures, except for the pixels corresponding to boundary and near boundary region.

Therefore, it gives a classification accuracy of only 50.05% with SI. Semivariogram

computes spatial pattern of texture in terms of distance and therefore, it can be used

for discriminating texture patterns that vary by their spatial dispersion. Hence, it helps
indifferentiating textures in S2 giving 62.04% ofclassification accuracy.
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Lacunarity measure is dependent on the standard deviation and mean of the pixels

within the window (equation 3.4). Lacunarity helps in differentiating both SI and S2

giving classification accuracies of 81.25% and 86.87% respectively. Mapping of >

texture and intensity to lacunarity is not unique and same lacunarity values are

obtained for more than one combination of texture and intensity pattern. This

ambiguity arises when it encounters two regions such that they have same ratio of

standard deviation to mean. This may explain the classification error when lacunarity

is applied for image SI and S2.

Weighted rank fill ratio helps in filling up the gaps in brightest pixels present in SI ±

and thus giving rise to a better accuracy of 97.86% than using mean alone for SI.

Since weighted rank fill ratio fills gaps present in the window considered, this

measure helps in differentiating smooth textures only. For image S2 having different

texture patterns, weighted rank fill ratio produces an accuracy ofonly 43.05%.

Wavelet components help in differentiating S2 but not SI. Wavelet components

provide spatial frequency based descriptors as features for segmenting textures. For

smooth images, there are only gradual variations in grey level and components are

dominated by low spatial frequencies, whereas, in textured images, grey level varies

rapidly and are made up of wide range of frequencies. With the analysis of
distribution of frequency components, texture patterns can be distinguished. All the

four components of wavelet analysis are to be used together to realize the

classification. From Table 3.2, it can be seen that approximation coefficient produces

less accuracy of 16.09% with SI. Horizontal, vertical and diagonal coefficients

identifies boundaries along the horizontal, vertical and diagonal directions and

therefore, they help in obtaining boundary regions in respective directions giving

approximately same accuracy of about 48%. These three coefficients give better

accuracy ofapproximately 74 to 75% when they are used for image S2.

With this analysis, it can be inferred that mean (90.11%) and weighted rank fill ratio

(97.86%) help in differentiating regions of smooth textures with varying intensity
levels. Variance, semivariogram and wavelet components help in identifying ^
boundaries and differentiating various rough texture patterns. Lacunarity measure is

dependent on both mean and standard deviation. Therefore, it may be suitable for land
cover with varying intensity and texture patterns (81.25% for SI and 86.87% for S2).
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This critical analysis infers that the used texture measures may be quite helpful for

classification of SAR images because SAR image includes various land covers like

water, urban and agriculture areas, which can be described by various texture patterns.

These texture measures are applied individually on SAR image and corresponding

classification accuracy is also listed in Table 3.2. Mean and weighted rank fill ratio

have given higher accuracy for image SI as well as for SAR image, whereas the

amount of accuracy is reduced in SAR image in comparison to SI image. It infers that

SAR image has more texture patterns rather than smooth textures. Lacunarity and

wavelet components have exhibited good classification accuracy with image S2,

whereas, for SAR image, these measures provide accuracy less than 50%. It may be

due to the fact that SAR image may have more patterns in comparison to S2 image

(In image S2, only four texture patterns are considered). Variance and semivariogram

do not provide higher classification accuracy individually because these measures

play a role in identifying boundaries of smooth textures or identifying textures on the

basis of their spatial extent. This analysis represent that all these measures are playing

an important role either in describing intensity or textures to classify SAR image. It

has been observed from the Table 3.2 that classification accuracy using individual

texture measures for classifying SAR image into major land cover types of water,

urban and agriculture areas can reach only up to 76.29%. Each texture measure

analyzes SARimage by different approach and helps in identifying different intensity

or texture patterns in it. To exploit the advantages of each of these textural measures

in classification, these textural measures are to be fused such that maximum

information contained in them are used for classification purposes. Its combined

effect may include more information that may help to increase classification accuracy.

Hence, there is a need of combining texture measures for better classification

accuracy.

The texture measures in feature set are combined by PCA and the combinedeffect of

chosen texture measures are evaluated using classification accuracy. A suitable

combination of feature set is critically analyzed in checking to improve classification

accuracy. For studying the combined effect of texture measures on classification,

feature sets shown in Table 3.3 are considered. Texture measures listed against each

of the feature set are combined using PCA and classification is performed.
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Table 3.3. Feature sets for studying the combined effect of texture measures.

Feature set Texture measures

I Mean, Variance

II Wavelet components

III Mean, Wavelet components

IV Mean, Variance, Wavelet components

V Mean, Variance ,Wavelet components, lacunarity
VI Mean, Variance, Wavelet components, semivariogram
VII Mean, Variance Wavelet components, weighted rank fill ratio
VIII Mean, Variance Wavelet components, semivariogram, lacunarity,

weighted rank fill ratio

3.3 Methodology to implement PCA based unsupervised

classification on SAR images using texture measures

3.3.1 Data used

Solani river catchment around Roorkee town in the state of Uttarakhand, India is

chosen as the study region. ERS-2 SAR C-band image acquired on July 23, 2001 is

used for developing and analyzing the proposed approach of unsupervised

classification of single polarized SAR image. The complete details of the study area

and satellite data can be referred with section 1.3 and 1.4.

3.3.2 Principle of PCA

The central idea of PCA is to reduce the dimensionality of a data set in which there

are a large number of interrelated variables while retaining as much as possible of the

variation present in the dataset. This reduction is achieved by transforming to a new

set of variables, called PCs in terms of eigen vectors, which are uncorrelated, and

which are ordered so that the first 'few' retain most of the variations present in 'all of

the original variables'.

Although the purpose ofPCA is to reduce the number ofvariables, the ways in which

the PCs can actually be used are quite varied. The PCs give an alternative, much

simpler description of the data than the original variables. This is evident from the

fact that first few PCs (uncorrelated variables) obtained by PCA reproduce most of

the variation in all original variables and further, these variables are interpretable.

PCA based on correlation matrix is preferred and adopted to combine texture

measures since it is desired to treat all variables on an equal footing (Joliffe, 2002).
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3.3.3 PCA based fusion approach

Flow chart of the proposed algorithm is given in Figure 3.4. Raw SAR data is

available as input for classification of SAR images. Preprocessing of SAR image is

performed as discussed in section 1.5. Textural images are extracted from the

preprocessed SAR image using the equations (3.1) to (3.5) described in section 3.2.

Textural measures are computed without downsampling. Therefore, for a SAR image

of size n*n, all the texture measures are also of the size n*n.

For implementing proposed approach, following steps have beenadopted.

(i) Compute texture measures for various window sizes ranging from 3 to 15, in

steps of 2, and identify optimal window size for computing texture measures,

(ii) Normalize texture measures so that each texture measure has zero mean and

unity standard deviation,

(iii) Apply PCA for combining texture measures according to feature sets listed in

Table 3.3.

^ (iv) Selection ofPCs for further classification,
(v) Clustering by K-means classifier,

(vi) Labeling of clusters into land covers namely water, urban and agriculture

areas using topographic sheet.

All the texture measures are computed for window sizes varying from 3 to 15, insteps

of 2, and classification accuracy is calculated. From this analysis, optimum window

size for calculating texture measures is chosen. Then, texture measures of SAR image

are computed using optimum window size. These texture measures are normalized

individually to have zero mean and unity standard deviation. Normalization performs

linear scaling of all input features to avoid large dynamic ranges in one or more

dimensions. When input features differ by several orders of magnitude, they can

undermine smaller but important trends in the data (Aminian et al., 2002; Bishop,

1995). PCA is employed on normalized texture measures to get PCs. Selective PCs

are chosen on the basis of cattell's scree test and they are used for further

classification by K-means classifier. Then, with the help of ground truth data, clusters

in segmented SAR image can belabeled with major land cover types like water, urban

and agriculture areas.
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Figure 3.4. PCA based fusion oftexture measures for SAR classification.

3.4 Results and critical analysis of proposed algorithm

3.4.1 Selection of optimum window size

In the proposed classification algorithm, texture measures computed for SAR image
depend on the window size with which they are computed. Window size depends on
the spatial relationships among texture elements. It defines the area around a pixel
within which it is assumed that texture patterns are steady. In turn, this number is

related to the mean physical size of the textured areas (Dell'Acqua et al., 2006). The

texture patterns depend on land cover types. Hence, an optimum window size to

measure textures is to be identified.
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Feature set VIII comprising of all texture measures is considered for analyzing and

identifying optimum window size. Texture measures are computed with window sizes

varying from 3 to 15, in steps of 2. Three PCs are chosen using cattell's scree test on

PCs obtained by PCA analysis of feature set VIII and are given to K-means classifier.

Then, classification accuracy is computed as listed in Table 3.4. It can be observed

from Table 3.4 that classification accuracy reaches maximum of 90.39% for window

size of '5x5'. Classification accuracy gradually reduces when window size is

increased beyond '5x5'. From this analysis, it can be inferred that a window size of

'5x5' is optimum for measuring the texture for this SARimage.

Table 3.4. Classification accuracy using feature set VIII for different window sizes.

Window size Classification accuracy (%)

3 56.31

5 90.39

7 86.31

9 83.86

11 73.34

13 62.97

15
58.34

3.4.2 Analysis of combining texture measures

The different combinations of texture measures are critically analyzed for its effect on

classification accuracy. For this purpose, proposed classification approach depicted in

Figure 3.4 is implemented for all feature sets listed in Table 3.3. PCA is used for

combining texture measures. In this approach, first, PCA is applied on all the texture

measures of each feature set of Table 3.3 and PCs are obtained. From these PCs, few

of the PCs are chosen using cattell's scree test. Eigen values of the PCs are indicative

of the variance contained in them. Most expressive features are identified by their

large eigen values. Cattell's scree test is used to identify number of axes required for

projection of data so that information is preserved with reduced components. Cattell

suggests finding a place where the smooth decrease of eigen values appears to level

off to the right of the plot. To the right of this point, presumable, one finds only
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'factorial scree'. 'Scree' is the geological term referring to the debris which collects

on the lower part of a rocky slope (Cattell, 1966). According to this criterion, eigen

values above the scree are chosen for classification process and number of final axes

is the number of eigen values considered. For example, selection of PCs from feature

set VIII (Table 3.3) is considered. PCA is applied on feature set VIII and eigen values

are calculated for the PCs (Table 3.5). Figure 3.5 shows the plot of eigen values

versus PCs. Dividing line is drawn such that to the right of dividing point, eigen

values level off. Similarly, PCs are chosen for each of the feature sets listed in

Table 3.3.

Table 3.5. Eigenvaluesof PCs for feature set VIII.
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Principal components Eigen values

PCI 8.10E+08

PC2 78810

PC3 6252
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PC5 324
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PC9 34.4
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Principal Components

Figure 3.5. Eigen values of PCs for feature setVIII.
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Cattell's scree analysis of principal components emphasize the need of selection of

only first three components and further experimentally, the role of first three PCs on

discriminating ability of major land covers in SAR image is also reconfirmed.

3.4.3 Role ofprincipal components on classification accuracy

For the feature set VIII (Table 3.3), the analysis of how individual principal

component (PC) affect in classification is undertaken by computing classification

accuracy with first PC alone and then by adding PCs one by one. Results are tabulated

in Table 3.6.

Table 3.6. Effect of adding PCs on classification accuracy.

Sl.No. Principal components
Overall classification

accuracy (%)

1 PCI 86.35

2 PC1+PC2 87.40

3 PC1+PC2+PC3 90.39

4 PC1+PC2+PC3+PC4 85.32

5 PC1+PC2+PC3+PC4+PC5 82.21

6 PC1+PC2+PC3+PC4+PC5+PC6 81.13

7 PC1+PC2+PC3+PC4+PC5+PC6+PC7 76.46

8 PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8 74.35

9 PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9 68.87

With principal component one only (PCI), classification accuracy is 86.35%. By

adding principal component two (PC2) to the input for K-means classifier,

classification accuracy improves to 87.40% (with PC1+PC2) and addition of third

component give rise to 90.39% (with PC1+PC2+PC3). Addition of remaining PCs

cause drop in classification accuracy which implies that the fourth and successive PCs

may introduce noise in the classification hence they are dropped from classification.

This analysis also confirms the choice of first three PCs chosen using cattell's scree
test.
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Scatterplots of first three PCs are shown as 2-dimensional plots (Figure 3.6 a,b,c).

Water and agriculture areas can be seen as individual clusters in PC2 vs PCI

(Figure 3.6 a), with few overlapping points. Urbanareas can be visualized as a cluster

in PC3 vs PCI (Figure 3.6 b). The input datasets of texture measures is projected onto

new dimension space of PCs. Thus by analyzing scatterplots of first three PCs, it can

be inferred that the land cover areas become separable in the transformed new feature

space. This analysisexplains improvement in class separability using PCs.
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Figure 3.6. Scatterplots (a) PC2 vs PCI, (b) PC3 vs PCI,and(c) PC3 vs PC2.
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3.4.4 SAR image classification based on proposed approach

SAR image classification has been carried out for various combinations of texture

measures using PCAand non-PCA (K-means clustering). K-means cluster is a simple

method where K- is the number of clusters to be grouped by the algorithm. Initial

cluster centers termed as mean are chosen randomly. Then, all samples are classified

according to nearest mean. Mean for clusters are again computed. This process of

classifying samples and computing mean are repeated till there are no changes in

means computed for all clusters. Therefore, in non-PCA method, K-means clustering

is applied directly on texture measures. In PCA based classification, PCs are obtained

by PCA on texture measures. Then, selective components are chosenby cattell's scree

test. K-means clustering is applied on selected PCs. Since the cluster centers are

chosen randomly in the original K-means algorithm and the obtained results can be

different for every run of the algorithm, the overall classification accuracies are

obtained by averaging over different runs (50 runs). Overall classification accuracy

obtained by K-means and by proposed PCAbasedclassifier is presented in Table 3.7.

Table 3.7. Overall classification accuracy for different feature sets with window size '5x5' for

all texture measures by K-means classifier and PCA based classifier.

SI.

No.

Texture measures

Overall classification accuracy (%)
non-PCA

(K-means)
PCA based classifier

(best 3 PCs, except
for si no. 1)

1 Mean, Variance (2 PCs considered
for PCA)

59.47 63.03

2 Wavelet components 73.54 84.49
3 Mean, Wavelet components 78.32 87.02
4 Mean, Variance, Wavelet

components
74.23 88.16

5 Mean, Variance ,Wavelet
components, Lacunarity

72.67 87.21

6 Mean, Variance, Wavelet
components, Semivariogram

73.54 88.71

7 Mean, Variance, Wavelet
components, Weighted rank fill ratio

68.54 85.99

8 Mean, Variance, Wavelet
components, Semivariogram,
Lacunarity, Weighted rank fill ratio

67.43 90.39
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In the feature set I, mean and variance are considered for classification. For this

combination, K-means classifier gives an accuracy of 59.47% whereas, with PCA, it

is 63.03%. In this case, only two PCs are obtained by PCA and both these PCs are

used for PCA based classifier. Mean corresponds to the average intensity within the

window and variance corresponds to the presence of boundaries. For a homogenous

area, mean image captures average intensity and variance is zero. When mixed land

cover types are encountered within window, degree of heterogeneity increases. Then,

variance also increases. By combining these two, homogenous areas identified by

mean and boundaries obtained by variance are merged. For this combination, less

classification accuracy (approximately 63.03%) has beenobserved.

It may be due to two reasons:

(i) Study region has agriculture patches smaller than window size and possibly

intermingled with other pixels

(ii) Secondly, it is the property ofmean that it smoothen out spiky/isolated pixels
and therefore, any particular area like water, urban or agriculture, present as

isolated pixel, cannot be correctly classified. (For example, in the study area,

small agriculture plots varying from 25 x 25 m to 50 x 50 m are also present

(verified by ground truth survey). These plots are present intermingled with

urban areaandmay pose as a spiky pixel in a homogenous area.)

Wavelet components alone are considered for feature set II. Daubechies wavelet

analysis computes four wavelet components: approximation, horizontal, vertical and

diagonal detail coefficients. Approximation component computes mean and other
three components capture variation of pixels in three directions viz., horizontal,

vertical and diagonal. Wavelet components capture spatial variation ofgrey levels and

such variation of grey levels is high for texture and less for smooth images (Lindsay

et al., 1996). Wavelet components compute pixel variation in three directions and

therefore, these components may capture boundary pixels or demarcation points in

three directions that may be helpful in classification. When wavelet components are

given to K-means classifier, it gives an accuracy ofonly 73.54%, whereas with PCA
based classifier, accuracy increases to 84.49%. This increase in classification

accuracy may be explained by the choice of first three PCs capturing maximum
information than just using all texture measures. Feature set II using proposed

50



*+

approach gives better classification accuracy fl^rn, feature set'T(i!e.,y64.49%) which

represents the importance ot wavelet components whtle^QflsD^classification.

For the III feature set, mean and wavelet components are considered for analysis.

This feature set comprises of five textural measures. When PCA is employed on this

feature set, classification accuracy approaches to 87.02%, whereas, without PCA and

by K-means classifier, it gives an accuracy of 78.32%. It may be due to the reason

that approximation coefficient of wavelet component is merged with mean

information because, approximation coefficient also computes mean. The

classification accuracy is higher compared to feature set I (which gives an accuracy of

63.03%), where variance is used for identifying boundaries. Since wavelet

components computes boundary in all three directions, classification accuracy is

improved than that of feature set I. This increase in classification accuracy justifies

the increase in complexity by adding additional texture measures.

To analyze the role of variance in classification, variance is added to the feature set III

and feature set IV is formed. It is observed that with the application of PCA,

classification accuracy approaches 88.16% while with without PCA, it is 74.23%. It is

because variance also helps in identifying borders between urban, water and

agriculture pixels in addition to the detail coefficients of wavelet components.

Lacunarity, a fractal measure for identifying texture patterns, is added in feature set

IV to form next feature set V. This feature set adds the advantage of using ratio of

standard deviation to mean as computed by lacunarity in classification process.

Classification accuracy of 87.21% is achieved using PCA based classifier as against

the K-means classifier giving an accuracy of 72.67%. A decrease in classification

accuracy is observed when lacunarity is also considered in the feature set. Lacunarity

distinguishes areas with same intensity and different texture patterns also. Lacunarity

is different for different textures. Under agriculture areas itself, texture patterns are

different for different crops hence use of lacunarity may be effective when applied for
more number of classes.

Feature set VI and VII are formed by adding semivariogram and weighted rank fill

ratio to the feature set V giving classification accuracy of 88.71 % and 85.99%

respectively. With K-means classifier, these feature sets VI and VII give classification

accuracy of 73.54% and 68.54% respectively. Semivariogram is also another feature
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for measuring variance which helps in identifying textures. Weighted rank fill ratio

fills out gaps within texture patterns. With a decrease in classification accuracy of ~1

to 3% by PCA based classifier, importance of semivariogram and weighted rank fill ^

ratio, in this case, cannot be assessed.

In feature set VIII, all the textural feature measures extracted are used and PCA is

applied and classification is performed with the three PCs of PCA. Classification

accuracy is obtained as 90.39%. When all these texture measures are applied to K-

means classifier, it gives an accuracy of only 67.43%, which implies the importance

of PCA based extraction of PCs from texture measures to improve classification ^

accuracy.

In all the feature sets I to VIII, it can be observed that PCA based classifier performs

better than simple K-means classifier giving higher classification accuracy compared

to that obtained by K-means classifier alone.lt means that it explains the role and

importance ofeach feature onthe classification accuracy with PCA.

Figure 3.7 (a) shows the SAR image considered and Figure 3.7 (b) shows the *

topographic sheet of the same region. Classification results are shown in Figure 3.8.

Water, urban and agriculture areas are clustered and labelled in classified image of

Figure 3.8. Some areas in the study site are termed as 'unclassified' for which

information about the land cover type is not accurately available. 'Unclassifed' areas

are the masked areas which are discarded from the evaluation of classification

accuracy.

3.4.5 Analysis of classification accuracy

Classification accuracy has been computed on the basis of confusion matrix for

various classes like water, urban and agriculture areas. The results are validated with

the ground truth survey undertaken in and around Haridwar region, India for
unsupervised land cover classification. Ground truth survey of vegetation areas
reported by Said (2006) is also taken as reference. The results computed are shown in
Table 3.8 (a) and (b). Sample ground truth points of 5000 water pixels, 3500 urban

pixels and 1500 agriculture pixels are considered for evaluating classification

accuracy.
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Figure 3.7. (a) SAR image and (b) topographic sheet ofthe study area.

