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ABSTRACT

In recent years, the ever increasing demand for reliable bhigh-spced
information transmission has spurred an active interest in the development  of
efficient coded communication systems, both in terms of power efﬁciéncy and
bandwidth (spectral) efficiency. The traditional coding schemes trade bandwidth
efficiency for ‘increased power efficiency/coding gain and therefo.re are considered
to be suitable only for power limited channels, where bandwidth is abundant. The
rapid growth in digital radio communication and high-speed digital networks,
demands a large spectral efficiency to meet the. enhanced information rate
requirements. Ungerboeck’s combined coding and modulation scheme, namely Trellis-
coded modulation (TCM), has provided an impetus to achieve high spéctral
efficiency on  bandlimited  channels, = while providing adequate  power
efficiency/coding gain. Over the past decade, t'he TCM has evolved as a robust and
efficient coding scheme for information transmission without ‘sacrificing  data
rate, bandwidth, and signal power. The fact that it promised. to fill most of the 9
dB gap between the rates achievable and Shannon’s channel capacity limit, prompted
an active research as well as ‘wide-spread practical. applications of the TCM.

Ungerboeck’s TCM scheme is an integrated design approach that regards coding
and modulation és a single entity. Essentially, the TCM scheme employs non-binary
redundant modulation in conjunction with a finite-state convolutional encoder that
governs the selection of channel signals. The key . to this unified design approach
is a special mapping technique called mapping by set-partitioning, which ensures
that the minimum Euclidean distance (ED) between the coded signal sequences is
maximized. At the receiver, the noise corrupted signal sequence is decoded by
soft-decision maximum-likelihood Viterbi decoder, which is an optimum receiver.

Depending upon the code employed, a TCM scheme can improve the robustness of



digital transmission on additive white Gaussian noise (AWGN) channel by 3 to 6 dB
relative to an uncoded modulation system, without compromising the bandwidth
efficiency or power efficiency.

‘The present work is concerned with the study of Trellis-coded QAM system on
AWGN channels as well as on time-dispersive intersymbol interlference (ISI)
channels. In an effort to overcome the problem of computational complexity of the
optimal receiver structure for bandlimited channels, various reduced complexity
sub-optimum receiver structures have been considered and their performance
evaluated.

We consider first, the performance of Trellis-coded QAM systems on AWGN
channels, which depends on the decoding algorithm and the distance properties of
the code employed. An exact analysis of the error probability is difficult, and
one normally resorts to either simulation or the evaluation of performance bounds.
Simulation is a time consuming process and therefore cannot provide realistic
estimates of error performance at high signal-to-noise ratio (SNR). On the other
hand, the performance bounds are the most effective tools in the evaluation - of
performance at moderate to high SNR. The algorithms used (o compute the
performance need to be fast and efficient. Most of the algorithms proposed in the
literature are based on the transfer function approach, which when combined with
union bound yields a tight upper bound td the error probébility.

In the present work, we have proposed a unidirectional trellis search
algorithm = based on the shortest—r|oute principle, that computes the distance
spectrum of the code using a trellis structure whose state complexily is same as
that of the encoder. The algorithm is fast and efficient. The derivation of tight
upper bound to error brobability requires computation of the complete distance
spectrum of the code to eQaluate all the terms of the union bounds. In practice,
the first few spectral lines of the code are computed to yield a moderately tight
upper bound to error probability. Following this approach, the performance of

trellis codes on AWGN channel have been evaluated through bounds, using the
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proposed distance spectrum computing algorithm, and the results so derived are
compared with simulation results. The performance evaluation so derived is found
to be nearly tight, in the sense that the simulation Tesult lies well within the
computed lower and upper bounds. The proposed method, for the computation ol
distance spectrum and hence the evaluation of the code pertormance, is found (o be
quite eftective for Ungerboeck’s TCM codes. We observe that, over AWGN channel (he
TCM schemes achieve a coding gain of nearly 3-5 dB relative to the uncoded
reference system. |

The large spectral efficiency and high coding gain achieved by TCM on AWGN
channels, has stimulated researchers to investigate its performance and consider
its application to high-speed data transmission over bandlimited time-dispersive
channels. The primary impediments over such a channel are the ISI and AWGN. While
TCM can effectively enhance noise immunity without a reduction in dala rate. a
powerful equalization technique such as maximum-likelihood sequence estimation
(MLSE) is desired to mitigate the effects of ISI. Therefore for bandlimited
channels, a TCM scheme in combination with an optimum MLSE promises to achieve
data rates close to channel capacity. The cascade of TCM encoder and ISI channel
can be represented by a combined finite-state machine and hence a combined ISI-
Code trellis, whose states is the product of encoder states and IS] stales.
Consequently, the receiver performs a maximum-likelihood estimation of data
sequence using the Viterbi algorithm (VA) that searches for a minimum cost path in
the combined ISI-Code trellis and the resulting structure is optimum. A study has
been performed to evaluate the error rate performance of the combined [SI-Code
receiver structures, used for the decoding of various Trellis-coded QAM signals in
the presence of ISI and AWGN, through simulation. Making use of the error
structure  of the basic trellis-code employed and the ISI channel characteristics,
the performance of the optimum combined MLSE receiver structures have also been
evaluated through bounds, and are found to be in concurrence with the simulation

results. From the simulation results, we find that the performance of the optimum
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combined MLSE receiver structures, over certain ISI channels, is very close to
that under an ISI-free environment. Although there is a degradation of the order
of 1-2 dB relative to the ISI-free performance, the combined I[Sl-code trellis
structure achieves gain of about 2-3 dB over the uncoded MLSE reference system.

Since the computational complexity of the optimum combined MLSE receiver
structure  grows  exponentially with  channel memory length  the  practical
implementation becomes prohibitive, even for moderate ISI. “This has motivated
researchers to find the sub-optimum TCM receiver structures  with  reduced
complexity, that maintains most of the performance advantages of the MLSE. The
complexity can be reduced drastically by employing pre-filtering techniques  prior
to MLSE, as is being used for uncoded modulation schemes. We have proposed, a sub-
optimum KFE-MLSE receiver structure comprising of Kalman filter equalizer (KIFE)
followed by maximum-likelihood Viterbi decoder for the decoding of trellis-coded
QAM signals in the presence of ISI and AWGN.

The proposed KFE-MLSE structure is a sub-optimum receiver siructure and the
performance degradation for the above can be evaluated by assuming that the
Viterbi algorithm still operates with a white Gaussian noise, whose variance s
the overall variance of the correlated noise and the residual ISI at the equalizer
output. The effect of prefiltering on the free distance of the code can be
computed by finding the combined channel-KFE impulse response through
‘innovations’  representation  of  the processes involved, and the spectral
factorization techniques. We have evaluated the performance of the KFE-MILSE
receiver structure, by finding the performance degradation relative to its
performance under an ISI-free environment. The performance bounds so derived are
compared with the simulation results of several trellis-coded QAM  schemes
employing KFE-MLSE structure on different ISI channels. Also, the performance ot
the KFE-MLSE receiver structure is compared with that of the optimum combined 1SI-
code trellis structure for limited ISI memory length. The proposed suboptimal KIFE-

MLSE structure achieves significant gain of about 2-2.5 dB over the uncoded KFE



reference system, although it suffers a performance loss of about 1.0-2.0 dB
relative to the optimum combined MLSE structure.

An alternative to the prefiltering technique is the use of reduced-siate
algorithms, which aim at reducing the states of the optimum combined ISI-code
trellis by incorporating a built-in decision-feedback mechanism within the Viterbi
decoder. The Reduced State Sequence Estimation (RSSE) and the Parallel Decision
Feedback Decoding (PDFD) are two such sequence estimation algorithm, which provide
a good performance/complexity trade-off, the latter being a special case of RSSE.
In RSSE, the complexity reduction is achieved by using the channcl‘ truncation
technique and applying the set-partitioning principles inherent in TCM. The siate
reduction in RSSE depends on the code, the channel truncation length, and the
depth of set-partitioning of the signal constellation. A family of reduced state
sequence estimators can be obtained for a given TCM code and a given ISI channel,
offering a wide trade-off between decoding complexity and performance. The
complexity of RSSE trellis can range between that of the encoder trellis and (he
combined MLSE trellis. When the complexity of the RSSE trellis is reduced 1o that
of the TCM encoder trellis, the receiver structure is referred (0 as the parallel
decision feedback decoding (PDFD).

We have considered the study of several RSSE and PDED receiver structures for
the decoding of trellis-coded QAM with different orders of complexity reduction,
for various ISI channels. The performance of these structures have been studied by
simulation and are compared with the error performance of other receiver
structures, considered earlier. The RSSE receiver structures exhibit improved
performance over KFE-MLSE receiver structure, but at the cost of increased
complexity.

For channel equalization, the optimum combined MLSE receiver structure
(implemented by VA) or its sub-optimum variants, require an exact knowledge of (he
channel characteristics, especially when the channel parameters are  time-varying.

A wide range of adaptive algorithms for channel estimation have becn reported in



the literature, the most common being the LMS algorithm and the RLS algorithm. The
decision delay inherent in the VA causes poor tracking performance, particularly
when the channel characteristics are rapidly time-varying. To circumvent (his
problem, a new channel estimation procedure has been reported in recent years,
where the adaptive channel estimation is accomplished for each state in the VA,
using the zero-delay decisions associated with its survivor path (o update the
channel coefficients.

We next consider the adaptive implementation of the receiver structures
discussed ~earlier, for the decoding of trellis-coded QAM on time-variant ISI
channels. We have implemented various adaptive receiver structures employing LMS
and RLS channel estimators, using both delayed-decision updating and delay-{ree
updating of channel cocfficients. The tracking characteristics ol the adaptive
algorithms have been studied for various random time-variant 1Sl channels. The
mean-square error performance of the adaptive channel estimator have been studied
by simulation. Also, the error performance of the various adaplive receiver
structures have been evaluated through simulation.

In recent years, there has been an increasing interest in high-speed digital
transmission over cellular mobile radio, and mobile satellite channels, which are
characterized as multipath fading channels with time-dispersion. One ot the most
efficient technique to reduce the effect of fading is through the use of diversity
reception, where the receiver is provided with several replicas of the same
information transmitted over D-independently fading channels.

- We have next considered a study on the performance of different trellis-coded
QAM schemes over fading dispersive channels. The error performance of the adaptive
RSSE, PDFD and KFE-MLSE receiver structures have been studied by simulation for
different fade rates. Using D-diversity reception to combal severe fading, the
error performance of the above adaptive receiver structures have been determined

for difterent orders of diversity D.
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CHAPTER 1

INTRODUCTION

The tremendous growth in information transmission in recent years, demands
the use of coded communication systems having a large spectral efficiency in order
to meet the enhanced information rate requirements. This has spurred an active
interest in the design and development of reliable digital communication systems
that are spectrally-efficient as well as power-efficient. The traditional coding
schemes, which treat coding and modulation as two separate entities, trade
bandwidth efficiency against power efficiency/coding gain and therefore are
considered suitable only for power-limited channels, where bandwidth is abundant
[14, 100].

Using random coding bound arguments, Massey [80] suggested that considerable
performance improvement could be achieved by treating coding and modulation as a
single entity in the design of a coded communication system. This concept was
formalized into a rigorous theory by Ungerboeck [126], which culminated in the
development of ‘Trellis-Coded Modulation’ (TCM). It is this work that laid the
foundation for an active research in the development of spectrally-efficient and
power-efficient coded modulation schemes [19, 22, 30, 51, 127].

Ungerboeck’s TCM scheme employs non-binary redundancy modulation in
conjunction with a finite-state convolutional encoder that governs the selection
of channel signals. The key to this unified design approach is a special m}apping
technique which ensures that the minimum Euclidean distance (ED) between the coded

signal sequences is maximized [127].



The mostv attractive feature of TCM is its ability to improve the robustness
of digital transmission over additive white Gaussian noise (AWGN) channel by 3 to
6 dB relative to an uncoded modulation system without compromising the spectral-
efficiency or bandwidth-efficiency [126, 127]. The TCM not only provides an
improved performance in the presence of AWGN, but also in the presence of other
channel impairments [123]. Thus Ungerboeck’s TCM scheme, being the state-of-the-
art technique in the coding arena, captured immediate attention and provided the
impetus for an intensified research as well as widespread practical applications
of the spectrally-efficient coded-modulation schemes [13, 29, 51, 123, 133].

The primary impediments to high speed digital data transmission are the
intersymbol interference (ISI) and AWGN [46]. The TCM scheme in combination with
an optimum equalizer such as maximum-likelihood sequence estimator (MLSE) has been
shown to be an optimum structure to combat the effects of ISI and AWGN [26, 42].
However, due to the reasons of complexity in implementation, the combined MLSE
structure tends to be too impractical even for moderate ISI.

The design of the reduced complexity receiver structure for TCM transmission .
over ISI channels, that maintains some of the performance advantages of the
optimum combined MLSE structure, and its performance evaluation is a topic of
active research. In the following we present a brief review of the work that has

been done in this and the related areas.

1.1 REVIEW OF THE EARLIER WORK

The publication of Shannon’s classic paper of 1948 titled ‘A Mathematical
Theory of Communication’ [115] launched the field of error control coding. Using
random coding arguments, Shannon established theoretical bounds on the achievable
performance of digital coded communication systems and pointed. out the 9 dB gap
between the rate achievable with uncoded modulation and the channel capacity limit
(50, 147]. This immediately inspired a rigorous and intensified research on error

control coding aimed at the development of practical coded communication systems
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which could approach the channel capacity limit. However, the initial era of
excitement was followed by an era of discouragement/disappointment as such
practical systems proved to be difficult to find [50].

In the classical coded communication systems, the functions of coding and
modulation are treated as two independent operations [126] and a certain coding
gain is achieved at the cost of bandwidth expansion. Therefore, practical coding
was believed to benefit only power-limited channels, where bandwidth was abundant.
Although Shannon’s channel capacity theorem [116] predicted data rates exceeding
20,000 bits/sec for typical bandlimited telephone channels, the upper practical
limit was considered to be 9600 bits/sec even after 30 years of Shannon’s
pioneering work. Most of this advance in data transmission was primarily due to
advances in the field of adaptive equalization and in fact had nothing to do with
Shannon’s work [50].

Perhaps the most significant breakthrough in the design of coded
communication system, was the development of spectrally-efficient ‘Trellis-coded
Modulation’ (TCM) schemes by Ungerboeck [126] that promised to fill most of the 9
dB gap between rates achievable with the uncoded system and the channel capacity
limit. The results on TCM schemes were first published in 1976 [127], followed by
a systematic' presentation in [126]. Ungerboeck has presented a comprehensive
tutorial on TCM schemes in [127].

Ungerboeck’s TCM is an integrated design approach that combines the coding
and modulation into a single entity. Through the use of optimally designed rate
(m/m+1) trellis codes suitably mapped into an expanded signal constellation of
2t points, the TCM scheme could provide a significant coding gain without
sacrificing bandwidth or data rate. Thus, Ungerboeck’s work captured immediate
attention and inspired a rigorous research as well as practical applications of
efficient coded-communication systems, both in terms of spectral efficiency and

power efficiency.



Around the same time while the TCM schemes were developed [126], Imai and
Hirakawa [61] also developed a slightly different integrated design approach
called multi-level coding method based on binary block codes and multi-stage
decoding procedure. The multilevel coded-modulation scheme of Imai and Hirakawa
did not receive the attention it deserved, at the time of publication, due to the
lower coding gains relative to Ungerboeck’s TCM scheme. Incorporating the use of
convolutional coding and soft-decision decoding into Imai-Hirakawa schemes,
considerable improvements in the coding gains have been reported in [18, 28, 109,
145]. Following Ungerboeck’s integrated encoding and modulation approach, Cusack
[28] and Sayegh [109] have constructed a class of optimum signal space block codes
using short binary block coding (as opposéd to convolutional coding) with
performances close té that of Ungerboeck’s codes. Pottie and Taylor [96], and
Calderbank [18] have presented the construction of several reduced complexity
multilevel codes and they give the error performance of several alternative
multistage decoding structures. The performance analysis of multilevel coded
modulation schemes have been presented by Kofman et al. in [64]. Recently, this
approach of multilevel block coding technique has been applied to construct
trellis codes for the Rayleigh fading channels {113, 143].

Forney et al. [51] have presented a comprehensive tutorial material on the
development of coded-modulation schemes for bandlimited channels and they
illustrate the construction of several block-coded and trellis-coded modulation
schemes. Calderbank and Mazo [19] have presented an analytical description of
trellis codes, that combines the two steps of encoding and mapping into a single
operation. This design procedure does not require the exhaustive code search
procedure, as in the case of Ungerboeck’s design approach, to find a minimal
convolutional encoder to suit the mapping operation. In [124], Turgeon and Mclane
discuss the design of minimal complexity analytical trellis codes and give the

rules for conversion from Calderbank-Mazo form to Ungerboeck-form and vice-versa.



A more generalized construction of trellis codes based on lattices and cosets has
been proposed by Calderbank and Sloane in [22], as an alternative to Ungerboeck’s
code design methodology.

The TCM codes are normally not invariant to all phase rotations under which
the signal set is phase invariant. This may pose a serious problem in applications
where differential encoding/decoding is employed to avoid phase ambiguities [100],
The problem of phase invariance and differential encoding/decoding was solved by
Wei [133], who devised several linear and nonlinear codes that are rotationally
invariant to 180 or 90 degree phase: rotations. Wei’s [133] 8-state non-linear
trellis code which is invariant to 90 degree phase rotation has been adopted as an
international ~standard for high-speed telephone line modems operating at 9600
bits/sec or 14400 bits/sec [52, 100, 127].

Normally in the design of TCM schemes, symmetric signal constellations with
uniform spacing are employed. Although symmetric constellations are optimum for
uncoded systems, the same need not be true for TCM schemes. Divsalar et al. [29]
have designed TCM schemes with asymmetric signal constellations that achieve a
modest performance gain over TCM schemes employing symmetric constellations. These
gains, typically around 0.5 dB, disappear with large signal constellation and for
codes of higher state complexity. Moreover, in certain cases of asymmetry, the
trellis codes tend to become catastrophic. To circumvent the problem of
catastrophe in asymmetric TCM code design, Divsalar and Simon [31] have proposed
multiple trellis-code modulation (MTCM) scheme, wherein more than one channel
symbol per trellis branch is transmitted in order to achieve a modest gain of 1-2
dB for a 2-state MTCM scheme relative to a 2-state TCM scheme. However, it also
suffers from the problem of higher code complexity and the use of larger signal
constellation.

Forney et al. [51] proposed the idea of designing TCM schemes using
constellations with partially overlapped signal points to achieve higher coding

gains. While Ungerboeck’s TCM schemes require a constellation of 2™*! signal



points to encode m information bits, the above method re-maps some of the high-
power signal points into low power signal points with a subsequent saving in
transmitted energy and hence achieve an increase in the coding gain. Soleymani and
Kang [121] have investigated the performance of some TCM schemes with partially
overlapped signal constellations. Although these schemes achieve marginal gains
over Ungerboeck’s TCM schemes, they are susceptible to catastrophic error
propagation. Moreover, a study of these TCM schemes by Fossorier and Lin [54]
indicate that these schemes require large decoding delays and also result in large
error coefticients which in turn reduces significantly the achievable coding gain.

An inherent cost of Ungerboeck’s two-dimensional (2-D) TCM schemes is that
the size of signal constellation is doubled over uncoded modulation, which results
in 1-bit redundancy for each signaling interval. Without that cost, the coding
gain of the TCM schemes would have been 3 dB higher. Using a multi-dimensional
constellation, it is possible to reduce this cost of 3 dB because fewer redundant
bits are added for each 2-D signaling interval. The cbst is reduced to 1.5 dB or
0.75 dB with the use of 4-dimensional or 8-dimensional signal constellations,
respectively [134]. Thus, efforts to achieve higher gains led to the development
of multi-dimensional TCM schemes, where multi-dimensional signals are transmitted
as sequences of constituent one- or two-dimensional signals, while maintaining the
principle of using a signal set of twice the size used for uncoded modulation
[100]. In general, a 2K-D TCM scheme employs a 2m+(“k)-point 2-D signal
constellation to transmit m information bits per symbol. Due to the smaller signal
redundancy, the multi-dimensional TCM scheme achieves higher coding gains and
sometimes offer better performance/complexity trade-off than a 2-D TCM [134].

Gallager [51] proposed the first multi-dimensional 4-D TCM scheme, while
Calderbank and Sloane [20] have also proposed independently a similar 4-D TCM
scheme. Wei [134] has developed a class of multi-dimensional TCM schemes that are
highly suited for implementation, one of which has been standardized for use in

19.2 kbits/sec modems [48]. Calderbank and Sloane [21] have also developed a
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number of multi-dimensional trellis codes. In [135], Wei has presented a class of
rotationally invariant MPSK trellis codes. Forney [48] has performed an
investigation on the performance/complexity trade-off of the several multi-
dimensional TCM schemes described in [22, 51, 127, 134, 135]. In [52], Forney and
Wei provide an overview of multidimensional constellations for use with TCM
schemes, highlighting some of the important design attributes which are desirable
in practice. Based on a new concept of generalized group alphabet—partitioning,'
Biglieri and Elia [15] have developed some multi-dimensional coded schemes using
block codes and trellis codes, for- bandlimited digital transmission. While
Pietrobon et all [92] have given a comprehensive treatment on a class of Trellis-
coded multi-dimensional MPSK modulation schemes, Benedetto [10] presents a
procedure for the construction of geometrically uniform multi-dimensional MPSK
trellis codes. Pietrobon and Costello [93] have investigated the performance of
trellis coding using multi-dimensional QAM signal sets.

Although, the multi-dimensional TCM schemes exhibit larger asymptotic coding
gains than 2-D TCM schemes, these gains are compromised by large number of nearest
neighbours which subsequently result in the performance degradation at lower SNR
[127]. At higher trellis (state) complexities, the 2-D TCM schemes will eventually
prevail in performance due to the fact that these schemes have higher signal
redundancy available for coding than with the multi-dimensional TCM schemes. The
overall difference in real coding gain with multidimensional TCM schemes is not
very large, being less than 1 dB for the range of complexities involved. In terms
of better performance/complexity trade-off, the Ungerboeck’s 4-state and 8-state
two dimensional TCM schemes have been considered as benchmark systems for
practical use [48, 51, 95].

It is well known that an exact analysis of TCM performance over AWGN channels
is difficult to perform and usually one resorts to simulation or evaluation of
performance bounds [111]. Simulation is a time consuming process and may not

provide realistic ~estimates of the error performance at higher SNR. The



performance bounds, on the other hand, are quite effective in the evaluation of
code performance at moderate to large SNR. The algorithms used, to evaluate the
code performance through bounds, need to be fast and efficient. Most of the
algorithms proposed in the literature [9, 13, 16, 146] are based on the transfer
function approach [59, 129, 130], which when combined with the union bound will
yield a tight upper bound on the error event probability. The pair-state transfer
function approach, introduced by Biglieri [13], is most general and is applicable
to all TCM codes, linear or nonlinear. The approach uses a pair-state diagram and
involves a huge computational complexity - which thereby limits its practical
application. By invoking certain symmetries and uniform properties inherent in the
TCM code, it is possible to derive transfer function using a state diagram whose
state complexity is equal to that of the TCM encoder [7, 16, 22, 146]. In [22],
Calderbank and Sloane introduce the concept of regular codes, which makes it
possible to evaluate the code performance by choosing the all-zero information
path as the reference path. The ‘superlinearity’ concept introduced by Benedetto
et al. [7] is very similar to ‘regularity’ property of [22]. Zehavi and Wolf [146]
have exploited the symmetry properties, inherent in the TCM code construction, to
evaluate the code performance through bounds by treating the all-zero information
path as the reference. Biglieri and Mclane [16] have derived a set of sufficient
conditions to define a class of uniform TCM schemes and have shown that all
Ungerboeck codes are uniform codes. The bidirectional search stack algorithms
[108, 111] have also been employed to compute the distance spectrum of TCM codes
and hence the evaluation of error performance through bounds. A comprehensive
tutorial on the performance evaluation of TCM schemes is presented by Bendetto
et al. in [9].

The two primary impediments to reliable high-speed data transmission over a
bandlimited channel are AWGN and ISI [46]. The large spectral efficiency and high
coding gain achievable with TCM have prompted researchers to investigate its

performance and practical ~ application for high-speed data transmission over



bandlimited time-dispersive ISI channels [26, 40, 42, 57, 123, 138, 142, 148]. The
TCM scheme in combination with an optimum MLSE equalizer promises to achieve data
rates close to channel capacity [40]. The receiver makes use of a combined ISI-
Code trellis structure whose state complexity is given by the product of the
encoder states and the ISI states [26, 42]. Although this combined MLSE receiver
is an optimum structure for bandlimited ISI chanpels, the fact that its
computational complexity grows exponentially with the ISI memory length makes the
practical implementation prohibitive even for moderate ISI. This led to an active
research to find sub-optimum receiver- structures with reduced complexity while
maintaining most of the performance advantages of MLSE [26, 42, 138, 142].

The state complexity of the combined MLSE receiver structure can be reduced
drastically by employing the prefiltering techniques prior to MLSE, as employed
for uncoded transmission [43, 46, 70, 103, 137]. Thapar [123] has proposed the LE-
MLSE receiver structure, comprising of a linear equalizer (LE) in cascade with a
maximum-likelihood (ML) Viterbi decoder which is often used in practice for high-
speed TCM transmission over telephone channels. The LE-MLSE structure performs
poorly on channels with in-band nulls due to the fact that LE enhances noise on
such channels. With the use of the decision-feedback equalizer (DFE) as prefilter
the noise enhancement can be substantially reduced, but for proper operation the
DFE requires reliable delay-free data decisions which is not possible with the TCM
Viterbi decoder. Thus the DFE-MLSE structure as proposed by Wong and Mclane [142],
does not perform well, and in fact results in a performance loss as opposed to a
gain relative to an uncoded system [26, 42, 84, 94, 138, 142].

As a remedy to the above problem, one approach is the use of
interleaving/deinterleaving as proposed by Eyuboglu [40] and Zhou et al. [148].
These methods increase the throughput delays and may be prone to error
propagation, and require an interleaver at the transmitter. Forney and Eyuboglu
[50] p'roposed another technique to approach the channel capacity limit, through

the use of precoding techniques with spectral shaping. Since precoding is



essentially a transmitter equalization technique, the transmitter needs to know
the channel characteristics precisély and hence requires perfect transmitter-
receiver co-ordination for proper operation. This may not be possible (and hence
applicable) to one-way broadcast or rapidly time-varying channels, unless all the
channel characteristics are known apriori. Also, such schemes may not be useful in
certain  applications due to the existing standards and/or compatability
requirements [42]. Thus, there is still a need for a practically viable reduced
complexity receiver structure that can approach the performance of an ideal DFE-
MLSE receiver for the coded-modulation schemes operating over bandlimited time-
dispersive channels.

Lawrence and Kaufman [68] proposed the use of discrete Kalman filter as an
equalizer for uncoded binary transmission. Benedetto and Biglieri [6] performed a
detailed investigation on the steady-state behaviour of this linear receiver and
showed that it as an optimum linear recursive filter/equalizer which performs as a
zero forcing equalizer at high SNR. The fact, that the KFE is an optimum linear
equalizer whose performance is comparable to that of an ideal DFE (at high SNR)
but without error propagation effects, makes the feasibility of KFE-MLSE receiver
structure for the detection of TCM signals over time-dispersive ISI channels a
topic for further consideration/investigation.

An alternative to the prefiltering technique is the use of reduced complexity
sequence estimation algorithms which aim to reduce the state complexity of the
combined MLSE receiver structure through channel truncation techniques and/or
combining the trellis states into subset states based on the ideas of set-
partitioning inherent in TCM. These techniques of channel truncation [43] and the
reduced state sequence estimation algorithms have been used extensively for
uncoded systems [41, 43, 57].

The state complexity of the combined ISI-Code trellis can be reduced by
channel truncation and the residual ISI terms not represented by the truncated

combined MLSE trellis structure are cancelled out by an ISI cancellation
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mechanism, built within the Viterbi decoder, which makes use of data decisions
associated with the survivor path of the truncated trellis state [26, 42]. For TCM
schemes employing large signal constellation a further reduction in state
complexity is still desired, which can be achieved by incorporating the set-
partioning ideas to define subset states for the truncated combined ISI-Code
trellis [42]. This leads to a family of reduced state sequence estimation (RSSE)
structures. The state reduction in RSSE depends upon the code, channel truncation
length and the depth of set-partitioning employed in the TCM code construction.
The state complexity of the RSSE trellis may range between that of encoder trellis
and the optimum combined ISI-Code trellis [26, 42]. When the state complexity of
the RSSE structure is reduced to that of the TCM encoder, the receiver structure
is referred to as parallel-decision feedback decoding (PDFD) and is the simplest
form of the reduced state algorithms [42, 57].

Eyuboglu and Qureshi [42], Chevillat and Eleftheriou [26] have presented a
study of the RSSE and PDFD structures for the decoding of a 4-state 16-QAM TCM
schemes over a limited memory ISI channels. Wesolwski [138], and Hallen and
Heegard [57] have also presented independently, the PDFD receiver structures for
the decoding of TCM signals over a limited class of ISI channels.

The continuing growth in digital radio communication (digital mobile and
digital satellite radio communications) has spurred an active interest in the use
of spectrally efficient coded-modulation schemes [13, 25, 30, 32, 35, 82, 110].
The fact that TCM schemes can provide significantly improved performance over
bandlimited channels ~without sacrificing the spectral  efficiency or power-
efficiency, makes the TCM a potential candidate for application -over digital radio
channels. These radio channels have been characterized as rapidly time-varying
multipath fading channels with time-dispersion [5, 62, 87, 99, 100]. Ungerboeck’s
work [120] provided the stimulus for a rigorous research aimed at the design and
development of spectrally efficient and power efficient coded communication

systems for applications on satellite and digital cellular mobile radio channels
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(13, 29, 30, 32, 110, 131]. Most of the initial work dealt with the applications
of Trellis coded MPSK schemes with interleaving on fading channels and the
performance analysis using the pair state approach [13]. The notable contribution
in the area are due to Divsalar and Simon [29, 30, 32]. Divsalar and Simon [30]
investigated the performance of MPSK TCM schemes with interleaver/deinterleaver
using the pair state approach of Biglieri [13, 36, 60, 71, 81] for applications
over a fading mobile satellite channel. In a further work on the application of
trellis codes (with interleaver/deinterleaver) for fading channels [30], they have
shown that for optimum performance the code design guided by other factors such as
length of the shortest error event and the product of branch distances. However,
they have also pointed out that, with no interleaver/deinterleaver, the design of
trellis codes for the fading channels are still governed by the maximization of
minimum free distance of the code, as in the case of AWGN channels.

The increasing growth in digital cellular mobile radio communications, in
recent years, demands for enhanced data rate requirements which can be
accomplished through the bandwidth efficient and power efficient modulations
formats such as M-QAM for M > 8 [12, 35, 45, 90, 131, 132]. Feher [45] points out
that the next generation modems, for the emerging digital cellular mobile radio
systems, are required to be designed with more spectrally efficient coded
modulation schemes to achieve a spectral efficiency in the range of 2-5 b/s/Hz.

Although M-QAM modulation schemes achieve higher coding gains on AWGN
channels than MPSK schemes (M > 4) because of their efficient constellation
shaping, they suffer seriously on fading channels due to their non-constant
envelope property. However, it has been reported by Moher and Lodge [85] that
through the use of pilot sequence for channel state measurement (channel state
information), the M-QAM trellis codes does exhibit improved performance over MPSK
trellis codes for fading channels. There has been considerable interest in recent
years in the application of M-QAM schemes to fading channels [23, 25, 33, 35, 45,
55, 93]. Feher [45] has reported the development of trellis coded 16-QAM modem for
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cellular mobile radio with a promising performance in the spectral range of
2.2-3.0 b/s/Hz.

Since the radio channels are time-variant and unknown, the receiver needs to
be provided with a means to estimate the time varying channel impulse response. A
wide variety of adaptive algorithms are available for channel estimation [38, 74,
76, 85, 86, 101] and the most common being the least-mean squares (LMS) and the
recursive least-square (RLS) algorithms. The LMS algorithm [139] although much
simpler to implement performs poorly on time-varying channels due to its slow rate
of convergence. In contrast the RLS algorithms exhibit faster convergence and
better tracking performance and hence are considered for applications on time-
varying channels [37]. However, the LMS/RLS channel estimators, employed in the
adaptive  MLSE receiver structure [78] or its sub-optimum variants, perform a
delayed channel estimation due to the decision delay inherent in the Viterbi
algorithm, and therefore are considered unsuitable for rapidly time-varying
channels. To circumvent this problem, a new channel estimation procedure called
per-survivor processing (PSP) channel estimation [105] has been proposed in recent
years by Kubo [65] and Seshadri [112] independently. This procedure maintains a
separate channel estimator for each state of the VA and the channel adaptation is
performed using the zero-delay decisions associated with the survivor path of the
state. The PSP channel estimation procedure, although relatively complex, has been
shown to be quite effective for the adaptive equalization of the MLSE receiver
structures for rapidly time-varying radio channels [66, 105].

In addition to the use of coded-modulations schemes for the multipath fading
channels, the use of diversity combining technique has been shown to be quite
effective for the multipath fading channels and is normally employed to combat
severe fades present on such channels [4, 27, 91, 99, 118, 122]. In diversity
reception, the receiver is provided with multiple replicas of the same information
transmitted over D-independent fading channels. The diversity reception is

effective since it is based on the notion that the probability of receiving
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simultaneously two or more (independently) severely faded signals is very small

[117].

1.2 STATEMENT OF THE PROBLEM

The present work encompasses a study of bandwidth-efficient and power-
efficient Trellis-coded QAM schemes with applications to high-speed data
transmission over bandlimited time-dispersive channels of both time-invariant and
time-variant nature, and investigates the evaluation of error rate performance of
these schemes through bounds and simulation.

