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Abstract

Test pattern generation problem is known to be ./VP-complete and conventionally, au

tomatic generation of test patterns for circuits with N number of primary inputs is

characterized as a search of A-dimensional 0-1 state space. Several Automatic Test

Pattern Generation (ATPG) algorithms have been developed in the past. But, in spite

of considerable progress in the development of these algorithms, the computational re

sources required for ATPG are still enormous because the efficiency of these algorithms

has not kept pace with the increasing complexity of VLSI circuits which is of the or

der of several tens of thousands of gates. Furthermore, these algorithms are targeted

for serial computers. However, massively parallel computers and distributed network

of powerful workstations, available in most of the VLSI-CAD environments, present

a promising paradigm for solving such compute-intensive ATPG problems for combi

national as well as sequential circuits. With the availability of these paradigms, new

approaches and cost-effective methods, are therefore, imperative in order to efficiently

solve the ATPG problem. Efforts have been made to investigate new test generation

algorithms so that they could be easily extended to parallel and distributed computing
paradigms.

Recently, two different ATPG approaches have been developed in which the

problem of test pattern generation is formulated either as aBoolean satisfiability (SAT)
or an optimization problem. These approaches are radically different from the conven

tional methods of generating test patterns for circuits from their gate level description.

In these approaches, the generation of test patterns is done in two steps. In the first

step, a formula is constructed which will be either an energy function or a Boolean

truth (false) function representing Boolean difference between the fault-free and faulty

circuits. In the second step, energy minimization techniques are applied to minimize



the energy function or the Boolean false function and SAT algorithms are applied to

satisfy the Boolean truth function. Although energy minimization and SAT problems

are as hard as ATPG problem itself, these approaches have two significant advantages.

First, since the function of the circuit is mathematically expressed, several new tech

niques may be investigated to solve the ATPG problem. Second, the non-causal form

of the model would allow the use of parallel processing.

New techniques for the ATPG approaches as described above have been at

tempted in this thesis. In the optimization based approach, a new quadratic 0-1 pro

gramming technique to minimize the energy function, which is of the form of pseudo-

Boolean quadratic function: E(x) = xTQx + cTx, has been developed and applied to

obtain test patterns. Other test generation methods developed are based on Genetic

Algorithms (GAs). In these methods, an objective function is derived from either an

energy function or a Boolean false function. In order to apply GAs, the constrained

ATPG problem has been transformed into the unconstrained one by modifying the ob

jective function with the help of a penalty method which is developed by using schema

design. The objective function so obtained has been mapped into fitness form which is

then maximized to generate test patterns. The above ATPG process has been further

accelerated by incorporating a transitive closure algorithm to reduce the Boolean false

function to be minimized by GAs.

Finally, the proposed ATPG methods have been implemented by developing a

CAD tool to run on a Sun Sparc 10 UNIX workstation. This tool has been exercised by

generating test patterns for a set of stuck-at faults in several practical example circuits.

Experimental results in terms of average CPU time per fault for the example circuits

are reported in the thesis. The results obtained by the proposed ATPG methods have

also been compared to the results published in the literature for the same example

circuits which shows the efficiency and effectiveness of the proposed methods.
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Chapter 1

Introduction

Recent advances in integrated circuit (IC) technology have made it possible to fabricate

digital circuits with a very large number of devices on a single chip. Very Large Scale

Integration (VLSI) is the fabrication of millions of components and interconnections

on a chip by a common set of manufacturing steps. In the era of Ultra Large Scale

Integration (ULSI), it is expected to have as many as 100 million transistors or even

more on a single chip by the end of this century. Because of this dramatic increase in

the circuit size, the design and test development of the VLSI chips becomes a costly

affair with a very large turn around time. The complete design and test development

cycle of the VLSI chip realization is depicted in Figure 1.1. The design and test plan

ning of VLSI chips begins with specifications. In VLSI design, architectural design is

the first step which consists of partitioning of a VLSI chip into realizable functional

blocks. Logic design comes after the architectural design step and includes several test

activities. In the logic design, either the logic is synthesized in a testable form or the

synthesized logic is analyzed for testability. After logic synthesis, test patterns are

generated and combined with the test plan to develop a program for the Automatic

Test Equipment (ATE). The actual testing of VLSI chips takes place after the phys-
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Figure 1.1: Design and test development cycle of VLSI chip realization.



ical design (layout, timing verification and mask generation) and fabrication (wafer

processing).

Testing of VLSI circuits, because of their increased complexities and reduced

geometries, becomes much more difficult and expensive as it costs more than 50 per

cent of the total chip cost. The advantages of VLSI, i.e. reduced system cost, better

performance, greater relibility, would be lost unless the chips can be tested economi

cally. The testing process detects the physical defects produced during the fabrication

of the systems. A sequence of input stimuli, known as test patterns or tests, is re

quired to test a VLSI chip. These tests are supposed to determine correctness of each

component (transistor etc. ) and each interconnection fabricated on the chip. The

test patterns are developed so that they should thoroughly check every node of the

circuit. Normally, these tests are required to detect a very high fraction (i.e. close to

100 percent) of the modeled faults in the circuit which means that the device should

be defect-free. The detected fraction of faults is called the fault coverage of the tests.

Test patterns for a circuit are developed in two phases. In the first phase,

known as design verification, tests are generated to verify logical correctness and tim

ing behavior of the circuit through simulation, The second phase of test generation

consists of generation of manufacturing tests in order to ensure that circuit is fabri

cated correctly. However, these tests do not determine whether the circuit has been

designed correctly. These test vectors are generated (either manually orautomatically)

after a complete design by driving the effect of faults within the circuit to a circuit

output where the fault can be detected. Automatic Test Pattern Generation (ATPG)

involves the generation of test vectors automatically in order to detect failures in the

VLSI chip. The ATPG process is driven by the single stuck-at fault model which as

sumes that all faults can be modeled by a line being either permanently 0 or 1. After

test pattern generation, the vectors and their expected responses must be moved to a

10



piece of ATE, which applies the vectors to the input pins of the VLSI chip and com

pares the output pin responses with the expected responses to determine whether a

fault is present within the circuit or not. Since the same set of vectors will be applied

to a large number (a million or more in many cases) of copies of the chip, short test

sequences are desirable.

Generating test patterns for digital integrated circuits is a very hard problem.

Sequential circuits, because of their memory elements, might require many vectors

to test one fault. The time required to generate these vectors is too large for VLSI

chips. To solve this problem, circuit designers use design-for-testability techniques.

One such technique is scan design which converts sequential circuits into combinational

circuits by chaining all the flip-flops in the circuit into one or several shift registers.

This allows using faster combinational test generation algorithms for vector generation.

Another technique known as built-in-self-test adds IC hardware to generate random

patterns that can be applied to the chip's combinational logic. This technique has

the advantages of applying long vector sequences at circuit speed and there is little

or no need of test generation. However, the disadvantage of this technique is that the

chip becomes more complex leading to performance penalties. Both the techniques

have gained wide and growing acceptance as devices become more complex. Further

discussion on these techniques is beyond the scope of this thesis as the focus is on the

test pattern generation.

The problem of Automatic Test Pattern Generation is known to be NP-

complete [55], [32] and conventionally, the generation of tests is characterized as a

search of A^-dimensional 0-1 state space, where N is the number of primary inputs in

the circuit to be tested. A wide range of ATPG algorithms have been developed in the

past and focussed uniprocessors machines as their hardware platforms. Major empha

sis has been on the increase in the efficiency of these serial algorithms through better

11
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heuristics and data structures. However, the overall gains achieved through these de

velopments have not kept pace with the increasing complexity of the VLSI circuits as

sometimes hours and days are required in generating tests for the practical circuits of

even moderate complexity. The complexity of the circuits on which test generation

tools are used is growing faster than the speed of the computers on which they run.

Therefore, new algorithms and techniques for test generation are required for both the

circuits of today and tomarrow.

i The availability of affordable parallel machines and distributed network of idle

workstations in most of the VLSI-CAD environments has opened a new front for the

development of efficient parallel/distributed algorithms for the compute-intensive test

generation problem. In order to harness the computational power of these machines,

several parallelization techniques have been investigated in the recent past. These tech

niques have tried to parallelize some of the portions of the conventional uniprocessor

algorithms and executed themin parallel. Although, these techniques have shown some

promising results, but much work remains since no effective parallel algorithms have

been found.

Most recently altogether different approaches are developed in which the test

ing problem has been reformulated so that the algorithms for test generation can be

easily parallelized to run on massively parallel and distributed computing platforms.

In these approaches, the test generation problem is transformed into an optimization

or Boolean satisfiability problem. Although both the optimization and satisfiability

problems are as hard as test generation itself, but they have two signifiant advantages.

First, several operation research and graph-theoretic techniques may become applica

ble and second, the non-causal form of the model makes parallel processing possible

for such compute-intensive test generation problem.

12



The optimization based test generation radically differs from the conventional
• methods that generate test vectors for circuits from their gate level description. The

circuit is modeled as anetwork of idealized computing elements, known as neurons,
connected through bidirectional links and the neuron is abinary (0-1) element. The
relationship between the input and output signal states of alogic gate is expressed
by an energy function such that the zero energy (also the minimum energy) states
correspond to the gate's logic function. Using this neural network modeling technique,
the test generation problem has been transformed into an energy minimization problem
for which various techniques like directed search augmented by probabilistic relaxation
have been attempted to determine its global minimum. Aquadratic 0-1 programming
technique has also been devised for test pattern generation since the energy function
is of the form of pseudo-Boolean quadratic function E(x) =xTQx +cTx with x <E
{0, 1}", where Qis an nxnsymmetric matrix of constants, cis avector of constants,
x is avector of „ Boolean variables, and xT is the transpose of x.

Test pattern generation method using Boolean satisfiability constructs afor
mula expressing the Boolean difference between fault-free and its corresponding faulty
circuit. This formula may be derived in the form of aBoolean truth function or afalse
function. In order to generate atest pattern for agiven fault, one needs to satisfy the
formula using the Boolean satisfiability algorithm when the formula is in the form of
atruth function. As far as the false function is concerned, it is to be minimized to 0
and quite similar to the energy minimization approach. Test generation methods using
both kinds of functions has been developed and reported in the literature.

The thesis is mainly focused on the development of new algorithms and tools
for test pattern generation based on optimization and Boolean satisfiability approaches
because these approaches have significant advantages as discussed above. In the opti
mization based test generation approach, the ATPG problem is formulated as energy

13
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minimization for which several algorithms have been proposed. In this kind of ATPG

formulation, the function to be minimized is of the form of pseudo-Boolean quadratic

function for which a new quadratic 0-1 programming technique has been developed to

find its global minimum. Although this is a mathematical technique, it has several

advantages. One important advantage is that the exploitation of the special structure

of the quadratic function arising from the test generation problem has become possible

as the proposed technique uses the circuit specific knowledge with ATPG constraints.

Other significant advantage is that efficient heuristics can be easily incorporated which

further accelerate the minimization process. Some of the heuristics are described in

detail by illustrating specific examples. Acomputational algorithm has been developed

which efficiently minimizes the energy function with moderate number of variables for

small practical example circuits [104]. However, its efficiency decreases for the large

number of variables due to branch-and-bound process used in the algorithm.

Other methods based on Genetic Algorithms (GAs) for generating test pat

terns have been developed which do not incorporate branch-and-bound process at any

stage of the ATPG. In these methods, GAs are applied to both kinds of ATPG prob

lem formulation viz. optimization as well as Boolean satisfiability. In the optimization

based approach, GAs are used to find the global minimum of the energy function for

generating test patterns for agiven set of faults. In the Boolean satisfiability approach,

instead of deriving a Boolean truth function in Conjunctive Normal Form (CNF), a

Boolean false function is derived which is then minimized to find test patterns. This is

an advantage as both kinds of problem formulations ultimately lead to minimization

problem and thus can be solved by using GAs. The behaviour of both the energy and
Boolean false functions derived for the test generation of stuck-at faults in combina

tional circuits has been studied and it is found that these functions are of multimodal

type. The global optimum solution of the problem represented by these functions can

14



be located in a multimodal landscape which further confirms the suitability of GAs

known to be the most effective search and optimization algorithms in such problem

spaces. Furthermore, GAs have a proven track record of being one of the most robust

search and optimization algorithms applied in a number of combinatorial optimization

problems. Other important features of GAs are that they are innovative and have

inherent amenability to be processed in parallel.

In order to apply GAs for minimization of energy function or Boolean false

function, an objective function is derived which is essentially required to guide GA-

based search. This objective function is then modified to transform the constrained

ATPG problem into an unconstrained one by using a penalty method. This penalty

method has been developed with the help of schema design. The objective function

so obtained is then mapped into fitness form (maximization form) by using a mapping

procedure. The fitness function is then maximized using GAs and test patterns are

obtained for all the detectable faults. A GA-based CAD tool for the ATPG problem

has been developed and experimental results have been reported in the thesis.

Organization of the Thesis

The research contribution made in this thesis is organized in six chapters as given

below.

t Chapter 2: Test Generation Algorithms: A Review. This chapter reviews the

work carried out in the area of test pattern generation for digital logic circuits.

Most important test generation algorithms for combinational as well as sequen

tial circuits are reported in this chapter. Various parallelization techniques are

discussed. Most recently developed optimization and Boolean satisfiability test

15



generation approaches are also presented in this chapter. The chapter concludes

with a brief description of the problem formulation.

• Chapter 3: A New Quadratic 0-1 Programming Technique. A new quadratic

0-1 programming technique applicable to the optimization based test generation

approach has been proposed in this chapter. The applicability of this technique

has been demonstrated by solving the test generation problem for some example

circuits. Various heuristics and their role in the energy minimization process are

discussed in brief. A computational algorithm based on the proposed technique

is also given in this chapter. This chapter concludes with a brief discussion on

this new technique.

• Chapter 4: Genetic Algorithm Based Test Generation. This chapter proposes

new test generation methods using Genetic Algorithms. It starts with an in

troduction to Genetic Algorithms (GA) and describes their applications to the

test generation problem. Issues involved in the proposed GA-based methods are

discussed and a test generation algorithm has been proposed. Finally, a CAD

tool based on GAs has been proposed.

• Chapter 5: Implementation Details and Experimental Results. The implemen

tation details of the test generation algorithms proposed in Chapter 3 and 4 are

given in this chapter. A prototype CAD tool proposed in Chapter 4 has been

developed. Experimental results in terms of CPU time are also presented by

running the ATPG CAD tool for generating test patterns for practical example

circuits. These results are also compared to the results reported in theliterature.

• Chapter 6: Conclusion and Future Scope of Work. Finally, conclusions are

drawn and future scope of work in the area of the thesis is discussed in this

chapter.

16



Chapter 2

Test Generation Algorithms: A

Review

Intensive research efforts have been made in the development ofefficient test generation

algorithms for combinational as well as sequential logic circuits. Test patterngeneration

is usually more difficult for sequential circuits than the combinational ones mainly

due to the poor controllability and observability of sequential logic. Putting storage

elements of a sequential logic in a desired state would require a sequence of external

inputs applied over a set of clock cycles and similar is the case for observing their

values through the external outputs. This implies that the sequential test generation

is not only more difficult (complex) than the combinational test generation but the

resulting test length is also usually much larger. However, the popular Design for

Testability (DFT) techniques, particularly scan designs [31], [37], [108], increase the

controllability and the observability of the storage elements in the feedback path of

sequential circuits. This would reduce the complexity of sequential test generation

to that of combinational test generation by transforming the sequential circuit to a

combinational logic in the test mode. Hence, for sequential circuits implemented with

17



the use of scan techniques, it is sufficient to develop efficient test generation algorithms

only for combinational circuits. Due to this reason, there has been a heavy emphasis

on test pattern generation algorithms for combinational circuits.

A wide range of techniques has been proposed for combinational circuit test

generation. At one end of the spectrum are the exhaustive and random techniques.

Exhaustive test generation means the generation of all possible input patterns and

may be an obvious choice for circuits with small number of primary inputs. Random

Test Generation (RTG) [4] is another simple technique that generates input vectors

probabilistically and simulates whether these vectors detect fault(s) in the circuit. If

a random vector detects a fault, then it is retained as a test. In RTG, a large set of

random tests is needed in order to achieve high-quality tests usually determined by a

fault simulation method in terms of fault coverage. Various fault simulation methods

and their role in test generation are described later in this chapter. In RTG, though the

test generation process itself is simple, determining the test quality by fault simulation

may be an expensive process. Moreover, a longer test set costs more to apply because

it increases the testing time and the memory requirements of the tester.

At the other end of the spectrum, there are deterministic techniques that

can be divided into two groups: one consisting of algebraic algorithms and the other

of structural algorithms. These techniques generate tests by processing a model of the

circuit in contrast to RTG which do not consider the structure of the circuit-under-test.

Compared to RTG, deterministic techniques are more expensive in terms of CPU time,

but they produce shorter and high quality tests. Algebraic algorithms use the Boolean

difference formulation (Section 2.1) to solve the problem symbolically [34], [90] and

structural algorithms perform a topological search of the circuit-under-test. Algebraic

algorithms have not been very practical for two reasons: (1) symbolic solutions require

excessivestorage and (2) heuristics required to solve practical test generation problems

18



symbolically are not available. Structural algorithms use a data structure representing

the circuit-under-test instead of deriving a Boolean expression. These algorithms sys

tematically enumerate the search space using branch-and-bound method and employ

heuristics to guide the search process. The most successful structural algorithms are

described in Section 2.2.

2.1 Algebraic Algorithms

The most popular algebraic method is the Boolean difference method developed by

Sellers et al. [90]. In this approach, a Booleanformula is constructed for a combinational

circuit as its output realizes a logic (Boolean) function. Let F(xu x2,..., xn) be a logic

function of the input Boolean variables xx,x2, ...,in. The Boolean difference of F(x)

with respect to its input variable x,- is defined as

F(xu ...,*,-,..., x„) ©F(xu ...,*,-,..., x„)

and is denoted by ijgi, where ©denotes the logical exclusive-OR (XOR) operation.
It can also be represented as

^•l(o)e«(i)
where,

Fi(0) = F(xu...,zi-u0,xi+u...}xn),

Fi(l) = F(x1,...,xi-1,l,xi+1,...,xn),

The set of tests for x< stuck-at 0 is

x dF(x)
V dxi

19



where, X, is the function representing the output of the sub-circuit with output at x,-.

Similarly, the set of tests for x,- stuck-at 1 is given by

tt|tf(»)|
dxi

The effect of two faults at the input of a logic circuit on its output can be

analyzed by defining the double Boolean difference as

1/ \ ~ " \xli • • • i xii • • • i xji • • • i xn) © * \X\, . . . , Xj, . . • , Xj . . . , Xn)

Thus, test generation for multiple stuck-at faults can be generalized by using multiple

Boolean differences [62].

Test generation using Boolean difference approach can be characterized as

algebraic in a sense that it manipulates circuit equations to generate test patterns.

Other algebraic test generation methods developed are the propositional method of

Poage [81], the equivalent normal form [8], the cause-effect equation [17], the SPOOF

procedure [28], and the structure description function [57]. All these methods derive

equations for a fault-free circuit and manipulate the equations to generate test patterns.

However, it is an arduous task to manipulate algebraic equations for large circuits and

therefore, can not be generalized. Furthermore, the tedious nature of the algebraic

manipulations of these methods lead to be impractical for test generation.

2.2 Structural Algorithms

A number of structural algorithms have been developed for test generation of combi

national and sequential circuits. The test generation algorithms for combinational and

sequential circuits are known as combinational and sequential algorithms respectively.

These algorithms are briefly discussed in this section.
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2.2.1 Combinational Algorithms

* In combinational test generation algorithms, a test pattern is generated in two steps:

(1) assign values to create a change (i.e. fault-effect) at the fault-site, and (2) search for

consistent values on all signal lines in the circuit such that the fault-effect is success

fully propagated to at least one of its primary output (PO). The most successful test

generation systems are based on structural algorithms. Some ofthe notable ones are D-

algorithm [85], Podem [45], Fan [33], [35], Tops [58], Socrates [88], [89], Cont [102], [103],

£ and Est [41]. All these algorithms are briefly described in the following subsections.

The D-Algorithm

The D-algorithm is the first complete test pattern generation algorithm developed by
Roth in 1966 [85] which introduces a D notation and a five-valued calculus in order

to activate a single stuck-at fault and to propagate its fault-effect to at least one PO
A,

of the circuit. The five-valued calculus consists of logic values 0, 1, A" (an unknown
value), and two additional values D and D. AD value signifies a logic value of 1 in
the fault-free (good) circuit and 0 in the faulty circuit. AD value signifies a logic
value of 0in the fault-free (good) circuit and 1in the faulty circuit. The D-algorithm
defines two D-cubes associated with each gate in the circuit: a primitive D-cube of a

fault (pdcf) and a propagation D-cube (pdc). Apdcf is a set of inputs that produces
an error signal on the output of that gate if it contains a fault. Apdc specifies the

input values necessary to propagate an error signal on an input of agate to its output.
The pdcf and pdc of a two input AND gate are shown in Figure 2.1.

The basic operation of the D-algorithm is the repeated intersection of the D-

cubes necessary to perform the tasks required to generate atest for aspecific fault. The

test generation is accomplished in three steps: fault sensitization, fault propagation

21



pdcf

Z>
pdc

1 1 D 1 D D DID

0 ID DID D D D

1 0 D 1DD DDD

Figure 2.1: AND gate D-cubes.

and line justification. Fault sensitization is the process by which a circuit node is

made to produce an erroneous value as a result of the fault. Sensitization is done by

specifying an input combination for the circuit element containing the fault, using the

pdcf that cause the output to take on the appropriate D value. Fault propagation is

the process of propagating the D values to the primary outputs so that they can be

monitored. The list of all gates whose output value is currently logical X but have

one or more error signals (either D or Ds) on their inputs is called the D-frontier.

Fault propagation process selects one gate from the D-frontier and assigns values to

the unspecified gate inputs so that the gate output becomes D or D. This process

sensitizes all possible paths from the fault site to the primary outputs. This feature,

referred to as multiple-path sensitization is necessary for the D-algorithm to guarantee

its completeness. During fault sensitization and fault propagation, certain nodes of the

circuit require tohave specific values. Assigning values on the primary inputs toachieve

the required value on the node is called line justification. The primary inputs tobe used

to justify a goal are usually determined by backtracing through circuit topology from
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the node in question to the primary inputs. Avalue is assigned to one of these primary

inputs and a simulation-like process, called forward implication, is performed to see

whether the current input assignment while satisfying the goal is consistent or not. If

it satisfies the goal, a test is generated which means that the fault is sensitized and

the fault-effect (error) is successfully propagated to the primary outputs. However, if

it does not, a different value is selected and theprocess is repeated until either the test

is generated or in case of any inconsistency, the fault under consideration is declared

as redundant fault.

