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NOTATION

a - Parameter of Joukovsky Transformation.

b - Functibn.

¢ - Chord, Characteristic length of the
body.

ep - Specific heat at constant pressure

Kilo Cal/Kilogram/©C

e - Increment (Eq. 3-19)

£ - Any function.

g ~ Acceleration due to gravity. Meters/hour?

h - Heat transfer coefficient.Kilo Cals/hour/M /0C
1 - /-1

k - Parameter in Cascade Flow,

Thermal Conductivity Kilo Cals/hr/m./OC

R - Length.

m - Parameter in wedge flovs.

p ~ Pressure.Kilo Gram/Meter2.

q =~ Heat Transfer/Unit ares/ Unit time

Specific rate of heat flovw
s - Gap (in cascade)

s/c - Solidity ratio.

u - Velocity component along the well.Meter/hour.

v - Velocity component normal to the wall,
Meters/hour -

X - Coordinate along the wall-moters.

vy - Coordinate normal to the wall-meters,
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U(x)

Ueo

—

[,

Area (Meter)?
Breadth - Meter.

Constant,

Function.

Heat Flow/ Unit Time.
Kilo Cals/hr.
Temperature ©Kslvin.

Temperature outside the boundary layer,’K

Tomperature of the Wall. °K
Temperature of the free stream.’k
Velocity in Potentizal Flm-:,
Outside the boundary layer,

Velocity at oxit from Cascade,
Free Stream Veloclity.

Angle., /YQ

2
Thermal diffusivity = K ddetor)
Angle, |

%T in wodge flous.

Parameter in wedge flous.

Any velocity boundary layer thickness,
Sf\- %) A}, Displacement thickness

[—a)

5 L&(t-i&)o\ Momentum thiclness.
RTARTRAY

U/%‘%)o Shear Thickness.
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Any Temperature boundary layer

thickness.
§°(1' % )d} Temperature displacement
wo thickness.
W T-T
50%%<~T»;L)A3 Enthalpy flux thickness.
_ (Tw-T)

G%5>°Conduction thickness.
Ratio of the thicknesses of the thermal
and veloclty boundary layers,
( TY_} i ) Transformed plane.
New Variable (defined in text)
Dimensionless Temperature Parameter,
Angle.
Angle of Stagger.

Dynamic Viscosity Kilogram houx

Meterzr
Kinematic viscosity Metere
Hour.
Daensity dlogra
Meter)3

Shearing Stress,
Heat dissipation function angkex

angle

H) - Stream function.

Non-dimensional Nunbsr

P

M Gp
*

Prandtl MNumber




Ke - Reynolds Number

Nu =« Nusselt Number

Ue
vV
he
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ABSTRACT

This report is an attempt to present the avallable
techniques for caiculating heat transfer coefficients
through incompressible laminar boundary layers. Some
of the methcods developed for general purposce have been
outlined. Two of these have been used to predict the
distribution of heat transfer coeffiecients around a

cascade of gas turbine blades of known pressure distr-

After a brief introduction giving the signif=-
icance of the problem, the equaticns of boundary layer
are stated and a criterion for neglecting frictionol

heating derived., ‘

This is followed by the solution of the problem
for the case of a flat piate. Pohlhausen's exact solut-
ions for the case of an isothermal wall and adiabatic
wall have been discussed and subsequently approximate
simpler solutions have been presented. The case of
arbitrarily varying wall temperatures is dealt with

next.

In the next Chapter, the methods for calculating
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the heat transfer coefficients for a general two dimen=-
tional body are given., Starting with the well known
wedge flows, the methods of Squire (1942), Lighthill
(1950), Smith and Spalding (1958) and Spalding (1958),

is an attempt to improve the Lighthill method, are

presented.

In order to evaluate the heat transfer coeffic-
ients, the potential velocity distribution is required,
Two methods, typical of present day approach, are,
therefore, given. The problem of theoretically predict.
ing the potential flow, outside the boundary layers
is complicated and the theory formulated is still far
from sound. The methods, however, bring out the possi-
bility of prediction of the heat transfer coefficients,
from entirely theoretical analysis. Due to the reason
stated above, the experimental velocity distribution
data, published by Pope and Wilson, for a cascade of
gas turbine blades, has been used to calculate the
heat transfer coefficients by the methods of Smith and
Spalding and Spalding. This also facilitates comparison
with ihe published data for heat transfer coefficlents

by the same authors.

The last Chapter deals with these calculations

and the conclusions which point towards need for
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‘comprehensive experimentation to evaluate the relative

accuracy of the methods.



QHAPTER T,

INTRODUCTION.

1.1 Sisnificance of the problem,

The transfer of heat from a solid boundary to
a fluid stream or vice~versa is appreicably effected
by the character of the stagnant fluid layer called
"Boundary layer" formed on the solid surface. The
heat transfer through this layer is by conduction.
The problem is of pertinent interest to the designers

of =

(a) Turbo-machines, where the cooling of blades

holds out a promise of increased plant efficiency.

(b) Supersonic Aircraft, vhere hinetic heating

may result in unduly high -skin . temperatures.
(c) and to numerous other applied fields.

It has been recognised for quite a time that the
efficiency of the gas turbine plant can be appreciably
improved by increasing temperatures at the turbine
inlet. This necessiates a two pronged drive, one
metallurgical for better materials capable of with-
standing these temperatures and the other thermodynamic,

for artificially cooling the surfaces to safe temperature



- . e

wh ’ 2

lovols. The metallurglical limitations havo encouraged.
the exploration of thermodynamic means. The knowledge

of the dlistribution of heat transfer coefficients
along the blade surface, is of paramount Importance
for the design of any cooling system. Similarly for
supersonic aircraft,;the skinprotection demands<knowvl=-
edge of the heat generated and its distribution along
the surface. The problem has, however, not arisen
solely with the advent of supersonic ailrcraft and the
high efficiency gas turbine plants. The formation of
ice on the 1lifting surfaces of the subsonic aircraft
\quiﬂm%the perfornance and endangering stabilityl
called for an estimate of heat transfer coefficients
to devise a suitable method for removing the ice by

melting.

This report is an attempt to present the avail-
able techniques for predicting heat transfer coeffic-
ients. The actual phenemenon is quite complicated and
presents insurmountable mathemuatical difficulties
because of the turbulent nature of the boundary layer,
conpressibility effects, df%ociation and varlable
| properties etc. This brings out the desirability of
understanding the basic phenemenon associated with
two dimensional incompressible lzminar flous. Extension$
can then be made to approximate the actual operating

conditions taking into account the compressibility
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effectsete. There 1is strong evidence that evenfat high
portion of the boundary layer is always

Mach numbers, the front/laminar. This report 1is,

-Pf’r‘(

therefore, restricted to the study of heat transfer
coefficients through incompressible laminar b&undary

layers.

1.2 H!‘ §tgl‘ig&; RGV;QQ‘

Pohlhauseéoin 1921 solved the temperaturc distri-
bution equation for laminar flow along a flat isother-
mal plate using Blasius' velocity distribution. Frick
and Mccullougé?an 1943 extended Pohlhausen's solution
to the case of an aerofoil. They assumed the temper-
ature and the velocity boundary layers to be related
to each other in the same way as for a flat plate.
However, to account for the pressure gradient, the
thickness parameter of the velocity boundary layer
wvas calculated by the method of Jackob and Von Donehoff,
Allen and Loog) in 1943 developed an analogous method
based on Reynold's analogy which relates the temperature
gradient and the velocity gradient at the wall. The
anology holds strictly for fluids of Prandtl number
uni ty. |

Squiréian 1942, assumed that the temperature
distribution every where is proportional to the veloc-
ity distribution 1i.e.,

e
—

T— T\ -— .&
l»—Tl U
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By assuming Y/y to be given by the Blasius profile,
he deduced an expression for the thickness of the
temperature boundary layer A . The relative thicknesses
of the two layers were then determined by satisfying
the integrals of the equation of motion and the equa-
tion of eneréy across the layer; The assumption of
similar velocity and temperature profiles means that
the pressure gradients affect the temperature and

velocity distribution in exactly the same manner.

This method differed from those described preve
lously in the manner in which the pressure gradient
was taken into account. The previous methods used the
equations of flat plate and took account of the
pressure gradient in calculating the thickness para-
meter of the boundary layer, from the Karman momentum
relation, which inclddes the terms involving pressure
gradienthQuire, on the other hand deduced the rel-
ation between temperature ang velocity boundary layer
thicknesses by satisfying the integrals of the equa-
tions of motion and energy which contain pressure
gradient terms. The methods of Allen and Look, Frick
and Mccullough failed to take into account the varia-
tions in the velocity profiles in the boundary layer
along the aerofoil surface. In fact, the profile varies
from w = cx at the stagnation point to the separ

Pyofile aX e poiat "'S SE\H-Y-«'\M;M.
ation|Blasius profile holds only where the velocity
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is nore or less constant.Squire's method, though

more accurate, is extremely laborious.

(s) ' €)
Lal in 1949 suggested the use of Thwaite's

quadrature technique for calculating the boundary
layer thickness parameter, Thwaite's method takes
“ into account the variations in tﬁe shape of the

boundary layer profiles. He used Thwaite's method

to calculate the value of the velocity gradient at
the wall and then calculated the rate of heat transe
fery On the assumption that the velocity and temper=-
ature boundary layers were related to each other in
the same vay as:%he Pohlhausen's solution for the

flat plate,

The importance of the problem has focused the
need for understanding the basic phenemenon. In this
connection, it may be noted that whereas only one
boundary condition, namely absence of slip can be
prescribed at the wall for the velocity boundary
layer equation, a number of boundary conditions can |
be prescribed for the tenperature boundary layer equaw
tion, at the wall. Methods have been developed for
evaluating the rate of heat transfer in the case of,
isothermal walls, adiabatic walls, stepwise and
uniform temperature variations along the wall, In
Some cases the heat flux to the wall may be prescribed,

The multiplicity of the boundary conditi-ns has
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highlighted the difficulties encountered in evolvig

exact analytic solutions. This has encoiraged the

development of approximate solutions. The names of
Lighthill, Smith, Spalding, Schuch, Eckert, Tribus,

Thampman etc. may be mentioned as the typical among
those who have contributed to the better understanding

of the problem.

1.3 Ihe Boundary Layer Equations,

The incompressible, laminar, boundary layer

equations for the steady, two dimensional fluid flow

are
Continuity
’B_\_l_- + w = ]
* 3 tdoe e (1"1)
Momen tum N
Vb Dw
bu- 4% é}_ = - —= + H— LT;
\L W .ba ¢ o ¢ ‘d >c--lo (1""'2)
o b
0 = [
( 3> esew (1"3)
Energy

—_ - _ bLT CD\A)L
Wel + ) - b2l . o
€CP[ k) ]a b\&L }J va.ooo (1‘4)
The equations wvere first derived by Prandtl in
1905 by the application of the famous order of magnitude
arguments, to the Havier-Stokes equations of motion

and to the equation of en rgy derived from the first
lav of thermodynamics.



