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ABSTRACT 

This report is an attempt to present the available 

techniques for calculating heat transfer coefficients 

through incompressible laminar 'boundary layers. Some 

of the methods developed for general purpose have been 

outlined. Two of these have been used to predict the 

distribution of heat transfer coefficients around a 

cascade of gas turbine blades of known pressure distr-

ibution. 

After a brief introduction giving the signif" 

icance of the problem, the equations of boundary layer 
are stated and a criterion for neglecting frictional 

heating derived. 

This is followed by the solution of the problem 

for the case of a flat plate. Pohihausen's exact solut-

ions for the case of an isothermal wall and adiabatic 

wall have been discussed and subsequently approximate 

simpler solutions have been presented. The case of 

arbitrarily varying wall temperatures is dealt with 
next. 

DU 

In the next Chapter, the methods for calculating 



the heat transfer coefficients for a general two dimen-

tional body are given. Starting with the well known 

wedge flows, the methods of Squire (1942), Lighthill 

(1950), Smith and Spalding (1958) and Spalding (1958) , 

), which 

is an attempt to improve the Llghthill method, are 

presented. 

In order to evaluate the heat transfer coeffic-. 

cents, the potential velocity distribution is required. 

Two methods, typical of present day approach, are, 

therefore, given. The problem of theoretically predict.• 

ink; the potential flow, outside the boundary layers 

is complicated t nd the theory formulated is still far 

from sound. The methods, however, bring out the possi. 

bility of prediction of the heat transfer coefficients, 

from entirely theoretical analysis. Due to the reason 

stated above, the experimental velocity distribution 

data, published by Pope and Wilson, for a cascade of 

gas turbine blades, has been used to calculate the 

heat transfer coefficients by the methods of Smith and 

Spalding and Spalding. This also facilitates comparison 

with the published data for heat transfer coefficients 

by the same authors. 

The last Chapter deals with these calculations 

and the conclusions which point towards need for 



comprehensive experimentation to evaluate the relative 

accuracy of the methods. 



I ITRODUC TI ON. 

1.1  Si iffd._canQo..  p.  	obi t. 

The transfer of heat from a solid boundary to 

a fluid stream or vice..versa is appreicably effected 

by the character of the stagnant fluid layer called 

"Boundary layer" formed on the solid surface. The 

heat transfer through this layer is by conduction. 

The problem is of pertinent interest to the designers 
of.. 

(a) Turbo-machines, where the cooling of blades 

holds out a promise of increased plant efficiency,. 

(b) Supersonic Aircraft, where kinetic heating 

may result in unduly high -skin . temperatures. 

Cc) and to numerous other applied fields. 

It has been recognised for quite a time that the 

efficiency of the gas turbine plant can be appreciably 

improved by increasing temperatures at the turbine 
inlet. This necessiates a t to pronged drive, one 

metallurgical for better materials capable of with-

standing these temperatures and the other thermodynamic, 

for artificially cooling the surfaces to safe temperature 



levols. The metallurgical limitations havo encouraged. 

the exploration of thermodynamic means. The knowledge 

of the distribution of heat transfer coefficients 

along the blade surface, is of paramount importance 

for the design of any cooling system. Similarly for 

supersonic aircraf t,the skin protection demands-knowl-

edge of the heat generated and its distribution along 

the surface. The problem has, however, not arisen 

solely with the advent of supersonic aircraft and the 

high efficiency gas turbine plants. The formation of 

ice on the lifting surfaces of the subsonic aircraft 

1~w+I'u~w lh+ the performance and endangering stability 

called for an estimate of heat transfer coefficients 

to devise a suitaXe method for removing the ice by 

melting. 

This report is an attempt to present the avail-

able techniques for predicting heat transfer coeffic-. 

fonts. The actual phenomenon is quite complicated and 

presents insurmountable mathematical difficulties 

because of the turbulent nature of the boundary layer, 

compressibility effects, dipociution and variable 

properties etc. This brings out the desirability of 

understanding the basic phonemenon associated with 

two dimensional incompressible laminar flares. Extensionh 

can then be made to approximate the actual operating 

conditions taking into account the compressibility 



effectsetc. There is strong evidence that even at high 
portion of the boundary layer is always 

Mach numbers $ the frontLlaminar. This report is, 

therefore, restricted to the study of heat transfer 

coefficients through Incompressible laminar boundary 

layers. 

1.2 U toric„ .91  

Poh.ihausen~~in 1921 solved the temperature distri-. 

bution equation for laminar flow along a flat isother.. 

mal plate using Blasi.t~s' velocity distribution. Frick 

and Mccullough in 1943 extended Pohlhausen's solution 

to the ease of an aerofoil. They assumed the temper-

ature and the velocity boundary layers to be related 

to each other in the same way as for a flat plate. 

However, to account for the pressure gradients the 
thickness parameter of the velocity boundary layer 

was calculated by the method of 7ackob and Von Donehoff. 

Allen and Look
(j

) in 1943 developed an analogous method 

based on Reynold's analogy which relates the temperature 

gradient and the velocity gradient at the wall. The 

anology holds strictly for fluids of Prandtl number 
unity. 

(4) 
Squire in 19429 assumed that the temperature 

distribution every where is proportional to the veloc-
ity distribution i.e., 



By assuming U-/u to be given by the Blasius profile, 

he deduced anexpression for the thickness of the 

temperature boundary layer A. The relative thicknesses 

of the two layers were then determined by satisfying 

the integrals of the equation of motion and the equa-

tion of energy across the layer. The assumption of 

similar velocity and temperature profiles means that 

the pressure gradients affect the temperature and 

velocity distribution in exactly the same manner. 

This method differed from those described prev~. 

lously in the manner in which the pressure gradient 

was taken into account. The previous methods used the 

equations of flat plate and took account of the 

pressure gradient in calculating the thickness para-

meter of the boundary layer, from the Karman momentum 

relation, which includes the terms involving pressure 

gradient&Squire, on the other hand deduced the rel-

ation between temperature and velocity boundary layer 

thicknesses by satisfying the integrals of the equa-

tions of motion and energy which contain pressure 

gradient terms* The methods of Allen and Look, Frick 

ad Mccullough failed to take into account the varia-

tions in the velocity profiles in the boundary layer 

along the aerofoil surface. In fact, the profile varies 

from t. = c x at the stagnation point to the separ- 
1"'b0c 	1  

ation LBlasius profile holds only where the velocity 

0 



is more or less constant. Squire I s method, though 

more accurate, is extremely laborious. 

(s) 
Lal in 1949 suggested the use of Thwaite'sG)  

quadrature technique for calculating the boundary 

layer thickness parameter. Thwaite's method takes 

into account the variations in the shape of the 

boundary layer profiles.. He used Thwalte's method 

to calculate the value of the velocity gradient at 

the uall and then calculated the rate of heat trans. 
fore  On the assumption that the velocity and temper-

ature boundary layers were related to each other in 
IM 

the same way as ,the Pohlhausen's solution for the 
flat plate. 

The importance of the problem has focused the 

need for understanding the basic phenomenon. In this 

connection, it may be noted that whereas only one 
boundary conditions  namely absence of slip can be 
prescribed at the wall for the velocity boundary 

layer equation, a number of boundary conditions can 

be prescribed for the temperature boundary layer equa. 

tion, at the trail* Methods have been developed for 

evaluating the rate of heat transfer in the case of, 

Isothermal walls, adiabatic walls, stepwise and 

uniform temperature variations along the wall. In 

some cases the heat flux to the wall may be prescribed. 

The multiplicity of the boundary conditi-)ns has 



w M' 

highlighted the difficulties encountered in evolv 

exact analytic solutions. This has enco-:1raged the 
development of approximate solutions. The names of 
Lighthill, Smith, Spalding, Schuch, Eckert, Tribusy 

Thampman etc. may be mentioned as the typical among 

those who have contributed to the better understanding 

of the problem. 

1.3 j e Boundary LJ3!I°.a ua tions, 

The incompressible, laminar, boundary layer 

equations for the steady$ two dimensional fluid flow 
are 

Continuity 
0 

0.... (1-1) 

Momentum 

Energy 

ec~,~u
b 

+r11
1 J

= a.~~ 	~) 
.... (1-4) 

The equations were first derived by Prandtl In 

1905 by the application of the famous order of magnitude 

arguments, to the Navier..Stok©s equations of motion 

anc to the equation of en rgy derived from the first 
law of thermodynamics. 



1 
Equation (1..3) states that the pressure does 

not. vary across the boundary layer and is, therefore, 
constant for any station x along the wall. Besides 

the usual assumptions f  the curvature of the wall is 
neglected and the properties like conductivity,viscosity 
etc. are c insi dered independent of temperature. An 
examination of the above equations reveals the non-
linear character of the equation (1-2), whereas energy 
equation (1-4) is linear in temperature. Moreover, 
the assumption of independence of properties with 

respect to temperature makes I t possible to solve the 

equations of motion and energy independently. From the 

solution of velocity boundary layer equation, 

are supposed to be known parameters in the equation 

(1-4). 

The second term on the right hand side of the 

equation (1-14) represents the contribution of the 

viscous stresses. It is important to devise a criterion 
for deciding when this can be neglected.. 