To illustrate the D-algorithm, let us consider a combinational circuit as shown

in Figure 2.2 which is to be tested for a stuck-at-1 fault on signal line j. According

to the first step of the D-algorithm, the fault is to be sensitized by producing an error

value, i.e. D, on the line j and it is shown by test cube, TCO in Figure 2.3. The fault

is sensitized using a pcdf of the NOR gate (TCI), i.e. by setting g = 1, Using the

backward implication procedure, both the inputs, a and b, of the AND gate g must

have 1 value which means a = b= 1 and TC2 shows these assignments. In order to

advance the D-frontier, a0value is required on knode which in turn implies that both

the inputs, t and /, of the OR gate kmust have 0values (TC3). The 0value on the

output of the OR gate i implies e = h= 0 (TC4). In the justification step, h has to

be justified to 0, which can be done by assigning either input of the AND gate hto a
0value. By setting c to a value 0(TC5), a test is generated by the D-algorithm.

Now consider the test cubes (propagation first) as given in Figure 2.3 for pdcf
selection. When selecting the test cube TCb for the initial fault, its forward implication
determines that the value on the signal lines kand / to be 1. Since error is not visible

on the primary output /, no test is generated (TCc). In this case, the algorithm would
backtrack to the last decision made and select the alternate choice to proceed further.
In the D-algorithm, choices are available at many internal nodes in the circuit and
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Figure 2.2: An example combinational circuit
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Figure 2.3: D-algorithm example.

more than two choices may be present in the case of more than two-input gates in the

circuit. Due to this fact, the size of the algorithm's search space increases and makes

backtracking more complex.

In fact, the original D-algorithm does not mention about the order of the



processes - fault sensitization, fault propagation and justification - to be performed.

However, the efficiency of the test generation depends heavily on the order of these

operations and the most efficient order is determined by the circuit topology. As an

example, in test generation for j stuck-at-1 fault in the circuit of Figure 2.2, if fault

propagation is done before selecting a pdcf, the unique 0 value required on node i will

be discovered and the pdcf for faulty gate will be fixed. Then the test generation can

proceed without any possibility of backtracking. Subsequently developed algorithms

attempted to reduce the size of the solution space that must be searched. Goel made

an attempt in the same direction and developed Podem (Path-Oriented DEcision

Making) algorithm [45] as D-algorithm turned out to be extremely inefficient in gener
ating tests for the class of combinational circuits that implement error-correction and

translation (ECAT) type functions [45].

The Podem Algorithm

Podem is an implicit enumeration algorithm in which all possible primary input pat
terns are implicitly, but exhaustively, examined as tests for agiven fault. In Podem, the

test generation problem is formulated as a search of the A^-dimensional 0-1 state space
constrained by aset of Boolean equations, where N is the number of primary inputs of

acombinational circuit. To view the test generation as a finite space search problem,
let us consider the combinational circuit shown in Figure 2.4, where g is an internal net

and the objective is to generate atest pattern for the gstuck-at-0 fault. The state on g
can be expressed as aBoolean function of the primary inputs, xu x2,..., xN. Similarly,
each primary output (y:, j = l,2,...,M) can be expressed as a Boolean function of

the state on net g as well as the primary inputs xu x2,..., x^. Let

g = G(xi,x2,...,xN)
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Figure 2.4: A generic combinational circuit.

y2

M

Vi = Yj{9,xUx2,---,Xn)

where 1 < j < M and x,- = 0 or 1 for 1 < i < N

The problem oftest generation for g stuck-at-0 can bestated as one ofsolving

the following set of Boolean equations:

G{xi,x2,...,xN) = 1

Yj(l,x1,x2,...,xN)®Yj(0,x1,x2,...,xN) = 1

for at least one j, 1 < j < M and x, = 0 or 1 for 1 < i < N

Inorder to generate test pattern for g stuck-at-1 fault, thesame setofequations

are to be solved except that G is set equal to 0. Hence, test generation can be viewed

as a search of iV-dimensional 0-1 state space subject to satisfying the above set of

equations.

The Podem algorithm begins by trying to justify D or D at the node under

test, similar to the D-algorithm. In Podem, this justification is done by assigning

values to primary inputs that affect the node in question. These primary inputs may
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be found by backtracing through the circuit topology. When an input assignment is
made, i. e. branching in the context of branch-and-bound algorithms, forward implication
(a simulation-like process) is carried out to evaluate all node values implied by the
assignment. In case of any inconsistency found due to this assignment in order to
achieve the goal, the complementary value is tried. When both assignment choices at a
node are rejected, the algorithm backtracks efficiently to the previous input assignment.
The rejection of aprimary input assignment results in abounding of the decision tree,
in the context of the branch-and-bound algorithms. This process finally results in an
orderly search methodology that will implicitly search the entire solution space.

The search methodology of Podem is represented by a decision tree structure
illustrated in Figure 2.5. After the value at the faulty node is justified, subsequent
objectives are set up to propagate the ^-frontier along a path or paths to the pri
mary output(s). The exact order in which this process occurs is again implementation
dependent. The important characteristics of Podem is that the strategy of assigning
values only to primary inputs orders the search space. This procedure lets the search
methodology prune the search space implicitly and increase efficiency.

To illustrate the test generation using Podem, let us consider the combinational
circuit shown in Figure 2.2 with aslight modification that fault at node j is stuck-at-
0 instead of stuck-at-1 fault. In order to generate test pattern for the fault under
consideration, Podem orders the binary search space as shown in the form of adecision
tree (Figure 2.5). Asimple heuristic is used to construct this search space that always
prefers to assign alogical 1value on aprimary input. Initially, all primary inputs
of the example circuit are at logical Xvalue, i.e. unknown value. Using this simple
heuristic, the node ais assigned to alogical 1value which also provides consistency
in the circuit. Now the assignment of a logical value 1on node 6in the circuit leads
to inconsistency, therefore, all assignments with 6=1in the solution space should be
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Figure 2.5: Podem search-space graph.

pruned as shown in the decision tree. Hence, the remaining alternate value on 6, i.e.

b= 0 is tried and the decision tree is further explored. The entire process is iteratively

continued till a test pattern is found. For the example circuit, the test pattern for the

given fault j stuck-at-0 is thus obtained by assigning a = 1, 6 = 0, c= 1, d = 0, e = 0

and / = 0 as shown in Figure 2.5. Podem is a complete test generation algorithm in

that a test pattern will be found if one exists.
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The Fan Algorithm

In Podem, the test generation may become time-consuming for the circuits with large

numberof fan-outs and therefore, needs improvements in order to handle such circuits.

The Fan (Fan-out oriented test generation algorithm) [33], [35] is an improved version

of the Podem algorithm in the sense that the test generation process is accelerated

by incorporating several techniques. The important goals of Fan are to reduce the

number of backtracks in the binary decision tree and shorten the process time between

backtracks. The Fan algorithm introduces the following two major extensions to the

backtracing concept of Podem.

• Termination of backtracing in Fan at internal lines than stopping at primary
inputs.

• Usage of a multiple-backtrace procedure to simultaneously satisfy a set of objec

tives rather than trying to satisfy one objective at a time.

Fan defines internal lines as bound, free and head line where it stops backtracing. A
bound line is a signal line reachable from some fan-out point, i.e. there exists a path
from some fan-out point to a signal line. Asignal line that is not bound is said to be

a free line and a head line is a free line that is adjacent to some bound line.

In the circuit shown in Figure 2.6, signal lines iu i2, j, k, and / are bound

lines. Lines a, b, c, d, e, f, g, h, and i are all free lines. Among the free lines, g, i, and
/ are head lines of the circuit since these lines are adjacent to the bound lines j, ij or
i2, and krespectively. As far as the value assignments on these lines are concerned,
free lines may have auniquely assigned value whereas bound lines can not have unique
(independent) values assigned to them. By definition, head lines can also be assigned
values arbitrarily because they are free lines and can always be independently justified.
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Therefore, they can be treated as primary inputs in the justification process. Once

a test is found by treating headlines as primary inputs, the values on them can be

justified at the end of the test generation process.

Multiple-backtrace procedure is an important characteristic of the Fan algo

rithm which handles re-convergent fan-out branches buried in the circuit. This pro

cedure reduces the number of backtracks that must be made in the search. In the

multiple-backtrace of Fan, an objective is defined by a triplet

(s, n0(a),ni(«))

where s is an objective line, n0(s) is the number of times the object value 0 is required

to be set on line s, and ni(s) is the number of times the object value 1 is required to

be set on line s. The multiple-backtrace procedure starts with a set of initial objectives

and defines different set of objectives. Starting from the set of initial objectives, a set

of objectives that appear during the procedure is called a set of current objectives. A

set of objectives that is obtained at head lines is called a set of head objectives. A set
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of objectives on fanout points is called a set of fanout-point objectives.

Multiple-backtrace procedure of Fan is illustrated here by considering the cir

cuit shown in Figure 2.6 as an example. Assume that this circuit is a part of some larger

circuit and during the test generation process, certainvalue is necessary at node / in the

circuit. In Podem, a single backtrace could be made along the path / —• j —• g —• a,b.

The values for inputs a and bcould be chosen so that the goal is satisfied with a unique

value on nodes i and k. Suppose the value on k can not be achieved with the value

chosen for i. Then, a significant amount of backtracking could result in the search of

binary decision tree. In Fan, a multiple-backtrace procedure would backtrace both the

I -» j -* i and / —• k -> i paths (Figure 2.6) and determine the value needed at i to sat

isfy the goal. This value would then set a requirement for the justification of the value

at node /. This in turn would increase the efficiency of the Fan algorithm significantly

for the combinational circuits with numerous buried re-convergent fan-outs.

A CAD tool [92] has been developed to generate test patterns automatically

for a given set of faults in a combinational logic circuit. The block schematic of the

CAD tool for Automatic Test Pattern Generation (ATPG) is shown in Figure 2.7.

The Fan algorithm has been implemented as a core of the CAD tool for ATPG. Fan

algorithm was chosen because it is significantly faster than Podem algorithm as the

search-space ordered by the Fan is relatively less than the Podem. The search-space

ordered by the Fan may be further pruned with the use of efficient heuristics. These

heuristics basically provide help in accelerating ATPG process by reducing the number

of backtracks or bad decision. Heuristics based on controllability/observability (C/0)

measures, such as Scoap [47], [48], Savir's cutting algorithm [86], Predict [91] etc. have

been considered in order to couple within the ATPG framework.
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In the heuristic development phase of the CAD tool, it is found that the popu

lar Scoap measures lack essentially in the assumption of signal independence of fan-out

signals [5]. It gives rise to errors when re-convergence is encountered. Moreover, they

are also unable to provide a way to calibrate the circuit controllability/observability

information in an absolute way. A new efficient heuristic basedon probabilistic estima

tion has been proposed which considers the correlation of the inputs in a re-convergent

fan-out path and provides more accurate calculations of node controllabilities than

Predict.

The quality of test patterns generated by the CAD tool is determined by a

fault simulator which has been incorporated with in the ATPG framework and depicted

in Figure 2.7. Among the various fault simulation methods [68], [82], [106] developed

in the past, a Parallel Pattern Single Fault Propagation (PPSFP) algorithm [106]

has been implemented in this CAD tool. The fault simulator provides the information

about the quality of the test patterns in terms of fault coverage, undetected and un

detectable faults. Moreover, this simulator may be used for automatic fault dictionary

generation for diagnosis of complex digital systems [93].

The Socrates Algorithm

Schulz et al. [88] developed an Automatic Test Pattern Generation (ATPG) system

called Socrates based on the Fan algorithm. This ATPG system incorporates several

distinct techniques to accelerate the ATPG process for combinational or scan-based

circuits. The application ofthese techniques results in an earlier recognition ofconflicts

and redundancies and in a reduction of the number of backtracks. In particular, these

techniques provide improvements in implication, unique sensitization, and multiple

backtrace procedures. Among these techniques, the most important one is a learning
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Figure 2.7: A block schematic of the ATPG tool.

procedure which is performed during the pre-processing phase of Socrates. The overall

strategy of the learning procedure is to assign a logic value to a certain signal of the
circuit, to perform all implications from that assignment and to learn from the results

of the implications. The implications are performed by using a logical identity called
contrapositive, i.e.
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where P and Q are arbitrary assertion variables. In order to decide efficiently whether

an implication is worthwhile learning or not, the following learning criterion is used.

• Let i be the signal at which the current learning step is initialized by the assign

ment i —V{ and let j be a signal at which a fixed logic value Vj (0or 1) is assigned

during the implication procedure, i.e.

(i = Vi) s* (j = Vj)

• Furthermore, let j be the output of a gate, say g. If vj requires all inputs of

g to have non-controlling values and a forward implication has contributed the

assignment j = Vj, then the implication

(j = Vj) =» {i = Vi)

is considered to be worthwhile learning.

In Socrates, the test generation problem is also viewed as a search problem

for which algorithms usually build a decision tree and apply a backtracking proce

dure [33], [35], [45] in order to find a solution of the problem. However, the decision

tree can be represented as a triangle shown in Figure 2.8 and can be divided into a

solution area and several non-solution areas as shown in the triangle. It is important

to note that whenever a search procedure enters into one of the non-solution areas, no

solution can be obtained by making additional assignments on the primary inputs of

the circuit and only possibility to leave the non-solution area is through backtracking.

Majority of the deterministic test generation algorithms are not able to iden

tify the entire non-solution areas and identify only parts of them. During the search

procedure, whenever a test generation algorithm enters into an identified non-solution

area, immediately backtracking will take place as soon as it is recognized that a solu

tion can not be found with the current assignment. Contrary to this, the unidentified
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non-solution area causes the most serious problem to the test generation algorithms as
it will require a lot of backtracking in order to leave the non-solution area. Hence, the
following two global goals are aimed in the development of Socrates:

1. Minimization of the unidentified non-solution areas, and

2. Avoidance of entire non-solution areas during the search process.

The Est Algorithm

The Est algorithm [41] is an acronym for Equivalent STate Hashing algorithm which
accelerates any combinational circuit test generation algorithm. Est detects equivalent
search states, which are saved for all faults during test pattern generation. The search

space is reduced by using Binary Decision Diagram (BDD) further than other algo
rithms can [33], [35], [45], [58], [85]. This algorithm made the following contributions:
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• It characterizes the search state of the test generation algorithm using the E-

frontier, a cut-set of the circuit induced by a set of primary input assignments.

The frontier is a partition between the circuit part labeled with 0, 1, D, and D
signals and the part labeled with X signals.

• It uses the matching of E-frontiers to cause early backup from infeasible searches

or early search termination with a test pattern.

• It is the first test pattern generation algorithm which uses knowledge about the

search space for a prior fault to accelerate search for a test of the current fault.

• It also uses first time the knowledge of opportunistically-discovered redundant

faults in the circuit to further reduce the search space for later faults.

Est accelerated the TOPS [58] test generation algorithm 328 times and enabled it to

handle all faults in the ISCAS '85 combinational benchmark circuits. Est also acceler

ated the Socrates algorithm 5.81 times on the same benchmark circuits. Extensions to

the Est algorithm are reported in [42].

Other ATPG Algorithms

The TOPS algorithm [58] uses the Fan's concept of the independent justification of

headlines a step further by introducing a new type of node called a basis node. Abasis

node is the absolute dominator of all nodes that precede in the circuit graph. The

concept of dominator nodes has come from graph theory. A node dominates another

node if all paths from that node to the root pass through the dominator. All free lines

and head lines in acircuit are basis nodes as they are all points of total re-convergence.
In the circuit shown in Figure 2.6, the free lines a through i are basis nodes. Since

node / is a point of total re-convergence, it is also a basis node. As a basis node, node
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/ can have any value required to generate a test in the remainder of the circuit, and

the justification of that value at the total-re-convergence node / can be postponed in

the same way as the justification of a head line.

A backtrace-stop line used in Fast (Fault-oriented Algorithm for Sensitized-

path Testing) algorithm [2] represents another generalization of the head-line concept,

based on an analysis that is both topological and functional. In Fast, a line / is

a backtrace-stop line for value v, if the assignment / = v can be justified without

^ conflicts. For example, in Figure 2.6, / is a backtrace-stop line for value 0, because

/ = 0 can be justified by a = b= 1 and / = 0 that is without assigning any line with

re-convergent fanout.

The Cont algorithm [102] implements a different approach in which if the

target fault is not detected by the current input vector, Cont switches over to a new

target fault. Candidate faults for target switching are identified by interleaving fault

^ simulation steps with incremental test generation steps. In the second version [103]

of the Cont algorithm, all unspecified inputs are randomly assigned prior to fault

simulation.

Other test generation methods that combine features of deterministic algo

rithms with those of RTG are Raps [44] and Smart [2]. The Raps (Random Path

Sensitization) algorithm attempts to create random critical paths between Pis and

POs. Initially all values are at X. Raps starts by randomly selecting a PO, say z and

a binary value v. Then the objective (z,v) is mapped into a PI assignment (i,v.) by

a random backtrace procedure Rbacktrace. Rbacktrace is similar to the backtrace pro

cedure used by Podem except that the selection of a gate input is random. In Podem,

this selection is guided by heuristics. The assignment i = Vi is then simulated using
3-value simulation and the process is repeated until the value of PO zbecomes binary.

37



After all the POs have binary values, a second phase of Raps assigns the Pis (if any)
with X values. The entire procedure is repeated to generate tests as needed. As a

result, test sets generated by Raps are smaller and achieve ahigher fault coverage than
those obtained by RTG.

Smart (Sensitizing Method for Algorithmic Random Testing) is also a com

bined deterministic and random test generation method which corrects the problems

encountered by Raps. Smart generates a vector incrementally and relies on a close in

teraction with fault simulation. The partial vector generated at each step is simulated

using critical-path tracing [1] which guides the test generation process. This interac

tion is based on two by-products of the critical-path tracing: stop lines and restart

gates. Stop lines delimit areas of the circuit where additional fault coverage can not be

obtained, while restart gates point to areas where new faults are likely to be detected

with little effort. Experimental results reported in [2] show that Smart achieves higher
fault coverage with smaller test sets and requires less CPU time as compared to Raps.

2.2.2 Sequential Algorithms

Test generation for sequential circuits is recognized to be amore complex problem than

for the combinational circuits. Primarily, most sequential test generation methods have

been devised on the basis of the fundamental combinational algorithms like D-algorithm
[85] and Podem [45]. The extended D-algorithm of Kubo [63] and Putzolu and Roth [83]
and the nine-valued model of Muth [75] are some basic procedures that are good for
use in the test generation for sequential circuits. However, these algorithms are found

difficult to implement and highly inefficient for large practical sequential circuits.

Considerable research has been done in the development of sequential test

generation methods and a number of sequential test generators have been reported in
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the literature. The taxonomy of the sequential test generation methods is given below:

1. Time frame expansion based,

2. Simulation based, and

3. Rule based or expert systems.

In time frame expansion based test generation methods, asynchronous sequential cir
cuit, Sis transformed into acombinational iterative array by cutting the feedback loops
of the clocked flip-flops as shown in Figure 2.9(b). Each cell C(i) of the array is identi
cal to the combinational circuit Cof Figure 2.9(a). In this transformation, the clocked
flip-flops (FF) of Sare modeled as combinational elements F(i) which are referred to
as pseudo fllp-fl0ps. In Figure 2.9(b), C(i) and F(i) correspond to time frame ,\ Sup
pose that an input sequence x(0) x(l) ... x(k) is applied to the sequential circuit Sin
initial state ,(0) and Sgenerates the output sequence ,(0) ,(1) ... ,(*) with the state
sequence ,(1) y{2) ...„(*+ 1}. Then the iterative array will generate the output z(i)
from cell,', in response to the input x(i) to cell i(!<,'< *). This modeling technique
maps the time domain response of the sequential circuit into aspace domain response
of the iterative array. Atime frame expansion of the example sequential circuit given
in Figure 2.10 is illustrated in Figure 2.11. Due to this transformation, the test genera
tion methods developed for combinational circuits could be extended to the sequential
circuits. Asimilar technique exists for asynchronous sequential circuits.

The time frame expansion based test generation can be further subdivided into
algorithms that do test generation in

• forward time,

• reverse time, and
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Figure 2.9: (a) Canonical structure of a synchronous sequential circuit, and (b) its

combinational iterative array model.

• a combination of forward time and reverse time

The extended D-algorithm and Muth's method both perform test generation in forward

time. Sequential test generation algorithms based on path sensitization methods in a

multiple time frame environment are reported in [12], [25], [26], [49], [72], [73]. The

methods proposed in [25], [26], [72], [73] rely on reverse-time processing of the circuit.

In reverse-time processing, an output for the target fault is determined first and then

the algorithm works backward in time from the primary output to the fault site and

finally to an uninitialized state. STG1 [72], STG2 [25], STG3 [72], and Dust [49],

use multiple path sensitization based on D-algorithm framework, while Marlett [73]
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Figure 2.10: An example circuit for sequential test generation.

developed the algorithm based on asingle path-sensitization technique combined with
a16-valued logic model and areevaluation method. The advantage of the reverse-time
processing methods is that they are memory efficient since only the current timeframe
and previous timeframe need to be in memory at atime. The disadvantages of these
methods are that they are unnecessarily complex and inefficient because they work
backward in time and are D-algorithm based. Some of the disadvantages are overcome
by Essential [12] which uses static and dynamic information during test generation and
information from the preprocessing phase to keep the search space as small as possible.

Hitest [15], Stallion [71], Steed [40] and Fastest [56] are the only known sequen
tial circuit test generators that make use of Podem which has been much ignored as
the basis for sequential circuit test generation. Hitest is aknowledge-based interactive
test generation system and uses Podem for one timeframe, treating flip-flop outputs as
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Figure 2.11: Time frame expansion of the example circuit for sequential test generation.

pseudo inputs and flip-flop inputs as pseudo outputs of a single timeframe. In Stallion,

Podem is used for a forward enumeration process to excite a fault and propagate it

it a primary output. The results of this phase are an initial state vector and a test

sequence. Stallion also uses Podem as a backward justification algorithm, which is

used to obtain a transfer sequence to bring the circuit from a reset state to the initial

state, but assumes the circuit to be fault-free. Steed is an improved and substantially

modified version of Stallion and obtains a transfer sequence in a more efficient manner

by constructing ON and OFF arrays for each flip-flop input using Podem. Stallion and

Steed are very efficient in the forward enumeration process, but the backward justifi

cation can be quite inefficient. Further, the assumption of a fault-free circuit during

justification leads to the previous state information (PSI) problem which is discussed in

[56]. Fastest exclusively operates in forward time and correctly solves the PSI problem

since all state information concerning the faulty circuit is considered unknown at the

start of test generation. A key factor in Fastest's performance was found to be an

initial timeframe algorithm which determines the number of timeframes to begin test

generation and the timeframe to attempt to excite the fault. The fastest has been found
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successful in reducing the length of test sequences and CPU time from test generation.