Water

Urban

J Agriculture

Unclassified

Figure 3.8. Classified image with Feature set (Sl.No. 8) in Table 3.3, showing land cover
types, water, urban and agriculture areas.
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Table 3.8(a) shows the class by class distribution. Out of 5000 ground truth points

representing water, 4850 pixels are identified correctly and 28 pixels are reported as

urban and 122 pixels are recognized as agriculture pixels, giving an accuracy of

4850/5000 i.e., 97% in identifying waterpixels (Table 3.8 b).

Similarly, 3105 urban pixels out of3500 pixels are classified as urban pixels and 1084

out of 1500 agriculture pixels are correctly identified. Overall classification accuracy

is computed as the ratio of total correctly identified pixels to sum of ground truth

points considered giving rise to 9039/10000 = 90.39%.

Table 3.8(b) lists the commission and omission error in pixels as well in percentage.

The commission error for water stems from improperly calling other classes water, so

that 81 pixels labeled as water are really a composite of other classes, i.e., 25 urban

pixels and 56 agriculture pixels are wrongly labeled as water. Hence, it gives rise to

commission error of (25+56)/4931 = 1.64%. Anerror of omission measures between

class discrimination and results when one class on the ground is misidentified as other

class by the observing classifier. Thus, this classification algorithm fails to recognize

and correctly identify all 5000 pixels of water as such, and labels 150 of these water

pixels as other classes. Hence, omission error of (28+122)/5000=l 50/5000=3% is

resulted. Commission and omission error computed in terms of pixels are also

represented in percentage. Producer accuracy gives the percentage of correctly

identified pixels out oftotal ground truth pixels considered for a particular land cover.

For example, there are 5000 ground truth water pixels considered and 4850 pixels are

correctly identified and hence producer accuracy for water is obtained as

4850/5000= 97%. The producer of the map can claim that 97% of the time an area is

identified as waterwas identified as such, 88.71% of the time, an area is identified as

such as urban and 72.27% of the time, the area identified as agriculture itself for

agriculture areas (Table 3.8 b). User accuracy lists the ratio of correctly identified
pixels by the user for a particular land cover type to the total identified pixels. User
has identified a total of 4931 water pixels, 3493 urban pixels and 1576 agriculture

pixels. Out of 4931 water pixels identified by the user, 4850 pixels are correctly
identified whereas remaining 81 pixels are incorrectly labeled as water. Therefore,

user ofthis map will find that 98.37% ofthe time an area he visits that the map says is

water will actually be water.
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Table 3.8 (a) Confusion matrix.

Overall classification accuracy = (4850+3105+1084V10000 = 9039/10000 = 90.39%

Water

Urban

Agriculture

Total

Water Urban Agriculture Total

4850

28

122

25

3105

370

5000 3500

56 4931

360 3493

1084 1576

1500 10000

Table 3.8 (b) Parameters ofclassification accuracy for water, urban and agriculture areas.

Parameter

Water Urban Agriculture

pixels percent pixels percent pixels percent

Commission

error

81/4931 1.64 388/3493 11.11 492/1576 31.22

Omission error 150/5000 3.00 395/3500 11.29 416/1500 27.73

Producer's

accuracy

4850/5000 97.00 3105/3500 88.71 1084/1500 72.27

User's accuracy 4850/4931 98.36 3105/3493 88.89 1084/1576 68.78

3.5 Conclusion

In this chapter, an overview of different texture measures is given and applied to
ERS-2 SAR-C band satellite data of Roorkee region, Uttarakhand, India. Contribution

of individual textural measures in improving classification accuracy is critically
analyzed by varying the combination oftextural measures in the feature set. Optimal
window size of '5x5' is found to be suitable to capture textures in SAR image
considered and is found by computing and analyzing classification accuracy for
various window sizes from 3 to 15. It is found that application of PCA transformation

on all nine texture measures helps in integrating important information for

classification purposes from all these feature measures. Results show that addition of

feature measures like lacunarity, semivariogram and weighted rank fill ratio helps in
improving classification accuracy up to 90% by properly identifying agriculture areas
and this combination offeature set always give higher classification accuracy.
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Chapter 4

An Adaptive Algorithm Using Wavelet Features
for Unsupervised Classification of SAR Images

4.1 Introduction

In single polarized SAR image classification, information is limited to intensity and

texture only and hence, it is difficult to interpret the single polarized SAR image

without having any apriori information. Therefore, it is important to use these basic

features (intensity and texture) to interpret SAR image in order to carry out

unsupervised classification. Backscattering coefficient is the intensity / gray level

assigned to each pixel due to the reflectance of land cover present in the area

corresponding to that pixel. The texture is an important visual cue for describing and

assessing various object surfaces. The spatial and scale properties of texture have

made it an important attribute in the analysis of remotely sensed images, particularly,

SAR images, where different surfaces such as water, urban and agriculture areas can

be characterized by distinct texture features. Integrating backscattering coefficient

with texture features may also help in distinguishing areas with same texture and

different backscattering coefficient levels.

A wide variety of texture analysis methods have been developed for the classification

of SAR image. MRF (Manjunath and Chellappa, 1991), Gabor wavelets (Jain and

Farrokhnia, 1991), Tree structured wavelets (Chang and Kuo, 1993), Isodata

algorithm (Dhodhi et al., 1999), Semivariogram analysis (Atkinson and Lewis, 2000),

Support vector machines (Pal and Mather, 2005), Fuzzy probabilistic models

(Chanussot et al., 2006) and Contour tracing (Chamundeeswari et al., 2007) are some

of the popular methods developed for unsupervised classification of remotely sensed

images. Researchers have given emphasis mainly on the construction of texture

features with the most discriminative ability. For SAR images, in particular, both

micro textures and macro textures are important features in texture analysis for

classification purposes. This justifies the use of multi-resolution type analysis and is

most effective using wavelets (Acharyya et al., 2003; Wellig et al., 2007).
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Even though wavelet transform is established as an efficient and suitable tool for

compression and edge detection in SAR images, recent developments of wavelet

theory have provided a promising approach to the analysis ofSAR images and hence

multi-resolution capability of wavelet transform has not yet been explored effectively

in capturing different textures of SAR images (Leporini and Pesquet, 1999;

Bhattacharya and Mahapatra, 2007). Wavelet packet decomposition is suitable for

capturing such micro and macro textures present in SAR images. The octave band

wavelet decomposition provides a logarithmic frequency resolution (Steffen et al.,

1993). However, it is not suitable for the analysis of high frequency signals with

relatively narrow bandwidth. Hence, four-band wavelet decomposition, unlike the

standard wavelet analysis, provides a mixture of logarithmic and linear frequency

resolution (Alkin and Caglar, 1995) and hence able to characterize textures more

efficiently. Most of the unsupervised classification algorithms developed for SAR

images include user defined parameters, which have tobeset by the user intervention.

Users apply either an ad-hoc or trial and error approach to identify the optimal set of

parameters, for which maximum achievable classification accuracy can be obtained.
4-

In this chapter, multi-resolution analysis with the help of four-band wavelets is

implemented to extract texture features. To restrict the number of sub-bands for

further processing, thresholding is applied on the energy computed for each of the

sub-bands. Local estimator is used to compute texture features from wavelet

coefficients in each sub-band, thus obtaining a texture feature for every sub-band.

Texture feature is of same size as the sub-band. Then, backscattering coefficient is

integrated with each of the texture features for smooth textured areas. An adaptive ^
neuro-fuzzy algorithm is utilized for ranking the integrated features. Top ranked

integrated features are processed by K-means clustering algorithm and land covers are

labeled with the help of ground truth data.

To make the algorithm adaptive, variation ofclassification accuracy with user defined

parameters is analyzed and an empirical relationship ofthe classification accuracy in

terms of user defined parameters is developed. The developed relationship can be

used to compute the parameters by optimization routine to have maximum

classification accuracy that could be achieved by the system. The proposed method

speeds up the process of classification and enables the user to obtain an efficient
classification of single polarized SAR image where minimum or no apriori
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information is available, in a single application of the process without any ad-hoc /

trial and error approach for identifying parameters involved inclassification process.

In this chapter, proposed methodology for implementing classification of SAR image

using multi-band wavelets is depicted in section 4.2. An algorithm proposed to obtain

optimum user defined parameters involved in classification process is explained in

section 4.3. Section 4.4 concludes with features of the proposed unsupervised

classification algorithmfor single polarized SAR image.

4.2 Classification algorithm using integrated intensity and

multi-wavelet features

For the SAR image, preprocessing operations like geo-referencing and despeckling

are performed before applying classification process (Section 1.5). Figure 4.1

describes the process implemented for classification process.

The steps involved in classification process using integrated intensity and multi-

wavelet features can be stated as:

1. SAR image is georeferenced. Then, despeckling is carried out using adaptive

Lee filter. These are preprocessing operations required for SAR image to

apply classification process (Section 1.5).

2. Four-band wavelet decomposition is applied on the preprocessed SAR image

to get 16 bands at level 1.

3. Energy of each of 16 sub-bands is calculated. By applying energy

thresholding, few of the sub-bands at level 1 are selected for further analysis.

4. Selected sub-bands are further decomposed to 16 sub-bands each at level 2.

5. Few of the sub-bands at level 2 are selected by applying energy thresholding

on energy of the sub-bands.

6. Texture features of same size as sub-band image are computed for each of the

sub-band images.

7. In case of smooth texture regions of each of texture features, backscattering

coefficient is incorporated to obtain integrated features, having same

dimension as texture feature.
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Four-band wavelet decomposition for
two levels

Checking for energy
threshold

Local estimators for

texture measure
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K-means clustering

T
Classified SAR Image

Backscattering
coefficient

Integrated feature
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Figure 4.1. Classification ofSAR image using integrated intensity and four-band wavelet

features.
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8. Adaptive neuro fuzzy algorithm is used to rank the integrated features on the

basis of their relevancy for classification.

9. Top ranked integrated features are given for K-means classifier.

10. Clusters obtained by K-means classifier are labeled as water and urban areas

with the help of ground truth reference to obtain classified image.

4.2.1 Data used

Solani river catchment around Roorkee town in the state of Uttarakhand, India is

taken as the study region. Three ERS-2 SAR C-band images acquired on 23 July

2001, 28 July 2003 and 29 March 2004 are used for analysis in the present study.

Section 1.3 and 1.4 give the details about the study region and satellite data used in

this chapter. SAR image acquired on 23 July 2001 is used for developing the

proposed classification algorithm to obtain user defined parameters. Then the

proposed algorithm is validated for the images acquired on 28 July 2003 and

29 March 2004.

4.2.2 Four-band wavelet decomposition

The M-band wavelets are able to zoom onto narrow high frequency components of

the signal (Zou and Tewfik, 1992). The wavelet packet decomposition process helps

in tiling the images at different resolutions so that the texture patterns at all scales are

integrated and compiled when reconstructing the classified image (Unser, 1995).

Hence, classification algorithm for SAR images is proposed using four-band wavelet

filters. These filters are chosen such that it has perfect reconstruction ability (Alkin

and Caglar, 1995). When four-band wavelet decomposition is applied on SAR image,

it is decomposed into 16 images. Here, SAR image which is decomposed is termed as

'parent band' and each of 16 images obtained as a result of decomposition is called as

'sub-band'. When applying wavelet decomposition, no down-sampling of images is
performed so that size of sub-band images remain the same as their parent band and

by this way, invariance to translation is achieved. Four-band wavelet decomposition

ofthe image gives rise to 16 sub-band images ofthe same size as that ofthe original
image. These 16 sub-bands are said to be sub-bands at level 1. If all these sub-bands

at level 1are considered for further decomposition, the 16 sub-bands at level 1give
rise to 16sub-bands at level 2 each, leading to a total of 256 sub-bands at level 2.
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4.2.3 Selection of sub-bands by energy thresholding

If all these sub-bands obtained by four-band wavelet decomposition are to be

considered for further computation, this will lead to processing of large volume of

data. Processing with lesser energy bands may also provide the same solution since

the information is redundant when taking all sub-bands for analysis. Hence, choosing

fewer sub-bands at each level is imperative to make the process computationally

efficient. It is quite evident that the process of extracting the features from all these

sub-bands will be an exhaustive search. SAR image is first decomposed into 16 sub-

bands at level 1, and these sub-bands are decomposed further only if energy

calculated for each of the sub-bands satisfies thresholding criteria.

Energy ofeach ofthe sub-bands is calculated using equation (4.1). Most significant

sub-bands are to be identified on the basis of their energy, to decide whether further

decomposition ofthe particular channel would generate more information or not. This

search enables one to zoom into any desired frequency channel for further

decomposition. SAR image is divided into 16 sub-bands at level 1. Among these

sub-bands, those for which energy values exceed ex % of the energy of parent band

are considered and decomposed further. A sub-band is further decomposed if it's

energy value is more than e2 % of the total energy of all sub-bands at the current

scale.

For each decomposed sub-band imageSb(m,ri), energy is calculated as

i M N

e=—YY\Sb(m,n% \<m<M,\<n<N, (4.1)

where MxNis the size of image, and (m, n) represent row and column of a pixel in

the image.

A particular sub-band is chosen only if it contains more than 3% (£,) of its parent

band energy and has more than 2% (e2) ofthe total energy ofall the sub-bands at the

current level. Empirically, these values are found to be suitable for SAR images to

choose significant bands. Energy thresholding is applied to reduce the number ofsub-
bands chosen for further processing by choosing sub-bands with significant
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information. £-, and e2 are chosen such that, more than one sub-band but not all sub-

bands, are chosen for further decomposition.

4.2.4 Computation of texture features

Raw wavelet coefficients present in individual sub-bands are not sufficient for texture

information. Since texture is to be characterized by some statistical property linked

with it, a local estimator is used to compute texture features from these wavelet

coefficients. Local estimator constitutes a nonlinear operator followed by a smoothing

filter applied to each sub-band. Thus, local estimator computes texture feature and

size (row/column) of the square window applied to compute this texture feature is

termed as 'size of the local estimator'. Sub-bands obtained at level 1 and level 2

capture textures at different resolutions present in SAR image. To suitably capture the

texture pattern obtained at different levels, size of local estimator has to be different at

each of this level. Hence, two different local estimators are applied for sub-bands at

level 1 and 2 and they are termed as 'local estimator 1' and 'local estimator 2'

respectively. The texture feature,featlex is given by

i M N _

feat<e* =-^YYjabs (St (™>«) - S(x, yj) (4.2)

where R= w2,w is the row/column size of the square window around the central

pixel (x,y), over which the texture feature is calculated, Sb(m,n) is the sub-band image

at pixel (m,n) within the mask, S(x,y) is the sub-band image averaged over a mask of

wxw centered around (x,y), abs(sb(m,n)-S(x,y)} is the magnitude of difference
between sub-band image at location (m,n) and average sub-band image within the

mask.

Thus, texture feature computes texture using local estimator for each of the sub-bands

chosen at level 1 and level 2. These computed texture features are of the same size as

sub-bands. When four-band wavelet decomposition is applied on SAR image,

sub-bands are obtained without down-sampling. Therefore, sub-bands obtained are of

the same size as SAR image. The local estimator is applied as a moving window to all

over the image and replaces every centre pixel of the window by computed texture
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feature using equation (4.2). This leads to computed texture features to have same size

as sub-bands.

4.2.5 Integration ofbackscattering coefficient with texture features

The backscattering coefficient plays animportant role indescribing the object surface.

For example, water can be detected by low backscattering coefficient whereas urban

areas are characterized by high backscattering coefficient (Ulaby et al., 1986b).

Integrating backscattering coefficient with texture features helps in distinguishing two

areas with same smooth texture pattern and different backscattering coefficients. Ifthe ^
texture pattern is found to be perfectly smooth in any location (xy) for a particular

resolution, then/ea^(jc,.y) computed for that band is zero. When a texture feature is

zero or negligible at any pixel location (x,y), the backscattering coefficient at that

location is incorporated to get integrated feature, featm. The threshold for feattex is set

very low i.e., 0.001 by setting the working precision of 3 digits. To capture

backscattering coefficient for smooth texture patterns, the following equation isused.

If feattex(x,y) = 0 ornegligible/ less than threshold (0.001), -V

featin{x,y) =c*Sb(x,y) + offset

elsefeatinix,y) =feattex(x,y) (4.3)

where featin, is the integrated feature measure having both backscattering coefficient

and texture information contained in a corresponding sub-band. The c factor and

offset are introduced only to differentiate the backscattering coefficient from the

texture features captured by the integrated feature measure. Thus, the integrated

feature measure is obtained as output. This integrated feature measure comprises of

texture feature and backscattering coefficient component in the place of smooth

texture. For every texture feature, integrated feature is obtained in this manner.

Gaussian filter is applied on integrated features to obtain smoothed integrated features

with less sparse distributions.
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This is followed by a smoothing stage using the Gaussian low pass filter hG(x,y) to

get the feature of individual sub-band images.

featb(x,y)= £ T(featint(a,b)hG(x-a,y-b)) (4.4)
(a,b)€G,y

The Gaussian window helps in smoothing the results. The size of the smoothing filter

is based on the measure of spectral content of the image. Spectral Flatness Measure

(SFM) gives overall image activity (Jayant and Noll, 1984). If the SFM is low, an

image has lowspectral content and this type of image requires a larger window size of

smoothing filter. Empirically, a gamma value of 40 for Gaussian smoothing filter is

found to be suitable for application to SAR images. Integrated features are ranked

according to their relevancy for classification purposes so that fewer and optimum

number of features is chosen for further analysis. Choosing only the features which

are relevant for classification will increase the similarity between the same pair of

patterns giving rise to higher classificationaccuracy.

4.2.6 Ranking of integrated features by adaptive neuro-fuzzy algorithm

The integrated features are ranked according to the information contained in them

using the neuro-fuzzy feature evaluation index (Pal et al., 2000). The principle lies in

comparing every feature with all other features for checking similarity. Then,

weights/ranks are allotted such that chosen features have similarity in patterns within

the classes.

Back propagation network used for ranking integrated features is shown in Figure 4.2.

The neural network is designed with three layers, an input layer with '«' nodes, a

hidden layer with V nodes and an output layer with 2 nodes, where V is the

dimension of features in the complete feature space to be ranked.

All the integrated features (equation 4.3, section 4.2.5) are presented to this network

with '«' nodes and each feature is compared with all other features for its closeness

and similarity.
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The weights are updated using the formula

Aw=-/7 —, (4-5)
dWj

where, ^^YlM^-^Y^'^)] <4-6>
S\S I) p c £

where Eis the training error, Wj is the weight connecting the/1 hidden layer and node

Tin the output layer, n is the learning rate of the back propagation network, /£ and

ju° are the membership functions oftransformed and original feature space, and s is

the number of samples in the feature space. The neural network is trained until the

Aw is less than 0.001.
j

Error 'E' attains a minimum after convergence. Then the weights of the links

connecting hidden nodes and the output node indicate the order of importance of

features. The ranking of the integrated features is given bythe value of the weighting

coefficients connecting V nodes in the hidden layer and jurpc. Any V number of

integrated features can be chosen according to their rank ofimportance. Then, for the
top ranked features, the K-means algorithm (Tou and Gonzalez, 1974) is employed to
cluster the feature space to obtain a segmented image. This is the general procedure

for the classification of SAR images based on integrating backscattering coefficient

and multi-wavelet based texture features.
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Figure 4.2. Backpropagation network for ranking integrated features.

4.3 Proposed adaptive approach for user independent algorithm

4.3.1 User defined parameters

In this proposed classification algorithm for SAR image using wavelets, the

parameters to bedefined by the user are (i) size of the local estimator 1, (ii) size of the

local estimator 2, and (iii) number of integrated features chosen for K-means

algorithm. Whenever classification is to be done for the SAR images by this method,

it requires that the user has to vary these parameters arbitrarily till satisfied results are

obtained. Because of the large size of the image involved, application of the

classification process is time consuming. If the user has to try with all the parameters

in ad-hoc manner, time required for successful classification is very high. The user

may or may not hit at the proper combination to get the maximum classification

accuracy, which can be obtained by this process. Hence, an adaptive algorithm is

proposed in this chapter to determine user defined parameters involved in the

classification algorithm. Initially, the effect of varying individual user defined
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parameters on classification accuracy is studied and then, an empirical relation is
developed for classification accuracy in terms of these parameters. The developed

relation should enable the user to specify classification accuracy and obtain optimal

user defined parameters so that the parameters can be applied in one step to achieve

SAR image classification.

