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ABSTRACT

Robots have played a dominant role in the trends towards automation over the

past years. The rapid development of its applications require controller that

satisfies demands regarding tracking, speed and accuracy. Although, robot

manipulators have been used in industry for a number of years, their full

capabilities reach far beyond their present-day applications. At present,

industrial applications of robot manipulators are mainly restricted to simple

tasks. In order to improve the performance and capabilities, the application of

advanced control concepts to robot manipulators is a necessity.

Two basic facts about the robot manipulator dynamics make the control

problem a challenging one. Primarily, the dynamics are described by nonlinear,

coupled second order differential equations. Secondly, the parameters of the

model are partially unknown due to parametric variations disturbances and errors

in modeling. Much of the recent research in robotic manipulator control has been

directed towards the development of adaptive controller due to their

effectiveness in high speed, high precision tasks and robustness to parametric
uncertainty.

The development of controller structure in the present research work is

inspired by the adaptive control strategy as reported in

[7],[17],[23],[64],[73],[84]. Broadly, three new adaptive controller structures

are proposed for robot manipulators. The sliding observer aided controller

structure for adaptive case is heavily influenced by the work of Canudas et. al.

[10]. Two new sliding observer aided adaptive controller structures are proposed
by modifications in the existing sliding observer [10]. Further, two variations

of nonlinear sliding observer based controller structures, motivated by [8]-[85],
are also proposed for robot manipulators.
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The aim of these proposed schemes are to improve tracking performance of

robot manipulators and to satisfy the stability criterion in the Lyapunov sense.

Performance of these new controllers have been verified through simulation. The

work done in this thesis is briefly summarized below:

1. The controller structure for adaptive case, presented by Whitcomb et. al.

[84], is based on position and velocity vectors. Their control law is

modified by incorporation of acceleration term in feedback loop. This is

based on two assumptions. The first is that the joint acceleration is

measurable [17]-[23] and relatively noise free, and the second is that the

inverse of sum of acceleration gain and estimated inertia matrix remains

bounded. Simulation results show significant improvement in tracking error

and velocity error for two different types of desired trajectories having

different initial estimated parameters. The closed-loop system is shown to

be globally asymptotically stable in the Lyapunov sense and has better

convergence.

2. To overcome the noisy velocity measurement problem, a globally convergent

adaptive controller structure for robot manipulators is presented by

Berghuis et. al. [7]. Their controller structure has been modified by

inclusion of nonlinear compensator [64] and virtual reference trajectories

(sliding surface) [73]. In our work, three new structures of adaptive

controller, associated with distinct form of sliding surfaces, are proposed

and studied with respect to their tracking improvements (case -1,2 and 3).

In case-1, all three virtual reference trajectories are considered where as

case -2 uses the desired velocity reference trajectory instead of velocity

virtual reference trajectory with other form of sliding surface. The

proposed controller structure for case-3 consists of nonlinear compensator



and existing controller [7]. The asymptotic stability of the control

algorithms are proved via the Lyapunov direct method. These proposed

schemes improve tracking performance significantly, enhance robustness with

respect to the noisy velocity measurement, especially in under- excited

operations and also compensate the additional error (bounded by sliding

surface and tracking error, [64]).

In another approach a bounded form (norm based) of adaptive controller-

structure is proposed. This is based on the inverse dynamics mod'el of robot

manipulator with a premise that if each parameter is known within some

bounds the parameter adaptation can be prevented from going out of bounds

and thus makes the system more robust. The stability of closed-loop system

is investigated via the Lyapunov direct method. Simulation results, when

compared with [7], clearly indicate drastic improvements in tracking

performance.

It is known that velocity measurements are usually associated with rather

high level of noise [10]. Only joint position measurements are assumed to

be available, which is in contrast to full state measurements (positions

and velocities). In this situation, estimated joint velocity vector

obtained from a sliding observer is fed back to adaptive controller

structure [10]. The proposed sliding observer structure is an extension

of this by including the desired acceleration vector and a new uncertainty

term (associated with desired trajectory based robot model properties) to

estimate the velocity vector for adaptively controlled robot manipulator.

The combined scheme is analysed with the Filippov's solution concept and

tracking error dynamics via the Lyapunov stability criterion. The proposed
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scheme shows the significant reduction in tracking error, velocity error

and observation error (velocity).

The sliding observer scheme is further modified by including the tracking

error and the observation error (position) in estimating velocity vector,

to take into account the dynamic interaction between observer and

controller dynamics. This means that the observer shall not only depend on

the- observation errors and controller not only on the tracking difference.

This combined scheme is considered as a global control system with their

gains tuned in order to ensure asymptotic tracking of the desired

reference. The adaptation law and design vector, account for uncertainties

on parameter vector associated with desired trajectory based model

properties of robot, are derived using the Lyapunov direct method.

Simulation results clearly indicate the improvements in comparison to

[10].

In nonlinear systems the controller and the observer, in general, cannot be

independently designed since the separation principle does not apply as in

case of linear systems. In controller-observer scheme for robot

manipulators presented by Canudas et. al. [8], the nonlinear sliding

observer structure uses only observation error (position) in estimating

velocity vector in order to fed back to controller structure. In view of

nonlinear nature of robot manipulator and dynamic interaction between

controller and observer, the square of tracking error and signum function

of velocity observation error [85] are included as extended terms in the

existing nonlinear sliding observer structure [8]. The first term reduces

the observation error (velocity) due to application of the Filippov's

solution concept and second term acts as a forcing (switching) element to
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get good estimate of velocity. The closed-loop analysis is performed which

is based on reduced order manifold dynamics and tracking error dynamics

using the Lyapunov stability to ensure asymptotic stability. It is

observed, through simulation, that drastic reduction in velocity error and

observation error (velocity) results, in comparison to [8].

7. Again, the sliding observer is further modified by incorporating the sign-

sign term in previously proposed observer structure. The observer scheme is

termed as Sign-Sign Algorithm (SSA). The existing controller structure [8]

is extended by incorporation of disturbance torque (as function of the

desired position trajectory) in order to achieve the improved tracking

performance of combined controller-observer scheme. The proposed scheme is

illustrated by a simple example. The stability of closed-loop analysis is

performed in the Lyapunov sense.

New model-based adaptive and sliding observer aided controller structures

developed in this thesis are new solutions to many constraints, complexities and

ambiguities involved in the control of robotic manipulators.
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INTRODUCTION

With advances in technology modernisation has taking place in the industrial

sector. In contrast to manual labour often robots are used to perform prescribed

jobs in harsh, dangerous, or unhealthy environments. The revolutionary changes

have appeared in industry because of the installation of robot for performing

different applications in areas such as in nuclear industries, deep under sea

exploration and maintenance operation. Robot system has also been used

increasingly in industrial automation without the involvement of human operator.

Improved control techniques are needed to fullfil the demand on manipulators

performance such as speed and accuracy. The use of conventional linear control

techniques limits the basic dynamics performance of robot manipulator due to

reasons. First, the dynamic characteristics of robot manipulators are highly

nonlinear and coupled. Second, the degradation of dynamic performance

characteristics of robot manipulator governed by intertial properties. In view of

high system performance over a wide range of tasks, many control techniques
appear in literature. These are categorized in two classes, nonadaptive and

adaptive control. In contrast to nonadaptive, the adaptive control plays an

important role because of its robustness to parametric variations and

disturbances. Under these two techniques a number of methods for dynamical
control of robot manipulators have appeared in literature. These include

resolved rate control, inverse problem, computed torque, variable structure
control and observer based control.

Recently, considerable interest may be seen in the design of model-based



(computed torque) adaptive controller for robot manipulators because of its

attractive features which compensate the inertial, coupling and gravity effects.

In other direction, some work has been concerned with the problem of controlling

robot manipulators by introducing observer scheme in order to estimate joint

velocities. In practice, velocity measurements are obtained by sensors such as

tachometers. Associated problems include discontinuities in the magnetic circuits

of the tachometer stator at low velocities, ripple torques and other high

frequency phenomenon, which reduce the quality of the measured velocity.

In the present work, broadly three new model-based adaptive controller

structure are proposed for robot manipulators. First, the acceleration terms is

included in previously developed controller structure [84] to form a new

adaptation law. Secondly, a nonlinear compensator is used in existing controller

structure [7] with three different forms of sliding surfaces for three types of

controller structures. Thirdly, a bounded form of controller structure is

proposed to improve tracking performance.

It is well known fact that the joint velocity measurements is corrupted with

noise. This situation may deteriorate the dynamic performance of the manipulator

because the value of the controller gain matrices are limited by the noise

present in the velocity measurements. To avoid this problem, the observer based

controller structures are considered for trajectory tracking of robot

manipulators.

The sliding observer aided controller structure for adaptive case is

influenced by the work of Canudas et. al. [10]. Two new sliding observer aided

adaptive controller structures are proposed by modification in the existing

sliding observer [10]. Former associated with new form of parameter uncertainty

vector and latter one of tracking errors and velocity observation errors to take

account the dynamic interaction between controller and observer. Further, two



types of nonlinear sliding observer based controller structures, motivated by

[8],[85], are also proposed for robot manipulators. At the first, the proposed

nonlinear sliding observer scheme is based on e2-term, velocity observation

error. Second, they are based on sign-sign function of observation error and

tracking error. The controller structure of [8] is extended by including
disturbance torque vector for latter one.

Performance of these new controllers have been verified through simulation.

The simulation results are compared with previously developed control schemes.

An imporatnt features of proposed controller structures is the improvement in
tracking -performance. The stability of proposed schemes is investigated in the
sense of Lyapunov alongwith the region of attraction.

In brief, the problems and control strategies applied to the design of
controller for robot manipulators are discussed covering adaptive control and

sliding observer based adaptive and nonlinear control. A brief summary of the
scope of the thesis is also included.

1.1 SYSTEM DESCRIPTION

Arobot manipulator is known to have a complex dynamics. Good performance
can be expected only if precise control strategies are employed. These
sophisticated control require the use of realistic dynamic model of the robot
manipulator. Two basic approaches are [3]:

(a) Newton-Euler formulation

(b) Lagrange - Euler formulation

The Newton-Euler formulation is derived by the direct interpretation of
Newton's second law of motion, which describe dynamic systems in terms of force
and momentum. The equation incorporates all the forces and moments acting on the
individual manipulators links, including the coupling forces, moments between the



links and constraint forces acting between adjacent links. The equations obtained

from the Newton-Euler formulation include the constraint forces acting between

adjacent links. Thus, additional arithmetic operations are required to eliminate

these unwanted terms and obtain explicit relations between the joint torques and

the resultant motion in terms of joint displacements.

In the Lagrange-Euler formulation, or the Lagrangian formulation, the

dynamic behavior is described in terms of work and energy using generalized

coordinates. All the constraint forces and workless forces are automatically

eliminated in this method and this leads to a compact and closed-form of

expression in terms of joint torques and joint displacements.

The resulting closed-form of dynamic equation of an n-degree of freedom

robot manipulator can be given in the form [59].

\= I %*! + 11 ci)k(q) 9 \ + K^> k = 1,2, .. n (1.1

i = i i = ij = i
i i

where m . are the coefficients of inertia matrix, <j> (q) are the gravitational

forces and torques and x is the actuating torques. q", q and q are the
k j i

accelerations, velocities and positions, respectively. The coefficients c... of

the Coriolis and centrifugal terms are defined as
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and are known as Christoffel symbols (of the first kind). It is common to express

(1.1) in matrix form as

M(q)q' + C(q,q)q + g(q) = x (1.2)

where the k,jth element of the matrix C(q,q) is given as
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M(q) is the nxn position-dependent manipulator inertia matrix; C(q,q)q is

the n-vector of Coriolis and centrifugal torques, g(q) is the n-vector of

gravitational torques.

Different dynamic models of robot manipulator have appeared in the

literature. These may be categorized in the following forms:

Neglecting friction and other disturbances [8]-[10],[56],[63],[64],[71]-
[77],[84] as

M(q)q' + C(q,q)q + g(q) = T (1 4a)

Using viscous and coulomb friction, [6], [12], [16], [17], [27], [28],
[30], [47], [63], [64], [68], [69], [80], [81], as

M(q)q' + C(q,q)q + g(q) + F(q) = t (i.4b)

where vector F(q) represents the combination of viscous and coulomb friction, and
another form [48],[60],[85] as

[M(q)+J]q" + C(q,q)q + g(q) = T (15)
where J represent actuator's inertia. The actuators, armature motors in many
cases [48], [60], [85], are supposed to be able to generate the control torque
using their dynamics.



Addition of payload in system dynamics gives significant effects on Inertia

torque and Coriolis plus centrifugal torque. Under this assumption, in

generalized way, the dynamics of robot manipulator can be expressed

[7],[19],[68], as

M(q,w)q' + C(q,q,w)q + g(q) = r (1.6)

where w denotes the pay load. The system dynamics as expressed in (1.4a) is

considered for the proposed schemes.

1.1.1 Fundamental Properties

The equations of motion are complex, nonlinear, coupled for all but the

simplest robots. They have several fundamental properties which can be exploited

to facilitate control system design [59].

Property 1: The inertia matrix M(q) is symmetric positive definite, and both M(q)

and M(q)" are uniformly bounded as a function of q e Rn. It means that

associated energy is always positive and skew symmetric matrix can be added to it

without changing the value of the energy.

Property 2: There is an independent control input for each degree of freedom. The

reason for doing this is to obtain decoupled subsystem.

Property 3: All of the constant parameters such as link masses, moment of

inertias, etc., appear as coefficients of known functions of generalized

coordinates. By defining each coefficient as a separate parameter, a linear

relationship results so that one can write the dynamic equationd .2) as

M(q)q" + C(q,q)q + g(q) = Y(q,q,q')e" = x (1.7)

Where Y(q,q,q) is an nxr matrix of known functions, named as regressor, and e

is an r-dimensional vector of parameters.



Property 4 : Defining the matrix N(q,q) = M(q) - 2C(q,q), one observes that

N(q,q) is skew symmetric, i.e., the components n of N satisfy the condition n
jk jk

=-nk.. However, M - 2C is itself skew symmetric only in the case that C is

defined according to (1.2). It indicates that the so-called fictitious forces,

defined by C(q,q)q, do no work on the system.

1.2 PROBLEMS AND STRATEGIES FOR CONTROLLING ROBOT MANIPULATORS

The basic difficulty in controlling a robot manipulator arises from the

fact that the dynamic equation describing the robot motion are inherently

nonlinear and highly coupled. Physically, the coupling terms represent

gravitational torques, which depend upon the positions of the joints, reaction

torques, due to accelerations of other joints, Coriolis and centrifugal torques.

These interaction torques depend upon the size and weight of the links of the

manipulators as well as the change of manipulator configuration. The role of

friction forces is unpredictable. The dynamics of the actuator further adds to-

the difficulties and complexities in model inaccuracies. These effects make the

control of robot manipulator a complicated task and challenging.

In general, the main aspect associated with the control problems of robot

manipulators is to achieve a desired system response with prescribed error limit.

The control of robot manipulator is accomplished in two different stage. In the
first stages, the controller structure is constructed. In the second stage,the
control torque is applied to actuator so that the response of the robot

manipulators of joint motion closely track the desired trajectory.

In the area of robot control research a large number of sophisticated

control approaches have been developed during the last two decades. These provide

almost perfect results on simulation or under laboratory conditions. The major
strategies include nonadaptive and adaptive control, and are further subdivided



as nonlinear control, robust control, sliding mode control,computed torque

control and observer based control. These are discussed below in brief.

Trajectory tracking based on linear multivariate theory using linearized

model and decoupling is fascinating because of the comparably low computation

effort [67]. However, because of the highly nonlinear system behavior the scheme

refers to a limited application area where slow motion required. Linear feedback

law based tracking control scheme has been proposed in [61] under the assumption

that the gain approaches infinity the scheme becomes globally asymptotically

stable. A high gain controller, which is unaffected by noisy velocity measurement

problem, is proposed in [83]. A feedback law based on local, decoupled, and

exact linearization has been proposed in [39]. Recently, the feedback

linearization [66], [68], [70], of a robotic manipulator based control using

variable structure compensator for robust tracking has been proposed [87], [88].

Nonlinear feedback control using approximate inverse dynamics model with

additional feedback compensation has been proposed in [25]. The scheme is

sensitive to parametric variations. The strategy, by incorporation of

uncertainty and input constraints alongwith torque optimization in case of

actuator saturation has appeared in [76].

A nonlinear switching-type control law under the assumptions that

acceleration measurements are available and the bound of uncertainty vector

depends upon derivative of state has appeared in [12]. The modified version of

[74] is presented in [37] in order to estimate the upper bound on uncertainty

instead of known uncertainty bound. A nonlinear robust feedback controller is

derived with cubic expression of uncertainty by including actuator dynamics [48].

An attractive way to avoid the problems both of model uncertainty

(nonlinear decoupling concepts) and of parameter variation (linear control

concept) is to apply adaptive control. In the model reference adaptive

8



control(MRAC) concept, the model and system are guided by the same signal [1],

[4], [20], [45], [46], [52], [56], [69] to reduce the modeling error and maintain

the persistency of excitation for model and system both. In this direction, the

pioneering work of Dubowsky et.al. [20] is modified for discontinuous control [4]

and continuous control [52], [56] using unit vector adaptation law. For improving

transient response and convergence speed the work [45] is extended in [46] by

introduction of optimal auxiliary input.

The complete self-tuning type adaptive control using least square (see

also [9]) for each joint have been applied to robot manipulators [38]. It is also

referred as mixed concept i.e. feedforward component computes nominal torque from

Newton-Euler equation and feedback component computes perturbation torque based

on self-tuning control [43].

Adaptive control applied to robot manipulator [4], [69] are based on

variable structure system. The computed torque method (inverse dynamics) based

adaptive control shows global convergence [5], [7], [16], [17], [23], [24], [63],-

[64],[73],[75],[80],[84]. The passivity-based approach is studied in

[58][63],[64]. Inverse dynamics controller used together with the addition of a

term that allows preservation of the passivity properties of rigid robot in the

closed loop is reported in [35]. An important drawback of passivity-based control

is that they are not robust to velocity measurement noise. In order to reduce

this problem a scheme is proposed in [7], [64]. The work [16], [17], [23], [24]

are based on the assumption that joint acceleration measurements are available.

The idea using joint acceleration measurements [16], [17], [23], [24], [49],

[62], are avoided using identifier[30], sliding mode [73] and fixed estimate

[75].

The inverse dynamics based adaptive law to estimate gravity term [80] and

parameter uncertainty [37] is one of the strategies for globally convergent



control. Recently, keeping in view the fact that velocity measurements are

corrupted by noise, the observer scheme is employed with controller either by

using sliding observer for nonlinear case [8],[57], robust approach [9], or

adaptive case [10] for motion control of robot manipulator. In these schemes, it

is assumed that only joint position measurements are available.

1.3 DEFINITIONS AND PRELIMINARIES

Definition 1.3.1: vector norm

For a vector x e Rn, the norm of x said to be the Euclidean or l2 norm, is

given by :

1/2
n

•\

X = I X
j

2

j=i
-

Definition 1.3.2: Matrix Norm

For a matrix A e R, A will be the corresponding induced norm

|a|| = [max A (ATA)]1/2

where max. A.(.) denotes the largest eigen value.

Definition 1.3.3: L functional norm
P

For a Lebesque measurable function f(t) :

RT —> Rn, the L norm for p e [1,»] is defined to be
p

i/p

f(. f(T)|PdT

10



For p = oo the norm is defined to be,

f(-) = t>a l^TH almost everywhere.
co X —\J

Definition 1.3.4: Given two n x 1 vectors x and y, it implies

C(q,x)y = C(q,y)x

C(q,x + ay) = C(q,x)+aC(q,y)

for all x,y,q e Rn, a e R.

Definition 1.3.5: Adaptive Control

It is defined as a feedback control system intelligent enough to adjust its

characteristics in a changing environment so as to operate in an optimum manner

according to some specified criterion.

Definition 1.3.6: A computed torque controller is a control algorithm which uses

a model of the manipulator's dynamic behavior to ensure that a prescribed degree-

of damping is maintained for all configurations. It allows to cancel the

nonlinearities associated with system dynamics.

Definition 1.3.7: Sliding mode

It is an important concept of variable structure system and defined as a

special regime in the vicinity of the switching surface, S = 0, where the tangent

or velocity vector of the state trajectory always points towards the switching

surface. If sliding mode exists on S = 0, then S is termed as sliding surface.

Definition 1.3.8: Robot

According to RIA, a robot is define as a reprogrammable multifunctional

manipulator designed to move materials, parts, tools, or specialized devices,

through variable programmed motion for the performance of a variety of tasks.

11



Definition 1.3.9: Asymptotic Stability

An equilibrium point x of the system H is asymptotically stable if and only

if for each e > 0 there exists a s>0 such that if

< e for t ^ 0 and:

x(t) —> x as t —» oo

Thus if an equilibrium point x is asymptotically stable then any solution

which starts out sufficiently close to x stays close in the sense that x(t) -x
-A.

remains small and, in addition, the solution asymptotically approaches x in the

limit as t ^ oo.

x(o) -x < 5 ,then x (t)

1.4 SCOPE OF THE THESIS

In chapter 2, the control strategies for robotic manipulator under

nonadaptive control and adaptive control category are reviewed. Several issues

and recent trends are examined critically. The work related to controller

-observer strategies are also systemically reviewed.

In chapter 3, three different type of controller structures are proposed.

First, the acceleration error based controller structure is proposed with a new

form of adaptation law for relatively noiseless environment for trajectory

tracking of robot manipulator. Second, nonlinear compensator based three

different forms of controller structure for three different types of sliding

surfaces are proposed for the motion control of robot manipulator. Third, A norm

based controller structure is proposed for trajectory tracking of robot

manipulators. The stability investigation is also performed in the Lyapunov sense

for all the proposed control scheme and the region of attraction is studied for

their convergence. The proposed schemes give better tracking performance in

comparison to [84], [7], respectively.