Equation (1-3) states that the pressure does
not vary across the boundary layer and 1s, therefore,
constant for any station x along the wall. Besides
the usual assumptions, the curvature of the wall is
neglected and the properties like conductivity, viscosity
eéc. are c-nsidered independent of temperature. An
examination of the above‘equations reveals the non-
linear character of the equation (1-2), whereas energy
equation (1-4) is linear in temperature. Moreover,
the assumption of independence of properties with
respect to temperature makes it'possibie to solve the
equations of motion and energy independently. From the
solution'of velocity boundary layer equation, (. and\r
are supposed to be known parameters in the equation
(1-4).

The second term on the right hand side of the
equation (1-4) represents the contribution of the
viscous stresses. It is important to devise a critaéion

for deciding when this cam be neglected.

1.4 Criterion for Neglecting Dissipation,

Let us measure the temperatures with a unit which
1s of the order of temperature difference imposed on

the problem i.e. the difference between the wall tem-
perature and the stream temperature, ( Vu- 1, ). Velocities

will be measured with stream velocity as unity. Then
/
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from the equation of energy

b BT _ T | .
(q[u%gw%wﬁ - KT ) s

the boundary layer form of equation given by (1-4)

i1s derived. The first term on the right hand side

of equation (1-4) is of the order of S° 2% /4>and the
second term of the order of S Q;gz. Both these are
of order 1 when U/, 1is of the order l. This ratio
can be divided by (, to make it dimensionless U%\, 5o
When this numbey is small compared with unity, the
dissipation term may be neglected. For gases, at lovw
Mach numbers, i.e. incompressible case, usually diss-

ipation may be neglected.
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CHAPTER 2

SOLUTION OF BOUNDARY LAYERS
FOR FLAT PLATES,

2-1 Exact Solutions,

As already mentioned the solution of the boundary
layor equations prosents considerable difficulties.
This is primarily because of the non-linear character
of the velocity boundary layer equations. A fewy exact
solutions for some simple cases have been worked out.
The solutions are refered to as exact when they are
derived from the boundary layer equations as contrasted
wvith the solutions derived from the Karman momentum
relation and the heat flow equation which are termed

as approximate solutions.

2, 1)Eohlhansen's Solution.

(1
Pohlhausen usad Blasius velocity distribution

to solve the temperature boundary layer equation along
a flat plate. The governing equations for the case

of uniform, steady, two dimensional flow past a

flat plate are:-

i

C
S~
W
%

o + D__'\:”
)+ A

—

e ) Rk
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T >t - ey o )
<’q>(mb + el 5 o @ 3)
Blasius introduced new variables for the solution
of the flov equation so. as to transform equation
(2«2) into an ordina.ry differential equation through

(2-1). The new variables are

- LS R R G

wvhence U = Ue {10 and v = 3 J_%’L “H £

The differential equation for { (m) becomes

[raaf” =0 @
vhere prime denotes differentiation with respect
to " . With the boundary conditions
(\fl - 0 ! ,F - {’ = 0
- e fooa

the solution of the equation (2-5) was obtained by
Blasius in the form of power series about " ~o and
an assymptotic expansion at f\1=oo s the two being
Jjoined at a suitable point. Introducing the dimension-
less parameter o, to describe the temperature within

the boundary layer and defining

o, - Ti__"ba o (2-¢)
Teo - T

the energy equation can be transformed to

d*e, b {myde = o N & NP

—— —

EL Ao
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lLith the boundary conditions
WL=O N e\=0

4'\,1__00.' 6.=\

equation (2-7) was integrated by rohlhausen to give

S:\ L‘—’—ﬂ 73 ﬂ”%c‘q O\j
= N
&é"’/ng?“\”"l}dw\

0
This can also be expressed as

n ) Y
Sb {-{ (3\)1Ah¥_ﬂ o (2-9)
gﬂ U”(q)]taln |

The temperature gradient at the wall

o (2-%)

]

e,

This relation was approximated by Pohlhausen by the

formula

P /o P .
= (0-332.l//i>£{~(n)]<41 (27

»=0.332

- (ole\)
which gives fairly good accuracy

Pchlhausen also gave a solution of the problem

when the viscous heating term could not be neglected.
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In this case the energy eguation transforms -

into

L1 L ppdr - tE e Yo
dﬂz 2 dn

Introducing the dimensionless temperature

parameter
e, - 'FCﬂ) - Te S (2-13)
Uao/iq
the above equation can be written as
)_ 2
c)\ % . P ¢ d dez S PUS(T o)
dn® 10

With the boundary conditions

r\'l = O . ©, = 0
(\/l - o y @_2_ = D ‘
A particular solution of the above non-homogeneous

equation for an adiabatic wall was given by Pohlhausen
using the method of 'Variation of Constant', The
complete solution of the equation (2-14) ezn be
obtained by adding a particular solution of

(2-14) to the general solution of the homogeneous

equation, The particular solution for the cass of
adlabatic wall is

(1) - 2"5 U o
ey ) dy



133

The temperature assumed by the surfuce owing to
fricti~nal heating, i.e. the adiabatic wall

temperature is

2
— _ Yoo %
TZm» Voo = la- T - ’qu)\)( )
vhere -
b(p) = S (o, P )
Pohlhausen has shown that for moderate Prandtl
nunbers
(2-15)
b(ey = d° ‘
a

is/good approximation.
Heat Iransfer.

(a) NHeglecting Frictional
Heating,

CP(X) - */L‘JFU; (~ )Wﬁw ,.,..(z_u)

From the equation(2-11)

O e = -0 3327 (T 1)
?(x) =c»332h§? IE°(K°‘”)
A{2-V7)

The overall heat transfer Q) can be computed by
-integrating ‘}C\)Jx,
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Q = 28§ geodv

= 4Bx O 332{1 e J_\r—%& CT\»’T“A>

= 328 RP Jo (Te-Te)
(b) Hith Frictional Heating.

The general solution for the
prescribed temperature difference between the wall

and free stream can be obtailned as

Ty - T L (T T ) = Te- T Y000y )

+

:Lllﬁf @lgw\}\?) e (2-19)
( DL

and therefore

A8
Q

= - 03323%F (Te-T-)

o before

03321131’1" (Tw-TTe) o {220)

32886 °TP JR CTw- To)

i

~(2-21)

In the absence of frictional

heating, heat flows from the plate to the stream whep
Yo > To  while with frictional heating heat flous
vhen T

> > Te. o« Thus, the condition for heat flow from
the wall into the fluid becomes
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(Tw-Te) > (Ta-Tw)

S Uos
v 1<P

2.2 Approximate Methods.

Exact solutions of the boundary
layers are extremely laborious and are rarely attem-
pted. The quest for methods, which yield accuracy
commensurate with the effort, has led to the
development of approximate methods of varying accu-
racy. Karman and Pohlhauseé7éevised a nothod where
the differential equations of the boundary layer
are satisfied only average and over the boundary
layer thickness, rather than satisfying the-boundary
conditions for individual particles. This mean value
function is refered to as Momentum Theorem and is
obtained as an integral of the equation of motion
over the boundary layer thickness. The equation of

motion can be expressed as

Vi
Ay O - A (.
ubb\i' T 5% B UA__U1 * }i’ CWL) @_22)

Integrating over the boundary layer thickness
S

UD& !\}2}.&“ UJU = —-Tuo
Sok o L J-L)Aa e
which can be put down as
U d S 4 (25.48)udu . The o 23)
A An € _

This gives an ordinary diffe:ential equation for
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the boundary layer thickness, provided a suitable
forn is assumad for the velocity profile. Simllavy
on integrating the equation of energy from Vv = o
to <o and neglecting frictional heating we obtain

the following heat flow equation.

=2 2V (229 -
dfucmdy so e Gy

It 18 now possible to devise approximate methods

of solution based on the momentum and the hoat

flow equatlions,
e U |
o) Profile Assumption, T —n
S
The mothod will be illustrated } u;:jja
‘ A
by application to uniform flow LY // _
s
‘ Tw
past an isothermal plate . _erJ.T_ampemm%qe & VELOGTY PROFILES
Karman-Pohlhausen postulated AT
N e pr— -

that tho velocity profile in the boundary layer can
be approximated by a polynonial with a number of |
free constants, to be determined from the conditions,
vhich the profile is known to fullfil exactly or
approximately. Such conditions can bo specified at

the vall and at the outer edge of the boundary layer.
Y:O g W = o (2-25)

y = S : W = Uso L e (2-26)

The oquation of motion written for ~ — - y becomes

. = /oy
VAR /\DT‘> =0 - - o{227)



-7

17
Furthermore, the profile in the layer must join
the potential flow solution smoothly.

Therefore,

=

Vo= % ’b-%) =0 GT‘}‘J =0 -(229)

One can demand, even, that the third and higher

derivatives be zero. Introducing the dimensionless
Moo= Y/ o)
LL_ - a+\>nr\+ C'V\-L +0l"\-S ~-»~-(2~2°’)
Ueo
The coefficients in equation (2-29) can be deter-
mined from the above conditions (2.25 - 2.28) and

the final form is
W = By _ M3
Yoo =z 17 3" ce (2730

The momentum equation for flat plate becomes

2 L D\
4 TR - v G

The integral can be evaluated by substituting the

expressicn for velocity profile and this gives

Ues™ 32 dS 32 9 U= . (2-32)
280 dw S 2 )
oY SdS = 14 ¥ dx - "‘(’2‘33>
ER s
Integrating
- = A4 [ ex (-
S ] )

Now consider the case of a flat

plate which may not be heated upto x, + This is the
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case of non-coincidental start of the hydrodynamic
and thermal boundary layers. Analogous to the
solution of velocity boundary layer, a profile is
assumed for the temperature boundary layer, such
that 1t satisfies the 5oundary conditions known to

hold good, i.e,
C Tw e (20735)

Vo= s1 T =T ) =0 02736)

-~

and the energy equation written for y = O becomes

(%%L) = 5 o (231)

\/ = 0

Introducing the dimensionless parameter

(WT = V/se00 o @

the thermal boundary layer profile can be approxi-

mated by
T-7 > L (@39)
Tao"’T"\? S |
which on simplification gives
* | 3 - (2-40)
e = 3% =0

The integral in the heat flov equation (2-24) can

now be evaluated.
{
~ e
j; U(@» ﬁaa)c}a - —*SaoUD"’S (‘ ))\\k

Substituting the expressions for.#: = 2, the

integral transforms to
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S 3 2 L
e L L R R NS
2 4
- 2= 4
= o.U= S(2¢— 2,6 ) -la- )
where C: = fi/aT « The integral has been eval-
uated upto $7 only for 1t is presumed that the
thermal boundary layer 1s smaller than hydrodynamiec
layer. As g 1is less than 1, the 5 " term can be
neglected. Substituting in the heat flow equation
3 o = = B o= .. (2-42)
aﬂo@o«oup” m(: S) =5 ZS -
O — 0. UW(CSSAS +2§’15?—Jé> 2 o - 2B)
lo e P
Introducing the values of Sc%é, and $ from (2-33)
and (2-34) respectively,

E A 3 = 3 p L (2-44
5; ’\'. %1;’;(;) ’.Z’ C )

The solution of the above equation is seen to be
of the form

)
CB _ EP+C1/+,..‘--(2~‘}S)
I s

at + = o @ L =0

: \ 3 .
- = ey (2-46)
Z — 7B

]-

Heat transfer coefficient 1s introduced by

Cy z,ﬂ(%ywt - hoe.. ...(’2-‘1'&)

!
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-Q-?{-A A (’)_-4%)

If the plate is heated over the entire section

W - 0.3‘57_11 3ﬁ./(—%0€“) o (28%e)

The close agreement of this result
‘with Pohlhausen's exact solutions is, of course,
purely coincidental, but the example brings out the
potentialities of the procudure.

