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ABSTRACT

Robots have played a dominant role in the trends towards automation over the
past years. The rapid development of its applications require controller that
satisfies demands regarding tracking, speed and accuracy. Although, robot
manipulators have been used in industry for a number of vyears, their full
capabilities reach far beyond their present-day applications. At present,
industrial applications of robot manipulators are mainly restricted to simple
tasks. In order to improve the performance and capabilities, the application of
advanced control concepts to robot manipulators is a necessit'y.‘

Two basic facts about the robot manipulator dynamics make the control
problem a challenging one. Primarily, the dynamics are described by nonlinear,
coupled second order differential equations. Secondly, the parameters of the
model are partially unknown due to parametric variations disturbances and errors
in modeling. Much of the recent research in robotic manipulator control has been
directed towards the development of adaptive controller due to their
effectiveness in high speed, high precision tasks and robustness to parametric
uncertainty.

The development of controller structure in the present research work is
inspired by the adaptive control strategy as reported in
[71,1171,123],1641],{73],[84]. Broadly, three new adaptive controller structures
are proposed for robot manipulators. The sliding observer aided controller
structure for adaptive case is heavily influenced by the work of Canudas et. al.
[10]. Two new sliding observer aided adaptive controller structures are proposed
by modifications in the exisﬁng sliding observer [10]. Further, two variations
of nonlinear sliding observer based controller structures, motivated by [8]-[85],
are also proposed for robot manipulators.
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The aim of these proposed schemes are to improve tracking performance of
robot manipulators and to satisfy the stability criterion in the Lyapunov sense.
Performance of these new controllers have been verified through simulation. The

work done in this thesis is briefly summarized below:

1. The controller structure for adaptive case, presented by Whitcomb et. al.
[84], is based on position and velocity vectors. Their control law is
modified by incorporation of acceleration term in feedback loop. This is
based on two assumptions. The first is that the joint acceleration is
measurable [17]-[23] and relatively noise free, and the second is that the
inverse of sum of acceleration gain and estimated inertia matrix remains
bounded. Simulation results show significant improvement in tracking error
and velocity error for two different types of desired trajectories having
different initial estimated parameters. The closed-loop system is shown to
be globally asymptotically stable in the Lyapunov sense and has better

convergence.

2. To overcome the noisy velocity measurement problem, a globally convergent
adaptive controller structure for robot manipulators is- presented by
Berghuis et. al. [7]. Their controller structure has been modified by
inclusion of nonlinear compensator [64] and virtual reference trajectories
(sliding surface) [73]. In our work, three new structures of adaptive
controller, associated with distinct form of sliding surfaces, are proposed
and studied with respect to their tracking improvements (case -1,2 and 3).
In case-1, all three virtual reference trajectories are considered where as
case -2 uses the desired velocity reference trajectory instead of velocity
virtual reference trajectory with other form of sliding surface. The
proposed controller structure for case-3 consists of nonlinear compensator
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and existing controller [7]. The asymptotic stability of the control
algorithms are proved via the Lyapunov direct method. These proposed
schemes improve tracking performance significantly, enhance robustness with
respect to the noisy velocity measurement, especially in under- excitéd
operations and also compensate the additional error (bounded by sliding

surface and tracking error, [64]).

In another approach a bounded form (norm based) of adaptive controller-
structure is proposed. This is based on the inverse dynamics model of robot
manipulator with a premise that if each parameter is known within some
bounds the parameter adaptation can be prevented from going out of bounds
and thus makes the system more robust. The stability of closed-loop system
is investigated via the Lyapunov direct method. Simulation results, when
compared with [7], clearly indicate drastic improvements in tracking

performance.

It is known that velocity measurements are usually associated with rather
high level of noise [10]. Only joint position measurements are assumed to
be available, which is in contrast to full state measurements (positions
and velocities). In this situation, estimated joint velocity vector
obtained from a sliding observer is fed back to adaptive controller
structure [10]. The proposed sliding observer structure is an extension
of this by including the desired acceleration vector and a new uncertainty
term (associated with desired trajectory based robot model properties) to
estimate the velocity vector for adaptively controlled robot manipulator.
The combined scheme is analysed with the Filippov’s solution concept and

tracking error dynamics via the Lyapunov stability criterion. The proposed
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scheme shows the significant reduction in tracking error, velocity error

and observation error (velocity).

The sliding observer scheme is further modified by including the tracking
error and the observation error (position) in estimating velocity vector,
to take into account the dynamic interaction between observer and
controller dynamics. This means that the observer shall not only depend on
the- observation errors and controller not only on the tracking difference.
This combined scheme is considered as a global control system with their
gains tuned in order to ensure asymptotic tracking of the desired
reference. The adaptation law and design vector, account for uncertainties
on parameter vector associated with desired trajectory based model
properties of robot, are derived using the Lyapunov direct method.
Simulation results clearly indicate the improvements in comparison to

[10].

In nonlinear systems the controller and the observer, in general, cannot be
independently designed since the separation principle does not apply as in
case of linear systems. In controller-observer scheme for robot
manipulators presented by Canudas et. al. [8], the nonlinear sliding
observer structure uses only observation error (position) in estimating
velocity vector in order to fed back to controller structure. In view of
nonlinear nature of robot manipulator and dynamic interaction between
controller and observer, the square of tracking error and signum function
of velocity observation error [85] are included as extended terms in the
existing nonlinear sliding observer structure [8]. The first term reduces
the observation error (velocity) due to application of the Filippov’s
solution concept and second term acts as a forcing (switching) element to
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get good estimate of velocity. The closed-loop analysis is performed which
is based on reduced order manifold dynamics and tracking error dynamics
using the Lyapunov stability to ensure asymptotic stability. It is
observed, through simulation, that drastic reduction in velocity error and

observation error (velocity) results, in comparison to [8].

7. Again, the sliding observer is further modified by incorporating the sign-
sign term in previously proposed observer structure. The observer scheme is
termed as Sign-Sign Algorithm (SSA). The existing controller structure [8]
is extended by incorporation of disturbance torque (as function of the
desired position trajectory) in order to achieve the improved tracking
performance of combined controller-observer scheme. The proposed scheme is
illustrated by a simple example. The stability of closed-loop analysis is

performed in the Lyapunov sense.

New model-based adaptive and sliding observer aided controller structures
developed in this thesis are new solutions to many constraints, complexities and

ambiguities involved in the control of robotic manipulators.
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INTRODUCTION

With advances in technology modernisation has taking place in the industrial
sector. In C.ontrast to manual labour often robots are used to perform prescribed
jobs in harsh, dangerous, or unhealthy environments. The revolutionary changes
have appeared in industry because of the installation of robot for performing
“different applications in areas such as in nuclear industries, deep under sea
exploration and maintenance operation. Robot system has also been used
increasingly in industrial automation without the involvement of human operator.

Improved control techniques are needed to fullfil the demand on manipulators
performance such as speed and accuracy. The use of conventional linear control
techniques limits the basic dynamics performance of robot manipulator due to
reasons. First, the dynamic characteristics of robot manipulators are highly
nonlinear and coupled. Second, the degradation of dynamic performance
characteristics of robot manipulator governed by intertial properties. In view of
high system performance over a wide range of tasks, many control techniques
appear in literature. These are categorized in two classes, nonadaptive and
adaptive control. In contrast to nonadaptive, the adaptive control plays an
important role because of jts robustness to parametric variations and
disturbances. Under these two techniques a number of methods for dynamical
control of robot manipulators have appeared in literature. These include
resolved rate control, inverse problem, computed torque, variable structure
control and observer based control.

Recently, considerable interest may be seen in the design of model-based



(computed torque) adaptive controller for robot manipulators because of its
attractive features which compensate the inertial, coupling and gravity effects.
In other direction, some work has been concerned with the problem of controlling
robot manipulators by introducing observer scheme in order to estimate joint
velocities. In practice, velocity measurements are obtained by sensors such as
tachometers. Associated problems include discontinuities in the magnetic circuits
of the tachometer stator at low velocities, ripple torques and other high
frequency phenomenon, which reduce the quality of the measured velocity.

In the present work, broadly three new model-based adaptive controller
structure are proposed for robot manipulators. First, the acceleration terms is
included in previously developed controller structure [84] to form a new
adaptation law. Secondly, a nonlinear compensator is used in existing controller
structure [7] with three different forms of sliding surfaces for three types of
controller structures. Thirdly, a bounded form of controller structure is
proposed to improve tracking performance.

It is well known fact that the joint velocity measurements is corrupted with
noise. This situation may deteriorate the dynamic performance of the manipulator
because the value of the controller gain matrices are limited by the noise
present in the velocity measurements. To avoid this problem, the observer based
controller structures are considered for trajectory tracking of robot
manipulators.

The sliding observer aided controller structure for adaptive case is
influenced by the work of Canudas et. al. [10]. Two new sliding observer aided
adaptive controller structures are proposed by modification in the existing
sliding observer [10]. Former associated with new form of parameter uncertainty
vector and latter one of tracking errors. and velocity observation errors to take

account the dynamic interaction between controller and observer. Further, two



types of nonlinear sliding observer based controller structures, motivated by .
[8],185], are also proposed for robot manipulators. At the first, the proposed
nonlinear sliding observer scheme is based on ez-term, velocity observation
error. Second, they aré based on sign-sign function of observation error and
tracking error. The controller structure of [8] is extended by including
disturbance torque vector for latter one.

Performance of these new controllers have been verified through simulation.
The simulation results are compared with previously developed control schemes.
An imporatnt features of proposed controller structures is the improvement in
tracking ‘performance. The stability of proposed schemes is investigated in the
sense of Lyapunov alongwith the region of attraction.

In brief, the problems and control strategies applied to the design of
controller for robot manipulators are discussed covering adaptive control and
sliding observer based adaptive and nonlinear control. A brief summary of the

scope of the thesis is also included.

1.1 SYSTEM DESCRIPTION

A robot manipulator is known to have a complex dynamics. Good performance
can be expected only if precise control strategies are employed. These
sophisticated control require the use of realistic dynamic model of the robot
manipulator. Two basic approaches are [3]:

(@) Newton-Euler formulation

(b) Lagrange - Euler formulation

The Newton-Euler formulation is derived by the direct interpretation of
Newton’s second law of motion, which describe dynamic systems in terms of force
and momentum. The equatioh incorporates all the forces and moments acting on the

individual manipulators links, including the coupling forces, moments between the



links and constraint forces acting between adjacent links. The equations obtained
from the Newt'on-EuIer formulation include the constraint forces acting between
adjacent links. Thus, additional arithmetic operations are required to eliminate
these unwanted terms and obtain explicit relations between the joint torques and
the resultant motion in terms of joint displacements.

In the Lagrange-Euler formulation, or the Lagrangian formulation, the
dynamic behavior is described in terms of work and energy using generalized
coordinates. All the constraint forces and workless forces are automatically
eliminated in this method and this leads to a compact and closed-form of
expression in terms of joint torques and joint displacements.

The resulting closed-form of dynamic equation of an n-degree of freedom

robot manipulator can be given in the form [59].

n

) My d; + ) ) c,la) did + ¢ (), k

1,2,....n (1.1)

j=1 i=1j=1

where mkj are the coefficients of inertia matrix, ¢k(q) are the gravitational

forces and torques and T is the actuating torques. q, q and g are the
j ]

accelerations, velocities and positions, respectively. The coefficients cijk of

the Coriolis and centrifugal terms are defined as

and are known as Christoffel symbols (of the first kind). It is common to express

(1.1) in matrix form as
M(a)a  + Clq,9)g + glq) = = (1.2)

where the k,jth element of the matrix C(q,q) is given as
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zzé K T (1.3)

M(a) is the nxn position-dependent manipulator inertia matrix: Clq,q)q is
the n-vector of Coriolis and centrifugal torques, g{q) is the n-vector of
gravitational torques. |

Different dynamic models of robot manipulator have appeared in the
literature. These may be categorized in the following forms:

Neglecting friction and other disturbances [8]-[10],[56],(63],[64],[71]-
[77],[84] as

M(@a + Cla.q)q + glq) = « (1.4a)
Using viscous and coulomb friction, (6], [12], (161, [17], [27], [28],
[301, [47], [63], [64], (68], [69], [80], [81], as

M(a)g + Cla,.q)q + glq) + F(Q) = « (1.4b)
where vector F(q) represents the combination of viscous and coulomb friction, and

another form [48],[601,[85] as

(M(@)+Jla" + Clq,9)q + gla) = * (1.5)
where J represent actuator’s inertia. The actuators, armature motors in many

cases [48], [60], [85], are supposed to be able to generate the control torque

using their dynamics.



Addition of payload in system dynamics gives significant effects on Inertia
torque and Coriolis plus centrifugal torque. Under this aséumption, in
generalized way, the dynamics of robot manipulator can be expressed

[71,[19],[68], as

M(a,wlg  + Cla,qw)g + glq) = = (1.6)
where w denotes the pay load. The system dynamics as expressed in (1.4a) is

considered for the proposed schemes.

1.1.1 Fundamental Properties
The equations of motion are complex, nonlinear, coupled for all but the

simplest robots. They have several fundamental properties which can be exploited

to facilitate control system design [59].

Property 1: The inertia matrix M(qg) is symmetric positive definite, and both M(q)
and l\/](q)'1 are uniformly bounded as a function of g e R". It means that
associated energy is always positive and skew symmetric matrix can be added to it
without changing the value of the ene‘rgy.‘

Property 2: There is an independent control input for each degree of freedom. The
reason for doing this is to obtain decoupled subsystem.

Property 3: All of the constant parameters such as link masses, moment of
inertias, etc., appear as coefficients of known functions of generalized
coordinates. By defining each coefficient as a separate parameter, a linear

relationship results so that one can write the dynamic equation(1.2) as

M(a)a" + Clq.ala + gla) = Y(q,q.q)e == (1.7)
Where Y(q,4,q") is an nxr matrix of known functions, named as regressor, and 6’

IS an r-dimensional vector of parameters.



Property 4 : Defining the matrix N(q,q) = M(q) - 2C(q,q), one observes that .
N(q,q) is skew symmetric, i.e., the components njk of N satisfy the condition an
=-nkj. However, M - 2C is itself skewv symmetric only in the case that C is
defined according to (1.2). It indicates that the so-called fictitious forces,

defined by C(q,d)d,v do no work on the system.

1.2 PROBLEMS AND STRATEGIES FOR CONTROLLING ROBOT MANIPULATORS

The basic difficulty in controlling a robot manipulator arises from the
fact that the dynamic equation describing the robot motion are inherently
nonlinear and highly coupled. Physically, the coupling terms represent
gravitational torques, which depend upon the positions of the joints, reaction
torques, due to accelerations of other joints, Coriolis and centrifugal torques.
These interaction torques depend upon the size and weight of the links of the
manipulators as well as the change of manipulator configuration. The role of
friction forces is unpredictable. The dynamics of the actuator further adds to-
the difficulties and complexities in model inaccuracies. These effects make the
control of robot manipulator a complicated task and challenging.

In general, the main aspect associated with the control problems of robot
manipulators is to achieve a desired system response with prescribed error limit.
The control of robot manipulator is accomplished in two different stage. In the
first stages, the controller structure is constructed. In the second stage,the
control torque is applied to actuator so that the response of the robot
manipulators of joint motion closely track the desired trajectory.

In the area of robot control research a large number of sophisticated
control approaches have been developed during the last two decades. These provide
almost perfect results on simulation or under laboratory conditions. The major

strategies include nonadaptive and adaptive control, and are further subdivided



as nonlinear control, robust control, sliding mode control,computed torque
control and observer based control. These are discussed below in brief.

Trajectory tracking based on linear multivariable theory using linearized
model and decoupling is fascinating because of the comparably low computation
effort [67]. However, because of the highly nonlinear system behavior the scheme
refers to a limited application area where slow motion required. Linear feedback
law based tracking control scheme has been proposed in [61] under the assumption
that the gain approaches infinify the scheme becomes globally asymptotically
stable. A high gain controller, which is unaffected by noisy velocity measurement
problem',‘ is proposed in [83]. A feedback law based on local, decoupled, and
exact linearization has been proposed in [39]. Recently, the f‘eedback
linearization [66], [68], [70], of a robotic manipulator based control using
variable structure compensator for robust tracking has been proposed [87], [88].

Nonlinear feedback control using approximate inverse dynamics model with
additional feedback compensation has been proposed in [25]. The scheme is
sensitive to parametric variations. The strategy, by incorporation of
uncertainty and input constraints alongwith torque optimization in case of
actuator saturation has appeared in [76].

A nonlinear switching-type control law under the assumptions that
acceleration measurements are available and the bound of uncertainty vector
depends upon derivative of state has appeared in [12]. The modified version of
[74] is presented in [37] in order to estimate the upper bound on uncertainty
instead of known uncertainty bound. A nonlinear robust feedback controller is
derived with cubic expression of uncerta.inty by including actuator dynamics [48].

An attractive way to avoid the problems both of model uncertainty
(nonlinear decoupling concepts) and. of parameter variation (linear control

concept) is to apply adaptive control. In the model reference adaptive



control{(MRAC) concept, the model and system are guided by the same signal [1], .
[4], [20], [45], [46], [52], [56], [69] to reduce the modeling error and maintain
the persistency of excitation for model and system both. In this direction, the
pioneering work of Dubowsky et.al. [20] is modified for discontinuous control [4]
and continuous control [52], [66] using unit vector adaptation law. For improving
transient response and convergence speed the work [45] is extended in [46] by
introduction of optimal auxiliary input.

The complete self-tuning type adaptive control using least square (see
also [9]) for each joint have been applied to robot manipulators [38]. It is also
referred as mixed concepti.e. feedforward component computes nominal torque from
Newton-Euler equation and feedback component computes perturbation torque based
on self-tuning control [43].

Adaptive control applied to robot manipulator [4], [69] are based on
variable structure system. The computed torque method (inverse dynamics) based
adaptive control shows global convergence [5], [7], [16], [17], [23], [24], [63];
[64],[73],[75],[80],[84]. The passivity-based approach is  studied in
[581(63],[64]. Inverse dynamics controller used together with the addition of a
term that allows preservation of the passivity properties of rigid robot in the
closed loop is reported in [35]. An important drawback of passivity-based control
is that they are not robust to velocity measurement noise. In order to reduce
this problem a scheme is proposed ih [7], [64]. The work [16], [17], [23], [24]
are based on the assumption that joint acceleration measurements are available.
The idea using joint acceleration measurements [16], [17], [23], [24], [49],
[62], are avoided using identifier[30], sliding mode [73] and fixed estimate
[75].

The inverse dynamics based adaptive law to estimate gravity term [80] and

parameter uncertainty [37] is one of the strategies for globally convergent



control. Recently, keeping in view the fact that velocity measurements are
corrupted by noise, the observer scheme is employed with controller either by
using sliding observer for nonlinear case [8],[57], robust approach [9], or
adaptive case [10] for motion control of robot manipulator. In these schemes, it

is assumed that only joint position measurements are available.

1.3 DEFINITIONS AND PRELIMINARIES
Definition 1.3.71: vector norm
For a vector x e R", the norm of x said to be the Euclidean or 1, norm, is

given by :

1/2
2

b

Definition 1.3.2: Matrix Norm

For a matrix A € R,

‘AH will be the corresponding induced norm

HAH — [max Ai (ATA)]1/2

where max Ai(.) denotes the largest eigen value.

Definition 1.3.3: Lp functional norm
For a Lebesque measurable function f(t) :

R" — R", the Lp norm for p € [1,x] is defined to be :

1/p
[o4]

], = J |f(7) [Pdz

0
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For p = «» the norm is defined to be,

Hf(-)Hm = fig |f(z)| almost everywhere.

Definition 1.3.4: Given two n x 1 vectors x and vy, it implies
Clax)y = Clq,y)x
Clq,x+ay) = Cl(q,x)+aC(q,y)

for all x,y,q € R", o« € R.

Definition 1.3.5: Adaptive Control
It is defined as a feedback control system intelligent enough to adjust its
characteristics in a changing environment so as to operate in an optimum manner

according to some specified criterion.

Definition 1.3.6: A computed torque controller is a control algorithm which uses
a model of the manipulator’s dynamic behavior to ensure that a prescribed degree
of damping is maintained for all configurations. It allows to cancel the

nonlinearities associated with system dynamics.

Definition 1.3.7: Sliding mode

It is an important concept of variable structure system and defined as a
special regime in the vicinity of the switching surface, S = 0, where the tangent
or velocity vector of the state trajectory always points towards the switching

surface. If sliding mode exists on' S = 0, then S is termed as sliding surface.

Definition 1.3.8: Robot

According to RIA, a robot is define as a reprogrammable multifunctional
manipulator designed to move materials, parts, tools, or specialized devices,

through variable programmed motion for the performance of a variety of tasks.

11



Definition 1.3.9: Asymptotic Stability

An equilibrium point x of the system H is asymptotically stable if and only
if for each € > O there exists a 6>0 such that if HX(O) X ”< 5 then “x (t) - )‘(n
< e for t = O and:

x() —> X as t —

Thus if an equilibrium point X is asymptotically stable then any solution
which starts out sufficiently close to X stays close in the sense that me X ii
remains small and, in addition, the solution asymptotically approaches X in the

[imit as t — .

