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ABSTRACT

In recent years, the ever increasing demand for reliable high-speed

information transmission has spurred an active interest in the development of

efficient coded communication systems, both in terms of power efficiency and

bandwidth (spectral) efficiency." The traditional coding schemes trade bandwidth

efficiency for increased power efficiency/coding gain and therefore are considered

to be suitable only for power limited channels, where bandwidth is abundant. The

rapid growth in digital radio communication and high-speed digital networks,

demands a large spectral efficiency to meet the enhanced information rate

requirements. Ungerboeck's combined coding and modulation scheme, namely Trellis

coded modulation (TCM), has provided an impetus to achieve high spectral

efficiency on bandlimited channels, while providing adequate power

efficiency/coding gain. Over the past decade, the TCM has evolved as a robust and

efficient coding scheme for information transmission without sacrificing data

rate, bandwidth, and signal power. The fact that it promised to fill most of the 9

dB gap between the rates achievable and Shannon's channel capacity limit, prompted

an active research as well as wide-spread practical applications of the TCM.

Ungerboeck's TCM scheme is an integrated design approach that regards coding

and modulation as a single entity. Essentially, the TCM scheme employs non-binary

redundant modulation in conjunction with a finite-state convolutional encoder thai

governs the selection of channel signals. The key to this unified design approach

is a special mapping technique called mapping by set-partitioning, which ensures

that the minimum Euclidean distance (ED) between the coded signal sequences is

maximized. At the receiver, the noise corrupted signal sequence is decoded by

soft-decision maximum-likelihood Viterbi decoder, which is an optimum receiver.

Depending upon the code employed, a TCM scheme can improve the robustness of



digital transmission on additive white Gaussian noise (AWGN) channel by 3 to 6 dB

relative to an uncoded modulation system, without compromising the bandwidth

efficiency or power efficiency.

The present work is concerned with the study of Trellis-coded QAM system on

AWGN channels as well as on time-dispersive intersymbol interference (ISI)

channels. In an effort to overcome the problem of computational complexity of the

optimal receiver structure for bandlimited channels, various reduced complexity

sub-optimum receiver structures have been considered and their performance

evaluated.

We consider first, the performance of Trellis-coded QAM systems on AWGN

channels, which depends on the decoding algorithm and the distance properties of

the code employed. An exact analysis of the error probability is difficult, and

one normally resorts to either simulation or the evaluation of performance bounds.

Simulation is a time consuming process and therefore cannot provide realistic

estimates of error performance at high signal-to-noise ratio (SNR). On the other

hand, the performance bounds are the most effective tools in the evaluation of

performance at moderate to high SNR. The algorithms used to compute the

performance need to be fast and efficient. Most of the algorithms proposed in the

literature are based on the transfer function approach, which when combined with

union bound yields a tight upper bound to the error probability.

In the present work, we have proposed a unidirectional trellis search

algorithm based on the shortest-route principle, that computes the distance

spectrum of the code using a trellis structure whose state complexity is same as

that of the encoder. The algorithm is fast and efficient. The derivation of tight

upper bound to error probability requires computation of the complete distance

spectrum of the code to evaluate all the terms of the union bounds. In practice,

the first few spectral lines of the code are computed to yield a moderately tight

upper bound to error probability. Following this approach, the performance of

trellis codes on AWGN channel have been evaluated through bounds, using the
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proposed distance spectrum computing algorithm, and the results so derived are

compared with simulation results. The performance evaluation so derived is found

to be nearly tight, in the sense that the simulation result lies well within the

computed lower and upper bounds. The proposed method, for the computation of

distance spectrum and hence the evaluation of the code performance, is found to be

quite effective for Ungerboeck's TCM codes. We observe that, over AWGN channel the

TCM schemes achieve a coding gain of nearly 3-5 dB relative to the uncoded

reference system.

The large spectral efficiency and high coding gain achieved by TCM on AWGN

channels, has stimulated researchers to investigate its performance and consider

its application to high-speed data transmission over bandlimited time-dispersive

channels. The primary impediments over such a channel are the ISI and AWGN. While

TCM can effectively enhance noise immunity without a reduction in data rate, a

powerful equalization technique such as maximum-likelihood sequence estimation

(MLSE) is desired to mitigate the effects of ISI. Therefore for bandlimited

channels, a TCM scheme in combination with an optimum MLSE promises to achieve

data rates close to channel capacity. The cascade of TCM encoder and ISI channel

can be represented by a combined finite-state machine and hence a combined ISI-

Code trellis, whose states is the product of encoder states and ISI stales.

Consequently, the receiver performs a maximum-likelihood estimation of data

sequence using the Viterbi algorithm (VA) that searches for a minimum cost path in

the combined ISI-Code trellis and the resulting structure is optimum. A study has

been performed to evaluate the error rate performance of the combined ISI-Code

receiver structures, used for the decoding of various Trellis-coded QAM signals in

the presence of ISI and AWGN, through simulation. Making use of the error

structure of the basic trellis-code employed and the ISI channel characteristics,

the performance of the optimum combined MLSE receiver structures have also been

evaluated through bounds, and are found to be in concurrence with the simulation

results. From the simulation results, we find that the performance of the optimum

in



combined MLSE receiver structures, over certain ISI channels, is very close to

that under an ISI-free environment. Although there is a degradation of the order

of 1-2 dB relative to the ISI-free performance, the combined ISI-code trellis

structure achieves gain of about 2-3 dB over the uncoded MLSE reference system.

Since the computational complexity of the optimum combined MLSE receiver

structure grows exponentially with channel memory length the practical

implementation becomes prohibitive, even for moderate ISI. This has motivated

researchers to find the sub-optimum TCM receiver structures with reduced

complexity, that maintains most of the performance advantages of the MLSE. The

complexity can be reduced drastically by employing pre-filtering techniques prior

to MLSE, as is being used for uncoded modulation schemes. We have proposed, a sub-

optimum KFE-MLSE receiver structure comprising of Kalman filter equalizer (KFE)

followed by maximum-likelihood Viterbi decoder for the decoding of trellis-coded

QAM signals in the presence of ISI and AWGN.

The proposed KFE-MLSE structure is a sub-optimum receiver structure and the

performance degradation for the above can be evaluated by assuming that the

Viterbi algorithm still operates with a white Gaussian noise, whose variance is

the overall variance of the correlated noise and the residual ISI at the equalizer

output. The effect of prefiltering on the free distance of the code can be

computed by finding the combined channel-KFE impulse response through

'innovations' representation of the processes involved, and the spectral

factorization techniques. We have evaluated the performance of the KFE-MLSE

receiver structure, by finding the performance degradation relative to its

performance under an ISI-free environment. The performance' bounds so derived are

compared with the simulation results of several trellis-coded QAM schemes

employing KFE-MLSE structure on different ISI channels. Also, the performance of

the KFE-MLSE receiver structure is compared with that of the optimum combined ISI-

code trellis structure for limited ISI memory length. The proposed suboptimal KFE-

MLSE structure achieves significant gain of about 2-2.5 dB over the uncoded KFE

iv



reference system, although it suffers a performance loss of about 1.0-2.0 dB

relative to the optimum combined MLSE structure.

An alternative to the prefiltering technique is the use of reduced-slate

algorithms, which aim at reducing the states of the optimum combined ISI-code

trellis by incorporating a built-in decision-feedback mechanism within the Viterbi

decoder. The Reduced State Sequence Estimation (RSSE) and the Parallel Decision

Feedback Decoding (PDFD) are two such sequence estimation algorithm, which provide

a good performance/complexity trade-off, the latter being a special case of RSSE.

In RSSE, the complexity reduction is achieved by using the channel truncation

technique and applying the set-partitioning principles inherent in TCM. The slate

reduction in RSSE depends on the code, the channel truncation length, and the

depth of set-partitioning of the signal constellation. A family of reduced slate

sequence estimators can be obtained for a given TCM code and a given ISI channel,

offering a wide trade-off between decoding complexity and performance. The

complexity of RSSE trellis can range between that of the encoder trellis and the

combined MLSE trellis. When the complexity of the RSSE trellis is reduced to thai

of the TCM encoder trellis, the receiver structure is referred to as the parallel
decision feedback decoding (PDFD).

We have considered the study of several RSSE and PDFD receiver structures for

the decoding of trellis-coded QAM with different orders of complexity reduction,

for various ISI channels. The performance of these structures have been studied by
simulation and are compared with the error performance of other receiver

structures, considered earlier. The RSSE receiver structures exhibit improved

performance over KFE-MLSE receiver structure, but at the cost of increased
complexity.

For channel equalization, the optimum combined MLSE receiver structure

(implemented by VA) or its sub-optimum variants, require an exact knowledge of the
channel characteristics, especially when the channel parameters are time-varying.

A wide range of adaptive algorithms for channel estimation have been reported in



the literature, the most common being the LMS algorithm and the RLS algorithm. The

decision delay inherent in the VA causes poor tracking performance, particularly

when the channel characteristics are rapidly time-varying. To circumvent Ihis

problem, a new channel estimation procedure has been reported in recent years,

where the adaptive channel estimation is accomplished for each state in the VA,

using the zero-delay decisions associated with its survivor path to update the

channel coefficients.

We next consider the adaptive implementation of the receiver structures

discussed earlier, for the decoding of trellis-coded QAM on time-variant ISI

channels. We have implemented various adaptive receiver structures employing LMS

and RLS channel estimators, using both delayed-decision updating and delay-tree

updating of channel coefficients. The tracking characteristics of the adaptive

algorithms have been studied for various random time-variant ISI channels. The

mean-square error performance of the adaptive channel estimator have been studied

by simulation. Also, the error performance of the various adaptive receiver

structures have been evaluated through simulation.

In recent years, there has been an increasing interest in high-speed digital

transmission over cellular mobile radio, and mobile satellite channels, which are

characterized as multipath fading channels with time-dispersion. One of the most

efficient technique to reduce the effect of fading is through the use of diversity

reception, where the receiver is provided with several replicas of the same

information transmitted over D-independently fading channels.

We have next considered a study on the performance of different trellis-coded

QAM schemes over fading dispersive channels. The error performance of the adaptive

RSSE, PDFD and KFE-MLSE receiver structures have been studietl by simulation for

different fade rates. Using D-diversity reception to combat severe fading, the

error performance of the above adaptive receiver structures have been determined

for different orders of diversity D.
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CHAPTER 1

INTRODUCTION

The tremendous growth in information transmission in recent years, demands

the use of coded communication systems having a large spectral efficiency in order

to meet the enhanced information rate requirements. This has spurred an active

interest in the design and development of reliable digital communication systems

that are spectrally-efficient as well as power-efficient. The traditional coding

schemes, which treat coding and modulation as two separate entities, trade

bandwidth efficiency against power efficiency/coding gain and therefore are

considered suitable only for power-limited channels, where bandwidth is abundant

[14, 100],

Using random coding bound arguments, Massey [80] suggested that considerable

performance improvement could be achieved by treating coding and modulation as a

single entity in the design of a coded communication system. This concept was

formalized into a rigorous theory by Ungerboeck [126], which culminated in the

development of 'Trellis-Coded Modulation' (TCM). It is this work that laid the

foundation for an active research in the development of spectrally-efficient and

power-efficient coded modulation schemes [19, 22, 30, 51, 127].

Ungerboeck's TCM scheme employs non-binary redundancy modulation in

conjunction with a finite-state convolutional encoder that governs the selection

of channel signals. The key to this unified design approach is a special mapping

technique which ensures that the minimum Euclidean distance (ED) between the coded

signal sequences is maximized [127].
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The most attractive feature of TCM is its ability to improve the robustness

of digital transmission over additive white Gaussian noise (AWGN) channel by 3 to

6 dB relative to an uncoded modulation system without compromising the spectral-

efficiency or bandwidth-efficiency [126, 127]. The TCM not only provides an

improved performance in the presence of AWGN, but also in the presence of other

channel impairments [123]. Thus Ungerboeck's TCM scheme, being the state-of-the-

art technique in the coding arena, captured immediate attention and provided the

impetus for an intensified research as well as widespread practical applications

of the spectrally-efficient coded-modulation schemes [13, 29, 51, 123, 133].

The primary impediments to high speed digital data transmission are the

intersymbol interference (ISI) and AWGN [46]. The TCM scheme in combination with

an optimum equalizer such as maximum-likelihood sequence estimator (MLSE) has been

shown to be an optimum structure to combat the effects of ISI and AWGN [26, 42].

However, due to the reasons of complexity in implementation, the combined MLSE

structure tends to be too impractical even for moderate ISI.

The design of the reduced complexity receiver structure for TCM transmission

over ISI channels, that maintains some of the performance advantages of the

optimum combined MLSE structure, and its performance evaluation is a topic of

active research. In the following we present a brief review of the work that has

been done in this and the related areas.

1.1 REVIEW OF THE EARLIER WORK

The publication of Shannon's classic paper of 1948 titled 'A Mathematical

Theory of Communication' [115] launched the field of error control coding. Using

random coding arguments, Shannon established theoretical bounds on the achievable

performance of digital coded communication systems and pointed out the 9 dB gap

between the rate achievable with uncoded modulation and the channel capacity limit

[50, 147]. This immediately inspired a rigorous and intensified research on error

control coding aimed at the development of practical coded communication systems



which could approach the channel capacity limit. However, the initial era of

excitement was followed by an era of discouragement/disappointment as such

practical systems proved to be difficult to find [50].

In the classical coded communication systems, the functions of coding and

modulation are treated as two independent operations [126] and a certain coding

gain is achieved at the cost of bandwidth expansion. Therefore, practical coding

was believed to benefit only power-limited channels, where bandwidth was abundant.

Although Shannon's channel capacity theorem [116] predicted data rates exceeding

20,000 bits/sec for typical bandlimited telephone channels, the upper practical

limit was considered to be 9600 bits/sec even after 30 years of Shannon's

pioneering work. Most of this advance in data transmission was primarily due to

advances in the field of adaptive equalization and in fact had nothing to do with

Shannon's work [50].

Perhaps the most significant breakthrough in the design of coded

communication system, was the development of spectrally-efficient 'Trellis-coded

Modulation' (TCM) schemes by Ungerboeck [126] that promised to fill most of the 9

dB gap between rates achievable with the uncoded system and the channel capacity

limit. The results on TCM schemes were first published in 1976 [127], followed by

a systematic' presentation in [126]. Ungerboeck has presented a comprehensive
tutorial on TCM schemes in [127].

Ungerboeck's TCM is an integrated design approach that combines the coding

and modulation into a single entity. Through the use of optimally designed rate

(m/m+1) trellis codes suitably mapped into an expanded signal constellation of

2'" points, the TCM scheme could provide a significant coding gain without

sacrificing bandwidth or data rate. Thus, Ungerboeck's work captured immediate

attention and inspired a rigorous research as well as practical applications of

efficient coded-communication systems, both in terms of spectral efficiency and

power efficiency.



Around the same time while the TCM schemes were developed [126], Imai and

Hirakawa [61] also developed a slightly different integrated design approach

called multi-level coding method based on binary block codes and multi-stage

decoding procedure. The multilevel coded-modulation scheme of Imai and Hirakawa

did not receive the attention it deserved, at the time of publication, due to the

lower coding gains relative to Ungerboeck's TCM scheme. Incorporating the use of

convolutional coding and soft-decision decoding into Imai-Hirakawa schemes,

considerable improvements in the coding gains have been reported in [18, 28, 109,

145]. Following Ungerboeck's integrated encoding and modulation approach, Cusack

[28] and Sayegh [109] have constructed a class of optimum signal space block codes

using short binary block coding (as opposed to convolutional coding) with

performances close to that of Ungerboeck's codes. Pottie and Taylor [96], and

Calderbank [18] have presented the construction of several reduced complexity

multilevel codes and they give the error performance of several alternative

multistage decoding structures. The performance analysis of multilevel coded

modulation schemes have been presented by Kofman et al. in [64]. Recently, this

approach of multilevel block coding technique has been applied to construct

trellis codes for the Rayleigh fading channels [113, 143].

Forney et al. [51] have presented a comprehensive tutorial material on the

development of coded-modulation schemes for bandlimited channels and they

illustrate the construction of several block-coded and trellis-coded modulation

schemes. Calderbank and Mazo [19] have presented an analytical description of

trellis codes, that combines the two steps of encoding and mapping into a single

operation. This design procedure does not require the exhaustive code search

procedure, as in the case of Ungerboeck's design approach, to find a minimal

convolutional encoder to suit the mapping operation. In [124], Turgeon and Mclane

discuss the design of minimal complexity analytical trellis codes and give the

rules for conversion from Calderbank-Mazo form to Ungerboeck-form and vice-versa.



A more generalized construction of trellis codes based on lattices and cosets has

been proposed by Calderbank and Sloane in [22], as an alternative to Ungerboeck's
code design methodology.

The TCM codes are normally not invariant to all phase rotations under which

the signal set is phase invariant. This may pose a serious problem in applications

where differential encoding/decoding is employed to avoid phase ambiguities [100],

The problem of phase invariance and differential encoding/decoding was solved by

Wei [133], who devised several linear and nonlinear codes that are rotationally

invariant to 180 or 90 degree phase rotations. Wei's [133] 8-state non-linear

trellis code which is invariant to 90 degree phase rotation has been adopted as an

international standard for high-speed telephone line modems operating at 9600

bits/sec or 14400 bits/sec [52, 100, 127].

Normally in the design of TCM schemes, symmetric signal constellations with

uniform spacing are employed. Although symmetric constellations are optimum for

uncoded systems, the same need not be true for TCM schemes. Divsalar et al. [29]

have designed TCM schemes with asymmetric signal constellations that achieve a

modest performance gain over TCM schemes employing symmetric constellations. These

gains, typically around 0.5 dB, disappear with large signal constellation and for

codes of higher state complexity. Moreover, in certain cases of asymmetry, the

trellis codes tend to become catastrophic. To circumvent the problem of

catastrophe in asymmetric TCM code design, Divsalar and Simon [31] have proposed

multiple trellis-code modulation (MTCM) scheme, wherein more than one channel

symbol per trellis branch is transmitted in order to achieve a modest gain of 1-2

dB for a 2-state MTCM scheme relative to a 2-state TCM scheme. However, it also

suffers from the problem of higher code complexity and the use of larger signal
constellation.

Forney et al. [51] proposed the idea of designing TCM schemes using

constellations with partially overlapped signal points to achieve higher coding

gains. While Ungerboeck's TCM schemes require a constellation of 2m+1 signal



points to encode m information bits, the above method re-maps some of the high-

power signal points into low power signal points with a subsequent saving in

transmitted energy and hence achieve an increase in the coding gain. Soleymani and

Kang [121] have investigated the performance of some TCM schemes with partially

overlapped signal constellations. Although these schemes achieve marginal gains

over Ungerboeck's TCM schemes, they are susceptible to catastrophic error

propagation. Moreover, a study of these TCM schemes by Fossorier and Lin [54]

indicate that these schemes require large decoding delays and also result in large

error coefficients which in turn reduces significantly the achievable coding gain.

An inherent cost of Ungerboeck's two-dimensional (2-D) TCM schemes is that

the size of signal constellation is doubled over uncoded modulation, which results

in 1-bit redundancy for each signaling interval. Without that cost, the coding

gain of the TCM schemes would have been 3 dB higher. Using a multi-dimensional

constellation, it is possible to reduce this cost of 3 dB because fewer redundant

bits are added for each 2-D signaling interval. The cost is reduced to 1.5 dB or

0.75 dB with the use of 4-dimensional or 8-dimensional signal constellations,

respectively [134]. Thus, efforts to achieve higher gains led to the development

of multi-dimensional TCM schemes, where multi-dimensional signals are transmitted

as sequences of constituent one- or two-dimensional signals, while maintaining the

principle of using a signal set of twice the size used for uncoded modulation

[100J. In general, a 2K-D TCM scheme employs a 2m+(1/k)-point 2-D signal

constellation to transmit m information bits per symbol. Due to the smaller signal

redundancy, the multi-dimensional TCM scheme achieves higher coding gains and

sometimes offer better performance/complexity trade-off than a 2-D TCM [134].

Gallager [51] proposed the first multi-dimensional 4-D TCM scheme, while

Calderbank and Sloane [20] have also proposed independently a similar 4-D TCM

scheme. Wei [134] has developed a class of multi-dimensional TCM schemes that are

highly suited for implementation, one of which has been standardized for use in

19.2 kbits/sec modems [48]. Calderbank and Sloane [21] have also developed a



number of multi-dimensional trellis codes. In [135], Wei has presented a class of

rotationally invariant MPSK trellis codes. Forney [48] has performed an

investigation on the performance/complexity trade-off of the several multi

dimensional TCM schemes described in [22, 51, 127, 134, 135]. In [52], Forney and

Wei provide an overview of multidimensional constellations for use with TCM

schemes, highlighting some of the important design attributes which are desirable

in practice. Based on a new concept of generalized group alphabet-partitioning,

Biglieri and Elia [15] have developed some multi-dimensional coded schemes using

block codes and trellis codes, for bandlimited digital transmission. While

Pietrobon et all [92] have given a comprehensive treatment on a class of Trellis

coded multi-dimensional MPSK modulation schemes, Benedetto [10] presents a

procedure for the construction of geometrically uniform multi-dimensional MPSK

trellis codes. Pietrobon and Costello [93] have investigated the performance of

trellis coding using multi-dimensional QAM signal sets.

Although, the multi-dimensional TCM schemes exhibit larger asymptotic coding

gains than 2-D TCM schemes, these gains are compromised by large number of nearest

neighbours which subsequently result in the performance degradation at lower SNR

[127]. At higher trellis (state) complexities, the 2-D TCM schemes will eventually

prevail in performance due to the fact that these schemes have higher signal

redundancy available for coding than with the multi-dimensional TCM schemes. The

overall difference in real coding gain with multidimensional TCM schemes is not

very large, being less than 1 dB for the range of complexities involved. In terms

of better performance/complexity trade-off, the Ungerboeck's 4-state and 8-state

two dimensional TCM schemes have been considered as benchmark systems for

practical use [48, 51, 95].

It is well known that an exact analysis of TCM performance over AWGN channels

is difficult to perform and usually one resorts to simulation or evaluation of

performance bounds [111]. Simulation is a time consuming process and may not

provide realistic estimates of the error performance at higher SNR. The



performance bounds, on the other hand, are quite effective in the evaluation of

code performance at moderate to large SNR. The algorithms used, to evaluate the

code performance through bounds, need to be fast and efficient. Most of the

algorithms proposed in the literature [9, 13, 16, 146] are based on the transfer

function approach [59, 129, 130], which when combined with the union bound will

yield a tight upper bound on the error event probability. The pair-state transfer

function approach, introduced by Biglieri [13], is most general and is applicable

to all TCM codes, linear or nonlinear. The approach uses a pair-state diagram and

involves a huge computational complexity which thereby limits its practical

application. By invoking certain symmetries and uniform properties inherent in the

TCM code, it is possible to derive transfer function using a state diagram whose

state complexity is equal to that of the TCM encoder [7, 16, 22, 146]. In [22],

Calderbank and Sloane introduce the concept of regular codes, which makes it

possible to evaluate the code performance by choosing the all-zero information

path as the reference path. The 'superlinearity' concept introduced by Benedetto

et al. [7] is very similar to 'regularity' property of [22]. Zehavi and Wolf [146]

have exploited the symmetry properties, inherent in the TCM code construction, to

evaluate the code performance through bounds by treating the all-zero information

path as the reference. Biglieri and Mclane [16] have derived a set of sufficient

conditions to define a class of uniform TCM schemes and have shown that all

Ungerboeck codes are uniform codes. The bidirectional search stack algorithms

[108, 111] have also been employed to compute the distance spectrum of TCM codes

and hence the evaluation of error performance through bounds. A comprehensive

tutorial on the performance evaluation of TCM schemes is presented by Bendetto

et al. in [9].

The two primary impediments to reliable high-speed data transmission over a

bandlimited channel are AWGN and ISI [46]. The large spectral efficiency and high

coding gain achievable with TCM have prompted researchers to investigate its

performance and practical application for high-speed data transmission over
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bandlimited time-dispersive ISI channels [26, 40, 42, 57, 123, 138, 142, 148]. The

TCM scheme in combination with an optimum MLSE equalizer promises to achieve data

rates close to channel capacity [40]. The receiver makes use of a combined ISI-

Code trellis structure whose state complexity is given by the product of the

encoder states and the ISI states [26, 42]. Although this combined MLSE receiver

is an optimum structure for bandlimited ISI channels, the fact that its

computational complexity grows exponentially with the ISI memory length makes the

practical implementation prohibitive even for moderate ISI. This led to an active

research to find sub-optimum receiver- structures with reduced complexity while

maintaining most of the performance advantages of MLSE [26, 42, 138, 142].

The state complexity of the combined MLSE receiver structure can be reduced

drastically by employing the prefiltering techniques prior to MLSE, as employed

for uncoded transmission [43, 46, 70, 103, 137]. Thapar [123] has proposed the LE-

MLSE receiver structure, comprising of a linear equalizer (LE) in cascade with a

maximum-likelihood (ML) Viterbi decoder which is often used in practice for high

speed TCM transmission over telephone channels. The LE-MLSE structure performs

poorly on channels with in-band nulls due to the fact that LE enhances noise on

such channels. With the use of the decision-feedback equalizer (DFE) as prefilter

the noise enhancement can be substantially reduced, but for proper operation the

DFE requires reliable delay-free data decisions which is not possible with the TCM

Viterbi decoder. Thus the DFE-MLSE structure as proposed by Wong and Mclane [142],

does not perform well, and in fact results in a performance loss as opposed to a

gain relative to an uncoded system [26, 42, 84, 94, 138, 142].

As a remedy to the above problem, one approach is the use of

interleaving/deinterleaving as proposed by Eyuboglu [40] and Zhou et al. [148].

These methods increase the throughput delays and may be prone to error

propagation, and require an interleaver at the transmitter. Forney and Eyuboglu

[50] proposed another technique to approach the channel capacity limit, through

the use of precoding techniques with spectral shaping. Since precoding is

9



essentially a transmitter equalization technique, the transmitter needs to know

the channel characteristics precisely and hence requires perfect transmitter-

receiver co-ordination for proper operation. This may not be possible (and hence

applicable) to one-way broadcast or rapidly time-varying channels, unless all the

channel characteristics are known apriori. Also, such schemes may not be useful in

certain applications due to the existing standards and/or compatability

requirements [42]. Thus, there is still a need for a practically viable reduced

complexity receiver structure that can approach the performance of an ideal DFE-

MLSE receiver for the coded-modulation schemes operating over bandlimited time-

dispersive channels.

Lawrence and Kaufman [68] proposed the use of discrete Kalman filter as an

equalizer for uncoded binary transmission. Benedetto and Biglieri [6] performed a

detailed investigation on the steady-state behaviour of this linear receiver and

showed that it as an optimum linear recursive filter/equalizer which performs as a

zero forcing equalizer at high SNR. The fact, that the KFE is an optimum linear

equalizer whose performance is comparable to that of an ideal DFE (at high SNR)

but without error propagation effects, makes the feasibility of KFE-MLSE receiver

structure for the detection of TCM signals over time-dispersive ISI channels a

topic for further consideration/investigation.

An alternative to the prefiltering technique is the use of reduced complexity

sequence estimation algorithms which aim to reduce the state complexity of the

combined MLSE receiver structure through channel truncation techniques and/or

combining the trellis states into subset states based on the ideas of set-

partitioning inherent in TCM. These techniques of channel truncation [43] and the

reduced state sequence estimation algorithms have been used extensively for

uncoded systems [41, 43, 57].

The state complexity of the combined ISI-Code trellis can be reduced by

channel truncation and the residual ISI terms not represented by the truncated

combined MLSE trellis structure are cancelled out by an ISI cancellation

10



mechanism, built within the Viterbi decoder, which makes use of data decisions

associated with the survivor path of the truncated trellis state [26, 42], For TCM

schemes employing large signal constellation a further reduction in state

complexity is still desired, which can be achieved by incorporating the set-

partioning ideas to define subset states for the truncated combined ISI-Code

trellis [42]. This leads to a family of reduced state sequence estimation (RSSE)

structures. The state reduction in RSSE depends upon the code, channel truncation

length and the depth of set-partitioning employed in the TCM code construction.

The state complexity of the RSSE trellis may range between that of encoder trellis

and the optimum combined ISI-Code trellis [26, 42]. When the state complexity of

the RSSE structure is reduced to that of the TCM encoder, the receiver structure

is referred to as parallel-decision feedback decoding (PDFD) and is the simplest

form of the reduced state algorithms [42, 57].

Eyuboglu and Qureshi [42], Chevillat and Eleftheriou [26] have presented a

study of the RSSE and PDFD structures for the decoding of a 4-state 16-QAM TCM

schemes over a limited memory ISI channels. Wesolwski [138], and Hallen and

Heegard [57] have also presented independently, the PDFD receiver structures for

the decoding of TCM signals over a limited class of ISI channels.

The continuing growth in digital radio communication (digital mobile and

digital satellite radio communications) has spurred an active interest in the use

of spectrally efficient coded-modulation schemes [13, 25, 30, 32, 35, 82, 110].

The fact that TCM schemes can provide significantly improved performance over

bandlimited channels without sacrificing the spectral efficiency or power-

efficiency, makes the TCM a potential candidate for application over digital radio

channels. These radio channels have been characterized as rapidly time-varying

multipath fading channels with time-dispersion [5, 62, 87, 99, 100]. Ungerboeck's

work [126] provided the stimulus for a rigorous research aimed at the design and

development of spectrally efficient and power efficient coded communication

systems for applications on satellite and digital cellular mobile radio channels
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[13, 29, 30, 32, 110, 131]. Most of the initial work dealt with the applications

of Trellis coded MPSK schemes with interleaving on fading channels and the

performance analysis using the pair state approach [13]. The notable contribution

in the area are due to Divsalar and Simon [29, 30, 32]. Divsalar and Simon [30]

investigated the performance of MPSK TCM schemes with interleaver/deinterleaver

using the pair state approach of Biglieri [13, 36, 60, 71, 81] for applications

over a fading mobile satellite channel. In a further work on the application of

trellis codes (with interleaver/deinterleaver) for fading channels [30], they have

shown that for optimum performance the code design guided by other factors such as

length of the shortest error event and the product of branch distances. However,

they have also pointed out that, with no interleaver/deinterleaver, the design of

trellis codes for the fading channels are still governed by the maximization of

minimum free distance of the code, as in the case of AWGN channels.

The increasing growth in digital cellular mobile radio communications, in
-A

recent years, demands for enhanced data rate requirements which can be

accomplished through the bandwidth efficient and power efficient modulations

formats such as M-QAM for M > 8 [12, 35, 45, 90, 131, 132]. Feher [45] points out

that the next generation modems, for the emerging digital cellular mobile radio

systems, are required to be designed with more spectrally efficient coded

modulation schemes to achieve a spectral efficiency in the range of 2-5 b/s/Hz.

Although M-QAM modulation schemes achieve higher coding gains on AWGN

channels than MPSK schemes (M > 4) because of their efficient constellation

shaping, they suffer seriously on fading channels due to their non-constant

envelope property. However, it has been reported by Moher and Lodge [85] that

through the use of pilot sequence for channel state measurement (channel state

information), the M-QAM trellis codes does exhibit improved performance over MPSK

trellis codes for fading channels. There has been considerable interest in recent

years in the application of M-QAM schemes to fading channels [23, 25, 33, 35, 45,

55, 93]. Feher [45] has reported the development of trellis coded 16-QAM modem for

12



cellular mobile radio with a promising performance in the spectral range of

2.2-3.0 b/s/Hz.

Since the radio channels are time-variant and unknown, the receiver needs to

be provided with a means to estimate the time varying channel impulse response. A

wide variety of adaptive algorithms are available for channel estimation [38, 74,

76, 85, 86, 101] and the most common being the least-mean squares (LMS) and the

recursive least-square (RLS) algorithms. The LMS algorithm [139] although much

simpler to implement performs poorly on time-varying channels due to its slow rate

of convergence. In contrast the RLS algorithms exhibit faster convergence and

better tracking performance and hence are considered for applications on time-

varying channels [37]. However, the LMS/RLS channel estimators, employed in the

adaptive MLSE receiver structure [78] or its sub-optimum variants, perform a

delayed channel estimation due to the decision delay inherent in the Viterbi

algorithm, and therefore are considered unsuitable for rapidly time-varying

channels. To circumvent this problem, a new channel estimation procedure called

per-survivor processing (PSP) channel estimation [105] has been proposed in recent

years by Kubo [65] and Seshadri [112] independently. This procedure maintains a

separate channel estimator for each state of the VA and the channel adaptation is

performed using the zero-delay decisions associated with the survivor path of the

state. The PSP channel estimation procedure, although relatively complex, has been

shown to be quite effective for the adaptive equalization of the MLSE receiver

structures for rapidly time-varying radio channels [66, 105].

In addition to the use of coded-modulations schemes for the multipath fading

channels, the use of diversity combining technique has been shown to be quite

effective for the multipath fading channels and is normally employed to combat

severe fades present on such channels [4, 27, 91, 99, 118, 122]. In diversity

reception, the receiver is provided with multiple replicas of the same information

transmitted over D-independent fading channels. The diversity reception is

effective since it is based on the notion that the probability of receiving
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simultaneously two or more (independently) severely faded signals is very small

[117].

1.2 STATEMENT OF THE PROBLEM

The present work encompasses a study of bandwidth-efficient and power-

efficient Trellis-coded QAM schemes with applications to high-speed data

transmission over bandlimited time-dispersive channels of both time-invariant and

time-variant nature, and investigates the evaluation of error rate performance of

these schemes through bounds and simulation.

