A CONCEPTUAL MODEL FOR BINOMIALLY DISTRIBUTED RUNOFF ELEMENTS OF A NATURAL CATCHMENT

A DISSERTATION submitted in partial fulfilment of the requirements for the award of the degree of MASTER OF ENGINEERING in HYDROLOGY

by B. P. SINGH

UNESCO SPONSORED INTERNATIONAL HYDROLOGY COURSE UNIVERSITY OF ROORKEE ROORKEE (INDIA) NOVEMBER, 1977

ACKNOWLEDGEMENT

The author expresses his gratitude to Dr.B.S.Mathur, Reader in Hydrology, University of Roorkee for his keen interest guidance and encouragement throughout the course of the present study.

The useful discussions with Dr. Satish Chandra, Professor and Co-Ordinator International Hydrology Course, University of Roorkee are also gratefully acknowledged.

The author is thankful to Sri S.N.Sinha, Executive Engineer Discharge Division, Patna for making necessary data available for this study.

The author is also grateful to the various investigators and research workers in the field of surface Water Hydrology, whose work have been referred in course of the present study.

CERTIFICATE

Certified that the dissertation entitled 'A CONCEPTUAL MODEL FOR BINOMIALLY DISTRIBUTED RUNOFF ELEMENTS OF A NATURAL CATCHMENT', which is being submitted by Er. Bindeshwari Prasad Singh in partial fulfilment of the requirement for award of the degree of Master of Engineering in Hydrology by the University of Roorkee is a record of his own work carried out under my supervision and guidance. To the best of my knowledge the matter embodied in this dissertation has not been submitted for the award of any other degree ' or diploma.

This is further to certify that he has worked for more than nine months from Oct. 1975 and onwards for preparation of this dissertation.

Blino the ;

(B. S. Mathur) Reader in Hydrology University of Roorkee Roorkee

ROOR KEE

Dated 15. 11. 1974

SYNOPSIS

In this study some conceptual models for obtaining direct runoff hydrograph from effective rainfall hyetograph have been reviewed.

A conceptual model based on binomial distribution of runoff elements for obtaining direct runoff hydrograph from offoctive rainfall has been proposed. The proposed response model is basically a two parameter analytical model. The parameters are (1) Response Sub-area and (11) travel coofficient. These parameters are evaluated from one of the recorded events on the catchment. The catchment area is divided into response sub-area which develop their independent hydrographs at the outlet. These are superimposed to getdirect runoff hydrograph. Therefore, it has been possible to account for spatial distributions of the rainfall.

The model has been applied on Ajay River catchment located in Chotanagpur platau of Bihar (India). The catchment area at the outlet (Sikatia) is 992 cg.miles.

The computed hydrographs have been found to be in close agreement with the observed hydrographs.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	* 4	••	1
CERTIFICATE		••	11
SYNOPSIS	• •	• •	111
TABLE OF CONTENTS		••	iv

CHAPTER - 1

THE HYDROLOGICAL SYSTEM

Introduction	• • •	1
The Catchment System	• • •	2
1.1.1 The unit hydrograph theory	•••	3
1.1.2 The reservoir concept		11
1.1.2.1 The linear reservoir	•••	11
1.1.2.2 The non-linear reservoir	•••	12
1.1.3 The linear channel concept	•••	12
1.1.4 The time-area concept	• • •	13
1.1.5 The genetic principle	•••	14
	The Catchment System 1.1.1 The unit hydrograph theory 1.1.2 The reservoir concept 1.1.2.1 The linear reservoir 1.1.2.2 The non-linear reservoir 1.1.3 The linear channel concept 1.1.4 The time-area concept	The Catchment System 1.1.1 The unit hydrograph theory 1.1.2 The reservoir concept 1.1.2.1 The linear reservoir 1.1.2.2 The non-linear reservoir 1.1.3 The linear channel concept 1.1.4 The time-area concept

CHAPTER - 2

REVIEW OF SOME CONCEPTUAL MODELS

2.0	Introduction	• • •	17
2.1	Lumped models	•••	18
2.2	Distributed models	•••	20

,

CHAPTER - 3

THE PROPOSED RESPONSE MODEL

3.0	The Problem	•••	25
3.1	The assumptions	• • •	2 5
3.2	The area-analysis	•••	26
3.3	The mechanics of runoff	• • •	29
3.4	The parameters of the model	• • •	36
3.5	The stops in application of the proposed model on a natural catchment	•••	37

CHAPTER - 4

.

APPLICATION OF THE PROPOSED MODEL ON A NATURAL CATCHMENT

4.0	Introduction		42
4.2	Available data		43
4.2	Evaluation of model parameters		43
4.3	Division of Catchment in response sub-area	•••	46
4.4	Identification of rainfall excess	•••	48
4.5	Runoff computation	• • •	57
4.6	Comparison of observed and computed hydrographs	• • •	58
	CHAPTER - 5		
	CONCLUSIONS		•
5.0	Summary of Conclusions	•••	62
5.1	The proposed model versus existing model	• • •	62
5.2	Scope of further investigation	• • •	64

.

APPENDI CES

¥ · .

Appendix	1	Glossary of symbols	• • •	65
Appendix	2	Rainfall runoff data of Ajay river catchment at Sikatia	•••	67
Appendix	3	Derivation of IUH and 12 hour UH for Ajay river catchment at Sikatia	•••	71
Appendix	4	Evaluation of travel coefficient and runoff distribution coefficients	•••	81
Appendix	5	Identification of rainfall excess for five storms in Ajay basin at Sikatia	* • •	83
Appendix	6	Computation of flood hydrographs for the five storms	•••	117
		REFERENCES	•••	136

•

-

•

CHAPTER - 1

THE HYDROLOGICAL SYSTEM

1.0 INTRODUCTION

The transformation of rainfall into runoff is affected by a large number of physiographic and climatic factors obtaining in the natural catchment during the transformation process. To name a few, these are, catchment characteristics, channel characteristics, precipitation, interception evaporation and transpiration etc. It has been noted that the process of formation of the storm runoff is preceded by the process of rainfall abstraction and generation of rainfall excess. It is the rainfall excess which is transported and transformed by the catchment system and finally appears at the outlet as direct runoff.

The transformation of rainfall excess into direct runoff is a complex process. The complexities are mainly due to interdependence and interaction of the numerous physical laws which govern the process. To correlate the hystograph of rainfall excess to the hydrograph of direct runoff, application of physical laws is impracticable. It is so due to the fact that,

- (1) The physical laws governing the process are not clearly established.
- (ii) The inter dependence and interaction of the numerous physical laws governing the process is difficult to be ascertained.

- (111) The physiographic and climatic data required for carrying out such a comprehensive analysis will be too much and availability of such a reliable and comprehensive data is rare.
- (iv) However if such a comprehensive data is collected, the error in collection may have cumulative effect and the refinement sought by putting in more labour in carrying out complex computations may offset the accuracy.

Therefore direct application of physical laws to correlate the direct runoff with rainfall excess has not been favoured by the hydrologists.

In the recent years with the development of electronic computation machines mathematical experimentation of a hydrologic system has become possible and it can be studied as an engineering system.

1.1 THE CATCHMENT SYSTEM

Like any other engineering system hydrologic system also has the following components -

- 1. Input function
- 2. System function
- 3. Output function or Response

In surface water hydrology where a natural catchment is studied as a hydrologic system the input function is generally the hyetograph, system function is a function represent ing the catchment action on hyetograph. The output function or

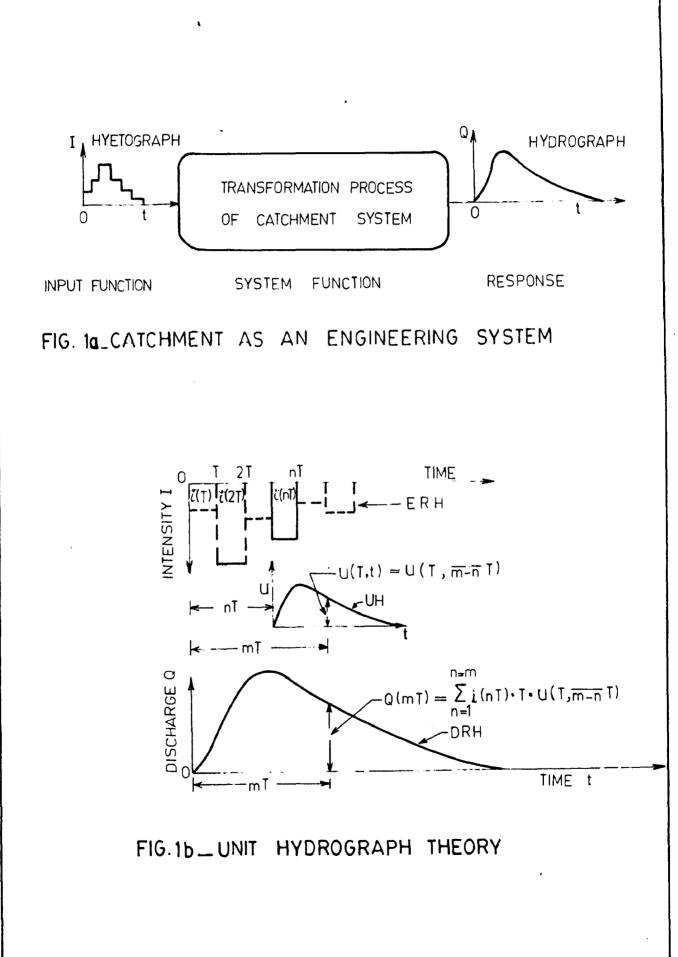
response is the runoff hydrograph observed at the outlet.

In the Fig. (1.a) a schematic representation of a natural catchment system has been given. In this representation the catchment has been considered as a lumped system, whose components are functions of time only. The concept of lumped system simplifies the solutions to a great extent, which is an obvious advantage. The disadvantage is that the spatial variations of the components cannot be taken into account.

Even then, various research workers have studied the behaviour of the catchment and developed the concept of Unit hydrograph, Linear reservoir, Non-linear reservoir, Linear channel, Time area diagram, Genetic principle etc. These concepts are discussed briefly in the following subsections.

1.1.1 Unit Hydrograph Theory

In the year 1932 Sherman postulated the unit Graph theory. The theory states that,

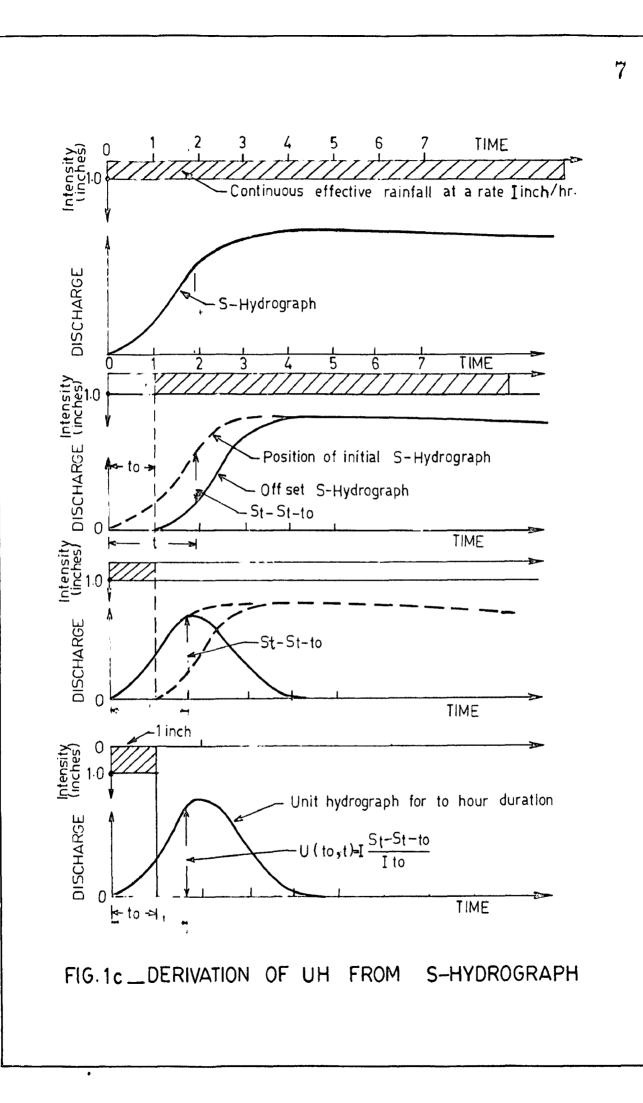

(1) A natural catchment may develop a characteristic unit hydrograph of direct runoff resulting from a unit depth of rainfall excess generated uniformly over the catchment area at a uniform rate within a specified unit duration, which will reflects all the combined physical characteristics of the catchment.

(2) The base or time duration of the hydrograph of direct runoff due to a rainfall excess of unit duration is constant irrespective of the amount of rainfall excess generated uniformly over the catchment area.

- (3) The ordinates of direct runoff hydrograph of a common base time are directly proportional to the total amount of direct runoff represented by each hydrograph.
- (4) The rainfall excess generated in the anticedent durations do not affect the time distribution of surface runoff due to the rainfall excess generated in the given duration.

The uniformity of rainfall excess over the unit duration and over the catchment area is an essential conditions of the theory. In this theory the catchment has been assumed to be a homogeneous, time invarient linear system. The theory has been illustrated in the fig. (1.b). It implies that when a unit hydrograph of a given effective rainfall duration is available the runoff hydrograph of several durations can be derived.

It also implies that the UH of other durations can also be derived. A general method of derivation of UH of any required duration is the well known S-hydrograph method. It was first suggested by Morgan and Hullinghors(1939).



The theoretical S-hydrograph is a hydrograph produced by a continuous rainfall excess generated for an infinite period at a constant rate say I per unit time. This hydrograph assumes a stretched S-shape and its ordinatës ultimately approach the rate of effective rainfall. The S-hydrograph can be constructed graphically by summing up a series of identical UH spaced at intervals equal to the duration of rainfall excess from which it was derived. After the S-hydrograph is constructed the UH of any given duration t_0 can be derived by offsetting the position of S-hydrograph by a period equal to the desired duration to. The UH ordinates then are given by

$$U(t_0,t) = \frac{S_t - S_t - t_0}{I t_0} \qquad (I.A)$$

Therefore, once a UH for a catchmont is ostablished the direct runoff hydrograph for any uniform intensity rainfall excess over unit durations can be computed. If rainfall excess has occured for several unit durations the direct runoff hydrograph can be computed by principle of superposition.

However the assumption of uniformity of precipitation over the unit duration is always likely to be violated. To overcome this difficulty the concept of instantaneous hydrograph was introduced by $\operatorname{Clark}^{(2)}$ in the year 1945 for hydrograph analysis. Instantaneous Unit hydrograph is the unit hydrograph of infinitesimally small duration of rainfall excess. In the limit when the infinitesimally small

duration of rainfall excess tends to zero, the IUH reduces to be the first derivative of the S-hydrograph whose ordinates have the dimensions of time⁻¹, and whose total areaworks out to be unity a pure number. This property of the IUH enabled the application of convolution integral(DUHAFEL INTEGRAL) to study the rainfall runoff relationship and representation of the transformation process in mathematical form

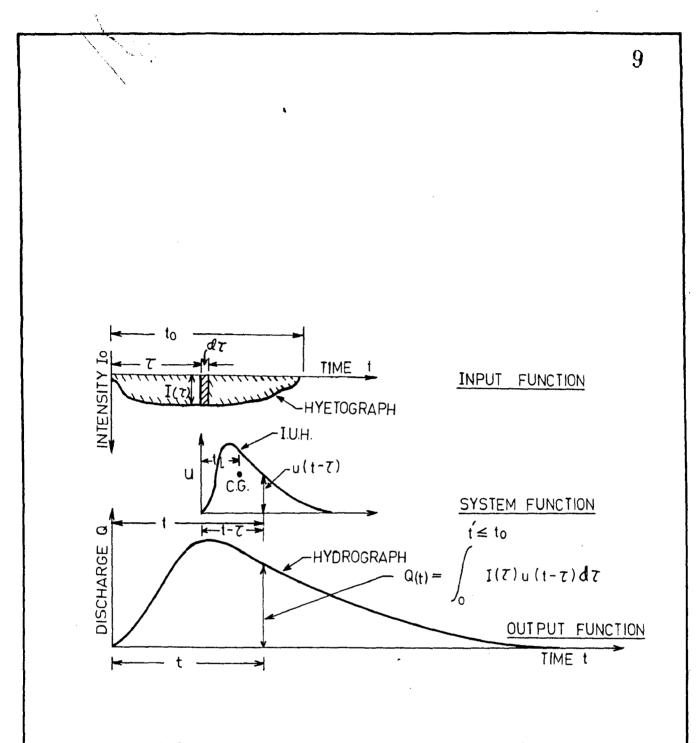
$$Q(t) = \int_{0}^{t' \leq t} I_{(\tau)} U_{(t-\tau)} d\tau (1.B)$$

Where

(1)

$$I_{(\tau)} = Input function$$

$$U_{(t-\tau)} = Kernel function (the system function)$$


$$Q_{(t)} = Output function$$
and $t' = t$ when $t \le t_0$ and $t' = t_0$ when $t > t_0$

The IUH concept has been illustrated in the figure (1.d).

The system function relating to the estenting catchment system in the above expression is known as impulse response function also. The properties of this function are,

		when t > 0	(1.0)
(11)	$\mathbf{U(t)}=0,$	when $t \leq 0$	(l.D)
(111)	U(t) ~ 0,	when t ~ ~	(1.E)

 $0 \leq U(t) \leq A$ (a positive value)

10

(iv)
$$\int_{0}^{\infty} U(t) dt = 1$$
 (1.F)
o
(v) $\int_{0}^{\infty} \frac{U(t) \cdot t \cdot dt}{\xi} = t_{L}$, the Lag time (1.G)
 $\int_{0}^{1} U(t) dt$

The concept of catchment response to instantaneous unit input provided a powerful tool to compute the surface runoff hydrograph of any distribution of lumped input the rainfall excess.

The Unit hydrograph for a finito unit duration is omporically derived from a recorded isolated event in the catchment. But, emperical derivation of IUH from the recorded events is not possible because no uniform precipitation of infinitesimally small duration over a natural catchment can be thought of. However in practice theoretical concepts are used to derive IUH.

One such method was given by Chow⁽³⁾ in the year 1962. He used a procedure for approximate determination of IUH from given effective rainfall hyperograph (ERH) and direct runoff hydrograph (DRH). In this method the IUH ordinate at time t is simply equal to the slope of the S-hydrograph at time t. The S-hydrograph can be derived as explained above in this sub-section. As the S-hydrograph derived from the actual data cannot be too exact, the IUH derived by this method is also approximate. Other methods for determining IUH involve use of conceptual identities like linear reservoir, non-linear reservoir, linear channel and time-area diagram etc. Most popular among them is the concept of treating the catchment system as a cascade of identical linear reservoirs in series proposed by $\operatorname{Nash}^{(4)}$ in the year 1957. This concept has been used in derivation of IUH for a natural catchment in this study and is appended at appendix 3.

The various conceptual identities mentioned above . are discussed briefly in the following sub-sections -

1.1.2. The Reservoir Concept:

The catchment action on its input precipitation is analogous to the action of a reservoir on its inflow hydrograph. A reservoir also translates and attinuates the inflow hydrograph by regulating its outflowing discharges over certain time period. This analogy suggests that a natural catchment could perhaps be studied by application of reservoir concept. Depending upon the inter-relationship among the inflow (I), storage (S), and outflow (Q), the reservoirs may be classified as linear or non-linear.

1.1.2.1. The Linear Reservoir :

It is a conceptual reservoir in which storage S is directly proportional to the outflow Q -

> i.e. Sα Q (1.H) or S = KQ (1.I)

Where K is the storage constant, which has dimension of time. In ropresenting catchment action it stands for the average delay time imposed on the input rainfall by the catchment.

1.1.2.2. The Non-Linear Reservoir:

It is a conceptual reservoir in which the storage S and outflow Q are not directly proportional. General functional relationship for such a reservoir can be written as

$$S = C \cdot Q^B$$
 (1.J)

Where C and B are dimensional constants which may be function of input I, Storage S, and outflow Q or their derivatives. For a non-linear reservoir model, C and B are the two characteristic parameters.

1.1.3. The Linear Channel (Concept):

It is a conceptual channel in which the time (T) required to translate a discharge Q of any magnitude through a channel reach of length (x) is always constant. It implies that when an inflow hydrograph is routed through the linear channol its shape and size is not affected. In functional form it may be stated that if I = f(t) is the inflow and T is the translation time for the channel reach of length x then, the outflow $Q_{(t)}$ will be given by

$$Q_{(t)} = f(t-T) \qquad (1.K)$$

1.1.4. The Time Area Concept

The basic concept of the time-area diagram is that a natural catchment can be considered analogous to a linear channel carrying a spatially varied flow. Total area A of the catchment is divided into n sub-areas of individual area ΔA_j ($j = 1, 2, \ldots, n$), such that $\sum_{j=1}^{n} \Delta A_j = A$, by j=1

It the rainfall excess over the individual inter isochronal areas be I_j (j = 1, 2, ..., n) then total runoff generated on the jth sub-area shall be $I_j \triangle A_j$.

If T be the time of travel of the runoff from the jth sub-area to the outlet then $T = (j=1) \land t$. Let rainfall occur only for the first time interval $\land t$ then the runoff at the outlet due to jth sub-area shall be given by,

$$Q_{(1)} = I_1 \bigtriangleup A_1 f(t-T, \bigtriangleup t)$$
 (1.L)

(By application of linear channel concept). Dividing both sides by A, it can be written as : $\frac{Q(1)}{A} = I_j \frac{\Delta A_j}{A} f(t-T, \Delta t)$ Therefore for the whole catchment

$$\sum_{j=1}^{n} \frac{Q(1)}{A} = \sum_{j=1}^{n} I_{j} \frac{\Delta A_{j}}{A} f(t-T, \Delta t)$$

Setting
$$\sum_{j=1}^{n} \frac{Q(1)}{A} = W(t)$$

$$W(t) = \sum_{j=1}^{n} I_{j} \frac{\Delta A_{j}}{A} f(t-T, \Delta t)$$

Taking I_j = Unity for all sub - basins $W(t) = \sum_{\substack{1 = 1 \\ i=1}}^{n} \frac{\triangle A_{i}}{A} f(t-T, \triangle t)$ (1.M)

If $\Delta t = 0$ the above function gives a smooth curve. The ordinates of this curve $\forall(t)$ are proportional to the sub-area projected on the channel. So, it is called timearea-concentration diagram.

1.1.5. The Genetic Principle

The genetic principle is based on the concepts of isochrones. The isochrones are the lines joining the points of equal time of travel of water particle to the outlet. This explains that the process of flood formation is a result of lag and summation of seperate volumes of water inflowing from some seperate catchments. Mathematically the principle can be expressed as

$$Q(t) = \int_{0}^{t} I(t) \frac{dA}{dt} dt$$
 (1.17)

Where

t = Runoff time lag
I(t)= Intensity of rainfall excess at time t.
A = Area of the catchment.