4.3.2 Effect ofnumber of integrated features on classification accuracy

As depicted in Figure 4.1, top ranked integrated features from adaptive neuro-fuzzy

algorithm are given to K-means classifier for classification. The number ofintegrated

features to be chosen represents parameter 3 as listed in section 4.3.1. To study the

effect of integrated features on classification accuracy, the number of features is

varied keeping other parameters, local estimator 1 and 2 fixed at 13 and 15

respectively. Here, the aim is just to check the dependency of number of integrated
features on classification accuracy. Table 4.1 lists the classification accuracy for

various numbers of integrated features. Figure 4.3 shows the variation of

classification accuracy by varying the number of integrated features. Similar study has

also been done for fixing local estimator 1 and 2 as 11 and 17, and similar types of

variations have been observed.

Table 4.1. Effect of number of integrated features on classification accuracy with fixed local

estimator 1 and local estimator 2 as 13 and 15 respectively.

Number of integrated
features

10

11

12

14

16

18

21

27

Classification accuracy

67

75.66

73.64

77.46

83.21

69.71

89.13

70.49

71.25

70.90

90.16

90.20

84.59



In Figure 4.3, it can be observed that classification accuracy varies as number of

integrated features increases from 2 to 11. From the graph, it canbe inferred that there

is an optimal number of integrated features at which classification accuracy reaches a

maximum value and then for other numbers of integrated features, accuracy is

reduced. The relationship between classification accuracy and the number of

integrated features is obtained by curve fitting method with R2= 0.70665 as

v=bl +b{xx +b(xl +b(x\ (4.7)

where '*/ is the number of integrated features and '/ is the classification accuracy in

percentage. The values of the coefficients b{,b{,b( and b{are obtained as

20.439688, 14.24912, -0.988513 and 0.0197516 respectively. This equation describes

the dependency of classification accuracy on number of integrated features, when

other two parameters are constant.
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Figure 4.3. Effect ofnumber of integrated features on classification accuracy.
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The problem ofobtaining optimum Xi can bestated as

Maximizing min(b{ +b{ x{ +b[x] +b[ x\)

subjected to 2 <x, <27

b{ +b('x,+b{x2 +b(x\ <95 (4.8)

This optimization problem is solved using 'fmincon' routine in optimization toolbox

of PC-MATLAB and number of integrated features is obtained as 11 for which

estimated accuracy is 83.86%.

4.3.3 Variation of classification accuracy with local estimators

To study the effect ofwindow size of local estimator 1on the classification accuracy,

keeping local estimator 2 fixed at 15 and number ofintegrated features as 11 (optimal

value obtained from previous step in section 4.3.2), window size of local estimator 1

is varied from 3 to 17 in steps of 2 and classification algorithm is applied. Similar

analysis has been carried out by keeping local estimator 2 fixed at 11 and number of

integrated features as 11. Similar variations in classification accuracy are observed.

Table 4.2. Effect of window size of local estimator 1 on classification accuracy withfixed

values of window size of local estimator 2=15, and number of features =11.

Window size of local

estimator 1
Classification accuracy (%)

3 69.23

5 85.96

7 83.61

9 83.25

11 83.01

13 82.13

15 81.74

17 81.53
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Figure 4.4. Variation of classificationaccuracy with local estimator 1.

The classification accuracy interms ofwindow size oflocal estimator 1isobtained by
thecurve fitting method with R2 = 0.9736.

y =b'0l+b[xx2+b'2lx22+b[xxl (4.9)

where x2 is the window size of local estimator 1. The values of the coefficients bn bn

b'2l and blx are obtained as 2.88535, 27.7645, -2.7966 and 0.08516 respectively.

Optimum value for window size of local estimator 1 is found to be 7 giving an

accuracy of 89.41% theoretically by the similar optimization routine as problem

formulation in equation (4.8) with constraints describing lower and upper bound on

variable x2. When window size of local estimator 1 is varied beyond 17, the

classification accuracy is approximately constant.

Hence, variable 'jc^' can be bounded as

3<x2<21 (4.10)

From the previous two steps, the optimum value for integrated features is obtained as

11 and window size of local estimator 1 is 7 when the effect of them on classification

accuracy is considered individually. In the third step, the optimum values of window
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size of local estimator 1 and number of integrated features are considered as constant

and the window size of local estimator 2 is varied from 3 to 19 in steps of 2 and

classification algorithm is applied on the SAR image.

Table 4.3. Effect of window size of local estimator 2 on classification accuracy with fixed

window size of local estimator 1=7, number of integrated features =11.

Window size of local

estimator 2

100

90

80

e 70

| 60
8 50
n

40

30 i

20

10

0

,2

u

s

J
u

3

11

13

15

17

19

Classification accuracy

(%)
81.75

76.60

79.62

82.55

84.15

84.00

83.61

89.13

83.48

7 9 11 13 15

Window size of local estimator 2

17

Figure 4.5. Variation ofclassification accuracy with local estimator 2.
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Figure 4.5 shows how classification accuracy (Table 4.3) varies with window size of

local estimator 2. Similar processing as in the previous two steps is done and the

relation of local estimator 2 with classification accuracy is expressed as

y =b'2 +b?x3 +bl2x] +b'2xl (4.11)

where %' is the windowsize of local estimator 2. The values of the coefficients b12,

bl2.b'22and b12 are obtained as 8.26188, 23.453162, -2.14704 and 0.059995

respectively. This expression is depicting the observed datawith an R2 of 0.87936 and

corresponding results are shown in Table 4.3. The optimum value for local estimator

2 is found as 9 with classification accuracy of 89.17% applying similar process as

before in computing optimized x2 from equation (4.9) These optimum values are

obtained considering the individual effects of user defined parameters on

classification accuracy. The coefficient of determination, R2 (>0.7) for the above

relations suggests that all the three parameters viz., window size of local estimator 1,

window size of local estimator 2 and number of features play important role in

optimizing classification accuracy.

4.3.4 Classification accuracy in terms of user defined parameters

To develop the algorithmto compute classificationaccuracy in terms of all these three

parameters, classification algorithm is applied with local estimator 1 varying from 3

to 17, local estimator 2 from 3 to 19 and number of features from 2 to 27 and the

classification accuracy is computed. Figure 4.6 and 4.7 show the variation of

classification accuracy for corresponding combinations and computed results are

shown in Table 4.4. Figure 4.6 (a) to (i) show the variation of classification accuracy

with window size of local estimator 1 for fixed values of local estimator 2.

From the figure 4.6 (a) to (i), it can be inferred that increase in window size of local

estimator 1 beyond 17 does not make significant improvement in classification

accuracy. It is obvious that maximum classification accuracy occur in the range of 7

to 15 for window size of local estimator 1. Figure 4.7 (a) to (h) shows classification

accuracy vs. window size of local estimator 2 with fixed values of local estimator 1.

For varying window size of local estimator 2 from 3 to 15, classification accuracy

varies from 70% to 90%. Increasing window size of local estimator 2 beyond 17
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makes the accuracy drops down to 70% or lesser values. It represents that

classification accuracy is highly dependent on xj, x2, and x3.

Table 4.4. Effect of variation of window size of local estimator 1 and local estimator 2 on

classification accuracy.

Window size of

local estimator 1

Classification accuracy (%)

Window size of local estimator 2

3 5 7 9 11 13 15 17 19

3 72.5 79.35 84.57 83.01 73.79 92.37 69.23 98.27 94.10

5 77.68 78.83 81.77 82.71 68.41 85.03 85.96 60.63 64.89

7 81.75 76.60 79.62 82.55 84.15 83.99 83.61 89.13 83.48

9 72.10 82.51 80.66 82.79 84.05 83.90 83.25 82.75 82.47

11 84.62 83.57 81.60 82.63 84.11 83.54 83.01 71.35 70.62

13 81.38 83.87 81.54 82.65 83.86 83.21 82.13 71.06 70.44

15 82.34 83.62 81.10 82.86 83.52 82.82 81.74 81.24 70.14

17 80.92 83.65 81.34 82.97 83.61 82.67 81.53 81.19 82.11
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A multiple regression has been carried out to understand the relationship among y, xu

x2, andxi.

y = b0+ bi xj + b2x2 + b3x3 (4.12)

where 'xj' is the number of features, 'x2' is the window size of local estimator 1 and

x3' is the window size of local estimator 2. Multiple regression is applied on the

observed data to get the above relation with R2 of 0.7117. The values of the

coefficients b0,b,,b2 and b3 are obtained as -1.9 x 10 "14, 7.0489812, 0.054974 and

-0.101554 respectively. The relationship obtained for classification accuracy in terms

of coefficients bo,b],b2 and b3 are very much site dependent and may be used in future

years. For the same site and similar land conditions for succeeding years, the same

user defined parameter set can be used. Equation (4.12) is solved by maximizing ly'

using function,

subjected to

min
X, ,x, ,x

(b0 + bx x, +b2x2 + b3x3) (4.13)

2 < x, < 27

3<*2<21 (4.14)
3<x3<21

b0 +bxxx +b2x2 +b3 x3 < 100

Optimum values of the parameters are found to be window size of local estimator 1 is

7, window size of local estimator 2 is 11 and number of features is 14. Another

combination that gives optimal result is [14, 7, 15]. For this optimization process, the

lower and upper boundary values for all three parameters are set as [2, 3, 3] and

[27, 21,21] respectively, since increasing the parameters beyond the upper boundary

does not improve the performance as were checked in earlier steps (section 4.3.3).

The upper boundary constraint for classification accuracy is set as 100%. This is the

final expression for classification accuracy in terms of user defined parameters

(equation 4.13), number of integrated features, window size of local estimator 1 and

window size of local estimator 2.
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4.3.4 Optimum user defined parameters and their validation

Using the optimization routine, user can set the desired classification accuracy with

specific lower and upper boundary values for parameters and initial guess value lying

anywhere within the boundary range and one can get the user defined parameters

directly using Equation (4.13). By applying those values directly in the classification

algorithm, successful classification of SAR images can be implemented in one step

without consuming a lot of time. For the optimum combinations of user defined

parameters [number of features, window size of local estimator 1, window size of

local estimator 2] as : set 1 [14,7,11] and set 2 [14,7,15], classification algorithm is

applied for SAR image of July 23, 2001, with which optimal parameters are

developed. To show the validation of algorithm over extended data, the same

combinations of user defined parameters are applied on the SAR images of the same

area obtained on July 28, 2003, and March 29, 2004 and results are computed and

shown in Table 4.5. The overall accuracy is computed and tabulated considering only

the water and urban pixels in both the ground truth data and classified image (Table

4.5).

Table 4.5. Classification results obtained with user defined parameters.

SI.

No

Date of

SAR

image

User

defined

parameters

Overall

accuracy

Water Urban

Producer's

accuracy

User's

accuracy

Producer's

accuracy

User's

accuracy

1
July 23,

2001
[14,7,11] 86.56 91.60 88.19 77.17 83.16

2
July 23,

2001
[14,7,15] 85.92 94.41 85.04 71.19 88.01

3
July 28,

2003
[14,7,11] 89.08 92.54 89.21 84.21 88.89

4
July 28,

2003
[14,7,15] 93.70 99.62 91.23 83.52 99.22

5
March

29,2004
[14,7,11] 80.80 99.84 88.14 82.45 98.74

6
March

29,2004
[14,7,15] 87.26 98.62 83.39 84.62 97.43

It can be seen from the table that the optimum combinations of parameters obtained

from the above algorithm gives good results for images obtained on July 28, 2003 and

March 29, 2004. Overall accuracy can be used as a good measure for analyzing

classification accuracy. When the user defined parameters [14,7,15] obtained by
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proposed classification methodology is applied for SAR image of July 28, 2003,

confusion matrix of classified image is presented (Table 4.6). Overall accuracy is the

ratio of correctly identified urban and water pixels to the total urban and water pixels

present in the image and is computed as 93.70 %.

Table 4.6. Confusion matrix for user defined parameters [14,7,15] for SAR image acquired on

July 28, 2003.

Overall classification accuracy = (380 + 780)71238 = 1160/1238 = 93.70%

Class Water Urban Total

Ground truth (pixels)
Water 380 3 383

Urban 75 780 855

455 783 1238

Ground truth (percentage)
Water 83.52 0.38 30.94

Urban 16.48 99.62 69.06

100.00 100.00 100.00

Table 4.7. Accuracy parameters for user defined parameters [14,7,15] for SAR image

acquired on July 28, 2003.

Accuracy parameters Water Urban

Pixels Percentage Pixels Percentage
Commission error 3/383 0.78 75/855 8.77

Omission error 75/455 16.48 3/783 0.38

Producer's accuracy 380/455 83.52 780/783 99.62

User's accuracy 380/383 99.22 780/855 91.23

Statistical analysis of accuracy assessment (Table 4.6) gives the confusion matrix,

accuracy parameters i.e., commission and omission errors, producer's accuracy and

user's accuracy for each land cover type in both percent and pixels (Table 4.7). For

theconfusion matrix, only thewater and urban area pixels present in ground truth data

and the classified images are considered. Confusion matrix is a square array set out in

rows and columns which expresses the number of cells assigned to a particular land-

cover type relative to the actual land cover type. The columns represent the reference

data while rows indicate land cover type assigned by classification process.

The results are validated with the ground truth survey undertaken in and around

Haridwar region, India for unsupervised land cover classification. Ground truth
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survey ofvegetation areas reported by Said (2006) is also taken as reference. As can

be seen in Table 4.6, there are 455 water pixels and 783 urban pixels in reference data

and 383 water pixels and 855 urban pixels in the classified data. All correct

classifications (on pixel basis) are indicated on the major diagonal of the error matrix.

For example, in this case, 380 pixels were correctly classified as water and 780 pixels

as urban area. The off diagonal elements indicate misclassification which is a

combination of commission and omission error. Overall accuracy is computed by

dividing the total correctly identified pixels by the total number of pixels in the

reference data for corresponding classes.

An error of commission is a measure of the ability to discriminate within a class and

occurs when the classifier incorrectly commits pixels of the class being sought to

other classes. In this example, the commission error for water stems from improperly

calling other classes water, so that three pixels labeled as water are really a composite

of other classes. An error of omission measures between class discrimination and

results when one class on the ground is misidentified as other class by the observing

classifier. Thus, this classification algorithm fails to recognize and correctly identify

all 455 pixels of water as such, and labels 75 of these pixels as other classes.

Commission and omission error computed in terms of pixels are also represented in

percentage in Table 4.7.

Accuracies of individual category can also be computed in similar manner. The total

number ofcorrect pixels in a category is divided by the total number of pixels of that

category as derived from the reference data (i.e. column total) is termed as

"Producer's accuracy" because the producer of the classification is interested in how

well a certainarea is classified. On the other hand, if the total number of correctpixels

in a category is divided by the total number of pixels that were classified in that

category, this measure is called "User's accuracy". The producer ofthe map can claim
that 83.52% of the time an area identified as water is identified as such. User of the

map finds that 99.22% of the time an area that the map says water is actually
water.Figure 4.8 (a) corresponds to the original SAR image, 4.8 (b) shows classified
SAR image with color attributes changed to highlight water and urban areas

identified. In the classified SAR image, blue corresponds to the water area and green

corresponds to the urban area of the region.
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(a)

Water Urban

(b)

Figure 4.8. (a) SAR image and (b) classified SAR image with blue representing water area
and green representing urban areas, overlapped on SAR image.
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4.4 Conclusion

The goal ofthis chapter was to implement multi- resolution analysis of SAR image so

that micro and macro textures present in SAR image along with backscattering

coefficient can be effectively utilized for classification purposes and to obtain

optimum user defined parameters involved in the classification algorithm. Usually,

unsupervised classification processes involve ad-hoc approach for parameters

involved in the implementation of algorithm. To get maximum achievable

classification accuracy obtainable bythe system, user has to rely on ad-hoc process of

choosing parameters involved in the process which will be time-consuming. Hence,

anadaptive algorithm was proposed in this chapter so that user defined parameters are

obtained for maximum achievable accuracy that could be achieved, in a single

application of algorithm with out any ad-hoc approach. By analyzing the effect of
classification accuracy by varying each of the user defined parameters, an empirical

relation is developed for classification accuracy in terms of these user- defined

parameters. In the developed relation, user can specify the required classification
accuracy (<100%) and obtain user defined parameters by optimization routine with

constraints ontherange of these parameters as applied in equation (4.14).

From the developed relation specific to the site considered, the number of features is

identified as 14 and the corresponding sizes for local estimators 1 and 2 are 7 and 11

respectively for optimum classification as shown in this chapter. By experimental
results and analysis, it is shown that, with an optimal parameter set, classification

accuracy for identifying water and urban areas could be achieved up to 93.7%. These
optimum parameters provide satisfactory results when applied for the SAR image of
the same area taken at different time instants, viz. 28 July 2003 and 29 March 2004.

Once the user defined parameters are identified specific for a site, then, classification

of the SAR image can be achieved using the same parameters for the SAR image

obtained in successive years. Thus proposed algorithm helps in achieving

unsupervised classification ofSAR image into major land covers like water and urban
areas using multi-resolution analysis with the help ofwavelets thus exploiting both
backscattering coefficient and multi-wavelet based texture features.
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Chapter 5

Critical Analysis of Texture Measures Based on

Roughness Parameters for Labeling the Clusters
in SAR Images

It is well known that unsupervised classification of a single polarized SAR image is

accomplished mainly by two steps

(i) Clustering the SAR image into groups or clusters on the basis of

backscattering coefficient and texturespresent in SAR image.

(ii) Labeling the various clusters (For example, land cover types such as water,

urban, agriculture or any other areas).

In this context, labeling is termed as naming the various clusters or groups of pixels

according to nature of the terrain as a certain land cover type it belongs to. Labeling

of various clusters is a crucial and important aspect to identify various clusters in their

original class (here, land cover class is assumed as class, whereas, in general, class

may refer to any group of targets). Generally, researchers are carrying out labeling

using topographic information of the same area or using backscattering coefficient

obtained from the SAR image. Use of topographic sheet for labeling reflects the need

for apriori information. It is very difficult to get a clear cut picture of various clusters

using backscattering coefficient because the range of backscattering coefficients are

generally intermingled for different clusters (Wang and Rao, 1993; Martinez and

Toan, 2007). Therefore, it is needed to analyze or propose some approach by which

dependency of labeling of various clusters on these factors (i.e., ground truth points,

backscattering coefficient) may be minimized.

Backscattering coefficient is a quite important parameter in SAR image analysis for

various applications, of which, labeling of clusters is one of them. SAR image is

widely recognized for its potential in investigating soil and vegetation properties

(Dobson et al., 1992; Bouzidi et al., 1998b; Madhavan et al., 1999; Anitha et al.,

2006; Prakash and Singh, 2008). Land cover classification has been attempted by

Dobson (Dobson et al., 1995) by estimating terrain attributes by analyzing the
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sensitivity of backscatter coefficient to various parameters ranging from surface

roughness, canopy architecture, soil moisture content, and aboveground biomass of

vegetation with its moisture status. Many researchers have worked on retrieving ^

physical parameters of the surface, namely, its soil moisture content and surface

roughness by investigating radar backscattering response of surfaces (Singh et al.,

1986; Mohan et al., 1990; Singh and Sharma, 1992; Singh 1995; Das et al., 2006; Pant

et al., 2008). Although electromagnetic scattering from surfaces have been

extensively studied for a long time, retrieval of surface parameters could be done for

specific conditions like that ofbare soil, or agriculture areas (Pampaloni and Paloscia,

1986, Ferrazzoli et al., 1997; Qiang et al., 2007). These retrieved parameters may help

to label the clusters for various classes. But a lot of uncertainty exists because of

existence of various land cover types on monitored earth surface. For example, a

study area may not be purely ofbare soil or agriculture but consists of various land

cover types like water, urban structures, agriculture plots and many such areas.

