
ON SECURE GROUP KEY AGREEMENT PROTOCOLS FOR

MOBILE AD HOC NETWORKS

A THESIS

Submitted in partial fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMPUTER ENGINEERING

by

RAKESH CHANDRA GANGWAR

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

FEBRUARY. 2009

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE, 2009
ALL RIGHTS RESERVED

ft INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled "ON

SECURE GROUP KEY AGREEMENT PROTOCOLS FOR MOBILE AD HOC

NETWORKS" in partial fulfilment of the requirements for the award of the Degree of

Doctor of Philosophy and submitted in the Department of Electronics and Computer

Engineering of Indian Institute of Technology Roorkee, Roorkee is an authentic record of my

own work carried out during a period from July 2004 to February 2009 under the supervision

of Dr. Anil K. Sarje, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

(RAKESH CHANDRA GANGWAR)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Date: V) Î '/ 2-J^° °\ (AniTKTiarje)
Supervisor

The Ph.D. Viva-Voce Examination of Rakesh Chandra Gangwar, Research Scholar,

has been held onAfev....?./...?#$.%

4*2^iSignature'STSupefvisdr)
-r. %*>

Signature of External Examiner

Abstract
.

Nowadays, the popularity of wireless network is increasing very fast. Wireless

technology is gaining more and more attention from both academia and industry. Most

wireless networks used today, for example, the cell phone networks and the 802.11 Wireless

Local Area Networks (WLANs), are based on the wireless network model with pre-existing

^ wired network infrastructures. Packets from source wireless nodes are received by nearby

base stations, then injected into the underlying network infrastructure and finally transferred

to destination nodes.

Another wireless network model, which is actively researched, is the mobile ad hoc

network (MANET). This network is formed by only mobile nodes and requires no pre

existing network infrastructure. Nodes with wireless capability form a MANET instantly and

packets can be delivered to any node in the network. Since there is no base station and no

underlying network infrastructure in MANETs, some mobile nodes work as routers to relay

packets from source to destination. It is very easy and economic to form an MANET in real

time. MANET is ideal in situations like battlefield or emergency rescue area where fixed

network infrastructure is very hard to deploy.

In recent years the popularity of multicast and group-oriented applications is also rapidly

increasing in both scenarios such as wireless as well as wireline networks. Group

communication provides point-to-multi-point or multi-point-to-multi-point communication

by organizing processes in groups. A set of such processes is called group, where every

process is a member of a group. Multicast and group communications are peer to peer and

occur in many different settings, such as software updates, multimedia content distribution,

interactive gaming and stock data distribution, voice and video conferencing, shared white

boards, distributed simulations, as well as online games, replicated servers and databases of

all types. The multicast and group communication systems are, therefore, used as vehicle to

provide efficient data delivery to a large audience. One of major concerns for such systems is

security. Security services include data confidentiality, integrity, authenticity, access control,

etc. Many of these services can be facilitated if all group members share a common group

11

key. This makes secure and efficient group key creation, distribution and management a

fundamental service and design challenge for Group Communication.

The existing group key establishment protocols can be categorized into three categories:

centralized, decentralized and contributory. In centralized protocols only one central server is

responsible for creation and distribution of keys. In decentralized protocols based on common

group key approach, one central server creates and other additional servers help in

distributing keys, this way other servers share the load of the central server. In another

category of decentralized protocols, the group is divided into subgroups and each subgroup

has its own subgroup key. Although this eliminates one-affect-all phenomena, yet it involves

a lot of encryption/decryption cost. Since nodes in MANET are not computationally

powerful, no one node can work as central server for creating and distributing the keys.

Therefore, these protocols are not suitable for secure and efficient group communication in

mobile ad hoc networks. In contributory protocols each node contributes equally in group key

formation, therefore, these protocols seem to be promising for mobile ad hoc networks. The

contributory protocols are also known as group key agreement protocols. This thesis

concentrates on group key agreement protocols that are based on the two party Diffie-
T

Hellman protocol.

In the thesis we first analyze various existing group key agreement protocols based on

the two party key agreement protocol of W. Diffie and M. Hellman, for example, INGM, BD,

Hypercube, Octopus, Clique (IKA. 1 and IKA.2), TGDH, NAGKA, and STR. The parameters

such as number of rounds, number of messages communicated, number of exponential

operations performed and round synchronization are taken into consideration for complexity

analysis. All protocols other than Clique protocols need round synchronization, which

involves a synchronising device like clock that creates parallel broadcasts, which are

problematic in mobile ad hoc networks. From this analysis it is concluded that the Clique

protocol suite (IKA. 1 and IKA.2) show the best performance among all the protocols

considered. Among clique protocols, IKA.2 protocol needs less number of exponential

operations as compared to IKA.l protocol. Although IKA.l protocol is inferior to IKA.2 in

terms of exponential operations, yet it is more efficient regarding the number of messages.

± Group communication involves various dynamic events such as join, merge, leave, and

partition, therefore, a group key agreement protocol must make efficient provision for

forward and backward secrecy, which means that a joining member(s) should not be able to

in

decrypt the past communications and leaving member(s) should not be able to decrypt the

future communications. So we next analyze group key agreement protocols based on two

party Diffie-Hellman protocol for above dynamic membership events. We observe that

Clique protocols do not need round synchronization among various group key agreement

protocols. And IKA.2 protocol shows the better performance for merge, leave and partition

events as far as exponential operations are concerned. It is again concluded that Clique

protocols suite shows the best results, especially IKA.2, among various group key agreement

protocols.

Thus it is observed that a group key agreement protocol must be secure and efficient in

various complexity measures. The total number of exponential operations should be small

because nodes in MANETs are computationally weak. Further if the number of rounds is

independent of group size, the protocol will be highly scalable.

Next we propose a protocol suite, which is natural extension of two party Diffie-

Hellman protocol. The proposed protocol not only provides efficient algorithms for setup,

join (merge) and leave (partition), but also member authentication service. The proposed

protocol also has provisions for all valid members to detect errors in communicated messages

and stop execution of the protocol immediately as they encounter invalid message from the

members who have awry intentions. This helps in eliminating the man-in-the-middle attack in

addition to message corruption due to system faults using message verification.

In the proposed protocol suite the members are arranged in a logical ring. The setup

algorithm takes initial group as an input and outputs a group key after second round. At the

end of each round members are authenticated, and after second round messages are also

verified for corruption. If message validity checks fail the protocol terminates immediately,

otherwise a group key can be generated and saved by each member in addition to three other

parameters, which are used during the dynamic events, i.e., join, leave, multiple join and

multiple leave. After computing the group key and three parameters other ephemeral data is

erased by each member.

The proposed protocol suite also consists of an algorithm, which can be used for

dynamic events join and merge. The algorithm takes the initial group and joining member(s)

as an input and outputs the group key and three other parameters for each member. The

algorithm also takes two rounds. After each rounds members are authenticated, and after

second round messages are also verified for corruption. If message validity checks fail the

IV

protocol terminate immediately, otherwise a group key can be generated and saved by each

member in addition to other three parameters, which are used during the future dynamic

4- events. After computing the group key and three parameters other ephemeral data is erased

by each member.

The proposed protocol suite also consists of an algorithm for leave and partition events.

The leave-partition algorithm also takes two rounds. After each round members are

authenticated, and after second round messages are also verified for its corruption. If message

validity checks fail the protocol terminate immediately, otherwise a group key can be

generated. After computing the group key and other parameters, ephemeral data is erased by

each member.

Security analysis of the proposed protocol has been done in random oracle model. For

which a number of oracle queries are used, which can be replaced by actual function for

practical purpose, for example, secure signature scheme (S) and hash function (H) may be

replaced by ElGamal digital signature algorithm and secure hash algorithm (SHA-1)

respectively. The selected pseudorandom number in ElGamal digital signature algorithm

plays an important role in eliminating the impersonation attack when a secret key is somehow

compromised.

Further, the work shows the comparison between the proposed protocol and Clique

protocol suite. The proposed protocol suite does not involve round synchronization as in case

of Clique protocols. Thereby, no synchronous mechanism is needed. The number of rounds in

setup protocol of IKA. 1 and IKA.2 measures as n and n +1 (where n is the number of group

members) whereas our protocol needs only two rounds irrespective of the group size, join-

v merge (forjoin or merge) and leave-partition (for leave or partition) protocols also needs two

rounds each for their completion, which indicates that the proposed protocol suite is scalable

too. The setup protocol in proposed protocol suite needs 3/7 exponential operations whereas

n

IKA.l and IKA.2 need (—(« + 3)-l) and (5«-6) exponential operations respectively.

However, the number of messages n in IKA. 1 protocol is less as compared to IKA.2 and the

proposed protocol, which need 2n -1 and 2n messages respectively. It is also seen that the

_. join-merge of our protocol is more efficient in number of exponential operations measure as

compared to join (merge) protocol of IKA.l and IKA.2 protocols for large group size. And,

the proposed leave-partition protocol is also efficient as compared to IKA. 1 and IKA.2 when

the n (the number of current group members) is high and / (the leaving members) is low. Our

leave-partition protocol takes 6/ exponential operations as compared to 2(//-/)and

4- (»-/) exponential operations of IKA.l and IKA.2 protocol, where / is number of leaving

members. However, in case of number of messages, our leave-partition protocol is inferior to

IKA.l and IKA.2 protocols. In the proposed setup protocol, the total cost of computations has

been reduced considerably. For authentication, each group member generates two signatures

and performs In signature verifications, which creates additional cost for authentication.

Other existing protocols, for example, INGM, BD, Hypercube, Octopus, Clique (IKA.l and

IKA.2), TGDH, NAGKA, and STR, do not provide authentication, our protocol suite

provides member authentication at a nominal cost. In proposed setup protocol, each group

member performs at most 3 exponential operations, 4 one-way hash function operations, and

n XOR operations. Since the operation dependent on the number of group members is the

XOR operation, this way the total cost of computation has been reduced considerably.

In view of the above security and complexity analysis of proposed protocol suite and

various existing group key agreement protocols, it is logically concluded that the proposed

protocol suite outperforms INGM, BD, Hypercube, Octopus, TGDH, NAGKA, STR as well

as Clique protocols (IKA. 1 and IKA.2) in terms of number of rounds, number of messages,

number of exponential operations and round synchronization.

VI

*

Acknowledgements

I would like to express my deepest gratitude to my learned supervisor Dr. Anil K. Sarje for

his encouragement, painstaking supervision, innovative suggestions and invaluable help

during the entire period of my Ph.D. studies. It has been a great honor and pleasure for me to

work under his supervision. I learned a great deal from him, not only about research but also

about matters touching many other aspects, which will benefit me in future life and career.

The cooperation and help extended by the Head and faculty members, Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee is gratefully

acknowledged. I also wish to thank my research committee members for providing insightful

and constructive comments.

I am highly obliged to the Dr. Dial Chand, Principal, Beant College of Engineering and

Technology, Gurdaspur (Pb.), for sponsoring me.

I wish to convey my appreciation to my fellow research scholars who have provided me

encouragement and timely support.

Finally, I could not reach the important milestone of my life without the support and

encouragement of my family. I express my sincere appreciation and gratitude to my wife Dr.

Smita Singh and daughters, namely, Srishti & Solaris for their patience and encouragement

when it was most required.

And above all, I am thankful to the Almighty whose divine grace gave me the required

courage, strength and perseverance to overcome various obstacles that stood in my way.

Rakesh Chandra Gangwar

vn

•w

Contents

Candidate's Declaration i

Abstract ii

Acknowledgements vii

List of Abbreviations xv

List of Figures xviii

List of Tables xx

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Group Communication 2

1.3 Types of Group Communication 2

1.3.1 One-to-many Group Communication 2

1.3.2 Many-to-many Group Communication 3

1.4 Group Communication in Wireless Environment 4

1.5 Problem Statement 8

1.6 Contributions of the Thesis 9

1.7 Organization of Thesis 10

Chapter 2 Literature Review 11

2.1 Group Key Establishment Protocols 11

2.2 Notations 11

2.3 Common Group Key Approach 12

Vlll

*

2.3.1 Pairwise Key Approach 13

2.3.1.1 Group Key Management Protocol by Harney and

Muckenhirn 13

2.3.1.2 Group Key Management Protocol by Dunigan and Cao

14

2.3.1.3 Poovendram et al. Protocol 15

2.3.1.4 Hao-hua Chu et al. Protocol 16

2.3.2 Broadcast Secrets Approach 17

2.3.2.1 Secure Locks Protocol 17

2.3.3 Hierarchy of Keys Approach 17

2.3.3.1 Logical Key Hierarchy (LKH) Protocol 18

2.3.3.2 One-way Function Trees (OFT) Protocol 19

2.3.3.3 Canettietal. Protocol 20

2.3.3.4 Efficient Large-Group Key Distribution (ELK) Protocol... 21

2.3.3.5 Centralized Tree-Based Key Management (CTKM) by

Waldvogal et al 23

2.3.3.6 Centralized Flat table Key Management (CFKM) protocol 25

by Waldvogel et al

2.3.4 Membership-Driven Re-keying 26

2.3.4.1 Scalable Multicast Key Distribution 27

2.3.4.2 Intra-domain Group Key Management Protocol 27

2.3.4.3 Hydra Protocol 28

2.3.4.4 Baal Protocol 29

2.3.5 Time-Driven Re-keying 29

2.3.5.1 Kronos Protocol 29

IX

r

2.3.5.2 MARKS Protocol 30

2.3.5.3 Dual Encryption Protocol (DEP) 31

2.3.6 Ring-based Cooperation 31

2.3.6.1 Ingemarsson et al. Protocol 32

2.3.6.2 Burmester and Desmedt (cyclic) Protocol 32

2.3.6.3 Burmester and Desmedt (Star-based) Protocol 32

2.3.6.4 Boyd and Neito's Group Key Agreement Protocol 32

2.3.6.5 Bresson, Chevassut and Pontchevafs Group Key

Agreement Protocol 33

2.3.6.6 Bresson, Chevassut, Essiari and Pointchevafs Group Key

Agreement Protocol 33

2.3.6.7 Nam, Kim, Kim and Won's Group Key Agreement 34

Protocol

2.3.7 Broadcast-based Cooperation 34

2.3.7.1 Burmester and Desmedt (broadcast-based) Protocol 34

2.3.7.2 The Octopus and Hypercube Protocols 35

2.3.7.3 Steiner, Tsudik and Waidner's Group Key Agreement 38

Protocols

2.3.8 Tree-based Cooperation 40

2.3.8.1 Burmester and Desmedt (tree-based) Protocol 40

2.3.8.2 The TGDH Protocol 40

2.3.8.3 Collaborative Key Management Protocols by Adrian

Perrig 41

2.3.8.4 The STR Protocol 44

2.3.9 Secret share-based Cooperation 45

2.3.9.1 Bresson and Catalano's Group Key Agreement Protocol .. 45

t

2.4 Independent Group Key (GK) per Subgroup Approach 45

2.4.1 Membership-Driven Re-keying 45

2.4.1.1 Iolus Protocol 46

2.4.1.2 Keyed Hierarchical Multicast Protocol 46

2.4.1.3 Cipher Sequences (CS) 47

2.4.1.4 Scalable and Adaptive Key Management (SAKM)

Scheme 48

2.4.2 Time-Diven Re-keying 48

2.4.2.1 YangProtocol 48

2.4.2.2 SIM-KM Protocol 49

2.5 Conclusions 49

Chapter 3 Group Key Agreement in MANET 51

3.1 Introduction 51

3.2 Group Key Agreement Protocols 52

3.2.1 The INGM Protocol 53

3.2.2 The BD Protocol 53

3.2.3 The Hypercube and Octopus Protocols 53

3.2.4 The CLIQUES Protocol Suite 55

3.2.4.1 IKA.l 55

3.2.4.2 IKA.2 56

3.2.5 The TGDH Protocol 57

3.2.6 The NAGKA Protocol 59

3.2.7 The STR Protocol 60

XI

t

3.3 Complexity Analysis 61

3.4 Conclusions 63

Chapter 4 Dynamic Membership 65

4.1 Introduction 65

4.2 Secure Group Key Agreement Protocols 65

4.3 Clique Protocol Suite 66

4.3.1 IKA.l 66

4.3.1.1 Single join event 66

4.3.1.2 Group fusion event 67

4.3.1.3 Single leave event 67

4.3.1.4 Subgroup exclusion event 68

4.3.2 IKA.2 68

4.3.2.1 Single join event 68

4.3.2.2 Group fusion event 69

4.3.2.3 Single leave event 69

4.3.2.4 Subgroup exclusion event 69

4.4 The TGDH Protocol 70

4.4.1 Single join event 71

4.4.2 Merge event 73

4.4.3 Single leave event 74

4.4.4 Partition event 74

4.5 The STR Protocol 75

4.5.1 Single join event 76

xn

T

4.5.2 Merge event 78

4.5.3 Single leave event 79

4.5.4 Partition event 80

4.6 The NAGKA Protocol 82

4.6.1 Single join event 83

4.6.2 Single leave event 83

4.7 Complexity Analysis 84

4.8 Conclusions 86

Chapter 5 Proposed Protocol 87

5.1 Introduction 87

5.2 The Model 87

5.2.1 Protocol Model 88

5.2.2 Security Model 89

5.3 The Proposed Protocol Suite 91

5.3.1 Key Generation 91

5.3.2 Setup Algorithm 91

5.3.3 Join-Merge Algorithm 93

5.3.4 Leave-Partition Algorithm 95

5.4 Security Analysis 97

5.5 Complexity Analysis 100

5.6 Conclusions 105

Chapter 6 Conclusions and Scope for Future Work 107

6.1 Conclusions 107

Xlll

6.2 Scope for Future Research 108

References Ill

Author's Research Publications 122

xiv

~r

PPV

WLAN

MANET

PAN

PDA

KEK

GKMP

SM

KDC

GTEK

GKEK

SKP

STEK

SKEK

GRP

GKM

ACL

CA

LKH

OFT

ELK

List of Abbreviations

Pay-Per-View

Wireless Local Area Network

Mobile Ad Hoc Network

Personal Area Network

Personal Digital Assistant

Key Encryption Key

Group Key Management Protocol

Security Manager

Key Distribution Center

Group Traffic Encryption Key

Group Key Encryption Key

Session Key Packet

Session Traffic Encryption Key

Session Key Encryption Key

Group Rekey Packet

Group Key Management

Access Control List

Certificate Authority

Logical Key Hierarchy

One-way Function Trees

Efficient Large-group Key

xv

PRF

CTKM

CFKM

SMKD

CBT

IGKMP

DKD

AKD

HS

GC

LC

DEP

SGM

SIDS

PIDS

GDH

IKA.l

IKA.2

TGDH

NAGKA

AGKA

PKI

CA

AGKA-G

Pseudo-Random Function

Centralized Tree-based Key Management

Centralized Flat-table Key Management

Scalable Multicast Key Distribution

Core Based Tree

Intra-domain Group Key Management Protocol

Domain Key Distributor

Area Key Distributor

Hydra Server

Group Controller

Local Controller

Dual Encryption Protocol

Sub Group Manager

Session Identities

Partner Identities

Group Diffie-Hellman

Initial Key Agreement 1

Initial Key Agreement 2

Tree-based Group Diffie-Hellman

Non-Authenticated Group Key Agreement

Authenticated Group Key Agreement

Public Key Infrastructure

Certificate Authority

Authenticated Group Key Agreement using Gunther's scheme

xvi

STR Skinny Tree

GK Group Key

GSA Group Security Agent

GSC Group Security Controller

KHIP Keyed Hierarchical-multicast Protocol

RK Random Key

CS Cipher Sequence

CG Cipher Group

SAKM Scalable and Adaptive Key Management

KS Key Server

XOR Exclusive OR

sk Secret Key

pk Public Key

CDH Computational Diffie-Hellman

MAC Medium Access Control

XVll

List of Figures

1.1 One-to-many group communication 3

1.2 Many-to-many group communication 4

1.3 Mobile Ad Hoc Network (MANET) 5

2.1 Group Key Establishment Protocols 12

2.2 Logical key hierarchy approach 18

2.3 Ancestor and sibling keys of member U2 20

2.4 Key revocation in the basic scheme 21

2.5 Member join event 22

2.6 Member leave event 23

2.7 Binary hierarchy of keys 24

2.8 Intra-domain Group Key Management Protocol architecture 28

2.9 Hydra architecture 28

2.10 MARKS Key Generation Tree 30

2.11 Diffie-Hellman Key exchange among 4 users 36

2.12 Octopus protocol 36

2.13 Up-flow stage for 5 users in GDH. 1 protocol 38

2.14 Down-flow stage for 5 users in GDH. 1 protocol 39

2.15 Stage 1 and 2 of GDH.2 protocol 39

2.16 Notations of the nodes of a group key tree of depth = 2 42

2.17 Non-authenticated group key tree (depth = 2) 43

2.18 Cipher Sequence (CS) Protocol 47

xvin

3.1 INGM Protocol: Round k; k e [l,n-l] 53

3.2 Pairwise exchange in a d-cube (a) round 1 (b) round 2 54

3.3 Stage 1 and 2 of IKA.l Protocol 56

3.4 Stage 1,2, 3 and 4 of IKA.2 Protocol 57

3.5 Tree-based Group Diffie-Hellman (TGDH) Protocol 58

3.6 Key Tree (depth = 2) in NAGKA Protocol 59

3.7 STR Key Tree with Three Members 60

4.1 TGDH Key tree with six members 70

4.2 Single Join Event in TGDH Protocol 72

4.3 Merge Event in TGDH Protocol 73

4.4 Single Leave Event in TGDH Protocol 74

4.5 Partition Event in TGDH Protocol 75

4.6 STR Key Tree with Three Members 76

4.7 Single Join Event in STR Protocol 77

4.8 Merge Event in STR Protocol 78

4.9 Single Leave Event in STR Protocol 80

4.10 Partition Event in STR Protocol 81

4.11 Key tree (depth=2) in NAGKA Protocol 82

4.12 Single join event in NAGKA Protocol 83

4.13 Single leave event in NAGKA Protocol 84

5.1 Setup algorithm with G0 = {Mx, M2, M3, M4} 92

5.2 Join-Merge algorithm with Gv_l={Ml,M2>M3,MA} 94

andJ = {M5,M6}

5.3 Leave-Partition algorithm with Gv_, = {Ml,M2,Mi,M4,M5,M6} 96

and L = {Mi,M5}

xix

List of Tables

1.1 Applications of Mobile Ad Hoc Networks 6

2.1 Centralized flat table for w = 4 26

2.2 CFKM Rekey messages when member 0101 leaves the group 26

3.1 Comparison of Group Key Agreement Protocols 62

4.1 Comparison of Dynamic Group Key Agreement Protocols 85

5.1 Comparison of Group Key Agreement Protocols (IKA.l, IKA.2 101

and proposed)

xx

Chapter 1

Introduction

1.1 Motivation

In the recent years the popularity of multicast and group-oriented applications is rapidly

increasing in both scenarios such as wireless and wire-line networks. Multicast and group

communications occur in many different settings, such as software updates, multimedia

content distribution, interactive gaming and stock data distribution, audio and video

conferencing, remote consultation and diagnostics systems for medical applications, contract

negotiation, shared white boards, distributed simulations, multi-party games, electronic

commerce environments like online real time auctions, replicated servers and databases of all

types. Multicast and group communication systems are used as vehicle to provide efficient

and secure data delivery to a large audience in such scenario..

Mobile ad hoc networks (MANETs)[l 0,17,42,44,63,82] have attracted significant

attention recently due to their wide applications in different areas. These networks do not

have fixed infrastructure, and are useful in applications such as military operations, relief and

rescue operation in case of natural disaster etc. MANETs are also very attractive option for

commercial uses. The aforementioned multicast and group-oriented network applications can

also be conducted in this network environment. The nature of ad-hoc networks sets certain

additional requirements for the group key establishment protocols. One major concerns for

group communication in mobile ad hoc network is security [2,42,47,54,63,64,97,102].

Security services include data confidentiality, integrity, authentication, access control, etc.

Another major concern is efficiency, which is measured in terms of the number of

communication rounds, number of messages, number of exponential operations required to

create a group key. Many of the above concerns can be addressed if all group members share

a common group key in secure and efficient manner. This makes secure and efficient group

key creation, distribution and management a fundamental issue, and a design challenge for

secure and reliable group communication in mobile ad hoc network.

1.2 Group communication

Group communication implies point-to-multi-point or multi-point-to-multi-point

communication by organizing processes in groups, where every process is a member of a

group. To identify and distinguish multiple groups, every group is associated with a unique

group name or IP-multicast address [94]. For instance, a group may consist of users playing

an online game with each other. Another group may consist of members participating in a

multimedia conference. In these examples, each group member sends a message targeted to a

particular group. The group communication service then delivers the message to all other

group members. Groups are usually dynamic in the sense that the list of group members

continuously changes. Users can choose when they wish to join or leave a group, for

example, users can independently start or stop playing a game at any time. Therefore, groups

can be seen as dynamic sets of entities.

1.3 Types of Group communication

As mentioned before, groups consist of multiple members exchanging messages

between themselves. Depending on how messages are exchanged, the literature distinguishes

two different types of group communication as briefly described below.

1.3.1 One-to-many group communication

This type of a group communication, also referred to as "1-to-N multicast", is a

unidirectional transmission from one sender to multiple recipients. This means that only one

entity sends information and multiple entities receive it [1,8,52,60,74], as shown in Fig 1.1.

Since in this type of group communication only one entity can send data, there is no

information that can be received by the sender [79]. Therefore, the sender is usually the

initiator of the group and is not considered a group member. Examples of this type of

multicasting include all Pay-Per-View (PPV) applications, transmission of passive data (e.g.

stock market information, web-radio channels, software update distribution etc.) and others.

Typically, PPV multicast contains monetary information where receivers have to pay for it.

Thus, this type of group communication in combination with security services is of interest to

r

>

commercial companies in order to guarantee payment by consumers. This, for instance, could

require the consumer to give his credit card in order to obtain the key and to get access to

monetary information.

Laptop computer

/ Jt
Laptop computer

1

I ^—.j

Laptop computer Laptop computer

Figure 1.1: One-to-many group communication

1.3.2 Many-to-many group communication

Another type of group communication among multiple entities is the situation where

every member can be both, a sender and receiver, as shown in Fig 1.2. This type is also

referred to as "N-to-N communication" [3-5,9,12,13,15,16,18,19,21,22,25,27-33,35,36,38-

41,46,50,53,57-59,61,62,65,66,68,71,74-78,84-93,96,98,99,104,105,107,110,112-116]. The

main difference compared with the one-to-many is that all entities involved in a group

communication are equivalent. Typical examples for this type of group communication are a

video conferencing among multiple members or an application for exchanging messages and

documents.

Laptop computer

1

Laptop computer Laptop computer

t
Laptop computer

Figure 1.2: Many-to-many group communication

1.4 Group communication in wireless environment

In recent years the popularity of wireless network is also increasing very fast. Wireless

technology is gaining more and more attention from both academia and industry. Most

wireless networks used today, e.g. the cell phone networks and the 802.11 Wireless Local

Area Networks (WLANs) [6,34,45,48,72,81,100,101], are based on the wireless network

model with pre-existing wired network infrastructures. Packets from source wireless hosts are

received by nearby base stations, then injected into the underlying network infrastructure and

then finally transferred to destination hosts.