12



In Chapter-4., the sliding observer aided control concept is described in

detail based on the existing work [8],[10]. The sliding observer aided adaptive

control concept is restructured by modifying the configuration of sliding

observer and uncertainty terms in order to ensure better asymptotic tracking of

the desired reference. The existing nonlinear sliding observer aided control

scheme of Canudas et. al. [8] is extended in view of dynamic interaction between

controller and observer for comparative trajectory tracking performance.

Similarly, this scheme is further extended by including the error based sign-sign

term and disturbance torque in control law. The error analysis and stability

investigation in the Lyapunov sense are also presented. Significant reduction in

error responses are observed in comparison to [8],[10], respectively.

In chapter-5, some derivation of dynamic equation (regressor) and

simplification are carried out for a robot manipulator. The simulation results of

proposed algorithms are carried out to compare the tracking performance with the

existing cases.

Chapter - 6 deals with the conclusion on the results obtained in the

different proposed schemes. Some suggestions for future research in this area are

also included.

13
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LITERATURE SURVEY

During the past decade, many schemes for controlling the motion of robot

manipulators have been appeared in literature. Mainly, they are divided into two

categories, namely (i) nonadaptive control (ii) adaptive controller .The latter

approach has been the subject of greater attention in recent years. Several

techniques have been developed under these two categories. They include nonlinear

decoupling, robust control, passivity approach, sliding mode (Variable

structure), computed torque and observer based approach.

2.1 NONADAPTIVE CONTROL

The general characteristics of nonadaptive control approach is that they

are fixed controllers. The schemes require an exact knowledge and explicit use of

the complex robot dynamics and its parameters. Uncertainties in the parameters

will certainly cause dynamic performance degradation. In such situations,

compensation for nonlinearity, and joint decoupling techniques must be introduced

to cope with high accuracy requirements [81].

Traditionally, the problem of joint motion control has been treated by the

PID algorithms. The PID control, based on linearization and local stability, is

limited to small angle movements [2]. Moreover, to ensure the stability, the gain

matrices must satisfy complicated inequalities, which depend on the initial

conditions.

The idea of resolved-rate control of the robot manipulator in terms of the

position and orientation of the hand is introduced in [47]. The minimum time



solution along a specified path using linear programming is investigated. The
proof of error convergence is based on linear approximation over small time
interval. The control algorithm is inadequate because the changes of load in task
cycle are neglected. The complex nature of control law in order to ensure the
convergence of large error with nonlinear feedback design based of PID control
is investigated in [25]. Its sensitivity to parameter variation appears as a

drawback. In view of unmodelled friction effects and large inertia properties, a

new robot control scheme using PID controller is proposed in [51]. This scheme

require high gain feedback.

A robust tracking scheme for robot manipulators in the presence of model

uncertainty and input constraints is developed by Spong et. al. [76]. Asimple
alternative solution to the robot manipulator control problem based on linear

multivariate theory to provide robust steady-state tracking of a class of
trajectories is proposed by Seraji [67]. This scheme consists of multivariate
PD2 + PD based controller alongwith multivariate PID feedback controller using

feedforward and feedback controller concepts. The comparative performance of

nonlinear feedforward control, feedback control and reduced order feedforward

control scheme are established in real-time. The computed torque based control

laws are introduced for joint coordinated control of robot manipulators in [83].

The modification of the Lyapunov function and use of lemma to handle third order

term in the Lyapunov function derivative are also incorporated.

Without demonstrating the stability, nonadaptive robust control scheme with

nonlinear and linear parts to compensate modeling errors and unknown disturbance

is proposed by Kuo et. al. [40]. The nonlinear part decouples robot dynamics to
obtain a set of equations in terms of each joints input-output and the linear

part applies robust servomechanism theory to suppress the effect of modeling
error and unknown disturbances.The model-based servo schemes are designed in [1 2]

16
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to compensate for system uncertainties which utilizes a nonlinear switching type

control law and bound of the model uncertainty. Qu et. al. [61] presented a

control scheme for robust tracking control of robots by incorporating a linear

feedback law to overcome the problem associated with [12]. The design parameter

in the control law is a constant gain which depends only on the coefficients of a

quadratic bound on the nonlinear terms in the dynamic equation. The simulation

results is however not reported. In contrast to linear feedback, a nonlinear

robust feedback controller is suggested in [48] including actuator dynamics and

cubic form of uncertainties to guarantee global ultimate boundedness of the

actual system output.

Spong [74] derived a robust control law for robot manipulator using a novel

modification of the so-called Leitmann approach [15]. The parameter uncertainty

bounds are needed to derive the control law and to prove uniform ultimate

boundedness. As a result, precise bounds on the uncertainty have been difficult

to compute. On the contrary, an additional control input is updated as a function

of the estimate of the uncertainties upper bound in [74]. A variable structure

compensator is introduced to cope with parameter uncertainties reported in [87],

[88]. The boundary layer compensator is used, further, to reduce the chattering

effect at the cost of control accuracy.

2.2 ADAPTIVE AND OBSERVER BASED CONTROL

An effective way to deal with parameter uncertainties of a robot

manipulators is to apply adaptive control scheme in which the controllers are

designed to compensate for the uncertainties automatically. It can be broadly

classified into two categories on the basis of model [27]: (i) Model - reference

Adaptive control and (ii) Self-tuning adaptive control. The adaptive control may

be also classified on the basis of their control objective and the signal that

17



drives the parameter adaptation law. The control objective determines the

controller structure whose parameters are to be adapted on-line. The adaptation

law may be driven by a signal that measures either the prediction error or

tracking error.

The pioneering work in the area of MRAC using steepest descent method for a

class of manipulator is proposed in [20]. The control algorithm which minimizes a

quadratic function of the error defined as the difference between the desired
state vector and the robotic process state vector. The authors neglected

couplings between joints of the manipulator and did not assure the convergence of

their control law.

Balestrino et.al. [4] proposed a control algorithm based on discontinuous

control signal of adaptive model following control system for robotic

manipulators via hyperstability theory. The chattering due to sliding motion

causes unmodelled resonance. As an alternative approach, using continuous signal

for fast motion, MRAC algorithm is developed by Nicosia et.al. [56]. The

controller however does not yield zero tracking error and required unbounded,

feedback gains for the convergence of the tracking error to zero. Using MRAC

technique with uncertain parameter and integrable adaptive law, a control

algorithm is proposed in [70]. Here, the Lyapunov function is used only as a

intermediate step and did not appear in the final form of either the controller

or the adaptive law. Nonlinear adaptive control schemes are proposed in [52]

using continuous control inputs where control gains are adjusted adaptively.

Based on the work of Corless et.al. [15] for system uncertainty, Singh [69]

describes a switching-signal-synthesis adaptive scheme for model following

(MFAC). The controller includes a dynamic compensator in feedback path unlike

linear compensator [4], [70], [77]. Using optimal auxiliary input Lim et.al. [46]

designed MRAC base control strategy to reduce transient oscillation and thus
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improved convergence in comparison to their earlier contrast to previous work

[45]. The control algorithms are valid for slow varying movement of robot

manipulator.

Improved MRAC theory is used to develop adaptation algorithm by Seraji [68]

using auxiliary signal. The scheme, employed as feedforward controller, which

behaves as the inverse of the manipulator and auxiliary feedback controller.

Kovio et.al. [38] proposed a self-tuning type of control law using an

autoregressive based model for the manipulator dynamics to compensate the

nonlinearities. The parameters of the model and the controller gain are

determined on-line by a recursive least-square identification algorithm and a

weighted- one-step-ahead optimal control algorithm. The convergence property

exists if the motion is along a straight line and circular arc. The control law

assume that the "interaction forces among the joints are negligible and during

the adaptation process the elements of the linearized system remain constant. As

part of the scheme [43],[44], an optimal adaptive self-tuning controller of the.

linearized system is used to compute perturbation torque and input torques

computed from the Newton-Euler equation of motions. Convergence of control law is

not explicitly shown. In view of linearization of nonlinear model around the

desired trajectory an adaptive control scheme based on local parameter

optimization is proposed by Takegaki et.al.[78] under the assumption of slowly

time-varying variational system dynamics of the manipulators.

Choi et.al. [13] extended the work of Lee et.al. [43] by the inclusion of

payload and parameter uncertainties. Resolved motion rate and acceleration

control are one of the ideas which are introduced Luh et.al. [47] and Lee et.al.

[44], respectively, in order to control the robot manipulator using Newton-Euler

formulation of equation of motion.

19



Almost all previous work is based on standard MRAC or self-tuning regulator

theory for linear time-invariant plants. The stability proofs are only valid to
the extent that coefficients of the linearized manipulator system vary

sufficiently slowly. On the contrary, the computed torque formulation yields a
that suppresses uncertainties and disturbances and tracks the desired

trajectories uniformly in all configuration of manipulators.

The results of Craig et.al.[17] are based on adaptive inverse dynamics

which is a special case of the idea of feedback linearization of nonlinear

systems. A globally convergent scheme of robot manipulator is based on the
assumptions of bounded estimated parameters, availability of joint accelerations
measurements and boundedness of inverse of estimated inertia matrix. The

adaptation law is the form of linear-in-parameterization technique [16]. By
dropping the assumption, that joint acceleration measurements are available [62],
Hsu et.al. [30] proposed a adaptive control using explicit identifier, basically,

a first order filter and discrete time upgradation of the parameter values.

Without using the additional filters, the adaptive pure computed torque (PD part

is omitted) algorithm is proposed by Gu et. al. [28]. It is suggested that PD
control is not necessary to ensure stability and no large feedback gains are

required.The alternative formulation of adaptive inverse dynamics control which
overcomes the assumption on boundedness of the inverse of the estimated inertia

matrix is proposed in [75] using fixed parameter estimate instead of varying

estimate.

In contrast to [17], Slotine et.al. [73] proposed a nominal type of

controller structure with sliding surface and applying skew-symmetry properties

established global asymptotic stability. The Lyapunov stability for an adaptive
controller that ensure only convergence to zero for the velocity tracking error.

The idea of this controller design philosophy is to reshape the robot system's
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natural energy such that the control objective is achieved and designated as

passivity approach [59].

The work of Sadegh et.al. [64] is conceptually different from the adaptive

inverse dynamics in that the control objective is not feedback linearization but

only preservation of the passivity properties of the robot in the closed loop.

The form of Coriolis and centripetal acceleration compensation controller is

bilinear function of the joint and model reference velocities instead of a

quadratic function of the joint velocities [63],[64]. In [63], the problem of

noise correlation between estimation error and adaptation signal appeared, which

is removed in their extended work [64]. A reduction of sensitivity to velocity

measurement noise appeared. The principle of passivity-based direct adaptive

control for industrial manipulator is experimentally verified and implementation

issues are discussed in [42]. An important drawback of these schemes is that they

are not robust to velocity measurement noise. Specially, in underexcited

operation, when performing a regulation task, the well-known phenomenon of

parameter drift in the adaptation law is occur due to presence of quadratic terms

in the measured velocity. To avoid noisy velocity measurement problem, a

globally convergent adaptive control scheme for robot motion control is proposed

in [7]. The adaptation law enhanced robustness with respect to noisy velocity

measurements and controller does not require the inclusion of high gain loops

that may excite the unmodelled dynamics and amplify the noise level.

Kelly et.al. [35] proposed an inverse dynamics controller with the

additional term which allows preservation of the passivity of the closed loop

system. The control law consists of a computed torque and feedforward

compensation part. The scheme is an intermediate approach between computed torque

and passivity approach.
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Bayard et.al. [5] introduced asymptotically stable adaptive control laws
for robotic manipulator. The energy-like Lyapunov function, which retains the
nonlinear character and structure of dynamics instead of quadratic forms, is

incorporated. The scheme avoids the velocity measurement problem by inclusion of
reference trajectory based control law but requires high controller gain in order
to overcome the uncertainty in the initial parameters errors and compensate for

the dependency on the magnitude of the desired trajectory velocity. The computed
torque based robust scheme for adaptive case in order to estimate the bound of
model uncertainty is proposed by Chen [12]. The adaptive scheme relies on the

functional properties of the model uncertainty.

Tomei [80] presented PD control algorithm that is adaptive with respect to

gravity parameter of the robot manipulator. In contrast to [2], where PID control
algorithm ensure only local asymptotic stability, a globally convergence scheme
is proposed with upper and lower bound of the inertia matrix. One integrator is
needed against the n-integrators required by PID controller in [2]. The
generalized model-based adaptive control approach to the trajectory tracking of
robot manipulator is proposed in [60]. It includes both the full-order actuator

dynamics and second order manipulator dynamics. The scheme is associated with

local bound stability.

A globally asymptotically stable model-based adaptive controller is

proposed in [84] with a new Lyapunov function. Using filtered torque in
adaptation law to ensure convergence of tracking error a globally convergent

adaptive scheme is developed in [49] for controlling robot manipulators.

Feng et.al. [24] considered the Lyapunov-like concept to design an adaptive

control law, with assumption that acceleration measurements [17] of joints are

required, in task space. It is further investigated to achieve robustness to

bounded disturbances. An adaptive control algorithm based on prediction error and
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sliding mode based parameter estimate is proposed in [23] on same methodology as

appear in [24].

As the technology advances, the controller simplicity becomes less

important than tracking accuracy. It is no longer prohibitive to consider a more

accurate model and look for better tracking performance with a slightly more

complicated control scheme. It is well known fact that the joint velocity and

joint acceleration measurements are corrupted with noise. The majority of

adaptive controllers is based on full state measurements (positions and

velocities) [59]. In contrast to joint position measurements the velocity

measurements are often contaminated with high level of noise. This situation may

detoriate the dynamic performance of the manipulator because the value of the

controller gain matrices are limited by the noise present in the velocity

measurements. Exploiting the model properties of the robot dynamics, a nonlinear

observer is proposed in [57] for rigid joint robots to reconstruct the joint

velocities. The associated error dynamics is shown to be locally asymptotically,

stable. The proposed observer is inserted in the feedback to controller

structure. Two cases point to point control and the trajectory control are

discussed. The observer furnishes the state estimate directly in the physical

coordinates, so that no transformation is needed. The convergence of the proposed

observer is local and of control law is global. The size of the region of

attraction depends only on the observer gain constant.

Canudas et.al. [9] proposed a sliding observer scheme to estimate the joint

velocities for controller to control the motion of robot manipulator. The control

law involves Leitmann procedure [15] to take account for uncertainties due to

model error. It is shown to be locally exponentially stable under model parameter

uncertainties and bounded torque disturbances.
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Canudas et.al. [10] extended the work of [9] for adaptive control of robot

manipulator. The sliding observer equation have discontinuities on its right side

so that the Filippov's solution concept is applied. It indicates that the

dynamics on the switching surface is an average of the dynamics on each side of

discontinuity surface. The uncertainty vector is assumed in terms of boundedness

of coefficients matrix of system dynamics. The introduction of an adaptation loop

reduces the chattering at control law level because of its dependency on

estimated state and parameter vectors and hence contains no terms proportional to

discontinuities. The observer scheme depends on only position observation error.

Canudas et.al. [8] presented two alternative approaches for trajectory

tracking control using nonlinear estimated state feedback. The first scheme is

based on smooth function whereas the second uses switching gain. The stability of

smooth scheme is local whereas the nonsmooth scheme gives an arbitrarily large

attraction region and globally asymptotically exponentially stable. In contrast

to observer scheme, an extended Kalman filter is used to estimate joint velocity

and inertial parameter along with computed torque for position measurements in

order to control the motion of robotic manipulator adaptively as proposed in

[27]. Statistical data is required for Kalman filter. A passivity-based approach

to controller-observer scheme is reported in [6]. This combined scheme is based

on the assumptions: (i) The desired energy function must match the closed -system

(ii) Velocity of the robot system is to be bounded. An adaptive nonlinear

observer is designed to observe the acceleration instead of measuring it by

feedback in [85]. A third order robot model is used with this controller-observer

scheme to deal with uncertainties in both robot and motor dynamics.

Current control schemes for robot manipulator are categorized

systematically. The chattering phenomenon occurs, if variable structure control

(sliding mode) schemes are applied to robotic manipulators caused by the
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excitement of high frequency dynamics. The adaptive control schemes are superior

in view of tracking performance over nonadaptive control under parameter

uncertainties compensation. The adaptive control based schemes are reviewed for

robot manipulators that are proposed till date by other researchers. Almost, all

the results reported in the literature are based on simulations studies.

The observer based control schemes are also reviewed critically. The

observers are employed to estimate the joint velocities because the actual

velocities are corrupted with noise. New ideas and improvements would

automatically follow. Broadly, three new adaptive controller structures are

proposed for robot manipulators as presented in subsequent chapter-3.
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ADAPTIVE CONTROL STRATEGY

3.1 INTRODUCTION

The contributions of the present work are the improvements in the controller

structure of the existing schemes of Whitcomb et. al. [84] and Berghuis et. al.

[7]. The controller structure of [84] consists of fixed proportional, derivative

feedback control and inverse dynamics (computed torque) based adaptive law. The

estimated parameter vector (adaptation law) is a function of position, velocity

errors and clever included normalization term. The Lyapunov function is included

to ensure globally asymptotically stability in tracking error and controller

parameter error. Including acceleration term in controller structure [84], a new

form of adaptation law results. This proposed scheme gives significant

improvements in tracking performance.

A scheme for trajectory tracking of robot manipulator to enhance robustness

with respect to noisy velocity measurements is proposed in [7]. The basic

requirement is that the adaptation law should not sensitive to velocity

measurement noise and does not require high gain. Also it should not excite

unmodelled torsional modes which aggravates the noise sensitivity. In order to

reduce tracking error and velocity error, a nonlinear compensator based

controller structures are proposed with different form of sliding surfaces.

3.1.1 Controller Structure

The controller structure in [84] is basically an adaptive model-based

control algorithm which utilizes feedforward reference trajectory information

rather than actual state information. The control law and adaptation law are

recalled as



x = M(q) r" + C(q,q)r + g(q) + Kiei + K^

= W(q,q,f,r*) 9 + K^ + K^ (3-D
where r,f,f" are desired trajectory informations. W(.) represents linear-in-

parameterization (array of known nonlinear function) as Craig et. al. [17];

e = r-q and e = r-q are known as tracking error and velocity error
1 2

.A.

respectively, e is a vector of estimated parameter obtained via the adaptation

law given as

i<

e = kg WT(q,q,f,f') (e2 + € e,); efe^ = 1+ °e „ s e (3.2)
1

where adaptive gain matrix kg be any symmetric positive definite matrix.

The adaptive control for robot manipulator as presented in [7] is :

\

x = M(q) f + C(q,q-Ae)f + g(q) - K^ - K2e

= W(q,q- Ae,f,i-') e - K^ - K2e

and

(3.3)

e = kg WT(q,q- Ae,r,r')S <3-4'

A

where a = ^—^—n- , S = e + Ae known as sliding surface, e = q - r.

In this scheme, it is assumed that the actual velocity measurements are

associated with noise. To diminish the noise problem, it may be advantageous to

replace q by q - Ae in controller structure. The adaptation law depends upon the

sliding surface 'S' which can be viewed as a stable first order differential

equation in e with S as an input. The system dynamics of robot manipulator

incorporates variable pay load and is estimated via the adaptation law (3.4).
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3.2 PROPOSED CONTROLLER STRUCTURES

In this section, three new controller structures are considered for

trajectory tracking of robot manipulators. At the first stage, the acceleration

term is included in existing controller structure (3.1) for relatively noise

free situation which permits acceleration measurements [16], [17],[23], [24],

[49], [62]. Under this, controller gets more information about the system

dynamics and reduction of the controller- system mismatch is possible. Secondly,

a nonlinear compensator is used in existing controller structure (3.3) with three

different forms of sliding surfaces for three slightly different controller

structures. The state error trajectories are forced to enter into sliding modes

with low value of controller gain. The nonlinear feedback compensation term takes

part in compensating the additional error caused by the replacement of actual

system trajectory to desired reference trajectory in model-based linear-in-

parameterization (regressor) term. Thirdly, a bounded form of controller

structure is proposed with the following aims : (i) In order to make the system

more robust, the parameter adaptation can be prevented from going out of bounds

if each parameter is known within some bounds [28]. (ii) The convergence of

control law depends on the choice of feedback gain proportional to maximum

tracking error. If the tracking error exceeds this limit, convergence is no

longer guaranteed [53], [66].

The objective of the proposed controller structures are to satisfy the

fundamental requirements to improve the trajectory tracking performance of robot

manipulators. The problem addressed in the proposed scheme is the construction of

control law V that causes the robot position and velocity to track r and r

asymptotically, that is, q -> r, q -> r, respectively.
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3.2.1 Proposed Adaptive Controller Structure Using Acceleration term

In this section, an adaptive controller structure is presented by combining

the idea of [24], [84], and assumptions of [17] for relatively noise free

environment (Fig. 3.1).

Defining ei = r - q, e2 = f - q, where q and q are actual position and

velocity vector respectively, the adaptive controller is considered as

x = M(q) f' + C(q,q)f + g(q) + Ke + Ke + K(f - q')
11 2 2 3 M

= W(q,q,f,r') e + K^ + K^ + K3(f' - q') (3.5)

where M,C and g are estimated value of M,C, and g, respectively, which are

evaluated by adaptation law (3.6), and K = K > 0, i = 1,2. The desired
i i

trajectory r,r,r are known in advance, e are adjusted according to the

following adaptation law, which is derived in Appendix-I using Lyapunov direct

method as

Ay

e = kg WT(q,q,r,f') P(q)T(e2 + e (e^e^ (3.6)
where kg = kgT > 0, P(q) = M(q) [ly + M(q)]"1 and

e^ei^ = -| + |°e H - €> I = identity matrix with e a positive constant, and
1

II.II is the Euclidean norm.