In the simulation approach to sequential circuit test generation, Contest algo

rithm [27], [6] based on a concurrent fault simulator has been developed. The concur

rent fault simulator allows Contest to generate tests for a group of faults rather than

a single target fault in the early stages of test generation. It is then able to switch

phases to single-fault test generation as the fault list gets reduced. The main advantage
of a simulation-based test generator such as Contest is that there is no restriction on

the number of timeframes allowed during test generation. However, there can be very
large memory demands early in the test generation process, since the effect of every
fault in the fault list must be stored for every node in the circuit. Moreover, memory
demand decreases as the fault list is reduced, but the inefficiency of Contest lying in
early stages affects its average performance rather adversely.

2.3 Parallel Processing Techniques

All the ATPG algorithms described in the previous sections share one common theme

that they are developed to run on conventional uniprocessor computers and therefore,
referred as serial ATPG algorithms. Although, much effort has gone into increasing
the efficiency of these serial ATPG algorithms, the overall gains achieved through these
developments have not kept pace with increasing circuit size, and computation times are
still excessive. However, the computation time can be reduced simply by using afaster
machine. The availability of affordable parallel machines and distributed network of

idle workstations in most of the VLSI-CAD environments has opened anew front for the

development of efficient parallel/distributed ATPG algorithms in order to harness the
computational power of these machines. In the recent past, several techniques [60] have
been developed to parallelize the compute-intensive ATPG process. These techniques
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fall into five major categories as given below:

• Fault Partitioning,

• Heuristic Parallelization,

• Search-space Partitioning,

• Algorithmic Partitioning, and

• Topological Partitioning.

2.3.1 Fault Partitioning

Fault partitioning is the most basic parallelization method in which the fault list is

partitioned for distribution among processors. In this technique, each processor inde

pendently generates tests for each fault on its portion of the fault list until all tests

have been generated. So, if the fault list is divided carefully, each processor will have

roughly the same amount of work and will finish in about the same time. However,

in practice, optimal partitioning of the fault list is not easy to do a priori and there

fore, the task scheduling can be done dynamically with each processor requesting a

new fault from a master scheduler whenever it is idle. Dynamic scheduling requires

increased communications overhead because of the requests from idle processors for

new faults to process.

Patil and Banerjee [78] analyze fault-partitioning issues in an integrated par

allel test generation/fault simulation environment. In their system, fault simulation

is performed every time after a processor generates a test for a specific fault, say /,-.

Fault simulation determines other faults covered by the generated test vector. If an

other fault, say fj, is covered by the test vector, it must be removed from the fault
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list of all the processors to which fj has been assigned and for that amessage must
be sent to all the processors instructing them to remove ft from their fault list. This
increases the communication overhead and reduces the possible speedup. Patil and
Banerjee presented results from several methods of partitioning faults across proces
sors. These methods include random partitioning, partitioning by input and output
cones and mandatory constraint propagation. Acombined static and dynamic load-
balancing technique was also reported by Patil and Banerjee [78] in which initially,
faults are allocated to a processor using one of the methods mentioned above. If a
processor succeeds in generating tests for all of the faults in its list, it requests work
from the processor with the largest remaining fault list. This processor sends half of
its list to the idle processor. This load-balancing scheme results in high message traffic
only in the end of the test generation process. This combined technique resulted in
near linear speedup for up to 16 processors on the largest benchmarks circuits.

Fujiwara and Inoue [36] developed an analytical method to calculate the op
timal granularity and speedup ratio of a fault partitioning system. Here, optimal
granularity refers to the size of the fault list allocated to each processor. The fault-
partitioning system was implemented on a network of Sun workstations and obtained
experimental results for optimal granularity and maximum speedup which showed the

same trends as the analytical results, but the actual performance was less than pre-
dieted.

Major disadvantages of fault-partitioning is the long setup time for amessage-
passing system. The whole ATPG program and circuit database must be loaded into
the memory of each processor across the message fabric. If the total amount of work
that can be divided among the processors is large, i.e. when the fault list is long, then
the percentage of time spent on setup can be kept small and this scheme has promise.
Moreover, the method performs poorly if most of the processing time is spent only for a
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few hard-to-detect faults. The experimental results published for systems based on this

technique show that linear speedup is possible only for a small number of processors,
y

usually less than 10 [36], [78].

2.3.2 Heuristic Parallelization

Heuristics are used to guide ATPG process and it has been found that many heuris

tics will produce a test for a given fault within some computation time limit while

other heuristics fail to do so [24]. These complementary heuristics can be used in a

multiprocessor system to aid ATPG. Chandra and Patel [23] used two basic strategies:

a variation of the fault-partitioning scheme and concurrent parallel heuristics. The

variation of the fault-partitioning method is termed as uniform partitioning in which

the fault list is divided among the processors and each generates tests for the faults on

its own portion of the list. However, multiple heuristics are used in sequential order

to generate the tests, and if a heuristic fails to generate a test within a time limit,

that heuristic is discontinued and the next one on the list is begun. This scheme is

slightly better than the fault-partitioning scheme described above because the multi

ple heuristics shorten the test generation time for hard-to-detect faults. Chandra and

Patel [23] found that this strategy produces almost linear speedup for a system of five

distributed-memory processors.

In the concurrent parallel heuristic method, the ATPG system is required to

have k x h processors, where h is the number of different heuristics available. If k equals

1, each processor computes a test for the same fault using one of the h heuristics. In

the case of the successful generation of a test for the fault by a processor, it sends

a "stopwork" message to the other processors in the cluster and they stop processing

that fault. A new fault is selected from the list and the process begins again. When

46



k is greater than 1, the processors are clustered into groups of h and each cluster

works on a separate fault. Hence, the system is actually using a combination of the

fault-partitioning and heuristic parallelization schemes.

The major drawback of the concurrent heuristic method is that for each fault,

the work of the h- x processors is wasted, where x is the number of heuristics used by

the uniform method for generating a test. Chandra and Patel [23] found that for most

of the benchmark circuits the concurrent heuristic method generally does not perform

well as compared to the uniform partitioning method. In some cases, the concurrent

heuristic method, on a system of five distributed-memory processors, produced no

speedup over a uniprocessor system.

2.3.3 Search-Space Partitioning

Search-space partitioning is a method which parallelizes the work on a single fault by

dividing the search space into independent parts and evaluating them concurrently.

This approach implements the popular branch-and-bound method in parallel and in

volves concurrent evaluation of subproblems. The search-space partitioning technique

is also referred to as OR parallelism. Patil and Banerjee [77], [79] have developed a

parallel branch-and-bound method for the ATPG problem using OR parallelism. Their

method is based on Podem which orders the search space that can be divided easily.

The process of dividing a search tree is illustrated in Figure 2.12. Initially, the search

space belongs to a processor Xthat is divided into two parts for processors Xand Y. It

may be noted that the processors are in fact working on disjoint search spaces. During

test generation, ifprocessor Xfinds a conflict, it backtracks and tries an alternate value

for input a. In case processor Yfinds a conflict, the processor Ybacktracks and tries

an alternate value for input c. Hence, each processor will backtrack to a different place
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in the search space. This approach keeps the current search space as large as possible
making the search more efficient.

Patil and Banerjee [77] implemented the search-space partitioning scheme on a
16 node Intel iPSC/2, i.e. ahypercube message-passing machine. The results presented
by them showed that the parallel algorithm runs much faster than the uniprocessor
implementation and exhibits nearly linear speedup for up to 16 processors. The major
problem with this scheme is that the long setup time is required. The entire circuit
database and ATPG program must be made to reside into each processor's memory.
Since processors are dedicated to only one independent task that does not change, there
is very low communications overhead and greater efficiency in this scheme. The search-
space partitioning technique is found most appropriate for circuits that contain asmall

fraction of hard-to-detect faults, since test generation of these faults is a compute-
intensive task. This technique is ideally suited to message-passing systems because
of its course-grained parallelism. Motohara et al. [74] also presented asearch-space-
division method for hard-to-detect faults. They have implemented their technique on
aLinks-1 multimicroprocessor system. Using the search-space-division method, linear
speedup for up to 50 processors is reported to have achieved on several benchmark
circuits with up to 1000 gates.

2.3.4 Algorithmic Partitioning

Algorithmic partitioning allows more than one processor to work simultaneously on
finding a test for asingle stuck-at fault. It uses the divide-and-conquer approach,
dividing the process into smaller independent subtasks that can be assigned to separate
processors to be executed in parallel. This method of parallelization is also known
as AND parallelism or functional partitioning. Most of the serial ATPG algorithms
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discussed in the previous sections are difficult to parallelize functionally. The few

subtasks that can be identified, such as fault sensitization and path sensitization, are

not independent. Motohara et al. [74] presented a parallel scheme which uses a type of

functional partitioning to remove the easy-to-detect faults from the fault list. In this

scheme, the procedure of removing the easy-to-detect faults is carried out before the

parallel method for hard-to-detect faults discussed in the previous subsection is run.

A linear speedup for up to 10 processors is achieved during algorithmic phase. Lover

(Logic verification) system [70] developed by Ma et al. is also based on a functional-

partitioning approach. Although logic verification is a different problem than ATPG,

with different objectives and constraints, some of the steps required for both these

problems are similar. The novelty about the Lover system is that it includes a dynamic

scheduling scheme that keeps all processors busy.

2.3.5 Topological Partitioning

The requirement of all the parallel techniques discussed so far is that each processor

must have access to the entire circuit database. This may pose a severe problem for

large circuits because each processor may not have enough memory to hold the entire

circuit database. Furthermore, in a message-passing system loading large database into

memory takes time. Topological partitioning overcomes this problem by partitioning

the circuit into separate sub-circuits and instantiating each on a different processor.

Hirose et al. [54] used a topological partitioning for parallel logic simulation and gen

erated test patterns for combinational logic circuits. The major disadvantage of their

approach is that it has been tailored to one specific-purpose machine and is not suited

to the many readily available general-purpose multiprocessors. Smith et al. [98] dis

cussed six different partitioning schemes for circuit partitioning. These schemes are:

V£17^R
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random partitioning, natural partitioning, partitioning at gate level, partitioning by

element strings, and partitioning by fan-in and fan-out cones. All these partitioning

schemes are described in [98]. The results presented by Smith et al. indicate that for

simulation, random partitioning scores best in concurrency but worst in interproces-

sor communication. Kramer presented a system based on circuit partitioning for the

Connection Machine [61]. This system goes to the extreme of instantiating each gate

on a single Connection Machine processor or a group of processors. This approach

is viable only because the Connection Machine has very fast interprocessor commu

nication and the ATPG algorithm used finds test patterns for all of the faults in the

circuit simultaneously. The algorithm is communication bound and the approach is

tailored specifically for the Connection Machine. The disadvantage of this approach

is that runtime increases exponentially for circuits with more than 15-18 inputs and

therefore, unsuitable for most of the practical circuits.

Although applications of parallel and distributed network of machines to the

ATPG problem has shown some promising results, but much work remains. Each ofthe

parallelization techniques discussed above has some drawbacks. No technique, except

search-space partitioning, has demonstrated the capacity to produce linear speedup

for more than 16 processors. Search-space partitioning technique shows the greatest

promise for scalability to large number of processors. However, this technique does not

answer the problem of large databases created by increasing VLSI circuit sizes and it is

applicable only to hard-to-detect faults. Furthermore, it does not address acceleration

of the ATPG process for easy-to-detect faults which constitute the majority of the

fault list for most practical circuits. Therefore, it becomes necessary to investigate
new techniques for solving the compute-intensive ATPG problem, so that they can be

easily extended to run on massively parallel and distributed computing platforms. The

following section describes some of the recently developed approaches to solve ATPG
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problem that can easily exploit fine-grain parallel computing and in general allows

effective use of parallel processing.

2.4 Recent Approaches

Optimization methods and Boolean satisfiability are the most recent approaches at

tempted to find the solution of the ATPG problem. Although these problems are

also as hard as the test generation itself, but they have two significant advantages.

First, several operations research technique like linear and non-linear programming

and graph-theoretic algorithms may be made applicable to the test generation problem.

Second, the non-causal form of the model allows the use of parallel processing for the

compute-intensive ATPG problem. These approaches formulated the test generation

problem as optimization or Boolean satisfiability problem. This problem formulation

has three necessary and sufficient conditions that any set of signal values must satisfy

to be a test.

1. The signal in the fault-free and faulty circuits at the fault site must assume

complementary values, e.g. 1 and 0 respectively for a stuck-at-0 fault.

2. The fault-free and faulty circuits should produce different output values for the

same test vector.

3. The set of values must not violate the functionality of any gate of the circuits.

Based on these conditions a test generation network, known as ATPG constraint net

work, is constructed which incorporates the ATPG constraints.
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Figure 2.13: ATPG Constraint Network.

2.4.1 ATPG Constraint Network

The ATPG constraint network is constructed by joining the circuit-under-test and
its faulty image that is acopy of the sub-circuit affected by the fault. The primary
output(s) of the fault-free and faulty circuits are connected through an output interface
to ensure that at least one primary output (PO) of the faulty circuit will be different
from the corresponding fault-free PO. The output interface will consist of „two-input
exclusive-OR (XOR) gates and one n-input OR gate, where nis the number of POs
in the faulty image of the circuit. The inputs to an XOR are the corresponding POs
of the circuit-under-test and the faulty image. The output of the OR gate is assigned
afixed value of 1throughout test generation. For asingle-output of the faulty circuit,
the output interface will consist only a single XOR and whose output will also be
constrained to a value 1. The circuit-under-test, its faulty image, and the output
interface constitute the ATPG constraint network as shown in Figure 2.13.
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2.4.2 Optimization Methods for Test Generation

Chakradhar et al. [20] formulated the ATPG problem as an optimization problem by ^

using an unconventional digital circuit modeling technique which constructs a neural

network for a given digital logic circuit. This modeling technique relates the input and

output signal states of a logic gate through an energy function. The energy function

is defined over a network of neurons such that the minimum-energy states correspond

to the gate's function. Similarly, the function of an entire digital logic circuit can

be expressed by a single energy function. This technique models every signal (net), 4

represented by a neuron in the circuit, and the value on the net is its activation value,

i.e. either a logical 0 or 1. The neurons corresponding to the primary inputs (outputs)

of the circuit are called primary input (output) neurons. Neurons corresponding to the

input (output) signals of a gate are called input (output) neurons. Neural networks

for 2-input AND, OR, NAND, NOR, XOR and XNOR gates and 1-input NOT gate

constitute the basis set and gates with more than two inputs are constructed from this ^

basis set.

The neural network for a digital circuit is represented by combining the neural

networks for the individual gates of the circuit and characterized by an energy function

E that has global minima only at the neural states consistent with the function of all

gates in the circuit. This energy function E is uniquely specified by the weights on the

links connecting the neurons and the thresholds of the neurons. The energy function ^

of the neural network will be of the form:

£(*) = -s E E Qu***i - E <w + K (2-1)
1 «=1j=l i=l

where n is the number of neurons in the neural network, Qij is the weight associated

with the link between neurons i and j such that Qa = 0, x,- is the activation value of

•f

neuron i, Ci is the threshold of neuron i and K is a constant.
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Figure 2.14: (a) 2-input AND gate and (b) its neural network model.

It is important to note that the energy function for a network in the basis set

assumes a global minimum value 0 at all consistent network states and greater than

0 for all other network states. Neural networks for 2-input AND, OR, NAND, and

NOR gates consist of three neurons that correspond to the input and output nets of

the gate. As an illustration, 2-input AND and XOR gates and their corresponding
neural networks are shown in Figure 2.14 and 2.15 respectively. It may be noted that

the XOR neural network has an additional neuron that does not correspond to any
external net associated with the gate. This neuron has an activation value 1 when

both inputs to the gate are 1.

In this optimization based approach, first the ATPG neural net is constructed

for the test generation network by using the digital circuit modeling technique based
on neural network. Afault is injected into the ATPG neural net by assigning fixed
activation values to the fault-free and faulty neurons. After fault injection, the output
interface incorporates aconstraint by assigning afixed value of 1to its output in order
to ensure that at least one primary output of the faulty circuit will be different from

the corresponding fault-free circuit output. Therefore, if the fault is testable, there
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Figure 2.15: (a) 2-input XOR gate and (b) its neural network representation.

exists a consistent labeling of the neurons in the ATPG neural net with values from

the set {0, 1} that does not violate the functionality of any gate. A test pattern can

be found for a given fault by finding a minimum energy state of the ATPG neural net

by using an appropriate optimization technique. The activation values of the primary

input neurons in the consistent labeling of the ATPG net form the required test pattern

for the given fault.

Several optimization methods have been applied to find the global optimal for

generating the test patterns for some target fault. These methods are either using an

actual neural network or based on the use of serial or parallel computers to simulate

the neural network. Due to non-availability of large scale implementations of neu

ral networks, only simulation-based approaches have been explored and a continuous

optimization technique for test generation is reported [21] which simulates an analog

neural network on a commercial neurocomputer. Gradient-descent and probabilistic

relaxation methods [20] and graph-theoretic techniques [19], [22] have been attempted

for the energy minimization formulation of the test generation.
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Iterative Relaxation Methods for Energy Minimizat ion

Afast gradient-descent search algorithm has been used to find the global minimum of

the energy function derived for the test generation problem. In this problem formula
tion, all the global minima of the energy function will be zero. If the search terminates

at alocal minimum for which the final energy of the network is non-zero, aprobabilistic
relaxation technique is used to determine the global minimum. The gradient-descent
algorithm is a greedy algorithm and therefore can terminate at a local minimum due

to the fact that it only accepts moves which reduce the energy of the neural network.

In order to avoid stucking at the local minimum, probabilistic algorithms are devised
which also accept some moves that increase the energy of the neural network. Since

the final objective is to find the global minimum of the energy, higher-energy moves are
only accepted in a probabilistic sense. Thus, higher-energy moves are allowed with a

probability of entering into the global minimum area but lower-energy moves are statis
tically favored. These probabilistic search algorithms are also referred to as simulated
annealing methods [10], [76], [84], [105].

The probabilistic methods use acceptance probability pk which is the probability
that the state of the neural network with xk =1is preferred over the state with xk = 0.
The acceptance probability is given by

1

Pk i + e-AEk/T- (2.2)

where AEk is the energy difference between the two states of the neural network 5,
and S2 and given by AEk = E(S2) - E(St). S, and S2 be the state of the neural

network in which the feth neuron has activation value 1and 0respectively. Arandom
number r between 0and 1is generated and if r<pk, state S1 is accepted as the next
state. Otherwise, state S2 is accepted. The probabilistic method minimizes the energy
function E by starting at an initial value of the parameter Twith some (possibly
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random) initial state of the neural network. At the initial value of the parameter T,

a sequence of states (constituting a single Markov chain) is generated and the value

of T is successively lowered to generate subsequent Markov chains. Eventually as T

approaches 0, state transitions become more and more infrequent andfinally, the neural

network stabilizes in a state which provides the final solution. Consequently, it is an

approximation algorithm. The initial value of T, the number of states in the Markov

chain at each value of T, and the rate of decrease of T are all important parameters

that affect the speed ofthe algorithm and the quality ofthe final solution. However, the

choice of these parameters for a specific problem is not straightforward and therefore,

other methods based on quadratic 0-1 programming technique have been devised for

energy minimization.

Graph-Theoretic Methods for Energy Minimization

The aim in the optimization-based test generation approach is to minimize the energy

function E(x) given by (2.1). This energy function can be written in the form of a

pseudo-Boolean quadratic function [52]: E(x) —xTQx + ex, where Q is a symmetric

n x n weight 'matrix with null diagonal elements, c is a vector of n real numbers

(thresholds of the neurons), x is a vector of n binary variables, and xr is a transpose

of x. Finding the minimum of the pseudo-Boolean quadratic function is known as

the quadratic 0-1 programming problem. The representation of the energy function in

the pseudo-Boolean quadratic function form has a significant advantage that a wide

range of techniques available for quadratic 0-1 programming may become applicable

for solving the test generation problem.

Although, several algorithms [13], [14], [18], [43], [51], [53], [67], [80], [100],

[101], [107] have been developed in the past to find the minimum of the pseudo-Boolean
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quadratic function, but the disadvantage of these algorithms is twofold: first, they
not suitable to provide the global minima for the functions with large number of

ables. Second, these algorithms have not considered the special structure of the pseudo-
Boolean quadratic function derived for the test generation problem. Chakradhar et al.

[19] developed aquadratic 0-1 programming technique based on graph-theoretic meth
ods to find the global minimum of the energy function derived for the test generation
problem. This technique has shown some promising results for solving the test gener
ation problem and therefore, deserves further attention.

2.4.3 Test Generation Using Boolean Satisfiability

The test generation method using Boolean satisfiability developed by Larrabee is nei

ther a purely structural method nor an algebraic one [64], [65], [66]. In this method,
a formula expressing the Boolean difference between a fault-free circuit and its corre

sponding faulty sub-circuit is constructed and represented in conjunctive normal form

(CNF), also known as product of sums. This formula is then satisfied by applying a
SAT algorithm in order to obtain the test patterns for agiven set of faults. However,
the problem of satisfying a CNF formula (SAT problem) is an WP-complete prob.
lem [29]. But, the transformation of the test generation problem into a SAT problem
has an advantage that SAT algorithms can be applied to generate test patterns.

Interestingly, the class of formulas generated by combinational circuits consists

at least two thirds of the clauses that have only two disjuncts (are in 2CNF). This is true

because each 2-input unate gate contributes two binary (2CNF) clauses and one ternary
clause as shown in Figure 2.16. Unate gates with more than two inputs contribute more

than two thirds binary clauses, and fan-out points, buffers, and inverters contribute

only binary clauses. In practice, 80% to 90% of the clauses are found in 2CNF. However,
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Figure 2.16: CNF formulas for the basic gates.

the problem of satisfying a 2CNF formula, 2SAT, is satisfiable in time linear in the

number of clauses plus the number of variables [11], As there may be an exponential

number of 2SAT solutions, the ternary clauses can be used to guide the iteration

through the 2SAT assignments.

Larrabee used the linear-time algorithm for satisfying a 2CNF formula [11] to

solve the SAT problem by constructing an implication graph. In the implication graph,

there are two vertices labeled X and X for each variable X occurring in the 2CNF

clauses and for every 2CNF clause (X + Y) there are two directed edges in the graph:

one from X to Y and another from Y to X. As an example, consider a circuit shown

in Figure 2.17(a). Boolean expression in CNF form for the circuit is given below.

