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Abstract

Fractal geometries have widely been used in electromagnetics, specifically, in

antennas and frequency selective surfaces (FSS). The self-similarity of fractal

geometry gives rise to a multiband response, whereas the space-filling nature of

the fractal geometries makes it an efficient element in antenna and FSS unit cell

miniaturization. Till date, no effort has been made to study the behavior of

these fractal geometries in the aperture coupling problems. Aperture coupling

problem is an important boundary value problem in electromagnetics and has

widely been used in waveguide filters and power dividers, slotted ground planes,

frequency selective surfaces and metamaterials. The present work is primarily

intended to initiate a study on the characteristics of fractal apertures in waveg

uides, conducting screens and cavities.

In order to carry out a unified analysis of these entirely dissimilar problems,

the 'generalized network formulation for the aperture problems' proposed by

Mautz and Harrington has been extended to multiple-aperture geometry. We

have considered the problem of coupling between two arbitrary regions coupled

together via multiple apertures of arbitrary shape. The two regions are decou

pled by the application of equivalence principle and enforcement of boundary

conditions over the aperture regions leads to an operator equation. The operator

equation is then reduced to matrix form via the Method of Moments (MoM).



Abstract

The general problem of coupling through apertures is formulated in such a man

ner that only part of the problem needs to be reformulated for the solution of

different problems like fractal diaphragms in a rectangular waveguide, radiation

from waveguide-fed fractal apertures, coupling through fractal apertures in a con

ducting screen, and radiation from cavity-backed fractal apertures. A Galerkin

procedure with rooftop and Rao-Wilton-Glisson (RWG) functions has been used

for the first three problems, while a hybrid method using Finite Element Method

(FEM) and MoM has been used for the cavity-backed fractal aperture problem.

MATLAB codes have been developed for the problems and validated with the

results available in the literature as well as through simulation on ANSOFT's

HFSS.

The use of resonant apertures in the transverse cross-section of rectangular

waveguide improves the out-of-band rejection ratio of waveguide filters and also

results in more compact and light weight waveguide filters. The multiple aperture

irises further improve the out-of-band rejection due to the formation of rejection

band. Till now, some regular geometries have been analyzed in the literature.

Due to requirement of multiple aperture iris and compact waveguide filters, we

have studied the behavior of fractal apertures in the transverse cross-section of a

waveguide. Two types of basis functions have been used in the analysis. In the

first case, the roof-top functions are used to model rectangular aperture prob

lem in which the aperture surface is discretized in small rectangular sub-areas.

The integrals involving the Green's function are calculated analytically over the

rectangular domain. In the second approach, the apertures are discretized in

triangular sub-areas in order to model the arbitrary aperture surface and RWG

functions are used as the basis functions. The integrals over triangular domain

are calculated numerically using Gaussian quadrature. The frequency responses
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of several fractal apertures are studied and some novel self-afnne fractal geome

tries are proposed to obtain multiband response. A study has also been carried

out to find a relation between the scale factor of the fractal geometry and the

frequency response of the waveguide diaphragm. The study has further been

extended to analyze the performance of finite periodic arrangement of these frac

tal apertures in the design of multiband waveguide filters and electromagnetic

bandgap structures (EBG).

The problem of electromagnetic coupling between two regions via apertures

in infinite screen has widely been used in the design of FSS, antenna arrays and

slotted ground plane. An infinite screen perforated with multiple apertures has

a bandpass response when illuminated by a plane wave of varying frequency.

The coupling through fractal apertures in an infinite screen has been solved with

RWG basis functions. In this case, the integrals involving the free space Green's

function suffer from singularity problem. Singularity cancelation method has

been used to calculate the integral which has the advantage of being accurate

and, also, the calculation of these integrals over triangular domain can be done

with a purely numerical technique. Several self-similar and space-filling fractal

geometries are studied and, also, the effect of the variation of angle of incidence

on the frequency response of fractal apertures has been investigated. It has been

found that the variation of angle of incidence affects the performance of fractal

apertures and some additional pass bands arise for inclined incidence. It is found

that the fractal apertures support subwavelength transmission of electromagnetic

waves and this property is more prominent in the space-filling fractal apertures.

The coupling through the fractal apertures in infinite screen has been extended

to the case of radiation through waveguide-fed fractal apertures. It has been

found that the radiation from such fractal apertures improves the antenna input
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matching and dual-band waveguide radiators can easily be realized.

Cavity-backed aperture antennas are very popular in aerospace applications

due to their conformal nature. The cavity-backed aperture antenna satisfies the

requirements of being flush mounted as well as light weight and small size. Also,

the use of metallic cavity makes the radiation pattern unidirectional. Another

most important advantage of the cavity backed apertures is that they offer very

small mutual coupling between the elements and are very useful in the design

of phased arrays. Cavity-backed fractal aperture is another field which could be

explored in order to design small size multiband antennas. The problem has been

formulated usingcombined FEM and MoM method. In the combined FEM/MoM

method, the electric field inside the cavity is found using FEM and the surface

magnetic current over the aperture surface is calculated using MoM. For FEM

formulation, the cavity has been discretized into tetrahedral elements and the

apertures into triangular elements. The simultaneous equations obtained over

the sub domains are added to form the global matrix equation. This procedure

gives a partly sparse and a partly dense matrix, which is then solved to find

the unknown electric field over the apertures. The radiation characteristics and

input characteristics of the antenna are then calculated from the electric field.

The performance of cavity backed fractal apertures with a coaxial probe feeding

has been investigated. The numerical results are again validated with simulation

results on HFSS. A novel effort has been made to relate the electromagnetic

behavior of the fractal aperture with the scale factor of the geometry. It has been

found that the location of resonant frequency of the antenna can be changed by

changing the scale factor of fractal apertures.
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Chapter 1

INTRODUCTION

The rapid growth in the wireless systems during the past several years has set

new demands on electromagnetic engineers. There is a trend to integrate the

entire system, including antennas, on a single chip. This requires the design

of miniaturized, power efficient, and low profile antennas. Further, multiband

operation of wireless systems has been receiving considerable attention during

the last decade. This requirement has initiated research in various directions,

especially, in the design of compact multiband antennas and filters. One of the

promising area of research for multiband operation is fractal electrodynamics, in

which the fractal geometry is combined with electromagnetics for the purpose

of investigating a new class of radiation and scattering problems. Fractals are

complex shapes which contain an infinite number of scaled copies of the geom

etry and resonate at different frequencies. This property has been successfully

used in the design of multiband antennas, frequency selective surfaces (FSS) and

electromagnetic band gap (EBG) structures.

A survey of the large body of literature on fractal electromagnetics shows that

no effort has been made so far, to exploit the multiband properties of fractals
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in aperture problems. Apertures in conducting screens, waveguides, and cavities ~*

constitute an important class of boundary value problems and find many appli

cations in electromagnetic systems. The aim of the present study is to initiate

research in the investigation of the properties of fractal apertures.

To lay an understanding on the behavior of fractal geometries in the aperture

coupling problems, a brief review of fractal geometries and their applications in

the electromagnetic engineering is presented. This is followed by a brief review *

on the study and analysis of different aperture coupling problems in waveguides,

conducting screens and cavities.

1.1 Fractal Electrodynamics

1.1.1 Fractal Geometries

Many patterns in the nature are so irregular and fragmented that they exhibit

not only a higher degree, but also a higher level of complexity. The number of

distinct scales required to describe the natural phenomenon are infinite. Hence,

it was generally believed by scientists and mathematicians that these natural

phenomenon were beyond rigorous explanations before Mandelbrot [1] proposed

a new geometry and its use in various diverse fields. The geometry describes

many of the irregular and fragmented patterns of nature around us. Mandelbrot

coined the term 'fractal' from the Latin word 'frangere' which means to break,

to create irregular fragments. He used the term fractal to describesomecomplex

and convoluted objects such as mountains, coastlines and many other natural

phenomenon.

An iteration algorithm such as multiple reduction copy machine (MRCM)

is applied in order to construct the ideal fractal geometries [2]. Basically, the

i
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Q

B

Figure 1.1: Some of the most commonly used fractal geometries.

process consists of an initiator and a generator. Based upon the nature of the

iteration process, there may be deterministic and random fractals. Also, depend

ing upon the mass ratio, the fractals may be homogeneous or heterogeneous [3].

Some of the most commonly used fractal geometries, such as Sierpinski gasket,

Sierpinski carpet, Hilbert curve, Koch curve are shown in Fig 1.1. The generation

procedure of all the geometries follows the same rule and starts with an initiator

and a generator. For example, as shown in Fig. 1.2, an equilateral triangle is

taken as the initial geometry for the generation of Sierpinski gasket fractal. The

mid points of each sides are connected and the initial triangle is subdivided into

four triangles. The center triangle is removed and this gives the generator of

the Sierpinski gasket fractal. In the next iteration, the same process is repeated

on the remaining three triangles and if this iteration process is continued for an

infinite number of times, then one can obtain an ideal Sierpinskigasket geometry.

The important properties of the fractal geometries are self-similarity, space

filling ability, and lacunarity. When an object is composed of smaller copies
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Iteration 0 Iteration 1 Iteration 2

Figure 1.2: Generation steps of Sierpinski gasket fractal.

of the original geometry, it is said to be self-similar. A self-similar object can

be described as a cluster, which is again made up of smaller clusters that are

identical to the entire geometry. Thus, within the whole geometry, an infinite

number of similar copies can be found. Hence, fractal geometries are said to

have no characteristic size. The scaling factors in two orthogonal directions can

be same or different. The former gives a self-similar geometry and the later

produces a self-affine geometry. Geometries like Hilbert curve or Peano curve,

when iterated for large number of times, fill a two dimensional area with the

curve length tending to infinity which describes the space-filling property of the

fractal geometries. Lacunarity is a term which describes the hollow space in a

fractal geometry [1].

Another unique feature of the fractal geometries is the fractional dimension.

There are different notations of the dimension of fractal geometries, such as

topological dimension, Hausdorf dimension, Box counting dimension, and self-

similarity dimension [2]. Among these, the self-similarity dimension is one of the

most important parameters for the characterization of the fractal geometries.
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Table 1.1: Self-similarity dimension of typical fractal geometries.

Fractal

Geometry

Scale

Factor (s)

No. of Self-similar

copies

Dimension

Ds

Sierpinski Gasket 1

3
3 1.5850

Sierpinski Carpet i

3
8 1.8927

Koch Curve
1

3
4 1.2619

Hilbert Curve
1

2
4 2

The self-similarity dimension of the fractal geometry is defined as

log(A0
DA

**\
(1.1)

where N is the number of self-similar copies and s is the scale factor. The

dimensions of some typical fractals are tabulated in Table 1.1. It should be

noted here that the self-similarity dimension of the fractal does not uniquely

describe the fractal geometry [4].

Iterative function system (IFS) is an extremely versatile tool for convenient

generation of fractal geometries. The iterative function system is a collection of

self-affine transformations [2] given by,

w (1.2)

where the parameters a, 6, c and d are defined by scaling and rotation of initial

geometry and e and / denote the translation.

Let {wn, n = 1,2,3,..., N} be a set of affine transformations defined in (1.2)

and let A denotes the initial image. The application of this set of transformations

on the initial image produces a set of self-affine copies {wn(A), n = 1,2,3,..., N}.
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Finally, a new image is obtained by collecting all these images as

W(A) = Wi(A)\Jw2{A)U... UwN{A) (1.3)

where W is called the Hutchinson operator. By repeated application of W to

the previous geometry, an ideal fractal geometry can be obtained. That is,

A^W(A0), A2 = W(A1),...,Ak = W(Ak.1) (1.4)

The IFS has proved to be a very powerful design tool for fractals because this

provides a general framework for the description, classification and manipulation

of the fractal geometries.

In the following subsections, a brief review is provided on the applications of

fractals in electromagnetics.

1.1.2 Fractal Antenna Elements

The scattering and reflection from fractal screens have been studied extensively

and a good review on the radiation and scattering from fractal surfaces can be

found in [4]. It has been shown that the diffracted field in Franhauffer zone is

self-similar. The interesting feature of fractal screens is that the scattered pat

terns from these fractal geometriescontain the fractal pattern imprinted on these.

Several self-similar geometries are used in the design of multiband antennas like

Sierpinski gasket, Koch curve, Hilbert curve etc. A comprehensive review on

the fractal antenna and frequency selective surface elements can be found in [5].

Sierpinski gasket is the most popular in fractal antenna engineering. The behav

ior of Sierpinski gasket monopole and dipole antennas have been investigated in

[6, 7]. It has been found that the antenna exhibits a log periodic behavior with a

periodicity of 2. A downward shift of resonant frequencies has been observed as

the order of iteration increases. Also, the radiation patterns at different resonant

*
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frequencies of the antenna show a large degree of similarity, although some side

lobes are generated at higher resonant frequencies. The behavior of the Sier

pinski gasket antenna was explained in terms of an iterative network model in

[8, 9], where the scattering matrices for the initiator and generator were used to

predict the behavior of fractal antenna by cascading the scattering matrices. It

was demonstrated in [10] that the location of different resonant frequencies of the

antenna can be controlled by changing the scale factor of the fractal geometry.

The flare angle of the initial triangle affects the antenna input characteristics

[11]. The resonant frequencies shift downward as the flare angle of the initial

triangle is increased. Also, too small a flare angle causes the multiband fractal

antenna to operate as a simple monopole antenna. Several modifications of the

Sierpinski gasket antenna and its effects on the radiation pattern of the antenna

have been investigated [12, 13, 14]. Design equations for determining the res

onant frequencies of Sierpinski modes and for the side length of the Sierpinski

gasket antenna is proposed in [15].

An important property of fractal curves is that the length of the curve tends

to infinity, although the overall height of the curve remains same. Hence, fractal

curves are very useful in reducing the resonant frequencies of the wire antenna.

One of the widely used fractal geometry in the design of wire antennas is the Koch

curve. The behavior of Koch curve fractal antenna has been presented in [16, 17]

where, a fifth iteration Koch monopole antenna has been investigated and it has

been found that the Koch curve effectively reduces the resonant frequency of

the wire antenna. Additionally, the resonant frequencies are more closely spaced

for higher order iterations of the fractal. A rigorous comparison of Koch curve

fractal antenna and their Euclidean counterpart has been reported in [18, 19].

The effect of indentation angle on the performance of the monopole and dipole
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antenna has been investigated in [20]. It was found that the indentation angle

plays an important role in locating the resonant frequency of the antenna. Also,

the resonant frequencies decrease with the increase in the indentation angle and

this decrement is much more dominant in higher order resonant frequencies than

at the primary resonance.

Hilbert curve is widely used in the miniaturization of antenna element because

of its space-filling property. The advantage of Hilbert curve antenna is that it

offers a higher frequency compression factor as compared to the Koch curve

fractal antenna, since the length of the Hilbert curve is much larger than that of

the Koch curve for a given 2D area [21, 22]. Hilbert curve fractal is also widely

used in the design of reconfigurable antennas [23].

Due to the low input resistance of the small loop antenna, fractal loops have

proved to be very efficient in increasing the input resistance of the antenna.

A fractal loop antenna based on the Koch snow flake geometry is reported in

[24, 25]. The input resistance of the antenna was found to increase with increase

in the order of iteration. However, the fractal loop antenna exhibits a multilobe

pattern due to the increased length of the antenna. Another kind of fractal loop

antenna based upon the Minkowski fractal has been investigated in [18, 26, 27].

Also, the performance of Minkowski fractal antenna has been compared with

another fractal curve known as 3/2 curve fractal antenna in [26]. A fractal loop

antenna based on modified Minkowski fractal geometry has been investigated in

[28] which has a better space-filling characteristics as compared to the conven

tional Minkowski fractal geometry. Several combinations of regular and fractal

elements are reported in [29, 30, 31] which exhibit a considerable degree of im

provement in the antenna performance. A small size patch antenna combining

the Koch and Sierpinski carpet fractals is analyzed in [32].

8
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Fractal antennas are not limited to monopole and dipole antennas; they can

also be implemented in the design of microstrip patch antennas. Several fractal

geometries are used to obtain multiband fractal patch antennas and a stacked

arrangement has been shown to have a broadband response [33, 34]. Microstrip

antennas having fractal boundaries and mass distribution are illustrated as an

tennas supporting localized modes. These localized modes are very useful to

•*r obtain a broadside and very directive pattern [35, 36]. Recently, a reactively

loaded stacked patch antenna with fractal radiating edge has been investigated

in [37] which gives a considerable amount of bandwidth enhancement. Com

prehensive analysis on the resonance and radiation behavior of the conformal

antenna based on the Sierpinski gasket is reported in [38, 39]. A printed log-

periodic Koch dipole antenna is investigated in [40] which offers 12% reduction

of the antenna size with a minimal degradation in impedance and bandwidth.

The characteristics of a CPW-fed planar antenna based on the Koch fractal loop

are presented in [41, 42]. A radial stub has been used in [41], whereas a stub

embedded with U-slot has been used in [42] to obtain the impedance match.

Two other fractal antenna based on circular fractal and Sierpinski carpet are

also reported in [43, 44].

*• 1.1.3 Fractal Frequency Selective Surfaces and Filters

Space-filling and multiband properties of fractal geometries are also used in the

design of size miniaturized and multiband FSS. A dual-band fractal FSS based

upon the Sierpinski gasket geometry has been reported in [45, 46, 47]. It was

shown that the fractal FSS offers two stopbands with an attenuation level of

30 dB. A tri-band FSS designed with cross bar fractal tree has been reported

in [48, 49]. The characteristics of the FSS were shown to remain unchanged
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for both TE and TM polarizations. Also, it was shown that the ratio between

the successive resonant frequencies of the FSS can be changed by changing the

scale factor of the geometry. Several fractal frequency selective surfaces based

upon Sierpinski carpet, Minkowski island and inset crossed dipole elements are

reported in [50], which present dual-band and dual-polarized characteristics. A

novel fractal frequency selective surface based on the Sierpinski tripole elements

is presented in [51]. The fractal geometry is optimized in order to obtain a

dual-polarized and dual-band frequency selective surface.

Recently, several fractalgeometries are used in the design ofmicrostrip filters.

A dual mode bandpass filter based on the Sierpinski carpet fractal geometry

with a perturbation at the corner offractal element is reported in [52]. In [53], a

wideband microstrip bandpassfilter usinga triangular patch element is analyzed.

It is shown that introducing fractal defection in the patch, a wider bandwidth

can be achieved. A low pass filter using Koch fractal geometry is reported in

[54].

1.1.4 Fractal Electromagnetic Band gap Structures and

High Impedance Surfaces

Electromagnetic bandgap structures and high impedance surfaces have attracted

considerable amount of attention due to the growing interest in improving the

antenna gain, reducing the mutual coupling and restricting the propagation of

higher order modes. Three different fractal geometries have been investigated in

[55] which are capable ofproducing a wider stopband along with additional new

stopband. Acircularly polarized compact and dual bandGPS patch antenna has

been investigated in [56] which is placed over a fractal EBG surface. The antenna

exhibits wider axial ratio bandwidth. A high impedance metamaterial surface

L0
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based on the Hilbert curve and Peano curve inclusions has been shown to offer

a reflection coefficient T ~ +1, when illuminated by a plane wave [57, 58]. Kern

et al. [59] proposed several design methodologies for multiband artificial mag

netic conductors using Minkowski fractal geometry. An electromagnetic bandgap

structure based on a novel fractal similar to that of a crown square fractal has

been analyzed in [60].

1.2 Aperture Problems in Electromagnetics

Coupling through apertures is a classical problem in electromagnetic field theory

and finds wide applications in microwave technology ranging from waveguide pas

sive components, slotted waveguide antenna arrays, slotted conducting screens,

frequency selective surfaces (FSS) to cavity-backed slot antennas. Aperture cou

pling problems have been exhaustively investigated during the past 50 years and

a large amount of literature exists on their analysis and applications. In the

following subsections, we present a brief review of the various types of aperture

coupling problems.

1.2.1 Apertures in Waveguide Transverse Cross-section

Aperture in the transverse cross-section is one of the most common type of dis

continuity in waveguides. When waveguides are used in practice, it is necessary

to introduce some discontinuities to produce waveguide filters, matching net

works, and power dividers. The presence of discontinuities basically modifies the

propagation characteristics of the waveguide but the end result depends upon

the type and dimension of discontinuity. Various types of discontinuities are in

corporated into the waveguide, among which aperture type discontinuities in the

11
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transverse plane of the rectangular waveguide is an important problem. Induc

tive or capacitive discontinuities in the transverse cross-section of the waveguide

are widely used in the design ofmatching networks due to the weak dependence

of their parameters on frequency. Traditional waveguide filters use inductive or

capacitive elements or a combination of these in order to produce the desired

filter response [61]. Largely, these filter elements consist of aperture irises of

rectangular or circular shapes [62, 63, 64, 65], and are located in the transverse

cross-section of the waveguide. The filter response improves with the increase

in number of waveguide sections which makes the waveguide filter very large

and bulky. Instead of using a non-resonant aperture, a resonant aperture can

be used as a classical element. A waveguide filter with such resonant elements

has been shown to have better out-of-band characteristics in [66, 67]. The filter

response can be further improved by using multi-slot iris due to the formation

of rejection resonance. The formation of such rejection frequency was first men

tioned in [68] with a five aperture iris. Later in [69], the existence of total

rejection frequency using two slots was explained by simultaneous excitation of

two natural oscillations of the iris. It was shown in [70], along with [69], that

to form a rejection resonance, it is necessary to have at least a pair of natural

oscillations with close real parts of eigen frequencies and essentially different Q

factors, determined by the imaginary parts and the number ofzeros and poles in

the frequency response depend upon the number of slots with different electro

magnetic properties. Also, the number of sections needed to obtain the desired

out-of-band rejection decreases with multi-aperture iris as compared to the sin

gle aperture iris [71]. Recently, frequency selective surfaces have been used to

realize elliptical function filter with multiple attenuation poles in the stop band

[72]. Amuch compact and light weight waveguide filter using two closely spaced

12
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array of rectangular resonant apertures is reported in [73].

Several numerical and analytical methods are used to analyze the transverse

discontinuity in a waveguide. Among all these methods, the most popular and

powerful technique is the formulation of the problem in terms of an integral equa

tion which is then solved using MoM. In 1972, Vu Khac [74] described the waveg

uide coupling problems by an integral equation. He solved this integral equation

by expanding the field in terms of pulse functions and using point matching

technique. Auda and Harrington [63] presented a solution for multiple inductive

posts and diaphragms of arbitrary shape in a rectangular waveguide using mo

ment method. The obstacles were approximated by a finite number of constant

current strips or filaments. Electric dyadic Green's function was used to represent

the field. Point matching technique was used in this analysis. In 1983, Auda and

Harrington [75] used the equivalence principle to solve the waveguide junction

problems. The fields were expressed using waveguide modes and a generalized

network representation of the problem was obtained by using moment method.

Sinha [76], in 1986, adopted the same procedure to analyze the discontinuities

formed by multiple strips and apertures. A MoM analysis of two thick apertures

in rectangular waveguide has been reported in [77]. In [78], a nonconventional T

junction with thick apertures has been investigated using MoM. Later, in 1993,

* Yang and Omar [71] used a TE^n modal expansion approach along with MoM to

solve the scattering from multiple rectangular apertures. Recently, multilayered

planar structures in the transverse cross-sectionof waveguide have been analyzed

using generalized scattering matrix (GSM) in conjunction with MoM [79, 80].

It has been observed that MoM and mode matching methods exhibit an inher

ent phenomenon known as 'relative convergence', when used to solve waveguide

discontinuity problems. Lee et al. [81], Mittra et al. [82] and Aksun et al.

13
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have reported a detailed study ofthe phenomenon and have proposed some useful

guidance to solve this problem.

1.2.2 Coupling Through Apertures in an Infinite Con

ducting Screen

A thin conductingscreenperforated with multiple apertures has a bandpass char- ^

acteristic when illuminated by a plane wave of varying frequency and makes it

a useful candidate for the design of frequency selective surfaces, electromagnetic

band gap structures, bandpass radoms, artificial dielectric and antenna reflector

or ground planes [84]. In some applications, apertures may cause undesirable

coupling such as a crack or slit in the door of microwave oven or any RF trans

mitting equipment leading to the problems of electromagnetic compatibility and

electromagnetic interference. A rejection band in the frequency response can also *

be realized using multiple apertures ofdifferent electromagnetic properties [85].

Photonic band gap structures are capable of reflecting the electromagnetic

waves at a selected frequency and are conveniently constructed by using a pe

riodic arrangement of dielectric materials. The dimension of the photonic band

gap structures hasto bea few times the wavelength ofthe point oftotal reflection

which makes it very large for larger wavelength applications. Frequency selective

surfaces are also capable of totally reflecting the incident electromagnetic wave.

However, the frequency of total reflection is determined by the lateral dimension

of unit cell and hence, it requires a larger surface area. It was shown in [86, 87]

that the planar metallic fractal based upon H shape fractal geometry can reflect

electromagnetic wave at a wavelength much larger than the dimension ofsample

size. The fractal pattern shows a quasi logperiodic behavior for lower order itera

tions offractal geometry, and the response becomes log periodic for large number

14
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of iterations. It was pointed out in [88] that the increase in number of iterations

downshifts the passbands, as well as, the stop bands. A fractal slit based on the

same fractal geometry was analyzed in [89], where, it was pointed out that the

fractal slit supports the subwavelength transmission of electromagnetic waves.

The general and rigorous formulation of coupling through apertures in con

ducting screen was made through the use of equivalence principle and equiv-

alent magnetic currents [90]. The coupling through rectangular apertures in

infinite screen was reported in [91]. An integral equation was obtained by us

ing equivalence principle and image theory. The equation obtained in terms of

the equivalent magnetic surface currents was solved using MoM. The aperture

characteristics were presented in terms of transmission coefficient and transmis

sion cross-section. Harrington and Aukland [92] analyzed the electromagnetic

transmission through an aperture in a thick conducting screen using equivalence

principle and MoM. The problem was decoupled into three independent problems

consisting two half space regions and a closed cavity region. It was found that

the apertures offer an exceptionally large transmission of electromagnetic energy

at the resonant condition. Later, in 1982, Li and Harrington [93] analyzed the

problem of electromagnetic transmission through an arbitrary shaped aperture in

a thin conducting screen using the RWG functions [94]. The problem was solved

using MoM and transmission through various arbitrarily shaped apertures were

investigated.

Several other methods have also been investigated to analyze these problems.

Lin et al. [95] used Babinet's principle in order to find the electric field distribu

tion on the surface of aperture, as well as, in the far field region. Gluckstern, Li

and Cooper [96] obtained the potential distribution on the surface of aperture us

ing variational technique, where the effect of aperture in conducting screen was

15
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expressed in terms of electric polarizability and magnetic susceptibility, using

small aperture approximations. An approximate expression for the field distri

bution on the surface of a circular aperture was obtained in terms of circular

aperture dimensions in [97]. Savov [98] analyzed the coupling between two cir

cular apertures in an infinite screen using Fourier transform method and the

reaction theorem. The effect of different polarizations on the coupling was also

investigated. In 1994, Hajj and Kabalan [99] presented a characteristic mode

solution of coupling through a rectangular aperture in an infinite conducting

screen. The solution was obtained in terms of eigenvalues and eigenvectors using

MoM. Kim and Eom [100] used the Fourier transform method in conjunction

with mode matching technique to obtain the field distribution on the aperture

surface. A rigorous analysis of coupling through apertures in conducting screen

was analyzed using finite difference time domain (FDTD) method in [101].

The reflection and transmission coefficient characteristics of an infinite con

ducting screen perforated with multiple apertures have been investigated by

many authors in the past. Chen [84] used MoM in conjunction with the Flo-

quet space harmonics in order to solve the integral equation. The treatment of

finite structure is also ofpractical interest. Early in 1984, Sarkar et al. [102] an

alyzed the problem of electromagnetic transmission through wire mesh covered

aperture arrays by using MoM. Truncated periodic structures have been analyzed

in [103, 104]. Recursive schemes have been successfully applied to analyze finite

and non-periodic structures [105, 106]. In 1999, Park and Eom [107] presented

a Fourier transform and mode matching method to analyze the electromagnetic

scattering from multiple apertures ofrectangular shapes. The numerical results

wereobtained for different number of apertures and angles of incidence. A similar

analysis for multiple circular apertures were investigated in [108] using integral

16
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transform and superposition principle. Anderson [109] carried out a method of

moment formulation of electromagnetic transmission through multiple apertures

using singular basis functions which greatly improved the convergence rate of the

solution.

1.2.3 Rectangular Waveguide-fed Aperture Antennas

Waveguide-fed aperture antennas are widely used in radars, satellites, and phased

arrays and as primary feed to parabolic reflectors. For an open-ended waveguide,

the input matching is very poor. The input matching can be improved by either

using a dielectric plug at the open end of the waveguide [110] or by using a

resonant aperture [111]. Here, also multiple apertures of different dimension can

be used to realize multiband waveguide radiators.

Several methods are used for the analysis of the rectangular waveguide fed

aperture antennas. In [112], variational principle was used to analyze the radia

tion from aperture fed by a rectangular waveguide. The method proposed in this

article was complicated even with the assumption of a single TE10 mode field

distribution and numerical results were given only for guide wavelength up to

1A0. Das [113] computed the admittance of an open-ended rectangular waveguide

without flange. Jamieson and Rozzi [114] have given an nth order Rayleigh-Ritz

variational solution to the flanged waveguide problem using longitudinal modes,

LSEy and LSE*. MacPhie and Zaghloul [115] investigated the radiation from a

rectangular waveguide terminated by an infinite flange and radiating into half

space. The correlation functions of the TE and TM mode electric fields on the

aperture and the conservation of complex power were used to obtain a correlation

matrix from which the scattering matrix of the problem was derived. Baudrand

et al. [116] presented a method based on the transverse operator. The boundary

17
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condition in spectral domain was used to relate the electric and magnetic fields

and the expansion of fields in TE and TM modes were used to obtain the ad

mittance matrix. Mongiardo and Rozzi [117] analyzed the problem of radiation

from flanged waveguide using singular integral approach. They used a basis func

tion which satisfies the edge condition and therefore, improves the convergence

of solution. Shen and MacPhie [118] presented a simple and effective method

based on the extrapolation method. The half-space was approximated by a large

waveguide with homogeneous filling with lossy dielectric and convergence data

was obtained for different loss tangents. Based on the data, an extrapolation

method was used to calculate the solution of original problem.