The problem as treated in this study may be divided into five main parts as :

(i) A study of Trellis-coded QAM schemes over AWGN channel and the performance

evaluation through bounds using the distance spectrum, and through

simulation.

(ii) A study of Trellis-coded QAM schemes on time-invariant ISI channels using

the optimum combined MLSE receiver that employs a combined ISI-Code trellis

structure, and the evaluation of error performance through bounds using the

error structure of the basic TCM code as well as by simulation.

(iii) A study of the prefiltering technique that employs the sub-optimum KFE-MLSE

structure for the detection of Trellis-coded QAM signals transmitted over

ISI channels, and the performance evaluation through bounds and simulation.

(iv) A study of the reduced complexity sequence estimation algorithms, which

incorporate the channel truncation techniques and set-partitioning ideas,

for the detection of TCM signals in the presence of ISI and AWGN, and also

the evaluation of their error performance through simulation.

(v) A study of the adaptive receiver structures for TCM transmission over fading

time-dispersive channels, through the use of per-state processing channel

estimation procedure and the diversity technique.
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1.3 ORGANIZATION OF THE THESIS

The work embodied in this thesis has been arranged in seven chapters as

detailed below :

Chapter 2 : Trellis-Coded Modulation over AWGN Channel

We first discuss the drawbacks of classical coding schemes and then present

Ungerboeck's TCM design concepts which aim at overcoming these drawbacks. We next

present the design of a few TCM schemes employing QAM signal constellations. The

performance measures used in the evaluation of error event probability through the

union bound are considered next. An algorithm to compute the distance spectrum of

Ungerboeck TCM codes is presented. The distance spectrum of the TCM codes so

derived has been used in the evaluation of error performance using bounds. The

simulation results of the error event probability of TCM schemes over AWGN channel

are compared with those obtained through bounds.

•

Chapter 3 : TCM on Time-dispersive ISI channels

In this chapter, we first consider the equalization problem for the

transmission of digital signals over bandlimited ISI channels and briefly review

the equalizer structures normally employed in practice to mitigate the effects of

ISI. We next consider an optimum combined MLSE receiver structure, realized by the

Viterbi algorithm operating on a combined ISI-Code trellis, for the detection of

TCM signals in the presence of ISI and AWGN. We have presented the design of

several combined ISI-Code trellis structures for different TCM codes on ISI

channels of limited memory. The state complexities of these combined ISI-Code

trellis structures, which limits their practical applicability, have been

discussed. We present a method, using the error structure of the TCM code, to

evaluate the error performance of the combined ISI-Code receiver through bounds.

We finally present the results of a study that has been performed to evaluate the

performance using bounds and through simulation.
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Chapter 4 : Reduced complexity KFE-MLSE Receiver Structure for TCM decoding

on ISI channels

We first review the prefiltering techniques employed in practice for both

uncoded and coded transmission systems in an effort to reduce the state complexity

of the optimum MLSE receiver structure. We then propose the reduced complexity

KFE-MLSE structure for the detection of Trellis-coded QAM signals transmitted over

a time-dispersive ISI channel. We next present a method to evaluate the error

performance of the KFE-MLSE receiver using innovations representation and spectral

factorization technique. We then present the results of the study performed for

different TCM codes on several ISI channels, and the performance bounds so derived

are compared with those of simulation results. We also compare the error

performance of the sub-optimum KFE-MLSE receiver with that of the optimum combined

ISI-Code receiver structure on different ISI channels.

Chapter 5 : Sub-optimum Reduced State Algorithms for TCM Decodingon ISI Channels

As an alternative to the prefiltering techniques, we first consider the use

of channel truncation to reduce the state complexity of the optimum combined ISI-

Code trellis structure. Several design examples of the truncated combined ISI-Code

trellis structures have been presented. We then consider the use of set-

partitioning ideas, in conjunction with channel truncation, to construct several

RSSE structures for the decoding of TCM signals in the presence of ISI and AWGN.

The simplest form of RSSE namely the PDFD is also considered. The error

performance of these reduced state receiver structures for various TCM schemes on

different ISI channels have been studied through simulation and results are

presented.

Chapter 6 : Adaptive Receiver Structure for TCM Transmission over Time-dispersive

Fading Channels

In this chapter, we consider a study on the adaptive receiver using various

structures discussed earlier. We first consider the discrete-time model for the
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time-variant (fading) channel. We next consider the channel estimators based on

LMS/RLS criterion, for use with optimum MLSE structure or its sub-optimum variants

on slowly time-varying channels. We then consider a relatively more complex

channel estimation procedure called per-state processing (PSP) channel estimation

using delay-free decisions for the updating of channel estimates on a rapidly

time-varying channel. The error performance and tracking characteristics for these

channel estimators have been studied through simulation. The error rate

performance of the various adaptive receiver structures, for the decoding of TCM

signals transmitted over fading channels, have been studied through simulation and

the results are presented. Finally, we consider the use of D-diversity reception

technique for the detection of TCM signals transmitted over multi-path fading

channels with severe fade. The results of a study on the D-diversity receivers for

different orders of D on various multipath fading channels have been presented.

Chapter 7 : Conclusions

We conclude the thesis with a summary of important results and suggestions

for further work.

Also included are three appendices. In Appendix-A we present the Cholesky

spectral factorization technique which is used in the computation of steady-state

Kalman gains and hence the evaluation of combined impulse response of the channel

and the KFE. In Appendix-B we present the derivation of the variance of an auto-

regressive moving average ARMA process, which is used to find the overall noise

variance at the output of the channel and the KFE. In Appendix-C the fading

dispersive channel model, which is used in the study of adaptive receiver

structures in this thesis, has been presented.
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CHAPTER 2

TRELLIS-CODED MODULATION OVER

AWGN CHANNEL

2.1 INTRODUCTION

In recent years the fact that there is a tremendous demand for power-

efficient and bandwidth-efficient communication systems for transmission of high

speed digital data over bandlimited channels, has spurred an active interest in

the coding arena. In the past, all traditional coded communication systems treated

coding and modulation as two separate operations with regard to overall system

design and the subsequent results were quite disappointing [127]. Ever-since

Massey suggested, in a 1974 seminal paper [80], the notion of improving system

performance by looking at modulation and coding as a combined entity, the

researchers have been investigating ways of implementing this idea into a reality.

The most significant contribution in this direction was the development of

'Trellis-Coded Modulation' (TCM) by Ungerboeck [14,126].

Ungerboeck proposed TCM as an integrated system design approach that regards

coding and modulation as a single entity. The primary advantage of TCM, over

modulation schemes employing error-correction coding, is the ability to achieve

increased power efficiency without the need for customary bandwidth expansion

introduced by the coding process. Over additive white Gaussian noise (AWGN)

channels, for symbol error rates of 10"6, Ungerboeck codes could achieve gains of

3 to 6 dB; thus promising to fill most of the 9 dB gap between the rate achievable

with coded-modulation and Shannon's channel capacity limit [40], The TCM not only
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provides a significantly improved performance in the presence of AWGN, but also in

the presence of other channel impairments [123]. Thus Ungerboeck's TCM,

representing a significant advance in the state-of-the-art in the coding arena,

captured much attention and inspired an intensified research, as well as

widespread practical applications of bandwidth-efficient coded-modulation schemes.

The exact analysis of TCM code performance is difficult and in most cases the

performance evaluation is carried out either through simulation or using bounds.

Simulation is very time-consuming and is applicable for short constraint length

codes and at lower SNR. Performance evaluation using union bound gives a better

estimate and is applicable over a wide range of SNR of practical interest. In

order to determine the upper bound on the error probability, one needs to compute

the distance properties of the code. The computation of minimum free distance

dfree and its multiplicity Ndfree enables one to find the optimum code performance

at higher SNR. In order to evaluate a tight upper bound on the error performance,

the distance spectrum of the code has to be evaluated. We have proposed an

unidirectional trellis search algorithm, which can be used to compute the distance

spectrum of all Ungerboeck codes, that is fast and efficient.

In this chapter, we begin with a brief discussion on the drawbacks of

classical coding schemes, followed by Ungerboeck's TCM design concepts which aims

at overcoming these drawbacks. We then present the design of TCM codes using QAM

constellations. A number of examples for the above are given. The maximum-

likelihood soft-decision Viterbi decoder, which enables one to achieve high coding

gains for TCM scheme, and its performance measures are considered next. The use of

bounds in the performance evaluation of TCM codes over AWGN channels is considered

next. The new algorithm to find the distance spectrum of TCM codes is presented.

The distance spectrum so computed has been used to evaluate the performance of TCM

codes over AWGN channels. Comparison of simulation result with the bounds

evaluated is also considered.
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2.2 CLASSICAL CODING SCHEMES

In the classical coded communication system, the functions of encoding and

modulation are treated as two independent operations at the transmitter, and so

also the decoding and detection processes at the receiver [127]. The encoding

process provides a forward-error correction capability by introducing additional

redundant bits, if the channel permits bandwidth expansion. Thus, bandwidth

efficiency is traded for increased power efficiency/coding gain. The additional

bandwidth so demanded may not be available, as often is the case with bandlimited

telephone and satellite channels.

On such bandlimited channels a certain performance gain with coding is still

desired, without expanding the bandwidth. To realize this goal, the redundancy

required for coding could be obtained by enlarging the signal-set of the

modulation process. This calls for non-binary redundancy for which codes are hard

to realize. An increase in signal alphabets by a factor of 2 requires an

additional 3 dB signal power to maintain the same error rate relative to an

uncoded system. Therefore, if modulation and coding are treated as two independent

operations, then very powerful codes are required to offset this 3 dB penalty due

to signal-set expansion and still provide a significant coding gain. Normally this

is very difficult to realize and such an approach leads to very disappointing

results as discussed in [127].

Ungerboeck [127] recognized two drawbacks of the classical approach. Firstly,

the received signals are independently demodulated with hard-decisions prior to

decoding and thereby incur an irreversible loss of information. A better approach

would be the soft-decision decoding, where the decoder operates directly on

unquantized 'soft' output samples of the channel. Secondly, the classical approach

aims at maximizing the Hamming distance (HD) between the code words, which is not

equivalent to maximizing the Euclidean distance (ED), when non-binary modulation

(redundancy) is employed. The optimum performance on AWGN channel could only be
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attained if the decoding schemes are based on minimum ED between the received

waveform and the members of the signaling alphabet. Conversely, good signaling

alphabets are those having maximum ED. Therefore, code design must aim at

maximizing the minimum ED of the coded signal sequence. This motivated Ungerboeck

to look for a new code-design strategy which culminated in the development of

'Trellis-Coded Modulation' schemes.

2.3 TRELLIS-CODED MODULATION

Ungerboeck proposed, in his 1982 paper [126], an elegant solution to the

problems of classical channel coding. If modulation is treated as an integral part

of the coding process and is designed in conjunction with the code, so as to

increase the minimum ED between pairs of coded sequences, then the loss from

signal-set expansion can be overcome and a significant coding gain can still be

achieved with relatively simple codes. The key to this integrated design approach,

is to devise an effective method of mapping coded bits into channel signals such

that the minimum ED is maximized. Such a mapping rule, called mapping by set-

partitioning, involves successive partitioning of channel signal-sets into subsets

with increasing intra-subset distances. Most of the achievable coding gain can be

obtained by doubling the signal alphabet and using an appropriate code.

Ungerboeck's TCM schemes employ redundant non-binary modulation in

combination with a finite-state encoder that governs the selection of modulation

signals to generate coded signal sequences. The TCM code can be represented by

either a finite-state machine description (state diagram) or by a trellis diagram

(state-transition diagram), while the former is more compact, the latter has the

advantage of depicting pictorially the time evolution of coded sequences. Often,

the TCM codes are also referred to as 'Trellis Codes', because the TCM schemes are

normally described by the trellis diagram of the encoder.

At the receiver, the noise corrupted TCM signals are decoded by a soft-

decision maximum-likelihood (ML) Viterbi decoder. A simple 4-state TCM code
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improves the robustness of digital transmission over AWGN channel by 3 dB relative

to an uncoded modulation system. With more complex TCM schemes (256-, 512-state),

it is possible to achieve coding gains of upto 6 dB relative to uncoded multilevel

system [127], without compromising bandwidth efficiency or power efficiency.

In the subsequent sections, we consider the general structure of TCM scheme

and the special mapping rule used in TCM code construction.

2.3.1 General Structure

Generally, a typical TCM scheme [127] consists of a binary convolutional

encoder followed by a signal mapper as shown in Fig.2.1, although several

alternative forms have been described in the literature [7, 19, 22, 51].

To transmit m-information bits per modulation interval, m ^ m bits are

expanded by a rate m/(fn + l) convolutional encoder into (m + 1) coded bits. These

(m + 1) bits are used to select one of the possible 2m+ subsets of a redundant

signal constellation with 2m channel symbols. The remaining (m-m) uncoded bits

are used to determine which of the 2m"m signals of the chosen subset is selected

for transmission.

During each signaling interval, the subset selection and hence the channel

symbol selection depends not only on the incoming information bits, but also on y

past information bits, where y represents the constraint length of the encoder.

These y bits will define the state of the encoder, and the total number of encoder

states is thus 27. Therefore a TCM encoder with memory y, can be represented by a

trellis diagram consisting of N =2* states (nodes). From each state, there will

be 2m emerging transitions that correspond to 2m possible values of the m-bit

information input X . The number of states reachable from each state is 2m and
n

corresponds to distinct transitions (branches) of the trellis diagram. The number

of parallel transitions associated with each branch is 2"M" and is determined by

(m-in) uncoded bits.
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The process of mapping the coded bits into channel symbols involves the

signal-set-partitioning concept and TCM mapping rules and is discussed in the

following section.

2.3.2 Set-partitioning and the TCM Mapping Rules

The TCM uses a design approach, that aims at maximizing the minimum ED of the

coded sequence, based on a mapping rule called 'mapping by set-partitioning'. The

concept of set-partitioning plays a pivotal role in the TCM code construction.

Set-partitioning divides a signal constellation into smaller subsets with

increasing intra-subset distances. Each partition is a binary partition. The

subsets can themselves be partitioned further in the same manner. This is

explained in detail with the TCM code design examples in the following section. A

signal constellation of 2P points can be partitioned upto n levels where n ^ p. At

each stage, the number of points is halved and the minimum distance of the subset

increases (by a factor of \l for QAM signals). The degree to which a given signal-

set is partitioned depends on the code. With a rate m/(m + l) convolutional encoder,

the (m + 1) coded bits will dictate the depth of partitioning. This method of set-

partitioning, although not proved to be an optimal scheme [123], does provide an

improved performance over uncoded system.

The TCM encoder being represented by a trellis diagram, the state transitions

are assigned the channel signals from the partitioned signal-constellation in

accordance with the following mapping rules [126] :

(1) The 2'" transitions diverging from (or merging into) a single state must be

assigned signals from one of the two subsets at the partition level-1.

(2) The parallel transitions, defined by (m-m) uncoded bits, must be assigned

signals from one of the subset belonging to the partition at (m + l)-Ievel,

that is from a subset having the largest intra-subset distance.

(3) All signals must occur with equal frequency and with a fairly good symmetry.
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Rules (1) and (2) guarantee that the ED associated with a single- or multiple-

transition paths will exceed that of the uncoded system. Rule (3) ensures that the

code trellis will have a regular structure.

The very rationale behind the set-partitioning concept and hence TCM design,

is that the coded signal sequences are impervious to noise-induced detection

errors if they are very different from each other [127]. This translates into the

requirement that the signal sequences must have a large 'free distance' in the

Euclidean signal space. The mapping by set-partitioning rule, in combination with

a convolutional encoder, achieves this goal of maximizing the minimum squared ED

between coded signal sequences. Thus, TCM design concept enables to realize codes

whose free-distance significantly exceeds that of uncoded modulation system, for a

given data rate, bandwidth, and signal power.

The squared free-distance of the code is the minimum squared ED between all

possible code sequences, and is defined by [126],

free
min [V |a(n) - a'(n)|2
•+ f_' /„\i *- -I{a(n)}*{/ (n)}

.(2.1)

for all pairs of channel signal sequences (a(n)} and {a'(n)} which the encoder can

produce.

The effectiveness of a coded system over an uncoded system can then be

measured in terms of free-distances normalized with respect to signal energy.

Thus, the achievable coding gain of a TCM scheme at high SNR, also called as

asymptotic coding gain (ACG), relative to an uncoded modulation (reference) system

at the same data rate and bandwidth, is given by the ratio of normalized squared

free-distance of the code to that of the uncoded system. Expressed in decibels,

the asymptotic coding gain is

ACG = lOlog
10

free-c /
rd'

free-u
dB .(2.2)
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where d2 and d2 are the squared free Euclidean distances, and E and
free-c free-u s-c

E denote the average signal energies of the coded and uncoded schemes

respectively. The free distance d of the uncoded system represents the

minimum ED between the adjacent signal points of the constellation.

Before presenting the design examples for TCM, we consider below the multi

level signal constellations.

2.3.3 Multi-level Signal Constellations

The digital signaling schemes can be compared on the basis of SNR required to

achieve a specific probability of error at a fixed data rate and/or bandwidth.

The two-dimensional M-ary modulation systems require a Nyquist bandwidth of

1/T Hz around the carrier frequency to transmit signals at a baud rate of 1/T

symbols/sec. Therefore, the two-dimensional 2m-ary modulation schemes (such as M-

QAM or M-PSK where M=2m), achieve a spectral efficiency of about m bits/sec/Hz.

The M-ary PAM also exhibits the same spectral efficiency. Although the M-QAM and

M-PSK exhibit the same spectral efficiency, on AWGN channels M-QAM outperforms M-

PSK in error rate performance because of its efficient constellation shaping. To

maintain the same error rate performance, the M-PSK requires an additional

(3M2/2(M-l)7i) signal energy over that of M-QAM [100]. The M-QAM rectangular signal

sets (M=2m for m=2, 4, 6, ...) have the distinct advantage of being easily

generated as two m-PAM signals superposed upon phase quadrature carriers forming a

signal space of M-points arranged on a square grid (eg. ±1, ±3, ±5, ....). Also,

they can easily be demodulated to yield two quadrature components. Moreover, the

superposed view of modulation/demodulation process leads to a modular

implementation. Although may other types of rectangular signal constellations have

been investigated and reported in the literature [51, 53], very few outperform

with a marginal gain in terms of energy efficiency, which is often offset by the

complexity in implementation.
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The signal sets for one-dimensional amplitude modulation and two-dimensional

amplitude/phase modulation are shown in Fig.2.2. The average signal energy E is
av

also indicated for each signal set.

For applications on time-variant channels, the constant-amplitude M-PSK

signal sets are being used extensively, particularly 4-PSK in satellite

communications. However, in recent years, M-QAM has received much attention for

its application in high-speed data transmission over telephone network, digital

satellite/radio communications, mobile and cellular communications [23, 35, 55,

93, 131, 132].

2.4 TCM CODE DESIGN

In the following, based upon Ungerboeck's design procedure [126, 127] several

TCM schemes for M-QAM constellations have been considered. The convolutional

encoders employed in the code design are minimal feedback-free convolutional

encoders of [126] and are shown in Fig.2.3.

2.4.1 The 4-State 16-QAM TCM Scheme

The 16-QAM signal constellation as shown in Fig.2.4 is partitioned into two

subsets BO and Bl. Further partitioning leads to a larger separation between

signal points of the subset.

In the code design, a 4-state rate 1/2 convolutional encoder as shown in

Fig.2.5(a) is employed. Following the usual notation, m=3, m=l and y=2. Since rn =l,

the 16-QAM signal constellation is required to be partitioned into m+ l=2 levels

that results in four subsets CO, CI, C2 and C3, each consisting of four signal

points as shown in Fig.2.4.

For performance comparison, an uncoded 8-QAM scheme is used as the reference

system. This uncoded system employs signal points of either BO or Bl for which the

minimum ED is d^^, and corresponds to a 1-state trellis with 8-paraIlel
transitions as depicted in Fig.2.5(b). The labels on the trellis transitions

correspond to signal points of the subset BO.
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We next consider the use of partitioned 16-QAM signal constellation in

conjunction with the 4-state convolutional encoder. The encoder is represented by

a 4-state trellis diagram as shown in Fig.2.5(c). From each state there are 2m=8

transitions corresponding to 2m=8 possible input combinations. Since m.= l, there

are 2m=2 distinct transitions (branches) from each state, each representing 4

parallel transitions corresponding to m-m=2 uncoded bits of the encoder. The

trellis branches are assigned channel signals from the partitioned constellation

of Fig.2.4, in accordance with TCM mapping rules and the resulting branch

labelling are indicated in the Fig.2.5(c). Each branch representing 4 parallel

transitions is assigned signals from the subset CO, CI, C2 or C3, while each state

is associated with signals of subset BO or Bl. As can be seen, all channel signals

occur with equal frequency, and the trellis exhibits regularity and symmetry.

The minimum squared ED between parallel transitions, represents the minimum

ED of the C-type subset and is given by d2. =d2 =16.0. On the trellis diagram
min-par 2 e

of Fig.2.5(c), we consider two distinct paths emerging from state 0 and merging

into the same state after three transitions, forming an error event, as

highlighted by the signal paths (0,0,0) and (2,1,2). This is a minimum length

signal sequence and has a minimum squared ED of d2 =(d2 +d2+d2)=20 0 Hence
min-event 1 0 1

the squared free distance of this code, by definition, is d2 =min(16,20) = 16 0
free-c

The average signal energy for 16-QAM signal set is E =10.0.
s-c

For the uncoded 8-QAM reference system, represented by the subset B0 of 16-

16-QAM as shown in Fig.2.6(a), we have d2 =8.0 and E =10.0. Therefore, the
free-u s-u

asymptotic coding gain of this code is

ACG = lOlogJ fd2 /E 1 / fd2 /Ell
10 L I. free-c s-c J \. free-u s-u J J

= 101oglo[ [ 16/10 ] / [ 8/10 ) ] = 3.01 dB.

33



4-|

0-

* * d0=2.0

ft ft

ft *

4-i

SUBSET BO (B1) OF 16-QAM SIGNAL
SET AT THE PARTITION LEVEL -1

-
• *

2-

• *

0-

• *

2-

• *

*t I I I I I I I I ~1 1 1 I ' I ' I
-4-2 0 2 4

(b) UNCODED 8-QAM REFERENCE SYSTEM
Ref-(ii) WITH Eov=4.732

0

(a) UNCODED 8-QAM REFERENCE SYSTEM
Ref(i) WITH Eav=10.0

9

7-

5-

3-

1 -

-1

-3

-5

-7

-9

<d —

ft * ft ft

0-

* ft * A

Z 1 ' ' 1 1

(c) UNCODED 8-QAM REFERENCE SYSTEM
Ref-(iii) WITH Eav=10.0

SUBSET BO (Bl) OF 32-QAM SIGNAL
SET AT THE PARTITION LEVEL -1

ft • • • ft • ft

-i—i—i i r
-9 -7 -5 -3 -1 1 3 5 7 9

7-

5

3

1 -

-1

-3

-5-

-7

ft

ft

ft

•7 -5 -3 -1
T

ft

ft

5 7

(d) UNCODED 32-QAM REFERENCE SYSTEM
Ref-(i) WITH Eav=42.0

(e) UNCODED 32-QAM REFERENCE SYSTEM
Ref-(ii) WITH ^=20.0

FIG.2.6 UNCODED REFERENCE SYSTEMS FOR 16-QAM AND 64-QAM TCM SCHEMES

34



Thus, we find that the 4-state 16-QAM TCM code achieves a gain of 3 dB over

uncoded 8-QAM reference system, for the same information rate, bandwidth, and

signal energy.

For the 16-QAM TCM code, the coding gain depends on the uncoded modulation

system being considered as the reference. To illustrate this, we consider two

other 8-QAM signal constellations L100J as shown in Fig.2.6 as the reference

systems for the 4-state 16-QAM TCM scheme. For the 8-QAM reference system of

Fig.2.6(b), we find d^=4.0 and Eu=4.73. With this 8-QAM system as the
reference, the ACG of the TCM code is 2.77 dB. For the other 8-QAM reference

system of Fig.2.6(c), dj^-4.0, Eu=6.0 and ACG=3.8 dB. Thus, we find that ACG
of this 4-state 16-QAM TCM varies between 2.77 dB and 3.8 dB depending upon the

reference system being considered.

2.4.2 The 8-State 64-QAM TCM Scheme

The set-partitioning of the 64-QAM signal set is shown in Fig.2.7. An 8-state

rate 2/3 convolutional encoder employed in the code construction is as shown in

Fig.2.8(a), with m=5, in =2 and y=3. Since in+ 1=3, the signal set is required to be

partitioned into three levels, which results in 8 subsets DO, Dl, ...., D7, each

consisting of 8 signal points. The encoder is represented by an 8-state trellis

diagram as shown in Fig.2.8(b). From each state 4 distinct transitions (branches)

emerge, each representing 8 parallel transitions. The channel mapping, assigning

channel symbols to code trellis, is carried out in accordance with TCM mapping
rules. That is, each branch is assigned signals from one of the D-type subset and

each state is assigned signals belonging to either BO or Bl in a symmetric manner,
as depicted in Fig. 2.8(b).

The two non-parallel paths (0,0,0) and (6,5,2), as shown in Fig.2.8(b) form

an error event with minimum squared ED d2.^vem=5d2=20.0. The minimum squared ED
among parallel transitions is d2.npar=8d2=32.0. Therefore the squared free
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•s

y„

y;
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Mapping
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a(n)
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(a) 8-State 64-QAM TCM Encoder/Modulator.

a,,.,
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a(n) an Reference path
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o o
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Nole: Each branch represcnls 8 parallel Iransilions.

(b) The 8-state Trellis for 64-QAM TCM.

FIG.2.8 THE 8-STATE 64-QAM TCM SCHEME.
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distance of the code is d2 = min(20,32)=20.0. For 64-QAM signal constellation
free-c

the average signal energy is E = 42.0.

For the uncoded 32-QAM reference system, the signals of subset BO (or Bl) of

64-QAM constellation as shown in Fig.2.6(d) are being used. For this uncoded

system, we find that minimum ED is d =2«l2, and the average signal energy is 42.0.

Thus d2 =d2 = 8.0, and E =42.0. Therefore, the ACG of 8-state 64-QAM TCM is
free-u 1 s-u

3.98 dB with reference to uncoded 32-QAM of subset BO of Fig.2.7.

We next consider a 32-QAM cross signal constellation of Fig.2.6(e) as the

reference system. This signal set has d2freeu=4.0 and Esu=20.0. Hence ACG of 8-
state 64-QAM TCM is 3.77 dB. Thus, we find that there is a degradation of 0.2 dB

indicating that signal set of the latter reference system has a better

constellation shaping compared to the first reference system.

2.4.3 The 16-QAM TCM Using Two Rate 1/2 4-State 4-AM TCM Schemes

Since a rectangular M-QAM system can be viewed as two-AM systems superposed

on quadrature carriers, we adopt two rate 1/2 4-state 4-AM TCM schemes to realize

a 16-QAM TCM code. The structure is shown in Fig.2.9(a).

Now consider the design ofrate 1/2 4-state 4-AM TCM scheme. Here m= m=1, *=2.

The 4-AM signal constellation and its set partitioning are shown in Fig.2.9(b).

The signal set is partitioned into (m +1) =2 levels with the result that each subset

of the last partition contains only one signal point, and hence no parallel

transitions along trellis branch. The rate 1/2 4-state convolutional, encoder of

Fig.2.3(a) is employed and the corresponding trellis diagram is shown in

Fig.2.9(c).

For the code under consideration, we find that d2freec=9d2=36.0 by
considering the error event as highlighted in the trellis diagram of Fig.2.9(c).
Also, the average signal energy Ec=5.0. Considering a 2-AM uncoded system as the
reference, we find d2freeu=4.0 and E^-1.0. With this as the reference system,
the ACG of the 4-state 4-AM TCM scheme is 2.55 dB.
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2.5 MAXIMUM-LIKELIHOOD SOFT-DECISION DECODING OF TCM

Assume that the TCM signals are transmitted over an AWGN channel. Let the

discrete channel output be r(n)=a(n)+v(n), where a(n) is the discrete complex-

valued signal sent by the TCM transmitter and v(n) represents the complex sampled

value of the AWGN process. Because of the dependency introduced by the

convolutional encoder between the successive transmitted symbols, the minimum

distance between the two signal points is no longer a measure of the decoder

performance. But it is the minimum distance between the allowed sequences of

symbols that determines the system performance [123]. Therefore hard-decision

decoding, if employed, causes an irreversible loss of information resulting in

performance degradation. A better approach would be soft-decision decoding. The

optimum decision rule for the sequence decoder is to determine among all possible

signal sequences, a sequence with minimum squared ED from the received sequence.

The Viterbi algorithm (VA), originally proposed for the decoding of

convolutional codes [128], has been shown to be an attractive solution to a

variety of digital estimation problems. The VA tracks the state of a stochastic

process with a recursive method that is optimum, and lends itself readily for

implementation and analysis [47].

The VA is a maximum-likelihood sequence estimation (MLSE) technique that

finds among the set of all coded signal sequences which the TCM encoder can
A

produce, a sequence {a(n)} which is closest to the received sequence {r(n)} in the

sense of ED. This recursive decoding procedure involves a search for the most

likely path in the code trellis based on the received sequence. The received

signal sequence R={r(n)} = {r(l), r(2),...., r(n)} is decoded into one of the

allowed signal sequences in the set {A(i)}, where A(i)= {a.(l), •a.(2), ..., a.(n)),

based on the optimum decision rule that selects A(k) if Prob (R/A(k)) > Prob

(R/A(j)) for all j*k [123J. For an AWGN channel, this translates to computing the

squared ED between A(i) and R, and selecting the signal sequence A(k) for which
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|R - A(k)|2 < |R - A(j)|2 for all j *k, where |R - A(i)|2 . { |r(p) - a.(p)|2 and
P=i '

|r(p) - a.(p)|2 represents the branch metric.

The soft-decision Viterbi decoding for TCM is accomplished in two-steps [100,

127J. Note that each branch of TCM code trellis corresponds to a signal subset

assigned to parallel transitions. The first step called subset decoding,
determines the best signal point from among the subset points of the trellis

branch, that is closest to the received signal. These branch signals are stored

along with their branch metric. In the second step, the selected branch signal
points and their corresponding branch metrics are used in the Viterbi algorithm to
find a signal path through the code trellis that has the minimum cumulative

squared distance from the sequence of noisy channel outputs being received.

The essential features of VA are summarized as follows [73, 123, 127J:
Starting from infinite past upto the present time n the optimal signal path,
called the survivor, entering into each state of the code trellis is assumed to be

known. To proceed from n to n+1, all the survivor paths are extended and the total
path metric is computed by adding extended branch metric to the already known best
path metric of the state (node). The total path metric of all extended paths
merging into each state are then compared, and the shortest among them is retained
as the survivor and the rest are discarded. The total path metric of the survivor
path is called the best path metric. Note that for each state of the code trellis,
there will be one survivor path and correspondingly the best path metric. The
procedure is repeated iteratively. It can be observed that the VA requires three
basic operations namely add, compare and select.

Looking backwards in time, all the surviving paths tend to merge into the
same history path at some time n-r. With a sufficient decoding delay s>x, the
information associated with a state transition on the common history path at time
n-5 can be selected as the decoder output (estimate). In practice, a decoding
delay of 5 * 5r will suffice most of the applications, where y is the constraint
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length of the code.

2.5.1 Performance Analysis of the Viterbi Algorithm

An important feature of VA is the straight-forwardness with which its

performance can be analysed [47, 73, 89]. In many cases tight upper and lower

bounds to error probability can be derived.

The VA seeks the most likely path through the trellis based upon the received

sequence. Due to the presence of noise and other (imperfections) disturbances on

the channel, the estimated sequence (path) may not coincide with the actual

transmitted sequence (path) at all times, but typically diverge and remerge a

number of times. Each distinct separation is called an error event. Thus an error

event is formed by a pair of distinct sequences that depart from a single state

and then merge into a single state some steps later, but does not simultaneously

occupy the same state in between. Mathematically, an error event of length k (k £

2) can be defined by two sequences as

{a} = (a(n), a(n+l), ...., a(n+k-l))

{a} = (a(n), a(n+l), ...., a(n + k-l)) ...(2.3)

and

a = a ; a = a
it ii n+k n+k

A

a * a for I=n + 1, n+2, ...., n + k-1 ...(2.4)
i i

where {a} corresponds to correct (transmitted) sequence
A

{a} corresponds to the estimated (received) sequence,

a denotes the transmitter (encoder) state at time j
j

and a denotes the receiver (estimator) state time j.
j

An error event is shown in Fig.2.10 for illustration. The error event concept

plays an important role in the performance analysis of VA. The basic property of

error events is that they are probabilistically independent of each other. The
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error events in general may be of unbounded length, but the probability of such

occurrences is nearly zero [47].

Transmitted Path

Estimated Path

Fig.2.10 Formation of error event

Let g be the set of all possible error events starting at some time k. The

probability P(g ) of occurrence of any error event in c can be upper bounded by a

union bound, that is by the sum of probabilities of all error events in c . This

sum may be infinite, but is typically dominated by one a few leading terms

representing the most likely error events, which then forms a good approximation

to P(g ). On the otherhand, a lower bound to the event error probability can be

obtained by a particular error event that has be obtained by a particular error

event that has the greater probability of occurrence among all the error events of

the set g , and hence determines the asymptotic behaviour at high SNR.

