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Abstract

The growing commercial market of wireless communication systems/devices over

the past decade has led to the explosion of interests and opportunities for the

design and development of microwave components. The wireless industry em

phasizes on the development of components in shortest possible time and at low

development cost [1]. There is also a class of critical design applications such as

design of high power devices and components where the accuracy requirement is

the prime goal. The design of the most microwave components require the use

of commercially available electromagnetic (EM) simulation tools for their analy

sis. In the design process, the simulations are carried out by varying the design

parameters until the desired response is obtained. The optimization of design

parameters by manual searching is a cumbersome and time consuming process,

and the chances to get local minima are very high. Moreover, increasing number

of design parameters or widening the search range makes it difficult to converge

to the global optima.

Soft computing methods play important role in the design and optimization

of many engineering disciplines including microwave domain. The aim of these

methods is to tolerate imprecision, uncertainty, and approximation to achieve

robust and low cost solution in a small time frame [2]. Soft computing methods

such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy

Logic (FL) have been widely used by EM researchers for microwave design since

last decade [1, 2, 3]. However, these methods suffer from certain drawbacks.
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GA is a powerful optimization tool, but it requires a large number of iterations

to achieve convergence and to arrive at an optimum solution. ANN has proved

its efficiency in modeling microwave components, but it has also suffered with

generalization problems. Moreover, due to very small wavelengths involved in

microwave design, which requires high precision, it is not easy to model compo

nents using conventional methods. In all, modeling andoptimization are essential

parts and powerful tools for the microwave design task but they must be applied

judiciously.

Our present research work deals with the development and use ofsoft comput

ing based methods for tackling challenging design problems in microwave domain.

Our aim in the development and investigation of these methods is to obtain the

designs in small time frame while improving the accuracy of the design for a

wide range of applications. In order to achieve this goal, a few diverse design

problems of microwave field, representing varied challenges in the design, such

as microstrip antennas, microwave filters, a microstrip-via, and also some criti

cal high power components such as nonlinear tapers and RF-windows have been

considered as case-study design problems. Different design methodologies are

developed for these applications. The first chapter of the thesis presents intro

duction and motivation behind the work. It also presents the scope of the overall

work.

In chapter two of the thesis, a state-of-the-art review on the use of soft com

puting methods for the design of microwave components is presented. In this

chapter, we have described the conceptual background offive importantsoftcom

puting methods namely GA [4, 5], Particle Swarm Optimization (PSO) [6, 7],

Bacterial Foraging Optimization (BFO) [8], ANN [9, 10] and Support Vector

Machine (SVM) [11]. Although each description is followed by the review of

microwave designs based on these methods, the emphasis is made on covering

design works using recently developed techniques such as PSO, SVM and BFO.
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Microwave designs obtained using hybridization of these soft computing methods

are also discussed.

Chapter three presents a modified particle swarm optimizer and demonstrates

its applicability for the design of a specific microwave filter. Commercial growth

in the use of wireless communication products necessitates the efficient design

of components in a smaller and realistic time frame. A Computer-Aided Design

(CAD) approach is adopted to minimize the time required to obtain best possi

ble design parameters and reduce the experimental iterations as far as possible.

Though GA and PSO can be directly used for microwave filter design problems,

an inherent limitation of these algorithms is that they require a large number

of iterations to converge to an optimum solution. Therefore, the researchers on

PSO have also been continuously working for improving the convergence speed

and accuracy of the standard PSO [12]. In this work, we present a novel modifi

cation to PSO algorithm, PSO with Multiple Subswarms (PSO-MS), which aims

to offer faster convergence while improving quality of solution. The solution is

generic as it can be applied to the cases when the design process is complex,

computationally expensive and time consuming. In the proposed modification,

we have introduced a new paradigm of multiple sub-swarms for searching pa

rameter space with the PSO algorithm. The social component of PSO's velocity

update equation is modified to consider the effects of multiple sub-swarms. Five

benchmark functions have been considered for testing the proposed algorithm.

The approach is implemented and tested for two basic variations of PSO, namely,

PSO with inertia weight [13] and PSO with constriction factor method [14]. The

experimental results illustrate that the PSO-MS algorithm has the potential to

converge faster, thus reducing the computational expenses, while improving the

quality/accuracy of the solution. The PSO-MS is also used for the design of cou

pled microstrip-line band-pass filter which is a computationally expensive process

when EM tool is invoked in iterative loop of PSO. The results of the proposed

lii
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algorithm show improvement over the design results obtained using standard

PSO.

Chapter four deals with support vector driven evolutionary algorithms for the

design of specific microwave components. Full-wave EM simulation techniques

provide accurate solution. However, the accuracy, computational time and con

vergence of the solution using EM simulators are dependent on the number of

constraints to be handled. Since, these constraints have to be handled man

ually in full-wave EM simulators, they do not guarantee convergence and also

require long run time especially when optimization-based design automation is

considered. In order to overcome these obstacles, either closed-form expressions

or mathematical curve fitting techniques, which use data obtained from mea

surements or EM simulators, can be employed to compute the output response.

Various meta-modeling techniques such as ANN, response surface method, krig-

ing, etc., can be used to create approximate model from the empirical data

[15, 16]. Most of these models have inherent limitations of accuracy and valid

ity over a restricted range of parameter values. ANN has been used by many

EM researchers to model microwave components and balance the trade-off be

tween computation time and accuracy [1]. However, the generalization accuracy

achieved bythe ANN basedmodels ofmicrowave components needs improvement

to increase the effectiveness of CAD. In this chapter, we have presented a more

accurate model of microwave components using SVM. Similar to ANN, SVM is

also a learning technique to learn from empirical data to deal with the accuracy

and complexity trade-off, by minimizing upper bound on the generalization error

[11, 17]. Adetailed description for SVM based microwave modeling is presented

and models for specific microwave components such as a one-port microstrip via

and two microstrip antennas are developed. The accuracy of the SVM models is

compared with other meta-models developed using ANN. Another contribution

of the chapter is in presenting a hybrid approach combining SVM with evolu-

iv
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tionary algorithms such as PSO/GA. In this approach, the model of microwave

component obtained using SVM is invoked in the optimization loop of evolu

tionary algorithms. The significant advantage obtained with SVM model is that

it responds quickly (approximately in milliseconds) compared to iterative para

metric analysis using EM simulation tools for which the response time is large

(approximately in minutes depending upon the complexity of the problem). The

hybrid method, support vector driven genetic algorithm, is demonstrated for the

design of circular polarized microstrip antenna at 2.6 GHz band, while another

similar hybrid method, support vector driven particle swarm optimization, is

demonstrated for the design of a simple aperture coupled microstrip antenna.

Chapter five of the thesis deals with the design of a nonlinear taper using

swarm intelligence based algorithms. The design of high power microwave sources

and their components belong to a class of problems in which high precision is

required with very less tolerance. Vulnerability of one component may cause the

failure of the entire system and spell catastrophic damage. Nonlinear taper is one

such component which is used in the output system of high power gyrotrons to

connect output section of cavity with the main waveguide system. For high power

applications, the design of a nonlinear taper requires very high transmission

(above 99%), with minimum spurious mode content. In this work, the design

optimization of a nonlinear taper to be used in a specific gyrotron (42 GHz,

200 kW, CW gyrotron operating in the TE0,3 cavity mode with axial output

collection) has been taken as a case study. The taper synthesis has been carried

out considering a raised cosine type of nonlinear taper and the analysis is done

using a dedicated scattering matrix code as it is very fast and accurate for taper

analysis [18]. The design of nonlinear taper is carried out using two swarm

intelligence based algorithms, namely, PSO and a modified BFO. The classical

BFO ignores the effects of swarming, and all the bacteria are assumed to have the

same swim length. However, varying the swim length according to the fitness
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may give better convergence speed. In order to improve the convergence and

quality ofsolution, the BFO algorithm is modified such that it includes memory

of the bacteria, global swarming effect and variable swim length. The modified

BFO (MBFO) is tested on a set ofbenchmark functions. The optimization of a

nonlinear taper is carried out using both the PSO and MBFO algorithms, which

show very good agreement with the desired objective. The best optimized taper

design shows excellent response with very high transmission (99.86%) indicating

the effectiveness of these methods.

In chapter six, the design of disc-type RF-windows is presented using Multi-

Objective Particle Swarm Optimization (MOPSO) method. High power mi

crowave and millimeter-wave sources such as gyrotrons, klystrons, and other

gyro-devices produce very high output power at wavelengths in microwave and

millimeter-wave ranges [19]. RF-window is a critical component in the output

system of these devices. The design requirement of the window is that it should

withstand high power, mechanical and thermal stresses, be leak tight and loss

less. Therefore, the challenge is to select a proper window material, and obtain

an optimized design that minimizes power reflections and absorption for a better

transmission [19]. Hence, these components have to bedesigned carefully. Many

real time design problems require optimization ofmore than one objective. In this

case, it is desired to find a solution that optimally balances the trade-off between

multiple objectives. Multi-objective optimization is implemented with PSO by

several researchers[7]. In this work, the design of two types of RF-windows,

namely, double disc window [19, 20] and pillbox-type window [21] for use in

high power devices is presented using a specific implementation of MOPSO [22],

which uses the mechanism of crowding distance and found to be highly compet

itive in converging towards Pareto front. The role of MOPSO is to find physical

dimensions for both the types of windows while optimizing the trade-off between

matching of desired resonant frequency and maximizing bandwidth around the

vi
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resonant frequency. The design of double-disk window is carried out for a specific

42 GHz, 200 kW, CW gyrotron (with two different disc materials) and for a 170

GHz, 1 MW, CW gyrotron, while the design of pillbox-type window is carried

out for a 2.856 GHz, 5 MW, pulsed klystron. The results show the best resonance

matching for each window design and prove the applicability of MOPSO to wide

range of high power microwave devices/components.

Finally, in chapter seven, the contributions made in the thesis are summarized

and scope of the future work is outlined. In summary, the thesis contributes

towards improvement of the efficiency and accuracy of the design problems in

microwave domain by proposing and investigating soft computing methods, their

modifications and hybridizations.

vn
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Chapter 1

Introduction

For the past few decades, the engineering design and optimization problems

have proved to be promising and form much potential and important areas of

research [23, 24]. Many researchers and engineers in academics and industry

face difficulties in understanding the role of optimization in engineering design.

The goal of optimization is not only to achieve a feasible solution, but also to

meet a design objective. In most engineering design applications, the objective

is to minimize the cost or maximize the efficiency of production. The goal of the

over all design process is also to address the issues such as modeling the process,

handling the constraints (which may be linear or nonlinear), forming objective,

and some times handling multiple objectives which may be conflicting in nature.

With the advent of high speed computers, the optimization process has become a

part of Computer-Aided Design (CAD) methodology. In a nutshell, optimization

P is a very powerful tool but it must be applied judiciously. Our research deals with

soft computing methods for the design applications in microwave domain.



1.1 Microwave design and soft computing: An overview

1.1 Microwave design and soft computing: An

overview

Microwave engineering is a discipline which is full ofdesign problems. There are

various types of design problems available and each is having different challenge

with it. The growing commercial market of wireless communication devices over

the past decade has led to the explosion of interest and opportunities for design

and development of microwave components. The industry emphasizes on the

development of components and systems in shortest possible time and at low

development cost [1]. This places the demand on various CAD tools for the

development of microwave components. There is also a class of critical design

problems where the reliability and accuracy are the prime requirements.

Soft computing isdefined as a collection ofcomputational techniques in com

puter science, artificial intelligence and machine learning, which attempt tostudy,

model, and analyze very complex phenomena for which more conventional (hard

computing) methods have not yielded low cost, analytic, and complete solu

tions. The term soft computing was first coined by Zadeh [2]. The aim of soft

computing is to tolerate imprecision, uncertainty, and approximation to achieve

robust and low cost solution in a small time frame. Much of the soft computing-

techniques are inspired from biological phenomena and the social behavior of
biological populations. Earlier in most literature, the term of soft computing

was confined to Artificial Neural Network (ANN), Genetic Algorithm (GA), and

Fuzzy Logic (FL). But, the major elements of soft computing include neural net
work, evolutionary computation, fuzzy logic, machine learning, and probabilistic

reasoning [2]. The recently developed methods based on swarm intelligence, and
foraging behavior of natural and biological populations such as birds, fishes, ants,
and bacteria arealso considered to be part ofthe growing field ofsoft computing.

J.
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Chapter 1. Introduction

1.2 Motivation

The steps of a conventional microwave design process consists of problem identi

fication, specification generation, conceptdevelopment, electromagnetic analysis,

evaluation, initial design, final design, fabrication, and testing [1]. At present,

the design of most microwave components is carried out using commercially avail

able Electromagnetic (EM) simulation tools. Many new EM simulation tools are

being developed to automate the design process. EM simulation techniques help

to produce analysis for microwave components. In the design process, the role of

EM simulator is to obtain responses such as S-parameters, standing wave ratios,

gain, current distributions, power transmission and reflections, etc., for the com

ponent to be designed. In the conventional design methodology, once an initial

design is obtained, the EM analysis and evaluation is performed iteratively until

the desired specifications are met. In this process, one has to change the de

sign parameters by modifying its geometrical structure and apply expert domain

knowledge to make the design feasible, and to move towards desired objective.

This process is repeated till a tolerable solution is achieved. But it does not

guarantee for the optimum solution. This approach may, sometimes, degrade

the performance of the component after its fabrication in the desired subsystem.

Moreover, these methods of designing and optimizing them by hand are labo

rious, time intensive, and require designers to have significant knowledge about

electromagnetics, microwave engineering, and other specialized subjects concern

ing the design. Eventually, it is necessary to use various optimization algorithms

to reach the optimum parameters. Some of the present EM simulators use con

ventional optimization methods [24] like golden search method, steepest descent

method, conjugate gradient method, quasi-Newton method, and other random

search methods for optimization of the design parameters. The difficulties with

these local search methods are that they require a proper initial guess; otherwise

the chances of getting local optimum solutions are very high. Moreover, they can
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only handle a few number of design parameters. In addition, handling of many
design constraints at the same time is very difficult. This conventional way of
microwave design has also achieved a certain level of maturity in recent years.

To make the efficient use of EM simulation techniques in the development of

microwave components is still a topic of research. New techniques are required

in order to search from a large design space and reach an optimum solution.

Soft Computing (SC) methods offer unique advantages for the design appli

cations in microwave domain. They are listed as follows:

• The SC methods can beeasily interfaced with EM simulators due to which

the laborious task of optimizing design parameters in manual mode can

be converted to computer simulations. So, faster results can be obtained.

Moreover, the use of global optimization methods can avoid the chances of

obtaining local optima.

• Handling many design constraints simultaneously is easy for SC methods.

• The use of SC methods does not require extensive mathematical formula

tion of the problem. Thus the requirement on the necessity of exclusive

domain specific knowledge can be reduced.

• Since most of the SC methods come under "GNU general public license"

(open source), they provide low cost solutions to the designer. Moreover,
effective hybridization of SC methods may also reduce the dependency on

costly EM simulators up to some extent.

• SC methods are adaptive and scalable. Though in this thesis we discuss

SC methods for microwave design applications, they are applicable to the

design of many other engineering disciplines.

Soft computing methods such as GA and ANN have been widely exploited
by EM researchers for microwave design since last decade [1, 3, 25, 26, 27, 28,

M
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29, 30, 31, 32, 35, 36, 37, 38, 39, 40]. Though these techniques are effective, they

suffer from certain drawbacks. Evolutionary algorithms such as GA, particle

swarm optimization (PSO), etc., are effective in finding optimum solution from

a multivariate feature space, but they are iterative and require large amount

of computation to reach an optimum solution. ANN has been widely used for

fast microwave modeling but it has also suffered with generalization problems.

v This has created the need to develop novel modifications and hybridizations of

SC methods in order to solve microwave design problems effectively. Moreover,

during the recent past, several new soft computing methods such as Bacterial

Foraging Optimization (BFO) [41], Ant Colony Optimization (ACO), Support

Vector Machines (SVM), Artificial ImmuneSystem (AIS) [42], etc., have emerged

along with their applications in engineering design and optimization problems.

Most of these recent SC methods have not been yet investigated or very few

> works have been reported on these methods for microwave design tasks. This

also motivates us to investigate these methods for the design tasks in microwave

domain.

1.3 Design challenges

Although there are various EM simulation tools and soft computing methods,

the following design issues and requirements make the field of microwave design

a true challenging aspect:

Sensitivity: The key challenge in the design of microwave components is to

deal with sensitivity. Due to very small wavelengths involved in the microwave

region, any small variation in the physical aspects of the components may result

in huge variation in the output response. This makes the design surface extremely

non-smooth. Thus, modeling and finding an optimum solution make the design

task challenging. It necessitates fine tuning of design parameters in the feature
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space. Moreover, increasing number of design parameters make the feature space

too large to explore. Hence, in order to achieve high precision requirements,

unconventional methods have to be employed in the design process.

Size reduction and low weight: Due to emerging technologies and minia

turization of the components, optimization is required with high precision.

Time-to-market: The recent trend in industry suggest the design and

manufacturing ofcomponents in small time-frame to satisfy the need ofgrowing ^

commercial market. Therefore, the design and development should be as fast as

possible.

Low cost: The EM simulators available in the market for designing compo

nents are very costly. It is not possible for an industry or institute to purchase

all the tools. This also demands the use of efficient alternative solutions for the

design of components. The process adopted should be such that it reduces the

cost of production. a

Reliability: RF/microwave components are extensively used incritical areas

such as communications, radar, defense, and some specific industrial-scientific-

medical (ISM) applications where the reliability of the component is the prime

requirement. Malfunctioning ofone component may cause thefailure of the entire

system and spell catastrophic damage. It is required to develop and investigate

soft computing methods that provide accurate and reliable designs.

1.4 Research objectives, problem statement, and

scope

Research objectives:

The objectives of our research work can be stated as follows:

• To develop soft computing based methods that lead to faster design of

microwave components.
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• To develop soft computing based methods that lead to accurate design for

certain critical applications such as design of components for high power

microwave sources.

• To develop effective hybridization of soft computing methods to solve de

sign problems in microwave field.

^ • To learn effectively from empirical data and develop empirical models of

microwave components via support vector machine framework.

• To prepare a state-of-the-art review on the present use of soft computing

methods for microwave design tasks and to investigate recent soft comput

ing methods for microwave design.

In order to meet the above mentioned research objectives and demonstrate

\ the potential strength of the presented soft computing based methods, a pack of

diversified problems with varied challenges have been considered and solved.

These design problems are as follows:

• Design of a coupled microstrip-line band pass filter

• Efficient modeling of a simple one-port microstrip via

^ • Design of a circularly polarized microstrip antenna and a simple aperture

coupled microstrip antenna

• Design of a nonlinear taper for a specific high power gyrotron

• Design of disc type RF-windows for high power microwave and millimeter-

wave sources

The examples of microstrip antennas, and microstrip filter are considered to

j demonstrate different optimization approaches for faster design. Again, the ef

ficiency of SVM based modeling is demonstrated by a microstrip via, and two
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microstrip antennas. Whereas, the critical components - nonlinear taper and

RF-windows - are chosen to show the ability of different soft computing methods

to obtain precise and accurate designs where the tolerance is very less. It should

be noted that the applications considered here are case-study design problems,

but the methods presented can well be applied to many other microwave design

problems.

Problem statement:

The problem statement for the present research work is to develop and in

vestigate soft computing based methods for tackling challenges in the design ap

plications of microwave domain. Our aim in the development and investigation

of these methods is to obtain the designs in small time frame while maintaining

or improving the efficiency of the design process for a wide range of applica-

tions. Our goal is also to learn effectively from empirical data, and to provide a

framework for efficient modeling of microwave components.

Thus the research work here emphasizes on dealingwith challenges in solving

diversified design problems ofmicrowave field using soft computing based meth

ods. The work presented here addresses the engineers, designers, and researchers

in the field of soft computing, modeling and optimization in engineering, and

RF/microwave design.

Scope:

Atypical microwave design process consists of problem identification, specifi

cation generation, concept development, EM analysis, evaluation, initial design,

final design, fabrication, and testing. Out of these steps, our research work in

the thesis is focused on converting initial design to final design which includes

steps such as modeling, computer-aided analysis, and optimization. Thus, the as

sumption is made that the initial designs and some information about the design

8
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parameters (such as specifications, ranges, etc.) are available. In the present

work, this information is obtained from previous published works and expert

knowledge. Moreover, as the present research work emphasizes on soft comput

ing methods for microwave design problems, the fabrication of the components

is not considered. It may be noted that the term 'experiment' or 'experimental'

is used to refer 'simulation' and not the physical experiment. It should also be

noted that the soft computing methods presented here do not aim to replace the

use of EM simulators from microwave design, but they overcome the shortcom

ings present in the conventional design methodology.