Many authors have used the integral equation approach with MoM or mode

matching method to solve the aperture radiation from a flanged rectangular

waveguide. The generalized network formulation for the aperture problem [90]

based upon the equivalence principle and MoM was applied to waveguide with a

thin window [119], finite phased arrays [120, 121], and reactively loaded waveg

uide arrays [122, 123]. Formulation in [119] and [123] used rooftop basis function,

whereas the piecewise sinusoidal basis functions were used in [121]. In [122, 120]

waveguide modes with sinusoidal aperture function were used.

1.2.4 Cavity-Backed Aperture Antenna

In satellite communication, the antennas are generally designed to have the ra

diation pattern directed towards the geostationary satellite. The antennas must

be suitable for installation on mobile, as well as, stationary stations. Therefore,

the antenna should be flat and flush mounted. A typical antenna is a planar

microstrip antenna which suffers from feeder loss [124]. Slot antennas are used

for their high efficiency and flush mounting nature. However, the slot antennas
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suffer from their inherent bidirectional radiation pattern. In many applications,

the antenna needs to be located in close proximity to earth, or conductive bodies,

or to be integrated with the rest of the transceiver in a multilayered structure.

In order to alleviate the adverse effects of the interaction between a slot antenna

and the structure behind it, traditionally, a shallow cavity is used due to the uni

directional nature of the cavity-backed aperture antennas. When cavity-backed

slot antenna is used as an array element, it produces small mutual effects be

tween the elements and this makes it a suitable element in the design of large

antenna array system, such as phased antenna array [125]. Also, the metallic

cavity can serve as a heat sink to improve the heat dissipation. Generally, due to

the resonance of the cavity, the cavity-backed aperture antenna suffers from low

bandwidth. In [126], it has been shown that using two parallel parasitic slots, the

bandwidth of the antenna can be increased. Several modifications have incorpo

rated in the slot geometry in order to widen the bandwidth, such as, an S-type

slot [127], meandered slot [128]. rectangularly bent slots [129], and cross-loop slot

[130]. Also, it has been found that the miniaturized slot antennas have higher

bandwidth and efficiency compared to the electrically small wire antennas [131].

So, by using a cavity backing, efficient slot antennas can be designed [132]. A

dual band antenna with three slots backed by a cavity has been proposed in [133]

which uses a single feed.

In the earlier works presented in [134, 135, 136], the input characteristics of

the antenna were calculated assuming a sinusoidal variation of voltage across

the slot and the cavity was assumed as a short circuited section of rectangular

waveguide. In 1989, Hadidi and Hamid [125] first presented a full wave analysis

of cavity-backed slot antenna using MoM with the aid of dyadic Green's function

in spatial domain to obtain the electric field on the aperture. In [137], the electric
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1.2 Aperture Problems in Electromagnetics

field and the current distribution on a wide slot antenna backed by a cavity were

analyzed using MoM.

The antenna fed by a coaxial probe is of practical interest and a detailed study

of a probe-fed cavity-backed aperture antenna has been presented in [138, 139].

The effects of various parameters, such as, slot length and width, offset, probe

locations on the input characteristics of the antenna were also investigated. In

[140], the radiation pattern of a finite plane cavity-backed slot antenna was com

puted using MoM in conjunction with uniform geometrical theory of diffraction.

A comprehensive comparison between the radiation pattern of cavity-backed an

tenna with infinite and finite planes was presented.

Lee et al. [141] presented a MoM formulation of a cavity-backed aperture

antenna with dielectric overlay using the spectral domain Green's function. The

integral equation was solved using both the entire domain and subdomain ba

sis functions. Later in [142], a similar analysis was presented for the case of a

cavity-backed aperture antenna with dielectric and magnetic overlays. The prob

lem was formulated using modified magnetic field integral equation. A dyadic

Green's function in space domain was used for the cavity region, whereas, the

Green's function for overlayed medium was obtained in spectral domain. An

MoM approach based on generalized network formulation and equivalence prin

ciple for the analysis of single as well as multiple apertures backed by cavity was

proposed in [143].

In 1995, Despande et al. [144] analyzed the electromagnetic scattering by

cylindrical cavity recessed in 3D metallic object. The equivalence principle was

applied to decouple the problem and the field outside the cavity was expressed

in terms of free space Green's function and equivalent surface magnetic currents.

The fields inside the cavity were expressed using waveguide modal expansion
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function. MoM is used to solve the coupled integral equation.

An FDTD approach for the analysis of cavity-backed aperture antenna was

presented in [145]. The paper also deals with the problems encountered in the

formulation and design of antennas using the FDTD method. The spectral leak

age was decreased by means of time windows. However, it does not reduce

the computation time and number of steps required for an estimation of input

characteristics. The problem was analyzed with accurate estimation of input

characteristics in [146].

In 1998, Rao et al. [147] presented a finite integral technique for the analysis

of scattering from cavity-backed antennas. The cavity was subdivided into a

number of triangular cylinders and constitutive material property was assigned

to each cylinder. Unknown electric and magnetic fields were approximated by a

specially designed basis function.

Nowadays, hybrid techniques are widely used in the analysis of complex elec

tromagnetic problems. FDTD methods are used to model complex cavity-backed

aperture geometries and the field radiated at a distance of few wavelengths is

calculated using near-to-near field transformation. This requires a large amount

of storage and computation time. So, this method is only applicable to rela

tively smaller geometries. On the other hand, finite element method (FEM)

is simple and is very popular in the analysis of complex penetrable structures.

This method results in a sparse matrix that can be stored efficiently and solved.

However, it does not incorporate the Sommerfield radiation condition and hence

requires discretization outside the source region, which limits the application of

FEM in large structures. As compared to this, MoM incorporates the Sommer

field radiation condition through the use of appropriate Green's function and as a

result, domain discretization can be kept minimum. However, this method is too
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complicated for penetrable structures. Also, the MoM produces a dense matrix

which requires a large storage for large complex structures. The unique feature

of MoM is the knowledge of Green's function which limits its application to some

regular shaped geometries whose Green's function is known. Additionally, the

computation of admittance matrix involves slowly converging mode sum, which

reduces the efficiency and increases the computation time. So, in order to take

the advantage of individual methods, hybrid techniques have become very pop

ular for the analysis of cavity-backed antennas. A hybrid FDTD-MoM method

of analysis electromagnetic radiation from cavity-backed aperture antenna was

proposed in [148]. The external and internal region of the cavity was modeled

using MoM and FDTD, respectively, and the external radiation was computed

using the reaction theory. In [149], a combined FEM-FDTD method was used

to analyze the coupling of cavity-backed slot antennas.

*

The hybrid FEM-MoM [150, 151, 152, 153] is a very useful method for the

analysis ofcavity backed antennas. The problem isdecoupled into two equivalent

problems and the field inside the cavity is formulated using the finite element

method and the field outside the cavity is calculated using the boundary integral

approach. Adetailed formulation of feeding structures is presented in [154, 155].

These papers also deal with the effect of finite ground plane on the antenna

characteristics using geometrical theory of diffraction. >

Chang, Kuo and Chung [156] analyzed a coaxial fed cavity-backed slot an

tenna. Theequivalence principle was applied to find out the scattered field inside

and outside of the cavity. The half space Green's function was used to calculate

the field outside and Green's function inside the cavity was calculated using a

parameter like extrapolation method. Complex Poynting theorem was used to

calculate the input impedance.
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A circuital approach to predict the behavior of electromagnetic field backed

by a cavity has been proposed in [157]. The aperture is modeled as a stripline

ended by a short and the metallic cavity is modeled as short circuited waveguide.

The voltage on the apertures was calculated using Thevenen's equivalent circuit

approach.

1.3 Motivation for Present Research

From the discussion presented in the previous section, it is evident that aper

ture coupling problem is an extremely important class of boundary value problem

with wide ranging applications in antennas, waveguide filters and power dividers,

frequency selective surfaces, and metamaterials. Apertures of both regular and

irregular shapes, resonant and non-resonant, narrow and wide have been inves

tigated.

In the past decade, application of fractal geometries has been proposed in the

design of antenna elements, frequency selective surfaces and metamaterials, and

the special characteristics offered by the fractals are widely acclaimed. Antennas

using some of these fractal geometries are already available commercially. It

is found that the use of fractal geometries leads to miniaturized, low profile

antennas with moderate gain as compared to their Euclidean counterparts and

the self-similarity property results in multiband antennas and FSS elements.

What is missing, however, is the study of fractal geometries in aperture coupling

problems. The present research work is primarily intended to initiate a study

of the characteristics of fractal apertures in waveguides, conducting screens, and

cavities.

During the course of this research work, several questions about the properties

of fractal geometries are addressed and an effort has been made to answer these
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questions by comparing the conventional fractal antennas and FSS elements with

the present observations. A number of fractal geometries have been investigated

in order establish the universal nature of the properties of fractal apertures. The

investigations have been further extended to correlate the response of fractal

apertures with different geometrical parameters and modifications. Some ob

servations have also been made from an application point of view to show the

effectiveness of the fractal apertures as compared to the existing multi aperture

geometries.

1.4 Research Problems

The aim of the present research work is to investigate the properties of frac

tal apertures in different types of aperture coupling problems. Based on the

aforementioned discussion on the requirement of multiband and reduced sized

waveguide components and aperture antennas, and the efficiency of fractal ge

ometries in the design of low profile, multiband and miniaturized antennas and

FSS, the following problems have been taken up in this research work:

• Analysis of fractal apertures in the transverse cross-section of rectangular

waveguide.

• Electromagnetic transmission through fractal apertures in an infinite con

ducting screen.

• Radiation from fractal apertures in an infinite screen fed by a rectangular

waveguide.

• Analysis of cavity-backed fractal aperture antennas.
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A major part of the analysis of above problems is the formulation using a suitable

numerical procedure. The first three problems have been formulated using MoM

and a hybrid FEM/MoM method has been used to analyze the problem of cavity-

backed aperture antenna. Based on the formulation, MATLAB codes have been

developed to find out different near-field and far-field parameters. The final task

is to validate the numerical results which has been done by simulation on HFSS

| [158].

1.5 Organization of the Thesis

The work embodied in this thesis has been arranged as follows:

Chapter 2 presents the general MoM formulation of coupling between two

arbitrary regions via multiple apertures of arbitrary shape and size. The for-

>- mulation of matrix equation, geometric discretization, and the types of basis

functions used are described. A detailed derivation of various matrix elements

for different regions such as rectangular waveguide and free space regions, are

presented. The last section of the chapter deals with computation of different

measurement parameters.

In Chapter 3, properties of fractal apertures in the transverse cross-section of

a rectangular waveguide have been presented. Some self-affine fractal structures

based on the Sierpinski gasket and plus shape fractals are proposed and the effect

of scale factor on the response is investigated. Self-similar structures like Hilbert

curve, Koch curve and Minkowski fractals are shown to be efficient in reducing

the resonant frequency of the aperture.

Chapter 4 investigates the electromagnetic transmission through fractal aper

tures in a thin infinite conducting screen. A number of fractal apertures, like

Sierpinski gasket, Koch curve, Hilbert curve, Sierpinski carpet and Minkowski
4

25



1.5 Organization of the Thesis

fractal have been investigated. Numerical results are presented in terms of trans

mission coefficient and transmission cross-section for both parallel and perpendic

ular polarizations of incident wave. The effects of variation of angle of incidence

on the frequency response of these fractal apertures are also investigated.

Chapter 5 combines the problems of chapter 3 and chapter 4 to analyze the

problem of radiation from waveguide-fed fractal apertures in an infinite screen.

The self-similarity and space-filling properties of fractals have been exploited to

achieve multi-band radiation. Some self-affine fractal geometries, suitable for

waveguide-fed apertures, have been proposed and investigated. It is shown that

the scale factor of the fractal geometry can be used as a design parameter for

controlling the resonant frequencies.

Chapter 6 deals with the characteristics of probe-fed cavity-backed fractal

aperture antenna. A generalformulation of the problemusing hybrid FEM/MoM

method is presented. The numerical results for input reflection coefficients and

the far-field radiation pattern of the antenna are presented.

Chapter 7 summarizes the work with concluding remarks and outlines the

possible future research directions inspired by the work presented here.
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Chapter 2

METHOD OF MOMENT

FORMULATION OF

COUPLING THROUGH

APERTURES

2.1 Introduction

Coupling between two regions via apertures is a classical problem in electro

magnetic theory and finds wide applications in modern microwave technology

ranging from waveguide filters, directional couplers, power dividers, slotted an

tenna arrays, cavity-backed aperture antennas to electromagnetic interference

and compatibility. In general, the regions on opposite sides of apertures may be

of different geometrical shape and electrical properties and also, the apertures

may be of any arbitrary shape. Thus, it is desirable to formulate the problem

in a manner such that dissimilar and diverse problems can be analyzed with as
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little extra effort as possible.

In this chapter, a general mathematical formulation of the problem of cou

pling between two arbitrary regions through multiple arbitrarily shaped apertures

is developed, based upon "Generalized network formulation for aperture prob

lems" proposed by Harrington and Mautz [90]. The problem is first decoupled

into two equivalent problems, one for each region, using equivalence principle.
T

Enforcement of the boundary condition on tangential component of magnetic

field over the aperture surfaces results in an operator equation in terms of un

known surface magnetic currents. The operator equation is then transformed

into matrix equation using MoM, which is solved for the unknown surface mag

netic currents. In order to obtain the matrix equation, the aperture surfaces

are discretized and suitable basis functions need to be defined on each subsec

tion. In the present work, two types of basis functions are used, namely, rooftop

functions [119] for rectangular apertures and Rao-Wilton-Glisson (RWG) func

tions [94] for arbitrarily shaped apertures. The scattered fields are expressed in

terms of Green's function and equivalent surface magnetic currents. The surface

integrals involved in the computation of matrix elements are evaluated analyt

ically for rectangular domains and numerically for triangular domains. Special

treatment has been given for the calculation of singular integrals arising in the

computation of integrals involving free space Green's function. The excitation -f

vector elements are calculated considering two types of input excitations: a TEmn

mode is assumed to be incident for the waveguide problems, whereas, a uniform

plane wave of arbitrary angle of incidence and polarization is considered for the

coupling problems involving two half-space regions.

Once the matrix equation is solved, various near-field parameters, such as,

scattering coefficient, transmission coefficient, aperture admittance, as well as,
-4
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Figure 2.1: General problem geometry of coupling between two arbitrary regions.

far-field parameters, like, transmission cross-section, gain pattern can be com

puted.

2.2 General Formulation of Aperture Coupling

Problem

Figure 2.1 shows the geometry of the general problem of coupling between two

arbitrary regions through multiple apertures of arbitrary shape located in z —0

plane. Impressed sources J1 and Ml are shown to be in region 'a', while region

'b' is assumed to be source free, although both the regions may contain impressed

sources.

Equivalence principle is applied in order to decouple the original problem into

two equivalent problems, one for each region, as shown in Fig. 2.2. The apertures

are closed with perfect electric conductors (PEC) and equivalent surface magnetic
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2.2 General Formulation of Aperture Coupling Problem

(a) model for region 'a' (b) model for region 'b'

Figure 2.2: Equivalent models.

currents Mi, M2,...,Mjv are placed over the aperture surfaces in region 'a', where

N is the total number of apertures. The equivalent surface magnetic current on

the pth aperture surface is defined as

Mp = z x Ep (2.1)

where z is the unit outward normal to the pth aperture and Ep is the electric field

on the pth aperture of original problem. Continuity of tangential component of

electric field is ensured by placing -Mi, -M2, •••, -MN over the aperture sur

faces in region 'b'. Hence, the original problem is decoupled into two equivalent

problems, one for each region, which can beformulated independent of theother.

The total field in region 'a' is due to the impressed sources ( J \ Mx) and equiva

lent currents Mp, p= 1,2,3,...,N, whereas, the field in region 'b' is only due to

the currents -~MV radiating in the presence of a complete conductor. Thus, the

tangential component of magnetic field over the pth aperture surface in region

30
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'a' is given by

Hatp = TTtp + tf;(Mi) + Hatp(M2) + ... + Hatp(Mq) + ... + Hatp(MN)

where Htp is the tangential component of magnetic field over the pth aperture

surface due to the impressed sources and H*p(Mq) is the tangential component

•jf of magnetic field over the pth aperture surface due to current Mq over the qth

aperture surface.

Similarly, tangential component of magnetic field over the pth aperture in

region 'b', denoted as Htp, is given by

Htp = Hatp{-Mi) + Hatp(-M2) + ... + Hatp(-Mq) + ... + Wtp{-M N

Now, continuity of tangential component of magnetic field across the pth

aperture surface gives the basic operator equation

-rrbH^Mi) + Htp(M2) + ... + Hatp(Mq) + ... + Hatp{MN) + Wtp(Mi) +

Hbtp(M2) + ... +Hbtp(Mq) + ... +Hbtp(MN) = -H)p (2.2)

The solution of (2.2) can be obtained by defining a set of basis functions {Mm,

n = 1,2,..., Np} over the pth aperture surface and expanding the magnetic current

as

Np

Mp = YJVmMrn, P= 1,2,3,..., N (2.3)
71=1

where, Vpn are the unknown coefficients to be determined and Np is the number

of basis functions defined over the pth aperture surface.
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Substituting (2.3) in (2.2) and using the linearity of Ht operator, we obtain

Ni N2

J^VlnHatp(Mln) + X>Xp(^2n) + ..- +
71=1 71=1

N„ NN

]TVqnHatp(Mqn) + ... +J2VNnHatp(MNn) +
77=1 77=1

jVi ^2

£Vln<(Mln) + J2v2nWtp(M2n) +...+
71=1

Nq _
J2 VqnHbtp(Mqn) + ... +J^ VNnHtp(MNn) = -H

77=1 71=1

NQ NN

tp

1 77=1

(2.4)

Now, we define the inner product as

(A,B) =^A.B ds
s

and a set of testing functions {Wpm, p = 1,2,3, ...,N and m = 1,2,3, ...,NP}

over the pth aperture surface. Taking inner product of (2.4) with each of these

testing functions, we obtain

Ni N2

Y, Vm (W^,F"p(Mln)) +YlV2n (W^HliM^)) + ... +
n=i n=i

Nq NN _

£ V<m (^pm,Hatp(Mqn)) +... +J2 VNn (Wpm, T?tp{MNn)) +
n=l n=l

J2 V^ (Wpm, Htp{Mln)) +J2 Vm (WV> Htp(M2n)) +... +
77=1 n=i

N, iVs,

'Nn;J] ^n (VK^, <(Mg„)) +- +E V"« (^V- H^Mt
77=1 77=1

-W^.tfJ,,) (2.5)

Equation (2.5) is a set of algebraic equations which can be put in matrix form

by defining the following matrices and vectors:
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1. Admittance matrix for region 'a', denoted as Ya

[Ya]

r

111 1 12 1 13 ' 1 IN

1 21
•\ra

1 22 r23 ' X2N

1 NI 1 N2 1 N3 ' 1 NN
(Ni+N2+...+NN)x(Nl+N2+...+NN)

(2.6)

where each sub-matrix Y^ denotes the coupling matrix between pth and

qth aperture and can be expressed as

Yapq = [-<Wpm,Hatp(Mqn)>}Np XNa (2.7)

The mn element of the sub-matrix Y° is given by

K.) JT w pit I HtJMgn) ds (2.8

It should be noted that, the matrix defined in (2.8) is obtained by assum

ing that the basis functions are numbered independently over each aperture

region. Instead, if the functions are numbered continuously over the aper

tures, then an element of the matrix Ya can be expressed as

ns. = [-(wm,Hat(Mn)))NTXNT

-jjwm • Hat(Mn)ds (2.9)

where, Am denotes the sub-sectional area over which the mth testing func

tion is non-zero and NT denotes the total number of expansion functions.

2. Admittance matrix for region 'b', denoted as Y6, is also of the same form

as (2.6). Similar to (2.8), an element of admittance matrix for region 'b'

can be expressed as

0£)«m = JJWV • Hbtp(Mqn) ds (2.10)
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3. An excitation vector, / * as

—i r lT
li h LNIl =

where

1x(Ni+N2+...+Njv)
(2.11)

i; = [<wv7,i4>kxi (2-12)

An element of the excitation vector can be expressed as

(IP)m =jjWpm •Xpds (2.13)
A„

Again, if the expansion functions are numbered continuously over the aper

ture surfaces, then (2.13) can be written as

(P)m =jjWm • T?tds (2.14)

4. A coefficient vector V as

—» r 1T
V = Vi v2 •• •VN

I Hx(Ni+N2+...+NN)

where

(2.15)

Vp=[V^]npxi (2-16)

Therefore, (2.5) can be expressed as

[YQ + Y6]V =r (2.17)

It can be seen from (2.8) and (2.10) that the aperture admittance matrix [Ya]

depends only upon the parameters of region 'a' while [Yb] depends only upon

the parameters of region 'b'. Thus, each of these matrices can be computed

independent of the other and by suitably combining them, a host of altogether

different problems can be analyzed.

The equivalent models for the geometries analyzed in this dissertation are

presented in the following subsections.
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z=0

Figure 2.3: Multiple apertures in the transverse cross-section of a rectangular

waveguide.

2.2.1 Fractal Diaphragm in Transverse Cross-section of

Rectangular Waveguide

A perfectly conducting thin diaphragm perforated with multiple arbitrarily shaped

apertures placed in the transverse cross-section of a rectangular waveguide is

shown in Fig. 2.3. An electromagnetic field is assumed to be incident from left.

Fig. 2.4 shows the equivalent models for region 'a' and region 'b'. Both the re

gions are semi-infinite rectangular waveguide sections short circuited at one end.

Hence, the matrices [Ya] and [Yb] can be calculated by considering semi-infinite

rectangular waveguides.

2.2.2 Coupling Between Two Half-spaces Via Fractal Aper

tures

Fig. 2.5 shows the problem of two half-spaces of arbitrary electrical parameters

coupled through multiple apertures in an infinite conducting screen. A plane

electromagnetic wave is assumed to incident on the apertures in region 'a'. Fig 2.6

shows the equivalent models for region 'a' and 'b'. Thus, the matrix [Ya] and
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Region 'b'

-M

Figure 2.4: Equivalent models.

Infinite Conducting
Screen

Region 'b'

Figure 2.5: Coupling between two half-space regions through multiple apertures.
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Region 'a'

M± J

Impressed
Sources

Region 'b'

-*~z

M

Infinite

Conducting
Screen

Figure 2.6: Equivalent model.

Region 'a'

Image
Plane

2M

M^J
Z=0 Z=0

Region 'b'

-2M

Image
Plane

Figure 2.7: Equivalent models after the application of image theory.

[Yb] can be determined by considering a current 2M radiating in free space as

shown in Fig. 2.7.

2.2.3 Rectangular Waveguide-fed Multiple Apertures in

Infinite Conducting Screen

The general problem geometry of rectangular waveguide-fed multiple apertures

in an infinite conducting screen is shown in Fig. 2.8. The apertures are placed at
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2.2 General Formulation of Aperture Coupling Problem

Infinite Conducting

Screen

Figure 2.8: Waveguide-fed multiple apertures in an infinite screen.

z = 0 and a TEm„ mode is assumed to incident in the rectangular waveguide.

Fig. 2.9 shows the equivalent problem geometries for region 'a' and region 'b\

Thus, the elements of matrix [Ya] are computed by considering a semi-infinite

rectangular waveguide short circuited at one end and the elements of matrix [Yb]

are computed by considering a current -2M radiating into the free space. Here,

the magnetic field (jTA is twice than that of incident magnetic field due to the

presence of complete conductor at z = 0.

2.2.4 Radiation From Multiple Apertures Backed by a

Cavity

The general problem geometry of multiple apertures backed by a rectangular

cavity is shown in Fig. 2.10. Impressed sources are assumed to be located

inside the cavity. The apertures are located at z = 0 plane. Fig. 2.11 shows

the equivalent model of the aperture antenna. The problem is analyzed using
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Rectangular

Waveguide

Region 'a' *

Incident

Field

Infinite

Ground Plane

Z=0

Region 'b' I Region 'b'
I

X

-Mm^{^ -1M
Image
Theory ;;

Infinite

conducting
Screen

\^ Image
I Plane

Figure 2.9: Equivalent models.

Apertures

-~i

Impressed K JTf*
Sources \~m

Figure 2.10: Cavity-backed aperture antenna.
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Rectangular

Cavity
Region 'b'

Image

Theory

Infinite

^Ground
Plane

I
I Region "l>"

*>-2M

Image
Plane

Figure 2.11: Equivalent models.

the finite element-boundary integral (FE-BI) method, in which the field inside

the cavity is computed using the finite element method and the field above the

ground plane is calculated using MoM by considering a current -2M radiating

in free space.

2.3 Basis Functions

An important step in MoM solution is the choice of basis functions because it

greatly affects the convergence and accuracy of the solution [83, 159]. Although,

there can be an infinite number of possible sets of basis functions, only a few

sets of basis functions are required practically to obtain accurate results. The

basis functions are categorized as whole domain and subdomain basis functions.

The whole domain basis functions exist over the entire surface and are applicable

to the problems with regular geometries and where an approximate distribution

of the unknown function is known a priori. On the other hand, subdomain

basis functions offer greater flexibility to model arbitrary geometries and more

complex problems. Piecewise sinusoidal functions, rooftop functions and Rao-

Wilton-Glisson (RWG) functions are widely used in the MoM analysis. In the
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Figure 2.12: Geometry of x- and y-directed Rooftop functions.

present analysis, rooftop functions and RWG functions have been used. Brief

introduction to these two basis functions are given in the following subsections.

2.3.1 Rooftop Functions

The rectangular apertures are divided into a number of rectangular subareas.

Let us assume that pth aperture has a length Lp and width Wp and issubdivided

into Lxp and Lyp number of subsections along x- and y-directions, respectively,

as shown in Fig. 2.12. Let (xcp,ycp) is the center of pth aperture. Rooftop

functions have a triangular variation in one direction and a pulse variation in

other direction. The x- and y-directed components of rooftop functions Mjm are

expressed as

MXP u+{l)-1)(Lxp_1) =xTZ{x - xcp +-£) P»(y - ycp +-£) (2.18)

u = 1,2,3, ...,(Lxp-l)

v = 1,2, 6,..., Lyp
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2.3 Basis Functions

Similarly,

K u+{v-i){Lxp) =ffHiv - yep +^) K(x - xcp +£) (2.19)

U — 1, Z, o,..., LlXp

v = 1,2,3,..., (Lyp- 1)

where T and P denote the triangular and pulse functions, respectively. The

triangular and pulse functions are defined as

t:(x-xp) = i

and

where

X~Xpl"~1)AXp' xp + (u - l)Axp <x<xp + uAxp

(u+i)^-x+x^ Xp +uAXp<x<Xp + (u + i)Axp (2-20)

0, otherwise

1, x„ + (u —1)Ax„ < x < xp + uAxp
(2.21)

0, otherwise

i>

WyP = yCp- -y (2-22)

Similar, expressions may be written for T% and P%.

2.3.2 RWG Functions

The rooftop functions presented in the previous subsection are suitable for mod

eling rectangular regions. For modeling surfaces of arbitrary shape, however,

RWG functions are more suitable. The aperture surfaces are discretized into

triangular subareas and a pair of such triangles are shown in Fig. 2.13.
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nth non-boundary edge

Figure 2.13: RWG basis function.

For any two triangles pair T±, having areas A^, the nth RWG function is

defined as

M»
l-\p+, r in i4+

2,4

I

2.4" ^™'
p„ , r in A:

(2.23)

where /„ is the length of nth common edge shared by T*, p+ = (f —fjj") is the

vector drawn from free vertex of T+ to the observation point, pn = (f~ —f) is

the vector drawn from observation point to the free vertex of T~ and f is the

global position vector. The function is zero outside the triangle pair.

2.4 Evaluation of Admittance Matrix Elements

In this section, the evaluation of admittance matrix elements for different regions,

such as, a semi-infinite rectangular waveguide and half-space region, has been

presented.

2.4.1 Semi-infinite Rectangular Waveguide

The first region considered here is a semi-infinite rectangular waveguide short

circuited at z = 0 with equivalent surface current density M over the aperture

43



2.4 Evaluation of Admittance Matrix Elements

region (Fig. 2.4). Following Galerkin's method, ijth element of admittance matrix,

defined in (2.8), can be expressed as

(Y£% =- JJX • H:p\Mq3) ds (2.24)
Ai

where the superscript 'wg' is used to denote the waveguide region. Here, M^

denotes the ith testing function defined over the pth aperture surface, and Ma

delines the the jth expansion function defined over the qth aperture surface. The

integration is performed over the sub-sectional area (A) of pth aperture sur

face over which the ith testing function is non-zero. Htp(Mqj) is the tangential

component of magnetic field over the pth aperture surface due to jth expansion

function ~Mqi defined over the qth aperture surface. The magnetic field produced

by a current element Mqj is expressed in terms of the magnetic dyadic Green's

function (G(r\r')) for a semi-infinite rectangular waveguide as

H7p9(Mqj) =-jue JJd(f |f) . Mqj ds' (2.25)
Ai

Here, Aj denotes the sub-sectional area of qth aperture surface over which jth

basis function is non-zero. Primed and unprimed coordinates denote the source

and observation points, respectively.