The problem as treated in this study may be divided into five main parts as :

(1) A study of Trellis-coded QAM schemes over AWGN channel and the performance
evaluation through bounds wusing the distance spectrum, and through
simulation.

(i) A study of Trellis-coded QAM schemes on time-invariant ISI channels using
the optimum combined MLSE re(_:eiver that employs a combined ISI-Code trellis
structure, and the evaluation of error performance through bounds using the
error structure of the basic TCM code as well as by simulation. _.

(iii) A study of the prefiltering technique that employs the sub-optimum KFE-MLSE
structure for the detection of Trellis-coded QAM signals transmitted over
ISI channels, and the performance evaluation through bounds and simulation.

(iv) A study of the reduced complexity sequence estimation algorithms, which
incorporate the channel truncation techniques and set-partitioning ideas,
for the detection of TCM signals in the presence of ISI and AWGN, and also
the evaluation of their error performance through simulation.

(v) A study of the adaptive receiver structures for TCM transmission over fading
time-dispersive channels, through the use of per-state processing channel

estimation procedure and the diversity technique.
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1.3 ORGANIZATION OF THE THESIS
The work embodied in this thesis has been arranged in seven chapters as

detailed below :

Chapter 2 : Trellis-Coded Modulation over AWGN Channel

We first discuss the drawbacks of classical coding schemes and then present
Ungerboeck’s TCM design concepts which aim at overcoming these drawbacks. We next
present the design of a few TCM schemes employing QAM signal constellations. The
performance measures used in the evaluation of error event probability through the
union bound are considered next. An algorithm to compute the distance spectrum of
Ungerboeck TCM codes is presented. The distance spectrum of the TCM codes so
derived has been used in the evaluation of error performance using bounds. The
simulation results of the error event probability of TCM schemes over AWGN channel

are compared with those obtained through bounds.

Chapter 3 : TCM on Time-dispersive ISI channels

In this chapter, we first consider the equalization problem for the
transmission of digital signals over bandlimited ISI channels and briefly review
the equalizer structures normally employed in practice to mitigate the effects of
ISI. We next consider an optimum combined MLSE receiver structure, realized by the
Viterbi algorithm operating on a combined ISI-Code trellis, for the detection of
TCM signals in the presence of ISI and AWGN. We have presented the design of
several combined ISI-Code trellis structures for different TCM codes on ISI
channels of limited memory. The state complexities of these combined ISI-Code
trellis  structures,  which  limits  their  practical applicability, have been
discussed. We present a method, using the error structure of the TCM code, to
evaluate the error performance of the combined ISI-Code receiver through bounds.
We finally present the results of a study that has been performed to evaluate the

performance using bounds and through simulation.
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Chapter 4 : Reduced complexity KFE-MLSE Receiver Structure for TCM decoding
on ISI channels

We first review the prefiltering techniques employed in practice for both
uncoded and coded transmission systems in an effort to reduce the state complexity
of the optimum MLSE receiver structure. We then propose the reduced complexity
KFE-MLSE structure for the detection of Trellis-coded QAM signals transmitted over
a time-dispersive ISI channel. We next present a method to evaluate the error
performance of the KFE-MLSE receiver using innovations representation and spectral
factorization technique. We then present the -results of the study performed for
different TCM codes on several ISI channels, and the performance bounds so deriv'ed
are compared with those of simulation results. We also compare the error
performance of the sub-optimum KFE-MLSE receiver with that of the optimum combined

ISI-Code receiver structure on different ISI channels.

Chapter 5 : Sub-optimum Reduced State Algorithms for TCM Decoding on ISI Channels

As an alternative to the prefiltering techniques, we first consider the use
of channel truncation to reduce the state complexity of the optimum combined ISI-
Code trellis structure. Several design examples of the truncated combined ISI-Code
trellis  structures have been presented. We then consider the use of set-
partitioning ideas, in conjunction with channel truncation, to construct several
RSSE structures for the decoding of TCM signals in the presence of ISI and AWGN.
The simplest form of RSSE namely the PDFD is also considered. The error
performance of these reduced state receiver structures for various TCM schemes on
different ISI channels have been studied through simulation and results are

presented.

Chapter 6 : Adaptive Receiver Structure for TCM Transmission over Time-dispersive
Fading Channels
In this chapter, we consider a study on the adaptive receiver using various

structures discussed earlier. We first consider the discrete-time model for the
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time-variant (fading) channel. We next consider the channel estimators based on
LMS/RLS criterion, for use with optimum MLSE structure or its sub-optimum variants
on slowly time-varying channels. We then consider a relatively more complex
channel estimation procedure called per-state processing (PSP) channel estimation
using delay-free decisions for the updating of channel estimates on a rapidly
time-varying channel. The error performance and tracking characteristics for these
channel estimators have been studied through simulation. The error rate
performance of the various adaptive receiver structures, for the decoding of TCM
signals transmitted over fading channels, have been studied through simulation and
the results are presented. Finally, we consider the use of D-diversity reception
technique for the detection of TCM signals transmitted over multi-path fading
channels with severe fade. The results of a study on the D-diversity receivers for

different orders of D on various multipath fading channels have been presented.

Chapter 7 : Conclusions
We conclude the thesis with a summary of important results and suggestions

for further work.

Also included are three appendices. In Appendix-A we present the Cholesky
spectral  factorization technique which is used in the computation of steady-state
Kalman gains and hence the evaluation of combined impulse response of the channel
and the KFE. In Appendix-B we present the derivation of the variance of an auto-
regressive moving average ARMA process, which is used to find the overall noise
variance at the output of the channel and the KFE. In Appendix-C the fading
dispersive channel model, which is used in the study of adaptive receiver

structures in this thesis, has been presented.
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CHAPTER 2

TRELLIS-CODED MODULATION OVER
AWGN CHANNEL

2.1 INTRODUCTION

In recent years the fact that there is a tremendous demand for power-
efficient and bandwidth-efficient communication systems for transmission of high-
speed digital data over bandlimited channels, has spurred an active interest in
the coding arena. In the past, all traditional coded communication systems treated
coding and modulation as two separate operations with regard to overall system
design and the subsequent results were quite disappointing [127]. Ever-since
Massey suggested, in a 1974 seminal paper [80], the notion of improving system
performance by looking at modulation and coding as a combined entity, the
researchers have been investigating ways of implementing this idea into a reality.
The most significant contribution in this direction was the development of
‘Trellis-Coded Modulation’ (TCM) by Ungerboeck [14,126].

Ungerboeck proposed TCM as an integrated system design approach that regards
coding and modulation as a single entity. The primary advantage of TCM, over
modulation schemes employing error-correction coding, is the ability to achieve
increased power efficiency without the need for customary bandwidth expansion
introduced by the coding process. Over additive white Gaussian noise (AWGN)
channels, for symbol error rates of 107, Ungerboeck codes could achieve gains of
3 to 6 dB; thus prbmising to fill most of the 9 dB gap between the rate achievable

with coded-modulation and Shannon’s channel capacity limit [40]. The TCM not only
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provides a significantly improved performance in the presence of AWGN, but also in
the presence of other channel impairments [123]. Thus Ungerboeck’s TCM,
representing a  significant advance in the state-of-the-art in the coding arena,
captured much attention and inspired an intensified research, as well as
widespread practical applications of bandwidth-efficient coded-modulation schemes.

The exact analysis of TCM code performance is difficult and in most cases the
performance evaluation is carried out either through simulation or using bounds.
Simulation is very time-consuming and is applicable for short constraint length
codes and at lower SNR. Performance evaluation using union bound gives a better
estimate and is applicable over a wide range of SNR of practical interest. In
order to determine the upper bound on the error probability, one needs to compute
the distance properties of the code. The computation of minimum free distance
drree and its multiplicity Ng,.. enables one to find the optimum code performance
at higher SNR. In order to evaluate a tight upper bound on the error performance,
the distance spectrum of the code has to be evaluated. We have proposed an
unidirectional trellis search algorithm, which can be used to compute the distance
spectrum of all Ungerboeck codes, that is fast and efficient.

In this chapter, we begin with a brief discussion on the drawbacks of
classical coding schemes, followed by Ungerboeck’s TCM design concepts which aims
at overcoming these drawbacks. We then present the design of TCM codes using QAM
constellations. A number of examples for the above are given. The maximum-
likelihood soft-decision Viterbi decoder, which enables one to achieve high coding
gains for TCM scheme, and its performance measures are considered next. The use of
bounds in the performance evaluation of TCM codes over AWGN channels is considered
next. The new algorithm to find the distance spectrum of TCM codes is presented.
The distance spectrum so computed has been used to evaluate the performance of TCM

codes over AWGN channels. Comparison of simulation result with the bounds

evaluated is also considered.
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2.2 CLASSICAL CODING SCHEMES

In the classical coded communication system, the functions of encoding and
modulation are treated as two independent operations at the transmitter, and so
also the decoding and detection processes at the receiver [127]. The encoding
process provides a forward-error correction capability by introducing additional
redundant bits, if the channel permits bandwidth expansion. Thus, bandwidth
efficiency is traded for increased power efficiency/coding gain. The additional
bandwidth so demanded may not be available, as often is the case with bandlimited
telephone and satellite channels.

On such bandlimited channels a certain performance gain with coding is still
desired, without expanding the bandwidth. To realize this goal, the redundancy
required for coding could be obtained by enlarging the signal-set of the
modulation process. This calls for non-binary redundancy for which codes are hard
to realize. An increase in signal alphabets by a factor of 2 requires an
additional 3 dB signal power to maintain the same error rate relative to an
uncoded system. Therefore, if modulation and coding are treated as twe independent
operations, then very powerful codes are required to offset this 3 dB penalty due
to signal-set expansion and still provide a significant coding gain. Normally this
is very difficult to realize and such an approach leads to very disappointing
results as discussed in [127].

Ungerboeck [127] recognized two drawbacks of the classical approach. Firstly,
the received signals are independently demodulated with hard-decisions prior to
decoding and thereby incur an irreversible loss of information. A better approach
would be the soft-decision decoding, where the decoder operates directly on
unquantized ‘soft’ output samples of the channel. Secondly, the classical approach
aims at maximizing the Hamming distance (HD) between the code words, which is not
equivalent to maximizing the Euclidean distance (ED), when non-binary modulation

(redundancy) is employed. The optimum performance» on AWGN channel could only be
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attained if the decoding schemes are based on minimum ED between the received
waveform and the members of the signaling alphabet. Conversely, good signaling
alphabets are those having maximum ED. Therefore, code design must aim at
maximizing the minimum ED of the coded signal sequence. This motivated Ungerboeck
to look for a new code-design strategy which culminated in the development of

‘Trellis-Coded Modulation’ schemes.

2.3 TRELLIS-CODED MODULATION

Ungerboeck proposed, in his 1982 paper [126], an elegant solution to the
problems of classical channel coding. If modulation is treated as an integral part
of the coding process and is designed in conjunction with the code, so as to
increase the minimum ED between pairs of coded sequences, then the loss from
signal-set expansion can be overcome and a significant coding gain can still be
achieved with relatively simple codes. The key to this integrated design approach,
is to devise an effective method of mapping coded bits into channel signals such
that the minimum ED is maximized. Such a mapping rule, called mapping by set-
partitioning, involves successive partitioning of channel signal-sets into subsets
with increasing intra-subset distances. Most of the achievable coding gain can be
obtained by doubling the signal alphabet and using an appropriate code.

Ungerboeck’s TCM  schemes employ redundant non-binary modulation in
combination with a finite-state encoder that governs the selection of modulation
signals to generate coded signal sequences. The TCM code can be represented by
either a finite-state machine description (state diagram) or by a trellis diagram
(state-transition diagram), while the former is more compact, the latter has the
advantage of depicting pictorially the time evolution of coded sequences. Often,
the TCM codes are also referred to as ‘Trellis Codes’, because the TCM schemes are
normally described by the trellis diagram of the encoder.

At the receiver, the noise corrupted TCM signals are decoded by a soft-

decision maximum-likelihood (ML) Viterbi decoder. A simple 4-state TCM code
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improves the robustness of digital transmission over AWGN channel by 3 dB relative
to an uncoded modulation system. With more complex TCM schemes (256-, 512-state),
it is possible to achieve coding gains of upto 6 dB relative to uncoded multilevel
system [127], without compromising bandwidth efficiency or power efficiency.

In the subsequent sections, we consider the general structure of TCM scheme

and the special mapping rule used in TCM code construction.

2.3.1 General Structure

Generally, a typical TCM scheme [127] consists of a binary convolutional
encoder followed by a signal mapper as shown in Fig.2.1, although several
alternative forms have been described in the literature [7, 19, 22, 51].

To transmit m-information bits per modulation interval, m = m bits are
expanded by a rate m/(m+1) convolutional encoder into (m+1) coded bits. These

m+1

(m+1) bits are used to select one of the possible 2 subsets of a redundant

signal constellation with 2™*'

channel symbols. The remaining (m-m) uncoded bits
are used to determine which of the 2™™ signals of the chosen subset is selected
for transmission.

During each signaling interval, the subset selection and hence the channel
symbol selection depends not only on the incoming information bits, but also on ¥
past information bits, where 7y represents the constraint length of the encoder.
These y bits will define the state of the encoder, and the total number of encoder
states is thus 27. Therefore a TCM encoder with memory ¥, can be represented by a
trellis diagram consisting of Ns = 2% states (nodes). From each state, there will
be 2" emerging transitions that correspond to 2™ possible values of the m-bit
information input X . The number of states reachable from each state is 2™ and
corresponds to distinct transitions (branches) of the trellis diagram. The number

m-1i

of parallel transitions associated with each branch is 2 and is determined by

(m-m) uncoded bits.
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The process of mapping the coded bits into channel symbols involves the
signal-set-partitioning concept and TCM mapping rules and is discussed in the

following section.

2.3.2 Set-partitioning and the TCM Mapping Rules

The TCM uses a design approach, that aims at maximizing the minimum ED of the
coded sequence, based on a mapping rule called ‘mapping by set-partitioning’. The
concept of set-partitioning plays a pivotal role in the TCM code construction.
Set-partitioning  divides a signal constellation into  smaller subsets  with
increasing intra-subset distances. Each partition is a binary partition. The
subsets can themselves be partitioned further in the same manner. This is
explained in detail with the TCM code design examples in the following section. A
signal constellation of 2° points can be partitioned upto n levels where n =< p. At
each stage, the number of points is halved and the minimum distance of the subset
increases (by a factor of 12 for QAM signals). The degree to which a given signal-
set is partitioned depends on the code. With a rate m/(m+1) convolutional encoder,
the (m+1) coded bits will dictate the depth of partitioning. This method of set-
partitioning, although not proved to be an optimal scheme [123], does provide an
improved performance over uncoded system.

The TCM encoder being represented by a trellis diagram, the state transitions
are assigned the channel signals from the partitioned signal—constellati(;n in
accordance with the following mapping rules [126] :

(1) The 2™ transitions diverging from (or merging into) a single state must be
assigned signals from one of the two subsets at the partition level-1.

(2) The parallel transitions, defined by (m-m) uncoded bits, must be assigned
signals from one of the subset belonging to the partition at (r71+1)§level,
that is from a subset having the largest intra-subset distance.

(3) All signals must occur with equal frequency and with a fairly good symmetry.
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Rules (1) and (2) guarantee that the ED associated with a single- or multiple-
transition paths will exceed that of the uncoded system. Rule (3) ensures that the
code trellis will have a regular structure.

The very rationale behind the set-partitioning concept and hence TCM design,
is that the coded signal sequences are impervious to noise-induced detection
errors if they are very different from each other [127]. This translates into the
requirement that the signal sequences must have a large ‘free distance’ in the
Euclidean signal space. The mapping by set-partitioning rule, in combination with
a convolutional encoder, achieves this goal of maximizing the minimum squared ED
between coded signal sequences. Thus, TCM design concept enables to realize codes
whose free-distance significantly exceeds that of uncoded modulation system, for a
given data rate, bandwidth, and signal power.

The squared free-distance of the code is the minimum squared ED between all

possible code sequences, and is defined by [126],

2
free

= min [Z |a(n) - a"(n)|2] L2
fam}#(a” ()} .

for all pairs of channel signal sequences {a(n)} and {a’(n)} which the encoder can

produce.

The effectiveness of a coded system over an uncoded system can then be
measured in terms of free-distances normalized with respect to signal energy.
Thus, the achievable coding gain of a TCM scheme at high SNR, also called as
asymptotic coding gain (ACG), relative to an uncoded modulation (reference) system
at the same data rate and bandwidth, is given by the ratio of normalized squared
free-distance of the code to that of the uncoded system. Expressed in decibels,

the asymptotic coding gain is

di diree—u
ACG = lOlogm[ [ E] / [ - ] } dB Q.2

s-C
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where dire and d’ are the squared free Euclidean distances, and Es_C and

e-c free-u
ES_u denote the average signal energies of the coded and wuncoded schemes
respectively.  The free distance dm_u of the wuncoded system represents the
minimum ED between the adjacent signal points of the constellation.

Before presenting the design examples for TCM, we consider below the multi-

level signal constellations.

2.3.3 Multi-level Signal Constellations

The digital signaling schemes can be compared on the basis of SNR required to
achieve a specific probability of error at a fixed data rate and/or bandwidth.

The two-dimensional M-ary modulation systems require a Nyquist bandwidth of
/T Hz around the carrier frequency to transmit signals at a baud rate of 1/T
symbols/sec. Therefore, the two-dimensional 2™-ary modulation schemes (such as M-
QAM or M-PSK where M=2"), achieve a spectral efficiency of about m bits/sec/Hz.
The M-ary PAM also exhibits the same spectral efficiency. Although the M-QAM and
M-PSK exhibit the same spectral efficiency, on AWGN channels M-QAM outperforms M-
PSK in error rate performance because of its efficient constellation shaping. To
maintain the same error rate performance, the M-PSK requires an additional
(3M2/2(M—1)n) signal energy over that of M-QAM [100]. The M-QAM rectangular signal
sets (M=2" for m=2, 4, 6, ...) have the distinct advantage of being easily
generated as two m-PAM signals superposed upon phase quadrature carriers forming a
signal space of M-points arranged on a square grid (eg. *1, *3, %5, ....). Also,
they can easily be demodulated to yield two quadrature components. Moreover, the
superposed view of modulation/demodulation process leads to a modular
implementation. Although may other types of rectangular signal constellations have
been investigated and reported in the literature [51, 53], very few outperform
with a marginal gain in terms of energy efficiency, which is often offset by the

complexity in implementation.
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The signal sets for one-dimensional amplitude modulation and two-dimensional
amplitude/phase modulation are shown in Fig.2.2. The average signal energy Eav is
also indicated for each signal set.

For applications on time-variant channels, the constant-amplitude M-PSK
signal  sets are being used extensively, particularly 4-PSK in satellite
communications. However, in recent years, M-QAM has received much attention for
its application in high-speed data transmission over telephone network, digital
satellite/radio  communications, mobile and cellular communications [23, 35, 55,

93, 131, 132].

2.4 TCM CODE DESIGN

In the following, based upon Ungerboeck’s design procedure [126, 127] several
TCM schemes for M-QAM constellations have been considered. The convolutional
encoders employed in the code design are minimal feedback-free convolutional

encoders of [126] and are shown in Fig.2.3.

2.4.1 The 4-State 16-QAM TCM Scheme

The 16-QAM signal constellation as shown in Fig.2.4 is partitioned into two
subsets BO and BI1. Further partitioning leads to a larger separation between
signal points of the subset.

In the code design, a 4-state rate 1/2 convolutional encoder as shown in
Fig.2.5(a) is employed. Following the usual notation, m=3, m =1 and y=2. Since m =1,
the 16-QAM signal constellation is required to be partitioned into m+1=2 levels
that results in four subsets CO, Cl, C2 and C3, each consisting of four signal
points as shown in Fig.2.4.

For performance comparison, an uncoded 8-QAM scheme is used as the reference
system. This uncoded system employs signal points of either BO or Bl for which the
minimum ED is dl=25, and corresponds to a l-state trellis with 8-parallel
transitions as depicted in Fig.2.5(b). The labels on the trellis transitions

correspond to signal points of the subset BO.
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We next consider the use of partitioned 16-QAM signal constellation in
conjunction with the 4-state convolutional encoder. The encoder is represented by
a 4-state ftrellis diagram as shown in Fig.2.5(c). From each state there are 2"=§
transitions corresponding to 2™=8 possible input combinations. Since m=1, there
are 2™=2 distinct transitions (branches) from each state, each representing 4
parallel transitions corresponding to m-m=2 uncoded bits of the encoder. The
trellis branches are assigned channel signals from the partitioned constellation
of Fig.2.4, in accordance with TCM mapping rules and the resulting branch
labelling are indicated in the Fig.2.5(c). Each branch representing 4 parallel
transitions is assigned signals from the subset CO, Cl, C2 or C3, while each state
is associated with signals of subset BO or Bl. As can be seen, all channel signals
occur with equal frequency, and the trellis exhibits regularity and symmetry.

The minimum squared ED between parallel transitions, represents the minimum
ED of the C-type subset and is given by d;in_par=dz=16.0. On the trellis diagram
of Fig.2.5(c), we consider two distinct paths emerging from state 0 and merging
into the same state after three transitioris, forming an error event, as
highlighted by the signal paths (0,0,0) and (2,1,2). This is a minimum length
signal sequence and has a minimum squared ED of d?

min-event

the squared free distance of this code, by definition, is diree_c=min(16,20)=16.0.

=(d}+d’+d")=20.0. Hence

The average signal energy for 16-QAM signal set is Es_c=10.0.
For the uncoded 8-QAM reference system, represented by the subset BO of 16-
16-QAM as shown in Fig.2.6(a), we have dzﬁee_u=8.0 and Es_u=10.0. Therefore, the

asymptotic coding gain of this code is

ACG = 10iog, [ (¢ /B )/ (¢ /E )]

= 101og10[ [ 16/1-0) / [8/10) ] = 3.01 dB.
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Thus, we find that the 4-state 16-QAM TCM code achieves a gain of 3 dB over
uncoded 8-QAM reference system, for the same information rate, bandwidth, and
signal energy.

For the 16-QAM TCM code, the coding gain depends on the uncoded modulation
system being considered as the reference. To illustrz{te this, we consider two
other 8-QAM signal constellations [100] as shown in Fig.2.6 as the reference
systems for the 4-state 16-QAM TCM scheme. For the 8-QAM reference system of
Fig.2.6(b), we find dirce_u=4,0 and Es_u=4.73. With this 8-QAM system as the
reference, the ACG of the TCM code is 2.77 dB. For the other 8-QAM reference
system of Fig.2.6(c), dim_u=4.0, Es_u=6.0 and ACG=3.8 dB. Thus, we find that ACG
of this 4-state 16-QAM TCM varies between 2.77 dB and 3.8 dB depending upon the

reference system being considered.

2.4.2 The 8-State 64-QAM TCM Scheme

The set-partitioning of the 64-QAM signal set is shown in Fig.2.7. An 8-state
rate 2/3 convolutional encoder employed in the code construction is as shown in
'Fig.2.8(a), with m=5, m =2 and y=3. Since m+1=3, the signal set is required to be
partitioned into three levels, which results in 8 subsets DO, DI, ...., D7, each
consisting of 8 signal points. The encoder is represented by an 8-state trellis
diagram as shown in Fig.2.8(b). From each state 4 distinct transitions (branches)
emerge, each representing 8 parallel transitions. The channel mapping, assigning
channel symbols to code trellis, is carried out in accordance with TCM mapping
rules. That is, each branch is assigned signals from one of the D-type subset and
each state is assigned signals belonging to either BO or Bl in a symmetric manner,
as depicted in Fig. 2.8(b).

The two non-parallel paths (0,0,0) and (6,5,2), as shown in Fig.2.8(b) form

an error event with minimum squared ED d°

min-event

=5d;=20.0. The minimum squared ED

among parallel transitions is d* =8d;=32.0. Therefore the squared free

min-par
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distance of the code is dzﬁee_c= min(20,32)=20.0. For 64-QAM signal constellation
the average signal energy is ES_C= 42.0.

For the uncoded 32-QAM reference system, the signals of subset BO (or Bl) of
64-QAM constellation as shown in Fig.2.6(d) are being used. For this uncoded
system, we find that minimum ED is d1=25, and the average signal energy is 42.0.
Thus dzfm_u=df=8.0, and Es_u=42.0. Therefore, the ACG of 8-state 64-QAM TCM is
3.98 dB with reference to uncoded 32-QAM of subset BO of Fig.2.7.

We next consider a 32-QAM cross signal constellation of Fig.2.6(e) as the
reference system. This signal set has dzﬁee_u=4.0 and ES_u=20.0. Hence ACG of 8-
state 64-QAM TCM is 3.77 dB. Thus, we find that there is a degradation of 0.2 dB
indicating that signal set of the latter reference system has a better

constellation shaping compared to the first reference system.

2.4.3 The 16-QAM TCM Using Two Rate 1/2 4-State 4-AM TCM Schemes

Since a rectangular M-QAM system can be viewed as two-AM systems superposed
on quadrature carriers, we adopt two rate 1/2 4-state 4-AM TCM schemes to realize
a 16-QAM TCM code. The structure is shown in Fig.2.9(a).

Now consider the design of rate 1/2 4-state 4-AM TCM scheme. Here m= m=1,y=2.
The 4-AM signal constellation and its set partitioning are shown in Fig.2.9(b).
The signal set is partitioned into (m+1)=2 levels with the result that each subset
of the last partition contains only one signal point, and hence no parallel
transitions along trellis branch. The rate 1/2 4-state convolutional, encoder of
Fig.2.3(a) is employed and the corresponding  trellis di'agram is shown in
Fig.2.9(c).

For the code under consideration, we find that dzﬁce_c=9d(2)=36.0 by
considering the error event as highlighted in the trellis diagram of Fig.2.9(c).
Also, the average signal energy ES_C=5.O. Considering a 2-AM uncoded system as the

reference, we find dzﬁee_u=4.0 and Es_u=1.0. With this as the reference system,

the ACG of the 4-state 4-AM TCM scheme is 2.55 dB.
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2.5 MAXIMUM-LIKELIHOOD SOFT-DECISION DECODING OF TCM

Assume that the TCM signals are transmitted over an AWGN channel. Let the
discrete channel output be r(n)=a(n)+v(n), where a(n) is the discrete complex-
valued signal sent by the TCM transmitter and v(n) represents the complex sampled
value of the AWGN process. Because of the dependency introduced by the
convolutional encoder between the successive transmitted symbols, the minimum
distance between the two signal points is no longer a measure of the decoder
performancé. But it is the minimum distance between the allowed sequences of
symbols that determines the system performance [123]. Therefore hard-decision
decoding, if employed, causes an irreversible loss of information resulting in
performance degradation. A better approach would be soft-decision decoding. The
optimum decision rule for the sequence decoder is to determine among all possible
signal sequences, a sequence with minimum squared ED from the received sequence.

The Viterbi algorithm (VA), originally proposed for the decoding of
convolutional codes [128], has been shown to be an attractive solution to a
variety of digital estimation problems. The VA tracks the state of a stochastic
process with a recursive method that is optimum, and lends itself readily for
implementation and analysis [47].

The VA is a maximum-likelihood sequence estimation (MLSE) technique that
finds among the set of all coded signal sequences which the TCM encoder can
produce, a sequence {;(n)} which is closest to the received sequence {r(n)} in the
sense of ED. This recursive decoding procedure involves a search for the most
likely path in the code trellis based on the received sequence. The received
signal sequence R={r(n)}={r(l), r(2),...., r(n)} is decoded into one of the
allowed —signal sequences in the set {A(i)}, where A(i)={ai(1), -ai(2), ai(n)),
based on the optimum decision rule that selects A(k) if Prob (R/A(k)) > Prob
(R/A(j)) for all jzk [123]. For an AWGN channel, this translates to computing the

squared ED between A(i) and R, and selecting the signal sequence A(k) for which
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R - A()|* < |R - A()|” for all j = k, where [R - AG)|2 =7 |r(p) - a(p)|® and
p=1

|r(p) - ai(p)l2 represents the branch metric.

The soft-decision Viterbi decoding for TCM is accomplished in two-steps [100,
127]. Note that each branch of TCM code trellis corresponds to a signal subset
assigned to parallel transitions. The first step called subset decoding,
determines the best signal point from among the subset points of the trellis
branch, that is closest to the received signal. These branch signals are stored
along with their branch metric. In the second step, the selected branch signal
points and their corresponding branch metrics are used in the Viterbi algorithm to
find a signal path through the code trellis that has the minimum cumulative
squared distance from the sequence of noisy channel outputs being received.

The essential features of VA are summarized as follows [73, 123, 127]:
‘Starting  from infinite past upto the present time n the optimal signal path,
called the survivor, entering into each state of the code trellis is assumed to be
known. To proceed from n to n+1, all the survivor paths are extended and the total
path metric is computed by adding extended branch metric toh the already known best
path metric of the state (node). The total path metric of all extended paths
merging into each state are then compared, and the shortest among them is retained
as the survivor and the rest are discarded. The total path metric of the survivor
path is called the best path metric. Note that for each state of the code trellis,
there will be one survivor path and correspondingly the best path metric. The
procedure is repeated iteratively. It can be observed that the VA‘ requires three
basic operations namely add, compare and select.

Looking backwards in time, all the surviving paths tend to merge into the
same history path at some time n-t. With a sufficient decoding delay s>t, the
information associated with a state transition on the common history path at time
n-3 can be selected as the decoder output (estimate). In practice, a decoding

delay of & = 5y will suffice most of the applications, where y is the constraint
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length of the code.

2.5.1 Performance Analysis of the Viterbi Algorithm

An important feature of VA is the straight-forwardness with which its
performance can be analysed [47, 73, 89]. In many cases tight upper and lower
bounds to error probability can be derived.

The VA seeks the most likely path through the trellis based upon the received
sequence. Due to the presence of noise and other (imperfections) disturbances on
the channel, the estimated sequence (path) may not coincide with the actual
transmitted sequence (path) at all times, but typically diverge and remerge a
number of times. Each distinct separation is called an error event. Thus an error
event is formed by a pair of distinct sequences that depart from a single state
and then merge into a single state some steps later, but does not simultaneously
occupy the same state in between. Mathematically, an error event of length k (k =

~2) can be defined by two sequences as

{a} = (a(n), a(n+1), ..., a(n+k-1))

{2} = (a(n), a(n+1), ., a(n+k-1y) 2.3)
and

o = ; ; o = &

n n n+k n+k

w +a  fori=n+l, n+2, .., n+k-I 2.4

where {a} corresponds to correct (transmitted) sequence
A
{a} corresponds to the estimated (received) sequence,

. denotes the transmitter (encoder) state at time j

/S

and o denotes the receiver (estimator) state time j.
J

An error event is shown in Fig.2.10 for illustration. The error event concept
plays an important role in the performance analysis of VA. The basic property of

error events is that thev are probabilistically independent of each other. The
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error events in general may be of unbounded length, but the probability of such

occurrences is nearly zero [47].

Transmitted Path

Estimated Path

Fig.2.10 Formation of error event

Let e be the set of all possible error events starting at some time k. The
probability P(e)) of occurrence of any error event in e _can be upper bounded by a
union bound, that is by the sum of probabilities of all error events in € This
sum may be infinite, but is typically dominated by one a few leading terms
representing the most likely error events, which then forms a good approximation
to P(ck). On the otherhand, a lower bound to the event error probability can be
obtained by a particular error event that has be obtained by a particular error
event that has the greater probability of occurrence among all the error events of
the set € and hence determines the asymptotic behaviour at high SNR.

The important parameters desired in the evaluation of code performance are

discussed in the following section.

2.5.2 Performance Evaluation Parameters

When the VA is used for decoding of TCM, it is possible to compute the
performance provided some important parameters for TCM can be specified. To define
these parameters, we shall assume that the TCM encoded sequence {a(n)} is
transmitted over AWGN channel with a double-sided spectral noise N0/2, and the
receiver performs a maximum-likelihood soft-decision decoding. For the two
dimensional QAM signal constellations under consideration, the noise variance in

. L2
each dimension is o = Noy/2.
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The important parameters used for the performance evaluation of a TCM scheme

operating over an AWGN channel are as follows:

(i)  Signal-to-noise ratio, SNR

The signal-to-noise ratio is defined by

SNR = E ;([;) i 2.5
o

v

where E{|a(n)|2} denotes the average signal enérgy.

(ii)  Minimum free Euclidean distance, dre
ree
The drree 1s the smallest of the minimum ED due to either parallel

transitions or non-parallel paths that lead to an error event.

(iii) Number of nearest neighbours, Nd
The Nd is a multiplicity number corresponding to the average number of

nearest neighbour signal sequences of minimum ED d, for d = d .

(iv) Distance Spectrum, DS
A spectral line defines the minimum ED d and the multiplicity N of ‘an error
event. The collection of all spectral lines of the code is called the distance

spectrum.

(v) Event-Error Probability, Pe

The probability that at any given time, the decoder makes a wrong decision
among signals associated with parallel transitions or starts to make a sequence of
wrong decisions along some path that diverges from the correct path for more than
one transition, is called the error event probability Pe.

A union bound on the error event probability Pe may be obtained by summing

the error event probability over all possible incorrect paths [130]. Thus, at any
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time Pe is upper bounded by

P = z N_.Q (d/20) | ...(2.6)

€

d=d
free

where d is the minimum ED of the error event, Nd is its multiplicity number,
dfree is the minimum free ED of the code, 03 is the noise variance in each

dimension, and Q(.) is the Gaussian error integral defined by

Q) = J% J exp(-y*/2) dy = 5 exp(-x12) QT

Because of the exponential decrease of Q(x) with increasing x, the error
event probability Pe is dominated, at high SNR, by the term involving the minimum
value of d, that is dfm. Therefore, at high SNR, the Pc is approximated by the
lower bound as [46, 127]

Pe =Ny, .Q(d_120) ..(2.8)

Thus, the performance of a code at high SNR can be roughly estimated only in terms

of drrce and Ndfrec of the code.