1.4 SCOPE OF THE THESIS

In chapter 2, thé control strategies for robotic manipulator under
nona'daptive control and adaptive control category are reviewed. Several issues
and recent trends are examined critically. The work related to controller
-observer strategies are also systemically reviewed.

In chapter 3, three different type of controller structures are proposed.
First, the acceleration error based controller structure is proposed with a new
form of adaptation law for relatively noiseless environment for trajectory
tracking of robot manipulator. Second, nonlinear compensator based three
different forms of controller structure for three different types of sliding
surfaces are proposed for the motion control of robot manipulator. Third, A norm
based controller structure is proposed for trajectory tracking of robot
manipulators. The stability investigation is also performed in the Lyapunov sense
for all the proposed control scheme and the region of attraction is studied for
their convergence. The proposed schemes give better tracking performance in

comparison to [84], [7], respectively.

12



In Chapter-4., the sliding observer aided control concept is described in.
detail based on the existing work [8],[10]. The sliding observer aided adaptive
control concept is restructured by modifying the configuration of  sliding
observer and uncertainty terms in order to ensure better asymptotic tracking of
the desired reference. The existing nonlinear sliding observer aided control
scheme of Canudas et. al. [8] is extended in view of dynamic interaction between
controller and observer for comparative trajectory tracking performance.
Similarly, this scheme is further extended by including the error based sign-sign
term and disturbance torque in control law. The error analysis and stability
investigation in the Lyapunov sense are also presented. Significant reduction in
error responses are observed in comparison to [8],[10], respectively.

In  chapter-5, some derivation of dynamic equation ({(regressor) and
simplification are carried out for a robot manipulator. The simulation results of
proposed algorithms are carried out to compare the tracking performance with the
existing cases.

Chapter - 6 deals with the conclusion on the results obtained in the

different proposed schemes. Some suggestions for future research in this area are

also included.
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LITERATURE SURVEY

During the past decade, many schemes for controlling the motion of robot
manipulators have been appeared in literature. Mainly, they are divided into two
categories, namely (i) nonadaptive control (ii) adaptive controller .The latter
approach has been the subject of greater attention in recent years.-SeveraI
techniques have been developed under these two categories. They include nonlinear
decoupling, robust control, passivity approach, sliding mode (Variable

structure), computed torque and observer based approach.

2.1 NONADAPTIVE CONTROL

The general characteristics of nonadaptive control approach is that they
are fixed controllers. The schemes require an exact knowledge and explicit use of
the complex robot dynamics and its parameters. Uncertainties in the parameters
will certainly cause dynamic performance degradation. In such. situations,
compensation for nonlinearity, and joint decoupling techniques must be introduced
to cope with high accuracy requirements [81].

Traditionally, the problem of joint motion control has been treated by the
PID algorithms. The PID control, based on linearization and local stability, is
limited to small angle movements [2]. Moreover, to ensure the stability, the gain
matrices must satisfy complicated inequalities, which depend on the initial
conditions.

The idea of resolved-rate control of the robot manipulator in terms of the

position and orientation of the hand is introduced in [47]. The minimum time



solution along a specified path using linear programming is investigated. The
proof of error convergence is based on linear approximation over small time
interval. The control algorithm is inadequate because the changes of load in task
cycle are neglected. The complex nature of control law in order to ensure the
convergence of large error with nonlinear feedback design based of PID control
is investigated in [25]. Its sensitivity to parameter variation appears as a
drawback. In view of unmodelled friction effects and large inertia properties, a
new robot control scheme using PID controller is proposed in [51]. This scheme
require high gain feedback.

A'r'obust tracking scheme for robot manipulators in the presence of model
uncertainty and input constraints is developed by Spong et. al. [76]. A simple
alternative solution to the robot manipulator control problem based on linear
multivariable theory to provide robust steady-state tracking of a class of
trajectories is proposed by Seraji [67]. This scheme consists of multivariable
PD? + PD based controller alongwith multivariable PID feedback controller using
feedforward and feedback controller concepts. The comparative performance of
nonlinear feedforward control, feedback control and reduced order feedforward
control scheme are established in real-time. The computed torque based control
laws are introduced for joint coordinated control of robot manipulators in [83].
The modification of the Lyapunov function and use of lemma to handle third order
term in the Lyapunov function derivative are also incorporated.

Without demonstrating the stability, nonadaptive robust control scheme with
nonlinear and linear parts to compensate modeling errors and unknown disturbance
is proposed by Kuo et. al. [40]. The nonlinear part decouples robot dynamics to
obtain a set of equations in terms of each joints input-output and the linear
part applies robust servomechanism théory to suppress the effect of modeling

error and unknown disturbances.The model-based servo schemes are designed in (12]
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to compensate for system uncertainties which utilizes a nonlinear switching type
control law and bound of the model uncertainty. Qu et. al. [61] presented a
control scheme for robust tracking control of robots by incorporating a linear
feedback law to overcome the problem associated with [12]. The design parameter
in the control law is a constant gain which depends only on the coefficients of a
quadratic bound on the nonlinear terms in the dynamic equation. The simulation
results is however not reported. In contrast to linear feedback, a nonlinear
robust feedback controller is suggested in [48] including actuator dynamics and
cubic form of uncertainties to guarantee global ultimate boundedness of the
actual system output.

Spong [74] derived a robust control law for robot manipulator using a novel
modification of the so-called Leitmann approach [15]. The parameter uncertainty
bounds are needed to derive the control law and to prove uniform ultimate
boundedness. As a result, precise bounds on the uncertainty have been difficult
to compute. On the contrary, an additional control input is updated as a function
of the estimate of the uncertainties upper bound in [74]. A variable structure
compensator is introduced to cope with parameter uncertainties reported in [87],
[88]. The boundary Iéyer compensator is used, further, to reduce the chattering

effect at the cost of control accuracy.

2.2 ADAPTIVE AND OBSERVER BASED CONTROL

An effective way to deal with parameter uncertainties of a robot
manipulators is to apply adaptive control scheme in which the controllers are
designed to compensate for the uncertainties automatically. It can be broadly
classified into two categories on the basis of model [27]: (i) Model - reference
Adaptive Qontrol and {ii) Sélf—tuning adaptive control. The adaptive control may

be also classified on the basis of their control objective and the signal that
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drives the parameter adaptation law. The control objective determines the
controller structure whose parameters are to be adapted on-line. The adaptation
law may be driven by a signal that measures either the prediction error or
tracking error.

The pioneering work in the area of MRAC using steepest descent method for a
class of manipulator is proposed in [20]. The control algorithm which minimizes a
quadratic function of the error defined as the difference between the desired
state vector and the robotic process state vector. The authors neglected
couplings between joints of the manipulator and did not assure the convergence of
their control law.

Balestrino et.al. [4] proposed a control algorithm based on discontinuous
control signal of adaptive model following control system for robotic
manipulators via hyperstability theory. The chattering due to sliding motion
causes unmodelled resonance. As an alternative approach, using continuous signal
for fast motion, MRAC algorithm is developed by Nicosia et.al. [56]. The
controller however does not yield zero tracking error and required unbounded
feedback gains for the convergence of the tracking error to zero. Using MRAC
technique with uncertain parameter and integrable adaptive law, a control
algorithm is proposed in [70]. Here, the Lyapunov function is used only as a
intermediate step and. did not appear in the final form of either the controller
or the adaptive law. Nonlinear adaptive control schemes are proposed in [52]
using continuous control inputs where control gains are adjusted adaptively.
Based on the work of Corless et.al. [15] for system uncertainty, Singh [69]
describes a switching-signal-synthesis adaptive scheme for mode! following
(MFAC). The controller includes a dynamic compensator in feedback path uniike
linear compensator [4], [70], [77]. Usihg optimal auxiliary input Lim et.al. [46]

designed MRAC base control strategy to reduce transient oscillation and thus
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improved convergence in comparison to their earlier contrast to previous work
[45]. The control algorithms are valid for slow varying movement of robot
manipulator.

Improved MRAC theory is used to develop adaptation algorithm by Seraji [68]
using auxiliary signal. The scheme, employed as feedforward controller, which
behaves as the inverse of the manipulator and auxiliary feedback controller.

Kovio et.al. [38] proposed a self-tuning type of control law using an
autoregressive based model for the manipulator dynamics to compensate the
nonlinearities. The parameters of the model and the controller gain are
determined on-line by a recursive least-square identification algorithm and a
weighted- one-step-ahead optimal control algorithm. The cohvergence property
exists if the motion is along a straight line and circular arc. The control law
assume that the ‘interaction forces among the joints are negligible and during
the adaptation process the elements of the linearized system remain constant. As
part of the scheme [43],[44], an optimal adaptive self-tuning controller of the.
linearized system is used to compute perturbation torque and input torques
computed from the Newton-Euler equation of motions. Convergence of control law is
not explicitly shown. In view of linearization of nonlinear model around the
desired trajectory an adaptive control scheme based on local parameter
optimization is proposed by Takegaki et.al.[78] under the assumption of slowly
time-varying variational system dynamics of the manipulators.

Choi et.al. [13] extended the work of Lee et.al. [43] by the inclusion of
payload and parameter uncertainties. Resolved motion rate and acceleration
control are one of the ideas which are introduced Luh et.al. [47] and Lee et.al.
[44], respectively, in order to control the robot manipulator using Newton-Euler

formulation of equation of motion.
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Almost all previous work is based on standard MRAC or self-tuning regulator
theory for linear time-invariant plants. The stability proofs are only valid to
the extent that coefficients of the linearized manipulator system vary
sufficiently slowly. On the contrary, the computed torque formulation vyields a

‘hat suppresses uncertainties and disturbances and tracks the desired
trajectories uniformly in all configuration of manipulators.

The results of Craig et.al.[17] are based on adaptive inverse dynamics
which is a special case of the idea of feedback linearization of nonlinear
systems. A globally convergent scheme of robot manipulator is based on the
assumpt.ic.)ns of bounded estimated parameters, availability of joint accelerations
measurements and boundedness of inverse of estimated inertia matrix. The
adaptation law is the form of linear-in-parameterization technique [16]. By
dropping the éssumption, that joint acceleration measurements are available [62],
Hsu et.al. [30] proposed a adaptive control using explicit identifier, basically,
a first order filter and discrete time upgradation of the parameter values.
Without using the additional filters, the adaptive pure computed torque (PD part
is omitted) algorithm is proposed by Gu et. al. [28]. It is suggested that PD
control is not necessary to ensure stability and no large feedback gains are
required.The alternative formulation of adaptive inverse dynamics control which
overcomes the assumption on boundedness of the inverse of the estimated inertia

matrix is proposed in [75] using fixed parameter estimate instead of varying

-~ estimate.

In contrast to [17], Slotine et.al. [73] proposed a nominal type of
controller structure with sliding surface and applying skew-symmetry properties
established global asymptotic stability. The Lyapunov stability for an adaptive
controller that ensure only convergence to zero for the velocity tracking error.

The idea of this controller design philosophy is to reshape the robot system’s
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natural energy such that the control objective is achieved and designated as .
passivity approach [59].

The work of Sadegh et.al. [64] is conceptually different from the adaptive
inverse dynamics in that the control objective is not feedback linearization but
only preservation of the passivity properties of the robot in the closed loop.
The form of Coriolis and centripetal acceleration compensation controller is
bilinear function of the joint and model reference velocities instead of a
quadratic function of the joint velocities [63],[64]. In [63], the problem of
noise correlation between estimation error and adaptation signal appeared, which
is removed in their extended work [64]. A reduction of sensitivity to velocity
measurement noise appeared. The principle of passivity-based direct adaptive
control for industrial manipulator is experimentally verified and implementation
issues are discussed in [42]. An important drawback of these schemes is that they
are not robust to velocity measurement noise. Specially, in underexcited
operation, when performing a regulation task, the well-known phenomenon of
parameter drift in the adaptation law is occur due to presence of quadratic terms
in the measured velocity. To avoid noisy velocity measurement problem, a
globally convergent adaptive control scheme for robot motion control is proposed
in [7]. The adaptation law enhanced robustness with respect to noisy velocity
measurements and controller does not require the inclusion of high gain loops
that may excite the unmodelled dynamics and amplify the noise level.

Kelly et.al. [35] proposed an inverse dynamics controller with the
additional term which allows preservation of the passivity of the closed loop
system. The control law consists of a computed torque and feedforward
compensation part. The schemeis anintermediate approach between computed torque

and passivity approach.
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Bayard et.al. [5] introduced asymptotically stable adaptive control laws
for robotic manipulator. The energy-like Lyapunov function, which retains the
nonlinear character and structure of dynamics instead of quadratic forms, is
incorporated. The scheme avoids the velocity measurement problem by inclusion of
reference trajectory based control law but requires high controller gain in order
to overcome the uncertainty in the initial parameters €rrors and compensate for
the dependency on the magnitude of the desired trajectory velocity. The computed
torque based robust scheme for adaptive case in order to estimate the bound of
model uncertainty is proposed by Chen [12]. The adaptive scheme relies on the
functiona|' properties of the model uncertainty.

Tomei [80] presented PD control algorithm that is adaptive with respect to
gravity parameter of the robot manipulator. In contrast to [2], where PID control
algorithm ensure only local asymptotic stability, a globally convergence scheme
is proposed with upper and lower bound of the inertia matrix. One integrator is
needed against the n-integrators required by PID controller in [2]. The
generalized model-based adaptive control approach to the trajectory tracking of
robot manipulator is proposed in [60]. It includes both the full-order actuator
dynamics and second order manipulator dynamics. The scheme is associated with
local bound stability.

A globally asymptotically stable model-based adaptive controller is
proposed in [84] with a new Lyapunov function. Using filtered torque in
adaptation law to ensure convergence of tracking error a globally convergent
adaptive scheme is developed in [49] for controlling robot manipulators.

Feng et.al. [24] considered the Lyapunov-like concept to design an adaptive
control law, with assumption that acceleration measurements [17] of joints are
required, in task space. It is further investigated to achieve robustness to

bounded disturbances. An adaptive control algorithm based on prediction error and
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sliding mode based parameter estimate is proposed in [23] on same methodology as
appear in [24].

As the technology advances, the controller simplicity becomes less
important than tracking accuracy. It is no longer prohibitive to consider a more
accurate model and look for better tracking performance with a slightly more
complicated control scheme. It is well known fact that the joint velocity and
joint acceleration measurements are corrupted with noise. The majority of
adaptive controllers is based on full state measurements (positions and
velocities) [59]. In contrast to joint position measurements the velocity
measurements are often contaminated with high level of noise. This situation may
detoriate the dynamic performance of the manipulator because the value of the
controller gain matrices are limited by the noise present in the velocity
measurements. Exploiting the model properties of the robot dynamics, a nonlinear
observer is proposed in [57] for rigid joint robots to reconstruct the joint
velocities. The associated error dynamics is shown to be locally asymptotically,
stable. The proposed observer is inserted in the feedback to controlier
structure. Two cases point to point control and the trajectory control are
discussed. The observer furnishes the state estimate directly in the physical
coordinates, so that no transformation is needed. The convergence of the proposed
observer is local and of control law is global. The size of the region of
attraction depends only on the observer gain constant.

Canudas et.al. [9] proposed a sliding observer scheme to estimate the joint
velocities for controller to control the motion of robot manipulator. The control
law involves Leitmann procedure [15] to take account for uncertainties due to
model error. It is shown to be locally exponentially stable under model parameter

uncertainties and bounded torque disturbances.
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Canudas et.al. [10] extended the work of [9] for adaptive control of robot
manipulator. The sliding observer equation have discontinuities on its right side
so that the Filippov’s solution concept is applied. It indicates that the
dynamics on the switching surface is an average of the dynamics on each side of
discontinuity surface. The uncertainty vector is assumed in terms of boundedness
of coefficients matrix of system dynamics. The introduction of an adaptation loop
reduces the chattering at control law level because of its dependency on
estimated state and parameter vectors and hence contains no terms proportional to
discontinuities. The observer scheme depends on only position observation error.

Ca‘n.udas et.al. [8] presented two alternative approaches for trajectory
tracking control using nonlinear estimated state feedback. The first scheme is
based on smooth function whereas the second uses switching gain. The stability of
smooth scheme is local whereas the nonsmooth scheme gives an arbitrarily large
attraction region and globally asymptotically exponentially stable. In contrast
to observer scheme, an extended Kalman filter is used to estimate joint velocity
and inertial parameter along with computed torque for position measurements in
order to control the motion of robotic manipulator adaptively as proposed in
[27]. Statistical data is required for Kalman filter. A passivity-based approach
to controller-observer scheme is reported in [6]. This combined scheme is based
on the assumptions: (i) The desired energy function must match the closed -system
(1) Velbcity of the robot system is to be bounded. An adaptive nonlinear
observer is designed to observe the acceleration instead of measuring it by
feedback in [85]. A third order robot model is used with this controller-observer
scheme to deal with uncertainties in both robot and motor dynamics.

Current control schemes for robot manipulator are categorized
systematically. The chattering phenoménon occurs, if variable structure control

(sliding mode) schemes are applied to robotic manipulators caused by the
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excitement of high frequency dynamics. The adaptive control schemes are superior .
in view of tracking performance over nonadaptive control under parameter
uncertainties compensation. The adaptive control based schemes are reviewed for
robot manipulators that are proposed till date by other researchers. Almost, all
the results reported in the literature are based on simulations studies.

The observer based control schemes are also reviewed critically. The
observers are employed to estimate the joint velocities because the actual
velocities are corrupted with noise. New ideas and improvements would
automatically follow. Broadly, three new adaptive controller structures are

proposed for robot manipulators as presented in subsequent chapter-3.
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ADAPTIVE CONTROL STRATEGY

3.1 INTRODUCTION

The contributions of the present work are the improvements in the controller
structure of the existing schemes of Whitcomb et. al. [84] and Berghuis et. al.
[7]. The controller structure of [84] consists of fixed proportional, derivative
feedback control and inverse dynamics (computed torque) based adaptive law. The
estimated parameter vector (adaptation law) is a function of position, velocity
errors and clever included normalization term. The Lyapunov function is included
to ensure globally asymptotically stability in tracking error and controller
parameter error. Including acceleration term in controller structure [84], a new
form of adaptation law results. This proposed scheme gives significant
improvements in tracking performance.

A scheme for trajectory tracking of robot manipulator to enhance robustness
with respect to noisy velocity measurements is proposed in [7]. The basic
requirement is that the adaptation law should not sensitive to velocity
measurement noise and does not require high gain. Also it should not excite
unmodelled torsional modes which aggravates the noise sensitivity. In order to
reduce tracking error and veloéity error, a nonlinear compensator based

controller structures are proposed with different form of sliding surfaces.

3.1.1 Controller Structure
The controller structure in [84] is basically an adaptive model-based
control algorithm which utilizes feedforward reference trajectory information

rather than actual state information. The control law and adaptation law are

recalled as



t = M@ r + Clg,qr + gla) + Ke + Ke,
= W(g.qrr) e + Ke + Ke, (3.1)
where r,r,r are desired trajectory informations. W(.) represents linear-in-
parameterization (array of known nonlinear function) as Craig et. al. [17];

e, = r-q and e, = rq are known as tracking error and velocity error

A

respectively. 8 is a vector of estimated parameter obtained via the adaptation

law given as

€
0

o = kg W'a,q,r,1) (e, + e ele) = THieT = e (3.2)

where adaptive gain matrix kg be any symmetric positive definite matrix.

The adaptive control for robot manipulator as presented in [7] is :

© = M{g) r' + Cf{g,g-ae)r + gla) - K e - Kzé

= W(q,g- re,r,r) 6 - Ke - K2é (3.3)
and
e = kg W'(q,g- re,r,r)S (3.4)
A -
where A = ﬁ ,S = e + ae known as sliding surface, e = q - T.

In this scheme, it is assumed that the actual velocity measurements are
associated with noise. To diminish the noise problem, it may be advantageous to
replace q by q - ae in controller structure. The adaptation law depends upon the
sliding surface ‘S’ which can be viewed as a stable first order differential
equation in e with S as an input. The system dynamics of robot manipulator

incorporates variable pay load and is estimated via the adaptation law (3.4).
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3.2 PROPOSED CONTROLLER STRUCTURES

In this section, three new controller structures are considered for
trajectory tracking of robot manipulators. At the first stage, the acceleration
term is included in existing controller structure (3.1) for relatively noise
free situation which permits acceleration measurements [16], [17],[23], [24],
[49], [62]. Under this, controller gets more information about the system
dynamics and reduction of the controller- system mismatch is possible. Secondly,
a nonlinear compensator is used in existing controller structure (3.3) with three
different forms of sliding surfaces for three slightly different controller
structures. The state error trajectories are forced to enter into sliding modes
with low value of controller gain. The nonlinear feedback compensation term takes
part in compensating the additional error caused by the replacement of actual
system trajectory to desired reference trajectory in model-based linear-in-
parameterization (regressor) term. Thirdly, a bounded form of controller
structure is proposed with the following aims : (i) In order to make the system
more robust, the parameter adaptation can be prevented from going out of bounds
if each parameter is known within some bounds [28]. (i) The convergence of
control law depends on the choice of feedback gain proportional to maximum
tracking error. If the tracking error exceeds this limit, convergence is no
longer guaranteed [53], [66].