1.4  c terion  ,fir  No lectinp 	s at o 

Let us measure the temperatures with a unit which 
is of the order of temperature difference imposed on 

the problem i.e. the difference between the wall tem-

perature and the stream temperature, (T,- - T ) . Velocities 
will be measured with stream velocity as unity, Then 



from the equation of energy 

.. Cl 5) 

the boundary layer form of equation given by (i..4) 

is derived. The first term on the right hand side 

of equation CI-.4) is of the order of ~ ~1°%1 and the 

second term of the order of S u/2 . Both these are 

of order 1 when U~~T is of the order i. This ratio 
can be divided by Cp to make it dimensionless U 	nr0 

When this number is small compared with unity, the 

dissipation term may be neglected. For gases, at low 

Mach numbers, i.e. incompressible case $ usually diss-

ipation may be neglected. 



CHAPTER. a 

SOLUTION OF BOUNDARY LAYERS 
FOR FLAT AT S. 

2 • E ca.ct uios 

As already mentioned the solution of the boundary 

layor equations prosonts considerable difficulties, 

This is primarily because of the non-linear character 

of the velocity boundary layer equations, A few exact 

solutions for some simple cases have been worked out. 

The solutions are refered to as exact when they are 

derived from the boundary layer equations as contrasted 

with the solutions derived from the Karmau momentum 

relation and the heat flow equation which are termed 
as approximate solutions. 

2,1i)E2  bib auson 1 p Solution. 

(!) 
Pc hlhausen used. Blasius velocity distribution 

to solve the temperature boundary layer equation along 

a flat plate. The governing equations for the case 

of uniform, steady, two dimensional flow past a 
flat plate are: 

C_ 
	+ C ,,, 	4 0 	• . 	.... (2-1) 

a 	~ 
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Blasius introduced new variables for tie solution 

of the flow equation so as to transform equation 

(2--2) into an ordinary differential equation through 

(2-1). The new variables are 

j1 	Jo C1 

whence U = U 0 c '(1) and "J- 	j t2 c:'i-c - -c) 

The differential equation for 	C^1) becomes 

' 0  -s 

where prime denotes differentiation with respect 

to . With the boundary conditions 

the solution of the equation (2-5) was obtained by 

Blasius in the form of power series about '\ = o and 

an assymptotic expansion at = cO , the two being 

joined at a suitable point. Introducing the dimension-

less parameter e, to describe the temperature within 

the boundary layer and defining 

O, = 	T   - .. T A 	 (2-' ) 
T.- TW 

the energy equation can be transformed to 

d2 e, + 	~~ a ~ ►. _ o 	... (2-7) 



faith the boundary conditions 
e, - o 

ry~ _ 	E 

equation (2.7) was integrated by Pohlhausen to give 

_ 

	

 

° 	(2-~) 

b  fy. 

~ 	 •fl 

This can also be expressed as 

	

e - 	____ 
- ) 	 - 

£ ['ii1 
The temperature gradient at the wall 

P 

S J 

This relation was approximated by Pohlhausen by the 

formula 

 _ Cc~eti 	- (o. 332)  

which gives fairly 	0.3S) g 	y good accuracy 

Pohlhausen also gave a solution of the problem 

when the viscous heating term could not be neglected. 



In this case the energy equation transforms 

into 

12 

CAT  

Introducing the dimensionless temperature 

parameter 

CU 	- TC) - T~ 	 (2-t3) 

the above equation can be written as 

- r~ U~ J'"  
CA 1  z  M  C 

With the boundary conditions 

A particular solution of the above non-homogeneous 

equation for an adiabatic wall was given by Pohlhausen 

using the method of 'Variation of Constant'. The 
complete- solution of the equatinn (2-14) ci be 

obtained by adding a particular solution of 

(2-14) to the general solution of the homogeneous 

equation. The particular solution for , the case of 
adiabatic wall is 



133 

The temperature assumed by the surface oaring to 

frictional heating, i.e. the adiabatic wall 

temperature is 

12 l~ — T~ = l . - Tom° 	—  

where 

Poh].hausen has shown that for moderate Prandtl 

numbers 

a 
.s,.go©d approximation* 

sf er 

(a) j $P.II .9ti tr Fj t . I] . 
leatinj. 

yx 	~1 

From the equation (2-11) 

cal T 	= _ 0 33Jp C TW — T°'~ '\ 3 

The overall heat transfer C can be computed by 
integrating 	(am) cox 



— 413 x O332  

32~ 	 3P f 	T-T~~ 
(2-n 

(b) JithFrActic nai Heating. 

The general solution for the 
prescribed temperature difference between the wall 

and free stream can be obtained as 

' 	1 ' • 	O33 	p CT - T ) 

arid and therefore a-'> before 

	

O. 332  t 3~ 	~' CT - -  
J ~X 

Q 	- 1.32ta 3fl JP C T - T.) 

In the absence of frictional 
heating, heat flows from the plate to the stream when 

Tw > ► --o while with frictional heating heat flows 
when ' Tw > T. . Thus, the condition for heat flow from 
the wall into the fluid becomes 



15. 

(Tw-T.-~ > CTS - T~ 

2.2 Animate Mq=gd-. 

Exact solutions of the boundary 

layers are extremely laborious and are rarely attem-

pted. The quest for methods, which yield accuracy 

commensurate with the effort, has led to the 

development of approximate methods of varying accu-

racy.l Karman and Pohlhausen devised a mothod There 

the differential equations of the boundary layer 

are satisfied only av©rageanc over the boundary 

layer thickness, rather than satisfying the boundary 

conditions for individual particles. This mean value 

function is refered to as Moji:ientuxri Theorem and is 

obtained as an integral of the equation of motion. 

over the boundary layer thickness. The equation of 
motion can be expressed as 

..._(2-22) 

Integrating over the boundary layer thickness 

u (u L4+* 
1
~ - U u  

which can be put down as 

UU  

This gives an ordinary differ entfal equation for 



the boundary layer thickness, provided a suitable 

form is assumed for the velocity profile. Similar 

on integrating the equation of energy from \/ = o 

to ao and neglecting frictional heating we obtain 

the following heat flow equation. 

~a t~ 
	

2-24) 

T 

It is now possible to devise approximate methods 

of solution based on the momentum and the heat 

flow equations. 

The method will be illustratodl 

by application to uniform fl 

past an isothermal. plate . 

Karman-Pohihausen postulated 
FtG.l.TEMPERATURE SVELOCj PROFILES 
- 	ON A WELL 

that the velocity profile in the boundary layer can 

be approximated by a polynomial with a number of 

free constants, to be determined from the conditions, 

which the profile is known to fullfil exactly or 

approximately* Such conditions can be specified at 

the wall and at the outer edge of the boundary layer. 
_ 	(2-25) 

y — 	 kL -- Vow 	. . . .  

The equation of motion written for y — b , becomes 

\/ _ 0 	 ~u 	0 	..c2-27) 
any 



Furthermore, the profile in the layer must join 

the potential flow solution smoothly. 

Therefore, 

One can demand, even, that the third and higher 

derivatives be zero. Introducing the dimensionless 

o { ~)l { c1 + d \
3 

The coefficients In equation (2-29) can be deter-

mined from the above conditions (2.25 - 2.28) and 

the final form is 

t.L 
- z r( - Z 3 	 C2"-3° U~ 

The momentum equation for flat plate becomes 
Co 

The integral can be evaluated by substituting the 

expression for velocity profile and this gives 

	

UC'' 3.5c~ S 	_ 3 	U~ 	 2-32) 

14. ~? ch _ ...  
13  

Integrating 

	

= 	4.4JQ 	... . 

U a- 

r-- 	 Now consider the case of a flat 

plate which may not be heated upto xo • This is the 



18 
case of non-coincidental start of the hydrodynamic 

and thermal boundary layers. Analogous to the 

solution of velocity boundary layer, a profile is 

assumed for the temperature boundary layer, such 

that it satisfies the boundary conditions known to 

hold good, i.e. 
y _ a 	T = ` . 	 (2 ' 3 5 

and the energy equation writt©n for y = 0 becomes 
_ 

i - 1 	 (2 7 ) 

Introducing the dimensionless parameter 

T 
	-.. y/Sz'(x) 	.. 	(2-3 ) 

the thermal boundary layer profile can be approxi 
mated by 

ao 

which on simplification gives 

3 
 I 

— , ~ ~3  
T z T 

The integral in the heat flow equation (2.24) can 
now be evaluated. 

f

~ 	4 
Substituting the expressions for ~ 1- °. 9 the 
integral transforms to 



19' 
Goa Loo  

So 

where 	1/, 	. The integral has been oval., 

uated upto 	only for it is presumed that the 

thermal boundary layer is smaller than hyc9rodynamic 

layer. As ' is less than 1, the 	4 term can be 

neglected# Substituting in the heat flow equation 

20 

o 
a~ 

Introducing the values of c 	€ nd ' from (3-33) 

and (2-34) respectively, 

(4 3 ) 	_ 13 P 	. .. - . (2-4-1) 

The solution of the above equation is seen to be 
of the fort, 

13 	-~- C L 	. 

at  - -o 

I, 01 6 3~ 	" 

Heat transfer coefficient is introduced by 



z  ~5 

0 332 	P J 
31 

(2-4l) 

If the plate is heated over the entire section 

o 3 3 2- -~Jc 	)  

The close agreement of this result 

with Poh].hausen's exact solutions is, of course, 

purely coincidental $ but the example brings odt the. 

potentialities of the procedure. 

2.3. Te ane Pl t illArb .„ ary 
'Vyi 	zMaUc til e S . 

In engineering applications, the 

varying wall temperatures are, often, of importance. 