(vi) Bit-Error Probability, Pb
The bit error probability Pb is the average number of bit errors per decoded
information symbol. Similar to Pe, an upper bound on the bit error probability Pb

can be obtained through union bound as [108]

P = Z B,Q (d120) ..(2.9)

b

d=d
free

where B~ represents the average number of information bits on all paths at
distance d from the correct path.
The lower bound on error probability gives the optimum code performance at

high SNR, and is mainly dependent on dﬁce and Ndrrcc' On the otherhand, the upper
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bound on the error probability gives a better estimate of the code performance

applicable at lower and moderate SNR, but requires a knowledge of the distance

spectrum of the code.

2.5.3 Performance Bounds of TCM on AWGN Channels

Since the publication of spectrally efficient TCM schemes by Ungerboeck
[126], there has been considerable interest in the computational techniques for
the evaluation of their performance. The exact analysis of TCM performance is
difficult and wusually one resorts to either simulation or the evaluation of
performance bounds [111]. While simulation is useful only for short constraint
length codes and at lower SNR, the bounds are most effective for the estimation of
system performance at moderate to large SNR.

The two important parameters normally employed in the performance evaluation
of TCM are free ED and error event probability. The algorithms used for the
computation of these parameters assume significant importance, because of the fact
that the design of an optimum TCM scheme is based on a search among a class of
possible candidates, for all of which the performance must be evaluated.
Therefore, it is essential that these algorithms be fast and efficient.

Most of the algorithms for computation of the above are based on the
generating (transfer) function approach [91, 128, 130], that has been extensively
applied in the performance evaluation of linear convolutional codes, which when
combined with a union bound gives the upper bound on the error event probability.
The generating function enumerates the distance, length and number of errors on
any incorrect path with reference to a correct path. When the code s
linear/regular, the distance between the correct path and incorrect path does not
depend on the transmitted sequence. Therefore, normally all-zero information path
is assumed to be the reference in the derivation of the transfer function [146].
The complication arises in TCM due to the fact that, in general, the distance

between any incorrect path and correct path is dependent upon data sequence being
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transmitted, and hence averaging over all correct and incorrect paths s
necessary. This requires the derivation of the transfer function by a pair-state
approach that uses a ‘palrwise-state diagram’ with N: states, where NS is the
number of encoder states. The method is quite involved with a large computational
complexity that limits its applicability to TCM codes with large NS. However in
certain cases, by taking advantage of the linearity property of the convolutional
code on which TCM design is based, as well as ‘symmetries’ and ‘regularity’ of
signal constellations used and the way it is partitioned, it is possible to derive
the transfer function from a modified-state diagram having only N8 states.

Thus, the algorithms presently available can be broadly classified into two
categories. The first approach is based on the pair-state diagram and is most
general in applications but has a complexity proportional to Ni. Biglieri [13] has
applied this pair-state approach to evaluate the performance of TCM schemes over
linear and non-linear channels. The second approach uses a modified-state diagram
with only NS states and has a complexity proportional to NS. But this approach is
applicable only to a certain class of trellis codes namely symmetric trellis codes
|146], regular trellis codes [22], superlinear trellis codes [7], quasi-regular
trellis codes [108], and uniform trellis codes [16]. Biglieri and Mclane [16] have
shown that all Ungerboeck codes are uniform codes. For a uniform code, the free
distance does not depend upon the transmitted sequence [49]. A tutorial material
on the performance evaluation of TCM schemes is available in [9].

However, as pointed out by Ungerboeck [127], it is not necessary to compute
distance between every pair of TCM signal sequences, and the free ED can be
determined by treating the all-zero information sequence as the reference path,
even though linearity does not hold for TCM signal sequences. Henceforth in our
analysis, we use this argument to compute the distance properties of the code. We
have proposed an algorithm to compute the distance spectrum of TCM code, using an
Ns—state trellis where the all-zero information path is regarded as the reference

in the computation of the minimum ED d and the nearest neighbours Nd of all the
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error-events of the code. Once we compute d and Nd for all possible error-events

of the code, the error event probability can be computed.

2.6 COMPUTATION OF THE DISTANCE SPECTRUM

The computation of minimum free distance is equivalent to finding the lowest-
weight non-trivial closed path in thé state diagram. A large number of
unidirectional and bidi]rectional algorithms have been employed in various network
problems to find the lowest-weight paths. A collection of such algorithms can be
found in a comprehensive tutorial paper by. Drefus [34]. According to Drefus,
bidirectional search algorithms are much inferior over unidirectional search
algorithms. However, by making use of the symmetries inherent in the code tréllis
structure, the bidirectional search algorithms tend to become more efficient [3].

Bahl et al. [3] proposed an efficient bidirectional search algorithm to
compute dfree of convolutional codes. Larsen [67] observed certain flaws in that
algorithm and introduced the corrected version, which is still regarded as the
most efficient bidirectional search algorithm that computes dﬁce of binary
convolutinoal codes using Hamming weights. Ungerboeck [126] used the Larsen
algorithm to compute the minimum free ED dfree of TCM code by replacing Hamming
weights with Euclidean weights and treating the all-zero information path as the
reference.

The distance spectrum computing algorithms require more storage and
computation than the conventional dfree computing algorithms, because here no
paths are discarded. Rouanne and Costello [108] wused a bidirectional  stack
algorithm to compute the distance spectrum of TCM codes by assuming that all-zero
information sequence is sent. The complexity of the stack algorithm depends on the
number of paths to be extended, but not on the constraint length of the code,
thereby making it attractive for codes having large constraint length. The stack
algorithm requires dynamic storage allocation which is computationally intensive
but saves on total memory required for computation. On the other hand,
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unidirectional Viterbi-like trellis search algorithms are well suited for distance
spectrum calculation, although they require large memory, they are computationally
efficient.

In the following, we propose a unidirectional trellis-search  distance
spectrum computing algorithm based on the shortest-route principle used in graph
theory [72]. Following the above approach, the algorithm computes the minimum ED
of all error events of the TCM code, in the order of increasing distance together
with their multiplicities, by treating the all-zero information path as the
reference. This algorithm is simple to. implement as it requires only an Ns-state

distance trellis for a Ns-state code and is applicable to all Ungerboeck codes.

2.6.1 Unidirectional Trellis Search Algorithm to Compute the Distance
Spectrum of TCM Code

Assume that the states of the code trellis are numbered as 1, 2, ..., N. An
error event starts with a diverging transition from state 1 and ends with a
transition merging into the same state 1 after two or more transitions, while
making transitions in between through states other than state 1. Therefore, to
find error events of length k = 2, transition from state 1 to state 1 in a single-
step is disallowed by treating is as non-connected. All minimum distance paths
starting from node 1 at trellis depth n=0 and ending at some node j for all j=1,
after a certain depth n=k, will represent unmerged paths and must be retained, as
they are still contenders for the formation of higher order error-events.

Given the Ns—state code trellis with channel symbols as branch labels and the
connectivity between the states, derive an Ns—state distance trellis that defines
the minimum squared ED associated with a branch transition with respect to the
all-zero information path represented by the channel symbol labelled as 0. If
parallel transitions exist, then retain the least distance path and also record

the number of such paths along that branch. From the Ns—state distance trellis,

derive a distance matrix D(N xN), whose element Dij represents the minimum
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squared ED of the branch connecting states i and j, with respect to the reference
branch (transition from state 1 to state 1). The states which are non-connected
are represented by a large distance, say Di\i=1000.0 if states i and j are non
connected in the code trellis. Since transition from state 1 to state 1 s
disallowed in a single-hop, set D“=1000.0. Also, let € be NxN matrix whose
element g'i(j gives the cumulative (total) ED along a path that starts from state i
at n=0 and ends in a state j at n=k. Initially set g?]=0.0 and g?j=1000.0 for all
the other values of i and j. Then the total accumulated distance along a path of

the trellis is computed by [72].
k-1
& = %D _ ...(2.10)

where the matrix operation * is in fact a minimum distance search operation,

defined as o that corresponds to adding all branch (squared) distances with the
nt

cumulative distance and choosing the minimum among them as the new cumulative

distance. Thus an entry g‘i(j of gk can be defined as

E'_‘,=min{(£'i‘l')l + D)} forp=23,..N (2,11

1

Each matrix operation * extends the trellis search by one depth. After each
extension, check for the occurrence of an error event. An error event occurs if
g':1<1000.0. Then set djlin—evenlzgll(l' After the occurrence of an error event, for
the next extension reset g'l(l=1000.0

To compute the multiplicity number, define an NxN matrix M such that each
element Mij represents the number of minimum distance parallel transitions along
the branch ij with reference to the all-zero information path. For all non-
connected transitions ij (including the transition 1-1) set Mij=0. Define also NxN
matrix QX whose element Qk denotes total multiplicity of that path starting from
node i at depth n=0 and terminating at node j at depth n=k. Initially set Q =1 if

24 &2_0& .
ij is an allowed transition for j= 2 3 w&L‘and —0 for i and j except i=1. Q" is

.’f’ ‘\\



updated after trellis extension using the relation,
Q=Q"" e M L(2.12)
where e is a multiplicity search operation and is defined as

Q=T@ *M) .(2.13)
if (Eli:)l + Dpj) results in a minimum during the operation e =¢“'% D. Upon the
occurrence an error event at depth n=k set Nd=Qll‘l and then reset Qll(l=0.

To start with, specify the maximum length of the error event upto which the
distance parameters (d,Nd) are desired to be computed. Also compute, from the code
trellis, the minimum squared ED among the parallel transitions. of the branch
d’ If d? represents the minimum squared ED of all the error events

min-par’ min-event

under consideration, then

d*> = min (d* d? ) L (2.14)

. ’ .
free min-par min-event

and the corresponding multiplicity number (averaged) will be Nd“ee. For each

dim_evem, there will be a corresponding multiplicity number Nd.

The distance spectrum trellis reach algorithm is illustrated with an example

as given below.

2.6.2 Example : Distance Spectrum of 4-State 16-QAM TCM Code

The encoder trellis with channel symbol assignment is shown in Fig.2.11(a)
and its corresponding distance trellis is shown in Fig.2.11(b). The minimum
squared ED and its multiplicity with reference to the all-zero information path
are labelled along each transition. The distance matrix D and the branch
multiplicity matrix M are also indicated in Fig.11(b).

The minimum squared Euclidean distance among the parallel transitions of the

code trellis is d? =16.0. By recursive application of (2.10) and (2.12), we

min-par

51



State i

4 State

®

®

co={0,4,8,12} ; Cc2={2,10,6,14} ; C1={1,9,5,13};
C3={3,11,7,15}

(a) 4—-State 16 QAM Code trellis.

State |

1000(0)

b o)

eference path (disallowed)

State |

@

r1ooo 8 1000 1000 0 4 0 0
1000 1000 4 . 00 2 2
°=| g o 1000 1000]° M4 1 0 0
1000 1000 & 4 0 0 2 2
_ _ _ _

(b) Distance trellis defining D& M matrices.

FIG.2.11 THE 4-STATE 16-QAM TCM CODE TRELLIS AND ITS DISTANCE TRELLIS.
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can find the error events of length k, their minimum squared ED and the

multiplicity number. The results of this computation for the above are given in

- the Table 2.1

Table 2.1 Distance Spectrum of 4-State 16-QAM TCM COde

Error event length dlim Nd
(Depth k)

3 20.0 4
4 24.0 12
5 24.0 12
6 28.0 36
7 28.0 16
8 32.0 80

2.7 RESULTS AND DISCUSSION

In this section, we give the error performance of the TCM schemes over AWGN
channels through the evaluation of bounds and simulation.

For the simulation of TCM data transmission over AWGN channel, as considered
in section 2.5, the following comments are in order. For the generation of an
independent identically distributed (i.i.d.) sequence of TCM symbols, we employ a
uniformly distributed random binary sequence generator which outputs m-bits per
baud interval. The TCM encoder/modulator transforms these m-bits into a complex-
valued channel signal a(n) (a member of the M-QAM signal constellation) in
accordance with the TCM coding rules. The channel signal is corrupted by the
complex-valued additive white Gaussian noise process v(n). For the generation of
AWGN process, we consider the use of two Gaussian random variables defined as

v](n)=crv~|(-21nR1) cos(2rR2) and vQ(n)=ovJ(-21an) sin(2rR2) where R1 and R2 are
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‘uniformly  distributed random variables, 0‘3 is the noise variance in each
dimension, and vl(n) and vQ(n) are the in;phase and quadrature components of the
complex AWGN process v(n). Thus the received signal r(n) is given by
r(n)=a(n) +v(n).

At the receiver, the sequence of received signals {r(n)} are applied to a
maximum-likelihood sequence detector implemented through the Viterbi algorithm.
The VA performs a minimum cost search on the code trellis to find an estimated
data sequence {;(n)} which is closest to the received sequence {r(n)}. The VA
employs a decision delay of & = 6y for the decoding of a trellis with 27 states.

The effect of decision delay s of the VA on the error event probability of
TCM schemes have been studied. Fig.2.12 illustrates the error performance
characteristics of different M-QAM TCM schemes for different values of the
decision delay &, as given in the legend. It may be observed from Fig.2.12 that an
increase in decision delay beyond 6y does not result in a significant improvement
in the performance. Thus, most of the performance gainfor a TCM code could be
obtained through the Viterbi algorithm using a decision delay of 6y to decode a
trellis structure with 27 states, and we follow this logic in all our subsequent
simulation work.

As discussed in section 2.4, the achievable coding gain with a TCM scheme
depends upon uncoded system that is being used as the reference. To illustrate the
gain achievable (asymptotically) with a 4-state 16-QAM TCM scheme, we consider the
use of three different 8-QAM signal sets, of Fig.2.6 (a)-(c), as the reference
systems. Fig.2.13 shows the error performance of 4-state 16-QAM TCM scheme and
that of the three uncoded 8-QAM reference systems labelled as Ref.-(i), Ref.-(ii)
and Ref.-(i1) respectively. The reference system Ref.-(i) corresponds to the
uncoded modulation employing the signals of subset BO (or Bl) of the partitioned
16-QAM signal constellation as shown in Fig.2.6(a), while Ref.-(ii) and Ref.-(iii)
corresponds to uncoded reference systems employing 8-QAM signal sets of Fig.2.6(b)

and Fig.2.6(c) respectively. It may be noted that all the three reference systems
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have the same data rate and bandwidth as the coded scheme but with different
average symbol energies. While Ref.-(i) has the same signal energy (Eav=10.0) as
that of the coded system, the reference systems Ref.-(ii) and Ref.-(iii) have
average signal energies of Eav=4.73 and Eﬂv=6.0 respectively.  From the error
performance characteristics of Fig.2.13, it can be observed that the gain
achievable with the 4-state 16-QAM TCM scheme, at high SNR, is about 3 dB relative
to Ref.-(i), while it is nearly 2.8 dB and 3.8 dB with reference to uncoded
systems Ref.-(ii) and Ref.-(iii) respectively.

We have shown, earlier in section 2.4.1, that the asymptotic coding gain
(ACG) achievable with a 4-state 16-QAM TCM varies between 2.77 dB and 3.8 dB for
the use of three 8-QAM reference systems of Fig.2.6(a)-(c). The simulation results
of Fig.2.13 are in agreement with the theoretical calculations of section 2.4.1.

Similarly, Fig.2.14 depicts the variations in the coding gain achievable with
an 8-state 64-QAM TCM using two different uncoded 32-QAM signal constellations. In
Fig. 2.14, Ref.-(i) refers to the uncoded 32-QAM system employing the subset BO of
the partitioned 64-QAM signal constellation with an average signal energy Eav=42.0
as shown in Fig.2.6(d), while Ref.-(ii) refers to the 32-QAM cross signal
constellation  with Eav=20.0 as shown in Fig.2.6(e). Both Ref.-(i) and Ref.-(ii)
have the same data rate and bandwidth as the coded system, but with different
signal energies. With the reference system Ref.-(i) having the same energy as that
of the coded system we find, from Fig. 2.14, that at high SNR the coding gain
achievable is nearly 4 dB, while for the reference system Ref.-(ii) the gains
drops to about 3.8 dB. The simulation results of Fig.2.14 are in close confirmity
with theoretical calculations of the ACG of the 8-state 64-QAM TCM scheme of
section 2.4.2.

The uncoded reference system employed in the performance study of a TCM
scheme is normally based on the criterion of equal data rate, bandwidth and signal
energy as that of the coded system. Henceforth, in all further analysis, we
consider the use of subset BO (or Bl) of the partitioned signal constellation,
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Table 2.2 Distance Spectrum of 16-QAM TCM Codes

TCM 8-QAM
Scheme Length of error event Coded uncoded ACG
dB
2 2
3 4 5 6 7 8 10 ., Ng a2
(a) 4-state | d%=200 240 240 280 280 320 36.0
16-QAM 16.0 2 8.0 3.0
TCM N, =4 12 12 36 16 80 240
(b) 8-state | d2=20.0 20.0 240 240 240 280 28.0
16-QAM 20.0 8 8.0 4.0
TCM N, =4 4 16 48 16 72 192
(c) 16-state | 4?=24.0 240 280 280 280 320 32.0
16-QAM 24.0 32 8.0 5.0
TCM N,=8 8 16 36 64 32 43
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Table 2.3 Distance Spectrum of 64-QAM TCM Codes

TCM 32-QAM
Scheme Length of error event Coded uncoded ACG
dB
2 2
3 4 5 6 7 8 9 10 a2 N, &
(@) 4-state | d%=20.0 240 240 28.0 280 320 320 36.0
64-QAM 16.0 3 8.0 3.0
TCM N,=12 48 48 172 84 446 146 1034
(b) 8-state | d?=20.0 20.0 240 240 240 280 280 28.0
64-QAM 20.0 16 8.0 4.0
TCM N, =8 8 32 16 16 64 24 24
(c) 16-state | d*=24.0 240 280 28.0 280 320 320 32.0
64-QAM 24.0 48 8.0 5.0
TCM N,=12 12 24 56 96 72 196 112
Table 2.4 Distance Spectrum of 4-state 4-PAM TCM and 4-state 4-QAM TCM schemes
TCM Uncoded
Scheme Length of error event Coded Reference ACG
’ dB
b 4 bl 6 7 8 9 10 d;_nc Ndﬁ'u d;un
(a) 4-state d°=360 400 400 440 440 480 480 52.0
4-PAM 9.0 2 5.0 2.55
M N,= 4 8 8 24 48 24 64 (2-PAM)
(b) 4-state | d>=200 200 240 240 280 280 320 32.0
1-QAM 16.0 2 8.0 3.0
TCM N,=4 4 3 8 12 12 4 16 (2-QAM)




that is Ref.-(i) as the reference system for performance comparison.

We next consider the performance evaluation of TCM schemes operating over
AWGN channel using bounds and give its comparison with simulation results. For
each TCM code, the distance spectrum has been computed using the algorithm given
in section 2.6. For illustration, the first few spectral lines of the distance
spectrum for each of the TCM codes considered in the present study are presented
in Tables 2.2-2.4. The Table 2.2 gives the distance spectrum of 4-state, 8-state,
and 16-state Trellis codes employing 16-QAM signal constellations, while Table 2.3
gives correspondingly results for those of 64-QAM TCM codes. The Table 2.4 gives
the distance spectrum of 4-state 4-PAM and 4-state 4-QAM TCM codes. Also included
in these tables are the squared minimum ED between the parallel transitions

d2

. ¥
min-par

the squared free ED of the code dzﬁwc, the squared free distance of
the uncoded system dzﬁee_u and the asymptotic coding gain ACG of the TCM code,
which is computed using relation (2.2) under the assumption of.equal signal energy
(E_=E_) |

In the performance evaluation of TCM scheme over AWGN channel with spectral

noise power NO, we use the following definitions of bounds [13, 100]:

The lower bound (LB) on the error event probability is given by

P .= (/)  erfe(d [ [4Ny) ..(2.15)

el
At high SNR, the first error event is well approximated by an asymptotic estimate
(AE) as given by

P e = (U2 Ny erfe(d [ [aNp .(2.16)

and the error event probability is upper bounded by

P, = ()} N, efrcd / [4Ny) L2.17)

d=d
free

i ' i j iplicity number,
where drree is the free distance of the code and Ndrree its multiplicity
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Table 2.5 Error-event performance of 16-QAM TCM schemes on AWGN Channel

Coded System 8-QAM uncoded
Error event Probability system
TCM Scheme
SNR oy Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) P, s NS P, s P, symbol error
(a) 4-state 16- 10.0 0.7071 0.234E-02 0.468E-02 0.618E-01 0.153E-01 0.513E-01
QAM TCM 11.0 0.6302 0.753E-03 0.151E-02 0.133E-01 0.389E-02 0.279E-01
(Table 2.2a) 12.0 0.5617 0.185E-03 0.370E-03 0.207E-02 0.613E-03 0.133E-01
(Fig. 2.15a) 13.0 0.5006 - 0.323E-04 0.646E-04 0.221E-03 0.710E-04 0.532E-02
14.0 0.4462 0.368E-05 0.737E-05 0.159E-04 - 0.700E-05 0.172E-02
15.0 0.3976 0.246E-06 0.491E-06 0.735E-06 0.500E-06 0.443E-03
(b) 8-state 10.0 0.7071 0.783E-03 0.313E-02 0.457E-01 0.104E-01 0.513E-01
16-QAM TCM 11.0 0.6302 0.194E-03 0.776E-03 0.788E-02 0.225E-02 0.279E-01
(Table 2.2b) 12.0 0.5617 0.343E-04 0.137E-03 0.920E-03 0.291E-03 0.133E-01
(Fig. 2.15b) 13.0 0.5006 0.397E-05 0.159E-04 0.677E-04 0.230E-04 0.532E-02
14.0 0.4462 0.270E-06 0.108E-05 0.291E-05 0.100E-05 0.172E-02
15.0 0.3976 0.936E-08 0.374E-07 0.673E-07 - 0.443E-03
(c) 16-state 10.0 0.7071 0.266E-03 0.213E-02 0.177E-01 0.423E-02 0.513E-01
16-QAM TCM 11.0 0.6302 0.508E-04 0.406E-03 0.232E-02 0.714E-03 0.279E-01
(Table 2.2¢) 12.0 0.3617 0.647E-05 0.518E-04 0.195E-03 0.540E-04 0.133E-01
(Fig. 2.15¢) 15.0 0.5006 0.496E-06 0.397E-05 0.980E-05 0.300E-05 0.332E-02
14.0 0.4462 0.201E-07 0.161E-06 0.274E-06 - 0.172E-02
13.0 0.3976 0.363E-09 0.291E-08 0.379E-08 - 0.H3E-03
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Table 2.6  Error-event performance of 64-QAM TCM schemes on AWGN Channel
Coded System 32-QAM
Error event Probability uncoded
TCM Scheme system
SNR Cy Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) P..s P, .z P, s P, symbol error
(a) 4-state 64- 16.0 0.7263 0.295E-02 0.884E-02 0.821E-01 0.216E-01 0.783E-01
QAM TCM 17.0 0.6473 0.100E-02 0.301E-02 0.191E-01 0.706E-02 0.444E-01
(Table 2.33) 18.0 0.5769 0.263E-03 0.790E-03 0.324E-02 0.171E-02 0.221E-01
(Fig. 2.16a) 19.0 0.5141 0.502E-04 0.151E-03 0.404E-03 0.220E-03 0.924E-02
20.0 0.4583 0.637E-05 0.191E-04 0.343E-04 0.200E-04 0.312E-02
21.0 0.4084 0.487E-06 0.146E-05 0.196E-05 0.100E-05 0.812E-03
(b) 8-state 16.0 0.7263 0.104E-02 0.624E-02 0.565E-01 - 0.14E-01 0.783E-01
64-QAM TCM 17.0 0.6473 0.276E-03 0.165E-02 0.106E-01 0.343E-02 0.444E-01
(Table 2.3b) 18.0 0.5769 0.531E-04 0.319E-03 0.135E-02 0.644E-03 0.221E-01
(Fig. 2.16b) 19.0 0.5141 0.684E-05 0.411E-04 0.119E-03 0.610E-04 0.924E-02
20.0 0.4583 0.532E-06 0.319E-05 0.629E-05 0.400E-05 0.312E-02
21.0 0.4084 0.219E-07 0.131E-06 0.191E-06 - 0.812E-03
(c) 16-state 16.0 0.7263 0.372E-03 0.298E-02 0.175E-01 0.643E-02 0.783E-01
64-QAM TCM 17.0 0.6473 0.771E-04 0.617E-03 0.266E-02 0.103E-02 0.444E-01
(Table 2.3¢) 18.0 0.5769 0.109E-04 0.871E-04 0.268E-03 0.110E-03 0.221E-01
(Fig. 2.16¢) 19.0 0.5141 0.949E-06 0.759E-05 0.167E-04 0.700E-03 0.924E-02
20.0 0.4583 0.452E-07 0.36E-06 0.588E-06 - 0.312E-02
21.0 0.4084 0.100E-08 0.802E-08 0.104E-07 - 0.812E-03




Table 2.7  Error-event performance of 4-state 4-PAM and 4-state 4-QAM TCM schemes on AWGN Channel

€9

Coded System Uncoded
Error event Probability system
TCM Scheme
SNR Oy Lower bound Asymptotic estimate Upper bound Simulation Probability of
(dB) P.s P, e P, us P, symbol error
(a) 4-state 4- 3.0 0.7080 0.290E-01 0.116E+00 0.140E+00 0.425E-01 0.103E+00
PAM TCM 5.0 0.5623 |  0.852E-02 0.341E-01 0.388E-01 0.279E-01 0.559E-01
(Table 2.4a) 7.0 0.4467 0.133E-02 0.534E-02 0.584E-02 0.662E-02 0.228E-01
(Fig. 2.17a) 9.0 0.3548 0.780E-04 0.312E-03 0.332E-03 0.400E-03 0.581E-02
11.0 0.2818 0.966E-06 0.387E-05 0.402E-05 0.400E-05 0.744E-03
13.0 0.2239 0.103E-08 0.413E-08 " 0.423E-08 - ) 0.327E-04
(2-PAM uncoded)
(b) 4-state 2.0 0.8516 0.948E-03 0.217E-02 0.742E-02 0.488E-02 0.231E-01
4-QAM TCM 3.0 0.7088 0.324E-03 0.725E-03 0.178E-02 0.152E-02 0.126E-01
(Table 2.4b) 4.0 0.6317 0.650E-04 0.187E-03 0.306E-03 0.335E-03 0.615E-02
(Fig. 2.17b) 5.0 0.5630 0.815E-05 0.296E-04 0.346E-04 0.610E-04 0.244E-02
6.0 0.5018 0.120E-05 0.473E-05 0.231E-05 0.100E-04 0.822E-03
7.0 0.4472 0.113E-06 0.451E-06 0.794E-06 0.100E-05 0.197E-03
: (2-QAM uncoded)




N, is the multiplicity number of error events with minimum ED d, N/ is the noise

energy given as N0=20‘3 for two dimensional transmission and N0=cr2 for one
v

dimensional transmission, and erfc(.) is the complementary error function. It can

b

be verified that the error event probability Pe is bounded by Pe B = Pc < P U

and at high SNR Pe ~ Pe,AE.

To compute the upper bound P,yg, we use the first few terms of the distance
spectrum of the code, since the contribution of the higher order terms on PwB of
(2.17) becomes insignificant due to the exponentially decreasing nature of erfc(x)
with increasing values of x.

The error performance of the TCM codes have been evaluated through the bounds
(2.15)-(2.17) using the distance spectrum given in Tables 2.2-2.4 and the computed
values of the error event probability are given correspondingly in Tables 2.5-2.7.
The Table 2.5 gives the error performance parameters such as lower bound Pc'LB
asymptotic estimate PC,AE, upperbound PC,UB, which are evaluated for the 4-state,
8-state, and 16-state 16-QAM TCM schemes, using the data given in Table 2.2.
Similarly, Table 2.6 gives the error performance of 4-state, 8-state, and 16-state
64-QAM TCM scheme evaluated through (2.15)—(2.17) using the distance spectrum
given in Table 2.3. The Table 2.7 gives the performance of of 4-state 4-PAM and 4-

state 4-QAM TCM schemes computed through the use of data given in Table 2.4. These
Cabilen 0 00 alen bl dhie peantis obiiatned g shinbatiog Fhe nanher al
symbols employed in the simulation run varies from 10° to 10" depending upon the
state complexity of the trellis structure and we have used a decision delay 8 = 6y
for the VA.

the error perlormance characteristics of the 4-state 16 QAM TCM scheme, as
given in Table 2.5(a) have been shown in Fig.2.15(a). The legend ‘Lower bound’,
‘Asymptotic’ and ‘Upper bound’ correspond respectively to the bounds Pe,LB’ Pc‘AE
and Pe,UB of the error event probability as defined by (2.15)-(2.17).  ‘Coded

simulation’ refers to the error event probability of the 4-state 16-QAM TCM code

obtained through simulation and ‘uncoded’ refers to the 8-QAM uncoded reference
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system. Fig.2.15(b) and Fig.2.15(c) depict the error performance of 8-state and
16-state 16c-QAM TCM schemes respectively corresponding to the computations given
in Table 2.5(b)-(c). Similarly, the error performance characteristis of 4-state,
8-state, and 16-state 64-QAM TCM schemes, corresponding to computations given in
Table 2.6(a)-(c), have been shown in Fig.2.16(a) to Fig.2.16(c) respectively. Also
the error performance of the 4-state 4-PAM and 4-state 4-QAM TCM codes,
corresponding to computations given in Table 2.7(a)-(b), have been shown in
Fig.2.17(a) and Fig.2.17(b).

Fig.2.18 shows the summary of the error performance of the 16-QAM and 64-QAM
TCM schemes derived through the use of the computed upper bounds and simulation
results. We can note from their performance characteristics that larger coding
gain is achievable with the use of 8-state and 16-state TCM schemes, which is
respectively about 1 dB ad 2 dB relative to the 4-state TCM scheme.

We note, from the error performance characteristics as shown in Fig.2.15-
Fig.2.17 that the simulation result is well within the bounds computed and at high
SNR, the asymptotic estimate and the upper bounds follow closely the simulation
result. In all fairness it can be said that the upper bound, derived from the use
of the distance spectrum computing algorithm of section 2.6, gives a nearly tight
estimate of the error event probability and hence we may conclude that the
proposed algorithm can be applied effectively in the performance evatuation of all

Ungerboeck TCM codes over additive white Gaussian noise channels.
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CHAPTER 3

TCM TRANSMISSION OVER TIME-DISPERSIVE
IST CHANNELS

3.1 INTRODUCTION

With the growth in information technology, there is an ever increasing demand
for bandwidth-efficient digital communication systems. The two major impediments
to the reliable high-speed data transmission over a bandlimited channel are the
additive white Gaussian noise (AWGN) and the intersymbol interference (ISI). The
conventional coding schemes increase the reliability at the cost of bandwidth.‘ The
coded-modulation schemes, such as TCM, can effectively enhance noise immunity
without increasing the bandwidth. To mitigate the effects of ISI, a powertul
equalization technique such as the maximum-likelihood sequence estimation (MLSE)
is required. Thus for the bandlimited time-dispersive 1SI channels, a TCM scheme
in combination with an optimum MLSE equalizer promises to achieve data rate close
to channel capacity [15].

The cascade of a TCM encoder and the ISI channel can be viewed as a combined
finite-state machine, and hence as a combined ISI-Code trellis whose  states are
given by the product of the TCM encoder states and the ISI states. Consequently,
the resulting receiver performs a maximum-likelihood sequence estimation of the
data sequence using the Viterbi algorithm that searches for a minimum cost path in
the ISI-Code trellis. This combined ISI-Code receiver (also called the combined
equalization/TCM decoding receiver) structure is optimum and treats the functions
of equalization and TCM decoding as a single entity.
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The error rate performance of the optimum combined ISI-Code receiver can be
evaluated through bounds, by making use of the error structure of the TCM encoder
and the ISI channel characteristics. We present a new method for the performance
evaluation of TCM scheme on ISI channels, following the approach adopted by Magee
and Proakis [79] to evaluate the performance of MLSE receiver for uncoded
transmission over time-dispersive channels. Since the ISI channel is linear, the
output error sequence can be uniquely related to the input error sequence using
the discrete channel impulse response. From the output error sequence, the
Euclidean weight (squared ED) of the output error event can be computed. Making
use of the distance spectrum compgting algorithm (of section 2.6), it is possible
to obtain a set of input error sequences of the TCM encoder. Accordingly, we get a
set of output error sequences and correspondingly their Euclidean weights. The
minimum of Euclidean weights then represents the minimum squared ED of the
combined ISI-Code structure and hence the performance bounds can be evaluated.

In this chapter, we first consider the equalization problem for the
transmission of digital signals over time-dispersive channels and the different
equalizer structures used in practice to combat the effects of ISI. We next
consider the decoding of TCM signals in the presence of ISI and AWGN, using the
optimum combined ISI-Code receiver structures employing the maximum-likelihood
Vitérbi decoder. We then present the new approach that makes use of the error
structure of the TCM scheme to evaluate the performance of the combined ISI-Code
receiver using bounds. We also present, the results of a study that has been
performed to evaluate the error rate performance of some combined 1SI-Code
receiver structures for the decoding of Trellis-coded QAM signals, using bounds

and through simulation.

3.2 TIME-DISPERSIVE CHANNEL AND EQUALIZATION PROBLEM
In a bandwidth-efficient digital communication system, the effects of each

symbol transmitted over a time-dispersive channel extend beyond the time allowed
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to represent that symbol [46]. Consequently, this overlapping of received symbols
results in a linear distortion called the intersymbol interference (ISI), which
turns out to be the primary obstacle to high-speed data transmission over
bandlimited channels. The minimization of probability of error in the presence of
ISI, constitutes the equalization problem. In a broad sense, the term equalizer
refers to any signal processing technique/device designed to mitigate the effects
of ISI.

Besides telephone channels, there are other physical channels that exhibit
some form of time dispersion and thereby introduce ISI distortion. The digital
mobile channels and other radio channels such as shortwave ionospheric  (HF)
propagation and troposheric scatter are classified as time-dispersive channels. In
these, time dispersion and hence ISI arises due to the multiple propagation paths
of different path delays. These digital radio channels are normally called as the
time-variant multipath fading channels, since their channel characteristics vary
with time [100].