In general, the magnetic dyadic Green's function for a semi-infinite rectangu

lar waveguide has nine components. Here, we are concerned only about the four

transverse components which are expressed as [160]

n

oo oo

£0m£0n

Gxx(r\r') = J2H„ lmnabk2
m=0 n=0

Mv)2 <px(x,y)<Px(x',y') (2-26)

oo oo

°-m =-EE^^(v) (t)^»^^ <2-27)
m=0 n=0
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eomgQn (rmr\ /mr\
<wr> =-LLS(tJ It) *&•'»&• * <2-28>

m=0 n=0

Gyy(f\f) =£ £
jmnabk2

/n7T\:
<py(x,y)<pv(x',i/) (2.29)

where

and

m=0 n=0

7mn = y/(rmr/a)2 + (mr/b)2 - /c2, fc = wv//Ie

£op — <

1, p = 0

2, p>0

The functions ipx(x,y) and <py(x,y) are defined as

<Px{x,y) = sin I 1cos
/wry

<Pv(x,V) = cos ^ J sin ^——J

Substituting (2.25) in (2.24), we obtain

(F--%- =jweJJ jJMAr) •G(r |f) .M^f) ds' rfs
A* A,

(2.30)

(2.31)

(2.32)

Since, the functions Mpj and Mw- can be resolved into x and y components, the

admittance matrix consists of four sub-matrices as

ra =

where each submatrix can be expressed as

&%>)% =jus jj jj M^(f)Gxx(f If')M^(f') ds1 ds
Ai Aj

(2.33)

(2.34)
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2.4 Evaluation of Admittance Matrix Elements

(Y£9)xi? =3™ JJJJA^(r)G^(r |f'W^r') ds' ds (2.35)
A, Aj

(Y£% =^ If If K^)Gv*<? Ir')M*(r') ds' ds (2.36)
A, Aj

(Y^! =jus J[ JJM^Gyyif |f')Ml[f') ds' ds (2.37)
Ai Aj

Substituting (2.26) in (2.34) and separating the integrals over primed and

unprimed coordinates, an element of sub-matrix [{Y™9)xx} can be expressed as

OO OO

(vwg\xx j. ,- Vs V^ £OmgQn ,2 _ (TE\
m=0 n=0

"mnx\ /'mry\ , , rr -,~ . frmrx'X fniry'JJ M* sin (=) cos (22) dz dy JJ M* sin ^J cos ^J dx' dy' (2.38)
Ai Aj

Similarly, other three components can be expressed as

m=0 n=0

JJ M'sto (=) cos (7) **JJ«5 cos {^f) so, (=*) * * (2.39)

OO oo

W>^-mEE^(=)(t)
m=0 n=0

fmiTx'\ fmry'
M°j sin

Al " Aj

JJm»c„s(=)s,„(=) rflrf!/JjM£si„(=)c„s(^) <fa'*'(2.40)

oo oo

£(im£0n

(>?)«=m E E •jmnabk2
m=0 n=0

*-(?)'
rrM>s(=£)sto(^) dlrf„rjM,^^)sm(^) ^(2.41)
A, Aj

These surface integrals are calculated either analytically or by numerical

quadrature method depending upon the domain of integration. In the follow

ing subsections, the computation ofsuch integrals for rectangular and triangular

domains is presented.
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Aa:

Figure 2.14: Geometry of ith x-directed rooftop function.

Computation of admittance matrix using Rooftop functions

Let us consider ith x-directed rooftop function as shown in Fig. 2.14. Here, the

geometrical variables are defined as

Xa = Xp + (u— l)Axp

%b = xp + uAxp

xc — xp + (u + l)Axp

ya = Vp + (v - l)Ayp

yb = yP + vAyp

where

u = l,2,3,...,(Lxp-l)

V = L, Z, O, ..., Lyp

Substituting the expression of x-directed rooftop function from (2.18) and con

sidering the origin at the center of waveguide cross-section, the integral in (2.38)

-17



2.4 Evaluation of Admittance Matrix Elements

can be expressed as

Ip = J M* sin mir, a.'
— (x + -)

a z
cos

wk , b.

T(y+2}
At

1 m,

cos

AxP JVa

(x-xa)sm ——(x + -)

UK, b.
dyx

dxdy

a fJ Xh

dx -\- I (xc —x) sin
Ixb

run, a.

— »+,)
a 2

dx

(2.42)

After computing the integrals, 7p is obtained as

Ip = (Axp)(Ayp)
sin(m7rAxp/2a)

(mnAxp/2a)

sm

m7r .

(Xp + uAxp) cos

sin(n7rAyp/26)
{mrAyp/2b)

-^{yp +{v- -)Ayp)

where xp and yp are redefined as

Lp a
xp — xcp +

J/p — 2/cp 0 0

Similarly, the integral over the qth aperture is obtained as

/, = (Ax9)(Ay9)
sin(m7rAx9/2a)

(rmvAxq/2a)
sm(nnAyq/2b)

(nnAyq/2b)

T
sm

m71"/ A >(xq + sAxq/ cos

nit

y(y9 +(*-o)A%;

Hence, an element of xx-component of admittance matrix is given by

W)5" =** E E ;?t£#2 - (—)2]A- ^ 5- 5-q

48

m=0 n=0
7mna6/c2 a

rm7
sin (xp+ uAxp) cos

sm

m7r

(Xq + sAxg COS

UK, . 1. . .
yU/P +(t>- g)Aw
nn, , 1, . ,

(2.43)

(2.44)

(2.45)

(2.46)

><



K

>-

where,

Chapter 2. MoM Formulation of Coupling through Apetures

i = u + (v —\){Lxp —1)

j = s + (t-l)(Lxq-l)

u= 1,2,3, ...,{Lxp- 1)

t>= 1,2,3, ...,Lyp

s = 1,2,3, ...,(Lxq - 1)

t = 1,2,3,..., Lyq

(2.47)

Similarly, the other three components of the admittance matrix can be expressed

a,s

xy(Yw9\xl
\1pq !ij

where,

oo oo

-iU£ E E r, m„/!p(Er)(~r^ Axy 5*p Syp Sxq 5^om=0 „=0 IrnnUOH a 0

• rm7r i a xsm (Xp + uAxp)
l a

ran

cos
n7r / / 1 NA N

cos

1,

xi + (s~ ^Ax^ sm

nnv—{yq + tAyq) (2.48)

i —u + (v —l)(Lxp —1)

j = s + (t- l)Lxq

u = 1,2,3,..., (Lxp - 1)

v = 1,2,3, ...,Lyp

s —1,2, o,..., Lxq

t = 1,2,3,...,(Lyq-l)

(2.49)
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rywgvyx
\Ipq lij

where,

50

-^e E E r-pd )\T i a» &XP Ovp Jvn «->'
7m„ab/cJ a b

xy &xp &yp Sxq °yq
m=0 n=0

mK, , 1
cos (xp + {u- -)Axp)

ran

sm (xq + sAxq) cos

sm

UK

(yP + vAyp)

nK, , 1. . .
-j (v, +(* - -£*v9)

i —u + (v —l)Lxp

u —1,2,3, ...,Lxp

v = 1,2,3, ...,(Lyp-l)

s = 1,2,3, ...,(Lxq - 1)

£= 1,2,3, ...,Ly,

j = S+ (t-l)(LXg-l)

oo oo

(Yws\vy = 7-w£ V^ V^ e0m6°n r;„2 /n7^2i2[k - (-T-) ] AXj, 5xP Syp 5xQ Syg
^mnabkz b

WITT , . 1 \ a \
(xp + (u - -)Axp)

7717T . . 1. . .
— (xg + (s--)Axq)

sm

nn

L b

UK

~b

(yp + vAyp)

(2.50)

(2.51)

m=0 n=0

COS

COS sm (yq + tAyq) (2.52)

1713IZ* ">.
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where,

U — 1, ^, O, ..., -L/Xp

i = u + (v —l)Lxp

v = 1,2,3,..., (Lyp- 1)

s —1,2,3,..., Lxq

j = s + (t- l)Lxq

i = l,2,3,...,(Ly,-l)

(2.53)

The variables Axy, 5xp, Sxq, Syp, and Syg are defined as

Sxp —

Sxq =

Axy = AxpAypAxqAyq

sm(mnAxp/2a)
(m7rAxp/2a)

sin(m7rAxg/2a)
(mnAxq/2a)

Syp —

Syq =

sin(n7rAyp/26)
(n7rAyp/26)

sin(n7rAy9/26)
(nKAyq/2b)

Computation of admittance matrix using RWG functions

In case of computation of matrix elements using RWG functions, the aperture

surfaces are discretized into triangular areas and the RWG functions are defined

for each non-boundary edge as given in (2.23). The RWG function can be resolved

into x- and y-directed component as

'• 1!x±M. ••2AJx *p)
' I.My± _ ±_^P_(v_y±

p 2A± v

(2.54)

(2.55)

where, (xp,yp) denotes the coordinates of free vertex of either plus or minus

triangle.
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2.4 Evaluation of Admittance Matrix Elements

In this case, instead of numbering the basis functions independently over each

aperture, these are numbered continuously over all apertures. Hence, according

to (2.9), the pqth element of the admittance matrix can be expressed as

/ywg\
1»1

^Mp.JP79{Mq)ds (2.56)

Substituting (2.25) in (2.56), we get

(Ew% =jue Jf J[ Mp(f) .G(f\f') .Mq(f') ds' ds (2.57)
T± T±

Again, the decomposition of the functions Mp and Mq gives four submatrices

as given in (2.33). Thus, according to (2.34), the pqth element of submatrix

[(E™9)**] can be expressed as

(E-%* =ju,e JJJf MfGxxMf ds'ds
f

J[J[ Mxp+GxxMxq+ds'ds +JfJ[M;+GXXMX'ds'ds

J[J[Mxp~GxxMx+ds'ds +JJ J[Mxp-GxxMxf ds'ds

= jue <

T- T+

Substituting (2.54), the above equation becomes

jUJElplq

52

wg \ xx
pq(Y A^ NII{X ~x^Gxx{x' ~Ods'ds+

P 1 rr+ T +

A+A1 IIII^ ~xp^Gxx^ ~x')ds'ds+
P 9 rr+

h^ NII{X? ~x)Gxx{x' ~x^ds'ds+ApA+
rp- rp+

rrrz\ J(XP -x)Gxx{xq -x')ds'ds
p Aq „_ „_A-A

In -la

(2.58)
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where lp and lq are the lengths of pth and qth non-boundary edges, respectively,

and Ap and ^4* denote the area ofeither plus or minus triangles associated with

pth and qth edges.

Now, each integral in the above equation is of the form

(LlrJs)xx =J j(x- Xi)Gxx(r\r')(x' - Xj) ds'ds
TT Ts

r,s = l,2,3,...,P

i,j = 1,2,3 (2.59)

where Tr and Ts denote the rth and sth observation and source triangles, respec

tively and i and j denote the vertices of the rth and sth triangles. Similarly, xy,

yx and yy components can be expressed as

(L%)xy =J( J[(x - xJ)C(r|r')(y' - y3) ds'ds (2.60)
Tr Ts

(L%)yx =Jflf (y - yi)Gyx(r\r')(x' - Xj) ds'ds (2.61)
Tr T.,

(L%)w =Jf If(y - yi)Gyy{r\r'){y' - Vj) ds'ds (2.62)
Tr T,

Using (2.26) in (2.59), we obtain

OO OO

m=on=o 7mna0K a It, a ° J

<JJ(x' - Xj) sin(^^) cos(^-)dx'dy' > (2.63)

Similarly,

oo oo ( "\
ITiJ\ S^ST eOr»eon ,mirrnr J rr . mvrx /»"n/w , I<L«)*v - - E E 7"-^f(e7)(T) 1JJ (X - ^)sm(—)cos(—)dxdy

{jjv- to)cos(=:)Si„(^,^j
m=0n=0 "»»"""" - <,Tr

(2.64)
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2.4 Evaluation of Admittance Matrix Elements

m=0 n=0 V Tr •

rr., . ,mKX Tiny , , i
(x - Xj)sin( ) cos(—— )dx dy >

ts a )
(2.65)

(«)„ - E ES"" <T»21 JT<» - ,)cos,=,81o(7)^

JJfe'-»)cos(= )sin(^WJ
(2.66)

From (2.63)-(2.66), it can be foundthat the computation of above components

of Lr{ involves only two types of integrals, which are given as

h = JJ (x - X;) sm( )cos(—)dxdy

and

h =}}(y- Vi) cos(~^T") sin(—)dxdy
T

These integrals are conveniently evaluated using the area coordinates C\, C2, C3

[161] asdescribed inAppendix A. It may benoted that intheprocedure presented

here, the integration is carried out over the triangular regions and stored, since a

particular integral will be required for the computation of more than one matrix

element. This eliminates repeated calculations of integrals, which would occur if

the integration is done over the edges of the triangles.

Once these integrals are calculated over all triangular areas, pqth element of
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uv (u,v => x, y) component of admittance matrix element can be expressed as

(Yvrwg\uv _ J^^LpLg
>P<1 4

/_L_ (r*(p+)i(9+)Ti(P^)3(q+) \ _i /ri(p+)i(g-)A
•:A- \ljr(p+)s(q-))ir(p+)s(g+)Juv Ap^

a-^+ r^-w^j^ +^v ^-^Vuj (2-67)
where, r^) and s(g±) are the numbers ofplus or minus triangle associated with

pth and qth edges and »(p*) and j^) are tne number of free vertices of plus or

minus triangle associated with pth and qth edges, respectively.

2.4.2 Half-Space Region

This section presents the computation of admittance matrix elements for the

half-space region with a magnetic surface current source M. Following Galerkin's

method, an element of admittance of matrix given in (2.10), can be expressed as

Y£ ="JJ ^m • Hhts(Mn) ds (2.68)

where the superscript 'hs' is used to denote half space region and Hts(Mn)

denotes the magnetic field due to a surface magnetic current Mn radiating in

the presence of a complete conductor. The computation of matrix elements can

be simplified by using the image theory (Fig. 2.7) and hence, the field can be

calculated by considering a current element 2M„ radiating in free space. Hence,

(2.68) can be written as

Y£ = ~j$Mm • H{S{2Mn)ds
Am

= ~2JJMm • Hfts(Mn)ds (2.69)
Am

where the superscript 'fs' denotes the free space region.
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2.4 Evaluation of Admittance Matrix Elements

Now, the magnetic field produced by a magnetic current element Mn can be

expressed in terms of electric vector potential Fn and magnetic scalar potential

ipn as

Ht(Mn) = -jcoFn - V^„ (2.70)

where the electric vector potential and magnetic scalar potential are defined as

Fn =-^j$Mn(r')G(r\r')ds'
An

<Pn — \\V .Mn(r')G{r\r')ds'
iii 11. J JAnjuip

Here, G{r\r') is the free space Green's function, given by

p-jk\r-r'\
G(f\f')

r — r

(2-71)

(2.72)

(2.73)

Substituting (2.70) in (2.69) and using two-dimensional divergence theorem, Yn

is obtained as

Yhs = jujJ mn J

Ira. CC i -= , , .

A+
JJ>+ .Fn(f) ds +f: Jfp" .Fn{f) ds+

2lm CC j ">r,—— <p„ ds + —
jujA+ JJ juAnll^dS+7^ll^ ds

The above equation contains quadruple integrals, a double integral over the ob

servation triangle and a double integral over the source triangle. In order to

simplify the computational complexity, the integrals over the observation trian

gle can be approximated by the value of integral at the centroid of the triangle

to give

Y* = ju>lm \Fn{fc+) . pt +~Fn(fc-) . ?-} - 2lm [<pn(f£) - <Pn(rZ)} (2.74)
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Now, according to (2.71), we can write

^(f™ )=h Si^n(r')G(r^\r') ds'

<dn

8n
± JJ#(f)G(ft\r') ds' +-L jjp-(f')G(r^\f') ds'

Tn Tn

Similarly, the magnetic scalar potential can be expressed as

Mrt) =-^— IfV•Mn(r')G(f^\r') ds'

<1)

Attjuj^i
jr IfG{C\f') ds' - -A- JJ G(f^\f') ds'

(2.75)

(2.76)

Hence, using (2.75) and (2.76), the mnth elementofadmittance matrix is obtained

as

Y
_ judmln

8tt

'Pntir) •̂ Jlpl{f')G{f%\f') ds' +pt(f) .~ jjp-(f')G(C\r') ds'+
(r) •j+ffP+n(r')G{f^\f') ds' +pc-(f) .jz jjp-(r')G(r^\f) ds'

TP HG(C\r') ds' - i-JjG(f |̂f) d/
" Trt

~SSG(C|f) ds' +-i- JjG(C|f) ds'
''m^n

2nju>p

The integrals in (2.77) are of following forms

^ =If^(r,)G(fp|f')ds'

p,q 1,2,3, ...,P

1,2,3

(2.77)

(2.78)

57



2.5 Evaluation of Excitation Vector

and

y^pq =JJ G{rp\r) ds

p,q = 1,2,3,...,P

(2.79)

where pj{r') =f —f for any vertex j of qth triangle and rp is the centroid of pth

triangle, and P denotes the total number of triangular subsections.

The Green's function becomes singular as the source and observation points

coincide and the calculation of these singular integrals needs some special treat

ment. The procedure used for the calculation of the singular integrals is given

in Appendix B.

Using this approach, the mn"1 element ofadmittancematrix can be expressed

as

Y hs _ JUSlmk
8tt

J_ c+ -pj(n+)
A-\-r'm " p(m+)q(n

' A+'m ' p(m-)q(n+) A- >m ' p(m )q(n )
An ™n

1 1
•JT(Pp(m+)q(n+) ~ -JZiPp{m+)q{n-)
^•n ^n

1 1
+

+

—7f+ Fj{n~]A-rm • * ;

1

m+)q(n )

(2.80)^m^n

2kju>p
--r^<Pp(m-)q(n+) + ~J^iPp(m-)q(n-)

™~n n '

Here, the subscript p{m±) denotes the triangle number of either plus or minus

triangle associated with mth RWG function. The subscript g(n±) has a similar

meaning. Superscript j(n±) is the free vertex number of either plus or minus

triangle associated with the nth RWG function.

2.5 Evaluation of Excitation Vector

In the present work, we have considered two types of input excitations: an

incident TEnm mode for waveguide problems and plane wave incidence for the
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conducting screen problem. In the following subsections, the computation of

excitation vector for these two cases is presented.

2.5.1 TEmn Incident Mode in the Rectangular Waveguide

According to (2.13), an element of excitation vector is given by

(Pp)q =jJMpq.Hlpds (2.81)

For a TEmn incident mode, the transverse component of incident magnetic field

can be expressed as

Xp = Ymne-^zz x eTJn (2.82)

where Ymn is the modal admittance of the mnth incident mode and is given by

•Tran
Y„ -J

Znk'
Z0 = 377 fi (2.83)

and e™ is the normalized transverse modal vector for the incident TEmn mode

which is given by

-TE

with

abe0me0n \„,n \rrm a.
(mby + [nay [ b la 2 J

sm

y{—)sm [— (x+ -) cos

m = 0,1,2,3,...

UK , b,

T{y+r
UK , b.

T(y+2}

n = 0,1,2,3, m + n y£ 0

(2.84)

Considering the discontinuities at z = 0 plane, substitution of (2.82) in (2.81)

gives

(Pp)q =YljJMpq.zxefE ds (2.85)
Ay
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2.5 Evaluation of Excitation Vector

where the subscript 'mn'has been replaced by T. The integral in (2.85) can be

evaluated using numerical or analytical methods as discussed in the following

subsections.

Computation of Excitation integral using Rooftop functions

The integral in (2.85) can be resolved into two components as

and

where,

{IX = YtA*)',

(it)* = y{ap1\

(Apl)xq =$ Mxmx .zxefE ds

(Apl)yq =JJM^y .zxefE ds

(2.86)

(2.87)

(2.88)

(2.89)

These integrals can be evaluated in a straightforward manner to give

/ abe0me0n /m
(APiTq

where,

(i()

(mb)2 + (na)''
(^) (AxpAyp) sinm7rAxp/2a

rwnAxp/2a
sin ukAyp/2b

sm

rriK. . .

(xp + uAxp) cos

nKAyp/2b

2'
-r-(yp + {v~7,)^yp>

u = 1,2,3, ...,(Lxp - 1)

(2.90)

q = u + (v - l)(Lxp- 1)

v = 1,2,3, ...,Lyp (2.91)

f
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and

{Amn)q

where,
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abe0me0n (n
(mb)2 + {no)2 Vb\b) (AxPAyP

sin mnAxp/2a
m7rAxp/2a

cos
mn I / 1\ A N— (xp + (u- -)Axp) sm

U — X, Z, o, ..., LXp

q —u + (v —l)Lxf

1 2sin nnAyp/2b
nKAyp/2b

n7r , AN— (yp + vAyp)

(2.92)

v= 1,2,3,..., (Lyp- 1) (2.93)

Computation of Excitation integral using RWG functions

According to (2.14) and using centroid approximation qth element of the excita

tion vector can be expressed as,

where,

(/'), = jsJJ M„ . z xei ds

YiM,

(Al)q = JJ Mq . z x TE
(Is

- iitf- zxtTE(f?) + %

(2.94)

z x e
TEf^c
I K)} (2.95)

where lq is the length of qth non-boundary edge and r^ denotes the centroid of

the triangles associated with the qth non-boundary edge.
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2.6 Far-Field Computation

2.5.2 Plane Wave Incidence

For uniform plane wave travelling in free space, the magnetic field can be ex

pressed as

Hl°(f) = (ueHl +uvHlv)e-^-f (2.96)

where the unit vectors ug and uv are defined in Fig. 2.5 and the wave vector fc*

is defined as

fcj = -Urki = -ki(x siridi cos ifi + ysin 0i sinifii + zcos 8i) (2.97)

The magnetic field bT° can be resolved into three components as

Hx° = (Hl° cos 9i cos <fi-Hlv°smiPl)e -jki.r

Hy° = (H$,cos0ism<pi +H%cos<pi)e-J~kif
H\° = -Hleosm0ie-jk-f (2.98)

Using (2.14), an element of excitation vector for a plane wave incidence can be

expressed as

(I% =j$Mm.Hitds (2.99)
T±
± m

When the aperture is closed with a perfect conductor, Ht = 2Ht . Hence, (2.99)

can be expressed as

(I% =2$Mm.Hi?ds (2.100)
T±

Using centroid approximation, the above integral can be evaluated as

4 =lm [Pt •̂ (C) +Pm •Bf(C)] (2-101)

2.6 Far-Field Computation

A component ofmagnetic field Hm at a point fm in region 'b' can be obtained by

placing a magnetic dipole K6(f - fm) at rm and using the reciprocity theorem
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I Image
Plane

K8{r-rm)

Figure 2.15: Measurement of magnetic field in region 'b'.

to its field and to the original field. The geometry of the problem is shown in

Fig. 2.15.

Let, E (r) and H (r) be the fields produced by the dipole in free space and

Hm is the component of magnetic field at rm in the direction of the dipole due

to the equivalent surface magnetic current —2M over the apertures radiating in

free space. The application of reciprocity theorem gives

KHm(fm) =-jJ2M.Hmds (2.102)

Equation (2.102) is evaluated by substituting M as

KHm{fm) =- J2 yn If 2M„ .H"1 ds (2.103)
n

which can be expressed in matrix form as

KHm{rm) = PmV (2.104)

where Pm is the transpose of the measurement vector Pm. An element of the

measurement vector is given by

P" =If ~2'Mn •^" ds (2-105)
Tn
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2.6 Far-Field Computation

To

Measurement

Figure 2.16: Measurement vector in region 'b'.

For the determination of far-field, the dipole K is oriented perpendicular to rm

and the dipole moment K is chosen such that it produces a uniform plane wave

in the vicinity of origin. That is

L = JUJ£ c-Jfc0-fn
K 4irrm

The plane wave is then given by

11 m — ^mc

(2.106)

(2.107)

where, um is the unit vector representing the polarization of the measurement

and km is the wave vector pointing in the direction of wave travel as shown in

Fig. 2.16

Substituting (2.106) into (2.104), we get
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Using (2.23), an element of the measurement vector is given by

Pnm = -J[ 2Mn .H? ds - J[2Mn .JTtl ds
tZ t-

=-^J*.BT*-^JJ«.BT*
Using the centroid approximation, it can be written as

Pn = -In W •H?(0 + PT •K(rcm)} (2.109)

where

2.7 Conclusion

This chapter presents a general MoM formulation of the problem of coupling

between two dissimilar regions through multiple apertures in a thin conducting

screen. Expressions for various matrices and vectors involved in the moment

method solution have been derived and simplified as much as possible such that

they can be conveniently implemented into a software code. The expressions for

the far-field magnetic field has also been evaluated.



Chapter 3

FRACTAL FREQUENCY

SELECTIVE DIAPHRAGMS IN

RECTANGULAR WAVEGUIDE

Requirement of multiband and miniaturized waveguide filters with high out-of-

band rejection has directed the focus on the use of frequency selective diaphragms

in rectangular waveguides. Waveguide based periodic structures are also very im

portant in suppressing the propagation of higher order modes in the rectangular

waveguide without increasing the dimensions of the filter. Several electromag

netic band gap (EBG) structures based on conducting strips are presented in

[162, 163].

This chapter deals with the investigations on several fractal frequency se

lective diaphragms. The self-similarity and space-filling property of fractal ge

ometries are exploited to realize frequency selective diaphragms in rectangular

waveguide which can find applications in the design of compact, light weight

and multiband waveguide filters and waveguide based electromagnetic band gap
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3.1 Formulation of the Problem

structures. Several self-affine structures based upon Sierpinski gasket, Sierpinski

carpet, Devil's staircase fractal and plus shape fractals are proposed and the

effects of different scale factors on their performance are also investigated. Self-

similar structures like Hilbert curve, Koch curve and Minkowski curves are shown

to beefficient in reducing the resonant frequency ofthe diaphragms. Some typical

applications of fractal frequency selective diaphragms in the design of waveguide

filters and electromagnetic band gap structures are also presented.

The general MoM formulation of coupling through multiple apertures pre

sented in chapter 2 is specialized to the case of diaphragms in the transverse

cross-section of a rectangular waveguide. In section 2, expressions for the de

termination of scattering parameters of the diaphragm are derived. Numerical

results for different fractal frequency selective diaphragms are presented and dis

cussed in section 3. The numerical results obtained from MoM code have been

validated by simulations on ANSOFT HFSS. Adual-band waveguide filter based

upon themodified Devil's staircase fractal geometry andanelectromagnetic band

gap structure based onself-affine Sierpinski gasket geometry are presented insec

tion 4. Lastly, a brief summary of the results is presented in section 5.

3.1 Formulation of the Problem

Aperfectly conducting thin diaphragm perforated with multiple arbitrarily shaped

apertures placed in the transverse cross-section of a rectangular waveguide is

shown in Fig. 3.1. An electromagnetic wave is assumed to be incident in the

waveguide from left. Fig. 3.2 shows the equivalent models for region 'a' and re

gion 'b'. Both the regions are semi-infinite rectangular waveguide sections short

circuited at one end.

According to (2.2), the operator equation for the problem can be expressed
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z=0

Figure 3.1: Multiple apertures in the transverse cross-section of a rectangular

waveguide.

Region V

+M

E\Hl
z=0

Region 'b'

-M

Figure 3.2: Equivalent models.
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3.2 Computation of Scattering Coefficients

as

77° (M) + Hbt(M) = -{JTt +ir;3), over A (3.1)
Nap g

where A= Q A, JVap is the number of apertures, Ht (M) denotes the tangential
i=l

component of magnetic field over A in the region 'q' due to equivalent surface

magnetic current M, and H^°, Tft are the tangential components of magnetic

field in the incident and reflected waves. Considering identical regions on both

sides of the diaphragm and the presence of perfect conductor over z = 0, (3.1)

becomes

ir:9(M) = -irt , (3.2)

Following the Galerkin's solution, the corresponding matrix equation for the

problem is

[y^y = ~Ti (3.3)

The elements of admittance matrix elements and the excitation vector can be

calculated using (2.46-2.53) and (2.90-2.93) for rooftop functions and using (2.67)

and (2.94) for RWG functions, respectively. Once the matrix equation is solved

for the unknown surface currents, scattering parameters of the diaphragm can

be calculated as described in the next section.

3.2 Computation of Scattering Coefficients

The transverse discontinuities in the rectangular waveguide are characterized by

the scattering matrix,

[S} =
[Sn] [S12]

[S2i] [s22}_

where, the pqth element of [Sy] is defined as the amplitude of pth scattered mode

at the terminal plane T; due to a qth incident mode ofunit amplitude at terminal
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T, Rectangular Waveguide

Z=Z 11 Z=0 Z=Z 12

Figure 3.3: Geometry for calculation of scattering parameters of waveguide di

aphragm.

plane Tj. The terminal planes are assumed to be located at the integral multiples

of guide wavelength which ensure that the scattering coefficients calculated at

the terminal planes are same as those calculated at the reference plane z = 0.

The geometry for the calculation of scattering matrix is shown in Fig. 3.3.

Considering a multimode incident field at Ti from region z < ZTl, the trans

verse component of electric field in the waveguide region can be expressed as

Eat = J^ B&T** +£ eft,** (3-5)

where Bas and C" represent the amplitudes of sth incident and reflected modes,

respectively, 7" is the propagation constant and eas denotes the normalized modal

vector. The modal vectors are normalized such that

Jfe^.e-ds
A

(3.6)

where 8rs is the Kronecker delta.

The submatrices [511] and [521] are computed by considering the input ex

citation from region 'a'. Assuming a single sth incident mode of unit amplitude,

the transverse component of incident and reflected electric fields at Tx can be
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3.2 Computation of Scattering Coefficients

expressed as

Knc = % (3-7)
Ni Np NN _

Kca =~< +E ^(^In) +" +E ^X(MP») +... +£ V^M^n)
„=1 n=l n=l

(3.8)

where Eat{Mpn) is the tangential component of electric field at Tx due to the nth

basis function ~Mpri defined over the pth aperture surface and is given by

!?(Mp„) =X>^ (3-9)
;=i

where L\ is the number of waveguide modes necessary to approximate the field.