The important parameters desired in the evaluation of code performance are

discussed in the following section.

2.5.2 Performance Evaluation Parameters

When the VA is used for decoding of TCM, it is possible to compute the

performance provided some important parameters for TCM can be specified. To define

these parameters, we shall assume that the TCM encoded sequence {a(n)} is

transmitted over AWGN channel with a double-sided spectral noise N /2, and the

receiver performs a maximum-likelihood soft-decision decoding. For the two

dimensional QAM signal constellations under consideration, the noise variance in

each dimension is cr = Nn/2.
V "
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The important parameters used for the performance evaluation of a TCM scheme

operating over an AWGN channel are as follows:

(i) Signal-to-noise ratio, SNR

The signal-to-noise ratio is defined by

SNRa^l^)!2} ...(2.5)
2cr2

V

where E{|a(n)| } denotes the average signal energy.

(ii) Minimum free Euclidean distance, d
free

The d is the smallest of the minimum ED due to either parallel
free r

transitions or non-parallel paths that lead to an error event.

(Hi) Number of nearest neighbours, N

The N is a multiplicity number corresponding to the average number of

nearest neighbour signal sequences of minimum ED d, for d a d
free

(iv) Distance Spectrum, DS

A spectral line defines the minimum ED d and the multiplicity N of an error

event. The collection of all spectral lines of the code is called the distance

spectrum.

(v) Event-Error Probability, P

The probability that at any given time, the decoder makes a wrong decision

among signals associated with parallel transitions or starts to make a sequence of

wrong decisions along some path that diverges from the correct path for more than

one transition, is called the error event probability P£.

A union bound on the error event probability Pe may be obtained by summing

the error event probability over all possible incorrect paths [130J. Thus, at any
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time P is upper bounded by

P * y N .Q (d/2cr) ...(2.6)
e Li d v

d = d
free

where d is the minimum ED of the error event, N is its multiplicity number,

d is the minimum free ED of the code, <r is the noise variance in each
free v

dimension, and Q(.) is the Gaussian error integral defined by

Q(x) = -L [ exp(-y2/2) dy *1exp(-x2/2) ...(2.7)

Because of the exponential decrease of Q(x) with increasing x, the error

event probability P is dominated, at high SNR, by the term involving the minimum

value of d, that is d . Therefore, at high SNR, the P is approximated by the

lower bound as [46, 127]

Pe - Nd .Q (d /2a-) ...(2.8)
dfree x v free v' V '

Thus, the performance of a code at high SNR can be roughly estimated only in terms

of d and Nd of the code.
free free

(vi) Bit-Error Probability, P

The bit error probability P is the average number of bit errors per decoded

information symbol. Similar to P , an upper bound on the bit error probability P

can be obtained through union bound as [108]

Pb* [ Bd.Q(d/2%) ...(2.9)
d = d

free

where B represents the average number of information bits on all paths at

distance d from the correct path.

The lower bound on error probability gives the optimum code performance at

high SNR, and is mainly dependent on d and Nd . On the otherhand, the upper
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bound on the error probability gives a better estimate of the code performance

applicable at lower and moderate SNR, but requires a knowledge of the distance

spectrum of the code.

2.5.3 Performance Bounds of TCM on AWGN Channels

Since the publication of spectrally efficient TCM schemes by Ungerboeck

[126], there has been considerable interest in the computational techniques for

the evaluation of their performance. The exact analysis of TCM performance is

difficult and usually one resorts to either simulation or the evaluation of

performance bounds [111]. While simulation is useful only for short constraint

length codes and at lower SNR, the bounds are most effective for the estimation of

system performance at moderate to large SNR.

The two important parameters normally employed in the performance evaluation

of TCM are free ED and error event probability. The algorithms used for the

computation of these parameters assume significant importance, because of the fact

that the design of an optimum TCM scheme is based on a search among a class of

possible candidates, for all of which the performance must be evaluated.

Therefore, it is essential that these algorithms be fast and efficient.

Most of the algorithms for computation of the above are based on the

generating (transfer) function approach [91,, 128, 130], that has been extensively

applied in the performance evaluation of linear convolutional codes, which when

combined with a union bound gives the upper bound on the error event probability.

The generating function enumerates the distance, length and number of errors on

any incorrect path with reference to a correct path. When the code is

linear/regular, the distance between the correct path and incorrect path does not

depend on the transmitted sequence. Therefore, normally all-zero information path

is assumed to be the reference in the derivation of the transfer function [146J.

The complication arises in TCM due to the fact that, in general, the distance

between any incorrect path and correct path is dependent upon data sequence being
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transmitted, and hence averaging over all correct and incorrect paths is

necessary. This requires the derivation of the transfer function by a pair-state

approach that uses a 'pairwise-state diagram' with N2 states, where N is the
s s

number of encoder states. The method is quite involved with a large computational

complexity that limits its applicability to TCM codes with large N . However in

certain cases, by taking advantage of the linearity property of the convolutional

code on which TCM design is based, as well as 'symmetries' and 'regularity' of

signal constellations used and the way it is partitioned, it is possible to derive

the transfer function from a modified-state diagram having only N states.

Thus, the algorithms presently available can be broadly classified into two

categories. The first approach is based on the pair-state diagram and is most

general in applications but has a complexity proportional to N2. Biglieri [13] has

applied this pair-state approach to evaluate the performance of TCM schemes over

linear and non-linear channels. The second approach uses a modified-state diagram

with only N states and has a complexity proportional to N . But this approach is

applicable only to a certain class of trellis codes namely symmetric trellis codes

[146], regular trellis codes [22], superlinear trellis codes [7], quasi-regular

trellis codes [108], and uniform trellis codes [16]. Biglieri and Mclane [16] have

shown that all Ungerboeck codes are uniform codes. For a uniform code, the free

distance does not depend upon the transmitted sequence [49]. A tutorial material

on the performance evaluation of TCM schemes is available in [9].

However, as pointed out by Ungerboeck [127], it is not necessary to compute

distance between every pair of TCM signal sequences, and the free ED can be

determined by treating the all-zero information sequence as the reference path,

even though linearity does not hold for TCM signal sequences. Henceforth in our

analysis, we use this argument to compute the distance properties of the code. We

have proposed an algorithm to compute the distance spectrum of TCM code, using an

N -state trellis where the all-zero information path is regarded as the reference

in the computation of the minimum ED d and the nearest neighbours N of all the
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error-events of the code. Once we compute d and N for all possible error-events

of the code, the error event probability can be computed.

2.6 COMPUTATION OF THE DISTANCE SPECTRUM

The computation of minimum free distance is equivalent to finding the lowest-

weight non-trivial closed path in the state diagram. A large number of

unidirectional and bidirectional algorithms have been employed in various network

problems to find the lowest-weight paths. A collection of such algorithms can be

found in a comprehensive tutorial paper by Drefus [34]. According to Drefus,

bidirectional search algorithms are much inferior over unidirectional search

algorithms. However, by making use of the symmetries inherent in the code trellis

structure, the bidirectional search algorithms tend to become more efficient [3J.

Balil et al. [3] proposed an efficient bidirectional search algorithm to

compute d of convolutional codes. Larsen [67] observed certain flaws in that
free

algorithm and introduced the corrected version, which is still regarded as the

most efficient bidirectional search algorithm that computes df^ of binary

convolutinoal codes using Hamming weights. Ungerboeck [126] used the Larsen

algorithm to compute the minimum free ED dfree of TCM code by replacing Hamming

weights with Euclidean weights and treating the all-zero information path as the

reference.

The distance spectrum computing algorithms require more storage and

computation than the conventional d computing algorithms, because here no

paths are discarded. Rouanne and Costello [108] used a bidirectional stack

algorithm to compute the distance spectrum of TCM codes by assuming that all-zero

information sequence is sent. The complexity of the stack algorithm depends on the

number of paths to be extended, but not on the constraint length of the code,

thereby making it attractive for codes having large constraint length. The stack

algorithm requires dynamic storage allocation which is computationally intensive

but saves on total memory required for computation. On the other hand,
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unidirectional Viterbi-like trellis search algorithms are well suited for distance

spectrum calculation, although they require large memory, they are computationally

efficient.

In the following, we propose a unidirectional trellis-search distance

spectrum computing algorithm based on the shortest-route principle used in graph

theory [72]. Following the above approach, the algorithm computes the minimum ED

of all error events of the TCM code, in the order of increasing distance together

with their multiplicities, by treating the all-zero information path as the

reference. This algorithm is simple to implement as it requires only an N -state

distance trellis for a N -state code and is applicable to all Ungerboeck codes.

2.6.1 Unidirectional Trellis Search Algorithm to Compute the Distance

Spectrum of TCM Code

Assume that the states of the code trellis are numbered as 1, 2, ..., N. An

error event starts with a diverging transition from state 1 and ends with a

transition merging into the same state 1 after two or more transitions, while

making transitions in between through states other than state 1. Therefore, to

find error events of length k ^ 2, transition from state 1 to state 1 in a single-

step is disallowed by treating is as non-connected. All minimum distance paths

starting from node 1 at trellis depth n=0 and ending at some node j for all j*l,

after a certain depth n=k, will represent unmerged paths and must be retained, as

they are still contenders for the formation of higher order error-events.

Given the N -state code trellis with channel symbols as branch labels and the

connectivity between the states, derive an N -state distance trellis that defines

the minimum squared ED associated with a branch transition with respect to the

all-zero information path represented by the channel symbol labelled as 0. If

parallel transitions exist, then retain the least distance path and also record

the number of such paths along that branch. From the N -state distance trellis,

derive a distance matrix D(NxN), whose element D.. represents the minimum
S S U
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squared ED of the branch connecting states i and j, with respect to the reference

branch (transition from state 1 to state 1). The states which are non-connected

are represented by a large distance, say D.. = 1000.0 if states i and j are non

connected in the code trellis. Since transition from state 1 to state 1 is

disallowed in a single-hop, set D =1000.0. Also, let £k be NxN matrix whose

element £k. gives the cumulative (total) ED along a path that starts from state i

at n=0 and ends in a state j at n=k. Initially set £ =0.0 and £.. = 1000.0 for all

the other values of i and j. Then the total accumulated distance along a path of

the trellis is computed by [72].

(? = tl * D ...(2.10)

where the matrix operation * is in fact a minimum distance search operation,

defined as I , that corresponds to adding all branch (squared) distances with the
mill

cumulative distance and choosing the minimum among them as the new cumulative

distance. Thus an entry £k. of £k can be defined as

£k=min{(?k"1 + D.)} for p=2,3,....N ...(2.11)
ij IP PJ

Each matrix operation * extends the trellis search by one depth. After each

extension, check for the occurrence of an error event. An error event occurs if

£k < 1000 0. Then set d2 =£k . After the occurrence of an error event, for
^ i j min-event 11

the next extension reset £ = 1000.0

To compute the multiplicity number, define an NxN matrix M such that each

element M represents the number of minimum distance parallel transitions along

the branch ij with reference to the all-zero information path. For all non-

connected transitions ij (including the transition 1-1) set M..=0. Define also NxN

matrix Qk whose element Qk. denotes total multiplicity of that path starting from

node i at depth n=0 and terminating at node j at depth n=k. Initially set Q -1 if

ii is an allowed transition for j=2,3,.^ and Q =0 for i and j except 1=1. Q is
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updated after trellis extension using the relation,

Qk=Qk_1 e M ...(2.12)

where ® is a multiplicity search operation and is defined as

Qk = 7 (Qkl * M .) ...(2.13)
ij L ip pj

if (£k~l + D .) results in a minimum during the operation £k =£ ** D. Upon the

occurrence an error event at depth n=k set N =Q and then reset Qk =0.

To start with, specify the maximum length of the error event upto which the

distance parameters (d,N ) are desired to be computed. Also compute, from the code

trellis, the minimum squared ED among the parallel transitions of the branch

d". . If d . represents the minimum squared ED of all the error events
min-par min-event *

under consideration, then

d2 = min (d2. , d2. ) ...(2.14)
tree nun-par min-event

and the corresponding multiplicity number (averaged) will be N,, . For each
free

d". , there will be a corresponding multiplicity number N .
min-event r a r • d

The distance spectrum trellis reach algorithm is illustrated with an example

as given below.

2.6.2 Example : Distance Spectrum of 4-State 16-QAM TCM Code

The encoder trellis with channel symbol assignment is shown in Fig.2.11(a)

and its corresponding distance trellis is shown in Fig.2.11(b). The minimum

squared ED and its multiplicity with reference to the all-zero information path

are labelled along each transition. The distance matrix D and the branch

multiplicity matrix M are also indicated in Fig. 11(b).

The minimum squared Euclidean distance among the parallel transitions of the

code trellis is d*. ar=16.0. By recursive application of (2.10) and (2.12), we
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C0 ={0,4,8,12>; C2= {2,10,6,14}; Op {1,9,5,13};

C3={3,11,7,15}

(a) 4-State 16QAM Code trellis.

©

D =

^-Reference path (disallowed)

1000(0) 5 State j

©

1000 8 1000 1000

1000 1000 4 4

8 0 1000 1000

1000 1000 4 4

; m=

0 4 0 0

0 0 2 2

4 10 0

0 0 2 2

(b) Distance trellis defining Di M matrices,

FIG.2.11 THE 4-STATE 16-QAM TCM CODE TRELLIS AND ITS DISTANCE TRELLIS.
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can find the error events of length k, their minimum squared ED and the

multiplicity number. The results of this computation for the above are given in

the Table 2.1

Table 2.1 Distance Spectrum of 4-State 16-QAM TCM COde

Error event length

(Depth k)

d2
mm

N
d

3 20.0 4

4 24.0 12

5 24.0 12

6 28.0 36

7 28.0 16

8 32.0 80

2.7 RESULTS AND DISCUSSION

In this section, we give the error performance of the TCM schemes over AWGN

channels through the evaluation of bounds and simulation.

For the simulation of TCM data transmission over AWGN channel, as considered

in section 2.5, the following comments are in order. For the generation of an

independent identically distributed (i.i.d.) sequence of TCM symbols, we employ a

uniformly distributed random binary sequence generator which outputs m-bits per

baud interval. The TCM encoder/modulator transforms these m-bits into a complex-

valued channel signal a(n) (a member of the M-QAM signal constellation) in

accordance with the TCM coding rules. The channel signal is corrupted by the

complex-valued additive white Gaussian noise process v(n). For the generation of

AWGN process, we consider the use of two Gaussian random variables defined as

vl(n)=<rv4(-21nRl)' cos(2*R2) and vQ(n)=<r4(-21nRl) sin(2irR2) where Rl and R2 are
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FIG 2.12 ERROR EVENT PERFORMANCE OF THE M-QAM TCM SCHEMES ON AWGN
CHANNEL FOR DIFFERENT VALUES OF DECISION DELAY <5.
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uniformly distributed random variables, a- is the noise variance in each
V

dimension, and v^n) and v (n) are the in-phase and quadrature components of the

complex AWGN process v(n). Thus the received signal r(n) is given by

r(n) = a(n)+v(n).

At the receiver, the sequence of received signals {r(n)} are applied to a

maximum-likelihood sequence detector implemented through the Viterbi algorithm.

The VA performs a minimum cost search on the code trellis to find an estimated

data sequence {a(n)} which is closest to the received sequence {r(n)}. The VA

employs a decision delay of 6 z 6? for the decoding of a trellis with 2* states.

The effect of decision delay 8 of the VA on the error event probability of

TCM schemes have been studied. Fig.2.12 illustrates the error performance

characteristics of different M-QAM TCM schemes for different values of the

decision delay 5, as given in the legend. It may be observed from Fig.2.12 that an

increase in decision delay beyond 6? does not result in a significant improvement

in the performance. Thus, most of the performance gain for a TCM code could be

obtained through the Viterbi algorithm using a decision delay of 6? to decode a

trellis structure with 2* states, and we follow this logic in all our subsequent

simulation work.

As discussed in section 2.4, the achievable coding gain with a TCM scheme

depends upon uncoded system that is being used as the reference. To illustrate the

gain achievable (asymptotically) with a 4-state 16-QAM TCM scheme, we consider the

use of three different 8-QAM signal sets, of Fig.2.6 (a)-(c), as the reference

systems. Fig.2.13 shows the error performance of 4-state 16-QAM TCM scheme and

that of the three uncoded 8-QAM reference systems labelled as Ref.-(i), Ref.-(ii)

and Ref.-(iii) respectively. The reference system Ref.-(i) corresponds to the

uncoded modulation employing the signals of subset BO (or Bl) of the partitioned

16-QAM signal constellation as shown in Fig.2.6(a), while Ref.-(ii) and Ref.-(iii)

corresponds to uncoded reference systems employing 8-QAM signal sets of Fig.2.6(b)

and Fig.2.6(c) respectively. It may be noted that all the three reference systems
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have the same data rate and bandwidth as the coded scheme but with different

average symbol energies. While Ref.-(i) has the same signal energy (E =10.0) as

that of the coded system, the reference systems Ref.-(ii) and Ref-(iii) have

average signal energies of E =4.73 and E =6.0 respectively. From the error
av av r »

performance characteristics of Fig.2.13, it can be observed that the gain

achievable with the 4-state 16-QAM TCM scheme, at high SNR, is about 3 dB relative

to Ref.-(i), while it is nearly 2.8 dB and 3.8 dB with reference to uncoded

systems Ref.-(ii) and Ref.-(iii) respectively.

We have shown, earlier in section 2.4.1, that the asymptotic coding gain

(ACG) achievable with a 4-state 16-QAM TCM varies between 2.77 dB and 3.8 dB for

the use of three 8-QAM reference systems of Fig.2.6(a)-(c). The simulation results

of Fig.2.13 are in agreement with the theoretical calculations of section 2.4.1.

Similarly, Fig.2.14 depicts the variations in the coding gain achievable with

an 8-state 64-QAM TCM using two different uncoded 32-QAM signal constellations. In

Fig. 2.14, Ref.-(i) refers to the uncoded 32-QAM system employing the subset BO of

the partitioned 64-QAM signal constellation with an average signal energy E =42.0
av

as shown in Fig. 2.6(d), while Ref.-(ii) refers to the 32-QAM cross signal

constellation with Eav=20.0 as shown in Fig.2.6(e). Both Ref.-(i) and Ref-(ii)

have the same data rate and bandwidth as the coded system, but with different

signal energies. With the reference system Ref.-(i) having the same energy as that

of the coded system we find, from Fig. 2.14, that at high SNR the coding gain

achievable is nearly 4 dB, while for the reference system Ref.-(ii) the gains

drops to about 3.8 dB. The simulation results of Fig.2.14 are in close confirmity

with theoretical calculations of the ACG of the 8-state 64-QAM TCM scheme of

section 2.4.2.

The uncoded reference system employed in the performance study of a TCM

scheme is normally based on the criterion of equal data rate, bandwidth and signal

energy as that of the coded system. Henceforth, in all further analysis, we

consider the use of subset BO (or Bl) of the partitioned signal constellation,
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Table 2.2 Distance Spectrum of 16-QAM TCM Codes

Length of error event Coded

10 N.

d2=20.0 24.0 24.0 28.0 28.0 32.0 32.0 36.0

16.0

Nd=4 12 12 36 16 80 162 240

d2=20.0 20.0 24.0 24.0 24.0 28.0 28.0 28.0

20.0

Nd=4 16 48 16 72 64 192

d2=24.0 24.0 28.0 28.0 28.0 32.0 32.0 32.0

24.0

Nd=8 16 36 64 32 112 48

8-QAM

uncoded

8.0

8.0

8.0

ACG

dB

3.0

4.0

5.0



TCM

Scheme

(a) 4-state
64-QAM

TCM

(b) 8-state
64-QAM

TCM

(c) 16-state
64-QAM

TCM

Table 2.3 Distance Spectrum of 64-QAM TCM Codes

Length of error event

8

d2=20.0 24.0 24.0 28.0 28.0 32.0 32.0

Nd=12 48 48 172 84 446 146

d2=20.0 20.0 24.0 24.0 24.0 28.0 28.0

Nd=8 8 32 16 16 64 24

d2=24.0 24.0 28.0 28.0 28.0 32.0 32.0

Nd =12 12 24 56 96 72 196

10

36.0

1034

28.0

24

32.0

112

Coded

free
N.

16.0

20.0 16

24.0 48

32-QAM

uncoded

8.0

8.0

8.0
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dB

3.0

4.0

5.0

Table 2.4 Distance Spectrum of 4-state 4-PAM TCM and 4-state 4-QAM TCM schemes

TCM

Scheme Length of error event Coded

Uncoded

Reference ACG

dB
3 4 5 6 7 8 9 10 d: Nrf d2

(a) 4-state

4-PAM

TCM

d"=36.0

Nd=4

40.0

4

40.0 44.0 44.0 48.0

8 8 24 48

48.0

24

52.0

64

9.0 2 5.0

(2-PAM)
2.55

(b) 4-state
4-QAM
TCM

d"=20.0

Nd=4

20.0

4

24.0 24.0 28.0 28.0

8 8 12 12

32.0

4

32.0

16

16.0 2 8.0
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that is Ref.-(i) as the reference system for performance comparison.

We next consider the performance evaluation of TCM schemes operating over

AWGN channel using bounds and give its comparison with simulation results. For

each TCM code, the distance spectrum has been computed using the algorithm given

in section 2.6. For illustration, the first few spectral lines of the distance

spectrum for each of the TCM codes considered in the present study are presented

in Tables 2.2-2.4. The Table 2.2 gives the distance spectrum of 4-state, 8-state,

and 16-state Trellis codes employing 16-QAM signal constellations, while Table 2.3

gives correspondingly results for those of 64-QAM TCM codes. The Table 2.4 gives

the distance spectrum of 4-state 4-PAM and 4-state 4-QAM TCM codes. Also included

in these tables are the squared minimum ED between the parallel transitions

d2 , the squared free ED of the code d2 , the squared free distance of
miii-par n free-c

the uncoded system d2 and the asymptotic coding gain ACG of the TCM code,
J free-u

which is computed using relation (2.2) under the assumption of equal signal energy

(E =E ).
s-c s-u

In the performance evaluation of TCM scheme over AWGN channel with spectral

noise power N , we use the following definitions of bounds [13, 100]:

The lower bound (LB) on the error event probability is given by

PeLB = (1/2) . erfc (dffee / j4Nj ...(2.15)

At high SNR, the first error event is well approximated by an asymptotic estimate

(AE) as given by

P = (1/2) Ndr . erfc (d / J4I%) ...(2.16)
e,AE free free

and the error event probability is upper bounded by

P =(1/2) V N . efrc (d / |4N^) ...(2.17)
e,UB L d

d = d
free

where d is the free distance of the code and Nd its multiplicity number,
free
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Table 2.5 Error-event performance of 16-QAM TCM schemes on AWGN Channel

Coded System 8-QAM uncoded

Error event Probability system
TCM Scheme

SNR av Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) "e.LB "e,AE P

re,UB Pe symbol error

(a) 4-state 16- 10.0 0.7071 0.234E-02 0.468E-02 0.618E-01 0.153E-01 0.513E-01
QAM TCM 11.0 0.6302 0.753E-03 0.151E-02 0.133E-01 0.389E-O2 0.279E-01
(Table 2.2a) 12.0 0.5617 0.185E-03 0.370E-03 0.207E-02 0.613E-03 0.133E-01
(Fig. 2.15a) 13.0 0.5006 • 0.323E-04 0.646E-04 0.221E-03 0.710E-04 0.532E-02

14.0 0.4462 0.368E-05 0.737E-05 0.159E-04 0.700E-05 0.172E-02
15.0 0.3976 0.246E-06 0.491E-06 0.735E-06 0.500E-06 0.443E-03

(b) 8-state 10.0 0.7071 0.783E-03 0.313E-02 0.457E-01 0.104E-01 0.513E-01
16-QAM TCM 11.0 0.6302 0.194E-03 0.776E-03 0.788E-02 0.225E-02 0.279E-01
(Table 2.2b) 12.0 0.5617 0.343E-04 0.137E-03 0.920E-03 0.291E-03 0.133E-01
(Fig. 2.15b) 13.0 0.5006 0.397E-05 0.159E-04 0.677E-04 0.230E-04 0.532E-O2

14.0 0.4462 0.270E-06 0.108E-05 0.291E-05 0.100E-05 0.172E-02
15.0 0.3976 0.936E-08 0.374E-07 0.673E-07

- 0.443E-03

(c) 16-state 10.0 0.7071 0.266E-03 0.213E-02 0.177E-01 0.423E-02 0.513E-O1
16-QAM TCM 11.0 0.6302 0.508E-04 0.406E-03 0.232E-02 0.714E-03 0.279E-01
(Table 2.2c) 12.0 0.5617 0.647E-05 0.518E-O4 0.195E-O3 0.540E-04 0.133E-O1
(Fig. 2.15c) 13.0 0.5006 0.496E-06 0.397E-05 0.980E-O5 0.300E-05 0.532E-02

14.0 0.4462 0.201E-07 0.161E-06 0.274E-06 - 0.172E-02
15.0 0.3976 0.363E-09 0.291E-08 0.379E-O8 - 0.443E-03



Table 2.6 Error-event performance of 64-QAM TCM schemes on AWGN Channel

Coded System 32-QAM

Error event Probability uncoded

TCM Scheme

SNR CTV

system

Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) p "e,AE p

re.UB Pe symbol error

(a) 4-state 64- 16.0 0.7263 0.295E-02 0.884E-02 0.821E-01 0.216E-01 0.783E-01

QAM TCM 17.0 0.6473 0.100E-02 0.301E-02 0.191E-01 0.706E-02 0.444E-01

(Table 2.3a) 18.0 0.5769 0.263E-03 0.790E-03 0.324E-02 0.171E-02 0.221E-01

(Fig. 2.16a) 19.0 0.5141 0.502E-04 0.151E-03 0.404E-03 0.220E-03 0.924E-02

20.0 0.4583 0.637E-05 0.191E-04 0.343E-04 0.200E-04 0.312E-02

21.0 0.4084 0.487E-06 0.146E-05 0.196E-05 0.100E-05 0.812E-O3

(b) 8-state 16.0 0.7263 0.104E-02 0.624E-02 0.565E-01 0.14E-01 0.783E-01

64-QAM TCM 17.0 0.6473 0.276E-03 0.165E-02 0.106E-01 0.343E-02 0.444E-01

(Table 2.3b) 18.0 0.5769 0.531E-04 0.319E-O3 0.135E-02 0.644E-03 0.221E-01

(Fig. 2.16b) 19.0 0.5141 0.684E-05 0.411E-04 0.119E-O3 0.610E-04 0.924E-02

20.0 0.4583 0.532E-06 0.319E-05 0.629E-05 0.400E-05 0.312E-02

21.0 0.4084 0.219E-07 0.131E-06 0.191E-06 - 0.812E-03

(c) 16-state 16.0 0.7263 0.372E-03 0.298E-O2 0.175E-01 0.643E-O2 0.783E-01

64-QAM TCM 17.0 0.6473 0.771E-O4 0.617E-03 0.266E-02 0.103E-02 0.444E-01

(Table 2.3c) 18.0 0.5769 0.109E-04 0.871E-04 0.268E-03 0.110E-03 0.221E-01

(Fig. 2.16c) 19.0 0.5141 0.949E-06 0.759E-O5 0.167E-04 0.700E-05 0.924E-02

20.0 0.4583 0.452E-07 0.36E-06 0.588E-O6 - 0.312E-O2

21.0 0.4084 0.100E-08 0.802E-08 0.104E-07 " 0.812E-03
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Table 2.7 Error-event performance of 4-state 4-PAM and 4-state 4-QAM TCM schemes on AWGN Channel

Coded System Uncoded

TCM Scheme

SNR C*v

Error event Probability system

Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) p

re,LB "e.AE p
re,UB Pe symbol error

(a) 4-state 4- 3.0 0.7080 0.290E-01 0.116E+00 0.140E+00 0.425E-01 0.103E+00
PAMTCM 5.0 0.5623 0.852E-02 0.341E-01 0.388E-01 0.279E-01 0.559E-01
(Table 2.4a) 7.0 0.4467 0.133E-02 0.534E-02 0.584E-02 0.662E-02 0.228E-01
(Fig. 2.17a) 9.0 0.3548 0.780E-04 0.312E-03 0.332E-03 0.400E-03 0.581E-02

11.0 0.2818 0.966E-06 0.387E-05 0.402E-05 0.400E-05 0.744E-03
13.0 0.2239 0.103E-08 0.413E-08 " 0.423E-08

'

0.327E-04

(2-PAM uncoded)

(b) 4-state 2.0 0.8516 0.948E-O3 0.217E-02 0.742E-02 0.488E-02 0.231E-01
4-QAM TCM 3.0 0.7088 0.324E-03 0.725E-03 0.178E-02 0.152E-02 0.126E-01
(Table 2.4b) 4.0 0.6317 0.650E-04 0.187E-03 0.306E-03 0.335E-03 0.615E-02
(Fig. 2.17b) 5.0 0.5630 0.815E-05 0.296E-04 0.346E-04 0.610E-04 0.244E-02

6.0 0.5018 0.120E-05 0.473E-05 0.231E-05 0.100E-04 0.822E-03
7.0 0.4472 0.113E-06 0.451E-06 0.794E-06 0.100E-05 0.197E-O3

(2-QAM uncoded)



Nd is the multiplicity number of error events with minimum ED d, Nq is the noise

energy given as N =2a\ for two dimensional transmission and NQ=a-v for one

dimensional transmission, and erfc(.) is the complementary error function. It can

be verified that the error event probability P£ is bounded by P^ * Pe s P^,

and at high SNR P * P ._.
D e e,AE

To compute the upper bound PeUD, we use the first few terms of the distance

spectrum of the code, since the contribution of the higher order terms on Pe(jB of

(2.17) becomes insignificant due to the exponentially decreasing nature of erfc(x)

with increasing values of x.

The error performance of the TCM codes have been evaluated through the bounds

(2.15)-(2.17) using the distance spectrum given in Tables 2.2-2.4 and the computed

values of the error event probability are given correspondingly in Tables 2.5-2.7.

The Table 2.5 gives the error performance parameters such as lower bound P^LB

asymptotic estimate PeAE> upperbound PeUB, which are evaluated for the 4-state,
8-state, and 16-state 16-QAM TCM schemes, using the data given in Table 2.2.

Similarly, Table 2.6 gives the error performance of 4-state, 8-state, and 16-state

64-QAM TCM scheme evaluated through (2.15)-(2.17) using the distance spectrum

given in Table 2.3. The Table 2.7 gives the performance of of 4-state 4-PAM and 4-

state 4-QAM TCM schemes computed through the use of data given in Table 2.4. These
I,,!,!,,., ! , ! / lt|:.ii KM link 111*: |t:i.||llh nlllilllicil lllMHI|ltl hlmill.lllllll lilt: ••••••iIm-i III

symbols employed in the simulation run varies from 105 to 107 depending upon the
state complexity of the trellis structure and we have used a decision delay 5 = 6?

for the VA.

The error performance characteristics of the 4-state 10 QAM TCM scheme, as

given in Table 2.5(a) have been shown in Fig.2.15(a). The legend 'Lower bound',
'Asymptotic' and 'Upper bound' correspond respectively to the bounds P^, P^
and P of the error event probability as defined by (2.15)-(2.17). 'Coded

e,UB

simulation' refers to the error event probability of the 4-state 16-QAM TCM code
obtained through simulation and 'uncoded' refers to the 8-QAM uncoded reference
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system. Fig.2.15(b) and Fig.2.15(c) depict the error performance of 8-state and

16-state 16-QAM TCM schemes respectively corresponding to the computations given

in Table 2.5(b)-(c). Similarly, the error performance characteristis of 4-state,

8-state, and 16-state 64-QAM TCM schemes, corresponding to computations given in

Table 2.6(a)-(c), have been shown in Fig.2.16(a) to Fig.2.16(c) respectively. Also

the error performance of the 4-state 4-PAM and 4-state 4-QAM TCM codes,

corresponding to computations given in Table 2.7(a)-(b), have been shown in

Fig.2.17(a) and Fig.2.17(b).

Fig.2.18 shows the summary of the error performance of the 16-QAM and 64-QAM

TCM schemes derived through the use of the computed upper bounds and simulation

results. We can note from their performance characteristics that larger coding

gain is achievable with the use of 8-state and 16-state TCM schemes, which is

respectively about 1 dB ad 2 dB relative to the 4-state TCM scheme.

We note, from the error performance characteristics as shown in Fig.2.15-

Fig.2.17 that the simulation result is well within the bounds computed and at high

SNR, the asymptotic estimate and the upper bounds follow closely the simulation

result. In all fairness it can be said that the upper bound, derived from the use

of the distance spectrum computing algorithm of section 2.6, gives a nearly tight

estimate of the error event probability and hence we may conclude that the

proposed algorithm can be applied effectively in the performance evaluation of all
Ungerboeck TCM codes over additive white Gaussian noise channels.
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CHAPTER 3

TCM TRANSMISSION OVER TIME-DISPERSIVE
ISI CHANNELS

3.1 INTRODUCTION

With the growth in information technology, there is an ever increasing demand
for bandwidth-efficient digital communication systems. The two major impediments
to the reliable high-speed data transmission over a bandlimited channel are the

additive white Gaussian noise (AWGN) and the intersymbol interference (ISI). The
conventional coding schemes increase the reliability at the cost of bandwidth. The

coded-modulation schemes, such as TCM, can effectively enhance noise immunity
without increasing the bandwidth. To mitigate the effects of ISI, a powerful
equalization technique such as the maximum-likelihood sequence estimation (MLSE)
is required. Thus for the bandlimited time-dispersive ISI channels, a TCM scheme

in combination with an optimum MLSE equalizer promises to achieve data rate close
to channel capacity [15J.