In addition to linear ISI distortion, the signals transmitted over a
bandlimited channel are subject to other impairments such as nonlinear distortion,
frequency offset, phase jitter, impulse noise, and thermal noise. Unfortunately, a
channel model encompassing all these impairments is most difficult to analyze
[100]. Therefore, for mathematical tractability, the channel model that is
normally adopted for a bandlimited channel is a linear time-invariant filter that

introduces the ISI and adds white noise that is Gaussian in nature.

3.2.1 Baseband Digital Transmission System

The model for a typical baseband.digital transmission system which is
subjected to ISI is shown in Fig.3.1.

Consider the transmission of a data sequence {a(k)} at a rate of one symbol
every T seconds over a baseband channel whose impulse response is g(t). Carrier

modulated data transmission systems such as quadrature amplitude modulation (QAM)
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and quadrature phase shift keyed (QPSK) system can be represented Dy an equivalent
linear baseband model that differs from the real baseband system by the fact the
symbol a(k) and the channel impulse response g(t) are complex-valued [125]. The
channel is assumed to be linear and time-invariant, and delivers to the receiver a
distorted time-smeared version of the transmitted signal. In this model, the
channel may represent the effect of the modulator, transmitter filter and the
transmission medium (the actual channel) in cascade. The channel output is
corrupted by the complex additive white Gaussion noise w(t). Thus, the received

waveform is given by

r(t) = Za(k) . g(t-kT) + w(t) .31
k

Thus, the instantaneous value of the received waveform depends on several
transmitted symbols, giving rise to the problem of ISI. The ISI arises due to the
fact that g(t) remains non-vanishing over several symbol durations. Therefore, the
linear channel may be assumed to have a finite memory of L symbols, and can be
represented by a finite-state machine. The received waveform is processed by a
receiver that may be linear or nonlinear which is optimized with respect  to
certain performance measure to combat the effects of the ISI and AWGN.

The optimum sequence estimator requires the entire received waveform before a
decision can be made. Forney [46] has shown that the samples of a whitened matched
filter form sufficient statistics for the detection of the transmitted sequence
{a(n)}. Thus the cascade of the linear channel representing the modulator, the
transmitter filter and the actual channel and the receiver filter consisting of a
whitened matched filter and a symbol rate sampler, can be modeled as a discrete-
time white noise channel as shown in Fig.3.2. It may be noted that T is the symbol
signaling interval.

Using the above model, the received signal at the time instant nT is given by
L

r(n) = Zgi _a(n-i) + v(n) ..(3.2)

i=0
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where gi’s are complex tap. gains, and correspond to the sampled channel impulse
response, and v(n) are samples of i.i.d complex-valued Gaussian noise with zero
mean and variance 203. The noise and data sequences are assumed to be
uncorrelated. The number of taps are (L+1), where L represents the channel memory.

If the signal constellation wused for the transmission of a(i)’s has an
alphabet size of M symbols and the channel memory is of L symbols, then the
discrete-time channel can be represented by either an M"-state finite state
machine [46] or an ML—state trellis diagram. The system state (ISI state) at any

time instant n is defined by L previous symbols as
s = (a(n-1), a(n-2), ....... , a(n-L)) ...(3.3)

where s may assume one of the M" possible values represented by {a(n-i)} for

1=1=L.

3.2.2 LEqualizer Structures

To combat the effects of ISI, a variety of receiver equalizer structures have
been proposed in the literature [56, 77, 104]. Although the exact nature of the
optimum receiver depends upon the problem formulation, the general form remains
the same in almost all approaches; namely a matched filter followed by a suitable
equalizer algorithm. While the matched filer reduces the errors due to AWGN, the
equalizer minimizes the error due to ISI. The nature of the equalizer may vary
from simple transversal filter ~through nonlinear decision-feedback equalizer
structures to the more sophisticated MLSE algorithms like the Viterbi algorithm.
l'or a comprehensive tutorial coverage on equalizer structures see [104]. In the
lollowing, we consider the salient features of some basic equalizer structures,

for the received sequence given by (3.2).

(i) Linear Equalizer (LE)

An optimum linear equalizer consists of an infinite length transversal filter
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which minimizes the errors due to ISI. The LE finds wide applications in practice,
because of its simplicity in implementation. It provides satisfactory performance
in most of the applications. However, on channels with severe amplitude
distortion, it enhances and correlates noise which results in performance

degradation, especially on multipath fading channels [11].

(i) Decision-Feedback Equalizer (DFE)

The nonlinear DFE, as compared to LE, uses the information provided by the
estimates of the previous symbols. If the past decisions are assumed correct, then
the ISI caused by them can be subtracted from the received signal in arriving at a
correct decision about the present symbol, provided the channel response is known
exactly. The concept of using previous decisions to‘cope with the ISI problem was
first introduced by Austin [11], and Monsen [86] proposed the first DFE receiver
structure for time-dispersive channels.

The DFE structure consists of two filter sections, the feed-forward filter
(FFF) and the feed-back filter (FBF) which mitigate the effect of ISI due to
precursor and post cursor symbol respectively. On severely distorted channéls the
DFE provides an improved performance as compared to an LE. However, the DFE
suffers from severe error propagation due to the FBF section. An incorrect

decision fed into the FBF results in error bursts, as if an impulsive noise has

been injected into the decoder.

(iii) Kalman Filter Equalizer (KFE)

The KFE is based on discrete Kalman filter and uses a state-variable
representation of the channel model. The KFE which is an optimum unbiased linear
minimum mean-square error (ULMMSE) estimator, provides the best linear estimate of
the transmitted symbol when the channel response is known. The use of the discrete
Kalman filter for the equalization of a binary transmission channel was first
proposed by Lawrence and Kaufman [68]. Benedetto and Biglieri [6] have

investigated the steady-state behaviour of such receiver structures.
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Under steady-state this optimum linear receiver turns out 1o be a time-
invariant, stable recursive filter. In the absence of channe!l noise (at very high
" SNR), the KFE behaves as a zerd—forcing equalizer. Since the KFE utilizes the
estimates of the past symbols, in form it is similar to a DFE. But in a KFE the
estimates of the symbols are fed back before a decision is made on them, and thus
the receiver is linear and the effect of decision-error propagation is thereby
eliminated [6]. The performance attainable with a steady-state KFE is superior to
that of a conventional LE, for a given complexity of the receiver structure.
However for implementation, the KFE needs an exact knowledge of the channel tap-

gains and a mismatch in tap setting may lead to performance degradation.

(iv) Maximum-Likelihood Sequence Estimation (MLSE)
Forney [46] introduced an optimum receiver structure that performs maximum-
likelihood sequence estimation by implementation through the Viterbi algorithm

(VA), as shown in Fig.3.3.

Received sequence Estimated
r(1),r(2).., r(n).. Maximum-likelihood Sequence,
»| Sequence Estimation y {a(k)}

(Viterbi Algorithm)

Fig.3.3 Maximum-likelihood sequence estimator

Like the Kalman filter, the VA tracks the state of a stochastic process with
a recursive method that is optimum in a certain sense. Forney [46] has shown that
the VA indeed is a maximum-likelihood sequence estimation technique, and therefore
is always optimum. Assume that an ISI channel is represented by an M"-state

m

trellis structure, where L is ISI memory length and M=2" is the constellation size
of an uncoded modulation system. Then the Viterbi algorithm by a recursive
procedure searches the trellis to find, among all sequences, a sequence which is
closest to the received sequence in the sense of maximum-likelihood. The VA is

therefore an optimum maximum-likelihood (ML) decoder.
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Although MLSE is an optimum solution, its computational complexity and
storage requirements grow exponentially with memory length L and thereby limits

its practical use.

3.3 DECODING OF TCM SIGNALS IN THE PRESENCE OF ISI AND AWGN

As mentioned earlier, the two primary impediments to reliable high-speed
transmission of digital data are the ISI and AWGN. In practice, bandwidth-
efficient coded modulation schemes and adaptive equalization techniques have
proved to be extremely efficient in overcoming the effects of AWGN and ISI,
respectively. Therefore, TCM schemes in combination with an optimum MLSE
equalization technique may be employed to realize reliable digital transmission at
rates close to channel capacity [40].

Recently, Chevillat and Eleftheriou [26], and Eyuboglu and Qureshi [42] have
independently proposed a new integrated approach to the TCM receiver design,
wherein the previously separated functions of equalization and TCM decoding are
combined into a single entity. Based on this approach, we now consider the
combined equalization and TCM decoding scheme for linear ISI channels corrupted

with AWGN.

3.3.1 Combined MLSE Equalization and TCM Decoding

Consider the transmission of TCM signals over a time-dispersive ISI channel
with AWGN. The communication system comprises a TCM encoder/modulator, a linear
channel filter followed by an ML sequence estimator as shown in Fig.3.4. The TCM
encoder/modulator, and the channel filter can be represented by an equivalent
combined discrete-time white noise channel model as shown in Fig.3.5 [26].

The TCM encoder generates a sequence {a(n)} in response to an input sequence

2 m

{Xn}, where X is a m-bit input stream defined by Xn=(xl'l, X ooox ). The linear

channel filter transforms {a(n)} into a channel output sequence {b(n)}.
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The TCM encoder being a finite-state machine, the output associated with the
next state transition depends on the present state o« of the encoder and the input
Xn. Thus the encoder output can be described as

a = f(a, X) ...(3.4)
Also, the next state of the encoder can be expressed as

o +1=f2(ocn, Xn) ...(3.5)

n

The output of the discrete-time model can be expressed as

r(n)

b(n) + v(n)
L\
or (n) =g, . a@m + Zgi . a(n-i) + v(n) ...(3.6)

i=1
where the second term represents the ISI and v(n) is the sampled value of complex
additive white Gaussion noise with zero mean and variance 03 in each dimensijon.

The discrete-time model of Fig.3.5 comprises of two finite-state machines
namely the TCM encoder and the ISI channel. This discrete-time model can therefore
be viewed as a combined finite-state machine (FSM) that represents the effect of
the two individual FSMs. Consequently, a TCM scheme operating over a time-
dispersive ISI channel can be modeled as a combined FSM, and correspondingly can
be represented by a trellis structure called combined ISI-Code trellis. The states

of this combined ISI-Code trellis are defined by [26],

po= (ocn; a(n-1), a(n-2), ...., a(n-L)) ..(3.7)

n

where the symbol sequence {a(n-1),a(n-2),...,a(n-L)} corresponds to a path which
takes the TCM encoder from a previous state « to the present state o« in
accordance with the TCM coding rule. The next state transition of the combined
ISI-Code trellis is defined by

by = f, a) -(3.8)

n+1
where a(n) denotes the symbol allowed by the TCM coding rule along the transition

MnH Hn+1'
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The states of the combined FSM can be expressed in terms of the symbol label

sequence {Yn_i} instead of {a(n-i)} in (3.7) as

) ...(3.9)
or equivalently, in terms of the input information sequence {X,.'} as,

po= s X X s XD ...(3.10)

n-2 n-L

Since Xn_i can assume 2" possible values for a m-bit input, there will be
(2™" ISI states for each code state. Therefore, for an N-state TCM encoder, the
combined FSM and hence the corresponding combined ISI-Code trellis will represent
NS.(Z"‘)L or NS.(M/Z)L states, where M=2""' represents the size of the signal
constellation employed in the TCM scheme. From each state there will be (M/2)
distinct transitions. Thus, the combined ISI-Code trellis represents all possible
sequences of {b(n)}.

In the presence of ISI and AWGN, the optimum ML sequence estimator searches
among all possible sequences {b(n)} of the combined ISI-Code trellis to find the -
sequence {;(n)} which is closest to the noise corrupted received sequence {r(n)},
in the sense of Euclidean distance. This is accomplished by a soft-decision
Viterbi decoder which operates on the combined trellis to determine {;(n)} by

recursively minimizing the survivor path metric as [26].

L

. ~ )

M@ )= min  {M )+ |- ]g a0 } .31
n ntli { }9 n-1" n i
'un ”n+1 i=0

where the minimization is taken over all the trellis branch transitions

originating from states {u} and merging into the successor state p .. The second

n

term represents the branch metric which takes into account the ISI cancellation

due to the past symbols {a(n-i)}. The computations and storage requirements of the

decoder is dependent on the state complexity of the combined ISI-Code trellis

which is N .(M/2)", for a constellation of size M and ISI of memory length L.
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3.4 TRELLIS STRUCTURES FOR COMBINED MLSE EQUALIZATION

AND TCM DECODING

In the following, we present several combined ISI-Code trellis structures for
the decoding of Trellis-coded QAM signals transmitted over an ISI channel of

memory length L.

3.4.1 The 16-State Combined ISI-Code Trellis for 4-State 4-QAM TCM (L=2)
Consider the transmission of 4-state 4-QAM TCM signals over an ISI channel of
memory length L=2. For the TCM encoder of Fig.2.3(a), with a constellation size of
M=2"*""=4, we have N =4 and m=1. For each code state there will be (M/2)b=2" =4 IS]
states and thus number of states in the combined ISI-Code trellis is NS.Z"’L=16.
The present state and the next state of the con;bined ISI-Code trellis, using

(3.7), are given by
= (a; a(n-1), a(n-2)) | L(3.12)

and I = (@ ; a(n), a(n-1)) ..(3.13)

n+l n+1

where a  and « ., are the states of the 4-state TCM encoder defined by « =x' x'
n

n-2 n-l

d o« =xrll_lx:], and a(n-2), a(n-1) are the two previous symbols represented by

the combined state pooat time n, and a(n) is the data symbol allowed by the TCM

coding rule along the transition R e For the 4-state 4-QAM TCM, we can
write a(n-i) in terms of symbol label Y ,=(yl yf:_i), where y:]_i=xl@ X'

e} N .
n-i n-i -1 n-i-2

and y:_i=x':1_i_] for Osi=2. Therefore upon substitution and simplification, (3.12)

and (3.13) can be expressed as
=&, x, x x'_) ...(3.14)

and i = (xl x', x! ,x:]) ...(3.15)

n+! n3' “n2’ Tl

It can easily be verified that use of (3.10) will also result in the form of

(3.14) and (3.15). Realization of (3.14) and (3.15) results in a 16-state combined
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ISI-Code trellis structure as shown in Fig.3.6. It may be noted that each state
represents  two previous symbols associated with it and each transition is a

distinct transition.

3.4.2 The 32-State Combined ISI-Code Trellis for 4-state 16-QAM TCM (L=1)
We next consider 4-state 16-QAM TCM transmission over an ISI channel of
memory length L=1. For the TCM encoder of Fig.2.3(d), with a constellation size of
M=2""'=16, we have N =4, and m=3. Since each code state is associated with
(M72)F=2"t=8 ISI states, the number of states in the combined ISI-Code trellis is

Ng.(M/Z)L=32. With the use of (3.7), the present state and the next state are

given by
u“=(oc“; a(n-1)) ...(3.10)
and o =5 am) ' .(3.17)
With « =(xl . X ), =(xl , xl) and a(n)=(y3, y2, 'y', yo) where y3=x3,
n n-2 n-1 ng n-1 n n n n n n I

2 2 1 [ 1 0 1 . . - .
=X = @ = ,
y W y“ /(n-2 Xn and yn Xn—l we can write “n and }.I.n | upon 51mp11hcat10n as

n

= xx oK K | (3.18)

and U = (xl X' , x', xi, xi) ...(3.19

n+1 n-2' “n-l n

The realization of (3.18) and (3.19) leads to a 32-state trellis structure as

shown in Fig.3.7.

3.4.3 The 128-State Combined ISI-Code Trellis for 4-State 64-QAM TCM (L=1)

We next consider the transmission of 4-state 64-QAM TCM signals over a time-
dispersive channel of memory length L=1. The TCM encoder is the same as in the
previous examples, with the exception that m=5 as the constellation size is
M=2""'=64. Each code state has 2""=32 ISI states and the number of states in the

combined ISI-Code trellis is Ns.(M/Z)L=128. Again, the states of this combined
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16-QAM TCM TRANSMISSION OVER AN ISI CHANNEL OF MEMORY LENGTH L=1
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trellis are as defined by (3.16) and (3.17), where a(n) corresponds to a signal
point of the 64-point QAM constellation. From each state of the combined ISI-Code
trellis there will be 2™=32 distinct transitions. Each of the combined state B
provides information about the previous symbol a(n-1), as depicted in (3.16). Note
that the data symbol a(n-1) can equivalently be expressed in terms of the input

ol 2 3 4 5 - .
Xn_1 as Xn_l—(xn_l, X X X xn_l) and similarly a(n) by the input

Xn=(x:, xz, xz, x:, xi). For the 4-state TCM encoder of Fig.2.3(a), we have

« =x' x' and therefore we can write. o =x' x' Making use of the state
n n-2 n-l n-1 n-3 n-2
definition (3.10), the present state and the next state of the combined ISI-Code

trellis are given by the simplified expressions as,
3 4
" X xn_) ...(3.20)

and “n+1 =(X

» X, X, xi, x:, xn) ...(3.21)

n-2" Tl

The input (x:‘, xi, xz, x:, xi) determines the symbol a(n) associated with the
transition R on Realization of (3.20) and (3.21) lJeads to a 128-state
combined ISI-Code trellis structure for the decoding of 4-state 64-QAM TCM Signals
operating over an ISI channel of length L=1. Due to reasons of complexity in

sketching the trellis structure is not shown.

3.4.4 The 64-State Combined ISI-Code Trellis for 8-State 16-QAM TCM (L=1)
We next consider the transmission of 8-state 16-QAM TCM signals over a time-
dispersive channel of memory length L=1. The TCM encoder is the same as that shown
in Fig.2.3(b), with m=3 and M=16. Each code state has 2™-=8 ISI states and the
number of states in the combined ISI-Code trellis is NS.(M/2)L=64. Again, the
states of this combined trellis are as defined by (3.16) and (3.17), where a(n)
corresponds to a signal point of the 16-point QAM constellation. From each state
of the combined ISI-Code trellis there will be 2™=8 distinct transitions. Each of

the combined state K provides information about one previous symbol a(n-1), as
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depicted by (3.16). Note that the data symbol a(n-1) can equivalently be expressed

. . . 1 2 3 .
in terms of the input Xn-l as Xn_l=(xn_1, X x"_l) and similarly a(n) by

X =(x',x2,x3). Also, for a 8-state TCM encoder we have « =x' x* x'_ and
n n n n n-1 n-3 n-2 n-2
therefore we can write ocn=x:1_2xi_lx:]_l. Making use of the state definition (3.10),

the present state and the next state of the combined ISI-Code trellis are given by

the simplified expressions as,

1 2 1 2 | 3
= X x ' X « . .
M ( 0 K Koo Rar X Xn-l) (3.22)
1 2 i 2 1 3
and = x X x x RO .
p'n+l ( 02’ Tnt’ Xn_l’ n Xn, ") (3 23)

The input (x:], x:, xi) determines the symbol a(n) associated with the transition

T Realization of (3.22) and (3.23) leads to a 64-state combined ISI-Code
trellis structure for the decoding of 8-state 16-QAM TCM signals operating over an
ISI channel of length L=1. Due to reasons of complexity in sketching, the trellis
structure is not shown.

From the above examples, we observe that the state complexity of the combined
ISI-Code trellis structure increases with an increase in constellation  size M‘
and/or memory length L. In particular, the complexity grows exponentially with L
because of the relation NS.(M/Z)L. To illustrate the increase in state complexity
with L, consider a combined ISI-Code trellis for 4-state 16-QAM TCM (Ns=4, M=16)
and an ISI channel of memory length L=3. The number of states in the combined ISI-
Code trellis is Ns.(M/2)L=2048. For a 4-state 64 QAM TCM (NS=4, M=64) and L=3, the
number of states in the combined ISI-Code trellis is Ns.(M/Z)L=2”. Thus with a 4-
state TCM employing 16-QAM, the state complexity of the combined [SI-Code trellis
increases from 32 for L=1 to 2048 for L=3, while for the same TCM employing 64 QAM
it increases from 128 for L=1 to 27 for L=3. Therefore, the combined ISI-Code

trellis  structure, although optimum, becomes unrealistic even for moderate ISI

(L<3).
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In all the above examples, the decoding is accomplished by the implementation
of (3.11) through the Viterbi algorithm which operates on the combined ISI-Code
trellis, and the resulting receiver structure is optimum. Since the performance of
the optimum MLSE (VA) for uncoded systems can be analyzable through bounds |46,

79], we consider below a method for evaluating the performance of the combined

ISI-Code receiver structures through bounds.

3.5 PERFORMANCE EVALUATION OF MLSE RECEIVER USING
COMBINED ISI-CODE TRELLIS THROUGH BOUNDS
It is possible to predict the performance of the combined MLSE receiver,
which employs the Viterbi algorithm on the combined ISI-Code trellis structure, by
computing the minimum ED dmin and its multiplicity number Ndmi" of the minimum
distance error event. For a given channel impulse response, the error probability
can be computed by analyzing the error structure of the channel [79].

Let By By B be the discrete-time channel tap gains and the ISI memory

length be L. Using the delay operator p, the channel response can be expressed as

2
g(p) = g, T gp + go + ... + gLDL ...(3.24)
Consider an input error sequence of length k, defined by
- 2 k-1
CI(D) =e, t e,p + ep + ...+ Cl(k_l)D ...(3.25)
where
eIi = a(j) - a(j), ...(3.26)
with a(j) = transmitted (encoded) symbol, and a(j) = estimated (decoded) symbol,

under ISI-free condition.

Since the ISI channel is linear, the channel output error sequence e (b) is

related to CI(D) and g(p) by

e (0) = € (0).g(D)

=e +eDpD+eDp + ... +e D ...(3.27)
0 ol 02
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where n=k+L represents the length of the error event at the channel output, for an
input error event of length k and ISI channel for memory length L.
The Euclidean weight d*(e) of an output error event is defined as the energy

associated with the output error sequence of the channel, and is given by

n-1
de) = <) = Ye. ...(3.28)
i=0

The error rate performance of the VA receiver depends upon dii", the minimum
weight of any error event. If the channel is known, then d:}i" can be determined by
considering all possible error sequences and computing the resultant error weights
of the corresponding output error sequences. Then the performance of the VA
receiver operating on the combined ISI-Code trellis can be evaluated using an

upper bound estimate given by [46, 79].

P =N Qau

e dmin

120) ...(3.29)

min

where cri is the variance of the AWGN process in each dimension, diin the minimum
weight of all possible output error events, Ndmind multiplicity number and Q(.) is.
the Gaussian error integral function, as defined earlier in section 2.6.

In order to compute dmin for the combined ISI-Code trellis, we consider all
possible error events of the TCM scheme. For each error event we can define an
input error sequence CI(D) from which the corresponding output error sequence
CO(D) and its weight dz(e) can be determined. For a given set of error events of
the TCM scheme employed, we obtain correspondingly a set of output error sequences
and hence a set of Euclidean weight {dz(c)}, The minimum weight in the set {(dX(e)}
then represents the d:‘in of the combined ISI-Code trellis.

The distance spectrum computing algorithm (of section 2.6) has been employed
to determine the input error sequences of the first few error events of the TCM
scheme. For a given channel response g(p), the corresponding output error

. 2 . .
sequences and their weights are computed, and hence dmi". Therefore, an asymptotic
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upper bound on the error event probability Pe can be estimated by considering the
error events of the basic TCM scheme and the discrete channel response. The bounds
so evaluated to determine the MLSE performance of the combined ISI-Code trellis

are presented in the following section along with the simulation results.

3.6 RESULTS AND DISCUSSION

In this section, we present the error performance of the optimum combined
MLSE receiver structure, that makes use of the combined ISI-code trellis, for the
decoding of trellis-coded QAM signals in the presence of ISI and AWGN. The error
performance of the various combined MLSE structures are evaluated through bounds
and simulation. The reference system employed for the performance comparison is an
uncoded MLSE structure having the same data rate, bandwidth and signal energy. The
ISI' channel is assumed to be time-invariant and its discrete-time impulse response
is known at the receiver.

For the performance study of the baseband TCM data transmission system of
Fig.3.4, we consider the implementation of its equivalent combined discrete-time
white noise model shown in Fig.3.5. Following the simulation procedure as detailed
earlier in section 2.7, we generate an i.i.d. sequence of trellis-coded QAM data
symbols. The sequence of TCM data symbols {a(n)} is convolved with the discrete-
time impulse reasons {g;} of the ISI channel to arrive at the filtered output
b(n). The discrete complex-valued AWGN v(n) is then added to b(n) to obtéin the
received signal r(n)=b(n)+v(n).

The sequence of noise corrupted received signals {r(n)} is then applied to a
maximum-likelihood Viterbi decoder, which searches for a minimum cost path along
the combined ISI-code trellis to find a sequence of estimated data symbols which
is closest to the received sequence.

The discrete-time impulse response of the different ISI channels considered

on this study have been given in Table 3.1. It may be noted that L represents the
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Table 3.1 Equivalent discrete-time impulse response of the different I1S1 channels

Channel Coefficients
ISI memory Channel label
length 2o g, g, g;
CHI11 0.7746 0.6325 - -
CHI12 0.8367 0.5477 - -
L=1 CH13 0.8944 0.4472 - -
CHI14 0.7071 0.7071 - -
CH21 0.7746 0.5000 0.3873 -
CH22 0.8367 0.4472 0.3162 -
CH23 0.8944 0.3873 0.2236 -
=2 CH24 0.4070 0.8170 0.4070 -
CH25 0.2600 0.9300 0.2600 -
CH26 0.3040 0.9030 0.3040 -
CH31 0.6325 0.5477 0.4472 0.3162
L=3 CH32 0.7746 0.5000 0.3162 0.2246
CH33 0.8367 0.3873 0.2739 01581

Table 3.2 The different combined ISI-Code MLSE structures and the corresponding

reference systems

Coded System

Uncoded Reference

TCM Scheme

Combined MLSE
structurce

Uncoded
system

Uncoded MLSE
trelliy

Reference

SL | 1SI
No. | Length
l 1
2 2
3 3
4 1
5 1
6 1

4-state 4-QAM
4-state 4-QAM
4-state 4-QAM
4-state 16-QAM
4-state 64-QAM

8-state 16-QAM

8-state combined
ISI1-Code trellis
16-state combined
1S1-Code trellis
32-state combined
1SI-Code trellis
32-state combined
1S1-Code trellis
128-state combined
IS1-Code trellis
64-state combined
[S1-Code trellis

2-QAM
2-QAM
2-QAM
8-QAM
32-QAM

8-QAM

2-state 1S (rellis

4-state IS] trellis

8-state ISt trellis

8-state ISI trellis

32-statc IS trellis

8-state ISI trellis

Scction 3.4.1

Scction 3.4.2

Scction 3.4.3

Scction 3.4.4
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L
memory length of the ISI channel and for each channel ¥ |gk|2=1. The choice of the
k=0

channel is somewhat arbitrary except that all the zeroes of the transfer function
are limited to within the unit circle and thus the channel has the minimum phase
property [117]. The channels shown in Table 3.1 are also employed in our further
study, in Chapters 4 and 5, on the performance of the various receiver structures
for the decoding of TCM signals transmitted over time-invariant known ISI channels
in the presence of additive white Gaussian noise.

The reference system employed for the performance comparison is an uncoded
MLSE receiver structure [46] implemented through the Viterbi algorithm. The VA
operates on an ML—state ISI trellis structure, the states of which are as defined
by (3.3), where M corresponds to the size of signal constellation used for the
uncoded transmission and L is the ISI memory length. To illustrate, we consider
the design of an MLSE structure for the uncoded 8-QAM transmission system over an
ISI channel of memory length L=1. With M=8 and L=1, the number of state§ in the
ISI trellis structure is ML=(8)I=8. The present state and the next state, using
(3.3), are given respectively as |

s, = a(n-1) ...(3.30)
and Spe1 = a(n) ...(3.31)
~ where a(n) is the uncoded data symbol transmitted at time instant n and
corresponds to a signal point of the 8-QAM constellation as determined by the 3-
bit binary input Xn=(x,1, xﬁ x?,). From each state of the ISI trellis, there will be
M=8 distinct transections that corresponds to the 8-possible values  of the
input binary sequence (x,ll xﬁ x,3,. The decoding is accomplished through the
implementation of the Viterbi algorithm on the 8-state ISI trellis.

The performance of this uncoded MLSE structure is then employed as the
reference to compute the gain achieved with the use of the combined ISl-code
trellis structures for the decoding of 16-QAM TCM schemes over an ISI channel of

memory length L=1 (namely the combined MLSE structures of sections 3.4.2 and
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3.4.4). The Table 3.2 gives the list of coded MLSE receiver structures and the
corresponding uncoded MLSE reference systems used in this study.

The procedure as detailed in section 3.5 is made use of in computing the
error performance through bounds. Table 3.3 gives the result of the computations
of the Euclidean weight d*(e) of the output error sequences for a given channel
impulse response and the TCM scheme considered. The Table 3.3 also s”hows, for each
code considered, the minimum squared distance dﬁ,-m and its multiplicity number N.
Table 3.4 gives the summary of distance computation for the various combined ISI-
code trellis structures considered in this study.

An estimate of the upper bound on the error event probability of the combined
ISI-code trellis structure in then evaluated using the relation (3.26) or

equivalently [7],
Pous ~ (12).N__erfc (dy, [ {8 o) (3.32)

where o> represents the variance of the AWGN process in each dimension. The lower

bound on the error event probability is computed using the relation,
Perp = (1/2).erfC (dyin [ {8 0)) .(3.33)

The Table 3.5 gives the results of the error performance computations for
some of the combined MLSE receiver structures for trellis-coded M-QAM signal
transmission over ISI channels of limited memory length (L=3). The error event
probability has been evaluated through bounds using the parameters given in Table
3.4, and also through simulation. Table 3.5 includes also the simulation results
on the performance of the uncoded MLSE structure which is used as the reference
system for comparison. In the decoding of the combined ISl-code trellis structure
with 27-states, a decision delay of 8=6.y has been employed in the implementation
of the Viterbi algorithm. Due to huge computational burdens involved in the
decoding of the 64-state and 128-state combined ISI-code trellis  structures of

section 3.4.3 and 3.4.4, the simulation runs were limited to data symbol
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Table 3.3 Computation of d*(g) of the output error sequences for some typical TCM codes and ISI channels

Minimum distance

Basic TCM Scheme IST Channel Error sequences and their corresponding Euclidean weights Parameters
Length Type dz. N,
min

4-State 4-QAM TCM L=1 CHI12 ISL 3 4 5 6 7 8 9 10 11

EW 200 240 240 28.0 28.0 32.0 32.0 36.0 36.0

OSL 4 5 6 7 8 9 10 11 12

EW 1267 13.0 16.67 17.00 20.67 21.00 24.67 25.00 28.67 | 12.67 8
4-State 4-QAM TCM L=2 CH23 OSL 5 6 7 8 9 10 11 12 13

EW 1335 1348 1681 1694 2135 2148 25.89 26.02 3043 | 13.35 8
4-State 4-QAM TCM L=3 CH31 OSL 6 7 8 9 10 11 12 13 14

EW 1456 18.16 20.88 19.68 2576 2456 30.63 29.43 3231 | 14.56 8
4-State 16-QAM TCM =] CHI1 ISL 3 4 5 6 7 8 9 10 11

EW 200 240 240 28.0 28.0 32.0 32.0 36.0 36.0

OSL 4 5 6 7 8 9 10 11 12

EW 1216 3576 16.16 31.92 2016 3592 24.16 39.92  28.16 | 12.16 8
1-State 64-QAM TCM L=1 CHI3 ISL 3 4 5 6 7 8 9 10 11

EW 200 240 240 28.0 28.0 32.0 320 36.0 36.0

OSL 5 6 8 9 10 11 12

EwW 13.0 141 16.8 20.4 247 29.2 23.2 27.6 31.8 12.0 32
3-State 16-QAM TCM L=1 CHI13 ISL 3 4 5 6 7 8 9 10 11

EW 200 240 240 24.0 28.0 28.0 28.0 32.0 320

OSL 4 5 6 7 8 9 10 11 12

EW 14.6 232 272 20.8 272 31.2 248 31.2 33.2 14.6 16

Note : ISL - Input sequence length. OSL-Output sequence length.  EW-Euclidean weight
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Table 3.4 Summary of minimum distance calculation for various combined ISI-code trellis structures
SL TCM Scheme IS1 Combined ISI-code trellis Minimum distance parameters
No. length Channel type
drznin Nd
1 4-state 4-QAM TCM a)L=1 8-state combined MLSE CH11 CHI2 CHI13 CHl14 - -
122 12 12.67 8 13.67 8 12.0 12
!
b) L=2 16-state combined MLSE CH21 CH22 CH23 CH24 CH25 CH26
12.08 8 124 8 12.7 8 10.7 12 1335 8 123 8
c) L=3 32-state combined MLSE CH31 CH32 CH33 - - -
1456 & 153 8 13.52 8
2 4-state 16-QAM TCM L=1 32-state combined MLSE CHI11 CH12 CH13 CH14 - -
12.16 8 12.67 8 136 8 120 12
3 4-state 64-QAM TCM L=1 128-state combined MLSE CH11 CHI12 CH13 CHI14 - -
12.16 32 1267 32 136 32 120 48
1 8-state 16-QAM TCM L=1 64-state combined MLSE CH11 CHI12 CHI13 CH14 - -
: 1367 16 1267 16 146 16 132 32
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Table 3.5 Error event performance of the combined ISI-code receivers for some typical ISI channels

Error event Probability (Coded)

SL Combined MLSE ISI SNR g, Lower bound Upper bound Simulation Uncoded MLSE
No. structures channel dB | | T P, structure
(simulation)
1 8-state combined CHI12 2.0 0.7943 0.808E-02 0.368E-01 0.142E-01 0.419E-01
[Sl-code trellis (4- L=1) 4.0 0.6310 0.123E-02 0.538E-02 0.215E-02 0.156E-01
state 4-QAM TCM; 6.0 0.5012 0.689E-04 0.293E-03 0.770E-04 0.328E-02
L=1) Fig. 3.8(b) 8.0 0.3981 0.797E-05 0.332E-05 0.900E-05 0.282E-03
2 16-state  combined CH23 2.0 0.7943 0.107E-01 0.493E-01 0.103E-01 0.223E-01
[SI-code trellis (4- L=2) 40 0.6310 0.189E-02 0.833E-02 0.169E-02 0.817E-02
state 4-QAM TCM; 6.0 0.5012 0.134E-03 0.570E-03 0.154E-03 0.173E-02
L=1) Fig. 3.9(c) 8.0 0.3981 0.128E-05 0.510E-05 0.200E-05 0.146E-03
3 32-state  combined CH32 2.0 0.7943 0.105E-01 0.418E-01 0.151E-01 0.164E-01
ISI-code trellis (4- (L=3) 4.0 0.6310 0.170E-02 0.747E-02 0.300E-02 0.721E-02
state 4-QAM TCM; 6.0 0.5012 0.113E-04 0.483E-03 0.218E-03 0.144E-02
L=1) Fig. 3.10(a) 8.0 0.3981 0.173E-05 0.721E-05 0.500E-05 0.130E-03
4 32-state combined CHI1 10.0 0.7071 0.676E-02 0.184E+00 0.287E-01 0.635E-01
[SIcode trellis (4- L=1 12.0 0.5613 0.938E-03 0.245E-01 0.577E-02 0.206E-01
‘state 16-QAM TCM; 4.0 0.4162 0.453E-04 0.115E-02 0.222E-03 0.307E-02
L=1) Fig. 3.11(a) 16.0 0.3544 0.416E-06 0.104E-04 0.100E-05 0.139E-03
5 128-state combined CH13 16.0 0.7263 0.356E-02 0.1350E+00 0.368E-01 0.829E-01
[SIcode trellis (4- (L=1) 18.0 0.5769 0.696E-0)3 0.180E-01 0.783E-02 0.277E-01
state 64-QAM TCM: 20.0 0.4383 0.286E-4 0.726E-03 0.280E-04 0.428E-02
L=1) Fig. 3.12(¢c) 22.0 0.3640 0.204E-06 0.506E-03 - 0.240E-03
6 64-state  combined CHI12 10.0 0.7071 0.392E-02 0.107E+00 0.206E-01 0.597E-01
[SI<ode rtrellis (8- (L=1) 12.0 0.3613 0.766E-03 0.133E-01 0.245E-02 0.179E-01
state 16-QAM TCM; 14.0 0.462 . 0.332E-03 0.361E-03 0.510E-03 0.248E-02
L=1) Fig. 3.13(b) 16.0 03544 0.256E-06 0.424E-05 - 0.107E-03




transmission length of the order of 10°, where as for other systems the simulation
run length is of the order of 10°-10” symbols.