The objective of the proposed controller structures are to satisfy the
fundamental requirements to improve the trajectory tracking performance of robot
manipulators. The problem addressed in the proposed scheme is the construction of
control law ‘t’ that causes the robot position and velocity to track r and r

asymptotically, that is, q — r, q — r, respectively.
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3.2.1 Proposed Adaptive Controller Structure Using Acceleration term

In this section, an adaptive controller structure is presented by combining
the idea of [24], [84], and assumptions of [17] for relatively noise free
environment (Fig. 3.1).

Defining e, = r - q, e, = r - q, where q and q are actual position and
velocity vector respectively, the adaptive controller is considered as

T = M(q) r + Clg,q)r + glg) + Ke, + Ke, + Ks(f' - q)
= Wlq,q,r,r) e + K1e1 + K?_e2 + K3(r -q) (3.5)

where |\716 and é are estimated value of M,C, and g, respectively, which are
evaluated by adaptation law (3.6), and Ki = KiT > 0, i = 1,2. The desired
trajectory r,i, are known in advance. 6 are adjusted according to the
following adaptation law, which is derived in Appendix-| using Lyapunov direct

method as

0 = kg W(q,q,r1) Pla)T(e, + < (e )e) (3.6)
where kg = kgT > 0, P(q) = l\7|(q) [K3/ + l\/I(q)]’1 and

€
0

e(e1) = m = ¢, / = identity matrix with € a positive constant, and

. is the Euclidean norm.

3.2.1.1 Error System Formulation

Applying control law ‘t’ (3.5) to robot system (3.7), the error system
results which is used in Lyapunov stability to obtain the adaptation law. In the
absence of friction and other disturbances, consider a standard n-degrees of

freedom rigid robot model of the form (1.2):
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M) q + Cla.g)g + gla) = W(q,q.4) e = 7, qe R | (3.7)

From (3.5) and (3.7), it follows ( in error state-space form) by choosing

state e = e, and e = e, :
e = e
1 2
B _ 7 . P -
e, = M [Clqg,q) e, + K1e1 + Kze2 + Wiqg,q,r,r) 6] (3.8)

A A

where, M’ = [M(q) + K3/], 6 = 6-0 denotes the parameter error vector whose
adjustment over time must be established in such a way that e — 0 as if 8 were
known.

Assuming small e
o]

e = [ (K) A (M7 A (M) (3.9)
where,

Am(K1) = ||K1|| = AM(K1)

Am(KZ) = ||K2|| = AM(KZ)

Am(.) and AM(.) denote the minimum and maximum eigen value, respectively.

Am(M), AM(I\/l) and CM are described as 0 < Am(l\/l) = IM(g)ll = AM(M); C(qg,x)ih = C

M

xn, for all x. K3 is chosen as a constant diagonal matrix (may be time varying,

[24]), such that

Am(K3) = IIK3II = AM(KB) (3.10)

The upper and lower bounds of these parameters are used to prove the

asymptotic stability of the proposed scheme in the sense of the Lyapunov.
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3.2.1.2 Stability of the Control Scheme

In order to show the closed-loop system is globally convergent and stable in

the sense that tracking error will converge to zero asymptotically with all other

signals remaining bounded, consider the Lyapunov function candidate, which is

given in [84], as

_ 1T 1 7 T -
V—2e1K1e1+2e2l\/1(q)e2+ee1l\/|(q)e2+26 kg' e

K1e|\/1
e M VI

1eT

-2

-7
%eTPne+; e kg' e

(3.11)

Taking the time derivative of {3.11) along the trajectories (3.8), we find

(see Appendix - I, (a1.11))

Vs -« A Q) len? (3.12)
where, el = [ eT el ] and
1 1
Am(P).Am(K1) o, [AM(P) + 2]CMp1 + » AM(P)AM(K?_)
1 -1
. + > [(AM(P)-H < AM(K1)]
Q =

1
7e APl A LKy

[¢]

% AP+ 21C o + %AM(P).AM(KZ)

+ 5 10 (P)-1) e A (K )]
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V is nonpositive. This shows that e e Li" n Li”

and o e LS [59]. In other
words, if both side of (3.12) is integrated, it is seen that Jellell is square
integrable function [53]. Thus e is also a square integratable function, but
square integratable function whose derivative is bounded must tend to zero,
hence, ||m el — O. This shows tracking error converge to zero asymptotically.

in the Lyapunov synthesis, the Lyapunov function is regarded as the defining
distance from the origin in the error state-space, and its derivative gives a

quantitative estimate of the speed that the state error is approaching the closed

region including the origin with respect to the parameter variation. The

convergence speed is calculated by - \7/V, hence the settling time [45].

From equation (3.12) and (3.11), one can find (see Appendix-| for details)

LB, p° le, e - B, r? e, 12
2 ex ((Q)P ) - 02 2 ]
" " rf >\m(Pn)

- Vie)

ﬁ.

N

2 [S1-T1(ezo,rf)] (3.14)

Equation (3.14) implies that
Vie) = Velo)e 28Tt (3.15)

S2(S1-Ttty)

j.e. llell = A Ileoll e (3.16)

It states that the exponential convergence rate of trajectory e(t) towards a
ball S(rf) is at least (S1-T1). It follows that the maximum time needed to settle

in a ball S(rf); > is given (S1-T1>0) by
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Tle,e ,e 1) = In
o 2o f

1 A neon

(3.17)
-TT(e, 1) r
20" f f

The rate of convergence depends upon the proper choice of matrix Qn.

The region of attraction is given by (Appendix-I)

ixn <

1/2 -1
Lo |22, P (KD 8 (KON =3 (P) A (K18 (P11 e 2 (KD
O, P) +2) C c

M

JE

(3.18)

The size of the region of attraction can be enlarged by increasing the gain

constant K2 and keeping K3 small. Large region of attraction may be found out in

comparison to [84].

3.2.1.3 Discussions

(i)

(i)

The matrix K3 is incorporated to ensure that the inversion of [I\A/l(q)+K3/]
remains bounded. With this choice, the stability of closed-loop systems
has been established. The matrix K3 is equal to a constant diagonal
matrix. By doing so the matrix [I\A/l(q)+K3/] will always be invertible for
all times. Therefore, the boundedness of joint accelerations could be
expected. It is evident from (3.6) that the present estimate of parameters
depend upon the previous estimate of inertia matrix so that convergence of
parameter errors to zero (close to zero) is possible provided that proper
initial parameters are chosen.

The conditions for stability (Appendix -I) show that the constant €
significantly affects the 'adaptation speed and it depends on the desired

velocity trajectory P, In other words, € upper bounds the convergence
(0]

rate.
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(iii) Usually robot motion is associated with three variables i.e. position,
velocity and acceleration. It is supposed here that the measurement of
joint accelerations are available. Although, It is true that the
acceleration measurements may be corrupted with noise, for relatively
noise free situation one can still assume the availability of joint
accelerations.

(iv) The region of attraction of Whitcomb et.. al.[84] is derived as

: 1/2
L 5 (2Am(K1) Am(Kz)) -AM(Kz)

Il < 13 -k
M

A, M) ¢

3.2.2 Proposed Adaptive Controller Structure Using Nonlinear Compensator
and Sliding Surface
Adaptive controller structures are constructed here by combining the idea of
[7]1, [64]1,1731,[84] with different forms of sliding surfaces for trajectory

tracking of robot manipulators(Fig. 3.2).

(i) Case -1
Let the control law be given as

T = Ml (F-2ae) + Cla,ga e (r-ael + gla) -AKe -Kzé-omnenzS1

W(q,q-e, 'r-xoe, 'r'-xoé) 0 A Ke -|<2é-omneu-’~s1 (3.19)

. _. . _ T . _ 01 .A A A
where e —q—r,S1 —e+AOe,K2—K2>O,>\_ +I|e||,I\/I,C,gare

estimated value of M,C and g, respectively.
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The control law incorporates the sliding surface S1, by replacing the

desired trajectory by virtual reference trajectory, represented as [73]

q =r-2 J e dt (3.20a)
0O

g, = rae | (3.20b)

q =il (3.20c)

S, = q - d, =q - 'r+aoe = e + Ae . (3.20d)

The adaptation law (3.2) are derived via the Lyapunov stability criterion

given in Appendix - Il (a2.9) as

6 = -kg W'(q,g-re, 'r—AOe, i'-xoé) (e + A e) (3.21)

The idea of [13] is used to construct the sliding surface 81. The constant
A, is able to bound the position error in order to lie on the sliding surface 81.
The 5 incorporates the estimated value of M, C and g. The nonlinear compensator
feedback term is caused by the additional error in linear-in-parameterization

formulation. The idea of [64], applying MVT (mean value theorem), is incorporated

in order to show that the additional error is bounded by S1 and e(see Appendix -

2). It is assumed that o > 0 and 2 R A
n (o] o

(iij Case- 2
In this structure an adaptive controller, slightly different form in

comparison to case - 1 by approximation of (r - Aoé) to r i.e. dr is approximated

by r, is considered. The control law is given as
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~
I

M(q) (r - Aoé) + Clg,g-x e) r + glg) - K.e -K?_é.anzneuzs2 (3.22)

= W(g,g-ae,r, 12 6) 0 - K e -Keo 7ue1|282 (3.23)
. T T A 1 A
where e = g-r; S2 = Aoe+>\e;K1 = K1 > O;K2 = K2 > O;AEm = T el
In this case, it is assumed that A LT AL
The adaptation law is derived in Appendix-Il as
6 = - kg WHaq,gre, 1, -2 €) (A e + re) (3.24)

The constant A affects significantly the speed of parameter estimation. kg
8]

is any positive definite diagonal matrix.

(fii) Case - 3
In this case, the form of control law is the addition of nonlinear feedback
term to algorithm of [7]. The virtual reference trajectories [73] are completely

approximated by desired reference trajectory. The control law is given as

© = M) r'+ Clg,g-x e) 7 + gla) - Ke -Kzé-omneu?-s3 (3.25)
= W(q,g-2ef, 1) 0 - Ke -Kyé-aﬂnenzs,2 (3.26)

_ . _ . _ T . _ T . _ ol .

where e = qg-r; 83 = e+2xe ,K1 = K1 > O,K2 = K2 > 0; A = T¥iei

The nonlinear compensator is used in control law due to additional error
WI(q,q, q, q)- W(qg,g-re,r, r') which is bounded by S, and e (Appendix - II).
The adaptation law derived in Appendix - I, in order to estimate M,C, and

g, is obtained as

6 = kg W (q,gae, 1, ) (& + Ae) (3.27)

where kg is any symmetric positive definite diagonal matrix.
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3.2.2.1 Error System Formulation

The dynamic equation of rigid robot model is expressed by (3.7). The
function W(.) represent the linear-in-parameterization as Craig et. al. [17]. In
order to derive an adaptation law using the Lyapunov direct method, the error
system is required. It gives the information that how error trajectories are

converge to zero asymptotically

(i) For Case - 1
From eq. (3.7) and (3.19), the error equation results obtained as

M(qg)e + Aol\/l(q)é +Cl{g,q)e +xClg,e)r +AOC(q,d—>\e)e +A K e+ Kzé + omnenzs1

= W(q,a-ae, r-Ae, 1-ae) 8 - (3.28)
where,

5 =6-0 (3.29)

The vector S1 gives the information about boundedness and convergence of q

and q. It can be seen as a stable first order differential equation in ‘e’ with

S1 as an input. Thus for bounded initial conditions, boundedness of S1 implies

boundedness of e and e. If S —»0ast-—w sodoe— 0 and e — O [64].

(i) For Case - 2
Substituting (3.23) into (3.7), we get the error equation
M(q) e + AOM(q)é + Clq,9)¢ + AC(g.elr + K e+ K,e + O‘nzlleIIZSz
= W(q,g-2e, T, 'r'-xoé) ] (3.30)
Since the S2 is define as a function_ of the constant A which bounds the
position error and velocity error to lie on the sliding surface Sz' Following the
same type of arguments as in section‘ 3.2.2., for sliding surface, it observed

thatisz—>Oast—>oo,sodoe—aOandéHO
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(iii) For Case - 3
The error equation may be obtained, by substituting (3.25) into (3.7), as
M(a) e + Cla,qle + AClg.elt + Ke+ Ke + o iel’s,
= W(q,q-ae, 1, 1) 6 (3.31)
Where 6 is defined in section 3.2.2. c is a positive constant. Prominently, the

error equation drives the stability analysis in the sense of Lyapunov.

3.2.2.2 Stability of Control Schemes
The following physical properties are consider as
0 = I\/lm = IM(qg)lIl = MM
IC(g,q)n = C, (el + p)

| A K ) 4r (K )
Ay S MIN 2 x KT+ x (K]
M M m 2 M 2

Am(K1)

1A

K 1< x  (K)
1 M 1

1A

A(K) =K < a (K)
m 2 2 M2
(3.32)
where, Am(.) and AM(.) denote the minimum and maximum eigen values. In other
words, the upper and lower bounds on these parameters are required for stability
analysis. The stability proof of the scheme is considered by choosing the

Lyapunov function candidate and taking the derivative along the respective error

trajectories.

(i) For Case -1
Recalling the Lyapunov function candidate (Appendix-ll, (a2.1))
S 1T 7 T -1, 1 =
V—281 M(q) S1+Qe K2e+2 6 kg 6 (3.33)
Taking the derivative of the Lyapunov function along the error trajectories

(3.28), we find (see Appendix-Il)
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T
s s |l
1 1

Vo< -2A A (Q) _ : (3.34)
° el ™ e

V is a nonpositive function bounded as from (3.33) that S , e € L;,é,81e L;.
Now, because ae L, we conclude from (3.34) that 81, ee Lz. From square

integrability and uniform continuity of e we conclude that it converges to zero

[7].

The region of attraction (Appendix-1l) is given by with x' = le',e]

i < (2 | e T e T ot (3.34a)

0 A C + 2a(K)
where,p:% o M m_Z

Decreasing o, one can enlarge the region of attraction. The right side of
(3.34a) is positive by hypothesis (a2.7). Large region of attraction can be find

out in contrast to [7] by proper choice of initial conditions and parameter.

(ii) For Case -2

The Lyapunov function candidate is considered as

T -

_ 1T 1 7 1 - - _
V = 5S M S, + e K.e+ o © kg 6 (3.35)
The time derivative of (3.35) along the error trajectories (3.30), we find

(see Appendix - Il)
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_ 1S ! IS
Vo= - ? A (Q) 2 (3.36)

m 2

taell lraell

V is nonpositive. Global convergence follows from the same type of arguments

used in case-1.

Similarly, one can get the region of attraction (Appendix -ll)

(- T . )

112, o _1
Lﬂﬂ 200 (K )UA -1 ) C 4+ C o)) y A, (K '%‘%'”%CM“%
Mol (x-TTC,

. : )

(3.36a)

Ixi <

v

where 1Igll = k . The region of attraction can be enlarged by increasing K2 and

keeping low value of AO. The right hand side of (3.36a) is positive by virtue of

hypothesis (a2.21)

fiiij For Case-3
The Lyapunov function candidate is given as

=T

R S+ T 7 1 -1
V=55 Mas, +5e K e+, 8 kg

6 (3.37)

In Appendix-li, the derivative of the Lyapunov function (3.37) along the

error trajectories (3.31), it is found as

_ 5]’ X
Vo< - 3 A (Q) 3 (3.38)

m 3

aell liarell

V is nonpositive. Global convergence follows from the same type of arguments

used in case-1.
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The region of attraction is determined as (Appendix - 1))

1 ' |
5 LK)+ (o +4) C]

I (K)AC -2am 17
xl < (7\_1 A (K ))1/2 m 2 o M o M
o m 1

213"

0‘
*ln3

(3.38a)

The upper bound on K2 if increased keeping C lower value, the region of

attraction can be enlarged. By virtue of hypothesis (a 2.32), the right hand

side of (3.38a) is positive.

3.2.2.3 Discussions

(i)

(ii)

(iii)

(iv)

The design parameter A, and A have different value in case -1 (see also
[28]). A takes part to bound the position error to lie on the sliding
surface and 7\01 is the measure of robustness to noise sensitivity
properties.

In case-2, the constant 7\0 appears in adaptation law, which slow down the
speed of estimation causes the reduction of difference between rate of cha-
nge of inertia matrix and rate of change of parameter adaptation,if A0< 1.
In case-1 and case-2, the term A, M(q) e, reduces the discontinuities due
to acceleration and caused by formation of virtual reference trajectory as
clear from (3.18) and (3.22) respectively. |

The condition by which position error lie on sliding surface is derived as:

S, = 0 »a = nel/iel

B oo el
S, = 0 = el = 39

B el (14 1el)
S, =0 =2 < el
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(V) The A factor is needed in controller to be able to bound the cubic term,
SiC(q,'é) e, i = '1,2,3 by quadratic terms. If V is evaluated, an additional

term e’ M(q)e is obtained. Using the skew symmetric properties this amounts
to an extra term in eTC(q,d)e. This term cannot be compensated by the
control and can only be bounded in terms of e and & with a bound on f [7].

{(vi)  The region of attraction for [7] is derived with x' = [eT,éT];

L by _ o )\_1A 1/2— 1 A (K
ixin < [+2 {2 (K *Cu2 Myl A, K 2 Atk A C
L— 2 o M
M CM

The large region of attraction can be found for case-1 and case-2 while

comparing [7] but case-3 have lower value.

3.2.3 Proposed Adaptive Controller Structure in Bounded Form

A bounded form of adaptive controller structure is presented in this
section. The control scheme in bounded form consists of PD controller as
feedforward to ensure trajectory tracking, reference trajectory information based
linear-in-parameter (regressor) term multiplied by unknown parameter vector and
nonlinear feedback compensator. The bounded form of controller structure,
coefficients l\/lM and CM bound the actual system dynamics, is considered for stable

control. The unknown parameters belong to some interval 6
m

in

and e and take
max
the supremum of I\/IM, CM over these intervals [7].

Consider the control law inspired by [7] , [64], given in bounded form as

~
I

M@t +1C(q,g-ae)ll 7 +9(q)-K  iei-K_ nén-crnnenzs

W(lg-rell,r, r')iol K, ek lell-c llel?S (3.39)
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A
= - . = : . = T . = T . = o .
where e = q-r; S = e+xe ;K K, > 0K, K, > 00 A= gy The

desired trajectories are known in advance. The auxiliary nonlinear feedback term
is to compensate for the additional error introduced by the modification of the
adaptive controller i.e. (W(a,0,0,G)- W(ng-aen,r,r)le [64]. The bounded control

’

input is applied to system dynamics of robot manipulator, as a result, 'q’
becomes bounded.

The bounded parameter liell, adjusted according to adaptation law, is derived

in Appendix - lll, as
5 = -kg WlIg-xel, 1, 1) (e + 2e) (3.40)
el = & + o (q)

where kg = kgT >0, I.1 is defined as Euclidean norm. kg is any positive definite

constant matrix. A factor takes part to lie the error trajectory on the sliding

surface and as well as to robustify the scheme in presence of noisy velocity.

3.2.3.1 Error System Formulation
The dynamic equation of rigid robot model s expressed by (3.7).

Substituting (3.39) into (3.7), the error equation obtained as

M(g) & + Clg.qle + K el +K, el +o*nlle||28
— W(ug-aell,r, r) 8 (3.47)
Where, 6 = liell - e*(q) denotes the parameters vector whose adjustment over time

must be established in such a way that llell — 0 ast > w

3.2.3.2 Stability of Control Scheme
The Lyapunov direct method is used to proof the stability of the bounded
form of adaptive control scheme. The physical properties are follows as described

by (3.32).
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Now, consider the Lyapunov function candidate

1 1 1 1
V= ,8 Mg s +2eTK1e+29Tkg16 (3.42)

Taking the time derivative of the Lyapunov function along (3.41), we get

(see Appendix-lll)

T

Vo= - PS“} A (Q) [“S”} - ¢ lel® 1Sn? (3.43)
el m ixell n

V is nonpositive function bounded as from (3.42) that S, e e Ly, e, S e L.
Now, because ae L, it is concluded from (3.43) that S, ee Lg. If Ilgll -6 and S
are bounded t = 0, they remain bounded for all t = 0. To cdmplete the proof, it
is necessary to show S — 0, e — 0 as t — . This can be accomplished by

applying Barbalat’s lemma to continuous, nonnegative function:

Vo=V - | (VO + (S ") Am(O) S'(g) + o ren? usn?) de

O — ~

with _

V. =-5T2(Q S = nen 1sy?

1 m n

since the boundedness of S’ implies that all signals are bounded, hence S is
bounded, that in turn proves V, to be uniformly continuous function of time.
Since V1 is bounded below by O, and \'/1 = O for all t, use of Barbalat’s lemma

lim . [im

proves that V1 = 0, which implies S’ = 0. The region of attraction is

—w» t—w

expressed by (3.38a).

3.2.3.3 Discussions
(i) The estimation is thev upper bound of the parameter rather than parameter

itself. Therefore, the requirement of persistency of excitation is avoided

47



(ii)

(iii)

(iv)

and the problems inherent to integral adaptation law, such as the
"parameter drift instability” do not appear.