Another wireless network model, which is actively researched, is the mobile ad hoc

network (MANET) [10,17,42,44,63,82]. This network is formed by only mobile nodes and

requires no pre-existing network infrastructure, as shown in Fig 1.3. Nodes with wireless

capability form a MANET instantly and packets can be delivered to any node in the network.

Since there is no base station and no underlying network infrastructure in MANETs, some

mobile nodes work as routers to relay packets from source to destination. Mobile nodes that

are within the communication range of each other can communicate directly whereas the

nodes that are far apart have to rely on intermediary nodes (routers) to relay messages. The

mobility of a node in the mobile ad hoc networks can cause frequent changes in the network

topology. These networks also have limited bandwidth.

Source- Intermediate

Laptop computer Laptop computer

'"'liiiiiil

Intermediate

Laptop computer

Destination

Laptop computer

Figure 1.3: Mobile Ad Hoc Network (MANET)

It's very easy and economic to form an MANET in real time. MANET is ideal in

situations like battlefield or emergency rescue area where fixed network infrastructure is very

hard to deploy. The Table 1.1 depicts some applications of MANETs in different areas.

Many group-oriented network applications can be easily conducted in this new network

environment. For example, in a conference room or in battlefield, users can form an ad-hoc

network instantly with their wireless devices, e.g. notebook computers, PDAs, or even cell

phones, without requiring any pre-installed cables or base stations. They can use this fast

setup ad-hoc network for conducting a videoconference, sharing files or even playing

interactive games. Before the ad-hoc network concept can be widely accepted, several issues

need to be resolved [10,17,42,43,63,82]. For example, security and efficiency are major

challenges in this environment.

Table 1.1: Applications of Mobile Ad Hoc Networks

Applications Descriptions / Services

Tactical

networks

Military communication, operations

Automated Battlefields

Emergency

services

Search-and-rescue operations as well as disaster recovery; e.g., early retrieval

and transmission of patient data (record, status, diagnosis) from / to the

hospital.

Replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire,

etc.

Commercial

environments

E-Commerce, e.g., electronic payments from anywhere (i.e., in a taxi).

Business:

Dynamic access to customer files stored in a central location on the fly

provide consistent databases for all agents, Mobile office

Vehicular Services:

Transmission of news, road conditions, weather, music, Local ad hoc

network with nearby vehicles for road / accident guidance.

Home and

enterprise

networking

Home / office wireless networking (WLAN), e.g., shared whiteboard

application, use PDA to print anywhere, trade shows

Personal area network (PAN)

Educational

applications

Set up virtual classrooms or conference rooms

Entertainment Multi-user games, Robotic pets, Outdoor Internet access

Location-

aware

services

Follow-on services, e.g., automatic call forwarding, transmission of the

actual workspace to the current location

Information services:

Push, e.g., advertise location-specific service, like gas stations

Pull, e.g., location-dependent travel guide; services (printer, fax, server, gas

stations) availability information; intermediate results, state information, etc.

In order to specify what efficiency and security mean, one may consider some desirable

properties for a group key establishment protocol. Efficiency, while not measuring security,

is to be considered as a crucial property when designing key establishment protocol and it is

>

^

quantified as the number of communication rounds, number of messages, number of

exponential operations required to create a group key. Secondly, security is another very

important aspect of any group key establishment protocol. The general goal of a secure

communication is to establish a common secret key (also referred to as a group key), among

all group members for confidential communication. Usually, a secret group key is established

by a group key establishment protocol. Therefore, each group key establishment protocol

should satisfy certain security properties, viz., forward secrecy, backward secrecy, collusion

freedom, and key independence.

Forward secrecy: It requires that members who left the group should not have access to any

future key. This ensures that a member cannot decrypt data after it leaves the group. To

assure forward secrecy, a renewal of group key through rekey operation is required after each

leave operation.

Backward secrecy: It requires that a new member that joins the session should not have

access to any old key. This ensures that a member cannot decrypt data sent before it joins the

group. To assure backward secrecy, a renewal of group key through rekey operation is

required after each join operation.

Collusion freedom: It requires that any set of fraudulent members should not be able to

collude and deduce the current group key.

Key independence: A protocol is said key independent if a disclosure of a key does not

compromise other keys.

Many group key establishment protocols have been proposed in the literature. Some

protocols [1,3-5,8,9,12,13,15,16,18,19,21,22,27-33,35,36,38-41,46,50,53,57-62,65,66,68,71,

75-78,84-93,96,98,99,104,105,107,110,112-116] are designed for group key establishment in

general, while others [7,37,51,55,56,70,73,80,83,95,103,108,111] are proposed for group key

establishment problem in ad-hoc networks. Unfortunately, none of these protocols is fully

adaptive to the key establishment problem in mobile ad-hoc networks. Some key

establishment protocols among them depend on a reliable central key server, whereas others

require a lot of rounds, messages, and exponentiation operations for group key establishment.

A common problem of these protocols is that, by design, they did not take into account the

unique features of mobile ad-hoc networks (MANETs), for example, less computational

power and communication bandwidth etc. Key establishment protocols should be designed so

that computational load is distributed among multiple nodes. Heavy computation work on a

single node should be avoided. Secondly, radio signal used in wireless communication

propagate in every direction in space. So in wireless network, a local broadcast to all

neighbors within the radio range uses no significant more time and resource than a unicast. A

well-designed group key establishment protocol should take these features into consideration

and should adapt to the mobile ad-hoc network environment.

1.5 Problem statement

Efficient, scalable, reliable, and secure communication services have become critical in

modern computing. Many collaborative applications (e.g., conferencing, white-boards, shared

instruments, and command-and-control systems) need secure communication. However,

experience shows that security mechanisms for collaborative dynamic peer groups tend to be

both expensive and unexpectedly complex. Collaborative dynamic peer groups are different

from non-collaborative, centrally managed, one-to-many broadcast groups such as those

encountered in Internet. Security requirements of collaborative dynamic peer groups,

particularly in mobile Ad hoc networks (MANETs), present interesting research challenges.

Key establishment and management, as the cornerstone of most other security services,

presents the initial and formidable obstacle. Although centralized key management might

initially appear attractive, it is inherently unsuitable for dynamic peer groups. The rationales

are: first, centralization violates the peer nature of the group by concentrating all key

generation in a single point; and secondly, a centralized key server becomes a single point of

failure, an attractive attack target and heavily computation oriented. Of course, a key server

can be sufficiently replicated and fortified to address some of these issues. However, it is

very costly to guarantee the availability of a key server in unreliable ad hoc network, thus,

each group member must be prepared to become a key server. Although centralized and

decentralized group key establishment protocols work efficiently in wired networks yet these

protocols may not work well in MANETs because of their peculiarities, i.e., nodes are

lightweight devices like PDAs, Laptops, etc.. Moreover, nodes have limited battery power,

wireless links between nodes form and dissolve unpredictably, and their bandwidths are

limited as well. Given the stringent resources, group key establishment should be lightweight

for the sake of efficiency to conserve bandwidths, energy, storage, and computations. The

main objective of the present research work can be described as follows:

f

r

n

4

"To design and analyze an efficient protocol for group key distribution problem for

mobile ad hoc network (MANET), and also provide a comparative study of proposed

protocol against various existing group key establishment protocols".

In order to explore the above problem, it could be divided into small number of

objectives, which are as follows:

(i) Investigation of group key establishment protocols;

(ii) Complexity analysis of group key agreement protocols in setup phase;

(iii) Complexity analysis of group key agreement protocols for dynamic membership

events, i.e., join, leave, multiple join, and multiple leave;

(iv) To propose a secure and efficient group key agreement protocol, its security and

complexity analysis and compare it with clique protocols (IKA.l and IKA.2);

1.6 Contributions of the thesis

This work investigates the group key establishment protocols extensively and finds

that the group key agreement protocols may provide better solution for mobile ad hoc

networks because these are contributory wherein each member provides equal contribution in

the creation of the group key. Major contributions of this thesis may be described as follows:

(i) Extensive investigation of group key establishment protocols for mobile ad hoc

networks;

(ii) Complexity analysis of group key agreement protocols based on two party Diffie-

Hellman protocol, where it is concluded that the Clique protocols (IKA.l and

IKA.2) show the best results;

(iii) Complexity analysis of group key agreement protocols, based on two party

Diffie Hellman protocol, for dynamic membership events, i.e., join, leave,

multiple join and multiple leave, where it is again concluded that the Clique

protocols (IKA.l and IKA.2) show the best results

(iv) A secure and efficient group key agreement protocol is proposed, and its security

and complexity analysis is done. The protocol is compared it with Clique

protocols (IKA.l and IKA.2). It is observed that the proposed protocol shows

better performance as compared to Clique protocols (IKA.l and IKA.2);

1.7 Organization of thesis

The rest of the thesis is structured as follows: Chapter 2 presents the comprehensive

investigation of group key establishment protocols. Chapter 3 presents the complexity

analysis of group key agreement protocols based on two party Diffie-Hellman protocol for

mobile ad hoc networks. Chapter 4 describes group key agreement protocols for dynamic

membership events. Chapter 5 presents a new secure and efficient group key agreement

protocol, and its security and complexity analysis. The comparison of the protocol with other

two best protocols concluded in Chapter 3 and 4 is also presented. Lastly, Chapter 6

concludes the thesis.

10

•«

•*

Chapter 2

Literature review

2.1 Group Key Establishment Protocols
r

Although a slew of group key establishment protocols have been proposed in the

literature, yet no major effort has been made to establish the suitability of these protocols to

mobile ad hoc networks (MANETs). Efficient handling of events, such as join, leave, merge

and partition, is a major issue for any group key establishment protocol. Some protocols,

therefore, propose to organize the secure group into subgroups with independent local group

keys. This reduces the impact of re-keying, but requires subgroup leaders, which are

> responsible for communication among subgroups. Other protocols suggest that a central

entity create and distribute the group key. Therefore, we can broadly classify the existing

solutions into two approaches: common group key approach [1,3-5,8,9,12,13,15,16,21,22,28-

32,35,36,38-41,46,50,60-62,71,76-78,84,88,91,98,99,104-106,113-115] and the independent

group key per sub-group approach [18,53,85,86,96,112,116] as depicted in Fig 2.1.

2.2 Notations

Following notations will be used in subsequent chapters.

p: the signature,

H: hash function,

\p\: the length ofaprime number p where p is an order ofa cyclic group G,

g: one-way function,

n : total number of members in the group,

-* j : the number ofjoining (merging) member(s),

/: the number of leaving (partitioning) member(s).

2.3 Common group key approach

In this approach, all group members share a common group key. The group key

establishment architecture can be classified into two categories, viz, distributory and

contributory architectures. Distributory architecture can be further categorized into

centralized and decentralized architectures.

In centralized architecture only one central server is responsible for creation and

distribution of keys. There are three centralized approaches, viz, pairwise keys approach,

broadcast secrets approach and key hierarchy approach.

In decentralized architecture based on common group key approach, one central server

creates and other additional servers help in distributing keys, this way other servers share the

load of the central server. Decentralized architecture can be further classified into two

approaches based on re-keying operation such as membership-driven re-keying and time-

driven re-keying.

In contributory architecture each node contributes equally in group key creation, thereby

reducing the amount of computation to be done by each node. The contributory architecture

can be further classified into different categories such as ring-based, star-based, hierarchy-

based, broadcast-based and secret share-based. The complete architectural chart is shown in

Fig 2.1.

Group Key
Establishment

c

lis*
5 Sb ;

p

roup oup

Meb

I
t

5>•>

am

Distributory

Centralized Decenti

Pairwise

keys

[39,40,
41,91,

105]

Broadcast Key Membership
secrets hierarchy deriven rekeying

[38] [5,15,16,21, [1,3,9,36,90,
22,28,29,78, 98,104,107]

84]

Time driven

rekeying

[8,60,61,62,
99]

[18,53,85,96,112] [86,116]

Ring
based

Contributory

Broadcast

based

Tree

based

Secret share

based

[13,31,32 [12,71,76,77] [4,35,71, [30]
46,50,71] 113,114,

115]

Figure 2.1: Group Key Establishment Protocols

1?

2.3.1 Pairwise Keys Approach

In this subcategory of protocols [39,40,41,91,105], the key server shares a secret key

with each group member. These keys are generally called key encryption keys and are used to

establish secure channels between the key server and each member in order to re-distribute

the current group key securely whenever required.

2.3.1.1 Group Key Management Protocol by Harney and Muckenhirn

Harney and Muckenhirn proposed the Group Key Management Protocol (GKMP) [39,40]

based on pairwise keys approach. The GKMP proposes to create symmetric keys and

distribute them amongst communicating peers. The GKMP assumes that there is a Group Key

Management (GKM) application available and executable by any node in the network. In

GKMP, the security manager plays the role of key distribution center and also authenticates

and validates a new member's identity. Initially a group originator is identified for group,

which first obtains a certification from a trusted entity verifying that the originator is

responsible for generating and distributing the group key. The originator verifies each join

request using the security manager before sending it to GKM application. Initial member list

is used by the GKM application to generate the Group Key Packet (GKP). The GKP contains

the current Group Traffic Encrypting Key (GTEK) and the future Group Key Encrypting Key

(GKEK) .The GKMP allows GKM application to identify itself as the group key controller,

which is validated by the member participating in the GKP generation. Once the GKP is

generated, the group controller distributes it to every member of the group by contacting and

verifying its security parameter. And also generates a Session Key Packet (SKP) for that

member. The SKP contains traffic encryption key (TEK) and key encryption key (KEK) and

has the form: SKP = (STEK, SKEK). This SKP is the first given to the member encrypted

using the public key of the member. The controller then uses the SKEK of that member to

encrypt the GKP and then creates a Group Rekey Package (GRP) for that member. When the

group has to be rekeyed, the GKMP allows GKM application to contact any member of the

group and generate a new GKP and then broadcast it after encrypting using the old GKEK.

This protocol has many disadvantages, for example, a group originator is responsible for

generating and distributing the group key, each join request is validated by security manager

and if a current member is compromised, the proposed method of rekeying will not be

effective since the compromised member still has the access to the old GKEK and can

13

decrypt the new GKP. Since GKMP requires 0(n) rekey messages for each leave from the

group, this solution does not scale to large groups with highly dynamic members.

2.3.1.2 Group key management protocol by Dunigan and Cao

Dunigan and Cao [105] proposed a protocol wherein architecture uses public/private

keys to verify member identity. A group access policy defines what is required to join the

group. A suite of cryptographic functions provides encryption, hashing, random number

generators, and digital signatures. Any network host can create and manage a group and be

designated as group authority, which specifies the group name, group id, the security policy

and cryptographic algorithms required, and communication requirements (multicast address,

port, time-to-live and management port). This information is conveyed to group members in

group information token that is signed by the group authority. Using group information

token, a member joins the group by communicating with the group controller. The group

controller enforces the group policy, validating a member's id, signature and access

certificates. The group controller manages key lifetimes and re-keying as well as compromise

recovery. Group keys are managed by means of a simple message protocol between group

controller and group member. A member wishing to join a group first obtains the group

information either from a pre-delivered certificate or by sending a group discovery message

to the group authority. The group join message is signed by the sender and includes the

sender's Diffie-Hellman value and any certificates required by the group policy. The group

controller processes the group join request by validating the signature on the requester's

message and conforming the required certificates are valid and meet the group policy. If the

requester is authorized, the controller generates his Diffie-Hellman shared secret key. The

controller also generates the group key and sends back a group join reply signed with the

controllers' key. The member receives the reply, verifies the signature, calculates the Diffie-

Hellman shared secret key and uses it to decrypt the group key block. The group controller

also monitors key lifetimes and multicasts a group re-key message, which contains a new

GTEK encrypted under the GKEK key. If members notice their keys are out of date, they can

send a key update request to the group controller asking for the current group key. The policy

field in the group information token specifies the type of authorization required to join a

group. Since group controller is responsible for managing group keys, enforcing the group

policy, validating a member's id, signature and access certificates, monitoring key lifetimes,

14

>

keeping each member's network address and responsible for re-key or rejoin by sending a

unicast message to each member, it is prone to different kind of failures.

2.3.1.3 Poovendram et al. protocol

Poovendram et al. [91] have also proposed a scheme similar to GKMP [39,40], where

authentication and authorization functions are delegated to other group members rather than

centralized at the same group controller entity. The paper addresses the two issues, i.e.,

robustness and scalability. In this protocol the notion of group controller is changed to a panel

of controllers. This panel consists of three members at any given time. Among these three,

one serves as the active group controller, with the group keys being generated by two panel

members with the constraint that no two-panel members may participate in consecutive key

generations. This approach allows every panel member to have only shared key generation

authority. At least two members of the control panel have to agree in order to re-key the

group. Replacing a single group controller with a panel of three members adds more

functionality to the panel and reduces the probability of failure of the whole group controller

panel. If one member is compromised, then the other two members can inform the security

manager to effectively remove the compromised panel member. In case of if more than one

panel member are compromised, the protection mechanism is at the same level as the GKMP

or KDC in terms of the ability to deal with a compromised members.

It is noticed that authentication, verification, join-authorization, session key parameter

negotiation and distribution have to be scalable for a dynamic multicast group. To effectively

scale the key exchange, access control list (ACL), revocation control list (RCL), and other

issues, authors propose to have the group first segmented into clusters and each cluster

managed by a sub-controller panel of three members which has all the authorities of the main

control panel except the group key packet (GKP) generation.

In this scheme, only one panel is identified as core and is responsible for generating the

group key packet, which includes the GTEK and GKEK. The core panel then transmits this

information to the cluster panels, which will then use the information in generating the

session keys, etc. The size of any particular group is the deciding factor in formation of

clusters and hence the sub-group panels. The clustering process involves cluster formation,

cluster splitting, cluster merging, and cluster joining. Cluster formation involves setting up

the cluster sub-control panel id, establishing a cluster id, and setting up the link to the

15

neighboring clusters, if any. Although this protocol eliminates the single point of failure by

introducing a set of panel members in place of one group controller, yet these panel members

can be compromised.

2.3.1.4 Hao-hua Chu et al. Protocol

Hao-hua Chu et al. [41] also proposed a solution for group key establishment based on

pairwise keys approach. Their key distribution algorithm is designed to achieve the goals of

security in open network environment, multicast architecture independence, and robust

dynamic membership support. To start a new secure multicast group, key distribution

algorithm requires only a group leader is to be started. Data transmission can be divided into

three phases: sending phase, verification phase, and receiving phase. In sending phase, the

sender constructs a data message that contains three components. The sender multicasts the

data message in the multicast channel. When the data message is received from the multicast

channel, members cannot decode the data yet because they do not have the message key.

Only the group leader has symmetric key which can be used to decode message key. The

verification phase involves the group leader. Upon receiving the data message from the

sender, the group leader looks up its current membership list to check that the sender is

indeed a valid group member. Then it decrypts the second and third component of the data

message using its symmetric key with sender to obtain the message key. And verifies that the

(memberid, messageid) pairs are the same between the first component and the second

component in the data message. When both validation checks succeed, the group leader

prepares a verification message, which is then signed with the private key of the group leader.

The group leader signs and multicasts the valid verification message in the multicast channel.

The last phase involves the receiver listening on the multicast channel. Upon receiving a data

message, the receiver separates the data message into three components. The receiver

decrypts it with the public key of the group leader to reveal the message tag. If the

verification message contains the VALID symbol, the receiver uses his/her assigned uid and

searches for his/her slot that contains the message key in the verification message. After the

message key is decrypted, the receiver uses the message tag to retrieve the corresponding

encrypted data component from the data queue. Then the receiver can decrypt the data with

the message key. This protocol has the drawback to require the transmission of the validation

multicast message by the group leader, with a size in the order of O(n) (n being the number of

16

*•

\

4

current valid group members), after each time the source sends a message to the group.

Another drawback is group leader, which has the authority and the necessary information to

accept / reject new membership requests. Its" failure may result the whole group inoperative.

2.3.2 Broadcast Secrets Approach

In this subcategory of protocols, the rekeying of the group is based on broadcast

messages instead of peer-to-peer secret transmissions.

2.3.2.1 Secure Locks Protocol

Chiou and Chen [38] proposed Secure Lock key management protocol where the key server

requires only a single broadcast to establish the group key or to rekey the entire group in case

of a leave. The protocol relies on Chinese remainder theorem. In this protocol, the key server

assigns a positive integer,m,, to each member, and shares a secret valuek, with each of them.

When the server wants to send a message to the group, it generates a random value K and

uses it to encrypt the message. Then, it encrypts K with each secret kt and obtains the set

{AT.} of the encryptions of K(Kt = {K}k). Then the server computes a lock M. Then,

Server multicast lock M as well as the encrypted message with K. Upon reception of the

lock M, each member recovers the encryption key K = {Mmodm.}^ , and hence decrypts

the received message. Members, whose secret k, and its corresponding positive integer mj

are included in the computation of the lock M, can recover the decryption key K. This

protocol minimizes the number of re-key messages. However, its drawback is the increase in

computation load at the server due to the Chinese remainder calculations before sending each

message to the group. And, server is also prone to different kind of attacks.

2.3.3 Hierarchy of Keys Approach

In pair-wise keys approach, re-keying operations require high number of update

messages (in the order of 0(n)). The key server establishes a secure channel individually

with each member and uses this channel to distribute the group key updates. In order to

reduce the number of update messages, in this class of protocols, the key server shares secret

keys with subgroups of the entire secure group in addition to the individual channels. Then,

when a member leaves the group session, the key server uses the secret subgroup keys that

17

are unknown to the leaving member, to distribute the new group key. Thereby, subgroup

secret keys help in reducing the required number of update messages. In subsequent sections,

we present some protocols that use this concept.

2.3.3.1 Logical Key Hierarchy (LKH) Protocol

Wong et al. [15,16,28] and Wallner et al. [29] proposed the Logical Key Hierarchy

(LKH) protocol. In LKH, the key server maintains a key tree. The nodes of the tree

correspond to key encryption keys and the leaves of the tree correspond to secret keys shared

with the members of the group. Each member holds a copy of its leaf secret key and all the

key encryption keys corresponding to the nodes in the path from its leaf to the root. The key

corresponding to the root of the tree is the group key. For a balanced binary tree, each

member stores at most (log2 n+1) keys, where n is the number of group members. The key

hierarchy assists in reducing number of re-key messages from 0(n) to 0(log2 n), for

example, for a group of six members (n],u2,u},u4,u5,ub), the key server builds a hierarchy of

keys as shown in Fig 2.2.

{ulU2u3u4}

/

Figure 2.2: Logical key hierarchy approach

Each member owns a secret key, which is a leaf in the tree as well as all the keys on its

path to the root. The root represents the group key K shared by all the members. The other

keys are used to reduce the required re-keying messages User w, owns (KuKu,Km4,K), u2

owns (K2,K]2,Km4,K), w3 owns (K3,Ki4,Km4,K), u4 owns (K4,K34,Km4,K), w5 x

owns(K5,K56,K)and u6 owns (K6,K56,K). Let us assume that u5 leaves the group, key

18

*

server updates KS6 into K'56, sends K'S6 to w6 encrypted with K6. Group key K is updated

into K' and sent to (m],m2,m3,m4) encrypted with AT]234 and to m6 encrypted with Af56 and

hence only three messages are required instead of five messages if GKMP were used.

Wong et al. [15] proposed the extension of the binary key tree to a k-ary key tree. Using

a greater degree reduces the number of keys maintained by the members because of a smaller

tree depth. Performance analysis shows that optimal results are reached with trees having a

degree less or equal to 4. This protocol has many drawbacks, for example, the key server is

responsible for creating the key tree, which makes it vulnerable to attacks and failures.

Another drawback is that each member stores the key tree, which needs a lot of memory. This

protocol also needs a lot of re-key messages whenever join or leave takes place.

2.3.3.2 One-way Function Trees (OFT) Protocol

McGrew and Sherman [21,22] proposed an improvement over LKH called One-way

Function Trees (OFT). OFT assists in reduction of the number of re-key messages from

2 log2 n to only log2 n. With OFT, a key encryption key is calculated by members rather

than attributed by the key server. Indeed, each key encryption key Kt is computed using its

child key encryption keys using the formula:

k,«/(*(*w>).*(*W)

where lef't(i) and right(i) denote the left and right children of node i respectively, and g

is a one-way function. The result of applying g to a key K: g(K) is called the blinded key

version of K.

In this protocol, each member maintains its leaf secret key and its blinded sibling key

and the set of blinded sibling key encryption keys of its ancestors. Fig 2.3 illustrates the

ancestors and their corresponding sibling keys of member u2. Using aforementioned formula,

each member can calculate all the required ancestor key encryption keys (key encryption

keys on the nodes in the path from the leaf secret to the root) recursively. In the original

scheme (LKH), when a new key encryption key is generated, it is encrypted with its two child

key encryption keys. However, in OFT when a blinded key is changed in a node it has to be

encrypted only with the key of its sibling node. Therefore, the required number of re-key

messages is reduced to half.

19

Ancestor key K.o

Sibling key K-

U1

K Root key

tt

K34 Sibling key

•r*

-

K2 K3
KK4

u2 U3 u 4

Figure 2.3: Ancestor and sibling keys of member U2

2.3.3.3 Canetti et al. Protocol

Canetti et al. [84] proposed a approach, which reduced communication overhead to half

of Wallner et al. [29] approach. The proposed scheme is called one-way function chain tree

that uses a pseudo-random generator to generate the new key encryption keys rather than a

one-way function. The initialization of the scheme is the same as in [29]. The user revocation /

procedure is as follows: Let G be Pseudo-random generator, which doubles the size of its

input [74]. L(x) and R(x) denote the left and right halves of the output, G(x), i.e.,

G(x) =L(x)R(x) where \L(x)\ =\R(x)\ =\x\. To remove a user u, the group controller

associates a valuerv to every node valong the path from u to the root as follows: It chooses

rp{u) -r at random and sets rp(v) =R(rv) =/?'"'"'1''(r) for all other v(where /?(v)denotes the

parent of v). The new keys are defined by kv =L(r\) =L(R'"'"~* (r)). Notice that from rv,

one can easily compute all keys kv,ki){v),kp{p{v)) up to the root key k . Finally each value r ,.

is encrypted with key &..(where s(v)denotes the sibling of v) and sent to all users. For

example, in order to remove user w0from the tree of Fig 2.4, we send encryptions

Ek (r), Ek (R(r)), Ek (R(R(r)). Each user can compute from the encryptions all and only the

keys it is entitled to receive. This construction halves the communication overhead of the

basic scheme to only log n, and its security can be rigorously proven. It has an additional

20

i

t

advantage that group key is the output of Pseudo-random generator whereas in [29], it is

chosen by group controller.

k •< New Group Key

k ' kKQ K1

k ' k k k
^00 ^01 *10 *1

Remove

11

f (* ,*„„>

kkkkkkkk
^000 ^001 ^010 *011 ^100 *101 ^110 111

u0 u1 u2 u3 u4 u5 u6 u7

Figure 2.4: Key revocation in the basic scheme

This protocol also has same disadvantage as LKH protocol [15] and OFT protocol [29],

that is, group controller, whose failure may render the whole protocol inoperative.

