
BUCKLING OF COLUMNS 
WITH 

SPECIAL REFERENCE 
TO 

PLASTIC BUCKLING 

A DisserTation 
Submitted in partial fuifiimentof the 
requirements for the degree of 

MASTER OF ENGINEERING 
in 

MECHANICAL ENGINEERING 
(MACHINE DESIGN) 

By, 

DALJIT SINGH BEDI 

9 

KEE• 2~-~ 

DEPARTMENT OF MECHANICAL ENGINEERING 

UNIVERSITY OF ROORKEE 

ROORKEE 

1963 



(i) 

G R T I F I C A T 

certified that the dissertation entitled "Buckling 
of colu ns with special reference to plastic buckling" 
which is being submitted by Mr.Daljit Singh Bedi in partial 
fulfilment for the award of the Degree of Master of igg. 
in Mechanical Machine Design of University of Roorkee is 

a record of students' own work carried out by him 'onde r 
my supervision and guidance. The matter embodied in this 

dissertation has not been submitted for the award of any 

other Degree or Diploma. 
This is further to certify that he has Worked for a 

period of 3 months from 5th May, 1963 to 21st August, 63 
for preparing dissertation for Master of Fiig ieerin.g .. 
Degree at the University. 

Dated s August a, '63. (Jainti Prasad) 
Lect. in Mech. En g g. 
University of Roorkee, 
Roorkee,, U.P. 



I wish to express my sincerest sense of gratitude 

to Prof. h.h Alvord!. Visiting Professor of Mechanical 

Machine Design at the University of Roorkee; and Prof • 

L.B. Mankani s  Reader in Mechanical Engineering$ University 

of Roorkee, for suggesting the problem and giving valuable 

suggestions and comments at all stages of its progress. 
My deep sense of gratitude goes to Prof. Jainti 

Prasad, Lecturer in Mechanim i Engineering, University of 

Roorkee, for his valuable comments, instructions and 

guidance throughout the course of this study. His untiring 

enthusiasm was a constant source of inspiration to me 
due to which this work has assumed the present shape, 

I will be failing in my duty if I  do not express 
my sincerest gratitude to Prcf . M.Y. Kamlani, Read of the 

Mechanical Engineering Department, University of Roorkee 

for his patronizing guidance for the exie rimental work 

undertaken for this study. 

My thanks are also due to M/S Goetse (India) 
Private Ltd., Bahadurgarh,(Patiala)$ for their help rendered 

to me by making available full Laboratory facilities for 

chemical analysis of various steels and Al-Mg-alloys used 

in the present work. 
In the end I will like to thank Mr. Talvar, Laboratory 

Assistant, Material Testing Laboratory, Mr. K.B. Gaddiy Porem n. 
Machine shop and other workshop staff for their co-operation 

in carrying out this experimental work. 

D. 8. BED! 



The study in hand constitutes of tracing out the 

historical resume in development of the "Theories of Buckling 

with special reference to Plastic Buckling". Here in this 

work an attempt has been made to correlate the observed ,  
buckling load and stresses with those calculated by the various 

plastic buckling theories by plotting the curves of buckling 

stress V.s slenderness ratio for different materials, with 

various sections and various end conditions. 

The effect of end-restraints on the working stress cI 

a column has also been studied and inference drawn that the 

effects of end-restraints tend to be negligible and what-

soever is left should be dealt with by selecting the fixity 

coefficient with conservatism. 
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The maximum load that a member can take without failing to 

perform its function maybe limited by the permissible elastic 

strain or deflection of the member, but elastic deflection 

which may constitute damage to a member can occur under the 

following different conditions: 

(a) Deflection under conditions of static equilibrium 

such as the extension of a tension member$  the angle of twist 

of a shaft and the deflection of a beam particularly under 

gradually applied load. 
(b) The other structural action in which elastic deflec-

tion may limit the maximum load that can be applied to the 

member without causing the member to fail structurally is 

denoted as "Elastic Buckling". Buckling or the sudden deflec-

tion is associated with unstable equilibrium which causes the 

total collapse of the member. In buckling, the elastic deflec-

tions and stresses in the member are not proportional to the 

loads as buckling takes place, even though the material acts 

elastically i.e., stress is proportional to strain. 

Elastic buckling arises out of the condition of 

neutral equilibrium that develops when applied load on the 

member reaches a so-called critical value. At this critical 

load the member is in equilibrium throughout a considerable 

range of small elastic deflections. But if the load is 

increased slightly - above the critical value the deflection 
of the member increases abruptly and then it is not propor-

tional to the. load. And even in case the member is not 
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extremely slender, it will pass into a completely unstable 

condition due to inelastic action created by large deflections. 

This unstable condition will lead to total collapse. 
This critical load or the buckling load is generally 

estimated by the well known Euler's Equation which gives 

critical load as 
L 

P 	7' K1 .~ (Le)2 

EA or 	T 
(Le/K)2 

Where PE = Euler's buckling load 

E = Young's modulus of the material of column. 

I = Least value of the sec--,nd moment of area. 

Le *= Equivalent hinged length of the column and 

has different values for different end conditions. 

A = Area of cross-section of column. 
K = Least value of the radium of gyration of the 

section of column = JI/A • 
La/K = Equivalent hinged slenderness ratio of the 

column. 

At this critical loads the failure takes place purely 

due to the instability of the column and not due to excessive 

compressive stress. The compressive stress at this critical 
load can be written as G= PE /A = E/ 

*  L, the length of column for both ends hinged. 

L/2, for both ends fixed. 
Le = 2L, for one and fixed and other free. 

Le = L/,,.,/2 , for one end fixed and other guided. 
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As the equivalent slenderness ratio (Le/K) of the 
column decreases the value of the compressive stress 
increases and for the relatively small slenderness ratio 

the direct compressive stress in the column attains the 

elastic limit in compression of the material before the 

buckling load. 'Thus the buckling of the column takes place 

whan the direct stress is in the plastic region and it is 

known as the "plastic Buckling". The Euler's expression 

is no more true for such columns and various theories 

have been put forward to determine the buckling load 
in the plastic region. 

Here in this work an attempt has been made to 

correlate the observed plastic buckling loads and stresses 

with those calculated by the various plastic buckling theories 

by plotting the curves of buckling stress Vs slenderness 
ratio. 

. ♦ • • • .1,•  . • s • 



,P4r 

2. 

PE = Euler's buckling load; lbs. 

E = Young's modulus of material; lb/in 2 

I = Least second moment of area; 

L = Length of the column; in. 
Le = Equivalent hinged length of column; in. 
Ll = Distance between ball centres of the pinned-end 

fixture; in. 

K = Least value of the radius of gyration of the 

cross*section; in. 

A Area of cross-►section of the column; (in. )2 
Et = Tangent modulus; lb/in2 

Ed = Double modulus or reduced modulus; lb/in.2 

£ ; 

 

Si; in./in. 

6 = Stress; lb/in.2 or 

6~ = Observed cripling stress; lb/in.2 or K.S,i. 
~E = Euler's cripling stress; lb/in.2 or 
Gt = Engesser's stress or calculated cripling stress 

on the basis of tangent modulus theory; lb/in.2 or K.S.i. 

Calculated cripling stress on the basis of double 
modulus theory; lb/in.2 or 

K •S • . • = Kilo pound per sq.in. 
1000 lb/in.2 

d = Dim, of test specimen% 



3. 

3.1. 	cries of 	klinz. 
The buckling load for a column is taken to be the axial 

load that will hold the column in a slightly deflected posit.on$ 

and, since an ideal column would not bend under any axial. 
load$ a small lateral force must be applied to produce the 

initial deflection. This procedure, however, may be carried 

out :fin either of the two ways: (a) The lateral force may 

be ass' d to be applied first and then the axial load 

required to hold the column in the slightly bent position 

is applied and the lateral force removed; or (b) The unknown 
buckling critical load may be assumed to be applied first 

and then the lateral force is applied to cause the deflections 

and is then removed. For elastic behaviour of the column the 

solution for the buckling load will be the same for the two 

procedures, since the physical process constitutes a 

reversible system and hence does not depend on the strain 

history in arriving at a given physical state: 'Thus for the 

columns whose slenderness ratio is such that the nominal 

stress is within the compressive elastic limit of the material 

at buckling loads the guler's equation for buckling load 

of columns, namely 
z 

(Le )2 
2- 

or ~c 	E 
CLe/K 

has :Long been accepted. 
Buts if the physical process is non reversiblessuch 

as occurs in inelastic behaviour of material, the order of 
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applying the forces to the column in the two procedures would 
lead to different values for the buckling loads. The main 
condition involved in the process may be emphasized by stating 
that for inelastic behaviour, a single-valued relationship 
between stress and strain does not exist. But in addition It 
may be pointed out that a single-valued relationship between 
stress and strain will exist not only for elastic strains 
but also for inelastic strains provided that all strains 
increase as the load increases i.e., no fibre in the member 
is allowed to unload. 

The two solutions for the buckling load, therefore, will 
be for the assumptions,  (a) that the lateral force and the last 
Increment of the axial load are applied simultaneously 
so that the strains in all the fibres at any cross-section 
increase although they are not uniformly distributed on 
the section after the lateral force is applied, and (b) that 
an axial load equal to the buckling load is applied first 
and then followed by the application of a small lateral 
force which deflects the column; the bending in this case 
causes the strains in the fibres on the convex side to decrease 
and on the concave side to increase. 

The essential difference in the two assumptions lies 
in the fact that under the second assumption the strains in 
some of the fibres on the convex side behave elastically 
and hence the change in stress o s' accompanying tta decrease 
ir. strain .o E is given by G = E nF. I  in which E is the 
Young * s modulus of elasticity$  whereas under the first 



assumption a6 = t°~ for each fibre, in which Et is the tangent 

modulus corresponding to the inelastic stress 6 (G = P/A where 

P is buckling load) . 
Based on the first assumption in 1889 Engesser 1) 

suggested the tangent modulus theory in which he pointed out 

to replace the Young's modulus E, In the equation No.l for 

buckling load, by tangent modulus St is given by 

d 

It is the local slope of` the stress-strain diagram. 

Euler's equation modified in this manner becomes 

~Z Et 	 / t 
(L® /K)2 

This is referred to as the tangent r. modulus formula 
or the Euler:.Engesser formula, The buckling stress% determi-
ned by this theory is called the Engesser stress or the 

tangent-modulus-stress. 

After the appearance of Engesser's original pa per in 
1889, the tangent-'modulus-theory was criticised on the 
grounds that it did nct take into account the fact that 
during buckling a osit-ion of the cross - section would 
be subjected to a decreasing stress# for which the elastic 

modulus would apply. This led to the development of the double-
modulus theoryW v in which an effective or 'Reduced modulus'. 

or 'Double modulus'$ Ed was determined based on the second 

assumption as mentioned above. The buckling stress or double 

modulus stress is given by replacing the Young's modulus,E, 

(1) See Reference 1. 



by double modulus Ed in the per's formula 

~ (Le/K )2 
and. the value of Ed was calculated as 

E- d  

The double modulus theory was considered to be the 
correct theory of , inelastic colunn action until 1946 when 
.R.Shanley 	showed that it represented a paradox. 1n 

order to exceed the Engesser.buckling stress, it was 
necessary that the column remains straight until that stress 
is reached and the effective modulus be greated than Et. 
But a real column vill not remain straight or will not wait 	, 
to bend until the double-modulus buckling stress, 	is 
reached as is assumed in the derivation of the double-modulus 
formula. In fact, even when great care is exercised in 
testing a real column, there is sufficient deviation from 
ideal conditions to cause the column to start to deflect 
laterally at a direct stress that Is even less than 6T , 
the tangent-modulus stress. But such small lateral deflections 
are accompanied by increments of strain'. sufficiently small 
to nearly justify the conditions assumed in the derivation 
of the tangent-modulus formula, namely, that the stress increment 

accompanying the bending strain increment ° E shall be 
given by the expression 	 . If however an attempt is 

(.2) - See Reference 2. pp 599602e 
(3) - 3ee Reference 3. 



madeto increase the direct stress above 	, it will be found 
that except for materials having a constant value of Et, 
a real column will not permit the direct. stress to reach 
the value mod, as given by the double-modulus formula; the 
column will buckle and collapse at a stress less than Ed  . 

During plastic buckling the increase in the buckling 
stress beyond the Fuler-Engesser value given by equation 
ado .4 , will depend on the variation of the tangent modulus 
with the Increasing stress. In highly curved region of 
the stress-strain diagram, which is sometimes known as Knee, 
the tangent modulus drops very rapidly with increasing stress 
(Fig.15 & 16;n&+ccand also formaterials of indefinite Y.P ); 
consequently very little increase sin Eu].err-Engesser-stress 
would be obtained. In the so called plastic ranges  beyond the 
Knee of the diagram the tangent modulus has a relatively low 
value and does not change rapidly with increasing strain. The 
maximum column..buckling stress will therefore approach the 
value predicted by the double-modulus-theory, which 
permits a relatively large increase in buckling stress 

for low values of Et/E. 
The foregoing remarks which apply only to columns 

made of materials exhibiting a compressive stress-strain 
curve of gradual curvature above lie proportional limit, 
(such as for Al alloys, heat treated special ferrous alloys 
etc.) and experiencing small strains may be interpreted that: 

"The inelastic buckling stress for a real column that 
deviates very little from ideal conditions is predicted 
satisfactorily by the tangent modulus formula, and the 
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reduced-emodulus Ibrmula only gives the upper limiting value 
of the plastic -buckling..stress that cannot be expected to 
be attained in a real column (2) . 