(A + Al).(A + A1).{A + A2).{A + A2).(A1-rB).(A1-rB).{C + A2).{C + B).(A2 + B + C)

The implication graph of the 2CNF portion of this formula is shown in Figure 2.17(b).

Signal contradictions are determined by finding strongly connected components in this

implication graph which has two strongly connected components: {A2, A, A\, B) and

its complement {A2, A, A\, B). The reduced implication graph shown in Figure 2.18

clearly shows that C implies C and therefore C must be bound to 0. In the example

60



A,

-i {>
B

(a)

(b)

Figure 2.17: (a) An example circuit and (b) its implication graph.

circuit also, C is equal to A.A which reassures that Cmust be bound to 0. Given the

binding of C, only one unbound node in the graph remains, and it can assume either

Boolean value and remain consistent with the ternary clause.

Larrabee developed an ATPG system based on the Boolean satisfiability method
in which test generation is performed in two phases: random and algorithmic. In the
first phase of Random Test Generation (RTG), 32 pseudo-random test patterns are
simulated by using a PPSFP simulator reported by Waicukauski et al. [106]. In this
phase, test patterns for the easily tested faults (generally 80% to 99% of total faults)
can be generated. Second phase performs algorithmic test generation is performed that
is based on the Boolean satisfiability and determines the remaining faults of the circuit.
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Figure 2.18: Reduced implication graph.

A similar approach has been attempted by Chakradhar et al. [22] in which a

formula is constructed with a difference that Boolean false function is derived instead

of the analogous Boolean truth function. Consider an example of 2-input OR gate with

a, b as inputs and c its output. Since c = a + b, it is easy to see that the equation:

For = c © (a + b) = 0 (2.3)

is satisfied only by those values of a, b and c that satisfy the OR gate function. Here,

© denotes the logical exclusive-OR (XOR) operation. For is referred as the Boolean

false function for the OR gate and can be written as

For —ac + be + abc (2.4)

where + denotes the logical OR operation. A similar formulation is possible for repre

senting the OR gate as an energy function where a, band c were treated as arithmetic

variables. The Boolean false functions of all the primitive gates can be computed in

the same way. The false function for a digital circuit is the logical OR of the false

functions for all gates in the circuit and consists of a set of binary and ternary rela

tions. The problem of determining a signal assignment that satisfies the false function

is equivalent to minimizing the energy function of the digital circuit.
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Atransitive closure based algorithm [22] has been proposed for test generation

by determining signal values that satisfy the Boolean equation derived for the ATPG

constraint network which incorporates necessary conditions for fault activation and

path sensitization. This algorithm is asequence of two main steps that are repeatedly
executed: transitive closure computation and decision making. Since the implication

graph only includes local pairwise (or binary) relations, it is a partial representation

of the netlist. Higher-order signal relationships are represented as additional ternary
relations. The transitive closure of the implication graph determines global pairwise
logical relationships among all signal pairs. These relationships either force values on

some signals or indicate contradictory requirements caused by a redundant fault. A

test is found if signals thus determined satisfy the Boolean equation. Otherwise, this
algorithm enters into the decision-making phase in which an unassigned signal is fixed
and the transitive closure is updated to determine logical consequences of.this decision.

Transitive closure determines four basic conclusions: contradiction - an im

possible signal relation, fixation - a0or 1value for asignal, identification - two signals
must assume identical value, and exclusion - two signals must not assume certain

states. Akey feature of the algorithm is that dependencies derived from the transitive

closure are used to reduce ternary relations to binary relations that in turn dynamically
update the transitive closure. The signals are either determined from the transitive

closure or enumerated until the Boolean equation is satisfied.

The ATPG program implementing the transitive closure based test generation
algorithm also includes a random test generator and a fault simulator. In the first

phase, the system randomly generates test patterns and perform fault simulation. The

random test generation is followed by deterministic test generation based on transitive

closure computations. Fault simulation is performed after every test vector to eliminate
other detected faults. Experimental results appeared in [22] show that most of the faults
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are detected using random test generation and only the fraction of the total number

of faults are detected by transitive closure algorithm.

2.5 Problem Formulation

The ATPG problem is known to be AfP-complete problem and conventionally, the

generation of test patterns is characterized as a search of A^-dimensional 0-1 state

space, where N is the number of primary inputs in a combinational circuit, and the

search process is guided by heuristics. In spite of considerable research progress, the

ATPG algorithms developed so far still require enormous computational resources for

generating the test patterns. Moreover, conventional ATPG algorithms are targeted to

run on serial (uniprocessor) computers. Although attempts have already been made

to solve the ATPG problem on parallel and distributed network of machines, but

limited success has been achieved as the parallelization techniques developed so far

could not produce linear speedup for parallel machines with large number of processors.

Hence, new concepts and cost-effective approaches are, therefore, imperative in order to

efficiently solve the compute-intensive ATPG problem as the complexity of the circuits

is several tens of thousands of logic gates.

The availability of massively parallel computers nresents a new promising

paradigm for compute-intensive VLSI-CAD applications like ATPG problem. Efforts

have been made towards the investigations of new test generation approaches that can

easily be extended to massively parallel computing. A major outcome of these efforts

are optimization and Boolean satisfiability based test generation approaches. The sig

nificant advantage of these approaches is twofold: first, several operations research

techniques and satisfiability (SAT) algorithms are applicable to solve the ATPG prob

lem and second, they are easy to parallelize. Hence, special attention is required to

64



focus optimization and Boolean satisfiability approaches to solve the ATPG problem.

In the optimization approach, the ATPG problem is transformed into an energy mini

mization problem by deriving the energy function for the circuit-under-test using the

unconventional digital circuit modeling technique. So in order to obtain the required

test patterns for some target faults, efficient algorithms are to be developed to find the

global minima which in turn provide the test patterns. As far as the Boolean satisfia

bility approach is concerned, Boolean false function expressing the Boolean difference

between the fault free and faulty circuit may be derived instead of the Boolean truth

function. The advantage of doing so is that the problem of determining a signal assign

ment can be made by minimizing the Boolean false function to 0 which is equivalent

to minimizing the energy function of the optimization.

In energy minimization formulation of the ATPG problem, the energy function

obtained is a pseudo-Boolean quadratic function, i.e. of the form: E(x) = xrQx +cx,

where Q is a symmetric n x n weight matrix with null diagonal elements, c is a vec

tor of real numbers (thresholds of the neurons), x is a vector of n variables, and xT

is a transpose of x. Quadratic 0-1 programming technique based on graph-theoretic

methods has been developed to find the global minimum of the energy function de

rived for the ATPG problem. However, new algorithms may be investigated in order to

exploit the special structure of the pseudo-Boolean quadratic function obtained from

the test generation problem. Some traditional search and optimization methods like

gradient-decent and probabilistic methods have also been attempted for the energy

minimization. But, these methods have their limitations and are not robust. Ge

netic Algorithms (GAs), on the other hand, are robust, innovative and highly reliable

global optimization and search algorithms and, surprisingly, not applied to this kind
of optimization problem.

Keeping all the above points into consideration, this thesis focuses to investi-
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gate new quadratic 0-1 programmingtechniqueand Genetic Algorithms based methods

for solving the ATPG problem that is formulated as an optimization or a Boolean sat

isfiability problem. The development of a CAD tool based on these algorithms for

generating test patterns automatically is also a part of the thesis.
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Chapter 3

A New Quadratic 0-1

Programming for Test Generation

This chapter mainly focuses on the energy minimization formulation of the test gen

eration problem which has the similarities to the minimization of the Boolean false

function in the satisfiability based approach. Optimization algorithms like directed

search technique augmented by probabilistic relaxation and simulated annealing [10],

[20], [59], [76], [84], [105] have been initially considered for the energy minimization.

The disadvantage of these algorithms is twofold: first, it becomes too time-consuming

due to their complex annealing schedule [9] and second, the mapping of the domain-

specific (i.e. test generation) problem into the simulated annealing paradigm is not

straightforward. Therefore, there is a need to develop efficient algorithms for the en

ergy minimization problem.

Since the energy function for the test generation problem is of the form of

a pseudo-Boolean quadratic function E : {0,l}n ^ 11, a whole suite of techniques

available for the quadratic 0-1 programming problem can be applied to find a solution.
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The pseudo-Boolean quadratic function E(x) is defined as

E(x) = xTQx + cTx, (3.1)

where

x = (xi, x2,..., xn) ;

Q = [Qij\ is a real symmetricmatrix of order n, V i, j € {1,2,... ,n};

c = (ci,c2,...,cn) ; and

x, ' = 0 or 1, V %= 1,2,... , n.

The quadratic 0-1 programming problem is to find the minimum of the quadratic

function E(x). The problem of finding the minimum of E(x) is an iVP-complete prob

lem [38], for which various algorithms have been proposed in the past and reported in

the review chapter. Out of these algorithms very few have been considered for the VLSI-

CAD applications. A linearization mechanism proposed by Glover and Woosley [43]

transforms the quadratic function E(x) and the constraints into a mixed linear pro

gram by means of the introduction of a set of linearization variables, y,j = x,Xj and

the following set of constraints on the y-variables:

x,- -I- Xj - yij < 1,

xi ~ Vij > 0,

and Xj —y^ > 0.

The advantage of using linearization is that the algorithms developed for linear pro

gramming problems can be effectively applied. Other algorithms for finding the mini

mum of pseudo-Boolean quadratic function E(x) are either based on the branch-and-

bound method [18] or using the graph-theoretical approach [13]. Usingthese traditional

techniques, there is little hope to find exact solutions to even modest-sized problems,
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i.e. functions with less than 150 variables. As far as the test generation problem is

concerned, the number of variables in the energy function which is linear in terms of

the number of signals in the combinational logic circuits, is very high. Therefore, it

is quite unlikely that these techniques can be used to find exact solutions to the test

generation problem for the circuits having more than about a hundred signals. In ad

dition, the special structure of the pseudo-Boolean quadratic function arising from the

test generation problem could not be much exploited. Chakradhar et al. [19] initially

proposed a technique known as quadratic 0-1 programming technique for the test gen

eration problem for finding exact minima of the energy function. This technique is
detailed below.

3.1 Quadratic 0-1 Programming Technique

In this technique, the energy function of the form of the pseudo-Boolean quadratic

function is first written in apositive pseudo-Boolean form called posiform. Aposiform is

any sum of monomials with positive coefficients and a monomial is a product aT where

T is a term {i.e. a finite product of distinct literals) and a is a real number called the

coefficient of the monomial. Aposiform without a constant term is homogeneous and

aposiform with a constant term is inhomogeneous. The energy function E in posiform

can be divided into two sub-functions - ahomogeneous posiform and an inhomogeneous
posiform. This technique could exploit the following result to efficiently minimize the
energy function:

A minimizing point of a quadratic homogeneous posiform, known to he

minimum value 0, can be obtained in linear time complexity in the number of variables
and terms in the function [16].

lave a
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(a) (b)

Figure 3.1: (a) An AND gate and (b) its neural network model.

To explain this technique, let us consider the AND gate and its neural network
model as shown in Figure 3.1. Its energy function is derived from the test generation
problem formulation described in the previous chapter and given by:

EAND(a, b, c) =[2c(l - a)} +[2c(l - b)} +[2(c - ac - be +ab)} (3.2)

It may be observed that all the three terms in this function are non-negative and hence,
Eand = 0requires each term should simultaneously become 0. The first two terms

can be written in posiform as

EAND{a, b, c) = [2ca] +[2cb] +[2(c - ac - be +ab)} (3.3)

The sub-function comprising the first two terms is a homogeneous posiform with a
minimum value of 0. The third term can be rewritten only as an inhomogeneous

posiform: 2<zc +26c +2ab +2c-2. Similar models and energy functions can be derived
for other logic gates [20]. Hence, the energy function for the entire circuit, ECKT, can
be expressed as two sub-functions, ahomogeneous posiform E„ and an inhomogeneous
posiform Eu each having aminimum value of 0. Furthermore, all circuit signals appear
in the homogeneous posiform which suggests the following method to minimize the

energy function:
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1. Find anew minimizing point aof EH. The time complexity of this step is linear
in the number of variables and terms in EH [16].

2. Check if a is also aminimizing point of Et. If yes, then a is aminimizing point
of Eckt and atest vector is obtained. Otherwise go to Step 1.

Although the minimizing point a of E„ can be obtained in linear time, but the ho
mogeneous posiform may have exponentially many minimizing points and therefore,
abranch-and-bound technique is needed to systematically enumerate all minimizing
points of EH to find aminimizing point of ECKT. Alinear-time algorithm by Aspvall
et al. [11] was used to find all the minimizing point of the homogeneous posiform [19].
This algorithm constructs adirected implication graph and finds its strongly-connected
components to construct the condensation graph. Larrabee also used asimilar approach
but formulated the test generation problem as aBoolean satisfiability problem [66].

Let us consider the test generation problem for the stuck-at-0 fault at the
primary output (PO) dof the circuit shown in Figure 3.2(a). Since the fault is at PO,
there is no need to create afaulty circuit copy. The energy functions for the individual
gates can be derived following the technique of Chakradhar et al. [20] and are given as
below:

ENOT{b,a) = [2ab] +[2ab] (3 ^

EAND(a,b,c) = [2ca] + [2cb] +[2(c - ac - be +ab)} (3.5)

EoR(a,c,d) = [2aa) +[2cd] +[2(d - cd - ad +ac)] (3.6)
The energy function for the circuit is:

Eckt = ENOT{b,a) +EAND{a,b,c) +EoR{a,c,d) (3.7)
The homogeneous posiform is

EH = [2ab] +[2db] +[2ca] +[2cb] +[2ad\ +[2cd] (3.8)
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(a)

(b)

Figure 3.2: (a) An example circuit (b) Neural network representation of the example

circuit for d stuck-at-0 fault.

and the inhomogeneous posiform Ei consists the remaining terms ofEckt which comes

out to be

Ei = [2(c - ac - be + ab)} + [2(d - cd - ad + ac)] (3.9)

In order to sensitize the stuck-at-0 fault at d, the value at dshould be 1and therefore,

Eh can be reduced to:

EH = [Tab] + [2ab] + [2ca] + [2d] (3.10)

Chakradhar et al. [19] construct an implication graph for the homogeneous posiform,

Eh- The implication graph corresponding to (3.10) and its condensed form is shown

in Figure 3.3.

Now, a minimizing point of the EH is found by using a linear-time algorithm

of Aspvall et al. [11]. Let the components c and its dual c be marked first. By setting
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c= 0, c implies the strongly connected component {a, b}. This strongly connected
component of the implication graph should be assigned to 1as it can not be assigned
to 0because of the illegal assignment. Therefore, {a, b} should be assigned to 1. Now
mark the component {a, 6} and its dual {a, b} and set a= 0, I = 0and a= 1and
6=1. This leads to aminimizing point of EH for the assignments a=c=0and 6=1.
These values of a, band cevaluates EH =0, but Ej does not evaluate to 0and hence,
a new minimizing point of EH is required.

Using a branch-and-bound search method on the variables c and a, all the
minimizing points of EH can be systematically generated. So, if c= 1, then literal
components {a, 6} and {a, 6} should be assigned 1which causes a conflict because

variable and its complement are being assigned the same value. Thus, c= 1does not

lead to the minimizing point of EH- Now, backtrack and set c=0which does not imply
^ any other variable. Assign a=0and set all literals in the component containing ato 1.

This results in 6=1and the minimizing point of EH is a=c=0, 6=1. Unfortunately,
this minimizing point of EH also is not aminimizing point of £7. Again backtrack and
re-assign a = 1which results in 6= 0and the minimizing point a= 1, 6= c = 0
which is also aminimizing point of E,. Hence, 6=0is the test pattern for the fault d
stuck-at-0.

j This simple example shows that in the worst case, one may have to examine all
2" combinations of nvariables to systematically enumerate all minimizing points of EH
in order to find a minimizing point of ECkt- Several ideas like transitive closure and
incorporation of additional constraints using problem-specific knowledge are suggested
to accelerate the minimization process [22]. These ideas can be easily incorporated in
other graph-theoretic methods for test generation [66]. The advantage of the transitive
closure method is that it identifies the variables that must assume constant values at
all minimizing points of E„. The additional constraints may be derived from the path
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Figure 3.3: (a) Implication graph for the example circuit and (b) its condensed form.

sensitization information and can be included into the energy function. Keeping all

these points into consideration, a new quadratic 0-1 programming technique [96] given

below has been proposed.

3.2 A New Quadratic 0-1 Programming Technique

In the test generation method using quadratic 0-1 programming technique [97], the aim

is to minimize the energy function which is of the form of the pseudo-Boolean quadratic

function E(x) = xrQx + cTx as defined in (3.1). In order to find the minimum of

E(x), first of all the partial derivatives of E(x) with respect to each of the x^'s are

calculated. There is no loss of generality if it is assumed that E(x) is differentiable on

[0,1], i.e. |^ exist Vx,- € [0,1] with the following remarks:

• The objective function E consists of a finite number of terms r.
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• W( wil1 be linear functions of x.-'s as E is at the most quadratic function in terms

of x,-'s.

Therefore, all —-, must also consists of finite number of terms and consequently —

must lie in a finite interval. Also,

8E0^ = g(x1,x2,...,xn),Vi = l,2,...,n. (3.11)

Here g is linear in x,. Hence, it is possible to calculate the minimum and maximum of

all possible values of |£, Vi = 1,2,..., n.

Let minp and maxp denote the minimum and maximum value of f£ respec
tively. These values are calculated over the entire domain and taking into consideration

all the constraints. In the calculation of minp and maxp, the following steps are to be
considered:

Step 1. If for any x,-, maxp is found to be < 0, minp will always be < 0. It means

that over the entire domain and considering all the constraints, j£ takes values
which are < 0 irrespective of the values taken by other variables. Therefore,

one can say that the function E(x) is monotonically decreasing in terms of the

variable x, as shown in Figure 3.4(a). Thus, it is concluded that

[E(x)]Xi=1 < [E(x)}Xi, Vx,- € [0,1] (3.12)

irrespective of the values taken by other variables. Hence, it is advisable to pivot

x,- at value 1 in order to yield a better value as the main objective is to minimize

E.

Step 2. If for any x„ minp is found to be > 0, maxp will always be > 0. It means

that over the entire domain and taking all theconstraints into consideration ^
' dxi

takes values which are > 0 irrespective of the values taken by other variables.
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Figure 3.4: [E(x)}Xt as function of x,-

Therefore, one can say that the function E(x) is monotonically increasing in

terms of the variable x,- as shown in Figure 3.4(b). Thus, it is concluded that

[£(x)L>=o < [£(x)]Xi,Vx,-€[0,l] (3.13)

irrespective of the values taken by other variables. Hence, it is advisable to pivot

x, at value 0 in order to yield a better value in terms of the minimization of E.

Step 3. In steps 1and 2, some of thex, variables are pivoted at 0or 1. Because of this

fixation, the minp and the maxp values may get altered. So, evaluate them ac

cordingly and repeat steps 1and 2 until no further variable gets fixed assignment

or a condition called Stability Race Condition given below is encountered.

3.2.1 Stability Race Condition

Consider a 2-input AND gate with xu x2 as the inputs and x3 as the output. By the

aid of digital circuit modeling technique using neural networks, the energy function of
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the AND gate can be derived as

E(x) = 2x!X2 - 4xjx3 - 4x2x3-f 6x3 (3.14)

Assuming that this AND gate is a part of a circuit and xx is fixed at a value 1during

the process of the function minimization, the energy function reduces to:

E(x) = 2x2 - 4x2x3 + 2x3 (3.15)

As the aim is to find out the values of x2 and x3 for which the minimum value of

the energy function is 0, the partial derivatives of E(x) with respect to x2 and x3 are

calculated and given below:

dE

dV2 = ~iX3 +2 (3-16)
dE

oV3 = -4x2 +2 (3-17)

and their maxp and minp are computed as:

(dE\ . fdE\

maxp ©=2-mmp ©="2
So, no decision can be taken to pivot either variable. Let us take the decision to pivot
x3 to a value 1. Then it is found that

dE dE
x3 = 1 => -5— = -2 =» x2 = 1 =» —- = -2 =» x3 = 1 .

dx2 »—„—- dx3 ^L,—*
(pivoted) (pivoted)

It means that

x3 = 1 & x2 = 1.

Such a system is said to be stable. Let us now fix x3 to a value 0, then

r) F FIT?

dx2 *—„—« dx3 ^-L.—'
(pivoted) (pivoted)
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i.e.

x3 = 0 <& x2 = 0.

This concludes that the system becomes stable with x2 = x3 = 1 or x2 = x3 = 0

and confirms the validity of the concept as the variable values provide the consistent

labeling of the signal values of the AND gate. Hence, more than one valid solution

may exist for such problems.

3.2.2 Criteria for Fixation of Variables

Various criteria for fixation of variables based on the theoretical concepts given above

have been discussed here. Although due to the functionality of the gates, most of

the variables in the energy function E(x) are inter-related but it is assumed that

such relationships among the variables is taken care by the neural network itself, and

therefore, only the test generation constraints to partition the variable vector x are

considered. These constraints are basically derived from the test generation concepts:

fault excitation and fault-effect propagation. The variable vector x is partitioned into

free variables and related or bound variables. The free variables are the variables which

do not have any constraints. On the other hand, the bound variables are inter-related

by means of x{ + x3 = 1and x{, Xj are not connected with any other variable, i.e. only

the test generation constraints are considered. The maxp, minp and CurrDnes for

each free and related variables are calculated, where maxp and minp are as defined

previously and Curr.Ones is the value taken by §§•, assuming all the unpivoted vector

variables of value 1. The fixation criteria for free and related variables are given below.
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Fixation Criteria for Free Variables

The free variables are the variables not related with any other variable due to the test

generation constraints. Let x,- be a free variable in the function E{x). The criteria for
fixation of the free variables are as follows:

S-I maxp > 0 and minp > 0.

It means that the value of the partial derivative of E(x) with respect to x,
will always be > 0 because it lies in the range of 0 to some positive value.

It implies that the function is monotonically increasing with respect to x,.
Therefore, it is better to fix that particular x, at 0as the goal is to minimize
the function E(x).

S-II maxp < 0 and minp < 0.

This means that the value of the partial derivative of E(x) with respect to
Xi will always be < 0because it lies in the range 0to some negative value.

It implies that the function is monotonically decreasing with respect to x,.
As the problem is of minimization, this implies that it is better to fix that
particular x,- at 1.