2.3.3.4 Efficient Large-Group Key Distribution (ELK) Protocol

Perrig et al. [5] proposed Efficient Large group Key distribution (ELK) protocol, which

uses pseudo random functions to generate the new key encryption keys. There is a family of

Pseudo-Random Functions (PRFs) that uses key A^on input M of length m bits. A number of

derivation functions are also used. In ELK all members are at leaves in the logical key

hierarchy, ELK is composed of two basic mechanisms: Key update and Key recovery

(through hints). In case of leave event, ELK uses a new key update protocol, where the left

and right child keys contribute to update the parent key. This approach is similar to the OFT

protocol [22], but this paper allows small hints that allow legitimate members to reconstruct

the key without the key update. In key recovery, instead of broadcasting the key update

message, legitimate members who know K and either KL or KR can also recover the new

key K from a hint that is smaller than the key update message, by trading off computation for

communication. The paper assumes that a member can perform 2"1 computations that

construct a smaller key update or a hint. The group key distribution protocol allow users to

join and leave the group at any time or in aggregate join and leave requests that occur in one

time interval into one group key update, which makes key update message smaller.

21

Member join event: In a member join event, the key server assigns the new member to a node

in the key tree and the new member receives all the updated keys on the path from its leaf

node to the root which involves higher communication overhead. The ELK trade off

computation for lower communication overhead.

M, Joins k
4 \

K2 K3 ^ K'2 K'3

M, M1

K4 K5 K'4

M2 M3 M2

b

K'5 K7

M3 M4

Figure 2.5: Member join event

Fig 2.5 shows an example join event where member, M4, joins the group and the server

decides to insert it at the leaf node ofM3. In the first step, the server updates all keys in the

tree. Step 2 does not apply since no empty leaf nodes are available. In step 3 the key server

generates the new leaf node and assigns it a new random key K7. In step 4, the server decides

to merge M4 to the node of K5, and generates the parent node Mb of K5 and A"7. The server

computes the new key, Kb. In step 5 the server sends M4 the message {Kl,Ki,K6}K . In step

6, the server sends the joining location of the new member to M3by unicast, which tells

M}to update its key tree and to compute Kb. In case of multiple members join events the

members can be placed in the empty locations this way no overhead is generated. If no empty

leaf nodes exist, the key server can first generate a smaller key tree with the new members,

and join that tree to one node of the current group tree. In this case the server only needs to

communicate the location of a single node to the members that live below the joining node.

Member leave event: The member leave event is more complicated than the member join

event, because all the keys that the leaving member knows need to be replaced with new keys

that the leaving member must not be able to compute to ensure forward secrecy. The key

22

V

>

server uses the child contribution scheme discussed in single join event to update the keys on

the path from the leaf node of the leaving member up to the root.

M3 Leaves

Figure 2.6: Member leave event

Fig 2.6 shows the leave event where member M3 leaves the group. In step 1, the key

server deletes the nodes that correspond to the keys K4 and K6. The server promotes the node

ofA"5. In step2, the serverupdates the keys on the key path of the leaving member A"3 andA',.

In step 3 the server broadcasts the key update. Finally, subsequent data packets contain the

hint. In case of multiple members leave in the same interval, the key server aggregates all the

leaving members and creates a joint leave key update message. ELK can aggregate the

concurrent member leave events particularly well and provides (in addition to current

savings) a 50% saving over OFT protocol [22] for keys when both children change. The

reason for OFT's inefficiency is that if both child keys change, OFT needs two key updates

(one for each child), whereas ELK only needs one.

2.3.3.5 Centralized Tree-Based Key Management (CTKM) by Waldvogal et al.

Waldvogel et al. [78] proposed and implemented a centralized, easy maintainable

scheme, which achieves tightest control over the individual participants. It suits to

applications with high security demands, and poses very little load on the network and the

receivers. The group manager centrally manages all keying material. To store the keying

material, a tree is used in which all participating entities are represented by its leaves. Fig 2.7

depicts the hierarchy of keys. During setup phase, which includes admission control, each

participant establishes a shared secret with the group manager. The group manager stores it in

23

the leaf node associated with this participant, and uses it whenever only this individual

participant should understand a message such as for unicast traffic during this participants

join operation. Its revision is increased after each use to ensure perfect forward secrecy.

Besides incrementing the revision field, the keying material is passed through a one-way

function so that the newcomer cannot recover earlier traffic. The node x in the binary tree

held by the group manager contain further KEKs, used to achieve efficient communication of

new keying material when the membership of the group changes.

Each participant holds a different subset of keys from the tree, more specifically all

those keys that are in the path from the participants leaf to the root node, which is used as the

TEK. These intermediate KEKs are used if a message should only be understood by a part of

the group, e.g., a message encrypted with KEK 47 is understood by participants 4...7. This

enables the transmission of new keys to only a limited set of participants, thereby disabling

others to decrypt specific messages.

OF Level 0

Level 2

Level 3

Figure 2.7: Binary hierarchy of keys

Single Join/ Multiple join: On a join operation, the participant's Key Manager unicasts its

request to the group manager, which checks with admission control and assign an ID (say 4),

where the participant's individual key is stored. The ID is used such that the bit-pattern of the

ID defines the traversal of the tree, leading to a unique leaf. Participant's ID may be his IP

address and port number, or a function thereof. The group manager increases the revision of

all the keys along the path from the new leaf to the root (KEKs 45, 47, 07 and TEK OF), puts

them through the one-way function and sends the new revision of the keys to the joining

participant, together with their associated version and revision numbers. At the same time, all

senders are informed of the revision changes, so they start using the new TEK. If several

24

>

*

4

4

joins happen in short succession, the revision of the TEK and the KEKs shared between the

newcomers only need to be increased once, if newcomers can be allowed to decipher a small

amount of data sent out before they were admitted (usually only a fraction of a second).

Single Leave/ Multiple leave: To perform a leave operation, the group manager sends out a

message with new keying material, which can only be decrypted by all remaining

participant's key managers. Additionally, it frees the slot utilized by the leaving participant,

making it available for reuse at a future join. Assume C is leaving. This means that the keys it

knew (KEKs CD, CF, 8F, and TEK OF) need to be viewed as compromised and have to be

changed in such a way that C cannot acquire the new keys. This is done efficiently by

following the tree from the leaf node corresponding to the leaving participant to the TEK

stored in the root node, and encrypting the new node keys with all appropriate underlying

node or leaf keys. Using a single message for multiple leaves take advantage of path

overlaps, so several keys will only be created and sent out once per message instead of once

per leave operation. This can be used to efficiently coalesce multiple leave (and join)

operations into a single message.

2.3.3.6 Centralized Flat table Key Management (CFKM) protocol by Waldvogel et al.

Waldvogel et al. [78] proposed the Centralized Flat Table Key Management protocol

(CFKM). In this approach, the key hierarchy is changed into flat table in order to reduce the

number of keys maintained by the Key Server. The Table 2.1 contains a single entry for the

traffic encryption key (TEK) and 2w entries for the key encryption keys (KEKs), where w is

the number of bits in a member identifier (the authors propose to use IP addresses as member

identifiers). Two keys are associated to the two possible values of each bit in a member id.

Table 2.1 illustrates the structure for w = 4. Each member holds the key encryption keys

(KEKs) associated to the values of its identifier bits. Thus, each member holds w +1 keys (w

key encryption keys in addition to a traffic encryption key). For instance, a member with the

identifier 0101 maintains KEK00, KEK11, KEK20, KEK31 and a traffic encryption key

(TEK). To join, a participant contacts the key server, where it is assigned a unique ID and

receives the keys corresponding to the ID's bit/value pairs. For example, a newcomer with

(binary) ID 0010 would receive the TEK and the key encryption keys (KEKs) K30, K20,

Kll, and K00 over the secure setup channel, after their revision was increased. When a

member leaves the group, all the keys held by this departing member should be modified to

25

assure forward secrecy. Therefore, the key server sends a re-key message containing two

parts: a first part contains the traffic encryption key (TEK) encrypted with each not

compromised key encryption key (KEK) from the flat table, and hence all the remaining

members would be able to decrypt the new traffic encryption key (TEKnew).

Table 2.1: Centralized flat table for w=4

id bit #0

id bit #1

id bit #2

id bit #3

TEK

KEK00 KEKQl

KEKIQ KEKU

KEK20 KEK2\

KEK30 KEK31

bitO bit

The second part contains the new KEKs encrypted with both the old KEK and the new

traffic encryption key (TEKnew)- This way, the leaving member cannot recover the new traffic

encryption key (TEKnew) and the remaining members can update their old KEKs without

having access to the KEKs of other members.

Table 2.2: CFKM Rekey messages when member 0101 leaves the group

id bit #0

id bit #1

id bit #2

id bit #3

TEK

{{KEK00new}KEK00old}TEKnew {TEKnew\ KEKQl

{TEKnew}KEKlO {{KEK\\new}KEK\\old}TEKnew

{{KEK2Qnm)KEK20M\TEKnm, >TEKnm,}KEK2\

{TEK,ieJKEK30 {{KEK3\„ew)KEK3lold}TEK„ew

bitO bit 1

Table 2.2 illustrates the re-key message sent by the key server after the leave of the

member with the identifier 0101. This protocol has many disadvantages, for example, the key

server, which maintains the keys, is prone to failures. And, members have to maintain a

number of key encryption keys (KEKs) and traffic encryption key (TKE), which requires a

lot of memory.

2.3.4 Membership Driven Re-keying

20

*

4

V

4

In this subcategory of protocols, the group key is changed whenever a join or a leave

operation occurs in the group. Some protocols based on this approach are as follows:

2.3.4.1 Scalable Multicast Key Distribution

Ballardie [1] proposed the scalable multicast key distribution (SMKD) protocol, which

uses the tree built by the Core Based Tree (CBT) multicast routing protocol [3,104] to deliver

keys to multicast group members. In the CBT architecture, the multicast tree is rooted at a

main core. Secondary cores can exist eventually. The main core creates an access control list

(ACL). Group key and key encryption key (KEK) are used to update the group key. The

ACL, the group key and the key encryption key are transmitted to secondary cores and other

nodes when they join the multicast tree after their authentication. Any router or secondary

core authenticated with the primary core can authenticate joining members and use the ACL

to distribute the keys, but only the main core generates those keys. One disadvantage with

SMKD is that there is no provision to handle the forward secrecy problem. Hence, in case of

leave operation whole group is created afresh.

2.3.4.2 Intra-domain Group Key Management Protocol

DeCleene et al. [9] and Hardjono et al. [107] proposed the Intra-domain Group Key

Management Protocol (IGKMP). This architecture divides the network into administratively

scoped areas. There are a Domain Key Distributor (DKD) and many Area Key Distributors

(AKDs). Each AKD is responsible for distributing the group key to members within one area.

Fig 2.8 exemplifies this architecture. The group key is generated by the DKD and is

propagated to the group members through the AKDs. Because distribution of group key

within the area must be secure, area-local keys are used by AKD to distribute a new group

key to members within the area. The DKD and AKDs belong to a multicast group called All-

KD-Group. The DKD uses this group to transmit re-key messages to the AKDs who re-key in

turn their respective areas. The drawback of this architecture is that it suffers from a single

point of failure, which is the DKD, the entity responsible for generating the group key.

Besides, in case of an AKD failure, members belonging to the same area will be not able to

access the group communication.

27

all-KD-group

GK DKD

GK GK

AKD1 AKD2

\
\

in in m m m in

local area group local area group

GK

AKD3

m m in

local area group

Figure 2.8: Intra-domain Group Key Management Protocol architecture

2.3.4.3 Hydra Protocol

Rafeli and Hutchison [98] proposed Hydra protocol wherein the group is organized into

smaller subgroups and a server called the Hydra server(HS,) controls each subgroup /.

Layer 1

Layer 2

Subgroup I

HS,

in in m

HS-group

Hydra group

Subgroup 2

HS;

111 111 111

Figure 2.9: Hydra architecture

Subgroup n

HS„

m ill ill

^
Group Controller

If a membership change occurs at subgroup i, the corresponding HS, generates the group

key and sends it to the other HS, involved in that session. In order to have the same group key

distributed to all HSs, a special protocol is used to ensure that only a single valid HS is

generating the new group key whenever required. Fig 2.9 depicts the Hydra architecture.

28

V

4

2.3.4.4 Baal Protocol

Baal Chaddoud et al. [36] proposed a decentralized group key establishment protocol

called Baal, which is similar to Hydra protocol [98]. This protocol mainly addresses the

problem of scalability. The protocol defines three entities such as Group Controller (GC),

which maintains a participant list and creates and distributes the group key to group members

via local controllers, Local Controllers (LC) which manage the keys within its subnet. When

a LC receives a new group key, it distributes it to the members connected to its subnet.

Besides, a LC can play the role of the GC by generating and distributing new group keys after

membership changes following some coordination rules, and Group member who belongs to

participation list.

When a membership change occurs at a subnet, the corresponding LC can generate a

new group key and distribute it to its subnet and to the other members via their LCs. To

assure that a single LC generates a new group key at a time, the GC assigns a priority to each

LC and when many LCs distribute simultaneously a new group key, the LCs are instructed to

commit to the group key issued by the LC having the highest priority.

This protocol suffers from many problems such as it has group controller and local

controllers, which are responsible for creating and distributing group key. In case of failure of

these entities either the whole protocol will fail or part of the group communication system

become inoperative.

2.3.5 Time-Driven Re-keying

In this subcategory of protocols, the group key is changed after each specific period of

time. Thereby, the departing members are not excluded immediately from having access to

the secure content. Similarly, new members are delayed up to the beginning of a new interval

of time. This is a major drawback of these protocols wherein join and leave events take place

frequently. Some protocols available in the literature, which are based on this approach, are

as follows:

2.3.5.1 Kronos Protocol

Setia et al. [99] proposed the Kronos protocol, which is driven by periodic re-keying

rather than membership changes that means a new group key is generated after each time

interval rather than after each membership change. In Kronos protocol, each domain is

29

divided into many areas managed by different AKDs as in IGKMP protocol. However, in

Kronos the DKD does not multicast the group key each time to the AKDs. Instead of that,

each AKD generates independently the same group key whenever required and re-keys the

members belonging to its area. To implement this scheme, the AKDs' clocks should be

synchronized, and the AKDs have to agree on a re-key period. Second, the DKD transmits

secret factors K and GK0 to AKDs using secure channels. To generate the group key GKi+],

AKDs calculate after each period of time: GKM = EK(GKi), which is the encryption of the

previous group key (GK,) with the encryption algorithm E using the secret key K.

2.3.5.2 MARKS Protocol

Briscoe [8] proposed the MARKS protocol wherein slicing of time length is suggested.

And, each time slice uses a different key for encrypting the data. The encryption keys are

leaves in a binaryhash tree that is generated from a single seed as shown in Fig.2.10.

GKn GK,

T,

GK, GK,

^

LS: Left shift operation RS: Right shift operation

Figure 2.10: MARKS Key Generation Tree

30

Time

+•

*

-*

A blinding function, such as MD5 [92] is used to create the tree nodes. Fig 2.10 depicts

an example of the generated binary tree whose leaves are the keys that correspond to the

different slices. Each intermediate node (including the root) is allowed to generate two

children (left and right children). The left node is generated by shifting its" parent one bit to

the left and applying the blinding function on it. The right node is generated by shifting its'

parent one bit to the right and applying the blinding function on it. Users willing to access the

group communication receive the seeds needed to generate the required keys. The system

cannot be used in situations where a membership change requires the change of the group

key, since the keys are changed as a function of the time. The distribution of the seeds and the

management of receivers' queries are assured by a set of key managers.

2.3.5.3 Dual Encryption Protocol (DEP)

Dondeti et al. [60-62]] proposed the Dual Encryption Protocol (DEP) to eliminate the

problem of trusting third parties in decentralized protocols. They suggest hierarchical

subgrouping of the group members where a sub-group manager (SGM) controls each

subgroup. There are three type of KEKs and one Data Encryption Key (DEK), KEK,/ is

shared between a SGM, and its subgroup members, KEK,2 is shared between the Key Server

(KS), and the group members of subgroup i excluding SGM,. Finally, KS shares KEK,j with

SGM,. In order to distribute the DEK to the group members, the KS generates and transmits a

package containing the DEK encrypted with KEK,2 and encrypted again with KEK,j. Upon

receiving the package, SGM, decrypts its part of the message using KEK,j and recovers the

DEK encrypted with its subgroup KEK (KEK,2), which is not known by the SGM,. SGM,

encrypts this encrypted DEK using KEK,/ shared with its subgroup members and sends it out

to subgroup i. Each member of subgroup i decrypt the message using KEK,/ and then,

decrypting the message using KEK,? (shared with KS) and receives DEK. Therefore, the

DEK cannot be recovered by any entity that does not know both keys. Hence, although there

are third parties involved in the management (SGMs), they do not have access to the group

key (DEK). When the membership of subgroup i changes, the SGMj changes KEK,/ and

sends it to its members. Future DEK changes cannot be accessed by members of subgroup i

that did not received the new KEK,/.

2.3.6 Ring-based cooperation

31

In this subcategory the nodes are logically arranged in the ring form. The following

subsections describe some protocols available in the literature, which are based on this

approach. v

2.3.6.1 Ingemarsson et al. Protocol

Ingemarsson et al. [46] proposed INGM protocol. This is the first natural extension of two

party Diffie-Hellman key agreement protocol [110]. The brief description of protocol is as

follows: Let G=(a) be a multiplicative group of some large prime order q. Assume that n

participants M,, ,Mnwant to agree upon a common key. The participants must be

arranged in a logical ring form. In a given round, every participant raises the previously

received intermediate key value to the power of its exponent and forwards the result to the

next participant. After n-1 rounds, all users agree upon a common group key K=ahhJ- r".

The INGM protocol is an extension of two party Diffie-Hellman protocol [110]. This

protocol has the advantage that each node contributes equally in group key formation.

Thereby, this protocol may provide a solution of group key establishment problem in mobile

ad hoc network. V

2.3.6.2 Burmester and Desmedt (cyclic) Protocol

Burmester and Desmedt [71] presented this protocol. This is similar to the broadcast system

except that a bi-directional cyclic network is used. So M,, ,M„are linked in a cycle,

with Mt connected to MM. In this protocol, each user Mi computes z. =an modpand

sends it to both users M. , and MM. If any user fails in bi-directional cyclic network, the

whole protocol will stop, that is why, this protocol is not suitable for mobile ad hoc networks.

2.3.6.3 Burmester and Desmedt (Star-based) Protocol

Burmester and Desmedt presented this protocol in [71]. The M,, ,M„be a dynamic set

of users who want to generate a group key wherein user, M,, is the chair. Each user, Mt,

computes z. =an mod p. Then M, sends z, to all Mt and the M, sends z. to M,. Due to its

design this protocol is not suitable for mobile ad hocnetworks.

2.3.6.4 Boyd and Neito's Group Key Agreement Protocol

*

32

-

Boyd and Neito [13] proposed a single-round authenticated static group key agreement

that meets the bound of Becker and Wille [12] for a single round protocol and have proved

the security in the random oracle model [67] following the model established by Bellare et al.

[65,66,67]. The protocol does not provide forward secrecy, which is a major drawback of this

protocol because in dynamic environment the leaving member should not get access to future

communication among group members.

2.3.6.5 Bresson, Chevassut and Pointcheval's group key agreement protocol

Bresson et al. [31] provided a formal treatment of the authenticated group Diffie-

Hellman key exchange problem in a scenario in which the membership is dynamic rather than

static.

The authenticated dynamic group key agreement scheme consists of three protocols

setup, remove and join. Suppose a multi-cast group of users / = {£/,, ,[/„} wish to agree

upon a common key. They are arranged in a ring. Each user saves the set of values he

receives in the down-flow of setup, remove and join operations. Any user from / could be

selected as a group controller UGC trusted to initialize the dynamic operations. In this

protocol, authors consider the user with the highest index in / as the group controller, the

flows of a user U are signed using its long-lived key, LLLI, and the session key SK is:

SK =H(I\FInmil)\g" w.)

where F/max(/) is the down-flow, session identities SIDS and partner identities PIDS are

appropriately defined. Drawback of this protocol is that it uses a group controller for

initialing the dynamic events, which are not possible when the group controller is not

working.

2.3.6.6 Bresson, Chevassut, Essiari and Pointcheval's group key agreement protocol

A very efficient provably secure group key agreement is introduced in [32] for dynamic

scenario, which suits for restricted power devices and wireless environments. The scheme

consists of three protocols: the setup protocol GKE.Setup, the remove protocol GKE.Remove

and the join protocol GKE.Join. The main GKE.Setup protocol allows a cluster of mobile

users (also called clients) and a wireless gateway (also called server) to agree on a session

key. The other two protocols of the scheme handle efficiently the dynamic membership

33

changes in one wireless domain. The protocol executes in two rounds. In the first round,

server,S , collects contributions from individual clients and then, in the second round it sends

the group keying material to the clients. The protocols GKE. setup and GKE.join perform

their operation in six steps each. However, GKE.remove protocol takes only three steps. This

protocol has one disadvantage. In first round, the server, 5, collects contributions from

individual clients and then, in the second round it sends the group keying material to the

clients. Therefore, in case of server failure, the protocol will not be workable.

2.3.6.7 Nam, Kim, Kim and Won's group key agreement protocol

Nam et al. [50] presented a communication-efficient dynamic group key agreement

protocol well suited for a lossy and high-delay unbalanced network environment consisting of

mobile hosts with restricted computational resources and stationary hosts with relatively high

computational capabilities. They analyzed their scheme in the random oracle model [67] and

proved that it is secure under factoring assumption. The scheme consists of three algorithms

IKA1, LP1 and JP1 for initial group formation, user leave and userjoin respectively.

This protocol provides a solution for lossy and high-delay unbalanced network

environment consisting of mobile hosts with restricted computational resources and

stationary hosts with relatively high computational capabilities, which is not suitable for

mobile ad hoc network wherein required nodes are computationally less capable and have

limited memory.

2.3.7 Broadcast-based cooperation

In this subcategory the nodes use broadcast cooperation for creating the group key. The

following subsections describe some protocols available in the literature based on this

approach.

2.3.7.1 Burmester and Desmedt (broadcast-based) Protocol

Burmester and Desmedt [71] presented a much more efficient key agreement protocol in

a group setting that requires only three rounds. When n users M,, ,Mnwant to agree

upon a common conference key, they proceed as follows where the indices are taken modulo

n so that user M0 is Mn and user Mn+X is M,.

34

>

V

4

+

Step 1: Each user Mn i = 1, ,«,, chooses a random reZ and then computes and

broadcasts z, = cc': mod p .

Step 2: Each user Mn / = 1, ,n, checks that ord(a) = g . Then it computes and broadcasts

Xi=(zM/zi_])''(modp).

Step 3: Each user Mn z= l, ,«, computes their session key as

K,=(zi_^X;-]X;^ X^modp)

If all the users Mn i = 1, ,w, follow the above steps, they will agree upon the same key

K = av>+r*+ +Vi(modp).

The honest user computes the same key as, K = aVl+r2',+ +r,A (mod p). The group key is

computed as: AssumeA^ = (z,_,)n = a''1''(modp), A, s(z(_,)';.X, = ar,'M(modp),

AM =(zt_x)r'.XrXM = a^1"'*1 (modp), etc and we have A"; = Ai_vArAM A,_3. So the

key is a second order cyclic function of the r{. For n = 2 we get XVX2 = 1 and

AT = a"''̂ 2'1 = «2'i'2 (mod/»), which is essentially the same as for the Diffie-Hellman [110]

system.

The BD (broadcast) protocol is an extension of two party Diffie-Hellman protocol [110].

This protocol has one advantage that it requires few number of rounds for it completion,

therefore, it may be a prospective group key agreement protocol for mobile ad hoc networks.

2.3.7.2 The Octopus and Hypercube Protocols

Becker and Willie attempted to study lower bounds for the communication complexity

of contributory key distribution in [12]. Their objective was to minimize the number of

exchanges and for this they introduced the basic octopus protocol without broadcasting,

which requires 2n- 4 exchanges. They have described the hypercube or 2d - cube protocol

with d rounds and developed 2d -octopus protocols with |"log2 «]+l rounds that make use

of the basic octopus protocol. Both these protocols use no broadcasting. Let G be a finite

cyclic group of some large prime order q and a be a generator of G . We further assume a

bijective mapping <j>: G-> Z*. Suppose the participants MX,M2 Mn want to agree on a

common key.

35

Octopus Protocol: Before presenting this protocol, first consider the Diffie-Hellman key

exchange among four users A,B,C,D as shown in Fig. 2.11. Users A and B and users C

and D perform a Diffie-Hellman key exchange generating keys a"1' and a"' respectively.

Subsequently, A(B) sends a"*** to C(D) and C(D)aHa"') to A(B). Hence, A and C (B

and D) can generate the joint key a' (a"h)ttHa"')

A 4 • B

tfHU'"- HfiV*- I

• D C

Figure 2.11: Diffie-Hellman Key exchange among 4 users

ieh

K=a<P(aKW)).<HaK^"*)

^\

Figure 2.12: Octopus protocol

36

T

D

y

V

•

In the Octopus protocol, the participants Af,,M2 Mn are partitioned into five groups

as shown in Fig.2.12. Four users Mn_3,Mn_2,Mn_] and Mn take charge of the central control.

We denote these users by A,B, C, D respectively. The remaining users are distributed in four

groups: {M,\ieIA}, {M,\ieIB}, {M. \ielc} and {M. \ieID}, where IA,IB,IC,ID are

possibly of equal size, pairwise disjoint and lA u IB u Ic u/D ={l,2, ,«-4}. Now,

Af,,M2 Mn can generate a group key as follows:

Each user le {A,B,C,D } generates a joint key kt with user Mt for all i e Ix . The

users A,B,C,D perform the four party key exchange described above using the respective

secret value a = K(IA), b=K(IB), c =K(Ic)and d =K(ID), where K(J):=Uiej<**(£,.) for

Jc{l,2, ,«-4}. Thereafter, A,B,C,D hold the joint and later group key

K:=aMa ' \ We describe this step for user A. The users B,C,D act

correspondingly, for all j^IA, A sends ak{l"ul'''J'] and or'**0'' "' to M' Now, M

calculates aKU»^>h^U)) ' =ali'(u'»i ant| then generates the group

keyA- =(^("l'<"'>y(a™\

The Hypercube or 2rf - Cube Protocol: In the Hypercube protocol for 2d participants, the

2d participants are identified with the vectors in the d - dimensional vector space GF(2)d

and a basis b\, ,bd of GF(2)d is chosen. The protocol may be performed in d rounds as

follows: In the first round, every participant ve GF(2)d generates a random number r- and

performs a Diffie-Hellman key exchange with participants v + b\ using the values r- and

r-+-b . In the /"' round, every participant ve GF(2)d performs a Diffie-Hellman key exchange

with participant v+bi, where both parties use the value generated in round i -1 as the secret

value for the key exchange. In every round i, 1< i < d , the participants communicate on a

maximum number of parallel edges of the d - dimensional cube in the direction bt, thus

every party is involved in exactly one Diffie-Hellman exchange per round. Furthermore, all

-f the parties share a common key at the end of this protocol because the vectors bi, ,b~d

form a basis of the vector space GF(2)d .