The constant A^ denotes the amplitude of 1th mode due to current Mpn, which

can be expressed as

Aapnl =\\Mpn.zxealds (3.10)

Thus, using (3.7), (3.8) and (3.10), the rsth element of [Sn] can be expressed as
{jVi Np NN

-1 + E VmAalnr + ... + E V^^ + ...+ £ VNnAaNnr, r = s
n=l n=l "=1

Afj iVp JVjv

E Vln^nr + ... + E V^A^ + ... + E VNnAaNnr, r ± s
n=l n=l n=l

(3.11)

Now, the scattered field in the region 'b' is given by
jVj Np NN

Ksca =E K„lJ(-Ml„) +- +E VpnE^i-Mpn) +- +E VW^(-M*n)
(3.12)

and
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n=l n=l n=l

with

fe) =f;A>1 (3.13)
/=i

4«J = JJA^.e? XI ds

= -JfM^.zxefds (3.14)
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Thus, comparing (3.14) with (3.10), it can be seen that A^ = -At^, and hence

an element of matrix [621] can be expressed as

Ni Np NN

(S2l)rs = E V^Alnr +- +E Vt»Apnr +- +E ^«^nr (3-15)
n=l ra=l n=l

Using the symmetry property, the elements of other submatrices can be obtained

as

[S12] = [S21] [S22] = [Sn] (3.16)

3.3 Numerical Results

Based on the developed code, the scattering parameters of different fractal di

aphragms are obtained. In all the cases considered here, a WR90 waveguide with

cross-sectional dimension of 22.86 mmx 10.16 mm is used. Further, a dominant

TEio mode of unit amplitude is assumed to be incident.

3.3.1 Modified Devil's Staircase Fractal Diaphragm

The generation steps of Devil's staircase fractal [2] are shown in Fig. 3.4. Taking

a unit square as initial geometry, the base of the square is divided into three

equal parts, from which the middle third part is removed and replaced by a

rectangle of height | and width |. This gives the generator of the fractal. In

the second iteration, two rectangles of heights | and | with widths equal to h

are placed in the intervals [|,|] and [|,§], respectively. In the next iteration,

four columns with heights |, |, | and | are placed in the intervals [^,§f],

[27, 27L (if' 27] ana tP' 2?]' respectively. After an infinite number of iterations,

one can obtain an ideal fractal geometry. It is well known that the resonant

frequency of a narrow rectangular aperture lies within the operating frequency of
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3.3 Numerical Results
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(a) 1st Iteration (b) 2nd Iteration

y.

, i

11

5! 1
— 1

(c) 3rd Iteration

Figure 3.4: Generation steps of Devil's staircase fractal geometry.
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»b/27

*b/27

H___£__

^•"f
^HH a/4 • I1'''

MR •^^H*l>/27

|Bl
a/2

h b/3

BB^^^^^Ha

fil^HI 3a/4 | lb/9

Ike

Figure 3.5: A 3rd iteration modified Devil's staircase fractal diaphragm

(a=22.86 mm, 6=10.16 mm).

the rectangular waveguide if the aperture length parallel to the larger dimension

of the waveguide is sufficiently large [71]. With this consideration, an image of

the original geometry is taken along the base of the fractal geometry and the

resulting structure is rotated by 90° to fit into the waveguide cross-section. The

geometry of the modified Devil's staircase fractal diaphragm after 3rd iteration

is shown in Fig.3.5.

Due to the rectangular shape of the apertures, the problem is formulated

with rooftop functions. Firstly, a convergence test is performed for the number

of sections along x-direction (Nx) and y-direction (Ny), as well as, the num

ber of modal indices for each iteration. The convergence analysis for the first

iteration is given in Table 3.1. It can be seen from the table that 14 sections

along the ^-direction and 4 sections along ^/-direction, resulting in 94 rooftop

functions, are sufficient to yield a converged result. Similar, analysis is also per

formed for the next two iterations. The number of rooftop functions required to

obtain converged result are 123 and 191 for 2nd and 3rd iterations, respectively.
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3.3 Numerical Results

Table 3.1: Convergence analysis of single rectangular aperture.

S. No. Nx Ny Modal Indices \Su\ % change

M N

1 6 2 25 10 0.5068

2 8 2 25 10 0.4899 3.34

3 10 2 30 10 0.4800 2.02

4 12 2 35 10 0.4734 1.38

5 14 2 40 10 0.4684 1.06

6 14 3 40 15 0.4766 1.75

7 14 4 40 15 0.4795 0.61

The variations of return loss for an incident TEio mode is shown in Fig. 3.6

for three iterations. The results obtained from simulation on HFSS are also

shown which are in a good agreement with the present MoM code. Table 3.2

summarizes the resonant frequencies of modified Devil's fractal diaphragm. For

the first iteration, the single rectangular aperture of length a/2 (11.43 mm) res

onates at 14.55 GHz. The corresponding length to wavelength ratio is 0.56.

Due to smaller length of the aperture compared to the larger dimension of the

waveguide, the resonant frequency is far beyond the normal operating band of

the guide. In the second iteration, two apertures of lengths 3a/4 (17.145 mm)

and a/4 (5.715 mm) are introduced. It is found that an additional resonant

frequency appears at 8.54 GHz due to the aperture of length 17.145 mm. The

corresponding length to wavelength ratio is 0.49. So, the aperture resonates at a

frequency at a wavelength equal to twice the length of the aperture. According

to this observation, the resonant frequency of the aperture of length 5.715 mm

will be around 26.25 GHz, which is well outside the frequency band considered
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3.3 Numerical Results

8 9 10
Frequency (GHz)

11

(c) 3rd Iteration

Figure 3.6: Return loss of modified Devil's staircase fractal diaphragm for dif

ferent iterations.

Table 3.2: Resonant frequencies of modified Devil's staircase fractal diaphragm.

78

Iteration Method Resonant Frequencies (GHz) Ratio

h h h hlh hlh

1

MoM 14.55

HFSS 14.50

Difference(%) 0.34

2

MoM 8.54 14.42 1.69

HFSS 8.58 14.41 1.68

Difference(%) 0.47 0.07 0.60

3

MoM 7.35 8.61 10.40 1.17 1.21

HFSS 7.41 8.58 10.48 1.16 1.22

Difference(%) 0.81 0.35 0.76 0.85 0.82



*

+

Chapter 3. Fractal Frequency Selective Diaphragms

here. The ratio between the two resonant frequencies is 1.68, which is slightly

greater than the theoretical value of 1.5. In the third iteration, two resonances

occur at 7.35 GHz and 10.40 GHz. These resonances are due to the apertures

of lengths 7a/8 (20.002 mm) and 5a/8 (14.2875 mm). Again, the resonances

occur at wavelengths twice the lengths of the apertures. The ratios between the

successive resonant frequencies are equal to 1.17 and 1.21, as compared to the

theoretical values 1.17 and 1.2, respectively. Although the frequency response is

shown up to 12 GHz, the resonance due to the first iteration aperture remains

around 14.00 GHz. The resonance frequencies for other apertures lie outside the

band considered here. Thus, a third iteration modified Devils fractal diaphragm

is suitable for generating three resonances within the dominant mode operat

ing band of the waveguide which can be effective in the design of multiband

waveguide filters.

A further modification of the fractal has been investigated in order to obtain

a symmetric arrangement of apertures. The apertures in the upper section of

the waveguide introduced in the second and third iterations are removed and

an image of the remaining apertures is taken. The resulting geometry of the

diaphragm at third iteration is shown in Fig. 3.7 and the variation of return loss

of the symmetric fractal diaphragm is shown in Fig. 3.8. The results are obtained

with 288 rooftop functions. Again the present method shows a good agreement

with the HFSS results. A comparison of frequency response between the the

modified and symmetric Devil's staircase fractals diaphragms are tabulated in

Table 3.3. From the table, it is evident that the resonant frequencies for the

symmetric Devil's fractal diaphragm shows an upward shift. This is in line

with the observation presented in [71] for the dual aperture array. However, the

ratio between the resonant frequencies remains almost same as was in case of
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3.3 Numerical Results

Figure 3.7: A 3rd iteration symmetric modified Devil's staircase fractal di-

aphragm(a=22.86 mm, 6=10.16 mm).

9 10
Frequency (GHz)

11 12

Figure 3.8: Return loss of 3rd iteration Symmetric modified Devil's staircase

fractal diaphragm.
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Table 3.3: Comparison of resonant frequencies between the modified and sym

metric Devil's staircase fractal at 3rd iteration.

Geometry Resonant Frequencies (GHz) Ratio

h h h hlh hlh

Modified fractal 7.35 8.61 10.40 1.17 1.21

Symmetric fractal 7.47 9.03 10.85 1.21 1.20

Figure 3.9: A 3 iteration self-similar Sierpinski carpet fractal.

asymmetric Devil's staircase fractal diaphragm.

3.3.2 Self-affine Sierpinski Carpet Diaphragm

A square or a rectangle can be taken as the initial structure for the generation

of original self similar Sierpinski carpet [2] fractal geometry. The rectangle is

subdivided into nine equal subrectangles from which the center one is removed.

The same process is iterated on the remaining subrectangles in the next iteration.

The geometry of a 3rd iteration self-similar Sierpinski carpet fractal is shown in

Fig. 3.9. For the self-similar fractal geometry, the scale factor in both x- and

^-directions are same and equal to 1/3. Hence, as evident from Fig. 3.9, the

aperture in 1st iteration will have a lengtha/3 (7.62 mm). The resonant frequency
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of the aperture will be around 19.68 GHz and the ratio between the successive

resonant frequency will beequal to 3which will generate the resonance far outside

the normal operating band of the waveguide. Taking this into consideration, a

self-affine fractal geometry is proposed and the generation steps are shown in

Fig. 3.10. The initial rectangle is subdivided into nine subrectangles such that

the length of the three rectangles along the vertical axis are s.L where s and

L, respectively, denote scale factor and the length of the initial rectangle. The

lengths of the other rectangles are ii=^L. The initial rectangle is divided into

three sections along y-axis. Thus, the widths of the rectangles are W/3, where

W denotes the width of the initial rectangle. In the first iteration, the center

rectangle is removed. In the next iteration, the same process is repeated on

the remaining subrectangles. The dimensions of the removed rectangles along

the vertical axis are (s2.L,w/9) and those along the sides of initial rectangle

are (^~s>L:w/27). Now, the apertures with lengths much smaller than the
larger dimension of the waveguide will have resonant frequency far away from

the normal operating band of the guide and also, the apertures closer to the

side wall of the waveguide will not affect the frequency response due to the weak

electric field of TEi0 mode close to the side wall. Hence, the apertures close to

the sides of initial rectangle can be removed without affecting the final result.

The resulting self-affine modified Sierpinski carpet fractal diaphragm is shown

in Fig 3.11 for different iterations. The initial dimensions of the rectangle are

(20.7 mmx5.10 mm) with s=0.87.

Similar to the analysis of Devil's fractal, first, a convergence analysis is car

ried out for the number of sections and the required number of waveguide modes.

It is found that 28, 96 and 256 rooftop functions are required in the 1st, 2nd and

3rd iterations, respectively. The frequency response of the modified self-affine
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(a) 1st Iteration

(2-L) (2.L)

(b) 2nd Iteration

Figure 3.10: Generation steps of self-affine Sierpinski carpet fractal geometry.
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(a) 1st Iteration
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(b) 2nd Iteration
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22.86 mm

(c) 3rd Iteration

Figure 3.11: A self-affine modified Sierpinski carpet fractal diaphragm for differ

ent iterations.

Sierpinski carpet fractal aperture is shown in Fig. 3.12 and different parameters

are tabulated in Table 3.4. At the first iteration, the aperture of length 18 mm

resonates at 8.42 GHz, the corresponding wavelength is approximately twice the

length of the aperture. In the second iteration, the second resonance at 10.5 GHz

is generated due to the aperture length of 15.65 mm. The aperture length to res

onant wavelength is 0.55. The ratio between the two resonant frequencies is 1.27

which is larger than the theoretical value 1.15. Also, first resonant frequency of

the fractal diaphragm shifts downward. In the 3rd iteration, the resonant frequen

cies are 8.27 GHz, 9.91 GHz and 12.04 GHz with ratios between the successive

resonant frequencies 1.20 and 1.21. Thus, the ratio approaches the theoretical

value of 1.15 as the order of iteration increases. The second resonant frequency

decreases sharply as compared to the first resonant frequency. Thus, using the
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Figure 3.12: Return loss of modified self-affine Sierpinski carpet fractal di

aphragm for different iterations.

Table 3.4: Resonant frequencies of self-affine Sierpinski carpet diaphragm.

Iteration Method Resonant Frequencies (GHz) Ratio

h h h hlh hlh

1

MoM 8.42

HFSS 8.38

Difference(%) 0.48

2

MoM 8.28 10.50 1.27

HFSS 8.30 10.49 1.26

Difference(%) 0.24 0.09 0.79

3

MoM 8.27 9.91 12.04 1.20 1.21

HFSS 8.21 9.96 11.96 1.21 1.20

Difference(%) 0.73 0.50 0.66 0.83 0.83
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self-affine fractal geometry three transmission bands are obtained. Since, the res

onant frequencies are controlled by the lengths parallel to the larger dimension

of the waveguide, the location of the resonant frequencies can also be changed

by properly selecting the length of the initial rectangle. Also, by using different

scale factor, one can control the location of resonant bands.

In the remaining subsections, the geometriesconsidered are of arbitrary shape

and Rao-Wilton-Glisson (RWG) functions are used to model the geometries. >

3.3.3 Sierpinski Gasket Diaphragm

An ideal Sierpinski gasket [2] geometry is obtained by applying a geometric

transformation on a generating triangle. An inverted triangle defined by the mid

points of the sides of initial triangle is subtracted from the generating triangle.

Successive repetition of this subtracting procedure results in an ideal Sierpinski ~f

gasket geometry. Due to practical limitations, only a few iterations are used

in practice. The geometry of a 2nd iteration Sierpinski gasket aperture in the

transverse cross-section of a rectangular waveguide with cross-sectional dimen

sions (a x b) is shown in Fig. 3.13, with a scale factor s = 0.5. The vertices of

generating triangle are chosen as (0,0), (a, 6/2) and (0,6). Thus, the generating

triangle has a base length b and height H equal to a. The resonant frequencies of

this self-similar structure are spaced by a factor of 2. However, this factor can be

chosen arbitrarily to allocate the resonant frequencies at a desired location [6]. In

order to reduce the ratio of successive resonant frequencies of gasket aperture, we

have developed a self-affine gasket geometry with a scale factor s —0.8 as shown

in Fig. 3.14. In the first iteration, the diaphragm consists of a single triangular

aperture oflength 18.29 mm (0.8a) parallel to larger dimension ofthe waveguide.

In the second iteration, three triangular apertures of lengths 14.63 mm (0.64a)
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Figure3.13: A 2nd iteration self-similar Sierpinski gasketdiaphragmwith s = 0.5.

Figure 3.14: A 2nd iteration self-affine Sierpinski gasket diaphragm with s —0.8.
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Table 3.5: Convergence analysis of single triangular aperture.

S. No. No. of

RWG functions

Modal Indices ISllI % change

M N

1 6 20 25 0.6728

2 10 20 35 0.6981 3.76

3 14 25 45 0.7021 0.57

4 18 30 45 0.7085 0.91

and 3.66 mm (0.16a) are introduced.

Firstly, the convergence analysis for number of RWG functions and the re

quired number ofmodal indices isperformed for 1st iteration which issummarized

in Table 3.5. It is found that 14 RWG functions are sufficient to obtain converged

result with variation of magnitude of reflection coefficient less than 1%. Hence,

the final output for the 1st iteration of Sierpinski gasket aperture is taken with

14 RWG functions. Similar convergence analysis is also performed for the 2nd

iteration and it is found that 44 RWG functions are required to obtain a con

verged result. The variation of return loss of this gasket aperture placed inside

an X-band rectangular waveguide is shown in Fig. 3.15 for two iterations. The

single triangular aperture resonates at 9.04 GHz. It can be seen from the plots

that for second iteration, the 1st resonant frequency shifts to 8.92 GHz and a sec

ond resonance appears at 11.72 GHz with a ratio between these two frequencies

equal to 1.31. This 2nd resonance appears due to triangular apertures of lengths

14.63 mm, introduced in the second iteration. In general, the length parallel to

the largerdimension ofwaveguide determines the resonant frequency of the aper-
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Figure 3.15: Return loss of self-affine Sierpinski gasket diaphragm with s = 0.

for two iterations.
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Figure 3.16: Return loss of 2nd iteration modified Sierpinski gasket diaphragm.

ture. Hence, it may be concluded that the smaller aperture of length 3.66 mm

will have a resonant frequency far outside the frequency band under considera

tion and also, it will not affect the frequency response due to its position near

to the side wall of the waveguide where the electric field of TEio mode is weak.

This is confirmed by Fig. 3.16, which shows the response with the 3.66 mm aper

ture removed. As can be seen from the plots, a rejection frequency is formed at

9.80 GHz for the 2nd iteration. The resonant frequencies of the Sierpinski gasket

aperture are summarized in Table 3.6.

In order to study the effect of scale factor on the frequency response, two more

gaskets with scale factors s = 0.7 and s = 0.9 were analyzed. However, if the

same generating triangle of base length band height a is used, the 1st iteration

apertures will have lengths 0.7a and 0.9a, respectively. In such a case, one of

the resonant frequencies will fall well outside the normal operating band of the

waveguide. Therefore, the length offirst iteration triangle was kept constant and
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Table 3.6: Resonant frequencies of Sierpinski gasket fractal diaphragm.

Method 1st Iteration 2nd Iteration Ratio

h (GHz) h (GHz) h (GHz) hlh

MoM 9.04 8.92 11.72 1.31

HFSS 9.07 8.97 11.67 1.30

Difference (%) 0.33 0.56 0.43 0.76

Table 3.7: Effect of scale factor on the frequency response of Sierpinski gasket

diaphragm.

Scale

Factor (s)

h (GHz) h (GHz) hlh Theoretical

Ratio

0.7 9.2 13.1 1.42 1.43

0.8 8.92 11.72 1.31 1.25

0.9 8.45 10.2 1.21 1.11

the height H of the generating triangles was changed such that H = ^^. The

variations of return loss for 2nd iteration gasket apertures is shown in Fig. 3.17

for three different scale factors. It can be seen from the plots that, for a fixed

length of the Is' iteration aperture, the first resonant frequency decreases with

higher scale factor and the successive frequency ratios are 1.42, 1.31 and 1.21 for

s = 0.7, s = 0.8 and s = 0.9, respectively. The effects of scale factors are shown

in Table 3.7. Thus, the resonant frequencies can be controlled by changing the

length of the primary triangle in conjunction with the scale factor.

Another modification of Sierpinski gasket structure is obtained by dipole

arrangement of the original apertures. The generation steps of the modified

dipole structure are same as that of an ideal gasket geometry except that an
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10 11 12
Frequency (GHz)

13 14

Figure 3.17: Return loss of 2nd iteration gasket diaphragm with different scale

factors.

image of the original structure is taken about the base line of the initial triangle.

The first two iterations of gasket dipole aperture are shown in Fig. 3.18. In

order to ensure the continuity of apertures of original and image triangles, a

certain amount of overlapping is incorporated. For scale factors greater than

0.5, the vertex of the subtracted triangle is kept at the mid point of the base

of subtracted triangle instead of keeping it at the base of initial triangle, as

illustrated in Fig. 3.19 for an arbitrary triangle with vertices {xi,yi), [x2,y2)

and (0:3,2/3). The geometry ofa 2nd iteration modified gasket dipole diaphragm

is shown in Fig. 3.20 and the variation of return loss for different iterations is

shown in Fig. 3.21. In this case, 17 and 51 RWG functions were used to obtain

a converged result for 1st and 2nd iteration, respectively. It can be seen that

the first resonant frequency decreases with the order of iteration. The resonant

frequencies for the 2nd iteration gasket dipole geometry are at 8.70 GHz and
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Iteration 1

Iteration 2

Figure 3.18: Generation steps of Sierpinski gasket dipole geometry.
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(a) Original Geometry (b) Modified Geometry

Figure 3.19: Geometric modification for dipole arrangement of 1st iteration gasket

aperture with scale factor greater than 0.5.
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16 mm

12.8 mm

10.24 mm

Figure 3.20: A 2nd iteration modified self-affine gasket dipole diaphragm.

13.05 GHz with a ratio of 1.5. This ratio is much higher than the ideal ratio 1.25

which is due to the incorporated geometrical modifications. Also, a comparison

of the dimensions and resonant frequencies of the original gasket and the dipole

aperture shows that the dipole aperture can resonate at a smaller frequency as

compared to the original gasket aperture of same length.

3.3.4 Hilbert Curve Diaphragm

Hilbert curve fractal geometries are widely used in antenna miniaturization due

to their space-filling properties. An important characteristic ofspace-filling curve

is that, a relatively longer slot can be compacted into a smaller area and such

slots resonate at a wavelength much larger than the wavelength corresponding

to the initial area which it fills. The generation steps of Hilbert curve fractal

can be found in [2]. Each successive stage consists of four copies of previous

stage, connected with additional line segments. The geometry is not strictly

self-similar due to these additional line segments. The dimension of the Hilbert

curve approaches 2 as the number of iterations increase and for large number of

96



*

Chapter 3. Fractal Frequency Selective Diaphragms

-lo

•

If -MoM

HFSS
•

rn
•a

1-20
©

| -30
-*-

-40-

-50

8

9 10 11 12
Frequency (GHz)

(a) 1st Iteration

9 10 11 12
Frequency (GHz)

13 14

13 14

(b) 2nd Iteration

Figure 3.21: Return loss of Sierpinski gasket dipole diaphragm for two iterations.
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Figure 3.22: A 3rd iteration Hilbert curve fractal diaphragm.

iterations, the length of the additional line segments are negligible as compared

to the total length of the curve which makes the geometry self-similar. Here,

we have considered a Hilbert curve frequency selective diaphragm with an initial

square of dimensions 8 mm x 8 mm. The geometry of a third iteration Hilbert

curve diaphragm in the transverse cross-section of a rectangular waveguide is

shown in Fig. 3.22.

Thenumber ofRWG functions required to obtain converged result for 1st, 2nd

and 3rd iterations are 23, 51, and 103, respectively. The frequency response of

Hilbert curve aperture for three iterations is shown in Fig. 3.23 and the results

are summarized in Table 3.8. It can be seen from the plots that the first

resonant frequency of Hilbert aperture decreases significantly as the order of

iteration increases, despite the outer dimension of initial square being constant.

The primary resonant frequency for thefirst iteration is 15.66 GHz. The value for

the next two higher order iterations are 10.46 GHz and 7.55 GHz, respectively.

Hence, there is a 51.78% decrease in the first resonant frequency. The ratios

between the successive resonant frequencies for 3rd iteration Hilbert aperture are

1.59 and 1.63, whereas for 2nd iteration, the corresponding value is 1.80. Hence,

by using higher order iterations, the fractal frequency selective diaphragm can
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8 10 12 14 16
Frequency (GHz)
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Figure 3

tions.

(c) 3rd Iteration

23: Return loss of Hilbert curve fractal diaphragm for different itera-

100

Table 3.8: Resonant frequencies of Hilbert curve fractal diaphragm.

Iteration Method Resonant Frequencies (GHz) Ratio

h h h hlh hlh

1

MoM 15.66

HFSS 15.71

Difference(%) 0.32

2

MoM 10.46 18.85 1.80

HFSS 10.55 19.02 1.80

Difference(%) 0.86 0.90 0

3

MoM 7.55 11.99 19.56 1.59 1.63

HFSS 7.49 12.07 19.48 1.61 1.61

Difference(%) 0.79 0.67 0.41 1.25 1.23
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8 mm

Figure 3.24: A 3 iteration rotated Hilbert curve fractal diaphragm.

be made to resonate at smaller intervals. By changing the initial dimension of

the square, the resonant bands can be placed at desired location.

The location of these resonant frequencies can also be changed by rotating

the Hilbert aperture by 90° as shown in Fig. 3.24, since now the dominant mode

electric field encounters a different orientation of the aperture geometry. The fre

quency response of the rotated Hilbert curve diaphragm of 3rd iteration is shown

in Fig. 3.25. Here, the resonances occur at 10.35 GHz, 13.95 GHz, 20.35 GHz

with ratios 1.35 and 1.46. It can be seen from the plots that the frequency re

sponse consists of wide stopbands separated by very sharp transmission bands.

Also, by using higher iterations, we can locate the resonant frequencies within

the operating band of X-band rectangular waveguide. It may be noted that the

resonant frequencies are relatively closely spaced for the rotated Hilbert struc

ture.

3.3.5 Plus Shape Fractal Diaphragm

Plus shape fractal apertures [50] are widely used in the design of frequency

selective layers. An ideal plus shape fractal is generated by placing four copies of
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Figure 3.25: Return loss of3rd iteration rotated Hilbert curve frequency selective

diaphragm.

the initial geometry, each of which is scaled by a factor 0.5. The basic limitation

of this geometry is that only a few iterations are possible, because the spacing

between the elements decreases as the order of iteration increases. Here, we have

designed a self-affine plusshape fractal aperture as shown in Fig. 3.26. The initial

plus shape has a length 14 mm along x-direction and 8 mm along y-direction.

In the 2nd iteration, the initial structure is scaled by 0.7 in x-direction and by

0.5 in y-direction and four such copies are placed at points defined as (a/4, 6/4),

(3a/4,6/4), (3a/4,36/4) and (a/4,36/4).

The numbers of RWG functions required to obtain converged result are 25

and 109 for 1st and 2nd iteration, respectively. The variation of return loss for

TE10 mode incidence is shown in Fig. 3.27 for two iterations. As seen from the

plot, the initial plus shape aperture resonates at 10.85 GHz. The ratio between

horizontal length of the plus aperture and corresponding resonant wavelength is
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22.86 mm

14.0 mm
9.8 mm

Figure 3.26: A 2nd iteration plus shape fractal diaphragm.

around 0.48. For the second iteration, the resonant frequencies are 10.34 GHz

and 16.86 GHz with a ratio of 1.63. Evidently, the first resonant frequency

of the fractal geometry decreases with the order of iteration. The wavelength

corresponding to the second resonant frequency is around 1.82 times the hor

izontal length of the second iteration plus shape fractal. Since, the aperture

length perpendicular to the incident electric field primarily determines the res

onant frequency, the effect of vertical arm is expected to be small. Therefore, a

modification of the above fractal structure was considered by removing the ver

tical arms of the plus shape resulting in five rectangular apertures of dimensions

(14.0 mm x 0.5 mm) and (9.8 mm x 0.5 mm). The frequency response of the

modified structure is shown in Fig. 3.28. It can be seen from the plot that the

first resonant frequency is at 10.85 GHz which corresponds to that of the first

iteration single rectangular aperture. The response remains the same for higher

frequency region. Hence, it may be concluded that the length of vertical arm

can be used as a parameter to fine tune the lower resonant frequency.

In order to see the effect of scale factor on the response, we have analyzed a
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Figure 3.27: Return loss of plus shape fractal diaphragm for two iterations.
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Figure 3.28: Return loss of 2nd iteration modified plus shape fractal diaphragm.

plus shape fractal with a scale factor of s = 0.6. The initial length of horizontal

arm of plus shape has been taken to be 18 mm with vertical arm length equal

to 8 mm. The size of the initial plus shape is chosen such that the second

iteration plus apertures can be fitted within the cross sectional dimension of the

waveguide. The initial geometry is scaled by 0.6 in x-direction and by 0.5 in

y-direction resulting in four plus structures of horizontal length 10.8 mm and

vertical length 4 mm. The variation of return loss of 2nd iteration plus fractal

diaphragm with different scale factors is shown in Fig. 3.29. It can be seen from

the plot that with s —0.6, the resonant frequencies are at 8.05 GHz and 15.8 GHz

with a ratio of 1.96. Again, the resonant wavelengths are approximately twice

the horizontal length of the plus aperture. Hence, the scale factor along with

the initial length of the plus shape can be used as a design parameter in order

to locate the resonant band at a desired location.
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Figure 3.29: Return loss of 2nd iteration plus shape fractal diaphragm with dif

ferent scale factors.

3.3.6 Minkowski Fractal Diaphragm

Minkowski fractal elements are also widely used in the design of antenna and

frequency selective surface elements [50]. The fractal is generated by using an

iterative process involving scaling and translation of the starting geometry. The

initial geometry is a square and the prefractal consists of five transformations.

The IFS of the Minkowski fractal can be expressed as [50]

Wi
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Figure 3.30: A 2nd iteration Minkowski fractal diaphragm.
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The geometry of 2nd iteration Minkowski fractal diaphragmis shown in Fig. 3.30,

where the starting geometry is a square of dimensions 9 mm x 9 mm.

The frequency response of Minkowski diaphragm for different iterations are

shown in Fig. 3.31. The numbers of RWG functions required to obtain a con

verged result are 40, 64, and 403 for 1st, 2nd and 3rd iteration, respectively. The

resonant frequency of the square aperture is well beyond the dominant mode

operating frequency range of the waveguide. As, the order of iteration increases,
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Figure 3.31: Return loss ofMinkowski fractal diaphragm withdifferent iterations.

the resonant frequency decreases significantly from 12.4GHzto 10.1 GHz. Hence,

there is a 19% reduction of resonantfrequency from the 1st to 2nd iteration. Thus,

the frequency selective diaphragm resonates at much larger wavelength than the

corresponding wavelength for initial geometry. The scaling factor of the geome

try is | which causes the higher order resonant bands spaced by a factor around

3 and this frequency will fall well outside the considered frequency band.