1.5 Organization of the thesis

The organization of the later chapters is as follows. Chapter two presents a

state-of-the-art review on the present use of soft computing methods for design

applications in microwave domain. In chapter three, a modified particle swarm

optimization algorithm with a novel concept of multiple sub-swarms is presented

and its applicability is demonstrated by the design of a specific microwave filter.

Chapter four of the thesis presents efficient modeling of microwave components

using SVM and also presents a hybrid approach - support vector driven evolution

ary algorithm - for designing microwave components such as a microstrip via, and

two microstrip antennas. Chapter five presents the design and optimization of a

nonlinear taper for a specific high power gyrotron using two swarm intelligence

based algorithms namely a modified bacterial foraging optimization and a stan

dard particle swarm optimization. Chapter six presents the design of disc-type

RF-windows using multi-objective particle swarm optimization methodology. Fi

nally in chapter seven, the contributions made in the thesis are summarized and

scope of the future work is outlined.



Chapter 2

Preliminaries and Review

2.1 Overview

In this chapter, we present a state-of-the-art review on the present use of soft

computing methods for the design applications in microwave domain. Since long

time, the literature on soft computing was confined to the methods such as ge

netic algorithms, artificial neural network, fuzzy logic, and their variations and

hybridizations. During last decade, few other swarm intelligence based algo

rithms such as particle swarm optimization, ant colony optimization, and bac

terial foraging optimization have emerged. Microwave researchers also observe

these techniques and try to adopt them for various microwave design applica

tions. In this chapter, we present a review of microwave design using five soft

computing methods namely Genetic Algorithm (GA), Particle Swarm Optimiza

tion (PSO), Bacterial Foraging Optimization (BFO), Artificial Neural Network

(ANN), and Support Vector Machine (SVM). Out of these methods, ANN and

GA have been widely exploited by microwave researchers. Though efforts have

been made to review related works of all five methods used for microwave de

sign applications, emphasis is given on recent methods, namely, PSO, SVM and

BFO. For BFO and SVM, no much has been reported in literature for microwave

11
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design.

For convenience, we have divided the discussion ofthe review into three parts:

microwave design using evolutionary algorithms, microwave modeling using soft

computing methods such as ANN and SVM, and hybridization of soft computing-

methods used for microwave design. The list of references covered in this review

is by no means exhaustive, but it is fairly representative of present usage of these

techniques.

The organization of the chapter is as follows. Section 2.2 presents microwave

design using three evolutionary and swarm intelligence based algorithms1 namely
GA, PSO and BFO. Section 2.3 discusses microwave modeling using two tech

niques, namely, ANN and SVM. Section 2.4, presents a review on the usage of

hybrid soft computing techniques for microwave design.

2.2 Microwave design using evolutionary algo

rithms

Currently used methods of microwave design suggest the use of full-wave analysis

of EM simulation tools. Many new EM simulation tools are being developed by

industry to automate the design process. Some of them are embedding local

search methods for optimizing the design parameters. Evolutionary Algorithms

(EAs) are reliable alternatives to these methods for getting optimum designs.
There are many advantages of using EAs for engineering design including

microwave field, some of them are as follows:

• EAs are derivative free methods for design optimizations.

• Unlike conventional local search methods, EAs can optimize many variables

^venthough PSO and BFO are swarm intelligence based algorithms, they are referred
under the category of evolutionary algorithms to maintain simplicity of the presentation.

12
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simultaneously.

• Due to population based approach, EAs search simultaneously in different

parts of the search space.

• EAs can be easily implemented on parallel architectures.

• EAs can be easily interfaced with various EM simulation tools in order to

optimize design parameters. The inherent mechanisms of EAs overcome

local minima in most cases.

In this section, we review microwave design applications using three evolu

tionary algorithms: genetic algorithm, particle swarm optimization, and bacterial

foraging optimization.

2.2.1 Genetic Algorithm

Overview

Genetic algorithm was introduced by John Holland [43] and it was applied to

many practical problems by Goldberg [4]. It is one of the promising ways of

searching for optimum solution from multivariate nonlinear feature space. It is

based on the principles of natural evolution and natural genetics [43, 4]. The

power of GA resides in its three basic operators namely reproduction, crossover,

and mutation. Due to population based approach, these algorithms have been

able to obtain global optimal solutions in complex optimization problems. The

applicability of binary GA and its modifications have been proved in many re

altime applications [44, 45, 46, 47, 48]. A brief working of GA is described in

Appendix A of the thesis.

13
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Micorwave design using genetic algorithm

Many modifications tothe simple binary coded GA have been proposed and used

by the researchers for the design of microwave components since last decade.

Though it is not possible to summarize all works of GA in microwave designs in

this chapter, we have tried to cover them briefly and for the in depth knowledge

readers are requested to refer [3, 25, 26, 27, 28, 29, 30, 31, 32, 49] and the

references therein.

An initial review of microwave designs obtained with GA since 1992 to early

1997 was presented by Weile and Michielssen [25]. They covered electromagnetic

design applications in four categories: antennas, stratified medium structures,

static devices, and miscellaneous. A review on evolving wire antennas such as

Yagi and crooked-wire antenna designs using GA was presented by Linden and

Altshuler [26]. Johnson and Rahmat-Samii [3] also presented the use of GA in
engineering electromagnetics. They collected the works of GA in applications

such as design of microwave absorbers, reduction of array sidelobes, designs of

shaped-beam antenna arrays, radar target identification, and broad-band patch

antennas. Haupt and Werner [27] also described various electromagnetic de

signs obtained with GA. They used genetic algorithms mainly for the design of
antennas, synthesis of array patterns and optimization ofscattering patterns.

Many advancements and modifications of GA have been proposed and they

have also been used for electromagnetic designs. Johnson and Rahmat-Samii

[28] introduced a technique of combining GA and Method of Moments (MoM)
for integrated antenna designs. In this technique, GA optimization was combined
with a tailored MoM analysis, which involves removal of rows and columns from

the Z-matrix instead ofrefilling the Z-matrix in each iteration of the GA. Their

method was used for the design of wide band and dual band patch antennas.

GA has also been used for wireless communication applications. Hong and

Dong [29] have proposed two different GA-based efficient searching approaches

14
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and applied them to maximum likelihood decoding and distance spectrum tech

niques to reduce computational complexity for Multiple-Input Multiple-Output

(MIMO) systems. Villegas, et al. [30] described Electromagnetic Genetic Op

timization (EGO) that combines accuracy of full-wave EM analysis with the

robustness and speed of parallel computing GA on the cluster supercomputing

platform. The EGO was used to design a dual-band antenna element for wireless

y communication applications.

GA has also been used for problems like array pattern synthesis, array failure

detection, and array failure correction. Yan and Lu [31] presented simple and

flexible genetic algorithm for pattern synthesis of antenna array with arbitrary

geometric configuration. Their approach presented the array excitation weight

ing vectors as complex number chromosomes and used decimal linear crossover

without crossover site. Their method suggested the advantage of avoiding binary

coding and decoding, and using simplified approach of chromosome construction.

GAs have also been used for the design of oversized waveguide components.

Plaum et al. [32] optimizes bends for oversized waveguides using GA. In the de

sign of waveguide bends, they optimized curvature function and for corrugated

waveguides, the corrugation depth of a bend.

Despite of GA's success and wide use in finding optimum designs, it con

sumes huge computational time to reach an optimum solution. Moreover clue

to stochastic nature, sometimes GA may converge prematurely leading to local

optima, especially, when the search space is huge and highly nonlinear.

2.2.2 Particle Swarm Optimization

Overview

Jp Particle swarm optimization, developed by Kennedy and Eberhart [6, 50], is a

simple and effective swarm intelligence based method for optimization of wide
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range of functions. Fundamental hypothesis to the development of particle swarm

optimization is social sharing of information and collaborative behavior of bio

logical swarms [6, 7, 33, 51]. Adetailed description of PSO is covered in Chapter

3. In next subsection, we present a review of works performed for design appli

cations in microwave domain using PSO and its modifications.

Microwave design using Particle Swarm Optimization

The use of PSO for electromagnetic k microwave design applications was ini

tially justified in [52, 53]. Rahmat-Samii [52, 54, 55, 56] has studied and applied

PSO and its modifications to many electromagnetic design applications, espe

cially for the design of various antenna structures and arrays. Robinson and
Rahmat-Samii [52] introduced conceptual overview of PSO for electromagnetic

community. They indicated the use of invisible wall technique over absorbing and

reflecting wall techniques for applying boundary conditions. They showed the use

of PSO to the optimization of profiled corrugated horn antenna. Recently, Jin

and Rahmat-Samii [54] presented a review on PSO for antenna designs. They

illustrated the effectiveness of applying swarm intelligence to design antennas

with desired frequency response and radiation characteristics for practical EM

applications. They demonstrated the flexibility of PSO to handle both binary
and real parameters, and in solving multi-objective problems by applying it to

three design problems: design of dual-band patch antenna, artificial ground plane

of surface wave antenna, and low-sidelobe antenna array, respectively.

In other modifications to PSO, Ciuprina, et al. [53] presented Intelligent

PSO (IPSO) that offered more intelligence to particles by using concepts of
group experiences, unpleasant memories, local landscape models based on vir
tual neighbors, and memetic replication of successful behavior parameters. They
tested IPSO on a test function and on Loney's solenoid. Wang et al. [57] pre

sented a combined approach of PSO and Finite-Element Method (FEM) for the

16
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design of compact planner microwave filter. They suggested the use of PSO-

FEM approach to be useful in wide range of novel filter design. In an another

modification to PSO, Mikki and Kishk [58] presented a new physical formalism

of PSO technique based on quantum mechanics. They applied this newly devel

oped PSO, known as Quantum PSO (QPSO), to electromagnetic problems such

as synthesis of antenna array, and finding equivalent circuit model for dielectric

resonator antenna that predicts parameters like Q-factor. The authors proved

this algorithm to outperform improved version of classical PSO in convergence

speed as well as in obtaining better solution.

One of the drawbacks in performing microwave designs with PSO, due to

its iterative nature, is that the overall design process becomes computationally

intensive and time consuming. To reduce overall computation time of the design

process, PSO can be implemented on parallel clusters. As each particle in PSO

acts as an independent agent, it is an inherent characteristic of the algorithm

that enables it to be parallelized easily. Jin and Rahmat-Samii [55] presented

a method combining PSO and Finite Difference Time Domain (FDTD) method

for the design of multi-band and wide-band antennas. They also implemented

this method on a parallel cluster to reduce the computational time introduced

by full-wave analysis of FDTD method.

It is also observed that many real-time problems have more than one objec

tive. In this case, it is desired to find a solution that optimally balances the

trade-off between multiple objectives. Similar to GA, multi-objective optimiza

tion is possible to implement with PSO. Xu and Rahmat-Samii [56] shows the

use of Multi-Objective PSO (MOPSO) by applying it to two electromagnetic

problems: synthesis of 16-element antenna array which is optimized for trade-off

between beam efficiency and half-power beam width, and optimization of shape

reflector antenna for high gains of multiple feeds.

Researchers have also compared the concepts and performances of PSO with
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GA. The conceptual difference between PSO and GA is described by Kennedy

and Eberhart [6]. According to them, PSO lie between GA and evolutionary

computation. The adjustment of particle towards its individual best, and to

wards global best is conceptually similar to crossover operation used in GA. The

benefit with PSO is that it converges in less number of iterations than GA, and

requires few parameter settings. PSO has been demonstrated incertain instances

to outperform GA [6]. A comparison between PSO and GA on test problems

is carried out by Hassan et al. [59]. Boeringer and Werner [60] compared PSO

and GA for phased array synthesis problem. They obtained good performance

with both the methods. According to them the cost function budget for elec

tromagnetic optimization dominates, and book-keeping requirement for both the

algorithms becomes negligible. They also found a simpler implementation and

reduced book-keeping appeal of PSO. Despite advantages of PSO such as faster

convergence, simple approach, and reduced book-keeping over GA, it may also

lead to premature convergence and local minima similar to GA.

2.2.3 Bacterial Foraging Optimization

Overview

Bacterial foraging optimization is an optimization technique introduced by Passino

in 2002 [8]. It is inspired from the imitation of the food-ingesting (foraging) be
haviors of Escherichia (E.) coli bacteria, which are present in our intestines. In

this method, agroup of bacteria move in search of rich nutrient concentration and

away from noxious elements. The algorithm proceeds by selecting or eliminating
bacteria based on their good or poor foraging strategies. This process either elim

inates the poor strategies or refines them in to better ones. The foraging process

in BFO algorithm involves four main steps which include chemotaxis, swarming,
reproduction, and elimination-dispersion. The detailed description of BFO and
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few of its variations is given in Chapter 6 and Appendix-C of the thesis. The in

vestigation and use of BFO has been started by microwave researchers since past

two to three years and very few works on BFO for microwave design have been

reported in the literature. The works on the use of BFO in microwave design

and for other engineering applications are discussed in the next subsection.

Microwave design using Bacterial Foraging Optimization

The works reported in literature [61, 62, 63] show that BFO has been used mainly

for antenna and array designs. Gollapudi, et al. [61] used bacterial foraging opti

mization technique for calculating resonant frequency for rectangular microstrip

antenna of arbitrary dimension and substrate thickness. They also determined

the feed point of the microstrip patch antenna using the same technique. Datta,

et al. [62] presented an improved adaptive approach to bacterial foraging algo

rithm and used it for optimizing both the amplitude and phase of the weights of

a linear array antenna, for maximum array factor at any direction and nulls in

specific direction. They used principle of adaptive delta modulation to make the

algorithm adaptive. Guney and Basbug [63] used bacterial foraging algorithm to

achieve null steering in radiation pattern of a linear antenna array by controlling

only the element amplitudes. BFO and its improvements have also been used in

few other design applications such as job shop scheduling [64], stock indices pre

diction [65], and optimizing multivariate PID (Proportional-Integral-Derivative)

controller [66].

2.3 Soft computing methods for microwave mod

eling

An inherent and important part of the design process is modeling. Conventional

method suggests the use of EM simulation tools for modeling and analysis of
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microwave components. A typical design problem in EM simulator sometimes

takes much computation time even on up-to-date processors. Various regres

sion techniques such as neural networks, response surface methods, kriging, and

regression splines can be used as metamodels [15]. A metam,odel is defined as

'model of the model'. The advantage of these methods is that they respond very

fast, andsometimes it is also possible to design components when its closed-form

formulas are not available. In this section, we present conceptual overview and a

brief review ofEMmodeling using two soft computing methods namely ANN and

SVM. ANN has been widely used for EM modeling, while the SVM is relatively

new and is not explored as effectively by EM researchers.

2.3.1 Artificial Neural Network

Overview

An artificial neural network (also called neural network) is a parallel distributed

processor made up of simple processing units. It has the capability to learn

from empirical data, store experimental knowledge and make it available for use

in desired application [9]. It has long been used as a machine learning tool in

many research and commercial applications to learn the underlying function,

mapping the input and output data from a large data set [34]. ANN has been

proven to be fast and effective technique for modeling microwave components.

It can be used as a tool for predicting device behavior when no mathematical

model is available. A brief conceptual background on the working of artificial

neural network ispresented in Appendix-B. Current state-of-the-art ANN based

modeling for microwave design can be found in detail in [1, 35, 36, 37, 38, 39,

40, 67]. Although this is not an exhaustive list, it tries to include different ANN
models for various microwave components. For detailed study reader may refer

to the references presented here and the further references there in.
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ANN based microwave modeling

A thorough review of ANN applications in microwave CAD is presented by Bur-

rascano, et al. [35]. The authors there showed the role of ANN in replacing most

CPU intensive part of microwave CAD, namely, yield optimization, tolerance

analysis, and manufacturing-oriented design. They illustrated few significant

applications, and presented issues for practical implementation. They also in

troduced self-organizing maps for enhancing model accuracy and applicability.

Neural network has been studied and applied widely for the design of RF and

microwave components by Zhang and Gupta [1]. After discussing neural network

structures and training methods, they provided a general methodology for the

development of accurate and efficient Electromagnetically-trained Neural Net

work (EM-NN) models for use in microwave CAD. They showed ANN-based

modeling for various RF and microwave components such as transmission line

structures, active devices, microwave circuits, antennas, and systems. At last

they described an exciting method - knowledge based neural network by comb

ing microwave knowledge with neural networks and showed its use in RF and

microwave design.

Various modifications were performed to simple multilayer perceptron type

neural network by researchers according to EM design requirements. Wang and

Zhang [36] developed a novel neural network structure, namely, Knowledge-Based

Neural Network (KBNN) by combining microwaveexperience and learning power

of neural network. They also developed new error backpropagation training

scheme utilizing gradient based 12 optimization. They applied KBNN to differ

ent microwave modeling problems like circuit waveform modeling, transmission

line modeling and MESFET modeling problems, and proved that KBNN gives

less testing errors than multilayer perceptrons and it is also efficient when train

ing data is insufficient. Marinova, et al. [37] presented a model by employing

neural network inverse algorithm and two feed forward neural networks for solv-
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ing electromagnetic design problems. The model was applied for the design of

magnetic simulation coil and gradient coil. An ANN based approach for model

ing of linear and nonlinear circuits was presented by Suntives, et al. [38]. They

described a modified hybrid approach for computing S-parameters of microstrip

discontinuities based on equivalent circuit extraction and ANN. Ding, et al. [39]

presented ANN approach to EM based modeling and optimization in frequency

and time domains and used them to nonlinear circuit optimization problems.

They presented EM-based time domain neural modeling approach combining

available knowledge of equivalent circuits with state-space equations and ANN.

Recently, a state-of-the-art review on microwave filter modeling, optimization,

and design using ANN techniques is presented by Kabir, et al. [40]. The review

included application of ANN on different types of filters such as waveguide cav

ity filters, simple lower order filter, waveguide dual-mode simple elliptic filters,

coupled microstrip line filters, and microwave filters on PBG structure. They

demonstrated through results that ANN techniques can produce fast and accu

rate results and can reduce computational cost compared to conventional and

time consuming EM simulations.

Despite their wide use, ANN has also certain drawbacks. It is difficult to

find a structure of neural network which includes number of layers, number

of nodes in each layer and transfer mapping functions at each layer. There

is no general rule to set parameters such as learning rate, momentum, and to

find number of training samples for desired accuracy. Although neural networks

are capable of achieving high degree of training accuracy in approximating the

underlying design process, their generalization ability (error in predicting data

not present in training set) is not as accurate. The reason is that neural network

tries to minimize the empirical risk (error on training data). Moreover, neural

network serves as a black box (i.e., it does not answer how a particular output

is obtained). A promising alternative to neural network, which overcomes many

22



Chapter 2. Preliminaries and Review

of its drawbacks is SVM.

2.3.2 Support Vector Machine

Overview

Support vector machine is a machine learning technique developed by Vapnik

[11]. It is based on the principle of statistical learning theory. SVM was developed

for pattern recognition task but later on its application was extended to regression

problems. Support Vector Regression (SVR) is found to give robust and effective

model of the process under consideration [68, 69]. The models developed using

SVR are simple and their evaluation is very fast. No prior knowledge about

input/output mapping is required for the model development. An increasing

number of engineers and researchers from diverse fields have begun to take a

serious interest in this emerging technology. The hypothesis generated using

SVM involves both Structural Risk Minimization (SRM) and Empirical Risk

Minimization (ERM). This makes SVM much more powerful in generalizing than

traditional neural network which only minimizes empirical risk. The key ideas

of SVM are: nonlinear mapping from input space to high-dimensional feature

space using a kernel trick, and find an optimum hyperplane that maximizes

generalization ability [11, 70].

Similar to ANN, the SVR can learn from data allowing it for model devel

opment even when component formulas are unavailable. It has been proved to

generalize well and marks the birth of another unconventional approach to mod

eling and design problems in RF/microwave CAD. Even though with its wide

popularity, very few works have been reported on SVR for microwave design

problems. One of our aims in this thesis is to introduce SVM to electromagnetic

community and show how it can be used for effective microwave modeling in

general. A detailed conceptual description of SVM is given in Chapter 4. In
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the next subsection, a review on using SVR for microwave design applications is

presented.