3.2.1.1 Error System Formulation

Applying control law V (3.5) to robot system (3.7), the error system

results which is used in Lyapunov stability to obtain the adaptation law. In the

absence of friction and other disturbances, consider a standard n-degrees of

freedom rigid robot model of the form (1.2):
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M(q) q" + C(q,q)q + g(q) = W(q,q,q') e" = x, qe Rn (3.7)

From (3.5) and (3.7), it follows ( in error state-space form) by choosing

state e = e and e = e2 :

e = e
1 2

e = - M'"1 [C(q,q) e2 + K^ + K^ + W(q,q,r,r') e ] (3.8)

where, M' = [M(q) + K/], e = e - e" denotes the parameter error vector whose

adjustment over time must be established in such a way that ei~> 0 as if e were

known.

Assuming small e

€ * [ A (K ) A (M)]1/2/ A (M) <3-9>
o m 1 m M

where,

(K)
m 1

< IIK II
1

< A (K
M 1

A (K ) s iiK II ^ \ (K )
m 2 2 M 2

A (.) and A (.) denote the minimum and maximum eigen value, respectively.
M

A (M), AJM) and C^A are described as 0 < A (M) * nM(q)n ^ ^(M); nC(q,x)n * CM
M M

iixii for all x. K is chosen as a constant diagonal matrix (may be time varying,
' 3

[24]), such that

VK3> * llK3" ^ Wl
3.10)

The upper and lower bounds of these parameters are used to prove the

asymptotic stability of the proposed scheme in the sense of the Lyapunov.
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3.2.1.2 Stability of the Control Scheme

In order to show the closed-loop system is globally convergent and stable in

the sense that tracking error will converge to zero asymptotically with all other

signals remaining bounded, consider the Lyapunov function candidate, which is

given in [84], as

V
1 _T, 1 T

2 eiKiei + 2 e2 M(q) e2 + e e] M(C') e2 + 2 e kg"1

1 T

2 e
K e M

1

e M M

1 :T
2

e -A e kg e

1 t 1 -t 1 ~

2 e Pn e + 2 e kg e (3.11)

Taking the time derivative of (3.11) along the trajectories (3.8), we find

(see Appendix - I, (al .11))

V s - e A (Q ) Hell2
m n

where, eT = [ eT eT ] and

A (P).A (K )
m m 1

(3.12)

l [A (P) + 2]Co + I X (P)A (K

+ 2 [(AM(P)"1) <1 \SKMM 1
A

Q -
n

2 tAM(R) + 2^ + 2 Am<P^m(K2' A (P). A ( K )
c m m 2

+ 2 [(\,(p)-1>e:1;M o Mr

3.13)
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and Sup
teR

d'r

dt1
= p

i

< oo , i = 0,1,2.

Vis nonpositive. This shows that e « L2/ n L2n and e e C [59]. In other
words, if both side of (3.12) is integrated, it is seen that Jellell is square
integrable function [53]. Thus e is also a square integratable function, but
square integratable function whose derivative is bounded must tend to zero,
hence, Mm llell -> 0. This shows tracking error converge to zero asymptotically.

t->oo . .
In the Lyapunov synthesis, the Lyapunov function is regarded as the defining

distance from the origin in the error state-space, and its derivative gives a
quantitative estimate of the speed that the state error is approaching the closed
region including the origin with respect to the parameter variation. The

convergence speed is calculated by - V/V, hence the settling time [45].
From equation (3.12) and (3.11), one can find (see Appendix-l for details)

p a3 ne, ii3 - P, a2 lie ii2
V<e> fc 2[. A((Q )P"1) -^ V-TTT
V{e) m n n r A (P )

f m n

2 [S1-T1(eo ,r)]
Zo T

(3.14)

Equation (3.14) implies that
-2(S1-T1)(t-t0) (3.15)

V(e) =s Ve(o)e"

i.e. nen £ a ne n e
0

2(S1-T1)(t-t0) (3.16)

It states that the exponential convergence rate of trajectory e(t) towards a

ball S(r) is at least (S1-T1). It follows that the maximum time needed to settle

in a ball S(rf); r{> rm, is given (S1-T1>0) by
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T(e,e ,eo ,r)
o 2o f S1-T1(e .n

2o v

In

A lie

(3.17)

The rate of convergence depends upon the proper choice of matrix Q

The region of attraction is given by (Appendix-I)

i x ii <

L
m

L~ 1
M

2A (P)(A (K )
m m 1

A (K ))
m 2

1/2
-A

M
(P) AM(K )-[A (P)-

M 2 m
•1]

-1

0

A (K )
M 1

,(P) + 2T CM

(3.18)

The size of the region of attraction can be enlarged by increasing the gain

constant K and keeping K small. Large region of attraction may be found out in

comparison to [84].

3.2.1.3 Discussions

(i) The matrix K is incorporated to ensure that the inversion of [M(q) + K /]
3 w

remains bounded. With this choice, the stability of closed-loop systems

has been established. The matrix K is equal to a constant diagonal
3

a.

matrix. By doing so the matrix [M(q) + K/] will always be invertible for

all times. Therefore, the boundedness of joint accelerations could be

expected. It is evident from (3.6) that the present estimate of parameters

depend upon the previous estimate of inertia matrix so that convergence of

parameter errors to zero (close to zero) is possible provided that proper

initial parameters are chosen,

(ii) The conditions for stability (Appendix -I) show that the constant e

significantly affects the adaptation speed and it depends on the desired

velocity trajectory p . In other words, e upper bounds the convergence
1 o

rate.
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(iii) Usually robot motion is associated with three variables i.e. position,

velocity and acceleration. It is supposed here that the measurement of

joint accelerations are available. Although, It is true that the

acceleration measurements may be corrupted with noise, for relatively

noise free situation one can still assume the availability of joint

accelerations.

(iv) The region of attraction of Whitcomb et. al.[84] is derived as

ixii <

r

1 ,

L
m 2

T~ 3
M

i.

;2A (K ) A (K ))1/2 - A (K )
m 1 m 2 M 2

A (M
M

-k

3.2.2 Proposed Adaptive Controller Structure Using Nonlinear Compensator

and Sliding Surface

Adaptive controller structures are constructed here by combining the idea of

[7], [64],[73],[84] with different forms of sliding surfaces for trajectory

tracking of robot manipulators(Fig. 3.2).

(I) Case -1

Let the control law be given as

x - M(q) (f- Ae) + C(q,q-A e) (r -A e) + g(q) -A Ke -K e-cr Heii2S
o o o z Z n I i

W(q,q-Ae, r-A e, f'-A e) e -A Ke -K e-c- iieii2Si
o o o 2 2 nl I

(3.19)

A X -*. A

where e = q - r; S] = e + AQe ;K2 = K2 > 0; A= ., ^Qll ; M, C, g are
estimated value of M,C and g, respectively.

1 +nei
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The control law incorporates the sliding surface S , by replacing the

desired trajectory by virtual reference trajectory, represented as [73]

q = r - A
r o

e dt (3.20a)

o

q = f-A e (3.20b)
r o

q' = r'-A e (3.20c)
r o

S = q - q = q - r + A e = e + A e (3.20d)
r o o

The adaptation law (3.2) are derived via the Lyapunov stability criterion

given in Appendix - II (a2.9) as

e = -kg WT(q,q-Ae, f-A e, f'-A e) (e + Ae) (3.21)
0 0 0

The idea of [13] is used to construct the sliding surface S . The constant
a 1

A is able to bound the position error in order to lie on the sliding surface S .
-A.

The e incorporates the estimated value of M, C and g. The nonlinear compensator

feedback term is caused by the additional error in linear-in-parameterization

formulation. The idea of [64], applying MVT (mean value theorem), is incorporated

in order to show that the additional error is bounded by S and e(see Appendix -

2). It is assumed that a- > 0 and A * A .
n1 o1 o

(ii) Case- 2

In this structure an adaptive controller, slightly different form in

comparison to case - 1 by approximation of (r - A e) to r i.e. q is approximated
o r

by r, is considered. The control law is given as
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x = M|q) (r'- Ae) + C(q,q-A e) r + g(q) - Ke -K.e-o- llell2So (3.22)
o 1 2 n2 2

A,

= W(q,q-Ae,f, r'-A e) e - K e -K e-<r lleli2S (3.23)
M M o 1 2 n2 2

A A

where e = q-r; S2 = A^ +Ae;^ = KJ > 0;K2 = k] > 0; x^J-^ = TTlel;
In this case, it is assumed that a = a .

(i 1 O

The adaptation law is derived in Appendix-N as

e = - a kg WT(q,q-Ae, f, f'-A e) (a e + Ae) (3.24)
O O 0

The constant A affects significantly the speed of parameter estimation, kg
o

is any positive definite diagonal matrix.

(Hi) Case - 3

In this case, the form of control law is the addition of nonlinear feedback

term to algorithm of [7]. The virtual reference trajectories [73] are completely

approximated by desired reference trajectory. The control law is given as

A A. A

t = M(q) f'+ C(q,q-A e) f + g(q) - Ke -K e-cr llell2S3 (3.25)
= W(q,q-Ae,f, f) e - K e -K e-cr llell2S (3.26)

M H 1 2 n3 3

A

where e = q-r; S = e + Ae ;K = KT > 0;K = KT > 0; A= , "J ., ;
M 3 1 1 2 2 1 + Hell

The nonlinear compensator is used in control law due to additional error

W(q,q, q, q )- W(q,q-Ae,r, f ) which is bounded by S, and e (Appendix - II).

The adaptation law derived in Appendix - II, in order to estimate M,C, and

g, is obtained as

A

e = -kg WT(q,q-Ae, r, rj (e + Ae) (3.27)

where kg is any symmetric positive definite diagonal matrix.
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3.2.2.1 Error System Formulation

The dynamic equation of rigid robot model is expressed by (3.7). The

function W(.) represent the linear-in-parameterization as Craig et. al. [17]. In

order to derive an adaptation law using the Lyapunov direct method, the error

system is required. It gives the information that how error trajectories are

converge to zero asymptotically

(i) For Case - 1

From eq. (3.7) and (3.19), the error equation results obtained as

M(q)e'+ AM(q)e +C(q,q)e +AC(q,e)f +A C(q,q-Ae)e +AKe+ Ke + o- Heil2S

= W(q,q-Ae, f-A e, f-A e) e (3.28)
0 o

where,

e = e - e* (3.29)

The vector S gives the information about boundedness and convergence of q

and q. It can be seen as a stable first order differential equation in 'e' with

S as an input. Thus for bounded initial conditions, boundedness of S1 implies

boundedness of e and e. If S -h> 0 as t —> », so do e —> 0 and e —> 0 [64].

(ii) For Case - 2

Substituting (3.23) into (3.7), we get the error equation

M(q) e'+ AM(q)e + C(q,q)e + AC(q,e)f + Ke+ Ke + <r Heli2S

= W(q,q-Ae, f, f"-\e) e (3.30)

Since the S is define as a function of the constant A , which bounds the
2 o

position error and velocity error to lie on the sliding surface S2> Following the

same type of arguments as in section 3.2.2., for sliding surface, it observed

that if S —> 0 as t —> », so do e —> 0 and e —> 0
2
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(Hi) For Case - 3

The error equation may be obtained, by substituting (3.25) into (3.7), as

M(q) e'+ C(q,q)e + AC(q,e)f + K e+ K e + <r iieii2S
12 n3 3

= W(q,q-Ae, f, r") e (3.31)

Where e is defined in section 3.2.2. o- is a positive constant. Prominently, the
n3

error equation drives the stability analysis in the sense of Lyapunov.

3.2.2.2 Stability of Control Schemes

The following physical properties are consider as

0 ± M lM(q)il £ M
M

nC(q,q)n = CM (lien + pj

A < min
01

A (K )
m 2

4A (K )
m 2

3M + 2C ' a (K )+ A (K )
M M m 2 M 2

A (K ) £ IIK II < A (K )
m 1 1 Ml

A (K ) < UK II < A (K )
m 2 2 M 2

(3.32)

where, A (.) and A (.) denote the minimum and maximum eigen values. In other
m M °

words, the upper and lower bounds on these parameters are required for stability

analysis. The stability proof of the scheme is considered by choosing the

Lyapunov function candidate and taking the derivative along the respective error

trajectories.

(I) For Case -1

Recalling the Lyapunov function candidate (Appendix-ll, (a2.1))

V= ^ S{ M(q) si + 2 eT K2 e + 2 §T kg"1 § (3>33)
Taking the derivative of the Lyapunov function along the error trajectories

(3.28), we find (see Appendix-ll)
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V £ - A

iiei

A (Q)
m 1

(3.34)

Vis a nonpositive function bounded as from (3.33) that S^ e e L^,e,S^ L\
Now, because Ae Lm we conclude from (3.34) that Sy ee Z^. From square

integrability and uniform continuity of e we conclude that it converges to zero

[7].

The region of attraction (Appendix-ll) is given by with x = [e ,e ]

ixll <

L
m

L~
M

where, p =

-A C - (A2 C2 - 4cr P)1/2
o M o M nl

a C
o M

~1Zar
n1

+

A (K )
M 2

4 A-TKT
m 2

AC + A (K )
o M m 2

(3.34a)

Decreasing a- one can enlarge the region of attraction. The right side of
n1

(3.34a) is positive by hypothesis (a2.7). Large region of attraction can be find

out in contrast to [7] by proper choice of initial conditions and parameter.

(ii) For Case -2

The Lyapunov function candidate is considered as

V- ^ S2 M(q) S2 +2 eT K) e +^ §J k9~1 § (3.35)

The time derivative of (3.35) along the error trajectories (3.30), we find

(see Appendix - II)
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V ^

US ii
i

US
2

a(QJ
2

ii a en ii Ae

(3.36)

V is nonpositive. Global convergence follows from the same type of arguments

used in case-1.

Similarly, one can get the region of attraction (Appendix -II)

ixii <

L
m

L~ 1
J M

A -1 1
2(((A (K )((A -1)/A ) C +A C )1/2) ^— -i\ (K ))

m2o oMoM A ZM2
o

(A -1) C
o M

'(A-1)A C -k
Z o o M c

(3.36a)

where iiqii £ k . The region of attraction can be enlarged by increasing K and
c '

keeping low value of a . The right hand side of (3.36a) is positive by virtue of
o

hypothesis (a2.21)

(Hi) For Case-3

The Lyapunov function candidate is given as

V= i SJ3 M(q) S3 + i eT ^ e + \ ^ k9"1 § (3.37)

In Appendix-ll, the derivative of the Lyapunov function (3.37) along the

error trajectories (3.31), it is found as

V < -

S ll"
i

US ll
3

XJQ3]
3

Aeii HAeii

(3.38)

V is nonpositive. Global convergence follows from the same type of arguments

used in case-1.
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The region of attraction is determined as (Appendix - II)

ixll <

L
m

M

i [A (K ) + (p +A ) CI
2 M2 1 ° M - [A (K )-A C-2A MJ1/2

1/2 m 2 o M o M
(A"1 A (K))1

o m 1

-I n3

(3.38a)

The upper bound on K if increased keeping a-^ lower value, the region of

attraction can be enlarged. By virtue of hypothesis (a 2.32), the right hand

side of (3.38a) is positive.

3.2.2.3 Discussions

(i) The desiqn parameter A and A, have different value in case -1 (see also
11 ° o o1

[28]). A takes part to bound the position error to lie on the sliding
0

surface and A is the measure of robustness to noise sensitivity
o1

properties.

(ii) In case-2, the constant a appears in adaptation law, which slow down the

speed of estimation causes the reduction of difference between rate of cha

nge of inertia matrix and rate of change of parameter adaptation/if Aq< 1.

(iii) In case-1 and case-2, the term A M(q) e, reduces the discontinuities due
1 ' 0

to acceleration and caused by formation of virtual reference trajectory as

clear from (3.18) and (3.22) respectively,

(iv) The condition by which position error lie on sliding surface is derived as:

S = 0 =» a ^ lien/lien
1 o

S2 = 0 * lie.. ^Ti^]f

S = 0 =» A <
3 o

leu (1 +neii)
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(v) The Afactor is needed in controller to be able to bound the cubic term,

S.C(q,e) e, i = 1,2,3 by quadratic terms. If V is evaluated, an additional

term eT M(q)e is obtained. Using the skew symmetric properties this amounts
to an extra term in eTC(q,q)e. This term cannot be compensated by the
control and can only be bounded in terms of e and e with a bound on f [7],

(vi) The region of attraction for [7] is derived with xT = [eT,eT];

Ix ll <

,

r

L
m

2
M

L

<AJK>-* C -2A M ) A"1A (KJ)"2- \ A(K )
m 2 o M oM o m 1 M 1

M

•i A C
Z o M

The large region of attraction can be found for case-1 and case-2 while

comparing [7] but case-3 have lower value.

3.2.3 Proposed Adaptive Controller Structure in Bounded Form

A bounded form of adaptive controller structure is presented in this

section. The control scheme in bounded form consists of PD controller as

feedforward to ensure trajectory tracking, reference trajectory information based

linear-in-parameter (regressor) term multiplied by unknown parameter vector and

nonlinear feedback compensator. The bounded form of controller structure,
coefficients Mm and Cm bound the actual system dynamics, is considered for stable

control. The unknown parameters belong to some interval e and e and take
min max

the supremum of MM, Cm over these intervals [7].

Consider the control law inspired by [7] , [64], given in bounded form as

t = ll M(q)n f +iiC(q,q-Ae)ii f +g(q)-K iieii-K lle.l-cr nell2<
2 n

= W(iiq-Aeii,r, f')neii -K iiell-K llell-cr Heii2S
2 n
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A

where e = q- r; S = e+Ae ;K1 = KT > 0;K2 = KT2 > 0; a=y^ ; The
desired trajectories are known in advance. The auxiliary nonlinear feedback term
is to compensate for the additional error introduced by the modification of the
adaptive controller i.e. [W(q,q.q,q)- W(iiq-Aeii,f,f)]e [64]. The bounded control
input is applied to system dynamics of robot manipulator, as a result, 'q'
becomes bounded.

The bounded parameter lien, adjusted according to adaptation law, is derived

in Appendix - III, as

e = -kg WT(nq-Aeii, f, r") (e + Ae) (3.40)

ne ii = e + e (q)

where kg = kgT >0, ll.ll is defined as Euclidean norm, kg is any positive definite
constant matrix. Afactor takes part to lie the error trajectory on the sliding
surface and as well as to robustify the scheme in presence of noisy velocity.

3.2.3.1 Error System Formulation

The dynamic equation of rigid robot model is expressed by (3.7).
Substituting (3.39) into (3.7), the error equation obtained as

M(q) e'+ C(q,q)e + K, Hell +K£ Hell +<rniieii2S
• ••. - (3.41)

= W(nq-Aeii,r, r ) e

Where, 0 = lien - e*(q) denotes the parameters vector whose adjustment over time

must be established in such a way that Hell —> 0 as t CO.

3.2.3.2 Stability of Control Scheme

The Lyapunov direct method is used to proof the stability of the bounded
form of adaptive control scheme. The physical properties are follows as described

by (3.32).
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Now, consider the Lyapunov function candidate

V- \ ST M(q) S + \ eT Ki e + \ eT kg1 e (3.42)

Taking the time derivative of the Lyapunov function along (3.41), we get

(see Appendix-Ill)

V
iSll

lAeii
A (Q)

nS ll

ii Ae i
cr Hell2 llSlI2

n
(3.43)

V is nonpositive function bounded as from (3.42) that S, e e L„, e, S e L„.

Now, because Ae L„ it is concluded from (3.43) that S, ee Ln2. If Hell - e* and S

are bounded t = 0, they remain bounded for all t i 0. To complete the proof, it

is necessary to show S ^ 0 , e -^ 0 as t -^ ». This can be accomplished by

applying Barbalat's lemma to continuous, nonnegative function:

V = V - (V(C) + (S'T(0 A (Q) S'(<) + «r lie.
1 J m n

with

>,TV1 = - S'1 A (Q) S' -c- iiei

2 iiSii2) dc

since the boundedness of S' implies that all signals are bounded, hence S is

bounded, that in turn proves V, to be uniformly continuous function of time.

Since V1 is bounded below by 0, and V ^ 0 for all t, use of Barbalat's lemma
lim . Ijm

proves that V = 0, which implies S' = 0. The region of attraction is
L *" t—>co

expressed by (3.38a).

3.2.3.3 Discussions

(i) The estimation is the upper bound of the parameter rather than parameter
itself. Therefore, the requirement of persistency of excitation is avoided
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and the problems inherent to integral adaptation law, such as the
"Parameter drift instability" do not appear.

(ii) In contrast to Craig et. al. [17], e* is assumed as a function of joint
position (e'(q)) so that the coefficients MM and CM bound the actual system

dynamics,

(iii) If each parameter is known within some bounds, the parameter adaptation can
be prevented from going out of bounds and thus makes the system more robust

[28].

(iv) The convergence of the control law depends on the choice of feedback gain
proportional to maximum tracking error. If the tracking error exceeds this
limit, convergence is no longer guaranteed [53],[66].

(v) In order to implement the adaptive controller, one needs to calculate the
element of W(q,q,q,q") in real time. This procedure may be excessively time
consuming since it involves computations of highly nonlinear functions of
joint position and velocities. The real time implementation of such a
scheme, is rather difficult. To overcome this difficulty q and q replaced
by r and r respectively to form W(nq-Aeii,f,f). Due to this replacement,
the error may introduced. In order to compensate this form of error, an

auxiliary nonlinear feedback term is included in control law [64].
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SLIDING OBSERVER AIDED CONTROL STRATEGY

4.1 INTRODUCTION

In this section, the sliding observer based control strategy for robot

manipulator is considered under the assumption that only joint positions, and not

full state measurements (positions and velocities) are available [59]. The

purpose of including a sliding observer to estimate joint velocities is to

improve the tracking performance. The various approaches in literature are based

on sliding observer aided adaptive control [10] and nonlinear form of sliding

observer [8] for trajectory tracking of robot manipulator. The sliding observer

structure of [10] is a function of observation error (position) and parameter

uncertainties vector (function of bounded estimated velocity). It is also

suggested that the reduction of chattering is possible by introduction of an

adaptation loop at control law level. An asymptotically stable closed loop system

results from this scheme. On the other hand, the nonlinear sliding observer based

controller structure are found promising in view of the nonlinear nature of robot

manipulator in [8]. The physical robot properties are explicitly exploited to

show exponential convergence of the observation error vector. The scheme yield

exponentially stable closed-loop systems (tracking error and observation error

system). The Filippov's solution concept is applied so that the dynamic behavior

in sliding patch is represented as an average dynamics in order to simplify the

solution. Both schemes are described in subsequent subsections.