If the rainfall excess over the catchment be observed during Ist time interval only, the runoff at the outlet shall be given by

 $Q_{(1)} = I_{(1)} \times A_{1}$

$$Q_{(2)} = I_{(1)} \pi A_2$$
 etc. (1.P)

The catchment areas A_1 , A_2 etc. (Fig. 1.e) and (1.f) represent the sub-watersheds limited by adjacent isochrones drawn according to the assumed time interval $\Box \tau$. Taking $\Delta \tau$ to be the unit in general the genetic formula can be written as

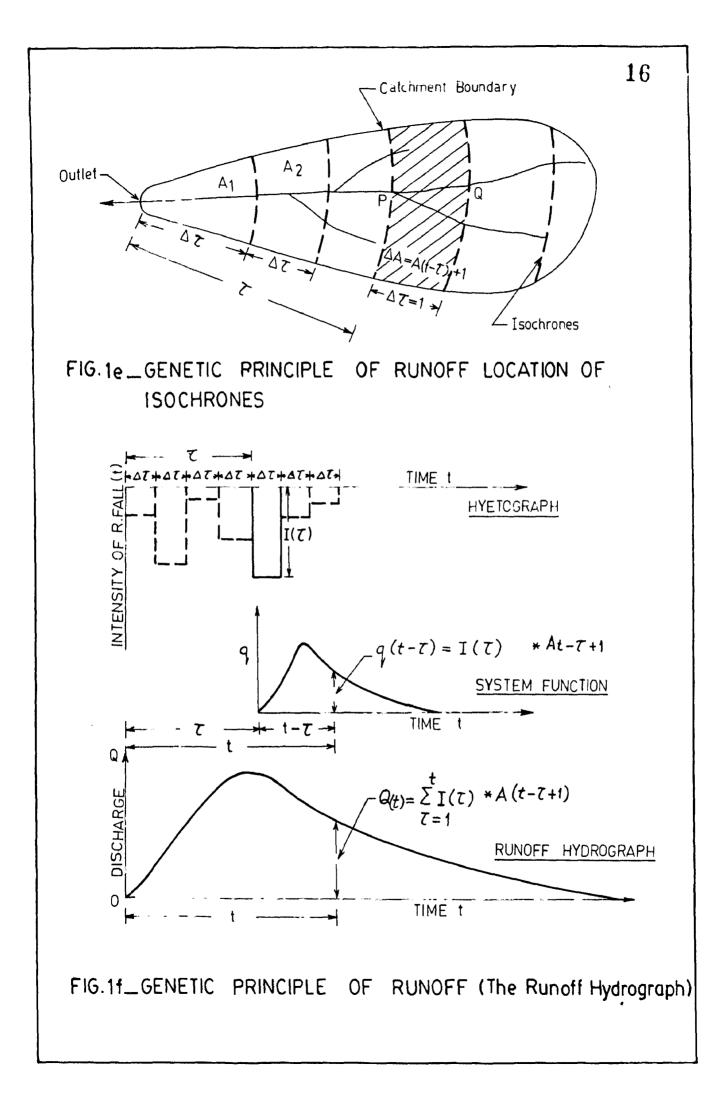
$$Q(t) = \sum_{\tau=1}^{t} I_{(\tau)} \times A_{(\tau-\tau+1)}$$
(1.Q)

Where

 $I_{(\tau)} = Average intensity of rainfall excess$ $over the duration <math>\Delta \tau$.

t = current time

 $A(t-\tau+1) = Sub watershed area bounded by the <math>(t-\tau)$ and $(t-\tau+1)$ unit isochrones.


For an instantaneous input I the runoff hydrograph is given by

$$Q_{(t)} = I \times (A_t - A_{t-1})$$
 (1.R)

Where,

- A_t = Area of the catchment between 0 and t unit isochrones.
- $\Lambda_{(t-1)}$ = Area of the catchment between 0 and (t-1) unit isochrones.

Genetic principle does not take into account the transformation of the discharges in the channel section.

CHAPTER - 2

REVIEW OF SOME CONCEPTUAL MODELS

2.0 INTRODUCTION

For establishing a suitable relationship between the rainfall excess and the runoff, a mathematical model or better known, a conceptual model is considered to be more scientific. The obvious advantage in such an approach is that independent identities of various factors which affect the runoff process are condensed in a few parameters.

Commonly two approaches to this effect viz physical approach and black box approach are followed.

In physical approach actual role of the catchment in affecting the runoff process is investigated. The model is divided to behave as nearly as possible in accordance with the known physical laws. Various components of the model are identified as representing various stages of the process.

In black box approach the physical laws are taken care of by a system function, generally given by mathematical relationships among various parameters. The necessity and adequacy of the parametric values are judged by comparison of model output and output of the actual system. The examples to this approach are, Sherman's⁽¹⁾ UH theory, Bernards⁽⁵⁾ method, Clark's⁽²⁾ method, Nash's⁽⁴⁾ cascade of linear reservoirs, Dooge's⁽⁶⁾ linear channel model etc. Based on the nature of the input function considered the conceptual models proposed by various investigators may be grouped in two categories

- (1) Lumped models
- (2) Distributed models

2.1 LUMPED MODELS

In these models the input function is function of time only. It does not have spatial coordinates. It is considered to be located at a single point in the working space. Some of such models are discussed in the following paragraphs.

O'Kelly⁽⁷⁾ proposed that the instantaneous hydrograph for a catchment could be approximated by the discharge from a linear reservoir into which appropriate unit volume of inflow took place in a given time T, the rate of inflow varying with time as the ordinates of an isoceles triangle.

The outflow was assumed to be the IUH. This IUH could be expressed as a mathematical function of time containing two parameter T and K. The values of T and K were chosen by visual comparison of the computed UH with that derived from the observed short duration intense storms.

 $Clark^{(2)}$ derived the instantaneous unit hydrograph by routing the time area concentration diagram through a linear reservoir. Time of concentration T and the storage coefficient K were the two parameters of the model T was defined as time interval from the end of excess rainfall to

a point on the falling limb of the hydrograph where the ratio of rate of decrease in discharge to total discharge was greatest, and K was a coefficient of linear storage discharge relationship,

$$S_t = K Q_{(t)}$$
 (2.A)

Where

 S_t is storage in the reservoir at the instant t and $Q_{(t)}$ the outflow rate at the same instant t. The coefficient K is evaluated as

$$K = \frac{Q}{dQ/dt}$$
(2.B)

Where, Q is the rate of direct surface runoff at the point of inflexion on the falling linb of the hydrograph.

Nash⁽⁴⁾ proposed a more general mathematical model for IUH. He assumed that any catchment could be represented by a series of n linear reservoirs each having its storage co-efficient K with the outflow from the first becoming inflow for the 2nd and 50 so on. The outflow hydrograph from the nth reservoir for an instantaneous unit input in the Ist reservoir was considered to be the instantaneous unit hydrograph for the basin. The IUH ordinates were given by

$$U_{(t)} = \frac{1}{K | (n)} (\frac{t}{K})^{n-1} \cdot e^{-t/K}$$
 (2.C)

The parameters of the model n and K were evaluated by method of moment from the observed rainfall excess hyetograph and direct runoff hydrographs, which gave the following relationships

$$M_{DRH1} - M_{ERH1} = n K$$
(2.D)

and
$$M_{\text{DRH2}} - M_{\text{ERH2}} = n (n+1) K^2 + 2 n K M_{\text{ERH3}}$$
 (2.E)

where

- M_{ERH1} = 1st moment of the effective rainfall hyetograph about the origin.
- M_{ERH2} = 2nd moment of the effective rainfall hyetograph about the origin.
- H_{DRH1} = Ist moment of the direct runoff hydrograph about the origin.
- M_{DRH2} = 2nd moment of the direct runoff hydrograph about the origin.

The definition of moments adopted here are those prevalent in statistics i.e.

$$H_n = \frac{\int_{\infty}^{\infty} y x^n dx}{\int_{\infty}^{+\infty} y dx}$$
(2.F)

Whore

 $M_n = nth moment$ y is ordinate and x abscissa.

2.2 DISTRIBUTED MODELS

In these models the input function involves spatial coordinates as well. In the previous section the model whose input function is lumped have been discussed. In nature the rainfall excess is rarely lumped, it is always distributed. In this section some of the models which are capable of accounting for spatial distribution of rainfall excess are discussed.

Dooge⁽⁶⁾ introduced the conceptof linear channel and modified the Nash-model by adding one linear channel before each linear reservoir in the series. He divided the catchment area by means of isochrones and represented each inter isochronal area by a set of linear channel and linear reservoir in the series. The outflow from the linear channel was represented by time area concentration diagram and considored as input to the linear reservoir of the set. The output was obtained by adding the partial curves obtained by routing the time area concentration diagram for the upper most reach of the basin through n-linear reservoirs, next through (n-1) linear reservoirs and so on. A general equation for the IUH of the model for equally spaced identical linear reservoirs was given as

$$U_{(t)} = \frac{1}{4} \int_{0}^{t/K} P(m, n-1) V(\tau') dm$$
 (2.6)

Where

- T = Maximum translation time
- t = current time measured from time of occurance of the instantaneous rainfall excess.

P(m, n-1) = Poisson's distribution function.

 $\tau = A$ variable translation time

- $\mathbf{m} = (\mathbf{t} \mathbf{\tau}) / \mathbf{K}$
- K = Storage coefficient for linear reservoir and translation constant for the linear channel.

 $n(\tau)$ = Number of linear reservoirs down stream of τ . and $V(\tau')$ = Ordinate of the dimensionless time area concentration diagram at time τ' . As the catchment was divided into several parts by isochrones and input on each part was fed to the model separately, it was possible to account for the spatial distribution of rainfall excess.

Laurenson⁽⁸⁾ proposed the concept of distributed input in non linear reservoirs. He divided the catchment by isochrones in several sub-areas. These sub-areas were represonted by non-linear reservoirs in series. The inputs were routed through the reservoirs to get the output. This model tried to account for the following features -

(i) Rainfall excess is variable in time and space.

(ii) Storage in the catchment is distributed not lumped.

(111) Storage discharge relation is nonlinear,

(iv) Different input elements pass through different amount of storages.

The values of the parameters K₁, K₂, K₃... the storage coefficient of non-linear reservoirs were estimated by observed rainfall runoff records by iteration processes.

Mathur⁽⁹⁾ proposed a series model of linear channels to simulate catchment action on distributive nature of input function. In this model the catchment area is divided into subwatercheds according to the scheme,

$$U_{(1,t)} = A_t - A_{t-1}$$
 (2.H)

Where

 $U_{(1,t)}$ represent UH of unit duration, t the current time and Λ_t the area of the catchment between zero and t unit isochrone.

Each subwatershed is conceptually represented by a linear channel in the series which receives two types of inputs, primary input and secondary input. Primary input is the input received by the linear channel at its upper bound translated down to it from upstream linear channel and secondary input is the distributed input over the subvatershed allotted to the linear channel. It has been assumed that both these inputs are received by the linear channol simultancously. The concept of primary input maintains the continuity of the runoff hydrograph and the secondary input takes care of the distributive nature of the input rainfall. Tho assumption of simultaneous translation of both primary and secondary input to the linear channel is valid when the number of linear channel is large and correspondingly the length of linear channel is small. This model has been found capable of accounting for the unevenness of spatial distribution of precipitation over small drainage basins.

Moklick⁽¹⁰⁾ and Tchekyshkina have proposed a theoretical scheme for determination of discharges from snow melt and rainfall based on general law of runoff formation.

In this scheme catchment area is divided by channel isochrones after maximum velocity of flow in the channel section for a given time interval. The hydrograph ordinates are calculated by specific genetic formula

$$Q_{\rm m} = \int_0^{\rm T} h_t \frac{df}{dt} dt$$
 (2.1)

Where, t = runoff time lag

h. = rainfall excess

f = catchmont area

 $Q_m = discharge$,

and transformation of discharges in channel section by lag coefficients given by the formula

$$\mathbf{r}_{t}^{(\tau)} = \frac{|t-1|}{|\tau-1|} \mathbf{r}^{\tau} (1-\mathbf{r})^{t-\tau} \quad (2.J)$$

Where r = constant value of travel coefficient in the isochronal section of the river.

 τ = Travel time

t = current time

$$r_t^{(\tau)}$$
 = the lag coefficient for τ th sub area at instant t.

Such that,

$$\sum_{t=\tau}^{\infty} r_t^{(\tau')} = 1.00 \qquad (2.R)$$

For ordinary rivers of plains r = 0.7 to 0.8, for rivers having large flood plains r = 0.5 to 0.6 and for marshy and over grown stretches of rivers r = 0.35 to 0.45 have been suggested.

The authors have also suggested that to take into account specific features of formation of low, average and high floods on the river there is a possibility of two or three U.H.designs.

CHAPTER - 3

THE PROPOSED RESPONSE MODEL

3.0 THE PROBLEM

Rainfall excess generated over a natural catchment due to storm precipitation is variable in time and space. The catchment action transforms it into direct runoff which is observed at the outlet. As discussed in section 1.0 the transformation process is very complex in nature. The mechanism of runoff can not be studied by direct application of physical laws.

From review of the efforts made in this direction it appears that the transformation process may be studied by conceptual model representation.

In the following sections an attempt is made to identify the transformation process by a two parameter conceptual model based on certain assumptions.

3.1 THE ASSUMPTIONS

To develope the proposed response model following assumptions have been made -

- (1) Natural catchment is a homogeneous lime invariant linear system.
- (2) The input function i.e. rainfall excess may be taken as lumped over smaller duration of time and over smaller areas.
- (3) No regulation of natural flow either exists or is taken into account.

- (4) No water is lostfrom the rainfall excess generated in course of its transportation and transformation in river channel or on its flood plains.
- (5) The discharges due to the rainfall excess reach the outlet in distributed manner. In doing so, they follow the laws of binomial distribution.

3.2. THE AREA ANALYSIS

For an instantaneous lumped input I to a catchment system, the convolution suggests that,

$$Q(t) = I \times U_{(o,t)}$$
(3.A)

Whoro

 $Q_{(t)} = \text{Runoff at instant t.}$ $U_{(o,t)} = \text{IUH ordinate at instant,}t$. From the genetic principle of runoff it is given by

$$Q_{(t)} = I x (A_t - A_{t-1})$$
 (3.B)

where

- Q(t) = Runoff at instant t. A_t = Area of the catchment between 0 and t unit isochrones.
- A_{t-1} Area of the catchment between 0 and (t-1) unit isochrones.

Thorofore,

$$U(o,t) = A_t - A_{t-1}$$
 (3.C)

The equation (3.C) suggests a proportional scheme for the division of catchment area in to sub-areas in proportion to the IUH ordinates. To distinguish these from the isochronal areas it is named as 'Response Sub-area'. And the lines dividing the catchment area have been named as 'Response time Contour' to distinguish then from the isochrones.

The response sub-area may be defined as the area of catchment whose impact is felt at the outlet after the time unit indicated by lower bound of the response time contour enclosing the sub-area.

The response sub-areas involve two quantities (1) the time interval of the response contour enclosing them and (11) the areal magnitude of the response sub-area. Both the quantities are decided on the basis of the instantaneous unit hydrograph derived for the catchment from observed records. As the assumption is that the catchment is a time invariant linear system, Nash's model for determination of IUH has been adopted. Therefore

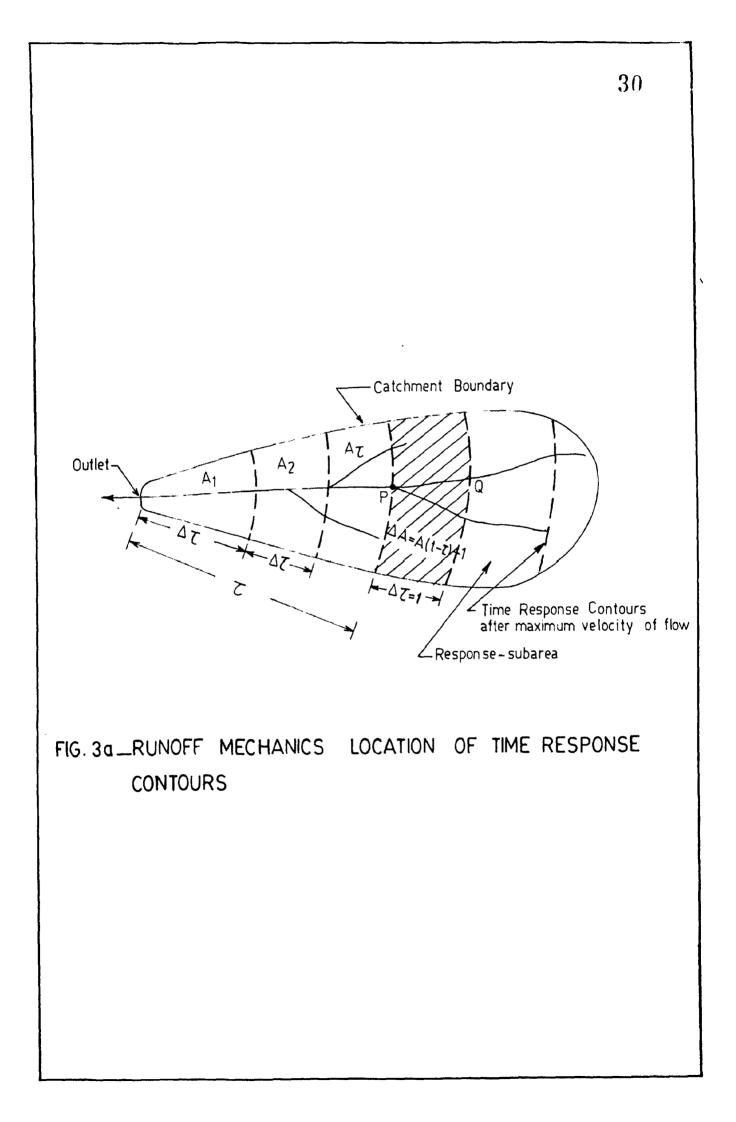
$$U(t) = \frac{1}{K | \overline{(n)}|} \left(\frac{t}{K} \right) e^{n-1} - t/K$$
 (3.D)

The two parameters n and K of Nash's model are evaluated by the method of moments⁽⁴⁾. Thereafter the IUH ordinates are calculated at suitable time intervals. An infiniteosimally small time interval will be the ideal time unit at which the response contours must be drawn. Since the system is assumed to be lumped a finite time interval is adopted. The range in which the adopted time interval $\Delta \tau$ must lie may mathematically be defined as.

$0 / \Lambda \tau \leq$ Time to peak of IUH

The IUH derived on the basis of Nash's model⁽⁴⁾ gives an infinite recession. For the purposes of the proposed model the portion of the recession limb from where the ordinates become sufficiently small compared to peak value, should be curtailed and remaining ordinates adjusted to make the volume unity. These adjusted ordinates of the IUH should be used for computing the area of respective response sub-areas. After the response sub-areas have been decided quantitatively, the next step is to mark them on the catchment area map.

It is assumed that the nature of the response contours will mainly depend on the topographical features of the catchment area. To take them into account the contour map of the catchment is divided into arbitrary square grids. Each grid point is serially numbered and flow time from the grid point to the outlet are computed using any of the available relations (viz Manning's or Chezzys equation etc.). These flow times are assigned to the grid points and then flow time contours at the selected unit time interval Λ τ are drawn. The areas bounded by two consecutive flow time contours are planimetered and compared with the required areas on the basis of the IUH ordinates. These may differ. If so, the response contours are drawn on the same map maintaining the nature similar to that of the flow contours so that the areas enclosed between the two consecutive response contours be same as calculated on the basis of IUH ordinates. These response contours are then transferred on a fresh map and used for further analysis in the process of runoff computation.


3.3 THE MECHANICS OF RUNOFF

The genetic principle of runoff which has been used for response sub-area analysis does not take into account the effect of spreading of the water flow due to changes in its flow velocities along the channel. It also neglects the effect of non-uniformity of velocity distribution over stream crosssection. An effort has been made to account for both these factors in the runoff mechanics postulated below -

As shown in figure (3.a) a water particle moving from P to the outlet with the maximum velocity of flow takes the time τ to reach the outlet, and from Q it takes the time $\tau + \Delta \tau$. If the area enclosed between the two response time contours be Δ A which is draining in the reach P Q of the stream and I (τ) be the total rainfall excess generated over the area Δ A at a uniform rate in time $\Delta \tau$, then total run-off volume received by the channel reach P Q is given by

$$R = \bigwedge A \times I(\tau) \qquad (3.E)$$

It is generally known that the flow velocities are non uniform over the channel section. It also varies along the channel. Under these circumstances total volume R of rainfall excess will not pass the outlet in time $\Delta \tau$, but will take longer time. Before time τ from start of the rainfall excess over the sub-area Δ A the runoff contribution from this sub-area to the outlet is zero. Let the discharges be

- (i) $\operatorname{RxC}_{\tau,\tau}$ in the time interval τ and $\tau + \bigwedge \tau$
- (11) R x $C_{\tau,\tau+1}$ in the time interval $\tau + \Lambda \tau$ and $\tau+3 \Lambda \tau$
- (111) $\operatorname{RxC}_{\tau,\tau+2}$ in the time interval $\tau+2 \wedge \tau$ and $\tau+3 \wedge \tau$ and so on.

Then under the condition of no losses in the river channel or its flood plain

$$R = R (C_{\tau,\tau} + C_{\tau,\tau+1} + \cdots) (3.F)$$
or
$$\sum_{t=\tau}^{m} C_{\tau,t} = 1 (3.G)$$

As the coefficients $C_{\tau,\tau}$ perform the operation of distribution of runoff volume against time it is named as 'the runoff distribution coefficient'.

Study of runoff hydrographs indicate that the tunoff elements from the catchment in different time invervals form a skewed distribution of discharges at the outlet. In the proposed model the discharges at the outlet from any response sub-area ' are calculated by multiplying the total rainfall excess over the sub-area by the 'runoff distribution coefficients'. Therefore the distribution of these co-efficients over the time must be in agreement with the skewed distribution of the discharges at the outlet.

Various skewed distributions which can take these effects into account are available, namely, the binomial distribution, the Poisson's distribution, Chi-square distribution, the Gamma distribution etc. In the proposed model the binomial distribution has been adopted for explaining the mechanics of time distribution of runoff. A suitable expression for runoff distribution coefficient has been investigated in the following paras.

The mathematical expression for binomial distribution is $(p+q)^{t}$, p+q=1, p= probability of failures, q = probability of successes, and t = number of trials.