Empirical models for backscattering coefficient for Horizontal-Horizontal (HH),

Vertical-Vertical (VV) and Horizontal-Vertical (HV) polarizations in terms of surface ^

roughness and relative dielectric constant ofthe soil surface have also been developed

(Oh et al., 1992; Dubois et al., 1995; Oh, 2004). The results of these research works

are applicable only for bare soil surfaces and may not hold good for urban regions

with built-up areas and streets. Many works have been published on discriminating

among various species and retrieving biomass from radar vegetation studies (Pierce et

al., 1994, Paloscia et al., 1999, Ferrazzoli et al., 1997, Lucas et al., 2007). Most of

these use multifrequency and multipolarization SAR images for crop classification. -V

Since the focus is to use single C-band SAR image for classification purposes, these

methodologies have limitations that they require images obtained at different

polarization and operating frequencies. Multi-temporal C-band SAR data (C-HH,
C-VV) collected by ERS-2 and ENVISAT were analyzed for their ability in mapping

forested wetland and separating wetland from upland (Lang et al., 2008). All these

works emphasize the ability of SAR images to discriminate agriculture areas from

other land cover types. y

For studying the separability of urban regions in SAR image, radar response from
various urban features is to be studied. It has been shown that some typical urban

features like pavement, grass, and buildings can be separated on the basis of their
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average vertical dimensions (Xia and Henderson, 1997). In this work, they have listed

the predicted appearance (on the basis of roughness) on radar imagery for various

urban features. For small scale features whose vertical heights are measured in

centimeters such as water, paved roads and grass areas, the predicted value of vertical

height is in reasonable agreement with the observed values (Jensen et al., 1983).

However, the extrapolation to residential and commercial environments with heights

measured in meters is not straight forward. It is unknown at what height a particular

surface object will act as comer reflectors to radar signals and to what degree building

walls at certain orientations will cause multiple reflections (Fujito and Miho, 2006;

Ainsworth et al., 2008). But still, the analysis of urban features on the basis of

roughness parameters help in clustering them into wide groups like bare soil, bushes

or buildings. Even though there are many reported works for retrieval of soil moisture

content from backscattering coefficient, this may not be helpful for labeling the

various land covers of water, urban and vegetation areas since the range of

backscattering coefficients for these types of land covers are overlapping
(Ferrazzoli et al., 1997; Bindlishand Barros, 2001).

Therefore there isa need to include some more measures from SAR image to label the

clusters. Roughness is one of the important parameter to describe the nature of the

terrain or surface and it is defined as vertical deviations of a surface from a reference

level and it may be helpful to label the various clusters into land cover types.
Therefore, labeling the clusters can be attempted using the surface roughness

parameters. The contribution of the roughness element depends on the surface

characteristics. Each pixel of a SAR image represents an estimate of the radar

backscatter for that area on the ground. Darker areas in the image represent low

backscatter whereas brighter areas represent high backscatter. The SAR backscattered

intensity generally increase with the roughness (Ulaby et al., 1986). Roughness is a

relative quantity that represents deviation in surface height related to a reference

surface. For SAR images, the reference length scale for surface roughness is the

wavelength of the microwave. If the surface fluctuation is less than the microwave

wavelength, then the surface is considered smooth. For example, in the case of ERS-1

SAR image with a wavelength of 5.6 cm, if the surface has a fluctuation of the order

of 2 cm, the surface is smooth and it appears dark. If the surface fluctuation is much

more than 5.6 cm, say 20 cm, then surface appear bright. Flat surface such as calm

84



water, paved roads, runways normally appear as dark in SAR image since most ofthe
incident radar pulses are reflected away. However, rough water surfaces may appear

bright especially when the incidence angle is small (Makynen et al., 2002). In the case
of urban areas where city streets or buildings are lined up in such a way that the

incoming radar pulses are able to bounce off the streets and bounce again off the
buildings (called a double bounce), then directly back towards the radar, they appear
very bright in SAR images. Agriculture areas have intermediate backscattering
coefficient. The surface fluctuation of agriculture areas is also intermediate to flat

surfaces and urban areas. Hence, use of backscattering coefficient along with surface

roughness may help in labeling various clusters.

This study reflects that surface roughness parameter may be a suitable parameter to

help in labeling ofclusters. Therefore, the focus in this chapter is to induct surface
roughness with backscattering coefficient to label various clusters (i.e. major land
cover types). For this purpose, a detailed analysis ofsurface roughness with various
texture measures (mean, variance, semivariogram, lacunarity, weighted rank fill ratio

and wavelet components) has been carried out. This detailed analysis may help to

identify some texture measures for describing roughness. This analysis is not directly
possible with real SAR images because it needs a lot ofinput parameters like actual
values of roughness parameters from the land cover. Therefore, many synthetic
images are generated for varying roughness. We have proposed an empirical relation
to estimate roughness parameters. Although moisture is playing an important role in
SAR image analysis, it may not give a major impact while calculating texture

measures. Variation of moisture content results in variation in the level of

backscattering coefficient but not the signature or nature of variation (Ulaby et al.,
1986). When texture is measured over a small window size (as mentioned in
section 3.4.1), moisture content can be assumed to be approximately constant over the
window since texture measures calculate deviation from the mean or average

backscatter coefficient and hence moisture content is assumed to have less impact on

measuring texture measures (Rahman et al., 2008).

This chapter is organized as following: Section 5.1 describes the methodology of
generating synthetic images with varying surface roughness parameters. Effect of
varying surface roughness on texture measures is analyzed critically in section 5.2.
Section 5.3 shows methodology to obtain surface roughness from the suitable texture
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measures. Section 5.4 explains the computation of surface roughness for real SAR

data and labeling of clusters using roughness and backscattering coefficient. Section

5.5 concludes the chapter 5 stating the applicability and advantages of the proposed
approach for labelingclusters in SAR image.

5.1 Generation of synthetic images with varying roughness

measures

The main aspect of characterizing the roughness of a surface is the choice of suitable

parameters to represent roughness. For SAR images, vertical size of the scatterers and

the distribution of these scatterers in the horizontal plane are important for studying
the surface roughness. There are two statistical parameters known as the standard

deviation of surface height variation, termed as root mean square (RMS) height and

abbreviated as V and the correlation length, denoted by T. RMS height, standard

deviation of surface height, represented by V is a measure of vertical roughness

whereas correlation length, representing correlation on horizontal plane , denoted by
'/', is a measure ofhorizontal roughness. V and 7' are taken in units of cm.

To obtain the effect of V and 7' on image texture that may be helpful for labeling

different clusters, a detailed analysis is required. It is very difficult to carry out this

detailed analysis in the SAR images. Therefore, there is a need to generate various

synthetic images for different V and 7' and critically analyze the texture measure

variations on these roughness parameters.

5.1.1 Surface roughness parameters

The RMS height of a surface indicates the degree of variation of the height
measurement of a surface above an arbitrary plane. The greater the spread of height

measurements, the greater is the value of RMS height.
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For the series Z( = 1,2,..N, the RMS height for the discrete one dimensional case is

given by

where,

s = Um-Ntf(tf-i)lt;

1 a
z=-Yz,

(5.1)

(5.2)

and N is the number of samples.

The relationship between the height above an arbitrary plane of one point located at

point V and the height of another point V distant from V (Figure 5.1) can be

statistically expresses in the form of an autocorrelation coefficient. The variation in

the value of the autocorrelation coefficient as the distance between the two points

increases is referred to as the autocorrelation function. The correlation length ('/') is
the displacement from the original point 'a' when there exists no statistical

relationship between the two points. The normalized autocorrelation function, p(a') in
the discrete case (Figure 5.2) is given by

N+l-j

I*.2
(5.3)

(-1

for a spatial displacement a' = (j-l)Ax, where/ isan integer > 1. The spacing interval
Ax between measurements is such that

Ajc<0.U (5.4)

where T is the wavelength ofthe radar (= 5.6cm for ERS-1 SAR image).

The surface correlation length 7' is defined as the displacement a' for which p{a') in
the discrete case is equal to (1/e) (Figure 5.2).

<\= 1/p(a') = (5.5)

where, e = 2.7183.
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5.1.2 Synthetic images with varying roughness measures

RMS height, (i.e., standard deviation of surface height), represented as V is a

measure of vertical roughness and correlation length, 7', representing the correlation

on the horizontal plane is a measure of horizontal roughness are the parameters

chosen to describe the roughness of the surface. To study and analyze the effect of

variation of surface roughness on texture measures, synthetic images with different

combinations of V and 7' are generated.

The classical surface roughness parameters, i.e., RMS height (s) and correlation

length (/) are taken as input. The surface profile generation algorithm by Fung and

Chen (1985) is modified for 2Dsurface profile.

The surface profile heightZ is described by

M

Z(k)= YW(j)X{j +k) (5.6)
/—M

where Z(k) is the surface height distribution, X{i) is a Gaussian random deviate with
zero mean and unit variance, and W{j) is the weight function. The surface is

characterized by Gaussian correlation function for which the weight function is

defined as

W(j) = s
f2Ax"|

1/2

{iJtc
exp -2

jAx
(5.7)

Ax is the sampling distance, and it is considered as unity since discrete profiles and

consequently discrete image is considered.

The following steps are executed to generate 2D images with varying surface

roughness parameters V and 7':

• Consider 2D surface image of size (m, n) is to be generated for a specific value

of V and'/'.
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• For the specified V and T, surface profile height Z is generated for k=l,..n

using equations (5.6) and (5.7).

• In the equation 5.6, X(i) is a Gaussian random deviate with zero mean and unit

variance. Random numbers are generated such that they follow the Gaussian

distribution with zero mean and unit standard deviation (/variance).

• Using the same value of V and 7', '/«' ID profiles using steps 2, 3 are
generated.

• Since the random numbers generated are not unique, the procedure gives rise to

different ID surface profiles.

• Each ID profile is arranged ina row and 'w' such rows are formed using 'w' ID

profiles generated from step 4.

• Surface heights are obtained as pixel vertical roughness i.e., Z(i,j).

• As V and 7' are used for generating ID surface profiles and such IDprofiles are

extended to form 2D surface images, the average values of V and 7' are the

same for generated 2D synthetic images.

By using the above steps, various synthetic images have been generated by varying

RMS height,'̂ ' from 0.1 to 5.0 in steps of 0.1 and correlation length 7' from 0.5 to 15

in steps of 0.5. This gives rise to 50 values of V and 30 values of 7'. For each value

of V, 30values of 7' are used to generate 30synthetic images. Hence for 50different

values of'5', (30x50) i.e., 1500 synthetic images are generated from all combinations

of V and 7'. These generated synthetic images are used for further analysis.
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j=0.1, /=0.5
(a)

5=0.1, 7=0.5

(c)

5=0.1, /=7.5
(b)

5=0.5, 7=0.5

(d)

Figure 5.3. Synthetic images with varying '5' and 7'. For example, (a) and (b) corresponds to
synthetic images with constant s = 0.1 , and varying 7' of 0.5 and 7.5 respectively, (c) and
(d) synthetic images with constant 7' of0.5 and varying V of0.1 and 0.5 respectively.

For example, in Figure 5.3 (a) to (d), first two images (a) and (b) represents synthetic
images ofvarying 7' values of0.5 and 7.5 with fixed value of'5'= 0.1. Then, the next
two images (c) and (d) corresponds to synthetic images offixed value of7'= 0.5 and
varying '5'= 0.1 and 0.5 respectively. Figure 5.3 (a) and (b) depicts how the surface is
represented when correlation length is increased from a lower value of0.5 to 7.5. As
the correlation length increases, surface becomes smooth. Similarly, as the RMS

height increases, surface becomes rough (Figure 5.3 c,d). Thus, synthetic images to
represent surfaces with varying roughness parameters, '5' and 7' are generated for

further study.
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5.2 Analysis of texture measures for surfaces with varying

roughness parameters

Texture measures namely mean, variance, semivariogram, lacunarity, weighted rank

fill ratio and wavelet components are computed for various generated synthetic
images (approximately 1500 images) for different V and 7'.

As it is well known that window size is also playing an important role for doing
texture analysis, all the six texture measures are computed by varying window size

from 3 to 19 in steps of2 to understand about the effect ofwindow size on particular

texture measure and surface roughness. For example, samples of various texture

measures for different '5', 7', andwindow size, lw\ Here only few cases are shown in

Table 5.1. But in actual, texture measures were computed for all 1500 synthetic

images. Sample values are chosen such that effect of each parameter, i.e., RMS

height, correlation length and window size on texture measures can be studied. For

fixed value of 7'= 0.5 andtwo different fixed values of '5'= 0.1 and 0.5, window size

is varied from 3 to 19 in steps of2, texture measures are computed. Then, for a higher

value of 7'=7.5 as fixed, and '5'=0.5, window size isvaried from 3to 19 insteps of2.

From this, effect of window size onvarious values of '5' and 7' can be studied. Next,

by keeping window size fixed at 5 (i.e., 5x5 window) and '5' fixed at three different

values of 0.1, 0.5, and 1.5, correlation length is varied from 0.5 to 2.5 in steps of 0.5

so that effect of correlation length on texture measures can be observed. From the

same set of readings, window size is fixed at 5, three fixed values of 7' as 0.5, 1.5 and

2.5, effect of varying RMS height '5' as 0.1, 0.5 and 1.5 can be noted.
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Table 5.1. Texture measures for sample combinations of '5' and T.

RMS

height Correlation

length '1'
Window

size 'w'

Mean variance Semivariogram lacunarity
Weighted
rank fill

ratio

Approximation
coefficient of

wavelet

components

0.1 0.5 3 0.027 0.0019 0.0252 4.5737 0.0748 0.1506

0.1 0.5 5 0.075 0.0019 0.0253 4.0667 0.0746 0.1502

0.1 0.5 7 0.147 0.0018 0.0248 3.9847 0.0746 0.1504

0.1 0.5 9 0.243 0.0018 0.0250 3.9540 0.0748 0.1501

0.1 0.5 11 0.364 0.0017 0.0252 3.9386 0.0748 0.1510

0.1 0.5 13 0.508 0.0016 0.0253 3.9294 0.0749 0.1502

0.1 0.5 15 0.676 0.0016 0.0250 3.9235 0.0748 0.1502

0.1 0.5 17 0.869 0.0015 0.0243 3.9203 0.0748 0.1506

0.1 0.5 19 1.087 0.0015 0.0257 3.9182 0.0748 0.1507

0.5 0.5 3 0.135 0.0469 0.1232 4.6945 0.3746 0.7539

0.5 0.5 5 0.375 0.0457 0.1229 4.1425 0.3741 0.7540

0.5 0.5 7 0.735 0.0446 0.1240 4.0446 0.3742 0.7532

0.5 0.5 9 1.216 0.0435 0.1246 4.0082 0.3748 0.7538

0.5 0.5 11 1.818 0.042 0.1240 3.9898 0.3747 0.7542

0.5 0.5 13 2.541 0.0405 0.1263 3.9797 0.3743 0.7486

0.5 0.5 15 3.386 0.0393 0.1227 3.9728 0.3743 0.7493

0.5 0.5 17 4.352 0.0378 0.1226 3.9678 0.3741 0.7562

0.5 0.5 19 5.437 0.0364 0.1219 3.9637 0.3738 0.7532

0.1 7.5 3 0.056 0.0007 0.0032 106.7986 0.1555 0.3112

0.1 7.5 5 0.156 0.0007 0.0077 49.9896 0.1554 0.3117

0.1 7.5 7 0.306 0.0007 0.0112 39.8251 0.1552 0.3114

0.1 7.5 9 0.506 0.0007 0.0136 35.7196 0.1552 0.3114

0.1 7.5 11 0.756 0.0007 0.0149 33.7185 0.1552 0.3112

0.1 7.5 13 1.055 0.0007 0.0153 32.5612 0.1551 0.3117

0.1 7.5 15 1.405 0.0007 0.0153 31.816 0.1551 0.3115

0.1 7.5 17 1.805 0.0007 0.0153 31.3219 0.1551 0.3116

0.1 7.5 19 2.255 0.0007 0.0154 30.9341 0.1551 0.3117

0.1 0.5 5 0.075 0.0019 0.0253 4.0667 0.0746 0.1506

0.1 1 5 0.068 0.0009 0.0182 5.9400 0.0681 0.1356
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RMS

height
V

Correlation

length '1'
Window

size 'w'

Mean variance Semivariogram lacunarity
Weighted
rank fill

ratio

Approximation
coefficient of

wavelet

components
0.1 1.5 5 0.081 0.0007 0.0162 10.256 0.0812 0.1626

0.1 2 5 0.093 0.0007 0.0150 14.5228 0.093 0.1859

0.1 2.5 5 0.107 0.0007 0.0161 20.1254 0.1071 0.2134

0.5 0.5 5 0.375 0.0457 0.1229 4.1425 0.3741 0.7539

0.5 1 5 0.341 0.0227 0.0903 6.1951 0.3412 0.6806

0.5 1.5 5 0.411 0.0181 0.0820 10.7176 0.4115 0.8213

0.5 2 5 0.475 0.0167 0.0744 15.8317 0.4779 0.9496

0.5 2.5 5 0.531 0.0163 0.0691 20.0358 0.5319 1.0622

1.5 0.5 5 1.126 0.4027 0.3642 4.2528 1.1279 2.2515

1.5 1 5 1.013 0.2095 0.2722 6.0038 1.0133 2.026

1.5 1.5 5 1.215 0.1719 0.2411 10.1246 1.2149 2.4297

1.5 2 5 1.402 0.163 0.2295 14.8863 1.4022 2.7981

1.5 2.5 5 1.598 0.1511 0.2090 19.4649 1.5941 3.1903
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Figure 5.4. (a) variation of 'mean' with respect to window size for fixed / = 0.5 and

s = 0.1,0.5, (b) variation of 'mean' with respect to window size for fixed s = 0.1 and

7= 0.5,7.5, (c) variation of 'mean' with respect to correlation length is plotted for window

size = 5 and s = 0.1,0.5,1.5, and (d) variation of 'mean' with respect to RMS height, s is

plotted for window size = 5 and 7= 0.5,1.5, 2.5.
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Figure 5.5. (a) variation of 'variance' with respect to window size for fixed 7= 0.5 and

5 = 0.1,0.5, (b) variation of 'variance' with respect to window size for fixed 5 = 0.1 and

7=0.5,7.5, (c) variation of 'variance' with respect to correlation length is plotted for window
size =5and s =0.1,0.5,1.5, and (d) variation of'variance' with respect to RMS height, s is
plotted for window size= 5 and 7= 0.5,1.5, 2.5.
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Figure 5.6. (a) variation of 'semivariogram' with respect to window size for fixed 7= 0.5 and

s = 0.1, 0.5, (b) variation of 'semivariogram' with respect to window size for fixed s = 0.1

and 7= 0.5, 7.5, (c) variation of 'semivariogram' with respect to correlation length is plotted

for window size = 5 and 5 = 0.1,0.5,1.5, and (d) variation of 'semivariogram' with respect to

RMS height, s is plotted for window size = 5 and 7= 0.5,1.5, 2.5.
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Figure 5.7. (a) variation of 'lacunarity' with respect to window size for fixed 7= 0.5 and
s = 0.1,0.5, (b) variation of 'lacunarity' with respect to window size for fixed s = 0.1 and

7= 0.5,7.5, (c) variation of 'lacunarity' with respect to correlation length is plotted for
window size =5and s =0.1,0.5,1.5, and (d) variation of 'lacunarity' with respect to RMS
height, s is plotted for window size = 5and 7= 0.5,1.5, 2.5.
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Figure 5.8. (a) variation of 'weighted rank fill ratio' with respect to window size for fixed

7= 0.5 and s = 0.1,0.5, (b) variation of 'weighted rank fill ratio' with respect to window size

for fixed 5 = 0.1 and 7 = 0.5,7.5 (c) variation of 'weighted rank fill ratio' with respect to

correlation length is plotted for window size = 5 and s = 0.1,0.5,1.5, and (d) variation of

'weighted rank fill ratio' with respect to RMS height, s is plotted for window size = 5 and

7= 0.5,1.5,2.5
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7= 0.5,1.5,2.5.

100



Effect of three parameters, namely two roughness measures, V and '/', and window
size on 'mean' is studied. Figure 5.4 (a) and (b) shows the variation of 'mean' with

window sizes. This is plotted for fixed values of '5' and '/'. As the window size
increases, 'mean' also increases. Hence, it is quite dependent on window size. Figure
5.4 (c) shows the variation of 'mean' with correlation lengths for different '5' and
fixed window size of '5x5'. It shows that for low values of '5', effect of correlation

length is negligible. As V increases, variation in 'mean' is more while increasing
correlation length. From figure 5.4 (d), it can be inferred that 'mean' is varying
according to RMS height and little variation for varying correlation lengths.

Next, variations oftexture measure, 'variance' for varying window size, V and '7' are
studied. Figure 5.5 (b) shows that for higher values of '5', 'variance' is dependent on
window size, 'variance' reduces as the window size increases. Figure 5.5 (c) shows

how 'variance' changes for increasing correlation lengths for fixed for different V

with fixed window size '5x5'. For lower value of '5', effect of correlation length on

'variance' is negligible (Figure 5.5 c). As the V increases, 'variance' also increases

(Figure 5.5 d). This refers that effects of both roughness measures are interdependent.