4.1.1 Controller-Observer Structure

The control law reported in [10] is given as



T = x + W(x,,z,e) x
o z

= M(Xi)z' + C(xi(x2)z + gt'x,) - KdS +W(xi,z,e)x2

where,

z = r - Ae

z = f - Ae

S = x -z = e+Ae

(4.1)

(4.2)

(4.3)

(4.4)

with KD is a positive definite constant matrix. x2 = x2 - x2 is the velocity
observation error vector and x, the joint position vector.

The observer is given in [10] by the following differential equation with

right-hand side discontinuities as

; _ ,~ , (4.5a)Xi = x2 - r, x, - A1 sgn(xi)

x2 =-A^gntx,) -W(xi,z,e)(S'-Ai sgntx,)) +v (4-5b)
where e is the estimate of the unknown parameter vector e. v is introduced

in order to robustify the observation error dynamics vis-a-vis the uncertainties

on e.

Applying the Filippov's solution concept and the Lyapunov direct method, the
following form of adaptation law and uncertainties vector are derived in [10],
given as :

e =- r"1 Y^VSsgnlx,), z, z> +m sgnlx,)) (S'-^sgn (x,) (4.6)
and

A.

v = v(x2,t,xi)

-0(x2,x)Aisgn(xi)/Ai if u^sgntx^H *0 (4 7)
0 if iia sgntx^n = 0

"^ 2474-11

50



where (in sliding patch),

S = x2 - z

S = S' - Asgnlx^ <4-8'
A.

x = x - Asgn(x ) (4.9)
2 2 11

z' = z; + AA'1 sgn(x ) (4-10>

and r, a and a are positive constant diagonal matrix.

The design consists of an adaptation law and uncertainty vector V which

contain discontinuities in terms of sgn(x ), such that system dynamics

asymptotically tends to zero while the error states remain bounded. The
-A.

expression V incorporates the term <p(x ,x) which is derived in [10] as follows:

The expression v is

D= - M(Xi)"1 C(xi#x2)x2- M(Xi)"1 g(Xl) + M(xi)1 x
then, according to the robot model properties

^ 2 2 *

IItjII s a- llx II +o-A +A +0- + 0- llxll = <p X ,x
o 2 o 1 1 12 2

The scalar and positive function <p thus defines a measurable upper bound HtjII.

Canudas et al. [8] presented a nonlinear sliding observer to estimate the

velocities and calculate the control law for trajectory tracking of robot

manipulator. The control law incorporates the desired trajectory based robot

model properties and the sliding observer takes the form of robot dynamics based

on estimated velocity.

The control law is given in [8] as

t = M(x)[f - K (x - f ) - K (x - r) + C(x.f)f + g(x) +n (x r) (4.11)
1 v 2 p 1 1 1 o 1

where K and K are positive constant diagonal matrix, x is the joint position
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and xo is the estimated velocity vector. The term tt (x ,r) is based on physical
2 o 1

model properties of robot.

The structure of the sliding observer in [8] given by the following

differential equations:

x = x - r x - A (x) sgn(x ) (4.12a)
1 2 1 1 1 a 1

>*- .*. .A.

x2 = r2 xi - A2(x) sgn(Xi) + fiix^xj + u (4.12b)

where r. and r are positive definite constant diagonal matrices, a = diag[/]

V i = 1,2,...n, and

A (x , x ) = M(x )~1 [Q A + tt (x , x )A ] (4.13a)
2 12 1 1 1 1 2 1

where Q is a diagonal positive definite matrix, n is defined in Appendix - VI.

The dynamic behavior inside the resulting reduced order manifold is given in [8]

as

x2 = -M(xi)"1[C(xi,X2) + Q] x2 (4.13b)

The closed-loop analysis is performed on the basis of the reduced order

manifold dynamics and the tracking error dynamics in the sense of Lyapunov. This

leads to an augmented system globally asymptotically exponentially stable system.

The local attraction areas are characterized in terms of controller and observer

gains, initial state values and robot model parameter.

4.2 PROPOSED OBSERVER STRUCTURE

In this section, Two new sliding observer aided of adaptive controller

structures are proposed by modifications in the existing sliding observer[10].
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Further, two types of nonlinear sliding observer based controller structures,

motivated by [10],[85], are also proposed for robot manipulators.

Firstly, the observer form of [10] is modified by incorporating the desired

acceleration trajectory and uncertainties vector based on desired reference

trajectory (Fig.4.1).. Secondly, the observer structure is further modified by

inclusion of tracking error and observation error to estimate the velocity vector

in view of dynamic interaction between controller and observer. Both modified

schemes are based on adaptive control to reduce chattering at control law level

and also to improve the tracking performance of robot manipulators in comparison

to existing work [10].

In view of nonlinear nature and coupled structure of robot system the

observer design is very complex. Canudas et. al. [8] presented nonlinear form of

observer by avoiding actual velocity measurements and using full system dynamic

model to estimate the velocity vector for trajectory tracking of robot

manipulators. In order to improve the tracking performance, the observer,

structure [8] is modified by inclusion of velocity observation error and e - term

(square of tracking error) in connection to dynamic interaction between

controller and observer (Fig.4.2). Because of the technology advancements

controller-observer simplicity weighs less important than tracking accuracy. It

is no longer prohibitive to consider a more accurate model and look for better

tracking performance with a slightly more complicated controller-observer

structure. It may be seen that when the controller and observer are independently

designed it is not guarantee that both together yields a stable local closed-loop

system behavior. Thus, they are regarded as a global control structure with their

gains tuned in order to ensure asymptotic tracking of the desired trajectory.

Similarly, the nonlinear sliding observer is further modified by sign-sign

function associated with observation error and tracking error. The observer
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structure is considered as Sign-Sign Algorithm(SSA). The "Sgn(.)n is usual signum

function to be interpreted as element by element operator when applied to a

vector. The sign operator on the velocity observation error which makes each

velocity estimate to the boundary on which velocity observation error lies and is

insensitive to the distance to the boundary. The sign-sign term forces the

velocity observation error, according to the sign function of tracking error, to

lie on the average of two-half spaces defined by reduced order manifold dynamics.

This indicate that the dynamics in the manifold created by two discontinuous

surfaces can be computed as the average of the dynamics of each side of the

discontinuity surface and hence formally determined by the invariance of the

manifold. It is possible to get good velocity estimate (or zero velocity

observation error) by sign-sign term as forcing element to ensure good tracking

performance.

4.2.1 Adaptive Control Using Sliding Observer with New Uncertainty Vector

In this combined scheme, the observer structure of [10] is modified by

inclusion of desired acceleration trajectory information and dependence of design

vector on desired reference information based robot model properties to get

asymptotic stability of closed-loop system. The adaptation law, observer state

and the control law are developed simultaneously. These are designed using

reduced order manifold dynamics (Filippov's solution concept) [10].
A. A.

Define x = x - x and x = x - x as the estimation or observation error.
1 11 2 2 2

x is used only to get observation error in the sliding observer structure. xi
A.

and x are the estimates of x (actual position) and x (actual velocity)
2 1 z

respectively. To estimate the states x and x2, the proposed structure of sliding

observer is given by following differential equation;
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x = x - r x - A sqn(x ) (4.14a)
i 2 1 1 1 a 1

A .. . a

x = r - r x - A sgn(x ) -W(x ,q ,e)(S'-A sqn(x )) +v (4.14b)
2 2 1 2 a 1 1 r 1 a 1

where r ,r , A ,A are the design matrices. The term v incorporates the

uncertainties on parameter vector e. W(.) is defined by (4.21).

The structure of control law be given as [recalling [10]].

^ = M(Xi)qr + C(xifx2)qr + g(xj - K2S (4.15)
A A,

where M(x^) and C(x^.x) are the estimates of M(x ) and C(x ,x ) respectively. K.

is a positive constant diagonal matrix. The control law incorporates the sliding

surface 'S', replacing the desired trajectory by virtual reference trajectory,

represented as

q
r

e dt (4.16a)

Qr = r - Ae (4.16b)

Qr = r - Ae (4.16c)

where e = xi - r is the tracking error vector and A is a positive constant

diagonal matrix. One can define

S = q - q^ = e + Ae (4.16d)

It is assumed that only joint positions are available. The vector x is

estimated via sliding observer structure as described by (4.14). Now, with the

following definitions:

V = r' - A(x2 - f) = qr - Ax2 (4.17)

S' = x2 - qr = S + x2 (4.18)
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where S' represent the error between estimated velocity vector and velocity

virtual reference trajectory. Substituting (4.16) - (4.18) into (4.15) and using

the properties of C(.), we get

t = xy - IVKx^A x2 + C(Xi,qr)x2 - K2 x2 (4.19)

= t + W(x q,e) x, (4-20)
1 1 r 2

where e is the estimate of the unknown parameter vector and W(.) is given as

W = W(xi(qr,e) = - MU^A + Cfx^^) - K2 (4.21a)
where e, using reduced order manifold dynamics (see Appendix-IV), is adjusted as

e = - r'1 Y(xi,x2-Aisgn(xi), qf, q; +AAi sgn(xi» (S'-A^gn (x^) (4.21b)

and

v = v(r,x, x2, f )

•[0(f,x) +iif'ii] Aisgn(xi)/Ai if HA^gnlx^H * 0 (4.21c)
0 if ha sgnfx^H = 0

where <p('r,x) is defined in subsection 4.2.1.2. It represent the ideal case to

compensate the uncertainties on parameter vector. The new expression V depends

on the bounded terms f and f. Therefore, the bounded form of parameter

uncertainties results.

4.2.1.1 Error System Formulation

The system dynamics of n-degrees of freedom rigid robot system is described

by (3.7). In state-space representation, choosing xi = q, x2 = q, system model

(3.7) can be expressed [10] as :

58



x! = x2 (4.22a)

x2 = H(x1'x2) + Wx^x (4.22b)
where,

H(Xi,x2) = - M(xi)"1 [C(xi,x2)x2 + g(Xi)] (4.22c)

Substituting the control law in robot dynamics (3.7), we obtain

M(Xi)S + C(Xi,x2) S = M(Xi) q^ + C(Xi,x2)qr + g^) - K2S
A.

+ W(xi,qr,Q) x2 (4.23)

The dynamic behavior of sliding surface S is represented as

S = M"1(xi)[-(C(xi,x2) +K2)S + Y(xi,x2,qr,q^)e + \N(xy q^ e)x2] (4.24)

where,

Y = Y(xi,x2,qr,q^) = Mfx^q^ + Cfx^x,,)^ + g(x}) (4.25)

The observation error dynamic equation can be obtain, from (4.14) and

(4.22), as

X1 = x2 " ri x! " Ai s*n (xV (4.26a)

x2 = r' " r2 *, " A2 sgn (x2)
A\

- W(xr qr, e)(S'-Ai sgn (x^ + v +v (4.26b)

where, t> = -H(xi,x ) - M"1(x )x

These equations (4.26) together with (4.24) describe the complete closed-

loop system error dynamics.
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4.2.1.2 New Uncertainty Vector

In contrast to [10], the structure of tj is modified by replacing the xi to

desired joint position trajectory r and x2 to r respectively to robustify the

observer error dynamics. It means that the expression V (4.21c) becomes

bounded due to boundedness of r and f .

Now, the term tj turns into new form as

t, = - M(r)-1 C(r,f) f - M(r)-1 [g(r) - r] (4.27)

Applying the boundedness properties on (4.27), there exists positive

constants o- , o- and o- , we get
o 1 2 a

HtjII ^ o- iifll2 + a- + cr iirii = <p(r,x) (4.28)
01 11 12

The scalar and positive function <f> defines the upper bound on |i)| such that

a- > nM(r)n > 0 ; <r' > llM(r)"1H > 0; liC(r,f)fn s o- urn2 ;
oo 2

cr < cr' <r ; cr < c-' o~ ; <r < <r' ;
o1 o 2 11 o 1 12 o

The uncertainties vector HtjII is adjusted via equation (4.21c) (see also

Appendix -IV).

4.2.1.3 Stability of the Controller- Observer Scheme

The stability proof via the Lyapunov direct method is investigated in two

fold. First, the stability in sliding patch is investigated by choosing the

Lyapunov function as given in [10] and the closed-loop stability is analysed with

different form of the Lyapunov function.

Recalling from Appendix - IV (a4.4), the Lyapunov function candidate
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V= \ ST MS+ \ x\ x2 +\ eT r e (4.29)
It is found that (a4.11, Appendix -IV)

V < - a (K ) HSii2 - A (a A"1) hx H2 (4 30)
m 2 m 2 1 2 ^,ou|

From Appendix - IV, He&(0)ll2 < \ i.e e (t) lie in the sliding patch.
A\

If A1 verifies the inequality (a4.15) of Appendix- IV, x (0) = x (0) i.e.

initial condition, v and e are satisfied (4.21), then iiSii2 = 0, 'm nx ll2
t—>oo t—X» 2

= 0, lie ii < en for all t. It implies that S -> 0 as t -> «, so do e and e i.e.

Iim
e = 0

t^oo

Iim
e = 0 (4.31

t—*»

In other words, S e L2n , S is uniformly continuous and using the

implication S e L2n =» S -» 0 as t -^ » so do e -> 0, e -> 0 as t -^ n

The closed-loop stability is investigated by choosing slightly different

from of the Lyapunov function (Appendix - IV).

V=^STMS+^e| K^ + \ xj x2 + \ eT r e (4.32)
and

V^ - Am(Q) HZli2 (4.33)

where A (Q) is defined in Appendix-IV.

Since V s V(0) v t a 0, then

V s - a A (Q) iiz
rr

£ - 0 HZ

m

2
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The inequality (4.34) ensures the boundedness of Z. Z is uniformly

continuous, moreover,

p I HZii2 dt ^ V dt = V(O) - V(«,) < co (4.36)

o

and therefore,

Iim

t—x»
IZII = 0 (4.37)

that implies e —* 0, e —* 0, x -^ 0 as t —> «..
r- 1 '2 2

A (Q) is symmetric positive definite matrix (a4.21) if the following
m

condition is satisfied:

W > W (1 + 2a> (4-37a)

From Appendix - IV, it is found that the region of attraction is the entire

state-space, that is, defined by L and L .
m M

4.2.1.4 Discussions

(i) The vector UtjII is bounded because of its functional dependence on desired

trajectory. Hence, the design vector v is bounded. It is used to robustify

the observation error dynamics vis-a-vis uncertainties on parameter vector.

(ii) The estimated velocity is provided by a sliding observer, into which the

desired acceleration is fed forward, in order to keep the estimated

velocity within the input bound.

(iii) The uncertainties term appears on boundedness of the inertia matrix,

gravity components and boundedness of the Coriolis and centripetal forces.

The design constants, associated with these boundedness of coefficients

matrix, reduce the uncertainties on parameter vector and enhance the
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tracking performance so that tracking error and velocity observation error

tend asymptotically to zero,

(iv) The region within which the switching surface is invariant is noted as

"sliding patch". The Chattering motion on the switching surface is

unsuitable phenomenon and creates high frequency components, in result,

discontinuities occur in control law. This unsuitable phenomenon can be

reduced by replacing the switching function by saturation one or applying

boundary layer theory [87],[88], but tracking performance detoriates.

Alternatively, an adaptation loop may reduce the chattering in control law

because of its dependency on the estimated values.

4.2.2 Tracking Error Based Sliding Observer Aided Adaptive Control

The sliding observer of [10] is further extended by inclusion of tracking

error in previously modified (section 4.2.1) form to provide a proper tuning

between controller and observer. In this case, the sliding observer is modified"

in evaluating the velocity estimation as follows:

xt = x2 " r! >S - A1 sgn(Xi) (4.38a)

A, . . A.

X2 = r~ r2 xfre(xfr) " A2sgn(xV -W(xi,qr,e)(S'-Aisgn(xi)) +v (4.38b)
where r^r^, a^ and re are the design matrices. The term v is made to

account the uncertainties on parameter vector e. x and x are the estimates of

xi and x , respectively.

The structure of control law be given by equation (4.20) recalled as
A.

x = T] + W(xi,qr,e) x2 (4.39)

where,

x1 = M(Xi)q" + C(Xi,X2)qr + g^) - K2S

63



and W(.) is define in equation (4.21), q, qr, q^ are defined in

equation(4.16).
A. A.

where M(x ) and C(x ,x ) are the estimates of Mfx^. and Cfx^x^

respectively. K is a positive constant diagonal matrix.

The adaptation law is derived in Appendix-V obtain as

A. A.

e = - r Y(x ,x -a sgn(x ), q, q; +AA1 sgnfx^)) (S'-A^gn (xj (4.40)

and the term v is obtained as

v = v(r,x, x2, f)

[0(f,T)+.iif'n] Aisgn(xl)Ai if HA^gnfx^ii * 0

0 if ha sgn(x )n = 0
i ° 1

where 4>(r,x) is defined by (4.28). In (4.41), the term v depends on the desired

trajectory information, hence it is bounded due to boundedness of f and f . Thus,

the robustness of observation error dynamics increases. The term W compensates

the term WS' of control law.

4.2.2.1 Error System Formulation

The system dynamics of n-degrees of freedom rigid robot system is described

by (3.7). In state-space representation, choosing x = q, x2 = q, system model

(3.7) can be expressed [10] as,

x = x
1 2

x2 = - M(Xi)"1 [C(xi#x2)x2 + g(xi) - x ] (4.42)
The dynamic behavior in sliding surface S can be represented as

S = M^lx^HCIx^ +ryS + Y(xi,x2,qr,q^)e + Wfx^ qfl e)x2] (4.43a)
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where,

Y= Y(Xi,x2,qr,q;) = M(Xi)q; + C(Xi,x2)qr + g^) (4.43b)

The observation error dynamic equation can be expressed, from (4.38),

(4.42), as

X1 = x2 " ri xi * Ai s9n <*,> (4.45a)

x2 = r - r2 Xi -reer a? sgn (x2)

a.

- W(Xi, qr, e)(S'-Ai sgn (xj + v +tj (4.45b)

where, tj = - Mfx^"1 [C(xi(x2)x2 + g(Xi) - x]

The term v is to cope with uncertainties on parameter vector. In observation

error dynamics (4.45), the desired acceleration vector reduces the.

discontinuities in velocity estimation, in results, the velocity observation

error is bounded.

4.2.2.2 Stability of Controller-Observer Structure

The stability proof in the Lyapunov sense is investigated in Appendix - V in

sliding patch and based on augmented error system. Former indicates that the

errors lie on sliding surface and later gives the convergence of augmented error

to zero or close to zero with satisfaction of adaptation law and vector v.

From Appendix - V, (a5.13), it follows

V<- AJK2) llSll2 - Am(A2 a;1) iix2H2 - AM(re) ii ell II x II (4.46)
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Using the same type of arguments in Appendix-IV, (a4.13) - (a4.15), it

follows that

le (0)ir s a
s1 1

(4.47)

so that e (t) lie in the sliding patch where e , = [S ,x , e , e ].
s1 " s1 2

Consider the augmented error 'Z' as described in Appendix - V. Using the

Lyapunov function (a5.13), it is found

V < - A A (Q ) HZli2 (4.48)
m s

A (Q ) is symmetric positive definite (a5.15) matrix if following condition
m s

is satisfied:

A (K ) <
M 2

1 Ve"2 W
4 A (A A"1)

m 2 1

1 +
2A

[A (K )]'
m 2

1/2

(4.49)

Following the same type of arguments (4.35)-(4.37), it can be shown that

0 as t oo i.e. e 0, e. -> 0, x,
1 '2 '2

to be asymptotically stable system. From Appendix - V, it is found that the

entire state-space defined by L and L considered as the region of attraction.

0 as t co. It is shown

4.2.2.3 Discussions

(i) In order to get good velocity estimates, the tracking error term is

included to previous work to fulfill the dynamic interaction so that

tracking error, observation error converge to zero and as well as velocity

error converge to zero, for a proper initial condition.
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(ii) Since the design vector v is bounded function of desired trajectory

information, which shows robustness of the scheme.

(iii) It is not possible to design reduced order sliding observer in proposed

scheme because the output error is only dependent on the position x and

its estimates.

(iv) Due to switching terms in the observer and adaptation law, the chattering

motion occurs on the switching surface. In order to get average dynamics on

each side of discontinuity surface the Filippov's solution concept (reduced

order manifold dynamics) is applied on observer structure. The reduction of

chattering may possible by introduction of an adaptation loop.

4.2.3 Extended Nonlinear Sliding Observer Aided Controller Structure

In this section, the observer structure of [8] is extended by introduction

of signum function of velocity observation error and square of tracking error.

The new nonlinear sliding observer is inspired by [8],[85]. In order to show the

improvement in various error response the controller structure of [8] is

considered with proposed sliding observer. The robot system is highly nonlinear

in nature. In this context, the nonlinear sliding observer structure [8] is taken

into consideration for accurate trajectory tracking of robot manipulator by its

structural change. The purpose of observer to estimate the velocity vector in

order to avoid noisy nature of actual velocity measurements for controlling the
motion of robot.

The new form of sliding observer to estimate position x and velocity x, is

given by following differential equation:

A A 2
xi = x2 " rei ei " W Sfl"^) - ri Xi (4.50a)

X2 ~ r " re2 ei " A2(xi'x2) ^V + fHx,,r) + u, - u2 - ^ ^ (4.50b)
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where, r and r are positive definite constant diagonal matrices, r^ = diag

IV}, r = diag {y'},r = diag V }, r = diag {y' } and the matrices A(.)
2 Z. © I G I ©^ 6Z

and a (.) are given as:

A1= diag {yj}, v i = 1,2,,.n (4.51)
A2(X1,X2) = IVKx^lQ Al+ni(x1#X2)A1] (4.52)

where Q is a diagonal positive definite matrix, and

u2 = IVKx^d +cr2) x2 + L1 sgn(x2) ? (4.53)
where L and a-2 are design matrices to cope uncertainty between controller and

A\

observer. 0(x ,x ) of [8] is replaced by p(x ,r) in proposed observer structure

(4.50). The definition of ? is given (based on robot model properties) as

€ = € + € 'I x II + C, II x II2 (4.54)
o 1 2 2

The desired trajectory r,f and f are bounded function of time. The x.| and

x are the estimates of xi and x , respectively, and xi = x^x^ x2= x2-x2 are

the observation error vectors, e = x - r and e2 = x2 - f denote the tracking

error and velocity error respectively.