&_LMMAM
Varying Wall Temp

In engineering applications, the
varying wall temperatures are, often, of importance.
Only isothermal and adlabatic walls have been consie
dered till novw. The vuriation of temperature along the
surface effects the shape as well as the thiclmess |
of the boundary layer. The rirst effect becomes evident
when the energy equation is differentiated w.r.t, & ™~

and written for Y =9
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- DST _ (B_\f_)?};‘” S e - (Q_-49>
This gives a relation between the third derivative of
the temperature profile and the wall temperature
gradient, Temperature difference © is now a function
§f ¥ . The above relationship can be used to determine

the constants in the assumed polynomial.

(R)
Rubasin makes use of Duhamel's

superpositicn theorem for obtaining a solution for

. variation _
the temperature distribution for the case of stepped/
in wall temperature, This energy equation being
linear, a solution of the temperature field can be
built up by superposing a large number of stepuise
variations. If we nave a number of particular
solutions (Ti)of the energy equation, then it can be
“shown that

T - TGT - o (2-se)

L=\
is also a solution. The constants (i ean be used to

adjust this new solution to the required boundary

conditions.

@) Stepwise ¥ariations,

Let each particular solution correspond to a
zondition in which the wall temperature is equal to
the stream temperature upto a certuin location and

then suddenly changes by an amount AT . For each
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particular solution, a heat trunsfer coefficlent

can be defined by

9 ﬁ_/i;(\"'“) e AT (29

wvhere Aluwi is the jump in the wall temperature.

Heat flow _at the surface is

Then for the temperature field
™ - .
4 = = Gl aTw N 2-25

=

From the variations it is obvicus that the constant

Gi %t are all equal to 1.

Figure ( 2 ) shows the temperature

variations in a stepwise fashion with steps OTw!> & dw, -

- Al occuring at the locations ﬁ. X F‘ SR %.‘
Then heat flow at the wall at the location x is
giveh by
w
R N ATwi - e 2m53)

C} b= \’\(X’ E‘ ) !

whereas before ' 1s given by
|
L - o 230 h TP e = - = (A7)
- Gy X

In the above analysis it is assumed
that the plate has unheated section upto 'ﬁ\ y other-
wvise an additional temperature step Alwe =  Tuso - Te=)
at E = 0 will have to be added.
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L) Continuously Varying
Wgll Temperature.

Continuously varying wall temperature can be
treated by replacing the series in the above equation
by an integral.

C‘/ - S LC‘;?) O‘Tw(%) e (2-5%)
which can also be expressed as
‘fy - g \r\clf) d \mch’i) AE o (2”55)

If continuous temperature variations and stepwise

variations occur simulatancously

- (e "\T“"?U +zl~(1§)fﬂ°¢%>
%’ S X AT f - (2-56

By summation and integration, the heat flow can be

evaluated for a variety of the situapions.
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CHAPTER _ 3.
SOLUTIONS FOR GENERAL Eﬂg D;MENS;ONAL
BODIES,
3.1 Wedge Flows,

In the last chapter, the solutions of
the boundary layers for flat plate were discussed,
The solutions of the general two dimensional boundary
layers with pressure gradient, will mmwkm now be

presented,

Exact solutions for the case of two-
dimensional flow over a surface, having stream

veloclty variations as

N = cx - (30

have been obtgined. Such a velocity distribution
exists along the surface of an infinite wedge, symme-
trical with respect to its apex, having an opening
angle (- 2m z . px placed in an incompressible

fluid stream. Accordingly these solutions are refered
to as "Wedge Flow Solutions". Transformation of the
independent variable %, y which leads te an ordinary

differential equation is

f]/l = ‘3]7&\;_1 _/‘;:LL; (3—2)

The equation of continuity is integrated by the
introduction of the stream function



b4
26
b - % TJ}@D (3

Introducing these into the equation of motion

Wk + nvde = Udy . 9%y L cwa)
N 23 Tx ”’3’>
the following differential equatinn is obtained
V7, 4 R N ~
O S YO UL IS >

the boundary condition for this being the usual i,e.

/

f:’% j; ) f=0 1:/:" A{_....@ﬂc)

The solution of eguation(3«5) was
first given by Falkner and Skawm and latter investig-

im O\JA.Q b \;—\mr'h'eeL The CoTYog 26 A w!a @mefzxz er‘uai\w\ wes colved
ated\by Fage and Falkner, who showed that 1t can be
transformed into an ordinary differential equation
when the difference between the wall and stream temp=-
erature varies according'to the following law

. ~
T\:o———\_u = t w (3»7)
The troncformation ylelds the following ordinary

differentlal equation for the temperature distribyjtion,

28 o+ pf 4R -~ GopdPie s (h)

——

d"v‘l-

—
. .

T\-\}' T\
having the following boundary conditions

M=o0o,; © = ‘{_-.,......(3@)

(IET R

vhere g = =T
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This equation has been investigated
by several authors. The value Y =0 corresponds to
constant temperature difference and hence constant
vall temperature. Pohlhausen and Eckeré“éave consi-
dered this case. For non-isothermal wedges, the solu-
tion can be obtained. numerically except for the
special case in which the factor (2-B )Y = .1, In
this case the equation 1is exact and hence a simple

solution can be obtuined,

Lsothermal Vedge.

In this case both the temperature and
velocity layers are similar, that is, they dc not
alter in shape along the surface., Bckert has tabulated
the shapes and thickness of the velocity and temper~
ature layers. It is easy to show that

o );A I M V4w S (_5-\°>

U (am) 2z (i

and Aml AU —_ ( o ('g—\\)
\} a—:ﬂ- H-

vhere A, is any temperature layer
thickness., Eckert has tabulated Z., Z. Z4 against [3
for various Prandtl numbers corresponding to the
temperature displacement an, the enthalpy flux
thickness and heat flux thickness respectively,vhere

A = L :_T'T‘)o\a (3
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(T TNy

Az - So U Tuo-_“)a G \3)
T““‘—\

FANR = - (\OT\") - (3-14)
(3¢ )7=r

The relationship between Ud (A4)  and /54 ey
dx PR

enables A4 and hence the heat transfer coefficient

h(+) to be caleculated since

h(+) = J{@/b»{@) S (37)8)

}) Particular Cage, /2—/3’)"7/ =-/

For this case the solution is

e = =N = e Y HN\ e (B
Tw-T,
In this case (O’(\I?) = 0 and the temperature
W
gradient at the wall
A ( ) X (3-17)
( )/.Q y (2- /3)

which is zero everywhere except at x= o, The heat

input, impulsively, at this point can be determined
from the heat flow into the boundary layer at any

pOint K o

Q- bj:oycx)ch
- QU (e udy

U
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C) Other Values of V¥

For other values of Y , numerical
(V2)
methods have to be used. S.Levvy has put the_ differ-

ential equation in the form of a difference equation

Om - 260m-1 + Om-2 + P Em - S m-|
cl M=y c

/
— -YF(Z—]%){'IM‘.S“" = O (3-\%)
the increment 1; © being € apart and "W denoting
the number of increments. He has solved the equation

using a high speed speed electronic computer. The
temperature gradient at the wall which gives the heat

_ . (-8 (320
(g_i.?)ﬁ]% = ___6_) (3-20)

As the boundary condition ©&w-—~0 as m—> =< 1is to be

flux is

satisfied, the value ©¢, was put equal to O and

then the values of ©, etc were evaluated. Knowing

S, (d-;e;,)o could be found and hence the heat flux
evaluated.

k)
3.2 Frossling Approuch,

Blasius in (1208) indicated a method
for obtaining the velocity distribution in the boundaiy
layer for an arbitrarily shaped two dimensional body.
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For the cases both symmetrical and assymetrical
with respect to an axis of the cylinder which 1s
parallel to the free strea the velocity of the
potential flow i1s assumed to be a power sSeries in
terms of the are length measured from the stagnation
point along the contour. The'velocity profiles in
the boundary layer are then obtained as a power
series in arc length with coefficients dependent
on \} s the distance normal to the body. Howax'th(l4>
(1935) by a suitable assumption regarding the
power series succeeded in obtaining the w,-dependent
coefficients, independent of the contour configura-

tion, The coefficients can be tabulated and the

computations are conslderably simplified,.

Frossling (1940) utilised these
functions to calculate new ones giving the temperature
distribution in the boundary layer, provided wall
temperature is assumed constant. The method has baen
recently extended by Guha and Chia-Shun Yiéﬁ?1957)

for the case of variable wall temperatures. A brief

resume of the method is presented below.

Let the potential flow for symmetrical

cases be given by the series

3 S
U(e) = WX+ Ugx ¥ Ugts.

(3-21)
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The coefficlents y, U5 Ug being

known from the body shape

Howarth assumed the stream funetion

to be taken : ]
Y o= Wf**‘Wsi?*'W51*“'”“" (3-22)-
in which " g
3
- . . Vs,
\Pl - ‘FI ( U-l) J \.\)’5 m‘\ | “(3—23)
- 6u Wa |
A A

and so on.
¥l,{3~--etc. being functions of the new variable

M = ¥/u, » The equation of motion can be written

as |
WY i1 = U4y 4 Y (324)
b} a'ﬁ} novy T Jx @33

 Substituting equations(3-23) into the above equation
a serles of ordinary differential equations for {b'“

. ete. is obtained,

For the unsymmetric case, if the

expression for U(x) is:

3
U () = U X 4 W e X & - (3-25)
the strecam function, can be taken to be

Py = s Yo e (5260

in which
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\’K:' {‘J_ﬁ‘.l ')L‘J‘J.: }5—%34"
4U Wa ), £ BN
\‘Vszﬁ(33+ﬁ\—usg>ec |

The series of ordinary differential
equations obfiained by substituting the above in the
equation of motion have been solved by Howarth upto

an index of threce.