Use of SVM in microwave modeling

Though very few works have been reported in literature, we present here a brief

review on microwave modeling using SVM. In [17], Angiulli, et al. discussed the

use of SVR for modeling microwave devices and antennas. They reported that

SVR-based model gives better prediction accuracy in less computational time

compared to ANN-based modeling approach. Angiulli, et al. [71] also used SVR-

based approach for electromagnetic inverse scattering problem. Wu, et al. [72]

used SVRfor extracting electromagnetic parameters such as complex permittiv

ity and permeability for magnetic thin film materials. Giine§, et al. [73] adapted

SVR to the analysis and synthesis ofmicrostrip lines on all isotropic/anisotropic

dielectric materials. They found SVR superior to ANN for regression applica

tions clue to its higher approximation capability and much faster convergence

with sparse solution technique. Giine§, et al. [74] also developed SVM model

for small-signal and noise behavior ofmicrowave transistor and compared it with

ANN model. Martinez-Ramon and Christodoulou [75] introduced a set of novel

techniques based on SVM, and applied them to antenna array processing and

other problems in electromagnetics. Particularly, SVM was used for linear and

nonlinear beam forming, parameter design for arrays andestimating thedirection

of arrival problems. Modifications to SVR and combination of electromagnetic

analysis with SVR have also been tried by some of the researchers. Xu, et al. [76]
presented an approach for modeling microwave devices based on combination of

conventional equivalent circuit model and SVR. They found this approach to be

fast and accurate for developing model of SiC MESFET.

Despite SVR's smaller errors and superior generalization capabilities, there

are certain challenges in using SVR for microwave design. The accuracy of pre-
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diction in SVR depends on selection of hyperparameters. These include deciding

values of penalty trade-off parameter C, kernel function and its parameter, and

parameter e of regression tube. Few methods have been suggested in litera

ture but none is guaranteed to give best selection with minimum computational

expenses. Moreover, simulation response of microwave components is very sensi

tive to small changes in its design parameters. So it is challenging for microwave

designers and researchers to develop effective models using SVM. Microwave de

signers may have expert domain knowledge in addition to data sets. Inclusion of

this domain knowledge may lead to higher accuracy of the components.

2.4 Hybrid soft computing methods for microwave

design

All the individual soft computing techniques are powerful and contribute in the

design process, but each of them also have certain drawbacks. ANN and SVM

are efficient modeling techniques but they are not in much use for optimization

purpose. GA and PSO are useful in optimization but they require interface with

EM full-wave analysis codes. Moreover, due to their iterative nature they are

computationally intensive and time consuming. Researchers have also tried to

develop hybridization of different soft computing methods by combining two or

more methods by removing drawbacks and using advantages of each method

[77, 78, 79, 80]. This section reviews few works on hybridization of two or more

soft computing techniques used for the microwave design applications.

Yang, et al. [81] presented a hybrid approach combining PSO with Least-

Square SVM (LS-SVM) to improve computational efficiency of FDTD (Finite-

Difference Time Domain) method. In this approach, PSO was used to optimize

hyperparameters of LS-SVM. Researchers have also tried to combine GA and

PSO algorithms exploiting the advantage of both algorithms. A very simple hy-
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bridization of GA and PSO was investigated by Robinson, et al. [82] and it was

tested for profiled corrugated horn antenna. After investigating both algorithms

individually, they tested two combinations: GA followed by PSO and PSO fol

lowed by GA in which the result of previous algorithm was used as starting point

for the later algorithm. According to their results PSO-GA hybrid combination

returned the best horn. Gandelli, et al. [83] presented a hybrid evolutionary al

gorithm - Genetic Swarm Optimization (GSO) - by integrating main features of

GA and PSO. After performing preliminary studies, GSO was applied to the de

sign ofplaner reflectarry antenna and found reliable and effective for applications

in electromagnetics. Researchers have also developed hybridization of bacterial

foraging optimization with GA and PSO, but they have not been investigated

for microwave design applications. A hybrid approach combining PSOwith BFO

was presented and used to optimize multi-modal and high dimensional bench

mark functions in [84]. The hybrid method was found to be better than standard

BFO and comparable to PSO and its variations on benchmark functions. Kim, et

al. [85] presented another hybrid approach combining GA and PSO and demon

strated it for solving optimization benchmark problems. They also successfully

used it for tuning PID controllers of automatic voltage regulator.
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Chapter 3

PSO with Multiple Subswarms

and its Application to the Design

of Microwave Filter

3.1 Introduction

In recent trends, most of the electromagnetic problems and design of microwave/millimeter

wave components employ different EM simulation tools. At the outset, initial

design is carried out with coarse and approximate analytical and circuit models.

This initial design will farther be perfected to obtain a final design by making

use of suitable EM simulators. But, this procedure is manual, tedious, time-

consuming and chances of getting local minima are very high.

EM researchers are using various evolutionary and, in recent years, swarm

intelligence based algorithms such as genetic algorithm, and particle swarm op

timization for the optimization of design parameters [3, 52]. The advantage of

this technique is that it reduces manual and laborious task of getting desired

response with EM simulations, but there are certain drawbacks of this method.

The major drawback in using Evolutionary Algorithms (EAs) is that they require
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3.2 Partilce Swarm Optimization

large number of iterations, and invoking EM simulation tools in their iterative

loops makes thedesign process computationally expensive and still time consum

ing. Moreover, increasing design parameters or widening the search range makes

them sometimes difficult to converge to global optimum.

Researchers have been working continuously on Particle Swarm Optimization

(PSO) for the improvement of its convergence speed and accuracy [12, 13, 14].
In this chapter, we present a novel concept of multiple subswarms in PSO algo- ^
rithm with a hope that searching the feature space in a distributed manner may

lead to faster convergence towards global optima. This motivates us to apply the

above mentioned approach to complex design processes that are computationally

expensive and time consuming. The proposed algorithm is tested on five bench
mark functions. At last we have shown the applicability of the algorithm for

the design of a specific microwave filter. Though the algorithm presented here

can beapplied for the design of a variety of microwave components, a microwave y

filter is considered as a case study.

The organization of the chapter is as follows. In section 3.2, standard PSO

algorithm, and its two basic variations are presented. In section 3.3, we present

a modified PSO algorithm with multiple subswarms. Section 3.4 presents the

experiment with benchmark functions. Section 3.5 demonstrates the application

of the proposed algorithm for the design of a specific microwave filter. Finally,

section 3.6 presents concluding remarks.

3.2 Partilce Swarm Optimization

3.2.1 Standard PSO

The standard PSO is a population based algorithm. Each potential solution in

the population is known as particle, which is represented by position and velocity ^
vectors. The particles fly through the multidimensional search space in order to
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get the best solution. These particles adjust their velocity according to their own

flying experience and according to the experience of their companions. Let, the

position and velocity of each particle in the swarm (a population of particles)

are represented as X{ = (xa, xi2,..., xiD), and V, = {va, vi2,..., viD) (where D

is number of decision parameters of an optimization problem) respectively. The

best previous position of each particle is represented as Pi = (pa, pa,..., Pio)-

The global best position of all particles is represented by Pg = (pg\, pg2,..., PgD)-

The velocity and position of each particle are updated using relations:

vid = Vid + Cifi(pm - xid) + c2r2(pgd - xid) (3.1)

and

xid = xid + vid (3.2)

where C\ (cognitive constant) and c2 (social constant) are two positive constants,

/"i and r2 are two random numbers uniformly generated between [0, 1]. The

values of ci and c2 are considered to be equal in most PSO literatures to balance

movement of particle in both cognitive and social components. The velocities

of particles are clamped by maximum velocity vector Vmax on each dimension.

The pseudo-code for standard PSO is shown in Fig. 3.1. The global best version

(GBEST) of standard PSO is considered for the experiments in this work.

3.2.2 Variations of PSO

There are several variations to the standard PSO algorithm, a comprehensive

summary of which is given in [7]. In this section, we discuss two basic variations

of PSO. The first is PSO with Inertia Weight Method (IWM) which is proposed

by Shi and Eberhart [13, 86], while the second is PSO with Constriction Factor

Method (CFM) which is proposed by Clerc [14].

Shi and Eberhart [13] introduced Inertia Weight (IW) parameter into original

particle swarm optimizer. The purpose was to balance exploration and exploita-

29



3.2 Partilce Swarm Optimization

Initialize positions and velocities of all particles in the swarm randomly

Repeat

For each particle in the swarm

Calculate the fitness valuef(Xj)

If/pg <f(Pi) then Pi=Xi

End for

Update Ps, if the best particle in the current swarm has lower/fXj than/(Ty

For each particle in the swarm

r/=rand(); r_p=rand();

Calculate particle velocity according to equation (3.1)

Restrict the velocity of particles by [Vmax, V^

Update particle's position according to equation (3.2)

End for

Until maximum iteration or minimum error criteria is attained

Figure 3.1: Pseudocode of standard PSO algorithm
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tion abilities of PSO. Basically, IW controls the momentum of the particle by

weighing the combination of previous velocity. The velocity update Eq. (3.1) is

modified to,

Vid = wvid + Cinipa - Xui) + c2r2(pgd - Xid), (3.3)

where w represents inertia weight which is used to balance local and global search

abilities. Different ways of selecting value of inertia weight are given in literature

[7], which include linearly decreasing IW, nonlinearly decreasing IW, linearly

increasing IW, and fuzzy adaptive IW. In this work, we consider a common

choice of considering linearly decreasing inertia weight from an initial value of

0.9 to final value 0.4.

In another variation, Clerc [14] proposed a different approach to balance the

trade-off between exploration and exploitation. He introduced a constant which

is referred as constriction coefficient to constrict the velocity of particles. The

velocity update Eq. (3.1) is modified to,

Vid = Xhd + ciri[pid - xid) + c2r2(pgd - xid)\, (3.4)

with constriction factor \ defined as

2k
x = Tr> 1 Iml /m>0 = ci+c2,</>>4, (3.5)

|2-0-vW-4)|

where k 6 [0,1] is a positive constant. Here parameter k controls the explo

ration and exploitation abilities of the swarm. A comparison of IWM and CFM

is given in [87]. It was concluded that CFM has relatively better convergence

abilities than IWM.

In the next section, we present a modified PSO considering multiple sub

swarms and apply it to both the above variations of PSO. The proposed algo

rithm (after adapting above modifications) is tested with five benchmark func

tions commonly used in PSO literatures. The results of modified PSO with
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3.3 Particle Swarm Optimizer with Multiple Subswarms

above two variations (IWM and CFM) are compared with standard PSO with

same variations respectively.

3.3 Particle Swarm Optimizer with Multiple Sub

swarms

In this section, a new implementation of PSO algorithm considering multiple

subswarms is presented. This modification is inspired from human knowledge

acquisition process. It can be realized in a society, that an individual obtains

information of a particular thing or event based on his own experience (which

is stored in his own memory) and the information available from global infor

mation sources such as TV, internet, newspaper, etc. These two information

sources can be correlated with the local best and global best positions utilized

by the particles. But, humans (we) also gain information from our local envi

ronment (i.e., from the persons with whom we are in contact). This specifies

that every individual is also part of a local group from which he/she also gains

information. Inspired by this aspect of an individual in the society, we present

a new modification to PSO algorithm in which a swarm is divided into multiple

subswarms. Each particle also considers best information available to the sub-

swarm (local group) in which it belongs. The velocity update equation in the

proposed method is modified to consider the effects of multiple subswarms. The

proposed modified PSO algorithm, which we call PSO with Multiple Subswarms

(PSO-MS), is shown in Fig. 3.2. The major changes in the proposed algorithm

from standard PSO algorithm (Fig. 3.1) are highlighted.

In the proposed algorithm, first we initialize number of subswarms. The

number of particles in each subswarm is defined by total number of particles in

the original swarm divided by number of subswarms. In every iteration of the

modified algorithm, we also find the subswarm's best (Pgt), in addition to the
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Initialize number of subswarms

Initialize positions and velocities of all particlesin each subswarm randomly

Repeat

For each subswarm

For each particle in the subswarm

Calculate the fitness value

Iff(X) <f(Pi) then Pi=X,

End for

Update Pgs, if best particle in the subswarm has lower/ (X) than/(P^)

End for

Update Pg, if the best particle in the swarmhas lov/ctf(X) thanf(Pg)

For each subswarm

For each particle in the subswarm

r/=rand(); r_?=rand(); n=rand();

Calculate particlevelocity according to equation (3.6)

Restrict the velocity of particles by \Vmax, Vma^\

Update particle's position according to equation (3.2)

End for

End for

Until maximum iteration or minimum error criteria is attained

Figure 3.2: Pseudocode of PSO with Multiple Subswarms (PSO-MS)
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swarm's global best (Pg). To consider the effect of subswarm's best, we modify

the velocity update Eq. (3.1) as,

Vid = Vid + cin(pid - xid) + c'2r2{pgd - Xid) + ctfaipgad ~ Xid)- (3.6)

Here, the cognitive component is not changed, and the d still represents cog

nitive coefficient as in standard PSO. We divide social component into two parts:

one representing the effect ofswarm's global best (Pg), while the other represent

ing the effect of subswarm best {Pgs). The social coefficient c2 is modified to

d2 and a new coefficient d3 is added to the equation along with a new random

number r3. Here, we suggest to select the values of Ci, 4 and c3 in sucn a way

that Ci = c2 + c3 and d2 = c3. These restrictions have been imposed in order to

keep the trust ofparticles equal on cognitive and social components. By keeping

equal values of d2 and d3 will lead particle equally towards global and subswarm

best positions.

Our modification also holds true when we do not divide swarm into multiple

subswarms. If we consider the number of subswarms to be one, then Pg and Pgs

will produce the same values and thevelocity update Eq. (3.6) will reduce to Eq.

(3.1) of standard PSO algorithm, provided the value of r3 is same as the value
of r2 and the values of d2 and d3 are chosen as suggested above. In this case, the

algorithm of Fig. 3.2 will reduce to standard PSO algorithm as shown in Fig.

3.1. In this work, we test our algorithm (Fig. 3.2) with number of subswarms

varying from one to five.

The concepts of IWM and CFM (as described inprevious section) are applied

to velocity update Eq. (3.6) in similar way as they were defined in Eq. (3.3)
and (3.4) respectively. The values of d2 and d3 are selected following the restric
tions described earlier. Useful suggestions for parameter selection for both these

variations are obtained from [88] and [89] respectively. Finally, the positions of

particles are updated similar to standard PSO algorithm according to Eq. (3.2).
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3.4 Experiment with benchmark functions

3.4.1 Benchmark functions

To compare the performance of proposed algorithm with standard PSO algo

rithm, five nonlinear benchmark functions commonly found in the PSO literature

[12, 13, 89] are employed. These benchmark functions are shown in Table 3.1.

Among these functions, De Jongs' sphere function and Rosenbrock's functions

are unimodal, while rest of the functions are multimodal. To test these functions

the fitness value was taken equal to the function value.

3.4.2 Experimental settings

In addition to the selection of benchmark functions, there are many experimental

settings to be determined such as the swarm size, maximum number of iterations

for each run, the search space size, etc. To keep these settings as standard as

possible, we follow the simulation settings given in [12] whenever possible. How

ever, the swarm size of 30 is considered for all experiments on test functions

in this work. In order to check the performance with increasing complexities,

the simulations were performed on these functions with three dimensions 10, 20,

and 30 except for Schaffer's f6 function which is of two dimensions. Maximum

iterations are kept at 1000 for Schaffer's f6 function. Maximum iterations for

sphere function are 1000, 2000, and 3000 for dimensions 10, 20 and 30 respec

tively. For rest three benchmark functions maximum iterations are 3000, 4000,

and 5000 for dimensions 10, 20 and 30 respectively. The maximum tolerance

limit for Schaffer's f6 function is 0.00001, while for rest of the functions tolerance

limit is considered to be 0.01. The range of search and initializations for test

functions are shown in Table 3.2. As the optimum objective function value for

all benchmark functions are near origin, initializing particles uniformly random

in the search range would allow the particles to be distributed around origin. So
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Table 3.1: Benchmark functions

Function name Function

De Jongs's sphere function /l = 2Jt=l Xi

Rosenbrock function f2 = j:::i[^o(xi+i-xi)2 + (xi-i)2}

Generalized Rastrigrin function /3 = Er=iK2-10cos(27rxi) + 10]

Generalized Griewank function U=^Zl^-IYU™s(^) +i

Schaffer's f6 function
(sin yjx\ +x22)2 - 0.5

/5-°-5+(o.i +o.ooi(^ +^))'

Table 3.2: Initialization range, search range, and error tolerance

Test function Range of search Range of initializations

h [-100,100]" [50,100]"

h [-100,100]" [50,100]"

h [-10,10]" [2.56,5.12]"

u [-600,600]" [300,600]"

h [-100,100]" [15,30]"

to avoid such biasing, asymmetric initializations as suggested in [12] and [90] are

used in the experiments. The maximum velocity Vmax is considered equal to half

the range of search i.e., Vmax= -yXmax [89] where the value of 7 is considered to

be 1 (remember the search range is [-Xmax, Xmax}). Eberhart and Shi [87] also
suggest limiting the maximum velocity Vmax to dynamic range of the variable

Xmax on each dimension.
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3.4.3 Experimental results and discussions

In this section, comparison of PSO-MS is made with standard PSO for both the

variations IWM and CFM respectively. Table 3.3 shows the performance of PSO-

MS and PSO with IWM for all five benchmark functions, while Table 3.4 shows

the performance of PSO-MS and PSO with CFM. To neutralize the randomized

effects due to probabilistic nature of EAs, the results presented in the tables

are average of 50 simulations (runs) for each function. In the tables, when the

number of subswarms is one, no division of particles in the swarm takes place

and it refers to standard PSO, while the number of subswarms two to five refer to

PSO-MS. In the tables, results are shown considering three performance metrics

[12]: average achieved optimum value out of 50 runs, number of successful runs

out of 50 runs, and average generation of success from the set of successful runs.

The best results, considering all three metrics in all cases, are highlighted with

bold faces in both the tables.

It is observed from Table 3.3 and Table 3.4 that PSO-MS with two subswarms

outperforms standard PSO in terms of number of successes and average obtained

optimum value. Moreover, it is observed from Table 3.3 and Table 3.4 (in most

cases) that PSO-MS with two subswarms obtains similar or better performance

in less number of iterations. This leads to reduction in computational expenses.

It is observed from both the tables that average generation of success is lower

for PSO-MS than PSO for all subswarms. It is also observed for both PSO

variations that for generalized Rastrigrin's function with dimension 20 and 30

and Rosenbrock's function with dimension 10, PSO-MS obtains higher average

optimum value than PSO. The comparison of Table 3.3 and Table 3.4 shows that

for most of the cases PSO-MS and PSO with CFM obtain better performance in

less number of iterations than PSO-MS and PSO with IWM respectively which

is also a conclusion in [87]. Finally, a comparison of total number of successes for

IWM and CFM shows that PSO-MS with two subswarms obtains more number
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of successes than standard PSO in both the variations. Here, we also observe the

classic case of time-accuracy trade-off. It can be seen from the tables that as the

number of subswarms increases, keeping the swarm size same, faster convergence

is obtained while decreasing the number of successes. Now, if we need greater

accuracy, the swarm size should be increased accordingly, which again results in

larger computational time due to more Function Evaluations (FEs) that have

to be performed. Hence, in our experiments, two number of subswarms are

found to give optimum performance in most test cases. Here, the values of Ci,

d2 and c3 were considered to be 2, 1 and 1 respectively for IWM. For CFM, it

was observed that performance is sensitive to the values of cu d2, and d3 (the

similar conclusion is also drawn empirically in [89]). Therefore values of these

parameters were manually optimized in CFM for each test case.

3.5 Experiment

3.5.1 Design of coupled microstrip line band pass filter

In this section, as a case study of microwave components, we have considered

the design of microstrip filters. Microstrip filters have become popular due to

their small size, low cost, and good performance. Various topologies available for

implementing microstrip filters are end coupled, parallel coupled, hairpin, inter-

digital and combined filters [91, 92, 93, 94, 95]. Parallel coupled microstrip lines
have been selected for implementation of microstrip filters in this experiment.

We have considered the design of Chebyshev band pass filter for approximately

1 GHz bandwidth centered at 2.5 GHz frequency. The specifications for the

problem are given in Table 3.5.