'Semivariogram' is considered as the next texture measure for analysis. From Figure
5.6 (a) and (b), it can be inferred that window size has less impact on 'semivariogram'
and is dependent only on '5' and '/'. Figure 5.6 (c) shows that as the correlation length
increases for fixed window size '5x5', there is less variation in 'semivariogram' for

lower values of V and more variations as V increases. Figure 5.6 (d) shows that

'semivariogram' increases for increasing V. Hence, 'semivariogram' is more

dependent onRMS height, V than '/'.

When effect of window size is studied on 'lacunarity' for fixed values of '5' and '/',

less variation in 'lacunarity' with window size has been observed (Figure 5.7 a and b).

From Figure 5.7 (c), it can be observed that '5' has negligible impact on 'lacunarity'.
As correlation length increases, 'lacunarity' also increases (Figure 5.7 c and d).
Therefore, it can be inferred that 'lacunarity' may mainly depend on correlation

length.

'Weighted rank fill ratio' hardly varies with increasing window size (Figure 5.8 a and
b). Effect of correlation length is also negligible for lower values of V (Figure 5.8 c).
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As RMS height increases, 'weighted rank fill ratio' increases (Figure 5.8 d). It can be
concluded that 'weighted rank fill ratio' is highly dependent on '5'.

For analyzing the effect ofsurface roughness measures, wavelet components (db4) are

computed. When analyzing, it is found that horizontal, vertical and diagonal detail

components vary in negligible amount. Hence, only 'wavelet component 1', i.e.,

approximation coefficient, is taken for analyzing the effect. Window size has very less

impact on 'wavelet component V (Figure 5.9 a and b). Figure 5.9 (c) and (d) shows

that 'wavelet component 1' is dependent on RMS height, '5' and vary less with

correlation lengths for low values of '5', that reflects that 'wavelet component 1' is
quite dependent on RMS height, '5'.

This detailed analysis infers behavior of texture measures for roughness parameters

and window size. It is clearly observed that some ofthese texture measures are highly

influenced by RMS height '5' and some are highly influenced by correlation length

'7'. It means that '5' and '7' may be estimated by these texture measures and these

estimated values may then be helpful for labeling. Therefore, in the next step, an

empirical analysis has beencarried out to compute roughness with these measures.

5.3 Computing surface roughness from texture measures

For various values of '5', '7', and window sizes, texture measures are calculated from

the synthetic images as generated in section 5.1.2. Polynomial regression is employed
on this observation to express each of the texture measures in terms of window size

and roughness measures, '5' and '/'. Defining equations and its coefficients with R2

values is given in Table 5.2.

It is observed from Table 5.2 that 'semivariogram', 'weighted rank fill ratio' and

'wavelet component 1' have higher impact on '5', '7' and 'w' because R2 value is

higher than 0.9, whereas other texture measures like 'mean', 'variance' and

'lacunarity' have R2 values less than 0.7. Hence, only the three texture measures,
semivariogram, weighted rank fill ratio and wavelet component1 are considered for
further analysis.
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Table 5.2. Texture measures interms ofroughness parameters and window size.

Sl.No Textural

measures

Defining equation

Parameters

R2al6 al6 ~l-«a2 «3

1 Mean, yj yx=a\ +a\s +a\l +a\w -4.7766 5.2276 0.1980 0,3989 0.6942

2 Variance, y^ y2 =al+a2s +a2l +a2w -0.0152 0.1413 -0.0017 -0.0004 0.6775

3 Semivariogram, y3 =al +a3s +a3J +a3w -0.0004 0.1694 -0.0042 00014 0.9145

4 Lacunarity, y4 yt=aZ+a*s +aU +a*w 15.6121 -0.5422 7.2148 -1.3732 0.6521

5 Weighted rank
fill ratio, vj

y5 =al +a5s +a5J +asw -0.0616 0.882 0.032 -0.0001 0.9368

6 Wavelet

component 1,

ye
y6=a\+a6ys +a6l +a6y»

-0.1258 1.7652 0.0659 0.0014 0.9365

a1"6, a1'6, a\'6 and a\~6 are the coefficients of defining equations for texture measures

(sl.no. 1to 6) and y,.6 represents six texture measures, 'mean', 'variance', 'semivariogram',
'lacunarity', 'weighted rank fill ratio' and 'wavelet component 1' respectively. Y, 7' and
'w' represents RMS height, correlation length and window size respectively.

,1-6The coefficients of defining equations for texture measures, a\ 6, al2'6 and a

represents the slope, indicating sensitivity of 's' , '/', and window size, V on
respective texture measures, whereas a\'6 measures the noise. It is clearly observed

from the Table 5.2 that ^values are very less for 'semivariogram', 'weighted rank fill

ratio' and wavelet component1 that represents that the correlation length is less

sensitive with texture measures whereas a, values are quite significant. It represents

that these three texture measures are quite sensitive to RMS height, Y. While

observing coefficient a0 that represents sensitivity of these texture measures with
window size, its value is quite low. It means a fixed window size can be used for
measuring these texture measures. This analysis infers that the texture measures,

'semivariogram', 'weighted rank fill ratio' and 'wavelet component Vplay major role
for measuring the roughness parameter, RMS height. Taking care of all these analysis,
a relationship among RMS height '5' , semivariogram, 'weighted rank fill ratio' and
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wavelet component1 has been developed using regression analysis, that can be
expressed as

s =a0 +a, (semivariogram) +a2 (weighted rank fill ratio) +a3 (wavelet component 1)

(5.8)

By polynomial regression fit to the observed data (same set ofdata ofapproximately

1500 images used for computing texture measures in section 5.2), the coefficients a0,

ah a2, a3 are obtained as 0.0110, 2.3915, 5.4634 and -2.4103 respectively and R2 is

0.9739. Similarly, polynomial regression fit is tried to obtain relationship for

correlation length in terms of these measures, but R2 is 0.4768 that confirms our

earlier findings that the three texture measures namely 'semivariogram', 'weighted

rank fill ratio' and 'wavelet component 1' are less sensitive on correlation length,'/'.

12 3 4 5

Actual RMS height, s

Figure 5.10. Scatter plot of retrieved RMS height vs actual RMS height,^'.
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The empirical relationship developed (equation 5.8) is tested with about 200 synthetic
images to retrieve RMS height V. Synthetic images with RMS height varying from
0.25 to 5in steps of0.25 (hence 20 different V) and ten correlation length, / =0.5, 2,
4, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 and 10 (random values of7) are chosen . Three texture
measures, 'semivariogram', 'weighted rank fill ratio' and 'wavelet component 1' are
computed and RMS height Y is retrieved from these computed texture measures
using equation (5.8). Figure 5.10 shows the scatterplot of retrieved RMS height with
actual RMS height and it can be inferred that retrieved RMS height closely follows

actual RMS height. This shows that surface roughness parameter, RMS height can be

retrieved effectively using the mentioned three texture measures with the help of

equation 5.8.

5.4 Computation of roughness parameter, RMS height for

real SAR image

5.4.1 Data used

ERS-2 SAR C-band image acquired on July 23, 2001 is used for developing and

analyzing the proposed approach of unsupervised classification of single polarized
SAR image. ERS-2 SAR C-band image of July 28, 2003 is used for validating the
results for labeling. The complete details of the study area with latitude / longitude

co-ordinates and satellitedata can be referredwith section 1.3 and 1.4.

5.4.2 Proposed methodology to compute RMS height, V for SAR image

Clusters obatined by any ofthe proposed methods ofSAR segmentation (Chapter 3or

chapter 4) can be taken as input for labeling. These clusters are to be labeled with
major land cover types ofwater, urban and vegetation areas.

5.4.2.1 Steps involved in computing RMS height can be stated as listed

• SAR image segmentation is implemented using any one of the proposed
methods in chapter 3and 4and clusters identified by the proposed algorithm is

taken as input.

105



• In each of the cluster, image is divided in to groups of pixels of size 5x5. For

each of these pixel groups, three texture measures viz., 'semivariogram',
'weighted rank fill ratio' and 'wavelet component 1' are calculated.

• Using the equation (5.8), rms height, '5' is computed from these three texture

measures.

• Similarly, RMS height is calculated for all groups ofpixels of size 5x5 ineach

of the clusters.

5.4.2.2 Critical analysis to label the various clusters

• Segmented image obtained by PCA based fusion approach (Chapter 3) is

labeled with the help of topographic sheet and hence label of clusters are

known.

• RMS height '5' is calculated for all groups of pixels within every cluster

belonging to various land cover types like water, urban and agriculture areas

(Section 5.4.2.1). In Table 5.3, three texture measures, semivariogram,

weighted rank fill ratio and wavelet component 1 and RMS height '5'

calculated from these measures for 10 samples of each land cover types,
i.e., water, urban and vegetation areas are listed.

• From the calculated RMS height '5' for all groups of pixels with in each land

cover type, range of '5' can be specified for that land cover. Similarly, range

of '5' is computed for urban and vegetation areas and are shown in Figure
5.11.

Various values oftexture measures with computed RMS height (from equation 5.8) is

shown in Table 5.3. The points w1"10, h'"10 and a1"10 are shown in figure 5.11. Typical
ranges of each of texture measures (Figure 5.11) is identified by analyzing more than

30 clusters having about 100 groups of pixels belonging to each type of land cover.
Typical ranges are presented in Table 5.4.
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Table 5.3. RMS height calculated in real SAR image for water, urban and agriculture areas.

Land cover

type

Texture Measures

RMS heightSemivariogram Weighted
rank fill ratio

Wavelet

component 1

[0.045,0.045, [0.4,0.4, [0.8,0.07, [0.472,0.443,

0.034,0.023, 0.34,0.37, 0.4,0.53, 0.398,0.347,

Water 0.014,0.036, 0.24,0.22, 0.56,0.24, 0.298,0.399,

[Wi-Wjo]
0.033,0.018, 0.16,0.07, 0.45,0.7, 0.390,0.32,

0.042,0.044] 0.34,0.32] 0.65,0.45] 0.449,0.45]

[30,28, [0.6,0.57, [10,8.7, [156.37,145.94,

26,24, 0.54,0.45, 9.3,5.7, 135.58,125.05,

Urban

[Ui-Uw]
22,21.8,

20,28,

0.38,0.33,

0.5,0.22,

6.3,6.3,

9.7,7.9,

114.68,113.64,

104.44,145.89,

24,27] 0.14,0.05] 3.8,4.2] 124.96,140.55]

[0.8,2.1, [0.5,0.43, [10,4, [4.76,11.27,

2.7,3.2, 0.36,0.48, 5.1,6.3, 14.42,17.07,

Agriculture
[ai-aio]

0.28,0.19,

0.43,0.38,

0.53,0.27,

0.63,0.17,

8.3,9.1,

8.2,7.6,

1.99,1.55,

2.77,2.47,

0.46,0.22] 0.34,0.28] 4.8,9.6] 2.78,1.72]

w,-ww represent 10 samples of water areas and corresponding texture measures with RMS
height's' are listed. Similarly Uj-Uio represent 10 samples of urban areas and ai-a10 represent
10 samples of agriculture areas.
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Water | Urban ] Agriculture

Water

Semivariogram: (0-0.045)
Wavelet component1: (0.07 to0.8)

Weighted rankfill ratio:(0-0.4)

Urban

Semivariogram: (20-32)
Waveletcomponentl:(0.04to 10)

Weighted rankfill ratio: (0-0.6)

Agriculture
Semivariogram: (0-3.5)

Wavelet component1: (0to 10)
Weighted rankfill ratio: (0-0.5)

Figure 5.11. Clustered SAR image- texture measures for each cluster.
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Table 5.4. Typical range ofRMS height for major land covers.

Land cover type

Typicalvalues of

RMS height Y (cm)

Water

<0.5

Urban

(100 and higher)

Agriculture

(0.7-20)

From the analysis, it is observed that RMS height '5' may be used to differentiate land
cover on the basis of roughness (Table 5.4). If the RMS height is less than 0.5 cm,

then the variation is insignificant when compared with wavelength (C-band SAR

image has wavelength of 5.6 cm). The water area in this region is calm and hence
surface is smooth. These ranges may not be applicable for rough water surface. In

such case, backscattering coefficient can also be used to decide the nature of land
cover (Evans et al., 1992). We have analyzed approximately more than 1000 water
pixels for this image and the approximate range of backscattering coefficient is (-24
to -28) dB, which is approximately the same range as reported in other works
(Dobson et al., 1992; Makynen and Hallikainen, 2005). Although it is very difficult to
get clear cut demarcation of backscattering coefficient for different clusters, range of
surface roughness measure is different for various land cover types namely water,
urban and agriculture areas (Karvonen et al., 2005). In this study region, agriculture
regions are mostly wheat, sugarcane and paddy. For these agriculture regions, RMS
height Y is obtained to be in the range of (0.7-75) cm. Then, for urban areas, values
of Y are higher. These values may vary according to the nature of the constructed
area. For this SAR image, range of Y corresponding to urban areas is 100 cm or

higher (Xia and Henderson, 1997).
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Table 5.5. Decision rules for labeling ofclusters into water, urban and agriculture areas.

Land cover type Water Urban Agriculture

Range of '5' (cm) <0.5 (100 and higher) (0.7-75)

Range of 'backscattering

coefficient'

(-24 to -28)dB (-8to-15)dB (-5to-12)dB

Table 5.5 clearly shows that with the help of RMS height Y and backscattering
coefficient, clusters can be labeled. If the RMS height '5' is <0.5 cm and

backscattering coefficient is in the range of (-24 to -28)dB, then the cluster is labeled

as water. Similarly, the conditions stated in Table 5.5 are applied for labeling urban

and agriculture areas. Range ofbackscattering coefficient ofurban is in the range of
(-8 to -15) dB and for agriculture areas is (-5 to -12) dB (Paloscia et al., 1999;
Ferrazzoli et al., 1997).

The decision rules for labeling the clusters are tested with SAR data ofJuly 28, 2003.
SAR segmentation process is carried out to segment the images into various clusters.

Now, the clusters are to labeled with our proposed approach. For this purpose, pixels
within each cluster are grouped into sets of5x5 pixels. Then, each of the groups of
pixels, texture measures namely 'semivariogram', 'weighted rank fill ratio' and

'wavelet component 1' are computed. Using equation 5.8, RMS height '5' is
computed from these texture measures. On the basis of RMS height and the mean

backscattering coefficient within each window, the groups ofpixels are labeled as one
of the major land cover types i.e., water, urban and agriculture areas. Figure 5.12
shows the labeled SAR image of July 28, 2003 with major land cover types of water,
urban and agriculture areas, which represent that roughness is playing a fruitful role
with the backscattering coefficientto label the various clusters.
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water

I m urban

agriculture

Figure5.12. Labeled image of July 28, 2003.

5.5 Conclusion

Texture measures like mean, variance, semivariogram, lacunarity, 'weighted rank fill

ratio', wavelet components are analyzed critically for their variation when surface

roughness measures, RMS height Y and correlation length '7' are varied. This is

accomplished by developing synthetic images with varying Y and '/'. When

computing texture measures, window size is varied to observe and incorporate the

effect of window size, if required. From the analysis, it is found that three texture

measures, semivariogram, 'weighted rank fill ratio' and 'wavelet component 1' are

suitable for measuring Y. It is found that '7' and window size are less sensitive for

these three texture measures, which helps to propose an empirical relation among Y

and these three texture measures. The empirical relation developed with the synthetic

images has been validated with real SAR images and results are quite encouraging. It

means various major clusters like water, urban or agriculture areas can be easily

labeled by considering roughness and backscattering coefficient. This infers that use

of roughness with backscattering coefficient may resolve the problem of labeling of

various clusters.
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Chapter 6

Unsupervised Classification of 'Change' and
'No Change' Pixels with Quantitative Analysis
of Changes by Image Analysis and
Interferometric Approach

6.1. Introduction

One of the major applications of SAR image is for developing the monitoring system

for various applications like land cover and land use dynamics, hazards monitoring

and damage assessments by discerning areas of change on digital images between two

or more dates of a scene.

For designing any monitoring system, first important issue is to identify the changes

occurred in both microscopic and macroscopic level, for example, in the case of SAR,

from pixel level to a group of pixels. For this purpose, it is important to classify the

temporal SAR image in to 'change pixels' ('cp') and 'no change pixels' ('ncp') onthe

basis of analysis of individual pixel and spatial analysis of pixels. The main aim of

detecting changes (i.e., mapping 'cp' and 'ncp') is to obtain both qualitative and

quantitative analysis of changes on earth surface.

By comparing SAR images obtained at different dates (two or more), change pixels

and no change pixels (denoted as 'cp' and 'ncp' inthis chapter) can be mapped on the

image. When classifying 'cp' and 'ncp', we aim at: (a) detecting the geographic
location of changes and (b) quantifying the amount of change. Therefore, in this

chapter, the task of mapping 'cp' and 'ncp' is divided in to two sub tasks.

(i) Firstly, qualitative analysis of 'cp' and 'ncp' is implemented using image
analysis approach so that locations of changes may be detected, and

(ii) Secondly, quantitative analysis of changes is computed using differential
interferometry so that changesare measured in units.
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For this purpose, four image analysis techniques namely (i) image differencing (ii)

minimum ratio detector (iii) correlation coefficient and (iv) integrated intensity,

texture and orientation difference have been used. These image analysis techniques

give a mapping of 'cp' and 'ncp' of the SAR image. To get reliable set of 'cp' and

'ncp', it is required to take intersection of all the results obtained by these four

individual methods. It is difficult to check the authenticity of the results of 'cp' and

'ncp'. A probability distribution function (pdf) based approach is proposed to check

the reliability ofmapping change pixels in the region, 'cp' and 'ncp' can be defined

by suitable probability distribution so that for succeeding years of the same data,

pixels are classified into 'change' and 'no change' areas on the basis of pdf

parameters itself.

The next aim is to obtain quantitative analysis of changes occurred on earth surface.

This is carried out using DInSAR and a subsidence map is obtained as output. The

quantitative analysis of subsidence with image analysis approach is very difficult.
Therefore, an algorithm is proposed in this chapter by which more information about

the changes like nature ofsubsidence (low, medium or high) could be retrieved from

results of image analysis approach.

Researchers are using various methods to obtain 'cp' and 'ncp' (Berroir et al., 1996;

Bouzidi et al., 2003; Boucher et al., 2006; Chatterjee et al., 2006; Gamba et al., 2006;

Bovolo and Bruzzone, 2007; Chaabane et al., 2007). For this purpose, they are using

image analysis tools. Popular image analysis techniques for classifying 'change' and
'no change' pixels as applied to SAR images are (i) image differencing and (ii) image
ratioing. Rignot and Van Zyl (1993) have discussed about these two techniques and
complementing characters of these techniques for mapping 'cp' and 'ncp' using the
structural and dielectric properties of remotely sensed surfaces. Image ratioing is
found to be better adapted to statistical characteristics of SAR data taking care of

common errors. Unsupervised classification of 'cp' and 'ncp' based on image

differencing has also been used (Mas, 1999; Bruzzone and Prieto, 2000; Melgani and
Moser, 2002). Bruzzone and Prieto (2000) have discussed the problem ofidentifying
suitable threshold for discriminating 'cp' and 'ncp'. He has used statistical parameters

of 'change' and 'no change' classes computed using expectation maximization (EM)
algorithm, formulated under the assumption that the conditional density functions of
classes can be modeled using gaussian distribution. Higher order statistics were
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analyzed for mapping 'change' and 'no change' pixels in SAR images (Bujor et al.,

2004). Bujor et al., (2004) have shown that ratio of means was useful to identify step

changes and that the second and third order log cumulants were useful for progressive

changes that appear in succeeding images in multi temporal analysis. Multi scale

change analysis for SAR images is also proposed by Inglada and Mercier (2007).

Correlation coefficient approach is attempted to map the changes occurred in the

image. Gray scale and contrast difference caused bydifferent receiving conditions and

receiving times are possible to be eliminated because correlation coefficient does not

change with linear change of gray scale (Zhang et al., 2003). Most of the techniques,

researchers developed in this context, have used thresholding or prior assumption of

distribution ofpixels (Rogerson, 2002). Hence, mapping of'change' and 'no change'

pixels depends on these assumptions. Therefore, it is needed to design such an

approach by which end user can confidentially say about 'change' and 'no change'

pixels. By studying the properties of pixels belonging to 'change' and 'no change'
areas, suitable distribution model is proposed.