Frossling used the velocity distribution
obtained from the Blasius-Howarth expansion to calce
ulate the temperature distribution. For a symmetric

case 1f | is the ambient temperature

e = =T _ G+ % + C4x4+-~---- (3-2%)
T |
¢'s are taken to be .
Cﬂ = FD .: Cl = “—a“?\—LX ( )
S Us Us
Cqy = —u—i-Cde‘*u‘Us 4)
Substituting into the energy equation
W L 2 - Lne (3 %0)
o vy Y oy

a series of ordinary differentlal equations is
obtained. Frossling solved these differential equations
with consistent boundary conditions of constant wall
temperature and for Prandtl number 0,7. The tabulated
functions can bs used readily to calculate the
temperature distribution and hence the heat transfer.

As pointed out earlier Guha and Yih have extended the
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vork and tabulated functions enabling the temperature
distribution to be determined for the case of varia-
ble wall temperatures. They resolve the series of
diffeiential equations obtained fmto homogeneous
and non-homogeneous parts and thus take into account

the variable wall tamperaturés.

(\¢)
Lighthlll has formulated an approximate

method for the calculation of heat transfer across
an incompressible laminar boundary layer for the case
of arbitrary distribution of main strecam veloclty and
of wall temperature. The flow parameter used is the
arbitrary skin friction., The method is, rather, a
generalisation of the method -of Fage and Falkner,
Energsy equation 1s used in Von Miseg7%orm, wvhere X
and\f are the independent variables, and operational
methods are used to solve the differential eqﬁation
for the temperature distribution. The energy equation
{1-4) is transformed to |

T _@_(%):_"}_J—()AFU-—)

x Cp (33
and the equation of motion to

2 L
%UTL = W(/‘“"‘“)
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An examination of the above equation
reveals an interesting fact. The influence of com-
pressibility is reflected by the variation in the
property valnes/u-and € and since in the above
- equations both enter only as product, therefore, if
the variation of viscosity with temperature is pos-
tulated to be linear, ( /U«T) the heat transfer for
a main stream with uniform speed but arbitrary Mach

number is given by the low speed equations,

The energy equation for the incompress—
1hie case neglecting frictional heating can be written

as

oo AL (ugl) ()

i Pt

!

Following Fage and Falkner, the value of W is approx-
4imated by

W = ‘mm? L (373%)
}A

where\T@(X) represents the shear stress at a distance

K from the start of the layer. The approximation

is closely accurate near the surface,

“}
Now Y = QS ud}
- e‘vw(x)* L (3735)
So that 2 pF

)
3 T (330
- (PO <



Then the energy equation becomes

TP fTwC*ﬂVl

[W/’-BT o (33D
which is solved under the boundary conditions
vV =0 = Tu(x) - ) T |
(33%)

T =0 af X=0 a-d aF ] =

Thus, the scale chosen is with the main stream

temperature value as zero,

Lighthill with thehelp of the operat-

ional methods solves the above equation to give

%(U :—JE(KjajiwﬁL;

ATEEIRE

which 1s the required relation betueen 4 (1), Tu(x)
and TQ(?)

The total heat transfor rate for

a surface of unit breadth between W = o and xA:Q

can then be calculated by evaluating
J G () d

o /£1 pe 3 __I"‘ * O\’Lx
Qb= _('/3)(}‘ g{ g .

g UJ{T W} 7] 4 ™)
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L
| Ys /3
_{?_/%(wf y U A ) d e
‘ . ..(3—40)

(%)
Liepmann has recently gilven an alter=

native derivation of the equation (3-39). His method
is based upon the use of the energy equation in the
integral form. He further shows, how the approach can
be modified for application of the formula to the case

of flow near separation peoint vhere fw 1s zero.

Lighthill's methcd 1s assymptotically
exact, when the thermal boundary layer is much thinner
than that of the velocity. The formula is accurate
enough for large Prandtl number but fof smali Prandtl
-numbers,of the order of 0.7, the resulis may be in
error., For low Prandtl number Lighthill suggests the

/
replacement of the constant D& ’ = 0.807, by

(/3>'
0,73 to improve the accuracy of the results,

3.4 Squirae's Method

& |
Squire (1942) outlineéd a mothod for

the calculation of heat transfer in the laminar flow
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reglon of aerofoilé. He assumes a standard shape for
the veloclity and temperature distribution across the
layer, i.o. that of Blasius distribution for a flat
plate,

G9)
Young and Winterbottom gave a solution

of the momentum equation as

« |
(5;- _ O-441V g USAX, L (3-41)
u® 0
For Blasius aistribution S./s. = 2-571
W
S S Q;ZQ“VS USAY. C e (342)
e UG >

The veloclty distribution given by Blasius can be

expressed as
R NCEEZS

where the similarity transform

{W = 5 ﬁjig; _ is replaced by
21 = go U-%)aa = 1720} %L

' For the thermal boundary layer, we
define a displacement thickness by the equation

A = g T-Tovdy oo (312)
, 0 ( Tu -T|> a ‘
If it is assumed that the temperature

distribution 1s similar to the velocity distribution,

then,

—

V- T
Ty s

Teo-T.

| — -&t/(O'%éD‘F\a/P.) ‘QB"B)



Neglecting dissipation energy equation in the
integral form is

_o_L[ g u(T—T.)'Aﬂ s ( >7=*='
dr 0
Now -\ ?_I = 0-3664/ h(o)"
LT\»O*—FI) o7 /Ai{ )
- 0575
£
Simee 47(0) - o 664)

Co_y
#2583

{(2-24)

- (3-44)

The integral on the left hand side of the energy

egquation can be expressed as

SMu(T'T‘)Aa = ULTw‘"Tx)Aldf(%)

wvhere

e — s

£~y

where

«\,\L ~ 0 -d6&ed Y

Substituting in the energy equation
. 0575
O\[UA (§>( ) =,

or

Ja . At dquy) = 0 5TISL
U ¢ A ?}I'+ 5 | |

or

¢<%') %amg (A‘m>{ %mﬂo\“]

2 (Uh) A dosy +2 AT UL (Ug)
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"

or %(UQA?)
(0§ &Y

i

+
s | uddx
. (3-45)

From the known values of {(A]) s Squire
has tabulated the values of ¢ ( %‘) s Tfor the values

of %' in the range 0.5 to 2.0,

\

Dividing equation (3-45) by equation

- (3-42) gives 4"
2 o 386 U SOUMI (-4l
_é_'. (—A—‘- ) = P * g
g‘L S\ qj SD U A\L

For computational purposss, the first approximation
is obtained by omitting ¢ from the right hand side
of the above equation. The valuo of ¢ thus obtained
can thén be used to get the second approximation,

From A, , the gradient at the surface and hence heat

transfer rate can be calculated

. -t o(om
I RES' 57 e

- O-SNS . ......(3-47)

ol
Quadrature Techniques,

The methods outlined earlier have
highlighted the computational labour involved. The
quest for approximate methods, which will give results

of accuracy compatiable with the effort has leg to the
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development of methods where integration is performed
by a quadrature, which is similar to that used for
evdluuting momentum thickness of the velocity boundary
layer by Walz, Young and Uinterbottmg: Thwaiteé etc.
- The procedures fall in two categories.
In the first, limited to uniform wall temperitures
and coincidental start of the boundary layers, are
the methods of Ambrok, Eckert etc, Eckert‘s method
has been recently simplified and extended by Smith and
SpaldingT The procedures in the second category are
applicable to the cases where the wall temperature
varies or where the heated section does not start on
the leading edge itself. Methods of Spaldiﬁé,)Schuclgx2>
and Lighthilf ars typlcal, the last of vhich has
.already been described.
3.5 Smith and Spalding Hethod,
Standard metho@s\of dimensional anale
ysis can be used to set up a continuation equation

for the growth of any temperature boundary layer

‘thickness 4 4in the form

U d 2 L\ld (3
Jalany =059 3-4%)
provided

i) Prandtl number is constant

11) The rate of growth depends only on local
conditions,
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4) AND

Fio.4 ReLATion BeTween S & (&

= 0.7

p
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111) Any dependence of the rate of grouth
on the veloclity layer shape or thickness
is ignored.

The underlying assumption in the method
is that the unknown function in the above relationship
can be taken from the exact wedge solutions for
uniform surface temperatures, This implies that the
relationships which hold good for flows with U e X

holds as well vhen U 18 an arbitrary function of X »

(D
From Eckert's data, 1t is found that

the relationship is nearly a straight line, so that
(3-48) can be written as

+ E g ( &_ m} .-...-('5-47)

vhere k4 is the error of non-linearity and 54 is

+ conduction thicknes. The equation can be integrated
B-t

with the help of Integrating factor U and ve

obtain
*

R 2 -
N o(p4) = AS 0" dx
%

Y

A JU -Se
! So J S+ v dx QS S>

values of A and B can be obtained from Eckert's
tabulated data. For P = 0,7 the values are A =11.68
and B = 2,87. From the equation (3-50), Nimay be

calculated ignoring b4 term as a first approximation.
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The value obtained can then be relied upon to give
second approximation which is close enough for most
of the purposes. For computational purposes the

demensionless forms of the above equation are more

convenient., *e 17
| 2 - €% €% J . d(*/c}
ED% = (% )“’AUU >
| Ve -7 \
+ (u/u )287 gLUAJB \—4( ) C/C)
- (3-51)
b S |

d — 2 = _

an 5 /{/ch %?_ !%9 o (3-52)

At the front stagnation point where

V[ (Y, (3
(V) =t 2f4e) (3-53)

the equation (3-51) becomes

2 _ 4.07 7 .54
(/%_‘q—) Lli‘;c" - [‘d(U/Ua) . C )
AC“/C)

The method has been employed to calculate the coeff=-
i6ient of heat transfer from the surface of a gas

turbine blade. Table ( 4 ) shows the computational
scheme and the results. The method has the advantage

of being computationally simpler but as pointdout
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earlier, its applications are limited to the cases

of Isothermal walls.

2\)
3.6 Spalding 'é Method,

This is typical of the methods grouped
under the second category. This method is applicable

to a general case where the wall temperature l1s

arbitrary.

i

Y

| VELOCITY BOUNDARY LAYER
! [ [THERMAL BOUNDARY LA’)‘ER
T=0 -~ Z-- % . -~ - _

Fi6.5 VELociTy 8 THERMAL BOUNDARY LAYER
on AN AEROFOIL.