The general layout of the coupled microstrip line filter considered for the
problem is shown in Fig. 3.3. It is made of cascaded coupled line sections.
Skew-mirror symmetry has been used in developing the structure (i.e., structure
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Table 3.3: Performance comparison of PSO-MS and PSO with IWM

Fn. Dim. Average achieved optimum value
(Standard deviation)

Number of successes

(Average generation of success)
Number of subswarms

1 2 3 4 5 1 2 3 4 5

/i 10 0.01(-) O.Ol(-) 0.01(-) 0.01(-) 0.01(-) 50(566) 50(391) 50(403) 50(419) 50(428)
20 0.01(-) O.Ol(-) 0.01(-) 0.01(-) 0.01(-) 50(1291) 50(851) 50(878) 50(915) 50(934)
30 0.01(-) 0.01 (-) O.Ol(-) 0.01(-) 0.01(-) 50(2081) 50(1344) 50(1394) 50(1453) 50(1479)

h 10 25.19

(62.34)
32.85

(84.40)
55.48

(135.11)
66.78

(122.03)
69.06

(139.94)
1

(2365)
2

(1997)
1

(1620)
0

H

0

H
20 131.94

(269.92)
56.05

(83.92)
49.75

(72.59)
121.24

(210.96)
167.31

(301.86)
0

(")

0

B

0

(-)

0

(-)

0

(")
30 186.85

(370.73)
89.27

(141.64)
103.99

(16.43)
252.12

(394.40)
241.79

(388.54)
0

(-)

0

(-)

0

(-)

0

(-)

0

(-)
h 10 2.30

(1.55)
2.20

(1.18)
2.54

(1.27)
2.74

(1.82)
2.84

(1.44)
3

(1904)
4

(1349)
4

(1531)
3

(1943)
2

(1958)
20 14.20

(4.68)
15.79

(5.98)
16.35

(5.82)
15.62

(5.20)
13.69

(4.76)
0

H

0

(-)

0 0

(-)

0

(")
30 31.44

(7.15)
35.32

(10.23)
37.70

(9.06)
39.36

(9.75)
36.01

(8.70)
0

(-)

0

(-)

0

(-)

0

(-)

0

(-)
h 10 0.075

(0.035)
0.054

(0.030)
0.073

(0.042)
0.08

(0.045)
0.075

(0.041)
0

(-)

2

(1182)
1

(1092)
1

(1928)
0

(-)
20 0.026

(0.026)
0.021

(0.015)
0.024

(0.021)
0.022

(0.016)
0.034

(0.027)
22

(2339)
24

(1511)
22

(1614)
19

(1612)
17

(1646)
30 0.02

(0.015)
0.015

(0.011)
0.018

(0.015)
0.020

(0.018)
0.027

(0.027)
27

(3222)
30

(2032)
25

(2076)
27

(2152)
24

(2177)
h 2 0.00097

(0.0029)
0.00078

(0.0026)
0.0013

(0.0033)
0.0025

(0.0042)
0.0038

(0.0047)
45

(532)
46

(417)
43

(482)
37

(453)
30

(490)
Total successes

(Total iterations)
248

(14300)
258

(11474)
244

(11090)
237

(10875)
223

(9112)
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Table 3.4: Performance comparison of PSO-MS and PSO with CFM

Fn. Dim. Average achieved optimum value
(Standard deviation)

Number of successes

(Average generation of success)
Number of subswarms

1 2 3 4 5 1 2 3 4 5

h 10 O.Ol(-) O.Ol(-) O.Ol(-) 0.01(-) 0.01(-) 50(66) 50(48) 50(81) 50(94) 50(182)

20 O.Ol(-) 0.01 (-) 0.01(-) O.Ol(-) O.Ol(-) 50(221) 50(132) 50(283) 50(348) 50(387)

30 O.Ol(-) 0.01 (-) O.Ol(-) o.oi (-) 0.01(-) 50(385) 50(364) 50(464) 50(663) 50(953)

h 10 22.12

(48.18)
27.77

(65.89)
30.04

(72.22)
53.99

(97.27)
25.81

(83.83)
6

(2547)
4

(1968)
1

(2636)
1

(1428)
1

(2435)

20 43.36

(89.99)
38.32

(75.41)
46.28

(84.60)
70.97

(115.01)
89.17

(121.25)
2

(3116)
3

(3266)
3

(3784)
0

(-)

1

(3930)

30 54.29

(84.64)
41.33

(65.62)
65.11

(149.2)
148.26

(399.28)
120.20

(199.99)
1

(3712)
1

(3331)
0

H

1

(4859)
0

(-)

h 10 2.30

(1.48)
2.32

(2.05)
2.38

(2.10)
3.10

(2.05)
4.34

(2.81)
4

(1920)
7

(2085)
5

(2533)
4

(2494)
1

(2760)

20 11.44

(4.15)
12.07

(5.65)
14.65

(5.33)
15.84

(5.35)
14.78

(7.51)
0

(-)

0

H

0

(")

0

(-)

0

(-)
30 26.34

(8.17)
30.0

(10.65)
35.04

(11.94)
35.26

(10.18)
38.02

(14.42)
0

(-)

0

(-)

0

(-)

0

(-)

0

H

U 10 0.069

(0.034)
0.059

(0.029)
0.066

(0.035)
0.073

(0.042)
0.079

(0.051)
1

(1376)
2

(894)
0

(-)

2

(353)
1

(554)

20 0.032

(0.059)
0.026

(0.020)
0.028

(0.023)
0.030

(0.030)
0.069

(0.083)
18

(263)
21

(305)
19

(350)
20

(399)
8

(453)

30 0.037

(0.063)
0.017

(0.016)
0.035

(0.039)
0.13

(0.21)
0.44

(2.14)
23

(419)
30

(413)
25

(493)
7

(686)
5

(741)

h 2 0.0013

(0.0033)
0.00039

(0.0019)
0.0013

(0.0013)
0.0013

(0.0031)
0.00244

(0.0041)
40

(326)
47

(432)
43

(456)
38

(592)
33

(517)

Total successes

(Total iterations)
245

(14351)
264

(13138)
243

(11094)
223

(11916)
200

(12912)
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Chapter 3. PSO with Multiple Subswarms and its Application to the Design of
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Table 3.5: Design specifications of coupled microstrip line band pass filter

Center frequency /o 2.5 GHz

Bandwidth (A/) 1.0 GHz

Pass-band ripple (La) 0.3 dB

Source and load impedance (Z0) 50 Q

Y

•tf=
^1

IfWil

Li

X

: "•

\ , 1
1

^-^

Figure 3.3: Geometry of coupled microstrip line band pass filter

on the left side of Y-axis is obtained by rotating right side structure 180° about

Z-axis). In this problem, for each coupled stripline section, we have considered

length of stripline (Li), width of stripline (Wi), and separation between striplines

(Si) as design parameters as shown in Fig. 3.3. The number of coupled stripline

sections is considered to be 4 on either side of vertical axis, thus making total

number of design parameters 3*4=12. The range of values considered for the

design parameters are shown in Table 3.6. The goal here is to get optimum

combinations of these parameters that obtain bandwidth of 1.0 GHz resonanced

at 2.5 GHz while minimizing reflection coefficient Sn within the band.

3.5.2 Experimental results

The design of filter was carried out using PSO-MS with both variations IWM and

CFM considering two subswarms. To compare the output response of PSO-MS,
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Table 3.6: Range of values for the design parameters

Name of design parameter Range (mm)

Length of stripline (Li) [20.5, 23.0]

Separation between striplines (Si) [0.1, 0.4]

Width of stripline (Wt) [1.0, 3.5]

the design optimization was also carried out using standard PSO, again with
both the variations IWM and CFM. The design problem considered here has

equality constraint of maintaining center frequency at 2.5 GHz. In this design
with PSO-MS and PSO, a well-known penalty based approach as described in [7]

is adopted for constraint handling. For handling boundary constraints, a three

wall method (i.e., reflecting wall, absorbing wall, and invisible wall) is suggested
in [52]. In the absorbing wall method, when the particle violates the boundary
constraint in any dimension, the velocity in that dimension is made zero. In

our experiments, we used a method similar to absorbing wall, but with small
variation. In our method (which we refer to it as sticky wall method), when the

boundary constraint is violated, the velocity is not reduced to zero, but the cut

off limit is imposed to the position of particle in that direction so that particle

sticks to thewall and do notcross the range. This method ishelpful, particularly,

when the optimum value for that dimension is at the boundary. If the optimum

is not at the boundary, then the particle will eventually come into the design

space again with the effect of individual best and global best positions. The
fitness function considered for the design in this problem is given as,

FitnessFunction = ax(\BW - 1.0|) - a2(nf.n/nf) + a3(\CF - 2.5|) (3.7)

where BW is the bandwidth obtained in GHz (BW is obtained at 10 dB

level from the graph of S-parameters), nfsn is number of frequencies within
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the desired band for which Su < —15 dB, nf is total number of frequencies

considered during simulation in the desired band, CF is the frequency at which

resonance is obtained. The weights Oi, a2, and a3 are constants and can be

chosen as per the requirement of larger BW, lower reflection (Su) or resonance

matching. In this experiment the values of a\ and a2 were considered to be 1,

while the value of a3 was considered to be 2.

In this work, a MoM based EM simulator IE3D [96] was used to obtain filter

response. A typical simulation using this simulator takes few minutes (approx.

3-4 min.) of time to give the response on a latest workstation. A program

interface was prepared and the EM simulator was invoked in iterative loop of the

optimization algorithms. As evolutionary algorithms such as PSO require many

iterations to converge to a desired objective, the resultant problem becomes

computationally expensive if simple PSO is used.

In the design optimization process, PSO-MS (with two subswarms) and PSO

were executed with 10 particles for fixed 50 iterations. The convergence graph

for all four simulations is presented in Fig. 3.4. It is observed from the graph

that PSO-MS converged faster towards better fitness value than PSO for both

the variations (This can be concluded from the graph that at any time, the value

obtained by PSO-MS is closer to the desired objective than the value obtained by

PSO in both variations). The optimum filter response (S-parameters) for IWM

is shown in Fig. 3.5.2, while for CFM is shown in Fig. 3.5.2. The BW of 1.01

GHz and 0.75 GHz were obtained with PSO-MS and PSO respectively for IWM,

while the BW of 1.02 GHz and 0.99 GHz was obtained with PSO-MS and PSO

respectively for CFM. It is seen from the figures that for IWM, PSO-MS obtains

higher BW and produce the design which is near to the desired objective than

PSO with same number of iterations, while in case of CFM, both PSO-MS and

PSO obtain desired results.
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Figure 3.5: Comparison of filter response using PSO-MS (with two subswarms)

and standard PSO with IWM
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2.5

Frequency (GHz)

Figure 3.6: Comparison of filter response using PSO-MS (with two subswarms)

and standard PSO with CFM
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3.6 Concluding remarks

In this chapter, we introduced a new paradigm of multiple subswarms for search

ing parameter space with PSO algorithm. The social component of PSO's veloc

ity update equation was modified to consider the effects of multiple subswarms.

The concept was implemented for two basic PSO variations - IWM and CFM.

The results show that the modified PSO with two subswarms leads faster con

vergence while improving the quality of solution compared to standard PSO. It

was also observed that PSO-MS gives desired results within the framework of

time-accuracy trade-off. We have also observed that parameters Ci, 4 and 4

in CFM are critical for the convergence of the algorithm and have to be chosen

carefully. All simulations on test functions were carried out with swarm size 30.

Yet improved performance can be obtained by using swarm size 50 or greater

r but it would also increase number of FEs.

At last the modified PSO was used for the design of coupled microstrip-line

band-pass filter and its result was compared with the design results obtained

using standard PSO. The comparison of results for the microstrip filter design

problem proves the applicability of proposed approach in real time design prob

lems where computational time is an important factor. Another advantage of this

. algorithm is that it can be parallelized easily as each subswarm's computation

can be done on a separate processor.
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Chapter 4

Support Vector Driven

Evolutionary Algorithms for the

Design of Microwave

Components

4.1 Introduction

Commercial growth in the use of microwave products necessitates efficient design

of components in a small time frame. A Computer Aided Design (CAD) approach

is adopted to minimize the time required to obtain an optimized design. In order

to use CAD models, the results predicted by them should be consistent with

the actual results [97, 98]. However, due to very small wavelengths involved in

microwave design that require high precision, it is not easy to model components

of RF/microwave domain.

Full-wave EM simulators are widely employed for the analysis of microwave

components. These simulators give desired solutions and are called fine models.

A limitation of these models is that they are computationally expensive, espe-
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daily when they are invoked in the optimization algorithms such as GA, PSO,

etc. [99]. Besides this, a proper design may not be obtained using EM simula
tors alone, when the number of constraints are more. In order to remove these

drawbacks, we may use mathematical curve fitting techniques that obtain data

from experimental measurements or EM simulators. These models are referred

to as coarse models [100]. However, these models have inherent limitations of

accuracy and validity over a restricted range of parameter values.

ANN models trained by EM simulated data have been used to balance the

trade-off between computation time and accuracy since lastdecade [1, 100, 101].

ANN models, once trained with a data set, have provided models that arealmost

as accurate as fine models and as fast as coarse models. However, the general

ization accuracy achieved by the ANN based models of microwave components

needs improvement to increase the effectiveness of CAD. A strong competitor

of ANN which has gained popularity due to its generalization ability in recent

years is Support Vector Machine (SVM). SVM is a machine learning tool designed

to automatically deal with the accuracy-time trade-off by minimizing an upper

bound on the generalization error [11]. In this chapter, we present an efficient

modeling of microwave components using SVM framework. We also present a

hybrid approach combining SVM with evolutionary algorithms and use it for the

design of specific microwave components. Three different examples are presented

showing the effectiveness of SVM based modeling and the proposed hybrid ap

proach. These examples include: effective modeling of a one-port microstrip via,

design of a circular polarized microstrip antenna, and design of a simple aperture

coupled microstrip antenna.

The chapter is organized as follows. Section 4.2 presents a comparison be

tween ANN with SVM, conceptual background ofSVM, and framework for SVM

based microwave modeling. The hybrid approach combining SVM with evolu

tionary algorithms is presented in section 4.3. Section 4.4 presents modeling and
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design of three microwave components mentioned earlier. Finally, concluding

remarks is given in section 4.5.

4.2 Support Vector Machine and microwave mod-

^^
ehng

•ACCNo.

Date.

4.2.1 Comparison of ANN and SVM
£^ROO£g

Before discussing conceptual background of SVM, let us first compare it with

traditional neural network. Artificial Neural network (ANN) has long been used

as a machine learning tool in many research and commercial applications to learn

the underlying function, mapping the input and output data from a large data

set [9, 102]. Although it is capable of achieving any degree of training accuracy in

approximating the underlying nonlinear function its generalization ability (error

in predicting data not present in training set) is not as accurate. The reason is

that ANN tries to minimize the empirical risk (error on training data). SVM on

the contrary tries to minimize the upper bound on the expected risk. The direct

consequence is that ANN may end up finding the local minima in minimizing

the generalization error, whereas SVM is always guaranteed to find the global

minima.

ANN, as mentioned earlier, is based on minimizing the empirical risk and,

hence, it is data intensive. Without proper quality and quantity of data, the

generalization achieved by ANN would be very poor. SVM however relies on

minimizing the structural risk. Therefore, for a given training set, SVM general

izes better compared to ANN. Moreover, the time required for developing a SVM

model of a microwave component is much lower compared to that of an ANN

model because of the need for fewer data in training. This is very exciting feature

of SVM over ANN when generation of data using EM simulations is expensive.
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The prediction of unseen data in ANN is done based on weights modified

during the training process. The presence of outliers in training set influence the

final state of ANN after training. However in case of SVM, prediction of unseen

data is done by considering only few training data which are known as support

vectors (explained in section 4.2.2) and hence presence of outliers in the training

set may not influence the generalization accuracy of SVM. Data for developing

a model for microwave components is obtained usually from experimental setup,

and the probability of presence of erroneous data is high. Since prediction of

output in SVM is based on support vectors, probability of the erroneous data

influencing the model obtained is minimal as compared to ANN.

The performance of ANN heavily depends on the structure of the network

(i.e., the number of hidden layers, the number of neurons in each layer etc.).
However there is no well defined methodology to determine the optimal network

structure for a particular problem. The possible network structure is obtained

by trial and error basis. Therefore, obtaining the best network structure requires

expertise. In case of SVM, recent works [103] suggest that the structure of SVM

can be pre-decided using training data analysis. Hence, developing a SVM based

model of a component is much simpler as compared to ANN.

In ANN, the mechanism to predict the output after training, is encoded in

the weights and threshold. Therefore, it acts like a black-box and theoretical

explanation of why a particular value was predicted is very difficult to arrive at.

In case ofSVM, the results obtained can be analyzed theoretically using concepts

from computational learning theory.
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4.2.2 Support Vector Machine

Conceptual background

Support vector machine (SVM) is a machine learning technique developed by

Vapnik [11]. It is based on the principle of statistical learning theory. SVM

was initially developed for pattern recognition task but later on its application

was extended to regression problems. Support Vector Regression (SVR) is found

to give robust and effective model of the process under consideration [69]. The

models developed using SVR are simple and their evaluation is fast. No prior

knowledge about input/output mapping is required for the model development.

An increasing number of engineers and researchers from diverse fields have begun

to take a serious interest in this emerging technology. The hypothesis generated

using SVM involves both structural risk minimization (SRM) and empirical risk

minimization (ERM). This makes SVM much more powerful in generalizing than

traditional ANN which only minimizes empirical risk. The key ideas of SVM are:

nonlinear mapping from input space to high-dimensional feature space using a

kernel function and finding an optimum hyperplane that maximizes generaliza

tion ability [11, 69].

Support Vector Regression

Learning systems for SVR estimation is described in [69, 104, 105]. Given a set

of input-output training data (xi,yi) G BJ1 x R, i=l to I, we?j§ed to estimate

a function / : Rn —> R that will correctly predict unseen examples generated

from the same underlying probability distribution as the training data. The

hypothesis of SVM maps the original input space into a high dimensional space

via a kernel. This higher dimensional space is called feature space, in which an

optimal hyperplane is determined to maximize the generalization ability [106].

The generic support vector regression estimation function takes the form:
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4.2 Support Vector Machine and microwave modeling

f(x) = (w$(x) + b) (4.1)

where, w GRn,b GR and $ denotes a nonlinear transformation from Rn to a

high dimensional feature space. Our goal is to find the value of wand bthat

minimize the regression risk defined as:

R(f) =h\i42+cJ2Tv^-'^ (42)
where T is the cost function, C is a constant, and vector w can be written in

terms of data points as:

i

= J2(ai-a;)Hxi). (4.3)

The e-insensitive loss function [106] is the most widely used cost function.

This function is of the form:

(o, for \f(x)-y\<£T(f(x)-y) ={ (4-4)
I \f(x) ~ III ~ e' otherwise.

The regression risk in Eq. (4.2) and the e-insensitive loss function in Eq. (4.4)
can be minimized by maximizing the following dual optimization problem with

respect to a and a*,

i i 1 '

W(a,a*) =Y,y^ai ~a^ ~£^{ai +a'] ~2.?{ai ~a*1 )(ft'j " a**)K(XhXj)
(4.5)

with constraints

J2(cn - a*) =0, where on, a* G[0, C], i=1,... I.
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Here, a, and a* are Lagrange multipliers which represent solutions to the

above quadratic problem. Only the nonzero values of the Lagrange multipliers

in Eq. (4.5) are useful in forecasting the regression curve and are known as

support vectors. The constant C introduced in Eq. (4.2) determines penalties

to estimation errors. A large C assigns higher penalties to errors so that SVM

is trained to minimize error with lower generalization, while a small C assigns

fewer penalties to errors. This allows the maximization of margin with errors,

thus higher generalization ability.

The approximation for nonlinear data set is accomplished with the use of ker

nel functions. According to Christianini and Shawe-Taylor [104], one of the most

important design choices for SVM is the kernel-parameter, which implicitly de

fines the structure of the high dimensional feature space where a maximal margin

hyperplane is found. Too rich a feature space would cause the system to overfit

the data, and conversely the system might not be capable of approximating the

data if the kernels are too poor.

4.2.3 Framework for modeling microwave components us

ing SVR

The steps in modeling microwave components using SVR are described as follows.

Identification of input and output: The preliminary step towards develop

ing an SVR model is the identification of inputs and outputs of the problem

to be modeled. Inputs for this work are the variable design parameters of the

microwave component being modeled. Model outputs are determined based on

the purpose of the model. This is typically the metric (e.g. S-parameters, band

width, etc.) that is used for evaluating the performance of the component being

modeled.