Only isothermal and adiabatic walls have been consi. 

dered till now. The variation of temperature along the 

surface effects the shape as well as the thickness 

of the boundary layer. The first effect becomes evident 

when the energy equation i s differentiated u. r. t. a x 

and written for y 

20 
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Tw 

This gives a relation between the third derivative of 

the temperature profile and the wall temperature 

gradient. Temperature difference e is now a function 

V x , The above relationship can be used to determine 

the constants in the assumed polynomial. 

Rubasin makes use of Duhamel's 

superposition theorem for obtaining a solution for 
variation 

the temperature distribution for the case of stepped/. 

in wall temperature. This energy equation being 

linear, a solution of the temperature field can be 

built up by superposing a large number of stepwise 

variations. If we have a number of particular 

solutions (Ti) of the energy equation, then it can be 
shown that 

M 
T = 	C~ T. 	 - ( 2- °) 

is also a solution. The constants C; can be used to 

adjust this new solution to the required boundary 
conditions. 

a)teDWi  

Let each particular solution correspond to a 

condition in which tho wall temperature is equal to 

the stream temperature upto a cert<in location and 

then suddenly changes by an amount AT;. For each 



23 
particular solution, a heat transfer coefficient 

can be defined by 

_ _~a ~ 	 AT T;~~ 	w; 

where i Twiis the jump in the wall temperature. 

Heat flow at the surface is 

Then for the temperature field 

L; AM 	 (2-52) 

From the variations it is obvious that the constant 

C; 's are all equal to 1. 

Figure ( 2. ) shows the temperature 

variations In a, stepwise fashion with steps 	AT.. 

AT occuring at the locations 

Then heat flow at the wall at the location x is 

given by 
.(2- S 3) 

whereas before 	Is given by 

L 0 33 2~ ~ 3 _ 	_ _ 	C2A7) 

In the above analysis it is assumed 

that the plate has unheated section upto 	, other- 

wise an additional temperature step ATwo  

at = 0 will have to be added. 
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0 

) Continuous] Varying, 
1 €  ll Teerafore. 

Continuously varying wall temperature can be 

treated by replacing the series in the above equation 

by an integral. 

Twc1) 	(2-S4) 

which can also be expressed as 

Jo 
If continuous temperature variations and stepwiso 

variations occur simulataneously 

5 	
L ( 	TC) 

By summation and integration, the heat flow can be 

evaluated for a variety of the situations. 



CHAPTER   3. 

SOLUTIONS FOR GENERAL TWO DIMENSIONAL 
BODIES_. 

3.1 Wed e Fl  

In the last chapter, the solutions of 

the boundary layers for flat plate were discussed. 

The solutions of the general two dimensional boundary 

layers with pressure gradient, will 	now be 

presented. 

Exact solutions for the case of two-

dimensional flow over a surface, having stream 

velocity variations as.: 

= C 	 --- (3-1) 

have been obtained. Such a velocity distribution 

exists along the surface of an infinite wedge, symme-

trical with respect to its apex, having an opening 

angle ~= 2i ̀,~ = / placed in an incompressible 

fluid stream. Accordingly these solutions are refered 

to as "Wedge Flow Solutions". Transformation of the 

independent variable y , which leads to an ordinary 

differential equation is 

J_IJ 
The equation of continuity is integrated by the 

introduction of the stream function 
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(w,+~ 

Ji1 Jc 

Introducing these Into the equation of motion 

*11 

the following differential equation is obtained 

-ç ".+ 	
'1
+ f~(ti - ''2 ) 	c5 	... , (3-5)  

the boundary condition for this being the usual lo. 

t The solution of equation (3-5) was 

first given by Falkner and Skan and latter investig- 
`1r~ o~ttatQ ~~ H Gwtv'ee9 The ~b'rYOS~abh.A j e,v e r y ejy k kzko w-s Cowl I 

ated Lby Fage and Falkner`,' who showed that a it i can be 
transformed into an ordinary differential equation 

when the difference between the wall and stream temp-

erature varies according to the following law 

T,a -- T, 	_ 	Ct 	. ... . .(3 —7 ) 

The tmr oformation yields the following ordinary 

differential equation for the temperature distril tion, 

@-r '0 0 
c,44- 

where 	e - T TL 
TW- T, 

having the following boundary conditions 

0 

 

::' 
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This equation has been investigated 

by several authors. The value Y= o corresponds to 

constant temperature difference and hence constant 

Wall temperature. Pohihausen and Eckert have consi-

dered this case. For non -isothermal wedges, the solu- 

tion can be obtained-numerically except for the 

	

special case in which the factor (2-13 )Y 	l. In 
this case the equation is exact and hence a simple 

solution can be obtained. 

a)  Isothermml W  dam. 

In this case both the temperature and 

Velocity layers are similar, that is, they do not 

alter in shape along the surface. Eckert has tabulated 
the shapes and thickness of the velocity and temper-
ature layers* It is easy to show that 

cTx 

and 	 AMZ  1u 	= 2 zMC -)  -" 

where L is any temperature layer 

thickness. Eckert has tabulated z., 2 ,  z4  against f 
for various Prandtl numbers corresponding to the 
temperature displacement =, the enthalpy flux 

thickness Znd heat flux thickness respectively,E,here 



A2 	JD 

...(3- 14) 

The relationship between U~ C &t) 
	and  

enables Ai- and hence the heat transfer coefficient 

L('i) to be calculated since 

~) ?,au1ar Case (2- 13 ) Y = - / 

For this case the solution is 

e 
T-1 

In In this case (c) = o 	and the temperature 

gradient at the Iaall 

c 	 ..... 

which is zero everywhere except at X= d . The heat 

input, impulsively, at this point can be determined 

from the heat flow Into the boundary layer at any 

point 'X . 

o 	U 
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= crPc~3~~c(1-r3) ~oe 	
1 	3-~B) 

c) Other _ T _ mss 

For other values of Y, numerical 
(%2) 

methods have to be used. S.Levvy has put the differ-- 

ential equation in the form of a difference equation 

dM - 2 Gm-1 	 ± 1C QM BM1 

c2 

(2 )S  = 0 .......(3) 

the increment is a being e apart and M denoting 

the number of increments. He has solved the equation 

using a high speed speeé electronic computer. The 

temperature gradient at the wall which gives the heat 

flux is 
_ 	(G) 	.. .... (3-2°) 

As the boundary condition &-o as M —~ is to be 

satisfied, the value e 6 j was put equal to 0 and 

then the values of e, etc were evaluated. Knowing 

e, , 	could . be found and hence the heat flux 

evaluated. 

3.2Fcss'n A OLL 

Blasius in (1908) indicated a method 

for obtaining the velocity distribution in the boundary 

layer for an arbitrarily shaped two dimensional body. 



n 

For the cases both symmetrical and assymetrical 

with respect to an axis of the cylinder which is 

parallel to the free strea^`the velocity of the 

potential flow is assumed to be a power series In 

terms of the are length measured from the stagnation 

point along the contour. The velocity profiles in 

the boundary layer are then obtained as a power 

series in are length with coefficients dependent 

on 	, the distance normal to the body. Howarth(14)  

(1935) by a suitable assumption regarding the 

power series succeeded in obtaining the -dependent 

coefficients, independent of the contour configura. 

tion. The coefficients can be tabulated and the 

computations are considerably simplified. 

Frossling (1940) utilised these 

functions to calculate new ones giving the temperature 

distribution in the boundary layer, provided wall 

temperature is assumed c©nstant. The method has been 
(j5) 

recently extended by Guha and Chia-Shun Yih (1957) 

for the case of variable wall temperatures„ A brief 
resume of the method is presented below. 

Let the potential flow for symmetrical 
cases be given by the series 

3 	5 
U (-c) 	- 	U, . +  

(3-21) 
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The coefficients U. u-3 , UL5 being 

known from the body shape 

Howarth assumed the strea.n function 

to be taken 

+ ~► 3 	\Y 5 L+ - 	(3-22) .. 

in which 
4~ '3 

6T— q 5 + 1~ 3 L 
4 	ut u5 

and so on. 

1 , -~3 , • • . etc. being functions of the new variable 

=  	. The ,equation of motion can be written 

as 

_t 	=. U  	3-21) 

Substituting equations (3-23) into the above equation 

a series of ordinary differential equations for - 1, • . . 

etc. is obtained. 

For the unsymmetric case, if the 

expression for ti(-)  is: 

C3-25 

the stream functions can be taken to be 
+ X + 3 L 	 4. 	- (3- 2 c) 

T 	 ~'►  
In which 



"1= 	I:f 
J u. 

+ 	"3) &c 

 

I II 

- 4u3 ~13 
(3-27) 

The series of ordinary differential 

equations obtained by substituting the above in the 

equation of motion have been solved by Howarth upto 

an index of three. 

Frossling used the velocity distribution 

obtained from the Blasius--Howarth expansion to cab—

elate the temperature distribution. For a symmetric 

case if T, Is the ambient temperature 

e _ T- _ Co 4 cox + c4 _ 

c's are taken to be 

C0 	F= D 	ez 	u L 

- 	 4) + u 
i 

Substituting into the energy equation 
u + 

a series of ordinary differential equations is 

obtained* Frossling solved these differential equations 

with consistent boundary conditions of constant L, wall 
temperature and for Prandtl number 0.7. The tabulated 

functions can be used readily to calculate the 

temperature distribution and hence the heat transfer. 