3.3.7 Koch Fractal Diaphragm

Another fractal geometry which is extensively used in antenna miniaturization is

Koch curve. The key featureofthis fractal geometry is that the end-to-end length

remains the same, although the total length of the curve increases by a factor

4/3 after each iteration. In this analysis, we have considered a 10 mm x 0.5 mm

slot oriented along the larger dimension of the waveguide. A third iteration Koch

fractal slot with 60° indentation angle is shown in Fig. 3.32.
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Figure 3.32: A 3rd iteration Koch fractal aperture.

Table 3.9: Resonant frequencies of a Koch fractal diaphragm.

Iteration Resonant Frequencies (GHz) Difference

(%)MoM HFSS

0 14.80 14.85 0.34

1 12.10 12.06 0.33

2 10.29 10.18 0.1.07

3 9.45 9.43 0.21

The variation of return loss of the Koch fractal aperture is shown in Fig. 3.33,

where K0 to K3 denote the 0th to 3rd iteration. The performance ofKoch aperture

is summarized in Table 3.9. The convergence analysis shows that 7, 48, 191 and

257 RWG functions are required to obtain converged result for K0, Ki, K2 and

K3, respectively. As expected, the increase in the order of iteration shifts the

resonant frequency of the aperture downwards. The resonant frequency of the

rectangular slot of length 10mm is 14.85 GHz. As the order of iteration increases,

the corresponding resonant frequencies are at 12.1 GHz, 10.3 GHz and 9.45 GHz

for 1st, 2nd and 3rd iterations, respectively. Hence, there is a significant amount

of decrease in the resonant frequency of Koch aperture and by using such fractal

diaphragm, the slot may be made to resonate within the single-mode frequency
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Frequency (GHz)

Figure 3.33: Return loss of Koch fractal diaphragm for different iterations.

region of the waveguide. It may also be mentioned here that the parameters

like initial slot length and the indentation angle provide additional flexibility for

locating the resonant frequency.

3.4 Finite Periodic Structures Based on Fractal

Diaphragms

This section presents some typical applications of fractal frequency selective di

aphragms in the design offilters and electromagnetic band gap structures. First,

a waveguide dual-bandpass filter is investigated using the modified Devil's stair

case fractal geometry. In the next subsection, electromagnetic band gap structure

based on a 2nd iteration self-affine Sierpinski gasket is described. The finite peri

odic structure is analyzed by obtaining the transfer matrix of the unit cell which

is then cascaded in order to obtain the final response.
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Figure 3.34: Frequency response of a dual-band waveguide filter based on modi

fied Devil's staircase fractal diaphragm.

3.4.1 Dual-band Waveguide Filter

A 3rd iteration modified Devil's staircase fractal geometry of Fig. 3.5 is used

to design a dual-band waveguide filter. From the numerical results shown in

Fig. 3.6 it is found that the fractal diaphragm resonates at 7.35 GHz, 8.61 GHz,

and 10.40 GHz. A periodic arrangement of three such diaphragms was considered

with a separation of 8.5 mm between the diaphragms. Thus, the overall size of

the filter is 25.5 mm. The frequency response of the filter is shown in Fig. 3.34.

It can be seen that the filter offers three passbands with center frequencies at

8.45 GHz, 10.20 GHz, and 12 GHz. The first two passbands are separated by

two stopbands which offers a good out-of-band rejection. So, it is desirable to

operate the filter at the first two passbands. The bandwidth of the filter is around

3.65% and 4.00% at the first two passbands. The value of insertion loss is around

200 dB at the stopband between the two passbands.
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Figure 3.35: Return loss ofEBG for different number ofsections with p=20 mm.

3.4.2 Waveguide Based Electromagnetic Band Gap Struc

tures

In this subsection, a rectangular waveguide based electromagnetic band gap

structures based upon the self-affine Sierpinski gasket (Fig. 3.14) is presented.

The structure consists of N number of fractal diaphragms with a periodicity p.

It was found from Fig. 3.15 that the fractal diaphragm offers a stop band at

9.80 GHz. Fig. 3.35 shows the effect ofnumber ofsections (JV) for a periodicity

(p) equal to 20 mm. It is seen that the insertion loss goes into deep rejection and

also, the rate of fall outside the bandgap is steeper for larger number of sections.

The variation of periodicity on the behavior of fractal electromagnetic bandgap

structure is shown in Fig. 3.36. It is seen that the bandgap is maximum when

the periodicity is close to Xg/2. The final electromagnetic bandgap structure

response of the Sierpinski gasket diaphragm is shown in Fig. 3.37 with 7 sections

and periodicity equal to 20 mm. It can beseen that the fractal diaphragm offers

112

*

*



-20
pa

J -40
c

5

-80

Chapter 3. Fractal Frequency Selective Diaphragms

- p=10 mm
~ p=20 mm
—p=30 mm

10 11
Frequency (GHz)

12

Figure 3.36: Return loss of EBG for different periodicity with N=7.

a bandgap of 20% with center of the band at 10 GHz.

3.5 Summary

The fundamental properties such as, self-similarity, self-affinity and space-filling

properties, have been studied numerically for fractal apertures in the transverse

cross section of a rectangular waveguide. The results presented in this chapter

are aimed at establishing a relation between the self-affinity of fractal based fre

quency selective diaphragm and its frequency response. From the results, it can

be concluded that, the location of the resonant bands can be controlled by select

ing an appropriate scale factor. The important advantage of fractal frequency

selective diaphragms based on Koch curve, Minkowski curve and Hilbert curve

is the realization of resonant apertures with reduced overall physical size. Since,

these fractal based frequency selective geometries offer transmission bands sep-
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Figure 3.37: Return loss ofEBG based on 2nd iteration Sierpinski gasket aperture.

arated by rejection band, they may offer good out-of-band rejection ratio in the

design of waveguide filters. The ratio between the successive resonant frequen

cies are slightly greater than the ideal ratios which is a characteristics of fractal

geometries of lower order iterations. Also, it is found that the resonant frequen

cies shifts upwards as the aperture location moves away from the center of the

waveguide cross-section, which is another reason of obtaining larger frequency

ratios. Two typical applications of fractal diaphragms are presented. It is found

that the the dual-band waveguide filter offers good out-of-band rejection, since

the transmission bands are separated by stopbands. However, the bandwidth of

the filter at these bands is small, which can be increased by proper optimization

of the fractal geometry. The fractal electromagnetic bandgap structure shows

a wide bandwidth with a good roll-off outside the stopband. Such electromag

netic bandgap structures can be used in the design of band-rejection filter and

harmonic suppression of waveguide resonators.
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Chapter 4

ELECTROMAGNETIC

TRANSMISSION THROUGH

FRACTAL APERTURES IN

CONDUCTING SCREEN

In this chapter, the problem of coupling through various fractal apertures in an

infinite conducting screen is investigated. Based on MoM formulation described

in chapter 2, a MATLAB code has been developed to determine the field distribu

tion on the aperture surfaces. The triangulation of the aperture surfaces has been

done using the MATLAB PDE toolbox. Although the formulation presented in

chapter 2 is completely general, for simplicity, the regions on both sides of the

infinite conducting screen are considered to be identical. The coupling charac

teristics of fractal apertures are expressed in terms of its transmission coefficient

and the transmission cross-section which describe their behavior in near-field and

far-field regions, respectively. In section 1, a MoM formulation of the problem of
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4-1 General Formulation of the Problem

Infinite Conducting
Screen

Figure 4.1: Coupling between two half-space regions through multiple apertures.

coupling through multiple apertures in an infinite conducting screen ispresented.

The computation of transmission coefficient and the transmission cross-section

is presented in section 2. The present MoM code has been validated with some

results on multiple rectangular apertures reported in earlier literature [109]. This

is presented in section 3. In section 4, numerical results for some typical fractal

apertures are presented and discussed. Finally, the main results are summarized

in section 5.

4.1 General Formulation of the Problem

The general problem of coupling through multiple arbitrarily shaped apertures

in an infinite conducting screen is shown in Fig. 4.1. As discussed in chapter 2,

the equivalence principle and image theory are applied to decouple the original

problem into two equivalent problems, one for each region (Fig. 4.2). Considering

identical regions on opposite sides ofthe apertures, the operator equation for the
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I Image

Region 'a' 1 Plane

2Af

M^J Am

I

Mi„.

Z=0 Jim Z=0

(a) Valid for region z < 0 (b) Valid for region z > 0

Figure 4.2: Equivalent models.

problem can be expressed as

2HJt (2M) = -Ht

Region 'b'

-2M

Image
Plane

(4.1)

Tffs,where Ht (2M) denotes the tangential component of the magnetic field due to a

surface magnetic current 2M radiating in free space. Application of MoM results

in the following matrix equation

2[Yhs]V = I (4.2)

where an element of the admittance matrix [Yhs] can be expressed as given in

(2.69) and can be computed according to (2.80). The excitation vector elements

are computed using (2.101) assuming plane wave incidence.

4.2 Computation of Transmission Coefficient and

Transmission Cross-Section

Once the matrix equation (4.2) is solved for the unknown magnetic surface cur

rents, different near-field and far-field parameters can be computed.
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4-2 Computation of Transmission Coefficient and Transmission Cross-Section

4.2.1 Transmission Coefficient

The coupling through apertures in an infinite conducting screen illuminated by

a uniform plane wave is characterized by the transmission coefficient which is

defined as the ratio of time averaged power, Ptrans, transmitted into region 'b'

to the time averaged incident power, Pmc, intercepted by the apertures in region

The power transmitted into region 'b' can be expressed as

apert

Ptrans =\te IJJ EXHb\-2M) .hds\ (4.3)

where h is the unit outward normal to the aperture surface and H (-2M)

denotes complex conjugate of tangential component of magnetic field due to

current -2M radiating in free space. Using M = z x E, (4.3) can be expressed

as

'JP
apert

Ptrans =& JJ M• it{-2M) ds (4.4)
2

Expanding M in terms of basis functions, we get

N

Hbt(-2M) =- Y,VnHbt(2Mn) (4.5)
n=l

Thus, (4.4) is written as

Ptrans ==-\** feKJJ M.T^{2Mn) .dS J
\ n apert /

= \Re ("EEV™Vn Ĥ m •Hht\2Mn) dS)
\ m n apert /

If Mm are real, then the conjugate operator can be taken outside the inte

gral and hence, the negative of integral term represents the admittance matrix

elements for half space region as given in (2.69). Hence

Ptrans =\llli (^.V^) (4-6)
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which can be expressed in matrix form as

Ptrans =\lU (v[Yhs}*V*) (4.7)
where V denotes the transpose of coefficient vector V and the asterisk denotes

complex conjugate.

The time averaged incident power is given by

1
p

1 n \ El xlt*.hds
Apert

•q\Hi0\2A cos Oi

where A denotes the aperture area and 9i is the angle of incidence.

Hence, the transmission coefficient can be expressed as

Re (v[Yhs}*V*)
(rj\Hi0\2A cos 9i)

4.2.2 Computation of Transmission Cross-section

Transmission cross-section is defined as the area which contains power to pro

duce the radiation field Hm by omnidirectional radiation over half space. The

computation of Hm is described in chapter 2 and can be obtained from (2.108).

Mathematically, it can be expressed as

27rr,

27rr'

u2e2

8n

2 Vb\Hm\

Va\H \2
uj2e2

,.2
in

pmy

pmy
I w

H

(4.c

(4.9)

(4.10)

where Pm denotes the transpose of measurement vector Pm.

Now, depending on the polarization of measurement vector Pm, transmission

cross-section can be measured in four principal planes (see Fig. 4.3) as
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tz To

H(H

fm

Measureme

Point

Yin ^H |v

^<™Jvi
y

^F^n

Infinite

Conducting
Screen

Figure 4.3: Measurement vector

1. Tyy, for y-polarized measurement in y = 0 plane.

<£m = 0° um = y

2. T0y, for 0-polarized measurement in y —0 plane.

¥>m = 0° "m

3. T$x, for ^-polarized measurement in x = 0 plane.

Vm = 90°

4. rra, for x-polarized measurement in x = 0 plane.

<An = 90° Wjn •*'

where <pm is defined in Fig 1.14. It is to be mentioned here that the transmission

cross-section defined in (4.10) is normalized with respect to the square of the
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Table 4.1: Convergence of transmission coefficient for an array of 4 square aper

tures.

No. of

RWG Functions

Transmission Coefficient Percentage Change

Parallel Perpendicular Parallel Perpendicular

84 1.7633 1.2953
- -

160 1.8271 1.3765 3.62 6.27

260 1.8583 1.4202 1.71 3.17

384 1.8767 1.4470 0.99 1.89

532 1.8888 1.4648 0.64 1.23

704 1.8973 1.4774 0.45 0.86

first resonant wavelength, Ai, of fractal geometry and is expressed as

r(dB) = 10log
(A1)2

(4.11)

4.3 Validation of Computer Code

Based upon the formulation presented earlier, a computer code has been devel

oped in MATLAB 7. The code has been validated by considering the problem

of multiple rectangular apertures in an infinite conducting screen. This problem

has been analyzed in [109] using rooftop basis functions with the correct edge

singularity incorporated into them.

The first problem considered is an array of four square apertures in an infinite

screen illuminated by a plane wave, shown in the inset of Fig. 4.4. In all the

cases considered in the present work, the incidence plane is taken to be xz-

plane. Before calculating the transmission coefficient, a convergence analysis

was carried out and Table 4.1 shows the results of the convergence study for
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4.3 Validation of Computer Code

Table 4.2: Convergence of transmission cross-section for six rectangular aper

tures.

No. of

RWG functions

r/X2 Percentage Change

Parallel Perpendicular Parallel Perpendicular

108 0.6795 0.3503 -
-

270 0.5877 0.3901 13.51 11.36

504 0.5475 0.4280 6.84 9.72

810 0.5282 0.4522 3.53 5.61

1188 0.5177 0.4679 1.99 3.47

1638 0.5113 0.4787 1.24 2.31

2160 0.5071 0.4864 0.82 1.61

both parallel and perpendicular polarizations with normal incidence. The length

of the side of each aperture is 0.5A and the spacing between adjacent apertures

is d = 0.5a. From the table, it can be seen that the transmission coefficients

converge to within 2% for 384 RWG basis functions. From this study, it is

found that the result converges when the maximum edge length is less than

0.1 Awhere Ais the operating wavelength. Also, it can be seen that the rate of

convergence for parallel polarization is much faster than that for perpendicular

polarization. Fig. 4.4 compares the results obtained from the present analysis

with those reported in [109], where an excellent agreement can be seen. Next, in

order to verify the far-field calculation, the transmission cross-section patterns of

a configuration of six rectangular apertures (shown in the inset ofFig. 4.5) were

computed. Theconvergence oftransmission cross section normalized with respect

to the square ofoperating wavelength for different polarizations of incident wave

with 45° angle of incidence is given in Table 4.2. From the table, it is noted
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Figure 4.4: Transmission coefficient for an array of 4 square apertures versus

inter-aperture distance at normal incidence. The length of the sides of each

aperture is 0.5A.
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that 2160 expansion function are sufficient to yield converged result. Again

the maximum edge length was around 0.1A. Fig. 4.5 and Fig. 4.6 show the

transmission cross-section patterns of six rectangular apertures for both parallel

and perpendicular polarizations with 45° angle of incidence. The dimension of

each aperture is 1A x 0.5A and the inter-aperture distance is 0.25A. Again, an

excellent agreement with the results given in [109] can be noticed.

4.4 Transmission Through Fractal Apertures

4.4.1 Sierpinski Gasket Aperture

Sierpinski gasket fractal is the most popular fractal in antenna and frequency se

lective surface design. Here, the coupling through the Sierpinski gasket aperture

in an infinite conducting screen is investigated. Before analyzing the properties

of fractal geometry, the behavior of a single triangular aperture in an infinite

conducting screen illuminated by a plane wave is investigated. The variation of

transmission coefficient for different base width (b) with a fixed height (h) of

120 mm is shown in Fig. 4.7, for both parallel and perpendicular polarizations

at normal incidence. The results are also tabulated in Table 4.3. It can be

seen that the resonant frequency remains almost same for parallel polarization

of incident wave, whereas, it decreases with the increase in base width for per

pendicularly polarized incident wave. This is due to the fact that the electric

field is perpendicular to height of the triangular aperture for parallel polariza

tion of incident wave and hence, the resonant frequency remains constant with

resonant wavelength approximately equal to 2h. On the contrary, the electric

field is perpendicular to the base of the triangle for perpendicular polarization

of incident wave and the increase in base width results in a decrease in resonant
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Figure 4.5: Transmission cross-section of six rectangular apertures for parallel

polarization with 45° incidence. The dimension of each aperture is 1A x 0.5A and

the spacing between each aperture is 0.25A.
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(a) <p = 0°
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Figure 4.6: Transmission cross section ofsix rectangular apertures for perpendic

ular polarization with 45° incidence. The dimension ofeach aperture is 1A x 0.5A

and the spacing between each aperture is 0.25A.
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Figure 4.7: Transmission coefficient of a triangular aperture for different base

width (b) with height (h) =120 mm.
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Table 4.3: Resonant frequency of a triangular aperture for different base width

(6) with height (ft)=120 mm.

Base

width

(b) mm

Parallel Polarization Perpendicular Polarization

Resonant

Freq. (GHz)

h/X Resonant

Freq. (GHz)

b/X

60 1.17 0.47 2.53 0.51

72 1.16 0.46 2.12 0.51

84 1.16 0.46 1.84 0.51

96 1.16 0.46 1.62 0.52

108 1.15 0.46 1.45 0.52

120 1.15 0.46 1.31 0.52

frequency. The resonant wavelength is approximately equal to 26, as is evident

from the Table 4.3. Similar behavior can be observed in Fig. 4.8, which shows

the variation of transmission coefficient for different height (h) with fixed base

width (b). The variation of resonant frequency and wavelength is summarized

in Table 4.4. Here, the resonant frequency decreases with increase in height for

parallel polarization and remains almost constant for perpendicular polarization.

Thus, it can be concluded that the dimension perpendicular to the electric field

vector of the incident wave determines the resonant frequency of the aperture, a

behavior similar to that exhibited by a rectangular aperture.

The behavior of a triangular aperture of dimension 6=120 mm and /i=120 mm

for different angles ofincidence was also analyzed for both paralleland perpendic

ular polarizations. It is to be mentioned here that the transmission coefficient is

normalized with respect to the incident power density at normal incidence rather

than the actual power density at the oblique incidence. The variation of trans-
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Figure 4.8: Transmission coefficient of a triangular aperture for different height

(h) with base width (6) =120 mm.

129



44 Transmission Through Fractal Apertures

Table 4.4: Resonant frequency of a triangular aperture for different height (h)

with base width (6)=120 mm.

Height

(h) mm

Parallel Polarization Perpendicular Polarization

Resonant

Freq. (GHz)

h/X Resonant

Freq. (GHz)

b/X

60 2.05 0.41 1.36 0.54

72 1.83 0.44 1.34 0.54

84 1.61 0.45 1.33 0.53

96 1.43 0.46 1.33 0.53

108 1.27 0.46 1.32 0.53

120 1.15 0.46 1.31 0.52

mission coefficient for different angles of incidence is shown in Fig. 4.9. As the

angle of incidence is increased, for parallel polarization, a weak second resonance

is generated around 2.4 GHz corresponding to j = 0.96. On the other hand, the

second resonance appears around 2.8 GHz for perpendicularly polarized incident

wave which gives | = 1.12. Also, the value of transmission coefficient decreases

as the angle of incidence is increased and this decrement is sharper in case of

perpendicular polarization. In order to get an insight into this phenomenon, the

magnetic surface current distribution on the triangular aperture was studied.

The plots of magnitude and phase of y-component of current along y = -31.25

cut for parallel polarization at 1.15 GHz and 2.4 GHz are shown in Fig. 4.10.

It can be seen from the current distribution that, at the primary resonant fre

quency of the triangular aperture, the magnitude and phase of My are almost

uniform over the entire aperture width of the triangle. Also, it is evident that

the magnitude ofcurrent changes very little with the change in angle ofincidence
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Figure 4.10: Current distribution of a triangular aperture with different angles

of incidence at primary and secondary resonances for parallel polarization.
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at primary resonance. At the second resonance, the current distribution shows a

nearly uniform phase distribution for normal incidence. However, as the angle of

incidence is varied, the phase of My changes around the center line of the trian

gle which causes a resonance. The magnitude of this current is far less than the

magnitude at primary resonant frequency which causes a weak resonance. Simi

lar behavior is obtained for perpendicular polarization as seen from Fig. 4.11. As

the angle of incidence is increased, the magnitude of current decreases sharply

for perpendicular polarization as compared to the case of parallel polarization,

which causes a sharp decrease in the value of transmission coefficient at oblique

incidence for perpendicular polarization. The behavior of phase is same as that

of parallel polarization, which undergoes a phase reversal around the center line.

After having an insight in the behavior of a triangular aperture, the electro

magnetic transmission through Sierpinski gasket aperture is investigated. Here,

we consider a 2nd iteration self-similar Sierpinski gasket aperture with h =

88.9 mm as shown in Fig. 4.12. The transmission coefficients for three different it

erations are shown in Fig. 4.13 for a range of frequencies from 0.1 to 12 GHz for

both parallel and perpendicular polarizations at normal incidence. Tables 4.5

and 4.6 summarize the main performance parameters of the Sierpinski gasket

aperture. It can be seen from the table that, as the order of iteration increases,

the resonant frequency shifts downward. Also, the transmission coefficients at a

particular resonant frequency increase with the increase in order of iteration with

a low transmission between two passbands. Hence, the fractal aperture exhibits

good bandpass characteristics. From the study of magnetic current distribution,

it was found that, as the order of iteration increases, the magnitude of equivalent

magnetic surface current increases, which causes the increase in transmission co

efficient. In [47], a dual band FSS based on Sierpinski gasketdipole was reported
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Figure 4.12: Sierpinski gasket aperture of 2nd iteration in infinite screen. The

white portions denote the aperture regions.

Table 4.5: Transmission parameters of Sierpinski gasket aperture for parallel

polarization.

Iteration Parallel Polarization

Resonant

Frequency (GHz)

Transmission

coefficient

Ratio

(fn+l/fn)

0 1.54 2.31
-

1

1.40 4.05 -

4.60 1.49 3.29

2

1.32 7.80 -

3.90 3.61 2.95

8.90 2.09 2.28
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Table 4.6: Transmission parameters of Sierpinski gasket aperture for perpendic

ular polarization.

Iteration Perpendicular Polarization

Resonant

Frequency (GHz)

Transmission

coefficient

Ratio

(fn+l/fn)

0 1.54 2.31 -

1

1.37 4.09 -

4.58 1.49 3.34

2

1.31 7.78 -

3.92 3.59 2.99

8.95 2.08 2.28

and it was stated that the first two resonant frequencies occur at

211

Ai X2

where Ai and A2 are free space wavelengths for first two resonant frequencies.

According to (4.12), the first two resonant frequencies for the present geometry

should be at 1.35 GHz and 3.81 GHz, respectively.. From Table 4.5, it can be

seen that the first two resonant frequencies occur at 1.32 GHz and 3.90 GHz

which are within 2% of those predicted by (4.12). Also, the frequency ratios

between successive resonant frequencies tend to approach the theoretical value

2 for higher order bands as the order of iterations increase. Since the initial

geometry was an equilateral triangle, the response of the aperture for parallel

and perpendicular polarizations of incident wave is almost similar.

Next, the flare angle of the triangle was varied. The transmission character

istics of the Sierpinski gasket aperture for three different flare angles, a = 30°,

a —45° and a = 60° for both parallel and perpendicular polarizations of incident
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wave at normal incidence have been studied and are shown in Fig. 4.14. It is

evident from Fig. 4.14(a) that, as the flare angle ofgasket aperturedecreases, the

transmission coefficient at the first resonant frequency increases. This is in line

with our expectations, since a similar behavior was exhibitedby a single aperture

(Fig. 4.7(a)). It may be mentioned here that a similar variation ofthe resonant

frequencies has been seen for a Sierpinski monopole antenna [11]. The transmis

sion coefficient at the second and third resonant frequency decreases with the y

decrease in flare angle and the response for a flare angle of 30° becomes almost

flat for frequencies greater than 6 GHz. However, as shown in Fig. 4.14(b), for

perpendicularly incident wave, the fractal property remains unchanged, with a

upward shift of resonant frequency with the decrease in flare angle. It is because,

for perpendicularly polarized incident wave, the electric field is perpendicular to

the base length and a decrease in flare angle means a smaller base length which

corresponds to higher resonant frequencies.

The far-field characteristics of the gasket aperture have been expressed in

terms of the transmission cross-section. The transmission cross-section patterns

of gasket aperture in two principal planes </> = 0° and <f) = 90° for parallel and

perpendicular polarizations of incident wave are shown in Fig. 4.15. It is found

that at higher resonant frequencies, the patterns become more directiveand also,

side lobes are generated. >

Next, the angle of incidence was varied for a 2nd iteration Sierpinski gasket

aperture. The variation of transmission coefficient for different incidence angles

for parallel and perpendicular polarizations are shown in Fig. 4.16. It is found

that, in addition to the three resonant frequencies given in Tables 4.5 and 4.6,

two more resonant frequencies appear around 2.80 GHz and 5.95 GHz for parallel

polarization and around 2.75 GHz and 6.00 GHz for perpendicular polarization
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Figure 4.16: Transmission coefficient of 2nd iteration Sierpinski gasket aperture
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Table 4.7: Transmission parameters of Sierpinski gasket aperture for different

angles of incidence with parallel polarization.

Si h h h h h hilX2 h2/Xi

0 1.32 -
3.88 -

8.90 - -

20 1.32 - 3.88 -
8.90 - -

40 1.31 2.81 3.84 5.98 8.01 0.83 0.89

60 1.31 2.80 3.76 5.97 7.29 0.83 0.88

Table 4.8: Transmission parameters of Sierpinski gasket aperture for different

angles of incidence with perpendicular polarization.

9i h h h h h hi/X2 h2/Xi

0 1.32 - 3.88 -
8.95 - -

20 1.32 2.75 3.88 5.78 8.18 0.94 0.99

40 1.31 2.78 3.92 5.80 8.81 0.95 0.99

60 1.31 2.78 4.24 5.99 8.71 0.95 1.03

as shown in Table 4.7 and Table 4.8. These additional resonant wavelengths

are around 1A as was the case from single aperture. The behavior of current at

those additional resonant frequencies are expected to be same as that of a single

triangular aperture. Also, it is found that the response of gasket aperture for

perpendicular polarization becomes almost flat for incidence angles greater than

60°.

4.4.2 Koch Fractal Slot

Koch curve monopole and dipole antennas have multiband property and are

widely used in antenna miniaturization. In [20], a multi-resonant dipole antenna
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based on Koch curve has been studied. It has been shown that by changing the

indentation angle of the curve, which in turn changes the fractal dimension, the

input characteristics of the Koch antennas can be changed. Iterated Function

System (IFS) for a generalized Koch curve with a scale factor s and indentation

angle 9 can be expressed as [20],

/i n\

Wi

V° V
(l cos 9 —-sii A A\

W2
x

+

\lssin9 lscos9 J W

( lcos9 isinA / I \

w*

^-isin(9 lscos6j

A o\

+

\\ma9j

/tl\

Wa +

\o V \oJ
where,

s = 2(1 + cos(9))

The self-similarity dimension of the curve is given by

log 4
D

logs

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

Hence, by changing the indentation angle, we can change the fractal dimen

sion. Generalized Koch curve geometries for two indentation angles are shown

in Fig. 4.17.
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(a) Indentation angle=20° (b) Indentation angle=60°

Figure 4.17: Koch curve with different indentation angles.

Here, we have investigated the transmission properties of the Koch fractal

slot of varying fractal dimension in an infinite conducting screen illuminated by

a plane wave. For the present analysis, we have considered a rectangular slot of

length 20 cm along the z-axis and width 5 mm along the y-axis as the initiator.

An electromagnetic wave with perpendicular polarization is assumed to incident

normally on the aperture. Fig. 4.18 shows the transmission coefficients of a Koch

slot of 60° indentation angle for three different iterations. It can be seen that

the resonant frequencies reduce as the order of iteration is increased. This is

expected, since the total length of the slot increases with the order of iteration

although the end-to-end length remains constant at 20 cm. Another factor that

has a strong influence on the value of resonant frequencies and the magnitude

of transmission coefficient at resonance, is the indentation angle. The variation

of the primary resonant frequency (/ri) for the first three iterations is given

in Table 4.9 and the variation of magnitude of transmission coefficient at fri

for different indentation angles is shown in Fig. 4.19, for a 3rd iteration Koch

slot. From a study of surface current distribution of Koch slot at the primary

resonance, it is found that the current is maximum at the center of the slot and
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Figure 4.18: Transmission coefficient of Koch fractal slot for different iterations

with 60° indentation angle.

Table 4.9: Variation of /rl for Koch aperture with indentation angle.

Indentation

Angle (deg.)

Primary Resonant frequency for

various iterations of Koch slot (GHz)

Iteration 1 Iteration 2 Iteration 3

10 0.710 0.707 0.706

20 0.698 0.686 0.678

30 0.678 0.651 0.633

40 0.651 0.604 0.573

50 0.618 0.547 0.500

60 0.577 0.482 0.420

70 0.529 0.410 0.335

80 0.484 0.342 0.258
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30 40 50 60
Indentation Angle (deg)

80

Figure 4.19: Transmission coefficient at primary resonant frequency of a 3rd

iteration Koch fractal slot versus different indentation angles.

the magnitude of the maxima increases with the increase in indentation angle,

which causes the increase in transmission coefficient. Thus, the indentation angle

can be made a design parameter in order to achieve good transmission property at

a particular frequency. The variation of resonant frequencies for three iterations

with different indentation angles are shown in Fig. 4.20. It may be noted that

the higher order resonant frequencies shift by larger amount than the lower order

resonant frequencies. The ratio between successive resonant frequencies also

changes with the change in indentation angle. The ratios of successive resonant

frequencies with the indentation angle are tabulated inTable 4.10 from which it is

evident that the indentation angle can be varied in order to place the transmission

bands at desired locations. It is also found that the ratios are different for each

interval, but they remain nearly constant for different iterations of the same
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30 40 50 60
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Iteration 1

1Iteration 2

' Iteration 3

70 80

Figure 4.20: Resonant frequencies with different indentation angles for Koch

fractal slot.

dimension. It may be mentioned here that a Koch fractal slot is expected to

have characteristics similar to those of Koch monopole. The results presented

here agree very well with those presented in [20] for a Koch dipole antenna.