Generation of training and test data: Training data for modeling the com

ponent is obtained by performing experiments or simulations for a set of sample
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£ZA

vrv
Figure 4.1: Hypercube illustrating the selection of initial design parameters. The

three dimensions of the hypercube represent the three variable design parame

ters. The edges along a dimension represent the operating range for which the

model of the component needs to be prepared. Circles indicate the initial design

parameters that are chosen.

inputs. The sample inputs are chosen in such a way that the behavior of the

component with respect to design parameters is completely obtained. The ini

tial structures (training data) for simulation are identified based on Design Of
Experiments (DOE) methodology [98]. This method is generally used to study
and model the input-output relationship for a given process or component. The

range of all input parameters of the component being modeled are identified.
The range of an input parameter forms a line segment in single dimension, and

if the all the input parameters are considered simultaneously in N-dimensional

space, it would form a hypercube as shown in Fig. 4.1. The initial value of the
design structures are chosen as the corners of the hypercube, the midpoint of the
edges of the hypercube, and the center of the hypercube. To generate test data,
sample inputs are generated randomly from the range of design parameters. The
experiments or simulations are carried out on these training and test inputs to

get actual training and test outputs.

Input scaling: In input scaling, we scale each input parameter values in the
train data set between +1 to -1. This form of normalization prevents one of the
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variables to dominate in the prediction of output variables.

Kernelfunction selection: Various kernel functions such as linear, polynomial,

RBF (Gaussian and exponential), sigmoid, splines can be used for mapping of

input space to high dimensional feature space and they are elaborated briefly in

[15, 105]. The popular choices for kernel functions are,

RBF(Gaussian) Kernel: K(x,x') =exP(~Wx ~X'W ) u^

Polynomial Kernel: K(x,x') = (< x + x' > +c)p (4.8)

where l/(2a'2) = 7 (gamma) ofGaussian-RBF kernel and p (degree ofpolynomial

kernel) are critical parameters, while c in polynomial kernel is a constant.

Model selection: One of the important choices in developing an SVR model

is the selection of model parameters (also known as hyperparameters) which in

clude kernel parameters, the penalty of estimation error (C), and the value of

e. The value of kernel parameter implicitly defines the structure of the high di

mensional feature space where a maximal margin hyperplane is found. Too rich

feature space would result in over-fitting of data and if the kernels are too poor,

data would not be predictable. Parameter selection thus involves obtaining the

optimal values of C, e and a which would maximize the generalization ability.

One of the model selection techniques commonly employed in literature is grid

search. The elementary step in grid search is cross validation [107]. In a f-fold

cross-validation, training set is first divided into v subsets of equal size. Sequen

tially each subset is tested using the SVR, which is trained on the remaining v-1

subsets. Thus, each instance of the whole training set is predicted once. The

cross-validation accuracy is a measure of error in prediction of the data. The

goal of model selection is to determine which combination of C, e and a has the

maximum cross validation accuracy (minimum error). Various combinations are

tried for the three parameters by sampling the search space at discrete intervals.

Once the combination with minimum mean squared error is found, the search is

57



4-2 Support Vector Machine and microwave modeling

performed around the combination with a reduced sample interval. This proce

dure is repeated until there is no significant improvement in the cross validation

accuracy. Few other methods for tuning hyperparameters ofSVM are suggested

in literature [81, 108].

Training: Once the optimal parameters for the kernel are chosen, we train

the SVR. This involves identifying the support vectors in the train data. Support

vectors are input points which are closest to the optimal hyperplane. The output

of training is an SVR model. The regression model obtained is then used to

predict the output values (performance) for various inputs (design parameters).

If the accuracy of the model is not within the acceptable limits (indicated by

high value of cross-validation mean squared error) the process is repeated with

simulations performed using more variations in design parameters.

Testing: The accuracy of model in predicting unseen data is verified by pre

dicting the performance of an independent dataset (test data set). The test data

set is scaled between +1 and -1 using the same scaling parameters as used in the

input scaling step. The output field of the test data set is predicted using the

model file obtained after training SVR. The accuracy of prediction is defined in

terms of Mean Squared Error (MSE) and Average Relative Error (ARE). MSE

and ARE are computed as follows:

Error- = PredictedValue - ActualValue, (4.9)

yn,Error2 ,. inx
MSE = ^^ L, (4-10)

n

V™ ( ErroTi \
^*=1 \ActualValuei)

n

where n is the number of sample points in test data set. After computing the

accuracy on the test data set, it is determined if the accuracy of the model is
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acceptable by comparing it with a threshold value. The threshold is chosen based

on how much accuracy can be obtained while making a physical design of the

actual structure.

Step for improving the accuracy: As SVR is not data intensive compared

to ANN, we may start with fewer training samples to model the component.

If the generalization accuracy is below the acceptable level, additional training

data are included. The dimensions of the additional structures are chosen as the

midpoints of the points chosen during first iteration. The modeling process is

repeated with additional training data. The need for this iterative process is due

to the number of structures that have to be simulated for obtaining an accurate

model can not be predetermined for a specific component.

4.3 Support Vector driven Evolutionary Algo

rithms: A hybrid approach

In recent years, the EM analysis of most microwave components is performed

using EM simulation tools. Evolutionary algorithms (EAs) such as genetic al

gorithm and particle swarm optimization algorithm can be used for optimizing

design parameters of microwave components. This requires invoking EM sim

ulation tools in the optimizing loop of EAs. Due to iterative nature of EAs,

the entire process becomes computationally expensive. A modified method with

PSO was discussed in chapter 3 of this thesis. It reduced the number of iter

ations up to some extent in order to reduce the computational expenses. An

alternative way of solving this problem is to make use of metamodel. A meta

model is a 'model of the model'. The number of metamodeling techniques such

as ANN, SVR, response surface methodology, regression splines, etc., [15] can be

used to create model of the time consuming EM simulation process. We use here

support vector regression method for creating metamodel (model henceforth) of
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M

the process.

In this section, we present a hybrid approach combining SVR with EAs such

as GA and PSO for the design of microwave components. We call this approach

as Support Vector driven Evolutionary Algorithms (SVEA). In this method, we

first create SVR model for getting response of the component to be designed.

The data for training SVR can be obtained using experiments with EM simula

tors by varying design parameters in a pre-decided range. The range of design

parameters are decided based on the simulation response of initial geometry and
expert domain knowledge. The data generated empirically are used to create

SVR model following steps specified in previous section.

The SVR model, thus created, is used as a metamodel replacing the compli

cated and time consuming parametric analytical procedure carried out by the

EM simulator. The SVR model is invoked in the optimization loop of EAs as ^

a fitness function for optimizing design parameters of microwave components.

The exciting advantage obtained with SVR model is that it responds quickly
(approximately in milliseconds) compared to iterative parametric analysis of EM
simulator response (approximately in minutes and generally it depends on the

complexity of the structure). Here, we use two EAs - GA and PSO to optimize
the design parameters by invoking SVR, model as its fitness function. As SVR
model responds quickly, it is easy for EA to perform large number of iterations to

optimize design parameters. Asimple block diagram for the proposed approach
along with conventional approach of using EM simulator, and the design ap
proach using EA (which invokes EM simulator directly as its fitness function) is
shown in Fig. 4.3. It should be noticed here that number of simulations required
to generate training data to prepare SVR model are far less than number of sim
ulations required if the optimization would have conducted by directly invoking
the EM simulation tools in the fitness function of EA (see (b) of Fig. 4.3).

In the next section, we present three experiments demonstrating the effec-
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Figure 4.2: (a) Traditional approach of design using EM simulator (Using expert

domain knowledge, and hit-and-trial method) (b) Design using EA by directly

invoking EM simulator as its fitness function (c) Design using proposed approach

SVEA
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tiveness ofSVR based modeling and efficiency of the presented hybrid approach

in designing microwave components.

4.4 Experiment

4.4.1 Modeling of one-port microstrip via using SVR

Problem description

The first component we considered for modeling is a broadband GaAs one-port

microstrip via. The top view of the via structure is shown in Fig. 4.3 [1, 100].

It consists of two planes, the ground plane and the substrate plane. The ground

plane is placed at a height 0 and the substrate plane is placed at a height Hsub

above the ground plane. The excitation signal is supplied to the component by

means of a feedline through a port in the ground plane. The structure shown in

Fig. 4.3 is a metal sheet on top of the substrate. Via is a hole drilled from the

metal plate to the ground plane. er is the dielectric constant of the substrate

medium. The height of the substrate (Hsub), the dielectric constant (er), and all

loss parameters are considered constant for this experiment. The width of the

incoming microstrip line (Wj), the side of the square shaped via pad (Wp) and
the diameter ofthe viahole (Dvia) are the three variable geometrical parameters.

The component is characterized in terms of its S-parameter (Su) which specifies

the proportion of input energy that is reflected back.

While using this component in a microwave circuit, different combinations

of the variable design parameters are tested to obtain the optimal performance

of the overall circuit. Thus, the objective of the modeling in this problem is to

predict the performance of the component for a particular design specification.
This is done by obtaining a relationship between particular values of the variable
design parameters and the S-parameter corresponding to those particular values.
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Figure 4.3: GaAs microstrip ground via geometry [1]

Table 4.1: Range of input parameters for modeling of one port GaAs Microstrip

Via

Input Parameter Range

Frequency [5-55] GHz

Wi/Wp [0.3-1.0]

" pi ±Jvia [0.2-0.8]

Wt/Hsub [0.1-2.0]

The characterization of the component at various frequencies is also required,

since the circuit in which the component is used may be operating at various

frequencies. The input variables we consider for modeling are three ratios of

geometrical parameters Wi/Wp, Wp/Dvia, and W[/Hsub, and the frequency is

also considered as fourth parameter. The range of these parameters considered

for modeling are shown in Table 4.1. Output variable is the magnitude of Su

(S-parameter for one port) referenced at 50 Q, port termination.

Experiment and Results

Training data was obtained by performing simulations on the IE3D simulator

[96]. Simulations were performed with frequency varying from 5 to 55 GHz.
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Each simulation is performed by varying the values of input parameters in the

range shown in Table 4.1. In order to minimize the number of simulations that
need to be performed as well ascapture the complete behavior of the component

the initial structures that are to be used for training need to be carefully chosen

carefully. The procedure used for selecting the initial training set is discussed
in section 4.2.3 If it is found that the input-output relationships of the compo

nent have not been sufficiently captured (when cross validation error is high),

additional simulation points are added to fit the higher order nonlinearities.

After obtaining the training data, the SVR model of the component was

obtained using the procedure described in section 4.2.3. In order to compare the

performance of SVR based model, a Feedforward ANN (FF-ANN) model was

designed. Best results for the feed forward ANN were obtained using 10 neurons

in the hidden layer. TanSigmoid was used as the activation function of thehidden

layer, while a linear function is used for the output layer. The ANN model was
designed using MATLAB Neural Network toolbox. Over-fitting of data during

training is prevented by using simultaneous testing. The overall data set was

divided into train data and simultaneous test data. Neural network was trained

using the train data and accuracy of training is determined by predicting the

simultaneous test data. The training iteration was repeated as long as the error

in predicting simultaneous test data is non-increasing. The training accuracy is

also verified on an independent test data set. Fig. 4.4 illustrate the plots of the

actual values with the values predicted by FF-ANN and SVM respectively. The

comparison of S-parameters (magnitude) using SVM, FF-ANN and actual values

for two independent test cases are shown in Fig. 4.5 and Fig. 4.6 respectively.

The accuracy of modeling for the various models is given in Table 4.2. It can be

noticed that SVM provides significant improvement in performance over ANN

model.
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Figure 4.4: Plot of actual values vs. predicted values using SVR and Feedforward

ANN

4.4.2 Design of circularly polarized microstrip antenna

using Support Vector driven Genetic Algorithm

Problem description

Aperture coupled Microstrip Antennas (MSA) are widely used in wireless appli

cations [93, 109, 110, 111, 112, 113, 114]. The circular polarization of antenna

is required to make the devices independent of orientations. A method for im

proving axial ratio bandwidth of circular polarized microstrip antenna is given in

[115]. In this experiment, we used the presented hybrid soft computing approach

for improving the bandwidth of the circular polarized microstrip antenna. The
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Table 4.2: Accuracy of modeling one-port microstrip via
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Figure 4.5: Plot of magnitude of S-parameter against frequency for dimension:
Wx/Wp = 0.4, Wp/Dvia = 0.3 and Wx/Hsub = 0.2.
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Figure 4.6: Plot of magnitude of S-parameter against frequency for dimension:

Wi/Wp = 0.75047, Wp/Dvia = 0.34897 and Wi/H^j, = 1.0
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geometry of the MSA considered for the design here is shown in Figure 4.7. It
consists of two dielectric layers both having same dielectric constants and loss

tangents. The antenna design employs air gap between two substrate layers.
The top layer is of dielectric sheet which supports patch. The bottom layer is

a dielectric sheet which supports microstrip feed line on one side and slot on

other side. In the proposed design, antenna patch is perturbed by inserting dif

ferent length slits (horizontal and vertical, see Fig. 4.7(a)) for the generation of

circular polarization [109]. The right circular polarization is obtained here by

maintaining length of horizontal slit less than the length of vertical slit [111].

Our aim in designing Circular Polarized Microstrip Antenna (CPMSA) is to

maximize its Axial Ratio (AR) bandwidth (for AR j3 dB) with resonance at 2.6

GHz. The Axial Ratio Bandwidth (ARBW) of microstrip antenna is given as,

ARBW(%) =(/h7/l) x100 (4.12)
,/c

where fH and fL are upper and lower frequencies considered at 3 dB from AR

vs. frequency plot respectively and fc is the resonant frequency. The constraints

considered for the optimization are to maintain Voltage Standing Wave Ratio

(VSWR) in its feasible range (A VSWR < 2ensures good performance for wide
band operation), to maintain right circular polarization, and to maintain working

frequency at 2.6 GHz. Four design parameters of microstrip antenna (see Fig.
4.7) namely horizontal slit length, vertical slit length, patch length (squared patch
is considered), and slot length are considered for optimization. The objective

function considered for optimization is defined as,

fobj = -a(ARBW) + b\CF - 2.6| +c(VSWR - 2.0) (4.13)

where ARBW is defined in Eq. (refEq4p8), and CF is the resonant frequency.

The coefficients a, 6 and c are user defined constants.
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Figure 4.7: Geometry of the MSA (a) Patch shape and feed arrangement, and

(b) 3D view
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Experimental results

Two experiments considering different dielectric constants and air gaps were

conducted to optimize the ARBW of CPMSA at 2.6 GHz band. The material

dielectric constants in both experiments were fixed at 7.2 and 2.33 respectively.

The air gap in both experiments was kept 3mm and 4mm respectively. The stub
length for both experiments were manually optimized to 9.005 mm and 10.5 mm
respectively. Two sets of training data (42 and 75) were generated from IE3D
for two experiments respectively. The first experiment was conducted by con

sidering all four design parameters while the second experiment was conducted
by considering only three design parameters namely length of horizontal slit,
length of vertical slit, and patch length. The parameter slot length was opti
mized manually prior to the experiment. This was done to reduce the search

space and thus improve the model accuracy. Apart from design parameters, the
parameters of support vector regression such as type of kernel, parameter of the
kernels (a for RBF kernel, order of polynomial for polynomial kernel), trade-off
parameter C, and e parameter of loss function were optimized manually by mea
suring their Cross Validation accuracy (CVacc) and Root Mean Squared Error

(RMSE), which are defined as,

CVacc = - x 100 (4.14)

and

RMSE = X> - f(Xi))2- (4-15)

Here, c indicates number of test data that fall under regression tube (i.e., within
the desired predefined prediction limit), and t indicates total number of test data.
Here, y, is the experimental value using IE3D and f{Xt) is the predicted value.
In the experiment, RBF kernel (with value of a = 0.5, 0.4 respectively for two
experiments) was found to give best performance. The optimum values of C
and e are kept oo and 0.02 respectively for both the experiments. The Matlab
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Table 4.3: Performance of the SVR and NN models

Experiment SVR Model NN Model

CVacc RMSE CVacc RMSE

Experiment 1(7-fold) 74.8 0.4623 66.67 0.6073

Experiment 2(5-fold) 82.33 0.3583 79.0 0.5587

toolbox of SVR [116] was used to implement the algorithm. The 7-fold and 5-fold

cross validation was used to measure the performance in both the experiments

respectively. Here, we define the CVacc (which is considered as performance

metrics for this example) as,

In this example, we used GA for optimizing SVR model of CPMSA, hence we

name the hybrid approach as Support Vectordriven Genetic Algorithm (SVGA).

To compare the results of proposed approach, similar experiments were con

ducted for the same datasets using another hybrid approach of Neural Network

driven Genetic Algorithm (NNGA). In this method, the empirical approxima

tion model was generated using neural network [9]. Three layer feed forward

back-propagation neural network with Levenberg-Marquardt transform function

and 0.1 learning rate was used to create model. The number of hidden neurons

to create ANN model were 4 and 5 respectively for both the experiments. The

predictions using SVR and ANN models are presented in Fig. 4.8 and Fig. 4.9

respectively for both the experiments. The performance of the models is pre

sented in Table 4.3 using both CVacc and the corresponding RSME as defined

in Eq. (4.14) and Eq. (4.15) respectively.

The GA with 50 population size, roulette wheel selection, 0.8 crossover and

0.01 mutation was simulated for 2000 generations to get the optimized values of

each experiment. The optimized parameters and optimum ARBW for both the

experiments are summarized in Table 4.4. The ARBW was calculated at 3 dB
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Figure 4.8: Predictions using SVR model and ANN model with IE3D experiment

for Experiment 1
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Table 4.4: Optimized parameters and ARBW using SVGA, and NNGA

Optimized Parameters

H.slit length (mm)

V.slit length (mm)

Patch length (mm)

Slot length (mm)

% ARBW

% ARBW(Using

EM simulator)

Experiment 1

(Dielectric const. = 7.2)

SVGA NNGA

8.726 8.779

9.108 9.117

24.47 24.41

13.9 13.66

0.70 0.73

0.75 0.65

Experiment 2

(Dielectric const. = 2.33)

SVGA NNGA

10.35 10.27

11.8 11.795

31.996 31.985

18.5 18.5

1.71 1.59

1.68 1.68

from the axial ratio plot. The ARBW along with optimized design parameters

are obtained using EM simulator and are shown in Table 4.4 for the purpose

of comparison. The characteristic of AR vs. frequency for both methods are
shown in Fig. 4.10 and 4.11 respectively for both the experiments. It is observed
from the table that the ARBW obtained with SVGA approach is much closer

to the value obtained from experiment with EM simulator compared to NNGA

approache in both the experiments. The plots of VSWR vs. frequency are
presented in Figure 4.12 and Figure 4.13 for both the experiments respectively.
It is observed that the optimized results satisfy minimum VSWR criteria at

desired 2.6 GHz frequency.
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Frequency (GHz)

2.61 2.62

Figure 4.10: Plots of Axial Ratio vs. Frequency for Experiment 1

4.4.3 Design of aperture coupled microstrip antenna us

ing Support Vector driven PSO algorithm

Problem description

The third structure we considered is a simple aperture coupled microstrip an

tenna [93, 110, 112, 117]. The geometry of the antenna structure considered for

design is shown in Fig. 4.14. Here, two substrate layers are placed on each other

without any air gap. The top substrate contains a rectangular patch, while bot

tom substrate contains slot on one side and feedline on other side. The variable

design parameters for the chosen structure are the length of the slot, length and
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Figure 4.11: Plots of Axial Ratio vs. Frequency for Experiment 2
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Figure 4.12: Plots of VSWR vs. Frequency for Experiment 1
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Figure 4.13: Plots of VSWR vs. Frequency for Experiment 2
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Upper Substrate

Lower Substrate

Figure 4.14: Geometry of the aperture coupled microstrip antenna

width of the patch, and the length of the open circuited stub. The other param

eters such as dielectric materials and their heights were kept constant and they

are listed as: erl = 2.17, er2 = 6.12, loss tangent of substrate 1 = 0.0009, loss

tangent of substrate 2 = 0.00022, hx = 1.5748 mm, h2 = 1.27 mm.

The antenna is designed to operate at a frequency of 2.7 GHz. The range

of frequencies around the operating frequency in which the antenna can operate

depends on the frequencies at which the VSWR value is less than 2. The design

objective is to maximize its VSWR BW and get the resonance at desired 2.7

GHz.