All these algorithms provide a distance measure which indicates the relative

magnitude of change, but they do not provide quantitative measurement of changes.

The advance of DInSAR technology has offered a viable solution for large scale
mapping deformations quantitatively.

SAR interferometry (InSAR) is an established technique to measure terrain

topography. The application of this technique is based on the generation of an

interferogram using two complex SAR images of the same area acquired from two
slightly different angles.

SAR interferometry requires digital elevation models to map deformation occurred

(Zebker and Goldstein, 1986; Rao et al., 2003; Schiavon et al., 2003). The permanent
scatterer technique of measuring subsidence or deformation may prove to be

ineffective wherever the density ofstable radar targets is relatively low (Ferretti et al.,
2001; Noferini et al., 2005). InSAR techniques based on interferogram stacks have

been proposed (Ferretti et al., 2000, 2007, Strozzi et al, 2001, Berardino et al., 2002,
Mora et al., 2003). These techniques are expensive due to large image stacks

employed. These large image stacks are employed either to remove atmospheric
artifacts or to identify permanent scatterers. The deformation analysis using
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permanent scatterer can be very scarce and may not cover complete site area even
though it utilizes large stacks of InSAR image pairs. Many successful cases indicate

the potential of DInSAR for detecting changes in land surface (Nagler et al., 2002;

Strozzi et al., 2005; Bovenga et al., 2006).

DInSAR is potentially a unique tool for precise generation ofDEM (Digital Elevation

Model) and it enables the mapping ofsubsidence on a large scale. The principle idea

behind DInSAR can be stated as: using two interferometric image pairs (requiring

three acquisitions ofthe image, out ofwhich, one is termed as master and other two
are slave images, hence, it is also termed as three pass interferometry) of the same

area separated in time such that a dynamic deformation has occurred between master
and one of the slave acquisitions, it is possible to form a differential interferogram

where the underlying topography is cancelled and remaining is only the phase

information corresponding to deformation itself.

Therefore, in this chapter, DInSAR technique using three pass interferometry, that

does not require elevation model, has been employed to measure subsidence or to map

quantitative changes on earth surface. The quantitative analysis of subsidence with
image analysis approach is difficult in one hand, whereas with DInSAR, it is very
complex. To avoid the complexity and measure the range of subsidence in low,
medium and high subsidences, an approach using pdf for labeling level ofsubsidence
from simple image analysis technique ofminimum ratio detector is proposed in this

chapter.

This chapter is organized as follows. Section 6.2 describes the proposed method of
obtaining reliable set of 'change' pixels using image analysis approach. Section 6.3
explains the application and validity of suitable pdf model for distribution of 'change'
and 'no change' pixels. Section 6.4 explains interferometric based approach of
obtaining quantitative subsidence. Section 6.5 describes the proposed approach by
which nature of subsidence (like low, medium or high subsidence areas) can be

labeled from results ofimage analysis approach. Conclusion for this chapter is given

in section 6.6.
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6.2. Classifying 'change' and 'no change' pixels using image

analysis approach

6.2.1 Data used

NewOrleans cityof USA has beentaken as the study area (details of study region are

discussed in section 1.4 and 1.5). RADARSAT-1 data set in SLC (Single Look

Complex) form, acquired from 15 April 2002 to 15 March 2007 (Appendix A) are

obtained and analysed. Since the results obtained by image analysis and

interferometric approach, image pairs passing the critical selection of InSAR image

pairs are chosen for classifying 'change' and 'no change' pixels using image analysis

approach. Image pairs with approximately one year of interval from 2002 to 2007

(Table 6.1) of New Orleans city of USA are chosen. For the year 2005-2006, two sets

of imagepairs are considered to quantify changes. This is because of the criteria to be

satisfied by InSAR image pairs.

Table 6.1. List of image pairs with acquisitions approximately oneyear apart.

Sl.No Year span
InSAR image pair

Master image Slave image Beam mode/

product typeData

ID

Acquisition date
(yyyy-mm-dd)

Data

ID

Acquisition date
(yyyy-mm-dd)

1 2002-2003 6 2002-08-13
20 2003-11-12 S2/SLC

2 2003-2004 20 2003-11-12
26 2004-04-04 S2/SLC

3 2004-2005 26 2004-04-04 37 2005-03-06 S2/SLC

4 2005-2005 36 2005-03-01 53 2005-11-20 F5/SLC

5 2005-2006 52 2005-11-01 59 2006-02-05 S2/SLC

6 2006-2007 68 2006-09-04 84 2007-03-15 F5/SLC

—
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6.2.2. Image analysis approach

Four image analysis techniques for classifying 'change' and 'no change' areas are

employed using (i) image differencing, (ii) minimum ratio detector, (iii) correlation

coefficient analysis, and (iv) integrated intensity, texture and orientation difference.

All these algorithms provide a distance map. By applying suitable thresholds on

distance maps, classification of'change' and 'no change' areas are obtained.

6.2.2.1 Image differencing

Image differencing is a very simple method in which absolute values of difference
between corresponding pixels in two images is calculated and larger values in the

difference map, then indicates locations ofchange. If images I, and I2 are two images

obtained at different time instants ti and t2, then difference map D (Ridd and Liu,

1998) can be obtained as

D(i,j) =abs(ll(iJ)-I2(i,j)) (6.1)

where ij represents row and column index ofthe images, h and I2 represent images
compared for classifying 'change' and 'no change' pixels, and Drepresents difference
map. Difference map is also of the same size as input images h and I2. The selection
ofexact thresholding value depends on the application and also depends on the nature

and magnitude ofchange desired to be detected. Threshold used for change detection

in SAR images in thisapplication is given by

Threshold=mean + in* standard deviation) (6.2)

where '«' is taken as 1. This will enable threshold selection independent of the

original intensity values of the image. V values can be chosen in the range (0.7-1.4)
for optimal change detection (Ridd and Liu, 1998).

6.2.2.2 Minimum ratio detector (MRD)

Minimum ratio detector computes ratios of the means computed for both images

( \
El^El ^d USes the minimum ratio of the two. In this technique, changes are

v/^'m )
measured by dividing the intensity values, pixel per pixel, and are expressed in
decibels (that is, taking ten times the logarithm in base ten of the ratio of the
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intensities). This ratio method is preferred over image differencing because image

ratioing is robust to radiometric errors (Van Zyl et al.,1993). When computing

intensity ratio, these effects cancel out each other because these errors are reproduced

in repeat pass imagery.

Distance map by minimum ratio detector is obtained as

rmD(i,j) = l-min
( \

th ih (6.3)

T where i,j represents row and column index ofpixel, //, and /^ are mean intensities

calculated for images, 7/ and I2 over a local neighborhood of pixel (i,j), and rMRD

represents distance map produced by MRD algorithm.

In this equation (6.3), window size of 5 x 5 Js chosen for calculating mean intensity.

Both images are normalized and scaled to range [0, 1] using equation (6.4).

, 7(7,y) -min(7)
'KhJ)- — r-— (6.4)

max(I) - min(i)

where min(I) represents minimum value of pixel in image I and max(I) represents

maximum value of pixel in image / If images are not normalized, negative mean in

either image I, or I2 will result in MRD distance greater than one. This ensures that

MRD distance map also has the range [0,1]. Threshold of0.7 (Van Zyl etal., 1993) is

^ used to obtain change detection map. The pixels having MRD greater than or equal to
0.7 is labeled as 'change' and other pixels are 'no change' pixels.

6.2.2.3 Modified correlation coefficient

Correlation between two images can be interpreted as the closeness between two

images in its features, textural patterns and distribution of spatial patterns
(Zhang et al., 2003).
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Correlation coefficient is usually given by

ll{Xmn-X){ymn-y)
m,n=\

_^2 | w / —\
m,n=\

where w- window size, jcm#i and .ym„ represents pixel at position row, column as (m,n)

within the window, xand ^represents the mean values of both the compared images

within the window.

In the distance map obtained by this method, value '0' represents no correlation and

hence more change and value T represents complete correlation and no change.

Intensity of changes can also be mapped with the values of correlation. There are
some limitations in applying correlation coefficient. If one of the test images has

constant or uniform intensity, denominator factor (xmn -x) or (ymn -yj becomes

zero, y is undefined dueto division by zero.

f - - \
x-y

scalefactor

To avoid this undefined condition, equation(6.5) is modifiedas

If (Xmn _x) or (ymn -y) =0, Correlation coefficient, y=\-abs

(6.6)

else, correlation coefficient is given byequation (6.5).

where, scalefactor =max(max(Ix,I2)). According to equation (6.6), if one of the

images has constant intensity making denominator zero, then, ratio of absolute value
of the difference in means of two images within local neighborhood to maximum

intensity of two images is considered. When mean of both images are equal, then,

(x-~y) becomes zero and correlation coefficient is one implying that both images are
completely correlated. If mean of one image is zero and other image is non-zero, then
ratio of difference in intensity to maximum intensity of both images is taken as >

deviation from correlation. Ifboth means are non-zero, then definition for correlation

coefficient is used.
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Threshold of (0.3-0.8) is applied on correlation coefficient to classify 'change' and

'no change' pixels (Zhang et al., 2003). The pixels with y values from 0.3 to 0.8 are

considered as 'change' pixels and remaining pixels are termed as 'no change' pixels.

Due to the presence of speckle, lowy values may be misleading and hence the pixels

of y less than 0.3 are not taken as 'change' pixels.

6.2.2.4 Integrated Intensity, texture andOrientation difference map

Figure 6.1 shows the process of obtaining distance map using intensity, texture and

orientation features. Gabor wavelet filter is used to obtain orientation features for both

images. Textural features are obtained using discrete moment transform and Intensity

features areextracted by using simple intensity difference maps.

Intensity difference maps are obtained similar to image differencing. Each pixel in

intensity difference map is obtained as absolute difference between corresponding
pixels in images, Ij and I2.

Discrete moment transform is used to extract the texture features of the image and is
given by

+i +i

r=-\s=-\

(6-7)

dmtlp'q(x,y)= 2 £/,(*-r,y-j)rV
r=-ls=-l

+ 1 +1

dmt2p*(x,y) = £ Y,h<*-r,y-s)rpsq
r=-\s=-\

For (p,q)=(0,l), (1,0) and (1,1), dmtl and dmt2 are computed, thereby, three texture

feature images are obtained for each input image, Ij and I2. Three texture difference

images are produced as absolute difference ofcorresponding pixels in texture images

texturediffp>q dmtl™ -dmt2p'q (6.8)

Similarly, texture difference images are obtained from all three texture images
computed for images, h and 12 (Itti et al., 1998).
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Figure 6.1. Computation ofdistance map using intensity, texture and orientation features.

Gabor wavelet filter is applied on input images 7/ and I2 to generate four feature

images corresponding to four orientations, 6> =0°,45o,90o,135°. Gabor filter

coefficients g(x,y,0)aie designed for four varying orientations (Kyrki et al., 2004).

Input image is convolved with gabor filter corresponding to four orientations to obtain

four orientation maps.

Orientation map is given by

orientl(x, y, 6) =|/,(x, y) <8> g(x, y, 0)\\
orient2(x, y, 6) =|/2 (x, y) <8> g(x, y, 0)\\

(6.9)

where orientl(x,y, 6) is the orientation map obtained for image h and orientation, 0,
orient2(x,y, 6) is the orientation map obtained for image I2 and orientation, 6, and
h(x,y) and I2 (x,y) are the input images with (x,y) as row and column of apixel, g(x,y,
0) is the gabor filter coefficient and 6 is the orientation angle
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Thus, four orientation maps for each input image are obtained. Four Orientation

difference maps are obtained as absolute difference of corresponding pixels in
orientation images.

Orientdiff(f9,)= |orientl((91)-orient2(65)| (6.10)

Similarly, orientation difference images for all four orientations are obtained.

Four orientation difference images, three texture difference images and an intensity
difference image are obtained from input images, L and I2. PCA is employed to

capture maximum information from the input features (discussed in section 3.3.2).

PCA is applied on four orientation images and principal components with cumulative

variance ofgreater than 80% is chosen to represent orientation difference. Similarly,
PCA applied on three texture difference maps to obtain first principal components,
required to represent more than 80% of variance in the input dataset to represent
texture difference. Now, three difference images representing intensity difference,

texture difference and orientation difference are obtained. Difficulty in combining
these three difference images into a single distance map is that they represent non-
comparable modalities with different dynamic ranges and extraction mechanisms.

Initially, all the difference images are scaled to [0-1] range. After scaling,
Normalization is applied and it includes the following steps: (1) Compute maximum

ofthe difference image, 'g' (2) Find local maxima and average all local maxima, mave
(3) Multiply the difference image by (g-mave). This normalization operator promotes
map having lesser number of strong peaks. At the same time, it suppresses maps
having large number ofcomparable peak responses (Itti etal., 1998).

After normalization, combined distance map is obtained as linear combination of all

three difference images.

Dist(iJ)=orientdiff(i,j) +texturediff(i,j) +intensitydiff(i,j) (6.11)

Distance map by integrating intensity, texture and orientation difference features is

obtained. Threshold of (mean +«* standard deviation) as applied for image
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differencing is used for obtaining change detection map. Since the input features are

normalized to have zero mean andunity standard deviation, 'n' is taken as 0.7.

6.2.2.5 Comparison offour image analysis approaches

Image differencing is avery simple method ofchange detection. The difference image
depends on both relative change between the intensity (back scattering coefficient)
values in two images and also reference intensity. This leads to higher change

detection error for changes occurred in high intensity regions ofthe image than in low

intensity regions. This behavior is an undesired effect that renders difference operator
not suitable to identify changes irrespective ofaverage backscattering coefficient.

The minimum ratio detector shows two main advantages over difference image. The

first one is that the ratio-image distribution depends only on relative change in the

average intensity between two dates and not on reference intensity level. Thus
changes are detected in the same manner in both low and high intensity regions. The
second advantage is that ratioing allows reduction in common multiplicative error
components (which are due to both multiplicative sensor calibration errors and the
multiplicative effects of the interaction of the coherent signal with the terrain
geometry) as far as these components are same for images acquired with same

geometry.

Correlation coefficient is used as a distance measure for change detection. This

technique helps in identifying de-correlation between two images that could be caused
either by movement ofscatterers within resolution cell due to external disturbances or
by the change of scatterers in their nature and distribution between the two dates.
Hence, temporal de-correlation provides information about the structural and

dielectric properties of the surface.

Ratio analysis alone is not sufficient for change detection, and higher order statistics
or multi-scale analysis may be helpful to map changes (Bujor et al., 2004; Inglada and
Mercier, 2007) and this is fulfilled by fourth technique using intensity, texture and
orientation difference maps. This technique computes change detection map by
integrating changes obtained at pixel level, texture level and changes occurring along
different orientations.
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Comparison of the four techniques reveals that they complement each other in

obtaining 'change' and 'no change' pixels. Image differencing helps in identification

of all changes occurring in high intensity regions even though, it misses out in low

intensity areas. Image ratioing removes multiplicative noise components and changes

are detected irrespective of their average intensity level. Correlation coefficient helps

in identifying decorrelation due to surface properties. Fourth method of integrating

intensity, texture and orientation difference measures integrates intensity changes,

texture changes at multi-scales and changes along orientations at6> =0°,45°,90°,135°.

So, all these four methods of image analysis techniques are employed to classify
'change' and 'no change' pixels.

6.2.3. Proposed approach to obtain reliable setofchange' pixels

Image differencing
'Change' and 'no change'

pixels

Minimum ratio detector

'Change'anc
'nochange' pixels^

Intersection

operator

Correlation coefficient

Integrated intensity, texture
and orientation difference 'Change'and 'no change'

pixels

V

Figure 6.2. Proposed approach to obtain reliable set of'change' pixels.

\

'change' pixels

\J

Each of the four image analysis approach of classifying 'change' and 'no change
pixels is different. Therefore, it is difficult to get the same set of 'change' and
change' pixels.

no
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Image differencing computes difference ofthe two images pixel by pixel and hence
this operator gives larger distance in higher intensity areas and less distance for lower
intensity areas. Asingle threshold for both types ofvarying intensity levels may not
be suitable to identify all 'change' and 'no change' pixels. Image ratioing removes

common multiplicative noises introduced in the images. Correlation coefficient

computes distance measured on the basis ofdecorrelation between the scatterers in the
study region. Changes in the pixel level, texture variations and changes along
different orientations are used for computing distance map using fourth method of

integrated intensity, texture and orientation difference.

By analysis of each of the four methods on classifying 'change' and 'no change'
pixels, it can be inferred that each technique generates change detection map by
different approaches. To combine the results obtained by all the four methods and
obtain reliable 'change' and 'no change' pixels, an intersection operator is used.
Intersection operator uses alogical AND operator to identify common 'change' pixels
as classified by four image analysis techniques used. This intersection operator

confirms the reliability of 'change' pixels obtained by the proposed approach.

6.2.4. Implementation ofproposed classifier for 'change' and 'no change'

pixels on SAR image

For evaluating the proposed classifier, RADARSAT-1 data ofNew Orleans city, USA
has been chosen. The list of RADARSAT-1 data chosen for analysis is listed in

section 6.2.1. Two co-registered SAR images acquired at two different dates with
approximately one year span ( Sl.no.1of Table 6.1), are chosen. The objective is to
obtain a map representing the changes occurred in the region considered between the

two dates of acquisitions.

Four image analysis techniques explained in section 6.2.2.1 to section 6.2.2.4, are
implemented for the chosen image pair. Final set of 'change' pixels is obtained by
intersection of all the 'change' pixels obtained by each of the image analysis
technique. Change pixels obtained by each of the four methods are shown in Figure
6.3(a) to 6.3(d). Reliable set of 'change' and 'no change' areas identified by proposed
approach is shown in Figure 6.4.
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Changepixels

Figure 6.3. Change pixels obtained by four methods (a) Image differencing (b) Minimum ratio
detector (c) Correlation coefficient, and (d) Integrated intensity, texture and orientation
difference forthe image pairsl.no. 1of Table 6.1.

Mississippi nver

Figure 6.4. Classified 'change' pixels by proposed approach.
*'change' pixels are marked by 'red'.

In figure 6.4, Change pixels are marked by 'red'. The classification of 'change' and
'no change' pixels is obtained by intersection of all common 'change' pixels obtained
by four image analysis approaches. From the change detection map obtained in Figure
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6.4, it can be observed that changes have taken place in Lake Borgne area, banks of
Mississippi river and borders of Lake Pontchartrain. Lake Borgne area is one of the
areas identified to have undergone severe subsidence. Statistics of 'change' pixels

obtained by each of the methods for image pair (Sl.no.1 of Table 6.1) is listed in

Table 6.2.

Table 6.2. Statistics of 'change' pixels mapped for the year (2002-2003) by image analysis

techniques.

Total number ofpixels inthe image = 1027 x540 = 554580.

Sl.No. Image analysistechnique

Image differencing

Minimum ratio detector

Correlation coefficient

Integrated intensity, texture and orientation
difference maps

Proposed approach of applying intersection
operator on classified change pixel map from
all four methods

Number of

change pixels

67840

72352

108510

126013

62450

Change
pixels (%)

12.23

13.05

19.57

22.72

11.26

Number of change pixels classified by each of the four image analysis technique and
percentage of change pixels with respect to total number of pixels in the image
considered are listed in Table 6.2. Image differencing detects less number ofchange
pixels whereas integrated intensity, texture and orientation difference map has
produced about 22.72% of change pixels. Since the fourth method (sl.no.4) is taking
texture and orientation differences in addition to single pixel image differencing, this
method detects more number of change pixels. Change pixels found by both image
differencing and minimum ratio detector are almost similar (Table 6.3). This can be
inferred by comparing change pixel map (Figure 6.3 aand b). Correlation coefficient
has more common pixels obtained from integrated intensity, texture and orientation
difference maps. Our observations confirm that these regions have undergone changes
in the observed period (September 2002- November 2003).
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Table 6.3. Comparison of 'change' pixels obtained by four methods.

Sl.No Methods that are compared

D Equation.common
'change'+ 'no change'

pixels)/Total number of
pixels

(%)
1 Image differencing and Minimum ratio detector 84.26

2 Image differencing and Correlation coefficient 73.32

3 Image differencing and Integrated intensity,
texture and orientation difference maps

74.24

4 Minimum ratio detector and Correlation

coefficient

85.64

5 Minimum ratio detector and Integrated intensity,
texture and orientation difference maps

83.62

6 Correlation coefficient and Integrated intensity,
texture and orientation difference maps

75.12

6.2.5 Classification of 'change' and 'no change' pixels for the study

region from 2002-2005

Subsidence map for the New Orleans is obtained quantitatively using permanent

scatterers with the help of interferometry and published (Dixon et al., 2006). The

subset of the same study region taken for analysis in this chapter is shown in Figure

6.5. Change pixels identified for each image pair of table 6.1 by proposed approach

are cumulatively shown in Figure 6.6.