The cascade of a TCM encoder and the ISI channel can be viewed as a combined

finite-state machine, and hence as a combined ISI-Code trellis whose states are

given by the product of the TCM encoder states and the ISI states. Consequently,
the resulting receiver performs a maximum-likelihood sequence estimation of the
data sequence using the Viterbi algorithm that searches for a minimum cost path in
the ISI-Code trellis. This combined ISI-Code receiver (also called the combined
equalization/TCM decoding receiver) structure is optimum and treats the functions
of equalization and TCM decoding as a single entity.
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The error rate performance of the optimum combined ISI-Code receiver can be

evaluated through bounds, by making use of the error structure of the TCM encoder

and the ISI channel characteristics. We present a new method for the performance

evaluation of TCM scheme on ISI channels, following the approach adopted by Magee

and Proakis 179] to evaluate the performance of MLSE receiver for uncoded

transmission over time-dispersive channels. Since the ISI channel is linear, the

output error sequence can be uniquely related to the input error sequence using
the discrete channel impulse response. From the output error sequence, the

Euclidean weight (squared ED) of the output error event can be computed. Making

use of the distance spectrum computing algorithm (of section 2.6), it is possible

to obtain a set of input error sequences of the TCM encoder. Accordingly, we get a

set of output error sequences and correspondingly their Euclidean weights. The

minimum of Euclidean weights then represents the minimum squared ED of the

combined ISI-Code structure and hence the performance bounds can be evaluated.

In this chapter, we first consider the equalization problem for the

transmission of digital signals over time-dispersive channels and the different

equalizer structures used in practice to combat the effects of ISI. We next
consider the decoding of TCM signals in the presence of ISI and AWGN, using the

optimum combined ISI-Code receiver structures employing the maximum-likelihood
Viterbi decoder. We then present the new approach that makes use of the error

structure of the TCM scheme to evaluate the performance of the combined ISI-Code

receiver using bounds. We also present, the results of a study that has been

performed to evaluate the error rate performance of some combined ISI-Code
receiver structures for the decoding of Trellis-coded QAM signals, using bounds

and through simulation.

3.2 TIME-DISPERSIVE CHANNEL AND EQUALIZATION PROBLEM

In a bandwidth-efficient digital communication system, the effects of each

symbol transmitted over a time-dispersive channel extend beyond the time allowed
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to represent that symbol [46]. Consequently, this overlapping of received symbols

results in a linear distortion called the intersymbol interference (ISI), which

turns out to be the primary obstacle to high-speed data transmission over

bandlimited channels. The minimization of probability of error in the presence of

ISI, constitutes the equalization problem. In a broad sense, the term equalizer

refers to any signal processing technique/device designed to mitigate the effects

of ISI.

Besides telephone channels, there are other physical channels that exhibit

some form of time dispersion and thereby introduce ISI distortion. The digital

mobile channels and other radio channels such as shortwave ionospheric (HF)

propagation and troposheric scatter are classified as time-dispersive channels. In

these, time dispersion and hence ISI arises due to the multiple propagation paths

of different path delays. These digital radio channels are normally called as the

time-variant multipath fading channels, since their channel characteristics vary
with time [100].

In addition to linear ISI distortion, the signals transmitted over a

bandlimited channel are subject to other impairments such as nonlinear distortion,

frequency offset, phase jitter, impulse noise, and thermal noise. Unfortunately, a

channel model encompassing all these impairments is most difficult to analyze

[100]. Therefore, for mathematical tractability, the channel model that is

normally adopted for a bandlimited channel is a linear time-invariant filter that

introduces the ISI and adds white noise that is Gaussian in nature.

3.2.1 Baseband Digital Transmission System

The model for a typical baseband digital transmission system which is

subjected to ISI is shown in Fig.3.1.

Consider the transmission of a data sequence {o(k)} at a rate of one symbol

every T seconds over a baseband channel whose impulse response is g(t). Carrier

modulated data transmission systems such as quadrature amplitude modulation (QAM)
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and quadrature phase shift keyed (QPSK) system can be represented by an equivalent

linear baseband model that differs from the real baseband system by the fact the

symbol a(k) and the channel impulse response g(t) are complex-valued [125J. The

channel is assumed to be linear and time-invariant, and delivers to the receiver a

distorted time-smeared version of the transmitted signal. In this model, the

channel may represent the effect of the modulator, transmitter filter and the

transmission medium (the actual channel) in cascade. The channel output is

corrupted by the complex additive white Gaussion noise w(t). Thus, the received

waveform is given by

r(t) = [fl(k) . g(t-kT) + w(t) ...(3.1)
k

Thus, the instantaneous value of the received waveform depends on several

transmitted symbols, giving rise to the problem of ISI. The ISI arises due to the

fact that g(t) remains non-vanishing over several symbol durations. Therefore, the

linear channel may be assumed to have a finite memory of L symbols, and can be

represented by a finite-state machine. The received waveform is processed by a

receiver that may be linear or nonlinear which is optimized with respect to

certain performance measure to combat the effects of the ISI and AWGN.

The optimum sequence estimator requires the entire received waveform before a

decision can be made. Forney [46] has shown that the samples of a whitened matched

filter form sufficient statistics for the detection of the transmitted sequence

{fl(n)}. Thus the cascade of the linear channel representing the modulator, the

transmitter filter and the actual channel and the receiver filter consisting of a

whitened matched filter and a symbol rate sampler, can be modeled as a discrete-

time white noise channel as shown in Fig.3.2. It may be noted that T is the symbol

signaling interval.

Using the above model, the received signal at the time instant nT is given by
L

r(n) = [g. . a(n-i) + v(n) ...(3.2)
i = 0
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where g.'s are complex tap gains, and correspond to the sampled channel impulse

response, and v(n) are samples of i.i.d complex-valued Gaussian noise with zero

mean and variance 2cr2. The noise and data sequences are assumed to be

uncorrelated. The number of taps are (L+l), where L represents the channel memory.

If the signal constellation used for the transmission of a(i)'s has an

alphabet size of M symbols and the channel memory is of L symbols, then the

discrete-time channel can be represented by either an M -state finite state

machine [46] or an ML-state trellis diagram. The system state (ISI state) at any

time instant n is defined by L previous symbols as

s = (a(n-l), fl(n-2), , fl(n-L)) ...(3.3)

where s may assume one of the M.L possible values represented by {a(n-i)} for

l<i<L.

3.2.2 Equalizer Structures

To combat the effects of ISI, a variety of receiver equalizer structures have

been proposed in the literature [56, 77, 104]. Although the exact nature of the

optimum receiver depends upon the problem formulation, the general form remains

the same in almost all approaches; namely a matched filter followed by a suitable

equalizer algorithm. While the matched filer reduces the errors due to AWGN, the

equalizer minimizes the error due to ISI. The nature of the equalizer may vary

from simple transversal filter through nonlinear decision-feedback equalizer

structures to the more sophisticated MLSE algorithms like the Viterbi algorithm.

For a comprehensive tutorial coverage on equalizer structures see [104]. In the

following, we consider the salient features of some basic equalizer structures,

for the received sequence given by (3.2).

(i) Linear Equalizer (LE)

An optimum linear equalizer consists of an infinite length transversal filter
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which minimizes the errors due to ISI. The LE finds wide applications in practice,

because of its simplicity in implementation. It provides satisfactory performance

in most of the applications. However, on channels with severe amplitude

distortion, it enhances and correlates noise which results in performance

degradation, especially on multipath fading channels [11].

(ii) Decision-Feedback Equalizer (DFE)

The nonlinear DFE, as compared to LE, uses the information provided by the

estimates of the previous symbols. If the past decisions are assumed correct, then

the ISI caused by them can be subtracted from the received signal in arriving at a

correct decision about the present symbol, provided the channel response is known

exactly. The concept of using previous decisions to cope with the ISI problem was

first introduced by Austin [11], and Monsen [86] proposed the first DFE receiver

structure for time-dispersive channels.

The DFE structure consists of two filter sections, the feed-forward filter

(FFF) and the feed-back filter (FBF) which mitigate the effect of ISI due to

precursor and post cursor symbol respectively. On severely distorted channels the

DFE provides an improved performance as compared to an LE. However, the DFE

suffers from severe error propagation due to the FBF section. An incorrect

decision fed into the FBF results in error bursts, as if an impulsive noise has

been injected into the decoder.

(iii) Kalman Filter Equalizer (KFE)

The KFE is based on discrete Kalman filter and uses a state-variable

representation of the channel model. The KFE which is an optimum unbiased linear

minimum mean-square error (ULMMSE) estimator, provides the best linear estimate of

the transmitted symbol when the channel response is known. The use of the discrete

Kalman filter for the equalization of a binary transmission channel was first

proposed by Lawrence and Kaufman [68]. Benedetto and Biglieri [6] have

investigated the steady-state behaviour of such receiver structures.
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Under steady-state this optimum linear receiver turns out to be a time-

invariant, stable recursive filter. In the absence of channel noise (at very high

SNR), the KFE behaves as a zero-forcing equalizer. Since the KFE utilizes the

estimates of the past symbols, in form it is similar to a DFE. But in a KFE the

estimates of the symbols are fed back before a decision is made on them, and thus

the receiver is linear and the effect of decision-error propagation is thereby

eliminated [6]. The performance attainable with a steady-state KFE is superior to

that of a conventional LE, for a given complexity of the receiver structure.

However for implementation, the KFE needs an exact knowledge of the channel tap-

gains and a mismatch in tap setting may lead to performance degradation.

(iv) Maximum-Likelihood Sequence Estimation (MLSE)

Forney [46] introduced an optimum receiver structure that performs maximum-

likelihood sequence estimation by implementation through the Viterbi algorithm

(VA), as shown in Fig.3.3.

Received sequence
r(l),r(2)..? r(n)..

—>

Maximum-likelihood
Sequence Estimation
(Viterbi Algorithm)

Estimated
SequenceA

> {o(k)}

Fig.3.3 Maximum-likelihood sequence estimator

Like the Kalman filter, the VA tracks the state of a stochastic process with

a recursive method that is optimum in a certain sense. Forney [46] has shown that

the VA indeed is a maximum-likelihood sequence estimation technique, and therefore

is always optimum. Assume that an ISI channel is represented by an ML-state
trellis structure, where L is ISI memory length and M=2m is the constellation size
of an uncoded modulation system. Then the Viterbi algorithm by a recursive
procedure searches the trellis to find, among all sequences, a sequence which is
closest to the received sequence in the sense of maximum-likelihood. The VA is
therefore an optimum maximum-likelihood (ML) decoder.

76



Although MLSE is an optimum solution, its computational complexity and

storage requirements grow exponentially with memory length L and thereby limits

its practical use.

3.3 DECODING OF TCM SIGNALS IN THE PRESENCE OF ISI AND AWGN

As mentioned earlier, the two primary impediments to reliable high-speed

transmission of digital data are the ISI and AWGN. In practice, bandwidth-

efficient coded modulation schemes and adaptive equalization techniques have

proved to be extremely efficient in overcoming the effects of AWGN and ISI,

respectively. Therefore, TCM schemes in combination with an optimum MLSE

equalization technique may be employed to realize reliable digital transmission at

rates close to channel capacity [40].

Recently, Chevillat and Eleftheriou [26], and Eyuboglu and Qureshi [42J have

independently proposed a new integrated approach to the TCM receiver design,

wherein the previously separated functions of equalization and TCM decoding are

combined into a single entity. Based on this approach, we now consider the

combined equalization and TCM decoding scheme for linear ISI channels corrupted
with AWGN.

3.3.1 Combined MLSE Equalization and TCM Decoding

Consider the transmission of TCM signals over a time-dispersive ISI channel

with AWGN. The communication system comprises a TCM encoder/modulator, a linear

channel filter followed by an ML sequence estimator as shown in Fig.3.4. The TCM

encoder/modulator, and the channel filter can be represented by an equivalent

combined discrete-time white noise channel model as shown in Fig.3.5 [26].

The TCM encoder generates a sequence {a(n)} in response to an input sequence

{X }, where X is a m-bit input stream defined by X =(x\ x2,....,xm). The linear
ii n n n

channel filter transforms (a(n)} into a channel output sequence {b(n)J.
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The TCM encoder being a finite-state machine, the output associated with the

next state transition depends on the present state a of the encoder and the input

X . Thus the encoder output can be described as

an = f.((Xn' X„> ••(3.4)
Also, the next state of the encoder can be expressed as

a , —f (« i X ) n 51n+l 2V n 1/ ...\J.Jf

The output of the discrete-time model can be expressed as

r(n) = b(n) + v(n)

L

or r(n) = gQ . a(n) + £g. . a(n-i) + v(n) ...(3.6)
i=l

where the second term represents the ISI and v(n) is the sampled value of complex

additive white Gaussion noise with zero mean and variance o-2 in each dimension
V

The discrete-time model of Fig.3.5 comprises of two finite-state machines

namely the TCM encoder and the ISI channel. This discrete-time model can therefore

be viewed as a combined finite-state machine (FSM) that represents the effect of

the two individual FSMs. Consequently, a TCM scheme operating over a time-

dispersive ISI channel can be modeled as a combined FSM, and correspondingly can

be represented by a trellis structure called combined ISI-Code trellis. The states

of this combined ISI-Code trellis are defined by [26],

Hn = («n; a(n-l), a(n-2), ...., a(n-L)) ...(3.7)

where the symbol sequence {a(n-l),a(n-2),...,a(n-L)} corresponds to a path which

takes the TCM encoder from a previous state a to the present state a in
n-L r „

accordance with the TCM coding rule. The next state transition of the combined

ISI-Code trellis is defined by

"„+i = f<*V a(n)) •••(38)
where a(n) denotes the symbol allowed by the TCM coding rule along the transition

/i —> u
ii n+l
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The states of the combined FSM can be expressed in terms of the symbol label

sequence {Y .} instead of {a(n-i)} in (3.7) as

u=(«; Y Y , Y ) ...(3.9)
n n n-1 n-2 n-L

or equivalently, in terms of the input information sequence {Xr .} as,

It-(a ,;X,X ,, .-.., X ) ...(3.10)
n n-L n-1 n-2 n-L

Since X can assume 2m possible values for a m-bit input, there will be
n-i

(2m)L ISI states for each code state. Therefore, for an N^state TCM encoder, the

combined FSM and hence the corresponding combined ISI-Code trellis will represent

N.(2,n)L or N.(M/2)L states, where M=2m+1 represents the size of the signal
S S

constellation employed in the TCM scheme. From each state there will be (M/2)

distinct transitions. Thus, the combined ISI-Code trellis represents all possible

sequences of {b(n)}.

In the presence of ISI and AWGN, the optimum ML sequence estimator searches

among all possible sequences {b(n)} of the combined ISI-Code trellis to find the

sequence {a(n)} which is closest to the noise corrupted received sequence (r(n)},
in the sense of Euclidean distance. This is accomplished by a soft-decision

A

Viterbi decoder which operates on the combined trellis to determine {a(n)} by

recursively minimizing the survivor path metric as [26].

L

M (u ) = min (M ,u + r(n) - Yg a(n-i)| } ...(3.11)
n n+1 la U u X ntV^ *Vi i-o

where the minimization is taken over all the trellis branch transitions

originating from states {uJ and merging into the successor state u^. The second
term represents the branch metric which takes into account the ISI cancellation
due to the past symbols {a(n-i)}. The computations and storage requirements of the
decoder is dependent on the state complexity of the combined ISI-Code trellis
which is N.(M/2)L, for a constellation of size Mand ISI of memory length L.

s
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3.4 TRELLIS STRUCTURES FOR COMBINED MLSE EQUALIZATION

AND TCM DECODING

In the following, we present several combined ISI-Code trellis structures for

the decoding of Trellis-coded QAM signals transmitted over an ISI channel of

memory length L.

3.4.1 The 16-State Combined ISI-Code Trellis for 4-State 4-QAM TCM (L=2)

Consider the transmission of 4-state 4-QAM TCM signals over an ISI channel of

memory length L=2. For the TCM encoder of Fig.2.3(a), with a constellation size of

M=2"'+1 =4, we have N=4 and m=l. For each code state there will be (M/2)L=2"'L=4 ISI

states and thus number of states in the combined ISI-Code trellis is N .2"lL=16.
s

The present state and the next state of the combined ISI-Code trellis, using

(3.7), are given by

M, = («n; a(n-l), a(n-2)) ...(3.12)

and Mn+i = (<W a(n)' a(n_1)) ...(3.13)

where a and a are the states of the 4-state TCM encoder defined bv a =x' x1
" n+1 ' a n-2 n-1

and an+i =xn-ixn' ^ a(n~2)' a(n_1) are the two previous symbols represented by

the combined state Mn at time n, and a(n) is the data symbol allowed by the TCM

coding rule along the transition ^—> a For the 4-state 4-QAM TCM, we can

write a(n-i) in terms of symbol label Y =(y' , y° ), where y1 =x' © x1
n-i n-i 'n-i •'n-i n-i n-i-2

ind yn-i =xli-i tor °~1-2- Therefore upon substitution and simplification, (3.12)
and (3.13) can be expressed as

/i = (x . x1 . x1 , x1 ) n u)
n n-4 n-3 n-2 n-K •••\J. M)

md M , = (X1,, x1 , x1 , x1) H 15)n+l v n-3 n-2' n-1 1/ •••{•>• IJ)

It can easily be verified that use of (3.10) will also result in the form of

(3.14) and (3.15). Realization of (3.14) and (3.15) results in a 16-state combined
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FIG.3.6 THE 16-STATE COMBINED ISI-CODE TRELLIS STRICTURE, FOR 4-STATE
4-QAM TCM TRANSMISSION OVER AN ISI CHANNEL OF MEMORY LENGTII L=2
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ISI-Code trellis structure as shown in Fig.3.6. It may be noted that each state

represents two previous symbols associated with it and each transition is a

distinct transition.

3.4.2 The 32-State Combined ISI-Code Trellis for 4-state 16-QAM TCM (L = l)

We next consider 4-state 16-QAM TCM transmission over an ISI channel of

memory length L=l. For the TCM encoder of Fig.2.3(a), with a constellation size of

M=2"1+1 =16, we have Ns=4, and m=3. Since each code state is associated with
(M/2)L=2mL=8 ISI states, the number of states in the combined ISI-Code trellis is

Ns.(M/2)L =32. With the use of (3.7), the present state and the next state are
given by

Mn =(an; a(n-l)) ...(3.16)

and \+rK+i< a(n)) •••(317)

Wlth a„ =(X!,-2' O' an+1=(X"-.' ^ ^ 3(n)=(yn' £ ?»' £ "*« Y^V
yn =x,i' y!, =x!,-2® x.! and y!=x!-i' we can write \ md >*„+, uP°n simplification as

u = (x , x . x1 , x2 , x3 ) (3 18)
n n-3 n-2 n-1 n-l' n-V •••W- 10)

_ /_1 „1 12 3
aIld M„+. = (XnV X .' X' X_' X) -..(3 19)n+l n-2 n-1 n n n .••y.*-v

The realization of (3.18) and (3.19) leads to a 32-state trellis structure as

.^hown in Fig.3.7.

3.4.3 The 128-State Combined ISI-Code Trellis for 4-State 64-QAM TCM (L=l)

We next consider the transmission of 4-state 64-QAM TCM signals over a time-

dispersive channel of memory length L=l. The TCM encoder is the same as in the

previous examples, with the exception that m=5 as the constellation size is

M=2"'+1=64. Each code state has 2"'L=32 ISI states and the number of states in the
combined ISI-Code trellis is N.(M/2)L=128. Again, the states of this combined
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trellis are as defined by (3.16) and (3.17), where a(n) corresponds to a signal
point of the 64-point QAM constellation. From each state of the combined ISI-Code

trellis there will be 2"'=32 distinct transitions. Each of the combined state u
n

provides information about the previous symbol a(n-l), as depicted in (3.16). Note

that the data symbol a(n-l) can equivalently be expressed in terms of the input

Xn-i as Xn-i=(xn-i' XL' \-i' xl,> xl,) and similarly a(n) by the input
Xn=(x,'.' x„' V x!' x„)- For the 4"state TCM encoder of Fig.2.3(a), we have
a.i =xn-2Xn-i md therefore we can write <Vi=Xn-3X„-2- Makin8 use of the state
definition (3.10), the present state and the next state of the combined ISI-Code

trellis are given by the simplified expressions as,

^=(x!-3' x„-2' xli' <i' <,. <!• <,) -(3.20)

™d "n+l=(XI-2< £.• K< V £ XI> X) ...(3.21)

The input (x^, x2, x*, xj, x^) determines the symbol a(n) associated with the
transition u—> u^. Realization of (3.20) and (3.21) leads to a 128-state

combined ISI-Code trellis structure for the decoding of 4-state 64-QAM TCM signals
operating over an ISI channel of length L=l. Due to reasons of complexity in
sketching the trellis structure is not shown.

3.4.4 The 64-State Combined ISI-Code Trellis for 8-State 16-QAM TCM (L=l)

We next consider the transmission of 8-state 16-QAM TCM signals over a time-

dispersive channel of memory length L=l. The TCM encoder is the same as that shown

in Fig.2.3(b), with m=3 and M=16. Each code state has 2",L =8 ISI states and the

number of states in the combined ISI-Code trellis is N,(M/2)'=64. Again, the
states of this combined trellis are as defined by (3.16) and (3.17), where a(n)

corresponds to a signal point of the 16-point QAM constellation. From each state

of the combined ISI-Code trellis there will be 2m=8 distinct transitions. Each of

the combined state ^ provides information about one previous symbol a(n-l), as
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depicted by (3.16). Note that the data symbol a(n-l) can equivalently be expressed

in terms of the input X,, as \=(\A, \A, \.,) and similarly a(n) by
X=(x',x2,x3). Also, for a 8-state TCM encoder we have cc =x' x^x^ and

n n n n

therefore we can write a =xl x2 x1 . Making use of the state definition (3.10),
n n-2 n-1 n-1

the present state and the next state of the combined ISI-Code trellis are given by

the simplified expressions as,

«„=(>!, <, *:,• <.,- <v o -(3-22)

«* "„,=<*:„• <,• <*• <• <• <> -(3-23)
The input (x1, x2, x3) determines the symbol a(n) associated with the transition

K n n n

u _^ u Realization of (3.22) and (3.23) leads to a 64-state combined ISI-Code
ii ^n+1

trellis structure for the decoding of 8-state 16-QAM TCM signals operating over an

ISI channel of length L=l. Due to reasons of complexity in sketching, the trellis

structure is not shown.

From the above examples, we observe that the state complexity of the combined

ISI-Code trellis structure increases with an increase in constellation size M

and/or memory length L. In particular, the complexity grows exponentially with L
because of the relation N.(M/2)L To illustrate the increase in state complexity

with L, consider a combined ISI-Code trellis for 4-state 16-QAM TCM (N-4, M=16)
and an ISI channel of memory length L=3. The number of states in the combined ISI-

Code trellis is N.(M/2)L=2048. For a4-state 64 QAM TCM (N =4, M=64) and L=3, the
number of states in the combined ISI-Code trellis is N.(M/2)L=217. Thus with a 4-
state TCM employing 16-QAM, the state complexity of the combined ISI-Code trellis
increases from 32 for L-l to 2048 for L=3, while for the same TCM employing 64 QAM
it increases from 128 for L-l to 217 for L=3. Therefore, the combined ISI-Code
trellis structure, although optimum, becomes unrealistic even for moderate ISI

(U3).
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In all the above examples, the decoding is accomplished by the implementation

of (3.11) through the Viterbi algorithm which operates on the combined ISI-Code

trellis, and the resulting receiver structure is optimum. Since the performance of

the optimum MLSE (VA) for uncoded systems can be analyzable through bounds 146,

79], we consider below a method for evaluating the performance of the combined

ISI-Code receiver structures through bounds.

3.5 PERFORMANCE EVALUATION OF MLSE RECEIVER USING

COMBINED ISI-CODE TRELLIS THROUGH BOUNDS

It is possible to predict the performance of the combined MLSE receiver,

which employs the Viterbi algorithm on the combined ISI-Code trellis structure, by

computing the minimum ED d . and its multiplicity number N of the minimum
mm dinin

distance error event. For a given channel impulse response, the error probability

can be computed by analyzing the error structure of the channel [79].

Let gQ, gjf gL be the discrete-time channel tap gains and the ISI memory

length be L. Using the delay operator d, the channel response can be expressed as

g(D) = gQ + gjD + g2D + + gLDL ...(3.24)

Consider an input error sequence of length k, defined by

e/D) =eio+ e„D +v2 +••••+ Vi)D" •••(325)
where

A

e,. = a(j) - a(j), ...(3.26)

A

with a(j) = transmitted (encoded) symbol, and a(j) = estimated (decoded) symbol,

under ISI-free condition.

Since the ISI channel is linear, the channel output error sequence c (d) is
o

related to e (d) and g(D) by

c0(d) = eI(D).g(D)

= e + e d + e d2 + + e d""1 (3 27)oO ol o2 o(n-n '..\J.*i)
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where n=k + L represents the length of the error event at the channel output, for an

input error event of length k and ISI channel for memory length L.

The Euclidean weight d2(c) of an output error event is defined as the energy

associated with the output error sequence of the channel, and is given by

n-1

d2(e) = I £ ||2 = Ye2. ...(3.28)
V " o" Li 01

The error rate performance of the VA receiver depends upon d . , the minimum

weight of any error event. If the channel is known, then d . can be determined by

considering all possible error sequences and computing the resultant error weights

of the corresponding output error sequences. Then the performance of the VA

receiver operating on the combined ISI-Code trellis can be evaluated using an

upper bound estimate given by [46, 79].

P < N .Q (d 12c-) ...(3.29)
e dinin mm v

where o-2 is the variance of the AWGN process in each dimension, d2^ the minimum
weight of all possible output error events, N^ multiplicity number and Q(.) is

the Gaussian error integral function, as defined earlier in section 2.6.

In order to compute d for the combined ISI-Code trellis, we consider all
r min

possible error events of the TCM scheme. For each error event we can define an
input error sequence g(d) from which the corresponding output error sequence

E(d) and its weight d2(c) can be determined. For a given set of error events of
o

the TCM scheme employed, we obtain correspondingly a set of output error sequences

and hence a set of Euclidean weight {d2(c)}. The minimum weight in the set {d2(E)}
then represents the d2.n of the combined ISI-Code trellis.

The distance spectrum computing algorithm (of section 2.6) has been employed

to determine the input error sequences of the first few error events of the TCM
scheme. For a given channel response g(D), the corresponding output error

sequences and their weights are computed, and hence d^. Therefore, an asymptotic
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upper bound on the error event probability P can be estimated by considering the

error events of the basic TCM scheme and the discrete channel response. The bounds

so evaluated to determine the MLSE performance of the combined ISI-Code trellis

are presented in the following section along with the simulation results.

3.6 RESULTS AND DISCUSSION

In this section, we present the error performance of the optimum combined

MLSE receiver structure, that makes use of the combined ISI-code trellis, for the

decoding of trellis-coded QAM signals in the presence of ISI and AWGN. The error

performance of the various combined MLSE structures are evaluated through bounds

and simulation. The reference system employed for the performance comparison is an

uncoded MLSE structure having the same data rate, bandwidth and signal energy. The

ISI channel is assumed to be time-invariant and its discrete-time impulse response
is known at the receiver.

For the performance study of the baseband TCM data transmission system of

Fig.3.4, we consider the implementation of its equivalent combined discrete-time

white noise model shown in Fig.3.5. Following the simulation procedure as detailed

earlier in section 2.7, we generate an i.i.d. sequence of trellis-coded QAM data

symbols. The sequence of TCM data symbols {a(n)} is convolved with the discrete-

time impulse reasons {gj of the ISI channel to arrive at the filtered output

b(n). The discrete complex-valued AWGN v(n) is then added to b(n) to obtain the

received signal r(n)= b(n)+v(n).

The sequence of noise corrupted received signals {r(n)J is then applied to a

maximum-likelihood Viterbi decoder, which searches for a minimum cost path along

the combined ISI-code trellis to find a sequence of estimated data symbols which

is closest to the received sequence.

The discrete-time impulse response of the different ISI channels considered

on this study have been given in Table 3.1. It may be noted that L represents the
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Table 3.1 Equivalent discrete-time impulse response of the different ISI channels

Channel Coefficients

ISI memory
length

Channel label

go g. gz gj

CH11 0.7746 0.6325 -

• CH12 0.8367 0.5477 -

L=l CH13 0.8944 0.4472 -

CH14 0.7071 0.7071 -

CH21 0.7746 0.5000 0.3873 -

CH22 0.8367 0.4472 0.3162 -

CH23 0.8944 0.3873 0.2236 -

L=2 CH24 0.4070 0.8170 0.4070 -

CH25 0.2600 0.9300 0.2600 -

CH26 0.3040 0.9030 0.3040 •

CH31 0.6325 0.5477 0.4472 0.3162

L=3 CH32 0.7746 0.5000 0.3162 0.2246

CH33 0.8367 0.3873 0.2739 0.15X1

Table 3.2 The different combined ISI-Code MLSE structures and the corresponding
reference systems

r

Coded System Uncoded Reference

SI.

No.

ISI

Length

Reference

TCM Scheme Combined MLSE Uncoded Uncoded MLSE

structure system trellis

1 1 4-stale 4-QAM 8-slale combined

ISI-Code trellis

2-QAM 2-stalc ISI Ircllis ~

2 2 4-state 4-QAM 16-state combined

ISI-Code trellis

2-QAM 4-slatc IS! Ircllis Section 3.4.1

3 3 4-state 4-QAM 32-state combined

ISI-Code trellis

2-QAM 8-stalc ISI ircllis

4 1 4-state 16-QAM 32-state combined

ISI-Code trellis

8-QAM 8-slatc ISI Ircllis Section 3.4.2

5 1 4-stale 64-QAM 128-slate combined

ISI-Code trellis

32-QAM 32-slalc ISI trellis Section 3.4.3

6 1 8-state 16-QAM 64-state combined

ISI-Code trellis

8-QAM 8-state ISI Ircllis Section 3.4.4
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memory length of the ISI channel and for each channel £ |gk|2=l. The choice of the
k=0

channel is somewhat arbitrary except that all the zeroes of the transfer function

are limited to within the unit circle and thus the channel has the minimum phase

property [117]. The channels shown in Table 3.1 are also employed in our further

study, in Chapters 4 and 5, on the performance of the various receiver structures

for the decoding of TCM signals transmitted over time-invariant known ISI channels

in the presence of additive white Gaussian noise.

The reference system employed for the performance comparison is an uncoded

MLSE receiver structure [46] implemented through the Viterbi algorithm. The VA

operates on an M_L-state ISI trellis structure, the states of which are as defined

by (3.3), where M corresponds to the size of signal constellation used for the

uncoded transmission and L is the ISI memory length. To illustrate, we consider

the design of an MLSE structure for the uncoded 8-QAM transmission system over an

ISI channel of memory length L=l. With M=8 and L=l, the number of states in the

ISI trellis structure is ML=(8)'=8. The present state and the next state, using
(3.3), are given respectively as

sn = a(n-l) ...(3.30)

and sn+1 = a(n) ...(3.31)

where a(n) is the uncoded data symbol transmitted at time instant n and

corresponds to a signal point of the 8-QAM constellation as determined by the 3-

bit binary input Xn=(xJ x2 xn). From each state of the ISI trellis, there will be

M=8 distinct transections that corresponds to the 8-possibIe values of the

input binary sequence (xn x2 xM). The decoding is accomplished through the
implementation of the Viterbi algorithm on the 8-state ISI trellis.

The performance of this uncoded MLSE structure is then employed as the

reference to compute the gain achieved with the use of the combined ISI-code

trellis structures for the decoding of 16-QAM TCM schemes over an ISI channel of

memory length L=l (namely the combined MLSE structures of sections 3.4.2 and

91



3.4.4). The Table 3.2 gives the list of coded MLSE receiver structures and the

corresponding uncoded MLSE reference systems used in this study.

The procedure as detailed in section 3.5 is made use of in computing the

error performance through bounds. Table 3.3 gives the result of the computations

of the Euclidean weight d2(c) of the output error sequences for a given channel

impulse response and the TCM scheme considered. The Table 3.3 also shows, for each

code considered, the minimum squared distance d2in and its multiplicity number Nd.

Table 3.4 gives the summary of distance computation for the various combined ISI-

code trellis structures considered in this study.