Experiment and results

In this example, we used PSO algorithm in order to obtain optimal design pa

rameters of the microstrip antenna. The hybrid approach is named as Support

Vector driven Particle Swarm Optimization (SVPSO). The fitness function used

for optimization is:
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Table 4.5: Accuracy of modeling for aperture coupled MSA

Models MSE ARE

Feedforward ANN 0.00309 0.018

SVM 2.025e-5 0.001663

f = a(\f-CF\cl)-P(BWc2) (4.16)

a + P = l (4-17)

where CF is the frequency at which resonance is obtained and BW is the VSWR

bandwidth measured at level 2 from VSWR vs. frequency plot. The parameters

cl, c2, a and 0 were chosen as per the requirement of whether a large bandwidth
is desired or proper matching is desired. The variables cl and c2 allow us to

model a non-linear correspondence between \f-CF\ and BW. The function

/ attains the minimum value when frequency is matched, and the bandwidth is
high. The design parameters corresponding to the minimum value of / would
thus be the optimal design parameters.

The accuracy of SVM models of the microstrip antenna is compared with
FF-ANN model generated using same dataset it is shown in Table 4.5. The
optimization was carried out using presented SVPSO approach and the results
are shown in 4.6. The optimized result is compared with the best result available

in the training data set.
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Table 4.6: Results of Optimization for aperture coupled MSA

Bandwidth VSWR Operating Frequency

Without optimization* 0.03 GHz 1.20 2.6 GHz

After optimization 0.05 GHz 1.22 2.7 GHz

*Best Bandwidth, VSWR pair available in training set

4.5 Concluding remarks

An effective modeling of microwave components using SVM framework is dis

cussed and used to model a one port microstrip via, an aperture coupled mi

crostrip antenna, and a circular polarized microstrip antenna, The models ob

tained with SVM are compared with conventional ANN models and are found to

be more accurate. In this experiment, grid regression was used to select param

eters of SVM. However, EAs such as GA, PSO can also be used for obtaining

best combination of these parameters.

In this chapter, we have presented a hybrid approach combining SVR model

with evolutionary algorithms. The approach is demonstrated for the design of

two microstrip antennas. The design of circular polarized microstrip antenna

was carried out using SVGA approach, while the design of aperture coupled

MSA was carried out using SVPSO approach. The advantage in applying this

hybrid approach is that number of EM simulations required can be restricted

to the number of experimental data required to generate SVR models. This

number is very less compared to the number of simulations required, if EM

simulator is invoked in the optimization loop of GA/PSO. The main requirement

in performing this is to obtain desired accuracy of the model. As we observed,

SVR gives better accuracy compared to ANN models.

Though we have considered the design ofmicrostrip antennas as a case study
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in the present work, the hybrid method presented here can well be applied to
the design of many other microwave components. It is highly advantageous

when an approximate model with the desired accuracy can be obtained with less

computational expense.
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Chapter 5

Design and Optimization of a

Nonlinear Taper using Swarm

Intelligence based Algorithms

5.1 Introduction

Tapered transmission lines (tapers) are required to transform the output of a

standard waveguide to oversized waveguide components. The taper should be

designed in such a way that the characteristic impedances at both the ends are

matched. Two basic types of cross-section tapers are straight taper and variable

(nonlinear) taper. In the straight taper, the taper angle is fixed throughout the

length and abrupt discontinuities occur at both the ends, while in variable taper

the taper angle is smoothly varied along the length of the taper. The advantage

of a nonlinear taper is that the conversion of power to unwanted (spurious)

modes is very less compared to straight taper [19]. In this chapter, the design

and optimization of a nonlinear taper for use in a specific high power gyrotron

is presented.

Gyrotrons are capable of providing hundreds of kilowatts of power at mi-
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crowave and millimetric wavelengths [19, 118]. The output power generated us

ing agyrotron is very high, ranging from long pulse to Continuous Wave (CW).
High power gyrotrons are mainly used for plasma heating in thermonuclear fu
sion reactors, Tokamaks and stellarators. In addition, they are used in a variety
of ISM applications ranging from spectroscopy, material processing to plasma
diagnostics. The output system of gyrotron consists of an interaction cavity,
output taper, a quasi-optical mode converter, and an RF window [19, 119]. In
gyrotrons, the nonlinear taper is used to connect the interaction region with the
output waveguide system. The main challenge in the design of a nonlinear taper
for gyrotron is that it requires very high transmission (above 99%) with very
less spurious mode generation. Due to high output power, even 1% of reflections
cause severe damage to the entire system. For this reason, although it is asimple
component, it has to be designed very carefully. This is a typical design applica
tion where the accuracy requirement is very high. It is necessary that a proper

optimization tool be chosen so that it gives aglobal optimum from the complex
and nonlinear design space.

Evolutionary Algorithms (EAs) such as GA, PSO, etc. have proved to be
effective and promising tools for search and optimization in multidimensional
feature space. In this chapter, we use two swarm intelligence based algorithms
- a PSO and a modified bacterial foraging optimization for the design of a non

linear taper as acase study application of high power microwave and millimeter
wave devices. The applicability of PSO for gyrotron mode converter application
is illustrated in [120]. But the potential applications of more recent Bacterial For
aging Optimization (BFO) algorithm has yet to be investigated for the design
applications in microwave domain. In this chapter, we also present a modified
version of BFO algorithm and compare its performance with the standard PSO

algorithm.
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Related works:

Various nonlinear tapers used for matching purposes are triangular taper, expo

nential taper and Chebyshev taper [121, 122], Few of tapers that are generally

employed in microwave systems are those designed by Klopfenstein [123], and

Hecken [124], etc. Fliigel and Kuhn developed programs for computer-aided

analysis and design of Dolph-Chebyshev and modified Dolph-Chebyshev tapers

[125] for use in gyrotrons. The theoretical evaluation of two nonlinear tapers of

raised-cosine type was presented by Lawson in [126]. He showed that under some

conditions, raised-cosine profile yieldslessmode conversion than modified Dolph-

Chebyshev profile. In this work, we have considered the design and optimization

of a raised-cosine taper for use in a specific gyrotron.

This chapter is organized as follows. Section 5.2 presents conceptual descrip

tion of standard BFO algorithm, its modification for improved convergence, and

its comparison with standard PSO algorithm using benchmark test functions.

Section 5.3 presents the use of both the algorithms for the design and optimiza

tion of a specific nonlinear taper. Finally, section5.4 presentsconcluding remarks

on performance of the methods presented in the chapter.

5.2 Bacterial Foraging Optimization

Bacterial foraging algorithm is inspired by the pattern exhibited by foraging be

havior of bacteria, more specifically Escherichia coli (E. coli) bacteria, which

resides in our intestines. The algorithm proceeds by either selecting or elimi

nating bacteria based on their good or poor foraging strategies. Further, the

algorithm may also refine poor foraging strategies into better ones.
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5.2.1 Standard Bacterial Foraging Optimization

The foraging process in BFO algorithm involves four processes such as chemo

taxis, swarming, reproduction, and elimination-dispersal. These four processes

are described as follows:

Chemotaxis: The movement of E. coli bacteria towards the nutrient-rich ar

eas is simulated by an activity called "chemotaxis". This process involves two

sub-activities: tumbling and swimming. In tumbling, bacteria do not move no

ticeably, but positions themselves in some random directions in which later on
swimming can occur. Swimming is performed in the specified direction with
fixed swim length. The process of chemotaxis can be represented as,

6i(j + l,k,l) = 9i(j,k,l) + C(i)cj>(i) (5.1)

where 8l(j, k,l) indicates the position of the i-th bacterium at the j-th chemo-
tactic step, in the fc-th reproductive loop, and at l-th elimination-dispersal event.
<f,{i) is arandom unit vector, and C(i) is the length of aunit walk in the direction
specified by (j)(i).

Swarming: It is agroup behavior or cell-to-cell signaling exhibited by bacteria
while moving towards rich-nutrient areas. In this, the healthy bacteria attract

other bacteria towards them. Bacteria move into a group forming a pattern.

Mathematically, swarming can be represented as,

Jcc(e,p(j,k,i)) = J2fcc(WU>W))
S P

= ^[-4ttract exp(-Wattract ^ji^m ~&m) )1
i=\ rn=l

S P

*£2[hrepellenteXY>(-'WrepeUent 2_^(8m ~&m) )1+

i=l m=l

(5-2)
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where Jcc(0, P(j, k, I)) is the cost function value added to the actual cost func

tion which makes it time varying. Here, 5" indicates number of bacteria, p in

dicates number of design parameters, and 9 = [8\,82,...,dp}T is a point in the

p-th dimensional search space, while dattract, wattTact, hrepellent, and wrepellent are

constants and should be chosen carefully.

Reproduction: In this process, healthy bacteria reproduce and split into two,

while unhealthy bacteria die. For convenience, the total population is maintained

constant by killing half the population with highest fitness values, and remaining

half reproduces and is placed at same locations.

Elimination-dispersion: In this event, some bacteria are dispersed to random

locations with some probability due to factors such as consumption of food, and

other environmental effects. The bacteria with probability ped are dispersed to

random locations in the optimization domain.

The flowchart of the standard BFO algorithm is shown in Fig. 5.1, while the

detailed algorithm for further reference is given in Appendix-C.

5.2.2 Modified Bacterial Foraging Optimization

The above described algorithm when tested on multidimensional benchmark

functions is observed to show a poor convergence compared to standard PSO

[84]. One of the reasons may be that classical BFO ignores the effects of global

swarming. Moreover, all the bacteria are assumed to have same swim length in

their chemotaxis process. However, the use of variable swim length according

to their relative distance from the bacterium with highest nutrient position may

improve convergence.

In order to improve the convergence, a modified BFO (MBFO) algorithm is

presented here by considering few changes in the standard BFO. The modifica

tions applied to the standard BFO algorithm are as follows:

• In classical BFO, it is assumed that bacteria will move in a random direction
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Figure 5.1: The flowchart of standard BFO algorithm.
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in every chemotaxis loop. But, in nature, a bacterium can remember the

nutrient concentration in its previous postion [8]. Based on this knowledge,

a bacterium compares its current nutrient concentration with that of the

previous concentration. Thisinformation isstored in a memory arraywhich

isa S xDim dimensional vector. In the presented modification, each time a

bacterium encounters a favorable environment, it remembers the direction

in which it moved, so that in the next swim step it can move in the same

direction as it is more probable to encounter a favorable environment. If

at some point it reaches a toxic place (higher value of J*) it moves back to

its previous position and from this point it generates a random direction

(i.e., it tumbles) and moves in a new direction. In this way the bacteria

can reach highest nutrient concentration (minimum J{) quickly.

In the second modification to the standard BFO algorithm, after under

going a chemotactic step, the position of bacteria is modified by applying

PSO operator as suggested in [84]. In this phase, the bacterium is stochas

tically attracted towards the global best position found so far in the entire

swarm. The 'social' component of PSO is only used, ignoring 'cognitive'

component, as the local search in different regions of the search space is

already taken care of by the chemotactic steps. The velocity and position

update equations used in applying PSO operator are as follows:

VL, = wV:ld + Ciri(xsbeat - 8\j, k, I)) (5.3)

dLwU + 1, k, I) = 8ild(j + 1, k, I) + V&, *Vary (5.4)

where vid is the velocity of zth bacterium in dth dimension, w, C\, Vary

are constants, r\ is a uniformly generated random number.

The chemotactic step-size is varied in accordance with fitness [127] as:
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Table 5.1: Values of user defined parameters of BFO

Name of parameter

Nc

Nr,

N,cd

Ped

Na

C(i)

Vary

Value of parameter

40

0.25

20

variable

0.075 for range of search is small (say<100),

1 otherwise

A =
K

Jbest- J(i,j + l,k)

1
C(i) =

1 + A

(5.5)

(5.6)

where K is constant. For bacteria far away from best, C(i) should be near

to 1, so it results in a large step size. For bacteria close to Jbest, C(i)
should be near to 0, so that they can converge to global minima without

much oscillations. In the process, #=400 was observed to give satisfactory

results.

Thedetailed flowchart of the MBFO algorithm is shown in Fig. 5.2, whereas

the detailed algorithm is given in Appendix-C.

Parameter Selection. The ability of BFO in exploring global optima is greatly

dependent on the choice of parameters such as C(i), Nc, Nre, Ned, Ns. In classical
BFO, Passino took C(i) = 0.1, i = 1,... S. The values of parameters selected for
the experiment on five benchmark functions are shown in Table 5.1
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f Start J

Initialize parameters Dim, S, Nc, Ns, Nre, Ped, Ned, C(i), w, C2 and loop counters

I
Increment elimination loop counter 1= 1+1

f End J

Increment reproduction loop counter k - k + 1 <

Perform

Elimination-Dispersal

Tumble
i

Go back to

previous
position

T
No

Increment chemotactic loop counter j =j + 1

Perform

Reproduction

Increment bacterium index ;' = / + 1 <

No

Compute objective function value J and set J^,

Tumble, and set swim counter m

Modify bacteria
positions by

applying PSO
operator

Modify next
step size C(/) Swim by step size C(i) in the direction specified by tumble

Figure 5.2: Flowchart of the Modified BFO algorithm
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Table 5.2: Benchmark functions

Function name

De Jongs's sphere function

Rosenbrock function

Generalized Rastrigrin function

Generalized Griewank function

Schaffer's f6 function

Function

/i - !£i=i xi

h = C=/[100(xi+1 - x2)2 + (Xi - If
h = EILiN - 100)8(2^,0 + 10]

^ =A£^-niUcos(^) +i
(sin yjx\ +:cj)2 - 0.5

/5 =0-5+(0T+ O.OOKx? +^)V7 ||

5.2.3 Experiment on benchmark functions

Experimental settings

The performance of the MBFO algorithm was evaluated on a test bed of same
five benchmark functions that were used in Chapter 3and are reproduced here in

Table 5.2. The search range for these functions and the range of initializing bac
teria positions are similarly reproduced and shown in Table 5.3 for convenience.
Remember that asymmetric initializations are used for these functions in order
to consider the practical situations. All these functions were tested with 10, 20
and 30 dimensions, except the last Schaffer f6 function which is two dimensional.
For De Jong's Sphere function, the maximum number of iterations considered
to stop the BFO algorithm were 1000, 2000 and 3000 for dimension 10, 20 and
30 respectively. While, they were considered to be 3000, 4000 and 5000 for 10,
20 and 30 dimensions respecively for Generalized Rastrigrin, Generalized Rosen-
brock and Generalized Griewank functions. The maximum iterations considered
for Schaffer f6 function was 1000. The maximum error tolerance considered for
all functions was 0.01 except for Schaffer f6 function in which it was considered
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Table 5.3: Initialization range, search range, and error tolerance

Test function Range of search Range of initializations Error tolerance

h [-100,100]" [50,100]" 0.01

h [-100,100]" [50,100]" 0.01

h -10,10]" [2.56,5.12]" 0.01

h [-600,600]" [300, 600]" 0.01

h [-100,100]" [15,30]" 0.00001

to be 0.00001. The MBFO algorithm was stopped when either the error criterion

or maximum iterations were reached.

Simulation results on benchmark functions

The results of testing MBFO on test functions are shown in Table 5.4. Due to

probabilistic nature of evolutionary algorithms, the results shown here are an

average of 50 runs of the algorithm for each test case. In order to compare the

performance of MBFO algorithm, similar results were obtained using standard

PSO algorithm. Here, three metrics are used for comparative study, (i) quality of

solution (measured in terms of average achieved optimum value and its standard

deviation), (ii) convergence speed (which is measured in terms of number of

successful runs out of 50 runs), and (iii) average number of iterations for only

successful runs.

The comparative results of MBFO and PSO on test functions show that

MBFO outperformed PSO on Rosenbrock's function and Generalized Griewank

function, while the standard PSO performed well on Generalized Rastrigrin and

Schaffer f6 function. The total number of successes obtained with MBFO is

higher than those obtained with standard PSO algorithm.
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Table 5.4: Performance of MBFO on benchmark functions and its comparison

with standard PSO algorithm

Fn. Dim. Average achieved optimum value

(Standard deviation)

Number of successes

(Average generation ofsuccess)

PSO MBFO PSO MBFO

h 10

20

30

O.Ol(-)

O.Ol(-)

0.01(-)

0.14(1.28)

O.Ol(-)

0.015(0.00)

50(566)

50(1291)

50(2081)

38(374)

50(1274)

49(2338)

h 10

20

30

25.19(64.34)

131.94(269.92)

186.85(370.73)

0.14(1.28)

2.46(6.62)

3.88(2.41)

1(2365)

o(-)

o(-)

3(1955)

o(-)

o(-)

h 10

20

30

2.30(1.55)

14.20(4.68)

31.44(7.15)

59.35(41.44)

58.37(24.73)

82.26(26.49)

4(1904)

o(-)

o(-)

o(-)

o(-)

o(-)

u 10

20

30

0.075(0.035)

0.026(0.026)

0.02(0.015)

0.01(0.00)

0.01(0.00)

0.01(0.00)

OH

22(2339)

27(3222)

50(875)

50(2349)

50(3790)

h 2 0.00097(0.0029) 0.27(0.27) 45(532) OH

Total successes (Total iterations) 249(14300) 290(12955)
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Figure 5.3: The raised-cosine taper profile.

5.3 Experiment

5.3.1 Design of a nonlinear taper for a high power gy

rotron

In this work, the design of a nonlinear taper is carried out for a 42 GHz, 200

kW, CW gyrotron operating in the TE0,3 mode with axial output collection.

This work is carried out as a part of a specific gyrotron development project

undertaken currently in India. A schematic diagram of a raised-cosine taper

considered in this work is shown in Fig.5.3. The analysis of the taper was carried

out using a dedicated scattering matrix code [18], as it was found to be fast and

accurate for taper analysis. The tapered parts were divided like a flight ofstairs

(see Fig. 5.3). The scattering coefficient ofeach step was calculated by using a

dedicated scattering matrix code. Thesynthesis of the raised-cosine taper profile

was carried out using the following formulae [128]:
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J

T{z) =HZ!! .(a +I*n(ira)) +̂ ^
r = n + r(,z) (5-9)

The goal here is to find optimum shape for which maximum transmission
occurs with minimum spurious mode contents. For a nonlinear taper to be

used in gyrotron, its power reflection and spurious mode contents should be less
than 1 %. The optimized performance of the taper was obtained using both

standard PSO algorithm and MBFO algorithm as presented in section 5.2.2.

In our design optimization task, we also identified that a geometrical parameter

(7), in Eq. (5.7), is very important for determining the shape of the raised-cosine
taper. The effect of varying 7 parameter on the transmission characteristics of
the nonlinear taper is shown later in this section. In our optimization process,

this parameter along with three other nominal parameters namely length of the
taper (L), radius of the taper at output end (r2), and the number of straight
sub-sections (N) were considered as design parameters. In the experiment, the
radius of the taper at input end (H was kept constant at 13.991 mm. The
range of design parameters considered are mentioned in Table 5.5. The goal
during the optimization was to obtain maximum transmission coefficient (i.e.,
521-parameter), operating in TEQ;i mode with minimized spurious mode content.
The fitness function considered for minimization in this problem is as follows:

fobj = -52i(tk0,3) (5-10)

where S21 is transmission coefficient for TEo;i mode. The minimization of spuri
ous mode contents are also obtained by maximizing transmission coefficient, as

the total power remains constant.
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Table 5.5: Range of design parameters

Design Parameter Range

Length (L) 200-350 mm

Radius at output end (r2) 35-45 mm

Number of sections (N) 50-500 mm

Gamma (7) 0.1-1.0

Table 5.6: Optimized values of taper parameters

Name of Design Parameter Optimized Value

PSO MBFO

Length (L) 349.99 mm 315.45

Radius at output end (r2) 37.32 mm 35.0

Number of sections (iV) 208 469

Gamma (7) 0.504 0.517

Transmission 99.87 % 99.85 %

5.3.2 Results

The optimized design parameters and corresponding transmission coefficient us

ing PSO and MBFO are shown in Table 5.6. It can be observed that excellent

transmission of 99.87% and 99.85 % are obtained using both the algorithms re

spectively. The algorithm was executed with a swarm size of 10 particles and

20 bacteria respectively, for about 100 iterations using both algorithms. The

iterations considered for the design were sufficient for the convergence of the

swarm.