As pointed out earlier Guha and Yih have extended the 
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work and tabulated functions enabling the temperature 

distribution to be determined for the case, of varia- 

blo wall temperatures. They resolve the series of 

differential equations obtained pinto homogeneous 

and non -homogeneous parts and thus take into account 

the variable wall temperatures. 

3,3 .iehth..l's Met 

(») 
Lighthil3. has formulated an approximate 

method for the calculation of heat transfer across 

an incompressible laminar boundary layer for the case 

of arbitrary distribution of main stream velocity and 

of wall temperature. The flow parameter used is the 

arbitrary skin friction. The method is, rather, a 

generalisation of the method of Fage and Falkner. 
(17) 

Energy equation is used in Von Mies form, where X 

and T are the independent variables, and operational 

methods are used to, solve the differential equation 

for the temperature distribution. The energy equation 

.(1-4) is transformed to 
-6T _ /U U (~`~ )+! a 	eu 

f 	 (-3i) 
and the equation of motion to 

....... (3-32) 
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An examination of the above equation 

reveals an interesting fact. The influence of com- 

pressibility is reflected by the variation in the 

property values and (' and since in the above 

equations both enter only as product, therefore, if 

the variation of viscosity with temperature Is pos-

tulated to be linear s (,,UT)  the heat transfer for 

a main stream with uniform speed but arbitrary each 

number is given by the low speed equations. 

The energy equation for the incompress"► 

ible case neglecting frictional heating can be written 

as 
~T 	)A_( a 	u aT) 	 C-3-33) 

Following Fage and FalkEzer, the value of U is approx 

.mated by 

U- 	__ ............. C331) 
Iu 

where 1(1(.) represents the shear stress at a distance 

X from the start of the layer,. The approximation 

is closely accurate near the surface, 

iow 	4) 	L 
. . . .. .. C3-35)  

So that 2 y 

'/~ 	-3L) 



Then the energy equation becomes 

(-) 
x ~ P 

which is solved under the boundary conditions 

	

\/ 	U 	I - Twcx) 'h ~)  

	

r 	- 	 1L - 0 	CM- a OVA 	- 0 

Thus, the scale chosen is with the main stream 

temperature value as zero. 

Lighthill with theheip of the operat-. 

lonal methods solves the above equation to give 

o 

which is the required relation between ¶ Ci) 9 IW Cx ) 
and  

The total heat transfor rate for 

a surface of unit breadth between k o and 

can then be calculated by evaluating 

oar 	~ IMP )J3 f j{  
-v 

f ~ ~.~W ~ )~ 	~ cwt ) 
o 



7  6 1 

2/3 

- (V3)! 	
Jwc 	TL) 

(34c) 

(1% ) 
Liepmann has recently given an alter-

native derivation of the equation (339). His method 

is based upon the use of the energy equation in the 

integral form. He further shows, how the approach can 

be modified for application of the formula to the case 

of ' flow near separation point where lw Is zero. 

Lighthill's method is assymptotically 

exact', when the thermal boundary layer is much winner 

than that of the velocity. The formula is accurate 

enough for large Prandtl number but for small Prandtl 

numbers .of the order of 0.7, the results may be in 

error. For low Prandtl number LIghthill suggests the 

reelacewert of the constant h/2  3  3 	0.80?, by 
(Y3)! 

0.73 to improve the accuracy of the results. 

3.4 5  a rro„' s Psi. thod 
(4 

Squire (19x42) outlined a method for 

the calculation of heat transfer in the laminar floury 



region of aerofoil. He assumes a standard shape for 

the velocity and temperature distribution across the 

layer, i.e. that of Blasius distribution for a flat 

plate. 

('5) 
Young and Wintorbottom gave a solution 

of the momentum equation as 

Z  U6 

For Blasius distribution S t /5z = 2 . S ) 

U' 	a 

The velocity distribution given by Blasius can be 

expressed as 

where the similarity transform 

? J 	 is replaced by 
_ ~o <<— 	= 	720 

For the thermal boundary layer, we 

define a displacement thickness by tho equation 

/., 

 

J-T 	 C3-1'2) 
Jo 	TW-Y, 

If it is assumed that the temperature 

distribution is similar to the velocity distribution, 
then, 



Neglecting dissipation energy equation in the 

integral f or m is 

_ _ 	( ) 	2.24) 

Now 	- 	()  c~ T 1 

SIAAC, 	 C0) 	= a 6641 

The integral on the left hand side of the energy 

equation can be expressed as 

where 

p) 

o ZCoo 
where  

A, 

Substituting In the energy equation 

C 	~ 

or 

U 	 Auk) T 
or 

2 	 2 

2 	l~ k a Cv~ + 241, U~~~ (U~ Cv~)  _ 



396 
or 	U4 	 43o U~ 

dx 

U~ a ) 

(3 15) 

From the known values of  () , Squire 

has tabulated the values of c ( ') for the values 

of s in the range 0,5 to 2.0. 

Dividing equation (3-45) by equation 

(3-42) gives 	 4 x 

For computational purposes, the first approximation 

is obtained by omitting (. from the right hand side 

of the above equation• The valuo of thus obtained 

can then be used to get the second approximation, 

From A , , the gradient at the surface and hence heat 

transfer rate can be calculated 

T-T ) 

Quac ature Technique s 

The methods outlined earlier have 

highlighted the computational labour involved. The 

quest for approximate methods, which will give results 
of accuracy compatiable with the effort has led to tL 
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development of methods where integration is performed 

by a quadrature, which is similar to that used for 

evaluating momentum thick ess of the velocity boundary 
( 15) 

layer by Walz, Young and Winterbottom, Thwaites etc. 

The procedures fall in two categories. 

In the first, limited to uniform wall temparbturos 

and coincidental start of the boundary layers, are 

the methods of Ambrok$  Eckert etc,. Eckert's method 

has been recently simplified and extended by Smith and 

Spalding. The procedures in the second category are 

applicable to the cases where the wall temperature 

varies or where the heated section does not start on 
(21) 	(22) 

the leading edge itself. Methods of Spalding, Schuch 
(ii) 

and Lighth.11 are typical, the last of which has 

already been described. 

(2o) 
3.5 ini th arid.  SDai4inL  !jiih..o 

Standard methods of dimensional anal-" 

ysis can be used to set up a continuation equation 

for the growth of any temperature boundary layer 

thickness A in the form 

j3-4) 

provided 

i) Prandti number is constant 

ii) The rate of growth depends only on local 
conditions. 



Y 

v IL)  --T r\L/%I &)N lSLI Wtt1V .v- 	l 4 ) AND y- 

p •- O.1 
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iii) Any dependence of the rate of growth 

on the velocity layer shape or thickness 
Is ignored. 

The underlying assumption In the method 

is that the unknown function in the above relationship 

can be taken from the exact wedge solutions for 

uniform surface temperatures. This implies that the 

relationships which hold good for flows with 4 x 
holds as well when U is an arbitrary Iunction of X • 

() 
From Eckert's data, it is found that 

the relationship is nearly a straight line, so that 

(3-48) can be written as 

-4) 

where E 4 is the error of non-linearity and A -j is 

conduction thicknes. The equation can be integrated 
B -1 

with the help of integrating factor U and we 
obtain 

x 

f\ 	U
'ii

d 

values of A and B can be obtained from Eckert ' s 
tabulated data. For P = 0.7 the values are 	A ,11.68 
and 	B 	= 2.87, From the equation (3-50). A4may be 
calculated ignoring E4  term as a first approximation. 
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The value obtained can then be relied upon to give 

second approximation which is close enough for most 

of the purposes. For computational purposes the 

demensionless forms of the above equation are more 

convenient.  
a•~7 

	

/-~~  2  _ 	ac/ 

+ 	 a•S7  

and 	t C 	= 	- 

	

JUz c 	~4 ~~z" 	(3- 52) 

At the front -stagnation point where 

/c)  C C~ 

the equation (3-51) becomes 

- -  

L CAC x/~ o 

The method has been employed to calculate the coeffo-

i# ient of heat transfer from the surface of a gas 

turbine blade. Table ( 4 ) shows the computational 

scheme and the results. The method has the advantage 

of being computationally simpler but as pointtout 
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earlier, its applications are limited to the cases 

of Isothermal walls. 

(2' )  

3.6 iru Rethpdj 

This is typical of the methods grouped 

under the second category. This method is applicable 

to a general case where the wall temperature is 

arbitrary* 

VELOCITY BOUNDARY LAYER 
THERMAL BOUNDARY LAYER 

T 

FI4.5 , VELOCITY & THERMAL BOUNDARY LAYER 
ON AN AEROFOIL. . 

The figure shows an aerofoil. Measured 

above the free stream temperature, the wall tomperaturo 

is zero upto a distance x = T from the leading edge 

and thereon has a value To  . The figure illustrates 

the growth of the boundary layers. 

As in the previous method, a conti-

nuation equation is set up with the help of standard 

methods of dimensional analysis. Shear thickness Avg. 

is supposed to be known and the attention is focussed 

on the conduction thickness, A~.. 9 We assume that the 
rate of growth of A4 along the x direction depends 

only on the local value of the stream velocity, 



velocity gradient, cinematic viscosity, 	, 

thermal diffusivity aC and the thicknesses of the 

boundary layers. The equation can be written as 

This is a first order differential equation,usually 

non-linear. Once the function on the right hand side 

is evaluated. Conduction thickness can be determined 

as a function of the other parameters. The reason for 

choosing c-,nduction thickness as the dependent variable 

is, that it is very simply related to the heat transfer 

coefficient h. i.e t 	
(3 . 5) 

where" k is the thermal conductivity of the fluid. 