The expansion of the above binomial expression is given by

$$(p+q)^{t} = \begin{pmatrix} t \\ o \end{pmatrix} p^{t}q^{o} + \begin{pmatrix} t \\ 1 \end{pmatrix} p^{t-1}q + \begin{pmatrix} t \\ 2 \end{pmatrix} p^{t-2}q^{2}$$

+...+ $\begin{pmatrix} t \\ \tau \end{pmatrix} p^{t-\tau}q^{\tau}$ +...+ $\begin{pmatrix} t \\ t \end{pmatrix} p^{o}q^{t}$ (3.H)
The τ th term of this expansion is given by
$$T_{\tau} = \frac{(t) !}{(\tau-1)T (t-\tau+1)!} p^{t-\tau+1} q^{\tau-1}$$
 (3.1)

In surface water hydrology if an input is applied to a catchment in a chosen unit duration of time, however small its responses from the catchment last for several time intervals say t. "Then the time of concentration is given by (t-1). Therefore replacing t by (t-1) in the above expression,

$$(p+q)^{t-1} = \binom{t-1}{0} p^{t-1} q^{0} + \binom{t-1}{1} p^{t-2} q + \dots$$

$$+ \binom{t-1}{t} p^{t-1-t} q^{t} + \dots + \binom{t-1}{t-1} p^{0} q^{t-1}$$

$$(3.J)$$

The rth term of the above expansion is given by

$$T_{\tau} = \begin{pmatrix} t-1 \\ \tau-1 \end{pmatrix} p^{t-\tau} q^{\tau-1}$$
$$= \frac{(t-1)!}{(\tau-1)! (t-\tau)!} q^{\frac{1}{2}-1} p^{t-\tau} \qquad (3.K)$$

In the above expression q^2 stands for probability of successes and for probability of failures, such that, p + q = 1. or p = (1 - q)

Bringing in the concept of probability of successes of the rainfall excess generated over the response sub-area to travel down the slopes and reach the channel section in the Ist time interval and then transformation of those discharges in various reaches of the channel section and probability of their reaching the outlet in different time intervals, the analysis is advanced further. Assuming C_{τ} to be the probability of successes of the rainfall excess generated over the τ th response sub-area, and therefore setting $q = C_{\tau}$

and $p = (1 - C_{\tau})$ the expression for T_{τ} can be written as

$$T_{\tau} = \frac{(t-1)!}{(\tau-1)!(\tau-\tau)!} C_{\tau}^{\tau-1} (1-C_{\tau})^{t-\tau}$$
(3.L)

As the probability C_{τ} is associated with the travel of rainfall excess to join the channel and become runoff, it has been named as 'the travel coefficient'. The equation (3.L) was examined for its applicability for finding out 'the runoff distribution coefficients defined after eqn. (3.F) and (3.G) for computation of discharges from the τ th response sub-area at different instants t. For $\tau = 1$ and t = 1, 2, ... etc. the above expression (eqn.(3.L)) gave the values of runoff distribution coefficients as follows

T₁ = C_{1,1} = Runoff distribution coefficient for the first sub-area for first time interval

$$= \frac{(1-1)!}{(1-1)!} c_{\tau}^{(1-1)} (1-c_{\tau})^{91-1}$$

= 1

T₂ = C_{1,2} = Runoff distribution coefficient for the 1st subarea for 2nd time interval

$$= \frac{(2-1)!}{(1-1)!(2-1)!} c_{\tau}^{1-1} (1-c_{\tau})^{2-1}$$
$$= (1-c_{\tau})$$

Similarly

$$C_{1,3} = (1 - C_{\tau})^2$$

 $C_{1,4} = (1 - C_{\tau})^3$, and so on

From above,

Σ C_{τ,t} > 1 t=r

But, the condition for the runoff distribution coefficients is that $\sum_{t=\tau}^{\infty} C_{\tau,t} = 1$ (3.M)

So, the equation (3.L) needs modification to suit the requirement of equation (3.M). The equation (3.L) was therefore modified by multiplying the R.H.S. by C_r , which gave

$$C_{\tau,t} = \frac{(t-1)!}{(\tau-1)!(t-\tau)!} C_{\tau}^{\tau} (1-C_{\tau})^{t-\tau}$$
 (3.N)

From equation (3.N) the values of the runoff distribution coefficients for 1st sub-area arc

$$C_{1,1} = C_{\tau}$$

$$C_{1,2} = C_{\tau} (1-C_{\tau})$$

$$C_{1,3} = C_{\tau} (1-C_{\tau})^{2} \text{ etc.}$$

Such that

$$\sum_{t=1}^{\infty} C_{1,t} = 1$$
 (3.P)

It may be noted that the above expression (eqn.(3.N)) is defined only for $t \ge \tau$, which is in agreement with the concept of travel time for the τ th sub-area whose impact shall be felt at the outlet at time $t \ge \tau$ i.e. the upper bound of the enclosing response time contour of the response sub-area. In the proposed model the equation (3.N) has been adopted for calculation of 'the runoff distribution coefficients' which are given in terms of 'the travel co-efficients C_{τ} '.

The assumption of homogeneity of the catchment system enables to take C_{τ} constant for each and every response sub-area of the catchment.

Therefore 'the runoff distribution coefficient $C_{\tau,\tau}$ in terms of 'the travel coefficient' $C_{\tau'}$, 'the response subarea number' τ ', and 'the current time't, is given by

$$C_{\tau,t} = \frac{(t-1)!}{(\tau-1)!(t-\tau)!} C_{\tau}^{\tau} (1-C_{\tau})^{t-\tau}$$
(3.N)

3.4 THE PARAMETERS OF THE MODEL

From the sections 3.2 and 3.3 it is evident that in the proposed model 'The Besponse Sub-area' and 'The Travel Coefficient' are the two basic parameters.

The mothod of quantitative evaluation and the demarcation of the response sub-area on the catchment area map have been explained in detail in section 3.2. Next step is estimation of the value of 'The travel coefficient'.

The selection of a suitable value of the 'travel coefficient' C_{τ} is a matter of trial and error, But a rough idea can be had from the following relationship.

$$1 > C_{\tau} \geq \frac{\text{Peak of UH of } \land \tau \text{ duration}}{\text{Peak of IUH}}$$

Where \bigwedge τ is the adopted time interval for drawing the response time contours.

The value of C_{τ} so derived may be adopted for computing the hydrograph of the rainfall runoff event recorded over the catchment. The observed and computed hydrographs are

compared and if necessary value of C_{τ} adjusted till a reasonable match is obtained.

The value of C_{τ} which gives the best fit is adopted asparametric value of the model. The assumption of homogeneity enables adoption of constant value of C_{τ} for all response subareas of the catchment. Therefore, once the value of travel co-efficient C_{τ} is established, runoff distribution coefficients $C_{\tau,\tau}$ for all response sub-areas may be calculated by the relationship given in the equation (3.N).

3.5 THE STEPS IN APPLICATION OF THE PROPOSED MODEL TO A NATURAL CATCHEENT

As discussed in section 3.3 the proposed model has two basic parameters, viz. the response sub-area and travel co-efficient. The method of evaluation of these parameters has been discussed in detail in the -sections 3.2... and 3.4... The procedure of application of the proposed model to a natural catchment can thus be summarised as follows -

- (1) An isolated, short duration, intense, wide-spread, uniform storm is selected from the observed records of the catchment. The runoff hydrograph observed at the outlet due to bhe selected storm is identified and isolated from the continuous records.
- (11) Baseflow is separated from the runoff hydrograph assuming a suitable distribution and storm runoff hydrograph is found out. Average depth of storm runoff is calculated over the entire catchment area.

- (111) From the observed rainfall records, the hystograph of rainfall excess is drawn. For this prupose a suitable value of ϕ - index is adopted. A reasonably accurate value of ϕ - index can be arrived at from the analysis of storm rainfall and storm runoff depth assuming constant value of ϕ - index.
- (iv) The IUH of the catchment is derived. The Nash's model⁽⁴⁾ is proposed for the same. The value of the two parameters n and k of the Nash's model are evaluated by method of moments and IUH ordinates are computed by the relationship of equation (3.P).

$$U_{(t)} = \frac{1}{k \ln n} \left(\frac{t}{k} \right)^{n-1} e^{-t/k}$$
 (3.2)

The procedure has been outlined in appendix 3.

- (v) Neglecting the recession limb of the IUH from the point where the ordinates become sufficiently small in comparison to peak value, the remaining ordinates are adjusted to make the area of the IUH unity.
- (vi) If further smaller time interval are not possible, the time to peak of the IUH is identified and adopted as unit interval $\triangle \tau$ for drawing response contours. A unit graph for duration $\triangle \tau$ is also derived from the IUH.
- (vii) The catchment area is divided in accordance with the proposed area distributive scheme, following the nature of flow contours as discussed in 3.2. The

sub-areas so arrived at are the response-sub-areas. Thus the IUH ordinato at $\triangle \tau$ from the origin represents the 1st response sub-area, the ordinate at $2 \triangle \tau$ from the origin represents 2nd response subarea and so on.

- (viii) Average rainfall excess over individual response sub-areas at time steps $\angle \tau$ during the storm are found out, such that the average depth over entire catchment equals to the observed storm runoff depth found out in (ii) above. This may require slight adjustment of the value of ϕ - Index adopted in(iii) above.
- (ix) Trial value of the travel coefficient Cr is chosen as per conditions laid down in section (3.4), and values of the runoff distribution coefficients $C_{\tau,\tau}$ for each response sub-area is calculated from the relationship given by equation (3.N).
- (x) Runoff hydrograph for the catchment at the outlet is computed as per scheme given in Table 1.
- (xi) The computed hydrograph is compared with the observed hydrograph and if suitable match is obtained the value of C_{τ} is adopted as parametric value of the model.
- (xii) If not, the value of C_{τ} is suitably adjusted to improve the result and steps (ix) to (xi) are repeated until a reasonably well match is obtained.

SCHEME FOR COMPUTATION OF FLOOD HYDROGRAPH

.

	4				And a second s						
No-area No.	or Resps. Sub- area	time time turer val	accoruing to e interval e Rainfall er- excess	ted AxI	ri	N	£	+	5	Q	
	A	دد مارج مارج			ъ. 1	G1,2	с <mark>.</mark> 3	ۍ ، د			
		-	Ial	Ral	C1,1.Ra,1	C1, 2 ^R 8, 1	C1, 3 ^R a, 1	C1,4 ^{Ral}	·		
		ŝ	I _{a2}	Ra2		C1,1 ^{Ra2}	C1,2 ^R a2	C1, 3 ^{Ra2}	C1,4Re2		·
		m	I _a 3	Ra3	•		C1,1Ra3	C1, 2 ^R a3	C1, 3 ^R a3	C1,4 ^R a3	a3
5	æ	ب ب ت			-	23 23	ດ ₂ ສ	c24	C25		
		-	IdI	Rpl		C22.Rb1	c _{23^Rb1}	C24 ^B b1	C25 ^R b1		
		2	Ib2	R _{D2}			c _{22^Rb2}	C23Rb2	C24 ^R b2	C25 ^B b2	N
		m	1 _{b3}	R _{b3}				c _{22^Rb3}	c _{23^Rb3}	C24 Rb3	ĸ
ĸ	A	دب من ناری					c ₃₃	C.3 8	C ₃₅	c ₃₆	
		-1	Lai	Rdl	·		C _{33^Rd1}	C34Ral	C35Ral	C ₃₆ Ral	Ч
		2	Id2	Rå2				C33 ^R d2	C34 Ra2	C35 ^R d2	- N
		ŝ	Id3	Rd3					c _{33^Rd3}	C ₃₄ R _{d3}	£
			Total		61	9 ₂	Q.3	3	Q5	9	40

Having established the parameters of the model it can be used to compute runoff hydrograph for any distribution of rainfall excess over the catchment as per scheme of Table 1.

The detailed application of the model on a natural catchment namely Ajay river basin in Bihar (India) is given in the Chapter 4.

CHAPTER-4

APPLICATION OF THE PROPOSED MODEL ON A MATURAL CATCHEIENT

4.0. INTRODUCTION

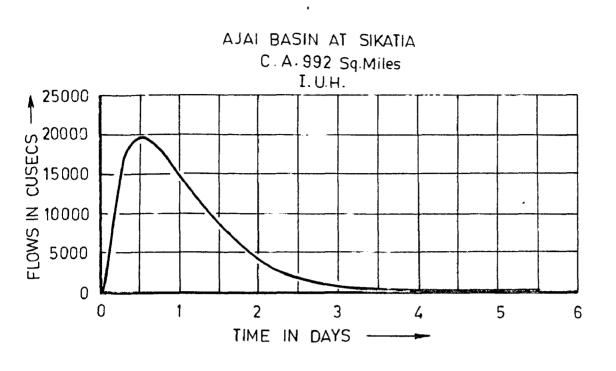
The proposed response model has been applied to Ajay river catchment.

The Ajay river catchment is located in Chhotanagpur platan of the state of Bihar, (India).

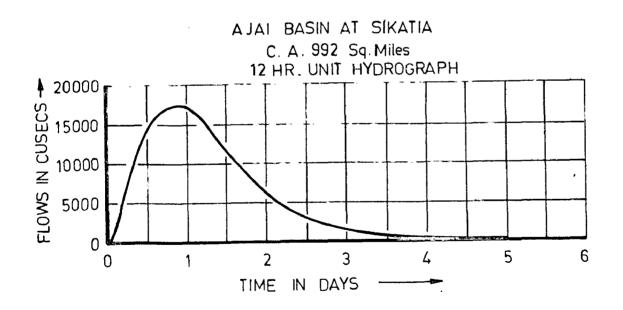
The river Ajay originates from the hills on the border of Munger, Southal pargana and Hazaribagh districts at an elevation of about 1050 ft. above mean sea lovel. The Pathro and the Jainti are its main tributaries. The gaugo site is located at Sikatia where the average bed level of the river is 530 ft.

The geographical situation of the catchment is between latitude 24° 5' to 24° 36' N and longitude 86° 15' to 87° o' E. General orientation of the drainages in the catchment is from North-west to South-east. Total catchment area at Sikatia is 992 sq.miles.

The catchment area is spotted with low and scattered hills. In the plains there are scattered out crops of rocks punctured at places with pits exposing mica and white clay deposits. A considerable area of the catchment is covered by gneiss and schists. Soil cover is usually thin. The lands are hideously cut with gullies and ravines. The area shows either exposure of the rock itself diping towards north or immediate product of its decomposition. The forest in the catchment is scattered except in some portions of Hazaribagh district on some hillocks and some isolated patches in plains. These forests consist of fire wood plants, sal, Bamboos and thorny bushes.


Valleys and plains of the catchment are cultivated. The main crops are paddy in valleys and maiz in plains.

4.1. AVAILABLE DATA


Storm precipitation in the catchment and runoff data at Sikatia are collected by the Irrigation Department of Government of Bihar. Daily rainfall data at nine rain gauging stations in the catchment and daily average discharge data at Sikatia are available for analysis. The nine rain gauge stations are located at (a) Sarath (b) Dhobna (c) Maheshmunda (d) Madhupur (e) Sarwan (f) Daranga (g) Deoghar (h) Bichkhorwa and (k) Kiajori. These rain gauges are more or less uniformly distributed over the catchment. The rainfall was measured in inches and discharges in cubic feet per second. The rainfall and runoff data which were used for fitting and testing the model are given in appendix-2.

4.2 EVALUATION OF MODEL PARAMETER

As discussed in section 3.3, model parameters to be evaluated are (i) The Response Sub-area and (ii) The Travel Coefficient. For evaluation of response sub-area the first step is to derive instantaneous unit hydrograph of the catchment at the outlet. The derivation of IUH has been done in appendix 3. The resultant IUH is given in Fig.(4.a).

A unit hydrograph for the duration equal to the time to the peak of the IUH has also been derived from the IUH Fig.(4.b).

According to the hypothesis postulated in section 3.2. response sub-area are proportional to the IUH ordinates. So, the response sub-areas have been computed in Table 2. The time interval adopted is 1/2 day the time to peak of the IUH.

Time in days	IUH Ordi- nates in cuseos	Percentage of total	Area in sq.miles	Response sub-area in acres	Response Sub-area No.
0.5	19795	39.460	391.50	2,50,560	1
1.0	14777	29.472	292.37	1,87,117	2
1.5	8305	16.571	164.28	1,05,139	3
2.0	4124	8.250	81.88	52,403	4
2.5	1620	3.250	32.25	20,640	5
3.0	866	1.727	17.12	10,957	6
3.5	381	0.765	7.60	4,864	7
4.0	159	0,318	3.15	2,016	· 8
4.5	66	0.131	1.30	832	9
5.0	28	0.056	0.55	352	10
5.5	0	-	-	-	

TABLE 2

The first trial value of the travel coefficient was approximated by the ratio of peak value of UH and peak value of IUH. Trial and error to give a good fit to the

· 45

observed hydrograph was carried out and travel coefficient value was established at 0.97. Then applying the formula for runoff distribution coefficient $(C_{\tau,t})$ given in section 3.3... The $C_{\tau,t}$ values for each response watershed were calculated (Appendix-4).

4.3 DIVISION OF THE CATCHMENT AREA IN RESPONSE SUB-AREAS

Following the procedure described under section 3.2. the area was devided as follows -

Total concentration time as obtained from UH of 1/2 day duration was 5.5 days. The elevation of the remotost point of the catchment is 1050 ft and that at the outlet is 530 ft. The length of the channel as measured on the plan works out to 56 miles or 2,95,680 ft. So average slope is 1 in 568.6.

Mannings formula for velocity of flow in opon channol is

$$v = \frac{1.486}{n} R^{2/3} S^{1/2}$$
 (4.A)

But the value of R and n are not known. So an assumption was made that the quantity $\frac{1.486}{n} \ge R^{2/3}$ is constant. Putting this quantity equal to α the equation for ∇ may be written as

$$\mathbf{v} = \alpha \cdot \mathbf{s}^{1/2} \tag{4.B}$$

From the above para the longth of the channel and time of concentration are known so velocity

 $\mathbf{v} = \frac{\text{Length of channel}}{\text{Hime of concentration}}$

$$= \frac{295680}{5.5\pi24\pi3600} \text{ft/sec.}$$

 $= 0.622 \, ft/sec.$

Similarly S = Fall from remotest point to outlet Length of the channel

$$\frac{520}{295680} = \frac{1}{568.6}$$

From the above equation

$$\alpha = \frac{V}{VS} = \frac{0.622}{\sqrt{\frac{1}{568.6}}} = 14.732.$$

Now value of a is known.

The area was divided in 3 miles grid and at each grid point the elevation was estimated from the contours. Connecting that point to the outlet through the natural drainego time of travel to the outlet was calculated from the formula $T = \frac{L}{\alpha \sqrt{S}}$ (4.C)

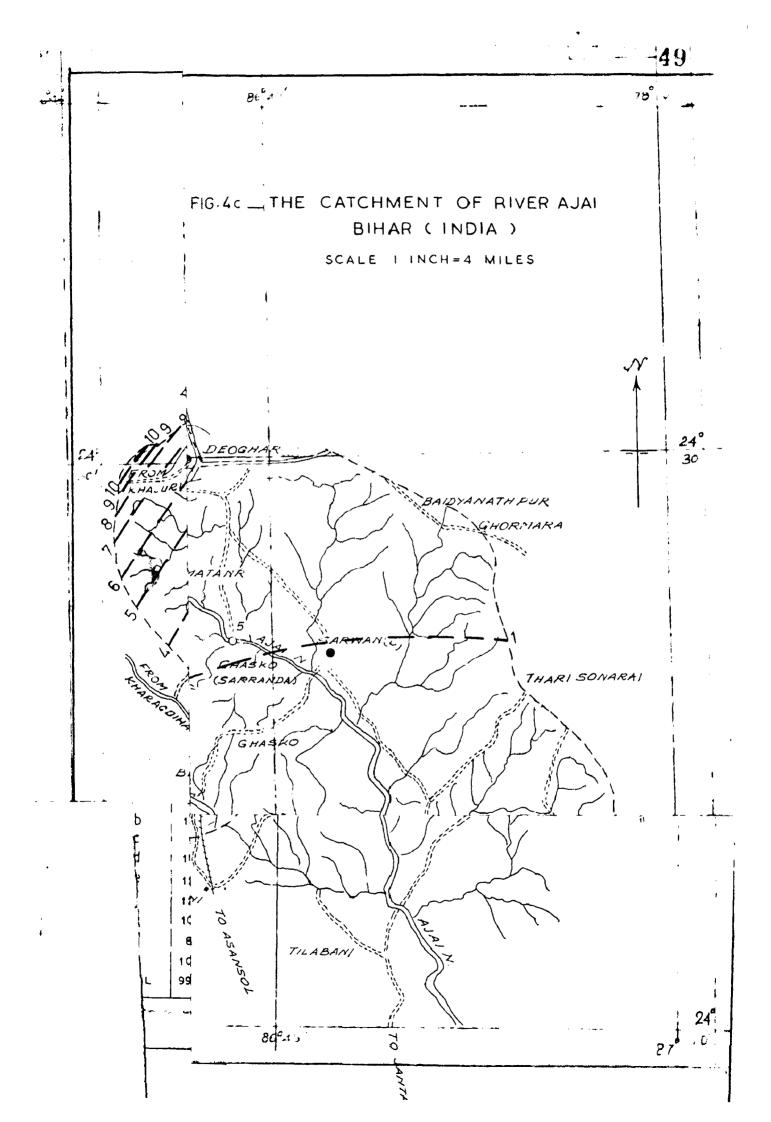
Where, T = Time of travel in seconds

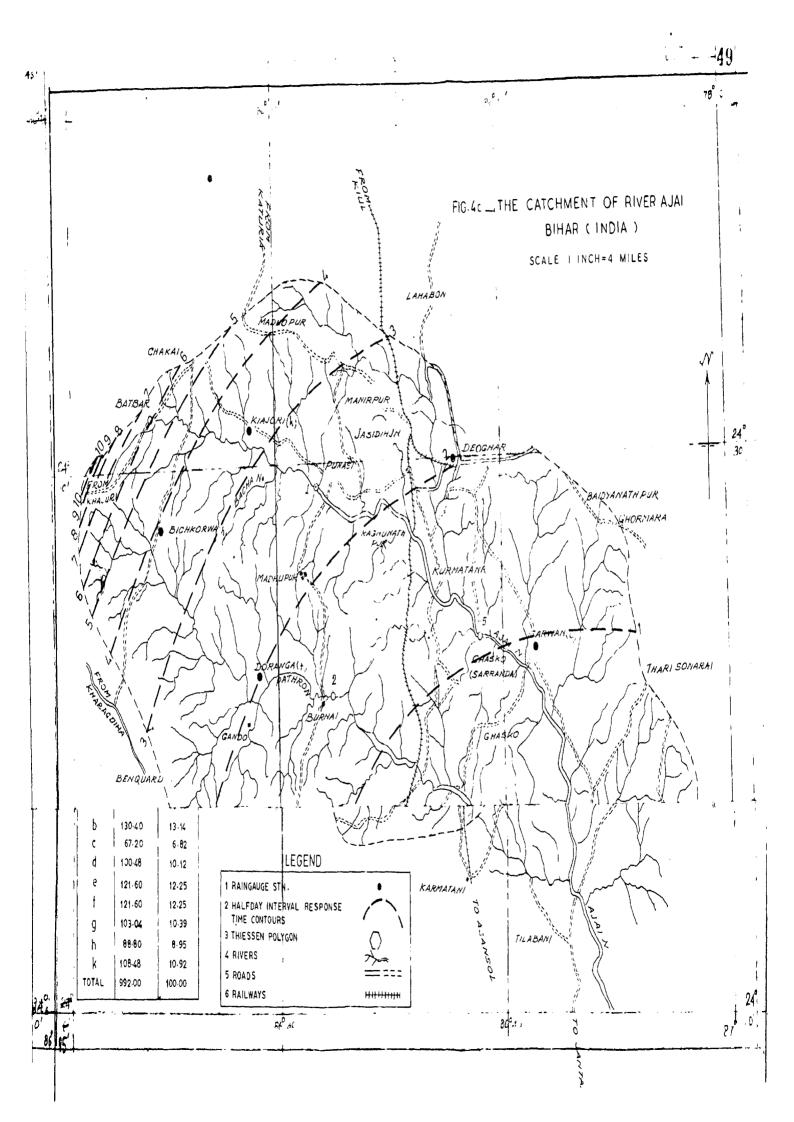
- L = distance of the grid point from the outlet measured along the drainage in ft.
- S = Average slope of the drainage.
- $\alpha = 14.732$ calculated above.

The travel time so calculated was assigned to each and every grid point. Then the equal time of travel was interpolated. These lines are referred henceforth as flow contours. The interval of the flow contours was taken equal to the time chosen for devision of the catchment into response subarea. The inter flow-contour areas were planimetered and compared with the response sub-area computed in table-2. The two areas did not tally. So the flow contours were adjusted on the same map maintaining their nature so that the inter flow contour areas fally with the response sub-area. The adjusted flow contours were 'the 'response time contours'.

The response time contours for Ajay river catchment are given in the map at figure (4.c).

The Thiessen polygons were drawn on the same map for the nine rain gauge stations.