We have also observed the effects of varying gamma parameter (7), radius
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Figure 5.4: Contours of raised-cosine taper showing the effect of parameter
gamma (7)(L=350 mm, r2 =35.0 mm , iV=466)
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Figure 5.5: Contours of raised-cosine taper showing the effect of output radius

(r2) (L = 350 mm, 7 = 0.5 , N = 466)
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at the output end of the taper (r2), and length of the taper (L) on the taper

synthesis and the transmission coefficient. The effect of the gamma parameter

is shown in Fig. 5.4, while the effect of radius at output end of the taper on the

transmission coefficient is shown in Fig.5.5. It can be observed that the value

of parameter gamma (7) plays significant role on the transmission efficiency of

the taper. Its value between 0.5 and 0.7 leads to transmission above 99%. It

can also be observed that output radius of less than 40 mm leads to the desired

transmission range and gives optimum transmission at 37.5 mm.

The percentage of transmission for various taper lengths within the desired

range are shown in Fig. 5.6. It can be observed that as we increase the taper

length, the transmission also increases. In addition, the percentage of transmis

sion and reflection of the main mode TE0z3 along with its azimuthal neighbours

for an optimized run (with rx =13.991, r2=37.32, L=349.99, 7=0.504, JV=208)

are shown in Table 5.7.

5.4 Concluding remarks

The design and optimization of a raised-cosine type taper profile for a 42 GHz,

200 kW, CWgyrotron was carried out using two swarm intelligence based algo

rithms namely standard PSO algorithm and a modified version ofBFO algorithm.

Adedicated scattering matrix code [18] was used for the fast and accurate analy

sis oftaper during design process. The selection ofPSO, and MBFO parameters

were carried out in accordance with previous experimental investigations.

The optimized results show excellent matching obtained for a raised-cosine

taper which confirms effectiveness of the presented methods for the design of

nonlinear tapers. The time required for the optimization was 20 and 40 minutes

(approximately) respectively for PSO and MBFO algorithms on a latest work

station. It is concluded that both the algorithms can find global optimum from
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Table 5.7: Percentage of transmitted and reflected power for various modes (Fre

quency: 42.0 GHz)

102

Mode Reflection[%] Transmission[%]

TE0,i 0.00001 0.01673

TE0,2 0.00001 0.00012

T£0,3 0.00044 99.86609

TEo,a 0.01239 0.00762

TEot5 0.00123 0.00028

TEofi 0.00036 0.00010

TEoy7 0.00015 0.00019

TEq$ 0.00007 0.00015

TEo,9 0.00004 0.00005

TEo,io 0.00002 0.00000

1
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the nonlinear design space of a complex taper design problem, which requires

perfect design with very high transmission (above 99%). Excellent transmission

of 99.87% and 99.85% were obtained with both PSO and MBFO algorithms in

very small number of iterations. This shows the power of swarm intelligence

based algorithms in solving critical high power microwave design problems. Fi

nally, a parametric analysis of the taper was carried out by varying individual

design parameters in a discrete fashion while keeping other parameters constant.
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Chapter 6

Design of RF Windows using

Multi-Objective Particle Swarm

Optimization

6.1 Introduction

High power microwave and millimeter-wave sources such as gyrotrons, klystrons,

and other gyro-devices produce very large amount of output power at wave

lengths from microwave to millimeter-wave range [19, 129]. RF-window is an

important component of the output system of these devices. It serves as a bar

rier between the vacuum side of the device and the output transmission line.

The most important task in the design of RF-window is the selection of suitable

window material with required characteristics/features [130]. The material se

lected should have high power handling capability. It should withstand thermal

and mechanical stresses, should avoid flashing/arching and puncturing/physical

damage. So, care must be taken in selecting proper window material with low

loss tangent, high thermal conductivity, suitable mechanical strength, and per

fect design to minimize power reflections and absorption for better transmission
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[19]. The other challenge is that a perfect design should be obtained that mini
mizes power reflections and exact matching at desired frequency. In this chapter
we have presented the design of two types of windows - double disc window
and pillbox-type window. Double disc windows are used in gyrotrons and their
invariants [19, 20], while RF-windows of pillbox-type are usually employed in
conventional microwave sources, such as, klystrons [131].

6.1.1 Related work

Few designs reported in the literature for the design and analysis of single disc,
double disc, and pillbox-type RF-windows used in high power microwave sources

are as follows. Thumm describes various types of high power windows and sum

marized the early development status of high-power millimeter-wave windows

with emphasize on CVD diamond in [130]. Yang, et al. [20] have presented anal
ysis of conventional single disc window, frequency tunable double disc window,
and ultra-broadband Brewster window. They optimized geometrical parameters

of the window units to obtain suitable transmission characteristics. Yang, et

al. [132] also investigated the influence of some window parameters such as me
chanical tolerance of the disc thickness, variation of distance between two discs,

and frequency shift during gyrotron pulse on the transmission characteristics of
millimeter waves. They show that power reflections are much more sensitive;

and an accurate tuning is required for the design of double disc window to keep

reflections below 1%. Jostingmeier, et al. [131] present a systematic method
for designing 75 MW S-band pillbox-type RF-window. They used an additional
inductive iris to make use of ceramic disc of arbitrary thickness. In their work,

the bandwidth is optimized by varying the thickness of the disc.

In this chapter, we demonstrate the use of Multi-Objective Particle Swarm
Optimization (MOPSO) for optimizing design parameters of disc-type RF-windows.
The MOPSO is selected to treat minimization of power reflection around resonant
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frequency (this also maximize BW around it) and matching at desired frequency

as separate objectives. As this approach gives a set ofsolutions, which optimally

balances the trade-off between objectives, it facilitates designer to fix a design

from available set of solutions according to the requirement.

The organization of the chapter is as follows. Section 6.2 describes concept

and earlier use of MOPSO in microwave design. Section 6.3 presents the design

of three RF-windows for specific high power microwave sources using MOPSO

methodology. Finally, section 6.4 presents the concluding remarks.

6.2 Multi-Objective Particle Swarm Optimiza

tion

6.2.1 Definition

It is observed that many real-time problems have more than one objective. In

this case, it is desired to find a solution that optimally balances the trade-off be

tween multiple objectives. The goalof the Multi-Objective Optimization (MOO)

problems is to obtain a set of solutions, called Pareto-optimal set, which opti

mally balance the tradeoff between multiple objectives based on the concept of

Pareto dominance [7, 133]. A solution X is called to dominate solution Y, if

f(X) < f(Y) for all individual objectives and f(X) < /(F) for at least one

objective. A set of objective vectors in objective space corresponding to Pareto-

optimal set is referred to as Pareto front. Similar to genetic algorithms, MOO

is also implemented with particle swarm optimization by several researchers. A

comprehensive summary of most MOPSO methods is given in [7].
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6.2.2 MOPSO in microwave design

Electromagnetic researchers have used various MOPSO implementations for the
design of various electromagnetic and antenna design problems. For instance,
Gies and Rahmat-Samii used Vector-Evaluated PSO (VEPSO) for antenna ar

ray problem [134]. They applied VEPSO to optimize beam efficiency and Half
Power Beam Width (HPBW) of a 16-element radiometer array antenna. The lim
itation with this algorithm is that handling of more than two objectives is not

possible. Xu and Rahmat-Samii have also used adaptive MOPSO by applying it
to two electromagnetic problems: synthesis of 16-element antenna array which
is optimized for tradeoff between beam efficiency and HPBW, and optimization
of shape reflector antenna for high gains of multiple feeds [56].

In this chapter, a specific implementation of MOPSO developed by Raquel
and Naval [22] is used for the design of three different RF-windows. This im
plementation is based on a mechanism called crowding distance. Crowding dis
tance is a metric which provides estimate of density of solutions surrounding a

particular solution. This mechanism is incorporated in PSO algorithm for the
selection of global best and for the deletion of solutions from external archive
of non-dominated solutions. The method was found to be highly competitive

in converging towards the Pareto-front and gave well distributed non-dominated
solutions on optimization test problems. We use this method for finding opti
mum Pareto front for the design of double disc RF-windows and pillbox-type

RF-window for use in high power microwave and millimeter wave devices such
as gyrotrons and klystrons respectively. The algorithm is aimed to find opti
mum physical dimensions for both the types of RF-windows. Multi-objective
optimizations using PSO have been used to achieve optimized trade-off between
matching of desired resonant frequency and minimizing the power reflections
which is obtained by maximizing the bandwidth around resonant frequency.
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6.3 Experiment

Three design examples of disc-type RF-windows namely a double disc window

for 42 GHz and 170 GHz gyrotrons, and a pillbox-type window for 2.856 GHz

klystron have been considered. Out of the above mentioned windows, the design

of a RF-window for a 42 GHz gyrotron is a part of the gyrotron development

project currently undertaken in India. The details of the type of window, desired

working frequency, window materials and their dielectric properties used for each

type of window are shown in Table 6.1.

In all three experiments, an MOPSO with crowding distance [104] was used

for getting optimum Pareto front. The algorithm was executed with a swarm size

of 20 for 500 iterations in each case. The size of the archive for storing optimum

Pareto sets during the execution was kept at 20 in each case. The values of C\

and c2 parameters of PSO were considered to be 2 in this implemetation. The

value of inertia weight w was varied from an initial value of 0.9 to a final value

of 0.4 during the iterations. The boundary constraints for the design parameters

are handled by imposing boundary cutoff limits as described in Chapter 3.

6.3.1 Design of a double disc RF-window for a 42 GHz

gyrotron

In this design example, a double disc RF-window is considered for a specific

42 GHz, 200 kW, CW gyrotron to work in the TE0>3 mode. The schematic

diagram of the double disc window considered is shown in Fig. 6.1. The design

parameters considered for optimization are disc thickness (Di = D2), distance

between two discs (tdd), and the disc radius (rdd). The same disc thickness

for both the discs are considered in the experiment. The range of parameters

considered for the design optimization using MOPSO are shown in Table 6.2. In

this design experiment, the initial guess for the value (and also to get the range)
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Table 6.1: RF-windows considered for designs

Type of

Window

Frequency

[GHz]

Window

Material

Dielectric Constant

& Loss Tangent

Double disc- 42.0 Sapphire *e,.=9.41, ton<5=5.5e-05

SiN *er=7.9, tan<S=1.0e-04

Double disc 170.0 CVD-Diamond *er=5.67, tan<5=4.0e-05

Pillbox 2.856 AL995 *er=9.37, ton<5=9.0e-05

* Note: Dielectric properties for Sapphire and SiN are given for

T=300 K, /=42 GHz from Kartikeyan et al. [135] and for CVD-Diamond is

given for T=300 K, /=170 GHz from Thumm [130], and for AL995 is

given for 7=300 K, / =2.856 GHz from Singh, et al. [136].

2rad

Figure 6.1: Schematic diagram of double disc RF-window.
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Table 6.2: Range of design parameters of a double disc window for 42 GHz

gyrotron

Design parameters Range [mm]

Disc thickness (Dx—D2) 2.0-3.0

Distance between two discs (tdd) 2.0-4.0

Radius (rdd) 35.0-45.0

of disc thickness for the TE modes is obtained from the following [20]:

n

D =

V -1 Lwtn

where / is desired resonant frequency, Rwin specifies radius of the disc, and \m,

is the Bessel root for the TEm,n mode.

The objective functions considered for the design using MOPSO are as fol

lows:

J\ — |/ Jdesired \

_ 1.0
h -

BW+l.Q

where / is the resonant frequency (in GHz) obtained in each execution, fdeaired

is the desired resonant frequency for the window (in GHz) and BW specifies

the bandwidth measured at -20 dB from the reflection response curve (Sri-

parameter) around resonant frequency. Here, the function /i tries to match the

frequency response at desired frequency, while the function /2 minimizes the

reflections around resonant frequency by maximizing the bandwidth.

In this design, two different experiments are carried out considering two dif

ferent disc materials, namely, Sapphire and SiN. The dielectric constant and loss

tangent for these materials are given in Table 6.1. During the design process, the
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analysis of the double disc window was carried out following a dedicated code
[19, 137]. The code was invoked in the optimization loop of MOPSO algorithm
for getting the analysis response each time.

The Pareto fronts showing the trade-off between two objectives for the double

disc window using different materials (Sapphire and SiN) are shown in Fig. 6.2
and Fig. 6.3 respectively. Each symbol in the graph specifies a combination of
design parameters with the value of objective functions. The transmission and
reflection responses for the best designs obtained in each case (for Sapphire and
SiN materials) are shown in Fig. 6.4 and Fig. 6.5 respectively. The responses
using the same optimum design parameters were also obtained with ascattering
matrix code Cascade 3.0 [138] for the purpose of comparison and they are pre

sented in the same figures. The optimized values of design parameters in each
case are specified along with their responses (see caption of Fig. 6.4 and Fig.
6.5). It can also be observed from the figures that both the tools (dedicated code
[19, 137] and Cascade 3.0 scattering matrix code [138]) resulted in the similar
responses for both the designs.

6.3.2 Design of a double disc RF-window for a 170 GHz

gyrotron

In this subsection, the design of a double disc RF-window is presented for a
170 GHz, 1 MW, CW gyrotron (Gaussian mode) to be used in a Electron Cy
clotron Resonance Heating (ECRH) applications [20, 132], ACVD-diamond disc
was considered as disc material in this design. The schematic diagram for this
disc is same as Fig. 6.1. The design parameters considered in this example and
their range are specified in Table 6.3. The disc thickness for Gaussian mode is

given by [19, 20],
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Table 6.3: Range of design parameters of a double disc window for 170 GHz

gyrotron

Design Parameters Range [mm]

Disc thickness (Di=D2) 1.0-2.0

Distance between two discs (tdd) 3.0-4.0

Radius (rdd) 45.0-55.0

D= N^ = N^—
2 2fy/Tr

(6.4)

where / is the desired resonant frequency and er represents dielectric property

of the disc material. The objective functions considered for this design are the

same as those given in Eq.s (6.2) and (6.3). The analysis of the window during

the iterative optimization process was carried out following the same dedicated

code [19, 137] mentioned in the previous section.

The Pareto front for a double disc RF-window for 170 GHz gyrotron is shown

in Fig. 6.6. One of the best optimized responses from the Pareto front is shown in

Fig. 6.7. It can be observed that the best design from the Pareto front of double

disc window (for 170 GHz) resulted in exact matching ofdesired frequency with

a large bandwidth of 3.7 GHz measured at -30 dB level.

6.3.3 Design of a pillbox-type RF-window for a 2.856 GHz

klystron

As a third example, the design of a pillbox-type RF-window for 2.856 GHz

5 MW, pulsed klystron is presented. The schematic diagram of a pillbox-type

RF-window is shown in Fig. 6.8. Three design parameters namely length of

the pillbox window (Lpb), the thickness of the disc (tpb) and the diameter of the
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Figure 6.8: Schematic diagram of a pillbox-type RF-window (a=72.14 mm, and
b= 34.04 mm [131]).

cylindrical disc (dpb) are considered for optimizing the performance of the win
dow. The range of these parameters considered for optimization is specified in
Table 6.4. The range of the design parameters are determined from a specific
design of pillbox-type window given in [131, 136]. The objective functions con
sidered for getting the Pareto front are same as those used in double disc design
experiments. The BW in objective function f2 was measured at -30 dB from the
S-Parameters curve in this experiment.

Table 6.4: Range of design parameters for a pillbox-type RF-window for a

2.856 GHz Klystron

120

Design Parameters Range [mm]

Length (Lpb) 35.0-40.0

Disc thickness (t7)b) 2.0-4.0

Diameter (Dpb) 87.0-92.0
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The Pareto front of a pillbox-type RF-window is shown in Fig. 6.9. One of

the best optimized responses from the Pareto front is shown in Fig. 6.10. It can

be observed from the figure that the best design from thePareto front ofpillbox-

type RF-window resulted in matching at desired frequency with a bandwidth of

475 MHz measured at -30 dB level around the resonant frequency.

6.4 Concluding remarks

A different method using multi-objective particle swarm optimizer is demon

strated for the design of disc-type RF-windows. The optimum trade-off between

the objectives of matching with desired resonant frequency and minimizing the

reflections around the resonant frequency (by maximizing BW around it) is

achieved using the concept of MOPSO. The design and optimization of three

RF-windows - a double disc window for 42 GHz gyrotron (with Sapphire and SiN

as disc materials), a double disc window for 170 GHz gyrotron, and a pillbox-

type window for 2.856 GHz klystron - are obtained as case studies of high power

microwave and millimeter-wave components. In all experiments, the MOPSO

algorithm converged with diversities in the solutions of Pareto optimal set.

Thesolution for the design ofRF-window isalso possible by formulating single

objective. In this case, the matching at desired frequency should be treated as

a constraint. For many microwave and millimeter-wave design problems, more

specifically for the problems with high working frequencies (e.g. double disc

windows at 42 GHz and 170 GHz gyrotrons used in presented experiments),

fixing of the desired frequency along with other objectives is difficult, This is the

reason why in this problem the matching of the desired frequency is treated as a

separateobjective rather than making it a constraint. Treating both as different

objectives, MOO methods try to find optimum trade-off between them. Another

advantage in designing components using MOO methods is that it gives a set of
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64 Concluding remarks

solutions instead of asingle solution in case of single objective optimization. This
gives the designer achoice for fixing (selecting) design parameters from aset of
optimized solutions based on the compromise between the available objectives

and the requirement.

However, in all our experiments the disc diameter (or radius) is considered as
an important design parameter, it can also be fixed depending upon the material
selection and availability. In all, it is concluded that the use of multi-objective

particle swarm optimization is an efficient optimization tool for tuning design
parameters and getting optimum response of a wide range of high power mi
crowave devices/components and can be explored for other critical high power
microwave and millimeter-wave design applications.

124

~t



Chapter 7

Conclusions and Future Work

7.1 Contributions of the thesis

In this thesis various modified and hybrid soft computing methods are presented

and used for diverse microwave design applications as case studies. The main

object behind this exercise is to make the design as fast as possible while improv

ing the quality/accuracy of the design. This is demonstrated using applications

such as design of microwave filter, microstrip antenna, and modeling of one-port

microstrip via. The thesis also deals with the design of critical applications where

high precision with little tolerance is the prime requirement. Here, we consid

ered the design of two important components, namely, a nonlinear taper and

RF-windows for high power microwave sources.

The detailed contributions of the thesis are as follows:

• A novel modification to the ParticleSwarm Optimization (PSO) algorithm

is presented in the thesis and its applicability isdemonstrated for the design

of a specific microwave filter as a case study of microwave components. In

the modified approach, a novel paradigm of multiple subswarms for search

ing parameter space with PSO algorithm is introduced. The particles in

the swarm are divided to form multiple subswarms. The social component
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of PSO's velocity update equation is modified to include the effects of mul
tiple subswarms. The presented approach, PSO with Multiple Subswarms
(PSO-MS), is tested with a test-bed of five benchmark functions which are
commonly used to compare the performance of different Evolutionary Al
gorithms (EAs) and their modifications. The concept is tested by applying
it to two basic PSO variations, namely, PSO with Inertia Weight Method

(IWM) and PSO with Constriction Factor Method (CFM). We have ob
served from the results obtained in Chapter 3, that if computational time

is the prime requirement, we can fix the number of particles constant and
achieve faster convergence, whereas if accuracy is the critical requirement

the number of particles should also be increased in accordance with the

number of subswarms. Finally, the presented PSO-MS algorithm is used

for the design of coupled microstrip-line band pass filter. This is a com

putationally expensive problem when the design is conducted using EAs
that invoke EM simulators in the optimization loop. The design results

obtained with the PSO-MS algorithm are compared with those obtained

using standard PSO. The comparison of results for the microstrip filter
design problem proves the applicability of proposed approach in other mi
crowave design problems where computational time is an important factor.

Another advantage of this algorithm is that it can be parallelized easily as

each subswarm's computation can be done on a separate processor. As a

whole, the goal of obtaining faster design while improving quality of the

design is fulfilled.

. An effective method for modeling microwave components using Support

Vector Machine (SVM) is presented in the thesis. Modeling of three mi
crowave components, namely, a one-port GaAs microstrip via, a circular
polarized microstrip antenna and an aperture coupled microstrip antenna
are carried out using the presented framework. The process of data gener-
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ation, scaling, kernel selection, and parameter selection is described. The

models developed using SVM are compared with those developed using ex

isting ANN method. The results obtained indicate that the SVM model

is better compared to that of ANN model due to its higher accuracy and
generalization ability.