A continuation equation for the velocity 

boundary layer can also be set up by means of dimen-

sional analysis in the form 

Spalding's method aims at improving 

the accuracy of the Lighthill method presented earlier 

in Section(3 3 ). It has been pointed out that the 

method of Lighthill is assymptotically exact when the 

thermal boundary layer is much thinner than the velo-

city boundary layer. In such a case the thermal bound-

ary layer lies wholly within the velocity boundary 

layer. In order to proceed in the direction of 

Lighthillts results using dimensional analysis, it 



may be noted that U and 34 can enter only in the 

form of gradient U/54 and further that 1) 	must have 

no influence. The form of the function in (3-55) can 

then be determined and the following compact conti. 

nuation equation written 
U 	3~2 	C 	a^- 

	

q/~^s 	...(s- s) 
A(/4) J 

d~- 

Recalling Lighthill's solution the 

heat flux 	at any station x. was given by. 
ç: 	 3  

	

I f 	W() 

Jo J 

~rCx) is related to the heat transfer coefficient 	 ) 

by 	x 

/3 Vw Cx ] '` 
y~ 	C 

By definition of S, 

iw - u(s) 
V3 '/1 	%a 

C ) 

	

= -'k 	/_/) 

(u/g9)  



=77 
- 7 

 C ) 	 (U/s4 ) z 

► ~/ 	-` 	 z 	I3 
/3 	L 

= 	/)am. 

x.41 

The equation (3-58) can be expressed as 
3~ 

Ei)  

COMs~.wl~ 	 , 

(35&) 

Comparing the above equation (3.58 a) with the modified 

form of Lighthili equation (3 39 a) similurity between 

the two can be observed. Thus, the value of the constant 

in (3.58 a) can be taken to be the same as in (3-39 a). 

The value of the constant was obtained by Lighthill 

by solving the energy equation of the boundary layer , in 
Von Mises form. 

a) % z ectton -in Li hthill's Method 

If Lighthill's method is to be improved $ 

then the correction must take into account the relative, . 



r• 

thicknesses of the two layers. It may be assumed that 

the correction required to account for the influence of  

is a function solely of 
? dx 

the extent of the thermal boundary layer into the 

region where the velocity profile in the boundary layer 

is curved. A measure of the curvature can be obtained 

by writing the velocity distribution close to the wall. 
L 

The equation can be put in a more appropriate 

form by 'writing the equation of motion of the boundary 
layer 	

+ nr ~u 	= U dU + ~2V` 

At the boundary, applying no slip condition 

At ' = &+ P the ratio of the second degree to the first 
degree terms is 

U c~U /~4 U 	_ L~—_~+ ~lU 

If the correction is solely a function of this term, 

then the equation (3-58) can be written as 

( ~+ i .
3/2.

,.41 + 
 )Y 

	~4 • ( ---) 	 v dx U 	94 



where F is the unknown correction function. Eckert 

has tabulated datas for Isothermal wedges in the forms- 
2-  2 	1- 

= 22+() 

Z ~

2 ~ U - 22 
7 

Therefore, 	 A4 IU 

Similarly from the known solutions of the velocity 

boundary layer for wedge flogs given by Hartree 

U 
where 	is. the similarity transform 

	

 Th 	 (3-2) 
QJ 

a relationship between 	(c.) and X42 Qt U 
v T 	y 

in Equation (3-6?) can be obtained. 

Equation (361) can be put in the form 

L4- 0 j (~ )'- + / 4• 
(2 

c u 
~ 	dx  

- (±)3 uc1 



Therefore the above equation can be plotted 

28 

26 

24 

22 

Zo 

Is 

u 14 

d 
Iz 

v 	- 

6.41+x- (°- y d k 

4 
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F1G.6. DEDUCTION OF THE GONTIP UAT1ON FUNCTIONS 

The supposition about the form of the 
correction function is well founded*  as we obtain only 

a single curve in place of one parametric family of 

curves. Some scatter, however, is present and has to 
be tolerated. 



I~) Inteeration. of Equation (3.61) 

The equation (3-61) can be integrated 

numerically to yield Ai- as a function of the 

independent variable x . U  S 4 , c! being the 

known functions of x . Since the correction term 

is normally small, therefore, integration can be done 

by means of a quadrature. 
3 	3~21 

4SCU — 	~  

3 

or writing 	9 ~~ 

"JL- 

U 

S  
(G) 

Iterative calculations are indicated as 1&4occurs In 

the argument of the correction term F.As a first 

approximation the second integral Is neglected and 

the value of A + so obtained is used in the argument 
of F 	to get better approximation. 

c) Evaluation of 

Uptill now # has been supposed to be 



known as a function of X . ~ + is evaluated indirectly 

by invokingt the use of unique relationship which 

exists between shear thickness S4- and the momentum 

thickness G 2 . For wedge flows S'+/s2- is a unique 

function of the pressure gradient parameter 

/- 	/h 

S 2- can be evaluated by means of an 

approximate g quadrature similar to the one used by 

Walz-Thwaites etc. For the momentum thickness 

The unknown function is taken from the known wedge 

solutions. The relationship is approximately linear. 

Hence, 
~2 

 
C) 	= A- 	 - 

where C is the error of non-linearity. Sa 

The above equation can be integrated with the aid of 

integrating factor U r 

U 	
C O1 ) 	 P U 	

ciL 

AU t U~-e2 ( 
ji 

0w  

	

U 	o 

u eZ C 
	

dx 

	

u'~ 	
(3 ")  



Spalding gives the values of A and 

B in Eq. (3.66) as 0.4418 and 5.17 respectively. 

can be obtained in the same manner as outlined for 

is again a small correction term.Reforing 

to the tabulated values <4 can be obtained from c ., . 

Spalding has tabulated some values based on the 

,work of Hartree. While calculating, it Is more con-

venient to use the dimensionless form of the above 

equations. 

The whole calculations can be carried 

out in three stages which are summarised below. 

1, Eva1uation ( Mome m 'h 	ess. 

The equation (3.66) can be put in a 

non-  .dimensional form as telow. 	x/c 
4.7 

-y 	C J/ J S• u= 	o 
Jc 

EU/u2 ) 7  0
/U) c 

where ey i s a tabulated function of 

CGS u 	(U/u ) 

2. efepnce to the Au i iary Functiaa. 

~ - - is obtained from S z by refering 
to the tables of 54 /c with the argument S? day or 

yx 

53° 
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54r 

d (U/U) non-dimensionally to c ) y C x 	Having 

obtained i , A4-can be evaluated. 

3. 44 

A4is given by the equation (3-63). 

The equation can be non -dimensionalised and put as 

below. 	 3~2 	z 	3/4-  
\ U1 C 	~ 	 c4- ) U  

/c. 

where F is a function of 	or non-dimension- 
ally of 

Z 	 ~2CU1'U~ 

§ ch,U„' a t1 jod s, 

This method also involves Steps similar 

to those of Spalding method, namely- 

1) Determination of ¶ C x ) 

ii) Reference to auxiliary function 
to obtain ',.. 

lbii) Evaluation of A j- by iteration from the quadr-
ature formula 



3 _ - A* () z 
P 

' 	 /y 
~U z; G 

Tabulated values of both these functions are available 
(22) 

in Schuch's paper. 



CHAPTER I 

POTENTIAL FQ1L ARO fD AEROFOILS 
1 CASCADE. 

4.1 7x3trodl}„c tton 

In order to calculate the local heat transfer 

coefficient and the overall heat transfer using the 

methods described earlier!  potential Velocity. distr-

ibution around the aerofoil is required. Extensive 

work has been done for the case of isolated aerofoils. 

The analysis can be extended to the case of aerofoils 

in cascade, tlhereas initially, the approach of the 

turbo-.machino designer was to treat passages 

1 btween blades as channels of rectangular $  or some 

such simple geometry, now the emphasis is on the 

analysis of the cascade of aerofoils in order to 

choose an optimum arrangement of blades and the most 

suitable blade profile. The extensive experimentation, 

as was resorted to in the case of isolated aorof'oils, 

must be ruled out, because of the larger number of 

parameters involved. €omprehensive theoretical analysis )  

supported with limited experimentation seems to be 

the o, ily way out. 
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4.2 Params for o,- FLOXLg  

Purely geometric parameters are those which 

refer to the blades and their arrt~ngements. The 

profile of the blade is characterised by thickness 

and camber distribution along the chord and some 

other minor details like the leading edge radius and 

the ordinate at the trailing edge.- The parameters 

depending on the geometry of the cascade ares.. 

I) Solidity ratio s/c. 

2) Angle of stagger X . 

Aerofoil parameters depend on the blade chosen but 

the cascade parameters depend on a particular arra~- 

nge ;gent of the blades. 

Aerodynamic parameters are the various veloc» 

ities, flotu deviation angles, pressure difference 

across the cascade$ loss coefficient end the chord. 

wise pressure distribution on the blade surfaces. 

The purpose of the analysis is to establish 

a relationship betw~ tin the geometric and the aero-

dynamic parameters. In the case of Isolated aerofoils, 

comparatively sounder theories exist which corelate 

the above parameters. The problem is, however, 

immensely complicated in the case of the cascades. 