In contrast to Craig et. al. [17], o' is assumed as a function of joint
position (6 (q)) so that the coefficients l\/\M and CM bound the actual system
dynamics. |

If each parameter is known within some bounds, the parameter adaptation can
be prevented from going out of bounds and thus makes the system more robust
[28].

The convergence of the control law depends on the choice of feedback gain
pr'o.portional to maximum tracking error. If the tracking error exceeds this
limit, convergence is no longer guaranteed [53],{66]. |

In ordér to implement the adaptive controller, one needs to calculate the
element of W(g,d,4,G) in real time. This procedure may be excessively time
consuming since it involves computations of highly nonlinear functions of
joint position and velocities. The real time implementation of such a
scheme, is rather difficult. To overcome this difficulty q and q replaced
by r and r respectively to form W(iig-aell,r,r'). Due to this replacement,
the error may introduced. In order to compensate this form of error, an

auxiliary nonlinear feedback term is included in control law [64].
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SLIDING OBSERVER AIDED CONTROL STRATEGY

4.1 INTRODUCTION

In this section, the sliding observer based control strategy for robot
manipulator is considered under the assumption that only joint positions, and not
full state measurements (positions and velocities) are available [59]. The
purpose of including a sliding observer to estimate joint velocities is to
improve the tracking performance. The various approaches in literature are based
on sliding observer aided adaptive control [10] and nonlinear form of sliding
observer [8] for trajectory tracking of robot manipulator. The sliding observer
structure of [10] is a function of observation error {(position) and parameter
uncertainties vector (function of bounded estimated velocity). It is also
suggested that the reduction of chattering is possible by introduction of aﬁ
adaptation loop at control law level. An asymptotically stable closed loop system
results from this scheme. On the other hand, the nonlinear sliding observer based
controller structure are found promising in view of the nonlinear nature of robot
manipulator in [8]. The physical robot properties are explicitly exploited to
show exponential convergence of the observation error vector. The scheme yield
exponentially stable closed-loop systems (tracking error and observation error
system). The Filippov’s solution concept is applied so that the dynamic behavior
in sliding patch is represented as an average dynamics in order to simplify the

solution. Both schemes are described in subsequent subsections.

4.1.1 Controller-Observer Structure

The control law reported in [10] is given as



A

T =T + W(x1,2,6) X

o 2
- Mix )z + Clx, x )z + gix,) - KS +Wix 2,80, (4.1)
where,
z =1 -Ae ' (4.2)
Z=1r1 -he : (4.3)
S=x2-i=é+/\e (4.4)
with KD is a positive definite constant matrix. 3(2 = ;<2 - X, is the velocity

observation error vector and X, the joint position vector.
The observer is given in [10] by the following differential equation with
right—hand side discontinuities as

X, = X, - Fox, - A, _sgn(x1) (4.5a)

X>-
Il

-n,Sgn(X) -W(x1,i,8)(8’—/\1 sgn(x,) +Vv (4.5b)

A

where o is the estimate of the unknown parameter vector 6. V is introduced
in order to robustify the observation error dynamics vis-a-vis the uncertainties
on 8.

Applying the Filippov’s solution concept and the Lyapunov direct method, the

following form of adaptation law and uncertainties vector are derived in [10],

given as :
6 = -1 Y(x1,x2—A1sgn(>~<1), z, 2/ +An sgN(X)) (S"-A.sgn (X)) (4.6)
and
v = v(xz,r,xl)
“p(x_,T)A sgnix YA, if A sgn(X )= 0
_ 2 1 1 e 1 (4.7)
g 0 if ||A1sgn(>~<1)ll =0

“’“ 2474-])

AN

-

N ’ 4 50



where (in sliding patch),

A

s = X, - z

S = & - A1sgn(>~<1) (4.8)
- X - % 4.9

X, = X, /\1sgn(x1) (4.9)

2 = 2/ + M sgnix) (4.10)

and I', A and A, are positive constant diagonal matrix.

The design consists of an adaptation law and uncertainty vector ‘v’ which
contain discontinuities in terms of sgn(>“<1), such that system dynamics
asymptotically tends to zero while the error states remain bounded. The
expression v’ incorporates the term ¢(;<2,r) which is derived. in [10] as follows:

The expression 7 is

o= - M) Clxx )X - MIx )T gix) + Mix) T

then, according to the robot model properties

A

2 2 A
nll = GOIIXZII + o‘OA1 + A1 + 0“1+ c, frh = ¢(x2,‘c)
The scalar and positive function ¢ thus defines a measurable upper bound inll.

Canudas et al. [8] presented a nonlinear sliding observer to estimate the
velocities- and calculate the control law for trajectory tracking of robot
manipulator. The control law incorporates the desired trajectory based robot
model properties and the sliding observer takes the form of robot dynamics based
on estimated velocity.

The control law is given in [8] as

A

T o= MO - K (x, - 1) - Ko x =)+ Clxnr + glx) +rxn (407

2

where KV and Kp are positive constant diagonal matrix. X, is the joint position
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A

and X, is the estimated velocity vector. The term = (x1,'r) is based on physical
[o]

model properties of robot.

The structure of the sliding observer in [8] given by the following

differential equations:

A A A

X, = x, -T X - /\1(x) sgn(x1) (4.12a)
X, =T, x - Az(x) sgn(x1) + B(x1,x2) + u (4.12Db)
where r. and r, are positive definite constant diagonal matrices. A= diag[yl]
vi=12,..n, and
A _ -1 A
A2(x1, x2) = I\/I(x1) [Q A1 + n1(x1, Xz)A1] {(4.13a)

where Q is a diagonal positive definite matrix. . is defined in Appendix - VI.
The dynamic behavior inside the resulting reduced order manifold is given in [8]

as

_ 2 <
X, = I\/l(xj) [C(x1,x2) + Q] X, {4.13b)

The closed-loop analysis is performed on the basis of the reduced order
manifold dynamics and the tracking error dynamics in the sense of Lyapunov. This
leads to an augmented system globally asymptotically exponentially stable system.
The local attraction areas are characterized in terms of controller and observer

gains, initial state values and robot model parameter.

4.2 PROPOSED OBSERVER STRUCTURE
In this section, Two new sliding observer aided of adaptive controller

structures are proposed by modifications in the existing sliding observer[10].
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Further, two types of nonlinear sliding observer based controller structures,
motivated by [10],[85], are also proposed for robot manipulators.

Firstly, the observer form of [10] is modified by incorporating the desired
acceleration trajectory and uncertainties vector based on desired reference
trajectory (Fig.4.1). Secondly, the observer structure is further modified by
inclusion of tracking error and observation error to estimate the velocify vector
in view of dynamic interaction between controller and observer. Both modified
schemes are based on adaptive control to reduce chattering at control law level
and also to improve the tracking performance of robot manipulators in comparison
to existing work [10].

In view of nonlinear nature and coupled structure ofvrobot system the
observer design is very complex. Canudas et. al. [8] presented nonlinear form of
observer by avoiding actual velocity measurements and using full system dynamic
model to estimate the velocity vector for trajectory tracking of robot
m_anipulators. In order to improve the tracking performance, the observer.
structure [8] is modified by inclusion of velocity observation error and e’ term
(square of tracking error) in connection to dynamic interaction between
controller and observer (Fig.4.2). Because of the technology advancements
controller-observer simplicity weighs less important than tracking accuracy. It
is no longer prohibitive to consider a more accurate model and look for better
tracking performance with a slightly more complicated controller-observer
structure. It may be seen that when the controller and observer are independently
designeld it is not guarantee that both together yields a stable local closed-loop
system behavior. Thus, they are regarded as a global control structure with their
gains tuned in order to ensure asymptotic tracking of the desired trajectory.

Similarly, the nonlineaf sliding observer is further modified by sign-sign

function associated with observation error and tracking error. The observer
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structure is considered as Sign-Sign Algorithm(SSA). The "Sgn(.)" is usual signum
function to be interpreted as element by element operator when applied to a
vector. The sign operator on the velocity observation error which makes each
velocity estimate to the boundary on which velocity observation error lies and is.
insensitive to the distance to the boundary. The sign-sign term forces the
velocity observation error, according to the sign function of tracking error, to
lie on the average of two-half spaces defined by reduced order manifold dynamics.
This indicate that the dynamics in the manifold created by two discontinuous
surfaces can be computed as the average of the dynamics of each side of the
discontihuity surface and hence formally determined by the invariance of the
manifold. It is possible to get good velocity estimate (or zero 've|ocity
observation error) by sign-sign term as forcing element to ensure good tracking

performance.

4.2.1 Adaptive Control Using Sliding Observer with New Uncertainty Vector

In this combined scheme, the observer structure of [10] is modified by
inclusion of desired acceleration trajectory inforlmation and dependence of design
vector on desired reference information based robot model properties to get
asymptotic stability of closed-loop system. The adaptation law, observer state
and the control law are developed simultaneously. These are designed using
reduced order manifold dynamics (Filippov’s solution concept) [10].

Define >“<1 = >A<1 - X, and f(zz ;2 - X, as the estimation or observation error.
;(1 is used only to get observation error in the sliding observer structure. ;1
and >A<2 are the estimates of X, (actual position) and X, {actual velocity)

respectively. To estimate the states X, and X, the proposed structure of sliding

observer is given by following differential equation;
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x> -
Il

X - X - X 414
1 x, - T X - A sgnix) { a)

X = r- X - X ) - 1 0)S - X 4.14b
X, r 1“2 X, /\ngn(x1) W(x1,qr,e)(8 /\1 sgn(x1)) +v ( )
where ror AA, are the design matrices. The term v incorporates the
uncertainties on parameter vector . W(.) is defined by (4.21).

The structure of control law be given as [recalling [10]].

T, = l\/l(x1)q’ + C(x1,x2)qr + g(x1) - KZS (4.15)
where l\/l(x1) and C(x],xz) are the estimates of l\/|(x1) and C(x1,x2) respectively. K2
Is a positive constant diagonal matrix. The control law incorporates the sliding

surface ‘S’, replacing the desired trajectory by virtual reference trajectory,

represented as

t

q =r- /\J e dt (4.16a)

qr =1 - Ae (4.16b)

q; =i - Aé (4.16¢)
where e = x1

- r is the tracking error vector and A is a positive constant

diagonal matrix. One can define

qu-qr=é+/\e (4.16d)

It is assumed that only joint positions are available. The vector X, IS

estimated via sliding observer structure as described by (4.14). Now, with the

following definitions:

a’ =1 AR -0 =q -nX (4.17)

S =X,-9 =S + % (4.18)
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where S’ represent the error between estimated velocity vector and velocity
virtual reference trajectory. Substituting (4.16) - (4.18) into (4.15) and using
the properties of C(.), we get

T=1 - MX)AX, + Clx,,q)x, - K, X, (4.19)

T + W(x1,qr,e) X, (4.20)

A

where 6 is the estimate of the unknown parameter vector and W(.) is given as

W = W(x1,dr,e) = - M(x)A + C(x1,c'1r) - K, (4.21a)

where 6, using reduced order manifold dynamics (see Appendix-1V), is adjusted as

A A

g = -1 Yix ,x -Asgn(X), q, G° +An, sgn(x ) (S'-Asgn (X)) (4.21b)
and

v = virnz, >~<2, r)

_ -[p(r,T) + 7 1] A sgn(X )/a,if 1A sgn(x )i = O (4.21¢)

0 ‘ if ||A1sgn(>”<1)|| =0

where ¢(r,7) is defined in subsection 4.2.1.2. It represent the ideal case to
compensate the uncertainties on parameter vector. The new expression ‘v’ depends
on the bounded terms r and r. Therefore, the bounded form of parameter

uncertainties results.

4.2.1.1 Error System Formulation
The system dynamics of n-degrees of freedom rigid robot system is described
by (3.7). In state-space representation, choosing X, = Qq, X, = q, system model

2

(3.7) can be expressed [10] as :
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x] = x2 (4.22a)

- o
X, = Hix x) + Mix )t (4.22b)
where,
Hix x) = = MIx ) [COxx )x, + gix )] (4.22c)

Substituting the control law in robot dynamics (3.7), we obtain

M(x1)S + C(x1,x2) S I\/|(x1) q, + C(x1,x2)qr + Q(x,l) - KZS

+ W(x1,dr,e) X, (4.23)

The dynamic behavior of sliding surface S is represented as

' . 4 . e~ . A~
S =M (x1)[-(C(x1,x2)+K2)S + Y(x1,x2,qr,qr)e + W(x1, a. e)xz] (4.24)
where,

Y = Y(x1,x2,c']r,d;) = l\7|(x1)d; + C'?(x1,x2)(jr + Q(x1) (4.25)

The observation error dynamic equation can be obtain, from (4.14) and

(4.22), as

X, = Xx,-T x - A, sgn (x1) (4.26a)
X, = ro- r, X, - A, sgn (x,)
- Wix, q, O)S'-A sgn (X)) + v +7 ~ (4.26D)
where, 1 = —H(x1,>A<2) - M7x )

These equations (4.26) together with (4.24) describe the complete closed-

loop system error dynamics.
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4.2.1.2 New Uncertainty Vector

In contrast to [10], the structure of 7 is modified by replacing the x, to
desired joint position trajectory r and >A<2 to r respectively to robustify the
observer error dynamics. It means that the expression ‘v’ (4.271c) becomes
bounded due to boundedness of r and r .

Now, the term n turns into new form as

n o= - M C,nr- M0 gl - Tl (4.27)

Applying the boundedness properties on (4.27), there exists positive

constants o , o and T, we get
o

< o2 — r ‘
i = o Ir® + o+ o Tl = ¢(r,1) (4.28)

The scalar and positive function ¢ defines the upper bound on || such that

o > UM > 0 ;0! > IM(r) ' > O; uC(r,nr = o, et
(o]
c < o o ;0 < oo o0 < o ;
[e]

o1 o 2 11 o 1 12

The uncertainties vector linll is adjusted via equation (4.21c) (see also

Appendix -IV).

4.2.1.3 Stability of the Controller- Observer Scheme

The stabillity proof via the Lyapunov direct method is investigated in two
fold. First, the stability in sliding patch is investigated by choosing the
Lyapunov function as given in [10] and the closed-loop stability is analysed with
different form of the Lyapunov function.

Recalling from Appendix - IV (a4.4), the Lyapunov function candidate
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I P | 1 .7 LS '
V—QSMS+2 X, X, + 50 e , (4.29)

It is found that (a4.11, Appendix -IV)

< 2 -1 - 2
V =< - Am(Kz) 1sne - Am(/\2 /\1 ) ||x2|! (4.30)

From Appendix - IV, HeS(O)ll?‘ = A, i.e e (1 lie in the sliding patch.

If A, verifies the inequality (a4.15) of Appendix- |V, x1(O) = x1(O) ie.
A lim im  _

initial condition, v and e are satisfied (4.21), then 1Sn? = 0, Pk
{t—w {—w 2

= 0, 161° < w for all t. It implies that S - 0 as t — «», so do e and e i.e.

lim
e = 0
{—w
lim .
e =0 {4.31)
{—0w0
In other words, S € Li” .S is wuniformly continuous and using the

implicationSeLj” > S 50ast swsodoe 50, e >0ast— w
The closed-loop stability is investigated by choosing slightly different

from of the Lyapunov function (Appendix - V).

PN | 1 7 1T .71 ¢ 1 -t . =
V—QS MS+2e1K2e1+2x2x2+29 re (4.32)
and '
Vo< - A (Q) uz? (4.33)
where Am(Q) is defined in Appendix-1V.
Since V = V(0) v t = O, then
Vs - A A (Q) 1Z? (4.34)
< - g NZi? (4.35)
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The inequality (4.34) ensures the boundedness of Z. Z is uniformly

continuous, moreover, |

B J 1zn? dt = - J V dt = V(0) - Vio) < w (4.36)
0 0 ‘

and therefore,

|
m nzZn = 0 (4.37)

t—w
that implies e, — 0, e, — 0, iz — 0ast > w
Am(O) iIs symmetric positive definite matrix (a4.21) if the following
condition is satisfied:

1
Am(KZ) > AM(KZ) (1 + ﬂ) (4.37a)

From Appendix - IV, it is found that the region of attraction is the entire

state-space, that is, defined by Lm and LM.

4.2.1.4 Discussions

(i) The vector linll is bounded because of its functional dependence on desired
trajectory. Hence, the design vector v is bounded. It is used to robustify
the observation error dynamics vis-a-vis uncertainties on parameter vector.

(ii) The estimated velocity is provided by a sliding observer, into which the
desired acceleration is fed forward, in order to keep the estimated
velocity within the input bound.

(i) The wuncertainties term appears on boundedness of the inertia matrix,
gravity components and boundedness of the Coriolis and centripetal forces.
The design constants, associated.vvith these boundedness of coefficients

matrix, reduce the uncertainties on parameter vector and enhance the
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tracking performance so that tracking error and velocity observation error -
tend asymptotically to zero.

(iv)  The region within which the switching surface is invariant is noted as
"sliding patch". The Chattering motion on the switching surface is
unsuitable phenomenon and creates high frequency components, in result,
discontinuities occur in control law. This unsuitable phenomenon can be
reduced by replacing the switching function by saturation one or applying
boundary layer theory [87],[88], but tracking performance detoriates.
Alternatively, an adaptation loop may reduce the chattering in control law

because of its dependency on the estimated values.

4.2.2 Tracking Error Based Sliding Observer Aided Adaptive Control

The sliding observer of [10] is further extended by inclusion of tracking
error in previously modified (section 4.2.1) form to provide a proper tuning
between controller and observer. In this case, the sliding observer is modified "

in evaluating the velocity estimation as follows:

X, = X, -T X -A sgn(x) | (4.38a)

A — .._ — ) ) ) . ) . ol /_ —_ 4. 8
X, T r2 X, Fe(x1 r /\zsgn(x1) W(x1,qr,9)(S /\1sgn(x1)) +v (4.38b)
where I‘1,I‘2, /\1,/\2 and I' are the design matrices. The term v is made to
e
account the uncertainties on parameter vector o. >A<1 and >A<2 are the estimates of
X, and X, respectively.

The structure of control law be given by equation (4.20) recalled as

T =T+ W(X1,C']r,8) )?2 (4.39)

where,

T, = Mix)g + C(x1,x2)qr + glx) - KS
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and W() is define in equation (4.21), q, qr, qr are defined in
equation{4.16).

where I\A/I(x1) ahd 6(x1,x2) are the estimates of l\/|(x1)_ and C(x1,x2)
respectively. K2 is a positive constant diagonal matrix.

The adaptation law is derived in Appendix-V obtain as

A

6 = -1 Yix X -A sgnix ), q, ' +AA sgn(X)) (S'-Asgn (X)) (4.40)

and the term v is obtained as

v = vir,T, >~<2, r)

-[plr,T) +.0r 1] A sgn(X )/A if 1A sgn(x )il = O (4..41)

0 : if ||A1sgn(>‘<1)|| =0

where ¢(r,7) is defined by (4.28). In (4.41), the term v depends on the desired
trajectory information, hence it is bounded due to boundedness of r and r . Thus,
the robustness of observation error dynamics increases. The term W compensates

the term WS’ of control law.

4.2.2.1 Error System Formulation

The system dynamics of n-degrees of freedom rigid robot system is described
by (3.7). In state-space representation, choosing X, = q X, = g, system model
(3.7) can be expressed [10] as,

X =X
1 2

o -1
X, = - I\/I(x1) [C(x1,x2)x2 + g(x1) -1 ] (4.42)

The dynamic behavior in sliding surface S can be repres.ented as
S = MTOO)HCX X ) +K)S + Y(x1,x2,dr,d;)é + Wix, g, 8)x,] (4.43a)

64



where,
Y= YIx,q,a) = Mix)a + Clx.x,)q + glx;) (4.43b)

The observation error dynamic equation can be expressed, from (4.38),

(4.42), as
X, = X, -T X - A, sgn (x1) {4.45a)
X, =7T1 -T, x, Te.- A, sgn (x2)
- Wix,, g, 6)(S"-A sgn (X)) + v +7 (4.45b)
pa— '1 -
where, n = - I\/](x1) [C(x1,x2)x2 + g(x1) 7]

The term v is to cope with uncertainties on parameter vector. In observation
error dynamics (4.45), the desired acceleration vector reduces the
discontinuities in velocity estimation, in results, the velocity observation

error is bounded.

4.2.2.2  Stability of Controller-Observer Structure

The s_tability proof in the Lyapunov sense is investigated in Appendix - V in
sliding patch and based on augmented error system. Former indicates that the
errors lie on sliding surface and later gives the convergence of augmented error
to zero or close to zero with satisfaction of adaptation law and vector v.

From Appendix - V, (a5.13), it follows

Vo= -a (K iSi? - a (A A IR 1% - A () el x| (4.46)
m 2 m 2 1 2 M e 2
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Using the same type of arguments in Appendix-1V, (a4.13) - (a4.13), it

follows that

”851(0)“2 = A (4.47)
so that e_(t) lie in the sliding patch where e; = [S",x, 8", ¢
Consider the augmented error ‘2’ as described in Appendix - V. Using the

Lyapunov function {(a5.13), it is found

Vo= - A A (Q) 1Zn? (4.48)

Am(Qs) is symmetric positive definite (a5.15) matrix if following condition

is satisfied:
1/2
2
1 [AM(re)] Am(KZ) 2
4 -1 ) [Am(Kz)]
A (ANA)
m 2 1
AM(KZ) < 1 (4.49)
e

Foliowing the same type of arguments (4.35)-(4.37), it can be shown that
Zlh — 0 as t — o i.e. e1—>O, e2—>O, )§(2—>088t%00. It is shown
to be asymptotically stable system. From Appendix - V, it is found that the

entire state-space defined by Lm and LM considered as the region of attraction.