For the materials having a definite yield point(such 
as Mild Steel) , the slope of the compressive stress-strain 
curve changes abruptly to zero when the elastic limit is 
reached; the stress-strain curve suddenly becomes horizon.. 
tal and remains so until, relatively large inelastic 
strains have developed. A column having a relatively small 
slenderness ratio and made of such material would buckle 
when the stress in the column reaches the elastic limit 
.(yield point) in compression of the material; in other words, 
plastic behaviour Is not accompanied by an increase in 
stress as is found to occur for materials not having 
a yield point (e.g. AL alloy),. The so-called flat top 
stress-strain diagram means that the tress in the column 
remains constant at. the elastic limit until the plastic 
compressive strains attain a value equal to the full length 
of the flat or horizontal position of the curve. This y in 
turn, means that before such a large plastic strain could 
be developed )  the deviations from ideal conditionss  even 
though very small would permit bending to st arty leading 

See-Reference 2. pp 606. 



its buckling. From the above discussion it is clear, that for 
an ideal column in the plastic range: 

(2) 
1. Engesser stress represents the maximum stress for 

which the column has only one equilibrium configuration. Upto 
this stress the idealised column must remain straight; 
beyond this stress it may bend. 

2. The double-modulus stress represents the upper limit 
for the stress that can theoretically be reached as the ,  
column continues to bend with increasing stress. To develop 
the double-modulus stress$ it would require infinite lateral 
deflection at a constant(405)  value of tangent-modulus which 
is impossible. 

3. For a given column of a particular material, the 
maximum stress that can be developed will generally be only 
slightly greater(6)  than the Engesser stress, because. 
of the rapid decrease in Et  with increasing stress. Therefore 
the Engesser stress is considered as the practical upper limit 
for column strength. 
3.2. 	Efffects at End-Restraint,, 

In theory and restraint has a very simple effect; It 
merely changes the effective column length. In practice, however, 
the accurate determination of the effects of end-restraint 
for any column except a pin-ended column is a difficult 

problem. 

(4) See Ref .4i(5) See Ref. 5. 
( 2) See Ref.2 	pp 604-605; (6) 	See Ref .6. 
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The long standing cone eption of a fixity coefficient 
as a multiplying factor has perhaps given rise to an exaggera-

ted idea of the effects of end restraint. 
Mr . Von Karman(7) and others had shown that the .fixity 

coefficient J can be used as a multiplying factor s but 
only for elastic case (Euler's formula), According to 

You Karman for elastic range buckling 

Leff = L/,., ~✓ 	~r••.8*.•sw♦000(7) 

Where Leff w Effective length of column 

L = Actual length of column 
J Fixity coefficient * 

in the plastic range the values of C given in the foot- 

note may not be true but in general the equation (7) will 
hold good. After lot of experiments it was estimated by 

You Karman that end-restraint causes a marked increase In 

buckling strength only for long slender columns and not 
for short ones. The efficiently designed (i.e., allowable 

stress approaching the yield point) structures cannot be 

made proportionally stronger by increasing the amount of 

end restraint. In other words the effect of end restraint 

on column strength in the plastic range is very small. 

For example in aircraft structures, the compression members 

are designed to develope ultimate stresses that approach the 

(7) See Ref. (7) 
* O. for both ends pinned 

C=4 for both ends fixed 

C=' for one end fixed and other free 
C=2 for one end fixed and other guided. 



compressive yield stress. 



4 . 	 DISCUSSION.  
4.1.  APPARATUS USED 	EXPERIMENT. 

(1) Amsler' s Universal testing machine of maximum capacity 
of 20 tons with 4 different load ranges of 2,5,10 and 20 tons. 

(if) Specially designed fixtures for loading of columns 
for pinned ends and fixed ends conditions to suit the above 
machine. 

(a) The fixture for the fixed ends consists of two 
Mild Steel blocks as shown in figure Noolt  upper one to 
be fitted in the fixed head of the machine. It was kept 
push-fit in the machine head so that proper concentricity 
may be maintained. Similarly the lower block was kept on 
the moving bed of the machine and the clearance between the 
two was push-fit. Both the blocks were case hardened upto 
about 40C rockwell hardness No,In the upper end lower blocks 
blind holes*  of 0.4395 ** in diameter $  to a length of 3/16" 

0.4375 
on each side, &'.m- 

* It may be pointed out that firstly the test pieces for 
fixed and conditions were tested by placing within the 
plane flat ends of the machine and compressed as such, but 
due to the presence of no fixing moments at the ends the 
test pieces after and even prior to buckling bent 
down with definite slopes at the ends. Therefore to provide 
fixing moments at the ends they were kept within the blind-
holes of the end blocks only with push-fit tolerances. 
** The size of test-specimens is discussed further. 
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When the load is applied, initially the entire length 

of the test piece is compressed and due to the lateral 

expansion the ends of the test piece become rigidly fixed 
in the end blocks thereby fulfilling more or less tyre 
required fixed-end conditions. For the calculation purposes 

the length of the test piece which remains out of the 

blocks is taken into consideration. After failure of the 

test-specimen by buckling, it was taken out from the end 

blocks by hs~nsering a 1/8" nail through the longitudinal 
holes provided in the blocks for this purpose. 

(b) IN D-E FI its. 

The assembly drawing of the pinned-end fixture is 

shown in figure No.2. It has got eight components as 

mentioned in Ftgure No.2. itself-. The load is transmitted 

from the machine heads through "Upper Fixed Block-l" and 

"Lower moving block-80 to the hard steel Balls-7 ; then 

through the "Swivelling blocks-S" to the test specimen. 
All the components are of mild steel and were used after 

their proper case hardening upto 40-0 Rockwell (specially 

the surface coming into contact of the balls). Two supporting 

pins-2 are screwed to the upper.sfixed.block and two supportilg 

rings-(3) are attached to the upper swivelling block 

by means of screws-4. The supporting rings-3 have sufficient-

ly large diameters as compared to the supporting-pin-2 
diameters so that any tilting of the upper swivelling 

block may be maintained without thereby giving any physical 

contact between the supporting pins and the supporting 

blocks. At the time of actual buckling there is every 
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po s si bili 1 of failing of the upper s vi veiling block as 

well as the ball. To avoid this ! the supporting rings and 

supporting pins have been provided. They will come in contact 

with each other and the swivelling block, with the 

bhll on its will hang through the rings on the pins. 

The balls rest within the two conical cavities one in 

each of the swivelling blocks and the other in the .upper- 

fixed block or the lower moving block. The mathematical 

aspect of the design of cone is shown belows. 

The ball is in equilibrium under the action of 

load 'w' and reaction 'R' by the cone. 

From figure 2a'- (i ) 
W = R 8in*Q 

i.e., A = Si rte® 

It F is the total frictional , force obstructing the 

turning of cone over the ball or vice versa, then 

F = ~Lk R (where t= Coefficient of friction.) 

= &i Q 
i . e. F =---  SinQ 

Therefore to have least frictional effect Sinf 

should be as large as possible 

i.e. t 'Q = 900. or 0 = 1800 
But if 9 = 1800, due to some manufacturing eccentricity 

there is every possibility of slip over of the swivelling 
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blocks and it will be very difficult to put the test 
piece on the machine for buckling with pinned ends. Secondly 
even if we are some how able to put thetest specimen on to 
the machine and we start loading,, then due to slight manu- 

moment 
facturing eccentricity there will be introduced some bending/ 
on the test specimen due to which it will start bending. 
This will introduce a condition of complete instability 
as is clear from the exaggerated position of test specimen 
with the swivelling blocks as shown dotted in figure 2a(ii). 

Under the action of two forces W 8c Wl the balls will be 
forced to slip away and the fixture will cease to function. 
Thus if the cone apex angle approaches 1800  the stability  
of the fixture will v anish. Therefore the stability require-
ments tend to reduce the apex angle to a value as low as 
possible depending upon the size of the ball. So a compromise 
between the two was tried. Here the most economical size of 
ball for 7/16" dia. Mild Steel test specimens will be in. 
dia of hardened high carbon steel. Accordingly the cone apex 
angle is kept at 1200  so that the contact point with the 
ball is approximately near the middle of the cone surface. 
Moreover that way it is not very near the edge of central 

1/8" dia. hole which will have to be drilled before the 

cone can be made by boring tool. On the opposite sides of the 
conical cavities in the swivelling blocks-5y concentric 
blind holes of 3/16 in, diameter, within ± 0.00025 in. tolera-

nee of concentricity, were drilled to a depth of 5/16 in. so 

as to take up the test-specimen end-snugs of diameter 0.1873 in. 
0.1870 
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and length 3/16 in, By doing so, the placement of=the 
test specimen w=ithin the fixture is assured to be concentric 
with the load axis within 0.0015 in. maximum eccentricity on 
the final setting, 

(c)  §TRAIN GAUGES i ND BRIDGE AMPLIFIER. 

(1) Rohit .lam ohms. S.R-4 strain gauges - 8 No. 
(ii) Strain gauge D.C.Bridge amplifier. 

(iii) ,Avcnneter.  . 
(d) Micrometer of least count 1/10,000 inch and 

vernier callipers of 1/1000 inch accuracy were used to 
measure the diameters and lengths of the test specimens 
respectively. 

(e) A. Batty's dial gauge of r in. range and 1/10,000 in. 
accuracy, with a magnetic base was used to measure the 
contraction while obtaining the load-deformation (or stress. 
strain) curves of materials in compression. 

(f) Two proving rings one each of 5 tons and 10 tons 
capacity to calibrate the 5 ton and 10 ton range scales of 
the Amsler's Universal testing machine. 
4.2 EXPE ENT1 L PROCEDURE. 

The sole ,purpose of the equipment was to measure the 
buckling load. As explained earlier the "Buckling"is identi- 
fled, vaguely , by the abrupt bending of the column. But at 
the same time the practical column will definitely have 
some eccentricity and some initial curvature due•to which, 
even though the column is loaded below the elastic-stress- 
load, the column will be deflected further, while simultaneously 
the load is being increased. This was confirmed vith the help 
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of 'strain gauges and D.C.Bridge amplifier as explained below: 

Four test-specimens were selected at random two of 
Mild Steel rectangular section and two of Al-Mg-alloy 
nearly squarea section. On each of these test specimens two 
S.B..4 strain gauges taken from the same lot were cemented 
on the middle section of the test-specimens, the grid lengths 
being parallel to the length of the test piece, their planes 

'being parallel to the neutral axis of the cross-section 
and each being placed on the opposite face of the piece in 
such a way that the planes of gauges are parallel to the 

i  

axis having the least second moment of area of the section 
as is shown in figure No.3(a) . The two gauges are connected 
to the D.C:Bridge amplifier (shown in figure 3b) * as per 
the circuit diagram shown in figure 3c*  . The principle 
of this circuit diagram is 2-gauge Wheatstone1 s Bridge as 
illustrated in figure 3d. 

Since gauges are in adjacent arms of the wheat-stones 
bridge, the bridge output for the concentric test pieces 
will be zero as the two gauges are giving the strains of 
the same nature and being put in the adjacent arms of the 
bridge their effect is subtractive. But the moment buckling 
starts)  because of the -opposite nature of atresses on the 
convex and concave sides of the bent test specimen$  the 
bridge will give net positive output thereby indicating 
the buckling point• 

When the abovementioned test specimens were put to axial 

* See Ref .8 pp 63. 



compressive loading there was very little but gradual increase 
in the output voltage of the two gauge bridge circuit. Side 
by side the load deformation curve for the buckling specimen 
was being recorded on the automatic recorded mounted on the 
universal testing machine. It showed a gradual increase in 
load and corresponding Increase in deformation. 

ks the load was increased further a point was reached 
when the column bent abruptly at a quicker rate even though 
the load pointer of the universal testing machine as well as 
automatic recorded showed an abrupt decrease in load. Thus 
the highest point on the load-deformation curve as obtained 
on.the automatic recorder will correspond to the buckling 
load of the specimen under test. This was confirmed by the  
instantaneous deflection of the D.C.Bridge Amplifier-
meter-needle to its maximum, when simultaneously the load 
pointer started showing an abrupt decrease in load. 

Thus the experimental procedure was to record the 
load-deformation curve of each and every test specimen and 
the buckling load was read from this curve corresponding 
to the highest point of the curve. The rate of loading 
was kept the same for all the specimens by keeping the same 
valve opening. 