Currently$ attempts are being made to formulate a 
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sound theory for the basic, two dimensional incom- 

pressible potential flow around a cascade of aero. 

foils. The effect of various .other factors such as, 

a) Compressibility, 

b) Three dimensional ea'fects, 

c) Variation of solidity with radius, 

d) Centrifugal forces in rotating cascades. 

can then be incorporated by improvising the basic 

solution. Hence the importance of investigating the 

basic 2 dimensional incompressible potential flow 

can not be over-emphasised. 

In the potential flow analysis around a cascade 

of aerofoils, two types of problems occur* 

.1) The direct problem in which the geometric 

parameters are known and the resulting 

aeroeynamic parameters are to be found out 

as function of the known inflow conditions. 

2) The indirect problem, in which the aerow 

dynamic parameters are known from design 

considerations and a cascade geometry to 

satisfy these Is to be found. 

The solutionsfor the above problems have been 

recently attempted. The solution procedures follow 



either the method of conformal transformation or 

the method of the distribution of singularities. 

It is well known that the two dimensional 

irrotational flow of an incompressible fluid can 
be represented by an analytic function of a complex 

variable. The use of complex variables permits us 

to use the powerful tool of conformal transfor-. 

mation. The determination of a suitable mapping 

function', which will transform the flow past the 

cascades into flow past a. - known obstacle, will enable 

us to predict the flow past cascades. 

The method of the distribution of the singu. 

larities, though classical in origin, has recently 

been revived for application to both isolated aero- 

foils and the cascades. This has been necessitated 

by the inherent limitation of the method of conformal 

mapping i.e. inability to extend the results to three 
dimensional flows. Recently numbor of papers have 

appeared, extending the apply. c a i i on of this method 

to the cascades of aerofoils.b 

4.3 ie4 thhoc, , Conformal Tr sfffiit1OYA.  

(a) 	 oac] Fanti, Kemp and Nilson~2 

have outlined an approach typical of the methods of 

r - 	conformal transformation. The objective is to develop 



a pair of equations which relate the Cartesian 

components of velocity U. s '9- of the two-dimensional 

incompressible potential flow past the aerofoil on 

the aerofoil surface. The thin-aerofoil theory 

approximation i.e., the aerofoil being replaced by the 

chord line, makes the transformation. a simple one. 

However, it limits the analysis to tht$ aerofoils of 

small camber, 

The problembf determining potential flow past 

an aerofoil, a. boundary value problem of the potential 

theory, is transfered to the chord line (..c/2  
(I = 0), On the chord line, then the condition of 

continuity, irrotationality and tangency must be sat-

isfied. The first two conditions imply that the complex 

velocity ( U.- i v ) is an analytic function of the complex 

variable Z. This fact yields one relation between t.. 

and `V' . Tangency condition yields the second relation. 

ship, enabling u- and AYto be expressed entirely in 

terms of the aerofoil coordinates. 

b) The e ~,~,e 	I s, orte d Aeco i._r 

Consider first the case of an isolated aorofoii.. 

The transformation scheme is 	 9 



PHYSICAL 	CHORD PLANE 	IRCLE. PLANE 
PLANE 	Z-PLANE  

FIG•7• ISOLATED AEROFOIL WITH CHORD 
AND CIRCLE PLANES 

Aerofoil having been mapped into the slit plane 

(this is an approximation), the mapping into the circle 

plane is affected by Joukovsky & transformation. 

The velocities on the two planes are related by 

((-~) 

Or 
	 = (~J  .- ► V) 2%C& 

where  

The physical significance of C J-~- vlies 

in. the fact that its integral ro Ind the circle has 

the imaginary term equal to the circulation and 

the real term equal to the net outflow of fluid from 

the circle. The function ( U "- ►v* ) s analytic outside 

the circle except at the pole =— . If the principal 

part ( L- i'\Y )°at this pole Is subtracted from 

the function, then the djfference is analytic. By 

applying the fundamental theorem of Hilber and Denov 
to 	= C C~- U.~) - ~~hr'~ ~r~)~ 	--(4-3) 
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the integral equation is obtained, 

(c) MMfir dam to theorem.. 

The fundamental theorem states that If (4) 

is')analytic exterior to the circular contour  

(ii) is continuous on the cir ie and (iii) is bounded 

as 	y then 
211 	 5 v~ v 

	

 

CI 	

C 

	

\ 	2 ` 	Cie+ 	Cud _ ,y c 	t CcM 
~ - 	 z (4 _4) 

where 	 2  
+ c 0  

Application of the fundamental theorem and 

likewise its corrollary which holds in the interior 

of the circle, results in the following velocity 

relationships 	 2 7% 
~ (e ) 	 + 	c~) u C4) C°t 

SSG 	2nSvvg (4—G) 

U` C 	= 	V 	► -- C e 
2n 

* COV4,d 

Now the tangency condition 

	

al_ 	Can be applied, there 	Is Tx 
a double valued function. The substitution of boundary 

condition results in singular integral equations of the 

form 
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2% 

S~„ a 	2n SP 	 dx 

u 	_ VFC 	c °Z 
S 

	

2n 	 l 

2n 	
~— 

5 a c~  

v. hero t X/jis evaluated at -x associated with 
-x t/2 cn4 „ The, solutions of the above equations 

have been carried out on the digital computers. The 

numerical solution is found to converge sufficiently 

rapidly, three or four iterations being sufficient. 

The blades in cascades 

are replaced by their chord 

lines. The figure shows a cas4 

cade of staggered blades. 'he 

transformation to the circle 

plane is carried out by means 

of the mapping function 
FiG.B. CASLAO OF AEROFOILS ' 

z 	e QM 	It 

Logarithmic nature of the transformation makes z ? a 

multiple valued function, so that the circle c  

is transformed into the infinite set of lino segments. 

X + ►Anse 	 ,,,mod+4 +2... 

- 	(4-a) 
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where X denotes the position of the line segment 

w ich lies on the x axis. On the circle the relation 

between Z and a is given by the equation (4-11) 

where the function ><(e)is 

X Ce  

where K 	and. 1< = / ` 2 	. The derivative 2  
of the transformation is 

CJI z 	_ 	e ' 	_-- 

which on the circle becomes 

2i C 	(4- 14) 

There 

(e~ 	= s 	~C Sw, e C~~► - IL Ca~C~ s~^^~ ~4-►51 
27 CL 	kz cola 

The leading edge and the trailing edge of the 

straight line segment correspond to the points a..eiOT 

and a e~ ®'- on the circle. A useful relation between , A 

and 6 T is 
C 	&T cos 	

. .. 
 

where 	f 	 J_ 

and 	p 	- O 	 .-(4-17) 



p 

Velocity in the circle plane is related to the 

velocity in the cascade plane by 

On the circle, 

(*) 	2GC)C' 

The function (U -' 1) i s not analytic every. 

where outside the circle. Eq. (4-13) shows that 
has poles at the points ' = ± a~, At these 

points let the velocity be V, e 	and 'L. 

respectively. Then from ec uation (4-13) and (4-18) 

follow the relations 

-t  J 
2 ̂  	'/ice) #/&)  

2 

In view of these the function 

is both analytic outside the circle and bounded 

as 	--~ 	. The fundamental principle applied 

to F ( ') yields relationship for the velocity 

components 



 t i u c )~ Cot 	J + C 
2ii Jo 	 (42t) 

where 	 _ . 
Se 	V.e 	 Vze 

H() - 2„a 	} 	 /-/ w 

The constant C is _rolated to the total circulation 

by the fact that 

C 	_ 	 (4-22) 

Separating C4--2l) into real and imaginary parts, 
2n 

 
2 	o 

Gc~)u 	)cuts- ~P~I 
T 	 z 	`C 

— 	J' Svc Z e + Vs 	r 1<*c 
L 

+ 1<se -23) 
1c  

and 	 2JV 

27 

4°- I<i C63 e 	2 ?A - 

	

K tn. 0 C - (0/i- 	) - < C 	S lrk ( 4 ,I ) 
I<= C ~Le 

 
Circulation is determined .from Kuttas condi.tio;3 of 

finite velocity at the trailing edge. Since at e~- 



Gt (UT) _ ° therefore the right hand side of 

(4-24) must vanish at €-i 
2 

r 	+ __ 

7 	 _ - - - -(4-25) 

From equations (4..23), (4-24) and (4-25) and with the 

help of the boundary condition 

- (4 -26) 

the desired singular integral equations for U.. and 4Y 

can be obtained. These on simplification give 

zip 
LI(0 	 SM ( -p1) 	Co ff o-4 (~<= C6• ) 

z ^ 	SV" 

Cot o T - C 	C, to T )]  
z 	V 	! 

-1- 	5 	k S S o Css (~1 t ,\) - KT  C0.6  

_  

and for  

c_c 9) 

Ics Coo- 1< cc e Sv-A 	o C~) 

( ) 	Coo pT _ 1<K* Svc, Ze Cor i-  /)L  

_ EK S w. e C 	--K C a~ 	S iM 	S ~^^ of S vti► Z e 
2 ~ 

— 	e C (o(+ A) + k Ste. 0 s (ol+ A ) 

(4-~5l\ 
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These equations can be solved on a high speed 

computer using '.terative procedure. 

4.4 Singuj.e,rities I. , t lbution 
Method. 

The blade is replaced by a distribution of 

vortices and sources and sinks along the camber line. 

The proper distribution which will make the blade, a 

stream line in the flow is sought. Several simplifying 

assumptions have to be made in order to reduce the 

computational labour involved. 