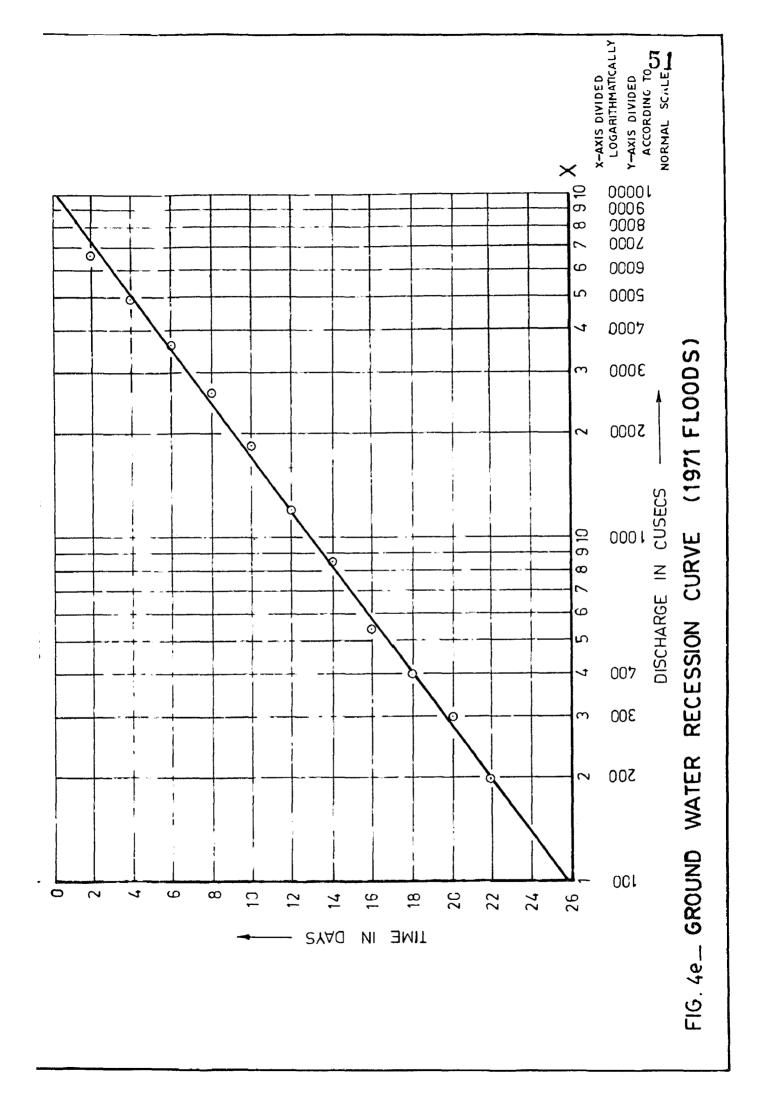

Respective areas according to response sub-areas and Thiessen polygon were measured and are given in table-3.


4.4. IDENTIFICATION OF RAINFALL EXCESS

From the available records following five storms were selected to examiner the working of the model.

- (1) Storm of 13-17 Oct. 1971
- (11) Storm of 3-7 June 1971
- (111) Storm of 9-13 July 1971
- (iv) Storm of 28 Sept. to 2 Oct. 1977
- (v) Storm of 11-13 Oct. 1973

Rainfall and runoff data for these storms aro given in Appendix-2. Runoff hydrograph for full monsoon season of 1971 was plotted and master recession curve was derived Fig.(4-d) and Fig.(4-e).



28 26 Recessions 24 22 - Observed 20 8 16 4 RECESSION CURVE 2 - Master Recession Curve IN DAYS 9 ω TIME ഗ 4 2 1 FIG. 4 d ___ MASTER 0 12 9 Ξ თ ω 5 ശ ഹ 4 \sim 2 -- 0 ELOW IN 1000 CUSECS 109941 TEAN A LICARY DIMENSION OF ACLUS

50

ር በሳሳ ላይ። የ

I DUUT I LEIN NICHT INT

The master recession curved was used to locating the point of recession on the falling limb of the abserved hydrographs resulted from the storms listed above. The point of recession and the point of rise in the risings limb were joined by straight line for the purposes of separation of base flow. After separating base flow depth of direct runoff volume over the catchment was calculated. Substracting this value from the gross weighted average depth of rainfall over the catchment the abstractions were estimated. Projecting the direct runoff depth over the gross weighted rainfall assuming constant rate of abstractions the value of p-index was calculated.

Then weighted average rainfall on individual response sub-areas was calculated by the same Thiessen method. Substracting the value of *p*-index from these values, rainfall excess over each response sub-area was calculated separately.

These rainfall excesses were averaged over the whole basin and compared with the direct runoff depth computed earlier. If these differed p-index value was adjusted so that the rainfall excesses over the individual sub-basins when averaged over the whole catchment became equal to the direct runoff depth.

These rainfall excesses were taken as the input to the model. The values of the rainfall excess calculated in accordance with the above procedure are given from Table-5 to 9.

TABLE NO.3

AREAS OF INDIVIDUAL RESPONSE SUB-AREA ACCORDING TO THIESSEN POLYGON

Donne	Neo Oub	Amon Ma 1	120.000	and the	Ame - Ma			
Poly-	nso Sub- Aroa	Weight-	Foly-	onse Sub Aroa	Veight		idonan Sul 1- Arga	Voight
zon	şą.	age S	gon	Sq.	ago S	gon	SQ.	ago S
0.	Milos		Ro.	Milos		No.	M 11 00	-
3	150.40	38,42	b	7.32	2,50	С	16,29	9.20
)	123.03	31,42	đ	38,28	13.10	r	50.57	30.80
1	62,20	15,90	0	65,78	22,50	g	42,19	25.70
•	55,82	14,26	C	50,91	17.40	h	10.00	6.09
			£	71.03	24.30	k	45,23	27.51
197, 511 2 1, 1941 1 1 1	s.		g	59 ,05	20.20			
lotal	391.60	100.001		292,37	100.00		164,28	100.00
	no Gub-A						pones Sul	
Poly-		Veight-	Poly-	Aroa	Voight-			Volght
gon No	SQ. Milan	ago X	gon No.	SQ. Milea	ago s	gon No.	Sq. Miloa	ago S
an de la com					in the second			
g	1.40	1,71	h	17.36	53,88	5 h	3.88	22.65
h	36,40	44.50	k	14,89	46.1	5 k	13.24	77,35
k	44.08	63 , 79						
Total	81,88	100.00		32,25	100.00)	17,12	100.00
Pospo	nso Gub-	Area No.8	Rosp	onso Sub	-Area IId	.8 Ros	sponse Sul	-Aroa No
Poly-		Veight-	Poly-	Aroa	Voight-	-		Voight
gon	5 9 .	ago S	Çon	Sq.	ago S	gon	Sq.M410s	ago S
No.	Milos		No.	Milos		No.		
h	7,60	100.00s	ħ	3,15	100 I	h	1.30	100.001
Tetal	7,60	100		3,15	100		1.30	100
Raapa	nsa Sub-	Arga No. 1	3					
h	0.55	100%	-					
፻ስጵብ	0-55	100						

(Timo Interval 1/2 Day)

TABLE NO.4

AREA OF INDIVIDUAL RESPONSE SUB-AREA

ACCORDING TO THIESSEN POLYGON

(Time Internal One day)

Reanc	parn Sub-	Aron 1	Ronpon	nn Sub	-Area 2	Rол	ponso Sub-	Aren No.3
stn.	AFOB cq.D11cc	90	a. Ar	oa milos	<u>ي</u>	Stan,	Aroa oq.miles	\$5
8	150.40	22.0	C	16.29	6,61	h	21,24	43,00
b	130,40	19.10	٤.	50,57	20.55	k	28.13	57.00
C	60.91	7,45	8	43.59	17.70			
đ	100.43	14.70	h	46,40	18.81			
e	121.50	17.70	k	39.31	35,33			
f	71.03	10,40						
G	59,05	8,65						
Tota	683,87	200,000	2	43.16	100,00		49,37	100.00
Resp	onso Subr	rga No.	4 Ros	ponso	Sub-arc	a No.5		
stn.	OSAD 10165-EN	3	stn.		11.0A	ş <u>s</u>		
h	10.75	100.00	h	1.8	<i>c</i>	10.00		

Total 10.75

TABLE-5

STORM FROM 15 OCT. TO 17 OCT. 1971

(All rainfall excess figures are in inches)

Response sub-area No.	Rain 15.10.71	fall excess accord 16.10.71	iing to date 17.10.71	
1	*	1.1875	-	
2	0.3002	0.9686	-	
3	0.5153	0.7763	-	
4	0.1488	0.4435	-	
5	0.0388	0.5983	-	
6	0.3163	0.0358		
7-10	-	1.4283	-	

TABLE-6

. .

STORM OF 3rd JUNE TO 7TH JUNE 1971

(All rainfall excess figures are in inches)

Response		infall excess		to date	
Sub-area No.	3.6.71	4.6.71	5.6.71	6.6.71	7.6.71
L	-	1.9007	0.2457	0.4925	0.0340
2	0.1996	1.4803	0.2707	0.8406	0 .05 57
3	1.1635	1.0833	0.1901	1.1738	0.2631
4	1.0266	0.2075	-	1.9139	0.3170
5	0.8179	0.2341	-	1.9829	0.2578
6	1.5929	0.0321	-	1.7504	0.4565
7-10	•	0.5349	-	2.3749	-

TABLE-7

STORM OF 9TH TO 13TH JULY 1971

Response sub-area No.	Rainfe 9.7.71	11 excess (10.7.71	according to 11.7.71	date 12.7.71	13.7.71
1	0.1609	0.3854	0.0677	-	0.0232
2	0.1834	 .	1.6565	0.2470	0.6883
3	-		1.8904	0,5994	0.9990
4	-	**	0.9348	1.2525	0.4051
5	-	-	0.7409	1,2589	0 , 3599
6	-	• ••	1.5059	1.3174	0.3659
7-10		-		1.1709	0.3509

(All rainfall excess figures in inches)

TABLE-8

STORM OF 28TH SEPT, TO 2 OCT11971

(All rainfall excess figures in inches)

Response	Rainfall excess according to date					
sub-area	28.9.71	29.9.71	30.9.71	1.10.71	2.10.71	
	0.0664	0.4367	2.4593	0.5630	0.0517	
2	0.0344	0.3198	1.5003	0.9191	-	
3	•	0.3394	0.9940	0.7881	0.0727	
4	• ••• `	0.0407	0.7060	0,1923	0.1413	
5		0.0045	0.7643	0.1015	0.0878	
6	*	0.1480	0.5080	0.3100	0.2870	
7-10	-	-	1.1420	-	-	

TABLE-9

STORM OF 11TH to 13TH OCT.1973

(All rainfall figures in inches)

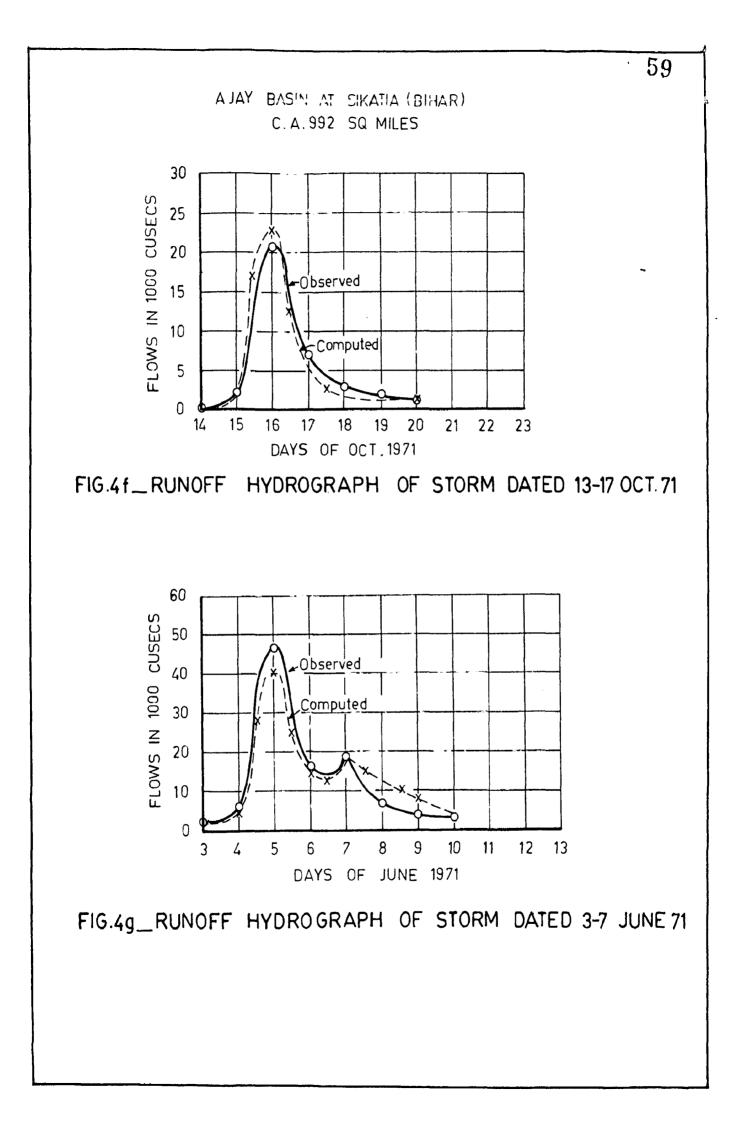
Response sub-area No.	Rainfall 11.10.73	excess accord: 12.10.73	ing to date 13.10.73	
1	0.4896	2.1744	*	
2	0.5334	2.2913	0.5117	
3	0.5640	1.8719	0.6088	
4	0.9721	1.4392		
5	1.1056	1. 059 6	-	
6	0.2696	1.2506	-	
7-10	2.1181	2.3881		3 · · ·

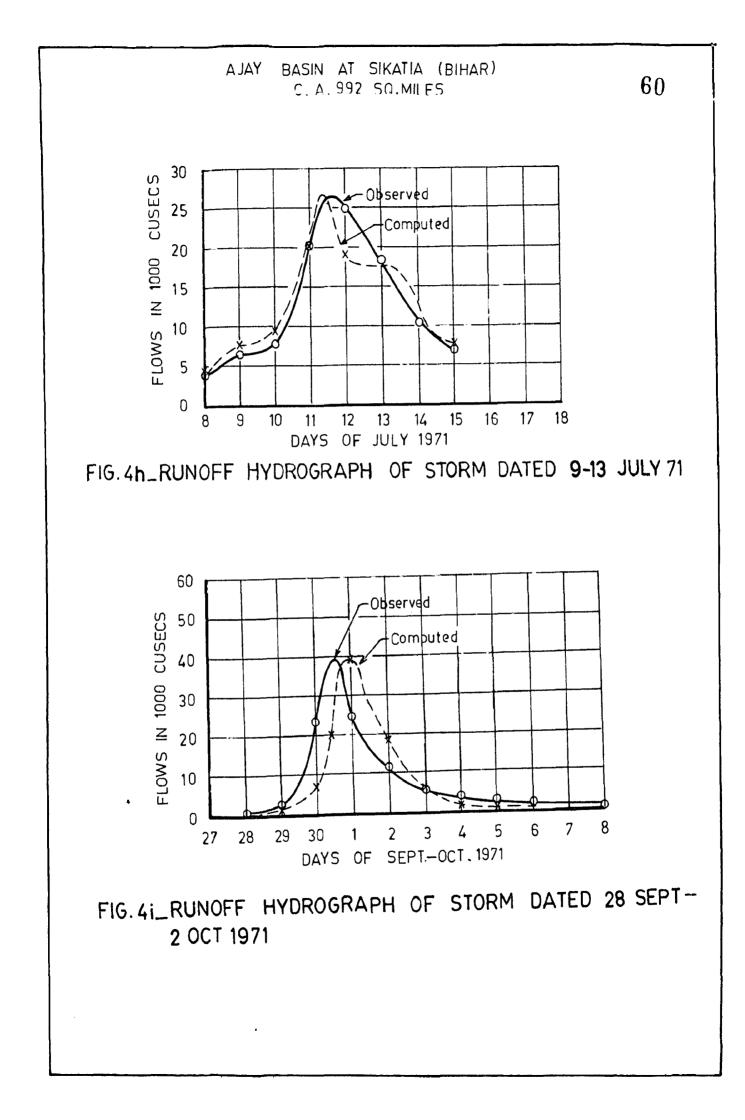
Detailed calculation of the rainfall excesses are appended vide Appendix-5.

4.5. RUNOFF COMPUTATIONS

In the previous section input rainfall excess have been calculated. The model parameters response sub-area and the travel coefficient have already been established in section 4.2.

The runoff distribution coefficients were calculated vide appendix-4. Using the rainfall excess given from table No.5 to table No.9 as input function, runoff computation were carried out as per scheme of table no.1. The table of computations are given in appendix-6.


4.6. COMPARISON OF OBSERVED AND COMPUTED RUNOFF HYDROGRAPHS


The runoff hydrograph of the five storms as observed were plotted at suitable scale on normal graph paper. On the same graph paper the computed runoff vide appendix-5 were also plotted. These are given from figure (4.f) to (4.j).

It may be seen that observed and computed hydrographs of the five storms as presented through fig.(4.f) to fig.(4.j) match reasonably well. In almost all the computed hydrographs the runoff at the beginning of the storm is more and at the end of the storm it is less than the observed one. This may be attributed to the assumption of constant value of $\not -$ -index which remains more in the beginning and goes on reducing as the storm duration advances.

58

ę,

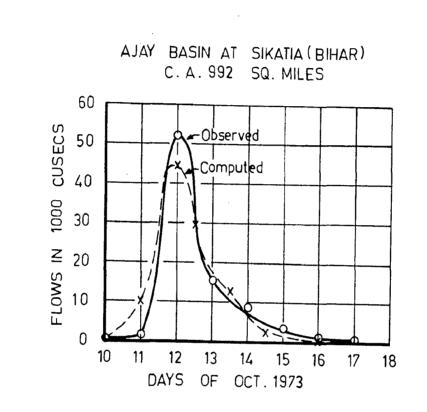


FIG. 4j_RUNOFF HYDROGRAPH OF STORM DATED 11-18 OCT.1973

CHAPTER-5

CONCLUSIONS

5.0 SUMMARY OF CONCLUSIONS

- (1) In this study a simple conceptual model has been developed which is capable of taking into account the spatial distribution of rainfall excess to some extent.
- To represent the catchment action in terms of the two parameters viz. ' the response sub-area' and 'travel coefficient', a procedure has been developed utilising one of the observed events on the catchment.
- (3) The proposed response model has been applied on a natural catchment viz. Ajay river catchment located in Chhotanagpur platau area of Bihar (C.A.992 sq. miles). The computed hydrographs are in good agreement with the observed hydrographs.
- (4) As the response sub-areas develop their separate hydrographs at the outlet, the effects due to any change in land use which may affect the runoff from the particular subarea can be identified.

5.1. PROPOSED MODEL VERSUS EXISTING MODELS

In the existing conceptual models the transformation of rainfall excess in to the runoff is explained through conceptual identities, like, linear channel, linear and non-linear

reservoir and time-area concentration diagrams etc. In the prosent model non of these identities have been used. In the proposed model the basic runoff mechanics has been explained considering the contributions of the response sub-areas to be bigomially distributed in time (Section 3.3)

A new concept of response sub-area has been introduced which are different from the inter-isochronal areas. The isochronal areas are supposed to contribute to the outlet between the time limit indicated by upper and lower time units of the adjacent isochrones whereas, the response subareas are assumed to start contributing to the outlet from the time indicated by the lower bound value of the response contours and continues as per binomial distribution suggested in the runoff scheme for infinite time intervals.

The model though uses basic runoff mechanics from first principle, it is a practical tool. Computations can be computerised but at the same time these may be carried out with the help of ordinary computation machines.

The proposed model is basically a two parameter analytical model and the parameters can be evaluated easily from a recorded evention the catchment.

Since the catchment area is divided into response sub-areas it is possible to account for spatial distribution of rainfall excess.

5.2. SCOPE OF FURTHER INVESTIGATION

The proposed model has been tested for a basin of very high drainage density of area around 1000 sq.miles. The model may be applied to larger basins provided sufficiently uniform rainfall is recorded at least once to establish the parameters.

The assumption that no control section exists in the catchment, puts a serious limitation on the applicability of the model to multi river basins. Some methodology can be investigated to combine the individual hydrographs computed for individual rivers to predict the resultant hydrograph at the outlet.

Runoff distribution coefficients, calculated by the formula proposed in section (3.3) which is based on binomial law of distribution.

Other skewed distribution viz. Poissons distribution, Chi-square distribution, F-distribution etc. with suitable approximation may also be wotth trying to compare the basic responses and so the sub-area responses.

APPENDICES

.

.

.

.

.

,

.

APPENDIX-1

GLOSSARY OF SYMBOLS

A,B,D	Area of response watersheds of the catchment
° _t	Travel coefficient
τ	Response sub-area number
I j	Input rainfall excess
^C _{τ,t}	Runoff distribution coefficient
t	current time
n	No. of linear reservoir in Nash model for IUH
R	Storage constant for linear reservoir
Q(t)	Computed runoff discharges at time t
S	Storage function
α.	Constant for approximating flow contours
T	Total translation time
IUH	Instantaneous unit hydrograph
WARF	Weighted average rainfall
EWARF	Effective weighted average rainfall
UH	Unit Hydrograph
u(o,t),U(t)	Ordinate of IUH at time t.
u($\Delta \tau, t$)	Ordinate of UH of duration Δ τ at the
	instant t.
DRO	Direct Runoff

0.R.O.	Observed runoff
B.F.	Base flow
R.F.	Rainfell
R.R.F.	Recorded rainfall
M _{ERH1}	First moment of the effective rainfall
	hyetograph about origin
M DRH 1	First moment of the direct runoff hydro-
	graph about the origin
R.O.	Runoff generated over the response sub-area
Ac	Area of the response sub-area in acres.

APPENDIX-2

RAINFALL RUNOFF DATA OF AJAY CATCHMENT AT SIKATIA

TABLE-10

8 7	Sarath	1 Dhobna	• Mahesh		stations in inches lesh Sarwan Dar lr	iches Daranga ,	Deoghar		Krajori	keeorded Average
-	đ +	۵	0	đ	¢)	* * * *+	50		ĸ	charge cu
	2	m	- 4		9	-	æ	σ	0	;
June 1, 1971	0.16	ł	\$	ŧ	ŧ	1			27	2040
N	1	0.21	0.60	I	ŧ	0.55	0.39	l	l	0056
n	ŧ	ł	1.11	1.45	ł	0.30	50) 1	2.40	0622 2602
4	2.35	2.50	1.20	1.46	1.71	1.95	2.10	0.80	0.15	5350
ŝ	0, 36	0.67	0.93	16.0	0.12	0.50	0.45		0.34	46900
Q	0.79	0.50	16 •0	0.61	1.40	1.30	1.11	2.64	1.83	16223
-	0.21	0.45	0.12	0.34	0.16	0.45	0.49	0.25	0.36	1884
æ	60°0	0.39	0.13	1	. 1	0.30	0.61	0.17	0.40	Loope A
Ø,	0.62	10.01	11.0	I	0.13	0.05	0.06	0.14	0.22	3928
10	ł		0.45	ł	Ĭ		0.04	× 1	0.13	3155
7	0.64	ŧ	0.05	•	•	ł		ŧ) 	
12	ł	ł	ł	ŧ	· • •	. 1 #	1	I	ŧ	2288
									Contd.	67

Table 10 contd.