In addition to the buckling loads compressive stress-
strain diagrams for the different materials for 'which the 
buckling tests were performed, were obtained in order to 

determine the buckling loads (stresses) according to the 
existing tangent and reduced modulus theories. For this 
compressive test pieces of the same diameter as of the 
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columns and of lengths equal to twice the diameter were put 
to compression. As such the diameter was 7/160  and length 
7/8 in. The deformation was measured with the help of dial 
gauge of accuracy 1/10 9000 in. at the different compressive 
loads. 

The caLibration was done with the help of 5 ton and 10 
ton proving rings with the calibration certificates provided 
with them. 

Chemical analysis for different materials was done for 
determining the carbon percentage in Mild Steel and Mg. 
percentage in Al-Mg-alloy. 
4 * 3.  RANGE OF MEkSUREMENT  . 

As mentioned above the main object of the experiment was 
to investigate the buckling s tresses for different slender-
ness ratios, more particularly in the plastic range. one or 
two readings for each case were taken in the elastic range 
also so that we could ensure the change over point from 
elastic to plastic buckling. 

The elastic limit of the Mild Steel out of round 
specimens is 48000 lb/in.2  or 48 K.S.i and Young's modulus 

• is 29.4106  p.s.i. (see next .article) , Therefore as pointed 
above the tests will be performed for a stress as' low as 
45000 lb/in2, to ensure the change over point from elastic 
to plastic range of buckling. Now for the elastic range 
since Eulerts equation is valid we have, for the fixed 
end conditions which will ask for greater lengths of the 
specimens, 
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2- 4'+ E 

(- 	- L  
and for the extreme case 67E = 45000 p.s.i. 

we have ( ) 2= 4 7 x294x ._._.~_ 
45000 

or 	= 161 

But the maximum length that the machine could hold in 
compression was 22 inches 

.. for L= 22 in. K=22/161 
and for round specimens K = D/4 

.. D= 	- 0.5 in. 
Hence the most appropriate diameter of the M.S.round 

specimens that could be tested in compression with the 20 ton 

Amsler' s Univer sal testing machine was * in. But from tbs 
manufacture point of view 7/16 in. nominal dia (or 0.4385 

0.4375 
in.dia) was kept which could be easily turned on lathe 
out of + in. M.3.bar stock. 

Thus for D = 7/16 in. K=D/4 = 7/64 
.: L -- 7/64 x 161 = 17.6 in . 

To allow for portions to go within fixture - 
L = 17.6+0.375 18" 

On the other side to avoid buckling the length of the 

compression round-test-piece was kept twice the diameter. 

Thus a test piece of 7/16' dia and length 7/8" will not 
buckle and the corresponding slenderness ratio = 4L/D 

..4x7x16 =8 
8x7 

But for buckling the slenderness ratio was arbitrarily 

kept at 16 towards its least value. For this value of 
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slenderness ratio and dia = 7/160. 

Leng L = 16 x 	:= 4x 
= its 

To allow for portions to go within fixture length of 
the shortest test specimen = i*+ 	= 23 In, 

8 
Thus for the fixed end conditions the length of 

the round specimens of 7/16 in. dia. was having a range 
from 2$ in. to 18 in. and the corresponding slenderness ratio 
range was 16 to 161 approximately. For the M.S. 7/16' dia. 
round specimens with pinned, ends the slenderness ratio will 
evidently be half that for fixed-ends specimens for the 
same buckling stress range. Its range was kept from 16 to 90 
approximately. The dia. of the pinned-end specimens was 
kept the same as for fixed end specimens so as to have the 
same size effect in the buckling of columns with different 
end conditions. 

Now coming to the A1-Mg.alloy round specimens with 
fixed ends the diameter was kept the same as of M.S,specimens 
Viz., 7/16 in. because the same fixture was used f r loading 
purposes. And it follows that for the pinned end conditions 
also the diameter is kept the same as 7/16 In. As regards 
the slender-ness ratio range it was calculated in a similar 
fashion as for M.S..specimens. The range of slenderness 
ratio for fixed end specimens was 20.7 to 130 and for pinned 
ends 20.6 to 118.8. 

As regards the section of the rectangular M.S.specimens 
it was kept ."x !t  because the available stock with the 
stores was 8/8" square section bar and the most economical 



rectangular section which can be cut out of the rolled bar 
on the milling machine is f"x3/8". The slenderness ratio 
range was calculated in a similar fashion as for M,S.specimens. 
Range of slenderness ratio with pinned ends was,17.3 to 
86.6. 

As far as the square-sectioned Al-Mg-alloy test pieces 
were concerned, to have the maximum feasible length for the 
longest test piece, the cross-sectiorn was calculated as 
for M.S.specimens, to be 5/8x5/8",, which was made by milling 
out of Al" square rolled bars. The slenderness ratio range 
was calculated in a simila,% manner as had been shown above 
for M.S.round specimens. Range was 18.6 to 82.2 for pinned 
ends.  

As discussed above the following *were the ranges 
of slenderness ratios for various sets. 

7/16 in,dia. M.S.specimens fixed ends 17,11 to 135.8. 
7/16 in,dia. M,8.speclnens Pinned ends 17.78 to 97.40 
J-"x3/8" M.S.specimens pinned ends 	17.3 to 86.6 
7/16" dia Al-Mg.-alloy specimens fixed ends 20.7 to 130. 
7/16" dia Al.Mg..Alloy specimens Pinned ends 20.6 to 118.8 
5/x  5/8D square Al-Mg-alloy specimens pinned ends 

18.6 to 82.3 

* See tables from 13 to 18 

..... 0U • 
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4.4.  CALCU'LA IN TECHNIQUE 	PECIME'N CALCtflflON3, 

From the simple compressive stress-strain curves 
drawn in the Appendix, the stress-tangent modulus curves 
for different materials have been drawn as explained below. 
On the compressive stress-strain curve various points are 
taken corresponding to various stresses. On each point, so 
marked, a tangent Is drawn to the compressive stress-strain 
curve. The slope of the tangent is calculated by dividing the 
altitude by base of any right angled triangle with the tangext 
as hypotinuse. The length of altitude and the base are conver-
ted into proper*  units of stress and strain respectively 
with the help of the scales on the two axes of the streca-
strain diagram prior to dividing altitude by base. The slope 
of the tangent so calculated gives the tangent- modulus 
corresponding to. the stress represented by the point at 
which the tangent is drawn. Thus repeating the process for 
a large number of points on the stress-strain curve we 
calculated the tangent modulii of the materials for various 
stress values: and the curves of stress-tangent modulus had 
been drawn for different materials as shown in figure 14, 
15, 16 and 17. 

It may be added here that slope of the tangents to the 
compressive stress strain curve at points taken on curve 
below the elastic limits  is same throughout as the portion 
of the curve is straight line, and the slope of this 
straight portion represents the Young's modulus of that 

* Stress in-p.s.i. and strain 1n-(in./inl 



particular material. 
After calculating the Young's modulus for a particular 

material and the value of the tangent-modulus at a particular 
stress level, we can calculate the value of the reduced or 
double modulus at that stress level by the help of equation 
Ito. (B) , So kno'iing the values of tangent and reduced modulii 
at a particular stress level the slenderness ratios correspond• 
ing to the two buckling theories based on the tangent and 
reduced modulit and represented by the equations (4) and 
(5) respectively, are .ca culated, Thus repeating the process 
for various other stress levels the buckling stress Vs 
slenderness ratio curves depending upon the two theories are 
plotted. The specimen calculations are shown below for 
the nmaterial of the round M.s.specimens for "Pinned..erd"' 
conditions, 

(a)  Young's modulus and Tangent modulus calculations,, 

Young's modulus E = Slope of straight portion 
of stress-strain curve shown in fig.14 
(14.7 cm.Altitude) x(5000 psi/cm) 

0.5 cm Base)x(50x10- 1n/in.per cm) 

29.4 x 106  p.s .i. 

At the stress of 48.5 K.S.i..(Kilo pounds per sq.in.) 
Tangent Modulus= E = Slope of tangent at tie point on t 

stress strain curve for a stress 
of 48#5 X.S.i.in fig.14. 

.A1titudex(O0Op/cm) 00 sl cm 
(1.0cm Base)x (50x10`)Thits of strain/cm 
=17.7x10? p.s.i. 

Thus at a stress of 48.5 K.8.i, Et .= 17.7x106  p .s .i. 
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(b)" 	 ft 

on 

From eqn. (4) for pinned end conditions 
2 

(r/K) 

or (L/K) 2 	=  T E 
C. 

6-t 
At the stress of 48.5 K.S.i we have from above 

Et =17.7x1»06 p.s.i. 
z :. { L✓io  2 7S x17. 	6  = 3600 

(48.5x1000) 

or L/K = 60. 

Thus for L/K ' 60 buckling stress on the basis of 
Engesser's theory t 48.5 K.S.i. 

(c)  Reduced.-modulus calculations s  - 
From above at the stress 48.5 K.S.i 

Et = 17.7 x 1©6  p.s.i. also for the material. 
E=29.4x 106 p.s.1..  

And from equation (6)  

4E 	 s 	 , 
t  

(1+ 	)  	w  	
_ 41  

_ 4x17.7x106  

2  ( 1+  17 . 	/2 	1©6  ) 
=70i6 	=22.$x106  p.s.i. 

(1.762) 2  
.. For stress of 48.5 K.S.i,E =22.8x7.06  p.s.i. 

0 
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(4) 

v 4 %4J 	, .%7 ULAUSi5d...W' &J4.LwO UI1 1 J1. Y  

From above at a stress of 48.5 K.S.i. Ed =22.8x106 p.s.i. 
and from equation No.(5) for "Pinned end" conditions 

(Wi0 2 
~2 d or (UK)2 = 	7~ E 
6d 

re. 	 Zx22iJ 06 UK) 	=4560 

48.5x1000 

•. L/K = 67.5" 

Therefore for L/K = 67.5 the buckling stress on the basis of 
reduced modulus theory = 48.5 K.S.i. 

For elastic limit of 48 K.S.i. E == 29.41106 p.s.i. 
_E ....._ 	for pinned ends. L/K)2 

i . e . (UK)2 	.._.x29 .4x106 	5250 
48x1000 

. UK =72.5 

Therefore for UK = 72.5 the Euler' s buckling stress is 48 IC.S. i 
Thus for various stresses in tie elastic as well as plastic 

range the slenderness ratios are calculated on the basis of 
tangent and reduced modulii theories of buckling in the 

plastic range and Euler R s theory in the elastic range and 
tabulated as shon below: 	V 
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(1) Tangent. and reduced modu l ii curve 1b m ter a of 	 . 
ounce ecimens arbors Content = 0.l78%). 

TABLE NQ., , 
(Buckling stress Vs slenderness ratio curve for 

elastic range for the material of M.S. round specimens C='J.178%; 
Elastic limit == 48 K.8.i and E=39,4x106 p.s.i. 

z 
For pinned ends 	= Ir M 

(L/K)2 

For fixed ends 	= 	E..... 
(UK)2 

Sr. 
No. 

Buckling stress 
T{ .5.1.  

Slenderness ratio 
Pinned ends Fixed ends 

1. 35,6 90.0 180 

2 : 40.0 85.0 170 

3. 45.2 80.0 160 

4 9 48,0 72.5 156 

.LAB NQ4- 
(Buckling stress Vs slenderness ratio curve for plastic 
range for the material of M.B.round specimens,C = 0.1?8% 
based on Engesser theory). 

	

~ 	 Z 
For pinned ends Tt = 	;' For fixed ends = `r " Et 

	

(WK) 2 	 (L/K) 

Sr. Buckling stress Tangent 	SLENDFRNESS RATIO L,/K 
No: 	

K• 3r'i 	(Etx10 5) Pinned ends 	Fixed ends 
p.s.i. 

	

rI r ll~~rAy ,• 	-' 1 '~YIY ' llll 	rlr~~ 	rrII 	YPIIYI rl It 

1. 48.0 	29.40 	72.50 
	

155.0 
2. 48,5 	17,70 	Lt i! 

	 120.0 
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1. 	2. 	3. 	4. 	5. 

3.  50 *0 6.60 36.00 72.0 
4.  51.0 3.60 26.30 52.6 
5.  52.0 2.00 19.50 39.0 
6.  55.0 0.93 . 12.20 24.4 
7.  65.0. 0.59 9.45 18.9 
8.  75.0 0.396 7.20 14.4 
9.  85.0 , 0.28 5.70 11.4 
10.  90.0 0.18 

LFrini 

4.44 8.88 
A.Irrr_l~.r~r.rr~rrrY.qrurYll rq.~wwl:Y.uwl~n7irrir,Iw+r1 

TABLE NO. 3. 
rr r rrr.r 	Irrrr 

(Buckling stress Vs slenderness ratio curve fbr plastic 
range for material of 14 , ;,round. specimens C=0.178 based 
on reduced modulus theory). 