The figure shows an aerofoll. Measured
above tﬁe free stream temperature, the wall temperature
is zero upto a distance xﬁ=§ from the leading edge
and thereon has a value 7|, . The figure illustrates

the growth of the boundary layers,

As in the previous method, a conti-
nuation equation is set up with the help of standard
methods of dimensional analysis. Shear thickness $4
1s supposed to be known and the attention is focussed
on the conduction thickness. A, , We assume that the
rate of growth of £ along the X direction depends
only on the local value of the stream velocity,
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velocity gradient, Binematic viscosity, ) ,
thermal diffusivity o{ and the thicknesses of the

boundary layers. The equation can be written as

U (ae) - Sa¥du A, P) . (3-55)
% d\t( g( S Sa

This is a first order differential equation,usually
non=-linear. Once the function on the right hand side

1s evaluated. Conduction thickness can be determined

as & function of the other parameters. The re.son for
choosing éﬂnduction thiclness as the dependent variable
is, that it is very simply related to the heat transfer
coefficient h, i.e,

g = /%5/ﬁ

where4a.1s the thermal conductivity of the fluid.

... (3-56)

A contlinuation equation for the velocity
‘boundary layer can also be set up by means of dimen-

sional analysis in the form

> 4 a (3
4% %;CS4) = g(‘§~ g%_) (3-57)

<

Spalding's method aims at improving
the accuracy of the Lighthill method presented earlier
in Section( 3.3 ). It has been pointed out that the
method of Lighthill is assymptotically exact when the
thermal boundary layer is much thinner than the velo=
city boundary layer. In such a cass the thermal bound=
ary layer lies wholly within the veloclty Eoundary
layer. In order to proceed in the direction of

Lighthill's results using dimensional analysis, 1t
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may be noted that U and 54 can enter only in the
form of gradient U/c, and further that ¥ must have
no influence. The form of the function in (3-55) ean
then be determined and the following compagt conti-

nuation equation written

(S%> VL &LSA&(U/Q.*) ] Cbms’kaﬁ . A3-3R)

Recalling Lighthill's solution the
heat flux C},(x) at any station x was given by

3 Tw ()
goo = e (L) A“\/;S‘T} :

oM SV
« HS Ji\w@fﬂ‘*ﬂ ‘”""Lz i)
§(¥) 1s reiated to the heat transfer coefficient %o
by L
A g% h ()4 E)
%5 J{C

L(?) = ‘/‘7@(——> \/_5>\
« U 1 mw%éﬂ

. (3-59)
By definition of 04,
W= pg
/2.
h(E) - —/HP(’ “”/g:".? x
%)

\
- /3

* U;/ﬂ 2
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SRETREY
QY :—i—-“- = .,() 2/3 \/>\ L gf( /S4>

< AN
(04) (“0/3(“) L (U/g)a‘l}
,(3—39@)
wheee |
(37 (501 = 64l

The equation (3-58) can be expressed as *
(DY CU/sa) = condik o j§(u/g4> s

2 Vs -
! \ \ 3.\ ) -
— = _ VYca
o D4 <C0Msw ) C

\ - /3
E [wa/@r)/z”lx} (358

Comparing the above equation (3,58 a) with the modified
form of Lighthill equation (3-39 a)psimilarity between
the two can be observed. Thus, the value of the constant
in (3-58 a) can be taken to be the same as in (3-39 a).
The value of the constant was obtained by Lighthill

by solving the energy equation of the boundary layer in

Von Mises form.

a)Cor dn Lighthill'!s Method,

If Lighthill's method is to be improved,

then thg correction must take into account the relative
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thicknesses of the two layers. It may be assumed that
the correction required to account for the influence of

Da S4°JdU and P 1s a funetion solely of
(__m- o4

puBE———

v dn
the extent of the thermal boundary layer into the
region where the velocity profile in the boundary layer

is curved. A measure of the curvature can be obtained

by writing the velocity distribution close to the walle.
DU . L @E; SN (3
w = @ﬁhmj+ 3 wﬂhj )

The equation can be put in a more appropriate
form by writing the equation of motion of the boundary

layer A ( )
du 2w = Ugd +y & G2

U._)R + b‘a -a—- \O‘&

At the boundary, applying no slip condition

u gy
X

w = (___)} Y \) (};JX s ...'.-(?)-éo)

At 4 - N4, the ratio of the second degree to the first

degree terms 1s

AL g+~AU
U du as SOl 2y Jdx

29 dx
If the correction is solely a function of this term,

then the equation (3-58) can be written as
5 3 3/ _ = ( 2aSs dU
OKIAA'(‘U”) ] = GArl‘\'\‘(T'—;)

84-) 2
..(:3-é|)

\
?2(17
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vhere F is the unknown correction function. Eckert

has tabulated datas for Isothermal wedges in the formi=-

2 2 |~
4 (Dt) = 224 (o
' &
éf‘:zJU = QZ‘fZ t-\—ﬂr\;
Yy I

Therefore 2 z>+zJU
’ Y ﬁ% (n4) = %ﬁ( v dx )

Similarly from the known solutions of the veloeity

boundary layer for wedge floWs given by Hartree

o= [my
: §70)

vhere W{ is the similarity transform

WI _ j JTRE; ”_U£" o (32)

a relationship between U d (gﬁ) and ‘84 ciu
2

in Equation (3-57) can be obtained,

Equation (3-61) can be put in the form
Ay J h + 15 _ll
20({ U_O_R(A‘i) ( Ax )
3 2
| JAN - :
-z(fff)Uj%(§4> } = 6 4]

A Sa
r PSS

&4Q_
¥
N

(3-62)



Therefore the above equation can be plotted
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Fia.0. DEDUCTION OF THE CONTINUATION FUNCTIONS

The supposition about the form of the
correction function is well founded, as we ob:ain only
a single curve in place of one parametric family of
curves. Some scatter, however, is present and has to

be tolerated,
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) Integration., of Equation (3,61)

The equation (3-61) can be integrated
numerically to yield 44 as a function of the
independent variable ¥ . \, S+, C)LU% being the
known functions of x . Since the correction term
is normally small, therefore, integration can be done

by means of a quadrature.

A (g“‘ td LSAJC )
< ) &C } Na Sa Jy )
= & Al F( R By

R

: 64(,45% 3‘“

S p_.tiw\l
‘1’

n

)

or (Af)ﬁ%

Or writing A4 () as A-‘-}(?) -

‘/LA‘L
Daly = _Qx) &Q 4\4% o) |
* Vo ] X&’
<\ C ) *
t+ S? S‘f) \_ (3—6'5)

Iterative calculations are indicated as A+occurs in
the argument of the correction term F.As a first
approximation the second integral is neglected and

the value of &4 so obtained is used in the argument
of F to get better approximation,

¢) Evaluation of S+
Uptill now $4 has been supposed to be
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known as a funection of % . %4 is evaluated indirectly
by invoking, the use of unique relationship which
exists between shear thickness $4 and the momentum
thickness S, . For wedge flows 94,5, is a unique
function of the pressure gradient parameter
‘31/4? ‘AU/4A1

%, can be evaluated by means of an

approximate g quadrature similar to the one used by

Valz-~Thvaites ete. For the momentum thickness

2 r ) - (%
-_A—_-(%z> .51 S?. JU R 6 G)
.

The unknown function is taken from the knowvn wedge
solutions. The relationship is approximately linear.
Hence, '

SIAU N\ _e (B
-\%C#dm) 2.(

- (- ¢5)

U d gy
vﬁCg)

where ¢, 1s the error of non-linearity. ¥xm
The above equation can be integrated with the aid of

integrating factor

R . G
U deey + pu & du
Vv dx

v dx

R~ R |
= AU — Uy e C )

x
(1B~
v S‘ U A

&

c |Z

00D dx
(3-¢¢)

|2

‘* (ﬁﬂ)

i

e

0
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Spalding gives the values of A and

B in Eq. (3.66) as 0.4418 and 5.17 respectively. %
can be obtained in the same manner as outlined for

bAe o e, 1is agaln 2 small correction term.Reforing
to the tabulated values ©4 can bo obtained from S. .
Spalding has tabulated some values based on the
vork of Hartree. While calculating, it is more con-
venient to use the dimensionless form of the above

equations,

The whole calculations can bs carried

out in three stages which are summarised bzlow.

1. Evaluation of Momentum Thicimess,

The equation (3.66) can be put in a

non-dimensional form as Belov. *,

4.17
L % ~
55 e - o fun o
')'-/C

: | 47
TR SOQU/U) e, C a0%)

where c, is a tabulated function of

o2 U ¢ CICQAL)
{C > v d(“‘/c '}

2. Reference to the Auxiliary Function.

S4 is obtained from S, by refering

to the tables of S, vith the argument 5. Jy or
v dx



) Ure 4 C%0,)
B2 0[ (% /)
obtained %4, A4 can be evaluated.

non-dimensionally to ( Having

3. Evaluation of A4

N4is given by the equation (3-63).
The equation can be non-dimensionalised and put as
below.

L@y xc] - ey e }
T/
(e gﬁ CRTANLE
SVZ“ 3 } - )JC‘/L)}

wvhere F 4is a function of A4S+ c}[]u_ or non-dimension-
. v Y
ally of

This method also involves steps similar
to those of 8palding method, namely-
1) Determination of <. (x )

ii) Reference to auxiliary function
to obtain <. .

$11) Evaluation of A 4+ by iteration from the quadre
ature formula
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|
\ /- -
3,5, NP
pe = (3) () el

6 - 6 (B )

Tabulated values ot’(‘ bo;:h these functions are available
22

in Schuch's paper.
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CHAETER 4

" POTENTIAL FLOW AROJND AEROFOILS
IN CASCADE.

4.1 Introduction,

In order to calculate the local heat transfer
coefficient and the overall heat transfer using the
methods described earlier, potential velocity distr-
ibution around the aerofoil 1s recuired., Extensive
work has been done for the case of isolated aerofoils.
The anélysis can be extended to the case of aerofoils
in cascade. Vhereas initially, the approach of the
turbo-nachine designer was to treat passages
betwoen blades as channels of rectangular, or some
such simple geometry, now the emphasis is on the
analysis of the cascade of aerofoils in order to
choose an optimum arrangement of blades and the most
suitable blade profile. The extensive experimentation,
as wvas resorted to 1ln the casc of 1solated aerofoils,
must be ruled out, because of the larger number of
parameters involved, Comprehensive theoretical analysis,
supported with limited experimentatinn seens to be

the o.ly way out.



4,2 Parameters of Flou,

Purely geometric parameters are those which
refer to the blades and their arrcngements. The
profile of the blade is characterised by thickness
and camber distribution along the chord and some
other minor detalls like the leading edge Tradius and
the ordinate at the trailing edge. The parameters

depending on the geometry of the cascade argse

1) Solidity ratio s/c.
2) Angle of stagger X .

Aerofoil parameters depend on the blade chosen but
the cascade parameters depend on a particular arra-

ngenent of the blades.

Aerodynamic parameters are the various veloc=-
ities, flow deviation angles, pressure difference
across the cascade, loss coefficient .nd the chord-

wise pressure distribution on the blade surfaces,

The purpose of the analysis 1s to estublish
a relationship betwoen the geometric and the aero-
dynamic parameters. In the case of 1solated aerofoils,
comparatively sounder theories exist which corelate
the above parameters. The problem is, however,
. immensely complicated in the case of the cascades.