The control law of [8] is considered here, associated with estimated

velocity instead of actual one, as

x = M(xl) [f'-K2(x2-f) -Kle1] +C(x1,r)r+ g(xj+ iMx^rMx^f) (4.55)
where tt (x ,f) is defined by following the physical model properties [8] (see

o 1

Appendix - VI), which are inherent to robot dynamics. The gain matrices are K. =

KT > 0, i = 1,2.
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4.2.3.1 Error System Formulation

The state-space representation of (3.7), by choosing the state vector x = q
and x2 = q, is given as

xi ~ x2 (4.56a)

\ = ft (xifx2) + u, (4.56b)

where,

0(xi(x2) =- M(xi)"1 C(xlfxa)xa (4.57a)
U, - M(Xi)"1 [ x - g(Xi)] (4 57b)

The observation error equation can be obtained from (4.50) and (4.56) -
(4.57), as

xi = - ri xt " rel ei " W sgnlxj + x2 (4.58a)
• . . A. A.

x2 = r" r2xi - A2<x,'x2) SQnlx^ - re2e2 + p(x^) - Mx^xJ
- M{x^n+cr2)x2-L:sgn(x2)Z (4.58b,

The Filippov's solution concept (reduced order manifold dynamics) indicates

that the dynamics on the switching surface is an average of the dynamics on each
side of the discontinuity surface.

For simplicity's sake, consider A1 to be a diagonal matrix i.e. A = a I
1 ii'

The hypersurface x = 0 is invariant as long as Ix'l < (a - / e2), if |e2| <
2 2 1 e1 1 ' ' 1'

Aei. The region within which the surface is invariant is called as sliding patch.

If xi= 0 * Xi =0, then sgntx^ = a;1(x2 - r e2).
The dynamic behavior in the sliding patch is, according to the Filippov's

solution concept, given as
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x2 = r-Mtx,)" [Q + C(Xi,x2)] [x2-rei e;i - r^ e,

+ p(x ,r) - 0(xifx2) - MU^d +<r2)x2-Lisgn(x2)C (4.59)

The tracking error dynamics in error state-space, from (4.50) and (4.56),

can be obtained as

e = e
1 2

(4.60a)

e2 = - M(xi)"1 [C(xifx2)e2 + MU^K^-f) + M^) K^-r) + Ctx^r
tt (x.r) (x -r)]

o 1 2

The augmented error vector (x = 0 remain attractive) is defined as

e -
0

e
i

x
2

v. j

(4.60b)

(4.61

An augmented error vector is used for closed-loop analysis by introducing

the Lyapunov function as given in subsequent subsection.

4.2.3.2 Stability of Closed-loop System

In order to show the closed-loop system (4.59) and (4.60) is exponential

stable in the sense that variable in the loop remains bounded and tracking error

e , velocity error e and observation error x„ converge to zero asymptotically as
1 ' 2 2

t approaches », consider the Lyapunov function candidate (Appendix-VI) with

eT =[ei e/:
V(e,x2) =4 eY^ +\ e\ MU^ +\ x\ M^)^ +e{ M(Xl)e2 (4.62)
Taking the time derivative of (4.62), along (4.59) and (4.60), it is found

in Appendix - VI that
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V(e, x ) < - a. { M(e )} He ll2
2 mf *• 1 J o

where M(e}) is a matrix and function of tracking error

For exponential stability , it is necessary that

C1 > 0

C, + 2V2 (AM(M,-1) W
A (K ) >

m 1

'{X (M)J2 A (M) (A (K )-1)-c
m m 2 o

hence,

A,nf<M(ei» > 0

(4.63)

(4.64)

(4.65)

Applying these inequality (4.63) is nonpositive. It follows that V(e,x ) is

bounded, hence ^ej is an L2 function [53]. But and L2 function whose derivative
is bounded must tend to zero [53]; hence, llejl -* 0means e, —* 0, e2 —> 0and
x2 —> 0 as t approaches 00, as desired.

From Appendix - VI, the region of attraction is given as :
r.

IXIK — \
c

3
(2 [AJM>-1KAM(K ) - CQ-\ c )) + [(a (M)A (K ))

0 «• m m 1

.(2Am(M)[Am(K2)-1] - Cq)]1/2 (c +q +(1+cr2),l/2- (a (M)A (K J)1
' ° m m 1

12

{2 *JMK{KA Co-2 ci>

where xT = [e,e]T. In contrast

proposed scheme.

2Am(M)[Am(K2)-1]-Co)l/2[^AM(M,AM(K2)-Co

(4.65a)

to [8], large region of attraction appeared for
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4.2.3.3 Discussions

(i) The "sgn(x )" is usual sighum function to be interpreted as element by

element operator when applied to a vector ?. The sign operator on the x2

which makes each velocity estimate sensitive to the boundary on which x2

lies, and insensitive to distance to the boundary.

(ii) From (a6.12), a region is defined in terms of ei as

2 VM) AMIKa» - c.
le n<

2 \mxJrJ - 2 \(rJ - 2 %W - ^+Co] W

In order to get ne n as small value, r^, r^ and qo have chosen large

value.

4.2.4 Sign-Sign function Based Nonlinear Sliding Observer Aided Controller

Structure

A novel form of nonlinear sliding observer based on sign-sign function,

which is associated with observation error and tracking error, to estimate the

velocity vector is proposed. The overall control scheme consists of proposed

sliding observer along with controller structure of [8] in addition to

disturbance torque. The observer scheme takes the advantage of full robot

dynamics to make the observer system nonlinear. The switching gain associated

with sign-sign function is to force observation error to lie on the sliding

surface. As for linear systems, the separation principle cannot apply in

nonlinear systems. In this regard the controller and the observer cannot be

independently designed. In order to show dynamic interactions between controller

and observer along with closed-loop stability to get asymptotic tracking of
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desired references (r,f), a nonlinear sliding observer is reconstructed to

improve the various error response. In this context, the structure of sliding
observer to estimate the position Xl and velocity x2 is given by following
differential equation :

Xi ~ x2 " rei ei " Ai(x1) san^,) " r! x, (4.66a)

x2 = r - re2 ei - A2(xi'x2) s9n(xV + fi(xvr) + u, - u2 - r x (4.66b)
A A,

where xi is to find xi = X1 - xl in observer structure only, r , r , r and r
are positive definite constant diagonal matrices, e = x - r. A(.), a (.) and

u2 are given as

Ai= V (4.67)

\l*,.x2) = Mfr^tQ \+n^,x2)Aj (4.68)
u2 = M(Xi)"1(1 +cr2) x2 + L1 sgn (x2) £ + L2 sgn (jy sgn (e^ (4.69)

where CU,L and L are diagonal positive definite design matrices, x = x - x
^ 2 2 2

and "1(xi,x2) is defined in Appendix - VI by following the physical model

properties of robot [8]. The vector 5 is defined in the form using boundedness

properties of robot model given [8] as

€ = Co + C1 ii x ll + c2 ii x/ (4.70)

where £o, ^ and ?2 are constant based on bound of coefficient of system
dynamics.

Recalling (4.55), the control law associated with actual position and

estimated velocity is expressed by including the disturbance vector :

- M(Xi) [r- K2 (x2-f) - Kiei] +C(xi,f)r+ g{Xi)+ nfaJHx - f) T

d

e2

(4.71)

where njx^'r) is defined by following the physical model properties [8] (see
Appendix-VI) and K. = KJ > 0, i = 1,2. x denotes the disturbance vector.
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4.2.4.1 Error System Formulation

The following are state-space representation of (3.7) by choosing the state

vector x = q and x2 = q :

(4"72a)

x2 = P(xlfxa) + u, (4.72b)
where,

f3(Xi,x2) =- M(Xi)"1 C(xifx2)x2 <4-73a)
Ul = M(Xi)"1 [ x- g(Xi)] (4.73b)

The observation error dynamics can be obtained from (4.66) and (4.72) - (4.73) as

x, = - rx, - rei e2 - ai(Xi,x2) sgiKx,) + x2 (4.74a)

X2 = V- Vl • A2 (X1'X2] 88n(X1J "^2 ^ ^V1 "P(X1'X2J
- M(x r'd +cr2)x2-Lisgn(x2)C - L2 sgn(x2) sgnte^ (4.74b)

For applying the Filippov's solution concept, consider A1 to be a diagonal

matrix i.e. A1 == \\. If ^ = 0* xi =0 then sgn^) =k\\xz - r^e2). The
dynamic behavior in the sliding patch is given as

x2 = f- Mix,)'1 [Q +C(xlfx2)] (x2 - rei e2)- re2 e2 +fi(xv'r) - ptx^)
- M(x )"1d +<r2)x2-Lisgn(x2)C - L2 sgn(x2> sgnte^ (4.75)

From (4.71) and (4.72), we get the error state-space form as

e = e <4'76a>
1 2

e2 =- M(Xi)"1 [C(x1,x2)e2 +NHx^K^-r) + M{xJ K^-r) +Ctx^e^f
- n(x.f) (x, - f) + xl (4.76b)

o 1 2 a
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Tracking error dynamics arises due to control law (4.71) being applied to

robot system (4.72).

The augmented error vector (x =0) is defined as

e = (4.77)

4.2.4.2 Stability of Closed-loop System

To establish closed-loop system as exponentially asymptotically stable,

consider the following Lyapunov function candidate with eT = [e , e ]T
1 2

1 T 1 T 1 -TV(e, x2) = 2 8l Kl61 + 2 e2 M(xi)e2 + { x\ Mfx^ x2 + eJM(x^2 (4.78)

From Appendix - VII, it is found

V(e, x ) < - a { M(e )} lie ll2 - Hx ii lie I
2 mf 1 ' o d 2

with condition for V(e, x ) < 0

«L € + L.l

C, > 0

A (K.) >
m 1

Ix II > 0
d

c + I c- I (A, (M)-1) A (K
° Z. 1 2. m MM 1

A (M)^
m

2 A (M) (A (
m m K2>-1K}

(4.79)

(4.80)

(4.81)

(4.82)

From (a7.2), the region of attraction is determined as expressed by (4.65a)

In contrast to [8], large region of attraction appeared for proposed scheme.
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4.2.4.3 Discussions

(i) Including disturbance torque in controller equation (4.71), it may possible

to find better tracking accuracy,

(ii) Sign-Sign function is associated with tracking error and velocity

observation error and acts as a switching function (forcing element) to get

good estimate of velocity.
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SIMULATION RESULTS

5.1 ROBOT SYSTEM

The equations of motion of the robot systems are (3.7):

M(q)q' +C(q,q)q +g(q) = T (5 1}

The following forms of robot system are used for simulation purpose:

(i) Three - DOF robot system

(ii) Two-DOF robot system with mass

(iii) Two-DOF robot sysem without mass

(I) Three -DOF Robot System

The following coefficients of matrices are given for the three-DOF robot
system (Fig. 5.1):

Mn = Ai + A2 sin\ + A3 sinH + %1 + A4 sin %sin(q2 + q3)
M12 = Mi3 . M31 . 0

M22 = A5 + A4 cosq3

M23 - M32 =A6 +A7 C°S%
M33 - \ (5.2)



y

Fig. 5-1 Three Joint Revolute Robotic Manipulators
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11

1

21 A2 sin(2q2) ^ + A3 sin(2(q2 +q3)) (q +q ) +A (sin q, cos(q +q )q
'2 ^3 ^3

12

13

+ sin(q +2q )q )

2 |A2 sin(2q2)qi+ A^in^^ +q^)^ + A^infq^q^

2JA3Sin(2(q2 +q3))qi+ A4sin q2 cos(q2 +q3)qi|
C„. = - C

21 12

22

23

31

32

33

g(q,)

g(q2)

9(qJ

= - 2 A4sin(q3)q3

= - 2 A4sin(q3)q2 - A7sin(q3)q;
= - C

13

1= 2 A4sin(q3)q^

= 0.0

= 0.0

= - Agsin (q2) - Aiosin(q2 +q3)
- - Alosin(q2 +q3)

(5.3)

(5.4)

Numerical values of these constant parameters are given in Table-I[4].

(ii) Two-DOF robot system with mass

The robot system used in simulation is expressed by (5.1) with

M(q) =
8.77 +1.02 cosq2 0.76 +0.51 cosq
0.76 + 0.51 cosq 0.62

+ mp
2+2cosq2 1+

1 +cosq 1
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C(q,q)
-0.51 sinq2 q2 -0.51 sinq^+q^

0.51 sinq2 ^ 0

g(q) = 0.0

+ mp

-sinq2 q2 -sinq2 (qi+Q2)

0sinq2 qi

It is moving in the horizontal plane (Fig.5.44, g(q) = 0 [7]).

(iii) Two-DOF robot system without mass

The physical parameters of robot sytem (5.1) are given [6] as

M(q) =

9.77 +2.02 cosq2 1.26 +1.01 cosq2
1.26+ 1.01 cosq2 1.12

C(q,q) =
-1.01 sinq2 q2 -1.01 sinq^c^+q,

1.01 sinq2 qi 0

8.11 sinqi + 1.13 sin(qi+q2)

1.13 sin^+q^g(g) = g

It is moving in vertical plane (Fig.5.72).

[5.5)

[5.6)

5.1.1 Desired Trajectory (Test Signal)

The following forms of desired trajectories (test signal) are assumed for

simulation purpose [4],[6],[7],[48]:

(1) Cosine form without crossing zero ([4], Fig.5.2-5.4);

(A) : r = (tt/2) - (0.45 cos(2rrt)) rad

(B) : r, = (n/1.6) - (0.5 cos(27it)) rad

(C) : r = (ti/2) - (0.2 cos(27rt)) rad
3
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(2) Exponential form ([48], Fig.5.23-5.25);

(D) : ^ = [nil) (1-(1+3t) e"3t) rad

(E) : r2 = (rr/3) (1-(1+3t)e"3t) rad

(F) : r3 = [nil) (1-(1+3t) e"3t) rad

(3) Mixed form ([7], Fig.5.45)

(G) : ^ = -1.3454742 + 0.1027998 (cos 1.3156 nt)

(5.8)

0 M i 0.4

0.4 < t £ 1.5
=-1.3538518 + 1-633539

271 Y^j (t-0.4) - Sin ^r (t-0.4)

= 0.2794272
t > 1.5

(H) : r2 = 1.0192722 + °-7703882 1 - sin IT + 0T75 (t-°-75> 0 s t ^ 1.5

= 1.0192722

(4) Cosine form with crossing zero ([6], Fig.5.73-5.74)

t rad(I) : ri = 0.1 cos 3tt

10
v. J

r
In

TO
(J) : r = 0.3 cos t rad

t > 1.5

(5.9)

(5.10)

5.2 SIMULATION OF PROPOSED ADAPTIVE CONTROL STRUCTURE USING
ACCELERATION TERM

In this section, simulation results are presented to illustrate the
performance of the proposed structure(Section 3.2.1) and compared with the
structure which uses no acceleration error loop [84]. For this, a simpler three
degree of freedom robot arm is used (Fig. 5.1). The physical parameters of this
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are given in Table-I [4]. The actuators were assumed with no dynamics and no

power limitations. The equations of motion of the robot system is governed by

(5.1) and its coefficients of matrices are from (5.2) - (5.4). Simulation

results are based on cosine form (Fig.5.2-5.4,(5.7)) and exponential form

(Fig.5.23-5.25,(5.8)) of desired trajectory (test signal) in joint coordinated

space. The robot parameter e* = [Ai AJ is given in Table-I.

Table - I

Physical parameters for three-DOF robot system

A

A

A
i

A

A
10

23.380

9.2063

2.4515

5.4000

82.3990

2.6274

2.7000

25.779

189.170

52.928

The regressor matrix W(q,q,r,r') is given by (5.11).
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The controller (section 3.2.1) setting for this simulation are given below :
^-O.OOI.K, =diag[-65,-50,-25],K2 =diag[-9,-8,-5],K3 =diag[-0.001,-0.06,-0.001];
/-0.3. K^diagt-65,-50,-25], K2 =diag[-9,-8,-5], K3 =diag[-0.2,-1.9.0.-0.2];
Simulation is performed for two cases : (i) Initial estimated parameter e = 0,
e(0) = 0; (ii) Initial estimated parameter e - \ e', e(0) = 0; For these cases,
the error graphs are shown in Fig.5.5-5.22 and Fig.5.26-5.43. Tracking error
graphs are shown on the basis of percentage (error as percent of max. input)
whereas velocity error graphs are in rad/s. These results are given in Table -

II.

Table - II

Maximum errors for whitcomb's case and proposed case

ITrajectory Response

Cosine test

signal

Exponential
test signal

Tracking
error(%)

Velocity
error

(rad/s)

Tracking
error(%)

Velocity
error

(rad/s)

Initial
estimated
parameter

e = 0

e =2 Q

e = 0

e =2 Q

e = 0

0=26

e = 0

* 1

0=2 0

Whitcomb's case Proposed case

Joint-1 Joint-2 Joint-3 Joint-1 Joint-2 Joint-3

0.5421 0.8536 0.2625 0.4238 0.2921 0.2252

1.2010 0.8525 0.6754 0.4421 0.7649 0.4558

0.1758 0.1621 0.2739 0.1059 0.1389 0.1532

0.4182 0.1852 0.2218 0.0853 0.1652 0.2025

1.9121 0.6989 0.8995 0.5012 0.1105 0.9115

1.8992 0.3821 0.4231 1.7539 0.3415 0.3828

0.0652 0.0295 0.0713 0.0031 0.0009 0.0052

0.0341 0.0272 0.0523 0.0336 0.0270 0.0476

It is clear that the maximum error for each joint is less for proposed case

in comparison to [84].
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•D
D

2.250

2.000

1.750 -

1.500

1.250 -

1.000

time(s)

Fig.5.2 Desired trajectory for joint-1 (test signal 'A').

3.000

1.000 ''ii' i i i i i i i i i i | i i i i i i i i i | i i i i i i i | |

0 5 10 15 20

time(s)

Fig.5.3 Desired trajectory for joint-2 (test signal 'B').
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2.000

•o
o

1.800 -

1.600

1.400 -

time(s)

Fig.5.4 Desired trajectory for joint-3 (test signal 'C').

0.600

0.400

0.200

0.000

-0.200 -

-0.400 r

-0.600

Whitcomb's case
dddoo Proposed case

Fig.5.5 Tracking error as percent of max. input for test
signal 'A'.joint-1 ,g(0)=0.
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""A Whitcomb's case
nnociD Proposed case

0.250 -

0.000

-0.250

-0.500

-0.750

.000 1 I ' i i i i i i i i i i i i i i i i i i | i i i i i i i i i

5 10 15 20

time(s)

Fig.5.6 Tracking error as percent of max. input for test

signal 'B',joint-2,Q (0)=0.

0.300

0.200 -

0.100

0.000

-0.100-

-0.200 -

-0.300

aAaaa Whitcomb's case
oaDDa Proposed case

10

time(s)

Fig.5.7 Tracking error as percent of max. input for test

signal 'C',joint-3,g (0)=0
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X)

o

0.200 -

0.100

0.000

-0.100-

-0.200 -

-0.300

time(s)

Fig.5.8 Velocity error for test signal 'A' (Whitcomb's
case), joint-1,g(0)=0.
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0.100

XI

o
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-0.100-

-0.200 -

-0.300

time(s)

Fig. 5.9 Velocity error for test signal 'A'(Proposed
case),joint-1,g(0)=0.
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0.100

-£• 0.000
D

-0.100

-0.200

-0.300

time(s)

Fig.5.10 Velocity error for test signal'B' (Whitcomb's

case),joint-2,g (0)=0.
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o
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-0.200 -
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time(s)

Fig.5.11 Velocity error for test signal 'B'(Proposed case),

joint-2, q(0)=0.
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Fig.5.12 Velocity error for test signal 'C'(Whitcomb's case),

joint-3g(0)=0.
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X)

o
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Fig.5.13 Velocity error

joint-3,q(0)=0

time(s)

for test signal 'C'(Proposed case),
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0.750

0.500

-1.500

time(s)

Fig.5.14 Tracking error as percent of max. input for test

signal 'A'Joint-1 ,„ (0)=1/29*.
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0.500

0.250 -

0.000 -ii

-0.250

-0.500 -

-0.750
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aaflaa Whitcomb's case
DDDDD Proposed case

„ I ' i ' i i i i i i i i i i i i i i i i | |
0 5 10 15 20

time(s)

Fig.5.15 Tracking error as percent of max. input for test

signal 'B',joint-2, g(0)=1/29*.
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Fig.5.16. Tracking error as percent of max. input for test

signal'C',joint-3, J (0) =1/2 9*.
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-0.300 -

-0.500

time(s)

Fig.5.17. Velocity error for test signal'A' (Whitcomb's

case),joint-1 ,* (0) =1/29\

0.100

-0.100

time(s)

Fig.5.18. Velocity error for test signal 'A'(Proposed

case),joint-1 * (0) =1/29*.
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time(s)

.Fig.5.19 Velocity error for test signal 'B'(Whitcomb's
case),joint-2,g(0)=1/29\
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Fig.5.20 Velocity error for test signal 'B'(Proposed
case),joint-2,g(0) =1/29\
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time(s)

Fig.5.21 Velocity error for test signal 'C'(Whitcomb' scase)

joint-3,g(0) =1/29*.
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Fig.5.22 Velocity error for test signal 'C'(Proposed case),

joint-3,g(0)=1/2 0*.
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time(s)

Fig.5.23 Exponential desired trajectory for joint-1 (test signal 'D').
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Fig.5.24 Exponential desired trajectory for joint-2(test signal 'E').
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Fig.5.25 Exponential desired trajectory for joint-3(test signal 'F').
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DDDaD Proposed case
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time(s)

Fig.5.26 Tracking error as percent of max. input for

test signal'D',joint-1,g(0)=0.
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Fig.5.27 Tracking error as percent of max. input for test

signal'E',joint-2,g(0)=0.
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Fig.5.28 Tracking error as percent of max. input for test
signarF,,joint-3,g(0)=0
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time(s)

Fig.5.29 Velocity error for test signal 'D'(Whitcomb's

case),joint-1,g(0)=0.
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Fig.5.30 Velocity error for test signal 'D'(Proposed case),
joint-1, g(0)=0.
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Fig.5.31 Velocity error for test signal 'E'(Whitcomb's
case),joint-2,g(0)=0.
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Fig.5.32 Velocity error for test signal 'E'(Proposed case),
joint-2,g(0)=0.