37

2'' - Octopus Protocol: In order to formulate a protocol for an arbitrary number of

participants (* 2d), which requires a low number of simple rounds, the idea of the basic

Octopus protocol is adopted in this protocol. In the 2d -octopus protocol the participants act

as in the octopus protocol introduced above with the only difference that 2d instead of four

parties are distinguished to take charge of the central control, whereas the remaining

n- 2d parties divide into 2d groups. In other words, in steps 1 and 3 of the octopus protocol,

2d participants manage communication with the rest and in step 2 these 2d parties perform

the cube protocol for 2d participants. If the number of participants is n and if d is the

largest integer smaller than log2», then the 2d -octopus protocol requires

1+d+1 =|~log2 n~\ +1 simple rounds.

The 2d - octopus protocol provides a tradeoff option between the total number of

messages or exchanges needed and the number of rounds. For d = 2 (Octopus protocol), the

number of exchanges is optimal, whereas the number of simple rounds is comparatively high.

On the other hand, if d satisfies 2'M < n < 2d, the number of simple rounds required is very

low and the total number of messages is high. Furthermore, the protocol enables the group to

decide how many participants should share control of the protocol.

The hypercube and octopus protocols are extension of two party Diffie-Hellman

protocol [110], which require few number of rounds, messages, and exponential operations,

therefore, these protocols may be suitable for mobile ad hoc networks.

2.3.7.3 Steiner, Tsudik and Waidner's Group Key Agreement Protocols

Steiner et al. [76] defined a class of generic n-party DH protocols such as GDH.l,

GDH.2, and GDH.3. Let G = (g) be a cyclic group of a large prime order q. And, users

MX,M2, ,Mn wish to agree upon a common session key.

GDH.l Protocol: The protocol executes in 2(n-l) rounds and consists of two stages:

upflow and downflow as shown in Fig. 2.13 and Fig. 2.14 respectively. The purpose of

upflow stage is to collect contributions from all group members.

ar\ar'r' a'\av\aVir>
M2 •; M3 \ ^ Mt M M5 ^

38

J

Figure 2.13: Upflow stage for 5 users in GDH.l protocol

r

4

a'sV'.crv''''' «,|''.ffl|V,.a'iw a'5.6rVs.av-''s.ffv-''''s
M, * M, < M. «

Figure 2.14: Downflow stage for 5 users in GDH.l protocol

If all the users follow the above steps, they will agree upon a common secret key

K = a'"'2 '».

GDH.2 Protocol: The protocol executes in « rounds and consists of two stages. In the

first stage (n - 1 rounds) contributions are collected from individual group members and then

in the second stage (nth round), the group keying material is broadcasted. This is shown in

Fig. 2.15. After two steps each user agrees upon a common secret key K = a'*'2 '"".

Figure 2.15: Stage 1 and 2 of GDH.2 protocol

GDH.3 Protocol: This protocol consists of four stages. The protocol execution among

nusers Mt,M2 Mn requires n+ l rounds and after step four each user Mt has a value of

the form {aUlrklk€[u]Ak*']] and can easily generate the intended group key K=g1'1'2'".

Note, Steiner et al. [76] extended GDH.2 and GDH.3 protocols for dynamic operations

such as join, leave, partition and merge events and thereafter these protocols named as Initial

Key Agreement. 1 (IKA.l) and Initial Key Agreement.2 (IKA.2) respectively and complete

protocols' suite is known as Clique protocol suite [77].

39

The IKA.l and IKA.2 protocols are extension of two party Diffie-Hellman protocol

[110]. The IKA.l and IKA.2 protocols require few number of rounds, messages, and

exponential operations, therefore, these protocols may be suitable for mobile ad hoc

networks.

2.3.8 Tree-based Cooperation

In this subcategory the nodes use tree-based cooperation for creating the group key. The

following subsections briefly describe some protocols available in the literature based on this

approach.

2.3.8.1 Burmester and Desmedt (tree-based) Protocol

This protocol is similar to the star based system of BD protocol [71], except that a tree

configuration network is used. The users Mx, ,M„ are labeled in such a way that the

sons of M are A/, and M, „ . The user, M,, is the root of the tree which if fails then whole

protocol becomes inoperable, that is why, it is not suitable for mobile ad hoc networks.

2.3.8.2 The TGDH Protocol

Wallner et al. first presented the binary tree-based approach for key establishment in

[29]. Wong et al. then extended it for multiple degree tree in [15]. Yongdae Kim et al.

proposed Tree-Based Group Diffie-Hellman (TGDH) protocol in [113,115]. TGDH combines

a binary tree structure with the group Diffie-Hellman technique. They used one-way

functions to enhance the security in protocol. Each node x in the key tree has two

cryptographic keys, a secret key kx and a blinded key bx = g(kx), i.e., the blinded key bx is

computed from the secret key kx using the one-way function g. The key is blinded in the

sense that an adversary with limited computational capability can know bx but cannot find

k . The TGDH protocol uses the hierarchy in a binary tree to its advantage. The root is at the

topmost level, given a value of 0 and all the leaves are at the lowest level h. Since the key tree

is a binary tree, therefore, each node is either a leaf or a parent of two nodes. Each leaf node

in the tree represents a group member Mr The internal nodes are used for the key

management and do not represent any individual member. Each node of the tree is

represented by (/,v), where / is its level in the tree and v is the index of this node in level /.

40

V

The key associated to node (/,v)is k(l r) and its blinded key b(l v) - a "•") mod p . Each group

member contributes equally to the group key. In other words, for each internal node (/,v), its

associated key fc(/v)is derived from its children's keys. In [113], they defined klv) =bj'*^+h,

which is essentially a "H:"" "+Ui) . The group key is a result of contributions by the current

members. The finally key at the root (0,0) is calculated and subsequently hashed that results

in group key. The TGDH protocol is an extension of two party Diffie-Hellman protocol, It

uses the tree based approach for group key establishment problem. And, it provides a better

solution for group key establishment when we measure it in terms of number of rounds,

number of messages, and number of exponential operations. Therefore, this protocol may

provide a solution to group key establishment problem in mobile ad hoc networks.

2.3.8.3 Collaborative Key Management Protocols by Adrian Perrig

Adrian Perrig presented three collaborative key management protocols in [4]. The

design of protocols depends on the failure model as described by Powell [27]. There are two

basic failure models: the crash failure or fail-stop model and the arbitrary failure model also

known as Byzantine failure model. The arbitrary failure model describes the worst-case,

where a program can behave in an arbitrary way [57,75,93]. The protocols described in the

paper are based on fail-stop model, where members fail by halting. This is a reasonable

model for practical application domains. The protocols in this paper assume that all members

know the structure of the key tree and the position of each member in the tree.

The notationsN, Ek(M), Dk(C), H(M), SA(M), SA(M), A^>B:M, and

A -> *: M are number of members that are in the group or that wish to join it initially,

encryption of plaintext M with key k, decryption of ciphertext C with key k, hash of

message M, sign message M with A's key; A sends message M toB, A broadcasts

message M respectively.

Fig 2.16 shows the key tree of depth two. The root is at level 0 and lowest leaves are at

level d . The nodes are denoted as < /, v >, where / stands for the level and i for the node

number in the level, where 1</<2'since each level/hosts at most 2d nodes. For each node

4 <I, v> , there is a corresponding key KKl v>. The members are always placed ata leafnode.

41

Figure 2.16: Notations of the nodes of a group key tree of depth = 2

Non-authenticated Group Key Agreement Protocol (NAGKA): This protocol is an

extension of two party Diffie-Hellman protocol [110], and does not support authentication.

However, it is useful in certain environment where the group members prefer to remain

anonymous that is why it is called non-authenticated group key agreement (NAGKA)

protocol. The key tree is constructed from the leaves up to the root as shown in Fig. 2.17.

Initially each member chooses a random number, for the key value of its leaf node, which

collectively forms the lowest level of the key tree. For the construction of each subsequent

layer, two members establish a key through the key agreement procedure, one member from

the left subtree and the other from the right subtree. They both broadcast their part of the

Diffie-Hellman key agreement, which allows all the members of the subtree to compute the

key of the current level. Once the group key is formed, the further communication is

encrypted using this key.

Authenticated Group Key Agreement (AGKA): The AGKA protocol is similar to protocol

NAGKA, except that two group members (which establish the parent key node of their

current key nodes) also perform a mutual authentication when exchanging the exponents. The

authentication is based on digital signatures and a public key infrastructure (PKI). When

exchanging the keys, both members sign the concatenation of the exponent, the members'

position in the tree, and a timestamp.

42

a
Level 1=0

a '• " ay Level 1=1

N
Level 2

Figure 2.17: Non-authenticated group key tree (depth = 2)

Authenticated Group Key Agreement using Gunther's scheme (AGKA-G)

This protocol is similar to AGKA. Only difference is that it uses Gunther's scheme for

mutual authentication instead of public key infrastructure (PKI). Another difference is that,

the message exchanged in the mutual member key agreements do not allow the other

members in the same subtree to generate the node key. The two members use unicast to

exchange their public information and to establish the new node key.

To pass the new key on to the other members residing in the same subtree, both

members encrypt the new key with the root key of their respective subtree, and broadcast it to

the members in the same subtree, for example in Fig 2.16, if A/, and A/3 perform the key

agreement for the root key K,0 ,>, A/, will use AT,,,, to encrypt the new key K,Q, before

sending it to the other members in the same subtree. In the same way, Af3uses AT,, 2, for

encryption.

Join operation: In case of join event, all keys from the leaf node of a new member up to the

root need to be changed. When a new member request for a join, the member nearest to the

43

root replied for this request (each member has the map of complete key tree). Therefore, the

new member joins at the closest node to the root.

Leave operation: In case of leave operation, all the keys, that the leaving member knows,

need to be changed, which prevents him or her from knowing any of the new keys. When the

member at node </,/>leaves the group, the node</-l, >, which gets replaced

by< /, i ±1>(by moving the entire subtree one level up). All keys from the deleted node up to

the root to beupdated: K r -, (0</'</).

The NAGKA protocol is an extension of two party Diffie-Hellman protocol, and does

not support authentication. However, it is useful in certain environment where the group

members prefer to remain anonymous. It may provide a good solution for mobile ad hoc

networks.

2.3.8.4 The STR Protocol

The Skinny Tree (STR) protocol, proposed by steer et al. [28] and undertaken by Kim et

al. in [114], is a contributive protocol using a tree structure. The leaves are associated to

group members. Each leaf is identified by its position LNtin the tree and holds a secret

random /? (generated by the corresponding member A/,.) and its public blinded version

BR; = aR> mod/?, where a and p are DH parameters. Each internal node is identified by its

position IN, in the tree and holds a secret random AT. and its blinded public version

BK, =a*' mod p . Each secret K, is recursively calculated as follows:

A",. = (BK,_})*• mod p =(BR,)*" mod p

The group key K = aR,,a" is the key associated to the root. Due to the linear

structure of the tree, this solution induces a O(n) key calculations in order to establish the

group key associated to the root of the tree. Besides, each member should store and maintain

all the public keys associated to all the nodes of the tree. The STR protocol is an extension of

two party Diffie-Hellman protocol [110]. This protocol is also based on tree approach and

require few number of rounds, number of messages, and exponential operations, therefore, it

may be suitable for mobile ad hoc networks.

44

*

2.3.9 Secret Share-based Cooperation

In this subcategory the nodes use secret share cooperation among themselves for

creating the group key. The following subsections describe some protocols available in the

literature based on this approach.

2.3.9.1 Bresson and Catalano's Group Key Agreement Protocol

A constant round provably authenticated static group key agreement protocol is

introduced by Bresson and Catalano [30], which is based on secret sharing techniques

combined with the ElGamal encryption scheme and uses asynchronous network. Their

analysis is in the standard model under Decision Diffie-Hellman assumption.

This protocol is based secret sharing techniques and ElGamal encryption scheme and

uses asynchronous network. Since we are exploring the group key agreement protocols based

on two party Diffie-Hellman protocol [110], therefore, this protocol is not suitable further

investigation.

2.4 Independent Group Key (GK) per Subgroup Approach

The common group key (GK) approach has the drawback to require that all group

members commit to a new GK, whenever a membership change occurs in the group, in order

to ensure perfect backward and forward secrecy. This is commonly called one-affects-all

phenomenon. In order to mitigate the one-affects-all phenomenon, another approach consists

in organizing group members into subgroups. Each subgroup uses its own independent group

key (GK). In this scheme when a membership change occurs in a subgroup, it affects only the

members belonging to that subgroup. The existing protocols that use independent group key

(GK) per subgroup fall into two subcategories: the membership-driven re-keying protocols

that do re-keying after each membership change, and time-driven re-keying protocols that do

batch re-keying after each time interval. Fig 2.1 depicts this classification.

2.4.1 Membership-Driven Re-keying

In this subcategory of protocols, the existing group key is changed whenever a join or a

leave operation occurs in the group. The main drawback of these protocols is that they

perform a lot of computations when communication takes place among members of different

45

subgroups, which need computationally powerful nodes. The following subsections present

some protocols available in the literature based on this approach.

2.4.1.1 Iolus

Mittra [96] proposed Iolus, a framework of a hierarchy of multicast subgroups. Each

subgroup is an independent multicast group (with its own multicast address and eventually its

own multicast routing protocol). The overall subgroups form a virtual multicast group. A

Group Security Agent (GSA) manages each subgroup, which is responsible for key

management inside the subgroup. A main controller called the Group Security Controller

(GSC) manages the GSAs. Each of them uses its own group key, when a membership change

occurs in a subgroup, only that subgroup is involved in a rekey process. This way, Iolus

scales to large groups and mitigates one-affects-all phenomenon. However, Iolus has the

drawback of affecting the data path. Indeed, there is a need for translating the data that goes

from one subgroup, and thereby one key to another. This induces decryption / reencryption

operations that are not tolerated by most of delay sensitive applications.

2.4.1.2 Keyed Hierarchical Multicast Protocol

Shields et al. [18] proposed the Keyed Hierarchical multicast Protocol (KHIP). KHIP is

based on a multicast tree built using OCBT [19] routing protocol. It uses also an

authentication service [58] based on certification to authenticate members and on-tree routers.

The multicast tree is organized into sub-branches. Each sub-branch is managed by a trusted

router, which manages the group key (GK) used within this sub-branch. When a source is

ready to send a message to the group, it generates a random key RK, encrypts the message

with RK , and encrypts RK with the GK of the sub-branch to which the source is attached.

Then the source puts the encrypted RK in the header of the packet carrying the message and

multicasts the packet. The members located in the same sub-branch know the GK of the sub-

branch and hence can decrypt the RK and then decrypt the message with RK. When a border

router of the sub-branch (a trusted router at the intersect between two sub-branches) receives

the packet, it decrypts the RK and re-encrypts it using the GK of the adjacent sub-branch to

which the so translated packet will be forwarded. This process is followed until the message

reaches all the group members. When a new member joins a sub-group, the router responsible

for that sub-branch generates and distributes a new GK for the sub-branch encrypted with the

46

old one. When a member leaves a sub-branch, the corresponding router distributes a new GK

encrypted with the public key of each remaining member and signed with the router's private

key. Even thought KHIP reduces the decryption / reencryption operations to a single key per

packet, it still suffers from the delay variations of packet delivery due to these operations, and

most of applications that require real-time transmission do not tolerate such delays.

2.4.1.3 Cipher Sequences (CS)

Molva and Pannetrat [85] proposed a framework for multicast security that is based on

Reversible Cipher Sequences. A function f(S, a) is called Cipher Group (CG) if it has the

following characteristics: there is a sequence of n elements a,(I </<«), and there is a

sequence of n+ 1 elements S,(\ < i < n), such as S, - f(ShVa,) for i > 0 and S0 is the initial

value, and for every pair (i,j) , where i > j, there exists a function /;(such as S, = h, (S).

The multicast tree is rooted at the source, the group members are the leaves and internal

nodes are intermediate elements of the multicast communication.

• a,

N, N,

""4

root node Leaves

Figure 2.18: Cipher Sequence (CS) Protocol

Now, let S0 be the message to be multicast and let every node N, be assigned a value

a, >1. When node N, receives a value Sj from its parent N., it computes S, = f(S a,) and

47

sends S, to its children that can be either leaves or other internal nodes. The leaves are

assigned the function h0n, which enables them to compute S0 from 5fl, since S0 =h0ll(Sn),

and therefore recover the original data. Fig 2.18 typifies Molva scheme.

When a membership change occurs in a leaf, the corresponding node NH receives a new

value an and all members in the leaf receives a new function /;() n. Naturally, if the

membership change occurred because of member removal the removed member would not

receive the new ti0 „, thus will not be able to recover S0.

2.4A.4 Scalable and Adaptive Key Management (SAKM) Scheme

Challal et al. [112] proposed a new Scalable and Adaptive Key Management scheme

(SAKM) that addresses the one-affects-all and re-keying overheads by taking into

consideration the dynamic aspect of the group members. The organization of the group into

clusters is updated periodically depending on the dynamism of the members during the secure

session. Many studies [59] show that the membership behavior of group members in

multicast sessions is likely to be not uniform through a large-scale group and during the

whole session. Some parts of the network may be more dynamic than others during some

periods of time and become more stable afterward. In such case, it would be interesting to use

a protocol that restricts the re-key to the areas with frequent membership changes. Therefore,

SAKM is very efficient in such situations. Simulation results show that SAKM scales well to

large groups by minimizing the one-affects-all phenomenon, while it reduces the decryption /

reencryption operations thanks to the adaptive dimensioning of the clusters depending on the

membership dynamism.

2.4.2 Time-Driven Re-keying

In this subcategory of protocols, the group key is changed after each specific period of

time. Thereby, the departing members are not excluded immediately from having access to

the secure content. Similarly, new members are delayed up to the beginning of a new interval

of time. This is a major drawback of these protocols when join and leave events happen

frequently. Some protocols available in theliterature based this approach are as follows:

2.4.2.1 Yang Protocol

48

Yang et al. [116] proposed a reliable re-keying approach. In the proposed architecture,

the multicast group is organized into a set of subgroups and a Key Server (KS) manages each

subgroup. The role of a KS is to re-key the members of its subgroup periodically. The overall

KSs share a common KS secret key. When a KS receives a multicast message encrypted with

its local group key (GK) (sent by one of its subgroup members), it decrypts it and re-encrypts

it using the KS secret key. Then, it multicasts the re-encrypted message to the other KSs. In

turn, these KSs decrypt the message using the KS secret key and re-encrypt it using their

respective local GKs. Then, each KS multicasts the re-encrypted message to its subgroup.

2.4.2.2 SIM-KM Protocol

Mukherjee and Atwood [86,88,89] proposed a multicast key management infrastructure

called SIM-KM. Scalable Infrastructure for Multicast Key Management. SIM-KM bases on

subgrouping with message transformation by local controllers. In contrast to solutions based

on subgrouping, SIM-KM uses proxy encryption [87] to transform data at the border of a

subgroup. Proxy functions convert cipher text for one key into cipher text for another key

without revealing secret decryption keys or clear text messages. This allows SIM-KM to do

subgrouping with data transformation in order to limit the impact of re-keying, even though

intermediaries are not trusted entities.

2.5 Conclusion

The existing group key establishment protocols can be categorized into three categories:

centralized, decentralized and contributory. In centralized protocols only one central server is

responsible for creation and distribution of keys. In decentralized protocols based on common

group key approach, one central server creates and other additional servers help in

distributing keys, this way other servers share the load of the central server. In another

category of decentralized protocols, the group is divided into subgroups and each subgroup

has its own subgroup key. Although this eliminates one-affect-all phenomena, yet it involves

a lot of encryption/decryption cost. Since nodes in a MANET are not computationally

powerful, no one node can work as central server for creating and distributing the keys.

Therefore, these protocols are not suitable for secure and efficient group communication in

mobile ad hoc networks. In contributory protocols each node contributes equally in group key

formation, therefore, these protocols seem to be promising for mobile ad hoc networks. The

49

contributory protocols are also known as group key agreement protocols. Boyd and Nieto

[13] proposed a constant round group key agreement protocol which does not provide

forward secrecy that is why it is not suitable for dynamic environment. In [13], group

members consist of one member called initiator and other members called responders. The

initiator has a heavy burden caused by (n-\) encryptions in a public cryptosystem and one

signature generation. In a MANET, no node can take the role of initiator because of lack of

computational power that is why this protocol is also not suitable for a MANET. Bresson

and Catalano [30] have proposed group key agreement protocol based on standard secret

sharing techniques with 2-round in the standard model. This protocol is inefficient from a

point of view of the computation rate. Each member should perform more than 3n modular

exponentiations, 3n modular multiplications, n signature generations and n signature

verifications. For dynamic groups, Bresson et al. improved the protocol [33] into dynamic

group key agreement protocol [31]. However, this protocol does not has constant round, each

group member embeds its secret in the intermediate keying material and forwards the results

generated with the secret to the next group member. This makes number of rounds in setup

and join algorithms linear with respect to the number of group members. That is why it is not

scalable. Bresson et al. [32] introduced a provably secure authenticated group key distribution

protocol with two round in the random oracle model [67], which is suitable for restricted

power devices and wireless environments. They have concentrated on an efficient

computation rate of a group member with a mobile device. In this protocol, however, there

exists a base station as a trustee which is prone to different kind of attacks and performs large

computations which ultimately makes it unsuitable for a MANET. Hence, it is concluded

from the detailed analysis of group key agreement protocols, the protocols based on two party

Diffie-Hellman protocol [110] can only provide a suitable solution for mobile ad hoc

networks. Hereafter, the work concentrates on the group key agreement protocols, which are

based on two party Diffie-Hellman protocol [110].

50

Chapter 3

Group Key Agreement in MANET

3.1 Introduction

Mobile ad hoc networks [10,17,42,44,63,82] have attracted significant attentions

recently due to their wide applications in different areas. These networks do not have fixed

infrastructure, such as switching centers or base stations. Mobile nodes that are within the

communication range of each other can communicate directly whereas the nodes that are far

apart have to rely on intermediary nodes (routers) to relay messages. The mobility of a node

in the mobile ad hoc networks can cause frequent changes in the network topology. These

networks are useful in applications such as military operations, relief and rescue operation in

case of natural disaster etc. These are also very attractive option for commercial uses. Many

multicast and group-oriented network applications can easily be conducted in this network

environment, for example, in a conference room or in battlefield, users can form an ad-hoc

network instantly with their wireless devices, e.g. notebook computers, Personal Digital

Assistants (PDAs), or even cell phones, without requiring any pre-installed cables or base

stations. They can use this fast setup ad-hoc network for conducting a videoconference,

sharing files or even playing interactive games. For conducting these applications, a group

key is often needed for the mobile nodes. This group key is created by group key

establishment protocols. Nature of ad-hoc networks sets certain additional requirements for

the group key establishment protocols, for example, fewer number of rounds, number of

messages, and number of exponential operations.

This chapter analyzes many group key agreement protocols based on two party key

agreement protocol of W. Diffie and M. Hellman [110]. According to this protocol, if two

nodes A and B want to establish a shared key via an un-secure channel, they first agree on

two large numbers, wand a where n is a prime and (n-\)l2 is also a prime, n and a can

be public. Then A picks a large number x and keeps it secret, and B also picks a secret

numbery . A computes ax modn and sends this to B. Similarly, B sends a' modn to A. On

receiving a 'modn from B, A computes («•''modn)"r modn. Similarly, B computes

(ax modn)' mod/? where a" modn is from A. After the key exchange, both A and B have

cr" modn and this is the established shared key (a3 modn)" modn = (a* modn)' modn =

a" modn. The security of Diffie-Hellman key exchange lies in the fact that, deducing x

from a 'modn is hard. So even if an eavesdropper has a* modn, a3 modn,cr and n, he

still cannot deduce either x or v , and thus cannot compute the shared key a" modn . This is

also called discrete logarithm problem. Despite its elegance, Diffie-Hellman key exchange is

vulnerable to bucket-brigade attack or man-in-the-middle attack..

The chapter describes various existing group key agreement protocols briefly, based on

the two party Diffie-Hellman key agreement [110] and present the complexity analysis of

these protocols to assess their suitability for an ad hoc network.

3.2. Group Key Agreement Protocols

In a contributory protocol all participants contribute equally in the key generation and

guarantee for their part that the resulting key is fresh. Contributory key establishment is also

called key agreement. Obviously, we also have to assume that the network is not split at the

time of the group key agreement, i.e. that all nodes that contribute to the group key have a

connection to each other. Contributory protocols are good when there are no previously

agreed common secrets. The parties might not trust each other and need to be convinced that

the generated key is fresh and random. The lack of third parties means that no one can be

trusted to calculate a random key safely and to distribute it, even if such an entity can be

appointed, it is a bottleneck in the protocol and it can be compromised or out of reach of

other nodes. An obvious requirement for a secure group key agreement is that it is secure

against both active and passive attacks. The pieces of keys exchanged during the protocol

should not reveal information that leads to the compromise of the group key. Neither should

it be possible for an outsider to take advantage of the protocol in order to input extraneous

key material that would compromise the key or to attain compromising information by

pretendingto be a genuine protocol participant.

52

*

3.2.1. The INGM Protocol

The protocol shown in Fig 3.1 was proposed by Ingemarsson et al. in [46]. This

protocol is one of the first natural extensions of two party Diffie-Hellman protocol [110]. It

requires a synchronous startup and completes in (n-l) rounds. The participants must be

arranged in a logical ring. In a given round, every member raises the previously received

intermediate key value to the power of its own exponent and forwards the result to the next

member. After (n-l) rounds everyone computes the same keyAT„. The main disadvantages

of this approach are the high number of messages, n(n-l), exchanged and the high number

of exponential operations, n~, required.

in !/V,L/e[(i-/t)mod«,/]])

M, • A/
(/'+!} mod//

Figure 3.1. INGM Protocol: Round k; k e [l,n -1]

i
3.2.2. The BD Protocol

The BD protocol was presented by Burmester and Desmedt [71] and is executed in three

rounds. Each member M,,i e [l,n] performs the following operations:

• Each member M, generates its random exponent N, and broadcasts z, =aN'.

• Every member M, computes and broadcasts X, = (z/+l / zM)N'.

+ • Each member M, can now compute the key Kn = z"N{ .X"~] .X"~2 X,^2modp

The group key has the form Kn = aN'N'+N,N'+ +N-N> and shares the security

characteristics presented by the Diffie-Hellman algorithm [110]. This protocol is efficient

with respect to the total number of rounds. However, it is costly in terms of number of

exponential operations. This protocol requires 3,2n(n-l)and n(n-l) number of rounds,

number of messages and number of exponential operations respectively.

3.2.3. The Hypercube and Octopus Protocols

53

Becker and Willie [12] proposed the Hypercube Protocol. It was designed to overcome

the high number of messages needed by INGM protocol in [46] by logically arranging the

nodes in a hypercube. The idea behind the hypercube key agreement approach is shown in

Fig 3.2 with four members A, B, C, D who want to agree on a key. Each of them is given a

two bits address 00, 01, 10, 11 respectively. Let contribution by each member to a two party

Diffie-Hellman be N4, NB, Nc, and ND .

r
• B A oo B 01

1 1

T t

- D C D

(a) (b)

Figure 3.2 : Pairwise exchange in a d-cube (a) round 1 (b) round 2

In the first round as depicted by Fig 3.2(a) A and B engage a two party Diffie-Hellman

protocol and calculate the key NAB = «r'v,v"; C and D similarly calculate the key

NCD =aN'N". In the next round as depicted by Fig 3.2(b) A and C participate in the Diffie-

Hellman protocol using NAB and NCD as random numbers instead of selecting new random

numbers. In other words, they will generate a key or v"v' . Similarly, B and D also participate

the Diffie-Hellman protocol to get the key aNaNca. Thus, the final key calculated by all

members is NABCD =a "NcD. .