4 • A hybrid approach combining SVM with EAs is presented for microwave

design applications. The aim behind the approach is to reduce the large

computational expenses incurred by EM simulations when they are used in

optimization loops of EAs. In this approach, an approximate model of the

EM simulation based design process for the component to be designed is

created using SVM. To obtain an optimum combination ofdesign parame

ters, this approximate model (instead of EM simulators) is invoked in the

optimization loop ofEAs to get the output response. The hybrid approach

is named as Support Vector driven Evolutionary Algorithms (SVEA). The

exciting advantage obtained by the SVM model is that it responds quickly

(approximately in milliseconds) compared to theparametric analysis of EM

simulations which respond approximately in minutes depending upon the

complexity of the component's structure. In this work, two different EAs -

f GA and PSO are used tooptimize the model generated with SVM, making

the approaches Support Vector driven Genetic Algorithms (SVGA) and

Support Vector driven Particle Swarm Optimization (SVPSO). Both the

hybrid approaches (SVGA and SVPSO) are used for the design of two mi

crostrip antennas - a circular polarized microstrip antenna and an aperture

coupled microstrip antenna respectively. The optimized design ofcircular

polarized microstrip antenna obtained using the hybrid SVGA approach

is also compared with the optimized design obtained using similar hybrid

approach - a Neural Network driven Genetic Algorithms (NNGA), in which

the approximate model is developed using well-known ANN method. The
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approach presented here is found to be highly effective in reducing compu

tational expenses incurred by EM simulators.

• In this thesis, a Modified Bacterial Foraging Optimization (MBFO) algo
rithm is presented which includes three changes to the standard BFO tech
nique. First, the bacteria are implemented with memory so that whenever
bacteria encounters unfavorable environment, they return to their previous

memorized position, tumble and swim again in the chemotaxis loop. Sec
ond, the PSO operator with only social component is applied after each
chemotaxis step [84] to improve the convergence ability of the algorithm.
Third, variable swim length is used to facilitate the bacterium to reach
global optima faster. Acomparison of presented MBFO algorithm is made
with state-of-the-art version of standard PSO algorithm using five bench

mark functions which proved the effectiveness of the presented algorithm.

• In this thesis, the design of a nonlinear taper for a 42 GHz, 200 kW, CW
gyrotron is presented. This work is done as part of a project entitled
'Design and development of 42 GHz, 200 kW, CW, long pulse gyrotron",
which is presently undertaken in India. Our contribution in this work is
to carry out the design optimization of anonlinear taper to be used in the
output system of the gyrotron. The power transmission requirement for
this design is above 99%. This is acritical design application in which high
precision and accuracy are required. The design optimization of a raised
cosine type nonlinear taper is carried out using two swarm intelligence
based algorithms, namely, PSO and MBFO. The parametric analysis of the
taper is carried out for the selected design parameters and it is identified
that the parameter gamma (7) which is used in the synthesis of raised
cosine taper profile plays critical role in obtaining desired response. The
analysis of the taper was carried out using adedicated Scattering Matrix
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Code (SMC) [18]. The optimization parameters obtained using both the

above mentioned algorithms resulted in an excellent transmission of 99.87%

in the desired TE0t3 mode with minimum spurious mode generation. It is

concluded that a state-of-the-art version of PSO and MBFO can be used

for the design of various other high power microwave and millimeter wave

components.

• Theconcept ofmulti-objective optimizations using PSOalgorithm isdemon

strated considering by the design of disc-type RF-windows. The RF-

window is also a critical output component in high power microwave and

millimeter wave sources and needs careful design. The design and opti

mization of three RF-windows - a double disc RF-window for 42 GHz, 200

kW, CW gyroton (with sapphire and SiN disc materials), a double disc

RF-window for a 170 GHz, 1 MW, CW gyrotron, and a pillbox-type RF-

window for a 2.856 GHz, 5 MW, pulsed klystron - are presented. Due to

sensitivity in matching with desired frequency while minimizing the reflec

tions, a Multi-objective Particle Swarm Optimization (MOPSO) approach

is chosen in this design. To carry out the design process, a specific im

plementation, MOPSO with crowding distance [22], is used. An optimum

trade-offbetween the objectivesofmatching desired resonant frequency and

minimizing the reflections around the resonant frequency (by maximizing

BW) is achieved. It is demonstrated that a well distributed Pareto front is

obtained in all the three experiments. It is concluded that MOPSO method

can be useful for the design of high power microwave and millimeter wave

sources when there are multiple objectives to be optimized.
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7.2 Future work

7.2 Future work

There are a number of useful extensions that can be added to the the present

research work. A few soft computing methods have been developed and used

for solving challenging design problems in microwave domain. Yet the other
design problems with the same or different challenges can also be picked up and
solutions be found with the current or other emerging soft computing methods.

The possible additions to the present work are stated below:

• It is possible to use soft computing methods presented in this thesis for the
other microwave design applications with similar challenges. It is also pos

sible to apply these methods for the design problems of other engineering

disciplines.

• The implementation of EAs such as GA, PSO, BFO, and their modifica
tions on multi-core environments is a promising research area. This can

be helpful in performing faster design of microwave components. We are
currently investigating the implementation of PSO on scalable multi-core

environments.

• Parameter selection of SVM is also an open research issue. As the values

of the critical hyperparameters affect the accuracy of the SVM model,
an effective method may be developed for the optimum selection of these

parameters.

. Due to continuous advancements in soft computing methods, it is possible

to investigate other emerging methods such as artificial immune system,

space mapping, differential evolution, ant colony optimization, etc., for
microwave design problems. It may be useful tocompare the performances

of these methods.
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f

• It is also possible to perforin improvements and hybridizations to the

present and emerging soft computing methods in order to remove the draw

backs and exploit the merits of these methods.

.

/

As there are many user defined parameters ofBFO algorithm, it is possible

to carry out parametric analysis of BFO algorithm. It may also be possi

ble to develop a method for the reduction of dependency on user defined

parameter selection for BFO and also in other EAs.
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Appendix A

Genetic Algorithms

Introduction

Genetic Algorithms (GA) [43, 4, 139] are evolutionary search and optimization

algorithms based on the mechanics ofnatural selection and natural genetics. GA

is different from most traditional optimization methods. The major difference

between GA and other traditional search methods is that it starts with a set

of solutions in contrast to the single solution approach used by traditional opti

mization methods. Each solution in GA is known as chromosome and the set of

solutions (chromosomes) is known as population. In theevolution process of GA,

solutions from one population are taken and used to form a new population with

a hope that the new population will be better than the older one. Defining objec

tive function (fitness function), representing chromosomes and applying genetic

operators are three most important aspects of GA. The power of GA in effec

tively searching a multidimensional search space lies in its three basic operators:

reproduction, crossover, and mutation.
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Algorithm

The outline of the standard genetic algorithm is as follows:

ALGORITHM: Genetic Algorithm

1. Initialization: Generate random population of n solutions (encoded by

chromosomes) to a given problem.

2. Fitness evaluation: Evaluate the fitness f(x) of each chromosome x in the

population.

3. New population generation: Generate a new population (offsprings) from
old population by applying following steps,

(a) Reproduction: Chromosomes are selected from parents, according to
some selection strategy, to reproduce and generate offsprings. This
selection is carried out in a probabilistic manner according to their

fitness value. This follows Darwin's evolution theory of survival of
fittest (the better fitness, the bigger chance to be selected). Repro
duction makes clones of good chromosomes, but does not create new

134

ones.

(b) Crossover: Crossover proceeds in three steps: selection of apair of
chromosomes for mating based on some probability, selection of cross-
site, and swapping the genetic material between two chromosomes
based on their cross-site. The aim of crossover is to search parameter

space.

(c) Mutation: The mutation (changing bit from 0to 1or vice-versa) of the
chromosomes is performed based on mutation probability. The muta
tion operator preserves the diversity among the population, prevent
premature convergence, and restores lost information to the popula-
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Genetic Algorithms

tion. The probability of mutation is generally too low compared to

probability of crossover.

(d) Fitness evaluation: Evaluate the fitness for newly generated popula
tion.

4. Optimization loop. Repeat steps3 and 4 until some predefined errorcriteria

or maximum number of iterations are attained.
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Appendix B

Artificial Neural Network

Introduction

Artificial Neural Network (ANN) [9, 102, 139] is a simplified model of the bio

logical neuron system. It can be considered as a parallel distributed processing

system of highly interconnected computing elements. It acquires knowledge by

learning from empirical dataand makes it available for solving any given problem.

Neural network architecture:

One of the most popular neural network architectures is feedforward neural net

work. The architecture of a multilayer feedforward neural network is shown in

Fig. B.l. It allows the signals to move only in forward direction from the input

to the output layer through hidden layers without making feedback loops.

Learning methodology

There are three major learning methods that can be used for learning task. They

are supervised learning, unsupervised learning and reinforcement learning.
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Input layer Hidden layers Output layer

Figure B.l: An example of amultilayer feedforward neural network

138



Artificial Neural Network

Supervised learning: In this learning process, a training pattern from the

training set is applied randomly to the network, error is calculated based on

the desired response and the network synaptic weights are adjusted in order to

minimize the error. Here, a teacher is assumed to be present behind the learning

process.

Unsupervised learning: In this learning process, no output is presented to

the network as if no teacher is available to present the desired response. Here,

only some data and an objective function which is to be optimized are available

during the learning.

Reinforcement learning: In this learning process, a teacher is present but do

not specify the exact output, rather he gives reward for the correct answer and

penalty for the wrong answer.

Backpropagation Learning Algorithm

Backpropagation learning is one of the most popular supervised learning meth

ods for training multilayer feedforward neural network architecture. The steps

followed by backpropagation learning algorithm are stated as follows:

ALGORITHM: Backpropagation Learning Algorithm

1. Determine the structure of the neural network and other parameters: This

includes determining number ofnodes in the input layer, number ofnodes in

the output layer, number of hidden layers, number of nodes in each hidden

layer. There are also some other important parameters such as learning

rate, momentum, number of training samples, etc., that are required to be

determined carefully.

2. Initialization of weights: Initialize the network synaptic weights to small

random values.
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3. Repeat

(a) For each training pattern

i. Forward pass: The input patterns are applied to the input layer

nodes which simply forward them to the input of the first hidden

layer. The computation of input and output is performed at each
hidden and output layer nodes,

ii. Calculate the error in the output layer: Based on the output avail

able at output layer node and the values of desired output, error

is calculated at each output layer nodes,

iii. Error backpropagation and modification of weights: In this step,
the error at the output node is propagated back in the network

and the synaptic weights of the network are updated based on the
errors available at each of its posterior nodes.

(b) end

4. Until the desired termination criteria is attained
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Appendix C

Bacterial Foraging Optimization

Standard Bacterial Foraging Optimization algo

rithm

The standard Bacterial Foraging Optimization (BFO) Algorithm [8] is stated as

below.

ALGORITHM: The Bacterial Foraging Optimization Algorithm

Initialization:

1. Initialize parameters Dim, S, Nc, Ns, Nre, Ped, Ned, C(i) with (i =

1,2,..., S),8i where,

Dim: Dimension of the search space,

S: Number of bacteria in the population,

Nc: Number of chemotactic steps,

Nre: Number of reproduction steps,

Ns: Length of swimming,

Ned: Number of elimination-dispersal events,

Ped: Probability of elimination-dispersal events,

C(i): Size of the step taken in the random direction specified by the tum-
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ble,

&(jtk,l): Position vector of the i-th bacterium, in j-th chemotactic step,
fc-th reproduction step and 2-th elimination-dispersal event.

Iterative loops:

2. Elimination-dispersal loop: 1=1+1

3. Reproduction loop: k=k+l

4. Chemotaxis loop: j=j+l

(a) For i = 1,2,..., S, take achemotactic step for bacterium i as follows:

(b) Compute fitness function J(i,j,k,l), and then let,
J(i,j, k, I) = J(i, j,k, I) + Jcc(8\j, k, I), P(j, k, I)).

(c) Let J^st = J(i,3,k,l) to save this value since we may find a better
cost via a run.

(d) Tumble: Generate arandom unit vector <j>(i) with each element m(i),
m=l, 2,..., Dim, a random number on [-1,1].

(e) Move: Following the Eq. (5.1).

(f) Compute J(i, j+l, k, I) as, J(i, j+1, k, I) =J(iJ+h fc, l)+Joc(<PU+
l,k,l),P(j + l,k,l)).

(g) Swim: Consider only the i-th bacterium is swimming while the others
are not moving, then,

i. Let m= 0 (counter for swim length)

ii. While m< Ns (if have not climbed down too long)

. Let m=m+l

• If J(i,j + 1, k, I) < Jiast (if doing better) then,

Jiast = J(hj + 1,M) and 8\j + l,k,l) = 6\j + 1,M) +
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Bacterial Foraging Optimization

c(i)<Ki)

and use this 4>\j + 1, A:, /) to compute the new J(i,j + 1, k, I)
as in (f).

• Else, if m = Ns then end while loop,

(h) If i ^ S then i = i + 1 and go to (b) to process (i+1) bacterium.

5. If j < Nc go to step 4 (i.e., continue chemotaxis as the life of the bacteria

is not over).

6. Reproduction: Sort bacteria in ascending of their fitness value (J).

Now, let Sr = S/2. The Sr bacteria with highest cost function (or fitness)

values (J) die and the other half of bacteria population with the best values

split (and the copies that are made are placed at the same location as their

parent).

7. If k < Nre, go to step 3. We have not reached the specified number of

reproduction steps. So we start the next generation ofthe chemotaxis loop.

8. Elimination-dispersal: For i = 1,2,..., S, eliminate and disperse each bac

terium with probability Ped. (If any bacterium is eliminated, then disperse

other bacterium to random location in optimization domain in order to

keep the number of bacteria in population constant.) If / < Ned then, go

to step 2; otherwise end.

Modified Bacterial Foraging Optimization algo

rithm

The modified BFO Algorithm as presented and described in section 5.2.2 is stated

as below.

ALGORITHM: The Modified Bacterial Foraging Optimization Algorithm
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Initialization:

1. Initialize parameters Dim, S, Nc, Ns, Nre, Ped, Ned, C(i) with (i =
1,2, ...,S), 8\ w, and C2 where,

Dim: Dimension of the search space,

S: Number of bacteria in the population,

Nc: Number of chemotactic steps,

Nre: Number of reproduction steps,

Ns: Length of swimming,

Ned: Number of elimination-dispersal events,

Ped: Probability of elimination-dispersal events,

C(i): Size of the step taken in the random direction specified by the tum

ble,

8l(j,k,l): Position vector of the z-th bacterium, in j-th chemotactic step,
fc-th reproduction step and l-th elimination-dispersal event,

w : Inertia weight,

C2 : Social coefficient of PSO algorithm.

Iterative loops:

2. Elimination-dispersal loop: 1=1+1

3. Reproduction loop: k=k+l

4. Chemotaxis loop: j=j+l

(a) For i =1,2,..., S, take achemotactic step for bacterium i as follows:

(b) Compute fitness function J(i, j, k,l), and then let,
J(i,j, k, I) = J(i,j, k, I) + Jcc^ti, k, I), P(j, k, I))-

(c) Let Jiast = J(i,3,k,l) to save this value since we may find a better
cost via a run.
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Bacterial Foraging Optimization

(d) Tumble: Generate a random unit vector 4>(i) with each element m(i),

m=l, 2,..., Dim, a random number on [—1,1].

(e) Move: Following the eq. (5.1).

(f) Compute J(iJ+l,k,l)as, J(i,j+l,k,l) = J(i,j+l,k,l)+Jcc(<t>i(j+
l,k,l),P(j+\,k,l)).

(g) Swim: Consider only the z-th bacterium is swimming while the others

are not moving, then,

i. Let ra=0 (counter for swim length)

ii. While m < Ns (if have not climbed down too long)

• Let m = m + 1

• If J(i,j + 1,k, I) < Jlast (if doing better) then,

Jiast = J(i,j + l,k,l) and 8\j + l,k,l) = 8i(j + l,k,l) +

C(i)<f>(i)

and use this <ft{j + 1, k, I) to compute the new J(i,j + 1, k, I)

as in (f).

• Else (if position is not better)

Tumble to generate new unit random vector 4>(i)

Jiast = J(i,j + 1, k, I) and ^(j + l,k,l) = (j,*(j, k, I) + C(i)<j)(i)

End if

• Modify next step size C(i) as,

C(i) = 1/(1+A), where A = K/\Jbest - J(i,j + l,k,l)\

iii. End while loop

(h) If zV S then i = i + 1 and go to (b) to process (i+1) bacterium.

5. If j < Nc go to step 4 (i.e., continue chemotaxis as the life of the bacteria

is not over).

6. Modify positions of bacteria by applying PSO operator as,
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(a) For I = 1,2,..., S

i. Update 8gbest and Jbest(i,j, k, I)

ii. Update velocity and position of i-th bacterium as,
ynew = w. yold + CsTl (Qgbeat _ Q^j, k, I))

8\j,k,l)=8\j,k,l)+Vr

(b) End for

7. Reproduction: Sort bacteria in ascending of their fitness value (J).
Now, let Sr = 5/2. The Sr bacteria with highest cost function (or fitness)
values (J) die and the other half of bacteria population with the best values
split (and the copies that are made are placed at the same location as their

parent).

8. If k < Nre, go to step 3. We have not reached the specified number of
reproduction steps. So we start the next generation of the chemotaxis

loop.

9. Elimination-dispersal: For i = 1,2,..,S, eliminate and disperse each bac

terium with probability Ped- (If any bacterium is eliminated, then disperse

other bacterium to random location in optimization domain in order to

keep the number of bacteria in population constant.) If I< Ned then, go

to step 2; otherwise end.
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Appendix D

Glossary

Antenna: It is a metallic structure used to transmit and/or receive radio waves.

Aperture coupled microstrip antenna: It is a microstrip antenna in which the

power coupling between the patchand the feedline is done via the aperture

(slot) on the ground plane.

Axial ratio: It an important antenna parameter that is defined as the ratio of

major axis to minor axis of the field polarization.

Axial ratio bandwidth: It is the frequency range over which the antennaexhibits

axial ratio parameter to be at a specified level (which is generally taken

less than or equal to 3 dB for circular polarization).

Bandwidth: Bandwidth is the frequency range within which the component

meets desired specification (say gain, impedance or VSWR).

Circular polarization: When a field vector at a given point in space rotates with

a same magnitude and a phase shiftof90° is said to be circularly polarized.

Cross validation: It is a procedure to estimate the performance of a classi

fier/regressor. In a u-fold cross validation, training set is divided into
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u-subsets of equal size. Repeatedly each subset is tested using the clas

sifier/regressor which is trained on remaining v-1 subsets.

Crowding distance: It is ametric that determines density of solutions around a
particular solution.

Evolutionary algorithm: It is a subset of evolutionary computation that is im
plemented as evolutionary process to form optimization algorithm.

Fitness: The fitness is a measure of how well a particular solution performs at

solving the problem.

Fitness function: Itis an objective function that determines fitness of asolution.

Foraging theory: It is a theory based on foraging behavior of biological popu
lation (animals) that search for nutrients to maximize their energy intake
per unit time.

Gyrotron: It is an electronic device capable of generating high power at mi
crowave and millimetric wavelengths.

Klystron: It is a widely used vacuum tube as a generator or as a microwave
amplifier.

Microstrip antenna: It is a passive component that consists of a radiating
element (patch) mounted over a grounded dielectric substrate.

Microwave filter: It is a two port network to control frequency response in
microwave systems.

Microstrip via: It is a component used to interconnect micrstrip circuits.

Pareto front: The set of objective function vectors corresponding to Pareto-
optimal set in the objective space is referred to as Pareto front.
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Glossary
if

Pareto-optimal set: Aset of non-dominated solutions with respect to given ob

jectives is referred to as Pareto-optimal set. A solution is non-dominated

ifits one objective can not be improved without loss of one or more objec
tives.

Polarization: Polarization is a property of an electromagnetic wave describing

A the time varying direction and relative magnitude of the field vector at a

given point in space.

RF-window: It is acomponent used in the output system of high power microwave/millimeter-

wave devices for power transition from the device to transmission line and

vice versa.

Scattering matrix: It is a linear relationship between input and output that in

volves precisely measurable parameters which are known as S-parameters.

S-parameters such as Sn (reflection coefficient) and S21 (transmission co

efficient) are important for measuring transmission and reflection charac

teristics of a two port network.

Spiirious modes: The modes other than the desired mode are spurious modes.

The design should be carried out in such a way that the spurious mode

contents are reduced.

Swarm intelligence: It is a problem solving behavior that emerge from a group

(swarm) of agents which communicate among each other based on their

local environment.

Tapered transmission line (Taper): It is a transmission line section which is

used to connect transmission lines of different cross sectional areas.

Voltage Standing Wave Ratio (VSWR): It is a ratio of the maximum voltage

to minimum voltage (i.e., Vmax/Vmin) due to mismatch of the load in the
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transmission line.
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