100



0.100

0.075

time(s)

Fig.5.33 Velocity error for test signal 'F'(Whitcomb's

case), joint-3, g=(0).
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Fig.5.34 Velocity error for test signal 'F'(Proposed

case),joint-3," =(0).
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Fig.5.35 Tracking error as percent of max. input for test
signal 'D'joint-1,g (0)=1/29*.
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Fig.5.36 Tracking error as percent of max. input for test
signal 'E*joint 2, g(0)=1/29\
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Fig.5.37 Tracking error as percent of max. input for test

signal'F',joint-3,g (0) =1/29*.
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Fig.5.38 Velocity error for test signal 'D'(Whitcomb's
case),joint-1,g(0)=1/29*.

0.050

XI

o

0.030 -

0.010

-0.010

-0.030 -

-0.050

time(s)

Fig.5.39 Velocity error for test signal "D" (Proposed
case),joint-1,g(0)=1/29\
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Fig.5.40 Velocity error for test signal 'E' (Whitcomb's

case), joint-2,g(0)=1/29*.
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Fig.5.41 Velocity error for test signal 'E' (Proposed

case),joint-2,* (0) =1/29\
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Fig.5.42 Velocity error for test signal 'F' (Whitcomb's

case),joint-3,g(0) =1/29*.
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Fig.5.43 Velocity error for test signal 'F' (Proposed

case),joint-3,g(0)=1/29\
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5.3 SIMULATION OF PROPOSED ADAPTIVE CONTROL STRUCTURE

USING NONLINEAR COMPENSATOR

The effectiveness of the proposed adaptive control structures (section

3.2.2) are illustrated as tracking performance of a two-DOF robot system (with

mass) which is moving in the horizontal plane (Fig.5.44, g(q)=0). Its

coefficients of matrices are described by (5.5). Adaptive control structures are

simulated for desired trajectory (test signal 'g'> 'H') as shown in Fig.5.45.
Mathematically, it can be expressed as given by (5.9).

The regresser matrix for three cases are given as (see equation
(5.12),(5.13) and (5.14), respectively :

(i) W(q,q - Ae, f - Ae, f -A e)
O o

(ii) W(q,q - Ae, f, r" -A e)
0

(iii) W(q,q - Ae, r, f')

The following constant matrices are chosen as given below [7] : The

controller settings for this simulation is obtained in order to satisfy the
condition (3.32).

(i) case -1

Ao = °-5' Aol = 1-0, K = 25I, kg = 15, cr = 9000 I
nl

(ii) case -2

Ao = 0.5, Aoi = 0.5, K1 = 75I, K2 = 40I, kg = 15, ^ = 9000

(iii) case -3

Ao = 0.5, K = 75I, K = 40I, kg = 15, a- = 9000
c n3
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Fig. 5-44 Two-DOF Robot System with Mass
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Fig.5.45 Desired trajectories for joint-1 and joint-2 (test
signal 'G'and'H').
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Trajectory tracking performance of the existing case [7] and proposed cases

are shown in Fig. 5.46-5.61. Table -III indicates the maximum error for all the

cases. The estimated pay load mass 'mp' for all cases are shown in Fig. 5.62-

5.65.

Table -III

Maximum errors for Berghuis case and three proposed cases

Response Berghuis case[7] Proposed case-1 Proposed case-2 Proposed case-3

Joint-1 Joint-2 Joint-1 Joint-2 Joint-1 Joint-2 Joint-1 Joint-2

Tracking

error

(%)

0.7132 0.7484 0.6250 0.6521 0.3235 0.5473 0.6310 0.5488

Velocity

error

(rad/s)

0.4232 0.5251 0.3952 0.3946 0.4175 0.3879 0.3681 0.4190

The results from Fig. 5.46-5.61 are tabulated in Table - III. The tracking

performance of the proposed cases are better in comparison to [7].
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Fig.5.46 Tracking error as percent of max. input for test
signal 'G'(Berghuis case), joint-1.
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Fig.5.47 Tracking error as percent of max. input for test
signal 'H'(Berghuis case), joint-2.
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Fig.5.48 Tracking error as percent of max. input for test
signal 'G'(Proposed case-1), joint-1.
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Fig.5.49 Tracking error as percent of max. input for test
signal 'H'(Proposed case-1), joint-2.
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Fig.5.50 Tracking error as percent of max. input for test
signal 'G'(Proposed case-2), joint-1.
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Fig.5.51 Tracking error as percent of max. input for test
gnal 'H'(Proposed case-2), joint-2.si
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Fig.5.52 Tracking error as percent of max. input for test
signal 'G'(Proposed case-3), joint-1.
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Fig.5.53 Tracking error as percent of max. input for test
signal 'H'(Proposed case-3), joint-2.
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Fig.5.54 Velocity error for test signal 'G'(Berghuis case),
joint-1.
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Fig.5.55 Velocity error for test signal 'H'(Berghuis case),
joint-2.
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Fig.5.56 Velocity error for test signal 'G'(Proposed case-
1), joint-1.
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Fig.5.57 Velocity error for test signal 'H'(Proposed case-1), joint-2.
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Fig.5.58 Velocity error for test signal 'G'(Proposed case-2), joint-1.
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Fig.5.59 Velocity error for test signal 'H'(Proposed case-2), joint-2.
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Fig.5.60 Velocity error for test signal 'G'(Proposed case-3), joint-1.
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Fig.5.61 Velocity error for test signal 'H'(Proposed case-3), joint-2.
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Fig.5.62 Estimated mass for Berghuis case.
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Fig.5.63 Estimated mass for Proposed case-1
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Fig.5.65 Estimated mass for Proposed case-3.
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5.4 SIMULATION OF BOUNDED FORM OF ADAPTIVE CONTROLLER STRUCTURE
The simulation results of the proposed bounded form of Adaptive controller

structure is illustrated with simple example of a two-DOF robot system (Fig.
5.44) moving in horizontal plane, i.e. g(q) =0. The robot sytem used in
simulation is expressed by (3.7). The physical parameters are given by (5.5). The
unknown parameter belong to some interval e^ and e^ and take the supremum of
M C over these intervals [7]. In this regard, the regressor matrix have chosen

m' m

in the following form :

W(nq- .veil, f, r") =

f1 '2

0

0
1

0

In this case eq. (5.1) is modified as

0

0

M(q) q" + C(q,q)q + g(q) = W(q, q") 9 (q)

0

iq-Aeii

(5.15)

where e"(q)T = [ M„ M„ M22 C„ C„ Cfl C22 ]T, M„, Mi2,M22 and
C ,C ,C ,C are the element of matrix M(q) and C(q,q), rspectively.
Desired trajectories (test signal 'G', 'H') are described by ((5.9),Fig.5.45).
For simulation use, the following set of parameters are chosen as given in [7] :

A = 0.5, K = 751, K
o c

401, kg = 12, cr = 5000 I, MM = 20, CM = 5;
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Trajectory tracking of robot manipulators of the proposed adaptive

controller structure for joint -1 and joint -2 are shown in Fig. 5.66-5.69. The

estimated value of Mm and CM can depicted from Fig. 5.70 and Fig. 5.71
respectively.

Table - IV

Maximum errors for bounded form of controller structure

Response Proposed case

Joint-1 Joint-2

Tracking error (%) 0.4225 0.2251

Velocity error (rad/s) 0.4228 0.1326

It is found that the tracking performance of proposed case are drastically

reduced in comparison to Berghuis case [7].
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Fig.5.67 Tracking error as percent of max. input for test signal
'H'(Proposed boundedform), joint-2.
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Fig.5.68 Velocity error for test signal 'G'(Proposed bounded form),
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Fig.5.69 Velocity errorfortestsignal 'H'(Proposed boundedform),joint- 2.
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Fig.5.70 Estimated MM for bounded form of controller.
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Fig.5.71 Estimated CJor bounded form of controller.
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5.5 SIMULATION OF SLIDING OBSERVER BASED ADAPTIVE CONTROL WITH

NEW UNCERTAINTY VECTOR

A sliding observer aided adaptive control with uncertainty vector (section

4.2.1) is illustrated for two-DOF robot system (Fig. 5.72). The physical

parameter of robot system (5.1) is described by (5.6).

The following design parameters have chosen for simulation purpose :

A1 = diag [0.1,0.1] ; A2 = diag [0.1,0.1]; r^ = diag[0.001, 0.001];

r2 = diag[10,10]; K = diag [200, 200]; r*1 = 171 , I - 9x9 identity
^ 9 9

matrix;

°*01=1' °"l1 = 8'' *12 = 8; A= d'ag [10'1]; \ = °-001--

The regressor matrix Yfx^x,, - A^gnfx.J, qr,a/' + AA^gnfx^MS'-A sgn(x ))
is expressed by (5.16).

Tracking errors for joint-1 and joint-2 are less than 5.6% in contrast to

Canudas's case [10] as appeared in Fig.5.75-5.76. Since the design criterion x =0

is consider same for proposed case so the observation error or estimation error

for position are same as Canudas case[10] indicated in Fig.5.77 and Fig.5.78. In

Fig.5.80 and Fig.5.82, the improvements in velocity error appears in proposed

case for joint-1 and joint-2, respectively. The observation error(velocity) is

also improved as shown in Fig.5.84 and 5.86 in comparison to Fig.5.83 and

Fig.5.85, respectively. Hence, the overallperformance of proposed one is

drastically improved.
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I2=1m

Fig. 5-72 Two-DOF Robot System
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00

The regressor matrix Y(x .x, - Asgn(x ), q.q'' + AA sgn(x ))(S'-A sgn(x )) =

qii qHC0SX,<°) %2 q^cosxt(0) 0 sinx|(0)x7(l)-sinx|(0)(x,(0) +x^l))q^ q^ gsinx^O) gsiiKx^O +x^l))

0 0 q q cosx (0) q
Mrl Mrl lv ' Mr2

where.

q — q ' + AA sgn(x )
r r

x = x - a san(x )
2 2 1 b I

sinXi(0)x,(0) q 0 gsin(x (0) + x (1))

(5.16)
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Fig.5.74 Desiredtrajectory for joint-2 (test signal 'J').
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Fig.5.75 Tracking error as percent of max. inputfor test signal T, joint-1.
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Fig.5.76 Tracking error as percent of max. inputfor testsignal'J'joint- 2.
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Fig.5.77 Observation error (position) as percentof max. inputfor test
signal T,joint-1.
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Fig.5.78 Observation error (position) as percentof max. inputfortest
signal 'J'joint-2.
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Fig.5.79 Velocity error for test signal T(Canudas case[10]), joint-1.
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Fig.5.80 Velocity error for test signal T(Proposed case, section 4.2.1),
joint-1.
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Fig.5.81 Velocity error for test signal 'J'(Canudas case[10]), joint-2.
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Fig.5.82 Velocity errorfortestsignal'J'(Proposed case, section 4.2.1),
joint-2.

136



0.300

0.200 -

0.100

-d 0.000 -
o

-0.100

-0.200

-0.300

time(s)

Fig.5.83 Velocity observation error fortest signal T(Canudascase[10]),
joint-1.
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Fig.5.84 Velocity observation error for test signal T(Proposed case,
section 4.2.1), joint-1.
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Fig.5.85 Velocity observationerrorfortestsignal'J'(Canudascase[10]),
joint-2.
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Fig.5.86 Velocity observation error for test signal 'J'(Proposed case,
section 4.2.1), joint-2.
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The maximum value of different error response are given in Table-V.

Table -V

Maximum errors for Canudas case [10] and proposed case

Response Canudas's Case[10] Proposed Case

Joint -1 Joint -2 Joint -1 Joint -2

Tracking errors (%) 5.600 3.00 4.200 1.43

Observation error (Position) (%) 93.1 108.5 93.1 108.5

Velocity errors (rad/s) 0.0432 0.1825 0.0302 0.0296

Velocity observation errors (rad/s) 0.2565 0.2118 0.1056 0.1554

Drastic reduction, especially, in tracking error and velocity error appeared

in comparison to [10].

5.6 SIMULATION OF TRACKING ERROR BASED SLIDING OBSERVER

AIDED ADAPTIVE CONTROLLER

To investigate the performance of proposed combined controller observer

structure (section 4.2.2) a simple two-DOF robot system is considered for

simulation purpose. The physical parameter of the robot system (5.1) is given in

(5.6). The desired trajectories (test signal T and 'J') are shown in Fig.5.73

and Fig.5.74 for joint -1 and joint -2 respectively (see also (5.10)).

The design parameter are taken as

Ai = diag [0.1,0.1] ; A2 = diag [0.1,0.1]; r^ = diag[0.001, 0.001];

re= r2 = diag[10,10]; K = diag [280, 280]; r"1 = 171 , I = 8x8 identity matrix;
* 8 8

^oi"1' °n = 8; °\2 = 8; A= diag [10,1]; ^ = 0.001.
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The regressor matrix Y(.) is given by (5.16). Various error trejectories are

shown in Fig.5.87-5.94. Table - VI shows the maximum errors of different response

such as tracking error, observation error (position), velocity errors and

velocity observation errors.

Table - VI

Maximum errors for proposed case

(tracking error based sliding observer)

Response Proposed Case

Joint-1 Joint -2

Tracking errors (%) 3.5 1.26

Observation errors (Position) (%) 110.00 145.2

Velocity errors (rad/s) 0.0177 0.0412

Velocity observation errors (rad/s) 0.0294 0.0425

Observation error (position) and velocity error are slightly increased of

joint-2 in comparison to previous proposed case but still one can take the

improved performance in comparison to [10].
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Fig.5.87 Tracking erroraspercentof max. inputfortestsignari'(Proposed
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Fig.5.88 Tracking erroraspercentof max. inputfortestsignal 'J'(Proposed
case, section 4.2.2),joint-2.
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Fig.5.89 Observation error (position) as percent of max. inputfortest
signal T(Proposed case, section 4.2.2),joint-1.
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Fig.5.90 Observation error (position) as percent of max. input for test
signal 'J'(Proposedcase, section 4.2.2),joint-2.
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joint-2.

143



X)

o

0.300

0.200 -

0.100

0.000 - p-f4^»*^m«—-—L^lpy«>W **»»t*» *r<+*mH**-

-0.100

-0.200 -

-0.300 -1—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I I I I I I I I I I I
5 10 15

X)
D

time(s)

Fig.5.93 Velocity observation error for test signal T(Proposed case,
section 4.2.2), joint-1.
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Fig.5.94 Velocity observation error for test signal 'j'(Proposed case,
section 4.2.2), joint-2.
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5.7 SIMULATION OF EXTENDED NONLINEAR SLIDING OBSERVER AIDED

CONTROLLER STRUCTURE

The illustration of presented scheme of section 4.2.3 is carried out with a

two-DOF robot system (5.1). The coefficients matrix of system equation is

represented by (5.6). Desired trajectories (test signals T,'J') are shown in

Fig.5.73 and Fig.5.74 (see (5.10)). Various error graphs are compared with

existing work [8] with following design values:

Ai = diag [0.07,0.07] ; 1^=1^ = diag[500, 500]; Q = diag [35,25];

rei= re2 = dia9t5-5]; K!= diag[280, 280]; K2 - diag [5, 5]; cr = 23;
L1 - diag [0.05,0.05]; £o = ^ = ^ = 0.05;

In this case, it is assumed that coefficients of system dynamics are known.

Various error response of robot are shown in Fig.5.95-5.110 for existing and

proposed work both. The error response for existing case[8] and proposed case are

placed in Table VII.

Table - VII

Maximum errors for Canudas case [8] and proposed case

Response Canudas's Case[8] Proposed Case

Joint -1 Joint -2 Joint -1 Joint -2

Tracking errors (%) 1.2 1.63 0.22 0.14

Observation error (Position) (%) 3.2 4.8 0.55 1.03

Velocity errors (rad/s) 0.0075 0.0252 0.0042 0.0047

Velocity observation errors (rad/s) 0.1675 0.730 0.0142 0.0125

The proposed case gives significant improvements with respect to various
error response in comparison to [8].
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Fig.5.95 Tracking erroraspercentof max. inputfortestsignal T(Canudas
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Fig.5.101 Observation error(position) as percent of max. inputfortest
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2.000

-0.500 -

-1.000

-1.500 -

-2.000 1 i i i i i i i i i 1 i—i—i—i—i—i—i—i—i—|—i—i—i—i—i—i—r—T—i

0 5 10 15

time(s)

Fig.5.102 Observation error (position) as percent of max. input for test
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Fig.5.107 Velocity observation error fortestsignalT(Canudascase[8]),
joint-1.
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Fig.5.108 Velocity observation error for test signal T(Proposed case,
section 4.2.3), joint-1.
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section 4.2.3), joint-2.
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5.8 SIMULATION OF SIGN-SIGN BASED NONLINEAR SLIDING OBSERVER

AIDED CONTROLLER

The controller which uses the disturbance vector, in contrast to structure

used for simulation results in section 5.7, and observer structure is based on

sign-sign function of tracking error and observation error respectively (section

4.2.4). These combined structure is illustrated with simple illustration of two-

DOF robot system (Fig. 5.72) and its physical parameters are described by (5.6).

In order to show the improvements in tracking performance, desired trajectories

(test signal T,'J') as shown in Fig. 5.73 and Fig.5.74 (see also (5.10)) are

used for simulation purpose. It is assumed that the disturbance vector Td has the

form of some fundamental component of cosine function. The following parameters

are set as follows:

a = diag [0.07,0.07] ; r = diag[500, 500]; r = diag[100, 100]; Q = diag [35,25];

r =r =diag[5,5]; K - diag[580, 580]; K = diag [5, 5]; <r = 23; L = diag [0.05,
e1 e2 a 1 l

0.05]; L2 = diag[0.001, 0.001]; ^ = €, =%= 0-05; x^ =0.05 (cos2t +cos3t)
Various errors graphs are shown in Fig.5.111-5.118 and also its maximum

value are given in Table -VIII.

Table - VIII

Maximum errors for proposed case (sign-sign function based sliding observer)

Response Proposed Case

Joint -1 Joint-2

Tracking errors (%) 0.12 0.026

Observation errors (Position) (%) 0.55 1.03

Velocity errors (rad/s) 0.0026 0.0042

Velocity observation errors (rad/s) 0.0122 0.0106

Clearly, Table-VIII indicates the better performance of the proposed scheme

regarding various error response with compared to previous results.
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Fig.5.112 Tracking erroraspercentofmax.inputfortestsignal 'J'(Proposed
case, section 4.2.4),joint-2.
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Fig.5.114 Observation error (position) as percent of max. input for test
signal 'J'(Proposed case, section 4.2.4),joint-2.
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Fig.5.117 Velocity observation error for test signal T(Proposed case,
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Fig.5.118 Velocity observation error for test signal 'j'(Proposed case,
section 4.2.4), joint-2.
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5.9 SIMULATION OF MODEL-BASED ADAPTIVE CONTROLLER STRUCTURE

In order to compare the tracking performance of sliding observer based

controller structure with model-based adaptive controller structure, simulation

results are also reported in Table -IX. They include the tracking error as

percentage basis and. velocity error in rad/s for the test signal T an 'J' (Fig.

5.73-5.74, (5.10)). A simple two-DOF robot system (Fig. 5.72) with physical

parameters as described in (5.6) is used for simulation of model-based adaptive

controller structure.

Table-IX

Maximum errors for model-based adaptive controller

Cases Tracking error (%) Velocity error (rad/s) Set value

Joint -1 Joint -2 Joint-1 Joint-2

Whitcomb

case

5.1231 3.8230 0.0323 0.0852 eo = 0.045

K^dlagMCS]

K2 =diag[5,1]
Proposed
controller

Section 3.2.1

1.267 0.3221 0.0068 0.0168

Berghuis case 1.7921 1.5310 0.0452 0.0410 e0 = 0.045

K^diagHO^]

K2 =diag[5,1]

<r =9000/
n

Proposed case-1

Section 3.2.2

0.3201 0.5001 0.0034 0.0082

Proposed case-2 0.1825 0.2598 0.0032 0.0073

Proposed case-3 0.4253 0.6528 0.0049 0.0123

proposed bounded
form

(Section 3.2.3)

0.1320 0.2139 0.0092 0.0132
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The error graphs are shown in Fig.119-144. Applying the desired trajectories

(test signal 'I', 'J') for these cases also, it is observed that the tracking

performance of model-based controller structure is better than that of [10].

It is also observed that nonlinear sliding observer aided control structure

is superior among proposed cases regarding their tracking performance because of

using full dynamics model in observer structure and estimated velocity is fed

back to controller structure.
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Fig.5.119 Tracking error as percent of max. input for test
signal T,joint-1.
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Fig.5.120 Tracking error as percent of max. input for test
signal 'J',joint-2.
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Fig.5.123 Velocity error for test signal 'J' (Whitcomb's
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Fig.5.124 Velocity error for test signal 'J'(Proposed case),
joint-2.

163



5.000

3.000

1.000 -

-1.000-

-3.000

-5.000

&

time(s)

Fig.5.125 Tracking error as percent of max. input for test
signal T(Berghuis case), joint-1.