An estimate of the upper bound on the error event probability of the combined

ISI-code trellis structure in then evaluated using the relation (3.26) or

equivalently [7],

Pe.UB - (l/2)-NdminerfC (d."i" / J* °"v) -(3-32)

where erj represents the variance of the AWGN process in each dimension. The lower

bound on the error event probability is computed using the relation,

e,LB
- (1/2).erfc (dmin / JI erv) ...(3.33)

The Table 3.5 gives the results of the error performance computations for

some of the combined MLSE receiver structures for trellis-coded M-QAM signal

transmission over ISI channels of limited memory length (L*3). The error event

probability has been evaluated through bounds using the parameters given in Table
3.4, and also through simulation. Table 3.5 includes also the simulation results
on the performance of the uncoded MLSE structure which is used as the reference
system for comparison. In the decoding of the combined ISI-code trellis structure
with 2*-states, a decision delay of 5=6.* has been employed in the implementation
of the Viterbi algorithm. Due to huge computational burdens involved in the
decoding Of the 64-state and 128-state combined ISI-code trellis structures of
section 3.4.3 and 3.4.4, the simulation runs were limited to data symbol
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Table 3.3 Computation of d2(s) of the output error sequences for some typical TCM codes and ISI channels

Basic TCM Scheme

4-State 4-QAM TCM

4-State 4-QAM TCM

4-State 4-QAM TCM

4-State 16-QAM TCM

4-State 64-QAM TCM

8-State 16-QAM TCM

ISI Channel

Length Type

L=l CH12

L=2 CH23

L=3 CH31

L=l CH11

L=l CH13

L=l CH13

Error sequences and their corresponding Euclidean weights

ISL 3 4 5 6 7 8 9
EW 20.0 24.0 24.0 28.0 28.0 32 0 32 0
OSL 4 5 6 7 8 9 10
EW 12.67 13.0 16.67 17.00 20.67 21.00 24.67

OSL 5 6 7 8 9 10 11
EW 13.35 13.48 16.81 16.94 21.35 21.48 25.89

OSL 6 7 8 9 10 11 12
EW 14.56 18.16 20.88 19.68 25.76 24.56 30.63

ISL 3 4 5 6 7 8 9
EW 20.0 24.0 24.0 28.0 28.0 32.0 32.0
OSL 4 5 6 7 8 9 10
EW 12.16 35.76 16.16 31.92 20.16 35.92 24.16

ISL 3

EW 20.0

OSL 4

EW 13.0

ISL 3

EW 20.0

OSL 4

EW 14.6

4 5

24.0 24.0

5 6

14.1 16.8

4 5

24.0 24.0

5 6

23.2 27.2

6

28.0

7

20.4

6

24.0

7

20.8

7

28.0

8

24.7

7

28.0

8

27.2

8 9

32.0 32.0

9 10

29.2 23.2

28.0 28.0

9 10

31.2 24.8

10 11

36.0 36.0

11 12

25.00 28.67

12 13

26.02 30.43

13 14

29.43 32.31

10 11

36.0 36.0

11 12

39.92 28.16

10

36.0

11

27.6

11

36.0

12

31.8

10 11

32.0 32.0

11 12

31.2 35.2

Note : ISL - Input sequence length. OSL-Output sequence length. EW-Euclidean weight

Minimum distance

Parameters

I2
min

12.67

13.35

14.56

12.16

12.0

14.6

N,

32

16



Table3.4 Summary of minimum distance calculation for various combined ISI-code trellis structures

SI.

No.

TCM Scheme ISI

length

Combined ISI-code trellis Minimum distance parameters
Channel type

dL Nd
1 4-state 4-QAM TCM a)L=l

b)L=2

c)L=3

8-state combined MLSE

16-state combined MLSE

32-state combined MLSE

CHll CH12 CH13 CH14
12.2 12 12.67 8 13.67 8 12.0 12

CH21 CH22 CH23 CH24 CH25 CH26
12.08 8 12.4 8 12.7 8 10.7 12 13.35 8 12.3 8

CH31 CH32 CH33

14.56 8 15.3 8 13.52 8

2 4-state 16-QAM TCM L=l 32-state combined MLSE CHll CH12 CH13 CH14
12.16 8 12.67 8 13.6 8 12.0 12

3 4-state 64-QAM TCM L=l 128-state combined MLSE CHll CH12 CH13 CH14

12.16 32 12.67 32 13.6 32 12.0 48

4 8-state 16-QAM TCM L=l 64-state combined MLSE CHll CH12 CH13 CH14
13.67 16 12.67 16 14.6 16 13.2 32
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Table 3.5 Error event performance of the combined ISI-code receivers for some typical ISI channels

Combined MLSE

structures

8-state combined

ISI-code trellis (4-
state 4-QAM TCM;
L=l) Fig. 3.8(b)

16-state combined

ISI-code trellis (4-
state 4-QAM TCM;
L=l) Fig. 3.9(c)

32-state combined

ISI-code trellis (4-
state 4-QAM TCM;
L=l) Fig. 3.10(a)

32-state combined

ISI-code trellis (4-
state 16-QAM TCM:
L=l) Fig. 3.11(a)

128-state combined

ISI-code trellis (4-
state 64-QAM TCM;
L=l) Fig. 3.12(c)

64-state combined

ISI-code trellis (8-
state 16-QAM TCM:
L=l) Fi2. 3.13(b)

ISI

channel

CH12

(L=l)

CH23

(L=2)

CH32

(L=3)

CHll

(L=D

CH13

(L=l)

CH12

(L=l)

SNR

dB

2.0

4.0

6.0

8.0

2.0

4.0

6.0

8.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

16.0

18.0

20.0

22.0

10.0

12.0

14.0

16.0

0.7943

0.6310

0.5012

0.3981

0.7943

0.6310

0.5012

0.3981

0.7943

0.6310

0.5012

0.3981

0.7071

0.5613

0.4462

0.3544

0.7263

0.5769

0.4583

0.3640

0.7071

0.5613

0.4462

0.3544

Error event Probability (Coded)

Lower bound

°t, LB

0.808E-02

0.123E-02

0.689E-04

0.797E-05

0.107E-01

0.189E-02

0.134E-03

0.128E-05

0.105E-01

0.170E-02

0.113E-O4

0.173E-05

0.676E-02

0.938E-03

0.453E-04

0.416E-06

0.556E-<)2

0.696E-O3

0.286E-O4

0.204E-06

0.592E-02

0.766E-03

0.332E415

0.256E-<)6

Upper bound

re,UB

0.368E-01

0.538E-02

0.293E-03

0.332E-05

0.493E-01

0.833E-02

0.570E-03

0.510E-05

0.418E-01

0.747E-02

0.483E-03

0.721E-05

0.184E+00

0.245E-01

0.115E-02

0.104E-04

0.150E+00

0.180E-01

0.726E-03

0.506E-05

0.107E-KK)

0.133E-01

0.561E-03

0424E-05

Simulation

P.

0.142E-01

0.215E-02

0.770E-04

0.900E-05

0.103E-01

0.169E-02

0.154E-03

0.200E-05

0.151E-01

0.300E-02

0.218E-03

0.500E-05

0.287E-01

0.577E-02

0.222E-03

0.100E-05

0.368E-O1

0.783E-02

0.280E-04

0.206E-01

0.245E-O2

0.510E-05

Uncoded MLSE

structure

(simulation)
0.419E-01

0.156E-01

0.328E-02

0.282E-03

0.223E-01

0.817E-02

0.173E-02

0.146E-03

0.164E-01

0.721E-02

0.144E-02

0.130E-03

0.635E-01

0.206E-01

0.307E-02

0.139E-03

0.829E4)1

0.277E-O1

0.428E-O2

0.240E-O3

0.597E-01

0.179E-<J1

0.248E-02

0.107E-O3



transmission length of the order of 105, where as for other systems the simulation

run length is of the order of 106-107 symbols.

The error performance characteristics of the combined MLSE receiver

structures considered in this study are given in Fig.3.8-3.13, for which the

following comments are in order. For each case considered, we have given the error

event performance of he combined MLSE structure obtained through simulation under

an ISI-free environment as well as in the presence of ISI, which have been marked

respectively as 'ISI-free' and 'Combined MLSE' in the legend of the figure. Also,

we have given the error event performance of the uncoded MLSE reference system

obtained through simulation which is marked as 'Uncoded MLSE' in the legend. The

upper and lower bounds on the error event probability have been computed through

the use of distance parameters, given in Table 3.4, using (3.32) and (3.33)

respectively and have been marked accordingly in the legend as 'Upper bound' and

'Lower bound'.

The Fig.3.8 shows the error performance characteristics of the combined MLSE

structure that uses an 8-state combined ISI-code trellis for the decoding of 4-

state 4-QAM TCM signals transmitted over an ISI channel of memory length L=l, for

4 different values of channel coefficients (CH11-CH14). From the performance

characteristics of Fig.3.8(a) for channel CHll, we note that the combined MLSE

structure achieves a coding gain of nearly 2.75 dB at Pe=l()-5, although its
performance is about 1.25 dB degraded with respect to ISI-free AWGN performance.
Similarly we observe that the coded MLSE structure achieves a gain of nearly 2.9
dB, 3.0 dB and 2.7 dB at Pe=10"5 relative to uncoded MLSE respectively, onchannels
CH12, CH13 and CH14, while the performance loss correspondingly is about 1 dB,
0.75 dB and 1.25 dB relative to the coded ISI-free performance. From Fig. 3.8(a)-

(c) , we can note that CH13 gives the best performance, followed by CH12, CHll and
CH14 in that order. It may also be noted that the simulation results lie within
the performance bounds evaluated through the use of procedure given in section

3.5.
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8-STATE COMBINED ISI-CODE TRELLIS STRUCTUREI FORI THE: DECODING OT 4 nf
4-QAM TCM SIGNALS TRANSMITTED OVER AN ISI CHANNEL OF MEMORY L=l
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Fig.3.9 gives the performance of the combined MLSE receiver, that uses the

16-state combined ISI-Code trellis of section 3.4.1, for the decoding of 4-state

4-QAM TCM over an ISI channel of length L=2. From the performance characteristics

given in Fig.3.9(a)-(f) for the 6 different channels considered, CH21-CH26, we

note that the combined MLSE structure achieves a gain of about 2 - 3 dB at Pe=10"

over uncoded MLSE structure, the details of which are listed in Table 3.6.

Although the combined MLSE structure achieves a gain of 3 dB over uncoded MLSE on

channel CH24 (Fig.3.9(d)), it exhibits a loss of 2dB over ISI-free condition. The

performance on channel Ch23, as shown in Fig. 3.9(c), rather appears to be optimum

with a gain of 2.75 dB over uncoded MLSE reference system while being nearly ISI-

free with a degradation of only about 0.75 dB. In most cases, we may note that the

performance degradation relative to the coded ISI-free performance is about

1.25-1.5 dB. Almost in all cases, the simulation results are well within the

computed upper and lower bounds.

Fig.3.10 gives the performance characteristics of the combined MLSE

structure, that employs a 32-state combined ISI-code trellis, for the decoding of

4-state 4-QAM TCM signals transmitted over an ISI channel of memory length L=3.

For the ISI channel CH31, the combined MLSE structure achieves a gain of about

1.75 dB over uncoded MLSE, although it is degraded by about 1.7 dB relative to its

ISI-free performance. On channel CH32, the coded MLSE structure achieves a gain of

2.25 dB relative to the uncoded MLSE, but with a performance loss of about 1.25 dB

over its ISI-free performance.

We consider next, the performance characteristics of the combined MLSE

structure that makes use of the 32-state combined ISI-code trellis, as discussed

earlier in section 3.4.2, for the decoding for 4-state 16-QAM TCM signals
transmitted over an ISI channel of memory length L-l. Shown in Fig.3.11(a)-(d) are
the characteristics of the receiver structure for 4 different ISI channels of
memory length L-l. Although it suffers a performance degradation of 1- 1.9 dB
relative to its ISI-free performance at P.-1GT5 the coded combined MLSE structure
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achieves a gain of about 2.5 - 3 dB relative to an uncoded 8-QAM MLSE receiver

structure. The combined ISI-code structure suffers a loss of about 1 - 1.75 dB

over its ISI-free performance. The performance of the coded MLSE structure is

found to be best on CH13 to be followed by CH12, CHll and CH14 in that order.

The fact that the 8-state TCM scheme activates a coding gain of 1 dB higher

than that of 4-state TCM scheme (over AWGN channel) has been reflected in the

performance characteristics of the combined MLSE structures of Fig.3.11-3.13. It

is clearly evident, from Fig.3.13(c) that the combined MLSE structure based on 8-

state TCM schemes achieves a gain of nearly 3 dB over uncoded MLSE, as compared to

the performance gain achieved by the combined MLSE structures based on 4-state TCM

schemes which is around 2.25-2.5 dB as can be seen from Fig.3.10 and Fig.3.11.

From the performance characteristics of the combined MLSE structures as shown

in Fig.3.8-3.13, we note that the simulation result is well bounded by the upper

and lower bounds evaluated through the use of computed distance parameters given

in Table 3.4. Therefore, we may conclude that the proposed method for the

computation of upper bound of the combined MLSE structures as discussed in section

3.5, is quite applicable for all ISI channels. The combined MLSE structure for a

4-state 16-QAM TCM for L=l achieves a gain of about 1.6 - 2.5 dB over uncoded 8-

QAM MLSE receiver structure. The channel CHI3 yields the best performance with a

coding gain for 2.5 dB over uncoded MLSE reference system at Pe=10"5. This is

followed by those of CH12, CHll and CH14 in order, as can be observed from the

entries of Table 3.6. Again we note, from each of the performance characteristics

of Fig.3.11, that the simulation results is well within the computed bounds.

The performance characteristics of the 128-state combined ISI-code trellis

structure, for the decoding of 4-state 64-QAM TCM over an ISI channel of length

L=l as discussed in section 3.4.3, have been given in Fig.3.12 for 4 different

channels CH11-CH14. The performance gain achieved over uncoded 32-QAM MLSE

structure varies between 1.5-2.25 dB at Pe=10~4 while the performance degradation

is about 1.25-2 dB relative to its ISI-free performance. The performance isoptimum
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Table 3.6 Performance gain of combined MLSE structures over uncoded MLSE structures as measured (approx.) from
simulation results, at Pe =10s on different ISI channels

Structure

8-state combined ISI-code trellis
(4-state4-QAMTCM; L=l)
Fig. 3.8

16-state combined ISI-code trellis
(4-state 4-QAM TCM; L=2)
section 3.4.1; Fig. 3.9

32-state combined ISI-code trellis
(4-state 4-QAM TCM; L=3)
Fig. 3.10

32-state combined ISI-code trellis
(4-state 16-QAMTCM; L=l)
section 3.4.2: Fig. 3.11

128-state combined ISI-code trellis
(4-state 64-QAM TCM: L=l)
section 3.4.3: Fig. 3.12

Note : at P. = 10"4

64-state combined ISI-code trellis
(8-state 16-QAM TCM: L=l)
section 3.4.4: Fig. 3.13

Coding gain on ISI channel relative to uncoded
system, in dB

CHll CH12 CH13 CH14
+2.75 +2.90 +3.00* +2.70

CH21 CH22 CH23 CH24 CH25 CH26
+2.25 +2.25 +2.75* +3.00 +2.00 +2.50

CH31 CH32

+1.75 +2.25*

CHll CH12 CH13 CH14
+1.70 +2.00 +2.50* +1.90

+ 1.50 +1.75 +2.25* +2.00

+2.50 +2.75 +2.90* +2.75

Performance loss relative to its ISI-free performance,
indB

CHll CH12 CH13 CH14

-1.25 -1.00 -0.75 -1.25

CH21 CH22 CH23 CH24 CH25 CH26
-1.50 -1.25 -0.75 -2.00 -1.50 -1.50

CH31 CH32

-1.75 -1.25

CHll CH12 CH13 CH14

-1.70 -1.50 -1.00 -1.90

-1.75 -1.50 -1.25 -2.00

-1.75 -1.40 -1.00 •1.50

Xote : * Indicates the best performance
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on CH13, to be followed by CH12, CHll and CH14 in that order. It may be noted that

the simulation results of the coded MLSE structure could not be obtained for

Pe<10 due to the computation complexity involved.

Fig.3.13 gives the performance characteristics of the 64-state combined MLSE

receiver structure of section 3.4.4, for the decoding of 8-state 16-QAM TCM over

an ISI channel of memory length L-l, and the ISI channels considered are CH11-

CH14. Again we note that the coded combined MLSE structure achieves a gain of 2.5
dB to nearly 3 dB at P^IO"4 relative to uncoded 8-QAM MLSE receiver structure.

The combined ISI-code structure suffers a loss of about 1-1.75 dB over its ISI-

free performance. Again we find that performance of the coded combined MLSE

structure is superior on channel CH13, to be followed by those on channels CH12,
CHll and CHI4 is that order.

The fact that the 8-state TCM scheme activates an additional gain of 1 dB

over 4-state TCM scheme (on AWGN channel) has been reflected in the error

performance characteristics of the combined MLSE structure, shown in

Fig.3.11-3.13. From Fig.3.13(c) we find that the combined MLSE structure, (of

section 3.4.4), which is based on the 8-state TCM scheme, achieves a gain of

nearly 3 dB on channel CH13 over uncoded MLSE, while a performance gain of about

2.25-2.5 dB is achieved with the use of combined MLSE structures (of section 3.4.2

and 3.4.3) that are based on 4-state TCM scheme, as is evident from the

characteristics of Fig.3.10(c) and 3.11(c).

In summary, the combined MLSE receiver structures (using the combined ISI-

code trellis) achieve a coding gain in the range of 2-3 dB over uncoded MLSE

receiver structures, although they suffer a loss of about 0.75 dB to 1 dB relative

to this ISI-free performance. The performance characteristics show clearly, that

the simulation result is well within the computed performance bounds. Therefore,

we may conclude that the method employed to compute the performance bound is quite
effective.
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CHAPTER 4

REDUCED COMPLEXITY KFE-MLSE RECEIVER
STRUCTURE FOR TCM DECODING ON

ISI CHANNELS

4.1 INTRODUCTION

In the previous chapter we have seen that the computational complexity of the

MLSE receiver grows exponentially with the channel memory length, thereby making
the implementation of the optimum combined ISI-Code receiver prohibitively too

complex even for moderate ISI, particularly with QAM signaling at high data rates.

This has motivated an active research to find sub-optimum TCM receiver structures

with reduced complexity, while maintaining most of the performance advantages of
MLSE.

The complexity of the optimum receiver can be reduced by employing
prefiltering techniques prior to MLSE. In practice, the LE-MLSE structure

comprising of a linear equalizer (LE) in cascade with the ML Viterbi decoder is

often used for high-speed TCM transmission over telephone channels [123J. However,

the fact that LE enhances noise on channels with in-band nulls results in the

performance degradation of LE-MLSE receiver structures. With a decision-feedback

equalizer (DFE), the noise enhancement is substantially less but it requires

reliable delay-free decisions for proper operation, which is not possible with a

TCM Viterbi decoder. Consequently, a tandem combination of DFE and MLSE for TCM

schemes does not perform well and results in a performance loss as opposed to a

gain [138]. Thus, there is still a need for a feasible reduced complexity receiver
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structure that can approach the performance of an ideal DFE-MLSE structure for

coded-modulation.

We propose a suboptimum KFE-MLSE receiver structure comprising of the Kalman

filter equalizer (KFE) followed by the ML Viterbi decoder for the decoding of TCM

signals in the presence of ISI and AWGN. The KFE is known to be an optimum linear

structure in the sense of minimum mean-square error (MMSE) and is realizable as a

finite dimensional recursive filter [6]. Also under stable conditions, it behaves

as a zero-forcing equalizer at high SNR.

The performance of the proposed sub-optimum KFE-MLSE receiver structure can

be evaluated by finding its performance degradation relative to the performance of

the ML Viterbi decoding under ISI-free environment. The performance degradation

can be evaluated by assuming that the Viterbi algorithm still operates with a

white noise process, whose variance is the overall variance of the correlated
noise and the residual ISI present at the KFE output. By finding the combined

impulse response of the channel and the KFE, through the use of innovations
representation and the spectral factorization technique, it is possible to
determine the effect of KFE prefiltering on the free distance of the TCM code and

hence the performance evaluation of the KFE-MLSE structures using bounds.
In this chapter, we first discuss the various pre-filtering techniques which

are normally employed to reduce the complexity of the receiver structure for both
uncoded and coded-modulation systems. We then present, the reduced complexity KFE-

MLSE structure for the decoding of Trellis-coded QAM signals transmitted over a

time-dispersive channel. We next present the results of a study that has been
performed, using innovations representation of the processes involved and the
spectral factorization technique, to compute the performance of the proposed KFE-
MLSE structure for several Trellis-coded QAM schemes. The performance bounds so
derived are compared with the simulation results. Also, the performance of the
proposed suboptimum KFE-MLSE receiver is compared with that of the optimum
combined ISI-Code receiver structure for ISI channels of short memory length.
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4.2 SUB-OPTIMUM MLSE STRUCTURE WITH PRE-FILTERING

Although, MLSE is implementable by the virtue of recursive nature of VA, the

combined ISI-Code trellis structure becomes too Complex for most of the channels

of practical interest. The practical limitations of the optimum combined MLSE

receiver structure prompted researchers to find sub-optimum MLSE receiver
structures of reduced complexity.

One such approach, as suggested by Forney [46] in his original paper on MLSE

for uncoded transmission, is to employ a linear equalizer as a prefilter to shape
the channel into a short desired impulse response channel and then apply VA to
this partially equalized channel. Qureshi and Newhall [113] proposed such an LE-

MLSE receiver structure for uncoded binary transmission over a time-dispersive
telephone channel, while Falconer and Magee [43] proposed an adaptive LE-MLSE

structure using MMSE criterion. The fact that DFE provides a much better

performance over LE on channels having severe amplitude distortion (in-band

nulls), prompted researchers to employ DFE as a prefilter instead of LE. Lee and

Hill [70] proposed a reduced complexity sub-optimum DFE-MLSE receiver structure

for uncoded binary transmission, while Weslowski [137] presented a similar DFE-

MLSE structure for uncoded QAM data transmission. The pre-filtering technique
reduces considerably the complexity of the MLSE receiver structure for uncoded

transmission and as a consequence also find applications in coded-modulation
systems.

Much prior to the invent of coded-modulation schemes, using channel capacity
arguments Price [40, 42] made an important observation. At a sufficiently high SNR

if a coded modulation scheme can approach channel capacity on an ISI-free channel,

then the same scheme can also approach that capacity on channels with ISI,
provided the receiver uses an ideal DFE-MLSE structure [42].

Wong and Mclane [142] proposed such a pre-filtering technique employing a
DFE-MLSE receiver structure for transmission of TCM signals over multipath HF
channels. But the performance of this DFF-MLSE receiver for TCM transmission was
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observed to be no better than that of an uncoded DFE receiver [138, 142].

For proper operation a DFE requires reliable and delay-free decisions, and

with TCM schemes employing ML Viterbi decoder such reliable delay-free decisions

are not available. Thus, the potential benefits of cascading a DFE with MLSE for

TCM decoding can not be realized in a straight-forward manner.

Thapar [123] has shown that an LE in cascade with a ML Viterbi decoder, the
LE-MLSE structure, is a good solution for high-speed TCM transmission over voice-

grade telephone channels. However, on channels with in-band nulls the LE-MLSE
structure exhibits poor performance due to noise enhancement.

Thus, for coded-modulation schemes there is still a need for reduced

complexity receiver structure which can approach the performance of an ideal DFE-
MLSE receiver. Since the KFE is an optimum linear equalizer which behaves as a

zero-forcing equalizer at high SNR (ideal DFE), we propose to investigate the
viability of a KFE-MLSE receiver structure for the decoding of Trellis-coded QAM

signals in the presence of ISI and AWGN.

4.3 KFE-MLSE RECEIVER STRUCTURE

Consider the baseband TCM communication system of section 3.3.1 (Fig. 3.4),

with the receiver portion being replaced by KFE-MLSE structure consisting of
Kalman-filter equalizer in cascade with the maximum-likelihood Viterbi decoder as

shown in Fig. 4.1

(r(n)}
Kalman Filter

Equalizer (KFE)

{a(n-N + l)} ML Sequence
Estimator
(Viterbi Decoder)

Fig.4.1 The Sub-optimum KFE-MLSE Receiver

{a(n-S)}

The TCM encoder/modulator transforms the i.i.d information sequence into a
stream of complex data symbol sequence {a(n)}. The data symbols are assumed to be
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uncorrelated complex random variables whose mean and variance are given by

E[a(n)]=0; E[a(n) a*(k)] = c-2 s ,4 n

The transmission channel is assumed to be linear, causal and time-invariant
with a finite duration impulse response g(t) such that g(t)=0 for t<0 and t*NT,
where Nrepresents the number of channel tap-gains, and the ISI memory length Lis
related to N by L-N-l. The channel output being perturbed by AWGN, the received
samples are given by

N-1

r(n) = £g. a(n-i) + v(n) (4 2)
i = 0

where g.'s represent the sampled channel impulse response and v(n) is the sampled
complex additive white Gaussion noise with mean and variance given by

E[v(n)] = 0; E[v(n) v*(k)J = Zrh ...(4 3)

The data sequence {a(n)} and noise sequence {v(n)} are assumed to be uncorrelated.
If the input data sequence {a(n)} is characteristically similar to a white

noise process, then the channel model can be formulated using a state variable
representation of the discrete Kalman filter. The state variables are the
successive transmitted symbols. The complex envelope of the received waveform can
then be expressed in terms of a discrete-time dynamic system driven by a white
process. Under a known channel condition the Kalman filter, which is dual to the
channel model, represents an optimum linear equalizer in the sense of MMSE [6J.

The output of the KFE, representing nearly an ISI-free signal, is then
processed by a soft-decision ML sequence estimator (Viterbi algorithm) in order to
decode the TCM signals.

4.4 KALMAN-FILTER EQUALIZER

Lawrence and Kaufmann [68] posed the equalization problem as one of obtaining
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MMSE estimate of the transmitted symbol a(n). Thus, it is required to obtain the
A

unbiased linear minimum error variance estimate a(i) of each transmitted symbol

a(i), such that E[ |a(i)-a(i) |2] is a minimum. The only constraints being imposed

on the estimator sequence are linearity and stability [6].

For the channel equalization, we make use of the state variable

representation of the message process and the observation sequence at the channel
output, and a discrete Kalman filter as considered by Lawrence and Kaufman [68].
Thus, the dynamics of the message process and the observation process at the

channel output can be described by

X(n + 1) = * X(n) + r u(n+ l) ..(4.4)

r(n) = g X(n) + v(n) •(4.5)

where X(n) is a N-state vector at time n= NT,

* is a NxN state transition matrix with elements *(i + l,i)=T for i= l,2,...,

N-1 and *(i,j)=0 for all other values of i,j,

r is a N column vector defined by r = [1,0,0....0] ,

g is a N row vector defined by g = [ggg,---^.,]

u(n) is the plant noise having the statistics as those of a(n) that is

u(n)=a(n), and v(n) is the observation noise which is white, and t represents the

transpose.

The state vector components represent the N consecutive transmitted symbols

as

X(n) =

•x,(n)
x2(n)

JC.(n)

V")

a(n)
a(n-l)

a(n-i + l)

a(n-N + l)
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The discrete Kalman filter operates on the sampled baseband signals r(n) to
estimate the channel state X(n), that is to yield a(n), a(n-l) a(n-N +l). It
is a well established fact that the Kalman filter provides the mean-sequence
optimum linear estimate of X(n). The discrete Kalman filter minimizes not only the
trace of the error covariance matrix, but any linear combinations of main diagonal
elements [6j. Therefore, due to the choice of (4.6) of the state vector, the

A

Kalman Alter also minimizes E[|a(i)-a(i)|2].

The unbiased linear minimum mean-square error (ULMMSE) estimator for the

discrete system (4.4)-(4.6) is described by the following equations [6, 69J;

The state estimation filter algorithm:

A A

X(n/n) = $ X(n-l/n-l) + K(n) [r(n) - g $ X(n-l/n-l)J ...(4.7)

The Kalman gain equation:

K(n) = V(n/n-l) g* [g V(n/n-l) g* + 2cr2]"1 ...(48)

The apriori error variance algorithm:

V(n/n-l) = $ V(n-l/n-l) *T + r r rT (4 9

The aposteriori error variance algorithm

V(n/n) = [I-K(n) g] V(n/n-l) (4 10)

The implementation of the above system of (4.7)-(4.10) require initial values of
X(0/0) and V(0/0). This is done by setting

£(0/0) =E[X] =0 (4H)
and V(0/0) = E[X X*] = cr2 I (4 12)

where I is NxN identity matrix
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From (4.7) it can be observed that the estimator utilizes the estimates of

past symbols in arriving at the present estimate, which is analogous to DFE

operation. The operation of ULMMSE estimator can be described by a block diagram
A

as shown in Fig.4.2. The current (present) estimate X(n/n) is formed by predicting
A

forward the previous estimate X(n-l/n-l) and correcting it with the observation
A

error, weighted by K(n). The observation error e(n) =r(n)-r(n/n-l) is usually

called as 'innovation'.

Under steady-state, the ULMMSE estimator becomes a time-invariant stable

linear filter [6]. Therefore in practice, the filter can be implemented as a

recursive digital filter as shown in Fig.4.3, which is quite suitable for digital

implementation.

For any observation instant, the N estimates of the consecutive transmitted

symbols are available at the output of the Kalman filter. As each component of the

state vector X(n) is the time translate of the message sequence, we have from

(4.6),

yn) - a(n-p +l) ...(4.13)

where x (n) is the 0th component of the state vector X(n). Thus the estimate of

the transmitted symbol may be obtained as

a(n-p) = x <n) 0 ^ M N-1 ...(4.14)

Although N estimates are available at each instant, it is better to estimate

just one symbol in order to achieve the minimum error variance. It is shown in [6]

that a good estimation of the transmitted symbol is possible for d=N-l. Thus while
A A

receiving r(n) the best estimate is jcN(n) =a(n-N +l), which represents the estimate

of a(n) transmitted (N-1) time instants earlier.

From (4.8)-(4.10), it can be observed that the error variance equations and

Kalman gain equation are independent of the observation sequence {r(n)}. Hence,

for the case of known channel tap gains, the quantities can be precomputed, if
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Signal +

r(n)

Fig.4.2. BLOCK DIAGRAM OF ULMMSE ESTIMATOR.

K, 0 Ko

x,(n)

T

x.(n-l)

Bi-0

0 K3->0 KN->0

o- T
xN.,(n)

A_.^iS. T -6
xN(n)

x2(n-l)

82~*0

xN-,(n-0

gN-l-*@

FIG.4.3 THE STEADY-STATE STRUCTURE OF ULMMSE KALMAN EQUALIZER.
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desired. Also, under steady-state the Kalman gain matrix K(n) becomes independent

of n for sufficiently large n. That is, in the limit as n -> », K(n) = K.

It would be of interest to compute the steady-state Kalman gains K from the

observation sequence r(n), using the innovations representation of the observation

process, through a non-singular transformation as discussed below.

4.4.1 Innovations representation of the observation process and computation

of the Kalman gains

Consider the transformation of the system defined by

X(n+1) = $ X(n) + ru(n+l)

r(n) = g X(n) + v(n)

...(4.15)

...(4.16)

into a standard canonical form through a non-singular transformation [83],

X*(n) = Q X(n)

where Q =

&N-1

^N-2 gN-l

0

60 gi N-1

The transformed system is then given by

X(n+1) = $* X*(n) + r* u(n+l)

r(n) = g X*(n) + v(n)

where $ = $

r* = ISn-i' gN-2' ' go]T
g* = [0, 0, , 1]
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The algorithm in the steady-state, for the MMSE state estimate X*(n) of

system (4.19) - (4.20) may be written as

A* A*
X(n) = * X(n-l) + K* c(n) ...(4.21)

where K* . [ k\ kJ .... K^ ]T ...(4.22)
is the steady-state transformed Kalman gain vector and e(n) is the innovation

process given by

e(n) = r(n) - g*$ X*(n-1)

that is e(n) = r(n) - **fit-l) ...(4.23)

Rewriting (4.23), we have

r(n) = e(n) + ** ,(n-l) ...(4.24)

From (4.21), we can write

Substituting this in (4.24), we get

r(n) = e(n) + K*^ e(n-l) + x*2(n-2)

Repeating the above procedure (N-2) times, we obtain

r(n) = e(n) + K* fe(n-l) + x*m e(n-2) -I- .... + KJe(n-N-fl) ...(4.25)

This is the moving average representation of the observation sequence r(n) in

terms of the innovations and the transformed Kalman gains. The Kalman gains K*,

i'"' Kni' and the variance °"e of the innovation process can be estimated from
the observation sequence r(n) through spectral factorization. Then K* can be

N

determined using the relation [63, 83],

K = 1" (% ' *e) ...(4.26)
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Once the transformed Kalman gains are determined, the steady-state Kalman gains of

the untransformed system are derived from [83],

K = Q-1 K* •••(4.27)

In the following section, we consider the evaluation of transformed Kalman

gains using spectral factorization.

4.4.2 Transformed Kalman gains through spectral factorization

Consider the observation process defined by

N-1

r(n) = ]T g. a(n-i) + v(n)
i = 0

and

...(4.28)

r(n) = e(n) + K* {e(n-l) + ....+ K| e(n-N +l) ...(4.29)

Defining the shift operator z as

z.r(n) = r(n-l)

we can write (4.28) and (4.29) as,

r(n) = G(z) u(n) + v(n) ...(4.30)

r(n) = K*(z) e(n) ...(4.31)

where G(z) = gQ + g,z +g/ + + g^zF"1 •••(4-32)

K*(z) = 1+K^z +K;/ + .... +K^" -(4.33)

Since the correlation statistics of the process r(n) in both representations

(4.30) and (4.31) must be the same, we can write

O^GWCKZ1) + -J = cr2 K(Z) KV) -(434)

where <r2 is the variance of the symbol sequence {a(n)},
s

o-2 is the variance of the observation noise process v(n),
V

and o-2 is the variance of the innovation process e(n).
E
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Given the tap gain vector g, the evaluation of the transformed Kalman gain
vector K* corresponds to finding the solution for the polynomial K*(z) and o-2 from

E

(4.34), with the knowledge of «r2, o-2 and G(z). This is the spectral factorization

problem considered by Rissanen [106] and Rissanen and Kailath [107], and is
outlined in Appendix A.