-	2	3	4	5	6	2	8	6	10	n
July 8, 1971	ł		I	61.0	ł	ŧ			ŧ	4049
6	I	1.75	2.69	1	ł	0.25	ŧ	: #	0.15	6513
JO	0.32	1.46	ł	1.26	ş	ł	0.12	ł	ł	5350
H	0.43	0.56	6.75	0.53	0,22	2,80	0.29	l	2.45	20308
12	0.29	0.37	2.45	0.51	•	0*30	0-30	1.56	1.75	24758
13	0.65	0.15	0.63	0.50	0,25	0.76	3.26	0.74	0.76	17233
14	0.22	0.42	11.0	0.67	0.51	0.45	1.30	0*50	0.18	10412
15	· 1	2.01	° t	2.86	0.37	0°.45	* (ł	ł	6995
Sept.27, 1971		1	2 1	ł	0.45	• •	° • -	8	1	121
58	ł	0.20	t	1.33	ŧ	0,26	i i	I		598
29	0.38	0.95	0,08	1.26	. 1	1.28	0.07	6 • 10	0.46	2054
30	3.94	1.75	1.07	1.33	2.76	1.45	1.64	1.35	0.53	23276
rt	ł	1.75	1.00	. 1	1.55	0.37	2.33	1	0.67	24531
N	0.49	0.25	0.33	1	0.16	0.13	0.28	•	C.64	11540
ñ	0.12	0.35	0.42	I	, f	0.26	0.21	ł	0.19	5678
4	ł	0.07	0.24	I	, I	.1	0°0	ł	0.32	3835
ŝ	I	١	0.08	ł	0.20	ł	0.16	0.60	1	2170 E
									Contd.	

Table 10 Contd.

,

11	1862	1232	960	244	1665	903	386	360	1968	20920	6925	2723	L161	1130	952	173	736 ° ontd. 9
01	I	1	0.33	ł	1	ŧ	ŧ	J	0.89	1 1 1		ŧ	,t	ŧ	ŧ	ŧ	t I
6	ŧ	1	1	1	1	∎	(ł	ŧ	1.80	0.05	đ	t	t	ſ	ł	ŧ
Ø	Ē	ł		•	\$: \$:	:	2.43	0.83	1	, 1				ŧ	1
7 .	ŧ	ŀ	1		- 1	ŀ	: P	t	0,06	2,13	ł	I		1	ľ		1
ە	ł	ł	' I	•	ı		а !!	•	, 1 °	1.44	1	1	, f	t,	Ĩ	ſ	I
ñ	i t	8	ł	l	t		 . ()	t	1.27	ţ	, t	ľ	ł	t	I	t	t
4	ŧ		1	0.28	ч • • •	•	; .	1	1	1.71		•	2 *	ł	ľ	ł	ŧ
3		ŧ	I	I			, I	F	ŧ	1.35	0.05	•	1	: 1	ľ	Ì	0*30
2	-	1	0.26	0.61		t	0.46	ŧ	t	2.42	I		t	1	t	0.05	0.28
٦	9	7	ω	6	10	11	0et.13, 0.46	14	15	1 6	11	18	19	20	_ି ଗ୍ଲ	22	23

•

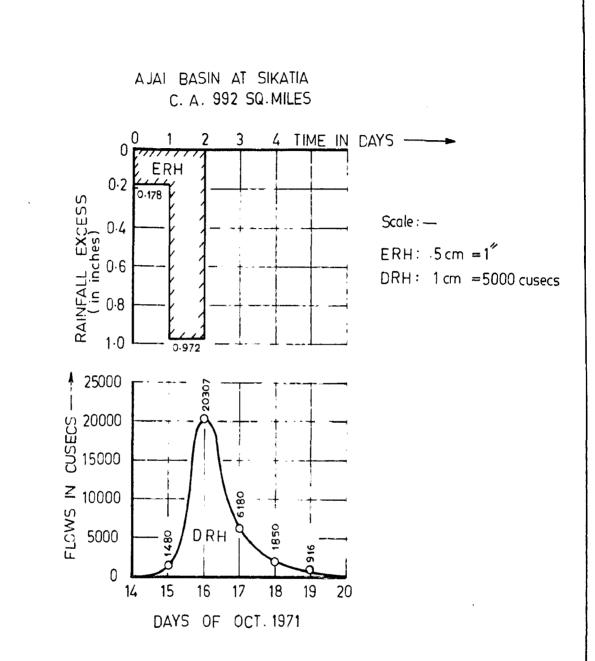
Table 10 contd.

2	606	1020	52251	147 OK	8648	3800	1194	547	265	1 80	130	100			
10	i	I	1.09	1	I	1		t	Ŧ	ţ	ł	I			
6	١	2.39	2.66	ŧ	0.47	ł	ŧ	ł	ŧ	ŧ	1	t	Ņ		
ω	,1	8.	0.12	3.30	0.20	0.07	ŧ	ł	ł	1	I	I			
7	ŕ	2,22	3.54	1	ł	ı	1	t	1	1	ł	ð .			
و	1	0.98	2,62	0.21	† .	1		ľ	ł	8	ł	ł			
5	· •	ŧ,	0.20	I	ļ	0.01	I	ł	1	I	ı	ł	·		
4	,1	0.13	5.66	0.33	1	0.15	ı	1	J .	ŧ	î.	ŧ,	:		
3	. .	1.00	2.95	0.50	01.0	I	ť	1	1		ł	ł,			
N	9	0.80	2.90	0.05	0.20	ł	•	t	ŧ	ŧ	t				
7	0et.10 1973	H	12	13	14	15	16	11	18	19	20	ส			

70

APPENDIX-3

DERIVATION OF I.U.H. AND 12 HOUR U.H.FOR AJAY RIVER CATCHIENT AT SIKATIA


For derivation of I.U.H. Nash model was used. The model parameters n and k were evaluated by method of moments as explained in section 2.1. through equation numbers (2.C) to(2.F).

A short duration storm which occurred on the catchment more or less uniform in space was selected such a storm was of 15-16 Oct. 1971.

After separating base flow from the runoff hydrograph and computing the weighted effective rainfall by Thiessen method. Following data were available for deriving an I.U.H.

Time interval in days	ERH in Cusecs	DRH in cusecs
0		0
1	4755	1480
2	25978	2030 7
3		6180
4		1850
5		916
6		0

By using Nash's method of moment values of n and k in the equation (2.C) have been evaluated below (Refer fig.5).

$$M_{ERH2} = \frac{4755 \times 1 \times 0.5 + 25978 \times 1 \times 1.5}{(4755 + 25978)}$$

= 1.3453 days
$$M_{ERH2} = \frac{2378 \times 0.5 + 38967 \times 1.5}{30733}$$

= 1.9406 days²
$$M_{DRH1} = \frac{1480 \times 1 + 20307 \times 2 + 1680 \times 3 + 1850 \times 4 + 916 \times 5}{1480 + 20307 + 6180 + 1850 + 916}$$

= 2.3627 days
$$M_{DRH2} = \frac{1480 \times 1 + 40614 \times 2 + 18540 \times 3 + 7400 \times 4 \times 4580 \times 3}{30733}$$

= 6.2092 day²

In Nash's model values of n and k are given by

$$M_{DRH1} - M_{ERH1} = nk$$
 (1)

anđ,

$$M_{DRH2} - M_{ERH2} = n(n+1) K^2 + 2nk M_{ERH1}$$
(II)

From (I) we have 2.3627-1.3453 = nk or nk = 1.0154 or k = $\frac{1.0154}{n}$ (III)

.

and from (II) we have

$$6.2092-1.9406 = n(1-n) \left(\frac{1.0154}{n^2}\right)^2$$

$$+ 2x \ 1.0154 \ x \ 1.3453$$
or
$$4.2686 = \frac{1+n}{n} (1.03144) + 2.7320$$
or
$$1.5366 \ n = 1.03144 + 1.03144n$$
or
$$0.50516 \ n = 1.03144$$
nr
$$n = \frac{1.03144}{0.50516} = 2.0418$$
Say 2
$$\therefore \ k = \frac{1.0154}{n} = \frac{1.0154}{2}$$

Putting the values of n and k obtained above in Nash model for IUH. We get,

$$\begin{array}{rcl} U9t) &=& \frac{1}{k \sqrt{n}} & \left(\frac{t}{k}\right)^{n-1} & e^{-t/k} \\ &=& \frac{1}{0.5077 \ x \sqrt{2}} & \left(\frac{t}{0.5077}\right)^{2-1} & e^{-t/0.5077} \\ &=& \frac{1}{0.5077 \ x 0.5077} & t \cdot e^{-1.97t} \\ &=& 3.88 \ x \ t \ x \ e^{-1.97t} \end{array}$$

IUH has been calculated on the next page in the Table No.11.

Volume of 1 inch runoff over the catchment uniformly supplied in 24 hours.

= <u>992 x 5280 x 5280</u> Cusecs

= 26,674 cusecs

Dave	1.97 t □ α	-α 3	IUH=U(t) = 3.88xtxe ^{-α}	IUH in terms of discharges 26674 x U(t)
0	0	0	0	0
0.25	0.0925	0.61110	0.59200	15,800
0.50	0.9850	0.37345	0.72400	19,300
0.75	1.4775	0.22821	0.66450	17,720
1.00	1.9700	0.13946	0.54100	14,410
1.25	2,4625	0.08523	0.41300	11,020
1,50	2.9550	0.05208	0.30350	8,090
1.75	3.4475	0.03185	0.21650	5,775
2.00	3.9400	0.01945	0.15080	4,025
2.25	4.4325	0.011724	0,10230	2,735
2.50	4.9250	0.006108	0.05928	1.581
2.75	5.4175	0.004400	0.04695	1,252
3.00	5.9100	0.002714	0.03155	842
3.25	6.4025	0.001672	0.02110	562
3.50	6.8950	0.001025	0.01392	371
3.75	7.3875	0.000625	0.00909	243
4.00	7.8800	0.000375	0.00582	155
4.25	8.3725	0.000228	0.00376	100
4.50	8.8650	0.000140	0.002445	65
4.75	9.3575	0.000084	0.001548	41
5.00	9.8500	0.0000525	0.001018	27
5.25	10.3425	4.5x10 ⁻⁵ x.795	0.000729	19
5.50	10.8350	4.5x10 ⁻⁵ x.434	0.000509	14
5.75	11.3275	4.5x10 ⁻⁵ x.265	0.0000266	7
6.00	11.8200	4.5x10 ⁻⁵ x.162	0.0001698	5
		· .	Total	1,04,260

TABLE-11

In theoretical sense the discharges from the catchment will continue upto infinite time. But for practical purposes looking to the IUH ordinates we may curtail it at 5th day and take the ordinate at 5.5th day as zero. How to make the volume of the IUH equal to unity we may adjust the ordinates before 5th day. This work is accomplished in table-12.

Time days	U(t)	Adjusted U(t)	IUH dis- charges Q(t)	Adjusted IUH discharges Q(t)
1	3	33	4	5
ο	0	· 0	0	· · · · · · · · · · · · · · · · · · ·
0.25	0.592000	0.606410	15,800	161.59
0.50	0.724000	0.741630	19,300	19 795
0.75	0.664500	0.68068	17,720	18137
1.00	0.541.000	0.554190	14410	14777
1.25	0.413000	0.423070	11020	11300
1.50	0.303500	0,310880	8090	8305
1.75	0.216500	0.221770	5775	5906
2.00	0.150800	0.154470	4025	4124
2.25	0.102300	0.104888	2735	2795
2.50	0.059280	0.060728	1581	1620
2.75	0.046950	0.048070	1252	1283
3.00	0.031550	0.032423	8421	866
3.25	0.021100	0.021600	562	576
3.50	0.013920	0.014253	371	381

TABLE-12

77

Contd.

Table 12 Contd.

1	2	3	4	5	
3.75	0,009090	0.009296	243	246	
4.00	0.005820	0.005958	155	159	
4.25	0.003760	0.003843	100 '	102	
4.50	0.002445	0.002495	65	66	
4.75	0.001548	0.001588	41	42	
5.00	0.001018	0.001038	27	28	
5.25	0.000729	0.000729	19	19	
5.50	0.000509	0	14	0	
	Total =	400000	·		

Response sub-area

As explained in section (3.4) the next step is to select the time interval to be taken as unit and divide the catchment into several sub-areas according to their response time.

The JUH peak reaches at 1/2 day i.e. 12 hours so the time interval should be less than or equal to 1/2 day. The areas proportional to the JUH ordinate at 1/2 day 1 day 1.5 day 2 day otc. have been calculated in Table-13.

TABLE-13

Time days	IUH ordinate cusecs	Percentage of totab	Area in sq.miles	Area in acres	Sub-area nos.
0.0	0	0			·
0.5	19795	39.460	391.50	250560	l
1.0	14777	29.472	292.37	187117	2
1.5	8305	16.571	164.28	105139	3
2.0	4124	8.250	81.88	52403	4
2.5	1620	3.250	32.25	20640	5
3.0	866	1.727	17.12	10957	6
3.5	381	0.765	7.60	4864	7
4.0	159	0.318	3.15	2016	8
4.5	66	0.131	1.30	832	9
5.0	28	0.056	0.55	352	10
5.5	0	0			
Total	50121	100.00	992.00)	
				<u>,</u>	

TABLE-14

14

1/2 DAY UH FROM IUH

Time days	IUH Cusecs	12 Hrs. or 1/2 day UH cusecs
0.25	16159	8080
0.50	19795	9898
0.75	18137	17148
1.00	14777	17286
1.25	11300	14718
1.50	8305	11541
1.75	5906	8603
2.00	4124	6230
2.25	2795	4350
2.75	1283	2039
3.00	866	P 243
3.25	576	930
3.50	381	624
3.75	246	411
4.00	159	270
4.25	102	174
4.50	56	112
4.75	42	72
5.00	28	47
5.25	19	30
5.50	0	14
5.75	0	9
6.00	0	0

IUH and 1/2 day UH computed above are plotted as Fig.(4.a) and (4.b) respectively.

Time base of the IUH is 5.5 day. Therefore the time of concentration for the basin = 5.5 days.

APPENDIX - 4

EVALUATION OF TRAVEL COEFFICIENT AND RUNOFF DISTRIBUTION COEFFICIENT

The value of travel coefficient Cr was calculated by trial and error. First trial value was taken as

 $C_{\tau} = \frac{\text{Peak of UH of } \wedge \tau \text{ duration}}{\text{Peak of IUH}}$

Where At is the time to peak of the IUH.

Progressively Cr value was changed to improve the output response computed on the basis of trial Cr value. In the present case Cr = 0.97 gave a better match and so it was adopted. The values of runoff distribution coefficient Cr t are given in Table 15. AVEL COEFFICIENTS C₇ = 0.97

No T	•	1	12	13	14	15	16
1					•		
2							
3	ł						
4							
5							
6	2001						
7	2018	0.0001					
8	254	0.0025	0.0002				
9	052	0.0308	0.0034	0.0003			
10	374	0.2212	0.0365	0.0033	0.0004	0.0001	
11	ļ	0.7152	0.2360	0.0425	0.0055	0.0006	0.000

IDENTIFICATION OF RAINFALL EXCESS FOR FIVE STORMS IN AJAY BASIN AT SIKATIA (BIHAR)

CALCULATION FOR W.A.R.F. OVER CATCHMENT - STORM DATE 15-17 OCT. 1971

Raingaugo	Volght-	15,10	71	16.10	.71	17.	10.71
Stations	age S	R.R.F. Inch	WARF Inch	R.R.R. inch	UARF Inch	R.R.F. Inch	WARF Inch
8.	15.16			2.42	0.3665		
b	13,14		-	1,35	0,1773	0.05	0.0066
C	6,82	-		1.71	0.1107	•	6 .
đ	10,12	1,27	0,1285	-	-	-	-
0	12,25	-	**	1.44	0.1764	*	-
£	12,25	0.06	0.073	85 2.13	0,2610	•	*
ß	10.39	2,43	0,2520	0,83	0.0861	*	-
h	8,95	*	•	1,80	0.1611	0.05	0.0045
k	10,92	0.89	0,0972	-	-	-	-
Totel	ar Andri 1900 - ann an teor an an teor ann	udaustaiko fikikoiti umittua	0.5512	}	1, 345	1	0.0111

	Δı	ALUES OF	ta mont	ISTRIBUTI(N COEPPI(VALUES OF RUNOFF DISTRIBUTION COEFFICIENTS FOR DIFFERENT RESPONSE SUB-AREAS FOR TRAVEL COEFFICIENTS C ₅ = 0.97	DIFFERE	NT RESPO	ISE SUB-A	REAS POI	RAVEL	COLFFIC	IIMTS C	= 0 . 97			
			ب ب ب	-	(t-1) 1 (t-1) 1	$\frac{(t-1)}{(\tau-1)!} \frac{1}{(\tau-1)!} (c_{\tau}) = (1-c_{\tau})^{t-\tau}$	-c,) t-t	4 1 4								·	
Response sub-area	Travel Coeff.			Tali	tes of ru	Values of runoff distribution		00eff1c1(coefficients C_{τ_s} t according to time interval t	accordi	ing to t	lme inte	rval t				
	04	t=1	8	3	*	£	9	-	60	6	ด	-	73	13	7	15	16
-1	6.0	1620°0 0016°0	0,0291	6000*0													
5	0.97	1	0.9409	0.0565	0.0025	1000 *0											
5	0.97	ł	ı	1216.0	0,021	0,0049	0,0003										
-	6.07			ŧ	0.8851	0.1062	0*0080	0.0005									
	0.97	ŧ	3	F	. I	0.8588	0.1288	0.0116	0,0008								
10	0.97	I		ŧ	Ŧ	1	0.8329	0.1499	0.0157	6000*0	1000 0						
~	0.97	8	\$	1	Ŧ	ı	١	0,8080	0.1697	0,0204	0,0018	0.0001		_			
8	0.97		2	1	Ŧ	f	ŧ	1	0.7835	0.1880 0.0254	0.0254	0.0025 0.0002	0,0002				
б	0.97	Ŧ	8	•	1	1	ł	ł	8	0.7600	0.2052	0,0308	0*0034 0*0003	0,0003			
10	0.97	1	ł	ŧ	ł	1	ŀ	1	1	ı	0.7374	0.2212	0.0365	0,0033	0.0033 0.0004	0.000	
11	0.57	•	1		ł	8	ŧ	1	1	1	1	0,7152	0.7152 0.2360	0.0425	0.0055	0.0006	0.000

CILCULATION OF OBSERVER R.O. DEPTH

Dato	0.R.O. Cusecs	B.F. Cusocs	D.R.O. Cusecs	Computation for ø Index
14.10.71 15.10.71 16.10.71	1988	360 488 616	0 1480 20307	$0.R.0.Dopth = \frac{30733 \times 24\times3600\times12}{992\times5280\times5280}$ = $\frac{30733}{26674}$
17.10.71		745	6180	= 1,15 inches
18.10.71 19.10.71 20.10.71	1917	873 1001 1130	1860 916 0	Gross W.A.R.F.= 0.6512+ 1.3451 + 0.0111 = 1.9074" . Total loss (1.9074"-1.15")
Total			30733	= 0.7574 inch . Av. loss = $\frac{0.7574}{3}$ "/day = 0.37315"

Assuming constant value of β - Index it works out to be 0.3732"/day.

H.A.R.F. BACESS OVER THE BADIN

Date	WARFF
15, 10,71	0.1760"
16,10,71	0.9720"
17.10.71	ø
Total	1. 15"

CALCULATION OF WARF ON INDIVIDUAL SUB BASINS - DATE-WISE(R.F.IN INCHES)

Sub-		Weigh-		5.10.71		10,71	17,10	
Basin No,	stn.	tage \$	RRF	HARF	RRF	WARF .	RRF	WARD
1	8	38.42		*	2,42	0.9300	w	*
	b	31.42	-	*	1.35	0.4240	0.05	0.0157
	â	15,90	1,27	0.2020		*	-	-
	e	14.26	* ·		1,44	0.2052	-	•
Total				0,2020		1.6592		0.0157
2	b	2.50	*		1.35	0.0338	0,05	0.0013
	đ	13,10	1,27	0.1663		#	-	•
	8	22,50	-	-	1,44	0.3240		-
	Ç	17.40	-	e	1.71	0.2975	•	-
	f	24.30	0.06	0,0146	2,13	0.5175	•••• · ·	-
.	g	20.20	2,43	0.4910	0,83	0.1675	-	-
Total	L	1977 - 1797 - 1977 - 1977 - 1977 - 1977 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 -		0,6719		1,3403		0.0013
3	C	9,90	*	99-9-	1.71	0,1693		.
• •	£	30 . 80 [,]	0.06	0.0185	2,13	0,6560	-	•
. .	8	25,70	2,43	0,6240	0,83	0.2130		-
	h	6.09	**		1.80	0,1097	0.05	0.0030
	k	27.51	0.89	0.2445	-	•	-	-
Total		Africans, gagage yn ar dydagfalgfalg	Bir ayılda artandığın ağı yarışır.	0,8370	առւյլ, ար	1,1480		0,0030

STORM OF 15-17 OCT. 1971

86

1	2	3	4	5	6	7	8	9
4	g	1.71	2.43	0.0415	0.83	0.0142	-	
	h	44.50	-	•	1.80	0.8010	0.05	0.0225
	k	53,79	0,89	0.4790	•	***	-	*
Total				0,5205		0.9700	4474 46 452444444	0.0270
5	h	53. 85			1,80	08.97 00	0.05	0.0270
	k	46.15	0.89	0.4105			-	-
Total				0.4105		0,9700		0.0270
6	h	22,65		•	1,80	0,4075	0,05	0,0113
	k	77,35	0.89	0.6880	-	-	*	-
Total	6 4 7 4			0,6880	· ·	0.4075		0.0113
7-10	h	100,00	447 447		1.80	1.8000	0.05	0,0500
Total			9.14-0- 1 -14 -1 9-9-9-44-9-1-1-			1,8000	aanse tyter meent nitten om uit lijk	0.0500

,

1	Volgh-	H.A.R.	H.A.R.F. Inches	88		U.A.R.P. WIth	ŧ	Not W.A. Cat	tor E	entro	
Bagin IIo.	K ego X	15/ 10	J6/10	QI/71	15 -	16 16	17	15	JG	17	۱۹۹۳ ۱۹۹۳ ۱۹۹۳
1	39.460	0-2020	1. 5592	0.0167	۱	1, 1860	ŧ	ŧ	0.4680	•	
44	272.62	0.6719	1,3403	0.0013	0.2987	0,9671	ŧ	0*0880	0,2860	1	
	16.571	0.8870	1.1480	0*0030	0.5138	0,7748	4 -	0.0850	0.1282	ŧ	×
	8.250	0.5205	0.8152	0.0225	0, 1473	0.4420	ŧ	0,0122	0.0365	1	
	3.250	0.4105	0*9700	0.0270	0.0373	0.5958	\$.	0,0012	0.0194	I	
	1-727	0.6380	0.4075	0.0113	0.3148	0.0343	۲	0.0054	0+0006	3	
01-2	1.270	4	1.8000	0°0500	t	1. 4268	ð	3	0.0181	•	ľ
		liet V. 4 ø e	Het V. A. R. F. w1 th \$ = 0.3717	4		£	Totel	0, 1918	0.9558		ļ
	39,460	1	1.1875	•		0.4685	ŧ				
	29,472	0.3002	0.9686	I	0.0885	0.2855	1				
	16.571	0.5153	0.7763	\$	0.0854	0. 1285	ŧ				
	8.250	0.1483	0.4435	ŧ	0.0123	0.0366	1				
	3.250	0.0388	0.5983	8	0.0013	9010-0	ŧ	·			
	1,727	0.3163	0.0358	1	0.0055	0.0006	ŧ				
2-ID	1.270	ł		ŀ	ŧ	0,0182	1				8
					0.1930	0.9573					7
					T. C & C T		4004				