Comparison of these two images show that maximum changes identified by yellow or

orange in Figure 6.5 are identified as change pixels (marked by red) by proposed

approach. More changes are detected near banks of River Missisissippi and in Lake

Borgne areas. These areas are identified as change areas by proposed method also.
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Figure 6.5. Subsidence map as published by Dixon et al., (2006) using permanent scatterer

based interferometry (Blue shows low or no subsidence areas and red corresponds to high

subsidence areas with colors blue, green, yellow, orange and red in increasing orders of

subsidence).

• Lake Pontchartrain

*• Lake Borgne

Mississippi river

Figure 6.6. Cumulative change map obtained for the years 2002-2005 (image pairs listed in

Table 6.1).

Change pixels are marked by red.
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6.2.6. PDF model for 'change' and 'no change' pixels

Reliable set of 'change' and 'no change' pixels are obtained from four image analysis

techniques using an intersection operator as depicted in Figure 6.2. This set of pixels

is used for analysing distribution of pixels corresponding to each class. A suitable

probability density function is selected on the basis of R2 to fit the data corresponding
to 'change' and 'no change' pixels. Probability distributions like gaussian, log-

lognormal, logistic, normal and weibull distributions are tested with group of pixels

representing 'change' and 'no change' pixels. Goodness of fit test is conducted using
Chi-squared test. The chi squared statistic is given by

X'=±^ (6,2)

where Oi is the observed frequency for bin /, E, is the expected frequency for bin i as

calculated by Ei=F{x2 -xx), F is the cumulative probability distribution of the pdf

being tested and xx,x2 are the limits for bin /. k is the total number of bins chosen in

data.

The chi square test is used to determine if a sample comes from a population with

specific distribution. This test is applied to binned data, so the value of test statistic

depends on how the data is binned. The optimal choice of number of bins is chosen

such that data is grouped into intervals ofequal probability (Evans et al., 2001). Chi
squared statistics is compared for data representing group of'change' and 'no change'
pixels for every image pair with all the above four mentioned distributions. Then,
distribution which has lesser chi square error and matching both 'change' and 'no
change' pixels in the image pairs (2002-2003 and 2003-2004) are chosen. Weibull

distribution fits the distance measure corresponding to integrated intensity, texture
and orientation distance with lower chi square statistic of4.322 (Table 6.4).

From table 6.4, it is obvious that weibull 3P fits the data distribution of integrated
intensity, texture and orientation difference, which is confirmed by chi square test
giving lesser chi square. For other statistics like DN, intensity, intensity difference,
correlation coefficient or minimum ratio does not fit any statistic discriminating
'change' and 'no change' pixels and their chi square statistic were well above 60.
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Table 6.4. Chi squared test statistic for various distributions ofchange pixels ofyear (2002-
2003) corresponding to distance measures offour image analysis approach.

Sl.No Distribution

Chi squared test statistics

Image
difference

operator

Minimum

ratio

Correlation

coefficient

Integrated
intensity,

texture and

orientation

distance

1 Weibull- 3P 60.42 45.37 36.08 6.342

2 Weibull 68.76 36.12 42.24 35.632

3 Gaussian 38.27 48.76 60.46 28.34

4 Normal 26.42 20.93 72.38 18.93

The probability density function for weibull-3P distribution is given by

ft \ afix) = —
x-y

1

\a~l ( i'v-vVx-y

J
exp (6.13)

where a - shape parameter, fi- scale parameter and y- location parameter of the

distribution.

As the name implies,/, location parameter determines the offset/ location at which

distribution starts, a, shape parameter is also known as weibull slope. Value of a is
equal to slope of the line in probability plot. When a=\, then it becomes two
parameter weibull plot, fi, the scale parameter has the same effect on distribution as
change in abscissa scale. Figure 6.7(a)- (c) shows the frequency counts of integrated
intensity, texture and orientation distance for image pairs 2002-03, 2003-04 and
2004-05. Consider figure 6.7(a), a shape parameter is with narrow difference for
change and no change pixels with values 2.902 and 2.426.

If p, scale parameter is increased when a and y are constant, its height reduces and
plot is stretched to the right. Hence, plot corresponding to change pixel is in the right
to that of no change pixels (Xiao et al., 2006). In figure 6.7(b), even though fi has
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increased from 'no change' to 'change' pixels, peak value has decreased. The plot has
stretched more to the right along with the constraint that area under the pdf curve has
to be constant at one. On the x-axis, it can be seen that in fig 6.7(b) alone, plot is
stretched to distance measure >35, whereas in figure 6.7(a) and 6.7(c), plot is limited
to 35 and 25 respectively. This explains why peak ofchange pixels distribution has
reduced compared to no change pixels in fig 6.7(b) alone. The parameters obtained for
2002-2003 in Table 6.5 shows the mean of parameters obtained for pixels of size
varying from 5x5 to 10x10 and approximately 40 groups of pixels were used. For y
<4.5 and (3 <8.5, the distribution represents the set of 'no change' pixels and

otherwise, they represent the set of'no change' pixels, y, location parameter plays an

important role in discriminating change pixels. / decides the offset/ location at which

distribution starts. For 'no change' pixels, distribution is towards the origin and <4.5.
Forchange pixels, / is away from theorigin (>4.5).

From the analysis ofprobability distribution ofdistance map obtained by integrated
intensity, texture and orientation difference map belonging to 'change' and 'no

change' pixels, the range of parameters ofweibull-3P distribution is set by analyzing
more than 40 groups ofpixels belonging to 'change' and 'no change' areas. Then, for

the next year, say for example, 2003-2004, Data ID 20 and 26 are chosen for

validation. For the image pair, integrated intensity, texture and orientation difference

measure is computed. The whole difference image is divided into groups ofpixels of

size 5 x 5. For each of the group of pixels, weibull distribution parameters are
computed. From the range of weibull parameters, the group of pixels is labeled as

'change' or 'no change' areas. Similarly, this analysis is validated by checking with
succeeding years of 2004-05 as shown in table 6.6.

Table 6.5. Parameters for weibull 3P distribution fitting 'change' and 'no change' pixel
statistics.

Temporal
span

Change pixels No change pixels

a P y a P r

2002-'03 2.902 15.563 4.562 2.426 8.371 3.911
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Figure 6.7(a)

Figure 6.7(b)

15 20 25

distance measure

10 15

distance measure

- no change pixels

change pixels

Figure 6.7(c)

Figure 6.7. Probability distribution curve for 'change' and 'no change' pixels for the periods.

(a) 2002-2003 (b) 2003-2004 and (c) 2004-2005.

Legends mentioned in6.5(c) is applicable for both figures 6.5(a) and 6.5(b).

Table 6.6. Validationof'change' and 'no change' pixel distribution.

Temporal
span

Change pixels No change pixels

a P 7 a P 7

2003-'04 2.460 13.864 5.237 2.054 7.356 4.351

2004-'05 2.155 8.644 5.314 1.921 5.977 4.247
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It is observed from the Table 6.6 that the proposed pdf approach for 'change' and 'no
change' pixels are giving quite satisfactory results for succeeding years. It can be
inferred that 'change' and 'no change' pixels can be distinguished from pdf analysis
of distance measure corresponding to integrated intensity, texture and orientation
difference method calculated for group of pixels (of size '5x5'). With the help of
weibull- 3P parameters for distance measures belonging to 'change' and 'no change'
pixels, these pixels can be labeled.

6.3. Interferometric approach for quantitative analysis of
changes

New Orleans city of USA has long been recognized by the scientists that it is

undergoing subsidence and is therefore susceptible for catastrophic flooding (Dixon et
al., 2006). New Orleans has undergone rapid subsidence before Hurricane Katrina has
struck this city in August 2005 (Amelung et al., 2006). In this section of the chapter,
quantitative analysis of changes in New Orleans city, has been carried out by
differential interferometry is presented. From this analysis, pixels are grouped
according to their nature of subsidence like low, medium and high levels of
subsidence. By studying and critically analyzing the properties of pixels belonging to
various areas like low, medium or high subsidence areas, an approach to label pixels
according to their levels of subsidence by simple image analysis approach of
minimum ratio detector is proposed.

6.3.1 Principle of measuring subsidence byDInSAR

The principle of SAR interferometry is that the phase of received backscattered signal
is used to measure path length differences with accuracy of mm range. The path
length differences can be related to terrain height and deformations of the earth's

surface. SAR interferometry uses two complex images to derive required information
by exploiting phase of the signals. One imaging parameter has to be different for

second image compared to first one. The imaging parameter by which acquisition of
second image varies determines type of interferometry. When two images are
acquired by the same antenna in repeated passes over the same area at different times,
repeat pass interferometry is implemented. This is an ideal situation for measurement

of deformation on earth's surface between the two acquisition times. It is extremely
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sensitive to small changes in elevation occurring in the time interval between passes,
hence, allowing precise and rapid determination of relative displacement (Bamler and
Hartl, 1998).

Figure 6.8. Principle ofdifferential interferometry.

In Figure 6.8, Si, S2, and S3 are position of antennas. Position of point Pbefore and
after displacement of AR<, is considered for analysis. First image acquisition of Pis
captured by antennas, Si and S2, which are separated by baseline B,. Second image
acquisition, after Phas assumed to undergone adisplacement of AR<, is acquired using
S, and S3 separated by baseline B2. 9is the look angle and Ri, R2 and R3 are range
distances of antenna Si, S2, and S3. The height of antenna Si is denoted as 'h' and
height of the point 'P' is denoted as %'. In the first image acquired before
displacement has occurred, the received signal forming apoint Pi in the scene is given
by

j,(^) =hC/?,)! exp An
—R, (6.14)

In the second image, acquired after the change or displacement of scatterer has
occurred, the corresponding received signal forming the point P(Bamler and Hartl,
1998) is

s2(tf2) =|s2(tf2)|expfy (*2+M,) (6.15)
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Due to time delay between acquisitions, interferometric phase of interferogram,
formed using two images, contains the following terms:

0=0tOPo+A0ARd (6.16)

</>topo is the topography induced phase, and A^ accounts for possible
displacement of scatterer between observations. It is assumed that there is negligible
effect due to atmosphere as well as scattering behavior of scatterrer (Fruneau and
Sarti, 2000).

Any movement of a scatterer between the observations with a component of AR<,
(change in range) into the line-of-sight direction gives rise to an interferometric phase
of

A^=TAi?rf (6-17>

Since the wavelength is in the order of centimeters, D-InSAR can measure

displacements down to millimetre accuracy. All the phase terms in equation (6.16)
correspond to D-InSAR measurements. To measure the displacement using
interferometric phase of equation (6.16), the topography induced phase term is to be

removed. One method is to use purely interferometric approach to remove topography
using third SAR image of the scene.

This third image is to be acquired such that it is assumed that minimum or no change
has occurred in scatterers with respect to the first acquired image. Hence, third image
has to be acquired very closely in time with first image. Third image acquired is used
for identifying and removing phase induced by topography.

Inthe third image acquired, the received signal from point P is

i (An \si (R3) =|*3W|expl —R3 I (6.18)

The interferometric phase of the interferogram, formed between first and third image,
contain only the original topography (Bamler and Hartl, 1998).
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^B2QA2*n{e2-a2) (6.19)

Using the cosine law, AR (=(R3-R2) may be expressed in terms of imaging parameters

as

R3 =(Rx +AR) =R2 +B\ -2RXB2cos(n/2-0o+a)
,m (RX+AR)2-R2-B2 (6-2°)

Sin(^-a) = 2RA

The height 'h' ofthe point 'P' is given by

h=/%-72,00800 (6-21)

The differential interferogram and hence displacement of scatterer can be obtained by

following steps:

1. Phase ofthe interferogram (I) obtained using first and second image contains
phase due to topography and phase due to displacement of scatterers.

2. Then, phase of the interferogram (II) obtained by first and third image
contains phase due to topography alone.

3. Differential interferogram is obtained by subtracting phase ofinterferogram II

from phase of interferogram I (Figure 6.10)

4. Now, differential interferogram contain phase term caused only by the line of
sight component ofdisplacement ARd-

6.3.2 Selection of InSAR image pairs

Selection of suitable InSAR image pairs is very crucial for obtaining interferogram.
Special considerations are to be taken while choosing the image pairs. Considering
the orbital geometry, a satellite orbit may exhibit a small degree of drift such that
satellite does not return to exact same location on subsequent orbit repeats. The
separating distance is called baseline. This baseline between passes provides the
different viewing angles required for getting interferogram. But ifbaselines are too
large, the accuracy of DInSAR will decrease since the removal of the topographic
phase term cannot be performed very accurately.
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InSAR image pair

Compute baseline from
Orbital data

Compute overall
image coherence

Figure 6.9. Selection of suitable InSAR image pairs.

Care should betaken that baselines between image pairs (< 1km for RADARSAT fine

beam data, and in this work, image pairs with baseline distance less than 200m are

chosen) are not too large. Spatial overlap (>50%) and azimuth spectra overlap (>90%)
also have to be considered. Coherence is computed for the complete image involved
in InSAR image pair and ifthe overall coherence is greater than 0.65, the image pair
is suitable for generating interferogram. These conditions stated are to be satisfied to

generate a reliable interferogram. This is depicted in Figure.6.9.

6.3.3. Quantitative analysis of change using DInSAR

Image pairs with approximately one year of temporal span are chosen so that any
deformation occurred on the surface within this period can be mapped. As given in
equation (6.16), the interferometric phase between this image pair includes phase due
to topography and phase due to surface change. Phase due to topography is derived
using another interferometric pair with minimum time interval (in RADARSAT-1, 24
day interval) between them assuming no changes in surface has taken place in this
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interval. Interferometric phase with 24 day interval represents due to elevation alone

is subtracted from interferometric phase with 1 year interval to get phase due to

surface change alone (Figure 6.10).

InSAR image pair
with 24 day interval

Interferometric phase
due to elevation

InSAR image pair
with 1 year interval

Interferometric phase
due to elevation &

surface change

Interferometric phase
due to surface change

Figure 6.10. Quantitative analysis ofchanges using DInSAR.

For example, to measure changes on earth's surface from 2002 to 2003, images of
Data ID: 6,7, and 20 are chosen (Appendix A). Here, image of Data ID: 6 is taken as
master image. Interferogram obtained by image pair of Data ID: 6 and 20 contains
interferometric phase of topography and phase due to displacement. Topographic
phase can be determined from interferogram obtained with 24 day interval using
images ofdata id: 6and 7are used and is subtracted to get phase due to displacement.

Using equation (6.17), displacement can be obtained as

**,-*£ (6.22)

Thus, actual displacement in range of mm can be obtained by differential
interferometry.
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6.3.4. Implementation and results obtained by DInSAR

6.3.4.1 Data used

Details of the study area and satellite data used for the analysis by DInSAR is
discussed in section 1.4 and 1.5. Eighty four SLC datasets (Appendix A) acquired
from Canadian Space Agency (CSA) are analyzed to find some suitable InSAR
(Interferometric SAR) image pairs and that is used for the quantitative analysis of
changes (i.e., subsidence) occurred inthe study region.

InSAR image pairs should be chosen such that they have acommon master image and
two slave image such that one slave image has 24 day interval and other slave image
has approximately one year are chosen. Slave images with more than one year
temporal gap are not considered for measuring subsidence since temporal
decorrelation may become high affecting the accuracy of measurement. Criteria for

selection of InSAR image pairs, explained in section 6.3.2 should be satisfied by both
InSAR image pairs considered for analysis. By rigorous analysis of all possible image
pairs from available dataset (Appendix A), some image pairs are chosen. Table 6.1
(Section 6.2) gives the details of the DInSAR image pairs chosen for measuring
surface change and topography (same set of image pairs as was used for the

classification of 'change' and 'no change' pixels by image analysis approach, so that
results can be compared). Table 6.7 lists the InSAR image pairs chosen with
minimum interval of24 day for measuring phase due to topography.

Table 6.7 InSAR image pairs for generating DEM. (for every year DinSAR image pair of
Table 6.1).

Sl.No

Year

InSAR image pair (for measuring elevation)
Master image Slave image Beam

mode/product
type

Data

ID

Acquisition
date

(yyyy-mm-dd)

Data

ID

Acquisition
date

(yyyy-mm-dd)
1 2002 6 2002-08-13 7 2002-09-06 S2/SLC
2 2003 20 2003-11-12 19 2003-10-19 S2/SLC
3 2004 26 2004-04-04 25 2004-03-11 S2/SLC
4 2005 36 2005-03-01 38 2005-03-25 F5/SLC
5 2005 52 2005-11-01 54 2005-11-25 S2/SLC
6 2006 68 2006-09-04 70 2006-09-28 F5/SLC

140



6.3.4.2 Computing heightfrom InSAR image pairs

First, InSAR image pair with 24-day interval is considered for measuring topography.
For example, image pairs with master image of Data ID 6and slave image of Data ID
7are taken. These following steps of analysis are carried out using Sarscape 3.0.

1. Geocoded master and slave image are taken as input and by analyzing
geographical co-ordinates of both images, subset of both master and slave
images with overlapping regions are chosen.

2. Coregistration of both subset master and slave images is carried out to validate
the InSAR image pair for spatial and spectral overlap. Spatial overlap in the
ground range projected coordinates of slave on master image should have a
minimum of 30%. Range spectral overlap is to be checked and it should not be
less than 50% to have acceptable baseline decorrelation.

3. Interferogram is generated from the master image, and the conjugate of the
slave image.

4. Enhancing interferogram has two main functions:

(i) Calculation ofphase coherence map
(ii) Enhancement of interferometric phase in preparation for phase

unwrapping

Interferometric coherence is defined as the absolute value of the normalized
complex cross-correlation between the images hand 72 and is measured by

r-
<v;>

JWrVJ)
(6.23)

where I, and 72 are image pairs used for generating interferogram

Phase slope estimation (from interferogram) can be done only in areas with
good coherence. If temporal decorrelation has occurred between the two
passes in an InSAR pair, then the slope estimates may become quite noisy.
Hence, coherence is calculated for window of 100 pixels and if coherence is
greater than 0.3, only then, those areas are selected for computing phase, and
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thereby, for determining height. Otherwise, areas with low coherence are
masked and height is not estimated in these areas.

5. The observed phase of each SAR antenna is restricted to the interval [-n, n)
and hence interferometric phase is also wrapped to the interval [-7t, n) (Eineder
and Adam, 2005). Phase unwrapping is performed on the phase of the
interferogram. For computing height from phase, actual phase has to be
computed. This process is called phase unwrapping. Fast weighted least
squares approach is adopted for phase unwrapping (Lovergine et al., 1999).

6. From the obtained phase, elevation/ height of the terrain can be computed
using equation (6.21).

This procedure is depicted in Figure 6.11.

6.3.4.3 For obtaining height due to surface change and topography.
Steps 1 to 5 is carried out for an image pair of approximately one year apart (For
ex, Sl.no.1ofTable 6.1) and phase due to surface change and topography is obtained.
By subtracting phase due to topography obtained by first InSAR run, phase due to
surface change alone can be obtained and hence height due to surface change can be
computed.

Images of Data ID 6 and 7 are chosen for measuring topography. Master and slave
images are shown in Figure 6.12 and Figure 6.13. Subsets of the master and slave

images with overlapping regions are chosen. Condition for spatial overlapping that
common overlapping region of master and slave regions should be a minimum of

50% ofmaster image. For this chosen image pair, overlapping regions are more than
90%. Slave image is co-registered with master image and interferogram is generated
(Figure 6.14). Interferogram shows noisy regions in lake areas due to wavy nature of
water bodies. Enhanced interferogram is determined after computing interferometric
coherence. Coherence map is given by Figure 6.15. Phase unwrapping is performed to
obtain absolute phase corresponding to height (Figure 6.16). The regions with less
coherence (less than 0.3) are masked and these regions are not considered for
computing height.
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Master image Slave image
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Subset of master and slave
images with overlapping

regions
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Co-registration
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Interferogram
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Enhancing
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Phase unwrapping

±.

Phase to height conversion

Elevation map

Figure 6.11. Procedure to obtain elevation map of the study region using interferometry.
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Figure 6.12. Georeferenced master image ofData ID: 6 (Sl.no. 1,Table 6.7).