For pinned ends G~ 1 	; For 
z 

fixed ends 6 = (L/x) 2 

Sr. Buckling Reduced Slenderness Ratio  
No. stress modulus Pinned eri ends 	ends 

(E x10"'6) 

1.  48.0 ?9.40 72.50 155.0 

2.  48,6 22.80 67.50 136.0 
3.  50.0 12.15 48.80  

4.  51.0 7.90 39.0 78.0 

5.  52.0 5.03 33.80 61.6 

6.  55.0 2.69 21.95 43.9 

7.  65.0 1.81 16.55 33.1 
8.  75.0 1.27 12.95 25.9 

9.  85.0 0.93 10.40 20.8 
10.  90.0 0.62 8.25 16.5 
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(ii) engent a Reduced ffi dulii curves for mpteripi,• of 
I4_R3_.rectaneular pccii p s., Carbon content  Mrr 	 Sri .. r r r~ill fir. 	, A 

TABLE No,4. 
(Buckling stress Vs slenderness ratio curve for elastic 
range for the material of M.8.rectangular spectnens 0=0.485% 
based on Eulers theory) with pinned end conditions) 

Elastic limit = 55 K.S.i.. E-30x106 p.s,.i* 
For pinned ends 6 _ _______ 

4/K) 2 

Sr. 	Buckling stress 	 Slenderness ratio 
No. 	6E K.3.i 	 t/K 

1. 29.7 	 100.0 

2. 36.6 	 90.0 

3. 46.3 	 80.0 

4. 55.0 	 7342 

TABU _No.5 
(Buckling stress Vs slenderness ratio curve for plastic 
range for M .3., (C=0.485%) , based on the Engesser theory, 
with pinned end conditions. 

Et. 
For pinned ends ~~ = 

(UK)2 

Sr. Buckling stress Tangent Slenderness 
No. ~-t 	K.S.i modulug  Ratio 

Etx10 	p.s.i. L/K 

1, 55.0 30.00 73.2 

2. 55.10 27.30 70.0 

3' 55.50 20.20 60.0 
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Table No .5 contd... 

1. 2. 3. 40 

4.  56.15 14..20 50..0 
5.  58.00 9.40 40.0 
6.  60.50 5.51 30.0 
7.  63.40 2.56 20.0 
8.  68.00 1.54 15.0 

irnrwwrr,r~iwi~n unr,rr 	- 	~rrr~ 

NO.6 , Buckling stress Vs slenderness ratio curve for plastic 
range for M.&. (C0.485%) based on the reduced modulus 

Z 
I' }t nn1►-w _ 	 ,4f-t. 	 G- /(L//t 

r. Buctcting stress Reduced modulus Slenderness 
t,rqrwnrlog EdxlQ-6 p . .S . ratio 1./K r,~.~~rr r Y,• ~irw~rrn 	r. 	r rr~~r 

1.  55.25 25.60 67.80 

2.  55.50 24..30 65.60 

3.  56.00 21.40 61.40 

4.  58.00 17.50 54.60 

5.  59„00 15.30 5060 

8. 60.00 11.40 43.30 

7.  62.00 8.80 37.40 

8.  63.00 7.32 33.88 

9.  63.50 6.72 32.30 

10.  64.0 4.96 27.60 

11.  68.0 4.45 30.25 

12.  75.0 4.54 24.50 

13.  85.0 4.22 22.10 

14.  90.0 3.94 20 
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(iii) 	Tangent and reduced modulii curves for material 
of 	w 	- o round sDecimens. content =0. 

TABLE ?. 

(Buckling stress Vs slenderness ratio curve for elastic 

range for Al Mg alloy; Mg=0.755%, based on Euler's theory) . 
Elastic limit = 30 K.S.i B=10.7x106 p.s.i. 
For pinned ends 	= 1 

(L/K) 2 

For fixed ends 	
(WK) 2 

Sr . Buckling stress 	ienderness Ratio No. 	6'E K.S .i 	Pinned ends 	Fixed ends 

1. 	25 	 65.0 	130.0 
2.  27 62.5 125.0 
3.  30 59.4 118.8 

Y~I■IiY~I1~i11FA■~~1~1W~iYYYW■iY~i1W'YI~WWY■MWiI 	 - 	■mil■ 	 ■ irrr~Y~Yi 

TABLE N.8. 

(Buckling stress Vs slenderness ratio curve for plastic range 

for Alr-Mg..alloy,, Mg=0.755%, based on Engesser' s theory) . 
For Pinned ends ~ 	= 

i 

~ ; For fixed ends 6 
z 

A. 

Sr. 	Buckling Tangent modulus S endern 	s Ratio 
No. 	stress E x,0"'b- p,s.i. Pinned ends Fixed ends 

Tt.K.S01 t 

1. 	30.00 	10.70 	59.40 	118.8 

2 « 30.60 9.40 55.00 110.0 

3 . 31.60 8.00 50.00 100.0 

4.  32.50 6.67 45.00 90.0 

5.  33.70 5.43 40.00 80.0 



1. 2. 3. 4. 5. 

6.  34.70 4.75 35.00 70.0 
7.  36.60 3.325 30.00 60.0 
8.  38.50 2.461 25.00 50.0 
9.  3960 1.60 20.00 40.0 
10.  41.75 0.95 15.00 30.0 
it . 42.60 0.65' 12.50 25.0 
12 43.3 0.47. 10. 0 

TAB 	No 9. 

(Buckling stress Vs slenderness ratio curve for plastic 

range for Al-Mg.►alloy, Mg=0.755% based on reduced modulus theor, 
For pinned 

2 

ends ~ = _ Es 	; For fixed ends 
Z 

6 = 4d  

sr. Buckling Reduced modulus Slenderness R tio,,, 
No. stress Bdx1p 	P.S.V.    Pinned ends Fixed ends 

6d K.S.i . 
1. 2. 4. 5. 

1. 30.0 10«70 59.40 118.8 

2, 30.4 10.35 57.90 115.8 

.3. 30.8 9.84 56.10 112.2 

4.  31.5 9,20 53.75 107.5 

5.  32.2 8.60 51.25 102.5 

6, 33.2 7.35 43.20 96.4 

7.  34.2 7.05 45.00 90.0 

8.  35.7 6.1? 41,25 82.5 

9.  37.4 5.10 36.70 73.4 

10.  39.3 3.90 31.25 62.5 

11.  41.4 2.35 23.60 47.2 

120 43.0 1.35 17.60 35.2 

13.  44.0 1.00 15.00 30.0 

14.  46.0 0.62 11.60 23.2 



..35-  
(iv) Tangent and reduced modulii curves for.material of 
A,1-Mg l o,Yy Qi aarre specimens--Me content 0.808  

Z B~E.No,.. 
Buckling stress V's slenderness ratio curve for elastic range 

for Al-Mg alloy, (Mg=0.808$) y based on Buler s theory with 
Pinned ends. , 

Elastic limit = 34 K.S.i; 	10.8x7.06 p.s.i, 
For pinned ends - = 

Sr. Buckling stress 	 Slenderness ratio No. 	G N.S.i. 	 WIC. 

1. 15.4 	 85.0 
2. 21.4 	 70.0 
3. 29.0 	 60.0 
4. 34.0 	 55.4 

8L ,,EQ. 
(Buckling stress Vs slenderness ratio curve for plastic 

range for Al-Mg-alloy, Mgt ,808% based on reduced modulus 
theory with pinned end) . 

For pinned ends 	2 
(WWK~ 

Sr. Buckling • stress 	Reduced Modulus 	Slenderness 
No # 	G'a K.8.. 	B'dx10"»6 p.s.i. 	Ratio 

1. 34.0 10.60 55.40 

2.. 34.5 9100 50.60 

3, 37.0 4.95 36.00 

4. 39.0 3.72 30.65 

6. 43.0 1.85 2040 

6. 45.0 0.723 12.65 
74 50.0 0.37 8150 
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TAB LLE No .12 . 
(Buckling stress Vs slenderness ratio curve for plastic 

range for Ll•.Mg..aliort Mg=0.808%, based on tangent modulus 

theory with pinned ends). 
For pinned ends 	E' 

Sr, Buckling Tangent Slenderness ratio No. stress ~t Modulup L/1C K.S.i Etx10 p.s.i. 

34.0 10.60 5£.40 

2. 34.5 7• 4f .90 

8. 35.0 4.72 36.40 

4. 37.3 2.85 27.60 
. 39.0 1,,88 21.80 

6. 41.0 1.13 l6.50. 

7 • 43.0 0074 ,.. 	13.00 

8 . 44.0 0.48 10.40 

9. 45.0 0.24 7.26 

10. 46,0 0.1' 6 6.14 

11. 48.0 0.06 3.54 

12. 50.0 0.038 2.74 
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!Ì  

,..* 	r 	_.....__ _ 	... 	..... - ~............ 	.,.._ ... _..:...«.....~ 	..:-. 	-..i W 	1 	... .w ..~...... 	-. 	.. 	,.~...+ 	, ,..r 	,. 	-. 	,r .. 	.... 	. 

A! lnt 





-50- 

D .scussio of Re sul_ts_ 

4 	Buckling curves discussions 
~rrrr r ir`.rr~rr~rr wirrr ~rr  irrrn 

(i) Bu1jg curve for Round M.S. spec irnen  with Fixed ends (jg„ 

The buckling curve for the round 7/16 in. dia M.S. 

specimens (Carbon = 0.178%) with fixed ends condition is drawn 

in Fig. No.4 on the basis of the observations tabulated in 

table No.13 Super-imposed on this observed buckling curve are 

two theoretical curves viz. tangent-modulus and reduced 

modulus curves plotted on the basis of the values given In 

tables (1), (2) and (3). 
From these curves we observe that for the buckling 

stresses below the elastic limit, the observed buckling 

stress has a lower value as compared to the theoretical 

:liter's stress. The reason for this small deviation may be 
that the specimens have a little eccentricity due to manufa- 

turing tolerances in the fixture as well as in the proper 

turning of test pieces due to which a bending moment is 

induced on the specimens thereby causing them to criple 

down at a relatively low stress. 

For the plastic range we observe from the actual 

curve that the buckling stress remains practically constant 

as the slenderness ratio reduces from 108 to 87, and side 

by side it is very slightly below the tangent-modulus 

buckling curve. As the slenderness ratio reduces below 87 

to 16 the actual buckling stress goes on 'increasirg and 
the curve lies near to but slightly below the reduced 

modulus buckling curve and above the tangent modulus curve. 



This behavior of the material can be explained as belir. 
For the inelastic range the increase in buckling 

stress beyond the Euler's value, will depend upon the 
variation of the tangent modulus with increasing stress. 
In the highly curved region of the compressive stress.. 
strain diagram of the material (see Fig* 15)'  the tangent 
modulus drops very rapidly with the increase of stress; 
consequently very little increase in buckling stress 
would be obtained and as such for the 'perfect' concentric 
columns the buckling curve in the plastic range just beyond 
the knee of the compressive stress-strain curve„ should 
coincide with the tangent-modulus curve. But for the little 
eccentricity which creeps in due to manufacturing tolerances 
the actual curve is slightly below the theoretical tangeft 
modulus curve, 

In the so called plastic range, beyond the knee of 
the compressive stress- strain diagram the tangent modulus 
has a relatively low value and does flot change rapidly 
with the increasing stress (see Fig. 15). Thus from the 
equation N0.(5), keeping in view that youngs modulusE is 
constant, we have for low values of tangent modulus 1, 
relatively large increase in the value of reduced modulus 
ED P  with the increasing stress. Therefore the buckling 
stress is aptroaching the one predicted by the double 
modulus theory in the so called plastic range beyond the 
knee of the stress-strain diagram. But in actual testing 
of columns, there is some eccentricity due to manufacturing 
tolerances due to which a bending moment is induced on the 
test pieces so the actual observed curve is tightly below 
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the theoretical double-modulus curve. Secondly the observed 

curve with the so-called fixed ends coalition may not 
represent the true picture due to the slip that might have 
occured at the ends thereby tending to bring down the 
actual curve little below the theoretical or►e. 

It has already been pointed out in the review of 
literature that for M•S. and other materials for which the 
compressive stress-strain curve has a flat portion, beyond 
the elastic limit, for a sufficient length$  the buckling 

stress Vs slenderness ratio curve will be horizontal in the 

plastic range. But here we see that the actual buckling 
curve (see Fig. 4) remains practically horizontal only 
for a small portion of the curve beyond the elastic range, 
and then rises up with the decrease in slenderness ratio• 
This can be explained on the basis of the actual compressive 

stress-strain curve of the material (M.S. - 0.178% Carbon) 
as shown in Fig. 14. This curve beyond the yield point 
remains horizontal only for a comparatively smaller length 
so that the corresponding plastic strains induced in the 
material,before it gets strain hardened$  might not be 
sufficient to make the column buckle as anticipated earlier. 
(j j) 5uck1 n curve for round AZ-M .allo specimens  

(Mg = 0.755%) with fixes• ends.  (Fi 	) 

The buckling curve for the round 7/16 in. dia. Al-Mg 
alloy specimens (Mg = 0.755%) with fixed ends condition is 
drawn in Fig. 7 on the basis of observations tabulated 
in table N0.l7. Superimposed on this observed buckling 
curve are two theoretical, curves, viz, tangent modulus and 
reduced modulus curves plotted from the values given in 
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tabled (7) ad (8). 