Writing the left hand side of (4.34) as

N-1

cr2 G(z) G(z-l) + o-2 = y pz'
s v L ri

i=-(N-l)

..(4.35)

we form the following infinite dimensional symmetric Toeplitz matrix P of the
correlation coefficient p. as

P =

Po Pi

P P P •

P P-(N-1) K-(N-2)

0

Pn-i°

... p 0
*N-1

Po P, .p 0
*N-1 .(4.36)

The positive definite matrix P through a congruent transformation can be written
as

P = F x Fn

where F is the unit lower triangular matrix given by

F =

1

f 1
10

f f 1
20 21

..(4.37)

0

...(4.38)
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and a is a positive definite diagonal matrix given by

0
oo

\ =
n

0

..(4.39)

Following the recursive procedure given in Appendix A, it may be shown that [106]

K* =lim f . for j = 1,2, ..... N-1
j i.i-N+j

i >oo

where f is the (m,n)th element of the matrix F, and

o- = lim X..
e , »

1 —> CO

Then K* is evaluated by using the relation.
N

K =l-cr/cr
N v E

...(4.40)

(4.41)

Once the transformed kalman gains Kj, k[,...., K^, l£ are evaluated, the Kalman
Pains K K K , can be determined by (4.27), or as the first N coefficients

of the polynomial in z is given by [83],

where

as

cr

E

D(z) = dQ + djZ + d2z2 + ...

K = —- d.. for j = 1, 2,
j _2 j-1

cr
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Then it can be shown that the MMSE estimate a(n) of the transmitted symbol a(n) is
given by [83],

u(n) = £ h. u(n-i) + v(n+N-1)
I— (N-1)

.(4.43)

where h.'s are the samples of the combined impulse response of the channel and the

KFE given by

h. =
E

cr

N

Yk. . k
L j+i j ...(4.44)

for i = -(N-1), -(N-2) ... 0 ... ex,, and K = 0, v < 0
V

The correlated noise sequence vQ(n) at the output of the equalizer in (4.43)
is the solution of the auto-regressive moving average series given by

Vn> + KN-1 V""1* + KN-2 V0^-2> + + K v (n-N + 1)

= KN v(n) + KN1v(n-l) + + Kv(n-N+1) .(4.45)

The variance of the correlated output noise o-2q can be computed by a procedure
given in [17], and as detailed is Appendix B.

With a knowledge of the combined impulse response {h.}, it is possible to

determine the effect of KFE-prefiltering on the free distance of the TCM code, and

hence on the performance of the ML Viterbi decoder.

4.5 PERFORMANCE EVALUATION OF KFE-MLSE RECEIVER

Consider the receiver structure as shown in Fig.4.4, where the VA operates on

the partially equalized signal available at the output of the KFE. Let {h.}

represent the combined impulse response of the channel and the equalizer.
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(a(n)} Channel + KFE

h(t)

(z(n)}
Viterbi Algorithm

(a(n)}

Fig.4.4 The KFE-VA Receiver Structure

The equalizer output z(n) can be expressed in terms of the combined impulse

response {h.} as
00

z(n) = a(n) hQ + [ h. a(n-i) + vfl(n) ...(4.46)
i = -N+l

i*0

The first term is the desired output and the second term represents the residual

ISI components and vQ(n) is the correlated output noise whose variance is a-^ .
The measure of the equalizer performance is expressed by the signal to noise

plus interference ratio (SNIR) defined by [142].

SNIR =

it. l2 2h o-
O1 s

|h I2 c-2
I O1 s

2o-2 +Y Ih.r o-2 2a-
vO L ' i1 s

i*0

i2 2where o-2 is the signal variance and o-2 = o-2q + 0.5 [ |h.| o-g
s i*0

We shall assume that the equalizer output noise is a white noise sequence, so

that the performance of VA can be assumed optimum. With this assumption, the
probability of minimum distance error event can be expressed as

P ~ Q
|h |2d2.
i 0' mi

4<T

where Q(.) stands for Gaussian error integral, as defined in section 2.5.
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For an ideal channel, |h0|=1.0, |hj=0 for all n except n-0. Thus for ideal
channel (ISI-free channel) the probability of error event is given by

P. - Q
4<r

..(4.49)

where av is the variance of additive white Gaussion noise in each dimension.

Thus the degradation in performance of the sub-optimum KFE-MLSE receiver
structure relative to an ISI-free channel is given as

degradation in performance = lOlog
10

= lOlog
10

• 1

L

1h 12 o-2
1 01 v

2
dB

Ih I2 a-2

i 2
zo-

v0 DM2*;
M

i*o

.(4.50)

dB

For a given ISI channel response {g.}, we can compute the combined impulse
response {h.}, by using the innovations representation and the spectral
factorization technique as described in the previous sections. The overall
variance ^ of the correlated noise at the output of KFE can be computed by the
procedure as detailed in Appendix B [17], Hence, we can determine the error
performance of the sub-optimum KFE-MLSE structure by finding the degradation in
performance relative to the optimum MLSE receiver operating under an ISI-free
environment through the use of (4.48) and (4.49). The combined impulse response
and the overall variance ^ have been determined for various ISI channels and are
presented in the next section. Also we have presented in the following, the
performance of KFE-MLSE receiver structures evaluated through bounds together with
the simulation results.
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Table 41 Computed values of the combined impulse response of the channel and the KFE
for some of the KFE-MLSE structures at different values of SNR.

SI.

No.

TCM scheme

employed

4-statc 16-QAM
TCM

8-state 16-QAM

TCM

8-state 64-QAM
TCM

16-state 64-QAM
TCM

ISI

channel

CH13

CH22

CH23

CH32

SNR

dB

10.0

12.0

14.0

16.0

10.0

12.0

14.0

16.0

16.0

17.0

18.0

19.0

16.0

17.0

18.0

19.0

Combined impulse response coefficients

0.0348,0.9261,0.0342.-0.158.00073, -0.0034.
0.0016, -0.0007, 0.0003. -0.0002. 0.0001

0.234, 0.9514, 0.231. -0.0110. 0.0032. -0.0025.
0.0012, -0.0006, 0.000.3, -0.0001. 0.0001

0.0154, 0.9685. 0.0153, -0.0074. 0.0036.
-0.0017, 0.0008, -0.0004, 0.0002. -0.0001

0.0100, 0.9797,0.0099. -0.0049. 0.0024.
-0 0012, 0.0 106, -0.0003, 0.0001, -0.0001

0.0143, 0.0323, 0.91.38, Q.0320. 0.0138. -0.0179.
0.0042, 0.0041, -0.00.35, 0.0003, 0.0001. -0.0006

0.0096, 0.0216, 0.9431, 0.0215. 0.0093. -0.0124.
0.0031, 0.0029, -0.0025. 0.0003. 0.0008. -0.0005

0.0062. 0.0141. 0.9630, 0 0141. O.OOftl. -O.OOX3.
0.0021, 0.0019, -0.0018. 0.0002. 0.0005. -0.0004

0.0040, 0.0114, 0.9703. 0.01 14. 0.0050. -0.0068.
O.OOH, 0.0016, -0.0015, 0.0002. 0.0004. -0.0003

0.0019, 0.0064, 0.9814, 0.0064, 0.0018, -0.0023.
0.0005, 0.0003, -0.0003, 0.0000. 0.0001

0.0012, 0.0041, 0.9882, 0.0011. 0.0012. -0.0015,
0.0004, 0.0002, -0.0002. 0.0000

0.0009, 0.0032. 0.9906, 0.00.32. 0.0009. -0.0012.
0.0003,0.0002,-0.0001

-0.0006, 0.002, 0.9921. 0.0028. 0 0006. -0.0009.
0.0002.0.0001. -0.0001

0.003, 0.0134, 0.9705, 0.0134. 0.0004. 0.0032.
-0.0056, 0.0024, -0.0002, 0.0007. -0.001 I

0.0026, -0.0004, 0.0108, 0.9763. 0.0108.
-0.0004, 0.026, -0.0045, 0.0019. -0.0001. 0.0006

0.0021, -0.0003, 0.0087, 0.9811. 0.O087.-0.OOO3.
0.0021, -0.0036, 0.0016, -0.0001. 0.0005

0.0017, -0.0003, 0.0069, 0.9849, 0.0069.
-0.0003, 0.0017, -0.0029, 0.0013, -0.001. 0.0004
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noise

variance
2

0.6573

0.4501

0.3001

0.191)1

0.7597

0.5240

0.3508

0.2300

0.7619

0.48'i2

0.2315

0.1127

I.l8(i()

0.7729

0.53 14

0.3372



4.6 RESULTS AND DISCUSSION

In this section, we present the error performance of the KFE-MLSE receiver

structure employed for the sub-optimum detection of trellis-coded QAM signals in

the presence of ISI and AWGN. The error event probability of the KFE-MLSE

structure is computed through the evaluation of bounds as discussed in section 4.5

and also through simulation. The reference system employed is an uncoded KFE

receiver structure having the same data rate, bandwidth and energy as that of the

coded KFE-MLSE structure. The performance of the sub-optimum KFE-MLSE structure is

compared with that of the optimum combined MLSE receiver structure for a limited

variety of ISI channels (L=l). The ISI channels considered in this study are same

as those considered earlier in section 3.6 and listed in the Table 3.1.

The baseband TCM data transmission system considered in this study has been

implemented in the same manner as detailed in section 3.6. The receiver structure,

as shown in Fig.4.1, is a cascade of the KFE and the maximum-likelihood Viterbi

decoder. Representing the message process and the observations process in the form

of (4.4) and (4.5) respectively, the KFE is realized through the implementation of

(4.7)-(4.10) and subjected to the initial conditions (4.11) and (4.12). The output

of the KFE, representing nearly an ISI-free signal sequence, is then applied to

the maximum-likelihood Viterbi decoder which operates on the encoder trellis to

determine a sequence of estimated TCM data symbols.

For the performance evaluation of the KFE-MLSE receiver structure through the

use of bounds, we consider the estimation of steady-state Kalman gains and hence

the combined impulse response of the channel and the KFE. Through the use of

innovations representation of the processes involved and the Cholskey Spectral

factorization technique as detailed in Appendix A, the combined impulse response

of the channel and the KFE is derived for the given ISI channel. Table 4.1 gives

the computed values of the combined impulse response for some typical cases. The

table also includes the overall noise variance o-2q, which is computed using the
method of Box and Zenkins [17], as explained in Appendix B.

127



00

Table 4.2 Error event pertormance ( iftheKFE-M LhL receiver s tructures t<>r some rypicai isi cnanneis

SI.

No.

TCM Scheme

employed
ISI

channel

SNR

dB

CTv

Coded KFE-MLSE Structure.

Error Event Probability, Pe

Lower bound Upper bound Simulation

Uncoded KFE

reference

Simulation

ho Performance

degradation

1 4-state

TCM

16-QAM CH13 10.0

12.0

14.0

16.0

0.7071

0.5613

0.4462

0.3544

0.214E-01

0.539E-02

0.665E-03

0.266E-04

0.129E+00

0.324E-01

0.399E-02

0.160E-03

0.433E-01

0.161E-01

0.236E-02

0.100E-03

0.127E+00

0.550E-01

0.643E-02

0.680E-03

0.9261

0.9514

0.9685

0.9797

-2.03

-2.09

-2.14

-2.17

2 8-state

TCM

16-QAM CH22 10.0

12.0

14.0

16.0

0.7071

0.5613

0.4462

0.3544

0.195E-01

0.468E-02

0.515E-03

0.191E-04

0.468E+00

0.112E+00

0.129E-01

0.458E-03

0.372E-01

0.269E-01

0.977E-02

0.114E-02

0.193E+00

0.106E+00

0.452E-01

0.137E-01

0.9138

0.9431

0.9630

0.9762

-2.76

-2.82

-2.86

-2.88

3 8-state

TCM

64-QAM CH23 16.0

18.0

20.0

22.0

0.7263

0.5669

0.4583

0.3640

0.102E-01

0.175E-02

0.118E-03

0.184E-05

0.203E+O0

0.349E-01

0.236E-02

0.367E-04

0.329E-01

0.163E-01

0.163E-02

0.200E-04

0.169E+00

0.708E-01

0.189E-01

0.304E-02

0.9814

0.9882

0.9920

0.9950

-1.77

-1.78

-1.78

-1.79

4 16-state

TCM

64-QAM CH32 16.0

18.0

20.0

22.0

0.7263

0.5669

0.4583

0.3640

0.208E-O1

0.516E-02

0.621E-03

0.240E-04

0.867E+00

0.2S9E-KX)

0.348E-01

0.144E-02

0.206E-01

0.162E-O1

0.938E-O2

0.910E-03

0.307E+OO

0.176E+-00

0.743E-01

0.207E-O1

0.9705

0.9831

0.9814

0.9806

-3.84

-3.87

-3.92

-3.98

^
+

V



The combined impulse response characteristics of the KFE-MLSE receiver

structure, employed for the decoding of 4-state 16-QAM TCM signals transmitted

over an ISI channel CH13 (L=l), have been shown in Fig.4.5 for different values of

SNR and corresponds to the entries at SI. No. 1 of Table 4.1. The Fig.4.6 shows

the combined impulse response characteristics of some of the KFE-MLSE receiver

structures corresponding to the data given in Table 4.1 at SNR=10.0 dB. For a

given ISI channel, the degradation in the performance of the KFE-MLSE receiver

structure relative to its ISI-free performance has been computed using the

discrete combined impulse response and the output noise variance o-2 , as discussed
vO

in section 4.5. The computed value of performance degradation has been given, for

each set of the combined impulse respnoses, in Fig.4.5 and Fig.4.6.

The performance of the KFE-MLSE structure under an ISI-free environment

corresponds to that of the basic TCM scheme on AWGN channel, as discussed in

section 4.5. For a given ISI channel, the performance degradation of the KFE-MLSE

structure has been computed for different SNR using the combined impulse response

and the overall noise variance. Since the performance bounds of the structure

under an ISI-free environment are known, the performance bounds under an ISI

environment can be computed using the performance degradation. The error

performance so derived have been given in Table 4.2 for some typical cases. The

table also includes the simulation results on the error performance of the coded

KFE-MLSE structure and correspondingly those of the uncoded KFE receiver which is

used as the reference system.

The error performance characteristics of the various KFE-MLSE receiver

structures used in this study have been shown in Fig.4.7-4.14. The performance

characteristics of the KFE-MLSE receiver structure used for the detection of 4-

state 16-QAM TCM signals in the presence of ISI and AWGN have been shown in

Fig.4.7 for a variety the ISI channels (of memory length L=l to L=3) as listed in

Table 3.1. For ISI memory length L-l, the KFE-MLSE performance is compared with

that of the combined MLSE receiver that makes use of the combined ISI-Code trellis
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for the detection of TCM signals in the presence of ISI and AWGN. From Fig.4.7(a)-

(c) we note that the KFE-MLSE structure, although sub-optimum relative to the 32-

state coded combined MLSE structure (of section 3.4.2), achieves a considerable

coding gain of 2.25-3 dB at Pe=10"5 relative to the uncoded KFE reference system
without the compromising bandwidth efficiency or power efficiency. We may recall

that the coded combined MLSE receiver structure had maintained almost the same

gain margin over its uncoded MLSE reference structure.

The characteristics shown in Fig.4.7(d)-(i) correspond to the performance of

the coded KFE-MLSE structure used for the detection of 4-state 16-QAM TCM signals
transmitted over ISI channels of memory length L-2, while the characteristics of

Fig.4.7(JMD correspond to that of channels with memory L=3. Also shown in

Fig.4.7 are the performance bounds evaluated through the procedure of section 4.5.

We observe that, in each case, the simulation result on the error performance of
the coded KFE-MLSE structure lies well within the computed upper and lower bounds
on the error event probability.

Fig.4.8 shows the error performance characteristics of the 8-state 16-QAM TCM
based KFE-MLSE receiver structure for 4 different ISI channels CH13, CH22, CH24
and CH33 of Table 3.1. From the simulation results, we note that the KFE-MLSE
structure achieves a coding gain of about 2.75 - 3.0 dB over the uncoded KFE

reference system. The computed upper and lower bounds on the error event
probability are quite tight, in the sense that the simulation result lies well
within the bounds.

Similarly, Fig.4.9 shows the error performance of the 16-state 16-QAM TCM
based KFE-MLSE receiver for 4different ISI channels CH13, CH21, CH26 and CH32.
The coded KFE-MLSE structure achieves a significant coding gain in the range of
3.0 - 4.0 dB (approx.) over the uncoded KFE reference system for the same data
rate, bandwidth and signal energy. Again we observe that the simulation result is
well bounded by the computed upper and lower bounds on the error even,
probability.
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Fig.4.10-4.12 show respectively the error performance characteristics of the
KFE-MLSE structures for the 4-state, 8-state and 16-state trellis-coded 64-QAM

signal transmissions over different ISI channels. From the characteristics of
Fig.4.10-4.12, we note that the coding gain of the KFE-MLSE structure for the 4-
state 64-QAM TCM transmission is in the range of 2-2.5 dB, while it ranges between

2.5-3.0 dB and 2.5-4.0 dB respectively for the 8-state and 16-state 64-QAM TCM

schemes. In FIg.4.11 and Fig.4.12, we find that the simulation result in most

cases does agree with the computed bounds.

The performance comparison of the different KFE-MLSE receiver structures used
for the 16-QAM TCM transmission have been presented in Fig.4.13. From the

performance characteristics, we can observe that there is an increase in the
coding gain with the use of 8-state or 16-state TCM schemes relative to that
achievable with the 4-state TCM scheme. For the 16-state TCM 16-QAM transmission

we find, from Fig.4.13(b), that the performance of the KFE-MLSE receiver is nearly
close to that of the combined MLSE structure. Although the KFE-MLSE structure is

sub-optimum, it achieves a considerable coding gain over uncoded KFE reference
system, with the advantage of reduced complexity.

Fig.4.14, similarly, gives the performance comparison of the 4-state, 8-
state, 16-state TCM based KFE-MLSE receiver structures. Again, we can see the
performance advantage of 8-state and 16-state TCM schemes over the 4-state TCM
scheme. From Fig.4.14(b) we can note that the 16-state TCM based KFE-MLE achieves
a good performance, which is close that attained with 128-state combined MLSE
receiver. Thus, with the use of 8-state or 16-state TCM scheme, we can achieve a
good performance with the KFE-MLSE receiver structure over an ISI channel, without
any restriction on the ISI memory length L or the size of the signal
constellation, unlike as in the case of combined MLSE receiver structure.

From the performance characteristics, we note that the coded KFE-MLSE
receiver structures achieve a coding gain of about 2-2.5 dB over the uncoded KFE
reference system for the same data rate, bandwidth and energy constraints.
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Although the performance of the proposed KFE-MLSE structure is sub-optimum when
compared to that of the coded combined MLSE receiver structure, the former has the
advantage of practical implementation for the detection of TCM on ISI channels of
large memory (L > 3) whereas the latter structure is almost impractical to realize
for such channels. Moreover, the error performance characteristics of the KFE-MLSE
receiver structure can easily be evaluated through bounds using the procedure of
section 3.5, that makes use of the steady-state characteristics such as the
combined impulse response, overall noise variance, and the distance properties of
the basic TCM scheme employed. Hence, we may conclude that the KFE-MLSE structure
proposed, for the detection of the trellis-coded QAM signals in the presence of
ISI and AWGN, is a practically viable (feasible) system which offers substantial
coding gains over the uncoded reference system. However, it may be noted that the
proposed KFE-MLSE structure is suboptimum compared to the (optimum) combined MLSE
receiver structure.
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CHAPTER 5

SUB-OPTIMUM REDUCED STATE ALGORITHMS
FOR TCM DECODING ON ISI CHANNELS

5.1 INTRODUCTION

An alternative to the prefiltering technique is the use of reduced state
algorithms which aim at reducing the states of the optimum combined ISI-Code
trellis by channel truncation and/or by combining the states to form subset-states
using the set-partitioning principle. These algorithms incorporate a built-in
decision-feedback mechanism within the Viterbi decoder to cancel out the residual
ISI terms during each path metric computation, based on the data symbol decisions
associated with the path leading to that transition.

The complexity of the optimum decoder can be reduced by truncating the
effective channel memory to J where 0 * J , L, and the resulting structure is a
sub-optimum truncated combined ISI-Code receiver. The (L-J) residual ISI terms
which are not represented by the truncated combined ISI-Code trellis are estimated
and subtracted from the branch metric computations using the path history
decisions in the Viterbi algorithm. The state complexity of the truncated combined
ISI-Code trellis is N(M/2)J, where N is the number of encoder states and Mis
the size of the signal constellation employed in the TCM scheme 126].

With a TCM scheme employing large signal constellation, the reduction in
state complexity may not be substantial even for a truncation length of J=l. A
further reduction in state complexity is still desired. This can be achieved by
incorporating the ideas of set-partitioning inherent in TCM to define the subset-

145



states for the truncated combined ISI-Code trellis. This approach leads to a
reduced state decoder whose state complexity is independent of the constellation
size M. Such decoder structures are referred to as reduced state sequence
estimators (RSSE). The state complexity of the RSSE may range between that of the
TCM encoder and that of the optimum receiver. As the state complexity of RSSE is
increased, its performance approaches that of the optimum combined ISI-Code

receiver [26, 42].

When the state complexity of RSSE reduces to that of the TCM encoder, the
structure is referred to as the parallel decision-feedback decoder (PDFD). The
PDFD is useful for a system with a large channel impulse response while the RSSE
is more suitable for a system with large signal constellation [42].

The evaluation of error performance of these reduced state algorithms is, in
general, difficult to perform analytically because of the decision-error
propagation. The decisions, which are being used to cancel out the residual ISI,
are derived from the path history and therefore are not the true estimates of the
past symbols. Consequently, this leads to the possibility of error propagation in
these algorithms and hence to the difficulty in evaluating the performance
analytically. We have considered the performance evaluation of these algorithms
through simulation.

Eyuboglu and Qureshi [41] had proposed the technique of RSSE decoding for
uncoded transmission over time-dispersive channels, which they later applied to
the coded-modulation schemes [42]. Chevillat and Eleftheriou [26 have
independently proposed a similar approach for the decoding of TCM signals in the
presence of ISI and AWGN. Simulation techniques have been used by both the
investigators [26, 42] for the performance study of the RSSE structures using a 4-
state 16-QAM TCM scheme, for a typical channel.

We, in the following, have presented the results of a detailed study of
several RSSE structures, for the decoding of various Trellis-coded QAM signals
(with different constellation sizes) transmitted over time-dispersive channels of
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different orders of memory length, through simulation techniques.

Following the approach given in [26], we first consider the channel

truncation technique to reduce the number of states in the combined ISI-Code

trellis. We next consider the method of combining channel truncation with the

ideas of set-partitioning principle to arrive at the RSSE structures. The simplest
form of RSSE, namely the PDFD is considered next. We have constructed several
reduced state trellis structures for the decoding of various TCM schemes employing
different QAM signal constellations. The performance of these reduced state

receiver structures for several TCM schemes have been studied, through simulation,
on different ISI channels and the results are presented.

5.2 REDUCED STATE TRUNCATED COMBINED ISI-CODE RECEIVER

The state complexity of the optimum combined ISI-Code receiver can be reduced
by truncating the effective channel memory to J and using a built-in DFE-like

mechanism within the Viterbi decoder to cancel out the residual (L-J) ISI terms,
that are not represented by the truncated combined state trellis. For a truncation
memory length of J, the state complexity of such receivers is N(M/2)', where N

is the number of TCM encoder states, Mis alphabet size, M=2»'+<, and 0 * J <L.
The Viterbi decoder operates on this reduced state truncated combined ISI-Code
trellis and the resulting receiver structure is sub-optimum.

Truncating the channel memory to J leads to a reduced state truncated
combined ISI-Code trellis whose states are defined by [26],

li[ = (<xn; a(n-l), a(n-2), a(n-J)) ...(51)

where 0 * J < L, and u° = a
n n

The performance degradation due to (L-J) ISI terms not represented by the
truncated combined state ^ is compensated by incorporating an ISI-cancellation
mechanism into the branch metric computation. The (L-J) residual ISI terms are
estimated using the decisions derived from the path history associated with the
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reduced states. Note that each truncated combined state p[ gives information on J
past symbols {a(n-i)}, 1 s i s J, associated with that state.

Associated with each state (A there will be a unique survivor path with a
A A

history of path symbol estimates {..., a(n-L), ..., a(N-J-2), a(n-J-l)...} and a
survivor path metric defined as ^(n-l)^,). The Viterbi algorithm computes

recursively the survivor path metric as

M (mJ ) = minn n+l i ]
M ,(n[) +

n-1 n

L a J
r(n) - [ g.a(n-i) - [ g.a(n-i) - gQa(n)

i=J + l i=l

...(5.2)

where the minimization is taken over all the branch transitions which originate
A

from states {fiJ} and merge into the successor state m|i+1- Also {a(n-i)} for
J+lsbL are the symbol decisions (estimates) derived from the path history, which

correspond to (L-J) past symbols {a(n-i)} that are not represented by the

truncated combined state a]. Thus the second term of the branch metric computation

corresponds to the cancellation of ISI due to (L-J) residual terms. It may be

observed from (5.2) that the Viterbi receiver performs both equalization and TCM

decoding jointly.

The form of (5.1) suggests a family of reduced state truncated combined ISI-

Code receiver structures with state complexity ranging from Ns to Ns(M/2)L for
0 < j < l, In the present study, we have considered several truncated combined

ISI-Code receiver structures for the decoding of Trellis-coded QAM signals over

ISI channels with different orders of memory. In the following, we consider the

design of some truncated combined ISI-Code trellis structures.

5.2.1 The 8-State Truncated Combined ISI-Code Trellis for 4-State 4-QAM

TCM Transmission for Ls2 and J = l

Consider the 4-state 4-QAM TCM transmission over a time-dispersive ISI
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channel of memory length L=3. For the 4-state 4-QAM TCM, we have N=4 and
M=2",+ 1=4. For optimum MLSE decoding, we could require acombined ISI-Code trellis
with N.(M/2)[-=4.23-32 states. Truncating the channel memory to J=l, we get a
truncated combined ISI-Code trellis with N.(M/2)J=8 states. Using the definition
(5.1), the present state and the next state of the truncated combined ISI-Code
trellis are given by

"1 =(«„ ;a(n-l)) (5 3)

and "«*, = (« ., : a(n))n+l ' *u» ...(5.4)

where ^ and Vi are the states of the TCM encoder, and a(n) is the symbol
allowed by the TCM coding rule along the state transition „-, ^ Note that
each sate ^ gives information about the past symbol a(n-l). The symbols a(n-l)
and Xn) can be represented by the symbol labels Y^ and Y, respectively, where
Y„-i "Oi, ™d Yn=ylfn- For the 4-state TCM encoder of Fig.2.3(a), we have
«.-<<»• <,)' and Vlr*l3* <, «* y:,=x!,.2- Substituting for an and a(n-l)
(in terms of Y^-y^) in (5.3) and upon simplification we cL write the
present state u1 as

it

< =(Xn-3' x!,2- <,) ...(5.5)
By similar procedure, we can write from (5.4), the next state u1 as

"n+i = (<2' <P *:,) ...(5.6)

Realization of (5.5) and (5.6) results in an 8-state truncated combined ISI-Code
trellis structure as shown in Fig.5.1. This trellis structure can be employed for
the decoding of 4-state 4-QAM TCM signals transmitted over an ISI channel of
memory length U2. Decoding is accomplished by the implementation of (5.2) through
the Viterbi algorithm.
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5.2.2 The 32-state Truncated Combined ISI-Code Trellis for 4-state 16-QAM

TCM Transmission for L*2 and J = l

Consider next the 4-state 16-QAM TCM transmission over a time-dispersive ISI

channel of memory length L=3. For the 4-state TCM encoder of Fig.2.3(a), using a

QAM signal constellation ofsize 16, we have N =4 and M=2'"+1 =16. For optimum MLSE

decoding we need a combined ISI-Code trellis with N.(M/2)L=4.83=2048 states. By

truncating the channel memory to J= 1, we get a truncated combined ISI-Code trellis

with only N.(M/2)J=4.8=32 states. The present state and the next state of this

32-state truncated combined ISI-Code trellis can be derived using (5.3) and (5.4)

and noting that a(n) can be represented by its symbol label Y =y3yVv° with v3 =x3
n J ir nJvr n J ii n

, yu =\n and yn, y° are as defined earlier in sub-section 5.2.1. Following the

procedure of the previous example, the present and next states of this truncated

combined ISI-Code trellis are given as

u = (x1 , x', x1 , x2. x3 ) (5 7)
" n-3 n-2 n-1 n-1 n-1 •••\J. /)

30(1 M!+i = (x!,2' x\- x'' x'> x3) (5 8)n+l n-2 n-1 n n n • ••\j.oj

Note the similarity between (5.7), (5.8) and (3.18), (3.19). Therefore, the

truncated combined ISI-Code trellis structure resulting from the realization of

(5.7) and (5.8) will be same as the trellis structure shown in Fig.3.7, the only
difference being in the implementation of the decoding algorithm. For the receiver

using the truncated combined ISI-Code trellis, the decoding is accomplished by the
implementation of (5.2) through the VA. This structure can be employed for the
decoding of 4-state 16-QAM TCM signals transmitted over an ISI channel of memory
length La2.

5.2.3 The 128-State Truncated Combined ISI-Code Trellis for 4-State 64-QAM
TCM Transmission for L*2 and J = l

We next consider the transmission of 4-state Trellis-Coded 64-QAM signals
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over an ISI channel of length L=2. For optimum MLSE decoding, we would require a

combined ISI-Code trellis with 4.(64/2)2=4098 states. The state complexity can be

reduced by truncating the channel memory to J= l, which results in a truncated

combined ISI-Code trellis structure with 4.(64/2)'=128 states. The present and

next states of this truncated trellis can be defined using (5.3) and (5.4).

Following the procedure used in the above example, it can be shown that the

resulting trellis structure is same as that discussed in section 3.4.3, with the

exception that the decoding is accomplished by the implementation of (5.2) through

the VA. Note that this trellis structure may be employed for the decoding of 4-

state 64-QAM TCM signals transmitted over an ISI channel of memory length Ls2.

5.2.4 The 64-State Truncated Combined ISI-Code Trellis for 8-State 16-QAM

TCM Transmission for L*2 and J = l

Consider the transmission of 8-state Trellis-Coded 16-QAM signals over an ISI

channel of length L=2. For optimum MLSE decoding, we would require a combined ISI-

Code trellis with 8(16/2)2=512 states. The state complexity can be reduced by

truncating the channel memory to J= l, that results in a truncated combined ISI-

Code trellis structure with 8(16/2)'=64 states. The present and next states of

this truncated trellis can be defined using (5.3) and (5.4). Following the

procedure used used in sections 5.2.1 and 5.2.2, it can be shown that the

resulting trellis structure is same as that discussed in section 3.4.4, with the

exception that the decoding is accomplished by the implementation of (5.2) through

the VA. Again it may be noted that this 64-State truncated combined MLSE trellis

structure may be employed for the decoding of 8-state 16-QAM TCM signals

transmitted over an ISI channel of memory length L*2.

5.3 REDUCED STATE SEQUENCE ESTIMATION

From the discussions of the proceeding section, it may be observed that the

state complexity of the sub-optimum truncated combined ISI-Code receiver
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structures still remains substantially high with TCM schemes employing large
signal constellations, although the channel memory length is truncated to J=l. In

such cases, a further reduction in the state complexity is still desired.

We may recall that in the case of the optimum combined ISI-Code trellis or

its truncated version, each state contains explicit information about the previous
L or J data symbols associated with it, respectively. Instead, if some of the

states can be grouped together so that they specify only the subsets to which the

previous data symbols belong to, then a substantial reduction in the state

complexity of the corresponding receiver is possible. This can be achieved by
employing the ideas of signal set-partitioning inherent in the TCM design, and the
resulting reduced state decoders are referred to as Reduced State Sequence
Estimation (RSSE) structures, whose state complexity is independent of the size of
the signal constellation M. In RSSE, the size M affects only the number of
parallel transitions in the trellis structure [26].

Consider the transmission of m information bits per signaling interval using
a rate rn/(rn +l) TCM encoder. During each signaling interval n, the (m+1) coded-bit
label Yn(m)=(y^, y™"1, ...., y'( y°) selects a unique data symbol a(n) of the 2",+1
signal constellation in accordance with TCM mapping rules. From the signal set-
partitioning, we may recall that yj determines the B-type subset of a(n), y1 the
C-type subset and so on. Correspondingly, for each data symbol a(n-i) within the
span of the truncated memory length J, the (m.+ l) bit label

Y .(m.) = (ynii, ym|-J . v' V° ) ,< ^
n-.V / VVi' 'n-i' 'n-i' V/ ...(5.5)

where m.sm for UlsJ, characterizes the depth of set-partitioning and determines
the subset to which the symbol a^ belongs. Note that m. =m corresponds to the
depth of subset partitioning used by the TCM encoder.