Figure 6.13. Georeferenced Slave image ofData ID:7(Sl.no.l, Table 6.7).
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Figure 6.14. Coherence map.

*Wm

So CJ

Figure 6.15. Interferogram using master image (Figure 6.12) and slave image (Figure 6.13).
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Figure6.16. Unwrapped phase (Phase due to elevation).

Similar steps of obtaining phase are followed for image pairs with approximately one

year temporal span. Then, phase due to elevation obtained by first InSAR image

analysis is subtracted from the phase obtained by second InSAR image pair. Then,

surface change interms ofheight is computed from the subtracted phase. This process

is carried out for all image pairs listed in Table 6.1. Results are shown in Figure 6.17
and Figure 6.18.

Figure 6.17 (a) and (b) shows subsidence on study site from (i) 2002 to 2003 and (ii)

2003 to 2004, respectively. Subsidence measured from 2003 to 2004 observes a

dispersed subsidence and is more compared to year 2002 to 2003. It can also be seen

that areas near Lake Borgne has suffered more subsidence in the order of -16 mm.

Subsidence isalso observed near banks ofMississippi river. Figure 6.18 (a) shows the

subsidence as measured between 2003 and 2004. Subsidence is spread over large
areas during the period when Hurricane Katrina has attacked in august 2005. In the

figure 6.18 (b), subsidence measured for the period March 01, 2005 &Nov. 20, 2005

and subsidence measured from Nov. 11, 2005 and Feb. 5, 2006 are summed and the

displacements shown are sum of changes observed by individual differential

interferograms. Then, displacements computed by both the interferograms are added

and is shown as superimposed on SAR image. From the Figure 6.18 (b), it isobvious

that changes have been observed in many places. The deformation mapped here
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corresponds to the range change distance and negative sign indicates "away from the

sensor". Time period between the two acquisitions is nine months and a maximum of

-14 mm displacement, marked by red, is observed. Subsidence map (2002-2005) was

published (Dixon et al., 2006) for the same region of New Orleans city (Figure 6.19).

This map presents cumulative change due to surface displacement for three years

from 2002-2005. In this map, blue corresponds to low or no subsidence levels.

Variation of color from blue to red corresponds to higher levels of subsidence. Our

results confirms with that of the earlier published subsidence map. Some difference is

there in change pixels from our results because Dixon et al (2006) has considered

cumulative change of 3 years span.

0 mm

-2 mm

-4 mm

-6 mm

-8 mm

-10mm

-12 mm

-14mm

-16mm

Figure 6.17. (a) and (b) correspond to subsidence obtained for (a) 2002 to 2003 and (ii)

2003 to 2004 using image pairs of :(i) Data ID: 6 and 20 (ii) Data ID: 20 and 26.
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Figure 6.18 (a)

Figure 6.18(b)

Figure 6.18 (c)

| (-14 to -12)mm | | (-12 to -10)mm | | (-10 to -8)mm

] (-8 to -6)mm [ j (-6 to -4)mm| | (-4 to -2)mm | | (-2 to 0)mm

Figure 6.18 (a), (b)and (c) corresponds to subsidence obtained from 2004 to 2007.

(a) Data ID 26 and 37 (2004-2005),

(b) Cumulative changes measured by image pairs of: Data ID: 36 & 53 and Data ID- 52 59
(2005-2006) and ' ' '

(c) Data ID 68 and 84 (2006-2007).
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Figure 6.19. Subsidence map (2002-2005) obtained using permanent scatterers (Dixon et al.,

2006)

Blue to Red corresponds to increasing levels of subsidence.

6.3.5. PDF analysis for categorizing subsidence levels

For performing probability distribution analysis, areas identified to undergo

subsidence in the study site is grouped to three types of subsidence as low, medium

and high subsidence areas according to quantitative values of subsidence obtained by

DInSAR. Low subsidence areas correspond to areas with subsidence (-4 to 0) mm.

Medium and high subsidence label corresponds to areas with subsidence ranges as

(-10 to -4) and (-4mm or higher to -10mm). For subsidence areas labeled like this, pdf

of image ratios of corresponding image pairs are plotted in Figure 6.20 (similar to the

analysis carried out in section 6.2.6). The probability distribution curve of all three

types of subsidence shown in Figure 6.20 follows the same pattern with pdf curve

corresponding to low subsidence to right and medium subsidence to left and high

subsidence curve hovers around the centre between the other two curves. As is
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observed from the graph (Figure 6.20), low subsidence pdf centers around 1. This can

be explained by the fact that low subsidence corresponds to areas with very less

changes in back scattering coefficient and hence image ratio is around 1. For high

subsidence areas, one of thevalues in image ratio is very high and if this higher value

is in denominator for ratioing, then image ratio corresponds to values nearer zero,

hence pdf corresponding to high subsidence areas are centered on zero. Then, medium

subsidence areas may occur either to the extreme left or right but they are away from

ratio value of 0 or 1. Image ratios of corresponding pixels that belong to low, medium

and high subsidence areas are computed. Then, obtained pdf is fitted with common

frequency distributions like exponential, gaussian, log normal, inverse gamma and

weibull distributions and suitable frequency distribution is chosen with the help of R2

values. This R values measures how successful thefit is in explaining thevariation of

the data. Put another way, R-square is the square of the correlation between the

response values and the predicted response values. It is also called the square of the

multiple correlation coefficient and the coefficient of multiple determination.

R-square can take on any value between 0 and 1, with a value closer to 1indicating a

better fit. For example, an R2 value of0.94 means that the fit explains 94% ofthe total
variation in the data about the average. It is observed from analysis of distribution of

image ratio pixels, gaussian distribution fits the probability distribution ofimage ratio
of varying subsidence areas.

Probability distribution ofimage ratios correspond to gaussian distribution ofequation

(6.24) because it has maximum R2 value than other pdf and the parameters are listed
in table 6.5.

/(x) =a]exp(-((x-6,)/c1)2) (6.24)
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Figure 6.20 pdf curve for three types ofsubsidence areas (a) image ratio of2002 and 2003
(b) image ratio of 2003-2004 and(c) image ratio 2004 to 2005.
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In the gaussian distribution, parameter ax corresponds to peak of the curve, bx

corresponds to position of the centre of the peak and cx corresponds to width of the

bell shaped curve. Consider Figure 6.20(a) and Table 6.8 corresponding to subsidence

in 2002-'03. From actual subsidence computed by D-InSAR, subsidence areas are

grouped such that low, medium and high subsidence areas are obtained. InSAR image

pair used to obtain this subsidence is Sept 06, 2002 & Nov 12,2003.

Table 6.8. Gaussian probability distribution parameters for image ratios of low, medium and

high subsidence areas.

Subsidence area Year

Gaussian probability distribution parameters

ai b, Cj

Low 2002-'03 1929 6.358 1.799

2003-'04 1787 -1.919 3.414

2004-'05 2106 2.286 1.704

Medium 2002-'03 1997 -11.736 1.823

2003-'04 2557 -24.480 2.467

2004-'05 2874 -9.233 0.336

High 2002-'03 1998 -0.920 1.955

2003-'04 2288 0.2298 0.067

2004-'05 2006 -3.477 1.330

The gaussian distribution is chosen because the data analysis of low, medium and

high subsidence pixels gives R2 value of 0.97 and greater. As is observed from the

figure 6.18, low, medium and high subsidence areas can be demarcated using position

of the centre of the peak and hence parameter bx plays an important role in

differentiating nature of subsidence. From the analysis of probability distribution of

image ratio obtained by minimum ratio detector belonging to 'low', 'medium' and

'high' subsidence levels, the gaussian parameters are set by analyzing 50 groups of
pixels belonging to each of the subsidence areas. Then, for the next year, 2003-2004

DInSAR image pair, minimum image ratio by MRD is computed. The whole
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'minimum image ratio' image is divided in to groups ofpixels of size 5 * 5. For each

of the group ofpixels, gaussian parameters are computed. From the range ofgaussian

parameters, the group of pixels is labeled as one of the subsidence area as 'low',

'medium' or 'high' subsidence areas. Similarly, this analysis is validated by checking

withsucceeding years of 2004-05 as shown in Table 6.8.

6.4. Conclusion

A method for obtaining reliable set of 'change' and 'no change' pixels from image

analysis techniques is presented. Distance measure obtained by integrated intensity,

texture and orientation difference map corresponding to two set of classified pixels,

'change' and 'no change' pixels, is found to follow weibull-3P distribution.
Validation by weibull distribution model is also implemented for succeeding years of

analysis. Scale parameter p plays a vital role in discriminating 'change' and 'no

change' pixels as discussed.

The subsidence obtained by DInSAR shows that areas of larger changes are identified

near Lake Borgne, and in the boundaries ofMississippi river. Lake Borgne isreported

to be identified as an area of major land subsidence as found by other studies also.

Our subsidence results also confirm the earlier findings by Dixon et al., 2006. Dixon

has used permanent scatterers technique which requires elevation data for application
ofinterferometry to measure subsidence. Itcan be concluded that surface deformation

can be monitored quantitatively in the scale ofmm with the help oftemporal analysis
of D-InSAR. Statistical analysis of image ratios of pixels identified by interferometry

is accomplished by grouping them to different levels of subsidence. This analysis
helps us to guide in identifying presence and level of subsidence from analysis of
image ratios itselfbefore applying DInSAR.
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Chapter 7

Conclusions and Future Work

7.1 Contributions of the Thesis

This section aims to provide a summary ofstructure, central ideas, results and key
contributions of this thesis.

The present work deals with exploring the possibility of analyzing single polarized

SAR image for land cover classification in unsupervised way and determine the

'change' and 'no change' pixels on SAR image with quantitative assessment of

changes. The motivation behind this research work was to critically analyze

unsupervised land cover classification for SAR images and develop algorithm

specifically to meet the needs of single polarized SAR image analysis on one hand,

and on the other, it should use minimum apriori information and requires less

interaction for its implementation. In addition, focus is also to use unsupervised
algorithm for obtaining qualitative and quantitative analysis of 'change' and 'no
change' pixels from two SAR images obtained at different times.

ERS-2 SAR images for Roorkee, India are used for developing and testing the

unsupervised classification algorithm for land cover classification. The acquired
images are ofERS-SAR PRI for three different dates (Section 1.4). These images are
georeferenced using the corner co-ordinates and center coordinate provided in the

leader file. Image despeckling is carried out to reduce speckle noise in SAR images.
Adaptive Lee filter is used to implement despeckling. Sharp details present in the

image are preserved while applying this filter, thus preserving boundaries and textural

information in SAR images. Then, backscattering coefficient is calculated from the

DN values. This process is known as preprocessing and after that these images are
ready for further studyand analysis.

Unsupervised classification of 'change' and 'no change' pixels is applied on
RADARSAT-1 images acquired for New Orleans city ofUSA (Section 1.3). 84 SLC
datasets were obtained from Apr. 15, 2002 to Mar. 15, 2007 (Appendix A).
Classification of 'change' and 'no change' pixels, with the quantitative assessment of
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changes, is carried out for the New Orleans area of USA. These images are

georeferenced and radar brightness is calculated from the DN values. From the
complete dataset available, suitable InSAR image pairs (Section 6.2) satisfying

various criteria like baseline distance, spatial overlap and coherence, are chosen for

DInSAR analysis.

The contributions of this thesis on land cover classification are as following:

• In the first part ofthe research, the role ofvarious texture measures like mean,

variance, semivariogram, lacunarity, weighted rank fill ratio and wavelet

components for classifying images is critically analyzed using synthetic
images and real ERS-1 SAR image. After analysis, it is found that these
texture measures may play a very crucial role for land cover classification, if

they are properly used. For this purpose, a detailed study with combination of
texture measures has been carried out. For combining the individual effect of

each texture, it is found that PCA can also play an important role because PCA

has the advantage of projecting the input textures into a new feature space

with improved class separability. So, PCA has been applied to combine the
texture measures and it is observed that the classification accuracy increases in

comparison to that without PCA. Therefore, it can be inferred that this type of
analysis and approach is quite helpful in near future for land cover
classification of single polarized SAR image using various texture measures.

• The multiresolution analysis of SAR images is taken as the next task. M-band

wavelets provide amixture of logarithmic and linear frequency resolution and
hence suitable to analyze micro and macro textures present in the single

polarized SAR image. To represent the texture features present in ERS-2 SAR
image, local estimator is applied on wavelet coefficients of M-band wavelets.
In an effort to reduce user interactions for carrying out unsupervised

classification, an approach is proposed to obtain user defined parameters

directly by defining an empirical relation for classification accuracy. Thus, an
approach by which user can directly find the optimum parameters that could y
give maximum classification accuracy in SAR image for particular region/site.

• Labeling of clusters in ERS-2 SAR image into major land cover types like
water, urban and agriculture is the next task. Generally, researchers are using

155

*

+



thresholding approach on backscattering coefficient for separating land cover

types, for example, water and land. This approach suffers from the limitation

that selection of thresholding becomes difficult when histogram of

backscattering coefficient does not have valley. It is difficult to label the

clusters only on the basis of backscattering coefficient since the range of

backscatter is overlapping for major land cover types. Some researchers are

using topographic sheet or ground truth for labeling, that means it also needs a

minimum apriori information to label the clusters. So, to minimize these

difficulties on labeling, surface roughness is proposed as a modulating factor

with backscattering coefficient for classification. In this work, we have

presented a relation by which surface roughness parameter, RMS height, V

can be calculated from texture measures. On the basis of surface roughness

and backscattering coefficient, land cover types can be labeled and very

satisfactory results have been obtained on ERS-2 SAR images.

The next task of this thesis is unsupervised classification of 'change' and 'no

change' areas and quantitative assessment of changes. New Orleans of USA

has been taken as the study area and RADARSAT-1 data of this area is used

for analyzing unsupervised classification of changes with their quantitative

assessments. This problem of unsupervised classification of SAR images in to

'change' and 'no change' areas is analyzed using image analysis and

interferometric approach. To get a reliable set of 'change' and 'no change'

pixels, four methods of image differencing, minimum ratio detector,

correlation coefficient, and integrated intensity, texture, and orientation

difference maps are used. An intersection operator is proposed to apply on the

results of these four image analysis methods. This gives rise to reliable

'change' and 'no change' pixels from image analysis approach. To strengthen

the results, probability distribution of pixels of each of the four methods in

imageanalysis approach is studied. It has been found that weibull distribution-

3P parameters are quite helpful in distinguishing 'change' and 'no change'
areas using integrated intensity, texture and orientation difference map.
Therefore, with the help ofthis analysis, 'change' and 'no change' pixels can

be classified by comparing SAR images obtained at different instants using
image analysis.
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• DInSAR is a precise measurement tool. Therefore, the next task is to explore

the possibility of using DInSAR for quantitative assessment of changes. It

helps in discerning small changes on the earth surface. This helps in

quantifying changes (in our case, subsidence) that has occurred on earth

surface. DInSAR requires no elevation model for its implementation. Inspite

ofits advantages, DInSAR isa complex process involving suitable selection of

InSAR image pairs, complex process of interferogram generation and phase

unwrapping. Hence an alternate approach by which a group of pixels can be

labeled as low, medium or high subsidence areas is proposed. Image ratio

belonging to each ofthese groups is analyzed for their probability distribution.

Gaussian pdf fits the data and it is observed that gaussian parameters can help

in distinguishing various levels of subsidence like low, medium or high

subsidence areas.

The softwares used for this work are mainly ENVI 4.3, IDL 6.0, Erdas Imagine 9.2,

EV-InSAR 3.1, Sar Scape 3.0, and various codes are developed inMATLAB R2006a.

The results obtained by this study show that single polarized SAR image has

significant capabilities in land cover classification for describing different surfaces
like that of water, urban or agriculture areas. In the case of classifying 'change' and

'no change' pixels, image analysis give acomprehensive view oflocations ofchanges
that have occurred. To obtain a complete and detailed analysis of changes on earth

surface like subsidence, DInSAR can be effectively used. By the proposed approach

developed by comparing image analysis and interferometric techniques, more
information about the nature of subsidence could be obtained from simple image

analysis techniques like image ratioing.

7.2 Future Scope

Present thesis work has the scope and capabilities to extend it further. A few major

ones are listed as following.

Based on the algorithms and approaches proposed in this thesis, an automated
land cover monitoring system for SAR image can be developed for a specific site,
so that continuous monitoring could be carried out for succeeding years. This
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monitoring system will be quite helpful in extending the automated monitoring of

various land cover over a large scale.

• In this thesis, quantitative analysis of changes or subsidence

measurement is carried out using differential interferometry.

Interferometry using permanaent scatterers can also be developed so that

analysis of individual pixel deformation could be studied in detail.

• The present research work explores new paths in the direction of

developing user independent algorithms. The proposed approach presents

the user with optimum parameters to be applied for enhancing

classification accuracy.
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Appendix A

Specifications of RADARSAT data ofNew Orleans city of USA used for classifying

'change' and 'no change' pixels and subsidence analysis.

Data ID

Acquisition Date

(yyyy-mm-dd)
Beam mode Product type

1 2002-04-15 S2 SLC

2 2002-05-09 S2 SLC

3 2002-06-02 S2 SLC

4 2002-06-26 S2 SLC

5 2002-07-20 S2 SLC

6 2002-08-13 S2 SLC

7 2002-09-06 S2 SLC

8 2003-01-04 S2 SLC

9 2003-01-28 S2 SLC

10 2003-02-21 S2 SLC

11 2003-03-17 S2 SLC

12 2003-04-10 S2 SLC

13 2003-05-04 S2 SLC

14 2003-05-28 S2 SLC

15 2003-06-21 S2 SLC

16 2003-07-15 S2 SLC

17 2003-09-01 S2 SLC

18 2003-09-25 S2 SLC

19 2003-10-19 S2 SLC

20 2003-11-12 S2 SLC

21 2003-12-06 S2 SLC
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Data ID

Acquisition Date

(yyyy-mm-dd)
Beam mode Product type

22 2003-12-30 S2 SLC

23 2004-01-23 S2 SLC

24 2004-02-16 S2 SLC

25 2004-03-11 S2 SLC

26 2004-04-04 S2 SLC

27 2004-04-28 S2 SLC

28 2004-05-22 S2 SLC

29 2004-07-09 S2 SLC

30 2004-08-26 S2 SLC

31 2004-10-13 S2 SLC

32 2004-11-30 S2 SLC

33 2004-12-19 F5 SLC

34 2005-01-17 S2 SLC

35 2005-02-05 F5 SLC

36 2005-03-01 F5 SLC

37 2005-03-06 S2 SLC

38 2005-03-25 F5 SLC

39 2005-04-18 F5 SLC

40 2005-04-23 S2 SLC

41 2005-05-12 F5 SLC

42 2005-06-05 F5 SLC

43 2005-06-10 S2 SLC

44 2005-06-29 F5 SLC

45 2005-07-23 F5 SLC
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Data ID

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Acquisition Date

(yyyy-mm-dd)

2005-07-28

2005-08-16

2005-09-09

2005-09-14

2005-10-03

2005-10-27

2005-11-01

2005-11-20

2005-11-25

2005-12-14

2005-12-19

2006-01-07

2006-01-31

2006-02-05

2006-02-24

2006-03-01

2006-03-20

2006-03-25

2006-04-13

2006-04-18

2006-05-12

2006-07-23

2006-09-04
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Beam mode Product type

S2 SLC

F5 SLC

F5 SLC

S2 SLC

F5 SLC

F5 SLC

S2 SLC

F5 SLC

S2 SLC

F5 SLC

S2 SLC

F5 SLC

F5 SLC

S2 SLC

F5 SLC

S2 SLC

F5 SLC

S2 SLC

F5 SLC

S2 SLC

S2 SLC

S2 SLC

F5 SLC



Data ID

Acquisition Date

(yyyy-mm-dd)
Beam mode Product type

69 2006-09-09 S2 SLC

70 2006-09-28 F5 SLC

71 2006-10-03 S2 SLC

72 2006-10-22 F5 SLC

73 2006-10-27 S2 SLC

74 2006-11-15 F5 SLC

75 2006-11-20 S2 SLC

76 2006-12-09 F5 SLC

77 2006-12-14 S2 SLC

78 2007-01-02 F5 SLC

79 2007-01-07 S2 SLC

80 2007-01-26 F5 SLC

81 2007-01-31 S2 SLC

82 2007-02-19 F5 SLC

83 2007-02-24 S2 SLC

84 2007-03-15 F5 SLC
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