The error performance characteristics of the combined MLSE receiver
structures considered in this study are given in Fig.3.8-3.13, for which the
following comments are in order. For each case considered, we have given the error
event performance of he combined MLSE structure obtained through simulation under
an ISI-free environment as well as in the presence of ISI, which have been marked
respectively as ‘ISI-free’ and ‘Combined MLSE’ in the legend of the figure. Also,
we have given the error event performance of the uncoded MLSE reference system
obtained through simulation which is marked as ‘Uncoded MLSE’ in the legend. The
upper and lower bounds on the error event probability have been computed through
the use of distance parameters, given in Table 3.4, using (3.32) and (3.33)
respectively and have been marked accordingly in the legend as ‘Upper bound’ and
‘Lower bound’.

The Fig.3.8 shows the error performance characteristics of the combined MLSE
structure that uses an 8-state combined ISI-code trellis for the decoding of 4--
state 4-QAM TCM signals transmitted over an ISI channel of memory length L=1, for
4 different values of channel coefficients (CH11-CH14). From the performance
characteristics of Fig.3.8(a) for channel CHII, we note that the combined MLSE
structure achieves a coding gain of nearly 2.75 dB at Pe=10'5, although its
performance is about 1.25 dB degraded with respect to ISI-free AWGN performance.
Similarly we observe that the coded MLSE structure achieves a gain of nearly 2.9
dB, 3.0 dB and 2.7 dB at Pe=10'5 relative to uncoded MLSE respectively, onchannels
CH12, CH13 and CHI14, while the performance loss correspondingly is about 1 dB,
075 dB and 1.25 dB relative to the coded ISI-free performance. From Fig. 3.8(a)-
(c) , we can note that CH13 gives the best performance, followed by CH12, CH11 and
CH14 in that order. It may also be noted that the simulation results lie within
the performance bounds evaluated through the use of proceduré given in section

3.5.
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Fig.3.9 gives the performance of the combined MLSE receiver, that uses the
16-state  combined ISI-Code trellis of section 3.4.1, for the decoding of 4-state
4-QAM TCM over an ISI éhannel of length L=2. From the performance characteristics
given in Fig.3.9(a)~(f) for the 6 different channels considere’d, CH21-CH26, we
note that the combined MLSE structure achieves a gain of about 2 - 3 dB at Pc=10'5
over uncoded MLSE structure, the details of which are listed in Table 3.6.
Although the combined MLSE structure achieves a gain of 3 dB over uncoded MLSE .on
channel CH24 (Fig.3.9(d)), it exhibits a loss of 2dB over ISI-free condition. The
performance on channel Ch23, as shown in Fig. 3.9(c), rather appears to be optimum
with a gain of 2.75 dB over uncoded MLSE reference system while being nearly ISI-
free with a degradation of only about 0.75 dB. In most cases, we may note that the
performance degradation relative to the coded ISI-free performance is about
125-1.5 dB. Almost in all cases, the simulation results are well  within  the
computed upper and lower bounds.

Fig.3.10 gives the performance characteristics of the combined MLSE
structure, that employs a 32-state combined - ISI-code trellis, for the decoding of -
4-state 4-QAM TCM signals transmitted over an ISI channel of memory length L=3.
For the ISI channel CH31, the combined MLSE structure achieves a gain of about
1.75 dB over uncoded MLSE, although it is degraded by about 1.7 dB relative to its
ISI-free performance. On channel CH32, the coded MLSE structure achieves a gain of
725 dB relative to the uncoded MLSE, but with a performance loss of about 1.25 dB
over its 1S]-free performance.

We consider next, the performance characteristics of the combined MLSE
structure that makes use of the 32-state combined ISI-code trellis, as discussed
earlier in section 3.4.2, for the decoding for 4-state 16-QAM TCM signals
transmitted over an ISI channel of memory length L=1. Shown in Fig.3.11(a)-(d) are
the characteristics of the receiver structure for 4 different ISI channels of
memory length L=1. Although it suffers a performance degradation of 1 - 1.9 dB

relative to its ISI-free performance at Pe=10'5 the coded combined MLSE structure

98



ERROR EVENT PROBABILITY

ERROR EVENT PROBABILITY

107

107

12

10°°

10

197

19

3. CH21: L=2 g¢=0.7746, ¢,=0.5000,
=4 T\ 9,=0.3873
.,
"] —— Coded ISI—free
T *hAk Combined MLSE
3 — — Uncoded MLSE
= &#aaa Upper bound
-1 e@e60 Lower bound
N T D R L e
2 4 6 8 19 12
SNR (dB)

(0) ISI CHANNEL CH21: L=2

CH23: L=2 ¢,=0.8944, g,=0.3873,

g.=0.2236
~
~
~

= ~
3 N
-1 N
- \
= \
- \
7 \
E \
= N\
_: ——— Coded ISI—free
g *x4ax Combined MLSE
- — — Uncoded MLSE
~] &2aaa Upper bound
= 08660 Lower bound
2.0 4.0 6.0 8.0 10.0 12.0

SNR (d8)

(c) ISI CHANNEL CH23: L=2

ERROR EVENT PROBABILITY

ERRCR EVENT PROBABILITY

99

10

10°°

CH22: L=2 g,=0.8367, g,=0.4472,
0,=0.3162

1 1])

(BRI R

R

ciod 1

§ —— Coded ISI—free
] *#+kk Combined MLSE
- — — Uncoded MLSE
— &&tea Upper bound
E 006090 Lower bound

LA R L
2 4 6 8 10

SNR (dB)
(b) ISl CHANNEL CH22: L=2

= > CH24: L=2 go=0.4070, g,=0.8170,
- - g;=0.4070
=
| —— Coded IS|—free
g w*xx+ Combined MLSE
H — — Uncoded MLSE
- &s2sa Upper bound
~|1 @eeee Lower bound

L e L
2 4 6 8 10

SNR (dB)

(d) ISI CHANNEL CH24: =2

FIG.3.9 (CONTINUED)




j CH25: L=2 g=0.2600, g,=0.9300, . CH26: L=2 g,=0.3040, g,=0.9030, T
T~ D g,=0.2600 =0 g,=0.3040

10 7% = -2 _3
E 10 E

10 7 = -2 A

E 1074
= 3 2 3
= B -] -

2 ] 2
S 1074 S 104
@) E o 107 =
g = g 3 \

. . \
A g )
1] %] L . \
L @ 10" .
19 5 N o =
e} = \ o ]

[od _| id
0 @ N
107 3 10 o

. ]

190 7 = Coded ISl—free 107 = Coded ISl-free

H a#*x% Combined MLSE H aiikk Combined MLSE

- — — Uncoded MLSE -1 — — Uncoded MLSE

- s#assa Upper bound | a#esa Upper bound

7| eeeeo Lower bound | eeeeo Lower bound

107 N B R SR B B 10°° —T T T T T T T
2 4 6 8 10 12 2 4 6 B 10 12
SNR (dB) SNR (dB)
(e) 1Sl CHANNEL CH25: L=2 (f) 1S CHANNEL CH26: L=2

FIG.3.9 ERROR PERFORMANCE

OF THE COMBINED MLSE RECEIVER WHICH USES A

18—STATE COMBINED ISI-CODE TRELLIS STRUCTURE FOR THE DECODING OF 4-STATE
4—QAM TCM SIGNALS TRANSMITTED OVER AN ISI CHANNEL OF MEMORY L=2.

i CH32: L=3 go=0.7746, g,=0.5000, CH33: L=3 go=0.8366, 9,=0.3873,
r g,=0.3162, g;=0.2236. . q,=0.3162, g5=0.2236.
1075 10 2203 ~
. 7 10'3—5
107 = 3
r G r 3
0 - = 10 =
. D 1073
- 3] - N\
S 10 ‘___:_ e} = \
o = [ved —
a 3 a. 5| N\
. s 1075
w 5% .
G 107" a n
@ = x 10
@] — O 3
x | & =
o -
w 10 ¢ = ] n
E 107 3
1977 = Coded ISl—free 10 ° = Coded ISl—free
H wa4#x Combined MLSE 3 #xwak Combined MLSE
3} — — Uncoded MLSE 3 - — Uncoded MLSE
—| aaaas Upper bound _} saaaa Upper bound
~| eeeso Lower bound 10~ = ceoeo Lower bound
197 . L L | D B B B
2 4 6 8 10 12 2 4 6 8 10 12
SNR (dB) SNR (dB)
(a) 1S CHANNEL CH32: L=3 (b) I1SI CHANNEL CH32: L=3

FIG.3.10 ERROR PERFORMANCE OF THE COMBINED MLSE RECEIVER WHICH USES A
32—STATE COMBINED ISI-CODE TRELLIS STRUCTURE FOR THE DECODING OF 4—STATE
4—QAM TCM SIGNALS TRANSMITTED OVER AN ISI CHANNEL OF MEMORY L=3.

100



achieves a gain of about 2.5 - 3 dB relative to an uncoded 8-QAM MLSE receiver
structure. The combined ISI-code structure suffers a loss of about 1 - 1.75 dB
over its ISI-free performance. The performance of the coded MLSE structure is
found to be best on CH13 to be followed by CH12, CHI1 and CH14 in that order.

The fact that the 8-state TCM scheme activates a coding gain of 1 dB higher
than that of 4-state TCM scheme (over AWGN channel) has been reflected in the
performance characteristics of the combined MLSE structures of Fig.3.11-3.13. It
is clearly evident, from Fig.3.13(c) that the combined MLSE structure based on 8-
state TCM schemes achieves a gain of nearly 3 dB over uncoded MLSE, as compared to
the performance gain achieved by the combined MLSE structures based on 4-state TCM
schemes which is around 2.25-2.5 dB as can be seen from Fig.3.10 and Fig.3.11.

From the performance characteristics of the combined MLSE structures as shown
in Fig.3.8-3.13, we note that the simulation result is well bounded by the upper
and lower bounds evaluated through the use of computed distance parameters given
in Table 3.4. Therefore, we may conclude that the proposed method for the
computation of upper bound of the combined MLSE structures as discussed in section
3.5, is quite applicable for all ISI channels. The combined MLSE structure for a
4-state 16-QAM TCM for L=1 achieves a gain of about 1.6 — 2.5 dB over uncoded 8-
QAM MLSE receiver structure. The channel CH13 yields the best performance with a
coding gain for 2.5 dB over un(ioded MLSE reference system at P,=10”. This is
followed by those of CH12, CHI1 and CHI4 in order, as can be observed from the
entries of Table 3.6. Again we note, from each of the performance characteristics
of Fig.3.11, that the simulation results is well within the computed bounds.

The performance characteristics of the 128-state combined ISI-code trellis
structure, for the decoding of 4-state 64-QAM TCM over an ISI channel of length
L=1 as discussed in section 3.4.3, have been given in Fig.3.12 for 4 different
channels CH11-CH14. The performance gain achieved over uncoded 32-QAM MLSE
structure varies between 1.5-2.25 dB at Pe=10'4 while the performance degradation

is about 1.25-2 dB relative to its ISI-free performance. The performance isoptimum
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Table 3.6 Performance gain of combined MLSE structures over uncoded MLSE structures as measured (approx.) from

simulation results, at P, =10~ on different ISI channels

Sl Coding gain on ISI channel relative to uncoded Performance loss relative to its ISI-free performance,

No. Structure system, in dB in dB

1 g-state combined ISI-code trellis | CH11 CH12 CH13 CH14 - - CH11 CH12 CH13 CH14 - -
(4-state 4-QAM TCM; L=1) +2.75 +2.90  +3.00* +2.70 -1.25 -1.00 -0.75 -1.25
Fig. 3.8

2 l6-state combined ISI-code trellis | CH21 CH22 CH23 CH24 CH2S CH26 | CH21 CH22 CH23 CH24 CH25 CH26
(4-state 4-QAM TCM; L=2) +225  +225 +2.75% +43.00 +2.00 +2.50 |-1.50 -1.25 -0.75 -2.00 -1.50 -1.50
section 3.4.1; Fig. 3.9

3 32-state combined ISI-code trellis | CH31 CH32 - - - - CH31 CH32 - - - -
(4-state 4-QAM TCM; L=3) +1.75  +2.25% -1.75 -1.25
Fig. 3.10

4 37-state combined ISI-code trellis | CH11 CH12 CH13 CH14 - - CH11 CH12 CH13 CH14 - -
(4-state 16-QAM TCM; L=1) +1.70 +2.00  +2.50* +1.90 -1.70 -1.50 -1.00 -1.90
section 3.4.2; Fig. 3.11

5 128-state combined ISIcode trellis | +1.50  +1.75  +2.25* +2.00 - : -1.75 -1.50 -1.23 -2.00 - -
(4-state 64-QAM TCM; L=1)
section 3.4.3; Fig. 3.12
Note:at P, = 107

6 64-state combined ISI-code trellis | +2.50  +2.75  +2.90* +2.75 - - -1.75 -1.40 -1.00 -1.50 - -

(8-state 16-QAM TCM: L=1)
section 3.4.4: Fig. 3.13

Note : *  [ndicates the best performance
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on CH13, to be followed by CH12, CH11 and CH14 in that order. It may be noted that
the simulation results of the coded MLSE structure could not be obtained for
P,<10™ due to the computation complexity involved.

Fig.3.13 gives the performance characteristics of the 64-state combined MLSE
receiver structure of section 3.4.4, for the decoding of 8-state 16-QAM TCM over
an ISI channel of memory length L=1, and the ISI channels considered are CHII1-
CHI14. Again we note that the coded combined MLSE structure achieves a gain of 2.5
dB to nearly 3 dB at P,<10" relative to uncoded 8-QAM MLSE receiver structure.
The combined ISI-code structure suffers a loss of about 1-1.75 dB over its ISI-
free performance. Again we find that performance of the coded combined MLSE
structure is superior on channel CHI13, to be followed by those on channels CHI12,
CH11 and CH14 is that order.

The fact that the 8-state TCM scheme activates an additional gain of 1 dB
over 4-state TCM scheme (on AWGN channel) has been reflected in the error
performance  characteristics of the combined MLSE structure,  shown in
Fig.3.11-3.13. From Fig.3.13(c) we find that the combined MLSE structure . (of
section 3.4.4), which is based on the 8-state TCM scheme, achieves a gain of
nearly 3 dB on channel CH13 over uncoded MLSE, while a performance gain of about
2.25-2.5 dB is achieved with the use of combined MLSE structures (of section 342
and 3.4.3) that are based on 4-state TCM scheme, as is evident from the
characteristics of Fig.3.10(c) and 3.11(c).

In summary, the combined MLSE receiver structures (using the combined ISI-
code trellis) achieve a coding gain in the range of 2-3 dB over uncoded MLSE
receiver structures, although they suffer a loss of about 0.75 dB to 1 dB relative
to this ISI-free performance. The ﬁerformance characteristics show clearly, that
the simulation result is well within the computed performance bounds. Therefore,
we may conclude that the method employed to compute the performance bound is quite

effective.
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CHAPTER 4

REDUCED COMPLEXITY KFE-MLSE RECEIVER
STRUCTURE FOR TCM DECODING ON
ISI CHANNELS

4.1 INTRODUCTION

In the previous chapter we have seen that the computational complexity of the
MLSE receiver grows exponentially with the channel memory length, thereby making
the implementation of the optimum combined ISI-Code receiver prohibitively too
complex even for moderate ISI, particularly with QAM signaling at high data rates.
This has motivated an active research to find sub-optimum TCM receiver structures
with reduced complexity, while maintaining most of the performance advantages of
MLSE.

The complexity of the optimum receiver can be reduced by employing
prefiltering techniques prior to MLSE. In practice, the LE-MLSE structure
comprising of a linear equalizer (LE) in cascade with the ML Viterbi decoder is
often used for high-speed TCM transmission over telephone channels [123]. However,
the fact that LE enhances noise on channels with in-band nulls results in the
performance degradation of LE-MLSE receiver structures. With a decision-feedback
equalizer (DFE), the noise enhancement is substantially less but it requires
reliable delay-free decisions for proper operation, which is not. possible with a
TCM Viterbi decoder. Consequently, a tandem combination of DFE and MLSE for TCM
schemes does not perform well and results in a performance loss as opposed to a

gain [138]. Thus, there is still a need for a feasible reduced complexity receiver
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structure that can approach the performance of an ideal DFE-MLSE structure for
coded-modulation.

We propose a suboptimum KFE-MLSE receiver structure comprising of the Kalman
filter equalizer (KFE) followed by the ML Viterbi decoder for the decoding of TCM
signals in the presence of ISI and AWGN. The KFE is known to be an optimum linear
structure in the sense of minimum mean-square error (MMSE) and is realizable as a
finite dimensional recursive filter [6]. Also under stable conditions, it behaves
as a zero-forcing equalizer at high SNR.

The performance of the proposed sub-optimum KFE-MLSE receiver structure can
be evaluated by finding its performance degradation relative to the performance of
the ML Viterbi decoding under ISI-free environment. The performance degradation
can be evaluated by assuming that the Viterbi algorithm still operates with a
white noise process, whose variance is the overall variance of the correlatéd
noise and the residual ISI present at the KFE output. By finding the combined
impulse response of the channel and the KFE, through the use of innovations
representation and  the  spectral factorization technique, it is possible to-
determine the effect of KFE prefiltering on the free distance of the TCM code and
hence the performance evaluation of the KFE-MLSE structures using bounds.

In this chapter, we first discuss the various pre-filtering techniques which
are normally employed to reduce the complexity of the receiver structure for both
uncoded and coded-modulation systems. We then present, the reduced complexity KFE-
MLSE structure for the decoding of Trellis-coded QAM signals transmitted over a
time-dispersive channel. We next present the results of a study that has been
performed, using innovations representation of the processes involved and the
spectral factorization technique, to compute the performance of the proposed KFE-
MLSE structure for several Trellis-coded QAM schemes. The performance bounds so
derived are compared with the simulation results. Also, the performance of the
proposed suboptimum KFE-MLSE receiver is compared with that of the optimum

combined 1SI-Code receiver structure for ISI channels of short memory length.
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4.2 SUB-OPTIMUM MLSE STRUCTURE WITH PRE-FILTERING
Although, MLSE is implementable by the virtue of recursive nature of VA, the
combined ISI-Code trellis structure becomes too ‘tomplex for most of the channels

of practical interest. The practical limitations of the optimum combined MLSE

receiver structure prompted researchers to find sub-optimum MLSE receiver -

structures of reduced complexity.

One such approach, as suggested by Forney [46] in his original paper on MLSE
for uncoded transmission, is to employ a linear equalizer as a prefilter to shape
the channel into a short desired impulse response channel and then apply VA to
this partially equalized channel. Qureshi and Newhall [113] proposed such an LE-
MLSE receiver structure for uncoded binary transmission over a time-dispersive
telephone channel, while Falconer and Magee [43] proposed an adaptive LE-MLSE
structure using MMSE criterion. The fact that DEE provides a much better
performance over LE on channels having severe amplitude distortion (in—baﬁd
nulls), prompted researchers to employ DFE as a prefilter instead of LE. Lee and
Hill [70] proposed a reduced complexity sub-optimum DFE-MLSE receiver structure
for uncoded binary transmission, while Weslowski [137] presented a similar DFE-

MLSE structure for uncoded QAM data transmission. The _pre-filtering  technique

reduces considerably the complexity of the MLSE receiver structure for uncoded

transmission and as a consequence also find applications in coded-modulation
systems.

Much prior to the invent of coded-modulation schemes, using channel capacity
arguments Price [40, 42] made an important observation.. At a sufficiently high SNR
if a coded modulation scheme can approach channel capacity on an ISI-free channel,
then the same scheme can also approach that capacity on channels with I[SI,
provided the receiver uses an ideal DFE-MLSE structure [42].

Wong and Mclane [142] proposed such a pre-filtering technique employing a
DFE-MLSE receiver structure for transmission of TCM signals over multipath HF
channels. But the performance of this DFF-MLSE receiver for TCM transmission was
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observed to be no better than that of an uncoded DFE receiver [138, 142].

For proper operation a DFE requires reliable and delay-free decisions, and
with TCM schemes employing ML Viterbi decoder such reliable delay-free decisions
are not available. Thus, the potential benefits of cascading a DFE with MLSE for
TCM decoding can not be realized in a straight-forward manner. |

Thapar [123] has shown that an LE in cascade with a ML Viterbi decoder, the
LE-MLSE structure, is a good solution for high-speed TCM transmission over voice-
grade telephone channels. However, on channels with in-band nulls the LE-MLSE
structure exhibits poor performance due to noise enhancement.

Thus, for coded-modulation schemes there is still a need for reduced
complexity receiver structure which can approach the performance of an ideal DFE-
MLSE receiver. Since the KFE is an optimum linear equalizer which behaves as a
zero-forcing equalizer at high SNR (ideal DFE), we propose to investigate the
viability of a KFE-MLSE receiver structure for the decoding of Trellis-coded QAM

signals in the presence of ISI and AWGN.

4.3 KFE-MLSE RECEIVER STRUCTURE

Consider the baseband TCM communication system of section 3.3.1 (Fig. 3.4),
with the receiver portion being replaced by KFE-MLSE structure consisting  of
Kalman-filter equalizer in cascade with the maximum-likelihood Viterbi decoder as

shown in Fig. 4.1

{r(n)} , {a(n-N+1)} | ML Sequence {a(n-8)}
Kalman Filter Estimat

— lizer KEE) |7 | (Viteroi 1 -
Equali (Viterbi Decoder)

Fig.4.1 The Sub-optimum KFE-MLSE Receiver

The TCM encoder/modulator transforms the i.i.d information sequence into a
stream of complex data symbol sequence {a(n)}. The data symbols are assumed to be
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uncorrelated complex random variables whose mean and variance are given by

E[a(n)] =0: Ela(n) a'(k)] = af 5 (4.1

nk

The transmission channel is assumed to be linear, causal and time-invariant
with a finite duration impulse response g(t) such that g()=0 for t<0 and =NT,
where N represents the number of channel tap-gains, and the ISI memory length L is
related to N by L=N-1. The channel output being perturbed by‘AWGN, the received
samples are given by

N-1
r(n) = Zgi a(n-1) + v(n) ...(4.2)
i=0
where g’s represent the sampled channel impulse response and v(n) is the sampled

complex additive white Gaussion noise with mean and variance given by
Elv(n] = 0; E[v(n) v'(k)] = 205 .(4.3)

The data sequence {a(n)} and noise sequence {v(n)} are assumed to be uncorrelated.

If the input data sequence {a(n)} is characteristically similar to a white
noise process, then the channel model can be formulated using a state variable
representation  of the discrete Kalman filter. The state variables are the
successive transmitted symbols. The complex envelope of the received waveform can
then be expressed in terms of a discrete-time  dynamic system driven by a white
process. Under a known channel condition the Kalman filter, which is dual to the
channel model, represents an optimum linear equalizer in the sense of MMSE [6].

The output of the KFE, representing nearly an ISI-free signal, is then
processed by a soft-decision ML sequence estimator (Viterbi algorithm) in order to

decode the TCM signals.

4.4 KALMAN-FILTER EQUALIZER

Lawrence and Kaufmann [68] posed the equalization problem as one of obtaining
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MMSE estimate of the transmitted symbol a(n). Thus, it is required to obtain the
unbiased linear minimum error variance estimate g(i) of each transmitted symbol
a(i), such that E[|a(i)-;(i)|2] is a minimum. The only constraints being imposed
on the estimator sequence are linearity and stability [6]. |

For the channel equalization, we make use of the state variable
representation of the message process and the observation sequence at the channel
“output, and a discrete Kalman filter as considered by Lawrence and Kaufman [68].
Thus, the dynamics of the message process and the observation process at the

channel output can be described by
X(n+1) = ¢ X(n) + I u(n+1) ...(4.4)
r(n) = g X(n) + v(n) ...(4.5)

where X(n) is a N-state vector at time n=NT,
o is a NxN state transition matrix with elements o(i+1,)=1 for i=1,2,...,
N-1 and #(i,j)=0 for all other values of i,j,
I is a N column vector defined by I' = [1,0,0....0]1,
g is a N row vector defined by g = [gogl....gN_l]
u(n) is the plant noise having the statistics as those of a(n) that is
u(n)=a(n), and v(n) is the observation noise which is white, and v represents the

transpose.

The state vector components represent the N consecutive transmitted symbols

as
[ xl(n) ] _
wo |,
XM =1 ) = | agien +-(4.0)
L'X.N(n) | anN+D)]

114



The discrete Kalman filter operates on the sampled baScband signals r(n) to
estimate the channel state §((n), that is to yield ;(n), ;(n-l), ;(n-N+]). It
is a well established fact that the Kalman filter provides the mean-sequence
optimum linear estimate of X(n). The discrete Kalman filter minimizes not only the
trace of the error covariance matrix, but any linear combinations of main diagonal
elements [6]. Therefore, due to the choice of (4.6) of the state vector, the
Kalman filter also minimizes E[[a(i)-;(i)]z].

The unbiased linear minimum mean-square error ‘(ULMMSE) estimator for the

discrete system (4.4)-(4.6) is described by the following equations [6, 69];
The state estimation filter algorithm:

)A{(n/n) = 3 ;{(n—l/n-l) + K(n) [r(n) - g ¢ )A{(n-l/n-l)] (4.7
The Kalman gain equation:

K(n) = V(n/n-1) g" [g V(/n-1) g° + 2 aj]" ...(4.8)
The apriori error variance algorithm:

Vn-1) = ¢ Vn-1n-1) o" + ¢ 1" ..(4.9)
The aposteriori error variance algorithm

V(n/n) = [I - K(n) g] V(n/n-1) ...(4.10)

The implementation of the above system of (4.7)-(4.10) require initial values of

X(0/0) and V(0/0). This is done by setting

X(0/0) = E[X] = 0 (411
and V(0/0) = E[X X'] = ¢* I ..(4.12)

S

where T is NxN identity matrix
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From (4.7) it can be observed that the estimator utilizes the estimates of
past symbols in arriving at the present estimate, which is analogous to DFE
operation. The operation of ULMMSE estimator can be described by a block diagram
as shown in Fig.4.2. The current (present) estimate ;((n/n) is formed by predicting
forward the previous estimate )A((n—l/n-l) and correcting l[ with the observation
error. weighted by K(n). The observation error e(n)=r(n)-;(n/n-1) is usually
called as “innovation’.

Under steady-state, the ULMMSE estimator becomes a time-invariant stable
linear filter [6]. Therefore in practice, the filter can be implemented as a
recursive digital filter as shown in Fig.4.3, which is quite suitable for digital
implementation.

For any observation instant, the N estimates of the consecutive transmitted
symbols are available at the output of the Kalman filter. As each component of the
state vector X(n) is the time translate of the message sequence, we have from
(4.0),

xB(n) = a(n-g+1) ...(4.13)

where xB(n) is the (3”’ component of the state vector X(n). Thus the estimate of

the transmitted symbol may be obtained as

;(n—B) = ; (n) 0 =B = N-1 ...(4.14)

B+1

Although N estimates are available at each instant, it is better to estimate
just one symbol in order to achieve the minimum error variance. It is shown in [6]
that a good estimation of the transmitted symbol is possible for d=N-1. Thus while
receiving r(n) the best estimate is ;N(n)=;(n-N+l), which represents the estimate
of a(n) transmitted (N-1) time instants earlier.

From (4.8)-(4.10), it can be observed that the error variance equations and
Kalman gain equation are independent of the observation sequence {r(n)}. Hence,

for the case of known channel tap gains, the quantities can be precomputed, if
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desired. Also, under steady-state the Kalman gain matrix K(n) becomes independent
of n for sufficiently large n. That is, in the limit as n — », K(n) = K.

It would be of interest to compute the steady-state Kalman gains K from the
observation sequence r(n), using the innovations representation of the observation

process, through a non-singular transformation as discussed below.

4.4.1 Imnovations representation of the observation process and computation

of the Kalman gains

Consider the transformation of the system defined by

X(n+1) = ¢ X(n) + ru(n+1) ...(4.15)

r(n) = g X(n) + v(n) ...(4.16)

into a standard canonical form through a non-singular transformation [83],

X'(n) = Q X(n) (417
- gN-l 0 1
gN-2 gN 1
where Q=1"- ...(4.18)
L gO gl ..... gNl

The transformed system is then given by

X'(n+1) = ¢ X'(n) + T u@+1) ...(4.19)
rn) = g X (n) + v(n) ...(4.20)
where o = 0
r'o= 8y, Bua , go]T
g = 10,0, oo , 1]
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The algorithm in the steady-state, for the MMSE state estimate X'(n) of
system (4.19) - (4.20) may be written as

A

X'(n) = o %‘(n-l) + K e(n) ..(4.21)

*

where K' =[K K .. K, ...(4.22)
is the steady-state transformed Kalman gain vector and e(n) is the innovation

process given by

e(n)

r(n) - g*<b g(*(n—l)
that is  e(n) = r(n) - ;;H(n—l) ...(4.23)
Rewriting (4.23), we have

() = e(n) + ;;_](n-l) ..(4.24)
From (4.21), we can write

;;_l(n-l) = )Ac;_zm-z) + K e(n-1)

Substituting this in (4.24), we get

rn) = e(m) + K e-1) + x. (n-2)
Repeating the above procedure (N-2) times, we obtain
r(n) = e(n) + K;_l e(n-1) + x;_z e(n-2) + ... + K:e(n—N+1) ...(4.25)

This is the moving average representation of the observation sequence r(n) in

terms of the innovations and the transformed Kalman gains. The Kalman gains K:,

K:,..., K;_l, and the variance oz of the innovation process can be estimated from
the observation sequence r(n) through spectral factorization.  Then K; can be

determined using the relation [63, 83],

* 2
K, =1- (0‘3 /o) ...(4.26)‘
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Once the transformed Kalman gains are determined, the steady-state Kalman gains of

the untransformed system are derived from [83],
K=Q'K ..(4.27)
In the following section, we consider the evaluation of transformed Kalman

gains using spectral factorization.

4.4.2 Transformed Kalman gains through spectral factorization

Consider the observation process defined by

N-1
() = Vg a®n-i) + v(n) i ..(4.28)
i=0
and
r(n) = e(n) + K;_l e(n-1) + ... + K: e(n-N+1) ...(4.29)

Defining the shift operator z as
z.t(n) = r(n-1)

we can write (4.28) and (4.29) as,

r(n) = G(z) u(n) + v(n) ...(4.30)
rn) = K'(2) e(n) ‘ ..(4.31)
where G(z) = g, T 82 + g222 + . + gN_lzN'l ...(4.32)
K@z =1+ K;_lz N K;_zz2 + o+ KlzN'l ...(4.33)

Since the correlation statistics of the process r(n) in both representations

(4.30) and (4.31) must be the same, we can write
o2 G(2) Gz + o = 0! K'(z) Kz (434

where o is the variance of the symbol sequence {a(n)},
S
+2 is the variance of the observation noise process v(n),
v

and o is the variance of the innovation process (n).
£
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Given the tap gain vector g, the evaluation of the transformed Kalman gain
vector K corresponds to finding the solution for the polynomial K'(z) and 0‘3: from
(4.34), with the knowledge of oj, 0‘3 and G(z). This is the spectral factorization
problem considered by Rissanen [106] and Rissanen and Kailath [107], and is
outlined in Appendix A. |

Writing the left hand side of (4.34) as

N-1
ol G(2) G(z-1) + o0 = T pz ...(4.35)
i=-(N-1)

we form the following infinite dimensional symmetric Toeplitz matrix P of the

correlation coefficient p, as

P, P, e Py 0 ...
P, P, Pl .......... Puy 0........
P = p-(N-l) p—(N-Z) ........ ‘ Py Py Py, 0 ...(4.36)
0 ... P,
......................................... P,

The positive definite matrix P through a congruent transformation can be written
as
P=F)AF" .(4.37)

where F is the unit lower triangular matrix given by

F = ...(4.38)

121



and A is a positive definite diagonal matrix given by

A 0 ]

00

A = A ...(4.39)

i1

Following the recursive procedure given in Appendix A, it may be shown that [106]

Kj =i1'1_n)100 fi,i_N+j for j=1,2, ...., N-1 ...(4.40)

th

where fmn is the (m,n) element of the matrix F, and

or = lim A, (4.41)
€ i— © " N

Then K; is evaluated by using the relation.