For simplicity, It is assumed that the number of members is n= 2d . Each member is

assigned a vertex and a unique d-bit address from the setZn. The protocol runs for d rounds.

In the j"' round, neighbors along the j'h dimension of the hypercube participate in a two

party Diffie-Hellman protocol. After d rounds all members share the same key. The

hypercube protocol needs[~log2 n] ,n[~log2 n] and 2n[~log2 n] number of rounds, number of

messages, and number of exponential operations respectively for its completion. Becker and ±.

Wille [12] also discussed a protocol named octopus, in which members are divided into four

disjoint subgroups, and each subgroup has a member as the header. Let A,B,C,D be such

54

t

four group headers. Member A first builds a secure communication channel with each of its

subgroup members A,. Then A, generates a random k, and sends it to A. The member, A,

computes NA =l\MG{A)k,, where G(A) is the subgroup headed by A. Header B,C and D

also generateNB, Nc, and A^. Then A,B,C,D performs a hypercube key agreement

protocol described above to get a common key K = aN"N"'. Then A sends each of its

subgroup members A, the following values: xi. = (a'*"')"' *' and y = aN,n. The member A

knows NAB, k,, av", and aN''". Then member A, first calculates A^ = x*1 and the final key

as y' "' =cr,v"',v"' 5 which is same for all group members. The octopus protocol

needs(2
n-l

+ 2),(3n-4), and () number of rounds, number of messages and

number of exponential operations respectively for its completion.

3.2.4. The CLIQUES Protocol Suite

Steiner M. et al. proposed CLIQUES protocol suite in [77] based on [76], that consist of

key management protocols for dynamic groups. Two of these protocols, IKA.1 and IKA.2

(Initial Key Agreement 1 and 2), are defined for group key establishment. Other protocols are

specified for member and subgroup addition and exclusion and key refresh.

3.2.4.1. IKA.l. At the first stage, as shown in Fig 3.3, contributions are collected from

all group members through (n-l) rounds. Each group member (except the first) receives a

data set that represents the partial contributions from all the group members that have already

executed this first stage. The member adds its contribution and sends a new data set to the

next group member. As an example, node M4 receives the set

{aN^N\aN^,aN-N\aN^}, and sends the set (a*WV\
aNy.Nl.N^aNx.N2.N^aNx.NiM^aN2.Ni.N<>. {q ^ ^ ^ ^ by ^ ,„ ^^ CQnsists of f

intermediate values, each containing (i-\) exponents, and a cardinal value containing i

exponents that correspond to the exponentiation base raised to every contribution generated

so far. The last group member, Mn, is called the group controller. At the end of the first stage

it receives a data set whose cardinal value is aN] N''"N"' and computes the group key

55

At the second stage as shown in Fig 3.3 the group controller adds its contribution to each

intermediate value and broadcasts this new data set to every other node in the network. Each

intermediate value now consists of the contribution of all group members except one. In order

to compute the group key, each group member M, identifies the appropriate intermediate

value (the one that does not contain its contribution) and raises it to its contribution N,

obtaining A^. The IKA.l protocol needs n,n and (n/2(n +3)-l) number of rounds, number

of messages and number of exponential operations respectively for its' completion.

Stage 1:

[a

M..

Stage 2:

M

N,.N2....N,

V, k<=[l,i]},a N,.N,...N,

NI.N2....N„

N,
a |ie[l,n-l]

M
(/+!>

M.

Figure 3.3. Stage 1 and 2 of IKA.l Protocol

3.2.4.2. IKA.2. In IKA.l protocol, the i"' node does i+ \ exponential operations. However,

in environments where nodes are having limited computational power, it is desirable to

minimize the computational effort demanded from each group member. The IKA.2 protocol

was proposed in order to minimize the demanded computational cost. It is similar to IKA. 1

protocol but is executed in four stages as shown in Fig 3.4. In the first stage, as shown in Fig

3.4, contributions are collected from the (n-2) first group members by means of a single

message sent from one member to the next that gathers all the previous contributions. In the

second stage, A/M_, adds its contribution to the received message and broadcasts this new

message to the (n-2) first members. In the third stage each member factors out its own

contribution and sends this result to the last group member. In the last stage, Mn collects all

the sets from the previous stage, raises each one of them to its contribution Nn and

broadcasts these results to the other group members, allowing them to compute the group

key.

56

*

t

<

i

These protocols have the advantage of requiring a low number of messages. The IKA.2

protocol has reduced the number of exponential operations required for group key

establishment. Unlike the other presented protocols, this protocol suite provides mechanisms

for group addition and exclusion, making it unnecessary to execute the entire key

establishment protocol. This characteristic reduces the involved costs and provides backward

and forward confidentiality. The IKA.2 protocol needs (n + l),(2n-l) and (5n-6) number

of rounds, number of messages and number of exponential operations respectively for its"

completion.

Stage 1: ie[l,n-2]

(/
N,.N2....N,

M: M
('+!)

Stage2: ie[l,n-2]

a",.",..A-i

M„ M

Stage 3: i e[l,n-l]

N,.N,....N..

(X

A/.. M

Stage4: is[l,n-l]

.V|.,V2....,V„

a

A/.. M.

Figure 3.4. Stage 1, 2, 3 and 4 of IKA.2 Protocol

3.2.5. The TGDH Protocol

Wallner et al. first presented the binary tree-based approach for key establishment in [29].

Wong et al. then extended it for multiple degree tree in [15]. Yongdae Kim et al. proposed

57

Tree-Based Group Diffie-Hellman (TGDH) protocol in [113,115]. TGDH combines a binary

tree structure with the group Diffie-Hellman technique as shown in Fig 3.5. They used one

way functions to enhance the security of protocol. Each node x in the key tree has two

cryptographic keys, a secret key kx and a blinded keybx = g(kx), i.e., the blinded key bx is

computed from the secret key kx using the one-way function g. The key is blinded in the

sense that an adversary with limited computational capability can know bx but cannot find

k..

h=3

(2,0)

(0.0)

(1,0) (1,1)

\
(2,1) ! (2,2) (2,3)

N = 4

blinded key

I

M,

Secret key

1 = 0

/= 1

1 = 2

Figure 3.5. Tree-based Group Diffie-Hellman (TGDH) Protocol

The TGDH protocol uses the hierarchy in a binary tree to its advantage. The root is at

the topmost level, given a value of 0 and all the leaves are at the lowest level h. Since the

key tree is a binary tree, therefore, each node is either a leafor a parent of two nodes. Each

leaf node in the tree represents a group member M,. The internal nodes are used for the key

management and do not represent any individual member. Each node of the tree is

represented by (/,v), where / is its level in the tree and v is the index ofthis node in level /.

The key associated to node (/,v) is k{lv) and its blinded key bUv) =ak{l'") mod/?. Each group

58

«•

t

member contributes equally to the group key. In other words, for each internal node (/,v), its

associated key k{,v)is derived from its children's keys where k,v) =i'*^+1), which is

>1.2v*l)"(M.essentially a " . The group key is a result of contributions by the current members.

The finally key at the root (0,0) is computed and hashed, which results in group key. The

TGDH protocol needs (|~log2n~|),(n["log2 n~|/2) and (3n[log, n]/2) number of rounds,

number of messages and number of exponential operations respectively for its" completion.

3.2.6. The NAGKA Protocol

Adrian Perrig [4] proposed a non-authenticated group key agreement (NAGKA)

protocol. The lack of authentication can be beneficial in many settings, for example, when

group members prefer to remain anonymous, or when the members do not share a commonly

trusted third party.

/ = 0

1= 1

1 = 2

Figure 3.6. Key Tree (depth = 2) in NAGKA Protocol

This protocol is a variation of the non-authenticated two party Diffie-Hellman key

agreement [110], extended to group agreement. According to the NAGKA protocol the key

tree is constructed from the leaves up to the root as shown in Fig 3.6. Initially each member

chooses a random number, for the key value of its leaf node, which collectively forms the

lowest level of the key tree. For the construction of each subsequent layer, two members

59

establish a key through the key agreement procedure, one member from the left subtree and

the other from the right subtree. They both broadcast their part of the Diffie-Hellman key

agreement, which allows all the members of the subtree to compute the key of the current

level. Once the root key is established, the group can start the secure communication by

encrypting all messages with the root key. The NAGKA protocol needs ([~log2 n |),(2« —1)

and n(log2 n+2) number of rounds, number of messages and number of exponential

operations respectively for its" completion.

3.2.7. The STR Protocol

The Skinny Tree (STR) protocol, proposed by steer et al. [28] and undertaken by Kim et

al. in [114], is a contributive protocol using a tree structure. Fig 3.7 depicts an STR tree with

three members.

IN<2> (K2, BK2) LN<3> _ R3, BR3' "' \3

IN
<1=

M« M„

Figure 3.7: STR Key Tree with Three Members

The leaves are associated to group members. Each leaf is identified by its position LN, in

the tree and holds a secret random R, (generated by the corresponding member A/,.) and its

public blinded version BR, = aR' mod/?, where a and p are Diffie-Hellman parameters.

Each internal node is identified by its position LN, in the tree and holds a secret

60

r

r

4

1

random K,and its blinded public version BKI.= aA' mod /;. Each secret AT. is recursively

calculated as follows:

K, =(BK,_, f mod p =(BR, f •' mod p

H i....u^*l

The group key KH = a "a is the key associated to the root. Due to the linear

structure of the tree, this solution induces a 0(n) key calculations in order to establish the

group key associated to the root of the tree. Besides, each member should store and maintain

all the public keys associated to all the nodes of the tree. The STR protocol needs 2n,3« and

4n number of rounds, number of messages and number of exponential operations

respectively for its' completion.

3.3. Complexity Analysis

Table 3.1 presents a comparative analysis of various group key agreement protocols

based on complexity parameters such as number of rounds, number of messages

communicated, number of exponential operations performed and round synchronization.

Here n denotes the number of members in the group.

The INGM and BD protocols are most costly in terms of the number of messages and

exponential operations, which make them very unattractive to use when compared to others

for an ad hoc network. Moreover, INGM and BD protocols are not suitable for dynamic

membership because these need to execute afresh whenever a dynamic event takes place.

These protocols also need round synchronization. The round synchronization means a

protocol round can only be initiated after the previous round has been completed. This leads

to the need of a synchronizing mechanism that guarantees that all the participating devices

received the messages intended to them at every round. The use of this kind of mechanism

increases the execution time and the number of transmitted messages that varies with respect

to the complexity of the synchronizing mechanism. Moreover, due to synchronizing

mechanism some broadcast messages emanate simultaneously, which are problematic in

mobile ad hoc networks. TGDH protocol is not suitable for mobile ad hoc networks because

of round synchronization, which involves a lot of modular exponentiations, which are most

expensive operation. It also requires extra cost for hash computation, and each node has to

store the key tree, which again requires a lot of memory.

61

Table 3.1. Comparison of Group Key Agreement Protocols

Key Agreement

Protocol

Number of

Rounds

Number of

Massages
Exponential
Operations

Round

Synchronization

INGM n-\ «(n-1) 2
Yes

BD 3 2n(«-l) w(n-1) Yes

Hypercube [log,/;] n.[log2n] 2/).[log2/i] Yes

Octopus 2.
"n-l"

4
+ 2 (3n-4) (« + 12)/4 Yes

IKA.l n n («/2X« + 3)-l No

IKA.2 n + \ 2/7-1 5n-6 No

TGDH [log2 n\ B.[lOg2 /j]/2 3n.[log2/T|/2 Yes

NAGKA [log,n\ 2(»-1) »(log2 /i + 2) Yes

STR In 3« 4n Yes

NAGKA protocol is also tree-based, but it needs subgroup leader in each round, which

is vulnerable to different kind of attacks and it also involve round synchronization. STR

protocol looks good, but it also needs round synchronization and also involves parallel

broadcasts of blinded version of secret keys due to synchronizing mechanism among nodes.

The hypercube and octopus protocols are good in first three parameters, but these protocols

again demand round synchronization similar to other protocols except Clique suite. The

protocols in CLIQUES Suite present some advantages in all these areas. The IKA.2 protocol

has the best overall performance regarding the number of rounds, messages exchanged, and

number of exponential operations performed for establishing a group key among nodes.

Although the IKA.l protocol is not as efficient regarding these parameters, its use as an

alternative to the IKA.2 protocol may be interesting since it is more efficient in terms of the

number of messages. Both protocols belong to the same protocol suite, and complexity

analysis shows that the final group key can be determined by any of theseprotocols.

62

t

<

t

t

3.4. Conclusion

The chapter examined the various group key agreement protocols, based on two party

Diffie-Hellman protocol [110], for their suitability for mobile ad hoc network.

The protocols from the CLIQUES protocol suite, which do not need round

synchronization, are among the ones" with best performance for MANET. And are the only

ones to provide good performance on different parameters. Due to these reasons, CLIQUES

protocol suite is the most appropriate for group key agreement in mobile ad hoc networks.

This protocol suite requires sequencing among the group members that defines in particular

the sequence of group members the contributions must go through and the last node in the

sequence that acts as the group controller. The way by which this sequencing must be

established is not defined and can be left to the designer. This sequencing can be fixed, using

a predefined sequence, or be detennined during the execution of the group key agreement

protocol.

63

Chapter 4

Dynamic membership

4.1 Introduction

MANETs have many peculiarities such as absence of a fixed network infrastructure,

frequent and unpredictable disconnections, bandwidth limitations, and power limitations.

These render the development of ad hoc mobile applications a very challenging task. Since

the radio links are very fragile in ad hoc networks, these often cause partitions in the

networks. And, possibly after healing of the links in the network, groups merge together.

Therefore, the dynamic group key agreement protocols for mobile ad networks pose more

/ stringent requirements for dynamic events such as join, leave, merge and partition. Since

members join (merge) or leave (partition) at their will or may be forced to do so due to

network partitioning, the dynamic group key agreement protocols must be efficient in

different parameters such as number of rounds, number of messages exchanged, and

exponential operations.

The objective of this chapter is to describe briefly various existing dynamic group key

agreement protocols based on the Two Party Diffie-Hellman Key Agreement Protocol [110],

and analyze them for efficient dynamic membership events to assess the suitability for mobile

ad hoc networks.

4.2. Secure Group Key Agreement Protocols

The general goal of secure group communication is to establish a common secret key

(also referred to as a group key), among all group members for confidential communication

[59]. Generally, a secret group key is established by a group key agreement protocol. Joining

and leaving members pose the problem of backward and forward secrecy [15]. A protocol

provides backward secrecy if a member joining the group at time t does not gain any

information about the content of messages communicated at times t <t. A protocol provides

forward secrecy if a member leaving the group at time t does not gain any information about

the content of messages communicated at times/ >t. Protocols need to satisfy these

properties to provide secure group communication in dynamic groups (dynamic implies that

the membership can change through join, leave, merge, and partition events).

4.3. The CLIQUES Protocol Suite

Steiner M. et al. proposed CLIQUES protocol suite in [77] consisting of group key

management protocols for dynamic groups. Two of these protocols, IKA.l and IKA.2 (Initial

Key Agreement 1 and 2), are defined for group key establishment.

4.3.1. IKA.l.

This protocol has two stages. In the first stage, contributions are collected from all group

members through n-1 rounds. Each group member (except the first) receives a data set that

represents the partial contributions from all the group members that have already executed

this first stage. The member adds its contribution and sends a new data set to the next group

member. The set sent by the /'''node consists of iintermediate values, each containing

i-1 exponents, and a cardinal value containing/ exponents that correspond to the

exponentiation base raised to every contribution generated so far. The last group member,

M , is called the group controller. At the end of the first stage it receives a data set whose

cardinal value is aN,'N2""N"~' and computes the group key Kn =aNvN2""Nn.

In the second stage, the group controller adds its contribution to each intermediate value

and broadcasts this new data set to every other node in the network. Each intermediate value

now consists of the contribution of all group members except one. In order to compute the

group key, each group member M, identifies the appropriate intermediate value (the one that

does not contain its contribution) and raises it to its contribution N, obtaining Kn.

4.3.1.1. Single join event.

For singlejoin event, it is assumed that last memberMn saves the contents of the up-flow

message in stage 1 (roundn-1) during setup phase. When a new memberjoins, Mn generates

66

a new contribution NH and computes a new up-flow message including Nn in place ofNn ,

n,.n2....n'„

y {a \ke[l,n]},aNlN N* and sends it to the new memberMii+] , which in turn performs

the same sequence of steps as Mn in IKA.l protocol. The single join event requires 2,2 and

(n + \) number of rounds, number of messages, and number of exponential operations

respectively, where n denotes the number of existing members in the group.

4.3.1.2. Group fusion event.

This protocol assumes group fusion event as an event of multiple joins. When a group

fusion event is identified, the current group controller generates new message including its

new contribution and sends it to the one of the new members. This new member adds its

contribution and sends this message to next new member. Ultimately, message reaches to last

new member, which broadcast this message without including its contribution. Upon

receiving the broadcast message, each member in the chain can compute the group key by

factoring out the relevant component and adding its own contribution. The group fusion event

{ requires (j +1), (j +1) and (— (j2 +2nj+j)) number of rounds, number of messages, and

number of exponential operations respectively, where j denotes the number of joining

members.

4.3.1.3. Single leave event.

If member M, is the leaving member, where /e[l,n-l], i.e., l^n. The last member

< Mn generates a new contribution A^ and computes a new set of n- 2 exponents excluding

n,.n2....n'„

exponent of lest member as {a N' \i e [\,n-1] a i * p\ and broadcasts them to all group

members. Thus all remaining members can compute the group key. In case if current group

controllerMn itself is leaving, then, member Mn_x assumes its role, which has required

information (last Up-flow message to Mn_x) to perform a fast key update and relieve Mn.

The single leave event requires 1,1 and (2n-\) number of rounds, number of messages, and

number of exponential operations respectively where n denotes the number of existing

members in the group.

t

67

4.3.1.4. Subgroup exclusion event.

This protocol is similar to single leave event protocol. In this case, when some members

leave the group, the group controller removes their contributions from the message already

stored with the group controller and broadcasts it to the remaining members in the group.

Thus, remaining members can easily compute the group key. The notation n and /denote the

number of existing members in the group and number of leaving members respectively. The

subgroup exclusion event requires 1,1 and (2n-l) number of rounds, number of messages,

and number of exponential operations respectively.

4.3.2. IKA.2.

The IKA.2 protocol was proposed to minimize the computational load on nodes. It is

similar to IKA.1 protocol but is executed in four stages. In the first stage, contributions are

collected from the n-2 first group members by means of a single message sent from one

member to the next that gathers all the previous contributions. In the second stage, Mn_, adds

its contribution to the received message and broadcasts this new message to the n-2 first

members. In the third stage each member factors out its' own contribution and sends this

result to the last group member. In the last stage, Mn collects all the sets from the previous

stage, raises each one of them to its contribution Nn and broadcasts these results to the other

group members, allowing them to compute the group key.

4.3.2.1. Single join event.

It very similar to single join event in IKA.l protocol. It is assumed that last

memberMn saves the contents of the original broadcast and response messages (stage 2 & 3

in IKA.2 protocol). Mn generates a new contribution A^;; and computes a new up-flow

Nt.N2....N„

message including Nn in place ofNn , {a N* \k e [\,n]},aN,N2N- and sends it to the new

member MB+]. It computes the new group key £n+1. And after adding its contribution in each

exponent of the received message, it broadcasts the message as in stage 4 of IKA.2, to all -*.

members. Now, all members can compute the shared group key. The single join event

requires 4,(n+3) and (n+3) number of rounds, number of messages, and number of

68

exponential operations respectively where n denotes the number of existing members in the

group.

4.3.2.2. Group fusion event.

This protocol works similar up to the point when the members receive the broadcast

from the last new member who ultimately becomes new group controller. Upon receiving the

broadcast message, each member factors out its exponent and unicasts the result to the new

group controller. The new group controller collects all the exponents and adds its contribution

to each of them. It then broadcast all these exponents as single message to group members.

Now every member computes the group key by factoring in its contribution. The notation n

and j denote the number of existing members in the group and number of joining members

respectively. The group fusion event requires (j + 3),(n + 2j +1) and (n + 2y + l) number of

rounds, number of messages, and number of exponential operations respectively.

4.3.2.3. Single leave event.

If member M, is the leaving member where le[\,n-l], i.e., l^n. The member Mn

who saved the original broadcast and response messages (stage 2 & 3 in IKA.2 protocol)

generates a new contribution Nn and computes a new set of n-2 exponents excluding

N,.N,....tf'„

leaving member exponent, {a ' \ie [l,n -1] a i * p\ and broadcasts them to remaining

group members. Thus, all remaining members compute the group key. The single leave event

requires 1,1 and (n-l) number of rounds, number of messages, and number of exponential

•< operations respectively where n denotes the number of existing members in the group.

4.3.2.4. Subgroup exclusion event.

This protocol is similar to single leave event protocol. In this case, when some members

leave the group, the group controller removes their contributions from the message already

stored with the group controller and includes a fresh contribution N'n in place ofNn and

broadcasts it to the remaining members in the group. Thus, remaining members can easily

compute the group key. The notation n and / denote the number of existing members in the

group and number of leaving members respectively. The subgroup exclusion event requires

69

1,1 and (n-l) number of rounds, number of messages, and number of exponential

operations respectively.

4.4. The TGDH Protocol

Yongdae Kim et al. proposed Tree-Based Group Diffie-Hellman (TGDH) protocol in

[113,115]. In this protocol, each member maintains a set of keys, which are arranged in a

hierarchical binary tree.

<0,0>

<1,0>

<2,0> <2,1> <2,2> <2,3>

<3.0> <3,1> <3,2> <3,3>
V J \

Figure 4.1: TGDH Key tree with six members

A node ID < /, v > is assigned to every tree node. For a given node < /, v > , a secret (or

private) key K<t v> and a blinded (or public) key BK<lv> is allocated. All arithmetic operations

are performed in a cyclic group of prime order p with the generators . Therefore, the

blinded key of node v can be generated as BK<lv> = a "'•'" mod p

Each leaf node in the tree represents the individual secret and blinded keys of a group

member M,. Every member holds all secret keys along its key path starting from its

associated leaf node up to the root node. Therefore, the secret key held by the root node is

shared by all the members and is regarded as the group key. Fig 4.1 illustrates a possible key

tree with six members Mx toMk. For example, member M, holds the keys at nodes <3,0> ,

70

t

< 2,0 >, < 1,0>, and < 0,0 > . And, at the same time, it also has all blinded keys on the key

tree. The secret key at node < 0,0 > is the group key of this peer group.

The node ID of the root node is set to< 0,0 > . Each non-leaf node consists of two child

nodes whose node Ids are given by < / +1,0 > and < / + 1,1 > . Based on the two party Diffie-

Hellman protocol [110], the secret key of a non-leaf node </,v>is generated by the secret

key of one child node of non-leafnode and the blinded key of another child node of non-leaf

node as K<lv =(BK<M0>)*'UU) mod p =(BK,I+U>f'"" mod p =aK "'" k'"'•' mod p.

Unlike the keys at non-leaf nodes, secret key at leaf node is selected by its" member

through a secure pseudo random number generator. Since the blinded keys are publicly

known, every member can compute the keys along its key path to the root node based on its

individual secret key. To illustrate, consider the key tree in Fig 4.1. Every member M,

generates it's own secret key and all the secret keys along the path to the root node. For

example, member Mx generates the secret key A^30>and it can request the blinded key

5/C<31>from A/,, BK ,,, from M3, and 5A:<n.from either M4,MS or M6. Given M, "s

secret key A^<30>and the blinded key BK<iX>, M, can generate the secret key K<20>

accordingly. Given the blinded key BK<2> and the newly generated secret key K<20>, Af,

can generate the secret key K<} 0> accordingly. Given the secret key K<} 0, and the blinded

key BK<U>, M, can generate the secret key K<00> at the root. From that point onward, any

communication in the group can be encrypted based on the secret key (or group key) AT<00>.

Let us first consider individual rekeying, meaning that rekeying is performed after every

single join or leave event. Before the group membership is changed, a special member called

the sponsor is elected to be responsible for updating the keys held by the new member (in the

leave case). The convention used is that the rightmost member under the subtree rooted at the

sibling of the join/leave nodes will take the sponsor role. The existence of a sponsor does not

violate the decentralized requirement of the group key generation since the sponsor does not

add extra contribution to the group key.

4.4.1. Single join event.

71

The Skinny Tree (STR) protocol, proposed by steer et al. [28] and undertaken by Kim et

al. in [114], is a contributive protocol using a tree structure. Fig 4.6 depicts an STR tree with

three members.

The leaves are associated to group members. Each leaf is identified by its position LN, in

the tree and holds a secret random R, (generated by the corresponding member M,) and its

public blinded version BR, =aRl mod/?, where a and p are DH parameters. Each internal

node is identified by its position IN, in the tree and holds a secret random A",, and its blinded

public version BK, =ak' mod p . Each secret K, is recursively calculated as follows:

K. =(BKM f mod p =(BR,)*'' mod p

The group key Kn =aR""" is the key associated to the root. Due to the linear structure

of the tree, this solution induces a O(n) key calculations in order to establish the group key

associated to the root of the tree. Besides, each member should store and maintain all the

public keys associated to all the nodes of the tree. In case of a membership change

(join/leave) the tree is re-built consequently and hence all the members update the group key,

which is the new key Kn associated to theroot of the tree.

IN<1s RJKV BFyBK., R„, BR2

M, M„

Figure 4.6: STR Key Tree with Three Members

4.5.1. Single join event.

76

It is assumed that the group has n users, {A/, Mn \ at the time of joining of new

member. The new member A/H+1 broadcasts a join request message that contains its own

BKn^ (Which is the same as its blinded session random 5/?„+1).

Upon receiving this message, the joining group's sponsor A/H(that is, the last member

already joined the group or top most member node in the current group) refreshes its session

random, computes BRn, Kn,BKn, and sends the current tree BT, to Mn+] with all blinded

keys. Thereafter, each member M, increments n= n+1 and creates a new root keynode INn

with two children, one root node INt,_A of the prior tree T on the left and second the new leaf

node LNn corresponding to new member on the right. Now, every member can compute the

group key since they all have new member's blinded session random. And, new joining

member has the blinded group key of the joining group. In case of single join event, the

sponsor is always the topmost leaf node, i.e., the most recent member joined the current

group. Fig 4.7 depicts the joining of new member M4. Here, M3 is elected as sponsor that

updates its session random Ri for providing the forward and backward secrecy.

Join

NewGroup Key K4

K3 R„ BR,

Figure 4.7: Single Join Event in STR Protocol

77

New

\ Member

R4. BR4

The single join event requires 1,2 and 2 number of rounds, number of messages, and

number of exponential operations respectively.