From these curies we observe that for the buckling 
stresses below the elastic limit, the observed buckling 
stress- has a lower value as compared to the theoretical 
Euler's stress. The reason for this deviation of the 
observed values from the theoretical ones may be that the 
specimens have a little eccentricity due to manufacturing 
tolerances in the fixture as well as in the proper turning 
of the test specimens due to which a bending moment is 
induced on the specimens thereby causing than to cripie 
down at a relatively low tress. Secondly the slip at so 
called fixed ends, might have occured thereby tending to 
bring down the actual curve below the theoretical one. 

For the plastic range we observe from the actual 
buckling curve that the buckling stress increases from 
26.8 K.S.T. to 38.4 R.S.z, with the decrease of sler lerness 
ratio LI1 from 114 to 40 in more or less a straight line 
fashion beyond which the curve starts rising along a 
pretty highly curved path to a stress value of 46 K.S.I. 
at a slenderness ratio of 20. Mostly the observed buckling 
curve in the plastic range is below even the tangent 
modulus curve; only at the slenderness ratio of 30 and 
corresponding buckling stress 41.2 K.S.I. it crosses the 
tangent modulus curve and there meets the reduced modulus 
curve at a buckling stress of 46 K.S.Z, corresponding to 
I/K = 20. This behavior can be explained as under. 

As pointed above, for the plastic range the increase 
in buckling stress beyond the Euler's value depends on the 
variation of' the tanget modulus with increasing stress. In 



the highly curved region of the stress-strain diagram, the 

tangent modulus drops rapidly with the increaseof stress 
(see Fig. 17); consequently the increase in the buckling 
stress with the decrease in slenderness ratio will not 
be a sharp one and as such for the perfect columns the 
buckling curve should coincide with the tangent modulus 
curve. But for the little eccentricity which creeps in 
due to manufacturing tolerances the actual curve is Lightly 
below the theoretical tangent modulus curve. This is what 
we are observing as mentioned above. 

In the so called plastic range, beyond the knee 
of the compressive stress-strain curve, the tangent modulus 

has a relatively low value and does not change rapidly with 
the increasing stress (see Fig. 17). Thus from the equation 
No.6, keeping in view that Youngs modulus E is constant, 
we have for low values of tangent modulus Et, relatively 

large increase in the value of the reduced modulus ED, with 
the increasing stress. Therefore the buckling stress is 
approaching the one predicted by the double modulus in the 
so calledt plastic range beyond the knee of the compressive 
stress strain diagr . This is what we are observing as 
mentioned above. The slight deficiency in the approach 
of the observed buckling curve to the theoretical double 
modulus curve may be due to some eccentricity which might 
have crept id due to manufacturing tolerances. Secondly 
due to the slip that might have occured in the so called 
fixed ends, the observed curve might have been brought down 
slightly below the theoretical curve. 
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(iii) 	Buckling curve
, for 

IY~YiYrY~lll~l~~ll - / ~ ~IFIr~ 
round 7/16" M.5, specimen s 

I II 	~I~1 I~I~r -IYii~ 	• 	IIIIi~' 	q1 

(0.178% Carbon) with pinned ends 

The buckling curve G_ V8 L/K for the round 7/16 in. 
dia. M.S. specimens (0.178% Carbon) with pinned-end s 
condition is drawn in Fig. 5. Superimposed on this curve 

6 Vs L//) are two theoretical curves plotted on the 

basis of the values given in tables Li), (2), and (3). The 
observed buckling stress Vs L/K. curve shows two distinct 

regions, evidently one elastic and the other plastic. The 

elastic region ends at a stress valise of 45.5 K,S.I, 

corresponding to slenderness ratio, b/I( of 55.8. The 

plastic region curve shows slight increase in the stress 

from 46.5 to 48 K.S.I. with corresponding decrease in 

slenderness ratio from 55.8 to 13.8. In addition the plastic 

region curve is almost parallel to the tangent modulus 

curve for this range of slenderm ss ratio but it is little 
below the tangent modulus curve. The slight downward 

displacement of the observed curve from the tangent modulus 

curve may be explained as below.. 

As discussed above a perfect column will follow 

the tangent, modulus curve for the stresses for which the 

corresponding points lie just beyond the kneed/ the compre-

ssive stress-strain curve. But here it may be due to the 

eccentricity which is introduced by the manufacturing 

tolerances, due to which a bending moment is set up on the 

test specimens and in turn the buckling load is reduced. 
But even then the deviation from the tangent modulus 

curve is pretty high, and more particularly the deviation for 

the elastic region is much pronounced. This marked deviation 



is explained on the grounds that the physical length of the 
column is not the representative for the numerator in the 

r 	, 
expression L/iC for slenderness ratio because the actual 
bending of the column takes place about the centres of 
the balls of the. pinned-end fixture shown in Fig..  2. More i. 
over the length of the swivelling blocks of the pinned" 
ends, fixture is not a negligiblequantity and as such 
it is even more than the lengths of a few specimens of 
low slenderness ratio. Further if we take distance between 
centres of balls of the fixture shown in Fig. 2, Li,and 
devide by the radius of gyration to get the value of the 
slenderness ratio, even will not be correct$  because 
in that case the swivelling blocks having very large 
cross-sectional area will not bend as the test specimen 
does, rather they will form straight links between the 
bent specimen and centres of balls. Thus we can infer that 
the true length to be substituted for the numerator in 
the expression, L/K  for slenderness ratio will besome where 
in between L and Ll where L is the physical length of the 
test specimen (excluding sxugs) and L1 the distance between 
the balls' centres when the test specimen of length L is 

held inthe pinned end fixture as shown in Fig. 2. Mathema-
tically the problem has been analysed under the heading 
"Mathemat.ical Analysis", where it has been shown that the 
true "atckling stress Vs slenderness ratio" curve will lie 

below the one in-which L1_ reprosents the numerator of the 
expression for slendernessratio and above the one in which 
'L is taken into account. More so the curve in which L1 is 

considered is a better approximation. Therefore to see this 
effect the buckling stress Vs LI /K curve has been 
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added in Fig. 5. From the Fig. 5 also we observe this 
G-  Vs Li/K curve approaches very well to the theoretical 

curve for the elastic as wall as for the plastic range also. 
It is very slightly away from the tangent modulus curve and 
this very small deviation may be attributed to the eccentricity 
which might have crept due to manufacturing tolerances. 
(iv) Buckling curve for rect n lar 1" x 3/8" M.S. specimens 

(Q.485% Carbon) with oinned ends. 

The buckling curveG- Vs y/K for the rectangular 
1" x 3/8" M.S. specimens (0.485% Carbon) with pinned ends 
condition is drawn .n Fig. 6. Superimposed on this curve 
( G Vs 1/K) are two theoretical curves plotted on the 
basis of the values given in the tables 49  5 and 6. The 
observed buckling stress Vs 1./K curve shows two distinct 
regions, evidently one elastic and the other plastic. The 
spastic region ends at a stress value 49.5 K S.I, correspon-
ding to slenderness ratio of 6?. The plastic region curve 
shows an increase in stress from 49.5 K.S.I. to 66 I.S.I. 
with the corresponding decrease in slender-ness ratio 
from 6? to 20. In the plastic region just beyond the elastic 
region the curve is parallel but sufficiently below the 
tangent modulus curve, but later on for higher values of 
stress or for lower values of slenderness ratio the curve 
is almost parallel to the double modulus curve but again it 
is sufficiently below the reduced modulus curve also. As 
discussed above from the theoretical considerations we 
expect a perfect column to follow the tangent modulus curve 
for the stresses for which the corresponding points lie 
just beyond the knee, of the compressive stress-strain-curve 



and in the later stages i.e. for points sufficiently for off 
from the knee the perfect column will follow the double-
modulus curve. But here in the actual 6" Vs L/K curve 
the deviations might be firstly due to the eccentricity 
which is introduced by the manufacturing tolerances, due 
to which a bending moment is set up on the test, Specimens 
and in turn the buckling load is reduced. Secondly the 
marked deviation may be explained as done above for M.So 
round specimens with pinneAends on the grounds that the 
physical length of the column is not the representative for 

C 

the numerator in the expression L/K,for slenderness ratio 
because the actual bending of the column takes place about 
the centres of the balls of the pinned-end fixture shown 
in Fig. 2. Moreover the length of the swivelling blocks of 
the pinned-ends fixture is not a negligible quantity and 
as such it even more than the lengths of a few specimens 
of low slenderness ratio. Further if we take distance between 
centres of balls of the pinned-end fixture shown in Fig.(2), 
L1, and devide by the radius of gyration to get the value 
of slenderness ratio„ it will not be free from error because 
in that case the swivelling blocks having very large cross-
sectional area will not bend as the test specimen does, 
rather they will form straight links between the bent specimen 
and centres of balls. Thus we can infer that the true length 
to be substituted for the numerator in the expression, L/K, 
for slenderness ratio will be some where in between L and 
h there ' L' is the length of test specimen;, and ' Lj ' the 

distance between the labbs' centres when the test specimen 
of length 'L' is held in the pinned-ends fixture as.shown 
4 r1 E4 ff - 0 _ 	... J. h. ___..A „_, 1 	 , 	 - 	- - 	- 
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under the heading "Mathematical analysis". Therefore to see 
this effect, here also, the buckling stress 6_ Vs L1/K 
curve has been added in figure No.6. From the figure No.6 
we observe 'that the observed curve is shifted to the right 
if drawn on the basis of L1/K as slenderness ratio. 
As such for the same slenderness ratio the values of the 
buckling stress as predicted by this G Vs Li/K curve 
are greater than even the double modulus values in plastic 
range and the Euler's values in the elastic range, why 
in itself seems to be not In confirm_ity of any of the theore-
tical curves: This can be explained on the basis of the fact 
that, L1, as pointed abev a is not the true figure to be used 
in the expression for slenbrness ratio 'but a value little 
less than L1  and 11 tie greater than L is to be taken. 

From these we noted that the observed stress-slender-
ness ratio curve moves more nearer to the curves obtained on 
the basis of the available theort s. 
V. B 	 , 	 _M .. 	 Mg) 

The buckling curve ins L/K for the round 7/16 in. 
dia Al-Mg aUoy(O,756% Mg) with pinned-ends condition is 
drawn in figure 8. Superimposed on this curve ( 13- Vs 1./K) 

are two theoretical curves plotted on the basis of the value s 
given in table 405 & 6. 

From the figs► e 8 we see that the observed buckling 
curve is parallel to tangent modulus curve as far as its 
plastic range is concerned and separately parallel to the 
Euler's curve for its elastic range. Secondly the observed 
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curve is far above the two theoretical curves, this 
behaviour seems to be quite abnormal. The reason for this 
may be that the so called pinned-ends fixture might have not 
been behaving like the true pinned ends fixture because 
the experiment on the Al-Mg-alloy roue sped mens was 
performed last of all and by that time slight depressions 
had been introduced in the conical cavities of the fixture 
blocks and these defaced conical cavities would have 
increased the friction thereby giving fixing moments at the 
aids and thus giving higher buckling loads than the 

actual ones. Thus we can conclude that the observed curve 
will actually be much below than its present position in 
figure 8. As such originally it is already parallel to the 
tangent-modulus curve we may conclude that it might have been 
very near to the theoretical tangent modulus curve if the 
friction -less end conditions were prevailing. 
VI. Buckling curve for square (5/8"x5/8") Al-M silo 
(M 	 with ..innAd end. 

The buckling curve '7  Vs L/K for the 5/8" square 
section Al-Mg-alloy (0.808% Mg) with pinned erns condition 
is drawn in figure 9. Superimposed on this curve 
( 6  Vs L/'K) are two theoretical curves plotted on the basis 
of tho values gi Oren in tables 10,11 and 12. The observed 
buckling stress Vs L/K curve show s two district regions; 
evidently one elastic ar 1 the other plastic. The observed 
curve Iii s very close t o the theoretical curves but it is 
slightly abry a them at few points. This little deviation 
may be due to slight friction at the balls and conical 
cavities, which tend to shift the observed curve upwards. 
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Therefore within the experimental limitations there is close 

approximation between the observed and theoxtical curves. 

For the smeller values of slew.erness ratio the observed curve 

tends to. follow the reduced modulus c r ve and for values t` 
slenderness ratio such that the buckling stress Is in the 
plastic region and close to the knee the tangent modul s 

curve is approached. 
(4.6 b) Mathemgtjcal analysis f tZe bucklinE of the tlnned-end  

..Pecimens. 

A specimen held In the swivelling blocks is shown 

in the limiting position in the figure No.12. 

Let L1- The distance between the centres of balls. 

a = Length of the swivelling blocks 

ho = The central deflection 

`~- = The deflection at any distance x~ - from the 
lower ball centre A where the origin is 

assumed to lie. 

In case if it 3s assumed that the swivelling blocks 

also bend to the same shape as if it was a continuous 

column of uniform section from A to B, the shape of the 

slightly bent column in the limiting case can be taken as 
Y1 Sin .~.'+L 	•♦♦ ••s •• r s.... •••~~! 