Total of Net WARF over the catchment = 0.1918 0.9558 Total= 1.1476 R.O. depth= 1.1500 . Deficit rain.= 0.0024

	~
1	2 C
ATIA	DATE
AT SIN	STORM
AJAY BASIN AT SIKATIA (RIU.	CHEENT
L AS	C &T
	SHE
	UVER
ROR	;
CALCULATION	UNDER THE CATCHNENT STORM DATE 3

.

all figures in inches)	RRF -6.21 WARF	1	1800°0	- 0	0.0509 0.0224	0.3763 0.3763
3 - 7 JUN	UP RRP 6.6.21 VARP	0.0545 0.79 0.1197 0.21 0.0880 0.50 0.0657 0.45	0.91 0.0621 0.61 0.0617	2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.64 0.2365 1.83 0.2000	
WARP RRP WAR	RRF	0.3560 0.36 0.3285 0.67 0.0819 0.02	0.1478 0.91 0.2095 0.12	0.50 0.45 0	0.2620 0.15 0.0164 0.34 0.0371	k6 1.6687 0.4569
Sim. Veight 3.6.71 g B.R.F.		b 13,14 c 6,82 1,11 0, d 10,12	1 42 3 1 42		10.92 2.40	-utal 0.5246

Dato	0.R.O. Cusecs	B.F. Cusecs	D.R.O. Cusecs		.R.F. over the hment
3,6,71	2602	2602	0	3.6.71	0,5246
4.6.71	5359	2681	2678	4.6.71	1.6687
5.6.71	46900	2760	44140	5.6.71	0.4559
6,6,71	16223	2839	13334	6.6.71	1,1915
7,6,71	13834	299 7	15866	7.6.71	0,3763
8,6,71	6920	2 9 9 7	3923	Total	4 9 1901
9.6.71	3928	3076	852	Total	4,2170"
10.6.71	3155	3155	0	R.O.Depth	8
			in a star and a star a		<u>4x3300x12</u> 80x5280
		Total	80943		
	an a			= 80943 26674	- 3 . 032"
	Loss o	f rain a	. (4.217 -	3,032)" = 1	L. 186
	os rate	: 1.185 5	# 0 . 237"	/đay	
Non of t	ho warf e	ro loss (than 0.237	"/day	·
• • ø -	Indox =	0,237"/4	o y		
Dates	3,6,71	4.6.71	5.6.71	6.6.71	7.6.71
R.F. Excoso	0,2876	1,4317	0.2199	0,9545	0,1383"

CLLCUL TION FOR O.R.O. DEPTH

CULATION OF UARP OVER INDIVIDUAL SUB
CALCUL ATIO

,

sub- Besin No.	Hottgh B. G. Sth.	Markatersten. R.G. tage Sta. in S	R.R.F.	3.6.71	4, RRR	.6.71 - UARF		5.6.71. RRP - UARP	6.6.71 BRF 1/1	12°5	7.6.71	-0120
	Ø	33.42		ł	2,35	0.5040	0.8	0.1383	0.79	0.3038	0.21	0.0307
	,a	31.42	ţ	•	2.50	0.7860	0.67	0,2108	0.60	0, 1573	0.45	0.1416
	q	15.90	1. 45	0.2305	1.46	0*2350	16*0	0. 1446	0*61	0*0020	0.33	0.0540
	Ø	14.26	ŧ	\$	1.71	0.2433	0.12	1/10.0	1.40	0.1995	0. 16	0.0223
Total				0.2305		2,1658		0.5108		0.7576		0.2991
	д	2.50	ŧ		2,50	0.0625	0.67	0,0167	0*60	0.0125	0.45	3110.0
-	0	13.10	1.45	0.1900	1.46	1161.0	16.0	Tell.O	0.61	0.0799	0.34	0.0445
-	Ø	25.50	١	,	1.71	0,3345	0.12	0,0260	1.40	0.3150	0.16	0.0330
	¢	17.40	1,11	0.01930	1,20	0,2088	0.93	0, 1616	16*0	0.1581	0 . 12	0*0209
	5 4	24.30	0.30	0°0729	1 ,95	0.4740	0.50	0,1215	ы. 1	0*3160	0 .45	0, 1092
	Ø	20.20	0.04	0,0088	2.10	0.4245	0.45	6060 °0	1.11	0.2242	0.49	0°0080
Total				0.4647		1.7454		0.5358		1, 1057		0.3208

91

¢

-	ເ ນ ່	ດງ 1 1	ব্দ	ίΩ.	0	2	CO	G	8	1	2	នា
en en	U	06*6	1,11	0, 1099	1,20	0,1189	0.93	0*0921	16.0	0060*0	0.12	6110.0
	41	30,80	0*30	0.0924	1,95	0.6005	0*20	0.1540 1.30	1 •30	0.4005	0.45	0.1387
	60	25.70	0.04	0.0103	2,10	0.5390	0.45	0.1156	1.11	0.2850	0.49	0, 1259
	£	60°9	ł	ŧ	0.80	0.0487	. I	ŧ	2.64	0,1509	0.25	0.0152
	M	27.51	2,40	0.7560	0.15	0.0413	0.34	0*0935	1. 83	0,5025	0.86	0,2365
Total				1.4286		1.3484		0.4552		1.4389		0.5282
4	teo E	171	0 •0 4	0.0007	2.10	0.0359	0.45	0.0077	1.11	0610.0 11.1	0.49	0.0084
	ч	44 . 50	•	ł	0.80	0.3560	Ŧ		2,64	2.64 1,1750	0.25	0,1118
	Я	53,79	2.40	1.2910	0.15	0.0807	0.34	0, 1330	1,83	0.9850	0.86	0.4625
Total				1,2917		0.4726		0.1907		2,1790		0,5821
ß	д	53,85	•	•	0*80	0.4315	ŧ	١	2,64	2,64 1,4220	0,25	0.1347
	ĸ	46.15	2,40	1,0830	0 * 1 2	0,0677	0.34	0,1536	1. 83	0.8260	0.86	0,3882
Total				1,0830		0.4992		0,1536		2,2480		0.5229

	0	ო	4	ŝ	Q	2	00	თ	ទ	1	ጃ	ย
9	q	22.65			0.80	0.1812			2,64	0.5980	0.25	0.0566
	ي بر	77.35	2.40	2.40 1.8580	0.15	0,1160	0.34	0.2632	1,83	1. 4175	0.86	0.6650
Total				1,8580		0.2972		0.2632		2,0155		0.7216
4 OI-7		100.00	•		0.80	0,8000			2 . 64	2,6400	0,25	0.2500
Total						0.8000				2.6400		0,2500

93

CALCULATION OF ERF ON INDIVIDUAL SUB-BASINS OF THE CATCHMUNT

STORM DATE 3 - 7 JUNE 1971

(All rainfall figures in inches)

95

Total EWARF = 0.4070 1.4252 0.2327 0.9485 0.1439 3.1573 0.R.O. depth = 3.0320 Surplus depth = 0.1253... β = Index must be increased by an amount x given by x [4 x(0.39460 + 0.03250 + 0.03250) + 5x(0.2947 + 0.16571 + 0.01727)+ 3 x 0.01270 = 0.1253" or $x \begin{bmatrix} 4 \\ x \\ 0.50960 \\ + 5 \\ x \\ 0.47770 \\ + 0.03810 \end{bmatrix} = 0.1253"$ or (2.03840 + 2.38850 + 0.03810) x = 0.1253" $4.46500 \times = 0.1253$ or $x = \frac{0.1253}{4.465} = 0.0281$ or But EWARF on individual basins show that 0.0262" 40.0130" are less than x. Revised value of $x = \frac{0.1253 - (0.0005 + 0.0002)}{4.46500 - (0.01727 + 0.01270)}$. . $= \frac{0.1246}{4.43503} = 0.0281"$

.*. Revised value of \$ index = 0.2370 + 0.0281 = 0.2651" / day AJ AY BASIN AT SIKATIA (BIHAR)

CALCULATION FOR W.A.R.F. OVER THE CATCHMENT - STORM DATE 9-13 JUNY 1971

(All rainfall Fig. in inches)

sth.	Weight	6.0	9.7.71 10.	7.71		F		10 0	12	С Г Г	10 0	C 71	
	53	R.R.F.	U.A.R.F.	F. R.R.F. WARP	1	R.R.F. JARF		R.R.F.	R.R.F. UARP	R.F.	R.R.F. WARF	R.R.F.	WARF
ಥ	15, 16		1	0*30	0.30 0.0455	0.43	0.0651	0.29	0.0439	0.65	0.0985 0.22	0.22	0.033
م	13, 14	1.75	0,2300	1.46	0• 1920	0.56	0.0736	0.37	0.0486	0.15	0.0197	0.42	0.058
v	6,82	2,69	0,1836	ŧ	ŧ	6.75	0.4610	2.45	0.1670	0.63	0.0430	0.11	0.007
ŋ	10 . 12	1	Ì	1.26	0.1275	0.53	0.0536	0.51	0.51 0.0516	0*50	0.0506	0.67	0.067
Ø	12,25	ł	٠	ł	t	0.22	0*0269	۲	ı	0,25	0.0306	0.51	0.062
9 -1	12,25	0.25	0*0306	1	ŧ	2.80	0.3430		0.30 0.0367	0.76	0660*0	0.45	0.055
60	10 . 39	ł	•	0.12	0.2124	0.29	1000*0	0°30	0.30 0.3115	3,26	0.3385	1.30	0.135
q	8,95	ŝ	ŧ		•	ŧ	ł	1.56	1.56 0.1386	0.74	0.0663	0.20	0.0179
X	10 . 92	0,15	0.0164	8	ŧ	2,45	0,2675	1.75	1*75 0*1910	0.76	0.0330	0.18	0*0196
			0.4606		0.3774		1.3208		0.8899		0.8232		0.453

CALCULATION FOR D.R.O. DEPTH

Dato	0.R.O. Cusecs	B.F. Cusecs		
8.7.71	4049	4049	0	0.R.0.depth
9,7,71	6513	4470	2043	<u>53623 x 24 x 3600 x 12</u>
10.7.71	7535	4871	2644	992x5280x5280
11.7.71	20308	5312	14996	$= \frac{53623}{26674} = 2.010"$
12.7.71	24758	5733	19025	
13.10.71	. 17233	6154	11079	Taking the rainfall upto inflexion point which comes
14, 10, 71	10412	65 75	3837	on 13.7.71 only effective in producing R.O. We get
15.10.71	6995	6995	0	gross rainfall
**** ******************************* ******	- 			=0,4606+0,3774+1,3208
		Total	53623	+0.8899+0.8232
an a	1. (1999)1999, (1999)1999-1999) (1. 1999)1.	alle son sone	- Madile-Inco. Son disc	z 3,8719
. Los	t rain =	(3,8719	- 2.010)	"= 1,8619
• • 4ve	rago los	s . 1.8 5	<u>619</u> = 0	. 3724
Hon of	W.A.R.F.	are les	s than 0	. 3724"/day
ø I	ndox = 0	.3724"/d	ay	•

Da te	Gross W.A.R.F. inch	ø Index Inch	R.F. Excess inch
9.7.71	0.4606	0.3724	0.0882
10.7.71	0.3774	0.3724	0.0050
11.7.71	1,3208	0.3724	0,9484
12.7.71	0.8899	0.3724	0.6176
13.7.71	0.8232	0.3724	0.4508
		Total	2.0099
			= 2,01"

.

• • •

.

.

.

.

GROSS W.A.R.F. EXCESS OVER THE BASIN

. .

,

• • •

.

•

,

CALCULATION FOR WARF OVER INDIVIDUAL SUB-BASINS - STORE DATE 9-13 JULY 1971

(All rainfall figures in inches)

Sub-	R.G.	Velch-	17.7.9	77	-OI	17.7.01	[]	17-71	.	12-2-21	13.5	7.71
Basin Stn. No.	sta.		В. В.	W. A. R. F.	R.R.F.	U.A.R.F.	R.R.F. W.A.	2. A. R. F.	R.R.F	R. R. F. MARF	R. R. F.	U. A. R. F.
	~	с. Г	₹	5	9		8	6	10	11	212	13
-1	Ø	38,42	ŧ	•	0°30	0.1153	0.43	0,1652	0.29	0.29 0.1114	0.65	0.2500
	A	31.42	1.75	0.5500	1.46	0.4590	0.56	0*1760	0.37	0, 1163	0.15	0.0472
	đ	15,90	t	ŧ	1,26	0.2002	0.53	0.0842	0.51	1180.0	0.50	0.0795
	Ð	14,26	ŧ		1	1	0.22	0.0314	ŧ	ŝ	0.25	0.0356
Total	-			0.5500		0.7745		0.4568		0,3098		0,4123
~	م	2,50	1.75	0.0438	1.46	0.0362	0.56	0410.0	0.37	0.37 0.0093	0.15	0,0037
	đ	01. EL	1	ł	1,26	0* 1650	0.53	0.0695	0.51	0.0668	0*50	0.0655
	e	32.60	SS753	ŧ	8	\$	0,22	0.0495	٠	ŧ	0.25	0.0562
	υ	17.40	2.69	0.4680		•	6,75	1, 1740	2,45	0.4265	0,63	0, 1095
	44	24.30	0.25	0.0607	ŧ		2,80	0.6800	0.30	0.0729	0.76	0. 1845
	60	20.20	ŧ	ŧ	0.12	0.0243	0,29	0.0536	0*30	0.0606	3.26	0.6580
				0.5725		0.2255		2.0456		0.6361		1.0774

99

con td.../

					y	6	¢	0	9	11	4	1
-1	CJ	ო	4	5	0							
				L	•	ł	6.75	0*6690	2.45 (0.2425	0.63	0.0624
თ	U	0°*0	2,69	0,2003	Ì				0.30	0.0924	0.76	0.2341
	÷	30.80	0.25	0.0770	¥	1					20.0	0 9375
	4		!		0.12	0,0303	0.29	0.0745	8.0	0.0771	3.50	
	60	25.70	ŧ	•		1	1	ŧ	1.56	0960*0	0.74	0.0451
	A	6.09	•	ŝ	ł	ŀ		0462.0		0.4815	0.76	0,2090
	м	27.51	0 . 15	0,0413	(.	•	0 4 40			. 1	N	•
				0.3848		0.0308		2.2795		0,9885		1,3881
Teloi.										0-0051	3.26	0.0557
		, C	ļ		0.12	0.0020	0,29	0,000	3			
4	00	T*L T	•	,	1	•	• #	\$	1.56	0.6945	0.74	0.3295
	đ	<u>44</u> .50	\$	*	I		24 0	0 6740	1.75	0.4815	0.76	0.2090
	4	52 70	0.15	0.0413	1	ŧ						0 7045
	4					0.0020		1.3239	·	1.6415		
Total				0.0807					1.56	0.8400	0.74	0•3980
	2	53.85	•		\$		2.45	1.3390	1.75	0.9480	0.76	0.3510
2	1 24	46.15	0.15	0.0802	1		2.43	1, 1300		1.6480		0.7450
Total				0,0692					1.56	0.3535	0.74	•
4	2	22.65	· 8.	ŧ		• 1	2.45	1.8950			0.76	- 1
\$	I M		0.15	0.1200						1,7065		0.7550
10400				0.1200				•	1.56	1.5600	0.74	
DA 01	.				8	,				1.6600		0.7400
2-10	٩									i i		
Total												

Deguas Uo.	18 Cago	U° / • / •	201-17 TOOL T	T Je Jerr	Trelet	13°/°/4	A. 1 1 .	T T	110 (e { 1	7	4 10 10 14
	t ev	e	4	5	6	6	8	6	PC	77	R
	39,460	0.5500	0.7745	0.4558	8302°0	0.4123	0.1776	0.4021	0.0844		0°0350
N	29.472	0.5725	0.2255	2.0456	0.6201	J~0774	0.2001	. •	1.6722	0.2637	0.7050
	JG.671	0,3848	0°0308	2°2795	0,9385	1,3381	0.0124	ł	1,8071	0.6161	1.0157
	8,250	0.0807	0°0020	1,3239	1.6416	0.7942	ŧ	. 9	0.9515	1,2602	0. <u>49</u> 18
	3.250	0,0682		1,1300	1,6480	0.7450	9	0	0.7576	1,2766	0.3763
	1°727	0.1200	•	1,8950	1,7065	0.7550	ŧ	8	1,5226	1,3341	0.3323
7-10	1,270	\$	٠	1	1.5500	0.7400	•	ł	1	1, 1876	0.3676
		UAR	WARF for whole	le catchment	nenĉ	ERP w14	ERF with & 0.3891	168			
	39.460	0.0701	0.3589	0.0333		0.0158	0.1609	0.3854	0.0677	8	0.0222
	29.472	0.0590	•	0.4930	0°0776	0.2080	0.1834	. •	1.6565	0.2470	0.6883
	16.571	0,0021	•	0°3160	0,1021	0.1683	đ	Ō	1.8904	0.5994	0366*0
	8°250	•	٠	0°0785	0°.1047	0°0348	ł	ŧ.	0.9348	1.2625	0.4051
S	3.250	•	١	0.0246	0.0415	0.0122	1	ŧ	0.7409	1,2589	0°3599
	1,727		ł	0,0264	0.0231	0.0066	•	3	1.5059	1,3174	0.3659
2- JD	1.270	ţ		ŧ	0.0151	0.0047	5	₿.	ţ	1 • 1 709	0.3509

. Total ERF depth over the basin

- 0.1312
 0.1589
 0.9688
 0.3641
 0.4504
 2.0734
- 0.R.O. depth 2.0100 Surplus 0.0634

. . ø-Index should be increased by an amount x given by the following relation to absorb the surplus depth.

 $\begin{bmatrix} 4x(0.39460+0.29472+0.16571) + 3x(0.08250+0.03250+0.01727) \\ + 2x0.01270 \end{bmatrix} x = 0.0634 \\ \text{or, } (4x0.865503+3x0.13227+0.02540) x = 0.0634 \\ \text{or, } '3.42012+0.39681+0.02540) x = 0.0634^{\circ} \\ \text{or, } 3.84233 x = 0.0634 \\ \text{or } x = 0.0165^{\circ}/\text{day} \\ \vdots & \beta \text{ rovisod } = 0.3724+0.0165^{\circ} = 0.3389 \\ \text{But rainfall on } 9.7.71 \text{ in } 3rd \text{ sub-basin becomes } 0.3889^{\circ}. \\ \vdots & \text{Hou for } x' \text{ (rovised value of } x) \text{ we get} \\ (3.84233 - 0.1657) x = (0.0634 - 0.0021) \\ \text{or } x = \frac{0.0613}{3.67662} = 0.0167^{\circ} \\ \vdots & \beta \text{ 2nd revised } = (0.3724 - 0.0167^{\circ})/\text{day} \\ \vdots & \beta \text{ 2nd revised } = (0.3724 - 0.0167^{\circ})/\text{day} \\ z = 0.3891 \end{bmatrix}$

Stn.	Veight	28.9	.73	Ŕ	9.71	30.9.71	11.6	1.10.71	11.	2.	2.10.71
	percen- tage	1.RP	VARF	RRP	RRP VARP	RKF	WARD	RRP	WARP	RRF	ARA
	15.16	1	ł	0.38	0.0575	3.94	0.5970	I	I	0.49	0-0720
	13.14	0.20	0.0263	0.95	0.1249	1.75	0,2300	1.75	0.2300	0.25	0.0328
	6.82	ł	t	0.08	0.0054	1.07	0.0730	1.00	0.0682	0.33	0.0225
	10.12	1.33	0.1346	1.26	0.1276	1.33	0.1346	ı	ı	ł	ł
	12.25	ł		1	ł	2.76	0.3380	1.55	0.1900	0.16	0,0196
	12.25	0.26	0.0318	1.28	0.1568	1.45	0.1775	0.37	0.0453	ł	ł
	10.39	ı	1	0.07	0.0072	1.64	0.1702	2.33	0.2420	0.28	0,0291
	8.95	ł	I	I	1	1.35	0.1209	1	ı	ł	ł
-	10.92	ł	1	0.46	0.0502	0.53	0.0579	0.67	0.0731	0.64	0,0699

r

103

.

•

CALCULATION FOR O.R.O. DEPTH

-

.

				_
Date	O.R.O. Curecs	B.F. Cusecs	D.R.O. Cusecs	· · · ·
28.9.71	598	59 8	: 3 9	DRO Depth = $\frac{12x73524x24x3600}{992x5280x5280}$
29.9.71	2054	566	148 8	= 2.76"
30.9.71	23276	534	2274 2	Gross weighted average rainfall
1.10.71	24531	502	24029	= 0.1927
2.10.71	11540	470	11070	0.5296
-				D. 8991
3.10.71	5678	437	5241	0 . 8686
4.10.71	3835	405	3430	0.2459
5.10.71	2770	373	2 397	3.7359
6.10.71	1862	341	1521	.'. Rain lost =(3.7359-2.7600)
7.10.71	1232	309	923	= 0.9759
8.10.71	960	277	683	. Average loss rate = $\frac{0.9759}{5}$ /day
9.10.71	244	244	0	= 0.1952 */day
T	otal	· .	73524	
* / *		0.9759 -	0.1927	0.7832
.*. ¢-1	ndex =		0.1927	$=\frac{0.7852}{4}=0.1958$ */day
R.	L .exces	ses are	29.9.7	1 0.3338
			30.9.7	
			1.10.7	
			2,10,7	
			Tota	1 2.7600

· .

.

AJAY CATCHHEWT AT SIKATIA CALCULATION FOR WARP OVER INDIVIDUAL SUB BASINS STORE DATE 28.9.71 TO 2.10.1971

(All rainfall figures are in inches)

one		Weightage	28.	9.11	2	J. J.	20.00			J.7I	2.1	17.0
Dasin No.	Stn.	percentage	RRF	RRF WARF	RHE	WARP	RRUP	WARF	RRF	RRF UARF	REV	RRP UARP
	2	3	4	ъ	9	4	ω	6	10	11	12	13
	۵	38.42	ł	ł	0.38	0.1460	3.94	3.94 1.5120			0.49	0.1882
	۵	31.42	0.20	0.0629 0.95	0.95	0.2985	1.75	0.5500	1.75	0.5500	0.25	0.0785
	ŋ	15.90	1.33	0.2115	1.26	0.2115 1.26 0.2002	1.33	0.2115	I	1		ł
÷	Ø	14.26	ł	I	1	а 1 1	2 .76	0.3938	1.55	0.2210	0.16	0.0228
Total				0.2744		0.6447		2.6673		0177.0		0,2895
N	þ	2.50	0.20	0.0050 0.95	0.95	0.0238	1.75	1.75 0.0437	1.75	0.0437	0.25	0.0063
	Ø	13.10	1.33	0.1742 1.26	1.26	0.1650	1.33	0.1742	J	I		ŧ
	U	22.50	I	I	ŧ	ť	2.76	0,6210	1.55	0.3485	0.16	0,0360
	v	17.40	ŧ	1	0.08	0.0139	1.07	1.07 0.1862	1.00	0.1740	0.33	0.0575
	૧ન	24.30	0.26	0.0632 1.28	1,28	0.3110	1.45	1.45 0.3522	0.37	0, 0899	ł	ł
	50	20.20	ţ		0.07	0.0141	1.64	1.64 0.3310	2.33	0.4710	0,28	0.0565
Total				0.2424	2	0.5278	1	1.7083	ŕ	1.127.1		0.1563

105

Contd.