*

K =1—0‘2/0‘2
N v €

Once the transformed kalman gains K:, K;,...., K;_l, K; are evaluated, the Kalman
gains Kl, Kz’ KN, can be determined by (4.27), or as the first N coefficients

of the polynomial in z is given by [83],

2

[0
25 D(z)
ag
€
where D) =d +dz+dZ + .. = S
0 1 2 K (Z)
as
2
g
K = —d forj =1,2, ... N. ...(4.42)
j 0“2 1
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Then it can be shown that the MMSE estimate a(n) of the transmitted symbol a(n) is

given by [83],
G(n) = Z h u(n-i) + v (n+N-1) ...(4.43)
i=-(N-1)

where hi’s are the samples of the combined impulse response of the channel and the

KFE given by

0~2 N
_ €
h = T LK, K ..(4.44)

i
=1

fori = -(N-1), (N-2) ... 0... », and Kv =0, vs=0
The correlated noise sequence v,(n) at the output of the equalizer in (4.43)

is the solution of the auto-regressive moving average series given by
vo(n) + KN_1 vo(n—l) + KN_2 vO(n-2) + ... + Kl vo(n—N+1)
= K, v(n) + KN_lv(n—l)'+ ..... + K v(n-N+1) ...(4.45)

The variance of the correlated output noise oio can be computed by a procedure
given in [17], and as detailed is Appendix B.
With a knowledge of the combined impulse response {h}, it is possible to

determine the effect of KFE-prefiltering on the free distance of the TCM code, and

hence on the performance of the ML Viterbi decoder.

4.5 PERFORMANCE EVALUATION OF KFE-MLSE RECEIVER
Consider the receiver structure as shown in Fig.4.4, where the VA operates on
the partially equalized signal available at the output of the KFE. Let {h}

represent the combined impulse response of the channel and the equalizer.

123



{a(n)} Channel + KFE {z(n)} {;(n)}
_— — | Viterbi Algorithm |———

h(t)

Fig.4.4 The KFE-VA Receiver Structuré

The equalizer output z(n) can be expressed in terms of the combined impulse

response {hi} as

z(n) = a(n) h, + z h. a(n-i) + v (n) ...(4.46)

i=-N+1
i#0

The first term is the desired output and the second term represents the residual
ISI components and vo(n) is the correlated output noise whose variance is 0‘30 :
The measure of the equalizer performance is expressed by the signal to noise

plus interference ratio (SNIR) defined by [142].

INE o b, |” o}
SNIR = — 82 - = - s ..(4.47)
20 +z ‘h| o 20
v0 1 s
i#0

, : , 2 2 2 2
where o~ is the signal variance and ¢” = o+ 0.5}: |h|" o
S
i#0

We shall assume that the equalizer output noise is a white noise sequence, SO
that the performance of VA can be assumed optimum. With this assumption, the

probability of minimum distance error event can be expressed as

...(4.48)

where Q(.) stands for Gaussian error integral, as defined in ‘section 2.5.
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For an ideal channel, |h,| =1.0, |hn|=O for all n except n=0. Thus for ideal

channel (ISI-free channel) the probability of error event is given by

P ~Q ..(4.49)

where o is the variance of additive white Gaussion noise in each dimension.
v
Thus the degradation in performance of the sub-optimum KFE-MLSE receiver

structure relative to an ISI-free channel is given as

degradation in performance = dB ...(4.50)

|h0f2crf
20‘30 +z {hi,2 0‘3

AR

For a given ISI channel response {gi}, We can compute the combined impulse

= IOIng dB

response {hi}, by using the innovations representation  and the  spectral
factorization technique as described in the previous sections. The overall
variance 0‘30 of the correlated noise at the output of KFE can be computed by the
procedure as detailed in Appendix B [17]. Hence, we can determine the error
performance of the sub-optimum KFE-MLSE structure by finding the degradation in
performance relative to the optimum MLSE receiver operating under an IS]-free
environment through the use of (4.48) and (4.49). The combined impulse response
and the overall variance 030 have been determined for various IS] channels and are
presented in the next section. Also we have presented in the following, the
performance of KFE-MLSE receiver structures evaluated through bounds together with

the simulation results.
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Table 4.1 Computed values

for some of the KFE-MLSE structures at different values of SNR.

of the combined impulse response of the channel and the KFE

-0.0003, 0.0017, -0.0029, 0.0013, -0.001. 0.0004

Sl TCM scheme IS1 SNR Combined impulse response cocfficients Overall
No. employed channel | dB noisc
viriance
2
ﬁvu
1 4-state  16-QAM | CHI3 100 | 0.0348, 0.9261, 0.0342, -0.158,0.0073_-0.0034, 0.6573
TCM 0.0016, -0.0007, 0.0003, -0.0002, 0.0001
12.0 | 0234, 0.9514, 0.231, -0.0110, 0.0052, -0.0025, 0.4501
0.0012, -0.0006, 0.0003, -0.0001,0.0001
140 10.0154, 0.9685, 0.0153, -0.0074, 0.0030, 0.3001)
-0.0017, 0.0008, -0.0004, 0.0002, -0.0001
0.190]
16.0 | 0.0100, 0.9797, 0.0099. -0.0049.0.0024,
-0.0012, 0.0106, -0.0003, 0.0001, -0.0001
2 g-state  16-QAM | CH22 10.0 | 0.0143,0.0323, 0.9138, Q.0320, 0.0138, -0.0179, 0.7597
TCM 0.0042, 0.0041, -0.0035, 0.0003, 0.0001, -0.0006
12.0 | 0.0096, 0.0216, 0.9431, 0.0215. 0.0093, -0.0124. 0.5240
0.0031, 0.0029, -0.0025, 0.0003, 0.0008, -0.0005
140 10.0062.0.0141. 0.9630, 0.0141, 00061, -0.0083, 0.3508
0.0021, 0.0019, -0.0018, 0.0002, 0.0005, -0.0004
16.0 | 0.0040, 0.0114, 0.9703, 0.0114. 0.0050, 00068, | 0.2300
0.0017, 0.0016, -0.0015, 0.0002, 10004, -0.0003
3 8-state  64-QAM | CH23 16.0 | 0.0019, 0.0064, 0.9814, 0.0064, 00018, -0.0023. 0.7619
TCM 0.0005, 0.0003, -0.0003, 0.0000, 0.0001
17.0 | 0.0012, 0.0041, 0.9882, 0.0011, 0.0012, -0.0015, 0.4%92
0.0004, 0.0002, -0.0002, 0.0000
18.0 | 0.0009, 0.0032. 0.9906, 0.0032, 0.0009, -0.0012, 02318
0.0003, 0.0002, -0.0001
19.0 | -0.0006, 0.002, 10,9921, 0.0028, 0.0006, -0.0009, 0.1127
0.0002. 0.0001, -0.0001
4 16-state  64-QAM | CH32 16.0 | 0.003, 0.0134,0.9705, 0.0134, 0.0004, 00632, 11RO
TCM -0.0056, 0.0024, -0.0002, 0.0007, -0.0011
17.0 | 0.0026, -0.0004, 0.0108, 0.9763, 0.0108, 0.7729
-0.0004, 0.026, -0.0045, 0.0019, -0.0001, 0.0006
18.0 | 0.0021, -0.0003, 0.0087, 0.9811. 0.0087.-0.0003_ ] 05314
0.0021, -0.0036, 0.0016, -0.0001. 0.0005
19.0 0.0017, -0.0003, 0.0069, 0.9849. 0.006Y, .3372
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4.6 RESULTS AND DISCUSSION

In this section, we present the error performance of the KFE-MLSE receiver
structure employed for the sub-optimum detection of trellis-coded QAM signals in
the presence of ISI and AWGN. The error event pfobability of the KFE-MLSE
structure is computed through the evaluation of bounds as discussed in section 4.5
and also through simulation. The reference system employed is an uncoded KFE
receiver structure having the same data rate, bandwidth and energy as that of the
coded KFE-MLSE structure. The performance of the sub-optimum KFE-MLSE structure is
compared with that of the optimum combined MLSE receiver structure for a limited
variety of ISI channels (L=1). The ISI channels considered in this study are same
as those considered earlier in section 3.6 and listed in the Table 3.1.

The baseband TCM data transmission system considered in this study has been
implemented in the same manner as detailed in section 3.6. The receiver structure,
as shown in Fig.4.1, is a cascade of the KFE and the maximum-likelihood Viterbi
decoder. Representing the message process and the observations process in the form
of (4.4) and (4.5) respectively, the KFE is realized through the implementation of
(4.7)-(4.10) and subjected to the initial conditions (4.11) and (4.12). The output
of the KFE, representing nearly an ISI-free signal sequence, is then applied to
the maximum-likelihood Viterbi decoder which operates on the encoder trellis to
determine a sequence of estimated TCM data symbols.

For the performance evaluation of the KFE-MLSE receiver structure through the
use of bounds, we consider the estimation of steady-state Kalman gains and hence
the combined impulse response of the channel and the KFE. Through the use of
innovations representation of the processes involved and the Cholskey Spectral
factorization technique as detailed in Appendix A, the combined impulse response
of the channel and the KFE is derived for the given ISI channel. Table 4.1 gives
the computed values of the combined impulse response for some typical cases. The
table also includes the overall noise variance 030, which is computed using the

method of Box and Zenkins [17], as explained in Appendix B.
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Table 4.2 Error event performance of the KFE-MLSE receiver structures for some typical ISI channels

Coded KFE-MLSE Structure. Uncoded KFE
Sl TCM Scheme IS1 SNR a, Error Event Probability, Pe reference h, Performance
No. employed channel dB degradation
Lower bound Upper bound  Simulation Simulation

1 4-state  16-QAM | CHI3 10.0 0.7071 0.214E-01 0.129E+00 0.433E-01 0.127E+00 0.9261 -2.03

TCM 12.0 0.5613 0.539E-02 0.324E-01 0.161E-01 0.550E-01 0.9514 -2.09

14.0 0.4462 0.665E-03 0.399E-02 0.236E-02 0.643E-02 0.9685 -2.14

16.0 0.3544 0.266E-04 0.160E-03 0.100E-03 0.680E-03 0.9797 -2.17

2 g-state  16-QAM | CH22 10.0 0.7071 0.195E-01 0.468E+00 0.372E-01 0.193E+00 0.9138 -2.76

TCM 12.0 0.5613 0.468E-02 0.112E+00 0.269E-01 0.106E+00 0.9431 -2.82

14.0 0.4462 0.515E-03 0.129E-01 0.977E-02 0.452E-01 0.9630 -2.86

16.0 0.3544 0.191E-04 0.458E-03 0.114E-02 0.137E-01 0.9762 -2.88

3 g-state  64-QAM | CH23 16.0 0.7263 0.102E-01 0.203E+00 0.329E-01 0.169E+00 0.9814 -1.77

TCM 18.0 0.5669 0.175E-02 0.349E-01 0.163E-01 0.708E-01 0.9882 -1.78

20.0 0.4583 0.118E-03 0.236E-02 0.163E-02 0.189E-01 0.9920 -1.78

22.0 0.3640 0.184E-05 0.367E-04 0.200E-04 0.304E-02 0.9950 -1.79

4 [6-state  64-QAM CH32 16.0 0.7263 0.208E-01 0.867E+00 0.206E-01 0.307E+00 0.9705 -3.84

TCM 18.0 0.3669 0.316E-02 0.289E-+00 0.162E-01 0.176E+00 -0.9831 -3.87

20.0 0.4383 0.621E-03 0.348E-01 0.938E-02 0.743E-01 0.9814 -3.92

22.0 0.3640 0.240E-04 0.144E-02 0.910E-03 0.207E-01 0.9806 -3.98




The combined impulse response characteristics of the KFE-MLSE receiver
structure, employed for the decoding of 4-state 16-QAM TCM signals transmitted
over an ISI channel CH13 (L=1), have been shown in Fig.4.5 for different values of
SNR and corresponds to the entries at SI. No. 1 of Table 4.1. The Fig.4.6 shows
the combined impulse response characteristics of some of the KFE-MLSE receiver
structures corresponding to the data given in Table 4.1 at SNR=10.0 dB. For 2
given ISI channel, the degradation in the performance of the KFE-MLSE receiver
structure  relative to its ISI-free performance has been computed using the
discrete combined impulse response and the output noise variance 0‘30, as discussed
in section 4.5. The computed value of performance degradation has been given, for
each set of the combined impulse respnoses, in Fig.4.5 and Fig.4.6.

The performance of the KFE-MLSE structure under an ISI-free environment
corresponds to that of the basic TCM scheme on AWGN channel, as discussed in
section 4.5. For a given ISI channel, the performance degradation of the KFE-MLSE
structure has been computed for different SNR using the combined impulse response
and the overall noise variance. Since the performance bounds of the structure
under an ISI-free environment are known, the performance bounds under an IS]
environment can be computed using the performance degradation. The error
performance so derived have been given in Table 4.2 for some typical cases. The
table also includes the simulation results on the error performance of the coded
KFE-MLSE structure and correspondingly those of the uncoded KFE receiver which is
used as the reference system.

The error performance characteristics of the various KFE-MLSE receiver
structures used in this study have been shown in Fig.4.7-4.14. The performance
characteristics of the KFE-MLSE receiver structure used for the detection of 4-
state 16-QAM TCM signals in the presence of ISI and AWGN have been shown in
Fig.4.7 for a variety the ISI channels (of memory length L=1 to L=3) as listed in
Table 3.1. For ISI memory length L=1, the KFE-MLSE performance is compared with

that of the combined MLSE receiver that makes use of the combined ISI-Code trellis
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for the detection of TCM signals in the presence of ISI and AWGN. TFrom Fig.4.7(a)-
(¢) we note that the KFE-MLSE structure, although sub-optimum relative to the 32-
state coded combined MLSE structure (of section 3.4.2), achieves a considerable
coding gain of 2.25-3 dB at Pe=10'5 relative to the uncoded KFE reference system
without the compromising bandwidth efficiency or power efficiency. We may recall
that the coded combined MLSE receiver structure had maintained almost the same
gain margin over its uncoded MLSE reference structure.

The characteristics shown in Fig.4.7(d)-(i) correspond to the performance ot
the coded KFE-MLSE structure used for the detection of 4-state 16-QAM TCM signals
transmitted over ISI channels of memory length L=2, while the characteristics of
Fig.4.7(j)-(1) correspond to that of channels with memory L=3. Also shown in
Fig.4.7 are the performance bounds evaluated through the procedure of section 4.5,
We observe that, in each case, the simulation result on the error performance of
the coded KFE-MLSE structure lies well within the computed upper and lower bounds
on the error event probability.

Fig.4.8 shows the error performance characteristics of the 8-state 16-QAM TCM
based KFE-MLSE receiver structure for 4 different ISI channels CH13, CH22, CH24
and CH33 of Table 3.1. From the simulation results, we note that the KFE-MLSE
structure achieves a coding gain of about 2.75 - 3.0 dB over the uncoded KFE
reference system. The computed upper and lower bounds on the error event
probability are quite tight, in the sense that the simulation result lies  well
within the bounds.

Similarly, Fig.4.9 shows the error performance of the 16-state 16-QAM TCM
based KFE-MLSE receiver for 4 different ISI channels CH13, CH21, CH26 and CH32.
'he coded KFE-MLSE structure achieves a significant coding gain in the range of
3.0 - 4.0 dB (approx.) over the uncoded KFE reference system for the same data
rate, bandwidth and signal energy. Again we observe that the simulation result is
well bounded by thc. computed upper and lower bounds on the error  evenl
probability.
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Fig.4.10-4.12 show respectively the error performance charaotensms of the
KEE-MLSE structures for the 4-state, 8-state and 16-state trellls coded 64-QAM
signal transmissions over different ISI channels. From the characteristics of
Fig.4.10-4.12, we note that the coding gain of the KFE-MLSE structure for the 4-
state 64-QAM TCM transmission is in the range of 2-2.5 dB, while it ranges between
2530 dB and 2.5-4.0 dB respectively for the 8-state and 16-state 64-QAM TCM
schemes. In Flg.4.11 and Fig.4.12, we find that the simulation result in most
cases does agree with the computed bounds.

The performance comparison of the different KFE-MLSE receiver structures .uscd
for the 16-QAM TCM transmission have been presented in Fig.4.13. From the
performance characteristics, we can observe that there is an increase in the
coding gain with the use of 8-state or 16-state TCM schemes relative to that
achievable with the 4-state TCM scheme. For the 16-state TCM 16-QAM transmission
we find, from Fig.4.13(b), that the performance of the KFE-MLSE receiver is nearly
close to that of the combined MLSE structure. Although the KFE-MLSE structure is
sub-optimum, it achieves a considerable coding gain over uncoded KFE reference -
system, with the advantage of reduced complexity.

Fig.4.14, similarly, gives the performance comparison of the 4-state, 8-
state, 16-state TCM based KEE-MLSE receiver structures. Again, we can see the
performance advantage of 8-state and 16-state TCM schemes over the 4-state TCM
scheme. From Fig.4.14(b) we can note that the 16-state TCM based KFE-MLE achieves
a good performance, which is close that attained with 128-state combined MLSE
receiver. Thus, with the use of 8-state or 16-state TCM scheme, we can achieve a
good performance with the KFE-MLSE receiver structure over an 151 channel, w1thout
any restriction on the ISI memory length L or the size of the signal
constellation, unlike as in the case of combined MLSE receiver structure. |

From the performance characteristics, we note that the coded KFE-MLSE
receiver structures achieve a coding gain of about 2-2.5 dB over the uncoded KFE

reference system for the same data rate, bandwidth and energy constraints.
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Although the performance of the proposed KFE-MLSE structure is sub-optimum when
compared to that of the coded combined MLSE receiver structure, the former has the
advantage of practical implementation for the detection of TCM on IS] channels of
large memory (L > 3) whereas the latter structure is almost impractical to realize
for such channels. Moreover, the error performance characteristics of the KFE-MLSE
receiver structure can easily be evaluated through bounds using the procedure of
section 3.5, that makes use of the steady-state  characteristics such as the
combined impulse response, overall noise variance, and the.distance properties of
the basic TCM scheme employed. Hence, we may conclude that the KFE-MLSE structure
proposed, for the detection of the trellis-coded QAM signals in the presence of
ISI and AWGN, is a practically viable (feasible) system which offers substantial
coding gains over the uncoded reference system. However, it may be noted that the
proposed KFE-MLSE structure is suboptimum compared to the (optimum) combined MLSE

receiver structure.
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CHAPTER 5

SUB-OPTIMUM REDUCED STATE ALGORITHMS
FOR TCM DECODING ON ISI CHANNELS

5.1 INTRODUCTION

An alternative to the prefiltering  technique is the use of reduced  state
algorithms which aim at reducing the states of the optimum combined 1SI-Code
trellis by channel truncation and/or by combining the states to form subset-states
using the set-partitioning principle.  These algorithms incorporate a  built-in
decision-feedback mechanism within the Viterbi decoder to cancel out the residual
ISI terms during each path metric computation, based on the data symbol decisions
associated with the path leading to that transition.

The complexity of the optimum decoder can be reduced by truncating the
effective channel memory to J where 0 =< J < L, and the resulting structure is a
sub-optimum  truncated combined ISI-Code receiver. The (L-J) residual ISI terms
which are not represented by the truncated combined ISI-Code trellis are estimated
and subtracted from the branch metric computations using the path history
decisions in the Viterbi algorithm. The state complexity of the truncated combined
ISI-Code trellis is NS(M/2)J, where NS is the number of encoder states and M s
the size of the signal constellation employed in the TCM scheme [26].

With a TCM scheme employing large signal constellation, the reduction in
state. complexity may not be substantial even for a truncation length of J=1. A
further reduction in state complexity is still desired. This can be achieved by

incorporating the ideas of set-partitioning inherent in TCM 10 define the subset-
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states for the truncated combined ISI-Code trellis. This approach leads to a
reduced state decoder whose state complexity is independent of the constellation
size M. Such decoder structures are referred to as reduced state sequence
estimators (RSSE). The state complexity of the RSSE may range between that of the
TCMV encoder and that of the optimum receiver. As the state complexity of RSSE is
increased, its performance approaches that of the optimum combined ISI-Code
receiver [26, 42].

When the state complexity of RSSE reduces to that of the TCM encoder, the
structure is referred to as the parallel decision-feedback decoder (PDFD). The
PDED is useful for a system with a large channel impulse response while the RSSE
is more suitable for a system with large signal constellation [42].

The evaluation of error performance of these reduced state algorithms is, in
general,  difficult  to perform  analytically ~ because of the decision-error
propagation. The decisions, which are being used to cancel out the residual ISI,
are derived from the path history and therefore are not the true estimates of the
past symbols. Consequently, this leads to the possibility of error propagation in
these algorithms and hence 1o the difficulty in evaluating the performance
analytically. We have considered the performance evaluation of these algorithms
through simulation.

Eyuboglu and Qureshi [41] had proposed the technique of RSSE decoding for
uncoded transmission over - time-dispersive channels, which they later applied to
the coded-modulation  schemes [42]. Chevillat and Eleftheriou [26 have
independently proposed a similar approach for the decoding of TCM signals in the
presence of ISl and AWGN. Simulation techniques have been used by both the
investigators [26, 42] for the performance study of the RSSE structures using a 4-
state 16-QAM TCM scheme, for a typical channel.

We, in the following, have presented the results of a detailed study of
several RSSE structures, for the decoding of various Trellis-coded QAM signals

(with difterent constellation sizes) transmitted over time-dispersive  channels ot
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different orders of memory length, through simulation techniques.

Following the approach given in [26], we first consider the channel
truncation technique to reduce the number of states in the combined ISI-Code
trellis.  We next consider the method of combining channel truncation with the
ideas of set-partitioning principle to arrive at the RSSE structures. The simplest
form of RSSE, namely the PDFD is considered next. We have constructed several
reduced state trellis structures for the decoding of various TCM schemes employing
ditferent  QAM signal constellations. The performance of these reduced state
receiver structures for several TCM schemes have been studied, through simulation,

on different ISI channels and the results are presented.

5.2 REDUCED STATE TRUNCATED COMBINED ISI-CODE RECEIVER

The state complexity of the optimum combined ISI-Code receiver can be reduced
by truncating the effective channel memory to J and using a built-in DFE-like
mechanism within the Viterbi decoder to cancel out the residual (L-J) ISI terms,
that are not represented by the truncated combined state trellis. For a truncation
memory length of J, the state complexity of such receivers is NS(M/2)J, where Ns
is the number of TCM encoder states, M is alphabet size, M=2m+! and 0 < J < L.
The Viterbi decoder operates on this reduced state truncated combined ISI-Code
trellis and the resulting receiver structure is sub-optimum.

Truncating the channel memory to J leads to a reduced state truncated

combined ISI-Code trellis whose states are defined by [26],

W= («; a(n-1), a(n-2), ....... a(n-J)) (5.1

where 0 = J < L, and “:=an

The performance degradation due to (L-J) ISI terms not represented by the
truncated combined state “,J, is compensated by incorporating an ISl-cancellation
mechanism into the branch metric computation. The (L-J) residual IS] terms  are

estimated using the decisions derived from the path history associated with the
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reduced states. Note that each truncated combined state pl’l gives information on J
past symbols {a(n-i)}, 1 = i = J, associated with that state.

Associated with each state ui, there will be a unique survivor path with a
history of path symbol estimates {..., a(n—L), ;(N-J-Z), a(n-J-l)...} and a
survivor path metric defined as I:/I(n-l)(p,],)., The Viterbi algorithm computes

recursively the survivor path metric as

. L J 2
ﬁ,l(uiﬂ) = min {Mn_l(ui) + |r(n) - Z ga(n-i) - Zgia(n-i) - g,an) }
{uj}—> pj i=]+1 i=|

n n+1l

(5.2)

~where the minimization is taken over all the branch transitions which originate
from states {“:1} and merge into the successor state p:m. Also {;(n-i)} tfor
J+1=i<L are the symbol decisions (estimates) derived from the path history, which
correspond to (L-J) past symbols {a(n-i)} that are not represented by the
truncated combined state [.1:1. Thus the second term of the branch metric computation
corresponds to the cancellation of ISI due to (L-J) residual terms. It may be
observed from (5.2) that the Viterbi receiver performs both equalization and TCM
decoding jointly.

The form of (5.1) suggests a family of reduced state truncated combined ISI-
Code receiver structures with —state complexity ranging from N to NS(M/2)L for
0 < J = L. In the present study, we have considered several truncated combined
ISI-Code receiver structures for the decoding of Trellis-coded QAM signals over
ISI channels with different orders of memory. In the following, we consider the

design of some truncated combined ISI-Code trellis structures.

5.2.1 The 8-State Truncated Combined ISI-Code Trellis for 4-State 4-QAM

TCM Transmission for Lz2 and J=1

Consider the 4-state 4-QAM TCM transmission over a time-dispersive IS
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channel of memory length L=3. For the 4-state 4- QAM TCM, we have N =4 and
M=2""'=4. For optimum MLSE decoding, we could require a combined 1SI-Code trellis
with N\‘.(M/Z) =4.2"-:32 gtates. Truncating the channel memory to J=1, we get a
truncated combined ISI-Code trellis with Ns.(M/2)J=8 states.  Using the definition
(5.1), the present state and the next state of the truncated combined ISI-Code

trellis are given by
o= (« 5 a(n-1)) ..(5.3)

and W= (e a(n) ..(5.4)

n+1 n+1

where « and « .+, are the states of the TCM encoder, and a(n) is the symbol
allowed by the TCM coding rule along the state transition #— u . Note that
each sate u gives information about the past symbol a(n-1). The syrnbols a(n-1)
and a(n) can be represented by the symbol labels Yn_l and Y“ respectively, where

Y =y'y° and Y“=yl'lys. For the 4-state TCM encoder of Fig.2.3(a), we have

n-1 n-17n-|

x' ), and yl =x' o x' and y°

I
a =(X
( n-3 n-1

) w2 X Substituting for « and a(n-1)

n- l n-2'

(In terms of Y —y"ly“l) in (5.3) and upon simplification we can write (he

present state u'l as
1

po=od  x K ..(5.5)

n n-3 n-2 n-1

By similar procedure, we can write from (5.4), the next state “IH as
1

poo= kb K ...(5.6)

n+1 n-2 n-1 n

Realization of (5.5) and (5.6) results in an 8-state truncated combined [S]- Code
trellis structure as shown in Fig.5.1. This trellis structure can be employed for
the decoding of 4-state 4-QAM TCM signals transmitted over an ISI channel of
memory length [22, Decoding is accomplished by the lmplementauon of (5.2) through

the Viterbi algorithm.
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5.2.2 The 32-state Truncated Combined ISI-Code Trellis for 4-state 16-QAM
TCM Transmission for L=2 and J=1

Consider next the 4-state 16-QAM TCM transmission over a time-dispersive ISI
channel of memory length L=3. For the 4-state TCM encoder of Fig.2.3(a), using a
QAM signal constellation of size 16, we have NS=4 and M=2"*'=16. For optimum MLSE
decoding we need a combined ISI-Code trellis with Ns.(M/2)L=4.83=2048 states. By
truncating the channel memory to J=1, we get a truncated combined ISI-Code trellis
with only NS.(M/2)1=4.8=32 states. The present state and the next state of this
32-state truncated combined ISI-Code trellis can be derived using (5.3) and (5.4)

and noting that a(n) can be represented by its symbol label Yn=y3y2y'y° with yi=x3

n-n" o n
, yi=xi and y:l, yz are as defined earlier in sub-section 5.2.1. Following the
procedure of the previous example, the present and next states of this truncated

combined ISI-Code trellis are given as
/-1] = (xl x:_, x! , xz_, X ) ‘ (5.7

and ' = (xl X X x:, xz) ...(5.8)

n+1 n-2 n-1

Note the similarity between (5.7), (5.8) and (3.18), (3.19). Therefore, the
truncated combined ISI-Code trellis structure resulting  from the realization of
(5.7) and (5.8) will be same as the trellis structure shown in Fig.3.7, the only
difference being in the implementation of the decoding algorithm. For the receiver
using the truncated combined ISI-Code trellis, the decoding is accomplished by the
implementation of (5.2) through the VA. This structure can be employed for the
decoding of 4-state 16-QAM TCM signals transmitted over an ISI channel of memory

length L=2,

5.2.3 The 128-State Truncated Combined ISI-Code Trellis for 4-State 64-QAM
TCM Transmission for L>2 and J=1

We next consider the transmission of 4-state Trellis-Coded 64-QAM signals
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over an ISI channel of length L=2. For optimum MLSE decoding, we would require a
combined ISI-Code trellis with 4.(64/2)*=4098 states. The state complexity can be
reduced by truncating the ch'annel memory to J=1, which results in a truncated
combined ISI-Code trellis structurel with 4.(64/2)'=128 states. The present and
next states of this truncated trellis can be defined using (5.3) and (5.4).
Following the procedure used in the above example, it can be shown that the
resulting trellis structure is same as that discussed in section 3.4.3, with the
exception that the decoding is accomplished by the implementation of (5.2) through
the VA. Note that this trellis structure may be employed for the decoding of 4-

state 64-QAM TCM signals transmitted over an ISI channel of memory length Lz2.

5.2.4 The 64-State Truncated Combined ISI-Code Trellis for 8-State 16-QAM
TCM Transmission for L=2 and J=1

Consider the transmission of 8-state Trellis-Coded 16-QAM signals over an ISI
chanrel of length L=2. For optimum MLSE decoding, we would require a combined ISI-
Code trellis with 8(16/2)°=512 states. The state complexity can be reduced by
truncating the channel memory to J=1, that results in a truncated combined ISI-
Code trellis structure with 8(16/2)'=64 states. The present and next states of
~this truncated trellis can be defined using (5.3) and (5.4). Following the
procedure used used in sections 5.2.1 and 5.2.2, it can be shown that the
resulting trellis structure is same as that discussed in section 3.4.4, with the
exception that the decoding is accomplished by the implementation of (5.2) through
the VA. Again it may be noted that this 64-State truncated combined MLSE trellis
structure may be employed for the decoding of 8-state 16-QAM TCM signals

transmitted over an ISI channel of memory length Lz2.

5.3 REDUCED STATE SEQUENCE ESTIMATION
From the discussions of the proceeding section, it may be observed that the

state  complexity of the sub-optimum truncated combined ISI-Code receiver
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structures  still remains substantially high with TCM schemes employing large
signal constellations, although the channel memory length is truncated to J=1. In
such cases, a further reduction in the state comblexity is still desired.

We may recall that in the case of the optimum combined ISI-Code trellis or
its truncated version, each state contains explicit information about the previous
L or J data symbols associated with it, respectively. Instead, if some of the
states can be grouped together so that they specify only the subsets to which the
previous data symbols belong to, then a substantial reduction in the state
complexity of the corresponding receiver is possible. This can be achieved by
employing the ideas of signal set-partitioning inherent in the TCM design, and the
resulting reduced state decoders are referred to as Reduced  State  Sequence
Estimation (RSSE) structures, whose state complexity is independent of the size of
the signal constellation M. In RSSE, the size M affects only the number of
parallel transitions in the trellis structure [26].

Consider the transmission of m information bits per signaling interval using
a rate m/(m+1) TCM encoder. During each signaling interval n, the (m+1) coded-bit
label Yn(m)=(y':, y':", ey y:, yz) selects a unique data symbol a(n) of the 2™*!
signal constellation in accordance with TCM mapping rules. From the signal set-
partitioning, we may recall that yg determines the B-type subset of a(n), y.]. the
C-type subset and so on. Correspondingly, for each data symbol a(n-i) within the

span of the truncated memory length J, the (mi+1) bit label

Y, (m) = (y:l.ii’ UL e yo) ° ..(5.5)

n-i n-1 n-1

where msm for lsis], characterizes the depth of set-partitioning and determines
the subset to which the symbol a . belongs. Note that mi=rT1 corresponds to the
depth of subset partitioning used by the TCM encoder.

Given the/ encoder state « at time n and the label sequence {Y“_l(ml),
Y (m)..., Y"_J(mj)}, the encoder state « at time n-J can be uniquely

determined if ﬁ’nsmism for Isi<J. Thus, the number of states in the truncated
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combined ISI-Code trellis can be reduced by associating each code state o with
the label sequence {Yn_l(ml), Yn_z(mz), ..... , Y“_J(mj)} in place of the data
symbol sequence {a(n-1), a(n-2), ..., a(n-J)}. Using (5.1), the reduced state of

the truncated ISI-Code trellis can be defined as [26],

I .

A= [an, Yn_l(ml), Yn_z(mz),...., Yn_J(mj)] ...(5.6)
with 0<J<L and Az=an.

Equivalently, in terms of the corresponding information  sequence {X |(m|)’
-

X Z(mz), ..... , X“_J(mj)} where

X (m) = (x, %, X0 L (5.7)

. e} y .
-1 n-1 n-i

the reduced state truncated combined trellis is given by
Voo
A= e X (m), Xn_z(mz), ..... , Xn_ (m)] ...(5.8)

with 0<J=L and A: = a
Under the condition,

mzm zmz ... zm = m ...(5.9)
the reduced state defined by (5.€) or (5.8) leads to a family of valid reduced
state  trellis  structures called  Reduced State Sequence  Estimation (RSSE)
structures. Each code state is associated with 2M17"2T ™ IST states. Thus for
an Ns-statc TCM encoder, the number of states in the RSSE trellis is

llll

NS.2"’1+"‘2+”'+”". From each reduced state 2™ transition groups originate with
each group consisting of 2™ parallel transitions. For m <m, note that each
“state carries information about subsets rather than the individual data symbols.