L1 

The curvature at any point of the column in the 

deflected position is given by 

1. = d2y/dx2 	...•......•••....~8) c 	[1,,(
l/

1 2̀] 3/2 
 dx 

Now from equation (7) we have 
r-- 

dy/dx = k~ 	-- Cos,, r ...... (9 ) 
1 	1 
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and d2y/dx2 = - h=7r Sin -.~.•~G .•••••••..•(10) 

From (9) and (16 
.t Slope at A (dy/dx) ,hro 2 ....(i) 

and (d2y/dx2)7_0 	W 	 •.•••♦+r••••#~Yr••11-2). 

:. From (11-)4(12) curvature at A=Curvature at B. 

(lie 

Thus the curvature at the ball centres of the ideal 

curve will be zero. 

Now to find ,, the curvature of the Ideal, uniform 
pinned and column at ,a distance 'a' from A, we have, from (9) 
and (id,. 

(dy/dx)x_a = ho 	C0 	............ (14) 
1 	1 

and (d27/dx2)x.a = -ho ..71 ..2 Sin LE ............ (15) 
Li 	l 

.'. The curvature at a 'distance 'a' from the ends 
of the ps infect column is given with the help of equations 
(8), (14) and (15) 

_a 
who w Siri ~G!.. 

3/2 
I+ h02 X12Cos2 L

1 

The expression no. (16) as such is quite 
complicated to solve and hence will be examined w'i special 
conditions. 

(a) Firstly let 'a 	(Ll i.e., in our practical 
col-amn 	when the length of the swivelling blocks separately 
is very small as compared to the distance between the centres 
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of balls or in other words for very slender columns. 

Then w e have a- to be . a small quantity 
1 

i.e. Sin 	tends tends to  
1 	 1 

and Cos ^ tends to -- 1 
1 

Equation (16) reduces to 

t 	ii 
( +~ 

	

	 x 
.L/ )x=a 	 ~rrrw++~r+rrNrw.r'Rriw+ir+r...~.wr 

(1+ h 2 i'z \ 3/2 
O 2 

h02 

doa -- L13 	2 	L12 

Now neglecting the terms with the higher powers 

of (h0/L1) being very small 

3 

(l/ 	a ~= a ° 	.........,...(17) 

From equation (17) we see that the magnitude of curvature 

of centre line of a perfect f pinned end column of length Li 

at a small distance 'a from the end is a hor ,which is. a very 
L 3 small quantity because ho is very small an LZ is very large. 

Thus' we see that in the case of practical columns of 
very high slenderness ratio, the fact that "the swivelling 

blocks do not bend" does not affect the results for the buck-
ling curve calculated on the basis of the distance between 

centres of balls being taken as the actual length of the 
column. 

(b) Secondly considering the case when the distance Ll is 

not very large as compared to 'a'I the length of the swivelling 



blocks i.e., in practical cases of very stocky columns. 

Taking the actual values of fa' for the shortest. 

column of all the various series of test performed with the 
hinged ends condition, we have 

a - L1/4  ..............«.........~I~) 

Then from equations (16) and (18) 

.hp 2 sin 4 
1 

C

2 
1+ hot 	Cos2  3/2 

L12 	4~ 
--ho2 x 1' 

or (ye )
x` 	 Li 	 •..••r••.~1~~) \ 	3/2 

11+ 
2Li2 

Equation (19) will be looked upon for two extreme cases 
2 2 

(i) when ! 	) 	. 
2L12  

i.e., when h02 > L12/5 approx. 

i.e., when ho 	Ll / 	.......: • . , ,2~1~ 

Now the least value of L, in our practical column is 41n.  

the relation (20) reduces to 

i.e., when h© ' 4/ 
or when h0> 1.8 In, 

which is in contradiction from the very definition of neutral 

equilibrium condition in a slightly deflected position, for 
the buckling load acting on the column. Thus the condition 

r ho2/2Li2>, l does not hold good. 
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(ii) When 7yho2/2L 2 << 1 

Then equation (19) reduces to 

z _ 
(1/ ) a - ho . I!,2 1/ ,f 2 

L1 

X i/ Jr 
V 

2, 2 

2...2.L12. 

Neglecting the terms with 

	

£ 	 higher powers of (h02/L1) 

	

i.e,, (1/? )x=a 	_6.96 ._. 2 	:.........t21) 

For the least value of L1 = 4 in. Equation 21 reduces to 

(l/)~ 9 2 ho 

-0.434 hot 	................. (22) 

Since ho has maximum value limited to some thousandths 

of an inch, the value of the curvature given by equation (22) 

even, is very small. Also from equation (13) we see that the 

curvature at the ball centres is zero. Thus from equations 130 

17,19 and 22 we see that the curvature does not change 

approc:iably from the bail centres to the point x a i.e.$ the 
change of curvature from the ball centres to the ends of the 

test piece is negligible. As such the theoretical shape of a 

pinned-end column of length LI., from 4=0 to xxa remains an 

approximate straight line. 

Thus again we see that in the case of pinned end 

practical columns even of lowest slenderness ratio that 

we tested the fact that "The swivelling blocks do not bend" 

does not affect the results for the buckling curve$ calcula-

ted on the basis of distance between centres of balls being 
taken as true length of the column. 
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But any way the true "buckling stress Vs slenderness 

ratio" curve will lie below the one in which L1 is representative 

in the expression for slenderness ratio and above the one in 

which 'L' is taken into account. 

Therefore to this effect the buckling stress Vs 

Ll/K, curves have also been plotted in addition to the curves 

Vs L/K for M.S.round and rectangular section specimens pinned 
ends condition(see figures 5 and 6)e1 

From these we note that the observed stress-slenderness 

ratio curve moves more nearer to the curves obtained by the 
available theories. 

Thus in the end we conclude that there is. definite 

close approximation between the theoretical and observed 

buckling curves for the M.S. and Al-Mg-alloy specimens of 
various compositions, and various sections, the semi], deviations 
can be looked for by the safety factor. 

4.6 c. LF EC„ OF END-RESTRAINT ~IY~Y~r 	• I 	Apr I~1 I11 irrlYl+Yl i~YI~1YM II 	Wr 

(i) M.S.round specimens. nr rryirrrra ~r ~r~.^r1 

Figure 10 shows the observed buckling curves for 7/16 in., 

round specimens (0.178%) with fixed and pinned end conditions. 
Here two curves have been drawn for the pinned-ends condition. 

In one the slenderness ratio is based on the test piece length 

ILA and in the other on the teat-# distance between the centres 

of balls of the pinned end fixture. 

Let us suppose that a design (utilising M.S.ot the same 
composition as we have here i.e., 0.178%C) based on the pinned-

ends condition has a working stress level of 47 K.S.i 
which is any arbitrary value chosen in the plastic range. 
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Then on the basis of curve No.3 fi;ure 10 we see that 
at slenderness ratio of X64•$, we get the buckling stress 
of 47 K.S.1. But from the curve No.1 figure 10, we have 

at the slenderness ratio of 64-$, the buckling stress equal 
to 53.5 K.S.i. That 3s by constraining the ends from pinned 
to fixed ones we can raise the working stress for the same 
column from 47'K.S.i to 53.5 K.S.i( i.e., about 13.8,9 
increase) It . It may be pointed out here that if we 
would have made calcu4ations on the basis of curve No.2 
figure 10, the working stress would have increased from 
47 K.S.i to 60.25 K.S.i (i.e., about 28.2% increase) . But 
as we have discussed above the more correct values are 
given by the curve No.3 in which the distance between the 
centres of balls is taken as the basis to calculate the 
slenderness ratio. Therefore we shall base our discussion 
on the values given by curve No.3 rather than curve No.2. 
That is a 13.8( increase in working stress is obtained in 
assumed working stress of 47.0 K.S.io by constraining the 
ends from pinned to fixed . 

On the other hand if the design is. based on. the 
fixed ends condition and the working range of slenderness 
ratio is pretty high, then corresponding to the same 
stress level as before i.e.$  47 K.S.i. we have from curve No.l 

"7 
figure 10 the value of slenderness ratio as I2O. But from 

It The corresponding increase on the theoretical basis is 
calculated ahead in next paragraph. 



curve No.3 figure 10 we have, at this slenderness ratio 
U7 

of 120,the stress equal to 34. K.S.i. Therefore in case we 
are somehow unable to incorpante the required fixed end con. 
ditions, the working stress level of the same column will 
fall from 47 K.S.i, to 34 K.S.i(i.e., about 28% reduction in 
value) . This is a very high percentage of reduction in 
working stress of the column. As such it might lead to a flange- 
roue state of affairs. 

Therefore we conclude that for plastic designs i.e., 
designing for buckling on low slenderness ratios, it is 
advisible to design on the assumption of pinned -ends condition 
because even if In practice the pinned ends condition is not 
fulfilled, and which exactly happens,, the design will tend to be 
more safe due to the rise in the working stress level. This rise 
in working stress level will not be 13.8; as anticipated 
above because the end conditions, if they are not pinned one, 
will never be fixed also. So the percentage rise in working stresE 

not 
level will/be too high either. Therefore the design, done on 
the pinned-ends condition will tend to be safer on one hand 
but not levish on the other. Secondly if the design would have 
been done on the basis of fixed-end conditions y we will defi-
nitely be on the dangerous side as the percentage reduction 
in the working stress level, which is pretty high may overtake 

the safety margin kept in design and the design might nit work. 

* The corresponding reduction on the theoretical basis is calcu-
lated ahead in the next paragraph. 
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Thus an excess of actual fixity over the assumed value can 
do little good but a lack of fixity under the assumed value 
can do much harm. Therefore as such conservatism, should be 
used in selecting the fixity coefficient (Ref.equation 7) for 
use in plastic design. 

Thirdly in the elastic range i.e., for values of siender- 
ness ratio sufficiently high the value of 'C' in equn.(7) 
for fixed ends as '40  derived on the basis of Euler's theory, is 
never reached; e.g., at L/'K=116,C=47/34=1.385. The reason 
which may be attributed to this is that a fixed-ends condition 
is not fully achieved due to some slip and similarly pinned-
ends condition is not fulfilled due to friction at balls and 
the mating conical surfaces. Therefore the fixed ends condition 
curve slightly shifts downwards and the pinned-ends condition 
curve moves little upward. The net effect of this is the 
reduction of the value of fixity coefficient of equation No.(7) 
and practically never equal to 4. 
(ii) Effect of end-restraints on M.S (4.178,x) round specimens 
on basis of theoretical considerations. 

Firstly let us assume that the design is done on the 
basis of pinned ends condition. Then assuming the some working 

stress level as before i.e.,, 47 K.S.i., from figure No.15, we 
have the value of Et = 29.4x106  p.s.i. Therefore the value of the 
slenderness ratio on the basis of tangent modulus theory is 
calculated as 	Z  

(L/K) 2  = T Et 
G`t 

n x29.4xl06 	=6200 
47000 

.. L/K» 78.6 



Now supposing for the same test!peeimen the end restraints are 
made fixed ones. That is now we are to find the buckling stress 
for the fixed-ends condition with slenderness ratio as 78.6 and 

based on the tangent modulus theory. 	, 
This will have to be done by hit and trial since the 

tangent modulus is changing with stress and the s4ress .. 

value itself is not known. 	 2-  

Now for the fixed ends 	4  
(L/K) 

i .e.?  Gt  - _'J 	2 	...........:...(23) 
,assuming Ct = 49.5 K.3.ia  then from fig.15 Et=7x106p.s.i. 
Then the right hand side of eqn. 23 reduces 
to = 4?x7x106 	49450 p.s.i. = 49.45 K.S.i. 

(78.6)2  which is very near to 
49.5 K.S.i. 

Thus for the fixed ends, on the basis of tangent 
modulus theory the buckling stress corresponding to the 
slenderness ratio of 78,6 is 49,5 K.S.A. 

Therefore the end restraints when changed from pinned 
to fixed ones increase the working stress level fr 47 K.S.i 

to 49.5 K.S.S. 
i.e., percentage increase in working stress 

.100 

5.3% 

as against the 13.8% rise obtained on the experimental 
basis. 

Secondly let us assume that the design has 
been done on the basis of fixed-ends condition. Then 
assuming the same working stress as before i.e., 47 K.S.i. 



From figure No.15 the value of Et = 29.4x106 p.s.i.$ and the 

value of the slenderness ratio on the basis of tangent«tuodulx.s 
theory is 

(L/K)2 = 4lIEt  
(5-t 

4 71'' x 29.4X106 = 24800 
47000 

i.e.,L/ 	157.2 

Now supposing the fixed-ends condition is not fulfilled 

in practice but in the limiting case the ends are pinned 

ones. Then for the same slenderness ratio as above i.e., 
157.2, the buckling stress can be formed by hit and trial 
as done below 

G-t 

or Gt 

1 
i Et 

lx Et 
(157,2) 2 0e•*S•.• •..0(24) 

Assuming G= 11.9 K.S.i. 
Then from figure 15 , E.t = 29.41106 p.8.1. 