Given the encoder state ^ at time n and the label sequence {Y (m),
Yn-2(nV Yn-j(nV}' the encoder state o^ at time n-J can be uniquely
determined if msm.sm for UisJ. Thus, the number of states in the truncated
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combined ISI-Code trellis can be reduced by associating each code state ocn with

the label sequence {YJrn), YJny, , YJm,)} in place of the data
symbol sequence {a(n-l), a(n-2), ..., a(n-J)}. Using (5.1), the reduced state of
the truncated ISI-Code trellis can be defined as [26],

aj = [a ; Y (m.), Y (m ),...., Y (m)] .-.(5.6)
n n n-1 1 n-2 I n-j i

with O^JsL and A°=a .
n n

Equivalently, in terms of the corresponding information sequence {X^m,),

Xn2(m2), XnJ(m,)l wnere

X (m.) = (x'„ x2. , x^i) -(5-7)
n-i I n-i n-i n-i

the reduced state truncated combined trellis is given by

xJ = [a • X (m.), X (m ), , X (m)] ..-(5.8)
n n-J n-1 1 n-2 I n-j '

with O^J^L and A0 = a
n ii

Under the condition,

ra>miins £ m, £ m ...(5.9)
1 2 J

the reduced state defined by (5.6) or (5.8) leads to a family of valid reduced

state trellis structures called Reduced State Sequence Estimation (RSSE)

structures. Each code state is associated with 2rai+ro2+ •+mj ISI states. Thus for

an N-state TCM encoder, the number of states in the RSSE trellis is
S

N 2m1+i..2+...+.nJ From each re(jucecj state 2'"1 transition groups originate with
S

each group consisting of 2m"1' parallel transitions. For m^m, note that each

state carries information about subsets rather than the individual data symbols.

The decoding is accomplished through VA by recursively computing the survivor

path metric of the reduced states in accordance with
**•"

...(5.10)

i-I+l }
M , (AJ) +

n-1 ii

A

r(n) - [ g. a(n-i) - gQ a(n)M (aj ) = min

v i.' rn+l
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where the minimization is performed over the allowable branch transitions

originating from states {A^} to the terminal successor state V . From (5.10) it
may be noted that the L ISI terms are cancelled out using the previous data symbol
decisions {a(n-i)} for UisL, that are derived from the path history associated
with the state AJ.

n

For a given truncation length J and mi=m2=....=mj=m we obtain the least
complex RSSE structure with a state complexity of N.2B'. The most complex RSSE
structure with mi=m: =...=mj=m, has a complexity of N.2"" states. Since OsJsL, the
state complexity of RSSE ranges between that of TCM encoder (N) and that of the

s

optimum combined ISI-Code receiver (N.2mL). Thus, (5.6) or (5.8) represents a
family of RSSE structures with state complexity ranging between N and N 2"'L

In the following, we consider the design of few RSSE structures for the

decoding of Trellis-Coded QAM signals transmitted over time-dispersive ISI
channels.

5.3.1 The 8-State RSSE Trellis for a 4-State Trellis-Coded QAM and J=l

Consider the transmission of 4-state 16-QAM TCM signals over an ISI channel

of length U2. Assume that the channel memory is truncated to J=l. For the 4-state

16-QAMTCMofFig.2.3(a),wehaveN=4,M=2,"+1 =16,m=3andm =l.SinceJ =l,and
msmsm, let us choose in=l. Thus the number of states in the RSSE trellis is
N.2m»-8. From (5.6) the present state of the RSSE trellis is given by

X!-<<VY»>,» ...(5.11)
where an is the present state of the 4-state TCM encoder given by a =x' x1
andYJm,-!).^^)

The next state is given by

A,!+. = <Vi : W) ...(5.12)

where <xn+i is the next state of the TCM encoder given by a =x' x'i
"+i "ii-i"ii

1 CKand YOn,) = (yj, y°)
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Note that for a 4-state TCM encoder of Fig.2.3(a), we have yW® x^, yW ,
and therefore y^-x^. x^, y^-x^. Substituting for a, a|+1, Y^, and Y_
in (5.11) and (5.12), we get

a' =(x' x'.x'.x' , x;i2) -(5.13)
n n-2 n-1 n-1 n-3 n-2

and

a' = (x1 x';x'®x' , x') ', • ...(5.14)
n+l v n-2 n n n-2 n-1

From (5.13), (5.14) it may be noted that A^ is a function of (x^, x^ x^() and
A1 is a function of x1 x1 x1. Simple forms of A1 and A1 can be obtained

n+l n-2 n-1 n n "

directly by the use of (5.7) and (5.8). The present state can therefore be

expressed as

A1 = (a • X (m =1))
n n-1 n-1 1

where a„-,=V3x,'-2andx.,-i<mi =1,=x,'-i'

™us * - <*;,.,, <, *:,> -<*•>*>

The transition A1 —•» A1 , represent the C-type subset defined by
n n+l

Y(l)=(y1y°)=(x1® x1 x1 ). ..(5.17)
n J or a n n-2 n-1

The corresponding 8-state RSSE trellis structure can be derived using (5.13) and

(5.14) or (5.15)-(5.17) and the resulting structure is shown in Fig.5.2. From each
state 2nll=2 transition groups originate, each representing 4 parallel transitions

(for 16-QAM). Since Y(l)«(yjyj), each transition group corresponds to C-type

subset.

In general, this 8-state RSSE structure can be used for the decoding of 4-
state M-QAM TCM signals (M=2m+1), since minfluences only the number of parallel

transitions and not the overall design. For 4-state 64 QAM TCM, there will be

2"1"mi=251 =16 parallel transitions per transition group.
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The decoding is accomplished through the implementation of (5.10) using the

Viterbi algorithm.

5.3.2 The 16-State RSSE Trellis for 4-State Trellis-Coded QAM and J=l

Consider again the same example of 4-state 16-QAM TCM, L*2,J=l,m=3m =l,

with only a change in the constraint in. By selecting in =2, the number of states
in the RSSE structure is N*22 =16, and from each state there will be 2n,|=4
transition groups (D-type subset), each consisting of 2 parallel transitions. The

use of (5.6) results in states

*1 - <2 xI-, =£, C yJ
...(5.18)

' ¥i • v2v' v°) •••(519)-d ^-(x^x^y-.y;^

The alternative definitions of A(' and \^+J resulting from (5.8) are

a1 =(xl x1 x1 x2) -(5.20)
n v n-3 n-2 n-1 n-1

and A1 = (x x x x)
*" n+l n-2 n-1 n n

n+l

...(5.21)

with the transition A1 —> x' , being associated with a D-type subset given by

Y(2) = (y2 y1 y°) ' ...(5.22)
ii ' w n * n * n

The resulting 16-state RSSE structure is shown in Fig.5.3. For 4-state 64-QAM TCM,
each transition group represents 25'2 =8 parallel transitions. Decoding is

accomplished through VA using (5.10).

5.3.3 The 32-State RSSE Trellis for 4-State Trellis-Coded QAM and J=2

Consider next a 4-state 64-QAM TCM, L*3 and J=2. Since ms m. *mfor Ui=s2,

select m=2 and m=1. Then the number of states in the RSSE structure is

N.2'"1+",2= 32.
s
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Following (5.8), the states can be defined by

n-2* n-r n-2x

or < = (X1V Xn-3; Vl' V.' <-J

^d a;,+i = (x!.-3' xi-2'x!,' v <J
Rearranging

„= (X„-4' V3' V2' Vl' '"n-1
.2 _ , i i „i x< x2 ) ...(5.23)
*_ - (x..„' x„.' x„.?' Vi' „v

and xL, -Urt. <.,<.,<• <) -(«4)

The transition A2 —-> A2+1 is associated with a D-type subset defined by

Y(2) = (y2 y1 y°) -(5'25)
.,v ' » n * n nii n n n

Also Y (1) = (y' y° )
n-1 n-i n-i

The resulting 32-state RSSE structure is shown in Fig.5.4. >Jote that each state is
associated with 2"ll=4 transition groups, each group representing 8 parallel
transitions corresponding to 8-signal points of the D-type subset of 64-QAM
constellation. This 32-state RSSE trellis structure can also be used for the
decoding of 4-state 16-QAM TCM signals, wherein each transition group represents 2
parallel transitions corresponding to D-type subset of 16-QAM signal
constellations. The decoding is accomplished by the implementation of (5.10)

through the Viterbi algorithm.

5.3.4 The 32-State RSSE Receiver for 8-State Trellis-Coded QAM and J=l
We next consider the transmission of 8-state 16-QAM TCM over an ISI channel

of length U2. Truncating the channel to J-1, we have m-ny For 8-state 16-QAM
TCM encoder of Fig.2.3(b), we have Ns=8, M=2m+1 =16, m=2 and •,-x^x^,
y3=x3, yW . x*. y|-x*« x^, jrW,. The condition msrn^m suggests 2*ny3,
aid let us consider 01,-2. Thus, the number of states in the RSSE structure is
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N.2"M=32. Following (5.8), the present state and the next state are given by
s

A1 = (« ,; X (2))
11-r n-1

and a_'i+i - («„ ; Xn(2))

where XJ2) = xWA and Xfl) = xj *]•

Substituting for a^, an, X^(2) and Xfi) we get,

i1 •• rv1 x2 x1 x2 x1 ) ...(5.27)
\, " (X„-3' \-2' Xn-2' Vl' \l>

a ,' - (x1 x2 x1 x2 x1) ...(5.28)^ \+l - (\-2' Xn-1' Xn-1' V V

Also, the transition \[ -» \J+, represents a D-type subset of the signal
constellation given by,

Y(2) = (y2 y1 y°) -<5-29>
nv ' w n * n * n

Correspondingly, Yr ,(2) = (y2,., y,',, £,) -<530)

The resulting RSSE structure corresponding to (5.27)-(5.30) is shown in Fig.5.5.
Note that each state is associated with 2m'=4 transition groups, each representing

D-type subset consisting of 2 parallel transitions. The same structure can be used
for 8-state 64-QAM TCM decoding, in which case each transition group represents 8
parallel transitions corresponding 8 signals points of the D-type subset of 64-

QAM.

The decoding of the 32-state RSSE trellis is accomplished by implementing

(5.10) in the Viterbi algorithm.

5.4 PARALLEL DECISION FEEDBACK DECODING

From the preceding section, we have observed that substantial reduction in
the state complexity of the combined ISI-Code structure is achieved by
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incorporating channel truncation and also the set-partitioning ideas inherent in
TCM code construction. The RSSE structures have state complexities ranging from
TCM encoder states N to the optimum combined ISI-Code receiver states N.2B,L.

When the state complexity of the RSSE structure reduces to that of encoder

states N(for J=0), the reduced structure is referred to as parallel decision
s

feedback decoding (PDFD). The Viterbi decoder operates directly on the TCM code
trellis. The decoding is accomplished by recursively computing the survivor path

metric corresponding to the state aj+| according to [26J

M (a ir) = min
{a }-» aii n+l

n' n+l

M (a) +
n-1 n

L

...(5.31)r(n) - [ g. a(n-i) - gQ a(n)
i=i

where the minimization is performed over all the trellis branches originating from

code states {aJ and leading into the successor state o^,. It can be noted that
the L ISI terms are cancelled out in a way reminiscent of a DFE in cascade with a
TCM Viterbi decoder. The distinctive feature of PDFD is that instead of using only

one sequence of decisions, as in the feedback path of DFE, the equalization is
accomplished by using a unique sequence of decision for each state in the trellis.
These feedback sequences are based on the history of the surviving path of each
state. As a result, instead of calculating the metrics with one received sample
per trellis stage, there will be a unique decision-feedback equalized sample for
each state per stage. This will result in an increase in computational complexity
which is well justified by the improved performance 142, 138J.

In the following, we consider the performance of these reduced state decoders

on different ISI channels, through simulation.

5.5 RESULTS AND DISCUSSION

In this section, we present the error performance of the reduced complexity
sequence estimation techniques which are employed for the sub-optimum detection of
trellis-coded QAM signals transmitted over the time-dispersive ISI channels. The
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performance characteristics of the various structures, as discussed earlier in
sections 5.2-5.4, have been derived through simulation. In order to estimate the
coding gain achievable with the use of the coded truncated combined MLSE receiver
structures, we consider an uncoded truncated MLSE receiver structure as the
reference system. Similarly for the coded RSSE/PDFD structure, the reference
employed correspondingly is an uncoded RSSE/PDFD structure. The ISI channels, used
in the study, are assumed to be time-invariant and known, and correspond to those
listed in Table 3.1.

The baseband TCM data transmission system considered for the study is the
same as shown in Fig.3.4, the implementation of which has been discussed earlier
in section 3.6. The receiver is a reduced complexity structure based on the
techniques of channel truncation and reduced state sequence estimation as
discussed in sections 5.2-5.4.

The error performance characteristics of the various coded truncated combined
MLSE structures (of section 5.2) have been shown in Fig.5.6-5.10. The error
performance of the 8-state truncated combined IS.-code trellis structure of
section 5.2.. (channel truncation iength J-1), which is used for the decoding of
.he 4-s,a,e 4-QAM TCM sign* transmitted over an ,S. channe, of memory length
U2, ,s shown in Fig.5.6. The reference system is a2-state uuncated uncoded MLSE
structure <J=1>. I, may be noted that the coded truncated MLSE structure achieves
a gain of 2.5-3.0 dB reiative to the uncoded reference system, while i, suffers a
degradation in the range of 0.5-1.0 dB over the optimum combined MLSE structure
F.g.57 depicts the error performance of the 16-s,a,e truncated combined MLSE
structure (channe! ttuncation iength J=2), which is emp.oyed for the detection of
4-s,a,e 4-QAM TCM signals transmitted over an ISI chapel of U3. The truncated

uncoded truncated MLSE stnacture (J =2), whi.e exhibiting a performance loss of
only 0.34X5 dB over the optimum combined MLSE structure. From Fig 57(a) we
observe tha, the performance of the truncated MLSE approaches that of me optimum
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MLSE structure as J-»L, which is to be expected.

The performance characteristics of the truncated combined MLSE receiver
structures of section 5.2.2-5.2.4, have been shown respectively in Fig.5.8-5.10.
Fig.5.8 shows the error performance of the 32-state truncated combined ISI-code
trellis structure employed for the detection of 4-state 16-QAM TCM signals over an
ISI channel of memory length U2. Similarly, Fig.5.9 and Fig.5.10 show
correspondingly the performance characteristics of the 128-state and 64-state
truncated combined ISI-code trellis structures (of section 5.2.3-5.2.4) used for
the decoding 4-state 64-QAM and 8-state 16-QAM TCM signals, respectively. It may
be noted that the performance of the coded truncated MLSE structure is compared
only with the uncoded truncated MLSE reference system, as the combined MLSE
structures have not been realized for 16-QAM/64-QAM TCM transmission on ISI
channels of memory length L * 2, due to the reasons of complexity in practical
implementation as discussed earlier in section 3.4. From the performance
characteristics of Fig.5.8-5.10, we observe that the coding gain achieved is
2.0-2.5 dB with the use of truncated receiver structures of sections 5.2.1-5.2.3
which are based on 4-state TCM schemes, while it is 3.0-3.75 dB for the receiver

structure of section 5.2.4 which is based on an 8-state TCM scheme. The use of 8-
state or 16-state TCM scheme improves the performance of the combined
MLSE/truncated MLSE structures by 0.5-1.0 dB relative to that attainable with the
use of 4-state TCM scheme, but at the cost of increased state complexity and

increased computational burden.

The reduction in state complexity and hence a saving in computations can be
achieved by combining channel truncation technique with the ideas of set-
partitioning as discussed in section 5.3. The performance characteristics of the
reduced state sequence estimators (RSSE) have been shown in Fig.5.11-5.13, for
different orders of state reduction as discussed in section 5.3.1-5.3.4. It may be
recalled that, the 8-state, 16-state and 32-state RSSE structures of section
5.3.1-5.3.4 can be employed for the detection of M-QAM TCM signals (M =16 or 64)
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transmitted over an ISI channel of memory length L>1. The size of the signal

constellation Maffects only the number of parallel transitions.
Fig.5.11 shows the performance of the different RSSE structures used for the

detection of 4-state trellis coded 16-QAM signals in the presence of ISI and AWGN.
The reference is an uncoded RSSE structure having the same data rate, bandwidth
and signal energy as that of the coded system. In the figure RSSE-I, RSSE-II and
RSSE-III correspond respectively to the 8-state, 16-state and 32-state RSSE
structures of section 5.3.1-5.3.3. From the performance characteristics of
Fig.5.11, we observe thai the 8-state RSSE structure RSSE-I achieves a gain of
1.25-2.0 dB over the uncoded RSSE reference structure, while it suffers a
degradation of about 1dB relative to the optimum combined MLSE performance. The
corresponding gains of RSSE-II and RSSE-III are 1.5-2.25 dB and 2.0-2.75 dB
respectively. The structure RSSE-II suffers a loss of about 0.5 dB relative to the
combined MLSE performance. We may note, from Fig.5.11(a), that the performance of
the 32-state RSSE structure RSSE-III is almost same as that of the 32-siate

combined MLSE structure (of section 3.4.2).

Similarly, Fig.5.12 shows the performance of the three RSSE structures RSSE-
I, RSSE-II and RSSE-III for the 4-state 64-QAM TCM transmission over an ISI
channel of memory length L* 1. From Fig.5.12, we may note that the 8-state RSSE
structure RSSE-I (of section 5.3.1) achieves a gain of about 1.5-1.75 dB over
uncoded RSSE reference system, while the 16-state and 32-state RSSE structures
RSSE-II and RSSE-III achieve correspondingly a gain of about 2.00-2.25 dB and
2.5-2.75 dB. We observe that the performance of the RSSE structure improves with
an increase in the state complexity and in the limit its performance approaches
that of the combined MLSE structure.

Fig.5.13 shows the performance characteristics of the 32-state RSSE structure
RSSE-IV (of section 5.3.4), which is employed for the decoding of 8-state 16-QAM
TCM signals in the presence of ISI and AWGN. The structure RSSE-IV achieves again
of about 2.25-3.0 dB relative to the uncoded RSSE reference system. In Fig.5.13(a)
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the performance of the 32-state RSSE structure RSSE-IV is compared with that of
the 64-state combined MLSE structure (of section 3.4.4). The RSSE structure RSSE-
IV suffers a performance degradation of about 0.75-1.0 dB over the optimum
combined MLSE structure.

The PDFD receiver structure is a special case of RSSE structure for J=0. The
state complexity of the PDFD structure equals that of the basic TCM encoder
employed for the data transmission. The performance of the PDFD structure is
compared with that of an uncoded PDFD reference structure. Fig.5.14 shows the
error performance of the two reduced state structures PDFD1 and PDFD2, which
correspond respectively to the 4-state and 8-state PDFD receiver structures. While
Fig.5.14(a)-(b) give the error performance of the PDFD structures for 16-QAM TCM
transmission, Fig.5.14(c)-(d) corresponds to that of 64-QAM TCM transmission. We
observe from the performance characteristics that the 4-state PDFD structure
(PDFD1) achieves a gain of 1.5-2.0 db over the uncoded reference system, while the
8-state PDFD structure (PDFD2) shows acoding gain of 2.25-3.0 dB over the uncoded
reference. The PDFD1 and PDFD2 structures suffer a performance degradation of
about 1.75 dB and 1.25 dB respectively relative to the optimum combined MLSE
structure on ISI channels of memory length L-l.

From the study presented above, we observe that the truncated MLSE structures
give performance close to that of the combined MLSE structure, with a small
degradation in the range of 0.5-1.0 dB. Afurther reduction in state complexity
can be achieved by the use of the RSSE structures that incorporate the ideas of
set-partitioning inherent in the TCM design. The performance of the RSSE
structures approaches that of the combined MLSE structure as the state complexity
increases. As the state complexity of the RSSE is reduced to that of the TCM
encoder, we get the PDFD structure whose performance is quite significant over the
uncoded reference, although there is significant performance degradation relative
to the optimum combined MLSE structure.
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CHAPTER 6

ADAPTIVE RECEIVER STRUCTURES FOR TCM
TRANSMISSION OVER TIME-DISPERSIVE

FADING CHANNELS

6.1 INTRODUCTION

The continuing growth of mobile telephone traffic and the need for its
integration with digital communication facilities has spurred an active research
and subsequent development of high-capacity digital mobile radio systems in recent
years. The digital mobile-radio channels are characterized as rapidly time-varying
channels which are highly susceptible to multipath-induced ISI and sometimes
exhibit deep fades. The fact that the coded-modulation schemes can provide
significantly improved performance over bandlimited channels, has made TCM schemes
attractive for applications over fading channels also. To combat the effect of ISI
on such (rapidly) time-varying fading channels relatively complex adaptive
equalization procedures and, to overcome the effects of severe fades on such
channels, the more effective diversity combining techniques have to be employed
[2, 4, 101].

Since the publication of spectrally efficient TCM schemes by Ungerboeck
[126J, there has been an active research and applications of TCM schemes,
particularly M-PSK TCM, for satellite channels [8, 13, 30]. However, in recent
years there is an increased interest in the use of M-QAM TCM schemes for fading
channels due to their excellent spectral-efficiency and power-efficiency over M-
PSK schemes. It has been reported that [35, 55], the M-QAM TCM schemes outperform
M-PSK TCM schemes when the receiver can be provided with channel state
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information, and hence it is argued that the high data rate requirements of future
digital satellite communications and digital mobile communications can be met only
with the use of M-QAM TCM schemes [131].

In addition to the use of coded-modulation schemes, the most effective

technique to reduce the effect of severe fading present on such time-varying
channels is through the use of diversity reception. The diversity technique is
based on the notion that the probability of the signals received on D-different
independent paths will fade simultaneously is extremely small [97]. In diversity
reception, the receiver is provided with several replicas of the same information
transmitted over D-independent fading channels.

The optimum combined MLSE receiver structure or its sub-optimum variants,
requires an exact knowledge of the channel characteristics for the equalization
and decoding of TCM signals. So far our study has been constrained under the
assumption that the channel is time-invariant and known. But in reality, the
channel is usually non-stationary (time-variant) and is unknown. Therefore for
proper detection, the receiver needs to be equipped with an adaptive channel
estimator for the identification of time-varying channel parameters.

Awide range of adaptive algorithms for channel estimation have been reported
in the literature [101, 104], the most common being the least-mean squares (LMS)
algorithm and the recursive least-squares (RLS) algorithm. The LMS is simple to
implement and hence finds wide applications. The RLS algorithm exhibit faster
convergence and better tracking capability than LMS algorithm, and is well suited
for applications on time-varying ISI channels [37, 101]. The inherent decision
delay of the Viterbi algorithm employed in the optimum MLSE decoder or its
subopfimum variants, will result in delayed channel estimation and hence poor
tracking especially when the channel characteristics are rapidly time-varying. Io
circumvent this problem, a new channe. estimation procedure has been reported m
recent years [65, 112]. This scheme maintains a separate channel estimator lor
each state of the Viterbi decoder and uses the delay-tree decisions, associated
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with the survivor path leading into that state, for the updating of channe.
coefficients through the LMS or RLS adaptive algorithm. This new channe.
estimation procedure, called as respective-state channel estimation (RCE) or per-
state processing (PSP) channel estimation, has been shown [66, 105] to exhibit
excellent tracking performance on rapidly time-varying ISI channels.

In this chapter, we first consider the discrete-time model of the lading
channel. We next consider the channel estimators based on LMS/RLS adaptation
algorithms which employ delayed-decision updating for estimating the channel
coefficients, for applications on slow fading channels. For applications on
rapidly time-varying channels, we consider the channel estimation employing a more
complex respective-state channel estimation procedure that uses delay-free
decisions to update the channel coefficients through LMS/RLS adaptation. The error
performance and tracking characteristics of these channel estimators have been
studied through simulation. Also, a study has been performed to determine the
error rate performance of several adaptive TCM receiver structures on fading
channels, through simulation. We then consider the use of D-diversity reception
for the decoding of Trellis-Coded QAM signals transmitted over a severe fading
channel. Finally, we present the results of the study on the error rate
performance of different adaptive receivers through simulation.

6.2 FADING CHANNEL MODEL FOR TCM TRANSMISSION

Many of the physical digital communication channels such as HF shortwave
ionospheric propagation channels, troposcatter radio, digital mobile radio, and
digital satellite channels are often modeled as time-variant multipath fading
channels. Three phenomena namely time-spread, Doppler spread, and multipath fading
have been recognized as the main impairments to reliable communication over these
channels. The time-spread causes ISI, the Doppler spread necessitates a fast
convergent algorithm for adaptive equalization, and the multipath fading also
results in a very low received signal when the channel exhibits a deep fade and
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necessitates the use of diversity techniques [117].

The fading dispersive channel can be modeled as a randomly time-variant
linear filter [5, 62], which can be completely specified in terms of the time-
varying channel impulse response, as detailed in Appendix C.

Consider the equivalent baseband transmission system for the transmission of
TCM signals over a time-dispersive fading channel as shown in Fig.6.1. The system
transmits minformation bits X per signaling interval. The TCM encoder produces
m+1 coded bits Yn which are mapped into a channel signal a(n) of the 2",+,-QAM
signal constellation, in accordance with the mapping rules of TCM 1126]. For
optimum detection, the received signal is passed through a linear filler matched
to the channel characteristics and the output of the whitened-matched filter is
sampled periodically at the symbol rate. Thus, at the sampling instant n, the
sampled complex value of the received signal is given by

N-1

r(n) = [gk(n).a(n-k) + v(n) (6 ]}
k=0

where gfc(n) represents randomly time-varying coefficients of the finite duration
channel impulse response, and takes into account the effects of the transmit
filter, the actual channel and the receiver filter. v(n) represents the sampled
value of the complex AWGN process with zero-mean and variance *] in each dimension
and a(n)'s are the transmitted TCM QAM symbols.

Thus, TCM transmission over a time-dispersive fading channel can be modeled
as a finite duration taped-delay-time (TDL) filter with randomly time-varying
coefficients gk(n) at tap spacings of T as shown in Fig.6.2, where T represents
the sampling (baud) interval. The time-variant tap weights {gk(n)} are assumed to
be statistically independent complex-valued Gaussian random variables having zero
mean and variance Pfc in each dimension given by

Pk = d/2) E[|gk(n)|2], fork = 0, 1, , N-1. ...(6.2)
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Note that Pfc's define the delay power spectrum or the power impulse response of
the channel.

The time-variations in the channel characteristics are taken into account by
filtering the random tap coefficients through a first-order low-pass filter whose
3dB bandwidth Bis of the order of fade rate in Hz, as detailed in Appendix C.
This leads to the following model for the tap gains of the fading dispersive

channel [88],

gk(n+D =gk(n) exp(-aT) +JPk(l-exp(-2ocT)) ufc(n) .-(6.3)

where u(n) denotes the samples of zero-mean, unit-variance complex Gaussian noise
process/In (6.3), <x=2nB where Bis fade rate in Hz, and Tis the sampling
interval (baud interval).

«

6.3 CHANNEL ESTIMATION

Given the received sequence (r(n)}, the problem is to recover the symbol
sequence {a(n)}, as reliably as possible, within the constraints imposed by the
receiver structure. Several adaptive receiver structures have been reported in the
literature [77, 104] for the recovery of the data in the presence of the unknown
channel interference and noise.

The estimation of random time-varying channel coefficients {gk(n», given the
measurements of the related process (r(n)} will constitn.e the channel estimation
problem. The general configuration of an adaptive channel estimator nsed m
connection with an optimnm MLSE detector or its suboptimnm variants is as shown in
Fig 63 The channel estimator approximates the actnal channel with a discrete
finite-state machine (linear time-variant filter) in exactly the same manner as
that of Fig 6.2. Arecursive adaptive algorithm is employed to estimate the
channe, coefficients by minimizing the error between the actual received science
^ ,he estimated recetved sequence available from the output of the linear filter
[101].
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The channel estimator is initially operated in the training mode (start-up
mode) to estimate the tap coefficients, during which a known data sequence {«•)}
is used to form the filter output {r(n)J. Followed by this, it is operated in the
decision-directed mode (adaptive-mode) for tracking the channel estimates, during
wh,ch the detected data sequence {a(n)l is used to form the filter output (r(n)l.
It has been shown that [78] by forming an error sequence !><n)=r(n)-r(n)] and
applying a suitable minimization criterion, one obtains as the optimum filter
coefficients the actual channel parameters {gt(n)).

The adaptation algorithm employed in channel estimation should exhibit last
convergence during the training phase, better tracking capability during the
adaptive phase, and a low computational complexity. The stochastic gradient-type
algorithms, such as LMS algorithms are the simplest and the most widely used
adaptation algorithms when the channel characteristics are slowly time-varying.
The recursive leas.-sqnares (RLS)' adaptation algorithms exhibit faster convergence
and better tracking capabilities than LMS algorithms and are considered to be
suitable for time-varying channels [44, 74, 100). Unlike LMS, the convergence rate
of RLS is insensitive to the eigenvalne spread of the signal autocorrelation

matrix

The channel estimator, in the adaptive mode, uses the decoded data decisions
,o update the estimates of the tap gain coefficients. It is well known that
reliable data decisions from the Viterbi decoder will be available only after a
flxed decision delay a [47]. Therefore for channels with large memory and in
particular for the combined ISI and TCM decoding, this a can be very large.
Consequently, this leads to adelay in the channel estimation and hence results ,n
poor tracking of the channe, response in a time-varying environment. Thus, the
conventional channe. estimation techniqnes employed in adaptive MLSE structures
suffer from poor tracking on arapidly time varying IS. channel. Kubo e, al. [65]
and Sesbadri [112] have, independently, proposed a new channe, estimauon
technique that facilitates delay-free channe, estimation by mainta « a separate
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channel estimator for each state of the Viterbi algorithm. The respective-state
channel estimates are updated through LMS/RLS algorithm by making use of the zero-
delay decisions associated with the survivor path leading into that state. As the
procedure involves the estimation of channel coefficients for each state per baud
interval, the method is often referred to as per-state processing (PSP) or
Respective-state Channel Estimation (RCE) [24, 66, 105]. Since the estimates of
the channel impulse response are not influenced by the decoding delay s of the VA,
the performance of this estimation procedure is shown to be much superior to that
of conventional channel estimators for rapidly time-varying ISI channels. However,
the price paid for this improved performance is the increased complexity in
implementation, which depends on the number of states in the trellis on which the
VA operates.

Kubo et al. [65, 66] have considered the study of the respective-state
channel estimators for uncoded transmission, as well as trellis-coded QPSK
transmission using the LMS adaptation criterion. In this work, we have considered
a study of these respective-state channel estimators based on both LMS and RLS
algorithms and their applications to the detection of Trellis-Coded QAM signals
over time-varying ISI channels using various trellis structures discussed earlier.

6.3.1 Channel Estimation Using LMS Algorithm

The channel estimator based on LMS adaptation as shown in Fig.6.4, has a
structure identical to that of a linear transversal filter. In fact, the channe.
estimator is a replica of the equivalent discrete-time channel filter that models
the ISI. The estimated channel tap gains {gk(n)} are adjusted recursively by the
steepest-descent LMS algorithm to minimize the mean-square error between the
actual received sequence {r(n)}, and the estimated received sequence ftn)}
available at the output of the estimation filter. The speed of the convergence and
the adaptation rate are controlled by the value of the adjustment parameter a. It
may be noted that a delay q, equal to the decision delay a of the VA, is
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A

introduced to properly time the comparison between the received sequence (r(n)!
A

and the estimated received sequence {r(n-q)}.
For decision-directed mode of operation, the adaptive LMS algorithm for

complex signals is then described by the following equations [75, 78, 140].
Filter output:

* at A (6 5)r(n) = AT(n)G(n) -^

Error :

, x A, x ...(6.6)e(n) = r(n) - r(n)

Coefficient update :

G(n) = G(n-l) + A.e(n).A*(n) ••(6-7)

where A(n) is an N-component input vector to the filter at the time instant n,

defined as

A(n) = [a(n), *n-l), a(n-N +l)f •••<«•»

G(N) is an N-component vector of tap gain estimates, defined by

A . * i M-r ...(6.9)GOT = [g0(n), g,(n), ..... gN1(n)]

r(„) is the desired reference signal and r(n) is the estimated filter output, .» is
d, step size for coefficient adaptation, and x. • represent the transpose and
complex conjugate operations, respectively.

For mathematical tractability, it is assumed that the detected data sequence
(a(n)) is correct, that is a(j)=a(j) ta all VThen the mean-square error between
the received signal r(n) and its esdmate r(n) is given by

" ,i, ...(6.10)
c(n) = E {|r(n) - r(n)| }

„ has been shown that [78, 139], as long as the data sequence (a(n,) is
oneorrelated, the optimum tap gain coefficients (g,(n), are exactly equal ,„ the
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respective values of the equivalent discrete-time channel response {g (n)}. Then,
the minimum mean-square error is simply equal to the noise variance N =2o© where

0 v'

ct-2 is the noise variance in each dimension.

6.3.2 Channel Estimation Using RLS Algorithm

We next consider the channel estimator based on RLS adaptation algorithm.

Structure-wise the estimator is identical to that of Fig.6.4 and approximates the

discrete-time channel of Fig.6.2. The estimated tap-gain coefficients {g (n)} are
adjusted recursively using a least-squares cost criterion.