4.5.2. Merge event.

It is assumed that, as in the join event case, the group communication system

simultaneously notifies all group members (in all groups) about the merge event. It is also

assumed that smaller tree grafted atop the larger tree. And, if any two trees are of the same

height, then, these can be merged based on some predefined criteria. When merging two

trees, the lowest-numbered leaf of the smaller tree becomes the right child of a new

intennediate node. The left child of the new intermediate node becomes the root of the larger

tree. Using this technique recursively, multiple trees can be merged. In the first round of the

merge protocol, all sponsors (members associated with the topmost leaf node in each tree)

exchange their respective key trees containing all blinded session randoms. The highest-

numbered member of the largest tree becomes the sponsor of the second round in the merge

protocol. After refreshing its session random, this sponsor computes every secret key and

blinded key pair up to the intennediate node just below the root node using the blinded

session randoms of the other group members. It then broadcasts the key tree with the blinded

keys and blinded session randoms to the other members. All members now have the complete

set of blinded keys, which allows them to compute the new group key.

R,. BR,

:''r./K„BRJB0

\

R„. BR6

. K'ir BK'

New Node

K'.,BK' V

; k',. bk1, : (R,, BR4

R,/K,, BFyBK, ; (R2, BR.

T

(K..

Figure 4.8: Merge Event in STR Protocol

78

5' """S j

r

>

i

< 2,0 >, < 1,0 >. and < 0,0 > . And, at the same time, it also has all blinded keys on the key

tree. The secret key at node < 0,0 > is the group key of this peer group.

The node ID of the root node is set to<0,0>. Each non-leaf node consists of two child

nodes whose node Ids are given by < / + 1,0 > and < / + 1,1 > . Based on the two party Diffie-

Hellman protocol [110], the secret key of a non-leaf node </, v>is generated by the secret

key of one child node of non-leaf node and the blinded key of another child node of non-leaf

node as K,,y =(BK. M0>)A "m mod p =(BK<l+u>)K'hu' mod p =aK "l!l K'"•' mod p.

Unlike the keys at non-leaf nodes, secret key at leaf node is selected by its* member

through a secure pseudo random number generator. Since the blinded keys are publicly

known, every member can compute the keys along its key path to the root node based on its

individual secret key. To illustrate, consider the key tree in Fig 4.1. Every member M,

generates it's own secret key and all the secret keys along the path to the root node. For

example, member A/, generates the secret key /C.3() and it can request the blinded key

BK<2}]> from A/,, 5A^2l>from M3, and BK<U> from either M4,M5 or M6. Given M,'s

i secret key /C<30>and the blinded key BK<i}>, A/, can generate the secret key A^<20>

accordingly. Given the blinded key BK<2V> and the newly generated secret key K<20>, A/,

can generate the secret key K<]0> accordingly. Given the secret key K<n)y and the blinded

key BK<} x>, Af, can generate the secret key K<0 0> at the root. From that point onward, any

communication in the group can be encrypted based on the secret key (or group key) A^<0 0>.

Let us first consider individual rekeying, meaning that rekeying is perfonned after every

single join or leave event. Before the group membership is changed, a special member called

the sponsor is elected to be responsible for updating the keys held by the new member (in the

leave case). The convention used is that the rightmost member under the subtree rooted at the

sibling of the join/leave nodes will take the sponsor role. The existence of a sponsor does not

violate the decentralized requirement of the group key generation since the sponsor does not

add extra contribution to the group key.

4.4.1. Single join event.

71

Single member join event is illustrated in Fig 4.2. New member A/8 is the prospective

member who wishes to join the group.

<o.o> o.o>

> *• M, Joins > *•

<1 0> <1 1> <1,0> <1,1>

A t > A AAA *

<2,3> <2,0> <2,1> <2,2> <2,3><2,0= <2,1> <2,2>

\

^
M M;

<3,0> <3,1> <3,6> <3,7> <3,0> <3,1> <3,4> <3,5> <3,6> <3,7>

\ t \ 3 r 1 r 1

M, M2 M6 M7 M, M2 M4<s> Me M6 M7

Figure 4.2: Single Join Event in TGDH Protocol

Initially, Ms detennines the insertion node under which M% can be inserted. To add a

node, say v (or tree, say T) to the insertion node, a new node, say n, is first created. Then

the subtree rooted at the insertion node becomes the left child of the node n , and the node v

(or the root node of the tree T) becomes the right child of the node n . The node n will

replace the original location of the insertion node. The insertion node is either the rightmost

shallowest position such that the join does not increase the tree height, or the root node if the

tree is initially well balanced (in this case, the height of the resulting tree will be increased by

l). Fig 4.2 illustrates this concept. The insertion node is node< 2,2 > and the sponsor is M4.

Then,A/x broadcasts its blinded key 5.£<35>upon insertion. Given 5AT<35>, M4 renews

K<2 2> K<\ i>and ^<oo>' and tnen broadcasts the blinded keys M"<22>and BK<XX> to all

members in the group. After receiving the blinded keys from M4, all remaining members can

rekey all the nodes along their key paths and compute the new group key K<00>. The single

join event requires 2,3 and 2[log2 n] number ofrounds, number ofmessages, and number

72

>

<

of exponential operations respectively where n denotes the number of existing members in

the group.

4.4.2. Merge event.

In case of merge event, the protocol works as follows: each sponsor (the rightmost

member of each group) broadcasts its tree information to the merging subgroup after

refreshing its session random and blinded keys. Upon receiving this message, all members

uniquely and independently detennine the merge position of the two trees (choose the joining

node as the rightmost shallowest node, which does not increase the height of the resultant key

tree).

New intermediate

node

> A > <

<1,0> <1,1> <1,0> <1 1>

V .. . /

\
<0,0>

A \ t \ / V A
<2,0> <2,1> <2,2> <2,3> <20> <2,1> <2l2> <2,3>

*

M,.s. M, M5 <1,o> <1,1> ;

i 1

\ : /

\
r S i \ * \

K M7tS. <3,0> <3.1> <3,4> <3,5> <3,6> <3,7>
<3,0> <3,1>

\

M. K

('uiTeiii

in embers
New members

Figure 4.3: Merge Event in TGDH Protocol

All keys and blinded keys on the path from the merge point to the root node are

invalidated. The rightmost member of the subtree rooted at the merge point becomes the

sponsor of the key update operation. The sponsor computes all keys and blinded keys and

broadcasts the tree with the blinded keys to all other members. All members now have the

complete set of blinded keys, which allows them to compute all keys on their key path. Fig

4.3 illustrates merge event where members Mb and M1 are added to a group consisting of

members M, ,M2,M3,M4, and M5. The merge event requires 2,3 and 2[log2n] number

73

of rounds, number of messages, and number of exponential operations respectively where n

denotes the number of existing members in the group.

4.4.3. Single leave event.

Single member leave event is illustrated in Fig 4.4. Suppose that member A/5 leaves the

system. Node <3,4> is then promoted to node <2,2>, and nodes <1,1> and <0,0>

become renewed nodes, defined as the non-leaf nodes whose associated keys in the key tree

are renewed. Also, member M4 becomes the sponsor. It renews the secret keys A^,,,and

A:<00>and broadcasts the blinded keys BK<u>ar\d BK 22>to all the members. Members

A/,and A/,, upon receiving the blinded key BK<h]>, compute the new group key K<00>.

Similarly, members Mb and M1, upon receiving BK<22>, can compute £<u>and then the

new group key K<00>. The single leave event requires 1,1 and [log2 n\ number ofrounds,

number of messages, and number of exponential operations respectively where n denotes the

number of existing members in the group.

<o,o> o.o>

A .

<1,0> <1,1>

<2,0> ; <2,1> <2,2> <2,3>

M,

W
<3 0> <3,1> <3,4> <3,5> <3,6> <3,7>

v I \ A i . /

M, Leaves

M, M2 M4 M5 M6 M7

Figure 4.4: Single Leave Event in TGDH Protocol

4.4.4. Partition event.

74

i

In case of partitioning event, the protocol runs as follows: In the first round, each

remaining member updates its view of the tree by deleting all leaf nodes associated with

partitioned members and (recursively) their respective parent nodes.

<o,o> <o,o>

> A. > A

<1,0> <1,1 > < 1,0> <1,1 >

1r A A < r 1 f

<2,0> <2,1> <2,2> .2,, <2,0> <2,1> <2,2> <2,3>

M.

<3,2>

1

<3,3>

r

<3,4>

1

<3,5>

M.

1 Leave

M. M3.5, M4 M5<S»

T
\

Leave
M2 M3<s> M4 M5.s,

Figure 4.5: Partition Event in TGDH Protocol

To prevent re-use of an old group key, one of the remaining members changes its key

share. To this end, in the first protocol round, the shallowest rightmost sponsor changes its

share. Each sponsor then computes the keys and blinded keys as far up the tree as possible,

and, then broadcasts the set of new blinded keys. Upon receiving the broadcast, each member

checks whether the message contains a new blinded key. This procedure iterates until all

members obtain the group key. Fig 4.5 illustrates a partition event, where members M2

andAf6are removed from the group. The partition event requires |~log2 «~|,2[~log2 n\ and

3|log2n] number of rounds, number of messages, and number of exponential operations

respectively where n denotes the number of existing members in thegroup.

4.5. The STR Protocol

75

The Skinny Tree (STR) protocol, proposed by steer et al. [28] and undertaken by Kim et

al. in [1 14], is a contributive protocol using a tree structure. Fig 4.6 depicts an STR tree with

three members.

The leaves are associated to group members. Each leaf is identified by its positionZ./V, in

the tree and holds a secret random R, (generated by the conesponding member M,) and its

public blinded version BR, = aR] mod/?, where a and p are DH parameters. Each internal

node is identified by its position IN, in the tree and holds a secret random K, and its blinded

public version BK, = aK' mod p . Each secret K, is recursively calculated as follows:

K, =(BK,_X f mod p =(BR,)K ' mod p

The group key Kn = aR"a is the key associated to the root. Due to the linear structure

of the tree, this solution induces a O(n) key calculations in order to establish the group key

associated to the root of the tree. Besides, each member should store and maintain all the

public keys associated to all the nodes of the tree. In case of a membership change

(join/leave) the tree is re-built consequently and hence all the members update the group key,

which is the new key Kn associated to the rootof the tree.

INMN<3>

IN<2> (K2,BK

LN^

IN,., (FV^BFyBK.

M, iVL

Figure 4.6: STR Key Tree with Three Members

4.5.1. Single join event.

76

The merge event requires 2,3 and 3j number of rounds, number of messages, and

number of exponential operations respectively where j denotes the number of joining

members.

Fig 4.8 illustrates the merging two groups. After the merge notification, the sponsors

A/,and Mb broadcast their key trees containing all blinded session randoms. Upon receiving

these broadcast messages, every member in both groups reconstructs the key tree. Since the

sponsor ids are used for grafting purpose in case of both the trees have same number of

members. Therefore, The tree with sponsor Mh (i.e., call it T.X)) is placed above the tree with

sponsor A/, (i.e., call it T,2)). Every member generates a new intennediate nodeIN{4) and

makes it the parent of the old root node V7V(3) of the tree T,2) and the previous leftmost leaf

nodeZ.yV(4). Both intermediate nodes ZN(1)and /JV(2)of tree f(1) then need to be renumbered

as IN{5) and IN{b), respectively. The new intennediate nodeIN 4) also becomes the child of the

previous lowest intennediate node IN{5). Using the previous blinded group key at IN(i)of the

7J2) group and blinded session random BR4andBR5, the sponsor in the second round, A/3,

computes all intermediate secret and blinded keys (Ki,BK},K4,BK4,Ki,BK5) except the

root node. Finally, it broadcasts BT{i) that contains all blinded keys and blinded session

randoms up to IN{5). Upon receipt of the broadcast, every member can compute the group

key.

4.5.3. Single leave event.

We again have a group of n members when a member M,(l<n) leaves the group. If

/ > 1, the sponsor Ms is the leaf node directly below the leaving member, i.e., M,_,

otherwise, the sponsor is M2. Upon hearing about the leave event from the group

communication system, each remaining member updates its key tree by deleting the nodes

LNU) conesponding to M, and its parent node IN(I).

The nodes above the leaving node are also renumbered. The fonner sibling IN,M) of

M, is promoted to replace (former) M, 's parent. The sponsor Ms selects a new secret

session random, computes all secret as well as blinded keys just below the root node, and

7')

broadcasts BT to the group. This information allows all members (including the sponsor) to

recompute the new group key.

K\

K,,, BK,, R„. BR, K" BK'. R -, BR,

m4

K2, BK2 R3, BR3

Leave

Figure 4.9: Single Leave Event in STR Protocol

Fig 4.9 illustrates that if member A/3 leaves the group, other members delete the leaving

node along with its parent. Then, the sponsor M2 picks its new session random R2, computes

BR2, K2 BK2, and broadcasts the updated tree BT{i). Upon receiving the broadcast, all

members (including M2) compute the group key K}. Single leave event require one

communication round and a single broadcast. The cryptographic cost varies depending upon

two factors, first, the position of the departed member and second, the position of the

remaining members needing to compute the new key. The single leave event requires 1,1 and

(3n/2 + 2) number of rounds, number of messages, and number of exponential operations

respectively where n denotes the number of existing members in the group.

4.5.4. Partition event.

A network fault (RF link failure) or mobility of nodes can cause a partition of the

existing group. To the remaining members, this actually appears as a concunent leave of

80

multiple members. By introducing minor difference in sponsor selection in leave protocol, it

can be used as partition protocol.

In case of a partition, the sponsor is the leaf node directly below the lowest-numbered

leaving member. (If A/, is the lowest-numbered leaving member, the sponsor is the lowest-

numbered surviving member.). After deleting all leaving nodes, the sponsor Ms refreshes its

session random (key share), computes secret and blinded keys going up the tree, as in the

plain leave protocol, terminating with the computation of ak"' mod p . It then broadcasts the

updated key tree BT{s) containing only blinded values. Each member (including Ms) can

now compute the group key.

In Fig 4.10 the sponsor deletes all nodes of leaving members and computes all necessary

secrets and blinded keys in the first round. Member A/, is the sponsor since M2 left the

group. After picking a new session random /?,, the sponsor computes K2 and a 2mod p,

and broadcasts the whole tree. Upon receiving this message, every member can compute the

new group key AT,. And, session randoms and blinded session randoms are renumbered as in

the leave protocol.

R5. BR5

K3,BI<3 R4, BR4

Leave

M,

Leave

Figure 4.10: Partition Event in STR Protocol

81

The partition event requires 1,1 and (3n/2 + 2) number of rounds, number of messages,

and number of exponential operations respectively where n denotes the number of existing

members in the group.

4.6. The NAGKA Protocol

Adrian Penig [4] proposed a non-authenticated group key agreement (NAGKA)

protocol. NAGKA protocol is a variation of the non-authenticated Diffie-Hellman two party

key agreement protocol [110], extended to group agreement. The protocol works as follows:

The key tree as shown in the Fig 4.11 is constructed from the leaves up to the root. Members

are located at the leaf nodes.

a
'- .a*'* h 0

cfi* h I

h=2

M, M, M< M.

Figure 4.11: Key tree (depth=2) in NAGKA Protocol

Initially each member chooses a random number for the key value of its leaf node. For

the construction of keys at each level in key tree, two members establish a key through the

82

i

key agreement procedure, one member from the left subtree and the other from the right

subtree. They both broadcast their part of the Diffie-Hellman key agreement, which allows all

the members of the subtree to compute the key of the current level. Once the root key is

established, the group can start the secure communication by encrypting all messages with

the root key.

4.6.1. Single join event.

In this protocol, the new member always joins at the closest node to the root. As

illustrated in Fig 4.12, the new memberMs joins at node < 1,2 > since it is the closest leaf

node to the root. The member M4 is shifted one level down to accommodate M5. All keys

from the new member up to the root such as K<24>, K<]2>, and K, {ll>need to be renewed.

The single join event requires |~log2 n],|"log2 n]+l and 2[log2n"| number of rounds,

number of messages, and number of exponential operations respectively where n denotes the

number of existing members in the group.

Figure 4.12: Single join event in NAGKA Protocol

4.6.2. Single leave event.

In this protocol, all the keys that leaving member knows are changed so that future

communication among nodes is not available to this member.

83

K.,2

Figure 4.13: Single leave event in NAGKA Protocol

When the member at node <h,i> leaves the group, the node <h —\,

M,

> is replaced

by < h,i± 1> (by shifting the entire subtree one level up). All keys from the deleted node up

to the root are updated i.e., When member A/5 leaves, then the node < 1,2 > is deleted and

node < 2,3 > is shifted one level up, as illustrated in Fig 4.13. The single leave event requires

(|~log2 n]-l),(|~log2 n~\) and 2([log2n|-l) number of rounds, number of messages, and

number of exponential operations respectively where n denotes the number of existing

members in the group.

4.7. Complexity Analysis

Group key agreement protocols, which enable the members to agree on a common secret

value, based on public contribution of each member, do not require the presence of a central

authority. Also, when the group composition changes due to join, leave, merge, and partition

of member(s), one can employ supplementary key agreement protocols to get a new group

key. Table 4.1 depicts a comparative analysis of various dynamic group key agreement

protocols based on complexity parameters such as number of rounds, number of messages

exchanged, and exponential operations required by these supplementary group key agreement

84

protocols, for rekeying operation in case of various events, i.e., join, leave, merge and

partition event. The notations n,j and / denote current group members, joining member(s),

and leaving member(s) respectively.

Table 4.1. Comparison of Dynamic Group Key Agreement Protocols

Dynamic Group
Key Agreement

Protocol

Event
Number of

Rounds

Number of

Messages
Exponential
operations

Round

Synchronization

IKA.l

Join 2 2 n+ \

No
Merge 7 + 1 7 + 1 -0 +2nj + j)

Leave 1 1 2n-\

Partition 1 1 In-I

IKA.2

Join 4 n + 3 n + 3

No
Merge y+3 n + 2 / + 1 n + 2j +1

Leave l 1 n-l

Partition l 1 n-l

TGDH

Join 2 3 2.[log2 «]

Yes
Merge 2 5 2.[log,»]

Leave 1 1 [log,/?]

Partition [log2 "] 2.[log2 n) 3.[log2«]

STR

Join 1 2 2

Yes
Merge 2 3 3./'

Leave 1 1 3n/2 + 2

Partition 1 1 3«/2 + 2

NAGKA
Join [log, n [log, «~| +1 2.[log, »]

Yes

Leave [l0g2«]-l [log, h] 2,([log2/»]-!)

The IKA.2 protocol is better than IKA.l in case of leave and partition event and IKA.2

protocol needs small number of exponential operations as compared to IKA.l. However,

IKA.2 is inferior to IKA.l for join event. Since the Clique protocols do not need round

synchronization, these protocols are an attractive option for mobile ad hoc networks. The cost

for TGDH is the average value when the key tree is fully balanced. Member join is costly

because TGDH protocol has to balance the key tree if it becomes unbalanced after join of

member(s). It is suitable for member leave operation since it takes only one round and

[log, Til modular exponentiation. However, partitioning is expensive which may cause more

cascaded faults and long delays to agree on the group key. The partition/leave cost for STR

85

protocol is computed on average, since it depends on the depth of the lowest-numbered

leaving member node. As observed from the Table 4.1, STR protocol is minimal in

communication on every membership event. A.Perrig presented three group key agreement

protocols in [4], i.e., NAGK.A, AGKA, and AGKA-G. First protocol is non-authenticated

group key agreement protocol. Second protocol the authenticated group key agreement

protocol, wherein members authenticate each other using certificates issued by third parties.

Third protocol is also authenticated version but it uses Gunther's identity based key

agreement [14] also known as implicitly-certified key agreement. In these three protocols,

Single member joining and leaving is described but no clear cut provision is made for merge

and partition events. Therefore, these protocols are not suitable for mobile ad hoc networks

where merging and partitioning events occur very frequently.

4.8. Conclusion

This chapter examined the various group key agreement protocols from the point of

dynamic membership events, to assess their suitability for an ad hoc network. Although

analytically STR protocol shows best results among the presented protocols, yet it is not

suitable for an ad hoc network because of round synchronization required in various

membership events.

Note, the protocols such as INGM, BD, Hypercube and Octopus discussed in previous

chapter need to be executed afresh on each join, leave, merge and partition event. We also

notice that the protocols such as IKA.l and IKA.2 in CLIQUE Suite do not require round

synchronization. And, routing of messages takes place on hop-to-hop basis and this is the

basic characteristic of ad hoc network. Due to this reason, ad hoc networks are also known as

multi-hop wireless ad hoc network. Therefore, Protocols included in CLIQUE Suite are well

suited for dynamic membership events i.e., join, leave, merge and partition events.

86

>

Chapter 5

Proposed Protocol

5.1 Introduction

As observed from previous discussion, (Cf. Chapter 3 and 4), that among INGM [46],

BD [71], Hypercube [12], Octopus [12], Clique (IKA.l and IKA.2) [77], TGDH [113,115],

NAGKA [4], and STR [114] protocols, the Clique protocols show the best results as far as

setup operation and dynamic events (join, merge, leave and partition) are concerned.

Although clique protocols show better results, yet these protocols are still expensive in terms

of number of rounds, number of messages, and number of exponential operations. The

number of rounds in clique protocols is directly proportional to group size which shows that

these protocols are not scalable too. This Chapter proposes a new secure and more efficient

group key agreement protocol for mobile ad hoc networks. The proposed protocol also has

provisions for all valid members to detect errors and stop execution of the protocol

immediately as they encounter invalid message from the corrupted members. The proposed

protocol suite has a setup protocol which completes setup of a new group in two rounds. For

authentication, each group member generates two signatures and performs 2n signature

verifications. For dynamic membership events like join (merge), leave (partition), the join-

merge, and leave-partition supplementary protocols have been presented, which also require

two rounds for their successful completion. The join-merge and leave-partition

supplementary protocols are executed to generate the new group key whenever some

member(s) join (merge) or leave (partition) that may be voluntary or forced (in case of

cheating) in a group.

5.2 The Model

This section presents a security model for a group key agreement protocol based on

Bresson et al. [31,33] and Katz and Yung [49].

Participants: Participants are members of a nonempty set,G , which participate in the group

key agreement protocol, P . Each member generates secret/public key pairs(sk,pk), and each

member knows public keys of all members. The keyssk and pk are long-lived and are used

for signature generation and verification respectively. An adversary is not a valid member

of,G , but can hold all communicationon a network and corrupt group members.

Partnering: Whenever group membership changes, a new group, GY = {M,, ,MJ, is

formed and each group member of G, can obtain a new group key#£,. through an instance

performing, P [49]. YVM denotes an instance j of a group member, A/.. The group index v

increases whenever group membership changes and Gudenotes the initial group. An

instance, flu , of a member, M,, has unique session identifier sidJM and partner identifier

pidJM . After the group key agreement protocol, P, has been terminated successfully, Y]\, has

a unique session (group) key identifier gkJM corresponding to the session (group) key gkv.

pidJM corresponds to a set of group members GJM =GV\{M,}, where symbol \ stands for

leave operation. When the group key agreement protocol, P, has successfully terminated in

the instance,n^., each member,Mk, of GJM has an instance Fl^ (1 <k*i <n)containing

{sidfa, pidj}t,gkj}t} such that {sid^ =sidJMJ , pid^ =Gv\{Mk\ and gkJ^ =gkJMi. The

instances YlJM and]!(', are partnered instances [49].

5.2.1 Protocol Model

The group key agreement protocol, P, consists of the following algorithm:

Key generation: This probabilistic time algorithm produces long-lived keys for each member

of G when an input value Vp where sp is a security parameter is provided.

Setup(G0): This algorithm helps in commencement of group key agreement protocol, P, and

generates the initial session (group) key gk0.

Join-Merge (J,Gr_x): Input to this algorithm is a set of joining members" identities denoted

by J and the current group, (?„_,. The output of this algorithm is a new group Gr = (?„_, UJ,

S<S

i

where symbol U stands for join operation. All members of G, share a new session (group)

key gkx secretly.

Leave-Partition (L,GX...,): Input of this algorithm is a set of leaving members" identities

denoted by Land the current group,Gv,_,. The output of this algorithm is a new group,

Gy - Gv_! \ L , where symbol \ for leave operation. All members of Gv share a new session

(group) key gk\ secretly.

5.2.2 Security Model

The security model defines the capabilities of an adversary, A. It allows the

adversary, A, to potentially hold all communication in the network via access to a set of

oracles as defined below. The model considers an experiment in which the adversary, A , asks

queries to oracles, and the oracles answer back to the adversary, A . Oracle queries model

attacks which an adversary, A, may use in the real system [67]. The model considers the

following types of queries in this work.

Send(n(/ ,/n): An adversary,^, sends a messagem to an instance,WM . When Y\J receives

m , it responds according to the group key agreement protocol. An adversary, A , may use this

query to perform active attacks by modifying and inserting the messages of the key

agreement protocol. Impersonation attacks and bucket-brigade attack are also possible using

this query.

Setup(G0), Join-Merge (J,GV_X), Leave-Partition (Z,,G_,): Using these queries , an

adversary, A , can commence the setup, join-merge or leave-partition algorithm.

Reveal(IT(i): An adversary,A, can obtain a session (group) key gk which has been

exchanged between instance, YlJM , and partnered instances whereas M, 's long-lived key are

concealed. The query models known key attacks (or Denning-sacco attacks [23]).

Corrupt(M,)'. An adversary,^, can obtain A/*s long-lived key. In our protocol, we

consider adaptive corruptions [109]; in general, adaptive corruptions mean weak corruptions

in which an adversary can obtain an honest members' long-lived key, but cannot obtain the

members' ephemeral keys.

<S()

TestdTj,): This query is used to define the advantage of an adversary. An adversary, A,

executes this query on a fresh instance, n\, , at any time, but only once (other queries have no

restriction). When an adversary, A, asks this query, it receives a session (group) key gk of

the instance II;(, , if b= 1or a random string if b= 0 where b is the result of a coin-flip,

finally, an adversary, A , produces a bit b .

To define a meaningful notion of security, we first define freshness.

Definition 1. An instance, [\JM , fresh if both the following conditions are true at the end of

the experiment described above:

(i) None of the instance, WJS1 , and its partnered instances has received an adversary's

Reveal query.

(ii) No one ofM,and other members in GJM has received an adversary's Corrupt

query before adversary's Send queries.

Let P be a group key agreement protocol and let A be an active adversary against P . When

A asks a Test query to a fresh instance, IT'W , in P, A receives the result of the coin flip b ,

which is either a session (group) key or a random value and then output a bit b . If the

probability that A correctly guesses the bit b is negligible. P is secure in the sense that A

cannot obtain any information about a session (group) key through re-keying broadcast

messages. Let AdvfA denote the advantage for A"s guess over the result of a coin-flip in a

Test query with P . Then, Advf"4 isdefined as follows:

AdvfA = ?r[b' = 11 b=1] - ?r[b =11 b= 0]= 2 Pr[b =b]-l

It can be said that P is a secure group key agreement (gka) protocol if

Advf" =max{AdvfA} is negligible. For the security of authentication, the model considers

the ability of A for impersonation attacks against a group member,AT, in an

instance,]!^ [33]. For impersonation attacks, A should be able to forge a signature of the

group member,AT, in the instance,IPM • If it is computationally infeasible that A generates a

valid signature with any message under a chosen message attack, It can be said that the

signature scheme is CMA-secure. Let lZ = (K,S,V)be a signature scheme where K, S and

90

Vare key generation, signing and verification algorithms. Formally, let Succ"'A be a success

probability of A "s existential forgery under a chosen message attack against X • Then, it may

be stated that X is CMA-secure [26], if Succ""" = maxlSucc"'"' \ is negligible.
A

Let G= (ct) be a group. Given ax and a3, Computational Diffie-Hellman (CDH) problem

is to compute a value or" [110]. For the CDH problem, Consider a probability Succ""' such

that

S»c<™(= Pr[C = axy | or',a-v <- G;C <- A(ax,a3)],

X Succf =max{Succ((dl'A}
A

5.3 Proposed Protocol Suite

This section presents the proposed protocol suite, which is a natural extension of two

party Diffie-Hellman protocol [110]. And based on a secure signature scheme X = (K,S,V) .