Nov right hand side of •eqn. (2.4) 

... _ ~~~x 2:-.4 x .0~ ......., .....: 	= 11880 p.a.±. 
(157. )g 

11.88 K.S.i which is very near to assumed 
value of stress. 

Thefefore due to the nonfulfilment of the fixed ends 
condition the working stress falls from 47 K.S.i to 1169 K.S.i. 
(i.e., 75% reduction) for pinned ends. 

The reason for the variation between the theoretical 

and the practical values of the percentage increase or decrease 

of the working stress owing to the non fulfilment of tbb end 



conditions )  may be that in practice the value of the 
fixity coefficient 'C' (Used in quation No.?) is never 
attained as '4' for the fixed ends. Thus the percentage 
reduction the working stress at the same slenderness ratio 
for the change of end conditions from fixed to pinned ones 
will be less than 75% as obtained on the theoretical considera- 
tions. On the other hand the percentage increase in working 
stress at the same slenderness ratio for the change of and 
conditions frafl pinned to fixed ones is coming to be 
more in practical case than the theoretical one. The fact 
that the fixity coefficient is always less than '4' in 
practical columns suggests that there thould be smaller increase 
in working stress in the practical case than the theoretical 
one. The reason for this may be that the bending moment on 
the pinned-end columns due to tho manufacturing tolerances 
might be eompratively more than the fixed-end columns, resulting 
in e relatively greater movement in the downward direction 
of the pinned-ends buckling cuu.rre}  thereby increasing the 
distancee between the tua curves dran on the same graph paper, 
That is the effective value of the percentage increase 
in working stress in the practical case may be even more 
than the one got on theoretical basis, 
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(iv) 	Etfect of end restraints  
ou }d specimens. 	'i . 1l. 

Fig. 11 shows the observed buckling curves for 
7/16 in. dia. round specimens of At.l4g. alloy (0.755% Mg.) 
with fixed and pinned-ends conditions, drawn on the test 
piece length as basis for slenderness ratio calculations. 

These curves show a marked inference that in the 
plastic range i.e. for 1w values of slenderness ratio the 
curves are very close to each other thereby reducing the 
end-restraint effect to a very low value. In fact what we 
observe is that the pinned«end curve is slightly higher 
than the fixed end curve. Firstly it may be due to some 
slip in the so called fixed ends causing the fixed-ends 
curve dwnesli htl .Secondly the most g y 	 prominent effect 
may be due to the slightly deformed conical cavities'of 
the swivelling and the end blocks (this series of tests 
was performed last of all) of the rounded-ends fixture, 
and these defaced conical caviti es would have increased 
the friction thereby giving fixing moments at the ends 
and thus giving higher buckling loads than the actual 
ones. That Is the pinned end curve might have moved 
upwards rather to a greater extent. Secondly for a working 
stress of 2$ K.S.I.{i,e. for higher slenderness ratio (107 )1 
from the fixed end curve of Fig. ,1 if the end restraints 
fail to be fixed ones but become pinned then the stress 
reduces from 28 to 19.2 K.S,I. i.e. 31.4% reduction. 
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(v) - Effect of end-restraint-S ont.Mg. alloy (0.755% Mg.) 
round . s ecimens ' on the bas. s of theoretical considerations. 

First let us assume that the design is done on the 
basis of `pinned-ends condition. Then assuming the working , 
stress level, some where in plastic range say 36 L.8.I,,, 
we have from figure No117 the corresponding value of 
tangent modulus F = 3.45 x 1©6  p.3.1. 

Therefore the value of the slenderness ratio on the 
basis of tangent modulus theory is calculated as 

Z 
i► 	n Et 

n2' x 3.45 z 106 	,: 9.47 x 102  36000 
i.e. 	= 	30.75 

Now supposing for the same test piece the end 
restraints are made fixed ones. That is now we are to 
find the buckling stress for the fixed ends condition with 
slenderness ratio as 30175 and based on the tangent modulus 
theory. 

This will have to be done by hit and trial since 
the tangent modulus is changing with the change In stress 
and the stress value itself is not known. 

Now for the fixed ends 

G-t  
(L/K)2 

i.e.c t = 	4  X 	 ................. (25) 
(3o. ?5) 

Assuming C = 40.4 K.3«I., then corresponding 
value„ from Fig. 17, of Ft = 0.965 x 105  P.S.I. 



Then the right hand -  side of equation No.25 
reduced to 

=  2 .x 0.965x106  
(30.75)2  

42 40.41 K.S.1. 

which is practically same as the assumed one i.e. 40.4. 
Thus for the fixed ends f  on the basis of tangent modulus 
theory the buckling stress corresponding to the slenderness 
ratio of 30.75 is 40.4 K.S.I. 

Therefore the end restraints when changed from 
pinned to fixed ones increase the working stress level 
from 36 K.S.I, to 40,4 K.y.l. i.e. percentage increase 
in working stress 

x 100 	12.2% 

as against zero percent rise obtained on the experimental 
basis from the curves of Fig. 11. The reasx ni as explained 
earlier$  may be due to the excessive friction at balls 
caused by the defaced conical cavities, which will shift 
the pinned-end curve upwards, thereby giving practically 
no percentage increase in working stress. Seoo ndly let us 
assume that the design has been made on the basis of 
f xed.erd s conditionx Thar assuming the wort ing stress as 
28 K.S,T, (i,e. for the higher slenderness ratio range), 
from the table No.17 the corresponding value of 
Et = 10.7 x 1o6  P «S.l . The value of the slenderre ss 
ratio on the basis of tangent modulus theory is 

( )2 	4 N 2  

4  7i2x 10.7; 106 	1.51 x 104  
28000 
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i.e. 	123. 

Nov supposing the fixed-ends condition is 

not fulfilled in practice but in the limiting case the 

or1 s are pinned ones. Then for the same slenderness ratio 
as above i.e. 123, the buckling stress can be found by 
bit and trial as below 

Gt = 

or 6 t = 	 •........... ........ (26) 

Assuming G.~ 7 x..s . x•., the corresponding vat ue of 
Et from Fig. 17 is 10.? x 10$ P.8.10 The right hand side of 
equation (26), then reduces to 

r.~12 x ;c 	x.{36 	0o0 P.S.I. 
(123)2 

which is same as the assumed one. 
Therefore due to the nonfuiftiment of fixed ends 

condition the working stress falls from 28 K,8,1, to 7 K.S .l 
(i.e. 75% reduction) for pinned.-ends as against the 31.4% 
reduction the practical columns, 

The reason for the variation between the theoretical 
and practical values of the percentage decrease of working 
stress (for the higher slenderness ratio range) owing to 

the none-fu1rilment of the fixed-ends condition, may be 
that in practice the value of the fixity coefficient 'C' 
(used in equation No.?) is never attained as 14# for the 
fixed ends. Thus the percentage reduction in working stress 

at the same slenderness ratio for the change of end 
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conditions from fixed to pinned will be less than 75% as 
obtained on the theoretical considerations. Also the upward 
shift of the observed pinned ends condition buckling 
curve, as explained above, tends to reduce this percentage 
reduction in working stress still further. Thus we are 
in a position to conclude that the net practical percentage 
reduction in working stress (for the higher slenderness ratio 
range)9  if the fixed-ends condition fails to prevail and 
pinned-ends condition follows9will be much below the 

value as calculated theoretically. 



s. 	 QQ1iQ W31 ON$ 

1. Within the practical limitations there is close 
approximation between the theoretical and the observed 
data for the plastic range buckling of M.S. (.178% Carbon 
and .485% Carbon) and AL-Mg alloys (.755% Mg and .808% Mg) 

columns with various sections and and conditions. 
2. For the buckling stresses in plastic region and near 
the stresses given by the knee of the compressive stress. 
strain curve of the material, the buckling seems to be 
governed by the tangent modulus theory, which dictates to 
simply replace the youngs modulus in the Eulers' expression 
for buckling by the tangent modulus of the material. 
3. For the buckling stresses in the plastic region and 
far off the stresses given by the knee of the compressive 
stress-strain curve of the material =  the buckling seems to 
be governed by the reduced modulus theory$  which means 
simply to replace the youngs modulus in the Eulers' expression 
for buckling by the reduced modulus of the material. 
4• 	In plastic range the effects of the end constraints 
tend to be negligible but with whatsoever is left conservatism 
should be used in selecting the fixity coefficient. 



-79- 

• 1u~V t 

C o .umns off' M.S. (0.178% Carbon and 0.485% Carbon) and 

Al-Mg alloy (0.755% Mg and 0.808% Mg) of different sections 

(MS- round and rectangular; AL Mg alloy round and square ) 

and different slendernessratios were tested for buckling 

with pinned and fixed-ends conditions. The buckling stress 

Vs slenderness ratio curves so obtaiijed were compared with 

the ones drawn on the basis of tangent and reduced modulit 
theories which were derived from the compressive stress-

straincurves for the different materials. Close approximation 

between the theoretical and the observed practical curves was 

established. Whatsoever small deviations were there they could 

be explained on the basis of the non-.lfilment of the 

concentricity condition as well as the prescribed end-

conditions. As such the effect in design of the nonfulfilment 

of the end conditions as well as that of the little eccentri-

city due to manufacturing tolerances could be taken care of 

by allowing safety factor. 

In the plastic range the effects of the and constraints 

tend to be negligible and whatsoever is left should be dealt 

with by selecting the fixity coefficient with conservatism. 
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b 	u . ` &4xi. scq1. (Fig. 13) 

r. 	a 	t ! Sr. Corrected : (Observe 140. 	Nach1e 	; 
+gad 1ng 

deflection, Ito ► 
of provin Mach Inc 

Reading 
deflection  
ofrovtng  Tons 	i ring) xlO Tons ring) 2 it4 

1. 0.000 0.0 1. 1..865 432.0 
2. 0#.055 { 	16.0 12. 2.055 477.5 
3. 0.255 61,0 13, 2,286 624.13 
4. 0.456 108,6  

s 
14 . 2.465 671.3 

5. 0.655 , 156,0 1. 2.665 621,? 
6. 0.855 20,,3 36. 2.865 668.0 
7. 1.055 24640 170 3.056 714.3 
at 1.266 ' 291.1 18,  3.255 760.15 
9. 1.455 33806 19,  3.455 805.? 
3.0, 1,686 ;385.16 20. 3.607 838.5 

Thie cue 1oi with the Values. in 'tab1• 209 has b n 
plotted in Fig* 13 and with the help Of the$* two curves the 
actual calibration curve for the tot sca1e ' the m chin. 
has been derived dir.ctlyon the graph and shy In Fig. 12. 

P 	 (F'ig.Z3 ) 
er.N'Q. Load in Def ctjon 8r*No.. L d in  Ibs. 	artô 	 $ 	1. 

2 • 82.4 

 

4  ~ 

8. 	6000  497.8 
62.'786 
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2 • 3. 1. 2. 3. 

3. 1500 123.7 90 7000 581.0 
4. 2000 164.2 10. 8000 .666.4 
5. 3000 248.2 11. 9000 751.5 
6. 4000 330.6 12. 10000 836.7 

(iii) 	T . le' No.2 1 

Oalibraticnx curve for 	scale  (Calibrated 
upto 10-tons only 

Sr. Corrected Observed r. Gorreoted 0bserved 
Not Machine deflection No. Machine deflection 

reading in of proving reading in of proving  
Tins ring x 104  Tons, ring x 10 

Inchds.. Inc es. 
1, 2. 3. 1.. 2. 3„ 
1. 0.00  0.0 24. 4„43 472.0 
2. 0.03 4.0 25. 4.63 491.0 
3. 0..23 25.0 26. 4.83 512.0 
4. 0.43 45.3 27. 5.03 531.6 
5 • 0.63 67.0 28. 5.23 552,16 
6• 0.83 89.0 29. 5,43 572.0 
7. 1.03 110.0 30. 5.63 592.3 
8. 1.23 132.5 31. 5.83 613.0 
9. 1.43 153.0 32. 6.03 633.3 
10. 1.63 175.8 33. 6.23 652.2 
11. 1.83 197.6 34. 6.43 673.0 
12. 2.03 222.0 35. 6.63 692.5 
13. 2.23 242.6 36. 6.83 713.3 
14. 2.43 264.0 37. 7.03 733.0 
15. 2.63 285.0 318, 7.23 753.9 



2. 	3, 	1. 	2. 	3, 

16. 2.83 	307.1 	39. 7.43 	775.0 

17. 3.03 	338.0 	40. 7.63 	796.0 

18. 3.23 	349.8 	41. 7.83 	817.3 

19. 3.43 	370.3 	43. 8.03 	838.2 

20. 3.63 	391.3 	43. 8.23 	859.0 
31. 3083 	411.0 	44, 8.43 	880.0 
22. 4.03 	431.6 	45. 8.63 	900.0 
33. 4.23 	451.36 

1..  The calibration of 20-ton scale has been done only upto 

10-ton load due to the non availability of a proving ring 
beyond 10-ton capacity. Moreover we were to load the actual 

specimens only upto 9-tons maximum. 