The decoding is accomplished through VA by recursively computing the survivor

path metric of the reduced states in accordance with

L 2
~“(A:l+l) = min { K&n_l (Aljl) + {r(n) - z g, a(n-i) - g, a(n) } ...(5.10)
{Afn} A;'l+l =+ 7
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where the minimization is performed over the allowable branch transitions
originating from states {Ai} to the terminal successor state 'Ai“. From (5.10) it
may be noted that the L ISI terms are cancelled out using the previous data symbol
decisions {;(n—i)} for 1=isL, that are derived from the path history associated
with the state Ai.

For a given truncation length J and ml=m2=....=m1=r‘ﬁ we obtain the least
complex RSSE structure with a state complexity of NS.ZE”. The most complex RSSE
structure with m =m =...=m=m, has a complexity of NS.Z"‘J states. Since OsJ<L, the
state complexity of RSSE ranges between that of TCM" encoder (Ns) and that of the
optimum combined ISI-Code receiver (Ns.2mL). Thus, (5.6) or (5.8) represents a
family of RSSE structures with state complexity ranging between N_and Ns.2'“".

In the following, we consider the design of few RSSE structures for the
decoding of Trellis-Coded QAM signals transmitted over time-dispersive  ISI

channels.

5.3.1 The 8-State RSSE Trellis for a 4-State Trellis-Coded QAM and J=1
Consider the transmission of 4-state 16-QAM TCM signals over an #SI channel

of length L=2. Assume that the channel memory is truncated to J=1. For the 4-state

16-QAM TCM of Fig.2.3(a), we have N =4, M=2"""=16, m=3and m =1, SinceJ=1, and

_rﬁsmlsm, let us choose m =1. Thus the number of states in the RSSE trellis is

NS.2'"1=8. From (5.6) the present state of the RSSE trellis is given by

(m))) (5011

where o« is the present state of the 4-state TCM encoder given by o« =x' x'

i n-2 n-d

Al = (oc"; Y

n n-1

and Y (m=1) = (y' y°)

n-17 n-1

The next state is given by

AL = (a LY (m)) ...(5.12)

n+1 n+

where o« is the next state of the TCM encoder given by « . =x' x'
n

1 n-1 u

and Y (m) = (v, y?)
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Note that for a 4-state TCM encoder of Fig.2.3(a), we have y:l=x:l@ X:..z" y:=xl')_l

and therefore ylll_l=xl"_l@ xl'l_a, y:_l=x:l_2. Substituting for «, « . Y ~—and Y
in (5.11) and (5.12), we get
P S S 1 1 _
;\n o (Xn—2 Xn-l’ Xn-l® Xn-3’ Xn-2) (513)
and
I S DR S i . )
An+| - (Xn—2 xn’ xn® X"_2, xn-l) ' . -(5.14)

'y and

n-1

From (5.13), (5.14) it may be noted that A:l is a function of (xl'l_3, x:.-z X

Al is a function of x:12 x:” x'. Simple forms of 'A:l and A'l can be obtained
- - 1

n+1 n
directly by the use of (5.7) and (5.8). The present state can therefore be
expressed as

1 _ . —
An - (an-l’ Xn-l(ml—l))

- 1 |
where « =x _x _and xnl(ml=1)=xn.

nl w3 o2 1

Thus A = (% % %) .(5.15)
1 _ I 1 1

and An+l - (Xn-2’ ‘Xn-l’ Xn) (5 16)

The transition Alll — A:m represent the C-type subset defined by

Y (D=(ly)=(xo x| . X ). L (5.17)

The corresponding 8-state RSSE trellis structure can be derived using (5.13) and
(5.14) or (5.15)-(5.17) and the resulting structure is shown in Fig.5.2. From each
state 2™'=2 transition groups originate, each representing 4 parallel transitions
(for 16-QAM). Since Y"(l)=(y:lyz), each transition group corresponds to C-type
subset.

In general, this 8-state RSSE structure can be used for the decoding of 4-
state M-QAM TCM signals (M=2"""), since m influences only the number of parallel
transitions and not the overall design. For 4-state 64 QAM TCM, there will be
2" =2%'=16 parallel transitions per transition group.
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The decoding is accomplished through the implementation of (5.10) using the

Viterbi algorithm.

5.3.2 The 16-State RSSE Trellis for 4-State Trellis-Coded QAM and J=1
Consider again the same example of 4-state 16-QAM TCM, L= 2,J=1, m=3 m=1,
with only a change in the constraint m . By selecting ml=2, the number of states
in the RSSE structure is Ns*22=16, and from each state there will be 2"1=4
transition groups (D-type subset), each consisting of 2 parallel transitions. The

use of (5.6) results in states

R CAPE S S R o (5.18)

n n-2  n-l n-1 7 n-l

and AL = (x:]_l xll) ; yi y:] y:’l) - (5.19)

n+l

The alternative definitions of A; and A:]H resulting from (5.8) are

o 1 1 1 2
An - (Xn-3 xn-2 Xn-l Xn-l) (520)
| _ | 1 12
and An-H - (Xn-l Xn-l Xn xn) (521)

with the transition A:l - A:M being associated with a D-type subset given by
Y (2) = (¥, Y) o .(5.22)

The resulting 16-state RSSE structure is shown in Fig.5.3. For 4-state 64-QAM TCM,
each transition group  represents 252=8 parallel transitions.  Decoding is

accomplished through VA using (5.10).

5.3.3 The 32-State RSSE Trellis for 4-State Trellis-Coded QAM and J=2
Consider next a 4-state 64-QAM TCM, L=3 and J=2. Since m = m. < m for 1=i<2,
select ml=2 and m2=1. Then the number of states in the RSSE structure IS

Ns'2l1l1+ll12=32'
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Following (5.8), the states can be defined by

Az - (an-2; Xu-l(z) Xn-2(1))

or Ai - (X:m’ X111-3; xlll—l’ Xi-l’ Xxl;-z)
ad A= G K K )
Rearranging
?\121 - (X:M’ xxll—l' xlll-2’ Xlll-l, X|2|-l) _ (523)
and A= (% Ky X, %, x) ..(5.24)

The transition A: — AEH is associated with a D-type subset defined by
Y =0y, ) .(5.25)

Py ..(5.26)

n-1 7 n-l

Also Y“_l(l) = (y

The resulting 32-state ‘RSSE structure is shown in Fig.5.4. Note that each state is
associated with 2™'=4 transition groups, each group representing 8  parallel
transitions corresponding to 8-signal points of the D-type subset of 04-QAM
constellation. This 32-state  RSSE trellis  structure can also be wused for the
decoding of 4-state 16-QAM TCM signals, wherein each transition group represents 2
paralle]  transitions corresponding  to  D-type subset of 16-QAM  signal
constellations. The decoding is accomplished by the implementation of (5.10)

through the Viterbi algorithm.

5.3.4 The 32-State RSSE Receiver for 8-State Trellis-Coded QAM and J=1
We next consider the transmission of 8-state 16-QAM TCM over an ISI channel

of length L=2. Truncating the channel to J=1, we have m=m_. For 8-state 16-QAM

|

)
w2 n-ton-l

TCM encoder of Fig.2.3(b), we have N =8, M=2""'=16, m=2 and « =X
yi=xi, yi=xi_l@ X,l,’ y:1=xl2‘® x:]_z, y:=xl1]_l. The condition m=m =m Suggests 2=m =3,

and let us consider ml=2. Thus, the number of states in the RSSE structure is
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NS.2""=32. Following (5.8), the present state and the next state are given by

Al - (an-l; Xn-l(2))

n

and A (@ ; X 2)

n+1

where X (2) = x! X2 and X (2) = x' X
n-1 -1 n n

n-1 n n

- Substituting for x % Xn_l(2) and Xn(2) we get,

L l 2 1 2 L
>\n - (Xn-3 ’ Xn—2’ Xn-2’ Xn—l ’ Xn-l) " (5 : 27)
! — 1 2 1 2 1

and A= (K X X X X)) ...(5.28)

Also, the transition A:‘ — A:]H represents a D-type subset of the signal

constellation given by,

Y@ =0y, Y) (5.29)

Correspondingly, Y (2) = 6oy oy ...(5.30)

n-1 7 n-1 “n-l

The resulting RSSE structure corresponding to (5.27)-(5.30) is shown in Fig.5.5.
Note that each state is associated with 2"!=4 transition groups, each representing
D-type subset consisting of 2 parallel transitions. The same structure can be used
for 8-state 64-QAM TCM decoding, in which case each transition group represents 8
parallel transitions corresponding 8 signals points of the BD-typc subset of 64-
QAM.

The decoding of the 32-state RSSE trellis is accomplished by implementing

(5.10) in the Viterbi algorithm.

5.4 PARALLEL DECISION FEEDBACK DECODING
From the preceding section, we have observed that substantial reduction in

the state complexity of the combined ISI-Code structure is achieved by
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incorporating  channel truncation and also the set-partitioning ideas inherent in
TCM code construction. The RSSE structures have state complexities ranging from
TCM encoder states N_to the optimum combined ISI-Code receiver states Ns.2"'l‘.

When the state complexity of the RSSE structure reduces to that of encoder
states Ns(for J=0), the reduced structure is referred to as parallel decision
feedback decoding (PDFD). The Viterbi decoder operates directly on the TCM code

trellis. The decoding is accomplished by recursively computing the survivor path
metric corresponding to the state « according to [26]
2

} ~.(5.31)

where the minimization is performed over all the trellis branches originating from

—~

M )= min {1\71 () +
n a+l {a“}__) a"+l n-1" 0

L
r(n) - ) g, a(n-i) - g an)
i=1

code states {oc“} and leading into the successor state a . It can be noted that
the L ISI terms are cancelled out in a way reminiscent of a DFE ih cascade with a
TCM Viterbi decoder. The distinctive feature of PDFD is that instead of using only
one sequence of decisions, as in the feedback path of DFE, the equalization is
accomplished by using a unique sequence of decision for each state in the trellis.
These feedback sequences are based on the history of the surviving path of each
state. As a result, instead of calculating the metrics with one received sample
per trellis stage, there will be a unique decision-feedback equalized sample for
each state per stage. This will result in an increase in cbmputational complexity
which is well justitied by the improved performance [42, 138].

In the following, we consider the performance of these reduced state decoders

on different 1SI channels, through simulation.

5.5 RESULTS AND DISCUSSION
In this section, we present the error performance of the reduced complexity
sequence estimation techniques which are employed for the sub-optimum detection of

irellis-coded QAM signals transmitted over the time-dispersive ISI channels. The
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performance characteristics of the various  structures, as discussed earlier in
sections 5.2-5.4, have been derived through simulation. In order to estimate the
coding gain achievable with the use of the coded truncated combined MLSE receiver
structures, we consider an uncoded truncated MLSE receiver structure as the
reference  system. Similarly for the coded RSSE/PDFD structure, the reference
employed correspondingly is an uncoded RSSE/PDFD structure. The IS] channels, used
in the study, are assumed to be time-invariant and known, and correspond to those
listed in Table 3.1.

The baseband TCM data transmission system considered for the study is the
same as shown in Fig.3.4, the implementation of which has been discussed earlier
in section 3.6. The receiver is a reduced complexity structure based on the
techniques  of channel truncation and reduced sta.te sequence  estimation  as
discussed in sections 5.2-5.4.

The error performance characteristics of the varjous coded truncated combined
MLSE structures (of section 5.2) have been shown in Fig.5.6-5.10. The error
performance of the 8-state truncated combined ISI-code trellis structure  of
section 5.2.1 (channel truncation length J=1), which is used for the decoding of
the 4-state 4-QAM TCM signals transmitted over an IS] channel of memory length
L=2, is shown in Fig.5.6. The reference System is a 2-state truncated uncoded MLSE
structure (J=1). It may be noted that the coded truncated MLSE structure achieves
a gain of 2.5-3.0 dB relative to the uncoded reference system, while it suffers a
degradation in the range of 0.5-1.0 dB over the optimum combined MLSE structure.
Fig.5.7 depicts the error performance of the 16-state truncated combined MLSE
‘structure  (channel truncation length J=2), which ijs employed for the detection of
4-state 4-QAM TCM signals transmitted over an ISI channel of Lz3. The truncated
combined MLSE structure achieves a coding gain in the range of 2.0-2.5 dB over the
uncoded truncated MLSE structure (J=2), while exhibiting a performance loss of
only 0.3-0.5 dB over the optimum combined MLSE structure. From Fig.5.7(a), we

observe that the performance of the truncated MLSE approaches that of the optimum
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MLSE structure as J—L, which is to be expected.

The performance characteristics of the truncated combined MLSE receiver
structures of section 5.2.2-5.2.4, have been shown respectively in Fig.5.8-5.10.
Fig.S..8 shows the error performance of the 32-state truncated combined [SI-code
trellis structure employed for the detection of 4-state 16-QAM TCM signals over an
ISI channel of memory length Lz2. Similarly, Fig.5.9 and Fig.5.10 show
correspondingly  the performance characteristics of the 128-state and 64-state
'tmncated combined ISI-code trellis structures (of section 5.2.3-5.2.4) used for
the decoding 4-state 64-QAM and 8-state 16-QAM TCM signals, respectively. It may
be noted that the performance of the coded truncated MLSE structure is compared
only with the uncoded truncated MLSE reference system, as the combined MLSE
structures have not been realized for 16-QAM/64-QAM TCM transmission on 1SI
channels of memory length L = 2, due to the reasons of complexity in practical
implementation as  discussed earlier in section 3.4. From the perfermance
characteristics of Fig.5.8-5.10, we observe that the coding gain achieved is
2.0-2.5 dB with the use of truncated receiver structures of sections 5.2.1-5.2.3
which are based on 4-state TCM schemes, while it is 3.0-3.75 dB for the receiver
structure of section 5.2.4 which is based on an 8-state TCM scheme. The use of 8-
state or 16-state  TCM scheme improves the performance of the combined
MLSE/truncated MLSE structures by 0.5-1.0 dB relative to that attainable with the
use of d4-state TCM scheme, but at the cost of increased state complexity and
increased computational burden.

The reduction in state complexity and hence a saving in computations can be
achieved by combining channel truncation technique with the ideas of  sel-
partitioning  as discussed in section 5.3. The performance characteristics of the
reduced state sequence estimators (RSSE) have been shown in Fig.5.11-5.13, for
different orders of state reduction as discussed in section 5.3.1-5.3.4. It may be
recalled that, the 8-state, 16-state and 32-state  RSSE  structures of section

513.1-5.3.4 can be employed for the detection of M-QAM TCM signals (M=16 or 04)
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transmitted over an ISI channel of memory length L>1. The size of the signal
constellation M affects only the number of parallel transitions.

Fig.5.11 shows the performance of the different RSSE structures used for the
detection of 4-state trellis coded 16-QAM signals in the presence of ISI and AWGN.
The reference is an uncoded RSSE structure having the same data rate, bandwidth
and signal energy as that of the coded system. In the figure RSSE-1, RSSE-II and
RSSE-III  correspond respectively o the 8-state, 16-state and 32-state RSSE
structures  of section 5.3.1-5.3.3.  From the performance characteristics of
Fig.5.11, we observe thai the 8-state RSSE structure RSSE-1 achieves a gain of
125-2.0 dB over the uncoded RSSE reference  structure, while it suffers a
degradation of about 1 dB relative to the optimum combined MLSE performance. The
corresponding  gains of RSSE-II and RSSE-II are 1.5-2.25 dB and 2.0-2.75 dB
respectively. The structure RSSE-II suffers a loss of about 0.5 dB relative to the
combined MLSE performance. We may note, from Fig.5.11(a), that the performance of
the 32-state RSSE structure RSSE-III is almost same as that of the 32-state
combined MLSE structure (of section 3.4.2).

Similarly, Fig.5.12 shows the performance of the three RSSE structures RSSE-
I, RSSE-II and RSSE-III for the 4-state 64-QAM TCM transmission over an IS
channel of memory length L = 1. From Fig.5.12, we may note that the 8-state RSSE
structure  RSSE-1 (of section 5.3.1) achieves a gain of about 1.5-1.75 dB over
uncoded RSSE reference system, while the 16-state and 32-state RSSE structures
RSSE-II and RSSE-III achieve correspondingly a gain of about 2.00-2.25 dB and
75.2.75 dB. We observe that the performance of the RSSE structure improves with
an increase in the state complexity and in the limit its performance approaches
that of the combined MLSE structure.

Fig.5.13 shows the performance characteristics of the 32-state RSSE structure
RSSE-IV (of section 5.3.4), which is employed for the decoding of 8-state 16-QAM
TCM signals in the presence of 1SI and AWGN. The structure RSSE-IV achieves a gain

of about 2.25-3.0 dB relative to the uncoded RSSE reference system. In Fig.5.13(a)
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the performance of the 32-state RSSE structure RSSE-IV is compared with that of
the 64-state combined MLSE structure (of section 3.4.4). The RSSE structure RSSE-
[V suffers a performance degradation of about 0.75-1.0 dB over the optimum
combined MLSE structure.

The PDFD receiver structure is a special case of RSSE structure for J=0. The
state complexity of the PDED structure equals that of the basic TCM encoder
employed for the data transmission. The performance of the PDFD structure is
compared with that of an uncoded PDFD reference structure. Fig.5.14 shows the
error performance of the two reduced state structures PDFD1 and PDFD2, which
correspond respectively to the 4-state and 8-state PDFD receiver structures. While
Fig.5.14(a)-(b) give the error performance of the PDED structures for 16-QAM TCM
transmission, Fig.5.14(c)-(d) corresponds to that of 64-QAM TCM transmission. We
observe from the performance characteristics that the 4-state PDFD structure
(PDFD1) achieves a gain of 1.5-2.0 db over the uncoded referénce system, while the
8-state PDFD structure (PDFD2) shows a coding gain of 2.25-3.0 dB over the uncoded
reference. The PDFD1 and PDFD2 structures suffer a performance degradation of
about 1.75 dB and 1.25 dB respectively relative to the optimum combined MLSE
structure on ISI channels of memory length L=1.

From the study presented above, we observe that the truncated MLSE structures
give performance close to that of the combined MLSE structure, with a small
degradation in the range of 0.5-1.0 dB. A further reduction in state complexity
can be achieved by the use of the RSSE structures that i“ncorporate the ideas of
set-partitioning  inherent in the TCM design. The performance of the RSSE
structures approaches that of the combined MLSE structure as Lhe - state complexity
increases. As the state complexity of the RSSE is reduced (o that of the TCM
encoder, we get the PDFD structure whose performance is quite significant over the

uncoded reference, although there is significant performance degradation relative

to the optimum combined MLSE structure.

176



CHAPTER 6

ADAPTIVE RECEIVER STRUCTURES FOR TCM
TRANSMISSION OVER TIME-DISPERSIVE
FADING CHANNELS

6.1 INTRODUCTION

The continuing growth of mobile telephone traffic and the need for its
integration with digital communication facilities has spurred an active research
and subsequent development of high-capacity digital mobile radio systems in recent
years. The digital mobile-radio channels are characterized as rapidly time-varying
channels which are highly susceptible to multipath-induced ISI and sometimes
exhibit deep fades. The fact that the coded-modulation schemes can provide
significantly improved performance over bandlimited channels, has made TCM schemes
attractive for applications over fading channels also. To combat the effect of IS]
on such (rapidly) time-varying fading channels relatively  complex adaptive
equalization procedures and, to overcome the effects of severe fades on such
channels, the more effective diversity combining techniques have to be employed
(2, 4, 101].

Since the publication of spectrally efficient TCM schemes by Ungerboeck
[126], there has been an active research and applications of TCM schemes,
particularly M-PSK TCM, for satellite channels [8, 13, 30]. However, in recent
years there is an increased interest in the use of M-QAM TCM schemes for fading
channels due to- their excellent spectral-efficiency and power-efficiency over M-
PSK schemes. It has been reported that [35, 55], the M-QAM TCM schemes outperform

M-PSK TCM schemes when the receiver can be provided with channel state
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information, and hence it is argued that the high data rate requirements of future
digital satellite communications and digital mobile communications can be met only
with the use of M-QAM TCM schemes (131].

In addition to the use of coded-modulation schemes, the most etfective
technique to reduce the effect of severe fading present on such time-varying
channels is through the use of diversity reception. The diversity technique is
based on the notion that the probability of the signals received on D-ditferent
independent paths will fade simultaneously is extremely small [97). In diversity
reception, the receiver fis provided with several replicas of the same information
transmitted over D-independent fading channels.

The optimum combined MLSE receiver structure or its sub-optimum variants,
requires an exact knowledge of the channel characteristics for the equalization
and decoding of TCM signals. So far our study has been constrained under the
assumption that the channel is time-invariant and known. But in reality, the
channel is usually non-stationary (time-variant) and is unknown. Therefore for
proper detection, the receiver needs to be equipped with an adaptive channel
estimator for the identification of tifne—varying channel parameters.

A wide range of adaptive algorithms for channel estimation have been reported
in the literature [101, 104], the most common being the least-mean squares (LMS)
algorithm and the recursive least-squares (RLS) algorithm. The LMS is simple to
implement and hence finds wide applications. The RLS algorithm exhibit faster
convergence and better tracking capability than LMS algorithm, and is well suited
for applications on time-varying 1SI channels [37, 101]. The inherent decision
delay of the Viterbi algorithm employed in the optimum MLSE decoder or its
suboptimum variants, will result in delayed channel estimation and hence poor
tracking especially when the channel characteristics are rapidly time-varying. To
circumvent this problem, a new channel estimation procedure has been reported in
recent years [63, 112]. This scheme maintains a separate channel estimator for

each state of the Viterbi decoder and uses the delay-free decisions, associated
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with the survivor path leading into that state, for the updating of channel
coefficients through the LMS or RLS adaptive algorithm. This new channe]
estimation procedure, called as respective-state channel estimation (RCE) or per-
state processing (PSP) channel estimation, has been shown [66, 105] to exhibit
excellent tracking performance on rapidly time-varying ISI channels.

In this chapter, we first consider the discrete-time model of the fading
channel. We next consider the channel estimators based on LMS/RLS adaptation
algorithms which employ delayed-decision updating for estimating the channel
coefficients, for applications on slow fading channels. For applications on
rapidly time-varying channels, we consider the channel estimation employing a more
complex respective-state  channel estimation procedure that uses delay-free
decisions to update the channel coefficients through LMS/RLS adaptation. The error
performance and tracking characteristics of these channel estimators have been
studied through simulation. Also, a study has been performed to determine the
error rate performance of several adaptive TCM  receiver structures on fading
channels, through simulation. We then consider the use of D-diversity reception
for the decoding of Trellis-Coded QAM signals transmitted over a severe fading
channel.  Finally, we present the results of the study on the error rate

performance of different adaptive receivers through simulation.

6.2 FADING CHANNEL MODEL FOR TCM TRANSMISSION

Many of the physical digital communication channels such as HF shortwave
ionospheric  propagation channels, troposcatter radio, digital mobile radio, and
digital satellite channels are often modeled as time-variant multipath fading
channels. Three phenomena namely time-spread, Doppler spread, and multipath tfading
have been recognized as the main impairments to reliable communication over these
channels. The time-spread causes ISI, the Doppler spread necessitates a fast
convergent algorithm for adaptive equalization, and the multipath  fading also

results in a very low received signal when the channel exhibits a deep fade and
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necessitates the use of diversity .techniques [117].

The fading dispersive channel can be modeled as a randomly time-variant
linear filter [5, 62], which can be completely specified in terms of the time-
varying channel impulse response, as detailed in Appendix C.

Consider the equivalent baseband transmission system for the transmission of
TCM signals over a time-dispersive fading channel as shown in Fig.6.1. The system
transmits m information bits Xn per signaling interval. The TCM encoder produces
m-+1 coded bits Y which are mapped into a channel signal a(n) of the 2"*'-QAM
signal constellation, in accordance with the mapping rules of TCM [126]. For
optimum detection, the received signal is passed through a linear filler matched
to the channel characteristics and the output of the whitened-matched filter is
sampled periodically at the symbol rate. Thus, at the sampling instant n, the
sampled complex value of the received signal is given by

N-1
r(n) = X g (m).a(n-k) + v(n) (6.1

k=0
where g (n) represents randomly time-varying coefficients of the finite duration
channel impulse response, and takes into account the effects of the transmit
filter, the actual channel and the receiver filter. v(n) represents  the sampled
value of the complex AWGN process with zero-mean and variance 0‘3 in each dimension
and a(n)’s are the transmitted TCM QAM symbols.

Thus, TCM transmission over a time-dispersive fading channel can be modeled
as a finite duration taped-delay-time (TDL) filter with randomly time-varying
coefficients gk(n) at tap spacings of T as shown in Fig.6.2, where T represents
the sampling (baud) interval. The time-variant tap weights {gk(n)} are assumed to
be statistically independent complex-valued Gaussian random- variables having zero

mean and variance Pk in each dimension given by
P, = (1/2) El|g (m)|*, fork =0, 1, ..., N-1, ..(6.2)
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Note that Pk’s define the delay power spectrum Of the power impulse response of
the channel.

The time-variations in the channel characteristics are taken into account by
filtering the random tap coefficients through a first-order low-pass filter whose
3dB bandwidth B is of the order of fadé rate in Hz, as detailed in Appendix C.
This leads to the following model for the tap gains of the fading dispersive

channel [88],

gk(n+1) = gk(n) exp(-aT) + JPK(I—exp(—2ocT))‘ uk(n) ...(6.3)

where u (n) denotes the samples of zero-mean, unit-variance complex Gaussian noise
process. In (6.3), «=2nB where B is fade rate in Hz, and T is the sampling

interval (baud interval).

6.3 CHANNEL ESTIMATION 7

Given the received sequence {r(n)}, the problem is to recover the symbol
sequence {a(n)}, as reliably as possible, within the constraints imposed by the
receiver structure. Several adaptive receiver structures have been reported in the
literature [77, 104] for the recovery of the data in the presence of the unknown
channel interference and noise.

The estimation of random time-varying channel coefficients {gk(n)}, given the
measurements of the related process {r(n)} will constitute the channel estimation
problem. The general configuration of an adaptive channel estimator used in
connection with an optimum MLSE detector or its suboptimum variants is as shown in
Fig.6.3. The channel estimator approximates the actual channel with a discrete
finite-state machine (linear time-variant filter) in exactly the same manner as
that of Fig.6.2. A recursive adaptive algorithm is employed to estimate the
channel coefficients by minimizing the error between the actual received sequence

and the estimated received sequence available from the output of the linear filter

[101].
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The channel estimator is initially operated in the training mode (start-up
mode) to estimate the tap coefficients, during which a known data sequence {a(n)}
is used to form the filter output {;(n)}. Followed by this, it is operated in the
decision-directed mode (adaptive-mode) for tracking the channel estimates, during
which the detected data sequence {;(n)} is used to form the filter output {Ar(n)}.
[t has been shown that [78] by forming an error sequence {c(n)=r(n)-?(n)} and
applying a suitable minimization criterion, one obtains as the optimum filter
coefficients the actual channel parameters {gk(n)}.

The adaptation algorithm employed in channel estimation should exhibit fast
convergence during the training phase, better tracking - capability during the
adaptive phase, and a low computational complexity. The stochastic gradient-type
algorithms, such as LMS algorithms are the simplest and the most widely used
adaptation algorithms when the channel characteristics are slowly time-varying.
The recursive least-squares (RLS)" adaptation algorithms exhibit faster convergence
and better tracking capabilities than LMS algorithms and are considered to be
suitable for time-varying channels [44, 74, 100]. Unlike LMS, the convergence rate
of RLS is insensitive to the eigenvalue spread of the signal autocorrelation
matrix.

The channel estimator, in the adaptive mode, uses the decoded data decisions
to update the estimates of the tap gain coefficients. It is well known that
reliable data decisions from the Viterbi decoder will be available only after a
fixed decision delay & [47]. Therefore for channels with large memory and in
particular for the combined ISI and TCM decoding, this & can be very large.
Consequently, this leads to a delay in the channel estimation and hence results in
poor tracking - of the channel response in a time-varying environment. Thus, the
conventional channel estimation techniques employed 1n adaptive MLSE  structures
suffer from poor tracking on a rapidly time varying ISI channel. Kubo et al. [05]
and Seshadri [112] have, independently, proposed a new channel estimation

technique that facilitates delay-free channel estimation by maintaining a separaie
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channel estimator for each state of the Viterbi algorithm. The respective-state
channe!l estimates are updated through LMS/RLS algorithm by making use of the zéro-
delay decisions associated with the survivor path leading into that state. As the
procedure involves the estimation of channel coefficients for each state per baud
interval, the method is often referred to as per-state processing  (PSP) or
Respective-state  Channel Estimation (RCE) [24, 66, 105]. Since the estimates of
the channel impulse response are not influenced by the decoding delay s of the VA,
the performance of this estimation procedure is shown to be much superior to that
of conventional channel estimators for rapidly time-varying ISI channels. However,
the price paid for this improved performance is the increased complexity in
implementation, which depends on the number of states in the trellis on which the
VA operates.

Kubo et al. [65, 66] have considered the study of the respective-slate
channel estimators for uncoded transmission, as well as trellis-coded QPSK
transmission using the LMS adaptation criterion. In this work, we have considered
a study of these respective-state channel estimators based on both LMS and RLS
algorithms and their applications to the detection of Trellis-Coded QAM signals

over time-varying ISI channels using various trellis structures discussed earlier.

6.3.1 Channel Estimation Using LMS Algorithm

The channel estimator based on LMS adaptation as shown in Fig.6.4, has a
structure identical to that of a linear transversal filter. In fact, the channel
estimator is a replica of the equivalent discrete-time channel filter that models
the ISI. The estimated channel tap gains {gk(n)} are adjusted recursively by the
steepest-descent LMS  algorithm to minimize the mean-square error between the
actual received sequence {r(n)}, and the ~estimated  received sequence {?(n)}
available at the output of the estimation filter. The speed of the convergence and
the adaptation rate are controlled by the value of the adjustment parameter a. I

may be noted that a delay q, equal to the decision delay & of the VA, is
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introduced to properly time the comparison between the received sequence {?(n)}
and the estimated received sequence {;(n-q)}.
For decision-directed mode of operation, the adaptive LMS algorithm for
complex signals is then described by the following equations |75, 78, 140].
Filter output:
) = AT).Gm) ..(6.5)
Error :

e(n) = r(n) - ?(n) ...(6.0)
Coefficient update :
Gn) = G(n-1) + a.e(n).A"(n) .(6.7)

A
where A(n) is an N-component input vector to the filter at the time instant n,

defined as
A = [a(n), a(n-1), ... Ca(-N+DI" ...(6.8)
G(N) is an N-component véctor of tap gain estimates, defined by

GN) = [go(n), gl(n), EN_I(n)]r ...(6.9)

r(n) is the desired reference signal and /r\(n) is the estimated filter output, .8 is
the step size for coefficient adaptation, and <, * represent the transpose and
complex conjugate operations, respectively.

For mathematical tractability, it is assumed that the detected data sequence
{;(n)} is correct, that is ;(j)=a(j) for all j. Then the mean-square error between

the received signal r(n) and its estimate r(n) is given by
en) = E {|r(n) - r(n)|?) ...(6.10)

It has been shown that [78, 139], as long as the data sequence f{a(m)} is

A
uncorrelated, the optimum  tap gain coefficients {gk(n)} are exactly equal to the
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respective values of the equivalent discrete-time channel response {gk(n)}. Then,
. . . . . 2
the minimum mean-square error is simply equal to the noise variance N0=20‘;, where

03 1s the noise variance in each dimension.

60.3.2 Channel Estimation Using RLS Algorithm

We next consider the channel estimator based on RLS adaptation algo‘rithm.
Structure-wise the estimator is identical to that of Fig.6.4 and approximates the
discrete-time channel of Fig.6.2. The estimated tap-gain coefticients {gk(n)} are
adjusted recursively using a least-squares cost criterion.

Let (A}N(n) represent an N-dimensional vector of the estimated channel

coefficients defined at time instant n as

A

G = [g,™, g, ..., g (O] (611)

Also, let AN(n) represent an N-dimensional vector of decoded data symbols defined
at time instant n as

A

A ) = [Q(n), Q(n-l), ...... : Q(n-N+1)]T ..(6.12)

Suppose we have GN(n—l) and the inverse covariance matrix PNN(n—l) of the decoded

data symbols. When the decoded signal component a(n) is received, we have AN(n).
Then the recursive least-squares (RLS) computation, in complex form, for the time
update of GN(n) and PNN(n) proceeds as follows [1]:

Compute the filter output:

) = AL(®).G, (n-1) ..(6.13)
Compute the error:

e(/n-1) = r(n) - £(n) - (6.14)

Compute the Kalman gain vector:
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P (n-1) /Ax;(n)
K (n) = - ...(6.15)
N A+ A;(n) P (D) A1)

Update the inverse correlation matrix:

P () = [P, (@1 - K A;(n) P (n-D)] ..(6.106)

> —

Update the channel coefficients vector:

G ) = G (n-1) + K (n).e(n/n-1) ..(6.17)
or G m = G (n-1) + PNN(n).R;(n).e(n/n-l) ...(6.18)
Initialization:
G (0) = RN(O) =0 ..(6.19)
and PO = 51

where & is a small positive cons,t.ant, and I is NxN identity matrix. Note that in
(6.11)-(6.18), n stands for the discrete time index, t for transpose, and + for
complex conjugate operation. The parameter A is some positive constant close to
but less than unity, used for the exponential weighing of the past signal. | The
factor 1/(1-A) represents the memory of the algorithm.

The objective of the least-squares algorithm is to generate an optimum tap

coefficient vector G N(n) at time n, which minimizes the weighted squared-error [1,

37],
e(n) = zx“ e(i/n).¢ (i/n)

i=0

= ZA'” |r(i) - Ei;(n) RN(i)V ...(6.20)
i=0 .