A group key space belongs to {0,1}*P where sp is a security parameter. Let G=(a) be a

^ cyclic group of prime order p . The parameters a and p are public parameters and sp <\p\

is satisfied. Let H :{0,1 }* —> {0,1 }sp be a one-way hash function.

5.3.1 Key generation

Each member M,of G0 has a private/public key pair (skM ,pkM)for signing/verifying.

The list of public keys is published to all members.

5.3.2 Setup Algorithm

Let G0 = {M},...,Mn} be an initial group. The members of G0 form a logical ring

structure and members' indices could be considered on the circulation of {l,...,n}. L(i) and

R(i) means the left and right index of /'''member on the ring for ie{l,...,«}. Let

/0 = IDM ||... || IDM . Fig 5.1 shows the details of this algorithm with four members.

Round 1: Each member Af randomly chooses k,^{0A}sp and x,. e Z*, computes

y, = ax' and keeps k, secretly. The last member,Mn, computes H(k„ || 0). Each member M,

91

generates a signature p) = Ssk (m) || /„ || 0) where m) =y, for l</<n-l and

mn = H(kn ||0)||y„, and broadcasts in, \\ p).

Round 2: All members receive m) \\ p, 's and verify p) 's . Ifsome signature is not valid, this

means, p) is signed by an adversary. In this case the signature verification, using member's

public key, fails and the protocol halts. Otherwise, M,computes

^ =H(yx^n\\I0\\0),tf =H(yx^U)\\I0\\0)md generates T,=tf®tR. The last member Mn

additionally computes T=ki,®tR. Each member A/generates p2=Ssk (mf || I0 ||0) and

broadcast it, where m2 = k. II T for 1< / < n - 1 and m2 =T\\T .
1 i i 11 ; nil//

A/,

/nj =or*1, p\

m\ || /of

Pi

G0 = !A/,,A/2,A/3,A/4!./0 = ID,, || ffl„ || ZZV II ZDA

A/, A/, A/,

Round 1

k,G>0Ar,x,eZ;,P]=s^{m]\\!u\\0)
m\ =aXl, p\ m\ =aX}, p] mj=//(*< || 0)II «*4>P4

»4M m\ ||^

Round 2

// =H(a*** || /0 || 0),/* =H(a™x> \\ I0 \\ Q),T, =t\ ©f*

f =k4®tR,p2=S,(mf\\I{)\\0)

m2 =k2 \\T2
2

Pi

m3 = *3 || T3

/°3

I

'»4 II P\

«4 = ^ II r4

/7i

T

Group key and other Computations

Group key: g*0 = H(kx || k2 ||*3 || *4 || 0)

ti = H(aXl «>*' ||g*0 ||()),/>* =tf(a**"* || gk0 ||0),Z =#(*4 ||gk0 ||0)
hxLX,X h2Ji2.X hk,hR,X hL4.hR,X

Figure 5.1: Setup algorithm with G0 = {Mx,M2,Mi,M4}

92

i

Group key and other computations: All members verify signatures p] 's . If all signatures

~l< ~R ~R ~1 o

are valid, /A/\ computes /,+i,?,+:,...,/,+(„-n(=/,)by using t, :

7,1, =tm ®tR ~i+2 =r+2 ©/*,,...,£,„-,> =TiHll_t)®~t'L,-2)

Finally AT can check if tk=t,ho\ds, for example, if there are four members

(Mj,M2,Af3,A/4)in the group, then, for member, A/,, the value (((7^ ®T ®T4)®t2}) should

be equal to tx2. Otherwise, message validity check fails and protocol halts. Even though

illegitimate members or system faults broadcast wrong messages (or no message), yet honest

members can notice the errors through the above check process and then halt the protocol.

However, it is not easy to find who transmitted illegal messages. When members want to find

illegitimate members, all members participating in this protocol should reveal their secret

values x,'s. If the above check process has been valid, all members have t„(=tn). Then

they can obtain kn from Tand check if H(kn || 0) = k„ holds. This check ensures the control

of key and the one-way hash function H. Each member computes a group key as

gk0 = H(kl \\k2 ||...||&„_j ||kH ||0), in addition to,

K =H()>un II SK II 0)X =H(yR\i} || gk0 || 0), X =H(k„ || gk0 || 0) and saves

(/?/• ,hR,X,gk0) secretly. And all members erase other ephemeral data.

5.3.3 Join-Merge Algorithm

Let Gv_, = \M],...,MJ(v>l)be the current group and / = {Mn+1,...,M +i}(n >l)be a

set of newly joining members. The algorithm divides GlH into three parts

{Mx},{M2,...,Mn_x} and {Mn}, and consider M2 as an agent of {M2,...,Mn_]\. For

simplicity, the member (s) M • ,M . and M . denote A/,,(A/,,...M ,), and M . In

this algorithm, we consider a ring structure among the members M ^,,...,Af . Let G be

the set {A/ .,...,M , [and I -ID.. ||...||/D„ Fig 5.2 shows the details of the Join-

Merge protocol.

93

Round 1: Each member Mll+,of G randomly chooses kn+, e {0, \y and xn+j e Z*, computes

v ,=aXi"and keeps k., secretly. The member M A-M2) computes v =ax by
* " ' // + // + 2 - • ' n+n + 2 J

using the secret value X instead of x and the member A/ . (= M) computes
W+H +2 H+IJ +3 V »' r

//(A- . || v). Each member Af,, generates £>' . = 5". (m' , || /,. ||v) where m\. = v ,. for

1<i<n +2 and m , = //(A- , || v) || v • , and broadcasts m\. \\ p] ..
ii+ ii+y v 11 +11+}'' '"• n + n +3 "+' " "n+i

A,7.//*, A'

Gv_, = {A/,,A/2,M3,M4| ,y = {Af5,M6},/v = /DM,

A/2

hi ,/h.X

M3

h^h'lx

Round 1

h',\hR.X

t/e{0,ir,*feZ., p! = Ssku (m,1 \\ /,, || v)

/o,

\U M,

m, = a /n-, = a m\ =H(k4 ||v)||a'r4 m\ =ax>

A »4 ii p\ >n\ II p\ m\ II p\ <<\\P\

~t r T T T

Round 2

//• =H(a'ltnXl || /v ||v),f* =H(ax«{l)X' || /,. || v) with

,-2 =x,7; =t[©/*. f =k4 ©tf,p2 =5jti/ (/«; || /,. |v)

'"l2 =*1 171 "»2 = *2 II 2i *2.<2 "U=T\\T4
2

nz5 = M75W6 = K\\Tt.oil 6

2

/V
~> 2

^2 /°4
2

pi P6

1 I i r t
Group key and other Computations

Group Key: skv = H(k5 \\ kb \\ *, \\ k2 \\ k4 || v)

hl: = H(au »*' || skv ||v)X =H(a™x' || skv ||v),X =H(k41| **v || v)

hkX X x hRx hk,i,R,x hibyb,x

Figure 5.2: Join-Merge algorithm with G,._, ={M,,M2,M3,M4}, J = {M5, Mb}

Round 2: All members receive m]i+, \\ p\lM,'s and verify p]l+,'s. If some signature is not

valid, this means, p\,+, is signed by an adversary. In this case the signature verification, using

94

A

<

•*

member's public key, fails and the protocol halts. Each member Mn+, computes

^=^(v^+/)||/v||v),/l=//(v^+I.)||/v||v)and generates TnH =t^, ®tR+,. The member,

M , additionally computes T = k ®tR • . Each member M ^. generates
n+n +3 J r n+n +} n+n +} " +' c

pl+,=S,i («C,- II A- II v)and broadcasts p^ where m2.. = A- . || 7 ^ for l</'<n+2 and

m2 . =T||r . . All members |Af,,..., A/ .[compute/' and tR by using X.
11 + 11+} " 11 + 11+} ' J' "-l ' r n + n+2 n+n+2 J °

Group key and other computations: All members verify /T+/ \y. If all signatures are valid,

~R ~r ~l ,, , ~L

each member Mn+, computesr„+,+i,...,r„+,+(«'-i)(=r„+()by using tn+, and checks \ftii+, =t,,+i

holds. Also, the members {M3,...,M/J_1}can check it by using t1 +,and tR . Finally all

members can obtain k f̂rom Tand compute a new group key gky as follows:

gkv = H(kn+l\\...\\k . || v).
o i \ n+\ li ll „+ „ +3 H '

Each new member Af//+/(1 </< «)generates n,f+/ =H(y*"(*+i) \\gkv ||v)and

/?,1, =H(yx£+i) || gA-,. || v). A/, and A/, respectively compute h\ =H(yx+u) \\ gky \\ v)and

hn - H(yx,[X) || gkv || v) instead of the previous value h[(= hR). All members compute a new

value X = H(kll \\ gkv ||v). Each member M, saves hk ,hR ,X and gA'vsecretly.

5.3.4 Leave-Partition Algorithm

Let Gv_, ={M,,...,A/Jbe the current group and L = {M, ,M,,...,M, } with

{/,,...,/ }c {l,2,...,n}be a set of leaving members. Let yV(L)be a set of all left/right members

of leaving members, i.e., N(L) ={Mli_vM,^,...,Ml^,Ml_+A.

For generating a new group Gr - Gv_, \ Z. with a new group key gkv, a new Diffie-

Hellman value should be shared between two members M, _, and M7 +1(l<y <n"). The

members of Gr are considered as in ring structure and new members are indexed as

Gv = {Ml,M2,...,M _ .}. Let Iv =IDM \\...\\IDM Fig 5.3 shows the details of this protocol.

95

Round 1: Each member, Mw, of N(L) randomly chooses Au e JO, lj^and xw e Z*, computes

yw=ax" and keeps kn. secretly. The member, A//+l, computes H(k,_+X\\v). The member,

A/M., generates pl = Ssk (m\. \\IY ||v)where w^, = yH, with vre [/,-1,/, +1,...,/.-1| and

«;'.+1 = H(k, ¥] || v) || v/-+,, and broadcasts m],, || p\.

Gv., = !M1,M2,A/3,M4,M5,M6},I ={M3,M5},/V =/DU| || /DW; || ID,U \\ /Du

M, M2 A/4 A/6

hxL,hxR,X h'2,hR,X h'4.hR.X h'b.hR.X

Round 1

k, e!0.1!'v", ^.eZ;,^-5rfM(m,!||/v||v)

w2 = or-r-, p2 m\ =aXt, p4 m\ =H(kb \\ v) || ar»,p]b '

m\\\pl m\\\p\ m\\\p\

I 1 1 i

Round 2

tf =H(hj- || / .j| v),t« =H(h* || /,. || v) ,T. =</ 0/* , f =kb ®tR, pf =S^ (mj || /,. || v)

A4* =a** ^ =ax*x<>
2 ~ m\=k2\\T2 m24=k4\\T4 m2b=f\\Tb

P?
i-> i

P2 Pi Pb

I I i 1
Group key and other computations

Group key: gkv = H(k{ \\ k2 \\ k4 \\ kb || v)

V' =H(h,L || gkv || v), h* = H(hR ||gkv \\v),X = H(kb || gkv || v)
(/^,<,Z) (h2LX,X) (h4L,h4R,X) iKX,X)

Figure 5.3: Leave-Partition algorithm with Gv_, = {M,, M2,Af3,A/4,A/5, M6} and

L = {Mi,M5}

Round 2: All members of G, verify signatures p[,'s. If some signature is not valid, this

means, pw is signed by an adversary. In this case the signature verification, using member's

96

*

public key, fails and the protocol halts. If all signatures are valid then each

member, M, ,(resp. A//+l), of/V(Z) regenerates A*,", = v/;,'(resp. /;/ti = y)';.','). And, each

member, M,, ofG computest', = H(h' \\Ir\\ v),tR = H(h* 11 /,. 11 v) and T=t\ ®tR . The

member, AA/+I, additionally computes T= k, ®tR . Each member, M,, generates a

signature p] = Ssk (m2 || /,. || v) and broadcasts p] where mf_+] =T]| T, .+1, m2 =k, \\T,for

other members except Mlm+] of 7V(I)and m2 = T, for members of G, \ N(L).

J^ Group key and other computations: All members verify signatures p) 's . If all signatures

1-111 ~R ~K ~R ~' Rare valid, each member, A/., computes f,+i,?,+2,...,/,+<„„"-i)(=/,)by using t, . Finally, each

member, A/., checks if t\' = t, holds. Then all members compute a group key as follows:

gkv =H(k]\\...\\kli_2\\kli_]\\kli+l\\...\\k,r]\\kl;+]\\v)

And, Each member, AT, regenerates /;/' = //(/?/ || gkv \\ v), hf = H(hR \\ gkv \\ v) and

X = H(k, +l || gA"r 11 v) and saves h\,hf,X and group key gA'v.
i

5.4 Security Analysis

This section proves the security of the proposed protocol in the random oracle model

[67]. The security of proposed protocol P is dependent on the probabilities succ™" and

succc(dh, since an adversary A against P can obtain intonnation about group key only bytwo

methods. An adversary, A, successfully performs either signature forgery attacks or CDH

attacks. Even if random values k, 's were selected identically in different instances, A could

not get any intonnation about group key because of the index v and the random hash oracle

H.

Theorem 5.1. Let A be an active adversary against our protocol P in the random oracle

model. Let q& be the number of Send queries andqH be the number of queries to the hash

oracle H. Then.

Advf <2n.SuccT"(t, qs) +2quq\ .Succf(t)

where n is the maximum number ofgroup members andt is the adversaty 's running time.

97

Proof. The analysis considers A's attacks as a sequence of simulated protocols, which is

denoted by a sequence of experiments {Exp0, ,Expx\. In each experiment, Adversary, A ,

executes Test query and get a result of a coin flip b. Each Succ, denotes an event in which

A's guessing bit b' is equal to b in each Exp,. Each Exp/is simulated as follows:

Exptt : This experiment is equal to the real protocol P. All group members obtain a pair of

valid signing/verifying key and randomly choose k, 's and x, 's . In this game, A's advantage

is equal to the advantage in the real protocol P . Thus,

Advf", +1Pr[Succ{)] = ^— (1) X
Exp] :In this experiment, the analysis considers a special event SigForge wherein A

executes a Send query with a message m instead of a group member M, in an instance

FFM and the message is verified and accepted by all group members. In particular, the

message m previously has not been used in any instances and a Corrupt(M',) query has not

been executed to the member, M,. When the event SigForge occurs, this experiment halts

and A's output b' is determined randomly. The difference between A's outputs in

experiments Exp{) and Expx is dependent on the event, SigForge . That is,

|Pr[Swcc,]- ?r[Succ{)]| <?r[SigForge].

If one conectly guesses a member impersonated by A and the event SigForge occurs to the

member, one can be successful in the existential forgery against a pair of signing/verifying

key under CMA. Therefore we know that
>

Succ""" (t,qs)>- Pr[SigForge]
n

Finally, we get

\Pr[Succt]- Pr[Succ0]| <Pr[SigForge] <n.Succ™A (t, qs) (2)

Exp2: In this experiment, a Diffie-Hellman triple (A =a",B = ah,C = anh)is given.

Whenever two successive members M, and M,+] should choose random values x, and xj+x

and compute y, = ax' and yM = orVl, the analysis simulates this experiment with y. = Ac' and

yM = BCm where c, and c+1 are random values in Z*. Then a hash value /f(=//i+])is

98

computed by using C" '. We know that this experiment is equal to Expx as long as c, and

cM are selected randomly. Therefore,

Pr[Succ2] = Pr[Succ]] (3)

Exp3: In this experiment, a pair (A =a",B =ab) is given and there is no infonnation about

the Diffie-Hellman value C = a"1'. Whenever two successive members M and M. , should

choose random values x, and xM and compute y, and v,+1, the analysis simulates this

experiment like Exp,. However, when A/ and A/.+1 should broadcast a message with a hash

value/*(=*£,), a random value r in {0,1}v is used as the hash value. Now, analysis

considers an event Hash wherein A detects the fact that the broadcasted hash value tf (or tLM)

is inconect by using A's hash oracle queries. This event is possible when A sends a

conectly guessing value Cl''H to the hash oracle H and receives a hash value. At that time,

A recognizes that the value is different from the previous random value, r. When the event

Hash occurs, this experiment is halted and A's output b' is randomly chosen. Therefore,

(\Pr[Succ,] - Pr[5wcc2]| <Pr[Hash].

Given (A,B) one can obtain a valid Diffie-Hellman value C if both of the following

situations occur; (1) two successive members compute y, = Aq and v,+, = Bc,] and use a

random value ras a hash value tf, (2) A executes a hash oracle query with a conectly

guessing value G'"' after (1), i.e., the event Hash occurs. Therefore,

1cdhSucccdhA(t)> 2Pr[Hash]

And finally got

|Pr[S«cc3]- Pr[Succ2]| <Pr[Hash] <qHq] .Succcdl'A (t) (4)

Furthennore, A has no advantage for guessing a coin-flip bit b in this experiment since the

hash oracle H has been supposed the random oracle and each input of the hash oracle is used

only once owing to the index v. Therefore, Pr[Succ2i] = —, hence theorem is proved.

The secure signature scheme (X) and hash function (H) may be replaced by ElGamal

digital signature algorithm [106] and secure hash algorithm (SHA-1) [24] respectively for

99

practical implementation. During member authentication in second round and after second

round of each algorithm, the messages are verified, if any impersonation attack has been done

that may get detected due to selected pseudonumber, which is created in addition to secret

key by each member in key generation phase.

5.5 Complexity Analysis

Table 5.1 shows the comparison between the proposed protocol and clique protocol

suite (IKA.l and IKA.2) [77]. For comparison, the efficiency measures, such as, number of

rounds, number of messages and number of exponential operations have been considered.

The notations n,j and / denote cunent group members, joining member(s), and leaving

member(s) respectively. The proposed protocol suite does not need round synchronization.

Thereby, no synchronous mechanism is needed. The number of rounds in setup protocol of

IKA. 1 and IKA.2 measures as n and n +1 (where n is the number of group members)

whereas our protocol needs only two rounds irrespective of the group size as shown in Fig

5.4. join-merge (for join or merge) and leave-partition (for leave or partition) protocols also

needs two rounds each for their completion, which indicates that the proposed protocol suite

is scalable too. The setup protocol in proposed protocol suite needs 3n exponential operations

n

whereas IKA.l and IKA.2 need (—(n + 3)-l) and (5n-6) exponential operations

respectively as shown in Fig 5.5. However, the number of messages n in IKA.l protocol is

less as compared to IKA.2 and the proposed protocol, which need 2n-l and 2n messages

respectively as shown in Fig 5.6. It is also seen that the join-merge of our protocol is more

efficient in number of exponential operations measure as compared to join (merge) protocol

of IKA.l and IKA.2 protocols for large group size. And, the proposed leave-partition

protocol is also efficient as compared to IKA.l and IKA.2 when the n (the number of cunent

group members) is high and / (the leaving members) is low. Our leave-partition protocol

takes 6/ exponential operations as compared to 2(n-/)and (n-l)exponential operations of

IKA.l and IKA.2 protocol, where / is number of leaving members. However, in case of

number of messages, our leave-partition protocol is inferior to IKA.l and IKA.2 protocols. In

the proposed setup protocol, the total cost of computations has been reduced considerably.

For authentication, each group member generates two signatures and performs 2n signature

verifications, which creates additional cost for authentication. Other existing protocols, for

100

£

example, INGM [46], BD [71], Hypercube [12], Octopus [12], Clique (IKA.l and IKA.2)

[77], TGDH [113,115], NAGKA [4], and STR [114], do not provide authentication, our

protocol suite provides member authentication at a nominal cost.

Table 5.1: Comparison of group key agreement protocols (IKA.l, IKA.2 and Proposed)

N. Key
\. Agreement

X. Protocol

Supplementary \^
group Key \.
Agreement \.

Protocol n.

Efficiency

Parameter

IKA.l IKA.2 Proposed

Protocol

Setup

No. of Rounds n n + \ 2

No. of Messages n 2n-\ 2/7

No. of exp.

Operations
(n/2)(n + 3)-l 5n-6 3/7

Join

No. of Rounds 2 4 2

No. of Messages 2 n + 3 2(7+3)

No. of exp.

Operations
n + \ n + 3 3(7 + 3)

Merge

No. of Rounds 7 + 1 7+3 2

No. of Messages 7 + 1 n + 2} +1 2(7 + 3)

No. of exp.

Operations
-(j2+2nj +j) n + 2j +1 3(7 + 3)

Leave

No. of Rounds 1 1 2

No. of Messages 1 1 4/

No. of exp.

Operations
2n -1 n-l 6/

Partition

No. of Rounds 1 1 2

No. of Messages 1 1 4/

No. of Exp.

Operations
In-I n-l 6/

In proposed setup protocol, each group member perfonns at most 3 exponential

operations, 4 one-way hash function operations, and n XOR operations. Since the operation

101

dependent on the number of group members is the XOR operation, this way the total cost of

computation has been reduced considerably as compared to INGM [46], BD [71], Hypercube

[12], Octopus [12], Clique (IKA.l and IKA.2) [77], TGDH [113,115], NAGKA [4], and STR

[114] protocols.

T3

o
-C

-

z

16 32 48

Number of group members

&— Proposed
Protocol

Figure 5.4 Number of rounds Vs. Number of members

102

*

o

-

o

i
Z

16 32 48

Number of group members

--0- -IKA.l

- -© - IKA.2

64

-A— Proposed
Protocol

Figure 5.5 Number of messages Vs. Number of group members

103

c
o

c

u
C
c

u

u

Z

2400

2000

1600

1200

800

400

16 32 48

Number of group members

- - o- IKA.l

- -e - IKA.2

64

-6— Proposed
Protocol

Figure 5.6 Number of exponential operations Vs. Number of group members

104

5.6 Conclusion

The proposed protocol not only provides efficient algorithms for setup, join (merge) and
>

leave (partition), but also member authentication service. The proposed protocol also has

provisions for all valid members to detect enors in communicated messages and stop

execution of the protocol immediately as they encounter invalid message from the members

who have awry intentions. This helps in eliminating the man-in-the-middle attack in addition

to message corruption due to system faults using message verification.

In the proposed protocol suite the members are ananged in a logical ring. The setup

algorithm takes initial group as an input and outputs a group key after second round. At the

end of each round members are authenticated, and after second round messages are also

verified for corruption. If message validity checks fail the protocol tenninates immediately,

otherwise a group key can be generated and saved by each member in addition to three other

parameters, which are used during the dynamic events, i.e., join, leave, multiple join and

multiple leave. After computing the group key and three parameters other ephemeral data is

erased by each member.

(The proposed protocol suite also consists of an algorithm, which can be used for

dynamic events join and merge. The algorithm takes the initial group and joining member(s)

as an input and outputs the group key and three other parameters for each member. The

algorithm also takes two rounds. After each rounds members are authenticated, and after

second round messages are also verified for conuption. If message validity checks fail the

protocol tenninate immediately, otherwise a group key can be generated and saved by each

member in addition to other three parameters, which are used during the future dynamic

events. After computing the group key and three parameters other ephemeral data is erased

by each member.

The proposed protocol suite also consists of an algorithm for leave and partition events.

The leave-partition algorithm also takes two rounds. After each round members are

authenticated, and after second round messages are also verified for its corruption. If message

validity checks fail the protocol tenninate immediately, otherwise a group key can be

generated. After computing the group key and other parameters, ephemeral data is erased by

each member.

105

Security analysis of the proposed protocol has been done in random oracle model [67].

For which a number of oracle queries are used, which can be replaced by actual function for

practical purpose. Secure signature scheme (X) and hash function (II) in our protocol may

be replaced by ElGamal digital signature algorithm [106] and secure hash algorithm (SHA-1)

[24] respectively. The selected pseudorandom number in ElGamal digital signature algorithm

plays an important role in eliminating the impersonation attack when a secret key is somehow

compromised.

In view of the above security and complexity analysis of proposed protocol suite and

various existing group key agreement protocols, it is logically concluded that the proposed

protocol suite outperforms INGM [46], BD [71], Hypercube [12], Octopus [12], TGDH

[113,115], NAGKA [4], STR [114] as well as Clique protocols (IKA.l and IKA.2) [77] in

tenns of number of rounds, number of messages, number of exponential operations and round

synchronization.

106

Chapter 6

Conclusions and Scope for Future Work

6.1 Conclusions

With the recent advances in mobile ad hoc network technology, it has been observed

that many group-oriented network applications can be easily conducted in this new network

environment. For example, in a conference room or in battlefield, users can form an ad-hoc

network instantly with their wireless devices, e.g. notebook computers, PDAs, or even cell

phones, without requiring any pre-installed cables or base stations. They can use this fast

setup ad-hoc network for conducting a videoconference, sharing files or even playing

interactive games. The general goal of a secure communication among members is to

establish a common secret key (also referred to as a group key), for confidential

communication. Usually, a secret group key is established by a group key establishment

protocol. In this thesis a secure and efficient group key agreement protocol for mobile ad hoc

network have been proposed. The major contributions of our work can be summarized as

follows:

1. An extensive investigation of group key establishment protocols has been done. It is

observed that only group key agreement protocols can provide a secure and efficient

solution for group key establishment in mobile ad hoc networks.

2. Complexity analysis of group key agreement protocols based on two party Diffie-

Hellman protocol has been done wherein parameters such as number of rounds,

number of messages exchanged, number of exponential operations and round

synchronization are taken for comparison purpose. It is concluded that Clique

protocols provide the best results among the considered protocols.

3. Complexity analysis of group key agreement protocols based on two party

DiffieHellman, for dynamic membership events such as join, leave, multiple join,

and multiple leave, has been done. It is concluded that the Clique protocols provide

the best results among the considered protocols.

4. An improved secure and efficient group key agreement protocol has been proposed,

which not only provides secure and efficient group key establishment but also

provides member authentication. It has provisions for all valid members to detect

enors and stop execution of the protocol immediately as they encounter invalid

message from corrupted members. Further, the proposed protocol has been compared

with the Clique protocols. The comparison shows that the proposed protocol is better

solution than the Clique protocols for MANET in terms of number of rounds, number

of messages exchanged, number of exponential operations and round synchronization.

6.2 Scope for Future Research

The work in this thesis opens up a number of avenues for further work. A number of

research issues need to be addressed. Some of these are as follows:

1. Next step to this work may be the design and analysis of 1-round group key

agreement protocol with authentication provision for mobile ad hoc network.

2. Node mobility may affect the success rate of group key agreement protocol due to

topology changes. It may also affect the data at MAC layer and execution time of

protocols, therefore, protocols may be simulated in different nodes' mobility scenarios

to observe its effect on data at MAC layer and execution time.