The above two are the very strong criteria, i.e. the decision taken is ab

solutely deterministic. Unfortunately, sometimes one might not be able to

decide about the fixation on the basis of the observations S-I and S-II. For

example, consider the case when maxp(§f) = 2, minp{^-) = -2, and

maxP(§^) = 2» miM§^) = -2. In this case, nothing can be said about
the actual values of the partial derivatives and hence no variable can be

fixed. So, in order to handle such situations, the following two more crite
ria are added which can be applied only in the case of a particular variable
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which does not satisfy the criteria S-I and S-II.

S—III CurrJDnes < minp.

Here, the value of CurrJDnes for a particular x,- is less than or equal to

the minimum possible value taken by a partial derivative of E with respect

to x,. Thus, it is better to fix x,- at value 1 in order to yield a minimum

value of the energy function. This is a locally best decision. The criteria is

somewhat weaker than S-I and S-II. But still it is purely deterministic.

S-IV CurrJDnes > maxp.

Here, the value of CurrJDnes for a particular x,- is greater than or equal to

the maximum possible value taken by a partial derivative of E with respect

to x,. Thus, it is better to fix x, at value 0 in order to yield a minimum

value of the energy function. This is a locally best decision. This criteria

is also somewhat weaker than S-I and S-II, but the approach is still purely

deterministic.

Fixation Criteria for Related Variables

The related variables are the bound variables due to the test generation constraints.

Assume x, and Xj to be the related variables, i.e. the variables x< and Xj are related by

the constraints such that Xi + Xj = 1. Here, the decision taken for x, is to be influenced

by the decision taken for Xj which is dependent on partial derivative value of x, as well

as Xj. The criteria for fixing the related variables are as follows:

R-I Unique minimum for x,.

In the CurrJDnes vector of all unpivoted related variables, suppose there

exists a unique minimum, say for x,-. Then, if the constraint is x, + Xj = 1,
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this implies that it is better to fix x,- at 1and Xj at 0in order to yield a
minimum value of energy function E. The decision is taken because if the

criteria is satisfied by x, and Xj, then it indicates that the value taken by
partial derivative of E with respect to x, is less than the value taken by
partial derivative of Ewith respect to Xj. This in turn implies that growth

rate of the energy function E with respect to x,- is less than growth rate of

the energy function E with respect to xj. Hence, it is advisable to fix x,
at 1 and xj at 0. This is a locally best decision. If the unique minimum

does not exists, then this criterion fails and no decision can be made on the

value of x,-. In that case, the following criterion may be considered:

R-II Unique maximum for x,-.

In the CurrJDnes vector of all unpivoted related variables, let there exist

a unique maximum, say for x,. Then, if the constraint is x, + Xj = 1,
this implies that it is better to fix x, at 0and Xj at 1in order to yield a
minimum value of energy function E. The decision is taken because if the

criteria is satisfied by x,- and Xj, then it indicates that the value taken by
partial derivative of Ewith respect to x, is greater than the value taken by
partial derivative of Ewith respect to *,. This in turn implies that growth
rate of energy function Ewith respect to x,- is greater than growth rate of
the energy function Ewith respect to *,-. Hence, it is advisable to fix x,
at 0and xj at 1. This is a locally best decision. However, if the unique
maximum also does not exist, then this criterion fails.

When both the above criteria fail, any one variable is selected for which

the maximum occurs among the CurrJDnes vector of unpivoted related

variables. Let it be x< and its corresponding constraint variable be x;.
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Then the following two more criteria for fixation of the related variables

are added:

R—III When CurrJDnes of x; ^ CurrJDnes of Xj.

This implies that CurrJDnes of x, is greater than CurrJDnes of Xj. Hence,

growth rate of the energy function with respect to x,- is greater than that

with respect to Xj. Hence, it is advisable to fix x,- at 0 and x; at 1 in order

to yield a minimum value of the energy function. Now, suppose a situation

is encountered where CurrJDnes of x,- is equal to CurrJDnes of Xj, then

this criterion also fails. In that case the following final criterion may be

considered:

R-IV When CurrJDnes of Xj = CurrJDnes of Xj.

In this case, one simply cannot say whether to assign x,- to 0 and Xj to 1 or

vice versa. So, a decision can be made randomly i.e. say fix x,- at 0 and Xj

at 1 or vice versa. However, this is the weakest criterion.

So, using the criteria R-I to R-IV, the solution space is continuously ex

plored till all the variables are fixed. Finally the value of the energy function

E(x), which is termed as energy, is computed. The value of E(x) should

be 0 value at its minimum and if the energy obtained is greater than 0, it

means that a wrong decision has been taken somewhere in the fixation of

the related variables. The wrong decision could be possible only due to the

weak criteria chosen. So if such a situation arises, then backtracking has to

be made i.e. the latest decision taken on the basis of the weak criterion has

to be reversed and the solution space needs to be further explored. This

process continues till a zero value for the function E(x) is obtained or till

a point where all decisions made are exhausted by backtracking. That will
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be the worst case for the algorithm. In case a non-zero value is obtained

as the minimum energy value, the fault under consideration is declared

redundant.

3.2.3 Backtracking Procedure

The proposed technique uses the popular backtracking procedure only in the case where

an inconsistency is found during the fixation of the related variables. For backtracking,

one need abacktracking stack for storing the information of various parameters: maxp,
minp, CurrJDnes, Count and Decision where Count gives the number of variables

that are fixed before the last decision is made and Decision gives the value of the

variable fixed at that particular moment. These entries in the stack will be made during
the fixation of related variables based on the weakest criterion R-IV. So, whenever one

decides to backtrack, the system is restarted with the help of these entries as follows:

• First, all the variables that were fixed after count are declared as unpivoted.

• The decision is popped out and reversed.

• System is loaded with stored maxp, minp and CurrJDnes.

Once a backtracking is made, the normal procedure is continued for fixation of the free

and the related variables as explained above, i.e. S-I to S-IV and R-I to R-IV.

3.3 Examples

This section illustrates the proposed technique by generating test patterns for stuck-at

faults in the combinational circuits. Consider the test generation problem for a stuck-

at-0 fault on signal line d in a simple circuit shown in Figure 3.2(a). In this case,
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there is no need to create a faulty copy of the circuit because the fault is at primary

output (PO). The neural network representation for the example circuit is given in

Figure 3.2(b).

Since the energy function for a circuit is derived by using its neural network

representation [20], the energy E for the example circuit is obtained by adding Equa

tions (3.4), (3.5) and (3.6) and substituting all the complement variables using the

following expression:

•Eg — x *~ *C|

where x, is the complement of x,-. Finally, the energy E comes out to be:

E = Gab - Abe - 2ac - Aad - 4cd - 26+ 8c + 2d + 2 (3.18)

Since d is stuck-at 0, the signal d has to be assigned a fixed value of 1 in order to

sensitize the fault. By substituting d = 1 in (3.18), E gets reduced to:

£ = 6a6-46c-2ac-4a-26 + 4c + 4 (3.19)

In this technique, one needs to calculate the partial derivatives of the energy function

E with respect to the remaining variables in (3.19) and their corresponding maximum,

minimum and the value assuming all the unpivoted vector variables have the value 1,

i.e. maxp, minp and CurrJDnes respectively. The partial derivatives of the energy

function E as obtained from (3.19) are:

<P = 66-2c-4 (3.20)
da

^f = 6a-4c-2 (3.21)
ab

^ = -46 -2a +4 (3.22)
ac

and their corresponding maxp, minp and CurrJDnes are computed as:

maxp (—j =2, minp f—)=-6, and CurrJDnes (3- J=°!
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m<lXP ("56") =4' minp \~db) =~6' and CurrJDnes (^) =0;

m<1XP \dc~) =4' minp (~dc~) =_2' and Curr-0nes (y) =-2
In this example, all the variables are free variables as the fault site is aprimary output
which does not affect other part of the circuit. So, the criteria for fixation described

in the subsection 2.2.1 gets applied. Unfortunately, it is not possible to decide the

fixation on the basis of the observations S-I and S-II which holds very strong criteria.
Although, the criterion S-III is somewhat weaker than S-I and S-II, it is applicable to
fix the variable cat avalue 1since CurrJDnes is equal to minp. By substituting c=1
in (3.20) and (3.21), the partial derivatives of the energy function reduce to:

8E
-^ = 66-6 (3.23)
dE
56 = 6a-6 (3.24)

and their corresponding maxp, minp and CurrJDnes become:

maXP \~da~) =°' minp {'£) =~6' and CurrJDnes (—\ =0,

maXP [lb J=°' minp [~dj) =_6' and CurrJDnes (^\ =0,
Now, the criterion S-II becomes applicable to fix both a and 6variables at value 1.

But, by substituting a= 1,6 = 1and c= 1in (3.18), Ebecomes nonzero which means

that solution is not found. It means that the decision of fixing the variable c at a
value 1could not lead to globally best solution. So, backtracking is made by reversing
the decision of fixing the variable c. Now fix the cvariable at a value 0. The partial
derivatives of the energy function comes out to be:

-Q- = 66-4 (3.25)
dE

~db = 6a_2 (3-26)
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and their corresponding maxp, minp and CurrJDnes becomes:

(dE\ 0 . (8E\ (dE\maxp \-fi-) =2, minp 1-^-1 = -4, and CurrJDnes I -g- I = 2, v

maxp I — 1 =4, mznp I — I = -2, and CurrJDnes I — 1 =4,

Again, looking at the values of maxp and minp, both of thestrong criteria S-I and S-II

fail and S-IV becomes applicable in fixing variables a and 6 since CurrJDnes becomes

equal to maxp. Since the criterion S-IV provides only the locally best solution and not

the global one, the decision of fixing one variable at a time should be taken. Now, which ».

variable to be assigned first, is determined by using heuristics. One simple heuristic is

to give priority to the primary input variable if it is available for the assignment. So,

with the help of this heuristic and the criterion S-IV, the variable 6 may be assigned

to a value 0. By substituting 6= 0, the partial derivative of E with respect to a comes

out to be -4, which means that both maxp and minp are iess than 0 and by applying

the criterion S-II, a can be fixed at a value 1. After assigning values to all the variables, K

i.e. a = 1,6 = 0 and c = 0 in (3.19), E comes out to be 0 which is the required solution.

To see the effectiveness of the quadratic 0-1 programming technique just de

scribed, let us consider an ISCAS'85 combinational benchmark circuit, cll.isc for gen

erating a test pattern for the stuck-at-1 fault on line x6 as shown in Figure 3.5(a).

The sub-circuit copy, affected by the fault, with an output interface is shown in Figure

3.5(b). The ATPG neural graph for the given fault in the ISCAS circuit is given in *

Figure 3.6. The weight matrix Q, the threshold vector c and the transpose of the

variable vector, xT to calculate the energy function, E{x) of the neural network are

given by:
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s-a-1

(a)

(b)

Figure 3.5: (a) An ISCAS'85 circuit: cl7.isc (b) Modified ISCAS circuit for the stuck-

at-1 fault on line x6.
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Q =

Figure 3.6: ATPG neural graph for the ISCAS circuit.

0 0 -2 0 0 -4 0 0 0 0 0 0 0

0 0 0 0 0 0 -2 -4 0 0 0 0 0

2 0 0 -2 0 -4 -4 0 0 0 0 0 0

0 0 -2 0 0 0 -4 0 0 0 0 0 0

0 0 0 0 0 0 -2 0 -4 0 0 0 0

4 0 -4 0 0 0 0 -2 0 -4 0 0 0

0 -2 -4 -4 -2 0 0 -4 -4 0 0 0 0

0 -4 0 0 0 -2 -4 0 -2 -4 -4. -4 -2

0 0 0 0 -4 0 -4 -2 0 0 -4 0 0

0 0 0 0 0 -4 0 -4 0 0 0 -4 0

0 0 0 0 0 0 0 -4 -4 0 0 0 0

0 0 0 0 0 0 0 -4 0 -4 0 0 -4

0 0 0 0 0 0
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cT = [4 484410 14 18 10 8684]; (3.28)

and x = [xj x2 x3 x4 x5 x6 x7 x8 x9 x10 xu x12 x13]; (3.29)

Since the test generation constraints are basically derived from the sensitization of a

fault and the fault-effect propagation to the PO. Therefore, in this example first, fix
the variables x6 and x13 at values 0and 1respectively in order to sensitize the stuck-

at-1 fault at line x6 which is the primary requirement in the test generation process.
By substituting these values of x6 and x13, the energy function comes out to be:

E(x) = 2x1x3 +2x2x7 +4x2x8 +2x3x4 +4x3x7 +4x4x7 +2x5x7 +4x5x9 +4x7x8 +
4x7x9 +2x8x9 +4x8x10 +4x8xn +4x8x12 +4x9x„ +4x10x12 - Axx - 4x2 -

8x3 - 4x4 - 4x5 - 14x7 - 16x8 - 10x9 - 8x10 - 6xn - 4x12 +40 (3.30)

In this test generation example, the variable x10 appearing in the fault-free circuit is
related to its corresponding variabje in the faulty copy, i.e. x12. Both the variables are
bound variables and their relation is given by x10 +x12 =1. This relationship of bound
variables can be generalized using the constraint x, +Xj =1, where x,- and Xj are the
bound variables.

The partial derivatives of E(x) with respect to each free variable, x, and their
corresponding minimum and maximum values, i.e. minp and maxp respectively are
calculated as follows:

dEq^ - 2x3 - 4; minp = -4, maxp = -2; (3 31)
dE— _ 2x7 +4x8 - 4; minp =-4, maxp =2; (332)
dE

dx3 ~ 2xi +2x* +4x7 ~8; minP = ~8> maxP =0; (3.33)
dE
0^ - 2x3 +4x7-4; mmp =-4, maxp =2; (3 34)
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dE-— = 2x7 + 4x9 —4; minp = —4, maxp = 2; (3.35)
ax 5

dE
^r— = 2x2 -I- 4x3 + 4x4 + 2x5 + 4x8 + 4x9 - 14; minp = -14, maxp = 6(3.36)
ax7

dE—— = 4x2+ 4x7-I-2x9-h 4xao + 4xn+4x12 - 16; mmp=-16, maxp = 0.37)
dx8
BE
—- = 4x5 + 4x7 + 2x8 + 4xn - 10; minp = -10, maxp = 4; (3.38)
dx9
dE

dxu

Using the criteria for fixing the free variables, it is easily seen that the criterion S-II

is satisfied by (3.31) and (3.33) and therefore, the variables xx and x3 can be fixed to

a value 1. Since the variable xio and xX2 are related variables, the partial derivatives

of E(x) with respect to each related variable x< and their corresponding CurrJDnes

values are calculated and are given by:

dE

= 4x8 + 4x9 - 6; minp= -6, maxp = 2; (3.39)

dxio
dE

dxu

According to the criteria for fixing the related variables, i.e. R-I and R-II, one must

know, whether there exists a unique maximum and/or minimum value among the

CurrJDnes values. In this particular case, both the unique maximum and the unique

minimum exist for x\2 and xio respectively. And, therefore, using the criteria R-I and

R-II, xJ2 and Xi0 values can be fixed at 0 and 1 respectively. These values of xj0 and

Xi2 also satisfy the test generation constraint, i.e. X\q + x\2 = 1.

Up to this point, to confirm the validity of the present approach, onecan verify

these steps by using the conventional test generation method. In the conventional

method first, one needs to activate the stuck-at-1 fault at the fault site (output of the

NAND gate x6 in Figure 3.5) by setting its fault-free value at 0 which can only be

done when both the inputs of the NAND gate are to be set to 1, i.e. x\ and x3 both
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have to be 1. And, when the input to the NAND gate x10, i.e. x6 is assigned avalue
0, its output x10 will remain at value 1since the 0value is the controlling value of
the NAND gate. The second step in the test generation method is to propagate the
fault effect to the primary output. In that case, aPO through which the fault effect is
propagated, that PO should have different logical value in the fault-free and the faulty
circuit. Since x10 is 1, x12 will be 0. In this approach, the same values of the variables,
*i, *3, *io and x12 have been fixed to 1, 1, 1and 0 respectively which confirms the
validity of the new approach up to this point.

Substituting the pivoted values of the variables xx, x3, x10 and x12 in (3.31)
through (3.39), the partial derivatives of Eand their minp and maxp values come out
to be:

dE
— _ 2x7 +4x8 - 4; minp =-4, maxp =2; (3.42)
dE
^ = 4x7 - 2; mxnp =-2, maxp =2; (3i43)
dE
-q^ - 2x7 +4x9 - 4; minp =-4, maxp = 2; (3.44)
dE_
dx7 ~ 2X2 +4Z4 +2x& +4*8 +4x9- 10; minp =-10, maxp =6; (3.45)
dE
^ - 4x2 +4x7 +2x9 +4xn - 12; minp =-12, maxp =2; (3.46)
dE
0^ - 4x5 +4x7 +2x8 -I- 4x„- 10; minp =-10, maxp =4; (3.47)
dE

gj^j- - 4x8 +4x9 - 6; minp =-6, maxp = 2; (348)

It may be noted that the remaining variables are only the free variables as all the
related variables have been fixed. Unfortunately, at this moment, no decision can be
taken to fix any of the remaining free variables as none of them satisfies the criteria
S-I and S-II. So, CurrJDnes has to be calculated to make a locally best decision and
in this particular case all CurrJDnes values for the remaining variables have the same
value as their corresponding maxp values since the coefficients of all the variable terms
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appeared in the partial derivative are positive. According to thefixation criterion S-IV,

i.e. if CurrJDnes > maxp for a given variable, say x,-, it may be assigned a value 0

and hence, all the remaining variables deserve to be fixed to 0. Since the criterion S-IV

provides a locally best decision, the decision should be taken to fix a single variable at

a time and should not be enforced to all the variables. But the problem is that which

variable to be chosen first for fixation. To have a choice, one ran use heuristics and

there are two possible heuristics based on the number of occurrences of a variable in

the partial derivatives as given below:

Heuristic 1. One possible heuristic is that the preference may be given to a variable

which has more number of its occurrence in the partial derivatives. In the above

example, x7 will be preferred over x8 because number of occurrence of x7 is five,

while x8 occurs only in the four partial derivatives. The idea in this heuristic is

that the priority should be given to a variable which reduces as many number of

terms in the partial derivatives as possible.

Heuristic 2. The other possible heuristic is that the preference may be given to a

variable which has less number of its occurrence in the partial derivatives. In

the above example, x2 and xn have equal number of occurrences, i.e. 2 then the

sum of their coefficients will decide the preference. As the aim is to minimize the

energy function, the priority may be given to a variable which has the larger sum

since the variable is going to be fixed at 0. In that case, in will be preferred

over x2. The idea is that the priority should be given to a variable which is less

dependent on other variables.

These heuristics can be modified in the same fashion for a case when CurrJDnes <

minp for a variable, say x< and according to the criterion S-III, x,- may be fixed at value

92



1. Using the first heuristic, fix x7 at a value 0 and now (3.42)-(3.48) reduce to
dE
^- = 4x8 - 4; minp = -4, maxp = 0; (3.49)

dE0^ = -2; minp = -2, maxp = -2; (3.50)
dE
^- = 4x9 - 4; minp = -4, maxp = 0; (3.51)
0JS
gj- = 4x2 + 2x9 + 4xu - 12; minp = -12, maxp = -2; (3.52)

gjjp = 4x5 + 2x8 + 4*11 - 10; minp = -10, maxp = 0; (3.53)
dE
^- = 4x8 + 4x9 - 6; minp = -6, maxp = 2; (3.54)

The partial derivatives given by (3.49)-(3.53) satisfy the strong criterion S-II and there

fore, now it is possible to fix x2, x4, x5, x8 and x9 at value 1and by substituting the
values of x8 and x9 in (3.54), the partial derivative of E with respect to x„ comes

out to be a positive constant, i.e. 2. Hence, xn can be fixed at a value 0and finally
the solution is obtained which in turn provides the consistent labeling of the logical
assignments in the circuit and can be verified accordingly. The logical values of the

primary input signal variables, i.e. x, = 1, x2 = 1, x3 = 1, x4 = 1and x5 = 1form the

required test pattern for the x6 stuck-at-1 fault in the example circuit.

Now, let us consider the second heuristic and see its effectiveness. According to
this heuristic, one can fix x„ at value 0and due to this fixation, the partial derivatives

given by (3.46) and (3.47) are reduced. Hence, the partial derivatives given by (3.42)-
(3.48) and their minp and maxp values can be derived as

dE
— = 2x7 + 4x8 - 4; minp = -4, maxp = 2; (3.55)
dE
^ = 4x7 - 2; minp = -2, maxp = 2; (3.56)
dE
^- = 2x7 + 4x9 - 4; minp = -4, maxp = 2; (3.57)
dE
— _ 2x2 +4x4 + 2x5 + 4x8 +4x9 - 10; minp = -10, maxp = 6; (3.58)
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dF
-— = 4x2 + 4x7 + 2x9 - 12; minp = -12, maxp = -2; (3.59)
dx8
BE

= 4x5 + 4x7 + 2x8 - 10; minp = -10, maxp = 0; (3.60)
dx9

The partial derivatives given by (3.58) and (3.59) satisfy by the criterion S-II and

therefore, both the x8 and x9 can be fixed at 1, which again reduces the above set of

partial derivatives to

dF
-— = 2x7; minp = 0, maxp = 2; (3.61)
Bx2

——. = 4x7 - 2; minp = -2, maxp = 2; (3.62)
dx4

-— = 2x7; minp = 0, maxp —2; (3.63)
ax 5

dF
-— = 2x2 -I- 4x4 + 2x5 - 2; minp = -2, maxp = 6; (3.64)
ax7

Applying the criterion S-I to (3.61) and (3.63), one is able to fix x2 and x5 at 0 and

only two unpivoted variables x4 and x7 are remaining for which the partial derivatives

are

dE
-— = 4x7 —2; minp = —2, maxp = 2; (3.65)
dx4
BE
—— = 4x4 —2; minp = —2, maxp = 2; (3.66)
Bx7

At this juncture, no decision can be taken to pivot either of the two variables and now

suppose x7 variable is assigned a value 1 then it may be seen that

x7 = 1 =*> -£— = 2=»x4=0=J'^— = -2=*x7=l.
(pivoted) (pivoted)

which means

x7 = 1 O x4 = 0.

and the system becomes stable. Now, let us see what happens when x7 is fixed at value

0.

x7 = 0=^ — = -2=^x4 = l=^ — = 2=^ xj_=_0
(pivoted) (pivoted)

94



i.e.

x7 = 0 <& x4 = 1.