The transmission cross-section of a third iteration standard Koch slot for two

orthogonal planes is shown in Fig. 4.21. It should be noted that the transmission

cross-section at the resonant frequencies are similar to that of a linear slot. As the

frequency is increased, some ripples are found in the transmission cross-section

pattern. Also, it may be noticed that the transmission cross-section patterns

remain almost symmetric for both the planes.

Next, the angle of incidence was varied for a Koch curve of 3rd iteration with

60° indentation angle. The normalized transmission coefficient for different an

gles of incidence is shown in Fig. 4.22 for an incident wave with perpendicular
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Table 4.10: Ratio between successive resonant frequencies of generalized Koch

slot.

148

Indentation

Angle (deg.)

Fractal

Dimension

Fractal

Iteration hlh hlh hlh

10 1.006

1 3.09 1.68 1.41

2 3.08 1.68 1.40

3 3.08 1.68 1.40

20 1.023

1 3.08 1.68 1.41

2 3.06 1.68 1.40

3 3.06 1.68 1.40

30 1.053

1 3.07 1.68 1.41

2 3.04 1.63 1.44

3 3.03 1.67 1.40

40 1.099

1 3.05 1.68 1.42

2 3.00 1.67 1.42

3 2.98 1.65 1.42

50 1.165

1 3.02 1.67 1.42

2 2.95 1.65 1.40

3 2.92 1.63 1.39

60 1.262

1 2.98 1.66 1.42

2 2.88 1.63 1.41

3 2.83 1.62 1.40

70 1.404

1 2.94 1.66 1.42

2 2.79 1.63 1.40

3 2.73 1.60 1.36

80 1.625

1 2.81 1.68 1.40

2 2.67 1.62 1.36

3 2.59 1.58 1.34
-t
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Figure 4.21: Transmission cross-section patterns of 3rd iteration Koch fractal slot

with indentation angle equal to 60°.

polarization. It can be seen that, similar to gasket apertures, the variation of

incidence angle introduces additional resonant frequencies around 0.814 GHz and

1.580 GHz. As the angle of incidence is increased, the transmission coefficient

at the resonant frequencies for normal incidence decreases and for #, = 60°, the

response becomes almost flat for frequencies greater than 1 GHz. Although the

transmission coefficient at the new resonant frequencies increases with increase in

angle of incidence up to around 40°, it again decreases with increase in (9, beyond

40°. To understand this phenomena, we studied the magnetic current distribu

tion of a rectangular slot. It was found that, similar to the behavior obtained for

a triangular aperture, an additional weak secondary resonance appears around

L —Xfor inclined incidence, where L is the length of the slot. Also, the phase of

the dominant component of current undergoes a phase reversal at the secondary

resonant frequency, a behavior similar to that of the triangular aperture. The

magnitude of current shows two maxima which are L/2 distance apart. The

same behavior was seen in case of Koch curve for oblique incidence.
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Frequency (GHz)

Figure 4.22: Transmission coefficient with different angles of incidence for 3rd

iteration Koch fractal slot with indentation angle is 60°.

4.4.3 Hilbert Curve Aperture

Due to its space-filling property, the Hilbert curve can occupy a larger length in

a given area than the Koch curve; hence it has been used for further miniaturiza

tion of monopole and dipole antennas [22]. The self-similarity of this geometry

leads to a multi-band operation. The topological dimension of Hilbert curve is 1,

since it is a simple curve. However, for a large number of iterations, the fractal

dimension of the curve approaches 2. Considering the length and number of

line segments in first and second iterations, the fractal dimension is 1.465. The

corresponding fractal dimensions for next two iterations are 1.694 and 1.834, re

spectively. A fourth iteration Hilbert curve is shown in Fig. 4.23. In our analysis,

the Hilbert geometry is assumed to occupy an area of 7.5 cm x 7.5 cm with the

width of the slot taken to be 1 mm. The transmission characteristics of different

150



«

Chapter 4. EM Transmission through Fractal Apertures in Conducting Screen

7.5 cm

7.5 cm

Figure 4.23: Hilbert fractal slot of 4 iteration

iterations of Hilbert curve fractal aperture illuminated by a plane wave of parallel

and perpendicular polarizations with normal incidence are shown in Fig. 4.24.

The difference in the transmission coefficient plots for different polarization is

due to the fact that the curve is symmetric with respect to y-axis but asymmet

ric with respect to x-axis. It can be seen from the plot that the Hilbert aperture

offers a multi-band behavior and the resonant frequencies decrease as the order

of iteration increases due to the increase in the length of the slot. The variation

of primary resonant frequency for different iterations of Hilbert curve aperture is

summarized in Table 4.11. The transmission bandwidth increases for higher or

der resonances. Since the transmission coefficient plots show sharp transmission

bands with very low transmission between two resonant peaks, it offers excellent

band stop characteristics. Again from the current distribution plots, it was found

that the current is distributed over the entire aperture region and at the higher

resonances, the current is concentrated in the scaled copies of the geometry as

shown in Fig. 4.25. Also, the magnitude of surface current decreases with in-
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Figure 4.24: Transmission coefficient of Hilbert curve aperture for different iter

ations at normal incidence.
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Table 4.11: Primary resonant frequency of Hilbert curve aperture of different

iterations.

Iteration

Primary resonant frequency (GHz)

Parallel Polarization Perpendicular Polarization

1 1.383 0.666

2 0.908 0.452

3 0.614 0.306

4 0.4404 0.2172

crease in order of resonance which causes the decrease in transmission coefficient.

The transmission cross-section patterns for a 4th iteration Hilbert aperture at

its first four resonant frequencies are shown in Fig. 4.26. From the transmission

cross-section plots for both parallel and perpendicular polarizations, it may be

stated that the pattern are symmetric at all resonant frequencies, although, the

patterns become directive for higher order resonant frequencies.

The variation of transmission coefficient of a 4th iteration Hilbert aperture

with different angles of incidence is shown in Fig. 4.27. Again, some additional

resonances occur as the angle of incidence is increased. The transmission co

efficients at these additional resonant frequencies increase with the increase in

angle of incidence. The occurrence of these resonances can be explained in a

similar manner as for the case of Koch slot from the current distribution which

shows additional maxima at inclined incidence. For perpendicular polarization,

some additional resonant frequencies appear but the transmission coefficients at

these frequencies are very small as compared to those at the resonant frequencies

for normal incidence. Also, the transmission coefficient at a particular resonant
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Figure 4.25: Current distribution on a 4th iteration Hilbert curve aperture at

different resonant frequencies.
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180 180

(a) Parallel Polarization; 0 = 0° (b) Parallel Polarization; <f> = 90°

(c) Perpendicular Polarization; 0 = 0° (d) Perpendicular Polarization; <j> = 90°

Figure 4.26: Transmission cross-section pattern of 4th iteration Hilbert curve

aperture at the first four resonant frequencies.
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12 cm

1.2 cm

Figure 4.28: Sierpinski carpet aperture of 3 iteration.

frequency decreases with an increase in the angle of incidence and the decrease

is sharper in case of perpendicular polarization.

4.4.4 Sierpinski Carpet Aperture

Another fractal that can be used in multi-band antennas and FSS is Sierpinski

carpet fractal [25]. The geometry of a third iteration Sierpinski carpet structure

is shown in Fig. 4.28. The dimension used in the present analysis has an initial

rectangular geometry of dimensions 1.2 cm x 12 cm. The transmission charac

teristics for different iterations of the fractal aperture for parallel polarization of

incident wave at normal incidence are shown in Fig. 4.29. Again, it can be noted

from the plots that the resonant frequency decreases as the order of iteration

increases. Basically, the first iteration consists of a single aperture of dimension

0.4 cm x 4 cm with the larger dimension along y-direction. The first resonance

occurs at a frequency of 3.30 GHz whose corresponding wavelength is twice the
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Figure 4.29: Transmission coefficient ofSierpinski carpet aperture with different

iterations.

length of the slot in y-direction. In the next iteration, the aperture dimension

gets reduced by a factor 3, and hence it is expected to have the second resonant

frequency which is three times the first resonant frequency. Thus, the ratio be

tween the successive resonant frequencies is approximately 3. For a 3rd iteration

Sierpinski carpet aperture the resonant frequencies occur at 3.3 GHz, 10.4 GHz

and 33.7 GHz with frequency ratios as hlh = 3.15 and hlh = 3-24- Hence,

the resonant frequencies are separated by a factor approximately equal to the

theoretical value 3.

The transmissioncross-section patterns of 3rd iteration Sierpinski carpet frac

tal aperture for an incident wave with parallel polarization in two orthogonal

planes are shown in Fig. 4.30. It can be seen from the plots that the maximum

value of transmission cross section increases for higher order resonant frequencies
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Figure4.30: Transmission cross-section of 3rd iteration Sierpinski carpet aperture

at first three resonant frequencies.

and the patterns become more directive. Also, for <p —90° plane, a large number

of side lobes are generated for third resonant frequency.

The effect of variation of incidence angle for parallel polarization on the be

havior of Sierpinski carpet aperture is shown in Fig. 4.31. It is found that as the

incidence angle is increased, the third resonance peak gets distorted and some

spurious peaks arise around 30 GHz.

4.4.5 Minkowski Fractal Aperture

Taking a line segment of length L, Minkowski operator divides the line into three

equal segments with the middle section having a depth of aL [27]. The coefficient

'a' is known as "depression coefficient". The value of 'a' can be any value between

0 and 1/3 for a square initiator. The Minkowski fractal generator is shown in

Fig. 4.32. In the first iteration, each line segment of the initial square is replaced

by the generator curve. This process is successively applied to each line segment

in the next iteration step. The Minkowski fractal geometry after second iteration
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with different values of 'a' are shown in Fig. 4.33. The variation of transmission

coefficient for different iterations of Minkowski fractal aperture with a —0.3 for

parallel polarization of incident wave at normal incidence is shown in Fig. 4.34.

Since the geometry is symmetric along both x- and y-directions, the transmis

sion characteristics are similar for both parallel and perpendicular polarizations

of incident waves. For a = 0.3, the resonances occur at 0.92 GHz, 3.16 GHz and

12.1 GHz with the ratios between successive resonant frequencies of 3.43 and

3.83, although the third resonance peak is very small as compared to the first

two resonant peaks. The variation of transmission coefficient of a 2nd iteration

Minkowski fractal aperture for different values of depression coefficients is shown

in Fig. 4.35. As the value of depression coefficient decreases, the transmission

coefficient at a particular resonant frequency decreases, and the higher-order res

onant properties diminish. Also, it can be seen from the plot that, as the value

of depression coefficient increases, the resonant frequency moves downwards, a

behavior similar to that demonstrated in [27] for a Minkowski fractal patch an

tenna. Thus, it is evident that the fractal aperture shows a better multiband

property for higher values of 'a'.

The transmission cross-section patterns of second iteration Minkowski fractal

aperture for a = 0.3 with parallel polarization of incident wave are shown in Fig.

4.36. It can be seen that the value of transmission cross-section increases for

higher resonant frequencies, but the number of side lobes also increases. Since

the geometry is symmetric in x- and y- planes, the cross-section patterns are

also symmetric.

The variation of transmission coefficient for different angles of incidence with

a = 0.3 is shown in Fig. 4.37. The transmission coefficients at 1st and 2nd

resonant frequencies get reduced with increase in the angle of incidence and for
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Figure 4.33: 2nd iteration Minkowski fractal geometries for different values of

depression coefficients.
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Figure 4.34: Transmission coefficient of Minkowski fractal aperture for different

iterations with parallel polarization at normal incidence.

higher angles of incidence, the third resonances almost vanishes and hence, the

multiband property of fractal is lost.

4.5 Summary

Numerical results for a number of fractal shaped apertures in an infinite con

ducting screen illuminated by a plane wave have been presented which show the

existence of multiple passbands. For a Sierpinski fractal aperture, the bands

are separated by a factor 2, which is similar to that obtained for a Sierpinski

monopole antenna. As long as the initial triangle is equilateral, the transmission

characteristics are similar for parallel and perpendicular polarizations of incident

wave. Also, it has been found that the fractal property of the gasket aperture

depends on the flare angle of the triangle as well as on the polarization of in-
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Figure 4.35: Transmission coefficient of2nd iteration Minkowski fractal aperture

for different values of depression coefficient.
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Figure 4.36: Transmission cross-section patterns of a 2nd iteration Minkowski

fractal aperture at three resonant frequencies with a = 0.3 for parallel polariza

tion at normal incidence.
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Figure 4.37: Transmission coefficient with different angle of incidence for 2nd

iteration Minkowski aperture with a —0.3.

cident wave. The band separation also changes at oblique incidence due to the

generation of some new passbands. Also, it is evident from the results that the

number of passbands equals the number of iterations for Sierpinski carpet aper

ture. However, for Sierpinski gasket aperture, a transmission band is obtained

for the initial triangular geometry and for any number of iterations, say k, the

number of passbands are always (k + 1), as is found in the case of fractal multi-

band antenna and FSS. Also, while it is true that for each fractal geometry, log

periodic behavior can be achieved by using a large number of iterations, since

here we are considering prefractal geometries the behavior is quasi log periodic.

Similar to a Koch fractal monopole antenna, the Koch fractal slot also pos

sesses multiband characteristics and the location of different passbands can be

changed by changing the indentation angle. Hilbert curve fractal slots are very

165



4-5 Summary

efficient for the reduction of resonant frequency, although the bandwidth of pass-

bands decreases significantly for higher iterations. It has been found that some

new passbands occur with the increase in angle ofincidence for parallel polariza

tion, whereas, the transmission coefficient at the resonant frequencies decreases

significantly with increase in angle ofincidence for perpendicular polarization. It

may be noted that the Hilbert curve fractal geometry is not strictly self-similar

as pointed out in [22], because additional line segments are required to connect

the four scaled and rotated copies. However, the lengths of these additional line

segments are small as compared to the overall length of the fractal, especially

when the order of iteration is very large, which makes the geometry self-similar.

For larger order iterations, the self-similarity dimension ofthe fractal approaches

2 which makes it a true space-filling curve. For lower order iterations, the self-

similarity dimension of the fractal geometry can be much less than 2 [22].

The Sierpinski carpet fractal aperture also offers multiple passbands with

the passbands separated by a factor of 3, equal to the self-similarity factor of

the geometry. Also, it has been found that the variation of incidence angle

does not change the transmission characteristics for lower frequencies, but the

third resonance gets distorted. Lastly, it has been shown that the characteristics

of Minkowski fractal depend upon the depression coefficient of the Minkowski

operator. The transmission coefficient decreases with the increase in angle of

incidence, although the ratios of successive bands remain same.

It must also be added here that that the fractals having space-filling properties

give rise to enhanced subwavelength transmission as was seen in [86, 87, 88, 89].

For example, the lowest frequency of Hilbert curve aperture is 0.2171 GHz for a

perpendicularly polarized incident wave, corresponding to a wavelength of138.12

cm which is many times the lateral dimension of the square which it fills. Since
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the geometry is not symmetric in both planes, the response of the aperture are

different for different polarizations as was also seen in case of H shaped fractal

slit [89]. The existence of subwavelength transmission can also be found in Koch

curve due to their frequency reduction capability. Koch slot was found to have

resonant frequencies of 0.484 GHz and 0.577 GHz for indentation angles of 80°

and 60°, respectively. The corresponding wavelengths are 61.98 cm and 51.99

cm which are much larger than the Koch curve length. Since, the increase in

indentation angle causes the resonant frequency to shift downward and also, the

magnitude of transmission coefficient increases, it can be said that at higher

indentation angle there is a more enhanced subwavelength transmission. For

Minkowski fractal aperture, the lowest resonant frequency is 0.92 GHz for a 2nd

iteration fractal with a —0.3, corresponding to a wavelength of 32.6 cm. Again

the wavelength is much larger than the lateral dimension of fractal geometry.

On the other hand, self-similar structures like Sierpinski gasket and Sierpinski

carpet do not exhibit subwavelength transmission, since for these structures the

reduction in the first resonance frequency is very small for higher order iterations.
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Chapter 5

RADIATION FROM

RECTANGULAR

WAVEGUIDE-FED FRACTAL

APERTURE ANTENNAS

In this chapter, we investigate the characteristics of fractal apertures in an infi

nite conducting screen fed by a rectangular waveguide. The fractal geometries

considered here are same as those investigated in chapter 3.

First, the operator equation (2.2) is specialized to the problem under con

sideration. The operator equation is then solved using the aperture admittance

matrix and the excitation vector which have already been derived in chapter 2.

A MATLAB code has been written based upon these equations and can be used

to analyze different type of fractal apertures. The results obtained with this code

have been validated through simulations on Ansoft's HFSS. The characteristics

of the antennas are expressed in terms of input reflection coefficient and VSWR
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5.1 Formulation of the Problem

Infinite Conducting

Screen

Figure 5.1: Multiple apertures in an infinite conducting screen fed by rectangular

waveguide.

in the near-field region, and the far-field behavior is expressed in terms of gain

pattern of the antenna.

5.1 Formulation of the Problem

Figure 5.1 shows the general problem geometry of radiation through multiple

apertures in an infinite conducting screen fed by a rectangular waveguide. The

apertures are located in z = 0 plane and can have any arbitrary shape. As

described in chapter 2, the equivalence principle is used to decouple the original

problem into two equivalent problems. Hence, region 'a' is now a semi-infinite

rectangular waveguide short circuited at z —0, in which the total field is the
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-M

Infinite

-Conducting
Screen

7j=Q

• Region 'b'

Y
zl.

Image Plane

Figure 5.2: Equivalent model for the half space region.

superposition of the fields due to the incident wave and the equivalent surface

magnetic current density M over the aperture regions. Region 'b' is a half-space

in which the field is due to surface magnetic current —M radiating in presence of

an infinite conducting plane. The equivalent problem for region 'b' can further

be simplified by using the image theory as shown in Fig. 5.2, and hence, the field

in region 'b' is due to the current -2M radiating in free space. The operator

equation for the problem can be expressed as

ref\Ht (M) + Ht(M) = -(HT + H?>) (5.1)

ref
where Ht is the magnetic field due to the incident wave and Ht denotes the

reflected magnetic field. Now, from image theory, the magnetic field in region

'b' can be expressed as

Hbt{M) = Hht\M) = Hft\2M) (5.2)

T?hs
where Ht denotes the magnetic field due to a current M radiating in the presence

—rs

of complete conductor and Ht denotes the magnetic field due to a current 2M

radiating in free space.

Using (5.2) and considering the perfect conductor at z = 0, the operator
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5.2 Computation of Antenna Parameters

equation in (5.1) can be expressed as

H;9(M) +H{\2M) = -2irtnc (5.3)

Application of MoM results in the following matrix equation

\YW9 4. Yh$] 7=7* (5-4)

where the admittance matrices [YW9\ and [Yhs] can be calculated using (2.67)

and (2.80) with the aperture surfaces modeled with the RWG functions. The

excitation vector ~Il is calculated using (2.94) as described in chapter 2 for a

TEmn incident mode.

5.2 Computation of Antenna Parameters

5.2.1 Input Reflection Coefficient

The input reflection coefficient can be expressed as given in (3.11), for a TEi0

mode
N

Sn = -l + J2V"An0 (5'5)
n=l

where the coefficients An0 are given by

An0 =JJm„ • zxew ds (5.6)
/lp

The normalized input admittance can be expressed as

YaB =-J^r- M
ap 1 + 5 ii

5.2.2 Gain Pattern

Gainofan antenna isdefined as the ratio ofradiation intensityin a given direction

to the radiation intensity which would exist if the total power were radiated

172



+

Chapter 5. Radiation from Rectangular Waveguide-fed Fractal Apertures

uniformly in half space. Thus

av,V)-*&& (5.8)
tyav

where, ip(6, ip) denotes the radiation intensity in a given direction and i>av is the

average radiation intensity in half space. Radiation intensity in a given direction

is given by

^{d,p) = rm\Hm\2r1 (5.9)

Using (2.108), above equation can be expressed as

iP(0,<p)
r]uj2£2 ~ -* 2

167r2r2

The average radiated power is

Uav = Prad/4K

E x H" . h ds
\Apert

yApert

pmy

, M . H ds

\Apert

(5.10)

Since, the power transmitted into region 'b' depends only on the tangential com

ponent of H at z —0, and the application of image theory yields

\Apert

\Apert

\Re IEE V™Vn If ^m •HftS\~2Mn) JdS
V m n .4perf /

Um = ^Re I JJ M.h\\-M) ds
\Apert

M. Hfts*(-2M) ds
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It is evident that the surface integral is same as the admittance matrix for the

half-space region given in (2.69). Hence, it is written as

\ m n /

-Re (V{YIIS]*V) (5.11)
2

Finally, the gain of the antenna can be expressed as

1.2 Ipm y I
q _ _^o \r v I (5.12)

&"7 Re(V(Yha)*V*)

5.3 Numerical Results

Based on the MoM formulation, a MATLAB code with the time critical routine

coded in C has been developed to determine the characteristics of rectangular

waveguide-fed fractal aperture antennas. In all the cases, a WR90 waveguide of

dimensions a=22.86 mm and 6=10.16 mm has been considered. The numerical

results have been validated using the results obtained from the simulation on

Ansoft's HFSS. In the following subsections, numerical results for various fractal

shaped aperture antennas are presented and discussed.

5.3.1 Sierpinski Gasket Aperture Antenna

First, a 2nd iteration self-affine Sierpinski gasket aperture, same as that used

in chapter 3, is considered here (Fig. 5.3). In the first iteration, the length of

the triangular aperture is 0.8a (18.29 mm). In the next iteration, the length of

the apertures are 0.64a (14.63 mm) and 0.16a (3.66 mm). First, a convergence

analysis on the number of basis functions and the waveguide modes is carried

out. The magnitude of input reflection coefficient for a single triangular aperture

of length 18.29 mm for different number of expansion functions is shown in
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Figure 5.3: A 2nd iteration self-affine Sierpinski gasket aperture antenna.

Table 5.1. It is found that the magnitude of reflection coefficient converges as the

maximum edge length becomes less than 0.1Ag, where Xg is the guidewavelength.

Based upon this observation, in the subsequent fractal aperture antennas, the

mesh criterion is chosen such that the maximum edge length is less than 0.1Xg.

The variation of return loss of a self-affine Sierpinski gasket aperture with a

scale factor (s) equal to 0.8 is shown in Fig. 5.4 for two iterations. For the first

iteration, M = 10 and N —15 were used to yield a converged result, whereas, the

values for the 2nd iteration were M = 11 and N = 22. Also shown in the figure

are the results of simulation on Ansoft's HFSS, where a good agreement between

the two can be seen. Various parameters obtained from the frequency response

of the gasket aperture antenna are tabulated in Table 5.2. The aperture length

to corresponding resonant wavelength ratio for the first and second iterations are

0.51 and 0.53. This is in line with the observationsmade in [111] for a rectangular

aperture. It is seen that the first resonant frequency shifts downwards for the

second iteration and also, the bandwidth for higher order resonant frequency is
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Table 5.1: Convergence of reflection coefficient of waveguide-fed 1st iteration

Sierpinski gasket aperture antenna. The frequency of operation is 12 GHz.

Sr.

No.

No. of

RWG

functions

Max.

Edge

Length (mm)

Modal Indices knl %

changeM N

1 6 4.91 10 15 0.7583

2 10 3.57 10 15 0.7859 3.64

3 14 2.98 10 15 0.7962 1.31

4 18 2.66 10 15 0.8012 0.63

5 22 2.47 10 15 0.8039 0.34

Table 5.2: Frequency response of waveguide-fed self-affineSierpinski gasket aper

ture antenna.
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Parameters Iteration 1 Iteration 2

Resonant Frequency (GHz)

MoM

HFSS

8.45

8.44

8.40

8.39

11.05

11.05

Difference (%) 0.12 0.12 0.00

VSWR 1.29 1.26 1.03

Bandwidth (%) 11.83 10.12 13.58



Chapter 5. Radiation from Rectangular Waveguide-fed Fractal Apertures

u

~ -5
P5

3- ^—HFSS
VI
VI

MoM

O

J -10 \ /
s
s-

3
•**

<U

*-15

-in

9 10 11
Frequency (GHz)

(a) 1st Iteration

9 10 11
Frequency (GHz)

12 13

13

(b) 2nd Iteration

Figure 5.4: Return loss of a waveguide-fed self-affine Sierpinski gasket aperture

antenna with s — 0.8 for two iterations.
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Figure 5.5: Return loss ofa waveguide-fed 2nd iteration self-affine modified Sier

pinski gasket aperture antenna with s —0.8.

larger than that at the lower order resonance. The ratio between the successive

resonant frequencies is 1.32 which is slightly greater than the ideal ratio of 1.25

for a scale factor of 0.8. Also, it is evident that a better impedance match is

obtained at the second resonance of the antenna. The aperture of length 3.66 mm

(0.16a) has no effect on the frequency band under consideration due to its small

size and weak interaction with the electric field of TEio mode, since it is located

close to side wall of the waveguide. Fig. 5.5 shows the variation of return loss

with the aperture of length 3.66 mm removed. It is evident from the figure that

there is hardly any change in the frequency response.

In order to find out the effect of scale factor on the antenna performance, the

scale factor of the self-affine gasket geometry was varied. The length of the first

iteration triangle was kept constant and the dimension of the second iteration

trianglewas varied in the sameway as described in chapter 3. In all the cases, the
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9 10 11
Frequency (GHz)

12 13

Figure 5.6: Return loss of a waveguide-fed 2nd iteration self-affine modified Sier

pinski gasket aperture antenna with different scale factors.

second iteration triangle of length 0.16a was removed. The variation of return

loss of the modified 2nd iteration Sierpinski gasket aperture for different scale

factors is shown in Fig. 5.6. The effect of the scale factor on the frequency

response of the antenna is summarized in Table 5.3. It may be noted that while

1st resonant frequency changes relatively little with the increase in scale factor,

the bandwidth of the antenna decreases significantly with the increase in scale

factor. On the other hand, the second resonant frequency undergoes a relatively

large change while the bandwidth at this frequency remains more or less the

same.

The gain patterns of a Sierpinski gasket aperture antenna of 2nd iteration,

in p — 0° and <p — 90° planes, are shown in Fig. 5.7 for the two resonant

frequencies. It can be seen that the gain patterns remain the same at both

frequencies, although a little ripple can be found in the pattern obtained from
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Table 5.3: Frequency response ofwaveguide-fed self-affine Sierpinski gasket aper

ture antenna for different scale factors.
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fl (GHz) h (GHz) h
h h h

0.7 8.50 12.50 1.47 13.52 13.76

0.8 8.40 11.05 1.32 10.12 13.58

0.9 8.31 9.48 1.14 6.26 13.40
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Figure 5.7: Gain patternofwaveguide-fed 2nd iteration Sierpinski gasket aperture

antenna with s — 0.8.
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16 mm

12.8 mm

10.24 mm

Figure 5.8: A self-affine modified Sierpinski gasket dipole aperture.

Table 5.4: Frequency response of waveguide-fed self-affine modified Sierpinski

gasket dipole aperture antenna.

Parameters Iteration 1 Iteration 2

Resonant Frequency (GHz)

MoM

HFSS

8.96

8.95

8.40

8.38

11.80

11.84

Difference (%) 0.11 0.24 0.34

VSWR 1.40 1.41 1.09

Bandwidth (%) 7.60 3.21 14.41

HFSS simulations for both planes. The maximum gain of the antenna is 5.14 dB.

In the p = 90° plane, the antenna has a omnidirectional pattern at both resonant

frequencies.

As in the case of waveguide diaphragms, next we considered the geometry

obtained by a dipole arrangement of the original gasket geometry (Fig 5.8).

The variation of return loss for two iterations of the dipole aperture antenna

is shown in Fig. 5.9. Table 5.4 summarizes different parameters of the aperture

antenna. The behavior of the aperture antenna is similar to that of the waveguide
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Figure 5.9: Return loss of waveguide-fed self-affine modified Sierpinski gasket

dipole aperture antenna with s = 0.8 for two iterations.
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Figure 5.10: Gain pattern of waveguide-fed 2nd iteration modified Sierpinski

gasket dipole aperture antenna with s = 0.8.

diaphragm. It can be seen that the first resonant frequency of the aperture

antenna decreases by 6.25% as compared to 0.60% for the original self-affine

gasket aperture antenna. The ratio between the successive resonant frequencies

is 1.40 which is much larger than the theoretical value 1.25. This is due to the

geometric modifications incorporated in the generation of gasket aperture.

The gain pattern ofthe 2nd iteration Sierpinski gasketdipole aperture antenna

for both planes are shown in Fig. 5.10 for the two resonant frequencies. A good

agreement with the HFSS results can be seen from the results. The gain pattern

remains same for both the resonant frequencies. The maximum gain of the

antenna is 5.00 dB and 5.31 dB for <p = 0° and tp = 90°, respectively. The

antenna pattern at <p = 90° shows an omnidirectional pattern at both resonant

frequencies.
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22.86 mm

Figure 5.11: A 3rd iteration Hilbert curve aperture geometry.