Currently, attempts are being made to formulate a
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sound theory for the basie, two dimenslonal income
pressible potential flow around a cascade of aero-

foils. The effect of varlous other factors such as,

a) Compressibility,
b) Three dimensinnal asfects,
¢) Variation of solidity with radius,

d) Centrifugal forces in rotating cascades.

can then be incorporated by improvising the basic
soiution. Hence the importance of investigating the
basic 2-dimensional incompressible potentlal flow

can not be over-emphasised.

In the potential flow analysis around a cascade .

of aerofoils, two types of problems occurs

1) The direct problem in which the geometric
parameters are known and the resulting
aerodynamic parameters are to be found out
as function of the known inflow conditions.

2) The indirect problem, in which the aerow
dynamic parameters are known from design
consliderations and a cascade geometry to

satisfy these is to be found.

The solutionsfor the above problems have been

recently attempted. The solution procedures follow
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either the method of conformal transformation or

the method of the distribution of singularities.

It is well known that the two dimensional
irrotational flow of an incompressible fluid can
be represented by an analytic function of a complex
variable. The use of complex variables permits us
to use the powerful tool of conformal transfor-
mation. The determination of a suitable mapping
function, which will transform the flow past the
cascades into flow past a- lkmown obstacle, will enable

us to predict the flow past cascades,.

The method of the distribution of the singue
larities, though classicai in origin, has recently
been revived for apnlication to both isolated aero=-

' foils and the cascades. This has been necessitated
by the inherent limitation of the method of conformal
mapping i.e. inability to extend the results to three
dimensional flows. Recently number of papers have
appeared, extonding the applicailon of this method

to the cascades of aorofoils.

4,3 Metnod of Conformal Ziransformation,

(a) General Anproach- Fanti, Kemp and Nilsonc23)

have outlined an approach typical of the methods of

conformal transformation, The objective is to develop
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a palr of equations which relate the cartésian
comﬁonents of velocity L 4Ar of the two=dimensional
incompressible potential flow past the aerofoil on

the aerofoil surface. The thin-aerofoil theory |
epproximation i.e.,, the aerofoil being repiaced by the
chord line, makes the transformation a simple one.
Hovever, 1t limits the analysis to th2g aerofoils of

small camber.

The problembf determining potential flow past
an aerofoil, a boundary value problem of the potential
theory, is transfered to the chord line (-c/2 < x < ¢/2),
(% = 0), On the chord line, then the condition of
continuity, irrotationality and tangency must be sate
isfied. The first tﬁo.conditions imply that the complex
velocity ( W-1v ) is an analytic function of the complex
variable 4. This fact yields one relation between fL
and V. Tangency condition yields the secénd relation=
ship, enabling U and NV to be expressed entirely in

terms df the aerofoll coordinates,

b) The gase of Isolated Aerofoil.

Consider first the case of an isolated aerofoil,

The transformation scheme jig Shown «w ®qn
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PHYSICAL CHORD PLANE IRCLE PLANE
PLANE Z~PLANE — PLANE
\}w

v

Y | €l
Y i’ 7> "7 T C/2 q, =%
|

Fig.7 IsoLATED AErOFOIL WITH CHORD
AND CIRCLE PLANES

Aerofolil having been mappedinto the slit plane
(this is an approximation), the mapping into the circle
plane is affected by Joukovsky am® transformation.

The velocities on the two planes are related by

(UL*_'IV“*) = (-iv) %j_zg S (4_\)
x * -\ an - (4‘7—)
or (U.—W‘ )C = (w-iv) 2 gcm
vhere C}(e) , = Sw B

The physical significance of ( - -1V )011es
in the fact that its integral rownd the circle has
the imaginary term equal to the circulation and
the real term equal to the net outflow of fluid from
the circle.The function ( U™ iv* ){is analytic outside
the circle except at the pole &=--, If the principal
part (o1 VS )0at this pole is subtracted from
the function, then the difference is analytic. By

applying the fundamental theorem of Hilber and Denmov
to {(Z) = [ u-us) - it k) g - (43)



the integral equation is obtained.

(c) The fundamental theorem.

The fundamental theorem states that 1f£{(%)
isianalytic exterior to the circular contour |§| =a,
(11) is continuous on the cir¢ie and (1i1) is bounded
as § - == , then

" . - 4\(6«»\‘ C
(C) - “—L‘.l Ca\e\¢ ) Cot f?_{¢ Aq y Cow
4 i) -
¢ _ _i\_KS:I\—Q» C“e“i’)d[b = g(oo‘) ....(4-'~5)

Application of the fundamental theorem and

there

likewise its corrcllary vhich holds in the interior
of the circle, results in the following velocity

relationships )

V(o) = Vemle-) 1 Sw)ucq)m 64 d¢
St © 2R Swm6 /o *
e (%-0)

\L((—)) - V{' \-SCGSee S of A C\‘Sp(]

o g ‘3(4)/\?(‘?){(“ 64 4 COHHM

2K Sw©
—(A-7
Nou the tangency condition

N = WU a% can be applied, where j, is
dv

a double valued function. The substitution of boundary

condition results in singular integral equations of the

form



(o) = VemCe-o) 1 grvg¢) 1c¢)cu-e d¢

gwe ZASWQ
...... (4-3)
WO V["‘fuf‘f i+ o
A A‘7’ Col © 1 eP-\-Coti Aé .
2KSW65 w0 j(‘})& .L-..l‘(4~9) |

where 47 4, 1s evaluated at  associated with

* = ¢/, (4 « The solutions of fhe above equations
have been carried out on the digital computers, The
numerical solution is found to converge sufficiently

rapidly, three or four iterations being sufficient.

d) Extension to Cascades.

_ The blades in cascades
are replaced by their chord
lines. The figure shows a cas:

cade of staggered tlades.The

transformation to the circle

piane is carried out by means

Fic.B. Cascap= oF AEROFOILS

of the mapping function —

' .l_-} f \)\ é_.
z = 2 [f?‘) I 2= < QM S L Al
2R A E E_{l
& =~ @)

Logarithmic nature of the transformation makes = !

multiple valued function, so that the circle C§==6K€‘e

is transformed into the infinite set of line sognents.

- A
Z = X + Imsg' M=ot to

(4-n)
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where X denotes the position of the line segment

w ich lies on the x axis. On the circle the relation

between Z and © 1s given by the equation (4-11)
where the function W (e)is

- v %»‘:,@}
X(e) = iECos% awe Yank C%ZQ s SwA e te R
A - (4—|1)
%4 Vi + -k
—  and K = 5 . The derivative
of the transformation is

wvhere K

- e
(%) (S0
o (A

—_—

Jg e

dz . s {é"* */ka W 2k

which on the circle becomesg

dz _odx L i %Ge) (A
g lae'®de
vwhere
G (e) =S Kswelsh - \f Cep SmA ~.(a-1s)
2R G Ko Cw e

The leading edge and the trailing edge of the

straight line segment correspond to the points ae Ot

~and ae'® on the circle, A useful relation between N\
and &7 1is

Cos O = KCcs)\/j (A
vhere T - J_T‘—_s—:i)\
and XM = @_‘_+ A o ._<4~‘7)
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Velocity in the circle plane 1s related to the
velocity in the cascade plane by

(W=iv") = (u-w)%_zé - Cam)
On the circle,
<<ur—\./\7_*) ~

The funetion G (Ut""*)is not analytic every-

2 laG(e) (U;’\'\TB c(4719)

where outside the cirele. Eq. (4-13) shows that
O\Z/Ag has poles at the points & =*% . At these

points let the velocity be VME;M and V. e

respectively. Then from e-uation (4-13) and (4-18)
follow the relations |

. S 3o _a
(W-in") = §5fﬁg__ Y\e = o 53
276 (M) A(5/A)
* -\/\ ~).°ZJ_
(W-inv ) v == Va e o C— 2

In view of these the function

F(g) = ?[u’la\f— e ( el V‘Qf- ﬂ

2R

1s both analytic outside the circle and bounded

as & —> == , The fundamental principle applied
to F(G) ylelds relationship for the velocity

components

2 G(e)&'\?“(e) + iu(e)] - ZafieH(é’)



vhere

\ o,

1) ~V oy

H { Vlf' ! VLC_ o AX
(C) - 2,‘a /ﬁ*_ﬁ/ ‘/{Q_G/k

The constant C 1is related to the total circulation

by the fact that

D e
C = (4-22)

Separating (4-21) into real and imaginary parts,

2N

Ge)n(e) = -2-’-7(-g G () W(g) cot e_—g? d ¢

- P oswae Ve [ KCab co (e )
e k= Cwe 27« W CnTe
+ Kswe Sl%\ﬂ (ol+ A) ”<4’_23)
W Ce7 e
and 2K
N & -
GEIuk) = - % | GhHvcp) cor ety
L D K™ Vs
4r0c KL cwe 2 Ao
Kswmo Css (oZ+ A) - »v\i"fcnség_g,_(_,ﬂ_"(azir,\)
K- Cs&'o

- (4-24)
Circulation is determined from Kuttas condi tim of

finite velocity at the trailing edge. Since at O
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G (7)) = 0 therefore the right hand side of

(4-24) must vanish at O
2N

]’) - 2Vs Cm ol + 2K K SO"G(Q)M(#)) Co\— ©- df Olq
J J (4 25)
From equations (4-23), (4-24) and (4-28) and with the

help of the boundary condition

o= uciy e (A20)

the desired singular integral equations for LL" and \J°
can be obtained. These on simplification give

Wo) - 1 ﬁ s (4000 (¢ 028 (¢ o)
: o Svn (6-61‘) >

% 27

— Cof O7T-¢ (it uCp)
T1¢(\< C eT)'})}%(%_ZM

+ K s od £ KT Sm 8 Cos (o4 M) = KT Caub St (o4 A)

T ow (e-07)
- (4-27)
and for N (o)
V() L a K= Cre >
V SV KSWG CGS)\“ \(JFCBQ SV‘"A S {G\((t?

i A
{\7<¢>[ 7/d Col‘ 4 - KK Sw 26 Cob e".”&’]%dé’

l— Y -
2T (= Ces o 2

— (\( S (A - XK't gw)\)l A S ol Sm2e
27
_ Xceme Cos (of+2) + K SWB s (0/+/\)1

{4 -~5%)\
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These equations can be solved on a high speed

computer using iterative procedure.

4.4 Singularities Digtribution
Method,

The blade is replaced by a distribution of
vortices and sources and sinks along the camber line.
The proper distribution which will make the blade, a
stream line in the flow is sought. Several simplifying
assumptions have to be made in order to reduce the

computational labour involved.,

The aerofoil, itself may be deseribed by camber
distribution anc¢ the thickness distribution.