н	N	n	4	'n	٥	••	00	רכ	10	F	12	61
m	υ	06*6	ł	ł	0.08	0,0089	1.07	0.1060	1.00	0660*0	0.33	0.0327
	44	30.80	0.26	0,0801	1.28	0.3940	1.45	0.4465	0.37	0,1140	ŧ	I
	60	25.70	I	;	0.07	0.0180	1.64	0.4215	2.33	0*5990	0.28	0.0720
	д	60 • 9	ł	1	I	ŧ	1.35	0.0822	ł	1	ł	1
	눡	21.51	ŧ	1 ·	0.46	0.1265	0.53	0.1458	0.67	0.1841	0.64	0.1760
Total	r,		,	0.0801	-	0.5474		1.2020		0.9961		0.2807
4	8	1.71	ŧ	*	0.07	0.0012	1.64	0*0280	2.33	0.0398	0.28	0.0048
	æ	44.50	ŧ.		1	5	1.35	0.6010	ł	I	•	1
	¥	53.79	6	1	0.46	0.2475	0.53	0.2850	0*67	0.3605	0.64	0.3445
Fotal	4		-			0.2487		0.9140		0.4003		0. 3493
5	4	53.85	-	1	t.	ŧ	1.35	0.7275	Ĩ		8	8
	¥	46.15	1	1	0.46	0.2125	0.53	0.2448	0.67	0.3095	0.64	0. 2958
Total	-				. •	0.2125	- - - -	0.9723	-	0.3095		0.2958

.

.

ç

1.

12 15 .64 0.4950 0.4950
10 11
7 8 9 - 1.35 0.3060 0.3560 0.53 0.4100 0.3560 0.53 0.4100 0.7160 1.3500 1.3500
4 2 4 2 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4
1 2 3 6 h 22.65 F 77.35 Total 100.00 - Total 100.00 -

.

Sub Dasin	Veightage percentage	VARF	on individual inches	idual basins les	ins in		EVARF on	bivibni (on individual sub beeins	aoing in	Inches
По.		28	83	30	٦	2	28	29	30	{	~
7	39.460	0.2744	0.6447	2.6673	0177.0	0.2895	0.0786	0.4489	2.4715	0.5752	0.0937
CI	29.472	0.2424	0.5278	1.7083	1.1271	0.1563	0.0466	0.3320	1.5125	0.9313	ł
Ŕ	16.571	0,0301	0.5474	1.2020	0.9961	0.2807	ł	0.3516	1.0062	0.8003	0.0349
\$	8.250	ł	0.2487	0.9140	0.4003	0.3493	1	0.0529	0.7182	0.2045	0.1535
	3.250	I	0.2125	0.9723	0.3095	0.2958	1	0.0167	0.7765	0.1137	0.1000
9	127.I	I	0.3560	0.7160	0.5180	0.4950	1	0.1602	0.5202	0.3222	0.2992
1-10	1.270	ł	ı	1.3500	t	ŧ	1	, I	1.1542	ŧ	ı
		$EVARP fo: \phi = 0.1$	for whole c 0.1958" /day	catcheont V			$\frac{\mathbf{E} \mathbf{i} \mathbf{A} \mathbf{R} \mathbf{P}}{\beta} = 0$	on individual 0.2080"/day	idual sul day	sub basins	
-1	39.460	0,0310	0771.0	0-9750	0.2270	0.0370	0.0664	0.4367	2.4593	0.5630	0.0517
CJ	29.472	0.0137	0,0978	0.4455	0.2745	ł	0.0344	0.3198	1.5003	1616.0	
50	16.571	t -	0.0582	0.1665	0.1326	0.0141	I	0.3394	0,9940	0.7881	0.0727
4	8.250	ł	0.0044	0.0593	0.0169	0.0127		0.0407	0.7060	0.1923	0.1413
5	3.250	ŧ	0,005	0.0252	0.0037	0,0033	1	0.0045	0.7643	0.1015	0.0878
9	1.727	t	0.0028	0600*0	0,0056	0.0052		0.1480	0, 5080	0.3100	0.2870
7-10	1.270			0.0147		ł	1		1.1420	1	1
		0.0447	0.3407	1.6952	0.6603	0.0723					
											108

. Total ERF depth over the catchment

0.0447
0.3407
1.6952
0.6603
0.0723
2.8132"

0.R.0. depth = 2.7600^{**}

Surplus depth = 0.0532"

Now, value of ϕ must be increased by an amount x given by the following relation in order to absorb the surplus depth of 0.0582**

x [5 x0.39460 + 4 x(0.29472+0.16571+0.08250 + 0.03250+0.01727) + 1 x 0.03270] = 0.0532"

or x [1.97300 + 4(0.59270) + 0.01270] = 0.0532"

or x [1.97300 + 2.37080 +0.01270] = 0.0532"

or x [4.35650] x = 0.0532

 $x = \frac{0.0532}{4.3565} = 0.0122''/day$

... \$ revised = (0.1958 + 0.0122)" /day

= 0.2080"/day

OVER
UARI 3
FOR 197
CALCULATION TE 11-13 OCP.
AR) CALCULATI
BIR BRE
SI KATI TCHLENT
BASIN AT THE CA
АЈАТ

	RRV	the second s			13.10.	2
vo es ou lo no no		VARV	RR	VARW	RRV	UARV
⇔ N K) K) A)	0.80 0.	0.1212	2.90	0.4395	0.05	0.0076
	1.00 0.	0.1314	2.95	0. 3878	0*50	0.0657
	0.13 0.	0.0089	5.66	0.3860	0.33	0.0225
lo lo m	ŧ		0.20	0.0202	I,	1
10 m	0.98 0.0	0.1200	2.62	0.3210	0.21	0.0257
•	2.22 0.	0.2695	3.54	0.4330	1	ŧ
	t		0.12	0.0125	3.30	0.3425
8.95 2.	2.39 0.	0.2140	2.66	0.2380	I	ł
	ţ,		1.09	0.1190	1 ·	ł
	Ó	0.8650		2.3570		0.4640
CALCULATION FOR R.O. DEPTH	HLdi	-				·
0R0 BF cusecs cusecs	DRO cusecs		Comp.	Computation for \$ B.O. denth =	\$ index 77249x24x12x	3600
10.73 909 909 10.73 1020 857 10.73 52250 805 10.73 14700 753 10.73 8648 701 10.73 8648 701 10.773 3800 649 10.775 1194 598 10.775 547 598	163 51445 7947 7151 596 0 77249	<i>.</i>	VARB	over the "	992x5280x528 2.90" catchment 0.8650 2.3570 0.4640 5.6860	Q

 \checkmark

••• Rate of loss = 0.7860 = 0.2620" /day ••• Lost rain = (3.6860-2.90)** = 0.7860 Non of the WARP is less than 0.2620" Effective WARP OVEr the catchment •• # index = 0.262 * /day - 0.603 - 2,095 - 0.202 2,900 11.10.73 12.10.73 13.10.73

Sub	н. G.	Heightage	11.10.75	co	• 27	CL.01.21		CI OT CT
Dasın No.	stn.	percentage	RRP	WARP	RRV	UARD	RRV	VARV'
	N	3	4	5	9	7	8	6
	đ	38.42	0.80	0.3075	2.90	0411.1	0.05	0.0192
	þ	31.42	1.00	0.3142	2,95	0.9270	0.50	01510
	ซ	15.90	ŧ	ŧ	0.20	0.0318	\$	ı
	o	14.26	0.98	0.1398	2.62	0.3735	0.21	0,0299
Total				0.7615		2.4463		0,2061
	م	2.50	1.00	0.0250	2,95	0.0738	0.50	0, 0125
	ũ	0 1 .51	ł	8	0.20	0,0262	8	. 1
	0	22, 50	0.98	0.2202	2,62	0.5890	0.21	0.0472
	o	17.40	0.13	0.0226	5.66	0.9850	0.33	0.0574
	44	24.30	2.22	0.5375	3.54	0.8650	•	ı
	হ্য	20,20		I	0.12	0.0242	3.30	0.6665
Total				0.8053		2.5632		0.7836

CALCULATION FOR WARP OVER INDIVIDUAL SUB BASINS OF THE CATCHTENT

-	5	5	+	5	9	· L	8	6
ĸ	ت	06*6	0.13	0.0129	5.66	0.5610	0.33	0.0327
	* •1	30.80	2.22	0.6775	3.54	1.0900	1	ł
	80	25.70	t	:	0.12	0.0308	3.30	0.8480
	д	6.09	2.39	0.1455	2.66	0.1620	v 1	ŧ
	ч	27.51	I	ŧ	1.09	0*2000	Ĩ	ł
Total		1	2	0.8359	s	2.1438		0.8807
*	80	1.71	ł	ŧ	0.12	0,0021	3.30	0,0564
	ሻ	44.50	2.39	1.0640	2°99	1.1830	ł	ł
	R	53.79	ł	ł	1.09	0,5860	ŀ	1
Total			n	1.0640		1.17.1		0,0564
5	4	53.85	2.39	1.2875	2,66	1.4320	- **	
	¥	46.15	ł	ł	1.09	0,5025	8	ţ.
Total				1.2875		1.9355	بالمرحل والمعالم والمحاصر والمحاط والم	nente mentanon este de la contra
								A REAL PROPERTY AND INCOME.

Contd.

6	• •	
6 - 7 - 8 66 0.6025	9 0.9200 1.5225 2.6600 2.6600	,
2.39 0.5415 2.66	1.09 2.39 2.3900 2.66 2.3900 2.66	
1 2 3 6 h 22.65 k 77.35	Total 7-10 h 100.00 Fotal	

.

CALCULATION FOR ERP ON INDIVIDUAL SUB BASINS OF AJAY CATCHNERT AT SI TAFIA STORM DATE 11-13 OCT. 1973

(All rainfall figures in inches)

Sub	Veightage	GROSS	GROSS WARF INCH		TRU	11E' AKP II & = 0.2620	2620
Dagin No.	percentage	11.10.73	12.10.73	13.10.75	11.10.73	12.10.73	13.10.73
-	39.460	0.7615	2.4463	0.2061	0.4995	2.1843	3
~	29.472	0.8053	2.5632	0.7836	0.5433	2.3012	0.5216
	16.571	0.8359	2.1438	0.8807	0.5739	1.8818	0.6187
	8.250	1.0640	1117.1	0.0564	0.8020	1.4491	t
	3.250	1.2875	1.9355	ł	1.0255	1.6735	1
9	1.727	0.5415	1.5225	I	0.2795	1.2605	ŧ
01- 7	1.270	2,3900	2.6600	ŧ	2.1280	2.3980	t
			M	BASIN		WITH $\beta = 0.2719^{n}/day$	g"/àay
	39.460	0/61.0	0.8650		0.4896	2.1744	t
	29.472	0.1630	0.6780	0.1537	0.5334	2.2913	0.5117
	16.571	0.0949	0.3115	0.1024	0.5640	1.8719	0.6088
	8.250	0,0662	3611. 0	ŀ	0.7921	1.4392	ł
5	3.250	0, 0329	0.0537	•	1.0156	1.6636	ł
Ś	1.727	0.0048	0.0218	1	0. 2696	1.2506	ł
1-10	1.270	0.0270	0.0304	ł	2.1181	2.3881	ł
		0.5858	2.0779	0.2561			1

WARF excess = 0.5858 2.0779 0.2561 2.9198 R.O. Depth = 2.9000

. Surplus rain $= 0.0198^{**}$

The value of \$ index must be increased by an amount x to absorb the surplus rain. For the value of x x [2(0.39460 + 0.08250 + 0.03250 + 0.0172 +0.0270) + 3(0.29472 + 0.16571)] = 0.0198 or x [2 x 0.53957 + 3 x 0.46043] = 0.0198 or x (1.07914 + 1.38129) = 0.0198 or 2.46043 x = 0.0198 or x = 0.0099" . \$ revised = (0.2620 + 0.0099)" /day

= 0.2719" /day

APPENDIX - 6

COMPUTATION OF FLOOD HYDROGRAPHS FOR FIVE STORMS

		87 JB	22 23									
		59	5									
		31	20									
		77	ar									
	4L	51	81									
	INTERV	ล	2									
	TO TIME INTERVAL	a	197		• •			· · ·				
	1	я	55	,								1
	ELEMENTS OF HYDROGRAFH ORDINATES ACCORDING	B	, Pr					н		Ø	80	6
	LE9 AC	80	13					~	5	88 0 00	6 0°0(64
	RDINA	2				H Alto		17 282 17 282 17	000.0	863 3 863 3 863 3	0.8688 0.1288 0.0116 0.0008	48
	O HANK	9	8		54	38 29 49	0003	3136	0080	888 a 898 a 897 a	, 1288	4 00
	XDR001	5 6	ក		্ল নৰ	0,0001 6	049 0	13136 3136	D62 0	8 88	588 0	8 8
	H 40		ន		13	0	8 1 0 •0	58	1.8861 0.1062 0.0080 0.0005		0,8	
··· . ··	ENENTS	4	α		364 32110	0	• 0 82	2080	188	687		
	ਡੋ	8	æ	6000*0	OLLEL	0.0568 131 2220 7150	0*9127)*0821 0*0049 0*0003	2080				
		8	2			0.9409						
		н	- -	1620*0 0026*0		0						
	ġ	1		•0								
Acz I	R.O. gen	CIISOCS	5		12490	2360 2360 7600 7600		2278 2278 3435 3435	ł	327 976 976		%%
0.044x4cx I	ng to		4		0,6938 0,6938	0,1501 0,1501 0,4843 0,4843		0,2577 0,2577 0,3882 0,3882		0.0744 0.0744 0.2218 0.2218		0.0194 0.0194 0.2882
R.O.	ERP according	ral E			100			~~~~~~				-000
	ERP a	Intervel	,e		151	•••						
	Area in	AC 1	8	250560		711 78t	105139		62403		2064 0	
	Sub-basin											
	Sut	i i	-	rt.		~	G		4		ŝ	

•

117

.

		· *										
83												
55									1000			
51									0.00	 	8	
80							03	n n	33 0.0		v	
ន					63	3	4 0.00	-19	0.0366 0.0033 0.004 0.0001	48	8	
94					0000	in a second s	0*003	96	0*036	8	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
A			1000*0	4 7 6	0.0026	88	.0308	37	2232			
9	1000		0.8086 0.1697 0.0204 0.0018 0.0001	47 226	0.7836 0.1880 0.0264 0.0025 0.0002	16	0.7600 0.2052 0.0308 0.0034 0.0003		0.7374 0.2212		203 1065 1268	
8	0 6000	r R w w	204 0,	538	1880 0.		600 0,		0		372 1901 1973	
74	0.8329 0.1499 0.0157 0.0009 0.0001		97 0°C		335 0.1		0*1			• .	323 937 1259	
ន	0°0 8	P3 57	9T*0 0		0.78							
9	0+145	222	0.808								669 873 1632	
7	8329	12									1864 809 2673	
ន	0										4944 746 6689	
8											11648 4944 680 745 12328 6689	
80			• .								16543 22 019 662 616 17095 22936	
2		-			•	-*					16543 662 17095	
9											2220 488 2708	
Q		145 145 165 165		1199		110		****	,	• • ស ្តិស្តិ	860 424 360 424 360 424	
4		0, 1582 0, 1582 0,0179 0,0179		0.7142 280 0.7142 280				• 0•7142 0•7142		- 0.7142 0.7142	88	
0				4004	•	10.04		-100 ⁻⁰ -4		1004		
~	10967		4864		2016		832		362		Total Base Flow Grand Total	
-	ų		~		00		0		9		- 40	

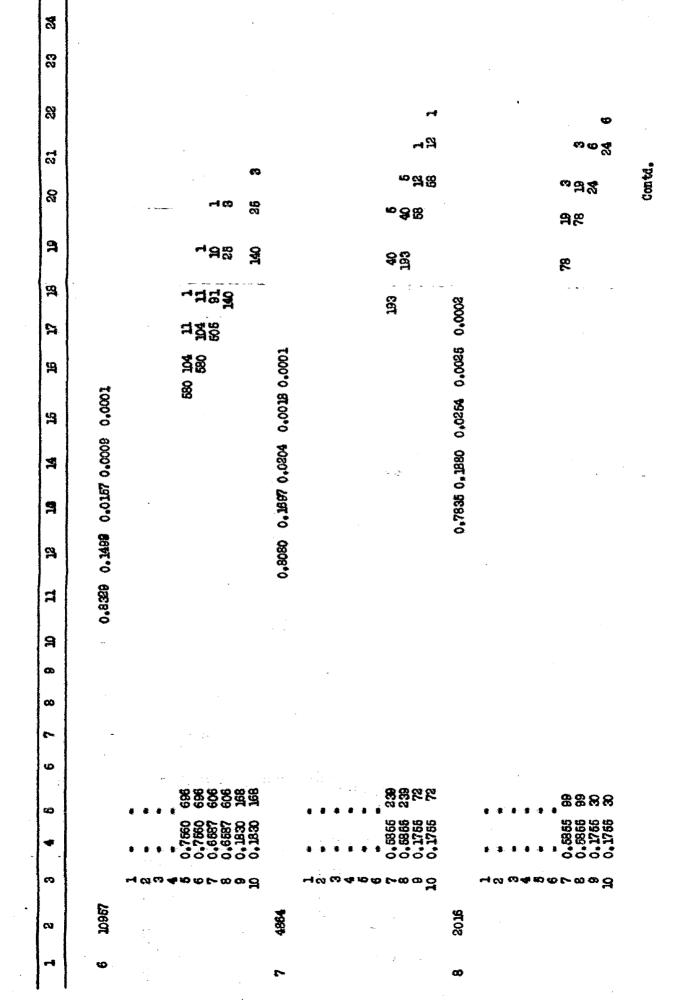
	R	2	ж	. н		COMFUTATION OF FL TIME INTERVAL 12	TATION 0) INTERVAL	P FL00	.00D HYDRCGRAFH STOPH DATE 3-7 JUNE 1971 Hours (All Flows In Cusecs)	KOGRAPE	I STOR	D ATE CUSEC	Ë	UNE 1	27						
Internal	Area acres Ac	ERP	cording	R.O. ge	-42			NI WEN	TS OF	HYDROG	RAPH C	PD IN A		CORDIN	G TO	I ME	NTERV (
3 4 6 7 8 9 10 11 12 13 14 15 15 13 20 21 23 23 1 - - 0.9700<0.02831.0.003 14000<483 13 14 15 14 15 15 20 21 22 23 1 - - 0.9804 20000 14000<483 25 250		Inter	SRP 1ncl			C1	8	4	Q.	9	c	8	6	1						19	
• •			4	6	9	6	80	6	9	1	ន	ន						ł			ł
0.0564 20,000 19400 453 28 25 2600 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000					0.9700	1620*0	0000*0														
0.9808 1570 1478 69 4 0.0998 1570 1478 89 4 0.7403 11840 10950 658 39 1 0.7403 11840 0.9850 658 39 1 0.7403 11840 0.9950 658 39 1 0.7403 11840 0.9950 658 39 1 0.7403 11840 0.9950 658 39 1 0.7403 11840 0.9950 658 39 1 0.7403 6610 0.0051 0.9950 659 713 1 0.7403 6610 0.0051 0.0950 659 713 1 1 0.0579 439 450 425 25 1 413 25 1 0.0581 6450 4556 255 2		๚๗ฃ๚ฅฅ๛๛ฃ๚	• • • • • • • • • • • • • • • • • • •	2000 2586 5185 5185 5185 5185 5185 5185 5185 5			19400	482			80 03 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	80 57 12 CB 80 57 12 CB 60 11 CB 70 11 CB									
0.0998 ITO IATB 60 4 0.74002 IIF40 IATB 80 4 0.774022 IIF40 IATB 80 4 0.74022 IIF40 0.950 658 39 1 0.74032 1640 0.950 658 39 1 0.74033 6610 0.950 658 39 1 0.0379 433 0.0512 6510 373 1 0.0379 433 0.0511 0.0531 6710 1 0.0379 433 610 0.0531 6210 373 1 0.0379 433 6140 0.0021 0.0031 6210 6310 1 0.05112 6140 0.0021 0.0031 632 2 1 1 0.05113 6140 0.0021 0.0031 1 1 1 1 0.05113 614 4356 232 2 2 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0*9409</td><td>0.0561</td><td>6.0,00</td><td>26 0•0</td><td>100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						0*9409	0.0561	6.0,00	26 0•0	100											
0.812 0.0021 0.002 0.6812 5140 4690 422 25 2 0.6417 4785 0.6003 0.6417 4785 0.690 422 25 2 0.6417 4785 392 23 1 0.0951 840 0.0951 840 0.0051 856 858 858 858 858 858 858 858 858 858		๚๗๗๛๗๛๛๛๛๚	0.0998 0.0998 0.7402 0.1354 0.1354 0.0279 0.0279 0.0279	1570 1570 1111640 81130 8610 8610 8610 8610 8610 8610 8610 861		147				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 80 87 87 87 87 87 87 87 87 87 87 87 87 87	- 000 - 00 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - -			413 413						
0.681B 5140 4690 422 25 25 2 0.6417 4785 0.6417 4785 0.6417 4785 0.6417 4785 0.6417 4785 0.6417 4785 0.6417 4785 0.651 840 4326 332 23 1 4786 332 23 1 4786 332 23 1 4780 426 25 1 4780 426 25 1 4730 426 25 1 4730 426 25 1 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 1162 0.1316 0							1918.0			0049 0	•0003										
		48848000 8 89	0,6818 0,6818 0,6417 0,05617 0,05661 0,6869 0,1316 0,1316	6140 6140 4785 4785 840 840 6186 6186 1162 1162			4690		N 8	425					3 26 1061	26 26 1061	80 1				

•

38									1
8									1
23									
22	- -								
57				-	6	961			
ន				ი მთ თ ლ				8	-
a	0 7000				398 4	943 8	3116 3165	5 4496	ន
8				26 26 26	1383	706 1196 943 571	3116	8 559(
8	0 2 3 0 0 2 3 0 0			246	4477	705	3076	2 825	6
9	6 447 6 447			1888 283 1888	10063 8037 4477 1383 398 48	145 78	2997 3037 3076	13196 11162 8258 5595 4496	··· •• · •
	6 447 3726		en co	81	1006	14	2997	1319	ω
ន	3726		-1 e e e		1937	911	2968	LEO ID	
2	53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0008	4188888		12706 11937	M	2918 2	57 68 1	2
9	•	0,8588 0,1288 0,0116 0,0008	1112		9372 L	720		6260 161813 12971 15768 15010	
8	0.8861 0.1062 0.0080 0.000 5 1998 240 18 1 1998 240 18 24 492 59 492 59	88 O+O				6 JÚ	9 2879	21 8131	
a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.128	18		ă (6]	2800 2339	50 J.51	9
ล	* 1062 240 1998	\$583	780		2246				
6	1998	0			380.36		2760	40795 2	so.
80	Q				26657 38036 22460 11734		2721	28,378	
					1478		2681	4169	
~									4
æ	the second second						2642	2642	
a	8888 9999 88888 8888 9999 8888 8889 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 8899 889 89 8		88000	5500 5500 5588 5500 5500 5500 5500 5500			2602	2603	6
4	0.8133 0.6133 0.1038 0.1038 0.1038 0.1586 0.1586 0.1586		0.4080 0.4080 0.1171 0.1171	0.9915 0.9915 0.1289 0.1289		Sub-basin 6-10	NOT	erend total	of 1971
0	ក លលងពេលសល័លដ្ឋា		-102 09 4 9 10	80040	Total	Sub-b	Base flow	Grend	June 1971
CV9	62403	20640							
	→	ŝ							