5.3.2 Hilbert Curve Aperture Antenna

Hilbert curve fractal geometry has been widely used in the design of miniatur

ized antennas and electromagnetic bandgap structures. The geometry of a 2nd

iteration Hilbert curve aperture antenna is shown in Fig. 5.11. The dimension of

the square into which the curve can be fitted is chosen to be 8 mmx8 mm. The

variation of return loss is shown in Fig. 5.12 for different iterations of Hilbert

curve aperture antenna. From the plots, it is evident that the present MoM

analysis agree well with the HFSS results, although there is a little difference

in 1st resonant frequency for the third iteration. The various parameters of the

Hilbert curve aperture antenna are tabulated in Table 5.5. It is evident that the

first resonant frequency decreases as the order of iterations increase. The pri

mary resonant frequency gets reduced by about 48.5% from 1st to 3rd iteration

due to the increase in end-to-end length of the slot. The VSWR is minimum

for 1st iteration and as the order of iteration increases, the impedance match

degrades resulting in higher values of VSWR. The bandwidth of the antenna

decreases significantly as the order of iteration is increased. The ratio between

the successive resonant frequencies is 1.80 for second iteration and for the third
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11 13 15 17
Frequency (GHz)

21 22

(c) 3rd Iteration

Figure 5.12: Return loss of waveguide-fed Hilbert curve aperture antenna for

different iterations.

Table 5.5: Frequency response of waveguide-fed Hilbert curve aperture antenna.

Parameters Iteration 1 Iteration 2 Iteration 3

Resonant Frequency (GHz)

MoM

HFSS

15.34

15.40

10.40

10.35

18.70

18.69

7.90

7.67

12.00

12.12

20.05

20.20

Difference (%) 0.39 0.48 0.05 2.91 1.00 0.75

VSWR 1.20 1.64 3.61 1.85 1.23 1.55

Bandwidth (%) 9.45 3.85 -
1.27 1.67 2.99
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12 14 16 18 20 22
Frequency (GHz)

Figure 5.13: Return loss of waveguide-fed 3rd iteration rotated Hilbert curve

aperture antenna.

iteration, the values are 1.52 and 1.71.

Similar to the Hilbert curve fractal diaphragm, the orientation of Hilbert

curve aperture affects the characteristics of the antenna and also, the ratio be

tween successiveresonant frequencies can be changed as is evident from Fig. 5.13,

where the variation of return loss of a 3rd iteration rotated Hilbert curve fractal

aperture antenna is shown. The numerical results based on the MoM match very

well in the low frequency regions and the result differs from the HFSS results

beyond 18 GHz. A spurious resonance appears at 21.15 GHz in HFSS simulation

and this is due to the convergence problem faced with HFSS simulation at these

high frequencies. However, the resonant frequency at 20.56 GHz differs from

HFSS result only by 0.53%. From the variation of return loss, it is seen that the

resonant frequencies are at 10.3 GHz, 13.98 GHz and 20.56 GHz for a rotated

third iteration Hilbert curve aperture antenna. The ratio between the successive

resonant frequencies are 1.36 and 1.47, which differs from those for the origi-
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Figure 5.14: Gain pattern of waveguide-fed 3rd iteration Hilbert curve aperture

antenna.

nal Hilbert aperture antenna. The impedance match at the second resonance is

very poor and the impedance match at the 1st and 3rd resonant frequencies is

significantly better than that for the original Hilbert curve aperture antenna.

The gain patterns of the original Hilbert aperture antenna in two principal

planes are shown in Fig. 5.14 at three resonant frequencies. The nature of the

gain patterns remains similar at all resonant frequencies and the maximum gain

of the antenna is around 7.23 dB at the third resonance. Again, the pattern in

tp = 90° plane shows an omnidirectional pattern with a slight increase in the

directivity at higher order resonant frequencies.

5.3.3 Plus Shape Fractal Aperture Antenna

Plus shape fractal geometries are used in the design of multiband frequency

selective surface elements. Here, we have considered a self-affine plus shape

fractal aperture. The initial plus shape has a length of 14 mm along a;-axis
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14.0 mm
9.8 mm

Figure 5.15: A self-affine plus shape fractal aperture antenna.

and 8 mm along y-axis and is placed at the center of waveguide cross-section.

This initial geometry is scaled by a factor 0.7 in ^-direction and by 0.5 in y-

direction and four such copies are placed at (a/4,b/4), (3a/4,b/4), (3a/4,3b/4),

and (a/4,3b/4), where a x b is the waveguide cross-section. The geometry of a

2nd iteration plus shape fractal aperture is shown in Fig.5.15. The variation of

return loss of the plus shape fractal aperture antenna is shown in Fig. 5.16 for two

iterations. The antenna performance is tabulated in Table 5.6. It can be seen that

the 1st resonant frequency shifts downward by 6.25% in the second iteration. The

ratio between the successive resonant frequencies is 1.63, which is larger than the

theoretical value 1.43. In this case, the location of 1st resonance is controlled by

the length of initial plus shape along x-direction while, the 2nd resonance, which

is determined by the length of smaller plus, can be placed suitably by controlling

the scale factor. Fig. 5.17 compares the return loss of the fractal of Fig. 5.15

with another second iteration plus fractal aperture with the length of initial plus

as 18 mm and s = 0.6 along x-direction. In the later case, the two resonant

frequencies are at 7.80 GHz and 14.74 GHz with a ratio of 1.88 as compared
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Figure 5.16: Return loss of waveguide-fed self-affine plus shape fractal aperture

antenna for two iterations.

190

*



Chapter 5. Radiation from Rectangular Waveguide-fed Fractal Apertures

Table 5.6: Frequency response of waveguide-fed self-affine plus shape fractal

aperture antenna.

Parameters Iteration 1 Iteration 2

Resonant Frequency (GHz)

MoM

HFSS

10.40

10.46

9.75

9.81

15.9

16.05

Difference (%) 0.58 0.62 0.94

VSWR 1.20 1.19 1.28

Bandwidth (%) 9.62 10.81 16.67

10 12 14
Frequency (GHz)

16 18

Figure 5.17: Return loss of a waveguide-fed 2nd iteration plus shape fractal aper

ture antenna with different scale factors.
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10 12 14
Frequency (GHZ)

18

Figure 5.18: Return loss of a waveguide-fed 2nd iteration modified plus shape

fractal aperture antenna.

to the desired value 1.63. Thus, the location of the resonant frequencies can be

suitably chosen by properly selecting the dimension of the initial plus geometry

and the scale factor. The effect of the size of vertical arm is also investigated

and it was found that the reduction in the size of vertical arm of the initial

plus geometry results in a slight increase in the resonant frequencies. This is

shown in Fig. 5.18 for the case where the vertical arm length has been reduced

to zero resulting in five rectangular apertures. Thus, an additional parameter is

available to the designer for fine tuning the desired resonant frequencies.

Thegain patterns ofthe 2nd iteration plus shape fractal aperture antenna with

s = 0.7at the tworesonant frequencies are shown in Fig. 5.19 for the twoprincipal

planes. It is found that at the 2nd resonant frequency, the pattern becomes more

directive and also, side lobes are generated. Again, an omnidirectional behavior

was seen in tp = 90° plane. The maximum gain for the aperture antenna is
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180 18o

(a) tp = 0° (b) tp = 90°

Figure 5.19: Gain pattern of waveguide-fed 2nd iteration plus shape aperture

antenna with s = 0.7

8.90 dB. Also shown in Fig. 5.20 is the gain pattern of the modified plus shape

fractal aperture antenna. It can be seen from the plots that there is hardly any

change in the gain patterns of the aperture antenna. The maximum gain of the

modified aperture antenna is 9.00 dB. In all the plots, a good agreement between

the MoM results and HFSS can be observed.

5.3.4 Devil's Staircase Fractal Aperture Antenna

The generation steps of Devil's staircase fractal geometry have already been

described in chapter 3. A 3rd iteration modified Devil's staircase fractal aperture

is shown in Fig. 5.21. The variation of return loss for different iterations of

modified Devil's staircase fractal aperture antenna is shown in Fig. 5.22. The

performance of the fractal aperture antenna is summarized in Table 5.7. In

the first iteration, the antenna resonates at 12.71 GHz which corresponds to a

rectangular aperture of length 11.43 mm. The corresponding aperture length
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Figure 5.20: Gain pattern of waveguide-fed 2nd iteration modified plus shape

aperture antenna with s —0.6.

Figure 5.21: A 3rd iteration modified Devil's staircase fractal aperture

(a=22.86 mm, 6=10.16 mm).
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Frequency (GHz)

(c) 3rd Iteration

Figure 5.22: Return loss ofwaveguide-fed modified Devil's staircase fractal aper

ture antenna for different iterations.

14 16

Table 5.7: Frequency response ofwaveguide-fed modified Devil's staircase fractal

aperture antenna.

Parameters Iteration 1 Iteration 2 Iteration 3

Resonant Frequency (GHz)

MoM

HFSS

12.71

12.72

8.23

8.30

12.73

12.71

7.46

7.34

8.37

8.47

10.49

10.40

12.73

12.68

Difference (%) 0.08 0.85 0.16 1.61 1.19 0.86 0.39

VSWR 1.04 1.31 1.04 1.18 1.32 1.06 1.01

Bandwidth (%) 20.47 7.90 20.42 5.36 4.78 1.23 16.54
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to resonant wavelength ratio is 0.48. In the second iteration, there are three

apertures of different lengths and therefore, the antenna may have three different

resonant frequencies. The two resonant frequencies namely 8.23 GHz and 12.73

GHz lie within the frequency band considered here, while the third resonant

frequency arising due to the smallest aperture lies outside this band. Here,

the first resonance is due to the aperture of length 17.145 mm and the second

resonance is due to the aperture of length 11.43 mm of the first iteration. The

ratio between the successive resonant frequencies is 1.53. The impedance match

is better at the second resonance frequency. In the third iteration, we obtain four

resonances in the frequency range 7 GHz-16 GHz. The resonance at 7.46 GHz

and 10.49 GHz are due to the apertures of length 20 mm and 14.29 mm of 3rd

iteration, while the other two resonant frequencies corresponds to the apertures

of previous iterations. There is a little difference with the results obtained from

the simulation on HFSS and present MoM method. In all the cases, it is evident

that the corresponding wavelength is twice the length of the aperture. The ratios

between the successive resonant frequencies are 1.12, 1.25, and 1.21, which are

close to the corresponding aperture length ratios 1.17, 1.20, and 1.25.

The gain patterns of the antenna at four resonant frequencies are shown in

Fig. 5.23 in tp — 0° and tp — 90° planes. As seen from the plots, the pattern

remains same at all the resonant frequencies and the maximum gain of the an

tenna is around 5.46 dB. The gain patterns in <p = 90° plane are omnidirectional

at all the resonant frequencies.

5.3.5 Koch Fractal Aperture Antenna

The advantage of using the Koch curve fractal is that the overall length of the

curve increases with the increase of order of iteration, although the end-to-end
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22.86 mm

Figure 5.24: A 3rd iteration standard Koch curve aperture antenna.

Table 5.8: Frequency response of waveguide-fed Koch fractal slot antenna.

Parameters Iteration 0 Iteration 1 Iteration 2 Iteration 3

Resonant Frequency (GHz)

MoM

HFSS

14.55

14.51

12.07

11.94

10.14

10.05

9.30

9.20

Difference (%) 0.27 1.08 0.89 1.08

VSWR 1.29 1.04 1.33 1.44

Bandwidth (%) 5.15 4.14 2.47 2.15

length of the curve remains same. In this case, we have considered a Koch curve

fractal aperture of length 10 mm along the larger dimension of the waveguide

and width equal to 0.1 mm. Fig. 5.24 shows a 3rd iteration Koch curve aperture

antenna and the variation of return loss with frequency is shown in Fig. 5.25

for different iterations. Table 5.8 summarizes the performance parameters of

the Koch curve fractal aperture antenna. It can be seen that the present

MoM analysis agrees well with the HFSS results with a difference of around 1%.

For the zeroth iteration, the rectangular aperture of length 10 mm resonates

corresponding to a wavelength twice the length of the aperture. The resonant
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Figure 5.25: Return loss of waveguide-fed Koch curve aperture antenna for dif

ferent iterations.
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frequency ofthe antenna decreases by 36.08% from zeroth to third iteration and

also, the bandwidth of the aperture antenna decreases significantly as the order

of iteration increases. The location of resonant frequency can also be controlled

by changing the indentation angle of the Koch fractal aperture.

The gain patterns of the antenna at the primary resonant frequencies for

different iterations of Koch aperture are shown in Fig. 5.26. The gain of the

antenna is around 5 dB for these iterations. However, the maximum gain of

the antenna decreases slightly as the order of iteration increases. The numerical

results agree very well with the results obtained from simulations with HFSS. The

patterns are omnidirectional for all the iterations for p = 90° plane. For tp = 0°

plane, the pattern becomes more directive as the order of iteration increases.

5.3.6 Minkowski Fractal Aperture Antenna

The generation steps of the Minkowski fractal is described in chapter 3. This

fractal geometry is also very popular in reducing the resonant frequency of the

antenna. The geometry of a 2nd iteration Minkowski fractal aperture is shown

in Fig. 5.27. The variation of return loss of the aperture antenna is shown in

Fig. 5.28 for different iterations. The performance parameters of the antenna is

shown in Table 5.9. The HFSS results agrees well with the present MoM code.

As can be seen, the resonant frequency of the square aperture is well beyond the

frequency band considered here. The resonant frequency of the antenna shifts

downward as the order of iteration increases with a significant decrease in the

bandwidth of the antenna. Fig. 5.29 shows the gain pattern of the antenna

for 1st and 2nd iterations. A very good agreement with the HFSS can be seen.

Similar to the other waveguide-fed aperture antennas, the antenna shows an

omnidirectional pattern for tp = 90°. The gain of the antenna is around 5 dB for

202



Chapter 5. Radiation from Rectangular Waveguide-fed Fractal Apertures

HI

?

0

-5

-10

-15

i -20
e -is

-10

-5

0

5

10

•3

\
240

210

-♦=0 (MoM)

+=0" (HFSS)
-+=90° (MoM)
-<H>o"(HFSS)

150

180

(a) 0th Iteration

10 330 „..~-— -- 3(

5 /* ^^^-j. V.

0

-5
300

-10
/

00
•n

-15

-20

-15

270 f ' V*k S

•
l" (MoM)t~

-10- \ <t>=0° (HFSS)
-5

240 \ JO (MoM)y—

0

5

10-

\ W°(HFSS)♦-

21(
<s. t >'
» ----- _i_ _-->-• 15

180

(c ) 2nd Iter at ion

120

120

ij-15

-10

-5

0

sH
10

180

(b) 1st Iteration

330

300 /

240

4>=0" (MoM)

<|>=0°(HFSS)
+=90° (MoM)
+=90° (HFSS)

-<.„ !
210 l-

180

(d) 3rd Iteration

Figure 5.26: Gain pattern of a waveguide-fed Koch fractal aperture antenna for

different iterations.

y

150

/I
120

203



5.3 Numerical Results

22.86 mm

Figure 5.27: A 2nd iteration Minkowski aperture antenna.

Table 5.9: Frequency response of waveguide-fed Minkowski fractal slot antenna

204

Parameters Iteration 1 Iteration 2

Resonant Frequency (GHz)

MoM

HFSS

11.70

11.66

9.60

9.72

Difference (%) 0.34 1.25

VSWR 1.17 1.44

Bandwidth (%) 17.09 8.33
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all the iterations.

5.4 Summary

The properties of fractal aperture antennas fed by a rectangular waveguide have

been investigated. It has been found that using the fractal geometry, the in

put matching of the waveguide fed aperture antennas can be greatly improved.

Also, it has been demonstrated that by changing the scale factor of the fractal

apertures, the location of resonant frequencies can be controlled. The ratios of

successive resonant frequencies are found to be larger than the ratios for ideal

fractals, which is usual for fractal antennas with lower order of iterations. The

gain patterns of the aperture antenna remain nearly the same at different res

onant frequencies and for all the fractal apertures, the patterns are symmetric.

Most of these aperture antennas offer a gain around 5 dB. The space-filling

property of the Hilbert antenna can be efficient in reducing the antenna aper

ture dimension, although the input VSWR value increases with higher iterations.

The antennas using Koch curve and Minkowski curve are capable of reducing the

resonant frequency of the aperture antennas.
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Chapter 6

INVESTIGATIONS ON

CAVITY-BACKED FRACTAL

APERTURE ANTENNAS

Cavity-backed aperture antennas are very popular in aerospace applications due

to their conformal nature. As discussed in chapter 1, several cavity-backed aper

ture antennas and arrays have been investigated in the past. However, the be

havior of fractal apertures backed by a cavity has not been explored so far. In

this chapter, we investigate the characteristics of cavity-backed fractal aperture

antennas. As pointed out in chapter 1, hybrid techniques have become more

popular in the numerical analysis of such problems due to their ability to handle

arbitrary shape of the cavity and complex material filling. The hybrid finite

element-boundary integral (FE-BI) method is very efficient for the analysis of

cavity-backed aperture antennas [154] and has been used here. In section 1, the

problem of probe-fed cavity-backed aperture antenna has been analyzed using

FE-BI method. The field inside the cavity is computed using the finite element
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6.1 Formulation of the Problem Using FE-BI Method

Infinite

groundj

Apertures

Rectangular
cavity

Coaxial Line

Figure 6.1: Geometry of a coaxial probe-fed cavity-backed aperture antenna.

method and MoM is used to calculate the field outside the cavity region. The

method produces a partly sparse and partly dense matrix which is solved using

direct solver to obtain the field on the aperture surface. Once the aperture field

is obtained, the radiation pattern and the input characteristics of the antenna

can readily be computed. In section 2, numerical results for several fractal aper

ture antennas are presented which give an insight into the behavior of fractal

apertures.

6.1 Formulation of the Problem Using FE-BI

Method

The geometry of the problem is shown in Fig. 6.1 where multiple apertures are

placed on the cavity top surface and are assumed to located in z = 0 plane.

The cavity, as well as the apertures, can have any shape and dimension. The

equivalence principle is first applied to decouple the original problem into two

equivalent problems, one for the cavity volume including the feed structure and

other for the region above the infinite ground plane as was discussed in the
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Chapter 6. Investigations on Cavity-backed Fractal Aperture Antennas

equivalent model in chapter 2 (Fig. 2.11).

For a linear isotropic and source free region, the electric field satisfies the

vector wave equation given by

Vx (—VxE) -klerE =0 (6.1)

where \iT and er denote the permeability and permittivity of the medium inside

the cavity.

Multiplying (6.1) scalarly by a vector testing function T and integrating over

the volume of the cavity, we get

jJJT .Vx(—V xEJdv - k2QeT JJJt .Edv =0 (6.2)

where V denotes the volume of the cavity.

Now,

JJ^-VX(iV><^) d^W^^).{V^E)dv
-JLUH<ff){T x h) .H ds

s

Hence, (6.2) can be rewritten as

iff —(V x^) ' (VxE)dv- k2er JJJ T• Edv
V Vr

= jupa

s

where h is the unit outward normal to the cavity surface 5.

The tangential component of the electric field is zero on the perfectly con

ducting walls of the cavity, except on the aperture surfaces. Thus, the surface

integral on the right hand side of (6.3) is non zero only over the aperture sur

faces (Sap) on the infinite ground plane and on the input aperture surface Si„p.
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6.1 Formulation of the Problem Using FE-BI Method

Therefore, (6.3) can be rewritten as

Iff~(V XT) • {V xE)dv- kfer J]Jt •Edv (6.4)
v ^ v

-jojUo JJ(T xn) • Hap ds =jw^o JJ (T xh)
Sap &inp

*3 irt/n WO

where, Hap denotes the magnetic field on the aperture surface and Hinp is the

magnetic field on the input aperture surface.

Hence, the problem can be divided into three parts. The first part involves y

the computation of volume integrals inside the cavity volume. The second and

third parts involve the evaluation of surface integrals over the apertures on the

top surface of the cavity and the input aperture surface, respectively. In the

following subsections, computation of these integrals is presented.

6.1.1 FEM Formulation in the Interior of the Cavity

In order to solve (6.4) for the unknown electric field inside the cavity and on the

aperture surfaces, the entire cavity is divided into Ne number of small tetrahedral

elements and within each volume element, the electric field is expressed as the

linear sum of edge basis functions as

W=J2VfE° (6.5)
i=\

where E& are the basis functions associated with each edge of the tetrahedral el-

ement and V* denotes the unknown coefficient associated with ith basis function.

Referring to Fig. 6.2, let us assume that ii and i2 are the vertices of the ith edge

and the six edges of the tetrahedron are numbered according to the Table 6.1.

The vector basis functions are defined as

f7-i + g-j-i x f, f in Ve
E^ir) - {
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Figure 6.2: A tetrahedral volume element and associated edges.

Table 6.1: Tetrahedron edge definition.

Edge No. i\ i2

1 1 2

2 1 3

3 1 4

4 2 3

5 4 2

6 3 4
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where the vectors / and g are defined as

h-i
h-i = TT7 rH X ri2

614

97-i
nh-i -

= e

6K

fi2 - fn

I,

(6.7)

(6.8)

(6.9)

where fa, fi2 are the position vectors of the vertices i\ and i2, k is the length of

ith edge, Ve is the volume of the tetrahedron element and i = 1,2,3,..., 6.

From the definition of basis functions it is evident that the basis functions

have the following properties

where

V . E, = 0

V x Eet=2-gi

Eei(rj) • tj = Sa

(6.10)

(6.11)

(6.12)

*« = <
1, i = j

0, i^j

and fj has its tip on the edges of the tetrahedron. Hence, V? is simply the

amplitude of field at the ith edge of the tetrahedral element.

Substituting (6.5) in (6.4), the volume integral over a tetrahedral element can

be expressed as

-EjIf(V x Tt) . (V x Et) dv-kler^T^E] dv

i=i ve
(6.13)

Using (6.10), it can be written as

rrr—(v x t,) . (v x e3) dv = ve—-gi
l'r llr

•9] (6.14)
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Again,

Iff^ •^ dv =Iff(/< +ft x f) •(/j +9i x f) cfo
Vi ve

=n/i/;^+IJJr.I>«fc

+Iff (ft xf) •(ft xf) dv
Ve

= h+I2 + I3 (6.15)

where

D = (h x gA+ ifj x ft) (6.16)

h = jjJJiljdv (6.17)
Ve

h = ^jf.Ddv (6.18)

/3 = |[f(ft xf) . (gj xf) dv (6.19)
Ve

Since / is a constant vector, I\ can be expressed as

h = fi- fjVe (6.20)

In order to evaluate integral I2, the coordinates are expressed as a linear sum of

the shape functions over a tetrahedral element defined as

4

X =

i=\

4

y= 22 LiVi
i=i

4

*= 5ZL^
i=l

/ 4L>iXi

where L, are the shape functions for the tetrahedral element and [xi,yi,zA with

i = 1,2,3,4 denote the vertices of the tetrahedral element. Using the standard
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formulae of volume integration within the tetrahedral element, I2 can be ex

pressed as

(6.21)h =
V. DxJ^xt +Dy^Tyi +dz^2 zi

t=l i=l i=l

where Dx, Dy, and Dy are the components of D.

Next,

h=Si •9j J/J kl2 dv - JJJ(ft •f)(9j •f) dv
Ve Ve

=(9iV9jy +9iz9jz) JJx2 dv +{gixgjx +gizgjz) JJ y2 dv
Ve Ve

{9ix9jx +9iy9jV) JJ z2 dv - (glxgjy +giygJX) J[xy dv -
Ve Ve

(9ix9jz +gizOjx) Jj zx dv - (giygjz +gizgjy) JJ yz dv
Ve Vc

where gim is the mth component of the vector ft.

The evaluation of above integrals takes the form

^aiamdv =f
Ve

/ Jana-mi + 2^/aii Z-^i °""
_i=l i=\ i=l

where l,m —1,2,3 and a\, a2 and a3 represent the variables x, y and z, respec

tively.

+

(6.22)

(6.23)

6.1.2 Boundary-Integral Equation Formulation

The two surface integrals over the aperture surfaces Sap and Sinp are evaluated

using the boundary-integral formulation. The surface integral over the aperture

surface at z — 0 is written as

lap =jkoZojjiT Xft) . Hap(M) dS
Sap

(6.24)

where Z0 is the intrinsic impedance of the space above the infinite ground plane

and~Hap(M) is the magnetic field in the half-space region for a surface current M
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radiating in the presence of a complete conductor. Applying the image theory,

the field in the region above the ground plane can be computed by considering

an equivalent magnetic surface current 2M radiating in free space. Hence, (6.24)

can be written as

lap =jk0Z0 JJTs .Hap(2M) ds (6.25)

where Ts = T x ft.

The integral over the aperture surface is same as that given in (2.69) except

with a negative sign and hence, can be evaluated using (2.80).

Now, for any transmission line, the electric field can be expressed as a sum

of incident and reflected field as

E= Emc +£ {ameTmEM'TE +bme™) e*" (6.26)
in

where, Einc is the incident electric field of unit amplitude, emEM,TE, e™ rep

resent TEM/TE, TM modes, respectively, am, bm are the reflection coefficients

for TEM/TE and TM modes, respectively and 7m is the propagation constant

associated with mth mode.

Using the orthogonality of modal vectors, the reflection coefficients am and

bm can be expressed as

am =e~^z JJ(£ - Einc) . eTmEM'TE dxdy (6.27)

and

bm =e"7mZ JJ(E - Einc) . e™ dxdy (6.28)
&inp

Now for a coaxial input, only TEM mode exists and hence the reflection coeffi

cient a0 for a TEM incident mode can be expressed as

a° =e~y°Z II &~Emc) •elEM dxdy (6.29)
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where

Emc = emce-^z (6.30)

Here, -yinc = jk0y/£r~c and the modal vector for the incident wave is expressed as

einc = P^=^=- (6-31)
P

27rln (S)

where erc is the relative permittivity of the coaxial line and p\ and p2 denote the

inner and outer radius of the coaxial line. Hence, substituting (6.31) in (6.29),

the reflection coefficient can be expressed as

Q-jkos/e^cZi JJ £ .£ds - exp {^jkoJJrZzi) (6.32)a0

i2nln(AS"1

Now, the surface integral over the input aperture surface is expressed as

Iinp = ju/io JJ (T x h) . Hinp ds
Jinp

,Ir,(nxVxI) ds (6.33)
stnp

Using (6.32) and after some vector calculations, the surface integral becomes

'•inp

+P^£ exp(-jW^*0 JJ T. (£) ds (6.34)
27r In (a) Sin»>

Substituting (6.25) and (6.34) in (6.4), the system of equations for the combined
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FEM/MoM technique can be expressed as

Iff ""(V X?) •(V X&) dv ~k2$r IffT•Edv
v ^r

+jk0Z0jJTs .Hap(2M)ds
Sap

/

4

2*ln(*)
2jko\/£rc

jj(T . t) ds tf(E . £) d,
&in

27rlnfe)
The above system of equations can be expressed in matrix form as

A(k)e(k) = b(k)

4J:exp(-jA:ov/e^-2i) 11 T . ( - ) ds
ojn

(6.35)

(6.36)

where b(k) denotes the excitation vector, e(k) denotes the coefficient vector and

A(k) is a partly sparse and partly dense complex symmetric matrix given by

A(k) = Ai(k) + A2(k) + A3(k)

with

A^k) =JJJ —(V x T) . (V x E) dv- k2sr JJJr .Edv

A2(k) =jk0ZQjJTs .Hap(2M) ds

Jk0Je

Mr

A3(k)

b(k) =

fcrlnfe)
2jA;0v^

ff(r. £)«& \\(E.p-)dsJJ p JJ p
^ 711

=exp(-j/c0\/£V^i) J J 31 • ( ~
1 S»np

ff;
2n In ( a

(6.37)

(6.38)

(6.39)

(6.40)

Once the matrix equation in (6.36) is solved for the unknown coefficients,

the field over the aperture surface can be calculated. Hence, the input reflection
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coefficient can be expressed according to (6.32). Assuming the incident plane at

zi = 0, the reflection coefficient is given by

r =au(zi =0) = • 1 JJE.^-ds-l (6.41)
27rln(^Wp P

The magnetic field in the far-field region can be calculated as

H(r 0 <p) =_Jh^L WtQQ +£0) .^gifcosin^xcos^+ysin^) ^ ^^
Tfy 2nr JJ

bap

6.2 Numerical Results

Based on the formulation presented here, a MATLAB code has been developed

to analyze the performance of a cavity-backed fractal aperture antenna. First,

the characteristics of a cavity-backed rectangular aperture antenna have been

investigated in order to get an insight into the properties of the aperture antenna.

Next, several fractal aperture antennas are investigated and discussed.

6.2.1 Cavity-Backed Rectangular Aperture Antenna

A rectangular aperture of length Ls and width Ws has been considered which is

backed by a rectangular cavity of dimensions 15 cmx 15 cmx0.4 cm. The antenna

is fed by a coaxial line of characteristic impedance 50 Q. First, a parametric study

on the probe location was carried out and the results are shown in Fig. 6.3. Here

(xc, yc) denotes the location of probe as shown in the inset of Fig. 6.3. The

length and width of the slot are taken to be 5 cm and 0.5 cm, respectively. It is

found that the optimum probe location is (xc = 0, yc = 6.5 cm). The antenna

resonates at 2.0 GHz with a ratio of aperture length to corresponding resonant

wavelength equal to 0.33. The location of the probe parallel to the length of the

slot is also varied and it is found that best impedance match is obtained when
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Figure 6.3: Return loss of a cavity-backed rectangular slot antenna for different

probe positions.

the probe is on the y-axis. Next, the length of the slot is varied and for each

slot length the optimum probe position is found. The effect of slot length on the

resonant frequency of the antenna is depicted in Fig. 6.4. The width of the slot

has been kept constant at 2.5 cm. Resonant frequencies of the aperture antenna

for different slot lengths are tabulated in Table 6.2. It is seen that the resonant

slot length approaches 0.5A as the resonant frequency of the antenna approaches

the fundamental resonant mode of the closed cavity. Similar variation of resonant

frequencies of the slot antenna was reported in [156]. Also, the bandwidth of the

antenna increases as the slot length increases.