A

Let GN(n) represent an N-dimensional vector of the estimated channel

coefficients defined at time instant n as

GN(n) = [go(n), g^n), , gN](n)]T ...(6.n)
A

Also, let AN(n) represent an N-dimensional vector of decoded data symbols defined
at time instant n as

AN(n) = [a(n), a(n-l), , a(n-N+l)]T ...(6.12)

Suppose we have GN(n-l) and the inverse covariance matrix P (n-1) of the decoded

data symbols. When the decoded signal component a(n) is received, we have A In)

Then the recursive least-squares (RLS) computation, in complex form, for the time

update of GN(n) and PNN(n) proceeds as follows [1]:

Compute the filter output:

A

r(n) = A;(n).GN(n-l) ...(613)

Compute the error:

A

e(n/n-l) = r(n) - r(n) ...(6.14)

Compute the Kalman gain vector:
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,M- >("-1)A"(n).
X+ A>) PNN(n-l) AN(n)

Update the inverse correlation matrix:

V " l [PNN(I,-1) "^ ^W PNN(n-')) -(6-,6)
Update the channel coefficients vector:

G(n) = G>-l) + K(n).e(n/n-l) •••(6.17)
N N Pi

or GN(n) = GN(n-l) + PJn).A>).e(n/n-l) -(6.18)

Initialization:

Gn(0) = AN(0) - 0 -(6.19)

^ PNN(0) - «"lI
where 5 is a small positive constant, and I is NxN identity matrix. Note that in
(6.11)-(6.18), n stands for the discrete time index, t for transpose, and * for
complex conjugate operation. The parameter Ais some positive constant close to
but less than unity, used for the exponential weighing of the past signal. The

factor 1/(1-A) represents the memory of the algorithm.

The objective of the least-squares algorithm is to generate an optimum tap
coefficient vector GN(n) at time n, which minimizes the weighted squared-error [1,
37],

n

e(n) = jy-1 e(i/n).e*(i/n)
i = 0

12 ...(6.20)
. |iW - vjnv«; «Nw

i=0

= 5>n" |i0) - G>) AN(i)l

In the sense of this error minimization criterion, the RLS estimation algorithm
makes the best possible use of all the available data (AN(i), r(i)) upto the time
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n. Therefore, in this sense it converges and tracks as fast as possible. Although,
the RLS algorithms are well suited for applications in a time-varying environment
because of fast convergence and better tracking capability, they are too complex
to implement compared to the LMS algorithms.

In the conventional channel estimation procedure using either LMS or RLS

algorithm, a decision delay of q s 5 needs to be incorporated to properly time the

comparison between the reference and the input to the estimation filter. This

causes a delay in the channel estimation and hence results in poor tracking which

may not be tolerable in a rapidly time-varying environment.

6.3.3 Delay-free Channel Estimation Using Per-Survivor Processing

The conventional channel estimation techniques, as discussed in the

proceeding subsections, which are normally employed in the adaptive MLSE

structures suffer from poor tracking capability in a time-varying environment due

to the decision delay 5 inherent in the Viterbi algorithm. A large delay in the

channel estimation may not be tolerable in applications, such as digital mobile

radio and mobile satellite communications, where the channel characteristics are

rapidly time-varying [65]. Some researchers have employed tentative decisions with

delay q < 5 for channel updating [112]. A decrease in q results in erroneous

channel estimation since premature decisions from VA (for q « 5) are subject to

higher error rate. An increase in q causes degradation in tracking due to the

delay in channel estimation. Many of the adaptive algorithms desire zero-delay

tentative decisions (with q=0). Since these zero-delay decisions are subject to a

higher error compared to the global decisions with q=d, the step-size of the

adaptation algorithm should be made smaller. This is in contrast to the need for

large step-size for tracking fast varying channels. Therefore, the conventional

channel estimation techniques for adaptive MLSE fail to provide delay-free channel

estimation and better tracking of rapidly time-varying channels.

In order to achieve better tracking with large step-size adaptation as well
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as delay-free channel estimation with zero-delay tentative decisions, Kubo et al.

[65] and Seshadri [112] have independently proposed a new channel estimation

procedure known as the Respective-state Channel estimation (RCE) [66] or the per-
survivor-processing (PSP) channel estimation. This procedure maintains a separate
channel estimator for each state of the Viterbi algorithm, as shown in Fig.6.5.

The data symbol decision of zero-delay associated with the survivor path leading
into the trellis state is used to form the estimator filter output and hence a

delay-free updating of the tap-gain coefficients of the corresponding channel

estimator of that state. Thus, a set of estimated channel coefficients are

maintained per state, per trellis depth. The updating of the per-state channel

estimates is accomplished through LMS or RLS adaptation algorithm. The set of

channel coefficients so derived for each state, are used in the branch-metric

calculation of that state during the next iteration.

This procedure of respective-state channel estimation improves the

performance on fast varying ISI channels, due to the delay-free channel

estimation. Moreover, it can start-up without the knowledge of a training

sequence, meaning that the procedure is well suited for blind equalization [112J.

6.4 DECODING OF TCM SIGNALS TRANSMITTED OVER TIME-DISPERSIVE

MULTI-PATH FADING CHANNEL USING D-DIVERSITY RECEPTION

In addition to the use of coded-modulation, the multipath fading can be

effectively mitigated through the use of diversity techniques where the receiver

is provided with multiple independently faded replicas of the transmitted

information symbol. The diversity is effective since the probability of receiving

simultaneously two or more independently faded channels with deep fade is very
small.

Consider the transmission of TCM signals over D-independently fading channels

as shown in Fig.6.6. The system transmits m information bits X per signaling

interval. The TCM encoder produces m+1 coded bits Y which are mapped into a
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channel signal a(n) of the 2"'+1-QAM signal constellation, in accordance with the
mapping rules of TCM [126].

The receiver observes a combined waveform emerging from D-independent time-
dispersive fading channels, each corrupted with an independent AWGN process w.(t).
A matched filter is used to maximize the SNR at the sampling instant and a noise
whitening filter may be used to whiten the colored noise at the output of the
matched filter for a convenient system modeling.

The equivalent discrete-time white-noise model corresponding to the D-
diversity fading channel is as shown in Fig.6.7 [99, 117, 119J. The tap-gain
coefficients {gd(n)} are modeled as independent zero-mean complex-valued Gaussian
random processes with variances P^=(1/2).E[ |g^(n) |2 in each dimension. The sampled
value of the complex signal received on the dth diversity branch at time instant n
is then given by

L

rd(n) = £gd(n).a(n-i) + vd(n) ...(6.21)
i = 0

where L is the memory length of the time-dispersive fading channel and vd(n) is
the sampled value of the i.i.d zero mean complex AWGN process on the d'" diversity
branch.

Following the analysis as given in section 3.3, we can represent the
discrete-time model of Fig.6.7 by a combined finite-state machine or equivalent^
by a combined ISI-code trellis whose states are given by

Hn = (an; a(n-l), a(n-2), , a(n-L)) ...(6.22)

with an and (a(n-i)} as have been defined earlier in section 3.3. It may be
recalled that for a TCM encoder with N-states and a signal constellation of

M=2m l points, the number of states in the combined ISI-code trellis is N.(M/2)L
states with L representing the memory length of the time-dispersive lading
channel.
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Let R(i) = (r'(i), r2(i), , rD(i)) represent the linearly combined

waveform of the sampled received signals over D-diversity branches at the sampling

instant i. After the reception of the sequence {RO)}".,, the combined MLSE

receiver makes a decision in favour of the sequence {a(i)}"=1> which maximizes the

joint conditional probability density [117],

P{R(n), R(n-l) R(l) / a(n), a(n-l), ...., a(l)} ..(6.23)

or equivalent^, the logarithm of this function,

ln[P{R(n), R(n-l), R(l) / a(n), a(n-l), ...., a(l)}J ...(6.24)

Since the noise samples {vd(i)} are independent and R(i) depends upon the most

recent L transmitted symbols, we can write

ln[P{R(n), R(n-l), R(l) / a(n), a(n-l), ...., a(l)}]

= ln[P{R(n-l), R(n-2), , R(l) / a(n-l), a(n-2),..., a(l)}]

+ ln[P{R(n) / a(n), a(n-l), , a(n-L)}] ...(6.25)

where a(j) = 0 for j * 0. Assuming that the first term has been computed earlier,
the second term called the branch metric needs to be computed for each incoming

signal waveform R(n). Using the discrete-time white-noise model,

ln[P{R(n) / a(n), a(n-l) , a(n-L)}]

is equivalent to

d l

- l\ An)- J») •a(n-i)|2
d=l i-0

Thus, the branch metric which minimizes the path metric is given by

Branch metric =\ |rd(n) - j») .a(n-l)|2 -(626)
d=l i=0
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Hence, the decoding is accomplished by the Viterbi algorithm operating over the
combined ISI-Code trellis which computes recursively the survivor path metric as
given by

M>n+1) - { }™n { Mn,(,.) + I |r"(n) -I g>) . a(n_j)|2 \ ...(6.27)
11+1 d-l i-o

where the minimization is performed over all the trellis branch transitions
originating from states {nj and merging into the successor state M . The terms

n+1

(a(n-i)} for i=l,2,....L take into account the ISI due to the previous Lsymbols.
Since the state complexity of the combined ISI-Code trellis makes its

practical implementation almost prohibitive even for moderate ISI, several reduced

complexity sub-optimum receiver structures, as discussed earlier, have been

considered for the study of D-diversity reception. The error performance of the
various D-diversity receiver structures for TCM decoding under multi-path fading
environment have been studied for different orders of diversity D, through
simulation.

6.5 RESULTS AND DISCUSSION

In this section, we present the performance characteristics of the various

adaptive receiver structures, which are employed for the decoding of trellis-coded
QAM signals transmitted over the time-dispersive fading channels. In the study, we
consider the use of channel estimators which employ delayed-decision updating as
well as delay-free updating, of the channel coefficients. We also consider the use
of D-diversity reception inorder to over come the effect of severe fading present
on the multi-path fading channels.

For the study, we consider the baseband TCM data transmission system as shown
earlier in Fig.6.1. The system is implemented in the same manners as in the case
of the time-invariant system, discussed earlier in sections 3.6 and 5.5, with the
exception that the channe! is modeled as a finite duration tapped-delay line
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filter with randomly time-varying tap coefficients gk(n), as shown in Fig.6.2. As
discussed earlier, the tap gain coefficient gk(n) are generated as complex-valued
Gaussian random variables having zero-mean and variance Pk in each dimension as
defined by (6.2). For the simulation of time variant tap coefficients gk(n), we
make use of the relation (6.3). The power impulse response of the two-tap fading
dispersive channel considered in the simulation is assumed to be P1=0.6 and
P2=0.4. In order to compute the mean square error of the channel estimators and
the error performance of the adaptive receiver structures, we have considered the
averaging over 10 independent simulation runs where each run is of size 10,000
data symbols.

The performance characteristics of the LMS and RLS channel estimator for
fading channel have been studied through simulation. In Fig.6.8(a)-(b), we have
shown the typical convergence characteristics of the RLS channel estimator at a
fade rate of BT=10"6 by considering the absolute value of the mean squared error,
while in Fig.6.8(b) we have shown the convergence characteristics of both RLS and
LMS channel estimators for the same situation. Fig.6.8(c) shows the convergence
characteristics of both LMS and RLS channel estimators, where the mean squared
error is expressed in decibels. From Fig.6.8, we may note that the RLS algorithm
exhibits much faster convergence than the LMS algorithm.

Fig.6.9 shows the tracking characteristics of both the LMS and RLS channel
estimators. In the figure GK1, GK2 represent the random complex-valued channel
coefficients, while GJ1 and GJ2 represent respectively the estimated channel
coefficients. LMS and RLS exhibit almost the similar tracking performance for the
fading rates considered.

We have considered the use of the conventional LMS channel estimator, that
makes use of the delayed decision data estimates from the Viterbi decoder, as well
as the LMS channel estimator based on the per-survivor processing (PSP). The two
channel estimators are correspondingly referred to as 'Con.LMS' and 'PSP LMS' in
the legend of the Fig.6.10. The Fig.6.10 shows the error performance comparison of
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the various adaptive receiver structures using 'Con.LMS' and 'PSP LMS'. For all
cases considered the fade rate is assumed to BT =10"6. As can be noted from the
figure, there is an improvement in the probability of error event by a factor of
10 with the use of the PSP channel estimators (at lower SNR) relative to the use
of conventional LMS channel estimator. From Fig.6.10(c), we observe that there is
an improvement in the error performance of the RSSE-II structure using the PSP
estimator by about 1 dB at Pe , 10"3, relative to the use of the conventional LMS
channel estimator. The difference in the error performance of the coded adaptive
receiver structure is large at lower SNR, while it decreases at higher SNR, as is
to be expected. Henceforth in our further work, we consider only the use of the
LMS channel estimator based on the PSP technique.

We next consider the error performance characteristics of a 4-state 16-QAM
TCM signal transmitted over a time dispersive multipath fading channel for three
different fade rates and different orders of diversity D. The fade rate employed
in the study, are BT^IO5, IO"6 and IO7. Fig.6.11 (a)-(c) show the performance of
the adaptive PDFD structure for different fade rates at a given diversity D, for
the transmission of 4-state 16-QAM TCM signals over fading dispersive channel.
From Fig.6.ll(a)-(c), we note that the effects of fading rate has less influence
on the error performance for D=2 and D-3. Fig.6.ll(a)-(e) show the error
performance of the PDFD structure at a given fade rate for different orders of
diversity D. We may not that at a given fade rate, the performance improves
significantly with the use of diversity D=2 and D-3. For diversity-order D=2, the
gain in performance for the PDFD structure is nearly 3 dB at Pe=10"3 relative to
the uncoded reference system. With the use of diversity D-3, we observe that the
corresponding gain is about 3.5 dB at Pe , 10~4 relative to the uncoded reference
system.

The error performance of the 8-state adaptive RSSE structure RSSE-I, as
discussed in section 5.3.1, which is employed for the decoding of 4-state 16-QAM
TCM signals transmitted over the time dispersive channel is shown in Fig.6.12. The
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figure shows the performance of the adaptive RSSE-I structure for different orders
of diversity D, at a given fade rate. For the adaptive RSSE-I structure
considered, it shows an improvement in performance which is about 3.5 dB and 4.0
dB relative to the corresponding uncoded reference systems, at D=2 and D=3
respectively. We note that as the fade rate increases (i.e. with IO"5), the gain
in performance decreases by about 0.5-0.75 dB.

Similarly Fig.6.13(a) shows the error performance characteristics of the
adaptive KFE-MLSE structure employing the PSP LMS channel estimator for different
values of D at a fade rate of BT-10* while Fig.6.13(b) shows the results
corresponding to fade rate BT =10"5. From Fig.6.13(a) we may note that, there is an
improvement in the performance by about 5.0 dB relative to the uncoded reference
with the use of D=2 at BT^IO"6 and P,= w\ while the improvement is about 6dB
with D=3 at Pe =104 for the same fade rate. As the fade rate is increased to
BT=10"5, the gain in performance decreases as is evident from Fig.6.13(b). We note
from Fig.6.13(b) that the improvement in the error performance is about 2.5 dB
relative to the uncoded reference, with the use of D=2 and D=3 at Pe =10-3.

Fig.6.14 gives correspondingly the error performance characteristics of the
16-State and 32-State RSSE structures, RSSE-II and RSSE-IV of section 5.3.2 and
5.3.4. With the RSSE-II structure the performance improvement is of the order of
about 6.5 dB at D=2 at P^IO"3, while it is about 7.0 dB with D=3at Pe =10<. It
can be noted that the performance characteristics of the 32-State RSSE' structure
RSSE-IV is shown only for D=l and D=2. The characteristics show an improvement of
the order of about 7.0 dB at D=2 relative to the uncoded reference structure.

In the simulation study presented we have considered the use of the TCM codes-
designed for AWGN channels, for transmission over fading dispersive channels. From
the study we observe that the PSP channel estimators give a better performance
over the conventional channel estimators. The improvement in performance of the
PSP channel estimators is significantly high at lower SNR relative to the use of
conventional channel estimators. From the study we observe that the use of the 16-
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state and 32-state adaptive RSSE structures RSSE-I and RSSE-II yields significant
improvement as compared to the other sub-optimum structures over fading dispersive
channels. In particular RSSE-IV yields the best performance, but at the cost of
moderate increase in computational complexity as compared to the other structures
considered in the study. Further, we observe that there is a significant
improvement in the performance with the use of diversity.
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CHAPTER 7

CONCLUSIONS

In this chapter, we conclude the thesis by summarizing some of the important
resuits of the present work and also suggest some problems for further
investigation.

We have first presented astudy of the TCM schemes tor applications on AWGN
channel. The design of several treliis-coded QAM schemes have been presented. The
performance cva.uation of the TCM schemes on AWGN channel has been discussed and a
new method for computing the distance spectrum of the TCM codes has been
presented. Using this method, the upper ^d lower bounds on ,he error even,
probability have been evaluated. The performance bounds so derived have been
compared with the simulation results.

From the error performance characteristics of the various TCM schemes we
observe that the 4-state TCM schemes achieve again of nearly 3dB relative to an
uncoded reference system, without compromising the spectral efficiency or power
efficiency. With 8-state and .6-state TCM schemes the respective gains arc
approximately 4dB and 5dB a, P. e 10«. A,s0, we ,nd ,hat ^ ^ ^ ^
bounds on the error event probabi.ity, obtained through the use of the distance
spectrum computing algorithm, are quite tight in the sense that the simulation
results lie well within the computed bounds. Therefore, the proposed distance
spectrum computing algorithm is quite effective in the evaluation of ,|,e
performance bounds of all Ungerboeck TCM codes on AWGN channels.
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We have next considered the application of TCM schemes for data transmission
over time-dispersive ISI channels. The TCM scheme in combination with the MLSE
equalizer promises to provide the optimum performance, which is very close to ISI-
free performance. The resulting combined MLSE receiver structure, although
optimum, has a computational complexity that grows exponentially with the ISI
memory length. In the present work, we have considered the design of several
combined ISI-code trellis structures for the optimum detection of the trellis
coded QAM signals in the presence of ISI and AWGN. The error performance of the
above receiver structures has been obtained for a wide variety of ISI channels,
through evaluation of bounds and simulation. From the simulation results, we find
that the coded combined MLSE structures does achieve a gain of about 2-3 dB
relative to the uncoded MLSE structure over ISI channels, for the same data rate,
bandwidth and signal energy. We also observe that the upper and lower bounds,
which are computed by the new procedure that makes use of the error sequence of
the basic TCM encoder and the discrete channel impulse response, do agree with the
simulation results. Hence, the proposed method is quite effective in evaluating
the performance bounds of the combined ISI-code receiver structures.

The fact that inspite of its optimum performance the combined MLSE structure
becomes too impractical, keeps open the problem of search for a reduced complexity
structure which can be used for the detection of trellis-coded QAM signals
transmitted over ISI channels. We have presented a reduced complexity KFE-MLSE
structure for the sub-optimum detection of trellis-coded QAM signals over ISI
channels. From the error performance characteristics, the KFE-MLSE structures
based on 4-state TCM scheme, achieve a significant coding gain of the order ot
2_2 5dB relative to the uncoded KFE reference system. Higher cod.ng gains in the
range of 3-4 dB are possible with the use of KFE-MLSE statures which employ 8-
state or 16-state TCM schemes. We have also presented amethod for the computation
0f the performance bounds for the KFE-MLSE structures, (through the use ol
spectral factorization technique and innovation representation) by finding the
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combined impulse response and the overall noise variance. Using this approach
estimates of the upper and lower bounds on the error even, probability have been
computed. For a wide variety of .SI channels considered, we find that the
simulation result is confined within the computed upper and lower bounds The
proposed KFE-MLSE structure therefore is analyse and is a practically feasible
system for the detection of trellis-coded QAM signals over ISI channels of large
memory length, although its performance is sub-optimum when compared with that of
the combined MLSE receiver structure.

We have next considered a study of the reduced complexity receiver structures
which incorporate the technique of channel truncation and the sc-partitioning
ideas inherent in the TCM design. The performance of these truncated combined MLSE
structures and reduced state estimates (RSSE and PDFD) have been determined for a
wide variety of IS! channels through simulation. The results indicate that the
ttuncated combined MSLE structure achieves performance which is close to that of
the combined MLSE structure (for motion length J_L). With RSSE and PDFD
receiver structures, we find a drop in the performance gain relative to the
tmncated MLSE version. Relative to the KFE-MLSE structure, these reduced s,ate
techniques show an improved performance (with again in the range of 1.0-1.5 dB),
but at the cost of increased complexity.

We have finally presented a study of trellis-coded QAM on lading channels. A
tapped delay line model is used for the simulation of random time-varying channel
coefficients. The performance of the receiver structures, considered earlier, have
been obtained through simulation for different fade rates. Since the channel is
unknown and time-varying, the channel estimators have been implemented to estimate
the tap-gain coefficients. The channe. tracking characteristics have been studied
through the use of the LMS and the RLS algorithms. To circumvent the problem ol
decision delay (inherent of the Viterbi algorithm) for the tracking of rapidly
time-varying fading channel, a recently proposed PSP channel estimator has been
employed. This new procedure of channel estimation shows improved performance over
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the conventional channel estimators, especially when the number of trellis states

is large.

To overcome the effects of severe fading, a consequence of multipath fading

channels, the D-diversity receiver structures have been employed. Although there
is an increase in the complexity of the receiver structure we find a significant

improvement in the performance for orders of diversity, D* 2.

SUGGESTIONS FOR FURTHER WORK

In the present work, we have proposed the KFE-MLSE structure, a prefillering
technique making use of the Kalman filter, as a physically viable reduced
complexity receiver for the decoding of trellis coded QAM signals in the presence
of ISI and AWGN. In the present scheme the Kalman filter is used for the channel
equalization. The Kalman filter can be used for both channel estimation and
channel equalization [68, 69]. By incorporating the per-survivor processing (PSP)
technique into the Kalman filter, it would be interesting to realize efficient
Kalman-based PSP channel estimators that are highly suitable for rapidly time-

varying multipath radio channels.
In the present work, we have considered a new method following the approach

adopted by Magee and Proakis [79], in order to evaluate the upper and lower bound
estimates of the error event probability for the coded combined MLSE receiver
structure. This method, which makes use of the error sequence of the basic TCM
encoder and the discrete impulse response of the channel, yields reasonably good
performance bounds. It would be interesting to extend this approach for the
performance evaluation of the trellis-coded RSSE structures. However, it may be
noted that the MLSE and RSSE have different error structures, and in RSSE there is
error propagation introduced by the algorithm [118]. These factors have to be
properly accounted for, in the application of this method.

In recent years, several generalizations of the Viterbi algorithm have
appeared in the literature [39, 58, 114, 120], amongst which the List-type Viterbi
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decoding is getting much attention. Seshadri and Sundberg have reported in [114J
an improvement of the order of 3 dB with the use of List-type Viterbi algorithm
over the use of conventional VA. The application of List-type VA to the reduced
complexity receiver structures considered in the present work, could be worthwhile
and may also result in a further reduction in the computational burden. A further
investigation into the various generalizations of the VA for their application to
coded modulation schemes is also desirable.

Our work is constrained to the study of two dimensional trellis-coded QAM
schemes. In recent years, there is an increased interest in the use of 4-
dimensional TCM schemes, particularly in the design of 19.2 Kb/s modems which are
employed for the transmission of compressed digital audio/video signals [136J. The
present work can be extended to the study of 4-D TCM schemes. As pointed out in
[136, 144], the performance on fading channels can be improved with the use of
multilevel coding, wherein the block-coded modulation and TCM schemes are used in
combination, to achieve higher gain than is possible with the use of a single
coded scheme alone. Construction of multidimensional M-ary QAM TCM codes for AWGN
and fading channels based on the multilevel approach is another topic for further
investigation. Afurther work in the direction of reduced complexity decoding
techniques for multilevel multidimensional TCM schemes for their applications on
fading channels could be worth investigating.
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APPENDIX A

SPECTRAL FACTORIZATION

Consider the problem of obtaining the polynomial D(z) given y(z) as

r(z) = [ r.z1 ...(A.I)
i = -J

such that

y(z) = D(z).D*(z!) ...(A.2)

and D(z) has all its roots outside the unit circle. This is the so called
spectral factorization problem [106]. To solve this problem, consider the
application of Cholesky factorization algorithm [107, 141] to (A.l), by defining a
positive definite Toeplitz matrix Pn of order (n+l) by (n+l) as [83J

P =
it

o

vr

n+l

n-1

..(A.3)

where zn = 0 for |n| > J+l

At any stage n, the matrix Pn by a congruent transformation may be written as

P = F B F*T
n n n n

where Fn is a complex lower triangular matrix defined by
1 () 1
f

10
1

F =
f
20

f
21

1

n

f
nO

f
nl

.. 1

_
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and B is a positive definite diagonal matrix defined by

B =
n

00

0

0

11
..(A.6)

To find the matrices F and B at stage n, it suffices to find the n-th row of F
n n

and n-th diagonal element of B. The algorithm to compute these elements at stage

n is given by

Yf b.f* = r, forj = 0, 1, ...., n
L ni ii ji J-n

i=0

...(A.7)

It has been observed that at sufficiently large n, the elements of the last row of

F as well as b converge. The computation experience reveals that convergence

occurs within about (15+J) stages. Their polynomial D(z) is given by [83],

-* J-ID(z) mlim fiT[l + f* z + .... + f . zj
UW n-^oo fnn L n.n-1 »,»-J

= d(l + dz + dz2 + + djZJ) ...(A8)

To illustrate the Cholesky factorization procedure, we consider, the factorization

of the polynomial

i

Hz) = I r.z1
i=-i

where r - -(0.85+J0.18) yfl = 1.7549 r, = -(0.85-jO. 18).

The corresponding matrices P, Fp, Bn at various stages of nare given as
Po = [1.7549] FQ = [1] Bo = [1.7549]
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B =
i

17549 -(0.85-J0.18)

(0.85+J0.18) 1,7549

1.7549

0

0

1.7549

Continuing the procedure upto n=10, we get

F =

1

-(0.85+J0.18)
1.7549

17549 -(0.85-jO. 18) 0 o . ()

-(0.85+J0.18) 1.7549 (-0.85-j0.18) 0 0

(0.85+J0.18) 1.7549 -(0.85-jO. 18) 0

1.7549 o

10

0

0 0

Performance the factorization, the matrices F , B can be written as

i 0

-(0.85+J0.18)
1.7549 l

F =
10

n -(0.85+J0.18)
1.3247

-(0.85+J0.18) ,
1.0157 '

0
1
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1.7549
0

1.3247

and Bio =

0
1.0157

1.0117

Thus the polynomial r(z) can be factored as

y(z) = D(z) D*(z_1)

where D(z) = Jb^ [ 1+ f^z]

or D(z) = 1.0058 [ 1 - (0.84 - j0.1779)zj.
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APPENDIX B

VARIANCE OF ARMA(P,Q) PROCESS

Consider the general form of an autoregressive moving average process ARMA
(p,q) for q > p defined by

W(n) + ^W(n-l) + 02W(n-l) + .... <p W(n-p)

= Q0V(n) + QV(n-l) + Q2V(n-2) + ... + QV(n-q) ...(B.l)

where V(n) is a white noise input process that results in a colored output process
W(n)

Multiplying (B.l) by W(n-k) and taking the expectation, we get,

E[W(n) W(n-k)] + ^ E[W(n-l) W(n-k)] + ....+ *ElW(n-p) W(n-k)|

= Q0E[W(n-k) V(n)] + Q^Wfci-k) V(n-l)j + ....+ QHlW(n-k) V(n-q)]

or ?(k) + ^(k-1) + ^(k-2) + .... + ^(k_p)

= QoUk) + Q.^vCk-1) + ... Q^wV(k-q)t ...(B2)

where £(j) represents the variance function defined by £(j) = ElW(n) W(n-j)| and
SwV0) represents the cross covariance function between Wand Vdefined by e (j)

wv J

= E[W(n-j) V(n)]. Since W(n-j) depends only on V(i) which have occurd upto time
(n-j), it follows that E[w(n-j)V(n)]=0 for j>0 because W(n-j) and v(n) are
uncorrelated for j>0.

Thus Cwv 0) = 0 j > 0

md $ (j>o j s o
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Applying (B.3) in (B.2) we get

€(k) + ^(k-1) + + ^(k-p) = 0 ..(B.4)

for (k-q) s 1 or k ^ q+1

The variance of the process W is given by ?(0)=E[W(i)W(i)J. From (B.2) we can

write for

k=o ; m + ^(D + *2€<2) + .... + ifip) = Q0?WV(Q) + Q.ej-D

+ +QqU^

k=l ; ?(1) + 0,5(0) + *aC(l) + .... + ^(P-D = Q,U0) + %(-!)

k=P ; €(P) + *,€(p-D + •- + *p€(o) = Qp^wv(o) + QP+I^H)

+ + Q? (-q+ p) .(B5)
l| wv

These (p +1) equations of (B.5) are required to be solved for r;(0). £(1) ?(p).
This can be done by finding the (q+1) cross covariance functions ^(0), ^(-1),

e (-a) To obtain £ (0), multiply (B.l) by V(n) and take expeclion on both
•••' swvv M/' wv

sides to get

E[W(n) V(n)] + <Pl E[W(n-l)V(n)] + ... + 0E[W(n-p)V(n)j =

QoE[V(n) V(n)] +Q, ETV(n-l) V(n)] + ...+ Q(E[V(n-q)V(n)J ...(B.6)

Note that E[W(i)V(j)] = SWV(H)

where £ (j-i) = ° for 0-0 > °
wv

0 for 0-0^0 •<B7)
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Also E[V(i) V(J)] = cr2 if i = j
V J

= 0 elsewhere ...(B.8)

since V(n) represents iid white noise sequence (process). Subsliiuting of (11.7)
and (B.8) in (B.6) yields,

£ (0) = Q a-2 ,„ m
wvv ' ^0 v ...(H.V)

Similarly to obtain ^(-j), multiply (B.l) by V(n-j) and taking expectation we
can find all ^(-j) forj=l, 2, , q.

Thus, we get (q+1) equations as

? (0) = Q a-1

? (-1) = Q,(r2 - 0 ^ (0)
wv ^1 v Yl^wvv '

K (-2) = Q<r2 - 0 (-1) - d, P (0)
wv ^2 v *1 wVv y V2SwvV '

^ = Qq% - *,?wv(-q+D - - fAJ-q+P) ...<b.io)
2Thus, given ^ of the process V(t) and the coefficients {0}, {Q }, (B.5) can be

solved using (B.10) and hence the variance £(0).
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APPENDIX C

FADING DISPERSIVE CHANNEL

The fading dispersive channel can be modeled as a randomly time-variant
linear filter [5, 62], which can completely be specified at time instant t by an
impulse response g(T;t) due to an impulse excitation applied t seconds earlier.

Let a(t) be the equivalent baseband signal transmitted over the channel.
Then the received signal, in the absence of noise, may be expressed as [100],

00

r(0 = |g(x;t) a(t-x)dx (C ,}
-00

where g(T;t) is the time-variant impulse response of the baseband channel. It
A(f) is the frequency domain representation of a(t), then (CI) may be expressed
in terms of the transfer function G(f;t) as

00

r(t) = |G(f;t) A(f) e^df (C 2)
-CD

It may be observed from (C.2) that the channel distorts the signal A(f). The
changes in the received signal strength due to time-variations in G(f;t) is termed
as 'fading'. In (C.l), g(T;t) may be viewed as the complex gains of a densely
tapped delay line (TDL).

If the channel is bandlimited to |f |* W/2, then it can be shown that |100|

00

r(t) =i I a(t-k/w> g(k/w;1) ...(c.3)
K=-oo
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Defining the set of time-variable channel coefficients as

1 P(k/W:f) ...(C4)gt«> = ^ g(k/W;t)

we can express (C.3) as

r(t) = [ gk(t) a(t-k/W) -..(C.5)
K=-oo

Thus, the time-variant multipath fading channel can be modeled as a TDL filter

with a tap spacing of T=l/W and tap coefficients {gk(n)J. For a practical channel
the propagation delay will be of finite spread and therefore, (he TDL model as
represented by (C.5) can be terminated with N=TW+1=L+1 taps where T'm is the total
multipath spread and L corresponds to the memory length of the channel. Thus we

can write (C.5) as

N-1

r(t) = [ gk(t) a(t-kT) -<C6)
k=0

where T=l/W. Therefore, the noise corrupted received signal at the sampling

instant t=nT can expressed as

N-1

r(n) = £gk(n) a(n-k) +v(n) •••(c-7>
K=0

where v(n) is the sampled value of the complex AWGN with zero mean and variance *•]
in each dimension. The TDL model of the fading channel corresponding to (C.7) has

been shown earlier in Fig.6.2.

In the TDL model, the time-variant tap weights {gk(n)[ are assumed to be
statistically independent complex-valued Gaussian random variables having zero-
mean and the variance Pk in each dimension given by

P =IE[|g(n)|2), fork =0,1, N-1 ...<C8)
k 2
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Note that Pr's define the delay power spectrum or the power impulse response of
the channel.

In practice, the channel exhibits variations that are smaller than the rate
of data transmission. The slow fading is appropriate for a number of channels
such as troposcatter and HF radio communication channels.

For simulation, the tap-gain coefficients g(0), k—1.2 N-I, are
generated as complex-valued Gaussian random variables with zero mean and variance
Pk in each dimension. The slow variations in the channel are taken into account
by filtering the random tap coefficients through a first order low-pass RC filter
whose 3-dB bandwidth B is of the order fade rate in Her.z. Thus, the tap
coefficients will have apower spectrum Sk(u>) of the form [88],

\(U)) - pk -r~i! k = 0,1,..., N-1 ...(C9)

where a = 2ttB radians/sec and B = fade rate in Hz

This leads to the following model for the tap gains of the lading dispersive
channel.

gk(n+l) = gk(n) exp (-aT) + JPk(l-exp(-2aT))' uk(n) ...(CIO)

where uk(n) is the sampled value of zero-mean, unit-variance complex white
Gaussian noise process and T is the sampling interval, which is assumed lo be the
baud interval.
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