5.000

3.000

1.000

•1.000

time(s)

Fig.5.126 Tracking error as percent of max. input for test
signal 'J'(Berghuis case), joint-2.
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Fig.5.127 Tracking error as percent of max. input for test
signal T(Proposed case-1), joint-1.
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Fig.5.128 Tracking error as percent of max. input for test
signal 'J'(Proposed case-1), joint-2.
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Fig.5.129 Tracking error as percent of max. input for test
signal '['(Proposed case-2), joint-1.
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Fig.5.130 Tracking error as percent of max. input for test
signal 'J'(Proposed case-2), joint-2.
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Fig.5.131 Tracking error as percent of max. input for test
signal '['(Proposed case-3), joint-1.
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Fig.5.132 Tracking error as percent of max. input for test
signal 'J'(Proposed case-3), joint-2.
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Fig.5.133 Velocity error for test signal '('(Berghuis case),
joint-1.

-0.050 -

-0.075 -

-0.100 -i—i—i—i—i—i—i—|—i—i i i i i r —I—i—i—i—i—i—i—i—i

10 150

time(s)

Fig.5.134 Velocity error for test signal 'J'(Berghuis case),
joint-2.
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Fig.5.137 Velocity error for test signal T(Proposed case-2),
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Fig.5.138 Velocity error for test signal 'J'(Proposed case-2),
joint-2.
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Fig.5.139 Velocity error for test signal '['(Proposed case-3),
joint-1.

\
X

D

0.050

0.030 -

0.010 -

-0.010 -

-0.030 -

-0.050 "i i i—i—i—r 1 I i ' i i i i i i i | i i i i i i | | |

5 10 15

time(s)

Fig.5.140 Velocity error for test signal 'J'(Proposed case-3),
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Fig.5.143 Velocity error for test signal T(Proposed bounded
form), joint-1.
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Fig.5.144 Velocity error for test signal 'J'(Proposed bounded
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CONCLUSIONS AND SUGGESTIONS

FOR FUTURE WORK

6.1 CONCLUSIONS

In summary, the contributions of the proposed controller structures are to

improve the tracking performance in comparison to available structures. The

proposed control schemes are, first, model-based adaptive control and, second,

sliding observer aided controller structure for trajectory tracking of robot

manipulators. In order to reduce the controller-system mismatch, the

acceleration term is included in existing controller structure [84] for

relatively noise free situation. A new form of adaptation law results which in

turn gives significant improvements in tracking performance. Apart from this, the

nonlinear compensator based three variations of model-based adaptive controllers

are proposed having different form of sliding surfaces. The purpose of using

nonlinear feedback compensator term is to compensate the additional error which

arises due to modification of adaptation signal. Simulation results show

significant reduction in tracking error and velocity error in comparison to [7].

Among three cases, case-1 and case-2 have larger region of attraction in

comparison to [7].

In distinct form, an adaptive controller structure is proposed wherein

estimation is based on upper bound of the parameter rather than parameter itself.

This is based on the inverse dynamics model of robot manipulators with a premise

that if each parameter is known within some bounds the parameter adaptation can

be prevented from going out of bounds and thus it makes the system more robust.



This proposed scheme gives drastic reduction in tracking error and velocity error

in comparison to [7].

In order to look better tracking performance, the observers are employed to
estimate the joint velocities because the actual velocities are often
contaminated with high level of noise. The proposed controller-observer scheme
with new uncertainty vector for adaptive case gives drastic reduction in tracking
error and velocity error when compared with [10]. On the other hand, the
nonlinear sliding observer based controller structures are found promising in
view of the nonlinear nature of robot manipulators. Using this approach, two new

nonlinear sliding observer aided controller structure are proposed for trajectory
tracking of robot manipulators. Significant reduction in error, response are
observed through simulation. Larger region of attraction is noticed for the

proposed scheme when compared with [8].

The results contained herein were obtained through an approach substantially

different from that presented in [84],[7],[10],[8], respectively. On the contrary

to [84], a new form of adaptive law is proposed. Its performance show good
tracking. Including nonlinear compensator and different form of sliding surface,
adaptive controller structures are constructed to enhance trajectory tracking
performance in comparison to [7]. In order to account dynamic interaction between
controller and observer, a new form of sliding observer based controller
structures are proposed to ensure better tracking when compared with [10], [8],
respectively. This thesis represents some improved results in model-based
adaptive and also sliding observer aided controller structure for trajectory

tracking of robot manipulators.
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6.2 SUGGESTION FOR FUTURE WORK

The presented work in this thesis supports the foundation for further work

in the development of control methods and applications of model-based adaptive

and sliding observer based control to robot manipulators. The following studies

are suggested for future research works,

(i) An important topic of future research would be an extension of this thesis

to actual on-line implementation of the proposed control schemes,

(ii) The proposed control schemes should be utilized to control direct drive

robots and with flexible links,

(iii) Model-based adaptive controller structure still require improvements to

cope with parameter uncertainty and errors in model because of the errors

still lie with it.

(iv) Inclusion of actuator dynamics and gear train friction in model-based

adaptive controller structure should be one of the future approach for

rigid and flexible robots,

(v) In controller-observer schemes, different type of observer scheme should be

employed with controller for robot manipulators. It may be consider as one

of the areas for future work,

(vi) Finally, schemes to decrease the sensitivity of disturbances due to

parameter variation should be developed to improve the flexibility of the

schemes.
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<=R ŝ%Encs±



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Ambrosino, G., Celentano, G., and Garofalo, F., "Robust Model Tracking

Control for a Class of Nonlinear Plants," IEEE Trans. Automat. Cont.,

vol. AC-30, no. 3, pp. 275-279, 1985.

Arimoto, S., and Miyazaki, F., "Stability and Robustness of PID Feedback

Control for Robot Manipulators of Sensory Capability," Robotics Research,

First Int. Sympos., edited by M. Brady and R. Paul, M.I.T. Press, pp.
783-799, 1984.

Asada, H., and Slotine, J.J.E., Robot Analysis and Control, John Wiley
and Sons, 1986.

Balestrino, A., Demaria, G., and Sciavicco, L., "An Adaptive Model

Following Control for Robotic Manipulators," ASME J. Dynam. Syst., Meas.

Contr., vol. 105, no. 3, pp. 143-151, 1983.

Bayard, D.S., and Wen, J.T., "New Class of Control Laws for Robotic

Manipulators: Part-2 Adaptive Case," Int. J. Cont., vol. 47, no. 5, pp.
1387-1406, 1988.

Berghuis, H., and Nijmeijer, H., "A Passivity Approach to Controller -

Observer Design for Robots," IEEE Trans. Robotics Automat., vol. 9, no.
6, pp. 740-754, 1993.

Berghuis, H., Ortega, R., and Nijmeijer, H.,"A Robust Adaptive Robot

Controller," IEEE Trans. Robotics Automat., vol. 9, no. 6, pp. 825-830,
1993.

Canudas de Wit, C, Fixot, N., and Astrom, K.J., "Trajectory Tracking in
Robot Manipulators via Nonlinear Estimated State Feedback," IEEE Trans.

Robotics Automat., vol. 8., no. 1, pp. 138-144, 1992.



[9] Canudas de Wit, C, and Fixot, N., "Robot Control Via Robust Estimated

State Feedback," IEEE Trans. Automat. Cont., vol. 36, no. 12, pp. 1497-

1501, 1991.

[10] Canudas de Wit, C, and Fixot, N., "Adaptive Control of Robot

Manipulators via Velocity Estimated Feedback," IEEE Trans. Automat.

Cont., vol. 37, no. 8, pp. 1234-1237, 1992.

[11] Chen, Y.H., "On the Deterministic performance of Uncertain Dynamical

Systems," Int. J. Cont., vol. 43, no. 5, pp. 1557-1579, 1986.

[1 2] Chen, Y.H., "Robust Computed Torque Scheme for Mechanical Manipulators :

Nonadaptive Versus Adaptive," ASME J. Dynam. Syst., Meas. Contr., vol.

113, no. 2, pp. 324-327, 1991.

[13] Choi, Y.K., Chung, M.J., and Bien, Z., "An Adaptive Control Scheme for

Robot Manipulators," Int. J. Cont., vol. 44, no. 4, pp. 1185-1191, 1986.

[14] Colbaugh, R., Glass, K., and Pittman, P., "Adaptive Control for A Class

of Hamiltonian Systems," Computers Elect. Engng., vol. 20, no. 1, pp. 21-

38, 1994.

[1 5] Corless, M.J., and Leitmann, G., "Continuous State Feedback Guaranteeing

Uniform Ultimate Boundedness for Uncertain Dynamic Systems," IEEE Trans.

Automat. Cont., vol AC-26, no. 5, pp. 1139-1144, 1981.

[16] Craig, J.J., Adaptive Control of Mechanical Manipulators, Addison-Wesley

Publishing Company, 1988.

[17] Craig, J.J., Hsu., P., and Sastry, S.S., "Adaptive Control of Mechanical

Manipulators," Int. J. Robotics Res., vol. 6, no. 2, pp. 16-28, 1987.

[18] Davison, E.J., and Goldenberg, A., "Robust Control of a General

Servomechanism Problem:The Servo Compensator," Automatica, vol. 11, pp.

461-471, 1975.

180



[19] Desilva, C.W., and Winssen, J.V., "Least Squares Adaptive Control for

Trajectory Following Robots," ASME J. Dynam. Syst., Meas. Contr., vol.

109, no. 2, pp. 104-109, 1987.

[20] Dubowsky, S., and Desforges, D.T., "The Application of Model - Referenced

Adaptive Control to Robotic Manipulators," ASME J. Dynam. Syst., Meas.

Contr., vol. 101, no. 2, pp. 193-200, 1979.

[21] Elevitch, C.R., Sethares, W.A., Rey,G.J., and Johnson, Jr., C.R., "Quiver

Diagrams and Signed Adaptive Filters," IEEE Trans. Acoust.,Speech, Signal

Processing, vol. 37, no. 2, pp. 227-236, 1989.

[22] Eweda, E., "Convergence Analysis of an Adaptive Filter Equipped with the

Sign-Sign Algorithm," IEEE Trans. Automat. Cont., vol. 40, no. 10, pp.

1807-1811, 1995.

[23] Feng, G., "A New Adaptive Control Algorithm for Robot Manipulators in

Task Space," IEEE Trans. Robotics Automat., vol. 11, no. 3, pp. 457-462,

1995.

[24] Feng, G., and Palaniswami, M., "Adaptive Control of Robot Manipulators in

Task Space," IEEE Trans. Automat. Cont., vol. 38, no. 1, pp. 100-104,

1993.

[25] Gilbert, E.G., and Ha, I.J., "An Approach to Nonlinear Feedback Control

with Applications to Robotics," IEEE Trans. Syst., Man, Cybern., vol.

SMC-14, no. 6, pp. 879-884, 1984.

[26] Goodwin, G.C., Hill, D.J., and Palaniswami, M., "A Perspective On

Convergence of Adaptive Control Algorithms," Automatica, vol. 20, no. 5,

pp. 519-531, 1984.

[27] Gourdeau, R., and Schwartz, H.M., "Adaptive Control of Robotic

Manipulators: Experimental Results," in Proc. of IEEE Conf. Robotics

Automat., pp. 8-15, 1991.

181



[28] Gu, K., and Tongue, B.H., "A New Strategy for Adaptive Motion Control of
Robots," ASME J. Dynam. Syst., Meas. Contr., vol. 112, no. 3, pp. 410-

416, 1990.

Hsia, T.C., "Adaptive Control of Robotic Manipulators- A Review," in
Proc. IEEE Int. Conf. Robotics Automat., vol. 1, pp. 183-189, 1986.
Hsu, P., Bodson, M., Sastry, S., and Paden, B., "Adaptive Identification
and Control for Manipulators Without Using Joint Accelerations," in Proc.

IEEE Int. Conf. Robotics Automat., vol. 3, pp. 1210-1214, 1987.

[29]

[30]

[31

[33]

[34]

[35]

[36]

loannou, P.A., and Kokotovic, P.V., "Instability Analysis and Improvement

of Robustness of Adaptive Control," Automatica, vol. 20, no. 5, pp. 583-

594, 1984.

[32] loannou, P.A., and Tsakalis, K.S., "A Robust Direct Adaptive Controller,"
IEEE Trans. Automat. Cont., vol. AC-31, no. 11. pp. 1033-1043, 1986.
Jankovic, M., "Observer Based Control for Elastic Joint Robots," IEEE
Trans. Robotics Automat., vol. 11, no. 4, pp. 618-623, 1995.

Kang, H., Vachtsevanos, G., and Lewis, F.L., "Lyapunov Redesign for
Structural Convergence Improvement in Adaptive Control," IEEE Trans.

Automat. Cont., vol. 35, no. 2, pp. 250-253, 1990.

Kelly, R., Carelli, R., and Ortega, R., "Adaptive motion Control Design
of Robot Manipulators : An Input -Output Approach," Int. J. Cont., vol.

50, no. 6, pp. 2563-2581, 1989.

Khosla, P.K., and Kanade, T., "Experimental Evaluation of Nonlinear
Feedback and Feedforward Control Schemes for Manipulators," Int. J.

Robotics Res., vol. 7, no. 1, pp. 18-28, 1988.

182



[37] Koo, K. Mo., and Kim, J. H., "Robust Control of Robot Manipulators with

parametric Uncertainty," IEEE Trans. Automat. Cont., vol. 39, no. 6, pp.

1230-1233, 1994.

[38] Kovio, A.J., and Guo, T.H., "Adaptive Linear Controller for Robotic

Manipulators," IEEE Trans. Automat. Cont., vol. AC-28, no. 2, pp. 162-

171, 1983.

[39] Kreutz, K., "On Manipulator Control by Exact Linearization," IEEE Trans.

Automat. Cont., vol. 34, no. 7, pp. 763-767, 1989.

[40] Kuo, C.Y., and Wang, T.S.P., "Nonlinear Robust Industrial Robot Control,"

ASME J. Dynam. Syst., Meas. Contr. vol. 111, no. 1, pp. 24-30, 1989.

[41] Landau, I.D., "Evolution of Adaptive Control," ASME J. Dynam. Syst.,

Means. Contr., vol. 115, no. 2(B), pp. 381-391, 1993.

[42] Leahy, Jr., M.B., and Whalen, P.V., "Direct Adaptive Control for

Industrial Manipulators," in Proc. IEEE Int. Conf. Robotics Automat., pp.

1666-1672, 1991.

[43] Lee, C.S.G., and Chung, M.J., "An Adaptive Control Strategy for

Mechanical Manipulators," IEEE Trans. Automat. Cont., vol. AC-29, no. 9,

pp. 837-844, 1984.

[44] Lee, C.S.G., and Lee, B.H., "Resolved Motion Adaptive Control for

Mehanical Manipulators," ASME J. Dynam. Syst., Meas. Contr., vol. 106,

no. 2, pp. 134-142, 1984.

[45] Lim, K.Y., and Eslami, M., "Adaptive Controller Designs for Robot

Manipulator Systems Using Lyapunov Direct Method," IEEE Trans. Automat.

Cont., vol. AC-30, no. 12, pp. 1229-1233, 1985.

[46] Lim, K.Y., and Eslami, M., "Robust Adaptive Controller Designs for Robot

Manipulator Systems," IEEE J. Robotics Automat., vol. RA-3, no. 1, pp.
54-66, 1987.

183



[47] Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., "Resolved-Acceleration
Control of Mechanical Manipulators," IEEE Trans. Automat. Cont., vol. AC-

25, no. 3, pp. 468-474, 1980.

[48] Mahmoud, M.S., "Robust Control of Robot Arms Including Motor Dynamics,"
Int. J. Cont., vol. 58, no. 4, pp. 853-873, 1993.

[49] Mahmoud, M.S., and Hajeer, H.Y., "A Globally Convergent Adaptive
Controller for Robot Manipulators," IEEE Trans. Automat. Cont., vol. 39,

no. 1, pp. 148-151, 1994.

[50] Middleton, R.H., "Adaptive Control for Robot Manipulators Using Discrete

Time Identification," IEEE Trans. Automat. Cont., vol. 35, no. 5, pp.

633-637, 1990.

[51] Mills, J.K., and Goldenberg, A.A., "A New Robust Robot Controller," in

Proc. IEEE Int. Conf. Robotics Automat., vol. 2, pp. 740-745, 1986.

[52] Miyasato, Y., and Oshima, Y., "Non-linear Adaptive Control for Robotic

Manipulators with Continuous Control inputs," Int. J. Cont., vol. 49, no.

2, pp. 545-559, 1989.

[53] Narendra, K.S., and Annaswamy, A.M., Stable Adaptive Systems, Prentice

Hall, 1989.

[54] Narendra, K.S., and Balakrishnan, J., "Improving Transient Response of

Adaptive Control System Using Multiple Models and Switching," IEEE Trans.

Automat. Cont., vol. 39, no. 6, pp. 1861-1866, 1994.

[55] Narendra, K.S., Lin, Y.H., and Valavani, L.S., "Stable Adaptive

Controller Design, Part II : Proof of Stability," IEEE Trans. Automat.

Cont., vol. AC-25, no. 3, pp. 440-448, 1980.

[56] Nicosia, S., and Tomei, P., "Model Reference Adaptive Control Algorithms

for Industrial Robots," Automatica, vol. 20, no. 5, pp. 635-644, 1984.

184



[57] Nicosia, S., and Tomei, P., "Robot Control by Using only Joint Position

Measurements," IEEE Trans. Automat. Cont., vol. 35, no. 9, pp. 1058-1061,
1990.

[58] Ortega, R., Loria, A., and Kelly, R., "A Semiglobally Stable Output

Feedback PI2D Regulator for Robot Manipulators," IEEE Trans. Automat.

Cont., vol. 40, no. 8, pp. 1432-1436, 1995.

[59] Ortega, R., and Spong, M.W., "Adaptive Motion Control of Rigid Robots : A

Tutorial," in Proc. 27th IEEE Conf. Decision Cont., pp. 1575-1584, 1988.

Pandian, S.R., and Hanmandlu, M., "Adaptive Generalized Model-Based

Control of Robot Manipulators," Int. J. Cont., vol. 58, no. 4, pp. 835-

852, 1993.

Qu, Z., and Dorsey, J., "Robust Tracking Control of Robots by a Linear

4 Feedback Law," IEEE Trans. Automat. Cont., vol. 36, no. 9, pp. 1081 -1084,
1991.

[62] Sadegh, N., and Gulgielmo, K., "Design and Implementation of Adaptive and •

Repetitive Controllers for Mechanical Manipulators," IEEE Trans. Robotics

Automat., vol. 8, no. 3, pp. 395-400, 1992.

Sadegh, N., and Horowitz, R., "Stability Analysis of an Adaptive

Controller for Robotic Manipulators," in Proc. IEEE Int. Conf. Robotics

Automat., vol. 3, pp. 1223-1229, 1987.

Sadegh, N., and Horowitz, R.,"Stability and Robustness Analysis of a

Class of Adaptive Controllers for Robotic Manipulators," Int. J. Robotics

Res., vol. 9, no. 3, pp. 74-92, 1990.

[65] Schilling, R.J., Fundamentals of Robotics Analysis and Control, Prentice

Hall, 1990.

Sastry, S., and Bodson, M., Adaptive Control-Stability, Convergence, and
Robustness, prentice Hall, 1989.

[60]

[61]

[63]

[64]

[66]

185



[67] Seraji, H., "An Approach to Multivariable Control of Manipulators, "ASME
J. Dynam. Syst., Meas. Contr., vol. 109, no. 2, pp. 146-154, 1987.

[68] Seraji, H., "A New Approach to Adaptive Control of Manipulators," ASME J.
Dynam. Syst., Meas. Contr., vol. 109, no. 3, pp. 193-202, 1987.

[69] Singh, S.N., "Adaptive Model Following Control of Nonlinear Robotic
Systems," IEEE Trans. Automat. Cont., vol. AC-30, no. 11, pp. 1099-1100,

1985.

[70] Skowronski, J.M., "Nonlinear Model Tracking by Robot Manipulators," ASME
J. Dynam. Syst., Meas. Contr., vol. 111, no. 3, pp. 437,443, 1989.

[71] Slotine, J.J.E., and Li, W„ "Adaptive Strategies in Constrained
Manipulation," in Proc. IEEE Int. Conf. Robotics Automat., vol. 2, pp.

595-601, 1987.

[72] Slotine , J.J.E., and Li, W., "Adaptive Manipulator Control : ACase
Study," in Proc. IEEE Int. Conf. Robotics Automat., vol. 3, pp. 1392-

1400, 1987.

[73] Slotine , J.J.E.. and Li, W., "On the Adaptive Control of Robot
Manipulators," Int. J. Robotics Res., vol. 6, no. 3, pp. 49-59, 1987.

[74] Spong, M.W., "On the Robust Control of Robot Manipulators," IEEE Trans.
Automat. Cont., vol. 37, no. 11, pp. 1782-1786, 1992.

[75] Spong, M.W., and Ortega, R., "On Adaptive Inverse Dynamics Control of
Rigid Robots," IEEE Trans. Automat. Cont., vol. 35, no. 1, pp. 92-95,

1990.

[76] Spong, M.W., Thorp, J.S., and Kleinwaks, J.M., "Robust Microprocessor
Control of Robot manipulators," Automatica, vol. 23, no. 3, pp. 373-379,

1987.

186



[77] Spong, M.W., and Vidyasagar, M., "Robust Linear Compensator Design for

Nonlinear Robotic Control," IEEE J. Robotics Automat., vol. RA-3, no. 4,

pp. 345-351, 1987.

[78] Takegaki, M., and Arimoto, S., "An adaptive Trajectory Control of

Manipulators," Int. J. Cont., vol. 34, no. 2, pp. 219-230, 1981.

[79] Takegaki, M., and Arimoto, S., "A New Feedback Method for Dynamic Control

of Manipulators," ASME J. Dynam. Syst., Meas. Contr., vol. 103, no. 2,

pp. 119-125, 1981.