121	1		•								1	
	26											
	ষ্ঠ											
	23											
	53			e	,		н			ß		
	51			406	1		~'A				contd.	
							•		÷	80 00	0	
	8			131 13			នន			158		
	A			e122			88 88		el	891		
	្ត			121		06	332	g	ب ∞			
	A			670		2		0.7836).1880 0.0264 0.0026 0.0002				
				Φ	E000*C	ကရ		.0025	8 8			
	19	000	4 N		0018 (6188		0264 0	ŝ			
	5	0 6000	4303		0.1697 0.0204 0.0018 0.0001	88		-0 080 0 0				
	¥	57 0.0	ងុម្ភង		2 0 . 0	-		5.) . 35	•			
	ន	10.0						0,783				
	ង	0.1499 0.0157 0.0009 0.0001	919 919		0.8080							
	4	0.8329	9 ID		0							
		•									,	
	Я 0											
	60											
	~											
	ဗ											
	s		- 4233 233 233	100000 100000 100000		<u>88</u> .	4485		11441 2021	1108		
	4		0.7965 0.7965 0.0161 0.0161	0.8752 0.8752 0.2283		• 0.2675 0.2675 *	위위 (거리))		• 0.2675 0.2675	1.1875 1.1875		
	ŝ	~	10.0460	80040		<i>ส</i> ญ <i>ต</i> ุร [ู] ย์	6001Q			80000		
-	63	10967			4864			2016				
	-	ę			~			8				

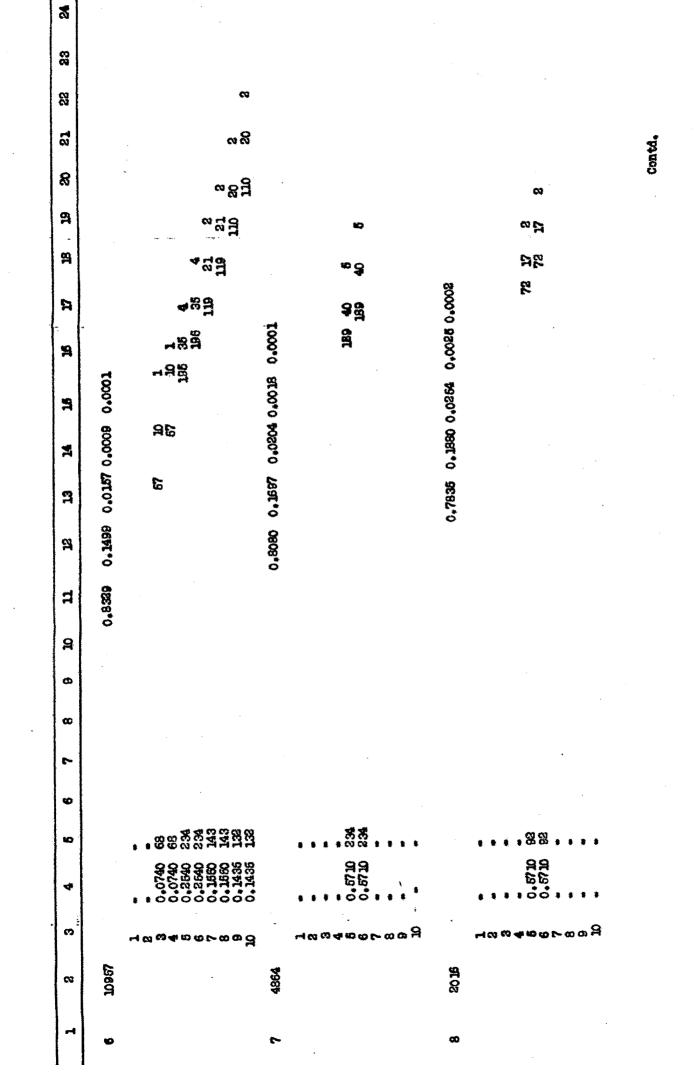
26				-						
8								`.		
23					_				r-1	
				¢.				•	-100	
ន				0	i.			. 0	8°	
51				17	2			ØČ	ŝ	
ଷ୍ଷ				63						
61				. 2			0			
81			4			0.0033	0.0			-
A	0.7600 0.20#2 0.0398 0.0034 0.0003		4 A			1 0000	Q			
9	0308.0		71							
93	0.82 0				с 2	Š				
	0 0.20				66 C	5				
R	0.760	- 								
ន										
93										
a										
9										
6			·							
8			·							
~										
9										
۰ a			.99	. • 8 8 8 8 8 8	* * -		a 50 00 a	. iS	8.	,
			0.2676 0.2675	1876 1876			• 2675 0.2675	1, 1876	875	
e		•	100 I		• •	*	NN 1001		កំព	
2	:				. Q					2
		<u>, et c</u>	01 67 4 62	0 00 −1 00 (N 99 🐗 10	0000	20×	'
•	832				200					
										1


	ట		·	బ				ч			***		
	. فنو			مرز					ŀ	'	basin No.		
	105139			187117	7	5 <u>H</u>	8	250560	a	5	Acres		
ga a va a ka a h	F	500-1004			Røa		н с о о н		си С		tine in	0.084 x	
0001111 49995 77722		0.828 0.828 0.1236 0.1236 0.1236 0.1236 0.1236 0.1236 0.1236 0.1236 0.1236	2160*0 2160*0	· .	0.0116	0,0339 • 0,0339	0,0805 0,1927		*		ERF according to time interval (Inchea) Interval ERFIT	BO H I	.
4423888114 4425880 55580 555800 555800 555800 555800 555800 555800 555800 555800 5558000 555800000000		13020 1942 6420 6420	1442 1442		244	200	4088 6088 6088 6088 6088 6088 6088 6088		6	ensers.			
				~			1642	0.9700	6	•	1	MPUTATION O TIME UNIT	
and a second secon	, O		1368	0.4006.0			4 9 1642	0.0291	7	Ð			
·	0.9127 0,		81 1358	0.0565			3940 a	6000 * 0	œ	ω	EL EMENTS	FLOOD HYDROGRAFH S 12 HOURS (ALL FLOWS	
ju ser V	0821	. e 	8	3.0025		Į	20 20 20 20 20 20 20 20 20 20 20 20 20 2	-	Ð	\$	0g	GRAFH L FLOW	
	0.0049	iii an	*	0.0025 0.0001		683			R	01	LDROGR &	STORM D	
ઝે	0.0821 0.0049 0.0003	t 0928T		•		683 830	•		F	G	EXDROGRAPH ORDINATES IN CUSECS	CUSECS)	
7628 686 7628		80 12200 13				48			ĸ	7	NATES I	913 JULY 1971 3)	
87 87 88 88 88 84 84 84 84 84 84 84 84 84 84		33 736 13 1828 110			A.2.	щ		ļ	ដ	8	N CUSE	1971	
80 8 4 8 20 5 4 8 20 5 4 8		a the second sec			88				¥	9			
4025 6255 6255 6255 6255 6255 6255 6255 6	0				223				R	Ŕ	ACCORDING TO	-	-
	ع و		•		4				R	F	10 1		
		5 - 5-							5	ß	TINE IN		
8									Ъ.	ដ	INTERVAL		
	نبۇ	•							R	¥			
مز									8	ដ			
									21	В			
									8	ų			
									23	B			123

•

Contd.

•


Contd.

-	26	1					
077	2			2	ł	· -	int q
•	23			-103 a	s.	et a	46
	8			-1 ⁶⁰ co		e c	80
	51		c	31 31			505
	ଛ			20 1	1000°	13	407
	1		¢.	2	5 5000		563 4
	ື່ສ	803		· • · ·	33 O*(
	କ୍ଷ	0.0	-		0°*0		801
	A	0.0034		·	0.0365		620
	ମ	0,0308			883°.		684
	3	0.7600 0.2052 0.0309 0.0034 0.0003			0.7374 0.2212 0.0365 0.0033 0.0004 0.0001		689
	57	20092		•	Ö		
		0					
	8						
	8						
	=						
	ន						
-	a						
	æ						
	~						
	9		-				
ĺ	50	· • •		199		-	Q
	4		5855 5855 5855	0.1765		0.5865 0.5865 0.1765	1766
-	3.	-102	n	-	+ 1 + 1	000	
	03				*34¥ *8 ₩		
		88		20	5		
	-4	Ġ		Ş	1		

Sub-ba-	Cre	SRF ACC	according to	R.O. gen-	gen-		ELEMENTS O	AN TO ST	DROGRA	OF RYDROGRAFH ORDINATES	N ATES		ACCORDING TO TIME INTERVAL	anit (THTEM	191						
ON HIS	04	Intervel	L ERF(1)	ersted cusecs	r1	63	3	4	9	9	-	88	6	g	a	1 21	13	14 1	15	ন গ	37 73	et .
-	8	3	4	5	9	4	8	œ	9	7	3	ន	14	97	କ୍ଷ	г 17	ଞା	8 61	ଞ୍ଚ	2 4 22	8 23	22
ri -	820000 380000 390	u 004000000g	0.0332 0.0332 0.2384 0.2384 0.23846 0.2816 0.2816 0.0269 0.0269	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,9700 680	0,0291 0,0009 20 680 4460	0 • 0009 4460	1.34	4 35120	4 753 25120 5	23 57 50 50 50 50 50 50 50 50 50 50 50 50 50	23 5750 5750	200 SS 200 C	8 88 88 88	je j							
ก ณ	187117	. • .				0*9408	0.9409 0.0565		0*0025 (*0003	-												
	3 * * *	4000400p003	0.0142 0.0142 0.11599 0.15999 0.7502 0.4696	2224 2224 2225 2225 2225 2225 2225 2225		51	811 811	2370 2370		142 6 2370 142 6 11100 666 30 1 11100 666 30 6796 400 6796 400	6 30 666 31110	30 666 6795	80 m	18 808 808	-19	#4 :-						
Ø	10 15 39						1318.0	0*0831		0.0049 0.0003	800											
		୴ଊଊୡଢ଼ଡ଼ଽ୶ଡ଼ଡ଼ୖୖୠ		3 4 4 1 1 4 3 4 4 8 8 0 0 0 0 8 8 8 8 0 0 0 0 8 8 8 8 8 0 0 0 0					ä	8987	1333	4008 4006 3	6 360 22 1 6 360 22 1 6066 3266 32 3180 286	80 286 318 318		8884P	88 54 H	۵۵ ۵۹				
																			contd.	• g		

28403 0.0004 89 0.0004 89 0.0004 89 1.376 9 9 1.376 9 9 1.376 9 9 1.376 9 9 1.376 1.376 9 9 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376		5	e	4	10		9	2	80	с С	9	7	4	ន	R	ង	9	8	ន	ମ	8	31	ន្ល	83	నే
2 0.00004 89 1<	-	82403							ċ	8861 0.	0 8901	•00800	0.0005												
20640 20640 20640 20640 20003 4 20003 4 3 0.0003 4 4 20003 4 3 50 0003 8 8 8 3 50 50 8 8 8 8 8 8 9 50003 4 7				0,000 0,000000	11000 110000 110000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 1000000	н						78	88	9 1376		155	346	848 a h	88 88 242	000	0				
3 0.0023 4 3 0.0023 4 4 0.0023 4 7 0.3822 663 8 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00583 8 9 0.00439 76 8 600 911 4704 697 457 457 45 10 0.00439 76 650 654 515 602 456 457 451 457 451 457 45	5	20640			· _					ō	8688 0	, 1288 (0,0008					T •	}	r -				
astin 6-10 630 911 4704 6977 29139 38696 22574 19196 13813 6672 1334 astin 6-10 67 636 657 29139 38696 22574 19196 13813 6672 1334 flow 638 632 560 634 618 502 4% 470 463 437 421 total 638 1511 29667 39188 25010 19723 14133 6316 2076 1			+@@ #\$ @ P @@ ⁴	000833 000233 000233 000608 000608 0008000000									ey .	ņ		386 70	88 76 76	20 Jan	4418	409 80 80	-8				
536 532 566 550 534 518 502 426 470 453 437 421 538 1262 1477 5254 7511 29667 39138 23010 19723 14133 6315 2076 1		rotel				680		4704		86163	1	1	1			1	834	766	415	191	83				
636 632 634 518 602 426 470 463 437 421 638 1263 1477 6264 7511 29667 39198 23010 18723 14133 6316 2076 1	~	sub-basin 6-	9		- :								Q	-1			225	459	203	208	J E0	8	0		
698 1263 1477 6264 7611 29667 39198 23010 19723 14133 6315 2076	~	Base flow			638	- 1		660		818	5 02						421	405	390	373	367				
	9	Jrand total			593		1477	62.64	7611	29667	816£							16.30	त्रार	8 87	630				
28 29 71 10 17 17 17 17 17 17 17 17 17 17 17 17 17					83		39		8		rt		C1		Ţ	n		4		ŝ					

RO = 0.042 X Ao X I

					7				ч	~			
v			ß		11		sy.	0,0008	7	30	341	371	
5	Ч		860H		4 192	0.0005	35	9110.0	49	337	373	710	
4	12 16		15 223 596	0,0003	72 212	0*0080	292	0,1288		1438	405	1845	
s	34 10 87382 528	1000 °O	4 336 3690	0,0049	808 808	0.1062		0.8589		5787	437	6224	
N	7 1097 12750	0,0025	90 5600	0.0821	5	0.8851				19598	470	20068	
1	0,0009 1 36,550	0*0565	1495	0,9127						38258	502	38760	
0£	0.0291 22 7080	0*6*0					·			7102	534	7636	
33	0.9700 748									748	566	1314	53
R.O. generated Cusecs	971 7300 37700 13150		1589 5950 5320 534		59 232 232 210		330		2		598	598	29
as per <u>e interval</u> e <u>ERP (1)</u> inch	0.0528 0.3965 2.0480 0.7150 0.0296		0.2400 0.8990 0.5920 0.0959		0.0442 0.6680 0.1748 0.1586		1.1420		1.1420	a a de la companya d			
n ERF e time Date	しのどみ む		H 01 10 4 10		えこうゆら		ユミラチラ	Ч	01040	Total	.	п.	Dates
1 Area in Acres Ac	437677	157542		31597		6880		1184		10	B.F.	G. T.	Da
Sub-basin No.	ч	8	·	ŝ		4		ŝ					

:

Sub-Basin No.	8	23	30	1	2
	0.0262 + 0.0102 0.68932	0.1722 + 0.4420 0.68932	0.9690 + 0.4420 0.68932	0.2222 + 0.2705 0.68952	<u>0.0204 + 0</u> 0.68932
1 and 2	0.0364 0.68952	= 0.2662 0.68932	= <u>1.4130</u> 0.68932	- 0 <u>.68932</u>	c 0,0204
	= 0.0528	= 0,3965	= 2.0460	= 0.7150	= 0.0296
3 and 4		0.0563 + 0.0033 0.24821 = 0.0596 0.24821	0.1648 + 0.0593 0.24821 - 0.2231 - 0.24821	0.1 <u>310 + 0.0159</u> 0.24821 - 0.24821 0.24821	<u>0.0121 + 0.0117</u> 0.24821 = 0.0238 0.24821
		= 0,2400	0668°0 =	= 0.5920	= 0.0959
5 and 6		0.0001 + 0.0026 0.04977 = 0.0027 = 0.04977	<u>0.0245 + 0.0088</u> 0.04977 = <u>0.0333</u>	<u>0.0033 + 0.0054</u> 0.00977 = 0.00877	0.0029+0.0050 0.04977 = 0.0079 5.0497
	·	= 0.0442	a 0.6680	= 0 .17 48	≈ 0.1586
7 and 8 and 9 and 10			1.1420		

15 16 17 19 19 30 21	0,2062 0,0308 0,0034 0,0003	1 8 8	8	• •	0.7374 0.2212 0.0365 0.0033 0.004 0.0001		13 4 4		• .	206 420 459 308 208 160 27
11 28 23 14	0.7600	·								57 67 2
678910									•	
4				₽ ₽ ₽ ₽	.	2 2 1	0.5710 17 0.5710 17		•	
сл гл	ст с Ст с С	9 0 4 10 7 10 7 10 7 10 7 10 7 10 7 10 7	o t~ co c	, A	10 362	-4 07 P	2 4 ID O I	- 90		Totel 6-10

. •

sin No.	Area acre Ac	Hae	Accortang to Interval	K.U. gen-	~ .	CLIED VOID		NINTER A	GRAFH	OF HIDROGRAPH UNDIN CALL	A	CUSECS	CUSECS ACCORDING	DING TO	TIME	INTERVAL	F					
•		Interval En	(1) AN 3	cusece	7	1		23		13		14		15		8		2				
			inch		-	9	9	4	4	9		7	~	9	1	2	5		JE I	Я.	5	2
ы	Ø	0		80	v	~	8	6	я	ุ่ส		ន្ត	នា	14 15	8	Ä	94	a	ន្ត	5 S	ន	83 83
-	260560			0	0079.00	0*0381 0*0008	1 0*00	ø														
	ส	na a	0.2448 0.2448	61 55 61 55 22000	8000	900 700 700		5 150 8 22200 665	5					1997 - Topo								
	<u>ମ</u> ମ) 4 ID 00	1.0872	55900		• *	}	52200	665	10								-				
3	187117			-		9409	0.0561	0,002	0.9409 0.0565 0.0025 0.0001	10												
		-103 0 4 10 4	0,2867 1,2667 1,1467 0,2559 0,2559	4200 4200 13010 4020 4020		3980	3960	1989	1100000 100000 1000000	11 60 10 380 380 380 380 380 380 380 380 380 38	2227 2227 3380	52 7 8 8	9	ταμη κά κ.∧								
e	105130						0.9127		81 0°0	0.0821 0.0049 0.0003	003											
		ಗಳು ಬಳ ಬರು	0,2820 0,2820 0,9360 0,3044 0,3044	2495 2495 8200 8200 8200 8200 8695 26695 26695			2280		8280 8280 744	3486 2486	12 1 673 40 7485 673 2460 2460	80 2460 2460	551 55 551 55	Å.	-1							
4	62403							0,885	01.0 1	0.8851 0.1062 0.0080 0.0005	80 0•0	906		udy.								
		- 	0,3961 0,2861 0,7196	1743 3165 3165 *				1642		1542 1845 1845 1542 1845 28000		14 336 2800 336 2800 336	88	т. Р. с. 4. м. 4. ман. 1. н. О						·		
														uus.				C	Con ta .			

•

4											
55											
23											
8											
51											
80											
2								• • •			
								eri	-125 242	860	A
8						~	202	MC	7 55 624	686	
41				r 1	-1	198 887	0°0 9	us gg	55 27 598	780	99
93		۶۰۴		нa	0000*0	ά	0.002	n BB	200 111 675	1085	
51		-	0.8329 0.1499 0.0167 0.0009 0.0001	6 88	0,8080 0,1697 0,0204 0,0018 0,0001	3000	0.7835 0.1880 0.0254 0.0025 0.0002	8 % B	814 94 649	15 <i>57</i>	
			6000	04 02 02 04 03 02 04 03 00	0204	73 395	1880	88 99 199	1695 56 727 6		36
3,7	0*0008	1 10 186 17 1236 136	167 0,	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 <u>16</u> 91	3403	835 0	091	1	6500 2478	74
ឌ			0*0 66		80 0.1	Q.	0*1		5799 701		••
ង	8 0.0116	91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91188 91118 9111118 91118 91118 91118 91118 91118 91118 91118 91118 911111111	9 0 . 14	8 103 103	0.80	349			12:309 778	0 1308	
ิส	0,1288	113	0.8321	103				Ň		1 1786	ខា
я	0,8683	168						·	44104 28860 17107 805 831 753	3 2969	
•	ō								44104 805	4480	2
ω	•								28822 883	9967 29706 44809 29691 17860 13088	
~									9100 857		ដ
9									5000 936	5935	
6		880 880 1440 •		124		*** *******		1 1 2003 2014 1 1 2005	606 60	606	9
-		0.5078 0.5078 0.8318 0.8318		0.1348 0.1348 0.6263 0.6263		1,0691 1,0691 1,1941 1,1941		1.0591 1.0591 1.0591 1.0591			
8								-10104400	Q		
03	20640	~100 ~ 400	10967	400 03 410 00	25	-101 W 41 10 10	9	ы <i>Ш</i> ый ф Ф	11 9-10	otel	
	Ъ Х		ğ		4864		50.16		Total Sub-basin Base flow	Grand total	Date
-	9		φ		~		8		e a a	5	Da

-1-	~	6	4	υD	Ċ		ω	o	я	a	8	81	77	R	ង	A	81	67	କ୍ଷ	13	83	23	8
a	8 8															-				ł			
\$	2												0.7600 0.2053	0.2058	0.0308 0.0034 1.003	0°0034	1,003						
			1,0591 1,0591 1,1941 1,1941	****		·							56	15 66	66 18 22	8617 F	г а	୍					
я	88	•												0.7374	0,2212	0.0365 0.0033 0.0004	0.0033	0°004					
-		10	163011 10591											23	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-10-	+F ⁻¹						
		ന ര ന ന	H.,	88 						н 						8	000 20	-too	H				
		. .											18	ది	7	6	6 6	A	-+				

<u>REFERENCES</u>

1. Shorman, L.K.

"Stream flow from rainfall by unit graph methods", Engineering News Record, Vol.108.pp.501-505, 1932.

2. Clark, C.O.

"Storage and Unit hydrograph", Trans. ASCE, Vol.110 pp. 1419-1446, 1945.

3. Chow, V.T.

" Hand Book of Applied Hydrology"

McGraw-Hill, Now York, 1964.

4. Nash, J.E.

"A Unit Eydrograph study with particular reference to British catchments", Min.Proc. Inst.Civ.Engrs. No.17. 1960.

5. Bernard, M.M.

"An approach to determine stream flow", Trans.ASCE Vol. 100, pp.349-360, 1965.

6. Dooge, J.C.I.

" A general theory of unit hydrograph" J. of Geoph. Res. Vol.64, No.2 pp.241-256, 1959.

7. O' Kelly, J.J.

" The employment of unit hydrograph to determine the flows of Irish arterial drainage channels", Proc. Inst. Civ. Engrs. Pt. III Vol.4, p. 365, 1955.

8. Laurenson, E.M.

"A catchment storage model for runoff routing" J.Hydrol., 2, pp.141-163, 1964. 9. Mathur, B.S.

- " Runoif hydrograph for uneven spatial distribution of rainfall", Ph.D. Thosis, I.I.T.Delhi, 1972.
- 10. Nohliak, V.I. and T.A. TChokushkina
 - "Calculation of flood discharges by means of unit hydrograph" IASH Symposia on Flood and their computations, Leningrad, 1967 (Vol.2).

11. Sharma, S.S.

" Study of infiltration characteristics of south Bihar river catchments" M.E.(W.R.D.) Dissertation, U.O.R., 1969.

12. Vilson, E.M.

" Engineering Hydrology" The Macmillan Pross Ltd. London and Bolsingstoke, 1969.

13. Chebotarcv, H.P.

" Theory of stream runoff" Translated from Russian into English under Israel Program of Scientific translation. Jorusalom, 1966.

14. Diskin, M.H.

- "Transfer function for the analysis of rainfall runoff relations". IASH Symposia on flood and their computations, Leningrad Volume II, 1967.
- 15. Johnston, D. and Cross, W.P.

" Elements of applied hydrology", 1949.

16. Linsloy, R.K.Jr., Kohler, M.A. and Paulhus, J.L.H. "Applied Hydrology", 1949.