4.2.2.3 Discussions

(i) In order to get good velocity estimates, the tracking error term s
included to previous work to fulfill the dynamic interaction so that
tracking error, observation error converge to zero and as well as velocity

error converge to zero, for a proper initial condition.
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(i) Since the design vector v is bounded function of desired trajectory
information, which shows robustness of the scheme.

(i) It is not possible to design reduced order sliding observer in proposed
scheme because the output error is only dependent on the position X and
its estimates.

(iv)  Due to switching terms in the observer and adaptation law, the chattering
motion occurs on the switching surface. In order to get average dynamics on
each side of discontinuity surface the Filippov’s solution concept (reduced
order manifold dynamics) is applied on observer structure. The reduction of

chattering may possible by introduction of an adaptation loop.

4.2.3 Extended Nonlinear Sliding Observer Aided Controller Structure

In this section, the observer structure of [8] is extended by introduction
of signum function of velocity observation error and square of tracking error.
The new nonlinear sliding observer is inspired by [8],[85]. In order to show the
improvement in various error response the controller structure of [8] is
considered with proposed sliding observer. The robot system is highly nonlinear
in nature. In this context, the nonlinear sliding observer structure [8] is taken
into consideration for accurate trajectory tracking of robot manipulator by its
structural change. The purpose of observer to estimate the velocity vector in
order to avoid noisy nature of actual velocity measurements for controlling the
motion of robot.

The new form of sliding observer to estimate position X, and velocity X, is

given by following differential equation:
_ . 2 Sy 3 '
X=X, T el -Ax) sgn(x,) - T, X, {(4.50a)

_ 2 - . B
X, =1 -T_ el - /\Z(x],xz) sgnix.) + BOX M+ uy - u, - r,x (4.50b)
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where, r and r, are positive definite constant diagonal matrices, r, = diag
i _ . i _ . o _ . i .
{71}, r, = diag {3(2},Fe.1 = diag {yﬂ}, r , = diag {762} and the matrices A (.)

and A2(.)_ are given as:

A = diag {7;}, vi=1,2,.n (4.51)
A X)) = M) TIQ A (X XA (4.52)

where Q is a diagonal positive definite matrix, and

u, = M(x1)"(1+oz) x, + L sgnix ) £ (4.53)
where L1 .and o’ are design matrices to cope uncertainty between controller and
observer. B(x1,>A<2) of [8] is replaced by B(x1,'r) in proposed observer st‘ru"cture
(4.50). The definition of £ is given (based on robot model properties) as

A

£ =€ + & Nvl+ &0 x2||2 (4.54)

The desired trajectory r,r and r are bounded function of time. The x_  and
x are the estimates of x and x_, respectively, and X = X -x, X_= X -X_are
2 1 2 1 1 1 2 2 2
the observation error vectors. e, = X T and e, = X, - r denote the tracking
error and velocity error respectively.

The control law of [8] is considered here, associated with estimated
velocity instead of actual one, as

T = l\/l(x1) [r—Kz(xz—r) -K1e1]+C(x1,r)r+ g(x1)+ no(x1,r)(x2—r) (4.55)
where no(x1,'r) is defined by following the physical model properties [8] (see
Appendix - V1), which are inherent to robot dynamics. The gain matrices are Ki =

KT>o,i =1,2.
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4.2.3.1 Error System Formulation

The state-space representation of (3.7), by choosing the state vector X =q

and x, = q, is given as :

X = x . (4.56a)

i 2 '

X, =B (x1,x2) + u, (4.56Db)
where,

B, x,) == M(x)™ Clx,,x )x, (4.57a)

u, = l\/I(x1)'1 [ - g(x )] (4.57b)

The observation error equation can be obtained from (4.50) and (4.56) -

(4.57), as
Z . ~ 2 ~ - -
X, = -T X - r,e - /\1(x1) sgn(x1) + X, (4.58a)
S - Ao - 9 S
X, = 1-Tx - /\2(x1,x2) sgn(x1) -r el + B(x1,r) B(x1,x2) .
- M(x1)'1(1 +02)>22—L1sgn(>22)€ (4.58b)

The Filippov’s solution concept (reduced order manifold dynamics) indicates
that the dynamics on the switching surface is an average of the dynamics on each
side of the discontinuity surface.

For simplicity’s sake, consider A, to be a diagonal matrix i.e. A= A]l.
The hypersurface X, = O is invariant as long as |5<;] < (A - 7;1 ef), if |ef| <

2
AH. The region within which the surface is invariant is called as sliding patch.

It X,= 0% =0 thensgn(x) = A (% -1 e
The dynamic behavior in the sliding patch is, according to the Filippov's

solution concept, given as
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i 1 | ~ ~ 2 2
X, = r- [\/l(x1) [Q + C(x1,x2)] [x2 - 1"e1 e1] - I‘92 e

+ BIx0) - B X)) - M) (T +e)X L sgn(x )€ (4.59)

The tracking error dynamics in error state-space, from (4.50) and (4.56),

can be obtained as

e = e (4.60a)

1 2
O _ _ _‘I A -. _ .
e, = I\/](x1) [C(x1,x2)e2 + |\/l(x,|)K2(x2 N + M(x1) K1(X1 N + C(x1,e2)r
- () (x) )] (4.60b)
The augmented error vector (>~<1 = 0O remain attractive) is defined as
e
1 »

e = |% (4.61)

X

An augmented error vector i$ used for closed-loop analysis by introducing

the Lyapunov function as given in subsequent subsection.

4.2.3.2 Stability of Closed-loop System

In order to show the closed-loop system ({4.59) and (4.60) is exponential
stable in the sense that variable in the loop remains bounded and tracking error
e velocity error e, and observation error >~<2 converge to zero asymptotically as
t approaches «, consider the Lyapunov function candidate (Appendix-VI) with
eT=[e1 eZ]T:

Viex) =3 elKe +5 el Mix)e, +5 %, Mix)x, +e] Mix)e, (4.62)

Taking the time derivative of (4.62), along (4.59) and (4.60), it is found

in Appendix - VI that
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V(e, >22 ) = - Amf{ l\/l(e1)} Heoll2 (4.63)

where M(e1) is @ matrix and function of tracking error e

For exponential stability , it is necessary that

<1>o

2
1 1
{Co t 5 C 5 (AM(M)—H AM(KT) }
Am(K1) >

) (M){2 A, M) (Am(Kz)—n-oo}

(4.64)

hence,

Amf{l\/l(e1)} > 0 (4.65)

Applying these inequality (4.63) is nonpositive. It follows that V(e,iz) is

bounded, hence llleoll is an L? function [53]. But and £? function whose derivative

is bounded must tend to zero [53]; hence, ”eo” — 0 means e1 — 0, e2 — 0 and

5(2 —> O as t approaches «, as desired.
From Appendix - VI, the region of attraction is given as :

1 1

1
X1 < C? {(2 [AM(M)-1](AM(K1) " Cop c1)) + [(Am(M)Am(K1))

(22 IMIA_(K)-10 - ¢ N (e, +q_ +(1 +02) "2 (O (M)A (K )"

G AM(M)AM(KZ)-g co-; c,) } /(2 (M)A (K )-11-c )" % A MIA (K )¢

(4.65a)

where x' = le,e]”. In contrast to [8], large region of attraction appeared for

proposed scheme.
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4.2.3.3 Discussions

(i) The "sgn(’iz)" is. usual signum function to be interpreted as element by
element operator when applied to a vector €. The sign operator on the 5(2
which makes each velocity estimate sensitive to the boundary on which >22
lies, and insensitive to distance to the boundary.

(ii) From (a6.12), a region is defined in terms of e, as

lle I <
1

2 AM(M)AM(reZ) ) % AM(reZ) ) % a, (r,,) - (C1+Co) AM(reﬂ)

In order to get le Il as small value, T I and q have chosen large
e (<] o}

value.

4.2.4 Sign-Sign function Based Nonlinear Sliding Observer Aided Controller

Structure

A novel form of nonlinear sliding observer based on sign-sign function,
which is associated with observation error and tracking error, to estimate the
velocity vector is proposed. The overall control scheme consists of proposed
sliding observer along with controller structure of [8] in addition to
disturbance torque. The observer scheme takes the advantage of full robot
dynamics to make the observer system nonlinear. The switching gain associated
with sign-sign function is to force observation error to lie on the sliding
surface. As for linear systems, the separation principle cannot apply in
nonlinear systems. In this regard the controller and the observer cannot be
independently designed. In order to show dynamic interactions between controller

and observer along with closed-loop stability to get asymptotic tracking of

72



desired references (r,r), a nonlinear sliding observer is reconstructed to .
improve the various error response. In this context, the structure of sliding
observer to estimate the position X and velocity X, is given by following

differential equation :

X =X -T _ e?-an(X)sgn(x)-r x (4.66a)
1 2 el 1 1 1 1 1 1
A . 2 A A - . —
= - - - - 4.66b
X, r-Tr e A2(x1,x2) sgn(x1) + B(x1,r) +toup - Uy - T X, { )
where X is to find $<1 = X, =X in observer structure only. 1"1, I“z, I“e1 and re2
are positive definite constant diagonal matrices, e, = x - /\1(.), /\2(.) and

u, are given as

A=Al {(4.67)
M) = M) TQ A (x X A ] (4.68)
U, = M(X1)'1(1 +07) 5(2 + L, sgn (>?2) £ + L, sgn (>22) sgn (e.) (4.69)

A

where Q,cr,L1 and L2 are diagonal positive definite design matrices, >22 =X, - X
and n1(x1,;<2) is defined in Appendix - VI by following the physical model
properties of robot [8]. The vector ¢ is defined in the form using boundedness
properties of robot model given [8] as

E =& + & Tl + £ §<2||2 (4.70)
where go, &1 and 52 are constant based on bound of coefficient of system
dynamics.

Recalling (4.55), the control law associated with actual position and

estimated velocity is expressed by including the disturbance vector :

T = MIx) I K, (x,00) - Kie 1+ Clx i+ gix ) + m X ix, - 1) - T
(4.71)
where no(xl,i) is defined by following the physical model properties [8] (see

Appendix-VI) and Ki = KiT > 0,i = 1,2. T, denotes the disturbance vector.
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4.2.4.1 Error System Formulation

The following are.state—spaCe representation of (3.7) by choosing the state

vector x, = g and x, = q:
X = X (4.72a)
1 2
X, = B (x1,x2) + Uy . (4.72Db)
where,
_ -1
B(x1,x2) =- l\/l(x1) C(x1,x2)x2 (4.73a)
up = MO - gix))) (4.73b)

The obs'ervation error dynamics can be obtained from {4.66) and (4.72) - (4.73) as

A

- _ S 2 —~ -
x, = -TX L. e A1(x1,x2) sgn(x1) + X, (4.744)
- _ N _ A ~ 2 . .
X, = 1-TX -A (X ,x.) sgn(x.) - T ] +B0x 1) - B(xw,xz)
- l\/](x1)'1(1 +02)>~<2-L1sgn(f<z)g - L2 sgn(>~<2) sgn(e1) (4.74b)

For applying the Filippov’s solution concept, consider A1 to be a diagonal

matrix e A = Al X = 05 x = 0thensgnlx) = A (X -T e’ The
1 1 1 1 1 1 2 el 1

dynamic behavior in the sliding patch is given as

s ..1 ~ -~ 2 2
X, = r- M(x1) [Q+C(x1,x2)] (x2 - 1“(31 e1) o

-1 2y~ ~ ~ )
- M(x1) (1+0 )xz—L1sgn(x2)g - L2 sgn(xz) sgn(e1) (4.75)
From (4.71) and (4.72), we get the error state-space form as
e = e (4.76a)
1 2
N : .
- M(x1) [C(x1,x2)e2 + M(xl)Kz(xz-r) + l\/l(x1) K1(x1—r) + C(x1,e2)r

e
2

C A . .
- no(x1,r) (x2 -r) + rd] (4.76b)
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Tracking error dynamics arises due to control law (4.71) being applied to

robot system (4.72).

The augmented error vector (>‘<1 =0) is defined as

‘ (4.77)

4.2.4.2 Stability of Closed-loop System

To establish closed-loop system as exponentially asymptotically stable,

consider the following Lyapunov function candidate with e' = [e1, e ]’

- 1 7 1 .7 1 .71 - T
Vie, xz) = e K1e1 + 5 e, l\/](x])ez + 5 X, I\/I(x1) X, + e1M(x1)e2 (4.78)

From Appendix - VII. it is found

V(e, >‘<2) - A { l\/l(e1)} Heou2 - lir el (4.79)

with condition for V(e, >22) =0
WLe + Luzurn, urn >0 (4.80)
1 2 d

g, > 0 (4.81)

2
{co + 50 MDA (K) }

A (K >
m N (M){z A (M) (Am(Kz)—1)~C”}

(4.82)

From (a7.2), the region of attraction is determined as expressed by (4.65a).

In contrast to [8], large region of attraction appeared for proposed scheme.
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4.2.4.3 Discussions

(i) Including disturbance torque in controller equation (4.71), it may possible
to find better tracking accuracy.

(ii) Sign-Sign  function is associated with tracking error and velocity

observation error and acts as a switching function (forcing element) to get

good estimate of velocity.
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SIMULATION RESULTS

5.1 ROBOT SYSTEM
The equations of motion of the robot systems are (3.7):

M(a)g +Cl(q,9)q +glq) = < ‘ (5.1)

The following forms of robot System are used for simulation purpose:

{i) Three - DOF robot system
(ii) Two-DOF robot system with mass

(i} Two-DOF robot sysem without mass

(i) Three -DOF Robot System

The following coefficients of matrices are given for the three-DOF robot

system (Fig. 5.1):

— c2 . 2 . .
M, = A + A, sin‘g, + A_ sin (@, + q) + A, sin q, sinfq, + q )
M_ =M _-M_ -0
12 13 31
l\/l22 = A+ A, cosq,
M, = l\/|32 = A+ A cosq,
M - A (5.2)

33 8



Fig. 51 Three Joint Revolute Robotic Manipulators
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1 . . ) _ o
CH =Q{A2 sin(2q2) q2 + A3 sin(2(q2+q3)) (q2+q3) +A4(S|n a, cos(q2+q3)q3

+ sin(qg, + 2q2)d2)}

1

Co =2 {AZ sinf2q,)q, + A sin(2(q,+q,))q, + A4sin(q3+2q2)d1}
c - 1 _ . | .
13 D A35|n(2(q2+q3))q1+ A4sm q, Cos(q2+q3)q1
C = -C
21 12
_ 1 : :
C22 -2 A4sm(q3)q3
1 . : . -
C23 T2 A4S|n(q3)q2 ) A7sm(q3)q3
C31 - C13
_ 1 - :
C32 -2 A4sm(q3)q2
= 0.0 (5.3)
33
g(q1) = 0.0
g(qz) = - Agsin (q2) - A1Osin(q2+q3)

g(qa) = - A10 sin(q2+q3) (5.4)
Numerical values of these constant parameters are given in Table-1[4].

(i)  Two-DOF robot system with mass

The robot system used in simulation is expressed by (5.1) with

8.77+1.02 cosq, 0.76+0.51 cosq,

M@ = 1 6761 0.51 cosq,  0.62

2+2cosq, 14 cosq,

+ m
P 1 +cosq2 1
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-0.51 sinq2 q, -0.51 sinqz(q1+q2) —sinq2 q, -sing, (q1+q2)

Cla,a) = _ + mp _
0.51 sinq, qQ, 0 sing,, q, 0
glq) = 0.0
(5.5)
It is moving in the horizontal plane (Fig.5.44, glaq) = 0 [7]).
(il  Two-DOF robot system without mass
The physical parameters of robot sytem (5.1) are given [6] as
9.77+2.02 cosq, 1.26+1.01 cosq,
M@ = | 4 2641.01 cosq,  1.12
_ 21.01 sing. g, -1.01 sinq (g +q)
C(q,Q) — 2. 2 2 1 2
1.01 sinq2 a, 0
[8.11 sing, + 1.13 sinla, +a,)
(g) =
99 J L1.13 sin(q1+q2)
(5.6)

It is moving in vertical plane (Fig.5.72).

5.1.1 Desired Trajectory (Test Signal)
The following forms of desired trajectories (test signal) are assumed for
simulation purpose [4],(6],[7],[48]:

(1) Cosine form without crossing zero ([4], Fig.5.2-5.4);

(A) ro= (n/2) - {0.45 cos(2nt)) rad
(B} r2 = (n/1.6) - (0.5 cos(2nt)) rad
(C) :r_ = (mn/2) - (0.2 cos(2nt)) rad (5.7)

3
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(2) Exponential form ([48], Fig.5.23-5.25);
D) :r = (m/2) (1-(1+31) &) rad
(B) v, = (w/3) (1-(1+30e™) rad

(F) :r = (m/2) (11430 &) rad (5.8)

(3) Mixed form ([7], Fig.5.45)
(G) 1 r = -1.3454742 + 0.1027998 (cos 1.3156 ut) O=t=<04

_ 1.633539 | 2n | 2n L
=-1.3538518 + 252050 | 2T (1.0.4) Sm[ﬁ (t-0.4)} 0.4 =t=15

= 0.2794272 ot > 1.5

(H i, = 1.0192722 + 07703882 1, [%’1 s ol (t—O.75)J 0O=t=15

= 1.0192722 t > 1.5
(5.9)
(4) Cosine form with crossing zero ([6], Fig.5.73-5.74)
(1) r. = 0.1 COSF%J t rad
(J) : r, = 0.3 cos[%} t rad ' (5.10)

5.2 SIMULATION OF PROPOSED ADAPTIVE CONTROL STRUCTURE USING
ACCELERATION TERM
Inthis section, simulation results are presented to illustrate the
performance of the proposed structure(Section 3.2.1) and compared with the
structure which uses no acceleration error loop [84]. For this, a simpler three

degree of freedom robot arm is used (Fig. 5.1). The physical parameters of this
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are given in Table-I [4]. The actuators were assumed with no dynamics and no
power limitations. The equations of motion of the robot system is governed by
(5.1) and its coefficients of matrices are from (5.2) - (5.4).  Simulation
results are based on cosine form (Fig.5.2-5.4,(5.7)) and exponential form
(Fig.5.23-5.25,(5.8)) of desired trajectory (test signal) in joint coordinated
space. The robot parameter 9 = [A1, ...... Am] is given in Table-l.

Table - |

Physical parameters for three-DOF robot system

A 23.380
A, 9.2063
A, 2.4515
A, 5.4000
A, 82.3990
A, 2.6274
A 2.7000
A, | 25.779
A, 189.170
AL 52.928

The regressor matrix W(q,q,r,r’) is given by (5.11).
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£8

The regressor matrix W(.) is given by W(q.q.r.r)

'(quﬁql'r:) '(qz+q3)f1+q1fz+q1.r3
. .. 1. -
0 -=_;sm(2qz)qlrl -25111(2(q2+q3))q1r,
0 0 —%sin(2(q3—1—q3))ql'rl

r sin:q:'r;+ 5sin(2q,) sin:(q2+q3)f;+%sin(2(q2+q3) % sinqzcos(q2+q3).(q3fl+qlf3) 0 0

+sin(q,+q,)sin qj'r;

1. A
+ 3 sm(q2+q3)(q2rl+qlr2)

cosq}fé—%sin(q3 + 2q2)qlifl

1. .. 1. ..
5INqQ,q.1 -5Sing.q,r

roT, cosq}r}—sinq}q3r2 0 sinq2 sin(q2+q3)

—%sinqzcos(qanqz)ql'rl—sian(’qz'r2 0 r cosq}i; rj 0 sin(q,+q,)

(5.1



The controller (section 3.2.1) setting for this simulation are given below :
e0=O.OO1 K =diag[-65,-50,-25], K2=diag[—9,—8,—5], K3=diag[—O.OO1 ,-0.06,-0.0011;
c.=0.3, K, =diag[-65,-50,-25], ,=diag[-9,-8,-5], K =diagl-0.2,-1.9,0.-0.2];
Simulation is performed for two cases : (i) Initial estimated parameter 6 = 0,
e(0) = O; (i) Initial estimated parameter ; = % e*, e(0) = O; For these cases,
the error graphs are shown in Fig.5.5-5.22 and Fig.5.26-5.43. Tracking error
graphs are shown on the basis of percentage (error as percent of max. input)
whereas velocity error graphs are in rad/s. These results are given in Table -

Table - |l
Maximum errors for whitcomb’s case and proposed case
Trajectory |Response Initial Whitcomb’s case Proposed case
estimated
parameter

Joint-1 |Joint-2 |Joint-3 Joint-1 |Joint-2 | Joint-3

Cosine test|Tracking 6=0 0.5421 |0.8536 |0.2625]0.4238 |0.2921 0.2252
signal error(%)

1
e =56 1.2010 |0.8525 |0.6754|0.4421 |0.7649 0.4558

Velocity =0 0.1758 |0.1621 [0.2739|0.1059 |0.1389 0.1532
error

(rad/s) |6 =3 6" |0.4182 |0.1852 |0.2218|0.0853|0.1652|0.2025

Exponential | Tracking 6=0 1.9121 |0.6989 [0.8995|0.5012 |0.1105 0.9115
test signal |error(%)

¢ =1§ 0 1.8992 |0.3821 |0.4231[1.75639 |0.3415 0.3828

Velocity 6=0 0.0652 |0.0295 [0.0713]|0.0031 |0.0009 0.0052
error —

(rad/s) 8 =1§ o' 10.0341 10.0272 [0.0523/0.0336 |0.0270 0.0476

It is clear that the maximum error for each joint is less for proposed case

in comparison to [84].
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5.3 SIMULATION OF PROPOSED ADAPTIVE CONTROL STRUCTURE

USING NONLINEAR COMPENSATOR

The effectiveness of the proposed adaptive control structures (section
3.2.2) are illustrated as tracking performance of a two-DOF robot system (with
mass) which is moving in the horizontal plane (Fig.5.44, g(q)=0). Its
coefficients of matrices are described by (5.5). Adaptive control structures are
simulated for desired trajectory (test signal ‘G"» ‘H’) as shown in Fig.5.45.
Mathematically, it can be expressed as given by (5.9).'