Hence, it is clear that the system becomes stable with x4 =0and x7 =1or x4 =1and
x7 =0. Interestingly, from the circuit shown in Figure 3.5(a), it can be easily seen that
the output of the NAND gate, i.e. x7 has two inputs x3 and x4 and x3 got assigned
to the value 1during the fault excitation. The output of the NAND gate x7 will be 0
when signal line x4 is assigned the logic value 1and the output will be the logic value
1when x4 is assigned to a0value. So, in this case, there will be two test patterns to
detect the stuck-at-1 fault on the signal line x6 in the example circuit.

3.4 Computational Algorithm

In the pseudo-Boolean quadratic function E(x), the number of variables are nand let
mbe the number of test generation constraints defined in the previous section. The
partial derivatives of the objective function with respect to the variable x, is denoted by
PD(xi). The maxp, minp and CurrJDnes are also defined previously. The following
algorithm in C-like language finds the minimum of E(x):

1. for i <- to ndo /* Calculates Partial Derivatives PD{x{). */

if x,- is free.variable

Calculate PD(xi);

Compute maxp, minp and CurrJDnes values;

end if

if x, is related.variable

Calculate PD(x,);

Compute CurrJDnes values;
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end if

end for

2. Check_Ones(). /* This function fixes the free and related variables. */

2.1 for i *— to p do /* p be the number of free variables. */

2.1.1 if maxp > 0 &&; minp > 0 /* Monotonically increasing. */

pivot the variable x, at value 0;

2.1.2 if maxp < 0 && minp < 0 /* Monotonically decreasing. */

pivot the variable x, at value 1;

2.1.3 if x, is not.pivoted && (CurrJDnes < minp \\ CurrJDnes >

maxp)

decide a variable x to be pivoted; /* Apply heuristics

*/

2.1.4 if CurrJDnes < minp

pivot the variable x at value 1;

go to Step 3;

end if

2.1.5 if CurrJDnes > maxp

pivot the variable x at value 0;

go to Step 3;

end if

end for /* It fixes the free variables. */

2.2 for i <— to o do /* o be the number of related variables. */

Calculate maxp and minp among the CurrJDnes vector;
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2.2.1 if maxp exists for unique x,

Fix x,- variable at value 0;

Fix constraint variable of x, at 1;

end if

2.2.2 if minp exists for unique x,

Fix x, variable at value 1;

Fix constraint variable of x,- at 0;

end if

2.2.3 if maxp and minp does not exist for unique x,

select any variable x,; /* Make a heuristic choice. */

2.2.4 if CurrJDnes of x, ^ CurrJDnes of the constraints of x,

Fix corresponding x, variable at value 0;

Fix constraint variable of x,- at 1;

end if

if CurrJDnes of x, == CurrJDnes of the constraints of x,

Fix arbitrary x, variable at value 1;

Fix constraint variable of x,- at 0;

Store maxp, minp, CurrJDnes;

Push decision into a stack; /* for backtracking. */

end if

end for /* It fixes the related variables. */

3. if all variables pivoted (i.e. n=r) /* r be the number of pivoted variables. */

go to Step 4;

for i «— to r do
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Compute maxp, minp, and CurrJDnes values;

go to Step 2; /* Check for fixation of the x,- variables.*/

y

end for

4. Evaluate the energy of the function E(x); /* The energy is the function value.

7

5. while energy ^ energyjrequired & all variables not-pivoted do

if stack is empty

go to Step 6;

Backtrack; /* Reverse the decision.*/

go to Step 3;

6. end /* the optimum solution */

3.5 Complexity Analysis

The complexity of the algorithm described in the previous section lies mainly in cal

culating the partial derivatives and in the evaluation of the pseudo-Boolean quadratic

function E(x). The calculation of the partial derivatives and the corresponding func

tional value can be done in linear time. It can be observed from the description of $

the algorithm that single for loops, if —else statements and while loop are mainly

used. The running time of a for loop is at the most the running time of the statements

inside the for loop (including tests) times the number of iterations. The number of

iterations in the algorithm is n, i.e. the number of variables in the pseudo-Boolean

quadratic function E(x). The statements inside the for loop are the calculations of
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the partial derivatives, maxp, minp and Curr.Ones which can be performed in lin

ear time. So the time-complexity of the for loops used in our program comes out to

be 0(n2). As far as the running time of an if - else statement is concerned, it is
never more than the running time of the test plus the larger of the running times of

the statements under this condition. The rest of the algorithm is only the linear time

complex, i.e. O(n). Thus the overall run-time complexity of the algorithm turns out
to be 0(n2).

The run-time complexity of the proposed algorithm may be further decreased

by using an efficient data structure for the Qmatrix representation and an appropri
ate algorithm for the computation of the partial derivatives with their maximum and

minimum values. It is also important to note that in this polynomial time algorithm,
heuristics have been employed in order to accelerate the minimization process. Further
more, due to the backtracking (branch-and-bound) procedure although incorporated
in the last stage of the algorithm, it may become too time consuming in the case of the
test pattern generation for the large complex circuits. However, the complexity of this

branch-and-bound step in the proposed algorithm is further reduced with the use of

efficient heuristics. In order to overcome from the complexity of the branch-and-bound

step of this quadratic 0-1 programming algorithm, new test generation methods have

been proposed [94], [95] and described in the next chapter.
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Chapter 4

Genetic Algorithm Based Test

Generation

Once the test generation problem has been formulated as a search or an optimization

problem, the well known optimization techniques like gradient descent, simulated an

nealing [20], quadratic 0-1 programming [19], transitive closure [22], etc. have been

attempted for finding the global optimum solution of the problem. Anew quadratic

0-1 programming technique has been proposed for the test generation problem and

described in the Chapter 3, though seems to be quite efficient, but it may not be

that much effective in case of large practical circuits due to its branch-and-bound step

which becomes essential when no criteria gets satisfied during the dynamic fixation of

the variables. The transitive closure based test generation algorithm on the other hand

derives a Boolean false function from a formula expressing Boolean difference between

the fault-free circuit and its faulty image, i.e. the copy of a sub-circuit affected by the

fault in question. In this approach, the test generation problem is transformed into

the problem of determining signal assignments that satisfy the false function. This

approach isequivalent to the minimization of the energy function, which is of the form
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Figure 4.1: A plot for the energy function.

of the pseudo-Boolean quadratic function.

The nature of the minimization function plays an important role in the selec

tion of the appropriate optimization algorithms. A study has been made to know the

behavior of the energy function and the Boolean false function. Both the functions are

derived for the test generation of stuck-at faults in a simple ISCAS'85 combinational

benchmark circuit and are of multimodal type. These functions are depicted via plots

shown in Figure 4.1 and 4.2. The global optimum solution of the problem represented

by these functions can be located in a multimodal landscape.

Genetic algorithms, being one of the most effective search and optimization

algorithms in a multimodalsearchspace, lend themselves readily for the test generation

problem as it can be formulated either as a search of the N dimensional 0-1 state space,

where N is the number of primary inputs or an optimization problem. Since in test

generation, the crux of the problem is either search or optimization, the choice of

Genetic Algorithms (GAs) is more impressive considering its proven track record as

one of the most robust search and global optimization algorithms applied in a number

of combinatorial optimization problems. The robustness of GAs is due to their capacity
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Figure 4.2: A plot for the Boolean false function.

to locate the global optimum solution in a multimodal landscape. Furthermore, GAs

are innovative and have inherent amenability to be processed in parallel.

This chapter starts with a gentle introduction to genetic algorithms and de

scribes new methods for test generation using these algorithms. Emphasis is given

to derive an objective function which is essentially required to guide the search to be

performed by GAs. Schema design and a penalty method to transform the constrained

test generation problem into an unconstrained one are discussed. In the application of

GAs, the objective function must be in fitness form, i.e. in the maximization form. A

procedure is described to map the objective function to a fitness form so that it can

be directly utilized by GAs for test generation. Finally, a CAD tool based on GAs has

been developed for test generation and described in detail.
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4.1 Genetic Algorithms in Search and Optimiza

tion

Genetic algorithms are search algorithms based on the principles of natural selection

and genetics and draw inspiration from the natural evolution process and simulate the

Darwinian principle of survival of the fittest. In the early 1970s, Holland proposed

Genetic Algorithms as computer programs that mimic the evolutionary processes in

nature. These algorithms manipulate a population of potential solutions of a search or

an optimization problem. GAs work specifically with encoded representations of the

solutions that is equivalent to the genetic material of individuals in nature and not

directly on the solutions themselves. The solutions are encoded as strings of bits from

a binary alphabet. Each solution is associated with a fitness value that provides the

information about the goodness of the solution as compared to other solutions in the

population. Higher the fitness valueof an individual, the higher is its chances of survival

and reproduction, and the larger is its representation in the subsequent generation.

GAs rely on two basic operators, namely crossover and mutation. Crossover operator

is a mechanism of probabilistic and useful exchange of information among solutions to

locate better solutions and mutation operator causes sporadic and random alteration

of the bits of the strings. Both these operators have direct analogy from nature as

crossover recombines the genetic material while mutation plays the role of regenerating

lost genetic material.

4.1.1 A Simple Genetic Algorithm

A Simple Genetic Algorithm (SGA) works essentially with a population of binary

strings, where each string consists of Os and Is is the encoded representation of a
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solution to the search or optimization problem. Genetic operators - crossover and

mutation, allow the SGA to create the subsequent generation from the binary strings
of the current population. This cycle is repeated until a desired optimum solution is
found or atermination criterion is satisfied, by predefining anumber of generations to
be processed. The basic structure of SGA is summarized as follows:

Simple_Genetic^Algorithm()

{

lnitialize_Population;

Evaluate_Population;

While termination_criterion not satisfied

{

Select solutions for next population;

Perform crossover and mutation;

Evaluate_Population;

}

}

In principle, an SGA is characterized by the components given below:

• Encoding Mechanism

• Population

• Fitness Function

• Selection Mechanism

• Crossover and Mutation

• Control Parameters
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These components are explained below in the context of the test generation problem.

Encoding Mechanism

The encoding mechanism represents the problem variables in binary form so that the

solution should be mapped to a binary string. Fortunately, for the test generation

problem, the variables are the digital signals of the circuit-under-test and have only

the binary values. Since the test generation problem has been formulated as a searchor

optimization problem, its solution, ifexists, will also be a binary string. The individual %

bits of the string correspond to the signal values of the test generation network and

there will a consistent labeling of the signal values with no violation in the functionality

of any gate.

Population

Let us consider an m-tuple (xi,X2, ....,xm) of the signal values of the test generation

network. An m-bit string obtained from this m-tuple can be defined as:

X = X!X2....Xm

where each x, € {0,1}. An initial population is generated by n such strings given as

follows:

x<1\x<2>,....,x(B) *

where each x^ = xix2....xm; Xj G{0,1}, 1 < j < m.

The initial population of strings {x"',X*av...,X^} can be generated by the

toss of a coin for each Xj of each x^). Starting with an initial population of strings,

the SGA creates the subsequent generation by applying the crossover and the mutation

operator. Essentially, it is a process of putting together the bits and pieces of the fittest ?

105



of the old and is achieved from the knowledge of the fitness values (evaluated from the
fitness function) associated with each individual string.

Fitness Function

In the application of GAs, the objective function, i.e. the function to be optimized,
is essentially required for evaluating each string. Since the objective function values

may vary from problem to problem, the uniformity should be maintained over various

problem domains. The fitness function is used to normalize the objective funct
values to a range between 0and 1. This normalized value of the objective funct

termed as fitness of the string and is used in the selection mechanism to evaluate the
strings of the population.

Selection Mechanism

In selection process, individual strings are copied according to their objective function

values based on the nature's Darwinian principle of survival of the fittest. 'Good'

solutions are selected for reproduction while 'bad' solutions are eliminated and the

'goodness' of the solution is determined by its fitness value. The higher the fitness

value of an individual, the higher its chances of survival and reproduction and the

larger its representation in the subsequent generation.

The selection procedure may be implemented in algorithmic form in a number

of ways. However, the most popular one is a proportionate selection scheme in which

a string with fitness value /, is allocated /,// offspring, where / is the average fitness

value of the population. The number /,// represents the string's expected number

of offspring. Astring with a fitness value higher than the average is allocated more

than one offspring, while astring with afitness value less than the average is allocated
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less than one offspring. Allocation methods include some randomization to remove

methodical allocation toward any particular set of strings so that the actual allocation

of offspring to strings matches the expected number of offspring /<//.

The SGA implements the proportionate selection using a roulette wheel selec

tion scheme [46], where each current string in the population has a roulette wheel slot

sized in proportion to its fitness. The angle subtended by the sector at the center of

the wheel equals to 2nfi/f. A string is allocated an offspring if a randomly generated

number in the range 0 to 2w falls in the sector corresponding to the string. The entire

population can be generated for the next generation by selecting the strings with the

help of this scheme. In this scheme, there could be large sampling errors in the sense

that the final number of offspring allocated to a string might vary significantly from

the expected number.

Crossover and Mutation

Crossover is a crucial operator of the SGA and comes after selection. It proceeds in

two steps. First, members of the newly reproduced strings in the mating pool are

mated at random. Second, each pair of strings undergoes for crossover. The SGA

uses a very simple approach of single-point crossover. Let / be the string length. An

integer position k along the string is selected uniformly at random in the range 1 to

/— 1. The portions of the two strings beyond this integer position (crossover point) are

exchanged to form two new strings. The crossover point m^y assume any of the / —1

possible values with equal probability. After choosing a pair of strings, the crossover is

invoked by the algorithm only if a randomly generated number in the range 0 to 1 is

greater than the crossover probability, pc. Otherwise, the strings remain unmodified.

In a large population, pc gives the fraction of strings actually crossed.
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Mutation plays a secondary role of restoring lost genetic material in the SGA

and comes after crossover. Mutation of a bit involves flipping it, i.e. changing a 0

to 1or vice-versa. Similar to pc, which controls the probability of crossover, another

control parameter pm (the mutation probability), gives the probability that a bit will

be flipped. The bits of a string are independently mutated, i.e. the mutation of a bit

does not affect the probability of mutation of other bits.

Control Parameters

The optimum performance of the SGA depends on the choice of control parameters,
namely the crossover and mutation probabilities and the population size. The trade-offs

that arise in this regard are mentioned below:

• Increasing the crossover probability increases recombination of building blocks,
but it also increases the disruption of good strings.

• Increasing the mutation probability tends to transform the genetic search into a

random search, but it also helps restoring the lost genetic material.

• Increasing the population size increases its diversity and reduces the probability

that the GA will prematurely converge to a local optimum, but it also increases

the time required for the population to converge to the optimal regions in the
search space.

V*

Although the choice of the control parameters is an open research problem, but two

distinct parameter sets have emerged. One has a small population size and relatively
large crossover and mutation probabilities, while the other has a large population size,
but much smaller crossover and mutation probabilities. Typically, these two categories
are:
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• population size 30, crossover probability (pc) 0.9, and mutation probability (pm)

0.01 [50].

• population size 100, crossover probability (pc) 0.6, and mutation probability (pm)

0.001 [30].

Apart from selection, crossover and mutation, various other operators are common

in the working of GAs. One such operator is fitness scaling [50] and is widely used.

Fitness scaling readjusts fitness values of the strings in order to prevent the premature

convergence of the population to suboptimal solutions.

In optimizing multimodal functions, it is important that GAs should be able to

locate the region in which the global optimum exists and then to converge to the opti

mum. Although GAs possess hill-climbing properties essential for multimodal function

optimization, they may also stuck at a local optimum, especially when the population

size is small. To improve the overall GA performance in multimodal function opti

mization, adaptive probabilities of crossover and mutation have been used [99]. The

GA based on the adaptive crossover and mutation probabilities is called as Adaptive

Genetic Algorithm (AGA).

4.1.2 Adaptive Genetic Algorithms

In multimodal function optimization, GAs must have two characteristics - its capacity

to converge to an optimum (local or global) after locating the region containing the

optimum and the capacity to explore new regions of the solution space in search of the

global optimum. These two characteristics could be achieved by varying the probabil

ity of crossover (pc) and the probability of mutation (pm) adaptively depending upon

the fitness value of the solutions. These probabilities are increased when the popula-
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tion tends to get stuck at alocal optimum and are decreased when the population
scattered in the solution space.

is

It has been concluded, on the basis of extensive experiments on awide range
of problems in [99], that the AGA performs very well for the problems that are highly
multimodal which means that the number of local optima in the search space is large.
As the function to be optimized in the test generation problem is highly multimodal
in nature, AGA should be preferred over the SGA because it outperforms the SGA.
The comparative study of AGA with SGA has already been done extensively in [99]
and hence not discussed in this chapter. The conclusions reported in [99] are directly
exploited here for the optimization based approach for the test generation problem.

The most important contribution in the application of the AGA is the design
of adaptive crossover and mutation probability, i.e. pc and pm respectively. Expressions
for pc and pm are given as follows:

Pc = Wma* - /')/(/ma* - /), /' >/ (4>1)
Pc = k3, f < f (4.2)

and

Pm = k2(fmax - f)/(fmax -/),/> / (4.3)

Pm = k4, f <f (4.4)

where,
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/

Jm

f

f

average fitness value of the population,

maximum fitness value of the population,

fitness value of the solution, and

larger fitness values of the solutions to be crossed.

and k\, k2, k3, k4 < 1.0.

Since moderately large values of pc (0.5 < pc < 1.0) and the small values of pm

(0.001 < pm < 0.0.05) are essential for the successful working ofGAs [46], fcj, k2, k3, k4

values must be assigned such that pc and pm remain in the prescribed range. Keeping

these values of pc and pm in mind, for the successful working of AGA, the values of the

h, k2, &3) and k4 coefficients are proposed to be 1.0, 0.5, 1.0 and 0.5 respectively.

4.2 Genetic Algorithms for Test Generation Prob

lem

The application of GAs to the test generation problem has been recently attempted by

few groups. Most of them use Random Test Generation (RTG) followed by the conven

tional fault simulation and the task for the GAs is only to minimize a cost function to

find a test. These GA-based techniques are no more different than the simulation-based

methods for the test generation except that the cost minimization is done using GAs.

Major bottleneck in parallelization of the existing GA-based algorithms is the three

stages in sequence, i.e. RTG, fault simulation and cost minimization using GAs which

limits the overall throughput. Taking these points into consideration, new GA-based

test generation methods have been proposed here. These methods are not using RTG

followed by the conventional fault simulation at any stage.

In this new test generation approach, first the test generation problem is trans- Jl
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formed into either an optimization or a Boolean satisfiability problem and then GAs

are applied to find the global optimum solution of the problem which in turn provides

the test patterns for a given set of faults in the circuit-under-test. The problem rep
resentation and objective function (also called evaluation function) derivation are the

key issues in the application of GAs. Problem representation is done in avery simple
and straightforward manner but emphasis is given to derive the objective function.

This is an important requirement in the application of GAs as it is used to guide the
search by evaluating the optimality of the solution. For the test generation problem,
the objective function can be derived using either of the following two approaches:

1. Energy minimization approach which provides amathematically expressed circuit

function based on an unconventional digital circuit modeling technique using
neural networks [20].

2. Boolean satisfiability approach in which the test generation problem is trans

formed into satisfying a Boolean false function analogous to a Boolean truth
function used in [66].

In these approaches, a test generation network for a circuit-under-test

structed by creating an image (copy) of the sub-circuit affected by the given fault and

connecting their corresponding primary outputs through an output interface in the

same manner as described in Section 2.4.1. After construction of the test generation

network, an objective function is derived based on the above-mentioned approaches.
Both the approaches are different and discussed in the following Section.

is con-
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4.3 Energy Minimization Approach

In this approach, the test generation network is transformed into a neural network

using the unconventional digital circuit modeling technique discussed in Section 2.4.2.

The energy function of the test generation neural network is given by

£(*) =-sEE0«*<*i - £c«x'+ K (4-5)
z t=ij=i t=i

where n is the number of neurons in the neural network, Qij is the weight associated

with the link between neurons i and j such that Qa = 0, x,- is the activation value of

neuron i, Ci is the threshold of neuron i and A' is a constant.

In this approach, for all the testable faults, there exists a consistent labeling

of the neurons in the neural network with their activation values from the set {0, 1}

that does not violate the functionality of any gate. For a given fault, a test pattern

can be obtained by finding a global minimum of the energy function E(x) given by the

Equation (2.1). The global minimum of E(x) will be 0 at which the neural network is

labeled consistently. At the global minimum, the activation values of the corresponding

primary input neurons form the test vector for the given fault. Hence, this approach

transforms the test generation problem into an energy minimization problem.

The energy minimization problem for test generation is a constrained one

because of the test generation constraints. In order to solve this problem with the help

of GAs, there is a need to transform the constrained problem into an unconstrained

one. This transformation is carried out with the help of schema design and a penalty

method. Since in the application of GAs, the objective function must be in fitness

form, i.e. in the maximization form, a mapping is done to obtain objective function

into fitness form. The following subsections describe these procedures in detail.
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4.3.1 Schema Design

The search by GAs is greatly simplified with the concept of schema, which is apowerful
tool in the technique of GAs. Aschema (plural: schemata) is astring that indicates
the similarities at certain positions in asubset of strings and is generally represented by
the symbols 0, 1, *(don't care). Aschema and astring match each other if at certain
specific locations either 1or 0exists in both and the schema has *in the remaining
positions. The schema design is carried out by the schema theorem which states that
short, low order, above average schemata receive exponentially increasing trials in
subsequent generations. This is the essence of the schema theorem, first proposed by
Holland as the "fundamental theorem of genetic algorithms". Aformal statement of
the schema theorem can be given by the following equation:

where

N(h,t +l) > N(kt)i!M 1~PcfZJ - PmO(h) (4.6)

/(M)

Pc

Pm

6(h)

0(h)

N(h,t)

I

The factor

average fitness value of schema h in generation t,

average fitness value of the population in generation t,
crossover probability

mutation probability

length of the schema h

order of the schema h

expected number of instances of schema h in generation t, and
number of bit positions in a string or string length.

6(h)

gives the probability that an instance of the schema h is disrupted by crossover, and
pmo(h) gives the probability that an instance is disrupted by mutation [46].
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It has been proved that in a single generational cycle, the GA processes only n

strings (n is the population size), but it leads to the processing of 0(nz) schemata. This

tremendous increase in the computational power achieved by GAs to simultaneously

process a large number of schemata is termed as implicit parallelism. This capacity of

GAs arises from the fact that a string simultaneously represents 2' different schemata.

Using the test generation constraints, the schema has been designed by defining

a string where its alternate positions may represent the logical values of the original and

duplicate signals. Thus, a schema can be obtained in which two consecutive bits are

the inversion of one another. These two consecutive bits represent the logical values of

the fault-free and faulty signals. For fault detection at least one of the primary output

of the fault-free and the faulty states should be the complements of each other. Thus,

for the m-bit string of logical values, the schema is defined as

h = * ... * XjXj+i * ... * (4.7)

where Xj = xT+T, for some j with in the limits given by 0 < j < (m —1). As the two bits

of the schema are now fixed, a constraint is introduced into the energy minimization

process using the penalty method.