3. Node mobility may severely degrade the perfonnance of the TCP protocol in mobile

ad hoc network (MANET). This is due to the inability of the TCP protocol to manage

efficiently the effects of mobility. Node movements may cause route failures and

route changes and, hence, packet losses and delayed ACKs. The TCP interprets these

events as congestion signals and activates the congestion control mechanism. This

may lead to unnecessary retransmissions and throughput degradation. In addition

mobility may exacerbate the unfairness between competitive TCP sessions. Therefore,

investigation may be done for improving the perfonnance under these conditions.

4. The interaction of some features of the 802.11 MAC protocol (hidden-/exposed-

station problem, exponential backoff scheme, etc.) with the TCP protocol mechanism

(mainly, the congestion control mechanism) may lead to several unexpected and

serious problems, which may ultimately affect the perfonnance of group key

108

V

i

agreement protocol. Therefore, the effects of the interaction between MAC protocol

and TCP mechanisms may be explored.

5. The TCP congestion window size may have a significant impact on performance of

both routing as well as group key agreement protocols. For a given network topology

and traffic pattern, there exists an optimal value of TCP congestion window size at

which the channel utilization is maximized. However, TCP does not operate around

this optimal value and typically grows its average window size much larger, leading

to decreased throughput and increased packet losses. This behavior can be explained

by considering the origin of packet losses, which in ad hoc networks is completely

different from that in traditional wireline network. Therefore, another direction may

be to observe the influence of the TCP congestion window size on the performance of

group key agreement protocols.

109

References

[1] A. Ballardie, "Scalable Multicast Key Distribution", RFC 1949, rfcl949.txt, May

1996.

[2] A. Josang and G. Sanderud, "Security in Mobile Communications: Challenges and

Opportunities,"' in proc. of the Australasian Information Security Workshop

(AISW03), Adelaide, Australia, February 2003.

[3] A. Ballardie, "Core Based Trees (CBT version 2) Multicast Routing Protocol

Specification," RFC 2189, September 1997.

[4] A. Perrig, "Efficient Collaborative Key Management Protocols for Secure

Autonomous Group Communication," International Workshop on Cryptographic

techniques and E-commerce, Hong-Kong, July 5-8, 1999.

[5] A. Perrig, D. Song, and J.D. Tygar, "ELK: A New Protocol for Efficient Large-group

Key Distribution," IEEE Security' and Priavcy Symposium, California, USA, pp. 247-

, 262, May 13-16, 2001.

[6] A. R. Harish, Sreekanth Garigala, Bhaskaran Raman, and Phalguni Gupta,

"Feasibility Study of Spatial Reuse in an 802.11 Access Network," XXVIII URSI

General Assembly, New Delhi, India, Oct 2005

[7] A. Yasinsac, V. Thakur, S. Carter and I. Cubukeu, "A Family of Protocols for Group

Key Generation in Ad hoc Networks," in the proc. of IASTED International

Conference on Communications and ComputerNetworks, pp. 183-187, 2002.

[8] B. Briscoe, "MARKS: Multicast Key Management Using Arbitrarily Revealed Key

Sequences," in the Is International Workshop on Networked Group Communication,

Pisa, November 17-20, 1999.

[9] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose, D. Towsley,

S. Vasudevan, and C. Zhang, "Secure Group Communications for Wireless

Networks," in IEEE MILCOM, Vol. 1, pp. 113-117, June 2001.

[10] B.. Xie, A. Kumar, and D. P. Agarwal, Wireless Ad Hoc Networking: Personal-Area,
T

Local-Area and their Sensor-Area Networks, Auerbach Publications, pp. 535-569,

2007.

Ill

[11] C.K.Yeo, B.S.Lee, and M.H.Er, "A Survey of Application Level Multicast

Techniques," in Computer Communication, Vol. 27, No. 15, pp. 1547-1568, 2004.

[12] C. Becker and U. Wille, "Communication Complexity of Group Key Distribution," in

the 5" ACM Conference on Computer and Communications Security, California,

USA, November 3-5, 1998.

[13] C.Boyd and J.M.G.Neito, "Round-optimal Contributory Conference Key Agreement,"

in the proc. ofPKC2003, LNCS2567, Springer-Verlag, pp. 161-174, 2003.

[14] C. G. Gunther, "An Identity-based Key Exchange Protocol," in EUROCRYPTS9,

Belgium, April 10-13, 1989.

[15] C. K. Wong, M. Gouda, and S. S. Lam, "Secure Group Communications Using Key

Graphs," IEEE/ACM Transactions on Networking, Vol. 8, No. 1, pp. 16-30, February

2000.

[16] C.K. Wong and S.S. Lam, "Keystone: A group Key Management Service,"

International Conference on Telecommunication, Maxico, May 20-25, 2000.

[17] C. Cardeiro and D. P. Agarwal, Ad hoc and Sensor Networks: Theory and

Applications, World Scientific Publishing, ISBN No. 81-256-681-3; 81- 256-682-1

(paper back), Spring 2006.

[18] C. Shields and J.J. Garcia-Luna-Aceves, "KHIP-A Scalable Protocol for Secure

Multicast Routing," in ACM SIGCOMM Computer Communication Review, Vol. 29,

No. 4, pp. 53-64, October 1999.

[19] C. Shields and J.J. Garcia-Luna-Aceves, "The Ordered Core Based Tree Protocol,"

IEEEINFOCOM'97, Kobe, Japan, April 1997.

[20] Chen Huang, Benxiong Huang, and Yijun Mo, Jianhua Ma, "SRPTES: A Secure

Routing Protocol Based on Token Escrow Set for Ad hoc Networks," IEEE CS proc.

ofAdvanced Information Networking and Applications, Okinawa, March 2008

[21] D.A. McGrew and A.T. Sherman, "Key Establishment in Large Dynamic Groups

using One-way Function Trees," Technical Report TR-0755, May 1998.

[22] D. Balenson, D. McGrew, and A. Sherman, "Key Management for Large Dynamic

Groups: One-Way Function Trees and Amortized Initialization," draft-balenson-

groupkeymgmtoft-00.txt, February 1999. Internet-Draft.

12

[23] D. Denning and G. Sacco, "Timestamps in Key Distribution Protocols,"

Communications of the ACM, Vol. 24, No. 8, pp. 533-536, August 1981.

[24] D. E. Eastlake and P. Jones, "Secure Hash Algorithm 1," RFC 3174, rfc3174.txt.pdf

September 2001

[25] D. Huang and D. Medhi, "A Key-Chain-Based Keying Scheme For Many-to-Many

Secure Group Communication," ACM Transaction on Information and System

Security, Vol. 7, No. 4, pp. 523-552, November 2004.

[26] D. Pointcheval and J. Stern, "Security Arguments for Digital Signatures and Blind

^ Signatures," in Journal of Cnptology, Vol.13. No.3, pp.361-396, 2000.

[27] D. Powell, "Group Communication," CACM, Vol.39, No.4, pp.50-53, April, 1996.

[28] D. Steer, L.L. Strawczynski, W. Diffie, and M. Weiner, "A Secure Audio

Teleconference System," CRYPTO 88, CA, USA, 1988.

[29] D. M. Wallner, E. Harder, and R. Agee, "Key Management for Multicast: Issues and

Architecture," National Security Agency, RFC 2627, June 1999.

[30] E. Bresson and D.Catalano, "Constant Round Authenticated Group Key Agreement

via Distibuted Computing," in proc. ofPKC 2004, LNCS 2947, Springer-Verlag, pp.

115-129,2004.

<

[31] E. Bresson, O. Chevassut and D. Pointcheval, "Provably Authenticated Group Diffie-

Hellman Key Exchange - The Dynamic case," in the proc. of Asiacrypt 2001, LNCS

2248, Springer-Verlag, Australia, pp. 290-309, Dec. 9-13, 2001.

[32] E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval, "Mutual Authentication and

4. Group Key Agreement for Low-power Mobile Devices," Computer Communication,

Vol.27, No. 17, pp. 1730-1737, 2004.

[33] E. Bresson, O. Chevassut and D. Pointcheval, "Provably Authenticated Group Diffie-

Hellman Key Exchange," in the proc. of the 8th ACM Conference on Computer and
Communication Security, pp. 255-264, November 5-8, 2001

[34] G.Anastasi, E.Borgia, M.Conti and E. Gregori, "IEEE 802.11 Ad Hoc Networks:

Performance Measurements," in proc. of the workshop on Mobile and Wireless

Networks (MWN2003), Providence, Rhode Island, May 19, 2003.

13

[35] G. Ateniese, M. Steiner, and G. Tsudik, "Authenticated Group Key Agreement and

Friends," in proc. of 5lh ACM Conference on Computer and Communications
Security, ACM Press, San Francisco, CA USA, pp. 17-26, November 3-5, 1998.

[36] G. Chaddoud, I. Chrisment, and A. Shaft", "Dynamic Group Communication

Security," in the 6" IEEE Svmposium on computers and communication, July 3-5,

2001.

[37] G. C. Roman, Q. Huang, and A Hazemi, "Consistant Group Membership in Ad hoc

Networks," in proc. oflCSE, Ontario, Canada, May 12-19, 2001.

[38] G. H. Chiou and W. T. Chen, "Secure Broadcast using Secure Lock," IEEE

Transactions on Software Engineering, Vol.15, No.8, pp.929- 934, August 1989.

[39] H. Harney and C. Muckenhirn, "Group Key Management Protocol (GKMP)

Architecture," RFC 2093, July 1997.

[40] H. Harney and C. Muckenhirn, "Group Key Management Protocol (GKMP)

Specification," RFC 2094, July 1997.

[41] H.H. Chu, L. Qiao, and K. Nahrstedt, "A Secure Multicast Protocol with Copyright

Protection," ACM SIGCOMM Computer Communications Review, Vol. 32, No.2, pp.

42-60, April 2002.

[42] H. Yang, H. Luo, F. Ye, S. Lu and L. Zhang, "Security in Mobile Ad Hoc Networks -

Challenges and Solutions," IEEE Transactions on Wireless Communications, Feb.

2004.

[43] H. Deng and D. P. Agarwal, Handbook of Algorithms for Wireless Netowking and

Mobile Computing, Chapman & Hall / CRC, Taylor & Francis Group pp. 937-957,

2006.

[44] Internet Engineering Task Force (IETF) Mobile Ad Hoc Networks (MANET)

Working Group Charter, http://www.ietf.org/html.charts/manet-charter.html

[45] IEEE Std. 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) specification, 1999 edition.

[46] I. Ingemarson, D. Tang, and C. Wong, "A Conference Key Distribution System,"

IEEE Transactions on Information Theory, Vol.28, No.5, pp.714-720, September

1982.

14

[47] J-P Hubaux, L. Buttyan and S. Capkun, " The Quest for Security in Mobile Ad hoc

Networks," in the proc. of'MobiHoc, Lausanne, Switzerland, June 9-11, 2002.

[48] J. Xie, A. Das, S. Nandi and A. Gupta, "Improving the Reliability of IEEE 802.11

Broadcast Scheme for Multicasting in Mobile Ad hoc Networks," in IEEE

proceedings - communications, Vol. 153, No. 2, pp. 207 -212, April 2006

[49] J. Katz and M. Yung, "Scalable Protocols for Authenticated Group Key Exchange,'* in

Advances of Cryptology - Crypto'03, LNCS 2729, Springer-Verlag, pp.110-125,

2003.

> [50] J. Nam, S.Kim, S. Kim and D. Won, "Provably-secure and Communication-Efficient

Scheme for Dynamic Group Key Exchange," Available at

http://epnnt.iacr.oru/2004/115.

[51] J. Yao and G. Zeng, "Key Agreement and Identity Authentication Protocols for Ad

Hoc Networks," in proc. of International Conference on Information Technology:

Coding and Computing (ITCC'04), Nevada, USA, April 5-7, 2004.

[52] J. Zhang, V. Vardharajan and Yi Mu, "A Scalable Multi-service Group Key

(Management Scheme," in the proc. of the Advanced International Conference on
Telecommunications and International Conference on Internet and Web Applications

and Services (AICT/ICIW 2006), IEEE Computer Society, pp. 172-177, 19-25 Feb

2006.

[53] K. Almeroth and M. Ammar, "Collecting and Modelling the Join/Leave Behaviour of

Multicast Group Members in the Mbone," Symposium on High Performance

Distributed Computing, Syracuse, NY, USA, pp. 209-216, August 6-9,1996.
4

[54] K. Hoeper and G. Gong, "Identity-Based Key Exchange Protocols for Ad Hoc

Networks," in proc. of Canadian Workshop on Information Theory (CWIT '05)},

Montreal, Canada, Jun 5-8, 2005

[55] K.H.Rhee, Young-Ho Park, and G. Tsudik, "A Group Key Management Architecture

for Mobile Ad Hoc Wireless Networks," Journal of Information Science and

Engineering, Vol.21, pp. 415-428, 2005.

[56] L. Briesemeister and G. Hommel, " Localized Group Membership Service for Ad hoc

Networks," in proc. ofInternational Workshop on Adhoc Networking, 2002.

15

[57] L.E.Moser. P.M.Melliar-Smith, D.A.Agarwal, R.K.Budhia and C.A. Lingley-

Papadopoulos, "Totem: A Fault Tolerant Multicast Group Communication System,"

CACM, Vol.39, No.4, pp.54-63, April 1996.

[58] L. Gong and N. Shacham, "Trade-offs in Routing Private Multicast Traffic,"

GLOBECOM'95, November 1995.

[59] L.Dondeti, S. Mukherjee, and A. Samal, "A Distributed Group Key Management

Scheme for Secure Many-to-Many Communication," Tech. Rep. PINTL-TR-207-99,

Department of Computer Science, University of Maryland.

[60] L. R. Dondeti, S. Mukherjee, and A. Samal, "Scalable Secure One-to-Many Group

Communication Using Dual Encryption," Computer Communications, Vol.23, No. 17,

pp. 1681-1701, November 2000.

[61] L.R. Dondeti, S. Mukherjee, and A. Samal, "Comparison of Hierarchical Key

Distribution Schemes," IEEE Globcom Global Internet Symposium, 1999.

[62] L.R. Dondeti, S. Mukherjee, and A. Samal, "Survey and Comparison of Secure Group

Communication Protocols," Technical Report, 1999.

[63] L. Zhou, Z. J. Hass, "Securing Ad Hoc Networks," IEEE Transaction on Network,

Special issue on network security, Nov./Dec. 1999.

[64] L. Guang, Chadi Assi, "MAC Misbehavior in the Ad hoc Network," in 18th Canadian

Conference on Electrical and Computer Engineering, IEEE CCECE05, Saskatchewan,

Canada, May 1-4,2005.

[65] M.Bellare and P.Rogaway, " Entity Authentication and Key Distribution," in theproc.

ofCrypto 1993, LNCS 773, Springer-Verlag, pp. 231-249, 1993.

[66] M.Bellare and P.Rogaway, " Provably Secure Session Key Distribution: The Three-

party Case," in proc. of STOC 1995, ACM Press, Las Vegas, USA, pp. 57-66, May

29-June 1, 1995.

[67] M.Bellare and P. Rogaway, "Random Oracles are Practical: A Paradigm for

Designing Efficient Protocols," in proc. ofACM CCS'93, Virginia, USA, Nov. 3-5,

1993.

[68] M.Bellare, R. Canetti and H. Krawczyk, "A Modular Approach to the Design and

Analysis of Authentication and Key Exchange Protocols," in the proc. of 30' Annual

Symposium on the Theory ofComputing, ACM Press, pp. 419-428, 1998.

[69] M. Blum and S. Micali, "How to Generate Cryptographically Strong Sequences of

Pseudo-Random Bits,"' SIAMJournal ofComputers, Vol.13, pp.850-864, 1984.

[70] M. Boulkenafed, D. Sacchetti, and V. Issarny, "Using Group Management to Tame

Mobile Ad hoc Networks," inproc. of the IF1P TC8. Working Conf. on Mobile Info.

Systems, Oslo, Norway, Sep. 15-17, 2004.

[71] M. Bunnester and Y. Desmedt, "A Secure and Efficient Conference Key Distribution

System,"EUROCRYP'94, LNCS(950), Perugia, Italy, pp.275-286, May 9-12, 1994.

[72] M. Mishra and A. Sahoo, "An 802.11 based MAC Protocol for Providing QoS to Real

>- Time Applications," IEEE International Conference on Information Technology

(ICIT'07), India, Dec 17-20, 2007.

[73] M. Moharrum, R. Mukkamala and M. Eltoweissy, "CKDS: An Efficient

Combinatorial Key Distribution Scheme for Wireless Ad Hoc Networks," in theproc.

of IEEE International Conference on Performance, Computing and Communication,

pp.631-636, 2004.

[74] M.J. Moyer, J.R. Rao, P. Rohatgi, "Maintaining Balanced Key Trees for Secure

^ Multicast," Internet Draft, June 1999.

[75] M. K. Reiter, "Distributing Trust with Rampart Toolkit," CACM, Vol.39, No.4,

pp.71-74, April 1996.

[76] M. Steiner, G. Tsudik, and M. Waidner, "Diffie-Hellman Key Distribution Extended

to Group Communication," 3rd ACM Conference on Computer and Communications
Security, Delhi, India, pp. 31-37, March 14-16, 1996.

^ [77] M. Steiner, G. Tsudik, and M. Waidner, "CLIQUES: ANew Approach to Group Key
Agreement," in proc. of 18th International Conference on Distributed Computing
Systems (ICDCS'98), IEEE Computer Society Press, pp. 380-387, Amsterdam,

Netherlands, May 1998.

[78] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, "The VersaKey

Framework: Versatile Group Key Management," IEEE Journal on Selected Areas in

Communications (Special Issues on Middleware), Vol.17, No.9, pp.1614—1631,

4, September 1999.

117

[79] N. Banerjee and S. K. Das, "Multicasting in UMTS: Effect of Mobility on Tree

Maintenance," in proc. of the 5' IFIP International Conference on Mobile and

Wireless Communications Networks (MWCN), Singapore, Oct 2003.

[80] N. Asokan and P. Ginzboorg, "Key-agreement in Ad-hoc Networks," Journal of

Computer Communication, Vol. 23, No. 17, pp.1627-1637, Nov. 2000.

[81] P. Bhagwat, B. Raman, and D. Sanghi, "Turning 802.11 Inside-Out", 2nd Workshop on
Hot Topics in Networks (HotNets-II), Cambridge, MA, USA, 20-21 Nov 2003.

[82] P. Sethi and G. Barua, "CRESQ: Proving QoS and Security in Ad hoc Networks,"

PDP 2003, Italy, Feb 2003.

[83] R. Bhasker, "Group Key Agreement in Ad Hoc Networks," Technical Report 4832,

INRIA, Rocquecourt, France, 2003.

[84] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, "Multicast

Security: A Taxonomy and Efficient Constructions," IEEE INFOCOM, pp. 708-716,

March 1999.

[85] R. Molva and A. Pannetrat, "Scalable Multicast Security in Dynamic Groups," in the

6th ACM Conference on Computer and Communication Security, November 1999.

[86] R. Mukherjee and J.W. Atwood, "SIM-KM: Scalable Infrastructure for Multicast Key

Management," IEEE Local Computer Networks - LCN'04, pp 335-342, November

2004.

[87] R. Mukherjee and J.W. Atwood, "Proxy Encryptions for Secure Multicast Key

Management," IEEELocal Computer Networks - LCN'03, October 2003.

[88] R.Mukherjee and J.W.Atwood, "Scalable Solutions for Secure Group

Communications," in International Journal of Computer and Telecommunications

Networking, Elsevier North-Holland, Inc., NY, USA, Vol. 51, No. 12, pp. 3525-3548,

August 2007.

[89] R. Mukherjee, "Secure Group Communication," Doctoral Thesis, Concordia

University, Montreal, Canada, January 2005.

[90] R. Oppliger and A. Albanese, "Distributed Registration and Key Distribution

(DiRK)," in fhe*proc. of the 12lh International Conference on Information Security

(IFIP SEC'96), 1996.

18

<

[91] R. Poovendram, S. Ahmed, S. Corson, and J. Baras, "A Scalable Extension of Group

Key Management Protocol," 2nd Annual ATRIP Conference, pp. 187-191, February
1998.

[92] R. Rivest., "The MD5 Message-Digest Algorithm," April 1992. RFC 1321.

[93] R. van Renesse, K. P. Binnan and S. Mafais, "Horus: A Flexible Group

Communication System," CACM. Vol.39, No.4, pp.76-83, April 1996.

[94] S. Deering, "Host Extensions for IP Multicast," RFC I112,\ 989.

[95] S. Maki, T. Aura, and M. Hietalahti, "Robust Membership Management for Ad hoc

Groups," in proc. ofNordic Workshop on Secure ITSystems, 2000.

[96] S. Mittra, "Iolus: A Framework for Scalable Secure Multicasting," ACM SIGCOMM,

1997.

[97] S. P. Mohanty, R. Sheth, A. Pinto, and M. Chandy, "CryptMark: A Novel Secure

Invisible Watermarking Technique for Color Images", in proc. of the 11th IEEE

International Symposium on Consumer Electronics (ISCE), pp. 1-6, 2007.

[98] S. Rafaeli and D. Hutchison, "Hydra: A Decentralized Group Key Management," in

the lln IEEE International WETICE: Enterprise Security Workshop, June 2002.

[99] S. Setia, S. Koussih, S. Jajodia, and E. Harder, "Kronos: A Scalable Group Re-keying

Approach for Secure Multicast," IEEE Symposium on Security and Privacy, May

2000.

[100] S.Xu and T.Saadawi, "Does the IEEE 802.11 MAC Protocol Work Well in Multihop

Wireless Ad Hoc Networks?" IEEE Communication Magazine, Vol.39, No.6, pp.130-

t 137, June 2001.

[101] S.Xu and T.Saadawi, "Revealing the Problems with IEEE 802.11 MAC Protocol in

Multihop Wireless Networks," Computer Networks, Vol.38, No.4, March 2002.

[102] S. Yeo, Rajkumar Buyya, Marcos Dias de Assuncao, Jia Yu, Anthony Sulistio,

Srikumar Venugopal, and Martin Placek, The Handbook of Computer Networks,

ISBN: 978-0-471-78461-6, John Wiley & Sons, New York, USA, 2007.

[103] S. Zhu, S. Setia, S.Xu and S. Jajodia, "GKMPAN: An Efficient Group Rekeying

Scheme for Secure Multicast in Ad hoc Networks," in proc. of International

119

Conference on Mobile and Ubiquitous Systems: Networking and Services, pp.42-51,

2004.

[104] T. Ballardie, LP. Francis, and J. Crowcroft, "Core Based Trees: an Architecture for

Scalable Inter-domain Multicast Routing," ACM SIGCOMM, pp. 85-95, 1993.

[105] T. Dunigan and C. Cao, "Group Key Management," Technical Report ORNL/TM-

13470, 1998.

[106] T. ElGamal, "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms," IEEE Transactions on Information Theoiy, July 1985.

[107] T. Hardjono, B. Cain, and I. Monga, "Intra-domain Group Key Management for

Multicast Security," IETF Internet draft, September 2000.

[108] T. Kaya, G. Lin, G. Noubir, and A. Yilmaz, "Secure Multicast Groups on Ad hoc

Networks," in proc. of ACM workshop on security of ad hoc and sensor networks,

pp.94-102, 2003.

[109] V. Shoup, "On Fonnal Models for Secure Key Exchange," in Technical Report RZ

3120, IBM Zurish Research Lab., 1999.

[110] W. Diffie and M.E. Hellman, "New Directions in Cryptography," IEEE Transactions

on Information Theoiy, Vol.22, pp.644-654, November 1976.

[Ill] X. Du, Y. Wang, J. Ge and Y. Wanf, "A Group Key Establishment Scheme for Ad

Hoc networks," in proc. of the 17 International Conference on Advanced

Information Networking and Applications (AINA '03), pp. 518-520, 2003.

[112] Y. Challal, H. Bettahar, and A. Bouabdallah, "SAKM: A Scalable and Adaptive Key

Management Approach for Multicast Communications," ACM SIGCOMM Computer

Communications Review, Vol.34, No.2, pp.55-70, April 2004.

[113] Y. Kim, A. Perrig, and G. Tsudik, "Tree-based Group Key Agreement," ACM

Transaction on Information and System Security, Vol.7, No.l, pp. 60-96, Feb. 2004.

[114] Y. Kim, A. Perrig, and G. Tsudik, "Communication-Efficient Group Key

Agreement," IEEE Transaction on Computers, Vol.53, No.7, pp. 905-921, July 2004.

[115] Y. Kim, A. Perrig, and G. Tsudik, "Simple and Fault-tolerant Key Agreement for

Dynamic Collaborative Groups," 7th ACM Conference on Computer and
Communications Security, pp. 235-244, November 1-4, 2000.

120

1

(

[116] Y.R. Yang, X.S. Li, X.B. Zhang, and S.S. Lam, "Reliable Group Rekeying: A

Performance Analysis," TR-01-21, June 2001.

121

Author's Research Publications

International Conferences/Workshops

1. Rakesh Chandra Gangwar and Anil K. Sarje, "Complexity Analysis of Group Key

Agreement Protocols for Ad Hoc Networks", in the proc. of International Conference

on Information Technology (1CIT-2006), IEEE Computer Society, pp.98-99,

Bhubneshwar, India, Dec. 18-21, 2006.

2. Rakesh Chandra Gangwar and Anil K.Sarje," Secure and Efficient Dynamic Group Key

Agreement Protocol for an Ad Hoc Network", in the proc. of IEEE International

Symposium ofAd Hoc and Ubiquitous Computing (ISAHUC06), pp.56-61, Surathkal,

India, Dec. 20-23, 2006.

3. Rakesh Chandra Gangwar and Anil K. Sarje, "A Comprehensive Study of Mobility

Models for Mobile Ad Hoc Networks", in the proc. of 3r International Conference on

Mobile, Ubiquitous and Pen'asive Computing (ObCom'06), Vol.2, pp.1-4, VIT,

Vellore, TN, India, Dec. 16-17, 2006.

4. Rakesh Chandra Gangwar and Anil K. Sarje, "Practical and Proven Group Key

Agreement Protocols for Mobile Ad Hoc Networks", in the proc. of International

Conference on Advanced Communication Systems (ICACS-2007), pp.83-94, GCT,

Coimbtore, TN, India, Jan. 10-12, 2007.

5. Rakesh Chandra Gangwar and Anil K. Sarje, "Comparative Analysis of Distributed

Group Key Establishment Protocols Based on Subgroup Approach", in the proc. of

IEEE International Conference on Emerging Trends in Engineering and Technology

(ICETET-2008), pp.823-827, Nagpur, MH, India, July 16-18, 2008.

6. Rakesh Chandra Gangwar and Anil K. Sarje, "An Efficacious Group Key Agreement

Protocol for Mobile Ad Hoc Networks", in the proc. of International Conference on

Communication, Convergence and Broadband Networking (ICCBN-2008), Indian

Institute of Science, Bangalore, Karnataka, India, July 17-19, 2008.

122

i

	ON SECURE GROUP KEY AGREEMENT PROTOCOLS FOR MOBILE AD HOC NETWORKS
	Abstract
	Acknowledgements
	contents
	List of Abbreviations
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Literature review
	Chapter 3 Group Key Agreement in MANET
	Chapter 4 Dynamic membership
	References
	Author's Research Publications