3£L = Cb-ﬂ:(*y; ) L ..k.gq—zj)
Booe LGy e

t is the maximum thickness of the aerofoil and

(L) is a constant defined by the equation,
PYy

&=,

Equations (4-29) and (4-30) describe a family

QZ;C%@A@ L an)
On

of aerofoils where the constants (t/¢) and (b are used

to scale up or down the camber and thickness of the ind-
ividual member, The physical significance of (), 1s that
at the design angle of attack, it gives the 1ift coeff-

icient in the case of isolated aerofoil.
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a) Induced Velocity Egquations,

Figure ( 9 ) shows the contributions of
vorticity and scurces and sink, placed at * on the M

blade, to the velocity at A, on the oth blade.

Summing up all the blades from - =< to + =< and

—

integrating them all at once from */, -o to %,
yields.

W :‘£é§i%1(%jsgA)AQ4)

vw 2 (N

—— V/W C S 7
- T (4-32)
o - —LS v 40w
VM 27 J» Vm- ltyc,l/c
- L RO e ) 0%
= (Y (e e ) Oy

- (4-33)
vhere R and 1 are called cascade influence functions

and are given by

(e, &0)

S 2

ﬁ_\*{
K

re2x e o mgim

+ i\’} < > A
— o T — . >
[ ra % ~ MSW/\] L MR

-M§

C(A-34)
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L= M ces )
= — 2.+ P ; 2 > 2'\
N | e 1"‘*.’.{—5_.. mSw}\) 4+ M Cos /

- (433D

R and I can be expressed in closed form and are

actually real and imaginary parts of a complex
(24)

functions., Scholz has tabulated these functions at

various Xﬂ%}- and for considerable number of angles

of stagger ) .

) Tangential boundary condition.

The aerofoil is made a streamline by replacing
it with a source-sink and vorticity distribution.
Therefore, the resultant velocity is tangential to the
blade camber. This condition of flow tangency may be

written as
Vim S ol + o :C—A—JZC—) =C\)SC’(W7¢) BN CESYS!
Vo Con £+ W -

Kutta Joukovsky condition stipulates that there should

be no discontinuity in the velocity fleld at the trailw
ing edge. Since the strength of the vortex sheet is

given by the jump in velocity, it follows that

Y T - 0 - .. ,--—(4‘37>

In case this vas not zero, there would be velocity

discontinuty at the trailing edge. Thus any solution
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for vorticity distribution must satisfy the above

condition.

For source-sink distribution, assuming a closed

profile, the fundamental condltion to be satisfied
;

iss S 51((%) AC\/CB = 0O CoL- (4*3@)

Applying the equation of contlinulity to a segment

of the profile, ( Ry )
(Van + u)*aﬁ C}A\L = (Vamsw ‘2\;‘35\ 5(‘3“ %\?\'Aq

ov Y = \/moh_f N %(wv}

j—; (U-‘(}r ) 1s small and therefore

%’ _ d% ] {_J;kzo/c) - (4-39)

This gives the solution of the source sink distribution.

It can be seen that this satisfies the fundamental
\
condition
| | Cedd vy = o

For the vortex sheet, we assume a Fourier expansion
in the form

YL 2 A ‘ZC\EE*’ f A4 A Siemd oo (dae)
M=)

-~

M~ W

Substituting (4~40) and (4-39) for Y_ and 9 /Y

Vi~

in the induced velocity equations (4-32) and (4-33) and
then substituting in eguation (4-36), gives:=

ij A’V\am - Cimol - C\).SC,C90> + (L T Anla

~rcown - £ o (A-)
- C



where : *

i(’(e"rc/s,)\) = \ + ‘/1 /s So R (v CRb) olg

' N
Gn (0o, s, 2) = - 2Cmme 7 %l Y,

N
IR Sim Mo Swo db 7°

= |
\'\0 Ceoj C/S} A) = __\5_- C/S go —g(’(e°)1 C\+C§$B)A9
s ) ' ‘
b Congn )L L ), 2§ (o) Tsmme
Sm e do mze
BCBo/ (/SJ)\>' :- _Ij: SD %C‘C9b> gt/(e_b)
/R CR)lcmedo
[C%9~C&eo+ ? 2} W
-
— C / — .
\ (eu/ C/s,/\) = _éjagk(eo)_LS%Ae

(25)
Schlichting's basis of analysis was to tabulate

the functions similar to 9 h, B and T for every c/s
and )\ at many chord intervals o, , Applying boundary
condition (4.36) at three chord-wise positions he
obtains three simultaneous equations and soives for
Ao A, and A,.

(26)
Mellor suggests proceeding with Fourier analysis

analogous to that usedin the thin aerofoil theory. If
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vwe now multiply every term of (4.41) by Ccs'il 6. and

integerate from o to ~ , we have

S Anqu = Sl Sok - bt § oy colaeades

4 b2 Ak —£ OBy - LT

where | , - (442
~ N '
C‘}oh (/s 2) = Sch + %5% 50 j ROuCws®)
oo, dodeo
Tob (4,0) - -Swb v £ j | LR S b ¢
Cx Sw b Ccs&aeockeo\ﬁ"
\\ MY o
0134 CC/S;)> = %;; SD.SD 4(/(90> T (v (LSSE‘:)
CB'S/Y’ZLC'}DC\B ABD
c w ™
b (e, )= L] G 2T
«Sime Cotneodo doo |
\ga CC \> ® o K M > o
= ’ ,
/s, / > SD L _gc (o) gi (80)

[ /7 + & ‘L] i (wlabs dodos

Conp-CHdo °

Th (ers M) ¥ ox 5 5 fcoayTewhoo Sme dode,
Smh = 1o when M= W
=0-0 yhen M ;é)ﬁ



Mellor has indicated a method of evaluating the
double Fourier integral and then tabulated the
values of the function like 6300) %01) %”}

C&zo, C}zz) Lno, Lo\} \"“’/ Bo, P>|, T, L T,
Mellor suggests several simplifications in equation

(4.42). These ares=

(a) Diasgonal terms Can,;il are very nearly equal
to |\ {:w myz2, W2
(b) Non-diagonal terms %m’{l may be neglected

for M > ’l, /¥1> 2
(c) \nm’?; may be neglected for m>\, oot
(d) ﬂ‘“ = Cau = '3\,_ = \«\\ = 0
CAD\ = \ hl % LR
for symmetrically cambered aerofocils
N
‘ jo {c (6:) ng)c;\e-o oleo is zero for even

values of k. The equation (4-42) then reduces to the

following system of equations,

Aoaoo + Az‘ilu - Sum L+ C\) <A.DL°°-+ A,\\h>
S COBe- T )
Ao (l'—jw) + A'a" = %—7\)—‘_ 4 C\) Ao ko xg, ((b\%,ﬂ‘,)

’-\0“]0;_+ /-\p_an_ = O

These equations may be solved for A% and give
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/_\ _ SU"“’Z_” X _C_‘Z. L t. [ 76
) P0+ C_\B_hﬁP 27 Py C—\—)—\l‘fp ¢
2“ GA\\
- bBo-To  GR4T (\350‘}
v Chhie g pyy ey
fah \\
.. -4
vhere T = ﬁb\‘) - ﬂ),b . ‘357_ 3 C\)\noo . <4 —SJ
- ?12—
and _P, - | - ?00 — C\>\v\o\

Mellor puts these in the form \
Y} Ak X
Ao = Ao Swod * Avc A 2
vhere the coefficients A.., Acc  Ast have

the values indicated above. Similarly

A = Ay ol Sue oL x A\c-%\_f_‘_ + Alt‘-ira
where
-
FD| ' = L_ - ADC
R TR TR

~ T~ Cl)BJ —_B___ AOT
Alr = T - qu

Thus A«c  sees At ete. can be tabulated and
the values of the coefficients Ao, A, ete. deter-

mined for particular situation.

Blade Surface Velocity,

AL} =/\Csso/—‘+§3>+ a L (4-44)

Y e Vaw 2 Y

Substitution of %3 from (4.32) and for v from
M
(4.40) gives
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.\T//_l;-h = CGS"( lSD-V;-“IOlC/C>

+_LSO 4

27N 7 '\Lu’;‘\l.,

e s (X R dOve)

2- Vm
xCme 2 = Am SO
t b — e - (a-As)
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Harmonics of higher degree ( m »2 ) do not

appreciably atfect the resulis. Single function 1%z

takes into account the effect of the Lii; her harmonics.

Mellor has tabulated the above functions and hence
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the velocity distribution may be computed readily.

The methods outlined abobve present formidable
computati~nal difficulties, Some of the funetions
depend on the blade parameters and thus have to be
computed afresh for every blade profile. In order to
estimate the heat transfer coefficient the velocity.
distribution outside the boundary layer is required.
Therefcre, the boundary layer characteristies have to
be determined and new set of calculations performed
in each case. The methods are presented here to show
that the heat transfer coefficients may be predicted
entirely from theoretical calculations. However, in
the next Chapter for calculation_purpésas data for
pressure distribution around a cascade of gas turbine
blades published by Pope and wilsoégﬁgs been used to
calculate the heat transfer coefficients. This ulso

facilitates the coﬁpariscn of the theoretical results

with the experimental data glven by the authors.
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CHAPTER

HEAT TRANSFER CALCULATIONS
RESULTS AJID DISCUSSION

5.1 General,

Pope and Wilson have experimentally tested a
cascade of gas turbine blados and published data regard-
ing the distribution of the heat transfer coefficients
around the blade surface. Instead of calculating
the potential flow around the blade profile theorete
ically by the methods described in Cahpter 4. The
measured pressure distribution of Pope and Wilson has
been used to predict theoretically the distribution of
heat transfer coefficient.Calculations have been made
by, (1) Smith and Spalding (Section 3= 5 ) and
(1i) Spalding (Section 3~ ¢ ) methods. Figure ( !| )
shovs the Tg blade profile and the cascade arrange-
ment. This blade profile being chosen as this 1s
typical of the present day gas turbine practice.

Laminar flow can only support very small adverse
pressure gradient without separation. The equilibrium of
the fluid in the boundary layer is determined by three
causes. It is retarted by friction at the solid boundary,
pulled forward by the viscous action of the stream abovo

and 1s retarted by the adverse pressure gradient, At a

§2,4hy 1
CHITRAL LIBRARY UNIVERSITY OF ROOKYEL
R IKEES
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point wvhere the energy and the momentum of the entraié%%
fluid are insufficient to overcome the adverse
pressure gradient, back flow ma'y actually set in.

The forwvard stream, then leaves the surface and separe
atién is said to have occured. The point of separation
may be sald to be at the point uwhere (v /27). = ©
The position of the point of separation may be determined
from the known pressure distribution outside the boundary
layer. Turbulent boundary layers on the other hand can
support considerable adverse pressure gradients. The.

transition may take place due to instability resulting

from the growth in the thickness of the laminar boundary
layer. Several crlteria are available to determine the

point of transition Xrom laminar to turbulent flows.