4.3.2 Penalty Method

In order to discourage the strings violating the constraints, a penalty may be intro

duced. It should be such that those strings which tend to violate the constraints are

reduced in fitness. The energy function given by (2.1) is considered as a measure of

fitness and the constrained problem is stated as:

Minimize E(x) subject to hi(x) > 0
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where x is an m-tuple of the form discussed previously and hiS are the constraints.

The statement of the constrained problem can be transformed into an unconstrained
problem as:

Minimize E'(x) = E(x) +£ r,-$[fc,-(x)] (4.8)
i

where $ is apenalty function and r,- is the penalty coefficients or the weights associated
with the penalty. The r,- values should be such that even moderate violation of the

constraints invite significant penalty. The coefficients r< may be sized separately to
suit each constraint. The function $ is defined by

*M*)1«4 (4.9)
h{ (x) otherwise

4.3.3 Mapping Objective Function to Fitness Form

The objective in genetic algorithms is naturally stated as the maximization of the

fitness function in contrast to the minimization problem at hand. Thus, the energy
function given in (4.8) can not be directly treated as the fitness function. To map the
energy minimization problem into fitness form, we use the following transformation:

„ . f Cmax - E'(x) E'(x) <Cmax
Mx) = \ (4.10)

I 0 otherwise

where Cmax is an input coefficient which may be either largest value of the function

E'(x) observed in a process or the largest value of E'(x) in the last ^-generations.

4.3.4 Example

Let us consider the test generation example for the circuit shown in Figure 3.5(a) with
a s-a-1 fault at line i6. Figure 3.5(b) shows the test generation network after the
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fault injection, i.e. by duplicating the fault-affected portion of the circuit. Figure 3.6

illustrates the corresponding ATPG neural graph where each signal is represented by

a neuron having a threshold. Hopfield neural network model [69] is used in which the

links are bidirectional and their labels show their weights. The schema just after the

fault injection stage, i.e. due to fault activation, is

hi = *****01******

where each bit corresponds to the activation values of the Xj, X2, X3, X4, X5, x$, x\3,

x7, xs, X9, xio, X12 and xn neurons respectively.

For fault detection, at least one Primary Output (PO) of the fault-free circuit

must have different value from its corresponding PO of the faulty circuit. In the

current example, Xio and xx2 are the POs of the fault-free circuit and its faulty image

respectively. Since the task of the GAs is to search a string which has the different xio

and X12 values, two more schemata may be derived as given below:

h2 = **********10*

h3 = **********01 *

Using the schema hi, the constraints h\\(x), h\2(x) and h\3(x) may be derived

and given below with their conditions for violations:

^n(x) = (x6+ X13 - 1)< 0 for x6 = X13 = 0; (4.11)

h\2(x) = (-X6 + X13) <0 for x6 = l,x13 = 0; (4.12)

hx3(x) = (-x6-xi3 + 1) < 0 forx6 = xi3=l; (4.13)

Similarly, other constraints are derived using the schemata I12 and I13 with the condi

tions for their violation given as below:

h2(x) = (xio + X12 - 1) < 0 xio = x12 = 0; (4.14)

117



h3(x) = (-x10-x12 + l) >0 Xio = x12 = l; (4.15)

Although a number of alternatives exist to derive the penalty function $, but

usually the square of the constraint, i.e. *[h{(x)] = ht2(x) is used for all violated

constraints as given in (4.9). Hence, the following penalty functions are derived for the

above mentioned constraints:

•I*ii(x)] =

•IMx)] =

*[Al3(x)] = i

•[Mi)l =

•(Mx)] =

(xe + x13-l)2 x6x13 = 00

0 otherwise

(-X6 + X13)2 X6Xi3 = 10

0 otherwise

(-X6 - X13 + 1) X6Xi3=ll

0 otherwise

(ZIO + X12- l)2 X10Xi2 = 00

0 otherwise

(-^io-x12 + l)2 x10x12 = 11

0 otherwise

(4.16)

(4-17)

(4.18)

(4.19)

Reflecting the fact that the string containing the bits x6x13 = 10 is the most

undesirable than any other combination of these specific bits, the coefficient weights

can be assigned as r, = r3 = r4 = r5 = 4 and r2 = 8. Thus the problem reduces to

Minimize E'(x) where

E'(x) =E(x) +r,*[/»„(x)] +r2*[*,a(x)] +r3$[h13(x)] +r4*[A2(x)] +r5$[A3(x)]

which is an unconstrained energy function. Atest pattern may be found for the given
fault by finding the global minimum of this unconstrained energy function. It may be
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noted that the global minimum of the E'(x) shall be zero which may be obtained with

the help of GAs.

4.4 Boolean Satisfiability Approach

In the test generation method using Boolean satisfiability (SAT) [66], a formula is

constructed in conjunctive normal form (CNF), expressing Boolean difference between

fault-free circuit and its faulty copy. An important advantage of this approach is that

well studied SAT algorithms can be considered forsatisfying the formula which provides

a test pattern for a given fault. Instead of constructing the formula in CNF form, a

Boolean false function is derived analogous to the Boolean truth function. To see the

construction of the Boolean false function, consider a simple 2-input OR gate with a,

b as input and c as an output of the gate. Since c = a + 6, it is easy to see that the

equation

F0R = c®(a + b) = Q (4.20)

is satisfied only by those values of a, band c that satisfy the OR gate function. Here,

+ and © denote the logical OR and exclusive-OR (XOR) operation respectively. For

is referred as the Boolean false function for the OR gate and can be written as

For = ac + be + ale (4.21)

A similarformulation is possible for representing OR gate as an energy function where

a, b and c were treated as arithmetic variables. The Boolean false functions of all

the primitive gates can be computed in the same way. The false function for a digital

circuit is the logical OR of the false functions for all gates in the circuit. As an example,

the false function for the circuit shown in Figure 4.3 is
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Output
Interface

Figure 4.3: The ISCAS '85 circuit with XOR as an output interface

FCKT = XiX9 + X-3X6 -1- X!X3X6 + X3X7 + X4X7 + X3X4X7 + x2xs + x7x8 + x2x7x8 +

X7X9 + x5x9 -I- X7X5X9 -(- x"6xlo + x8xlo + x6x8x10 + x"8x"n + x9x~u +

x8x9xn + xgxla + x13xl2 + x8x13x12 + xIox12xl4 + x10xl2x"i4 +

Xiqx1%xu + X10X12X14 (4.22)

It may be noted that the Boolean false function for the digital circuit consists of a

set of binary and ternary relations. The problem of determining a signal assignment
that minimizes this false function to zero is equivalent to the energy minimization

problem which is already discussed. Chakradhar et al. [22] used the same Boolean

false function and proposed a transitive closure algorithm for test generation. In the

transitive closure based approach, binary relations are represented as an implication

graph and standard graph-theoretic techniques are used to determine the transitive

closure. Signal assignments and contradictions are determined by finding strongly
connected components in the implication graph. Larrabee also used the same algorithm
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proposed by Aspvall et al. and determined the signal assignments and contradictions

for satisfying the Boolean truth function in CNF form. We have proposed a GA-based

test generation method in which the Boolean false function is minimized using Genetic

Algorithms and given as below.

4.5 Test Generation Algorithm

Figure 4.4 shows the flow chart of the test generation algorithm. The following are the

test generation steps:

1. Derive Boolean false function for the gate-level circuit and reduce it by adding

test generation constraints, i.e. substitute the fault-free and faulty value of the

corresponding signal variables in order to activate the fault and constrain the

output of the output interface to the logical value 1 for the successful fault effect

propagation to at least one of the primary output (PO).

2. Construct the implication graph from the binary relations of the reduced false

function obtained in Step 1.

3. Compute the transitive closure of the implication graph and identify the global

dependencies. In case of contradiction, the fault under consideration is declared

redundant and if the signals got fixed evaluate the Boolean false function to 0, a

test pattern is found.

4. The signal assignments made in Step 3 may reduce the ternary relations of the

false function to binary relations and if yes, then update the implication graph

by adding these new binary relations and go to Step 3.
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Figure 4.4: Genetic Algorithms Based Test Generation Method
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5. For the remaining unassigned variables, reduce the Boolean false function and

update its corresponding implication graph.

6. Construct the condensation graph of the implication graph obtained in Step 4 by

finding the strongly connected components [7].

7. Derive objective function using the reduced false function as obtained in Step 4.

8. Apply SGA or AGA to find the global optimumsolution for which the determined

values of the signals (variables) evaluate the false function to 0.

9. If the global optimum is found in Step 8, the fault is detected and a test pattern

is reported. Otherwise, fault is declared redundant.

To illustrate the test generation method using Boolean false function, consider the

same example circuit as shown in Figure 4.3. The Boolean false function of the circuit

is given by the Equation (4.22). In test generation, there are two basic steps: Fault

activation and the fault-effect propagation to at least one of the primary output (PO).

The fault activation is usually done by creating a change in the signal value at fault

site. So to create a change at the fault site x6 at which stuck-at-1 fault is considered,

the fault-free value 0 should be assigned and simultaneously, its corresponding faulty

line, i.e. xi3 should be fixed to the value 1. In order to observe the fault effect at the

PO(s) of the circuit, the fault-free value of the PO(s) should have complementary value

at its corresponding faulty PO(s). Hence, one can conclude that in case of successful

fault-effect propagation, the output the the XOR must have logical value 1. Therefore,

the variable xi4 must have a 1 value. Substituting these values of x6, xi3, and xi4,

Equation (4.22) reduces to
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Figure 4.5: Implication graph of the example ISCAS circuit with x6 = 0, xl3 - 0, and

x14 = 1.

Eckt = xi + x3 + x3x7 + x4x7 + x3x4x7 + x2x8 + x7x8 + x2x7xs + x~7x9 +

x"5X9 + x7x5x9 + xio + x8xlo + x8xn + x9xli + x8x9xn + x~8xl2 +

x8xi2 -I- xloxn + X10X12 (4.23)

The implication graph from the binary relations of the reduced false function

given by Equation 4.23 is shown in Figure 4.5. The dotted arrows represent the new

relations derived from the binary and the ternary relations.

In order to determine contradiction and the fixation of the variables, the tran

sitive closure of the implication graph is computed from which it can be seen that there

is no contradiction found because there is no variable x for which x implies x and x

implies x. However the variables x1( x3, and xio can be assigned a fixed value of 1

because in the implication graph shown in Figure 4.5, x"i implies xi, x3 implies x3,

and xio implies xi0. Now, it may be observed from the implication graph (Figure 4.5)

that the signal variables x\o, x\2 and x8 and its dual consisting of xio, x\2 and x~8 are

strongly related. Therefore, the variables x10, xu and x8 can be directly assigned the

logical value 1, 0 and 1 respectively. By substituting these newly assigned values, the
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(a)

(b)

Figure 4.6: (a) Reduced version of the implication graph shown in Figure 4.4 after

fixing the variables, x\ = 1, x3 = 1, Xio = 1, x12 = 0, and x8 = 1, (b) Condensed form

of the implication graph (a)

Eckt function finally reduces to

Eckt = X4X7 + x4x7 + x2X7 + x7x"9 + x5x9 + X7X6x9 + x9xli + x9xn (4.24)

and its corresponding implication graph is shown in Figure 4.6(a). It may be noted in

the implication graph that the remaining variables are X2, X4, x5, X7, x9 and X\\ and no

fixed assignment can be made on any of these variables by uaing the transitive closure

method. However, in the original transitive closure based test generation approach,

a branch-and-bound process has been invoked for making further assignments on the

remaining variables. But, the worst case complexity of the branch-and-bound method

is 0(2n), where n is the problem size that is the number of variables in the current
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example. Keeping this in view, we have proposed the further minimization of the

reduced false function by using GAs.

In order to apply GAs, first the false function has to be represented as an

objective function in fitness form. The derivation of the objective function is exactly

done in the same way as mentioned for the energy minimization approach. The only
difference is that in place of using the energy function, E(x), the Boolean false function,

Fckt has to be used. As far as the mapping of the objective function is concerned, the

largest value of the input coefficient, Cmar can be taken as the total number of terms in

the false function for the circuit. In this method, the string length defines the number

of variables appeared in the objective function and their values has to be determined

by using GAs. However, the string length can be minimized by finding the strongly
connected components in the implication graph as the members of astrongly connected

component can be simultaneously assigned the same logical value. This minimization

of the string length is important as it will help in reducing the search space.

In order to find the strongly connected components the implication graph

shown in Figure 4.6(a), a condensation form of the graph is constructed and shown in

Figure 4.6(b). The string constitutes of the variable values of x2, x4x7, x5 and x9x!i,

i.e. the string length of only four bits is required. Now initial population is generated by

randomly generating 4-bit strings and GAs are applied to select a string for which the

false function evaluates to 0. There may be more than one such strings which satisfy

the false function. The string found by the test generation program is 0111 which

provides the signal assignments: x2 = 0, x4 = 1, x5 = 1 and x9 = 1 and therefore,

x7 = 0 and xn = 0. The signal values assigned on the primary input variables form

the test pattern which is 10111 for the stuck-at-1 fault at the signal line x6. It may
be noted that six variable string has been reduced to four variable string and thus a

saving in search space has been obtained for the above example. This saving can be
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very substantial for actual problem sizes for practical large circuits.

4.6 Automatic Test Pattern Generation CAD Tool

This section presents a CAD tool developed for Automatic Test Pattern Generation

(ATPG) for the combinational digital circuits. The block schematic of the CAD tool is

shown in Figure 4.7. Core of the tool is based on the genetic algorithms which finds the

global optimum solution of the problem as the test generation problem is transformed

into the search or optimization problem. The global optimum solution provides the

test pattern for a fault to be detected in the circuit. The CAD tool for the ATPG

problem mainly consists of the following four stages:

• Circuit Modeling

• Objective Function Evaluation

• Penalty Inclusion

• Global Optimization

The details of all these four stages are described in the following subsections.

4.6.1 Circuit Modeling

In this stage, the gate-level circuit is transformed into a test generation network by

adding the image (copy) of the sub-circuit affected by the fault to the fault-free circuit

and connecting their corresponding primary output(s) via an output interface. The

output interface is an inverter when the faulty image has only the single primary

output (PO) and the ports of the inverter are connected to the PO of the faulty copy
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Figure 4.7: A CAD Tool for Automatic Test Pattern Generation.

to its corresponding PO of the fault-free circuit. This inverter may be replaced with an

2-input XORgate, the inputs to which are the faulty and fault-free PO and the output

is constrained to the logical value 1 for the fault detection. When there are n number

of POs in the faulty circuit, the output interface may consist of n number of 2-input

XOR gates and one n-input OR gate. Again the inputs to the XOR gate are the faulty

PO and its corresponding fault-free PO and their outputs are connected as inputs to
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the OR gate, the output of which is constrained to the logical 1 value. The resulting

network, i.e. consisting of fault-free circuit, its faulty image and the output interface

is termed as test generation network. The test generation network is further modeled

using either of the two approaches previously described, i.e. energy minimization or

the Boolean satisfiability approach.

In the energy minimization, the test generation network is modeled into a

neural network using the unconventional digital circuit modeling technique [20] and the

test generation problem is transformed into the minimization of the energy function

derived for the test generation neural network. Similarly in the Boolean satisfiability

approach, the test generation network is represented by the Boolean false function and

the global minimum of this function will be 0 at which a test is generated.

4.6.2 Objective Function Evaluation

The test generation network constructed in the circuit modeling stage acts as the input

to this stage. Once the test generation problem is transformed into the minimization

problem for which the function is obtained using either of the energy minimization

or the Boolean satisfiability approach, the aim is to find the global minimum of the

problem. At this stage, the minimization function is transformed into an objective

function so that GAs can be directly used this function to find its global optimum.

This objective function must be mapped into a fitness form, i.e. in the maximization

form, for which the mapping procedure is explained in the Section 4.3.

As mentioned earlier that the test generation problem is a constrained problem

due to the test generation constraints, it is better first to transform this constrained

problem into an unconstrained one before applying GAs. This transformation is done

with the help of the penalty method based on schema design. The schema design also
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plays an important role in the application of GAs. The objective function is modified

at this stage by using the penalty method as described in Section 4.2.

4.6.3 Penalty Inclusion

This stage introduces a penalty using the penalty method in order to transform the

constrained optimization problem into an unconstrained one. During this transfor

mation, a penalty is introduced only in the case of the violation of certain ATPG

constraints. These constraints are usually generated for a given fault from the data

base for the circuit-under-test. Using the ATPG constraints, the schema (or schemata)

has to be designed. The schema represents the type of strings not violating certain

ATPG constraints - strings that are desirable and may lead to feasible solutions.

Once the schema is designed, the penalty functions and their corresponding

penalty coefficients may be derived depending upon the the type of constraint viola

tion. Example discussed in the Section 4.4 illustrates the procedure of defining penalty

coefficients and functions. The penalty introduced must ensure the degrading of the

function (i.e. decrease in the objective function value or increase in the energy func

tion value) for the undesirable strings that lead to non-feasible solutions hence to be

discouraged.

4.6.4 Global Optimization

This is the final stage of the CAD tool for the test pattern generation. At this stage,

GAs are applied to find the global optimum solution for the unconstrained problem for

which the objective function is derived in the previous stages. The GAs start with the

initial random population of strings of 0 and Is and maximize the fitness function by

carrying out the iterative genetic process. This genetic process may be based on the
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SGA or the AGA. The only difference between these two is that in SGA, the crossover

probability, pc and the mutation probability, pm are to be fixed, and in the AGA, pc

and pm vary adaptively in response to the fitness values of the strings. At the end of

the genetic process, the global optimum is attained at which the energy function or

the false function reduces to 0. This global optimum solution provides the desired test

pattern for the given fault in the circuit.

The above CAD tool has been developed and reported in the next chapter.
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Chapter 5

Implementation Details and

Experimental Results

New quadratic 0-1 programming and Genetic Algorithms based ATPG methods as de

scribed in Chapter 3 and 4 respectively have been implemented for the development

of an ATPG CAD tool. The tool consists of two Cprograms separately written for
the energy minimization using the quadratic 0-1 programming technique and the GA-

based minimization of the Boolean false function. The first ATPG program is called

QUADTEST that is exclusively written for the new quadratic 0-1 programming algo
rithm which has been implemented for the energy minimization. In the second program
called GATEST, the GA-based test generation algorithm has been implemented as per
the flow-chart shown in Figure 4.4. Astrictly modular approach has been followed in

the CAD tool development which ensures that the separate modules of the software

package could be compiled and debugged independently. This approach also facilitates

program modification and expansion at later stages. Various abstract-level modules of

the tool have been depicted in its block schematic shown in Figure 5.1. The CAD tool
is mainly consists of the following three components:
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Figure 5.1: Abstract view of the CAD tool.
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• Translator Module

• ATPG Network Module

• ATPG Program Module

5.1 Translator Module

The implementation of the proposed ATPG method based on quadratic 0-1 program

ming technique and genetic algorithms starts with the gate-level design description of a

circuit and the fault data base. Aconnectivity language is required to describe the gate-

level design of the circuit. This connectivity language should be either user-friendly

or support ISCAS'85 netlist format. The ISCAS'85 benchmarks are ten combinational

circuits provided at the 1985 International Symposium on Circuits and Systems. The

ISCAS'85 netlist format was never formally documented, rather it was distributed on

a magnetic tape and no formal language description such as Backus Naur Form (BNF)

exists for this format. Due to non-availability of the netlist of the ISCAS'85 circuits,

a user-friendly connectivity language has been designed for describing the gate-level

circuit. The translator module consists of a language compiler developed using the

UNIX operating system tools: YACC and LEX.

The output of the translator module is the structural model of the circuit

represented in the form of a directed graph, G(V, E), where Vis a finite set of vertices,

i.e. functional elements or logic gates and E is a finite set of edges which represent the

interconnections between the components of the circuit. An edge e € E is an ordered

pair (u,v), where u,v € Vand it represents a signal of the circuit i.e. input or output

of a functional element. The set of vertices for the structural model of a circuit is given
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by

V = VpiU Vpo U Vfe U VFo

where,

Vpj = {Primary Inputs}

Vpo = {Primary Outputs}

Vfe = {Functional Elements}

VF0 = {Fan Outs}

Since the complexity of VLSI circuits is normally of the order of tens of thou

sands of logic gates, the data structure used to build the circuit graph should be memory

efficient. Considering this fact, an efficient data structure has been used to represent

a circuit as a directed graph. In addition to this, the data structure can optimally be

extended to both types of the proposed ATPG methods. The graph structure for the

ISCAS'85 circuit with Stuck-at-1 fault as depicted in Figure 5.2 is shown in Figure 5.3

and the set of vertices are as follows:

Vpi - {xi, x2, x3, x4, x5)

Vpo = {xio, xu}

Vfe - {x6, x7, i8, x9, £10, £11}

Vfo = {FOu F02, F03)

After building the graph data structure, an ATPG constraint network is to be

constructed before the actual implementation of the ATPG program module.
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FiSure 5.2: cl7.isc: An ISCAS'85 circuit

5.2 ATPG Network Module

Once the circuit-under-test is represented in terms of graph with the help of data struc

ture, the fault data base is accessed in order to fetch the information about the faults

to be considered. For each fault in the fault data base, the ATPG constraint network

is constructed in two steps. First, the circuit graph is upgraded by concatenating
the fault affected sub-circuit graph. To accomplish this, a standard graph traversal
algorithm has been used since one has to traverse the directed graph from the edge
corresponding to the fault site of the fault-free circuit to the primary output node(s).
Second, if there exists a single PO in the sub-circuit affected by the fault, a single
XOR node will be added to the upgraded graph such that the input edges of the XOR

node will be connected to the faulty and fault-free PO nodes. The output node of

this XOR will be constrained to the value 1 in order to ensure the fault detection for

which the PO of the faulty circuit must be different from its corresponding fault-free
PO. In case there appears more than one PO in the fault-affected sub-circuit graph, a
subgraph consisting of n two-input XOR gates and one n-input OR gate will be added
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(a)

Figure 5.3: Graph representation for the cll.isc circuit

to the resulting graph, where n is the number of POs in the fault-affected sub-graph.