2.  This curve alongwith the curve, tabulated in table No.22, 

has been plotted in Fig. 14, and with the help of these curves 

the actual calibration curve for 20-ton scale upto 1 0~-tons 

load reading has been derived directly on the graph and 

shown in rig. 14.. 
Ci,) Table N0.22 

Prpvjg ring curve (10•ton ca acit 1 Fig. 14 

A1. ' dad in betietton  Sr. Load in Deflection No, 	tons 	x 10 In. 	N. 	tons. 	x iO In. 
3 	2 	3. 

1. 0.6 	64 	11. 	6.6 	672 

2. 100 106 	13. 6.0 622 
3. 1.6 	158 	13. 	6.5 	672 
4. 2*0 212 	14. 7.0 723 
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1. 2. 	3. 1. 2. 3. 
5, 2„5 	266 15. 7.5 775 
6« 3.0 	318 16. 8.0 826 
7. 3.5 	369 17. 8.5 877 
8. 4.0 	420 18, 9.0 929 
9. 4.5 	471 19, 9.5 981 
10. 5.0 	522 20. 10.0 1032 

tv) Table N0.23  
Coax ress1 n test of 	.5. (0.178 	Carbon) Fig.15 

Mean Dia of test specimen = 0.4541 In. 
Length of test specimen = 0.8710 In, 

The test was 	erfre n 20tflsca1G. 

6r. Observed Deform tion 
x 10-4  Actual Stress Strain 

No, load load from K,S •I . x 1.04  Tons. In. calibra- tn./in. 
tion curve I ig. 14 dns. 

1. 2. 3. 4. 5. 6. 
1. 0.0° 0.00 0.00 0.00 0.00 
2. 0.45 1.00 0.45 6.22 1.15 
3. 0.65 2.00 0.65 8.89 2.30 
4, 0.85 5.00 0.85 11.75 5,74 
5.  1.05 6.66 1,05 14,50 7.50 
6.  1.25 6.61 1.25 17.30 7,50 
7.  1.45 9.00 1.45 20.00 10,00 
8.  1.85 9.20 1.85 25.60 10.00 
90 2.25 13.00 2.25 31.10 14.90 
10. 2.45 13.10 2.45 33,90 14.95 

C ont$ i .. . 



2 3. 4 5. 6. 

U. 2.65 13.30 2.65 36.70 15.00 
12, 2.85 13.95 2.85 - 39.40 16.00 
1.3. 3,22 17.45 3.22 44.50 20.00 
14.  3.32 18.30 3.32 47.00 21.00 
15.  3.66 21.85 3,66 50.60 25.00 
16.  3.76 48.00 3.76 52.00 55.00 
17.  3.80 130.00 3.80 52.50 150.00 
18, 4.02 221.00 4.Q2 55.50 255.00 
19.  4.28 247.00 4.28 59.1 284.00 
20.  4.48 292.00 4.48 62.0 336.00 
21.  4.65 ' 327.00 4.68 64,6 • 376.00 
22. 4.85 368.00 4.90 67.8 424.00 
23, 5.05 417.00 5.08 70.2 480.00 
24.  5.25 463.00 5.30 73.3 531.00 
25.  5.45 530.00 5.50 76.0 609.00 
26,  5.65 600.00 5.70 ° 78.8 690.00 
27,  5.87 694.00 5.90 81.5 797.00 
28. 6.05 772.00 6.10 84.3 886.00 
29, 6,25 853.00 6;30 8700 980.00 
330. 6.45 980.00 6.50 89.8 1125.00 
31.  6*65 1135.00 6.70 92.6 1190.0 
32.  6.85 1210.00 6.90 95.4 1390.0 
33.  7.05 1280.00 7.10 98.1 1470.0 
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(vi)  Table Ne.24 

Compression test t M.S. (0.485% Carbon)  Fig. 16 

Mean dia of test spectmen 	= 0.4433 In. 
Length of test specimen 	0.8854 In. 
e t as..Rerfo ed...Gxl 20 ten 1 jjQ. 

3r, Observed Deformation Actual load Stress Strain 
Ncs.. load x 1p from Fig. K„3.1. x 164  

Tons. n. 14. Tons in/In. 
r. 2 3. -4. 5. 6. 
1. 0.00 0.00 0.00 0.00 0.00 
2. 0.23 2.20 0.23 3.34 2.48 
3. 0.43 3.98 0.43 6.24 4.50 
4. 0.63 4.43 0.63 9.14 5.00 
5. 0.35 4.44 0.85 12.60 5.00 
6. 1.03 5.31 1.03 15.00 6.00 
7. 1.23 5.40 1.23 17.85 6.10 
8. 1.43 6.65 1.43 20080 7.50 
9. 1.63 7.09 1.63 23.,70 8.00 
10. 1.83 7.95 1.83 26.60 9.00 
11. 2;03 8,85 2.03 99050 10.00 
12. 2.23 9.75 2.23 32.40,  11.00 
13. 2.43 10.62 2.43 35.20 12,00 
14, 2.83 11.50 2.83 41,00 13.00. 
15.  3.03 13.30 3.03 444.00 15.00 
16.  3.23 13.50 3.23 47.00 15.20 
17.  3.43 14.60 3.43 49.70 16.60 
18.  3.63 15.90 3.63 52.60 18.00 
19.  3.83 16.10 3.83 55.Q0 18.20 
20.  4.03 17.30 4.05 58.60 19.50 



1. 2, 3. 4. 5, 6. 
210 4.23 23.90 4.25 61.60 27.00 
22.  4.43 26.60 4.45 64.60 30.00 
23.  4.63 52.30 4.65 67.50 59.00 
240• 4.83 87.70 4.85 70.40 99.00 
25.  5.03 106.20 5.06 73.40 120.00 
26.  5.43 135.00 5,46 79.20 153.00 
27.  5.83 159.00 5.86 85.00 180.00 
28, 6.03 185.00 6.06  87.90 209.00 
29.  6.23 203.00 6.28 91.10 '229.00 
30.  6.43 221.00 6.48 94.00 249.00 
32.  6.63 242,00 6.68 97.00 273.00 
33.  6.83 263.00 6.88 100.00 297.00 
34.  7.03 282.00 7.08 103.00 318.00 
35.  7.23 306.00 7.28 106.00 345.00 
36.  7.43 330.0 7.48 108.50 372.00 

(vii) Table N0.25 
Go . ressive Test of AL. .alloy (0.755% l ,)  P Ig.17 

Mean dia of test specimen 	= 0.4360 In. 
Length of test specimen 	= 0.8830 In. 

The test was performed'on :-ton Scale. 

Sr. Observed Deformation Actual load Stress Strain No, load in x 104 from 'ig. K,3.I. X 104  Tons. In. 13. 	Lbs. In./In. 
1. 2. 3.  4.  5.  6.  
1.  0.00 0.00 0.00 0.00 0.00 
2.  0.43 5.30 900-0 6.00 6.00 

Oortd.... 
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1'. 
+~~ ~II+~~:~rw..r.M 

2. 
r.rrw..lr 	nr- 

3. 
rr..nr.r+~rrlirrrn www.w.I1~Iw 

4. 
~rlf. rr.~.~r 

5. 
rllrrrr.1M11rrWrlrr. 

6. 

3. 0.80 7.05 1225 50200 8.00 

4. 0.90 8.38 1550 10.370 9.60 

5. 1.00 10.60 1825 12.210 12.00 

6, 1.10 12.35 2110 14.120 14.00 

7:  1.20 12.36 2400 10.080 14.10 

8:  1.30 13.25 2700 18.070 15.00 

9.  1.50 17.65 3225 20.60 20.10 

10.  1.70 22.9 3775 25.?8 26.00 

11.  '1.80 23.8 4050 2..7.10 27.00 

12.  2.00 26.5 4625 30.98 30.00 

13.  2.05 28.2 4760 31.90 32.00 

14.  2.20 31.8 51?5 34.70 36.00 

16. 2.30 34.80 5450 36.50 40.00 

16.  2.40 38.7 5750 38.50 44.70 

17.  2.45 42.0 5850 39.10 48.40 

18.  2.50 46.7 6000 40.20 53.80 

19.  2.55 54.0 6150 41.20 62.00 

20.  2.60 63.5 6300 42.20 72.80 

21.  2.65 85.0. 6425 43.00 97.30 

22.  2.70 111.5 6575 44.00 113.90 

23.  2.75 137.5 6740 45,10 156.80 

24.  2.80 164.5 6850  45.80 187.00 

25.  2.85 190.0 6990 46.70 216.00 

26.  2.90 222.0 7125 47..70 252.50 

27.  2.95 252.0 7250 48.50 286*00 

28.  3.00 288.0 7400 49.50 326.00 

29.  3.10 374.0 7625 51.40 425.00 
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(viii) Table NQ 26_ 
COMPRESSION TEST OF Aj..Mg. ALLOY (0.808 Mg.) Fig 

Mean dia of test Specimen = 0.4526 In. 
Length of test specimen  = 0.8817 1n. 

hg test bras, x~erformeedd on 20-ton-scale 

Sr. Observed Deformation Actual load Stress Strairx 
No. load x 10 from F'ig. K.S.I. x 10 

Tons In. 14. Tons In./In. 
1. 2. $. 4• 5. 6. 

1.  0.00 0.00 0.00 0.00 0.0 

2.  0.34 4.40 0.34 4.73 5.0 

3.  0.54 5.30 0.54 7.50 6.00 

4.  0.64 5.40 0.64 8.90 6.1 
5.  0.74 7.05 0.74 10.30 8.0 

6.  0.84 7.15 0.84 11.70 8.1 

7.  1.04 13.20 1,04 14.50 15.0 

8.  1.24 15.0 1.24 17.25 17.0 

9.  1.44 17.6 1.44 20.00 20.00 

10.  1.84 22.0 1.84 25.60 25.0 

11.  2.24 25.5 2.24 31.20 30.0 
12.  2.44 28.2 2.44 33.90 32.0 

13.  2.64 35.3 2.64 36.70 40.0 

14.  2.84 39.7 2.84 39.50 45.0 

15.  3.04 63.5 3.04 42.3 72.0 

16.  3.24 128.0 3.24 45.0 145.0 

17.  3,44 309.0 3.44 47.8 350.0 

18.  3.54 497.0 3.54 49.2 564.0 

19.  3.64 724.0 3.64 50.0 800.0 

20.  3.67 948.0 3.67 51.0 1075.0 



(ix)  2 able No.27 
Stress " 	Vs • Tang=& modulus 

curve M.S. „fnr 0.178% Carbon 	(F .. is) 

Sr. Stress Tangent Sr. Stress tangent No. K.S.X. modulus N. K.S.I. modulus 
x 10" 6  Et  x 101 6 .5. p.s.l.  

1. 0.0 	to 29.4 6. 55.0 0.93 
48.0 

2. 48,65 17.7 7. 65.0 0.59 
3. 50.0 6.6 8. 75.0 0.396 
4. 51.0 3.6 ; 9. 85.0 0.28 
5., 52.0 2.0 10. 90.0 0.18 

(x) Table No.28 
Stress 	Vs 	Tangent modulus curve for 

M.S. (0.485 Oarbon) Fig,.16 

ter. stress 'argent or. , stress Tangent 
N0. X.8.I, modulus No. K.S.I. modulus 

x10 6  Etx10-  ,5.1  
P.S.I. 

1. 0 to 55.00 30.00 7. 63.40 2.56 

2• 55.10 27.30 8. 68.00 1.54 
3. 55.50 20.20 9. 70.00 1.61 
4. 56.15 14.20 10. 80.00 1.60 
5. 58.00 9.40 11. 90.00 1.50 
6. 60.50 5.51 12. 100.00 1.20 



w90' 

(Xi) ?able N 29 
Stress Vs Tangent modulus curve for 4LMg  

VIIIlY~IY~T 
(0.755% 	Figs 17. 

Sr. Stress Tangent  Sr. Stress Tangent 
No. K.S.I. modulu 	No. K.S.I. modulus 

E x1O 	 Ei.X1O 6 

1, 0 to 30.00 	10.70 	9. 	39.60 	1.60 

2. 30.60  9.40  10.  41.75  0.96 

3. 31.60  8.00  11.  42.60  0.65 

4. 32.50  6.67  12.  43.30  0.47 

5. 33.70  5.43  13.  44.00  0.35 

6. 34.70  4.75  14.  45.50  0.26 

7. 36.60  3.33  15.  46.00  0.20 

8. 38.50  2.45 

(xii) Table No.30 

Stress Vs Tangent modulus curve 

alloy (0.808% Mgt r'ig. 18 
YI(q 	rrr~ ~ilfr• W 14W~~~.r~ Ilir 

or. otress Tangent *r. Stress Tangent 
No. Vs modulo NQ vs modulo 

K .3.1. E,10 6 K. 3 .I . E xl o-o 
P.5,1. 

1. 0 to 34.0 10.60 7. 43.0 0.74 

2. 34.5 7.70 8. 44.0 0.48 

31 35.0 4.72 9. 45.0 0.24 

4. 37.0 2.85 10. 46.0 0.18 

5. 39.0 1.88 11. 48.0 0.08 

6. 41.0 1.13 12, 50.0 0.04 
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