In the sense of this error minimization criterion, the RLS estimation algorithm

makes the best possible use of all the available data {A (i), r(i)} upto the time
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n. Therefore, in this sense it converges and tracks as fast as possible. Although,
the RLS algorithms are well suited for applications in a time-varying environment
because of fast convergence and better tracking capability, they are too complex
to implement compared to the LMS algorithms.

In the conventional channel estimation procedure using either LMS or RLS
algorithm, a decision delay of q = & needs to be incorporated to properly time the
comparison between the reference and the input to the estimation filter. This
causes a delay in the channel estimation and hence results in poor tracking which

may not be tolerable in a rapidly time-varying environment.

6.3.3 Delay-free Channel Estimation Using Per-Survivor Processing

The conventional channel estimation techniques, as discussed in the
proceeding subsections, which are normally employed in the adaptive MLSE
structures  suffer from poor tracking capability in a time-varying environment due
to the decision delay s inherent in the Viterbi algorithm. A large delay in the
channel estimation may not be tolerable in applications, such as digital mobile
radio and mobile satellite communications, where the channel characteristics are
rapidly time-varying [65]. Some researchers have employed tentative deéisions with
delay q = s for channel updating [112]. A decrease in q results in erroneous
channel estimation since premature decisions from VA (for q « &) are subject to
higher error rate. An increase in q causes degradation in tracking due to the
delay in channel estimation. Many of the adaptive algorithms desire zero-delay
tentative decisions (with q=0). Since these zero-delay decisions are subject to a
higher error compared to the global decisions with q=s, the step-size of the
adaptation algorithm should be made smaller. This is in contrast to the need for -
large  step-size for tracking fast varying channels. Therefore, the conventional
channel estimation techniques for adaptive MLSE fail to provide delay-free channel
estimation and better tracking of rapidly time-varying channels.

In order to achieve better tracking with large step-size adaptation as well
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as delay-free channel estimation with zero-delay tentative decisions, Kubo et al.
[65] and Seshadri [112] have independently proposed a new channel estimation
procedure known as the Respective-state Channel estimation (RCE) 166] or the per-
survivor-processing (PSP) channel estimation. This procedure maintains a separate
channel estimator for each state of the Viterbi algorithm, as shown in Fig.6.5.
The data symbol decision of zero-delay associated with the survivor path leading
into the trellis state is used to form the estimator filter output and hence a
delay-free updating of the tap-gain coefficients of the corresponding  channel
estimator of that state. Thus, a set of estimated channel coefficients are
maintained per state, per trellis depth. The updating of the per-state channel
estimates is accomplished through LMS or RLS adaptation algorithm. The set of
channel coefficients so derived for each state, are used in the branch-metric
calculation of that state during the next iteration.

This  procedure  of respective-state  channel  estimation improves  the
performance on fast varying ISI channels, due to the delay-free  channel
estimation. Moreover, it can start-up without the knowledge of a training

sequence, meaning that the procedure is well suited for blind equalization [112].

6.4 DECODING OF TCM SIGNALS TRANSMITTED OVER TIME-DISPERSIVE

MULTI-PATH FADING CHANNEL USING D-DIVERSITY RECEPTION

In addition to the use of coded-modulation, the multipath fading can be
effectively mitigated through the use of diversity techniques where the receiver
is provided with multiple independently faded replicas  of the transmitted
information symbol. The diversity is effective since the probability of receiving
simultaneously two or more independently faded channels with deep fade is very
small.

Consider the transmission of TCM signals over D-independently fading channels
as shown in Fig.6.6. The system transmits m information bits X“ per signaling

interval. The TCM encoder produces m+1 coded bits Yn which are mapped into a
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channel signal a(n) of the 2"*'-QAM signal constellation, in accordance with the
mapping rules of TCM [126].

The receiver observes a combined waveform emerging from D-independent time-
dispersive fading channels, each corrupted with an independent AWGN process w (1.
A matched filter is used to maximize the SNR at the sampling instant and a noise -
whitening filter may be used to whiten the colored noise at the output of the
matched filter for a convenient system modeling.

The equivalent discrete-time white-noise model corresponding to the D-
diversity fading channel is as shown in Fig.6.7 [99, 117, 119). The tap-gain
coefficients {g‘:(n)} are modeled as independent zero-mean complex-valued Gaussian
random processes with variances P‘:=(1/2).E[|g‘:(n)|2 in each dimension. The sampled
value of the complex signal received on the d™ diversity branch at time iﬁstant n
is then given by

L
r‘(n) = Zg?(n).a(n—i) + vi(n) ..(6.21)

i=0 :

where L is the memory length of the time-dispersive fading channel and vy s

the sampled value of the i.i.d zero mean complex AWGN process on the d" diversity
branch.

Following the analysis as given in section 3.3, we can represent  the

discrete-time model of Fig.6.7 by a combined finite-state machine or equivalently

by a combined ISI-code trellis whose states are given by

M

n

(ocn; a(n-1), a(n-2), ...... , a(n-L)) _ ...(6.22)

with o and {a(n-i)} as have been defined earlier in section 3.3. It may be
recalled that for a TCM encoder with Ns—states and a signal constellation of
M=2""! points, the number of states in the combined ISI-code trellis is Ns.(M/2)"
states with L representing the memory length of the time-dispersive fading

channel.
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Let R() = (rl(i), r2(i), ..... , rD(i)) represent the linearly combined
waveform of the sampled received signals over D-diversity branches at the sampling
instant i. After the reception of the sequence {R(i)}'i’:l, the combined MLSE
receiver makes a decision in favour of the sequence {a(i)}'i'zl, which maximizes the

joint conditional probability density (117],

P{R(n), R(n-1), ...... R(1) [ a(m), a(n-1), ..., a(1)} © 0 ...(6.23)
or equivalently, the logarithm of this function,

In{P{R(n), R(n-1), ...... R(1) [ am), a(n-1), ..., a()}] ...(6.24)

Since the noise samples {vd(i)} are independent and R(i) depends upon the most

recent L transmitted symbols, we can write

In[P{R(n), R(n-1), ...... R(1) / am), a(n-1), ..., a(D}l
= In[P{R(n-1), R(n-2), ...... , R(1) / a(n-1), a(n-2),..., a(1)}]
+ In[P{R() / a(n), a(n-1), ....., a(n-L)}] ..(6.25)

where a() = 0 for j = 0. Assuming that the first term has been computed earlier,
the second term called the branch metric needs to be computed for each incoming

signal waveform R(n). Using the discrete-time white-noise model,
In[P{Rm) / a(n), a(n-1) , ....., a(-D)}]

is equivalent to

D L
- z | (n) - Xg?(n) . a(n-i)|?

d=1 i=0
Thus, the branch metric which minimizes the path metric is given by

L

D
Branch metric = ) |r'(n) - Y gl . a(n-1)| ...(6.26)
d=1 i=0



Hence, the decoding is accomplished by the Viterbi algorithm operating over the
combined ISI-Code trellis which computes recursively the survivor path metric as

given by
D L

min {1\71"_1(“") + T irfm =T glm) an-H|* }..(6.27)

’J. =
noon+|
{“u} - Mn+l

d=1 i=0

where the minimization is performed over all the trellis  branch transitions
originating from states {“n} and merging into the successor state By The terms
{a(n-i)} for i=1,2,....L take into account the ISI due to the previous L symbols.

Since the state complexity of the combined ISI-Code trellis makes its
practical implementation almost prohibitive even for moderate ISI, several reduced
complexity —sub-optimum receiver structures, as discussed earlier, have been
considered for the study of D-diversity reception. The error performance of the
various D-diversity receiver structures for TCM decoding under multi-path fading
environment have been studied for different orders of diversity D, through

simulation.

0.5 RESULTS AND DISCUSSION

In this section, we present the performance characteristics of the various
adaptive receiver structures, which are employed for the decoding of trellis-coded
QAM signals transmitted over the time-dispersive fading channels. In the study, we
consider the use of channel estimators which employ delayed-decision updating as
well as delay-free updating, of the channel coefficients. We also consider the use
of D-diversity reception inorder to over come the effect of severe fading present
on the multi-path fading channels.

For the study, we consider the baseband TCM data transmission system as shown
earlier in Fig.6.1. The system is implemented in the same manners as in the case
of the time-invariant system, discussed earlier in sections 3.6 and 5.5, with the

exception that the channel is modeled as a finite duration tapped-delay  line
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filter with randomly time-varying tap coefficients g«(n), as shown in Fig.6.2. As
discussed earlier, the tap gain coefficient g (n) are generated as complex-valued
Gaussian random variables having zero-mean and variance P, in each dimension as
defined by (6.2). For the simulation of time variant tap coefficients gi(n), we
make use of the relation (6.3). The power impulse response of the two-tap fading
dispersive channel considered in the simulation is assumed to be P,=0.6 and
P,=0.4. In order to compute the mean square error of the channel estimators and
the error performance of the adaptive receiver structures, we have considered the
averaging over 10 independent simulation runs where each run is of size 10,000
data symbols.

The performance characteristics of the LMS and RLS channel estimator for
fading channel have been studied through simulation. In Fig.6.8(a)-(b), we have
shown the typical convergence characteristics of the RLS channel estimator at a
fade rate of BT=10° by considering the absolute value of the mean squared error,
while in Fig.6.8(b) we have shown the convergence characteristics of both RLS and
LMS channel estimators for the same situation. Fig.6.8(c) shows the convergence
characteristics of both LMS and RLS channel estimators, where the méan squared
error is expressed in decibels. From Fig.6.8, we may note that the RLS algorithm
exhibits much faster convergence than the LMS algorithm.

Fig.6.9 shows the tracking characteristics of both the LMS and RLS channel
estimators. In the figure GK1, GK2 represent the random complex-valued channel
coefficients, while GJ1 and GIJ2 represent respectively the estimated channel
coefficients. LMS and RLS exhibit almost the similar tracking performance for the
tading rates considered.

We have considered the use of the conventional LMS channel estimator, that
makes use of the delayed decision data estimates from the Viterbi decoder, as well
as the LMS channel estimator based on the per-survivor processing (PSP). The two
channel estimators are correspondingly referred to as ‘Con.LMS’ and ‘PSP LMS’ in

the legend of the Fig.6.10. The Fig.6.10 shows the error performance comparison of

197



1.00
8.80 —
; ! A fa
Moo .\;:»"‘.:'-. A A n R
H- b - 2P Kl R R bk it kT ek e
preo [ YTV T Tt
" : ¥ v
] !
3
g |
2
=
2. 40 —|
9,20
STEP SIZEéLMS)-0.00S
BT=1.0E-09
0.0 ‘r—ﬁ/«r—ﬁpj——ﬂfﬁ_»
] 500 102 16500 2000
SAMPLING TIME

(o) TRACKING CHARACTERISTICS OF LMS CHANNEL ESTIMATOR

e e Vet S N
1.00 — P

)
)
e
S 9.00
2
=
-0.60 —
~1.0Q —
B WEIGHING FACTOR=.99
BT=1.0£-06
-1.50
2] 500 1002 16090 2008
SAMPLING TIME

(c) TRACKING CHARACTERISTICS OF RLS CHANNEL ESTIMATOR
FIG.8.9 TRACKING CHARACTERISTICS OF RLS

TAP VALUES

TAP VALUES

-1.00

1.60 ﬂ
. -~ ~> :_:_C—1-‘-’*;-;-;:\;-,,.:_..l.—/'{-‘
Rl A
A7 ,-"Y-"
1.00 - <= — GK1
— GJI

-9.60

-1.00 —

7 STEP SIZEéLMS)-0.0m
BT=1.0E-05
-1.60 —l——1’|———|——|/r‘—[4—l—7—f_/
2 200 400 600 800 1000
SAMPLING TIME

(b) TRACKING CHARACTERISTICS OF LMS CHANNEL ESTIMATOR

1.60
_‘
- — GK3
= — &
— -~ GK2
------ G2
1,08 T B = s T T T -
0.50 —
0.00 —
-0.50 —|

WEIGHING FACTOR=,985
gT=1.0E-07

-1.60
500 1009

SAMPLING TIME

1609 2000

(d) TRACKING CHARACTERISTICS OF RLS CHANNEL ESTIMATOR

AND LMS CHANNEL ESTIMATORS.

198



the various adaptive receiver structures using ‘Con.LMS’ and ‘PSP LMS’. For all
cases considered the fade rate is assumed to BT=10°. As can be noted from the
figure, there is an improvement in the probability of error event by a factor of
10 with the use of the PSP channel estimators (at lower SNR) relative to the use
of conventional LMS channel estimator. From Fig.6.10(c), we observe that there is .
an improvement in the error performance of the RSSE-II structure using the PSP
estimator by about 1 dB at P, = 107, relative to the use of the conventional LMS
channel estimator. The difference in the error performance of the coded adaptive
receiver structure is large at lower SNR, while it decreases at higher SNR, as is
to be expected. Henceforth in our further work, we consider only the use of the
LMS channel estimator based on the PSP technique.

We next consider the error performance characteristics of a 4-state 16-QAM
TCM signal transmitted over a time dispersive multipath fading channel for three
different fade rates and different orders of diversity D. The fade rate employed
in the study, are BT=10", 10° and 107. Fig.6.11(a)=(c) show the performance of
the adaptive PDFD structure for different fade rates at a given dlversuy D, for
the transmission of 4-state 16- QAM TCM signals over fading dispersive channel.
From Fig.6.11(a)-(c), we note that the effects of fading rate has less influence
on the error performance for D=2 and D=3. Fig.6.11(a)~(e) show the error
performance of the PDFD structure at a given fade rate for different orders of
diversity D. We may not that at a given fade rate, the performance improves
significantly with the use of diversity D=2 and D=3. For diversity-order D=2, the
gain in performance for the PDFD structure is nearly 3 dB at P,=10" relative (o
the uncoded reference system. With the use of diversity D=3, we observe that the
corresponding gain is about 3.5 dB at P, = 10" relative to the uncoded reference
system. v

The error performance of the 8-state adaptive  RSSE  structure RSSE-I, as
discussed in section 5.3.1, which is employed for the decoding of 4-state 16-QAM

TCM signals transmitted over the time dispersive channel is shown in Fig.6.12. The
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figure shows the performance of the adaptive RSSE-I structure for different orders
of diversity D, at a given fade rate. For the adaptive  RSSE-I  structure
considered, it shows an improvement in performance which is about 3.5 dB and 4.0
dB relative to the corresponding uncoded reference systems, at D=2 and D=3
respectively. We note that as the fade rate increases (i.e. with 107), the gain
in performance decreases by about 0.5-0.75 dB.

Similarly  Fig.6.13(a) shows the error performance characteristics of the
adaptive KFE-MLSE structure employing the PSP LMS channel estimator for different
values of D at a fade rate of BT=10'°, while Fig.6.13(b) shows the results
corresponding to fade rate BT=10". From Fig.6.13(a) we may note that, there is an
improvement in the performance by about 5.0 dB relative to the uncoded reference
with the use of D=2 at BT=10° and P,=10, while the improvement is about 6 dB
with D=3 at P,=10" for the same fade rate. As the fade rate is increased to
BT=10", the gain in performance decreases as is evident from Fig.6.13(b). We note
from Fig.6.13(b) that the improvement in the error performance is about 2.5 dB
relative 1o the uncoded reference, with the use of D=2 and D=3 a P,=10".

Fig.6.14 gives correspondingly the error performance characteristics of the
16-State and 32-State RSSE structures, RSSE-II and RSSE-IV of sect'ion 5.3.2 and
5.3.4. With the RSSE-1I structure the performance improvement is of the order of
about 6.5 dB at D=2 at P.=10", while it is about 7.0 dB with D=3 g P.=10" It
~can be noted that the performance characteristics of the 32-State RSSE structure
RSSE-1V is shown only for D=1 and D=2. The characteristics show an improvement of
the order of about 7.0 dB at D=2 relative to the uncoded reference structure.

In the simulation study presented we have considered the use of the TCM codes
designed for AWGN channels, for transmission over fading dispersive channels. From
the study we observe that the PSP channel estimators give a better performance
over the conventional channel estimators. The improvement in performance of the
PSP channel estimators is significantly high at lower SNR relative to the use of

‘conventional channel estimators. From the study we observe that the use of the 16-
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state and 32-state adaptive RSSE structures RSSE-] and RSSE-II yields significant
improvement as compared to the other sub-optimum structures over fading dispersive
channels. In particular RSSE-IV yields the best performance, but at the cost of
moderate increase in computational complexity as compared to the other structures
considered in the study. Further, we observe that there is a significant

improvement in the performance with the use of diversity.
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CHAPTER 7

CONCLUSIONS

In this chapter, we conclude the thesis by summarizing some of the important
results of the present work and also suggest some problems for further
investigation.

We have first presented a study of the TCM schemes for applications on AWGN
channel. The design of several trellis-coded QAM schemes have been presented. The
performance evaluation of the TCM schemes on AWGN channel has been discussed and a
new method for computing the distance spectrum of the TCM codes has been
presented. Using this method, the upper and lower bounds on the error event
probability have been evaluated. The performance bounds so derived have been
compared with the simulation results.

From the error performance characteristics of the various TCM schemes, we
observe that the 4-state TCM schemes achieve a gain of nearly 3 dB relative to an
uncoded reference system, without compromising the spectral efficiency or power
efficiency. With 8-state and 16-state TCM  schemes the respective  gains  are
approximately 4 dB and 5 dB at P, = 107 Also, we find that the upper and lower
bounds on the error event probability, obtained through the use of the distance
Spectrum  computing  algorithm, are quite tight in the sense (hat the simulation
results lie well within the computed bounds. Therefore, the proposed distance
spectrum - computing  algorithm  is quite effective in the evaluation of the

performance bounds of all Ungerboeck TCM codes on AWGN channels.
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We have next considered the application of TCM schemes for data transmission
over time-dispersive ISI channels. The TCM scheme in combination with the MLSE
equalizer promises to provide the optimum performance, which is very close to ISI-
free performance. The resulting combined MLSE receiver structure, although
optimum, has a computational complexity that grows exponentially with the 1SI
memory length. In the present work, we have considered the design of several
combined ISI-code trellis structures for the optimum detection of the trellis-
coded QAM signals in the presence of ISI and AWGN. The error performance of the
above receiver structures has been obtained for a wide variety of 18I channels,
through evaluation of bounds and simulation. From the simulation results, we find
that the coded combined MLSE structures does achieve a gain of about 2-3 dB
relative to the uncoded MLSE structure over ISI channels, for the same data rate,
bandwidth and signal energy. We also observe that the upper and lower bounds,
which are computed by the new procedure that makes use of the error sequence of
the basic TCM encoder and the discrete channel impulse response, do agree with the
simulation results. Hence, the proposed method is quite effective in evaluating
the performance bounds of the combined ISI-code receiver structures.

The fact that inspite of its optimum performance the combined MLSE structure
becomes too impractical, keeps open the problem of search for a reduced complexity
structure which can be used for the detection of trellis-coded QAM sighals
transmitted over ISI channels. We have presented a reduced complexity KFE-MLSE
structure for the sub-optimum detection of trellis-coded QAM signals over 151
channels. From the error performance characteristics, the KFE-MLSE structures
based on 4-state TCM scheme, achieve a significant coding gain of the order of
2.2.5 dB relative to the uncoded KFE reference system. Higher coding gains in the
range of 3-4 dB are possible with the use of KFE-MLSE structures which employ 8-
state or 16-state TCM schemes. We have also presented a method for the computation
of the performance pounds for the KFE-MLSE structures, (through the use of

spectral factorization technique and innovation representation) by tinding the
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combined impulse response and the overall noise variance. Using this approach
estimates of the upper and lower bounds on the error event probability have been
computed. For a wide variety of ISI channels considered, we find that the
simulation result is confined within the computed upper and lower bounds. The
proposed KFE-MLSE structure therefore is analyzable and is a practically feasible -
system for the detection of trellis-coded QAM ssignals over ISI channels of large
memory length, although its performance is sub-optimum when compared with that of
the combined MLSE receiver structure.

We have next considered a study of the reduced complexity receiver structures
which incorporate the technique of channel truncation and the  set-partitioning
ideas inherent in the TCM design. The performance of these truncated combined MISE
structures and reduced state estimates (RSSE and PDFD) have been determined for a
wide variety of ISI channels through simulation. The resylis indicate that the
truncated combined MSLE structure achieves performance which is close to that of -
the combined MLSE structure (for truncation length J=L). With RSSE and PDFD
receiver structures, we find 1 drop in the performance gain relative to (he
truncated MLSE version. Relative to the KFE-MLSE structure, (hese reduced state
techniques show an improved performance (with a gain in the range of 1.0-1.5 dB),
but at the cost of increased complexity.

We have finally presented a study of trellis-coded QAM on fading channels. A
tapped delay line model is used for the simulation of random time- -varying channel
coefficients. The performance of the receiver structures, considered earlier, have
been obtained through simulation for different fade rates. Sjnce the channel is
unknown and time-varying, the channel estimators have been implemented to estimate
the tap-gain coefficients. The channel tracking characteristics have been  studied
through the use of the LMS and the RLS algorithms. To circumvent the problem of
decision delay (inherent of the Viterbi algorithm) for the tracking  of rapidly
time-varying fading channel, a recently proposed PSP channel estimator has been
employed. This new procedure of channel estimation shows improved performance. over
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the conventional channel estimators, especially when the number of trellis states
is large.

To overcome the effects of severe fading, a consequence of multipath fading
channels, the D-diversity receiver structures have been employed. Although there
is an increase in the complexity of the receiver structure we find a significant

improvement in the performance for orders of diversity, D = 2.

SUGGESTIONS FOR FURTHER WORK

In the present work, we have proposed the KFE-MLSE structure, a prefillering
technique making use of the Kalman filter, as a physically viabie reduced
complexity receiver for the decoding of trellis coded QAM signals in the presence
of ISI and AWGN. In the present scheme the Kalman filter is used for the channel
equalization. The Kalman filler can be used for both channel estimation and
channel equalization [68, 69]. By incorporating the per-survivor processing (’SP)
technique into the Kalman filter, it would be interesting (o realize efficient
Kalman-based PSP channel estimators that are highly suitable for rapidly time-
varying multipath radio channels.

In the present work, we haQe considered a new method following the approach
adopted by Magee and Proakis [79], in order to evaluate the upper and lower bound
estimates of the error event probability for the coded combined MLSE receiver
structure. This method, which makes use of the error sequence of the basic TCM
encoder and the discrete impulse response of the channel, yields reasonably good
performance bounds. It would be interesting to extend this approach for the
performance evaluation of the trellis-coded RSSE  structures. However, it may be
noted that the MLSE and RSSE have different error structures, and in RSSE there is
error propagation introduced by the algorithm [118]. These factors have 1o be
properly accounted for, in the application of this method.

In recent years, several generalizations of the Viterbi algorithm have

appeared in the literatre [39, 58, 114, 120], amongst which the List-type Viterbi
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decoding is getting much attention. Seshadri and Sundberg have reported in [114]
an improvement of the order of 3 dB with the use of List-type Viterbi algorithm
over the use of conventional VA. The application of List-type VA to the reduced
complexity receiver structures considered in the present work, could be worthwhile
and may also result in a further reduction in the computational burden. A further
investigation into the various generalizations of the VA for their application to
coded modulation schemes is also desirable.

Our work is constrained to the study of two dimensional (rellis-coded QAM
schemes. In recent years, there is an increased interest in the use of 4-
dimensional TCM schemes, particularly in the design of 19.2 Kb/s modems which are
employed for the transmission of compressed digital audio/video signals [136]. The
present work can be extended to the study of 4-D TCM schemes. As pointed out in
[136, 144], the performance on fading channels can be improved with the use of
multilevel coding, wherein the block-coded modulation and TCM schemes are used in
combination, to achieve higher gain than is possible with the use of a single
coded scheme alone. Construction of multidimensional M-ary QAM TCM codes for AWGN
and fading channels based on the multilevel approach is another topic for further
investigation. A further work in the direction of reduced complexity decoding
techniques for multilevel multidimensional TCM schemes for their applications on

fading channels could be worth investigating.
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APPENDIX A

SPECTRAL FACTORIZATION

Consider the problem of obtaining the polynomial D(z) given y(z) as

]
72) = Vo7 (AL
i=-J
such that
¥(z) = D(z).D'(z") : . (A.2)
and D(z) has all its roots outside the unit circle. This is the so called

spectral  factorization problem [106]. To solve this problem, consider the

application of Cholesky factorization algorithm [107, 141] to (A.1), by defining a

positive definite Toeplitz matrix Pn of order (n+1) by (n+1) as [83]

( B’0 71 """ n -
L LANREE L
P = | | L (A3)
n
i 7n n+l1 7 70 J

where ¥ = 0 for |n| = J+1

At any stage n, the matrix Pn by a congruent transformation may be written as
P =F B FT (A
n n n n

where Fn is a complex lower triangular matrix defined by

1 0
f 1
10
f f 1
Fn = 20 21 ..(A9)
'
n0 nl
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and Bn is a positive definite diagonal matrix defined by

b 0]

00

11
B = _ . (AG)

0 b

nn

L

To find the matrices Fn and Bn at stage n, it suffices to find the n-th row of F
n
and n-th diagonal element of Bn. The algorithm to compute these elements at sftage

n is given by
Ve b fo=a for j =0, 1, ..., n LA
It has been observed that at sufficiently large n, the elements of the last row of

F as well as b | converge. The computation experience reveals that convergence
n n

occurs within about (15+7) stages. Their polynomial D(z) is given by [83],

D) = gr_“m bl +f zh 2
=d (1 +dz+ d222 + o + djzj) L (A8)

To illustrate the Cholesky factorization procedure, we consider, the factorization

of the polynomial

1
¥(2) = Zwizi

i=-1

where v | = -(0.85+j0.18) ¥, = 1.7549 v = -(0.85-j0.18).

The corresponding matrices P , F , B at various stages of n are given as
n n 1

PO = [1.7549] FO = [1] B, = [1.7549]

214



Continuing

10

Performance the factorization, the matrices F15

(0.85+j0.18) 1,7549

[ 1.7549

1.7549
0

[ 1.7549

0
0

[ 1

-(0.85+0.18)
T 17549

0
1.7549

-(0.85-j0.18) J

the procedure upto n=10, we get

-(0.85-0.18) 0

-(0.85+j0.18) 1.7549

(-0.85-j0.18)

-(0.85+0.18) 1.7549

0

-(0.85+j0.18)
T3

0

-(0.85+0.18)
T T.0I57
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F

1

]

1.7549

0
0

-(0.85-j0. 18)
1.7549

, B15 can be written as

=(0.85+j0.

18)

0

1.7549

]



1.7549
1.3247

and B =
10

1.0157
0 1.0117

Thus the polynomial ¥(z) can be factored as

7(z) = D D'

where D(z) = |b10 oL 1 f:ogz]
or D(z) = 1.0058 [ 1 - (0.84 - j0.1779)z].
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APPENDIX B

VARIANCE OF ARMA(P,Q). PROCESS

Consider the general form of an autoregressive moving average process ARMA

(p,q) for q = p defined by
W) + ¢1W(n—1) + ¢2W(n-1) + ... ¢pW(n-p)

= QV() + QV(-1) + QV(-2) + ... + Q V(n-q) .(B.1)

where V(n) is a white noise input process that results in a colored output process
W(n)

Multiplying (B.1) by W(n-k) and taking the expectation, we got,

E[W(n) W(n-k)] + ¢, E[W(n-1) W(n-k)] + .... + ¢pE[W(n—|.)) W(n-k)|
= QOE[W(n—k) V(n)] + QIE[W(n-k) V-] + ... + Qq[i[W(n-k) V(n-¢)]

or ¢&(k) + ¢I§(k-l) + ¢2§(k-2) + ...+ ¢p§(k—p)
= Q.00 + Qe () + . Q £,y (k-0 .(B.2)

where £(j) represents the variance function defined by €(j) = E|W(n) W(n-j)] and
€ vU) represents the cross covariance function between W and 'V defined by £ .00
= E[W(n-j) V(n)]. Since W(n-j) depends only on V(i) which have occurd upto time
(n-j), it follows that E[w(n-j)V(m)]=0 for j>0 because W(n-j) and v(n) are

uncorrelated for j>0.

Thus £ =0 j>0
..(B.3)

A

and ng (J)=0 j=0
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Applying (B.3) in (B.2) we get
&(k) + ¢Ig(k-1) + ... + ¢p§(k—p) =0 (B.4)

for (k-q) = 1 or k = q+1
The variance of the process W is given by £(0)=E|W({)W(i)]. From (B.2) we can

write for
k=0 ; £0) + ¢£(1) + $£Q) + oo + 9EM) = QE(Q + QE (D

+ ... + Q¢ (-q)

4wy

k=13 &) + 9£0) + p£0) + oo + 9ERD = QE (O + Qe (D

+ o + Qe (-q+1)

q wy

+1 7wy

k=p ; €(p) + EQ-D + oo+ BEO = QE O + Q£ LD
+ + quwv(—q+p) ...(B.5)

These (p+1) equations of (B.5) are required to be solved for &(0), &(N..... £(p).
This can be done by finding the (q+1) cross covariance functions EwV(O), r;wv(—l),
e ng(—q). To obtain ng(O), multiply (B.1) by V(n) and take expection on both
sides to get

E[W(n) V(n)] + ¢1 E[W(hn-1)V(n)] + ... + ¢pE[W(n-p)V(n)J =
QOE[V(n) V(n)] + Q1 E[V(n-1) V(n)] + ...+ QqE[V(n—q)V(n)J ..(B.0O)
Note that E[W({H)V()] = va(j—i)

where &;wv(j—i) =0 for(i) >0
£ 0 for (i) =0 (BT
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Also  E[V(i) V()] = 03 if i = j

= ( elsewhere .(B.8)

since V(n) represents iid white noise sequence  (process).  Substituting ol (13.7)

and (B.8) in (B.6) yields,
£.0) =Qo’ .(B.9)

Similarly to obtain ng(-j), multiply (B.1) by V(n-j) and taking expeclation we
can find all £ (-j) for j=1, 2, ..... , q.

Thus, we get (q+1) equations as

.0 = Qe

£,0D =Qg’-9pe (0)

£ (D = Qol-g (D) -pg (0)

€D = Qot - 98 (-qH1) - ... 9, (-a+p) .(B.10)

Thus, given 03 of the process V(t) and the coefficients {¢i}, {Q'}. (B.5) can be

solved using (B.10) and hence the variance £(0).

219



APPENDIX C

FADING DISPERSIVE CHANNEI,

The fading dispersive channel can be modeled as a randomly time-varian(
linear filter [5, 62], which can completely be specitied at time insiant t by an
impulse response g (z;t) due to an impulse excitation applied © seconds carlier.

Let a(t)y be the equivalent baseband signal transmitted over the channel.

Then the received signal, in the absence of noise, may be expressed as [100)],

() = Jg(r;t) a(t-t)dr L (C. 1

where g(t;t) is the time-variant impulse response of the baseband channel. |
A(f) is the frequency domain representation of a(t), then (C.1) may be expressed

in terms of the transfer function G(f;t) as
() = f G(f;0) A(h) &"™df .(C.2)

It may be observed from (C.2) that the channel distorts the signal  A(f).  The
changes in the received signal strength due to time-variations in G50 is termed
as ‘fading’. In (C.1), g(z:t) may be viewed as the complex gains of a denscly
tapped delay line (TDL).

If the channel is bandlimited to [f |= W/2, then it can be shown that [100]

1 .
() = W Z a(t-k/'W) g(k/W;t) .(C.3)
K=-00
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Defining the set of time-variable channel coefficients as
_ 1 . .
g (O = g, 8k/W:D L (C4)

we can express (C.3) as

[e0]

r(t) = Z g () a(t-k/W) . .(C.5)

K=-00
Thus, the time-variant multipath fading channel can be modeled as a TDL filter
with a tap spacing of T=1/W and tap coefficients {gk(n)}. For a practical channel
the propagation delay will be of finite spread and therefore, (he TDL model as
represented by (C.5) can be terminated with N=TmW+ I=L+1 taps where T is the total
multipath spread and L corresponds' to the memory length of the channel.  Thus we
can write (C.5) as

N-1 .
r(t) = ng(t) a(t-kT) ..(C.0)

k=0
where T=1/W. Therefore, the noise corrupted received signal al the sampling
instant t=nT can expressed as

N-1

r(n) = ng(n) a(n-k) + v(n) L(CD
K=0

where v(n) is the sampled value of the complex AWGN with zero mean and variance «ri
in each dimension. The TDL model of the fading channel corresponding to (C.7) has
been shown earlier in Fig.6.2.

In the TDL model, the time-variant tap weights {gk(n)} are assumed to be
statistically independent complex-valued Gaussian random variables having zero-
mean and the variance P in each dimension given by

- LlEg 2 = i (C8
Pk =5 E |_|gk(r1)| ), for k 0,1, ..., N-1 (C.8)
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Note that Pk’s define the delay power spectrum or the power impulse response of
the channel.

In practice, the channel exhibits variations that are smaller (han (he rate
of data transmission. The slow fading is appropriate for a number of channels
such as troposcatter and HF radio communication channels,

For simulation, the tap-gain  coefficients gk(O), k=1.2,..... N-I, are
generated as complex-valued Gaussian random variables with zero mean and variance
Pk in each dimension. The slow variations in the channel are taken into account
by filtering the random tap coefficients through a first order low-pass RC filter

whose 3-dB bandwidth B is of the order fade rate in Heriz.  Thus, (he tap

coefficients will have a power spectrum Sk(w) of the form [88],

200
2

Sk(w) = Pk ; k =0,1,..., N-1 ..(C.9)

o« + w

where o = 2nB radians/sec and B = fade rate in Hz

This leads to the following model for the tap gains of (he fading dispersive

channel.

gn+1) = g (n) exp (-T) + JPk(l-exp(-zaTT) u (n) .(C.10)
where uk(n) is the sampled value of zero-mean, unit-variance complex  white

Gaussian noise process and T is the sampling interval, which is assumed (o De the

baud interval.
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