In the subgraph, the inputs to each XOR gate will correspond to each pair of fault-free

and faulty PO and the outputs of these XOR gates will be fed to the inputs of the

OR gate. Since for fault detection, at least one PO of the faulty sub-circuit circuit

must be different from its corresponding fault-free PO, the output of the OR gate will

be constrained to a value 1. The final graph obtained will be the ATPG constraint

network represented in the graph data structure. The ATPG constraint network of the

ISCAS'85 circuit (cl7.isc) for the stuck-at-1 fault on line £6 is shown in Figure 5.4 and

its graph structure is shown in Figure 5.5. The set of vertices in the graph structure

of the ATPG constraint network are as given below:

Vpi = {x\, x2, x3, x4, £5, £13}
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Figure 5.4: ATPG constraint network of the ISCAS circuit cll.isc for stuck-at-1 fault
on line xe

Vpo = {xu}

Vfe = {x6, £7, x8, x9, £10, £n, £M, £12}

VFO = {FOu F02, F03)

5.3 ATPG Program Module

The ATPG program module consists of two separately written Cprograms: QUADTEST
is for new quadratic 0-1 programming algorithm based ATPG method and the GAT

EST for GA-based test generation method. Both of these methods start with the

graph data structure for the ATPG constraint network. Although both the methods

derive either an energy function or a Boolean false function which is to be minimized

in order to find a test, the approach to derive these functions and their minimization

is entirely different. The implementation details of each method with experimental
results obtained for some example combinational circuits are described in the following
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Figure 5.5: Graph representation for the ATPG constraint network of cll.isc circuit

subsections:

5.3.1 QUADTEST

The proposed ATPG method based on the new quadratic 0-1 programming technique

has been implemented in a prototype C language program called QUADTEST and

run on a Sun Sparc 10 UNIX workstation to generate tests for example combinational

circuits. In QUADTEST, first of all, a neural graph is constructed for the ATPG

constraint network by using the samedigital circuit modeling technique as described in

the subsection 2.4.2. In order to accomplish this, a neural compiler is used to transform

the ATPG constraint network in to the ATPG neural net. This neural compiler uses

the neural database which consists of neural models for all the basic gates. Since the

neural net is also a kind of graph, an enhanced version of the graph data structure
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is used to represent it. Finally, in QUADTEST, an energy function is derived for the

ATPG neural net that is resulted from the basic energy minimization formulation of the

test generation problem. In order to find a test for a given fault, this energy function

is to be minimized to zero. The QUADTEST minimizes the energy function which is

of the type of pseudo-Boolean quadratic function.

The QUADTEST is purely deterministic because Random Test Generation is

not done at any stage of the ATPG process. The energy function, obtained from the

previous stages of the ATPG system, is minimized strictly using the new quadratic 0-1

programming technique. Efficient data structure is used to provide all the necessary

information required during the test generation process. The algorithm provides the

test vector for a fault under consideration if it is testable. After every test vector, the

energy function for each of the undetected faults is evaluated and as soon as energy
evaluates to 0 for a fault, the same is deleted from the set of undetected faults. This

procedure is repeated for all the undetected faults. This way not only the fault set is

get reduced but an optimal test set is obtained.

The QUADTEST not only generates the test patterns for all the testable faults

but also identifies redundancies in the circuit. Test patterns have been generated for

some example combinational circuits which confirms the feasibility and efficiency of the

QUADTEST. The results obtained by the proposed methods for the cl7.isc (ISCAS'85
circuit), the Schneider's circuit [87], the ECAT (Error Correction and Translation)
circuit, and the SN5483A four-bit carry look-ahead binary full adder are tabulated

here. Average ATPG time per fault for the example circuits is shown in Table 5.1.

The experimental ATPG system based on QUADTEST does not have a fault simulator

and no circuit partitioning and fault collapsing techniques are used. The average CPU
time per fault obtained by the proposed method is also compared with the results

reported earlier. The comparative results given in Table 5.1 show the effectiveness of
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Table 5.1: Experimental Results: QUADTEST

Circuit cll.isc Schneider ECAT SN5483A

Number of Signals 17 28 23 104

Number of Inputs 5 4 6 9

Number of Outputs 2 3 1 5

Number of gates 6 8 9 36

Total Faults Considered 34 56 46 208

Redundant Faults 0 2 8 0

Faults Detected 34 54 38 208

Fault Coverage 100% 100% 100% 100%

New Quadratic 0-1 Programming:

Average CPU Time per Fault (sec.) 0.01 0.02 0.04 0.24

Reported in the Literature:

Average CPU Time per Fault (sec.) - 0.12 U.43 3.3

the proposed method.

5.3.2 GATEST

Genetic Algorithms based test generation method has been implemented in another

prototype C program called GATEST. This prototype which generates a test for a

given fault or classifies it as redundant if it is undetectable, executes the following

steps:

1. First of all, the Boolean false function is constructed for the ATPG constraint

network with fault. In order to activate the fault, the values 1(0) and 0(1) are to
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be assigned to signals at the fault site in the fault-free and faulty portions of the

circuit, respectively, for as-a-O(l) fault. For successful fault effect propagation to

at least one of the PO, the output of the ATPG network is to be constrained to

a logical value 1. The false function will get reduced by substituting these fixed
signal values.

2. An implication graph is constructed from the binary relations of the reduced false
A function obtained in Step 1.

3. The global dependencies are derived from the transitive closure of the implication

graph which is computed by using an efficient computational algorithm described

later in this Section. If a contradiction occurs, the fault under consideration is

declared redundant. In case all the signal variables are get assigned and the false

function evaluates to 0, then test pattern is found. Otherwise, the newly assigned
variables may reduce some of the ternary relations of the false function to binary
relations. The implication graph may be updated for these additional binary re
lations. Again, transitive closure is computed for this updated implication graph
and this process continues until no more fixation is made or any contradiction
occurs.

4. In case the test pattern is not found and fault is not declared redundant, areduced

version of the false function will be obtained for minimization as no further as

signments can be made using the transitive closure computation. The condensed

form of the implication graph corresponding to the reduced false function is de

rived by finding its strongly connected components.

5. Genetic Algorithms are applied to find the minimum of the reduced false funct

which will be 0 at its global minimum. To guide GA-based search, object!
function in fitness form is derived by using the reduced false function. If the global
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minimum is found, the fault is detected and a test pattern is found. Otherwise,

the fault is declared redundant.

The transitive closure computation and the false function minimization using

GAs are the two major steps in GATEST and therefore, require special attention. The

following subsections are devoted to describe each in detail.

Efficient Transitive Closure Algorithm

The worst-case space and time complexities of conventional transitive closure algo

rithms [7] for the graph with n number of vertices are 0(n2) and 0(n3) respectively.

The time complexity could be reduced to 0(n2A9) by exploiting the equivalence be

tween matrix multiplication and transitive closure and using fast matrix multiplica

tion methods. An efficient algorithm has been implemented for computation of the

transitive closure by exploiting the special structure of the implication graphs. The

implication graphs corresponding to the false function are sparse which means that the

graph contains a very small number of edges compared to fully connected graph and

also have the duality property [11], i.e. if the graph contains an arc from x to y then

it will also contain an arc from y to x. Using this duality property of the implica

tion graphs, strongly connected components [7] are computed using a simple depth-first

search, where a strongly connected component is a set of vertices that are reachable

from each other. This transitive closure algorithm appears to run in linear expected

time complexity and has 0(n) space complexity.

In the context of test generation, the transitive closure computation means

that only the necessary logical conclusions like fixation of the variables, contradictions

etc. are derived by finding the strongly connected components and condensation of

the implication graph [7]. The procedure for deriving logical conclusions has been
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implemented only in three steps as given below.

1. Compute strongly connected components of the implication graph which

spond to the false function. All contradictions and identifications are determined

from the strongly connected components.

2. Construct the condensation graph.

£ 3- Determine the transitive closure of the condensation graph. All fixations are

derived from the transitive closure.

Minimization of Boolean False Function Using Genetic Algorithms

corre-

The reduced false function that can not be further pruned by the transitive closure

method used to be further minimized by the branch-and-bound procedure which led to

a too costly solution to find its minimum. We apply Genetic Algorithms to minimize

the reduced false function by implementing the following steps:

1. The implementation of a sequential GA starts with the initial population of

binary strings which represent the potential solutions and the initial population is

generated by using arandom number generator. The number of signal variables in

the false function decides the length of the string which is termed as chromosome

length (Ichrom). The population size (pop.size) is the number of such strings in
a given population.

2. The next step is reproduction which evaluates and selects pairs of strings for
mating according to their relative strengths. The individual string is evaluated by

a fitness function, i.e. an objective function in fitness form. The fitness function

is obtained by subtracting the false function, say F(x) from its largest value. Let
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Cmax be the largest value of the false function. Then the fitness function can be

written as

fitness function = Cmax —false function (5.1)

where, Cmax can be taken as the total number of terms in the false function.

In selection, strings are selected by using a weighted roulette wheel method so

that strings with higher fitness values have a higher number of offspring in the

succeeding generation. These strings are then entered into a mating pool, i.e. a

tentative new population.

3. After reproduction, next comes the crossover which determines whether crossover

is to occur on a pair of strings by using a flip function: tossing a biased coin (with

probability pcross). If the result is head (true), the strings are swapped and the

crossover.point is determined by a random number generator. However if the

result is tail (false), the strings are simply copied. A new population will be

obtained as a result of this crossover step.

4. After crossover, the mutation operator is applied to the new population which

may be an alteration of a random bit in a given string. The mutation function

uses the biased coin toss (flip) with probability pmutation to determine whether

to change a bit or not.

5. Finally, termination criterion is included in which if the false function reduces

to 0 during evaluation of the strings, the fault is detected and the values of the

primary input signal variables will form the required test pattern. Otherwise, the

fault under consideration is declared redundant.

In the initial phaseof GATEST, the transitive closure of the implication graph

is computed which contains global pairwise logical relationships among all signal vari-
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ables. Signal dependencies like fixation are determined from the transitive closure.

Other dependencies may result in conflicts, and, hence able to identify redundancies

in the circuit. The key feature of this particular step is that the dependencies derived

from the transitive closure are used to reduce ternary relations of the false function

to binary relations which dynamically update the transitive closure. For GA-based

minimization of the false function, values of the different input parameters like pop-

size, pcross, pmutation are required as they play a major role in finding the optimum

solution efficiently. Although the crossover and mutation probabilities are adaptively

changed in the GATEST implementation, initially the following two sets of control

parameters have been employed.

• pop.size: 100, pcross: 0.67, and pmutation: 0.001.

• pop.size: 32, pcross: 0.87, and pmutation: 0.01.
4

The selection ofthese control parameters depends on thenumber ofvariables in thefalse

function. If the variables are small in number, then small population size parameters are

used and if large number of variables are there, then large population size parameters

are taken as input to the GA-process. The chromosome length, Ichrom is just the total

number ofvariables in the the false function. In GATEST, the crossover and mutation

^ probabilities, i.e. pcross and pmutation respectively, are modified adaptively. These

probabilities are computed using the following expressions:

pcross = h(fmax - f')/(fmax - /), /' > / (5.2)

= *3, /' < / (5.3)

pmutation = k2(fmax - f)/(fmax -/),/> / (5.4)

= *4, / < / (5.5)
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where,

/

Jm

f

f

average fitness value of the population,

maximum fitness value of the population,

fitness value of the solution, and

larger fitness values of the solutions to be crossed.

and ki, k2, k3, k4 < 1.0. The coefficients k\, k2, k3, and k4 values are taken to

be 1.0, 0.5, 1.0 and 0.5 respectively, because the moderately large values of pcross

(0.5 < pcross < 1.0) and the small values of pmutation (0.001 < pmutation < 0.0.05)

are essential for the successful working of GAs.

GATEST has been implemented in C to run on a SUN SPARC 10 UNIX

workstation. It generates test patterns for all the detectable faults and also identifies

redundant faults in the circuit. In the case of redundant faults, redundancies are identi

fied either in the phase of transitive closure computation or during minimization of the

false function using GAs. So whenever, any redundancy is reported in the transitive

closure computation phase, GATEST simply exits by declaring the fault as redundant.

In case no redundancy is reported during the transitive closure computation, GAs will

be run for the maximum number of generations. In case GAs are also unable to detect

the fault then it will be known only after the maximum number of generations. Such

cases, although less in number, increase the average CPU time per fault for ATPG

and can not be avoided. The performance of the GATEST has been tested by gen

erating test patterns for the same set of example combinational circuits as considered

for QUADTEST. The performance of both the ATPG program has been compared

and found that for large circuits GATEST performs better than QUADTEST as it can

be seen from the average CPU time per fault for the 4-bit carry look-ahead binary

full adder (SN5483A). The QUADTEST performance is found better for the smaller
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Table 5.2: Experimental Results: GATEST

Circuit cll.isc Schneider ECAT SN5483A

Number of Signals 17 28 23 104

Number of Inputs 5 4 6 9

Number of Outputs 2 3 1 5

Number of gates 6 8 9 36

Total Faults Considered 34 56 46 208

Redundant Faults 0 2 8 0

Faults Detected 34 54 38 208

Fault Coverage 100% 100% 100% 100%

GA-Based Approach:

Average CPU Time per Fault (sec.) 0.02 0.04 0.07 0.20

Reported in the Literature:

Average CPU Time per Fault (sec.)
- 0.12 0.43 . 3.3

circuits. The test generation results in terms of average CPU time per fault, number

of faults detected and found redundant are given in Table 5.2. Like QUADTEST,

the GATEST also does not have any fault simulator and no circuit partitioning and

fault collapsing techniques are used in the ATPG program. The experimental results

obtained by GATEST shown in Table 5.2 are compared with the results reported in

the literature. These results show the effectiveness of the proposed GA-based method.

Although both the ATPG programs QUADTEST and GATEST have been

successfully tested by generating test patterns for the example combinational circuits,

but their performance could not be tested on the ISCAS'85 benchmark circuits because
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the required netlists of these circuits are not available. However, the feasibility of

the proposed ATPG methods and their effectiveness have been shown by comparing

the results obtained for the example circuits to the published results. Though the

approaches in the development of these programs have been finalized keeping in view of

their future scope of parallelization. But, since the programs have been implemented on

serial machines, efforts have been made to make them faster to run on these machines.

Furthermore, approaches followed in both the programs share a common goal that is

minimization of a function, where the function is either energy function or Boolean

false function. Hence, further discussions are required to elaborate the ATPG program

development.

The new quadratic 0-1 programming technique has been investigated due to

the fact that the energy function derived from the test generation problem formulation

has the special structure and is of the form of pseudo-Boolean quadratic function. This

special structure has been exploited in QUADTEST and the minimization process

has been accelerated by incorporating the heuristics. However, the minimization of

the energy function can also be done by using the GA-based approach in which the

objective function is derived using the energy function in place of the false function.

As far as the mapping of the objective function resulted from the energy function is

concerned, the value of the input coefficient Cmax is required which is difficult to know

a priori for the energy function and therefore, it may be taken as the largest value

of the energy function observed in a process or in the last ^-generations. But, in the

minimization of the false function using GAs, the total number of terms in the function

is taken as the Cmax value. Furthermore, the GA-based approach for test generation

problem is accelerated by incorporating the transitive closure method in the initial

phase of the process. The transitive closure computation helps in reducing the false

function by making the fixed assignments on the signal variables and identifies early
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conflicts. Since the implementation of both the ATPG programs has been focussed

to run on serial machines, the false function minimization using the GA-based test

generation approach is preferred over the energy function minimization.
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Chapter 6

Conclusion and Future Scope of

Work

6.1 Conclusion

Test pattern generation problem for VLSI circuits has been studied for which a num

ber of combinational as well as sequential ATPG algorithms have been developed in

the past. Most of these algorithms have been reviewed in the thesis. Although inves

tigations of sequential ATPG algorithms is an important area of research, the thesis

^ is mainly focussed on the development of combinational ATPG algorithms keeping in

view of their vast applications as discussed in the Chapter 2. The ATPG algorithms

reported in the literature are found mostly serial in nature which means that they are

developed to run on the conventional single processor machines and the entire bag of
tricks have been used to speed up these algorithms. Despite putting lots of efforts,

the gains achieved through these developments have not kept pace with the increas

ing size of VLSI circuits resulting in huge computation times for ATPG. With the
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availability of parallel machines and distributed network of idle workstations in most

of the VLSI-CAD environments, it has become possible to harness the computational

power available for solving the compute-intensive ATPG task. Various parallelization

techniques have been reported in the literature but there are some drawbacks with

every technique as discussed again in Chapter 2 and it has been recommended that

altogether new techniques have to be investigated for solving the compute-intensive

VLSI test problem. Recently two different approaches have been developed for solving

such problem so that they can be easily extended to run on massively parallel and

distributed computing platforms.

The work carried out in this thesis has been in the same direction of the de

velopment of new ATPG methods easily extendable to run in a parallel/ distributed

computing paradigm. The proposed methods are based on the recently developed

approaches in which the ATPG problem is formulated either as an optimization or

a Boolean satisfiability approach. Both the approaches are radically different from

the conventional methods of generating test patterns for circuits from their gate level

descriptions. Since, in the optimization based approach, the ATPG problem is trans

formed into the minimization of the energy function, which is of the form of pseudo-

Boolean quadratic function, a new quadratic 0-1 programming technique has been

proposed in order to find the global minimum of the energy function that in turn

provides the test pattern for a given fault.

Once the ATPG problem is formulated as an optimization problem, a whole

suite of optimization algorithms can be applied to find a solution. Genetic Algorithms

(GA), being most effective and more efficient than other traditional optimization algo

rithms, have been studied and found very much suitable to solve the ATPG problem.

It is also noted that GAs can be the basis for ATPG since they are robust and have

inherent amenability to be processed in parallel. Considering all these advantages of
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genetic algorithms, new GA-based test generation methods have been proposed and

described in this thesis. In the GA-based test generation method, schema design and a

penalty method has been described, which transforms the constrained ATPG problem

into an unconstrained one by modifying an objective function. The objective function

is essentially required to guide the GA-based search. This function is derived by using

the energy function for the optimization based ATPG approach. In the Boolean satisfi-

ablity method, the objec tive function is based on the Boolean false function instead of

a truth function. Finally, a mapping has been done to transform the objective function

into fitness form.

A prototype ATPG system based on the proposed algorithms has been devel

oped which consists of two programs: QUADTEST and GATEST. Both the programs

have been demonstrated by generating test patterns for single stuck-at faults in several

practical combinational circuits. The new quadratic 0-1 programming technique has

shown good results for some example circuits and its performance has to be tested out

for large practical circuits. However, this technique may become too time consuming

for the large circuits due to its branch-and-bound process and the large number of vari

ables in the energy function. This fact can beeasily observed from the results obtained

for the comparatively bigger example circuit of 4-bit carry look-ahead binary full adder

(SN5483A) using the QUADTEST (Table 5.1). On the other hand, minimization of

the Boolean false function by the GA-based method has been found very effective as

it can be seen from the results obtained for the same example circuit with fairly a

large set of faults (Table 5.2). This is because of the fact that the GA-based method

does not incorporate branch-and-bound process at any stage and both the transitive

closure computation and the false function minimization using GAs has been used in

an efficient manner. The efficiency of the GA-based method has been shown by run

ning the ATPG program, GATEST, for the same example .practical circuits as of the
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QUADTEST. Theresults obtained by this new method are also compared to the results

reported in the literature. It can be observed from Table 5.1 and 5.2 that the average

CPU time per fault for example circuits obtained by QUADTEST and GATEST is

relatively less as compared to directed search technique augmented by probabilistic

relaxation using the similar optimization based ATPG method by Chakradhar et al.

[20]. However, these results have not been compared to the results obtained from other

existing methods which use Random Test Generation (RTG) in their initial phase of

the ATPG process due to several reasons. One important reason is that RTG produces

a longer tests set which costs more to apply because it increases the testing time and

memory requirements of the tester. Another significant reason is that fault simulation

will be more expensive for longer tests set. Due to these reasons RTG could not be pre

ferred over the deterministic test generation techniques which are usually much more

expensive in terms of computational time but produce shorter and high quality tests.

The comparative study shows the effectiveness of the GA-based method for solving the

ATPG problem.

The GA-based test generation method can be easily parallelized by paralleliz

ing its transitive closure computation and GA-based false function minimization steps.

The computation of transitive closure can be accelerated through parallel processing

since it belongs to class NC that means a hierarchy of problems solvable by deter

ministic algorithms in polylog time using a number ofprocessors which are polynomial

bound. The false function minimization using GAs can be parallelizedby assigning the

iterative genetic process on separate processors to beexecuted in parallel on a network

prototype. In this case more than one processor can be simultaneously assigned a job

of the false function minimization in order to obtain the required test patterns for a

given set of faults.
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6.2 Future Scope of Work

The future scope of the work carried out in this thesis will be on parallelization of
the proposed ATPG methods. The parallelization of these methods, though not at
tempted here, may provide good speedup for solving the ATPG problem on parallel
machines with alarge number of processors. Recently, mathematical techniques have
been reported in the literature for solving the quadratic 0-1 programming problem on
hypercube architectures but they have not yet applied to solve the ATPG problem.
The work carried out on the GA-based CAD tool development for the ATPG prob
lem can be easily updated for an efficient implementation on the parallel/distributed
computing paradigms.

It is observed from the results reported in the thesis that the proposed quadratic
0-1 programming technique and GA-based methods have been found very effective for
solving adifficult problem of test pattern generation for combinational logic circuits.
Since the ATPG problem has been formulated as an optimization or aBoolean satisfi
ability problem, other compute-intensive real world problems can also be solved using
the same methodology of their reformulation into an optimzation or a Boolean sat
isfiability problem. For example, the VLSI layout problem, the Boolean satisfiability
problem, the traveling salesman problem and many other combinatorial optimization
problems can be solved via quadratic 0-1 programming. Most recently, quadratic 0-
1programming technique has been applied for synthesis of application specific data
paths in VLSI-CAD [39]. Hence, the new technique proposed in the thesis to find the
minimum of E(x) =x^Qx +c*x with xe {0,1}" is directly become applicable to
these problems. Solving graph problems is another important problem domain of vari
ous engineering problem for which the proposed quadratic 0-1 programming technique
finds its application. It may be observed that the transformation of graph into logic
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is possible through an expression which is of the form of an energy function and thus

can be solved by using the same quadratic 0-1 programming technique.

The GA-based methods can also be applied to solve the above mentioned real

world problems. As an illustration, the GA-based ATPG method finds the global

minimum of the Boolean false function which is zero and the solution obtained for the

problem is in terms of the values for the signal variables involved in the function. Since

this false function can be transformed into its corresponding Boolean truth function

which is usually represented in the conjunctive normal form (CNF), the signal values

of the variables determined by GA-based method also satisfy the CNF formula. So

the GA-based method can be applied to the Boolean satisfiability problem for which

choosing an objective function is far from obvious. Other real world problems may also

be solved using the similar GA-based method in which the problem is first transformed

into an optimization or a search problem and then GAs can be applied to find the

solutions.
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