The regresser matrix for three cases are given as (see equation
(5.12),(5.13) and (5.14), respectively :
() Wi(g,q - ae, 1 - re T -Ae)
(i) Wia,q - ae, 1, 7" -2 &)
(i) W(g,q - xe, 1, 1)

The following constant matrices are chosen as given below [7] : The -
controller settings for this simulation is obtained in order to satisfy the

condition (3.32).

(i) case -1

AO = 0.5, )‘01 = 1.0, K2 = 251, kg = 15, o= S000 |
(i) case -2

AO = 0.5, )\01 = 0.5, K1 = 75l, K2 = 40I, kg = 15, °c . = 9000 |
(iii}) case -3

A = 0.5, K = 75 K2 = 40I, kg = 15, ¢, = 9000 |

o 1
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Fig. 5-44 Two-DOF Robot System with Mass
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() W(q.q -re. T - A e, 'r'-Aoé) =

Foae r-ae
1 ol L ol

0 0

r-ae
20 2

rae
| 1

o

cosqz(rz—xuez)—sinq:q2 (rl—xoel)+>\sinq2(r2—>\oez)el

-sinqz(q1 + qz)('r:—xoe:) + sinqzx(('rl-xoe R (fZ-Aoez))

S e .
c:osqz(rl Oel)—hsan:ql(rl Oel) squ)\(rl Oel)el

0 20 +cosq7)('r.l—7\0él) +(1 +cosq7)('r;-AUé3)-sinq7q7
('rl—Aoel)—s'mq?(ql +q’)(‘rj—>\oe7) +sinqﬁ>\('r2—hoe7)

e +squ>\(rz—hoez)e1 + 51nq2A((rl—Aoel) + (rz-AOez))

r,-A g, (1+cosqz)(rl—hoel)Jr—(rz-x0 ez)+smq2 ql(rl-AOel)

—squx(r&—xoel)el

(5.12)
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(

(

i W(q.q-xe.r. 1 oAae) =

o

'r;—,\ él EJ—A é] [-A e, cosq.(r - é))-sinq)c}jl+/\sinqj,el 0 24 +cosq\)(fl—x él)+(1+cosq7)('r;—A e.)-sinq.q,
o o 22 202 02 2 202 2 o 2702 o2 202

—sinq:(ql +q:)%;+sinq:/\(fl Jrf;)e2 fl—sinq:(qI +q2)f2+sinqzhi:el +sinq2A(f1 +f3)e:

0 0 'r;—A él cosqﬂ('r;-A él)+sinq)q]fl-sinq‘xfle[ r-Ae, (l+cosq’)('r;—A él)+(f;->\ éﬂ)+sinq7q]fl—sinqﬂx'rlel
. - 3] Z - - o = - o K4 [ SR Z =

i

(5.13)
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(ii) W(q.q - Ae, T, ry =

12

I

OO'r'l

COSC]ZI'Z-Sll“lqzqzl’l + Asqurzel

'Sinqz(ql + qz)i'2+sinqz>\('rl +'r;;)e:

cosq;r'l~|—sinq\ql'rl—sinq‘Xrlel r.

+sing Are, +sing A(r T )e,

(1 Jrczosqﬂ)'r'l +‘r;+sinq’ql'rl—sinqﬂx'rle1

1

0 2(1 —*—cosq))'r'l +(1 —%—cosq7).r;-sinq)q?'r1~sinq7(q1 +q)r,

(5.14)



Trajectory tracking performance of the existing case [7] and proposed cases

are shown in Fig. 5.46-5.61. Table -l indicates the maximum error for all the

cases. The estimated pay load mass ‘mp’ for all cases are shown in Fig. 5.62-

5.65.
Table -l
Maximum errors for Berghuis case and three proposed cases

Response |Berghuis case[7]|Proposed case-1 Proposed case-2 |Proposed case-3

Joint-1 | Joint-2 |Joint-1 Joint-2 | Joint-1 Joint-2 | Joint-1 Joint-2
Tracking {0.7132 |0.7484/|0.6250 0.6521/0.3235 |0.5473|0.6310 |0.5488
error
(%)
Velocity [0.4232 [0.5251(0.3952 0.3946/0.4175 |0.3879/0.3681 [0.4190
error
(rad/s)

The results from Fig. 5.46-5.61 are tabulated in Table - lll. The tracking

performance of the proposed cases are better in comparison to [7].
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Fig.5.46 Tracking error as percent of max. input for test
signal 'G’(Berghuis case), joint-1.
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Fig.5.47 Tracking error as percent of max. input for test
signal ‘H'(Berghuis case), joint-2.
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Fig.5.48 Tracking error as percent of max. input for test
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Fig.5.49  Tracking error as percent of max. input for test
signal ‘H’(Proposed case-1), joint-2.
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Fig.5.50 Tracking error as percent of max. input for test
signal ‘G'(Proposed case-2), joint-1.
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Fig.5.51 Tracking error as percent of max. input for test
signal ‘H'(Proposed case-2), joint-2.
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Fig.5.52  Tracking error as percent of max. input for test
signal 'G’'(Proposed case-3), joint-1.
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Fig.5.53  Tracking error as percent of max. input for test
signal ‘H'(Proposed case-3), joint-2.
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Fig.5.54 Velocity error for test signal ‘G’(Berghuis case),
joint-1.
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Fig.5.55 Velocity error for test signal ‘H’'(Berghuis case),
joint-2.
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Fig.5.57 Velocity error for test signal ‘H'(Proposed case-1 ), joint-2.
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Fig.5.59 Velocity error for test signal ‘H'(Proposed case-2), joint-2.
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Fig.5.61 Velocity error for test signal ‘H’(Proposed case-3), joint-2.
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54 SIMULATION OF BOUNDED FORM OF ADAPTIVE CONTROLLEﬁ STRUCTURE

The simultation results of the proposed bounded form of Adaptive controller
structure is illustrated With simple example of a two-DOF robot system (Fig.
5.44) moving in horizontal plane, i.e. glgq) =0. The robot sytem used in
simulation is expressed by (3.7). The physical parameters are given by (5.5). The
unknown. parameter belong to some interval CH and e and take the supremum of
MM, CM over these intervals [7]. In this regard, the regressor matrix have chosen

in the following form :

W{Ig- rell, £, 1)

roor, 0 r r 0 0
1 2 1 2

0 r, r, 0 0 r lg-aell

(5.15)
In this case eq. (5.1) is modified as
Mig) ¢ + Cla.ag + gla) = W(a, a) o'(q)

T T

where 6 (q)" = I MH M12 Mzz CH C12 C21 sz I MH' M12’M22 and

C11’C12’C21’C22 are the element of matrix M(g) and C(q,q), rspectively.
Desired trajectories (test signal ‘G’, ‘H’) are described by ((5.9),Fig.5.45).

For simulation use, the following set of parameters are chosen as given in [7] :

A = 0.5, K. = 75l K2=4O|, kg = 12, ¢ = 5000 I, M = 20, C =5

0 1 n M M
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Trajectory tracking of robot manipulators of the proposed adaptive
controller structure for joint -1 and joint -2 are shown in Fig. 5.66-5.69. The
estimated value of l\/IM and CN| can depicted from Fig. 5.70 and Fig. 5.71

respectively.

Table - IV

Maximum errors for bounded form of controller structure

Response Proposed case

Joint-1 Joint-2

Tracking error (%) 0.4225 10.2251

Velocity error (rad/s) [0.4228 0.1326

It is found that the tracking performance of proposed case are drastically

reduced in comparison to Berghuis case [7].
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Fig.5.66 Tracking error as percent of max. input for test signal
‘G’(Proposed bounded form), joint-1.
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Fig.5.67 Tracking error as percent of max. input for test signal
‘H'(Proposed bounded form), joint-2.
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Fig.5.68 Velocity error for test signal ‘G'(Proposed bounded form),
joint-1.
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Fig.5.69 Velocity error for test signal ‘H’(Proposed bounded form), joint- 2.
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5.5 SIMULATION OF SLIDING OBSERVER BASED ADAPTIVE CONTROL WITH
NEW UNCERTAINTY VECTOR
A sliding observer aided adaptive control with uncertainty vector (section
4.2.1) is illustrated for two-DOF robot system (Fig. 5.72). The physical

parameter of robot system (5.1) is described by (5.6).

The following design parameters have chosen for simulation purpose :

A = diag [0.1,0.1] ; A, = diag [0.1,0.1]; r, = diag[0.001, 0.001];

1

1“2 = diag[10,10]; K2 = diag [200, 200]; r' = 17|9, I9 = 9x9 identity
matrix;

c =1, ¢ =80 = 8 A = diag [10,1]; A, = 0.001.

ol 11 12 1

The regressor matrix Y(x1,>A<2 - A, sgnix ), qrqr + AN SgN(X DS’ -A sgn(x )
is expressed by (5.16).

Tracking errors for joint-1 and joint-2 are less than 5.6% in contrast to
Canudas’s case [10] as appeared in Fig.5.75-5.76. Since the design criterion >‘<] =0
is consider same for proposed case so the observation error or estimation error
for position are same as Canudas case[10] indicated in Fig.5.77 and Fig.5.78. In
Fig.5.80 and Fig.5.82, the improvements in velocity error appears in proposed
case for joint-1 and joint-2, respectively. The observation error(velocity) is
also improved as shown in Fig.5.84 and 5.86 in comparison to Fig.5.83 and
Fig.5.85, respectively. Hence, the overallperformance of proposed one is

drastically improved.
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Fig. 572 Two-DOF Robot System
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LEL

N

The regressor matrix Y(x .x, - A sgn(x ), q.q° + AR SEN(X D)(S-A sgn(X ) =
- T I

q;] q;_lcosxl(O) qr q;?cosxl(O) 0 sinxl(O)x7(l)—sinx](O)(xﬁ(O)+x3(1))(']1_“ qu gsinx (0)

0 0 q., q,cosx (0) q, sinx (0)x,(0) 4 0

rl

where.

qQ =q° + /\/\lsgn(il)
T I
X, = X, - /\lsgn(il)

gsin(xl(0)+xl(l))

gsin(x (0)+x (1))

(5.16)
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5.000
7| ae2ws Canudas case
T|e=ese Proposed case
3.000 ~
1.000
-1.000
—-3.000 A
'—5000 T T 1T 17 T T 1770 T 7 T T T 1T 1 7T T 17 7T 7T 1 15717
0 5 10 15
time(s)
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The maximum value of different error response are given in Table-V.

Table -V

Maximum errors for Canudas case [10] and proposed case

Response Canudas’s Case[10]|Proposed Case

Joint -1 Joint -2 |Joint -1 |Joint -2

Tracking errors (%) 5.600 3.00 4.200 1.43
Observation error (Position) (%) 93.1 108.5 93.1 108.5
Velocity errors (rad/s) 0.0432 0.1825 [0.0302 |0.0296

Velocity observation errors (rad/s) |0.2565 0.2118 |0.1056 |0.15564

Drastic reduction, especially, in tracking error and velocity error appeared

in comparison to [10].

5.6 SIVMULATION OF TRACKING ERROR BASED SLIDING OBSERVER

AIDED ADAPTIVE CONTROLLER

To investigate the performance of proposed combined controller observer
structure (section 4.2.2) a simple two-DOF robot 'system is considered for
simulation purpose. The physical parameter of the robot system (5.1) is given in
(5.6). The desired trajectories (test signal ‘I’ and ‘J’) are shown in Fig.5.73
and Fig.5.74 for joint -1 and joint -2 respectively (see also (5.10)).

The design parameter are taken as
A, = diag [0.1,0.1] ; A, = diag [0.1,0.1]; I, = diag[0.001, 0.001];
r =r, = diag[10,10]; K = diag [280, 280J; I'"

17I8, |8 = 8x8 identity matrix;

c =1, ¢ = 8; c., = 8, A = diag [10,1]; A, = 0.001.

ol 11

139



The regressor m'atrix Y(.) is given by (5.16). Various error trejectories are

shown in Fig.5.87-5.94. Table - VI shows the maximum errors of different response

such as tracking error, observation error (position), velocity

velocity observation errors.

Table - VI
Maximum errors for proposed case

(tracking error based sliding observer)

Response Proposed Case

Joint-1 Joint -2

Tracking errors (%) 3.5 1.26
Observation errors (Position) (%) 110.00 | 145.2°
Velocity errors (rad/s) 0.0177 | 0.0412

Velocity observation errors (rad/s) 0.0294 | 0.0425

errors and

Observation error (position) and velocity error are slightly increased of

joint-2 in comparison to previous proposed case but still one can take the

improved performance in comparison to [10].
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5.7 SIMULATION OF EXTENDED NONLINEAR SLIDING OBSERVER AIDED
CONTROLLER STRUCTURE
The illustration of presented scheme of section 4.2.3 is carried out with a
two-DOF robot system (5.1). The coefficients matrix of system eqguation is
represented by (5.6). Desired trajectories (test signals ‘I',’J’) are shown in
Fig.5.73 and Fig.5.74 (see (5.10)). Various error graphs are compared with
existing work [8] with following design values:

A = diag [0.07,0.07] ; r=r, = diag[500, 500]; Q = diag [35,25];

r,= r, = diagl5,5]; K, = diag[280, 280I; K, = diag [5, 5]; o = 23;

el

L1 = diag [0.05,0.05]; £ = g = £, = 0.05;
In this case, it is assumed that coefficients of system dynamics are known.
Various error response of robot are shown in Fig.5.95-5.110 for existing and

proposed work both. The error response for existing case[8] and proposed case are

placed in Table VII.

Table - VII

Maximum errors for Canudas case [8] and proposed case

Response Canudas’s Case[8] |Proposed Case

: Joint -1 Joint -2 |Joint -1 |Joint -2
Tracking errors (%) 1.2 1.63 0.22 0.14

Observation error (Position) (%) 3.2 4.8 0.55 1.03
Velocity errors (rad/s) 0.0075 0.0252 |0.0042 [0.0047

Velocity observation errors (rad/s) [0.1675 0.730 0.0142 [0.0125

The proposed case gives significant improvements with respect to various

error response in comparison to [8].
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'5.8 SIMULATION OF SIGN-SIGN BASED NONLINEAR SLIDING OBSERVER

AIDED CONTROLLER

The controller which uses the disturbance vector, in contrast to structure
used for simulation results in section 5.7, and observer structure is based on
sign-sign function of tracking error and observation error respectively (section
4.2.4). These combined structure is illustrated with simple illustration of two-
DOF robot system (Fig. 5.72) and its physical parameters are described by (5.6).
In order to show the improvements in tracking performance, desired trajectories
(test signal ‘I,*J’) as shown in Fig. 5.73 and Fig.5.74 (see also (5.10)) are
used for simulation purpose. It is assumed that the disturbance vector has the
form of some fundamental component of cosine function. The following pafameters
are set as follows:
A= diag [0.07,0.07] ;T = diag[500, 5001; r,= diag[100, 100]; Q = diag [35,25};
T, =I“e2=diag[5,5]; K1 = diag[580, 580]; K2 = diag [5, Bl; ¢ = 23; L1 = diag [0.05,
0.05]; L2 = diag[0.001, 0.001]; £ = £, =§&, = 0.05; T, = 0.05 (cos2t+cos3t)

Various errors graphs are shown in Fig.5.111-5.118 and also its maximum
value are given in Table -VIII.

Table - Vil

Maximum errors for proposed case (sign-sign function based sliding observer)

Response Proposed Case

Joint -1 |Joint-2

Tracking errors (%) 0.12 0.026
Observation errors (Position) (%) |0.55 1.03
Velocity errors (rad/s) 0.0026 |0.0042

Velocity observation errors (rad/s) 0.0122 10.0106

Clearly, Table-VIll indicates the better performance of the proposed scheme

regarding various error response with compared to previous results.
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5.9 SIMULATION OF MODEL-BASED ADAPTIVE CONTROLLER STRUCTURE

In order to compare the tracking performance of sliding observer based

controller structure with model-based adaptive controller structure, simulation

results are also reported in Table -IX. They include the tracking error as

percentage basis and velocity error in rad/s for the test signal ‘I’ an ‘J’ (Fig.

5.73-5.74, (5.10)). A simple two-DOF robot system (Fig. 5.72) with physical

parameters as described in (5.6) is used for simulation of model-based adaptive

controller structure.

Maximum errors for model-based adaptive controller

Table-IX

Cases Tracking error (%) Velocity error (rad/s) | Set value
Joint -1 | Joint -2 Joint-1 |Joint-2

Whitcomb 5.1231 3.8230 0.0323 0.0852 £,=0.045
case

K1 =diag[10,5]
Proposed 1.267 0.3221 0.0068 0.0168
controller K2=diag[5,1]
Section 3.2.1
Berghuis case 1.7921 1.5310 0.0452 0.0410 e,=0.045
Proposed case-1 0.3201 0.5001 0.0034 0.0082 K1 =diag[10,5]
Section 3.2.2

K2=diag[5,1]
Proposed case-2 0.1825| 0.2598 0.0032 0.0073

an=9000/
Proposed case-3 0.4253| 0.6528 0.0049 0.0123
proposed bounded| 0.1320] 0.2139 0.0092 0.0132
form
(Section 3.2.3)
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The error graphs are shown in Fig.119-144. Applying the desired trajectories
(test signal ‘I’, ‘J’) for these cases also, it is observed that the tracking
performance of model-based controller structure is better than that of [10].

It is also observed that nonlinear sliding observer aided control structure
is superior among proposed cases regarding their tracking performance because of
using full dynamics model in observer structure and estimated velocity is fed

back to controller structure.
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CONCLUSIONS AND SUGGESTIONS
FOR FUTURE WORK

6.1 CONCLUSIONS

In summary, the contributions of the proposed controller structures are to
improve the tracking performance in comparison to available structures. The
proposed control schemes are, first, model-based adaptive control and, second,
sliding observer aided controller structure for trajectory tracking of robot
manipulators. In order to reduce the controller-system mismatch, the
acceleration term is included in existing controller structure [84] for
relatively noise free situation. A new form of adaptation law results which in
turn gives significant improvements in tracking performance. Apart from this, the
nonlinear compensator based three variations of model-based adaptive controllers
are proposed having different form of sliding surfaces. The purpose of using
nonlinear feedback compensator term is to compensate the additional error which
arises due to modification of adaptation signal. Simulation results show
significant reduction in tracking error and velocity error in comparison to [7].
Among three cases, case-1 and case-2 have Iargef region of attraction in
comparison to [7].

In distinct form, an adaptive controller structure is proposed wherein
estimation is based on upper bound of the parameter rather than-parameter itself.
This is based on the inverse dynamics model of robot manipulators with a premise
that if each parameter is known within some bounds the parameter adaptation can

be prevented from going out of bounds and thus it makes the system more robust.



This proposed scheme gives drastic reduction in tracking error and velocity error
in comparison to [7].

In order to look better tracking performance, the observers are employed to
estimate the joint velocities because the actual velocities are often
contaminated with high level of noise. The proposed controller-observer scheme
with new uncertainty vector for adaptive case gives drastic reduction in tracking
error and velocity error when compared with [10]. On the other hand, the
nonlinear sliding observer based controller structures are found promising in
view of the nonlinear nature of robot manipulators. Using this approach, two new
nonlineér' sliding observer aided controller structure are proposed for trajectory
tracking of robot manlpulators Significant reduction in error. respohse are
observed through S|mu|at|on Larger region of attraction is noticed for the
proposed scheme when compared with [8].