The aerofoil, itself may be described by camber 

distribution ane. the thickness distribution. 

E 

c 	C 

t is the maximum thickness of the aerofoil and 

(\) is a constant defined by the equation. 

o dx 

Equations (4-29) and (4-30) describe a family 

of aerofoils whore the constants (t/c) and Cl are used 

to scale up or down the camber and thicImess of the ind. 

ividual member. The physical significance of (~, is that 

at the design angle of attack, it gives the lift coeff-

icient in the case of isolated aerofoil. 
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a) Induced Velocity. EQ ationsa 

Figure ( 9 ) shows the contributions of 

vorticity and sources and sink, placed at X on the N-k 

blade, to the velocity at Xo on the oth blade. 

Summing up all the blades from - ° to } and 

integrating them all at once from 	to  

yields. 

uo ` 

2i 
G 

C/ w ~ , ,~~~  
z v Vv 

.( 	-32) 
VO 	_ 	_ Y Cy) d 

	
~  

Y41 	 ZxJo 1(~ xok /c - 

C/s -Y I\C llo  

Cis 
Z 

C 	¶ I 	~o-k 
J ,>> d Cv 

J 	y~ 
-33) 

where 	R 	and 	I 	are called cascade influence functions 

and are given by 

L ' S 
l 
	

_ 1 	7lo —k C — 

I  
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and 

I(s 	
C 

—,  
_ pb 	 Xo 	_ 	C /\ 

L S 

R and I can be expressed in closed form and are 

actually real and imaginary parts of a complex 
(24) 

functions. Scholz has tabulated these functions at 

various 	and for considerable number of angles 

of stagger A . 

)anizentia1 boundary cone itioj 
i1i~41r 

The aerofoil is made a streamline by replacing 

it with a source-sink and vorticity distribution. 

Therefore, the resultant velocity is tangential to the 

blade camber. This condition of flow tangency may be 

written as 

Kutta Joukovsky condition stipulates that there should 

be no discontinuity in the velocity field at the trail 

ing edge. Since the strength of the vortex sheet is 

given by the Jump in velocity, it follows that 

T 

In case this was not zero, there would be veloeiT y 

discontinuity at the trailing edge. Thus any solution 
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for vorticity distribution must satisfy the above 

condition. 

For source-sink distribution, assuming a closed 

profile, the fundamental condition to be satisfied 

is:  	d 	_ 	(4 3 g ) 
o r 

Applying the equation of continuity to a segment 

of the profile , (F o) 

(vim, + u) 	c ,~ 	=(v -+ u fi d" ~' x) 	~' fix) 

d~c1L 

d (u r) is small and therefore 

w = 	_ 	~'/(-~,) _ .. 

This gives the solution of the source sink distribution. 

It c n be seen that this satisfies the fundamental 

Condition  
o Y 

For the vortex sheet, we assume a Fourier expansion 

in the form 

	

2Ao 
}C~b 4Z 	 9 	(_4) 

Substituting (4.40) and (4-39) for Y and 
Yn~ 

in the induced velocity equations (4-32) and (4.33) and 

then substituting in equation (4-36), gives:. 

A t  
6 

_±c\ 	-- 	r 	. . _ . - .. (4 --4 ) 



where 	 T 

q 	c  — - ~+ A 	o 

	

c/s 	c) 

 7v 

— 2Cs~MG' + 

M7o 
2R Sing MO Sw 0 fl 

2- ~S 

L O, C ,\) 	= Z c/s 	2~t ~e°) T s Me 

B(b, C/1) 	

s 

T C 1 C/5 	) 	 IS 	JG  
Z 	 z 

C25) 
Schlichting's basis of analysis was to tabulate 

the functions similar to 1, ~,, 13 and T for every c/s 
and 	at many chord intervals e° . Applying boundary 

condition c4.36) at three chord-vise positions he 

obtains three simultaneous equations and solves for 

lam, A , and A. 
C2 6) 

Mellor suggests proceeding with Fourier analysis 

analogous to that used,in the thin aerofoil theory. If 
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we now multiply every term of (4.41) by Co' O o and 

integerate from o to 7 ~ we have 

- lco 
Cb `~Csa) C~eode~ 

where 

Gc\~P~ a ATV 
b 

• E4-4z) 
7- T 

C~S 

.27V 
 

b 

c~ .~oJ 	e 

+ 	E f 	f Z ~ 5 
27V 	J 

Svc.@ CC 	6o 	e a bo 

(14> 0 

C.`/s 

L1. C C/s , i\ ) 

\ 	CciS , /1 ) 

Cis coo e b 
7C T 

	

_ c /s 	x 

xSti\.e C~~o ~6 bo 

r i 	
M > o 

r 

	

% 	 () 	( 

	

27 	 00~ D 

' L 	+ 
T 1 

1 
6~ 8 - CbS~ o 	J 

Cis ,—, ,V 

	

T (c/)

= ti•b when 	M = 

	

=o•0 when 	M '~a 
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Hellor has indicated a method of evaluating the 

double Fourier integral and then tabulated the 

values of the function like 9 nog 	, 

Zo / 	22 ) hog 	Lo~ 	L 1 I~n 	1~ l ) 	o 

Mellor suggests several simplifications in equation 

(4.42 ►. These are:- 

(a) Diagonal terms ~} ~,'~a are very nearly equal 

to  

(b) Non-diagonal terms jM ,. may be neglected 

for M>1) >z 

(c) LMT, may be neglected for (t > 1 , 	I 

(d 	=  

1  — I  0b 

for symmetrically cambered aerofoils 

d d o 	is zero for even 

values of k. The equation (4-42) then reduces to the 

following system of equations* 

Av po + 	 511 of + C~~ C~oLbo F Alb) 

Ao (I— joo) + A~~ I► 	
2T+ 

i C\j AbLoi —C (bT1) 

These equations may be solved for A's and give 



Ste, ~_ C1> E } 	- r 	78. 
b  k. 

2\ ~ 	CI?~~° P, c 

- C1 	- L 

o P1 

-P. where 	= ~ -  

and 	
C 

Mellor puts these in the form 

A = 	AO 0 

where the coefficients 	A'1 L 	P,° t- have 

the values indicated above. Similarly 
Al A. 	c1, Air . 

where 

T-C~,1~, 
A1 ~- 	= 	- 	_►~ 

A Ot 
,I 

 A 

Thus Ac ....  A° etc. can be tabulated and 

the values of the coefficients Ate, As etc. deter.. 

mined for particular situation. 

Blade Surface Velocity. 

V0 =cd )± Y 	 V 

Substitution of 	from (4.32) and for 'Y from 
YAm 

(4.40) gives 



+ C/  
Vim. 

Substituting for 	from (4.39) and su simplifying, 
VA- 

the results can be put in the following form 

V0 	Cr, pC + 2 T~ A0 roo ± 2 /` { 
VA- 

+ C 	+ 	+ C t c1 

— 2T Ac S c;; ~' ~~D -- 2r A, S J L1 

rhtre 

~eu \-)o~ = SST 2 

c CeD) Corn  
MZ-Z 	t~ 

Cl 1- C H 	B 
= 	~{-1~ Swa  F 7 o 

' 

- 27 o ~o- 

Harmonics of hi ghor degree ( M > Z) do not 

apprecibbly affect the results. Single function ~o z-

takes into account the effect of the hie her harmonics, 

Mellor has tabulated the above functions and hence 

i se ckB  
2S' 
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the velocity distribution may be computed readily. 

The methods outlined above present formidable 

computati'nal difficulties, Sone of tho functions 

depend on the blade parameters and thus have to be 

computed afresh for every blade profile. In order to 

estimate the "heat transfer coefficient the velocity. 

distribution outside the boundary layer  is required. 

Therefore, the boundary layer characteristics have to 

be determined and new set of calculations performed 

in each case. The methods are presented here to show 

that the heat transfer coefficients may be predicted 

entirely from theoretical calculations. However $ in 

the next Chapter for calculation purposes data for 

pressure distribution around a cascade of gas turbine 
(27) 

blades published by Pope and 1Jilson has been used to 
calculate the heat transfer coefficients. This also 
facilitates the comparison of the theoretical results 
with the experimental data given by the authors. 
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CHAPTER 5 

HEAT TRANSFER QALCUS ONi  
R!JPUL 	jp. iXsU$..§j 

5.1  

Pope and Wilson have experimentally tested a 

cascade of gas turbine blados and published data regard,. 

ing the distribution of the heat transfer coefficients 

around the blade surface, Instead of calculating 

the potential float around the blade profile theoret. 

ically by the methods described in Cahpter 4. The 

measured pressure distribution of Pope and Wilson has 

been used to predict theoretically the distribution of 

heat transfer coefficient.Galculations have been made 

by, (i) Smith and Spalding (Section 3- 5 ) and 

(ii) Spalding (Section 3- 6 ) methods. Figure ( t1 ) 

shorts the T6 blade profile and the cascade arrange. 

ment. This blade profile being chosen as this is 

typical of the present day gas turbine practice. 

Laminar floe can only support very small adverse 

pressure gradient iriithout separation. The equilibrium of 

the fluid in the boundary layer is determined by three 

causes. It is retarted by friction at the solid boundary, 

pulled forward by the viscous action of the stream above 

and is retarted by the adverse pressure gradient. At a 
7RAL UVA'Y UNATR ITY OF ROOYEt 

R` , RK: ,~'- 
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point Uhere the energy and the momentum of the entrainlel 
fluid are insufficient to overcome the adverse 
pressure gradient s back flow ma:.. y actually set in. 