6.2.2 Sierpinski Carpet Fractal Aperture

The generation of Sierpinski carpet fractal aperture is described in chapter 3.

Here, a rectangle is taken as the initial geometry. The self-similarity factor for

the Sierpinski carpet is 3 which causes a log-periodic behavior with a periodicity
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Figure 6.4: Return loss of a cavity-backed rectangular slot antenna for different

slot lengths.

Table 6.2: Resonant frequencies of cavity-backed rectangular aperture antenna

for different slot lengths.

Slot Length

(Ls cm)

Probe Location

{xc, yc)

Resonant Frequency

(/r) (GHz)

Ls/Xr Bandwidth

(%)

3 (0,7) 2.12 0.21 0.24

4 (0,6.5) 2.03 0.27 0.64

5 (0,6.25) 1.94 0.32 1.08

6 (0,6.0) 1.86 0.37 1.51

7 (0,5.5) 1.78 0.42 2.36

8 (0,5.25) 1.71 0.46 2.98
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Figure 6.5: A 2 iteration self-affine Sierpinski carpet aperture antenna.

of 3. To have a control over the location of resonant frequencies, the fractal

geometry is modified as shown in Fig. 6.5. The length of the first iteration

aperture is kept constant, whereas the length of the second iteration apertures is

varied according to a scale factor (s). For the present analysis, the dimension of

the initial rectangle is taken to be 15 cmx7.5 cm. Hence, in the first iteration,

the antenna consists of a single aperture of length 5 cm and width 2.5 cm. In the

next iteration, the dimension of the apertures are (4 cmx0.83 cm) with a scale

factor (s) equal to 0.8.

For both the iterations, first a parametric study on the location of the probe

is carried out. The variation of return loss for different probe locations is shown

in Fig. 6.6 for two iterations. From the study, it is evident that the optimum

positions of the probe are at (0, 6.0 cm) and (0, 5.4 cm) for 1st and 2nd it

eration, respectively. The final frequency response of the antenna is shown in

Fig. 6.7. A good agreement between the present method and HFSS can be

seen from the plots. The discretization parameters and the resonant frequencies

for the two iterations are given in Table 6.3. It is seen that the first resonant

frequency shifts downwards as the order of iteration increases and the ratio be

tween the resonant frequencies is 1.39 which is greater than the theoretical ratio
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1.75 2 2.25
Frequency (GHz)

(a) 1st Iteration

2 2.5
Frequency (GHz)

(b) 2nd Iteration

Figure 6.6: Parametric study on the probe position for the two iterations of

cavity-backed Sierpinski carpet fractal antenna.
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Iteration 1 (FE-BI)
Iterationl (HFSS)
Iteration 2 (FE-BI)
lteration2 (HFSS)

2 2.25 2.5
Frequency (GHz)

2.75

Figure 6.7: Return loss of a self-affine cavity-backed Sierpinski carpet fractal

aperture antenna with s=0.8.

Table 6.3: Discretization parameters and resonant frequencies of cavity-backed

Sierpinski carpet fractal aperture antenna.

Parameters Iteration 1 Iteration 2

Discretization

No. of Tetrahedrals 2849 5620

No. of Edges 4821 9501

No. of Aperture Edges 24 379

Resonant Frequency (GHz)

FE-BI 1.94 1.87 2.60

HFSS 1.94 1.86 2.59

Difference (%) 0.00 0.54 0.38

VSWR 1.25 1.09 1.32

Bandwidth (%) 1.55 1.98 2.50
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Figure 6.8: Return loss of 2nd iteration cavity-backed Sierpinski carpet aperture

antenna for different scale factors.

of 1.25. The ratio between the successive resonant frequencies can be controlled

by changing the scale factor (s). From the parametric study, it is found that the

optimum probe position for s=0.7 and s=0.9 are (0, 5.7 cm) and (0, 5.0 cm),

respectively. The variation of return loss of a 2nd iteration self-affine Sierpinski

carpet fractal aperture antenna for different scale factors is shown in Fig. 6.8

and the results are summarized in Table 6.4. It is evident that while the first

resonant frequency is relatively insensitive to the variation in scale factor, the

second resonant frequency can be suitably located by selecting an appropriate

scale factor. The frequency ratios are greater than the theoretical values, which

is a characteristics of the pre-fractal geometries for lower order iterations. Also,

the ratio between the successive resonant frequencies depends on the position of

slot relative to the center of the cavity and the location of resonant frequencies

can be fine tuned by varying the spacing between the apertures.

The normalized radiation pattern of a 2nd iteration Sierpinski carpet aperture
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Table 6.4: Resonant frequencies of 2nd iteration cavity-backed Sierpinski carpet

fractal aperture antenna for different scale factors.

Scale Factor Resonant Frequencies Ratio Bandwidth (%)

frl frl frl
BWX BW2

0.7 1.89 2.74 1.45 1.85 1.83

0.8 1.87 2.60 1.39 1.98 2.50

0.9 1.82 2.36 1.30 2.31 2.58

in the two principal planes is shown in Fig. 6.9 for s=0.8. The second resonant

frequency of the cavity backed aperture antenna is above TM12o resonant mode

of the cavity and hence, the second iteration apertures will be excited by the

fields of opposite phase which causes a null along the z-axis.

6.2.3 Sierpinski Gasket Dipole Aperture Antenna

The generation steps for the self-affine Sierpinski gasket dipole geometry is de

scribed in chapter 3. The geometry of second iteration Sierpinski gasket dipole

aperture antenna with a scale factor s=0.8 is shown in Fig. 6.10. The initial

triangle has a height 3.75 cm and the base length is 7.5 cm. Fig 6.11 shows

the frequency response of the self-affine gasket aperture for different probe lo

cations. It is found that the optimum position of the probe is at (0, 5.25 cm)

for both iterations. The variation of return loss of the Sierpinski gasket dipole

aperture antenna with scale factor (s) equal to 0.8 is shown in Fig. 6.12. A good

agreement with the present FE-BI code with the HFSS results can be found

for both iterations. The discretization parameters and the resonant frequencies
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Figure 6.9: Normalized power patternofa 2nd iteration cavity-backed Sierpinski

carpet aperture antenna.

0.75 cm i
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Figure 6.10: A 2nd iteration self-affine cavity-backed Sierpinski gasket dipole

aperture antenna.
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Figure 6.11: Parametric study on the location of probe for cavity-backed Sier

pinski gasket dipole aperture antenna.
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Table 6.5: Discretization parameters and resonant frequencies of cavity-backed

Sierpinski gasket dipole aperture antenna.

Parameters Iteration 1 Iteration 2

Discretization

No. of Tetrahedrals 2267 3564

No. of Edges 3989 5956

No. of Aperture Edges 355 408

Resonant Frequency (GHz)

FE-BI 1.74 1.60 1.95

HFSS 1.76 1.57 1.94

Difference (%) 1.15 1.88 0.52

VSWR 1.10 1.09 1.12

Bandwidth (%) 2.15 0.75 1.03

are summarized in Table 6.5. It can be seen that there is a 8.05% downward

shift of first resonant frequency in the second iteration. The ratio between the

successive resonant frequencies is 1.22, which is slightly less than the theoretical

value 1.25. The bandwidth of the antenna decreases as the order of iteration

increases. Although the input match is good in all the iterations, the bandwidth

of the antenna is very small at both the resonant frequencies. In order to see

the effect of scale factor on the response of the antenna, another gasket dipole

aperture antenna with a scale factor 0.6 was investigated. The dimensions of the

first iteration aperture are kept constant at 6 cm, so the length of the 2nd iter

ation aperture is 3.6 cm. The variation of return loss of 2nd iteration self-affine

gasket dipole aperture antenna for different scale factors is shown in Fig. 6.13.

It can be seen that there is a very little change in the first resonant frequency
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Figure 6.13: Return loss of 2nd iteration cavity-backed Sierpinski gasket dipole

aperture antenna for different scale factors.

and the location of the 2nd resonance can be controlled by changing the scale

factors. The resonant frequencies for s = 0.6 are 1.58 GHz and 2.38 GHz with

a ratio of 1.49. This ratio is much less than the theoretical ratio of 1.67. This

is due to the geometric modifications incorporated in the generation of fractal

aperture. Also, it is found from the analysis of rectangular aperture antenna that

the ratio between the aperture length and the resonant wavelength approaches

0.5A as the resonant frequency of the antenna moves closer to the fundamental

resonant mode of the closed cavity. However, as the resonant frequencies move

away from fundamental resonant mode, the ratio decreases, which is another

reason of smaller frequency ratio for s —0.6.

The normalized radiation pattern of the 2nd iteration gasket dipole aperture

antenna with a = 0.8 is shown in Fig. 6.14 in two principal planes and is similar

at both resonant frequencies. The maximumgain of the aperture antenna at the

resonant frequencies is around 4 dB. It is to be noted here that both the resonant

frequencies for the dipole aperture antenna are within the fundamental resonant
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Figure6.14: Normalized power pattern of a 2nd iteration cavity-backed Sierpinski

gasket dipole aperture antenna.

mode of the closed cavity, hence the pattern at both resonant frequencies remain

same.

6.2.4 Plus Shape Fractal Aperture Antenna

The generation of the plus shape fractal aperture is described in chapter 3. The

initial plus shape has a horizontal arm length L and vertical arm length W.

The width of each arm is taken to be ws. The initial geometry is scaled by

a factor s in both directions and four such copies are placed with an offset

(±dx,±dy) as shown in Fig. 6.15. In the present analysis, the initial plus shape

is assumed to have a length L — W — 5 cm. The width of each arm is 2 mm.

The parametric study for the optimum probe location resulted in an optimum

probe position of (0, 6.5 cm). The variation of return loss for first iteration is

shown in Fig. 6.16. The initial plus aperture antenna resonates at 2.05 GHz

with a bandwidth of 0.45%. Next, a 2nd iteration plus shape fractal aperture

antenna is investigated for different offset parameter {dx,dy) with a scale factor

s=0.8. Fig. 6.17 shows the variation of return loss for different offset values and
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Figure 6.15: Geometry of a cavity-backed 2nd iteration plus shape fractal aper

ture.
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Figure 6.16: Return loss of 1st iterationcavity-backed plusshapefractal aperture

antenna.
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antenna for different offset values.

the results are summarized in Table 6.6. It is evident that the location of 2nd

iteration apertures affects the location of 2nd resonant frequency and hence, the

ratio of successive resonant frequencies. The variation of return loss for a 2nd

iteration plus fractal aperture with dx —dy = 2.5 cm is shown in Fig. 6.18 and

the results for two iterations are summarized in Table 6.7. It is seen that the

first resonant frequency shifts downward and the ratio between the successive

resonant frequencies is 1.36 as compared to the theoretical value 1.25. Two more

fractal geometries with the scale factors s=0.7 and s=0.9 were investigated and

Fig. 6.19 shows the frequency response of the aperture antenna for different scale

factors. The value of offset is kept at 2.5 cm. From the figure, it is seen that

the ratio between the successive resonant frequencies are 1.425, 1.37 and 1.31 for

s=0.7, 0.8 and 0.9, respectively. Thus, the antenna resonant frequency can be

controlled by changing the scale factor, which can be fine tuned with different

offset values.
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Table 6.6: Resonant frequencies of 2nd iteration cavity-backed plus shape fractal

aperture for different offset values.

03

Offset

(dx = dy)

Xq

(cm)

Vc

(cm)

Resonant Frequencies Ratio

hlhh (GHz) h (GHz)

2.50 0 6.6 1.97 2.69 1.37

3.00 0 6.4 1.99 2.75 1.38

3.50 0 6.4 2.00 2.87 1.44

3.75 0 6.25 2.00 2.91 1.455

0i~

-5

a

J -10
a
•-

FE-BI

•HFSS

CC
-15

-2(
1.75 2 2.25 2.5

Frequency (GHz)
2.75

Figure 6.18: Returnloss of2nd iteration cavity-backed plus shape fractal aperture

antenna with s=0.8 and dx=dy—2.5.
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Table 6.7: Discretization parameters and resonant frequencies of cavity-backed

plus shape fractal aperture antenna.

Parameters Iteration 1 Iteration 2

Discretization

No. of Tetrahedrals 4296 5020

No. of Edges 6914 8251

No. of Aperture Edges 43 175

Resonant Frequency (GHz)

FE-BI 2.04 1.96 2.68

HFSS 2.05 1.97 2.69

Difference (%) 0.49 0.51 0.37

VSWR 1.25 1.09 1.32

Bandwidth (%) 0.45 0.56 0.74

2 2.25 2.5
Frequency (GHz)

2.75

Figure 6.19: Returnloss of2nd iterationcavity-backed plus shapefractal aperture

antenna for different scale factors.
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Figure 6.20: Normalized power pattern of a 2nd iteration cavity-backed plus

shape fractal aperture antenna.

The radiation pattern of the 2nd iteration plus shape fractal aperture antenna

is shown in Fig. 6.20. The pattern shows a similar behavior as that of carpet

antenna which shows a null along z-axis.

6.2.5 Minkowski Fractal Aperture Antenna

Minkowski fractal geometries are widely used in the miniaturization of antenna

and frequency selective surface design. Here, we have considered a second it

eration Minkowski aperture antenna as shown in Fig. 6.21. The dimension of

the initial square is taken to be 3 cmx3 cm and the dimension of the cavity is

10 cmx 10 cmx0.4 cm. The variation of return loss of the Minkowski aperture

antenna for different iterations are shown in Fig. 6.22 and the results are sum

marized in Table 6.8. It should be noted here that the optimum probe locations

are (0, 4.25 cm), (0, 3.80 cm) and (0, 3.60 cm) for 0th, 1st and 2nd iterations,

respectively. It is found that the resonant frequency of the antenna decreases by

12.66% as the order of iterations increases from 0 to 2. The ratio of the square

aperture length to the resonant wavelength is 0.31, a behavior similar to that
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10 cm

Figure 6.21: Geometry of a 2nd iteration Minkowski aperture antenna.
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Figure 6.22: Return loss of cavity-backed Minkowski aperture antenna for differ

ent iterations.
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6.3 Summary

Table 6.8: Discretization parameters and resonant frequencies of cavity-backed

Minkowski fractal aperture antenna.

Iteration No. of

Tetrahedrals

No. of

Edges

Aperture

Edges

Resonant

frequency (GHz)

Bandwidth

(%)

VSWR

0 1326 2247 193 3.08 1.30 1.10

1 3053 5103 405 2.86 2.45 1.29

2 12132 16649 902 2.69 2.60 1.05

obtained for rectangular aperture. Generally, it is found that the antenna band

width decreases with the miniaturization of the antenna structure. However, in

this case, the antenna bandwidth increases as the order of iteration increases.

This behavior of the aperture antenna is similar to antenna presented in [27].

The impedance match for all the iterations are very good.

The normalized radiated power patterns of the antenna at the resonant fre

quency of the Minkowski antenna for different iterations are shown in Fig. 6.23

where M0 to M2 denote the iterations of the Minkowski aperture antenna. The

normalized power pattern of the antenna remains same for all the iterations.

However, it is found that the maximum gain of the antenna decreases as the

order of iterations increases. The gain of the antenna for different iterations are

6.76 dB, 5.88 dB and 5.40 dB.

6.3 Summary

A hybrid FE-BI analysis for the cavity backed aperture antenna with a coaxial

feed is presented. Some dual-band cavity-backed antenna based upon the self-

affine fractal geometries such as Sierpinski gasket, Sierpinski carpet, plus shape
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Figure 6.23: Normalized power pattern of cavity-backed Minkowski aperture

antenna for different iterations.

fractals are investigated and discussed. The scale factor of the fractal apertures

are used to suitably locate the resonant frequencies of the antenna. Also, it

is found that the location of the aperture relative to the center of the cavity

changes the frequency response of the antenna. One of the main drawback of

the cavity backed antenna is that they have a small bandwidth due to the cavity

resonances. The normalized radiation pattern of the antenna remains same for

Sierpinski gasket dipole aperture antenna, but it is found that a null appears

along z-axis for aperture antennas like Sierpinski carpet and plus shape fractal

antennas. From the results presented here, it can be concluded that the radiation

pattern of the antenna can be kept sameif the antenna is operated within a single

mode. A self-similar antenna based on the Minkowski fractal is also analyzed and

it is found that this fractal geometry can be useful to minimize the dimension of

the aperture.
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Chapter 7

CONCLUSIONS AND FUTURE

WORK

Fractal electromagnetics has thrown open a wide vista of opportunities in front

of electromagnetic engineers. What makes fractal geometries attractive, is their

self-similarity which leads to multi-band properties. Thus, fractals have resulted

in the design of novel miniaturized and multi-band antennas, frequency selective

surfaces, and electromagnetic bandgap structures.

The present research was motivated by the realization that fractal apertures

can also be a useful tool in the design of multi-band waveguide components and

antennas, as well as, frequency selective surfaces and EBG structures.

The work presented in this dissertation has amply demonstrated that fractal

apertures indeed offer several interesting properties which can be exploited in

the design of a new class of waveguide components and antennas. Some of main

conclusions of the research are summarized below:

• Fundamental properties of some self-affine and self-similar fractal aper

tures in the transverse cross-section of a rectangular waveguide have been
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investigated numerically. The fractal apertures offer a multiple frequency

selective property and the frequency response of the fractal diaphragms is

directly related to scale factor of the geometry. It has been found that the

ratio between the successive resonant frequencies of the fractal diaphragm

varies with the scale factor. However, the ratio is a little higher than the

theoretical value due to the lower order of iterations used. Typical appli

cations of the fractal diaphragms in the design of waveguide based passive

elements have also been investigated. A simple dual-band waveguide filter

design has been presented which offers a good out-of-band rejection. Also,

an electromagnetic band gap structure based on self-affine Sierpinski gas

ket aperture was found to exhibit a wide bandgap with good roll-of factor

outside the stopband.

i Electromagnetic transmission through some typical self-similar fractal aper

tures illuminated by a plane wave of arbitrary polarization is investigated

which shows the existence of multiple passbands and stopbands. Equiva

lent magnetic current distributions on the aperture surface have been used

to get an insight into the behavior of fractal apertures. It is found that the

current is distributed over the entire aperture surface for primary resonant

frequency and for higher order iterations, the current is concentrated over

the scaled copies of the fractal geometry. The frequency response of the

fractal apertures isfound to be dependent on thepolarization as well as the

incidence angle. Some new passbands are generated for inclined incidence.

It is found that the fractal apertures support subwavelength transmission

of electromagnetic waves, and this property is more pronounced in case of

space-filling fractals. The behavior of the fractal apertures has been found

to be similar to the fractal multi-band monopole and dipole antennas.
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• Fractal apertures in an infinite conducting screen fed by a rectangular

waveguide offer multiple resonant bands. Some self-affine fractal apertures

have been proposed which offer dual-band radiation characteristics and it

is found that the scale factor of the fractal apertures can be used as a de

sign parameter for locating the resonant bands at desired locations. The

space-filling fractal apertures are efficient in reducing the aperture geome

try. The waveguide-fed fractal aperture antennas exhibit wide bandwidth

with moderate gain.

• Some dual-band cavity-backed aperture antennashave beenproposed based

on some self-affine fractal apertures. The antenna characteristics can be

controlled by varying the scale factor of the fractal apertures. The char

acteristics of these antennas have been found to depend on the location of

apertures over the cavity surface, because of the nature of field distribution

in the cavity. A good impedance match is obtained for the resonant bands

of the antenna. However, the cavity-backed antennas have inherently a

narrow bandwidth.

7.1 Future Work

The present research work has opened up a number of possibilities for further

investigation on fractal apertures. Some areas that need to be investigated are:

• In the present work, the apertures are assumed to be located in a thin

conducting screen. From practical point of view, the screen may have

some finite thickness. It is expected that the finite thickness of the screen

will havea significant effect on the transmission properties of the apertures.

Hence, it is important to include the thickness ofthe screen and the analysis
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should be extended to include the finite thickness of the screen.

• The fabrication of thin fractal diaphragms is difficult and these may be

efficiently fabricated only with a dielectric support. Also, the design of

waveguide based metamaterial structures requires proper dielectric back

ing. So, the fractal apertures have to be backed by a dielectric layer which

can be efficiently analyzed using the generalized scattering matrix (GSM)

approach. The study can be further extended to analyze the dual of the

present problem which consists of fractal screens instead of the fractal aper

tures in the transverse cross-section of the rectangular waveguide.

• In thepresent study, it has been demonstrated that fractal diaphragms can

be used in the design of multiband filters and EBG structures. However,

considerable effort needs to be directed in developing a design procedure

for specific applications. Further research is also required in exploring the

possibility of designing multiband waveguide power dividers, directional

couplers, and tee junctions.

• Recently, soft computing techniques like Particle Swam Optimization (PSO),

Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) have

emerged as powerful tools in design, modeling, and optimization of com

plex electromagnetic problems. It is envisaged that these techniques would

prove to be useful in the design of fractal-aperture based structures and

need to be investigated.

• The electromagnetic transmission through fractal apertures shows a polar

ization dependency. So, the fractal geometry can be optimized to obtain

a polarization independent frequency response. The analysis can be fur

ther extended to study the characteristics ofconducting screen perforated
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with fractal apertures sandwiched between two dielectric layers, which is

of importance in the design of bandpass radoms. In the present work, the

analysis is limited to the radiation from apertures fed bya single waveguide.

This analysis can be extended to investigate the properties of fractal aper

ture antenna arrays. Also, the gain of the aperture antennas are found to

be around 5 dB, which can be improved by using electromagnetic bandgap

layers.

The major issue in the analysis of cavity-backed aperture antennas is the

computational efficiency. The efficiency of the present analysis can be en

hanced by using asymptotic waveform evaluation (AWE) technique. The

present analysis is limited to single cavity which can be further extended

to study the cavity-backed aperture antenna arrays. For this case, the

adaptive integral method (AIM) can be used to analyze the problem effi

ciently. In the present analysis, the cavity is assumed to be empty. The

characteristics of inhomogeneous cavity filling should also be investigated.
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Appendix A

Calculation of Integrals over

Triangular Domains

The area coordinates associated with a triangle are shown in Fig. A.l. The area

coordinates are defined in terms of cartesian coordinates as

x = xiCi + x2C2 + x3C3

y = 2/1 £1 + y2C2 + y3C3

1 = Cx+C2 + C3 (A.l)

Thus, these coordinates are not independent, rather are related by 3rd equation.

For everyset of £1, C2, and C3, there is a unique set of cartesian coordinates. At

L,=0.25 ^Hx3.y3>

Figure A.l: Area Coordinates.
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point j, Cj = 1and Cj = 0at any other vertex. The linear relationship between

the area coordinates and cartesian coordinates implies that the contours of Cj

are equally spaced straight lines parallel to the side on which Cj = 0.

The area coordinate Cj at a point P can alternatively be defined as the ratio

of area of triangle formed by P and vertices other than jth vertex to the total

area of the triangle. Thus

_ Area of AP23
Ll ~ Area of A123

The integrals h and I2 can be transformed into the integrals over the area

coordinates by using the formula

I = f{x,y)dxdy
Triangle

= AT I f 2f(C2,C3)dC2dC3
Jo Jo

where AT denotes the area of the triangle.

Using the Gauss-Legendre quadrature formula, the above integral can be

expressed as
Kn

•AT^2w(k)f{C2kC3k) (A.2)

fc=i

where weights Wk and coefficients Clk, C2k, and C3k can be obtained from [161]

for different values of KN. Hence using (A.2), h and I2 can be expressed as

£^ . /rmrxk\ fniryk\h = AT 5J(xfc - Xi) sm [—^-Jcos {—)
fc=i

KN

where,
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h = AT l^iVk - Vi) cos |^—
fmryk\

fc=i

xk = xi + {x2 - xi)C2k + (x3 - xi)C3k

yk = y\ + (2/2 - yi)C2k + {y-s - y\)C3k

(A-3)
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Appendix B

Computation of Singular

Integrals

It is well known that potential integrals involving free space Green's function

suffer from singularity, which occurs when the source and observation points

coincide. A number of authors have reported the evaluation of these integrals

based on singularity subtraction approach [164, 165, 166, 167]. In thesingularity

subtraction approach, the term having the asymptotic behavior at singularity is

first subtracted from theintegrand, andthe resulting regular integral iscomputed

numerically. Thesubtractedsingular term iscalculated using analytical methods

and the result is added back to the numerically integrated term to obtain the

final result. The approach can be summarized as

jj M(r)G{r\r')ds' = [fM(r) [C(r|rQ - Gasym(r\r')} ds'
T T "" v '

Numerical Integration

+jj M(r)Gasym(r\r')ds[
T * v '
Analytical Integration
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where, M(r) is a scalar or vector basis function. Although, the singularity

subtraction approach is extensively used in the computation of singular integrals,

this methods suffers from some limitations. Thedifference termafter subtraction

of the asymptotic term cannot be well approximated in the neighborhood of the

singularity because of the existence of higher order derivatives. The complexity

of the problem increases for complex geometries and higher order basis functions.

Also, the analytical evaluation of singular term becomes complicated for complex

geometries and basis functions.

Due to these limitations, a more efficient method has been proposed in [168],

which is based on the singularity cancellation method. The fundamental ad

vantage of this method is that, the singular integral can be evaluated by purely

numerical quadrature approach. Here, we have followed the singularity cancela

tion method for the evaluation of singular integrals.

The integral to be calculated is of the form

p-jkR
•ds'

re e~jkR

T

(B.l)

where, R = \f - f'\ is the distance between the source and observation point.

The geometry of the triangle over which the integration has to be performed is

shown in Fig. B.l. Here, fu f2 and f3 are the position vectors of the vertices of

triangle and f0 denotes the observation point. The original triangle is subdivided

into three subtriangles by connecting the vertices of the original triangle with the

observation point as shown in Fig. B.l. The contribution of the integral defined

in (B.l) is calculated for each subtriangle and then added back to obtain the

final result.

The geometrical quantities for subtriangle 1 (see Fig. B.2) are
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Observation

Point

Figure B.l: Subdivision of original triangle.

Figure B.2: Local coordinate system for subtriangle 1.

Appendix B
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r[ 'ii

r'2 = r2 -> fa -> r\

r3 = f3 -> 7=1 -» f2

"i
[; x <2

n

Ifj x *2I
24'

lh == IFF1I'll

1 x n

-V
ti.l[ xl'2

I = r'3

i'2 = r-[-f>3

h = ^2 ~ ^i

(B.2)
2

Here, the arrows indicate the parameters for subtriangles 1to 3 as one goes from

subtriangle 1to subtriangle 3. The primed and unprimed parameters denote the

quantities for the original triangle and subtriangle, respectively.

The integral over the subtriangle 1 can now be expressed as
/•hi' rxu p-jkR

h= / M(r')e-—dx'dy' (B.3)
JO JxL 4™

where, R= {y/(x')2 + (y1)2), is thedistance between thesource and observation

point. The limits ofthe integration can be expressed in terms ofnormalized area

coordinate C[ at node 1'. C\ is unity at y' = 0 and zero at y' = h[. Hence

y' = (1 - C[)h[ (B.4)

s£ = r»'.(&ix£)(l-£i) (R5)

Xu = -fi' .(fcixP8)(l-£i) (B.6)

Now, as the source and observation points coincide, the term ^ becomes singular.

To remove this singularity, we make the substitution

du=d4-= , f „ (B.7)
R \/x'2 + y'2

Integrating (B.7) with respect to x', we obtain

u(x') =sinir1 K\ (B.8)

254

>



Appendix B

Hence, (B.3) can be expressed as

1 fhl' fUuh=—j J M(r')e->kRdudy' (B.9)

where, R —y'coshu.

From the above equation it is clear that the integrand is analytic in u and

y' and the integral can be evaluated using repeated Gauss-Legendre quadrature

method with weights to* and coefficients & in the normalized interval (0,1) as

given in [169]. Using this approach

1 K N

Ji = aZ E E «V»i*i(«i? - u^)M{r')e-^ (B.10)
i=i j=i

where, the superscripts (i) or (j) denotes the ith or jth sampled values of corre

sponding variable and i?(ij) = y'P' cosh uf^.

The sampled values in the (u, y) domain can be expressed in terms of the

area coordinates of the original triangle as follows:

1. y' samples are calculated from (BA) as

y'^ = ti.il-C3) (B.ll)

2. xi and x\j are calculated using (B.5) and (B.6).

3. Once these are calculated, we can use (B.8) to calculate uL and Mr/.

4. «(***') can be calculated using

uW) = up>(l -CA+utfd (B.12)

5. Once the u samples are calculated, corresponding x samples can be obtained

from (B.8) as

x'(i,i) = j/U) s&ahvp-f) (B.13)
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6. Next, we can calculate the remaining area coordinates as

,w) _ ft . [3 x (h[y'U) ~ JLg^g)
1,3 ~ 2A'

'(»J)£^> = 1-4 '(»J)£?

(B.14)

(B.15)

7. Finally, the area coordinates of the subtriangles are transformed to that of

original triangle as

(B.16)

where,

[T]

'cf £?»"
A3)

L'2
= [T] r'(i)

Z-2

.3 . .3

£? 0 0 £? 0 1 £? 1 0

c°2 1 0 - £° 0 0 - £° 0 1

A ° x- £3 1 o_ £° 0 0_

(B.17)

where, (£?, ££, £°) denote the area coordinates at the observation point.

The arrow indicates the value of matrix as we go from subtriangle 1 to

subtriangle 3.

Thus, the integral can finally be expressed as a sum of contribution of three

subtriangles as
-jfcflW

/«2A£HW(r')^) (B.18)
k

where, Wk are the weights corresponding to the sample points of area coordinates

of original triangle of area A. From (B.10), we can write

Wk = (n .n) ^4 (B.19)
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