The results contained herein were obtained through an approach substantially
different from that presented in [84],171,[101,18], respectively. On the contrary
o [84], a new form of adaptive law is proposed. lts performance show good
tracking. Including nonlinear compensator and different form of sliding surface,
adaptive controller structures are constructed to enhance trajectory tracking
performance in comparison to [7]. In order to account dynamic interaction between
controller and observer, a new form of sliding observer based controller
structures are proposed to-ensure better tracking when compared with [101, (8],
respectively. This thesis represents some improved results in model-based
adaptive and also sliding observer aided controller structure for trajectory

tracking of robot manipulators.
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6.2 SUGGESTION FOR FUTURE WORK

The presented work in this thesis supports the foundation for further work

in the development of control methods and applications of model-based adaptive

and sliding observer based control to robot manipulators. The following studies

are suggested for future research works.

(i)

(ii)

(iii)

(iv)

(v}

(vi)

An important topic of future research would be an extension of this thesis
to actual on-line implementation of the proposed control schemes.

The proposed control schemes should be utilize'd to control direct drrive
robots and with flexible links.

Model-based adaptive controller structure still require improvements to
cope with parameter uncertainty and errors in model beéause of the errors
still lie with it.

Inclusion of actuator dynamics and gear train friction in model-based
adaptive controller structure should be one of the future approach for
rigid and flexible robots.

In controller-observer schemes, different type of observer scheme should be
employed with controller for robot manipulators. [t may be consider as one
of the areas for future work.

Finally, schemes to decrease the sensitivity of disturbances due to

parameter variation should be developed to improve the flexibility of the

schemes.
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APPENDIX - |

A1.1STABILITY ANALYSIS OF PROPOSED ADAPTIVE CONTROLLER STRUCTURE USING
ACCELERATION TERM

Consider the Lyapunov function candidate

_ 1 7 1 7 T 1 =T =
V—2e1K1e1+2e2M(q) e, + e M(q) e, + 5 6 kg e (@a1.1)
1 1 [k eMm 1T -
= e 1 e + e k )
2 eM M 2 J
~T _
=%eT Pne+; 6 kg' e (a1.2)

The time derivative of the Lyapunov function along the trajectories (3.8) is
LT T, T ST
V = e2K1e1 t e, (2 M - P(q)C)e2 + ee (M - P(q)C)eZ + ee M e,
T T T T T
+ e e, M e,e, P(q) K1e1—e2 P(q) Kzez-e e P{q) K1e1—e e P(q) K2e2

e PlaWo-cel Pl Wo + o kg' o (a1.3)

1A

where P(q) = I\A/l M, M = [I\A/l(q) + K3/], Am(P) IP(g)Il = AM(P)

Moreover,applying the properties of C{(..) and skew symmetry properties, % I\/l
C=0 [591, we have
T 17 3 2
|e2 (» M - P(q)C) el = (1 +2,(P) C, e ™ + (1+a (P) C_ p lle | (al.4)

Ton - 2 : 2
|ee1(l\/l- P(g)C) e2| =2 €, CM I|e2|| + 2 ¢ CM p, lle e il + €, CM AM(P) e
+ € CN| P, AM(P) ||e1I| ||e2|| {al.5)
. T 2
|e e M ezf < e AM(M) [|e2|| . {al1.6)
where P, is defined in section 3.2.1.2. Am(.) and AM(.) denote minimum and

Mmaximum eigen values, respectively.
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Substituting (a1.4), (a1.5) and (a1.6) in {a1.3), we find

Vs b LA (PLA K )2 are (4520 (PNC, + 4x ()] e i’

]
- € (S
€ Am(P).Am(K1) - [A,(P) + 21C. e, + o AM(P).AM(KZ)
+ 5 10, P11 €t A K
_eT e

€ € 1

) [AM(P) + 2]CMp1 + 5 AM(P).AM(KZ) ) Am[P). Am(Kz)
€ -1
L + 5 [(A,(P)-1) € ALK
=TT T T
o+ W' P(q) (e2 + ee1) + o kg o (a1.7)
where o« = (AM(P) + 1) (,o1 + nezn)CM
Vs negative definite if
2¢>c1 + €, ((4+2AM(P))CM+ 4?\M(|\/l))
Am(Kz) > Am(P) — (a1.8)
with
€ ((4+27\M(P))CM+ 4AM(I\/|)) > 2<>c1
o = kg W' P(g)] (e, + ce) (a1.9)
and
A (P)A_(K,)-2a, 200 (PN (K A (K)

€, <min WTTWW
+ar (I (P) +2IC oA (PR (K 2)+[(7\M(P)—1)€_1>\M(K1)]}2
(a1.10)
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In this case

Vo= - €r_(Q) len? (a1.11)
where,
[ ' 1 1
Am(P).Am(K1) ) [AM(P) + 2]CMp1 + ) AM(P)AM(Kz)
1 -1
+ 5 [, (P)-1) e A, K]
A
Q =
: 1 1 1
“p ,(P) + 2C o + 5 A (PLA K g A PLA (K )

o

+ % [(AM(P)-H ej AM(K1)]

(al.12a)
Let xTz[e:,e;], gl = kc
The matrix that appears in (a1.12a) is positive definite if
1/2 1
e Il < 2, (PHA (KA (K) P PIAG I )T (P)-The A, (K - k
2 c
A (Pr+2) Cu
(@1.12b)
which is true if
172 1
Xl < 2Am(P)(Am(K1)Am(K2)) ‘AM(PV\M(K?_)-[(7\m(P)—1)E0 A, (K] .
A (PY+2) C ¢
M M
(a1.12c¢)

Noting that the right hand side of (a1.12c) is positive by hypothesis (a1.8)
and (a1.9).
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Morever,

1 2 ] 2
5 Lmllxll < V(x)= » LMllxll (a1.12d)

V(x) is a positive definite decrescent function. From (a1.12a), (a1.12c) and

(a1.12d), one can get if

L 12 i P
X0l < L,_n 2Am(P)(>\m(K1)>\m(Kz)) ?\M(P)AM(KZ) [(ﬁm(P) 1)60 Al\ﬁﬁ x
" h PY+2) C c
M M
(al1.12e)

then,

Vix) = V(x(0) vt =2 O

V(x) = - (31 ||e||2 vt = O

(¢}

with {310 a positive constant.

Remark A1 : The role of K3 in P(g) causes the upper boundedness of P(g) by unity
so lower bound on P(qg) is always less than unity. In this situation 8 (or 6)
remain bounded for all t = O if e and 8 are bounded at t = 0. It is necessary to
show e — 0 as t — « means e, — 0, e, = 0 as t — «. It can be easily proved
by applying Barbalat's lamma, that ItIZO V = 0, which implies :200 e = 0.

Remark A2 : For V = O, the necessary condition '/\m(Kz) should satisfy the

inequality (a1.8) with sufficient condition € ((4+2>\M(P))CM+ 4>\M(M)) > 20(1.

Remark A3 : The size of the region of attraction can be enlarged by increasing

the gain constant Kz(see a1.8) and keeping the K3 small.
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A1.2 ANALYSIS OF THE CONVERGENCE RATE
Consider the closed-loop system (3.8). The rate of convergence of the error
trajectories towards a ball S(rf), ro> r is exponential with a rate [48] 28,

B(eo,eo,ezo, rf) = S1—T1(ezo,rf)

‘ ' A (P)
M n
= 1
Assume r, > el > r > r , A PR (=D (a1.13)
r > lell >r moen
M o) f

By using eTPne = Am(Pn) lell® = ?\m(Pn)2 r‘:‘, (al.1) and (a1.7), the following

expression is derived ((a1.8) and (a1.9) must be satisfied) (recalling [48]) as

B, A% ||e2||3 - B, 2 ||e2||2
=2 [ex ((Q)P) - ] (al1.14)
/e) Soomoonn Am(Pn)nen2

B, =3 LA (Pl A (K) - e, [4+22 (PIC, + 4a (M) (A (P)+1)p.C,

(a1.15)
B, = (AM(P)+1)CM (@a1.16)
since V(e) = 0, V(e) = V(e ) or equivalently
ePe<e P e (a1.17)
n ] n o}
using (a1.13), el = A e I (a1.18)
le I < A lle_ 1l
2 20
substituting in (a1.14),
3 3 2 2
_ \'/(e) 5 p Bz A ||e20|| - [31 A ”ezo”
W = 2 [e Am((On)Ph) - > ]
r'a (P)
f m n
z 2 [S1-T1(e20,rf)] ~ (a1.19)
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The above inequality implies that
V(e) < ve(o)e—2(51-T1)(t-Ko) , (a,\ 20)

el lell = A dle il g2V (al.21)
[s]

It states that the exponential convergence rate of trajectory e(t) towards a
ball S(rf) is at least (S1-T1). It follows that the maximum time needed to settle

in a ball S(rf); > r. is given (S1-T1>0) by

A e il
o

T(e,eo,e )= In (a1.22)

20 f - e ,r) r
20 f

f

The rate of convergence depends upon the proper choice of matrix Qn.
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APPENDIX - Il

A2.1 STABILITY ANALYSIS OF PROPOSED ADAPTIVE CONTROLLER
STRUCTURE USING NONLINEAR COMPENSATOR
i) For case - 1

Consider the Lyapunov function candidate
V=2lsTMa@s +3e"Ke+la ks (a2.1)
2% >, 2 2 2 9 :

Taking the time derivative of (a2.1) along the error trajectories (3.28) and

applying skew symmetry properties i.e. % M- C = 0, we find

V= ST Mg (€ +aé) + e K e+ ST M(Q) (6+1e)+8" kg & (a2.2)
1 o 2 2 o

2 2
- ACM IIS1II + A AoCM IIS1II el - A e1 CM s+ CM el IIS1II

2 ) 2 2 2
- Am(Kz) IIS1II + AM(KZ) IIS1II el - AOAm(Kz) el - O‘n1||e|| IIS1II

+ sj WI(q.q -ae, r Ae, T -Ae)8 + 6 kgl 8 (a2.3)

— 2
= - [ACN| + Am(Kz)] ||S1|| + [AAOCM + AM(KZ)] ||S1|| el - Ap1CM s

+ A C lel 1S 1% - o nen® uS_ 1% - A A (K,) nen’
M 1 nl 1 o m

+ s: W(q,q -re,r A 1 -aed + 8 kg' o (a2.4)
T
. IS 1 IS i
V= -2 Ayl A C S [p -iS i Nel |- o et 1S 1
[ m 1 ol M 1 1 1 nl 1
el lell
+ 81T W(q,q -are,r Ae, 1 -Aoé)é + 6 kg' 8 (a2.5)
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where,

A C + a (K) A (KD -‘
0l M m 2 1 M2
A "2 [AOCM t A ]
Am(O1) -
1 AM(KZ)
2 [AOCM * 7\0 ] Am(KZ)
L

For satisifying v = 0, the following conditions are implies

P,z ilell 118111 (a2.6)
A K = ((ZE\UCM T A K A (KOR) - A r C,, (a2.7)
¢ 9
0 < AM < on {a2.8)
M
o = - kg W'(a,q -rer A e, r -Aoé) (e + A_e) (a2.9)
In this case
. 1S | s ,
Ve |l aan] ! (a2.10)
“lien m el

V is nonpositive.
The region of attraction is given by defining x = [e,é]T:

V(x) is a positive definite decrescent function. Besides,

1 2 . 1 2
) Lmuxu = V(x) = V) LMnxn

From, (a2.5), one can find
L | C - (WCi4 12
ixih < |2 |0 M P oCu 7ol
Ll 2

nl

(a2.10a)
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where,

Decreasing o , One can enlarge the region of attraction. The right side of
the equation is positive by hypothesis (a2.7). From (a2.10) and (1a2.10a), one

can get

. s 1
V(x) = - g~ ! ' (a2.10b)
el

with 8- a positive constant.

(ii) For Case - 2
Consider the Lyapunov function candidate

S 1 7 T =71 s
V—QSZM(q)Sz+2e K1e+29 kg 6 (a2.11)

Taking the time derivative of (a2.11) along the error trajectories (3.30),

we find

o T - T : 1 oT & T -1~
V = S2 I\/I(q)S2 + e K1 e + 5 82 I\/I(q)S2 + 6 kg o6 (a2.12)

Substituting éz, apply propertiés of C(...) and skew symmetry properties, we
find
o T . T Lo T _ T N T 2
V = 82 A Cl(q,q)e +S2 AN Clqg,ele 82 A K1e 82 AOKze 82 Aoo-nzllell 82

- SZ Ai M(g)e - S; A W(a,q -ae, T, T A €)8 + A SZ M(g)é + A S; M(q)e

+e'Ke + 5 STaNMae + 8 kg' 5 (a2.13)
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Moreover, we have

: T < 2

A'S, Mlale = A M, (IS 17 + IS, 1 Ixel) (a2.14)
T XU 2

M S, Cla,ele = _C, (s 1" + 1S, iaell) (a2.15)

1

T, T e (1. -1
» S,A Miale -S, A A Clg,q)e = (12 )A C,, (1S I +iaen) (1S i liaei)

+ C, P, nS i ael)] (a2.16)

Substituting (a2.14), (a2.15), (a2.16) into (@2.13), with some manipulation,

we find
.
_ ISK s 2 o -
Vs - A (@) 2 -E A K)us el - -"2 s % e’
et ™ 2 iael Ai mob2 Ai 2
+ ST Wia,q e, T, T aelo + 8 kg 6 (a2.17)
where,
o w
Am(K2)+ ((AO-‘l)/AO)CM + AOCM ) [AM(K2)+(AO—‘I)(Q1+ AO)CM]
A Q) =
o' , A -1
i_- ) A {K )+(A0-1)(P1+ ?\O)CM] Ao CM

For satisifying v/ = 0, the following conditions are implies

ag
n2 .
Am(K1) = QTO n52u {a2.18)
c > 0 (a2.19)
A <1 (a2.20)
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(I3 (3K} +(10)C 0, A CII (3 -1)A )C, )2 C, 12 C.

A(K) > X (a2.21)
o = . A, kg WTq,q -xe,rr -Aoé) (Aoé + 2e) (a2.22)
In the present case
T
) IS i s
V=-| 2l aqy| 2 (a2.23)
el ™ 2 |ieln
V is nonpositive.
The region of attraction is determined by defining xTz[e,é]T . it is found
from (a2.17)
(‘_ ~
L 172, 1
2 (K -1)/A)C +a C )32 2Ly k)
Il < E{ (A (KA -1) JCuTA.Ch A 2w % (Ao_'])}\oCM_kc{
(?\0—1) CM J
- )
(a2.23a)

where lldll_s kc. By virtue of hypothesis (a2.18),(a2.21), Vv IS nonpositive. From
(a2.23) and (a2.23a), one can derive

_ 1S 1]
V(x) < - B”

liael

where B” is a positive constant.
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(iii) For Case - 3
Consider the Lyapunov function candidate

_'] T 1T 71 1 =71 -1
V—stl\/l(q)83+7ze K1e+29 kg o (a2.24)

Taking the time derivative of (a2.24) along the error trajectories {3.31),

we get
vl - T : 1 oT T VA
V =S Ma)s, +e Ke+o S M(a)s, + &' kg @ (a2.25)
_ sg M(q) &€ + A sg M(gle + A sg Migle + e K e
1T T v =T 1k
+ 5 83 IVl(q)S3 + 6 kg (a2.20)
Vo= - s‘3’ [Clg,q)é + A Clgelr +Ke + Ke + o, nel” s,

- W(q.g Ae, T, 118 1 + A'S; Miagle + A sg M{q)e
T 1 & ¢ : : =T ol g
+e Ke + 5 S, M(qg)le + re) + 6 kg © (a2.27)
Moreover, we have
: T < 2
A 83 Migle = A_ I\/IM(||S3|| + ||83n tael) (a2.28)

T i < 2
A S, Clg.ele = A C,, (IS 1 + IS I ixen) (a2.29)

Substituting (a2.28), (a2.29) in (a2.27), using physical properties and skew

symmetric properties, we find

.
. hS NS )
Vs - 3@yl 2| e nen” us
el ™ 2 len|] ™ 3
+ 5T Wiq.q xe, f, 110+ 6" kg 8 (a2.30)
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where,

( ALK AC, - 2aM - % (K + o+ A)C ]
A Q) =
" YK+ o+ A)C ] AT
2 Y"m Py o M o

For satisifying V = 0, the following conditions are implies:

c_ >0
n3

1 2
2 [(-AM(KZ) -ROCM)]

A (K > —
A DK A C o2 M

0 = - kg W'(q,q -xe,r,t) (& + ae)

In this situation

_ is ]’ IS |
Vs - 1Taqy] 2| -6 nen?us 2
xen| ™ 2 lien n3 3

V is nonincreasing function.

Similarly, it can derived from (a2.34) the region of attraction as

r

2 DK, + (o, +2)C |

Xl <

JEl

1 1/
("2 (K))

1/2
—[Am( K2)—>\OCM-2>\OI\/IM]

o‘
Jn3

(a2.31)

(a2.32)

(a2.33)

(a2.34) -

(a2.34a)

The upper bound on K2 if increaed or keeping . low value, the region of

attraction can be enlarged. Noting that the right hand side of (a2.34a) is

positive by hypothesis (a2.32). One can find easily
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2

) , uS3u
Vix) = -B vt = O
el '

with B a positive constant.

LEMMA A1
For the additional error, introduced by the replacement of q and q to r and

rin Wi(g,q,q) to form W(q,q -Ae,...), the resulting error is bounded by S and

e, i = 1,2,3.
PROOF :

Let [W(a,q.9) - W(a,q -ae,...)] 8 = WIS, e | (a2.35)
where,

S1=e+>\oe, SZ=AOé+Ae,83=é+Ae

From Equation (3.28), one can formulate the additional error as

M(@$, + Cla,) (S, + re) - AC (q.e) S, = sWIS, @) (a2.36)

Let,

P, = M(aS, (a2.37)

Applying the MVT (Mean Value Theorem) to M(qg) [64], we get
B oM '
P =) sa, (r + e) de |S, (a2.38)

Taking the Norm, we obtain

STP1 = bm1(S,) 1S 1 el (a2.39)
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. li=n 2
< . ~Sup aM .
0 =bmi(s) =>* |} 5q S (a2.40)
=1
Similarly,
P, = Cla,a) (S, + ae) - aC(g,e)S, (a2.41)

Applying the MVT, we find

.
- aC : - ,
P2 = Jﬁ (r+e,r + e)}de| (S1 + 2Ae) + 7\C(q,e)S1 _ (a2.42)
o)

Taking the norm, one can write

STP2 sbc1(},é)||s1||2ne|| +>\bc2(§,é)ns1nuen2 +?\bC3[IIS1IIIIellz+IIS1I|2||e||] (a2.43)

Where,
r 142
i=n j=n . 2
< T ~Sup - T 8C' - )

0 =< bel(r,e) = Z z (r+ S -2e 5, "+ S -2e
i=1 j=1
-i=n ) 1/2

0 < ch(;,é) <SUP Z ’Ci(r + S - 2xe)

q 1 0

i=1

0 = bc3 =°° Z |Ci‘ .
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Adding the terms, we find

S:AW(S1,e)£ bm1 (é1)||81|| el +bc (-r,é)uS1n2||e|| +Ab02(.r,é)l|S1l| e’

+ Abc3[||S1||2||eII+l|S1ll leli?] (a2.44)
Let,
b1 = bm1(é1)
b2 = (bcll(r,e) + Abc3)
b3 = (bc2(r.e) + bc3)
Substituting in (a2.44), we find
SIAW(S1,e)5 b1||S1||||e||+b2nS1n2neu+Ab3us1uueu2
+ Abc3[uS1n2nen+uS1n el?] (a2.45)
after some manipulation, we obtained as
T . b2 2 b1 b3 2 2 2
S1AW(S1,e)_ (b1 + 7() ||S1|| + (T + A 7r) el + b2 ||S1u e + ab3
1 2 2 ;1 2 2 1 2
- b1(ns1n + 5 nen®) - b2 ||S1|| [2 - lel”] - Ab3 nel” | 5 - ||S1n (a2.46)
Applying,
1 1
el < 5, ||S1n < 7
and for simplicity, we choose b1 = b2 ~ b3 ~ o
2
T 2 el 2 2
S1AW(S1,e)_ o [ nS1u + =1 + Ao ||S1|| el ] {a2.47)
By approximation, one can write
S:AW(S1,e)S Ao uS1u2 lell’s S: o lell® S, (a2.48)
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hence,

AW(S e)s o len? S, (a2.49)

Similarly, one can derived for case-2, as
S;AW(SZ,e)s[bcH},é)- +2abc12(r,é)] A(;1[||82II2 -A||82||||en]+>\;' Abc13 n82||2ue||

A "A%c14 1S i e = ST o nen? s (a2.50)
0 2 2 2 2

n

and for case -3, as

SZAVV(S3xﬂs[bn111(é)n83nneu] +—bc22(hén[n83n2uen4- 2Au83nneuﬁ
+ bc23 IS 1%l + Abc231S,1l lel? ST S, (a2.51)

Equation (a2.49) , (a2.50) and (a2.51) show the additional error bounded by

respective Siand e, i = 1,2,3 (see [64] for details information).
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APPENDIX - Il

A3.1 STABILITY ANALYSIS OFBOUNDED FORM OF ADAPTIVECONTROLLERSTRUCTURE
| Consider the Lyapunov function candidate

1 1 1 .1, 1 -
V=QSTM(q)S+2eTK1e+29Tkg1e (a3.1)

Taking the time derivative of (a3.1) along the error trajectories (3.41), we

get
V=s"Mas +e Ké + 5 STWMS + 8" kg' 6 (a3.2)
Substituting S = e + Ae + 2é in (a3.2), we get
V = 8" Mge' + A ST M(gé + A ST M(gle + o K e
+ 5 STM@S + 68" kg & | (a3.3)
Applying properties of C(...) and skew symmetric properties i.e. % M-C = 0,
we find '

V = -2a8'C(g,éle + a S"Clq,ie - ST K, nel - sTK~2 lel - ST o en” S
+ ST WG xel, §, )5 + A ST M(gle + A ST M(qg)e

+e' Ke + 8 kg' 8 | (a3.4)
Moreover, we have

A ST M(gle = A, M(SI2 4+ 1SH iael) (a3.5)
x ST Clg,ée = AC (ISI% + ISH 1xen) (a3.6)

207



Substituting (a3.5) and (a3.6) into (a3.4), we find

Vosoa (K)usi? + A M asit + A M S + A Cusw’
m 2 M [ M [o) M
+ oA (K) USH el - A M IS el + A M iSi el
M 2 M o} M
+ A C USH Ixell + p. C_ USH irel - A1 A (K e’
o M 1 M m 1

] annen2 iS12 + ST WG xell, T, 118 + 8 kg 6 (a3.7)

iell is adjusted for V = O as

o = - kg W'la,q -xe,r,r) (e + 2e) (a3.8)
ol = 6 + 8 ()
hence,
T
) NS 1S 5 )
Vs - A Q) - lleit” 1Sl (a3.9)
naen| ™ iiael n
where,

- 1 : 1
A (Kz)— AOCM -2 7\0|\/|N| ) [AM(K2)+ (p1+ AO)CM]

m

K+ (o + A)C] A (K)

1
L 2
integrability and uniform

\/ is nonincreasing function. From sqaure

continuity of ‘e’ conclude that it converge to zero. The region of attraction is

given by (a2.34a).
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APPENDIX -IV

A4.1 APPLICATION OF THE FILIPPOV’'S SOLUTION CONCEPT

This concept shows that the dynamics on the switching surface is an average
of dynamics on each side of the discontinuity surface.