The for card stream$ then leaves the surface and separ- 

ation is said to have occured. The point of separation 

may be said to be at the point where ~~~ / ) o =. 0 

The position of the point of separation may be determined 

from the known pressure distribution outside the boundary 

layer. Turbulent boundary layers on the other hand can 

support considerable adverse pressure gradients. The, 

transition may take place due to instability resulting 

from the growth in the thickness of the laminar boundary 
layer. Several criteria are available to determine the 

point of transition £rom laminar to turbulent flows. 
When a definite pressure minimum occurs, the point of 
transition may be expected to be located. there. The 

calculations have therefore been performed on the convex 

side upto Y,lC = o • 6 only. On the concave side, the laminar 

boundary layer is expected to exist only for a negligible 
distance. Thus, the prediction of tho distribution of 
heat transfer coefficients, over the complete blade 

surface involves analysis of turbulent heat transfer 

besides the analysis of the phenomenon occuring in 

transition zone. 

5.2 	a 	bMith .and adiMeth c4 

Table ( 4 ) shows the computational scheme 

and the details of calculations. The numerical 
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integrations were performed by Simpson's rule taking 

an interval of 0.025 from 0 to 0,1 and then an interval 

of 0.05. The correction term was taken from the graph 

in Smith and Spalding's paper reproduced in the 

figure ( `i ). Figure ( 15 	) shows the results 

plotted. It may be observed from the tabulated values 

that the correction term is sufficiently small. Hence 

only one iteration has been done. 

5.3 G -i3i&oiis n. Snal ; inn, Method 

Tables ( 7 	) and ( 9 ) detail the compu- 

tational scheme and the calculations for this method. 

The first stop is the evaluation of the momentum thick. 

ness of the velocity boundary layer 	. Table ( 7 

shows that the correction terra e. introduced to take 

into account non-linearity in equation ( 3.6 5 ) is 

negligibly small. Spalding in his paper has given only 

a representative table for the correction term and the 

ratio c4/ y. Theref ore , table ( S 16 ) had to be 

improvised from Rartroo's wedge solutions reproduced by 
C2 ) 

Hunter Rouse. Hunter Rouse has tabulated for the various 

values of m, the values of the parameters 

etc defined as follows. 
11 ) I ) ~.1 E 
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A relationship of the following form is required. 

V 	~Z~ =x' 441%—  

y d'~ 	 ~z - 	u/~) 	( ) 

Writing the momentum equation of the boundary layer 

U A JZ + C Z + 1 ` U = 
1W 

cl 5Z 	= W 	C2 c 	 ►) 	c~U 

_ 	L _~z+H)~~ Ju 
U Sy 	U f- 

or 

dam. 

Now the equation (5.1) can be integrated to yield 

Ug.17 

 

j 	~  517 

E U 2L)  T O 	I- ~z C 	) 

z4' 	

~ 
~~ 	7 

.x.17 	c ' S•17 U 	U + U z S-z 	o. 441- eZ 
vu 

+ U Z ~Z  L - 0 4418 - e~ C 

Substituting from (5.2) 

S -17 n^'~ M '_ ~- 2E -2 	L 	z+ N) _ O•4 41 
Iz 	z 

or 

_ 	 X9 (7-2H ) + 	p 	41  ~~ 
Z 

or 

or 
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and 	 .. C-4) 

With these relationships tables ( 5 ) and 

	

G 	have been computed and 	- evaluated. 

In the evaluation of b+ the correction term F 

was obtained from Spalding's paper. The integerations 

were done as before by Simpson's rule employing the 

interval 0.025 from 0 to 0.1 and the interval 0.05 from 

0.1 onwards. These results along with the results obtained 

for Smith and Spalding method and the experimental data 

of Pope and Wilson are shone in Fig. (. 1 5 ) 



5,4 Remar s n the Re 3.  

Results of calculations of heat transfer coefficients 

for a gas turbine blade, by i) 6mith and Spalding Method 

ii) Spalding method discussed in Sections (3-5) and 

(3-6) respectively, have been plotted in figure 15. 

Fig.15 shows the distribution of the parameter Nu/ Z~y 

around the blade surface. For the sake of comparison, 

experimental results of Pope and Wilson for the same 

blade profile for R = 3.02 x 10#5 have been superimposed. 
Fig, 16 shows the experimental curves obtained by Pope 

and Wilson at various RReynold. Numbers. 

The experimental curves of fig, 16 show that the 

coefficient Nu. /jy is a function of Reynolds Number as 

in the plot of Nu /may Versus /~, a family of curves with 

Reynolds Number as parameter is obtained. The experimental 

curves however are very close together in the low Reynolds 
Number rang (1.84x105 to 5.17x1©5) . The analytical methods 
on the other hand, show that NLL/1 L , s not dependent on 
Reynold Number and therefore admit the possibility of only 

a single curve. For higher Reynolds Numbers, the experiment 

curve deviates considerably from the curves for low Reynold. 

Numbers. The theoretical curves are more or less in agreemei 

with the experimental curves for low Reynolds Numbers. 

Therefore, the theoretical results are likely to be in error 
for high Reynolds Numbers. 

At x = 0.16 a fluctuation in the experimental C_ 

values of heat transfer coeffi ninnt 3 -- i nai ^n+ova rp 
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theoretical curves are, however, found to be more or less 

smooth. Because of the small thickness of the layer at this 
point$ the surface roughness at this point may have pre. 

dominant effect on the boundary layer characteristics, The 

fluctuation in the experimental values may be due to the 

surface roughness of the blades.. 

The experimental curves record a rapid fall in the 

value of the heat transfer coefficient at c = 0.6. This 

rapid fall can only be due to the onset of separation. 

Therefore, the assumption that the point of separation is at 

`= 0.6 is well. founde4. As pointed Out earlier, the laminar 

boundary layer exists for a negligible distance on the 

concave side of the blade and therefore calculations have 

not been performed for the concave side. 

Regarding the relative merits of the two theoretical 

methods, Smith and. Spalding method is computationaly simpler 

of the two. The calculations have been performed Only for the 

coincidental start of the thermal and hydro- dynamic boundary 
lavers. The close agreement of the results of Smith and 

Spalding method with the experimental curve as is evident 

from fig. 15 may be fortuitous.. The results given by S aldin 

 

~ p  g 
method follow the variations in the experimental curves more 

closely. The underlying assumption in Smith and Spalding 

method is that the relationships between some parameters 

which hold good for wedge flows, hold also for arbitrary flows. 

This may result In considerable inaccuracies. Spalding method 
is an attemit to fmnrnvm T4,,# t.,41i 1_ - _t,_ 	,., 	i,N.ptiCAf 
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assumption in Smith and Spalding method which emperically 

relates velocity and thermal boundary layer thicknesses 

is done away with and instead an ordinary differential 

equation is set up for each boundary layer thickness. This 

method aims at improving the accuracy of Lighthill's method. 

However, the crucial assumption is that the correction 

term is solely a function of '4 "~ ~' U o This method. v a~ 
becomes difficult to apply at the separation point where 

S j —a oo . The difference in the results may be partly due t 

to deficiencies in theoretical analysis and partly due to 

errors in experimental results subject as they are, to 

a number of experimental errors. It will be too munh to 

base the conclusions entirely on one set of the results. 

The important question s however, is that which method 

gives results approaching those obtainable under actual 

operating conditions. Pope and Wilson estimate their 

results to be within plus or minus 10%. The figure has 

been questioned and deviations as high as 405 reported. 

Only comprehensive experimentation can point out 

the deficiencies in -analytical methods and help in 

evaluating their relative reliability. 
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AP EN DI L 

	

priva1ji.ao the 	 tions (4f 32)A(L 35J.  

Lot the source sink distribution per unit length 

be q and the vorticity di stribution Y. Rofering to 

fig. 9, the volocity induced by a source segment -c1'-

placed on X on the nth blade at a point X o . On the 

0th blade is 

Av 
 

	

CA~t 	= 	CC o 

From the geometry of the Cascade 

C l~ 	_ 

5 n~ CC55 
and  

. 	u 	_d_ 	o--x) 	M s sue, \ 

CA 2 	 2- 

Similarly because of vorticity icI-s- at x on the nth 

blade ) the velocity induced at ka 

on the oth blade is 

du - — S C6~ 
2  

- YU~ ~-1~~ - MS Sam 11 
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The contribution of the source sink distribution 

on zeroeth blade to u 3 velocity at 	is 

The vorticity distribution on 0th blade does not 

contribute to u., velocity. Therefore summing up from 

G. o.o to -1) and from (l to ~- °°) and including the 

contribution of zeroeth blade, 	component becomes 

'cku C -~ 	+1 	 27 

2 	 27 

1~w 	+ 1 	 4- 	x 
2n C xb_k) 

S 	2r 	+ I 	(lo— 	_MSS-a) + (MCr~a~ 
C S 

Integrating from ~+~ = o to `/~ - 

YA, /
~̀  CxVf  x~[-~ 	 b 

11 	VA— 	 J 

Similarly for ij- component, the contribution of vorticity 

distribution on 4th blade is ___ 	. The source, 
2.ic Coo_ 
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sink distribution does not cox a x-ibute to 'L9- component. 

Summing up and integrating as before 

► 
'V- 	_ ( Y 	d c ) 
YM, 	T  v 	 /e 
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