When a definite pressure minimum occurs, the point of
transition may be expected to be located thers. The

caleulations have therefore been performed on the convex
side upto 'Ka;=o-6'on1y. On the concave side, the laminar

boundary layer is expected to exist only for a negligible
distance. Thus, the prediction of th® distribution of
heat transfer coeffiéiants, over the complete blade
surface 1n§olves analysis of turbulent heat transfer

besides the analysis of the phenemenon occuring in

transition zone.

Table ( 4 ) shows the computational scheme
and the details of calculations. The numerical
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integrations were perforned by Simpson's rule taking
an interval of 0.025 from O to 0.1 and then an interval
of 0.05. The correction term was taken from the graph
in Smith and Spalding's paper reproduced in the
figure ( 4 ). Figure ( 15 ) shows the results
plotted. It may be observed from the tabulated values
that the correction term is sufficiently small. Hence

only one iteration has been done.

5.3 Calculations by Spalding Method.

Tables ( 7 )Yand ( ¥ ) detail the compu-
tational scheme and the calculations for this method.
' The first step is the evaluation of tho momentum thick-
ness of the velocity boundary layer . Table ( 7 )
shows that the correction term &, introduced to take
into account non-linearity in equation ( 3.65 ) is
negligibly small. Spalding in his paper has given only
a representative tablé for the correction term and the
ratio S+4/<, .Therefore, table ( S 2 & ) had to be
improvised from Hartree's wedge solutions reproduced by
Hunter Rousgig%unter Rouse has tabulated for the various

values of mn, tho values of the parameters W]l)ﬂ W E

etce defined as follows.
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A relationship of the following form is required, -
(6 = o ast— s (S )

e (%z AU/A,L) (50
Writing the momentum equation of the boundary layer

\70‘1

UsdSs 4 (25, + g‘>U‘%\% -

d ¢
dss = Do _(agaS) du
* cu> U dx

= Y E _ (2+m) B2 du

v s, (2x ) U ~

or

' Now the equation (5.1) can bo integrated to yield

[
SIVERE %(Ugwl) - 0. 4418 - & ( )
or
\ 417 <17
. . 5\7 U d _ o-441%-¢,
\?U‘}”[% J%-\rU 13161\31 Ehand
or

517 _S_‘_ljfj_u_ +_L_j__ Zgz-dg;_ = O 4418~ S, C >
Vo odx Y A

Substituting from (5.2)

517 /W\"]L + 2E - 2w ’”‘:'(z—rH) - 04413
— e (™)
or
M= (g7-2n) w26 = 0o 4418

— f,_Cf\M'V‘:‘)
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e, - 04418 = mmF (L7-20) -2

e (5—3>
and Sy_/g4 - E o (5-4)

With these relationships tables ( 5 ) and

( € ) have been computed and 4 evaluated.

In the evaluation of A4 the correction term F
was obtained from Spalding's paper. The integerations
were done as before by Simpson's rule employing the
interval 0.025 from 0 %o 0.1 and the interval 0.05 from
0.1 onvards. These results along with the results obtalned
for Smith and Spalding method and the experimental data
of Pope and Vilson are shown in Fig.( \5 )
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5.4 Remarks on the Results,

Results of calculations of heat transfer coefficients
for a gas turbine blade, by 1) Smith and Spalding Method
11) Spalding method discussed in Sections (3-5) and
(3-6) respectively, have been plotted in figure 15,

Fig.15 shows the distribution of the parameter Nu/[Re,
around the blade surface. For the sake of comparison,
experimental results of Pope and Wilson for the same

blade profile for R = 3,02 x 10° have been superimposed.
Fig. 16 shovs the experimental curves obtained by Pope

and Wilson at various Reynold Numbers,

The experimental cuxves of fig. 16 show that the
coefficient Nu/[Rc, 18 a function of Reynolds Number as
in the plot of Nu/ Jke_versus */ a family of curves with
Reynolds Number as parameter is obtained. The experimental
curves however are very close together in the low Reynolds

Number rang (1.84x10° to 5.17%105), The analytical methods
on the other hand, show that N./; 1s not dependent on

Reynold Number and therefore admit the possibility of only
a single curve. For higher Reynolds Numbers, the experiment.
curve deviates conslderably from the curves for low Reynold
Numbers. The theoretical curves are more or 1esslin agreeme!
vwith the experimental curves for low Reynolds Numbers.
Therefore, the theoretical results are likely to be in erro:

for high Reynolds Numbers.

At ltc_: > 0,16 a fluctuation in the experimental

values of heat transfer coefficiont 43¢ 1 nat matad  Max
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theoretical curves are, however, found to be more or less
smooth. Because of the small thickness of the layer at this
point, the surface roughness at this point may have pre-
dominant effect on the boundary layer characteristics, The
fluctuation in the experimental values may be due to the

surface roughness of the blades..

The experimental curves record a rapid fall in the
value of the heat transfer coefficient at X = 0,6, This
rapid fall can only be due to the.anset of separation.,
Therefore, the assumption that the point of separation is at
% =0.6 1s well foundd. As pointed out earlier, the laminar
boundary layer exists for a negligible distance on the
concave side of the blade and therefore calculations have

not been performed for the concave side.

Regarding the relative morits of the two theoretical
methods, Smith and Spalding method is computationaly simpler
of the two. The calculations have been performed only for the
Coincidental start of the thermal and hydro~dynamic 5oundary
layers. The close agreement of the results of Smith ang
Spalding method with the experimental cume as is evident
from fig. 15 may be fortuitous._The results given by Spalding
method follow the variations in the experimental curves more
¢losely. The underlying assumption in Smith and Spalding
method 1s that the relationships between some parameters
vhich hold good for vedge flows, hold also for arbi trary flowvs.
This may result in conslderable inaccuracies, Spalding method

iwaply \'
is an attemnt tn ImMmnrave T4 rld W29 § - - 2v o Ivaplyct
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assumption in Smith and Spalding method which emperically
relates velocity and thermal boundary layer thicknesses
is done away with and instead an erdinary differential
equation is set up for each boundary layer thickness. This
method aims at improving the accuracy of Lighthill's method.
However, the crucial assumption is that the correction
term is solely a function of 42%?*%%& o This method
becomes difficult to apply at the separation point where
S4 —> =0 + The difference in the results may be partly due %
to deficlencies in theoretical analysis and partly due to
errors in experimental results subject as they are, to
a number of experimental orrors. It will be too mucth to
base the conclusions entirely on one set of the results.
The important question, hcwever,ris that which method
gives results approaching those obtainable under actual
operating conditions. Pope and Wilson estimate thelr
results to be within plus or minus 10%, The figure has
been questicned and deviations as high as 407 reported.

Only comprehensive experimentation can point out
the deficiencies in analyiical methods and help in
evaluating thelr relative reliability.
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APPENDICES

Appendix le Tables 1 - 8

Appendlx 2- ‘Derivation of Induced
, Velocity Equations
(4~-32) and (4-33).



Table I
Velocity Distritution (Convex Side)

R S S

0 1,00 0 0
0.025 0.70 0.3 0.547,7
0.050 0.50 0,50 0.707,1
0.075 0.40 0.60 0.774,6
0.10 0.375 0.625 0.790,5
0.15 0.25 0.75 0.866,0
0,20 0,075 0.925 0.961,7
0.25 ~0.05 1,05 1.024,7
0.30 -0,15 1.15 1.072,4
0.35 -0.25 1.25 1.118
0.40 -0.4 1.40 1,183,2
0.45 ~0,50 1,50 1.229,7
0.50 -0.60 1.60 1.2649
0.55 -0.67 1.67 1.292,3

0.60 0.7 1,70 1.303,8
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CALCVLATRONS BY SHTTR 4D SPALDING HEIHD
(ONVBE 108,

o'm 0l05 0‘0?5 001 0015 0020 0025 O.m 0035 I 0040 0045 0050 0055 0060

(3¢ Hpineln)

by
(T‘*)UVLC 4%
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ZABLE 5.
' Wedge Flows '

N

M Ao
-0.068,007 0.000,0
0,063,245 0.049,6
-0.057,900 0.072,9
-0.048,753 0.10531
-.040,570 0,128,0
-0.026,515  0.164,3
4 0.220,56
,001,896 0.255,6
.033, 354 0.280,6
.049,602 0.298,7
.0583,731 0.313,0
.061,307 0.325,1
.067,755 0.334,7
077,706 0.348,0
.085,439 0,363,0
.091,513 0.39,0
.100,108 0.280,8
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RVALUATION OF SHEM THICKNBSS
SPALDING METIOD
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APPENDIX 2,
Derivationa of th tions

8,35

Let the source sink distribution per unit length
be 9 and the vorticity distributionvy. Refering to
fig. 9, the volocity induced by a source segment Cyrlm

placed on % on the nth blade at a point X.. On the
Oth blade 1s

dv = ¥ /anmv
du = iﬁ\l C& ©
2R Y
AN = "_Ck_fl_f Cow &
DRV '

. From the geometry of the Cascade

Cone = Qo-x)+ Me Sw A
VR
: S MBS A
6 = neer 2
gnd Sw -
Jdu _ 9dv (o-1) = MS Su )
2R ) i T
_ - Ady ms ced
A v e =

Similarly because of vorticity ~d» at Y on the nth
blade, the velocity induced at ™o

on the oth blade 1is

du = —vdr _ms cen
2% \ i

AI\} = - Yd‘f‘: h°f1) = m< S\
2K i

\f/)._
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The contribution of the source sink distribution

on zeroeth blade to y , velocity at is
G dx /25 (xo-)

The vorticity distribution on Oth blade doesg not
contribute to u , velocity, Therefore summing up from
(- oo to -1) and from (*1 to + > ) and including the
contribution oi" zeroeth blade, WL component becomes

du - [ Z+F xd )
U [ _-Zw + ] { ms Cﬁ;;.
L GYJ\L (Ro-n) = Mg su) ] N Gych

T 2R C*b’*‘)

— M Swm A

- ms\'»/\)LJr (mema)™

{ YJ». e A

< [ 'Z + "Z i] (\0'"\. c mgw%)LAr (A«C(\/\BL

Integrating from M/ -o %o "/ =|

!
W o« m
VM = 3= S CI{/VMM/AC/C>+ /SL%—R()JO({L

\

_%JDY IC\UC,C/S)A)AC%)

Similarly for 1y component, the contribution of vorticity

distribution on Oth blade is _\fg\_l___ . The source,
2R C‘to‘\)




Y

sink distritution does not con ribute to A& component.

Summing up and integrating as before

‘ .
QZ S f X fi&l&)
Vo 27 > Ve (.1°/c - N )

~ s go A (e e a) -d(\/c)

S 7

- C/s Y Yo~
n So‘v; RC M2, 2y d v
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