Let A= A1I, with AL > 0. The region (see (4.26)) >~<1 = 0, i.e. ||>’<2|| = A

described as sliding band or sliding patch [10].

The dynamic behavior in the sliding patch of observation error (4.26) is

given as:

~ o <N -1~ -1~
X, = r—W(x1,qr,e)S - /\2 A1 X, + 71 + v (A1 X, ) ‘ (a4.1)

The new form of variables are considered as :

sgn(>~<1) = A; X, (ad.2)

a, =g’ +AA sgn(x ) (a4.3)

r

A4.2 STABILITY ANALYSIS OF SLIDING OBSERVERBASED ADAPTIVE CONTROLLER
WITH NEW UNCERTAINTY VECTOR
In this section, the stability proof of the scheme in the sliding patch and

also the closed-loop analysis for augmented error system are investigated.

A4.2.1 Stability in Sliding Patch
Consider the following the Lyapunov function candidate
S T -1 - T 7T~
V—QSMS+2x2 X, + » 67T6 (a4.4)
Taking the time derivative of the Lyapunov function along (4.24) and

(4.26), we find
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STMS+JZSTI\'/IS+>~<2T>"<2+§T1"9

T = - 1
S[Ye—KZS—CSﬁLsz]+32

5 X, + W'S +n+v] +8 T 6 (a4.5)

According to definition of C(...) and applying skew symmetry properties

ie. (1/2(M))-C =0, we find

Vo= STKS - x AN X+ 8'[Y'S+r8] + X T +v+r] (a4.6)
2 2 21 2 2
For V = O, one can derive
o = 'Y ( x1,x2,qr,q;) S (ad.7)
Solr, o)+ )X /] x if % |=0
I S RN IR ER B R e
0 if %,]=0
Using (a4.2) and (a4.3), one can write
o = -1 Y(x1,x2—A1sgn(>”<1),dr,q'r’ + AAsgn (X )(S’-A sgn (x) (a4.9)
and
v = v(f,r,iz,'r')
(a4.10)

[plr,x) +r 0] A sgn (X )/A, if 1A sgn (% )20

0 if A sgn (5(1)\1:0
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with above definitions

\%

1A

: 2 " -1 ~ 2 . .
—Am(KZ)IISII -Am (A2 A1 ) X, ue, if X, # 0 (a4.11)

<
1A

- ;\m(Kz)uSuz, if X, =0 (ad.12)

The region in the sliding patch is characterized as closed set so that

trajectories should lie within it.
Defining, |
Al =max [Asupl\/l, ASUP(KZ),?\SUp(I")]
Amin[L] =min [AinfM' Ainf(KZ)'Ainf(r)]

Since V = 0, V(t) = V(0), for all t = O

A (L) e n® =V = V() =aA  lle (012
min S max S

where,
e: = [ST X, 6'] - (ad.13)
hence,
2 Amin(L)

If, A (L) ~ A (L), then
min max

ues(O)u2 = . (a4.15)

SO that es(t) lie in sliding patch.
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A4.2.2 Stability of Closed-loop System

The closed-loop stability is investigated based on the reduced order
manifold dynamics and tracking error dynamics. From (4.24), the tracking error
dynamics equation can be expressed in state-space representation as:

e = e,
& = - Mx)" [Chx x,) + K+ MO e,

+ (C(x1,x2) + Kz) /\e1 -Y 86 - W 5(2] (a4d.16)

The augmented error is defined as

Z = 2 (ad.17)

The closed-loop analysis is based on the augmented error Z.

Now, consider the Lyapunov function candidate
1T 1 7 1 - 1
V_ZS MS+2e1KZe1+2x2 x2+29 re (a4.18)

Taking the time derivative along (4.26) and (a4.16) and using the skew

symmetry properties, we find

81 81

v o= - &2 A (Q) €, (a4.19)
% X
2 2

Vs-aa Q) 1Zn? (a4.20)
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where,

A A (K) A (K 0 |
o ALK
A (@) = | Al A (KA 0 (84.21)
Fo A (K )
0 0 ?\m(/\zl\:)//\ J

If (a4.9) and (a4.10) are satisfied, the convergence of augmented error
depends upon the choice of matrix Q i.e., setting of K2, choice of /\,/\1 and /\2.

Thus for V = 0, the following inequality should be satisfied

1
Am(KZ) > AM(KZ) (1 + QK) (a4.22)

The matrix that appears in (a4.21) is positive definite. Let x =[e,e]"

7

Morever,

1 2 _ < 2
) LmIIXII = V(x) = > LM x|

From (a4.18), it is clear that V(x) is a positive definite decrescent
function. Since V is nonpositive by hypothesis (a4.22). Hence, the region of

attraction is the entire state-space, that is, defined by Lm and LM.
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APPENDIX-V

A5.1 STABILITY ANALYSIS OF TRACKING ERROR BASED SLIDING OBSERVERAIDED
ADAPTIVE CONTROLLER
Applying the Filippov’s solution concept (reduced order manifold dynamics,

see section A4.1) to observation error dynamics (4.45), the dynamic behaviour of

(4.45) chanage as,

— _ " . A _ _1 — _1 -

X, = r—W(x1,qr,e)S - I“ee1 A, A X, +n+v (A1 x2) (ab.1)
where,

R - _ ~

A X, = sgn(x1) (ab.2)

a, =g’ +AA sgn(x ) (a5.3)

In order to investigate the stability in the sliding patch, consider the

Lyapunov function (a4.4) as,

T - T

1 AT 1 - I
V—QSMS+2x2 x2+29re (ab.4)

Following the similar procedure in Appendix-1V  and taking the time

derivative of the Lyapunov function, we find

\'/=sT|v|$+;sTMS+>zT§< + 8T
2 2
- s"Ivé - K S—CS+W>~<]+%STI\'/IS
2 . 2

+ X Te-AA" X+ W'S +n+v] +8" 1 6 (a5.5)
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Applying the properties of C(...) and skew symmetric properties i.e.

(1/2(M))-C =0, we find

V= S'KS - x AN X+ 8'[Y'S+r8] + X Tm+v+r-Tel (a5.6)
2 2 21 2 2 e 1

For V = 0O, one can get

A

0 = - TY' x1,x2,dr,d;) S (a5.7)

PR R T VS R L R e (a5.8)

0 if %, =0

Using (ab.2) and (a5.3), the form of (ab.7) and (ab.8) are modified as

follows:

6 = -1 Y(x,,x,-A sgn (x.), dr, qr + AN SN (x.)) (S'-A sgn (x.) (a5.9)

and

<
I

v(r,t,f(z,r)

~[p(r, )+ 0701 A sgn (X )/A I A sgN (X, )1=0

_ (a5.10)
0 if A sgn ()21)||=O
with above definitions
Vo= -Am(KZ)nSn2 A, A 15,17 -2 (T el if x, %0 (ab.11a)
Vo= - ’/\m(KZ)IISIlz if x, =0 {a5.11b)

Using the same arguments in Appendix-1V, from (a4.11)- (a4.15), it follows
that e_ (1) lie in the sliding patch; e_(t) = I s, x!

The closed-loop stability is investigated based on the reduced order
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manifold dynamics and tracking error dynamics. From (4.24), the traCking error
dynamics equation can be expressed in state-space representation as

e = e

1 2

e, = - Mix )" [(COex) + K, + Mix)n) e,

+ (C(x14x2) + Kz) Ae - Y 6 -W x2] (ab.12)
Stability proof for the augmented error system is investigated by following
the same procedure as described from (a4.18)-(a4.20). The augmented error is

defined as Z' = [e ,e, X ]T.
1 2 2

Now, consider the Lyapunov function candidate

et 1T T T -1 - T =1 . =
V= zs MS+281 Kze1 +2X2 X2+29 e (3513)

Taking the time derivative along (4.44) and (a4.45), and using the skew ‘

symmetry properties, we find

Vo=-A r Q) NZn? (a5.14)
where,
i ] :
A Am(Kz) AM(Kz) ) RM(FG)
1
-+ T AM(KZ)
Q) = A (K) A SKMA 0 (a5.15)
1
+QK AM(KZ)
% AT 0 Am(/\zA:)//\
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If the following condition is satisfied :

172
2
| DT A K
a

}\(/\/\_1) m 2
m 21

®

v/ is nonincreasing function. If (a5.9) and (a5.10) are satisfied, the

AM(KZ) < = {ab.16)

convergence Of augemented error depends upon the choice of matrix OS i.e.,

setting of Kz, choice of /\,/\1 and /\2.

The matrix that appears in (ab.15) is positive definite Dby hypothesis
(4.49). Let x' = [e.el":

Moreover,
1 2 2] 2
) Lm hxie = V(x) = ) LM X

From (a5.13), it is found that V(x) is a positive decrescent function. Since
V is non positive by (ab.16). Hence, the region of attraction is the entire

state-space defined by Lm and LM.
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APPENDIX - VI

A6.1 PHYSICAL PROPERTIES

The following model properties are inherent to robot dynamics and are

usefull for designing. the controller-observer structure [8].

M Mx) = Mbx)" > — M(x )" exists (a6.1)
(i) o > IM(x )1 > 0 and o’ IM(x )" > 0 | (a6.2)
(i) gix) = o, - (a6.3)
(iv) IClx X )il = o IIx2I|2 (a6.4)
V) mx ) = éi—z (Cox,xix,), (a6.5)
(Vi) (x .x) =F?<—2 {Clx,x,) x }Xfx (a6.6)

A6.2 STABILITY ANALYSIS OF EXTENDED NONLINEAR SLIDING OBSERVER AIDED
CONTROLLER STRUCTURE

Consider the Lyapunov function candidate with e’ = [e1 ez]T

=y _ 1 T T 1 -7 - T
V(e,xz) = e K1e1 +2e2 M(x1)e2 +2 X, I\/I(x1)x2 +e1 l\/I(x1)e2 (ab.7)
Taking the time derivative of the Lyapunov function along the error
trajectories (4.59) and (4.60), we find

: oy T T : T 174 =T Z T <7 -
Ve, X2) = e K1e2 + e, l\/l(x1) e, + e, M(x1) e, + X, l\/l(x1) X, * n X, l\/](x1) X,

- - ) __
+ e2 l\/l(x1) 82 +e1 l\/l(x1) e2 + e1 IVI(x1) 82 (a6.8)
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Applying the properties of skew symmetry i.e. 12 M -C = 0, we find
Viex J=e' Ke -e Mx)K x 226" Mix) K e -e M(x)K, e + el M(x)e
2 1 1 2 2 1 2 2 2 1 2 2 2 1 1 1 2 1 2
T _ T ~T o -T 2 — ~T 2
- e, l\/l(x1) K2 X, - e, l\/l(x1)K1e1 + X, I\/](x1) ro-x, (1+07) X, - X, I\/l(x1) l"eze1
C5TCIx X )E T €Y X! alx, - T e’ + 5T Cix e) T e2 + X Clx,nr_e’
2 1 2 2 el 1 2 2 el 1 2 1 2 el 1 2 1 el 1
+ 5 %7 Cix.i e +2e'Cix ,ne +el Clx e +2e’ Clx..f) %X+ el Clx e )e
2 1 2 1 1 2 2 1 2 1 1 2 1 1 2 2
~T ~T -
+ X, C(x1,ez) e, - X, M(x1) L1sgn(x2)€ (a6.9)
Assume the following bounds
Am(l\/l) = ||M(x1)l| < AM(I\/I)
Am(K1) =< ||K1|| AM(K1)
Am(KZ) < ||K2|| AM(KZ)
Am(rm) < ||1"e1|| =< AM(I"81)

IA

1A

Am(rez) = “re2“ = AM(FBZ) (8610)
and
c_ = |lC(x1,'r)|| =C, il
c = HWC(x ,e )l = C_ le_l
1 172 M2
c = IC(x ,x ) =C ux_
2 9 2 M 2
q, = ».10} (a6.11)
Applying {a6.10) and (a6.11) in (a6.9), we find
I T
1 1 :
Am(l\/]) Am(K1) ) [AM(M)-H AM(K1) ) AM(M)AM(KZ)_CO-CC%”el“
1
) Co_ 2 C1
1 1
L 42 X (M)-1] AM(K) 2?\m(M)[Am(KZ)-1]-CO ) AM(M) AM(K2)
Vie,x )=-e
’ ° -c—1c —50—10
[} _2 1 2 0 2 1
;A (M) A (K )-c -c,iie, | %AM(M) AJK)c, g+ U +6?)
5 1
L ) _2 Co ) 2 C1
-7 ‘e -
+ X, Mix.) [r- L sgnix,) £] (a6.12)
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1
3

Ve, X, ) is negative definite if

) Lt 3
sgn(xz) = R nL1 E = dir |

In the present case

V(e, X, ) = - A I\/I(e1)} lleoll2
where l\/l(e1) is a function of tracking error e and V as
- 1 2
Ve, X, ) < 2P IIeOII + AM(M) ||e1|| |Ie2||
where, p__ = max| AM(K1) Ay (M

Using these two upper bounds, we get

1 1
€2 =2 AM(M) AM(reZ) -2 AM(reZ) "2 4, AM(reZ) ) (C1 + Co) v

V(eo) Ao(Mte )} e 12 A Me )} e i?
Vie) = - = P

o % b neon2 A, (M) e i e max
where , me =P . (pmax, Heoll,lle1ll, ||e2H)

Integrating (a6.15) both sides, we find

‘”Pmax f[ Ainf
V{ eO(O)) e o
-C1(t)

2
{Mteg(Tnille 1™ dx
o

V(eo)

1A

A

V( eO(O)) e
from which one can get

-C ()
le 11 = A e (012 & 1
0 o]

max{ A (K, A (M), 2 (K )}

where A = Wmm Y 5 —
m 1 m m 2

221

(r

el

(a6.13)

(ab.14)

(a6.15)

(ab.16)

(a6.17)

(a6.18)



For exponential stability , the following condition must be satisfied:

g, > 0 (a6.19)
inf{I\/\(e1)} > O foralltzO (a6.20)
if Am(l\/\) Am(K1) > 0 and
2
1 1
{Co + ) C1- ) ()\M(M)—T) AM(K1) }
A (K1) > (ab.21)
" ) (M){Z A (M) (2 (KZ)-T)-CO}
hence,
{Mle)y > O (26.22)

Applying these inequality eq.(a6.14) is nonpositive and indicate that the

augmented error e tends to zero asymptotically means e, — 0, e, = 0 and >22 —

0 as t approach .
The matrix that appears in (a6.12 ) is positive definite if

o]

1 1 1
e, < o {(2 [, (M)-T10,, 1K) = ¢ € + [ (MIA,_(K))

(2n (M (K )11 - ¢ )17 (e, +a +(1 +o))"2 (a (va (KT

M 2 o]

1 5 1 172 1
(5 A, IMIA (K )5 € -5 ¢ } /(21 (M) (K )-1)-c ) } 5 A, IMIA (K )-C

(a6.23)

which is true if

Ixl < Cl; {(% (A, (M) 11K ) - co-% c)) 4 (A (MA_(K)
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(22 (M (K )11 - e )1 (e, +aq + (140" (0 (M (K )72
o, a K)-S e Dey L i (11e™ LD s v (ke
2 "m M2l 2 Y2 ™ m m'2 o 2 "M M2l T

(a6.24)

I By virute of hypotehsis (a6.13) and (a6.21), the right hand

T .
where x = [e,e

side of (a6.23) is positive. V(x) is nonpositive. Besides,

1 2 1 2
> Lm XN~ = V(x) = ) LM X (ab.25)
From (a6.12), (a6.23) and (ab.25), we obtained if

5 )+ I (M (K )

(o]

L
1 m 1

3 M

(22 (MA_(K)-1T - e )" (e, +a +(1+65)" (4 (M)a (K )"

M2 M

b A (K )-S5 ¢ D e ) } /123 (M)A (K )-1)c )" } 5 A, MR (K )-c.

(ab.26)
then, V(x}) = V(x(0)) vt = O

V(x) = - B, IIeoll2 with 8. a positive constant.
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APPENDIX - VII

A7.1STABILITY ANALYSIS OF SIGN-SIGN BASED NONLINEARSLIDING OBSERVERAIDED
CONTROLLER STRUCTURE

To establish closed-loop system as exponentially asymptotically stable,

consider the following Lyapunov function candidate with e' = [e] e2]T

- 1 7 1 7 1T .7 - T
) 2 e K]e1 + 5 €, I\/I(x1) 82 + 2 X, lVl(x1) X, + e M(X1) ez(a7.1)

Taking the time derivative of (a7.1) along 4.75 and 4.76 and applying skew

Symmetry properties i.e. % M -C = 0, we find.

A B C
Vie, X )s—ez Ke Ko Kle
K K K
c E F
+ X, lVI(x1) [r - L1 sgn(iz) £ - L2 sgn(xz) sgn(e1)] - T e (a7.2)

— _ 1 1
where KA = Am(l\/]) Am(K1) , KB = 7 [AM(M)-H AM(K1) - C-

2 G
_ 1 _
KC = 5 AM(I\/I) AM(KZ)— c -c e, KD = 2 Am(l\/l) [Am(KZ)-H - C,
_ 1 5 1 _ 2
KE = 5 ?\M(I\/I) AM(KZ) " pC -ncC, KF =c, +aq + (1+¢7%),

Am(M) = IHVI(X1)II = AM(I\/I), Am(K1) = HK1H = AM(KT), Am(KZ) = I|K2H = AM(KZ),

A (T ) = | < < < = s '
N ) r = AM(I“e1), Am(rez) =TI < AM(Fez), c, ||C(x1,r)|| < (:M Irir,

c, = IIC(x1,eZ)II = CM||e2u, c, = |1C(x1,>‘<2)n = CM||>221|, q = Amm{Q},

1
and €3 T2 AM(M) AM(rez) ) % AM(rez) ) % q, AM(rez) ) (C1 + Co) AM(rm)
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V(e, >22 ) is negative definite if
i, €+ L= i (a7.3)

e > 0
d

in the present case

. < )
Vie, X, .) - A { M(e1)} e W - T i el (a7.4)
where M(e1) is a function of tracking error €. Using the upper bounds of V and V

. -C
to form V/V, one can get lie 02 < e (0)i2 e 1, where
(o) O

t

_ 1 2 _
<, _P;; { Amf{l\/\(e1(r1))} e | dr , P = Pmax(AM(K1)' AM(M), e ie i, e )
(a7.5)
max{ A (K ), r (M), a (K )}
_ M1 M M2
b= min{ Am(K1S, AmiIVl}, Alezjf (a7.6)

For exponential stability , the following inequality must be satisfied:
¢, > O A, {M(e1)} > 0 for all t = O;

if Am(l\/\) Am(K1) > 0 and

2
C G g AT A K }

(a7.7)
M2 2, (M (Am(KZ)—H—CO}

Am(K1) >

hence, A {I\/\(e1)} > 0

Applying these inequalities eq.(9) is nonpositive and indicates that
augmented error e tends to zero asymptotically means e1—>O,e2—> 0 and 5(2 — 0 as
[¢]

t approach . The region of attraction is given by (a6.24, Appendix-Vi).
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