[80] Tomei, P., "Adaptive PD Controller for Robot Manipulators," IEEE Trans.

Robotics Automat., vol. 7, no. 4, pp. 565-570, 1991.

[81] Tourassis, V.D., "Principles and Design of Model-Based Robot

Controllers," Int. J. Cont., vol. 47, no. 5, pp. 1267-1275, 1988.

[82] Voronov, A.A., and Rutkovsky, V.Yu., "State-of-the-art and Prospects of

Adaptive Systems," Automatica, vol. 20, no. 5, pp. 547-557, 1984.

[83] Wen, J.T., and Bayard, D.S., "New Class of Control Laws for Robotic.

Manipulators: Part 1. Non-Adaptive Case," Int. J. Cont., vol. 47, no. 5,

pp. 1361-1385, 1988.

[84] Whitcomb, L.L., Rizzi, A.A., and Koditschek, D.E., "Comparative

Experiments with a New Adaptive Controller for Robot Arms," IEEE Trans.

Robotics Automat., vol. 9, no. 1, pp. 59-70, 1993.

[85] Yuan, J., "Adaptive Control of Robotic Manipulators Including Motor

Dynamics," IEEE Trans. Robotics Automat., vol. 11, no. 4, pp. 612-617,

1995.

[86] Zak, S. H., "On the Stabilization and Observation of Nonlinear/Uncertain

Dynamic Systems," IEEE Trans. Automat. Cont. vol. 35, no. 5, pp. 604-607,

1990.

187



[87] Zhihong, M., and Palaniswami, M., "Robust Tracking Control for Rigid
Robotic Manipulators," IEEE Trans. Automat. Cont., vol. 39, no. 1, pp.

154-159, 1994.

[88] Zhihong, M., and Palaniswami, M., "A Robust Tracking Control Scheme for
Rigid Robotic Manipulators with Uncertain Dynamics," Computers Elect.
Engng., vol. 21, no. 3, pp. 211-220, 1995.

188



c^fjitLzndiErlClLX



APPENDIX - I

A1.1 STABILITY ANALYSISOFPROPOSEDADAPTIVECONTROLLERSTRUCTUREUSING

ACCELERATION TERM

Consider the Lyapunov function candidate

V
"1 *1

2 eXei + 2 el M(q) e2 + 6e{ MW e2 + 2 ®T kg1 e (a1-1)

= 2e

Ki e M
e M M

1 ~T , ~

e + ~ e kg e

P e +
1 ~T2 e kg (a1.2)

The time derivative of the Lyapunov function along the trajectories (3.8) is

V=e^K^ + e^ (^ M- P(q)C)e2 +€ej (M - P(q)C)e2 +ee| Me2
+ €e^ Me2-eT2 P(q) K^-eJ P(q) K^-e e| P(q) K^-e e] P(q) K^

- e^ P(q) We - €e| P(q) We + e"T kg"1 e (a1.3)

where P(q) = M M"1 , M' = [M(q) + K/], A (P) < nP(q)n < a (P)
3 m M

Moreover,applying the properties of C(..) and skew symmetry properties, I M-
C = 0 [59], we have

\e] [\ M- P(q)C) e2\ *(1 +XJP)) CM iie2ll3 + (1 +yp» CM Pilie2ii2 (a1.4)

|e6>- P(q>C) 62l S2eo CM "V2 +2€CM 0, "V "V +So CM AM(P) "S"2
+ SCMP1 AM(P) "V lle2'

|4 e] M e | s e A (M) He ll2
1 2 M 2

(a1.5)

(a1.6)

where p is defined in section 3.2.1.2. A (.) and A (.) denote minimum and
m M

maximum eigen values, respectively.
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-e

Substituting (a1.4), (a1.5) and (a1.6) in (a1.3), we find

Vs - \ [ AJP). AjK2)-2 ar% ((4 +2Am(P))Cm+ 4AJM))] lle2i

6 A (P).A (K )
in m 1

2 l'vmtAM(P) + 2]Vl + 2 AM(PUM(K,

+ 5[(AM(P)-1)e_l W1

1

2 l̂ M(P) + 21CM'l + 2 AM(P)-AM(K2>

+ \ ^AM(P)-1) e_1 AM(K,)]

, A (P). A (K )
Z m m 2

-T 1A,T o,^Te' WT P(q)7 (e2 + e e,) + e kg"1 e (a1.7)

where ex = (A (P) + 1) (p. + «eJ)C
1 M I z

V is negative definite if

M

A (K ) >
m 2

2*, + % ((4+2AM(P))CM+ 4AM(M)>
T1PT

with

l(4 +2A,(P))CM+ 4A(M)) > 2a,
MM M

9 = kg WT P(q)T (e + s e^

and

2(A (P))2A (K ) A (K )
m m m ^

(al.8)

(a1.9)

e <min

A (P) A (K )-2a
m m 2W^JFWT^^ HAM(P)+2]CMPi+AM(P)AM(K2)+[(AM(P)-1)e- AJK^]}

(a1.10)
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In this case

V s - e A (Q ) ne'i
m n

where,

(a1.11)

A (P).A (K )
m m 1 i [A (P) + 2]C fl + I A(P)A (K )

2- M Ml 2 M M 2

+ 2 [(a^(P)-1) e;1 x..(K.)]
A

Q =
n

M o M 1

I [a (P) + 2]C o + i a (P).a (K )
* M M^1 2 MM 2

+ 2 [(A-(P)"1) e-1 AJKJ]

^ A (P). A ( K)
Z€ m m 2

o

M o M 1

Let xT =[eJ.eJJ, iiqii =s k
1 2 c

The matrix that appears in (a1.12a) is positive definite if

le n <
2

aJPI<WW''S."W-'^-1K'\.<M
U (P) + 2) C

M M

which is true if

ixii < ^"••WWi'"-Vpi^ikj-iujP)-i)«;'» (k,|]™ 2 M M 2 m o M 1'

(A (P)+2) C"
M M

(a1.12a)

(a1.12b)

(a1.12c)

Noting that the right hand side of (a1.12c) is positive by hypothesis (a1.8)
and (a1.9).
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Morever,

2 LJ,X'̂ V(x)£ 2 LMllx,r
(a1.12d)

V(x) is a positive definite decrescent function. From (a1.12a), (a1.12c) and

(a1.12d), one can get if

iix(0)ii <

2A (P)(A (K )A (K,))1/2-Xu(P)x,(KJ-[(X (P)-1)«;\(K1)]
m m 1m 2 MM 2

then,

L~
M

V(x) s V(x(0) vt ^ 0

2

V(x) ^ - P, neii
1 o

vt ^ 0

with (3 a positive constant.
to

(a1.12e)

Remark A1 : The role of K in P(q) causes the upper boundedness of P(q) by unity
3 A,

so lower bound on P(q) is always less than unity. In this situation e (or e)
remain bounded for all t * 0 if e, and e are bounded at t = 0. It is necessary to

M. It can be easily proved
lim

show e 0 as t —> oo means ei —> 0, e —> 0 as t
1 ' 2

im

by applying Barbalat's lamma, that QV = 0, which implies e = 0.
t-^co

Remark A2 : For V * 0, the necessary condition Am(K2) should satisfy the
inequality (a1.8) with sufficient condition ^ ((4 +2am(P))Cm+ 4am(M)) > 2«v

Remark A3 : The size of the region of attraction can be enlarged by increasing

the gain constant K(see a1.8) and keeping the K3 small.
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A1.2 ANALYSIS OF THE CONVERGENCE RATE

Consider the closed-loop system (3.8). The rate of convergence of the error

trajectories towards a ball S(rf), rf > rm; is exponential with a rate [48] 2/3,
0(e ,e ,e r) = S1-T1(e ,r)

o o 20 f 2o f

Assume L > lien > r > r
M f m

r > lie n > r
M o f

A =

A (P )
M n

a~TFT
m n

1/2

(a1.13)

By using eTP e * A(P ) Hell2 ^ A(P )2 r2 (a1.1) and (a1.7), the following
n m n m n f °

expression is derived ((a1.8) and (a1.9) must be satisfied) (recalling [48]) as

V(e) i ^o a3 lleo"3 " ft, A* lle l|2
w '-2 .'• V<Q„>P„'> - J '- '— ^- i

where,

A (P )iiei
m n

(a1.14)

pi - 2 [ AJP>- W " e0 «4 +2AM(P))CM+ 4Am(M))]- (AM(P) +1)PiC
M

(a1.15)

(a1.16)^ = (AM(P) + 1>C^2 M M

since V(e) s 0, V(e) * V(e ) or equivalent^

eTP e ^ eT P e
n o n o

using (a1.13), lien ± a lie

le ll ^ A lie I
2 2o

substituting in (a1.14),

W - 2 [. Am((Qn)Ph1) -

* 2 [S1-T1(e ,r)]
2o f

s a3 lie, ii3 - /? a2 ne ii2
2 2o 1 2o

r2 A (P )
f m n
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The above inequality implies that

w; I w / i -2(S1-T1)(t-t0)
V(e) ^ Ve(o)e

-2(S1-T1)(t-t0)
i.e. lien ^ a lie 11 e

(a1.20)

(a1.21)

It states that the exponential convergence rate of trajectory e(t) towards a

ball S(rf) is at least (S1-T1). It follows that the maximum time needed to settle
in a ball S(rf); rf> rm, is given (S1-T1>0) by

Jl*'9o'e*>'r) = ST^TTe^F) ln
a lie

(a1.22)

The rate of convergence depends upon the proper choice of matrix Qr.
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APPENDIX - II

A2.1 STABILITY ANALYSIS OF PROPOSED ADAPTIVE CONTROLLER

STRUCTURE USING NONLINEAR COMPENSATOR

(i) For case - 1

Consider the Lyapunov function candidate

1 oT 1 T 1 ;rT , -1V = ^ s; M(q) S1 + ^ eT K2 e + ^ eT kg (a2.1)

Taking the time derivative of (a2.1) along the error trajectories (3.28) and

applying skew symmetry properties i.e. I M- C = 0, we find

V= Sj M(q) (e"+Aoe) + eT K2 e+^ SJ M(q) (e +AQe) +eT kg"1 § (a2.2)

= - AC nS ii2 + a AC nS ii ii en - a ei C iiSii + C lien nS n2
rn i o m l 1 M M 1

- A(K2) US ll2 + A(K ) IIS ll ii en - Aa (K2) lien2 - <r lien2 nS ii2
" ' M 2 1 o m * n1 1

+ SJ W(q,q -Ae, f -A e, f' -A e)§ + eT kg"1 e (a2.3)

[aCm + VK2,] "Si112 + fAA0CM + am(K2)] [IS,ll Men
+ AC. lien HS ll2 - cr lien2 HS ll2 - Aa (K?) Hell2

nl 1 o m zM

+ S^[ W(q,q -Ae,f -A e, f" -A e)e + eT kq"1

Ap C llSl
r1 M

(a2.4)

V< -A A (QI
m 1 "AoiCmIiSi" ^ -"SJ1 "e" 1 " t ''en2 nS ii2ol M 1 1 1 n-| -|

+ SJ W(q,q -Ae,r -AQe, r' -A e)e + eT kg"1 § (a2.5)
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where,

a (Q) -
m 1

A C + A (K )
o1 M m 2 i [A C +

2 o M

A..(KJ

A (K )
1 [A c +J*±
2 o M A

A (K )
m 2

For satisifying V* 0, the following conditions are implies

p > Hell nS ll
ri 1

AM(K ) * <(2J(AfCM + Am(K2)) AJK^AJ
cr

n1
0 < A < ~-

o1 LM

A A C
o1 0 M

= - kg WT(q,q -Ae,f -xjs, r" -\e) (e + A(e)

In this case

Vs -A a (Q)
m 1

V is nonpositive.
T r ' lTThe region of attraction is given by defining x - le.ej .

V(x) is a positive definite decrescent function. Besides,

\ Lmllxll2=s V(x) *I Ljlxl'2
2 M

From, (a2.5), one can find

ixll <

M

A C - (A2Cf-4 cr p)
„ M o M nl

1/2

M

^~
n1
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(a2.10a)



where,

A C
o M

A (K )
M 2

4 \J^7m 2

A C + A (K )
o1 M m 2

Decreasing o-^ one can enlarge the region of attraction. The right side of

the equation is positive by hypothesis (a2.7). From (a2.10) and (1a2.10a), one

can get

2

V(x) s - 0-

with £ a positive constant.

(ii) For Case - 2

Consider the Lyapunov function candidate

1 oT ..,_, „ . 1 _T „ _ . 1 =TV = 2 S; M(q) S2 + 2 e1 K, e + 2 eT kg"1

(a2.10b)

(a2.11)

Taking the time derivative of (a2.11) along the error trajectories (3.30),
we find

V= S] M(q)S2 + eT Kl e + \ S] M(q)S2 + eT kg"1 9 (a2.12)

Substituting S2, apply properties of C(...) and skew symmetry properties, we
find

V = - ST Aa C(q,q)e +S^ AA C(q,e)e -ST A Ke -S'2 o
»T ,2

J[ x K e -ST Aa- lien2 S
2 o 1 2o2 2on2 2

S2 Aq M(q)e - S2 Aq W(q,q -Ae, f, Y-xk)e + xs] M(q)e + As] M(q)e

2 S2 AM(q)e + eT kg"1 e (a2.13)+ eT K e + - ^T » *>'-»- • -T '--1 =
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Moreover, we have

AST M(q)e ± A M (HS H2 + nS ll HAeH)

aa ST C(q,e)e * a^ Cm (nS2ii2 + «S • HAe
o 2

(a2.U)

(a2.15)

\ S\ M(q)e -ST2 AAoC(q,q)e , (1 -Ao)^CM(nS2H +i.xe..)(i.S2.. HAel.)
+ C p nS ll HAeH)] (a2.16)

M 1 2

ng (a2.14), (a2.15), (a2.16) into (a2.13), with some manipulation,Substituting

we find

Vi -

"nS ii
T

"llS ll
2

A (CO
HAe ll

m 2
HAe ll

+ S A W(q,q -Ae, r, r
2 o

where,

cr

2 n2
A (K )HS H HAeH - -r- »S

m 1 2 ^o2 in

^T , -1-A e)e + e kg" e

I2 HAeH2

(a2.17)

MK2)+ ((Ao-D/Ao)CM +AoCM -iW+MK^VCJ

-2[AM(K2) +(A0-1)(P1+ Ao)CJ
a (QJ =

m 2
A -1

4— C
A M

o

tying V* 0, the following conditions are impliesFor satisi

cr

VK,> '- 2F ilS2'

cr > 0
n2

A < 1
o
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{[2 (-AM(K2) +(1-Ao)CMPrA0CM)]2 -((A "1»/A >CJ-A C }A CK \ ^ iviz 0MI0M 0 o M 0 MJ o M
" $m (a2.21)

A (KJ
m 2

e == - A kg WT(q,q -Xejj' -x e) (A e + Ae)
0 0

In the present case

Vs
nS ii'

T

"ilS ll"
2

Am(Q2)
2

HAeH
•

m 2
HAeii

(a2.22)

(a2.23)

V is nonpositive.

The region of attraction is determined by defining xT =[e,e]T : it is found
from (a2.17)

HxlK

L
m

IT 1
M

•2(((A (K )((A -1)/A )C+A C )1/2)4^- - XA(K ))
A 2 M 9 'm 2 o o M o M

(A-1) C
M

^ (A -1)A C -k
*- o o M c

(a2.23a)

where iiqii s ^, By virtue of hypothesis (a2.18),(a2.21), V is nonpositive. From
(a2.23) and (a2.23a), one can derive

V(x) s - p" 2

HAei

where /3" is a positive constant.
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(iii) For Case - 3

Consider the Lyapunov function candidate

1 T 1 ^t . -1V = \ S\ M(q) S3 + 2 eT Ki e + 2 e kg" e a2.24)

Taking the time derivative of (a2.24) along the error trajectories (3.31)

we get

v = st M(q) S + eT K e + 1 S] M(q)S3 + eT kg"1 e (a2.25)
3 & '

= ST M(q) e'+ AST M(q)e + AS3 M(q)e + eT K1 e

+ 2 S^ M(q)S3 + eT kg"1 e
V=-S^ [C(q,q)e +aC(q,e)f -t-^e + K2e +crn3 Hell2 S,

- W(q,q -Ae, r, r")e 1+ aSJ M(q)e + AST3 M(q)e

+eT Ke + 1 S1" M(q)(e + Ae) + eT kg1 e
1 Z. o

Moreover, we have

a ST M(q)e s x MJllS II2 + IISJ HAeii)
M 3

AST C(q,e)e ± A C (nS ll2 + nS ll HAe
o M 3

(a2.26)

(a2.27)

(a2.28)

(a2.29)

Substituting (a2.28), (a2.29) in (a2.27), using physical properties and skew

symmetric properties, we find

Vs -

"nS ii
T

'nS ll
3

A (QJ
HAeii

m 3
HAeH

-cr lien2 nS ii2
n3 3

+ ST W(q,q -Ae, r, r')e + eT kg"1 e
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where,

Am(Q3) "m 3

A (K> A C - 2 A M
m 2 o M o M

2[AM(K2)+ (pi+ Ao)CJ

[AM(K2)+ (pi+ Ao)CJ

A"' A (K )
o m 1

For satisifying V s 0, the following conditions are implies:
cr > 0

n3

A (K) >
ml „ -1

4 ""W -W

o M 2 o M o M

e = - kg WT(q,q -Ae,f,f') (e + Ae)

In this situation

V^
HS ll"

T

IIS ll"
3

XJaJ
3

HAe ii
m 3

HAeii

- cr lien2 IIS ii2
n3 3

V is nonincreasing function.

Similarly, it can derived from (a2.34) the region of attraction as

ixii <
L~

M

2[AM(K2) +(pi+Ao)CM]

(A"1A (KJ)
o m 1

1/2
-[A (KJ-A C -2A M ]

m 2 o M o M

n3

1/2

(a2.31)

(a2.32)

(a2.33)

a2.34)

(a2.34a)

The upper bound on K2 if increaed or keeping ^ low value, the region of
attraction can be enlarged. Noting that the right hand side of (a2.34a) is
positive by hypothesis (a2.32). One can find easily
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V(X) i -0
3

lAei

th |3 a positive constant.wi

vtiO

LEMMA A1

For the additional error, introduced by the replacement of q and q to r and
f in W(q,q,q-) to form W(q,q -Ae,..), the resulting error is bounded by S, and
e, i = 1,2,3.

PROOF :

Let [W(q,q,q') - W(q,q -Ae,..)] e = AW(S.,e)

where,

S = e + A e, S = a e + Ae, So = e + Ae

Let,

From Equation (3.28), one can formulate the additional error as

M(q)Si + C(q,q) (S, + Ae) - AC (q,e) S, = AWtS^e)

P = M'(q)S.
1 i

Applying the MVT (Mean Value Theorem) to M(q) [64], we get

P = I
= 1

^M_
9q,

(r + e) del

Taking the Norm, we obtain

STPi i bmKS^ llSntl llel
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(a2.36)

(a2.37)

(a2.38)

(a2.39)



where,

0 s bm1(S ) ^sup
1 q

i = n

I
i = 1

2

aM a

Similarly,

P2 = C(q,q) (S1 + Ae ) - AC(q,e)Si

Applying the MVT, we find

"l

P =
2

-g- (r + e,r + e) dei

Taking the norm, one can write

>Tn ^ ' "...^ ,2

(Si + Ae) + AC(q,e)Si

(a2.40)

(a2.41)

(a2.42)

S P2 sbcKr^JllS^I lien +Abc2(r,e)iiSiinieii2 +Abc3[iiSiiuieii2+iiS n2iieii] (a2.43)

Where,

0 ^ bd(r,e) *sup
q

i = n j = n

I I
i=1 j=1

(r + S - Ae)T |£ (f + S - Ae)
1 o dq 1 o

i = n 2

o

0 i bc2(r,e) ssup
q I C'(r + Si - Ae)

0 * bc3 ^sup
q

i = 1

i = n 2

I c1
i = 1

1/2
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Adding the terms, we find

STAW(S ,e)s bm1(S)HS iineH+bc1(r,e)HSiii2Heii+Abc2(r,e)HSiniieH2
1 1 11

+ Abc3[iiS li2lielH-llS ll Hen2] (a2.44)
i" 1

Let,

b1 £ bmKS^

b2 s (bd(r,e) + Abc3)

b3 * (bc2(r,e) + bc3)

Substituting in (a2.44), we find

StaW(S ,e)=s b1iiSiHiieii+b2HSiH2HeH+Ab3iiSiHHeir
+ Abc3[iiSlii2neii -I-US1 ll Hen2]

after some manipulation, we obtained as

(a2.45)

S>W(Sl,e), (b1 +^ )IS/ +(bj- +aW) lle„2 +b2 lSli Hen +Ab3
. bldlS^I +2neii2) -b2 HS/ [2 - neii2] -Ab3 Hell2 [\ -IS/ (a2.46)

Applying,

1 1ien < i , US ll < 2

and for simplicity, we choose b1 « b2 « b3 « <?n
2

SJaW(Sl(e)s o-n [ hS/ +^- + Ao HSen2 A , ,.c ii2 „Pii2i 02.47)ei
1

By approximation, one can write

S^WtS^eJ* Aq <rn HS,!!2 neii2. ST »Bl lien2 S, <a2-48)
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hence,

AW(Si,e), crni neii2 Sl (aZ49)

Similarly, one can derived for case-2, as

S^AW(S2,e)^[bc1(r,e) +Abc12(r,e)] a"1[hS ll2 -AllS inieiij +A"1 Abc13 nS n2neii
0 2 2 o 2

-Ao1A2bc14 HS2ii lien2 s ST2 o-n2 neii2 S2 (a2.50)

and for case -3, as

S3AW(S3,e)^[bm11(e,)iiS3inieii] +bc22(r,e)[iiS3ii2iieii + 2aiiS mien2]
+ bc23 HS3H2iieii+ Abc23iiS3H lien2 ^ST cr lien2 S (a2.51)

Equation (a2.49) , (a2.50) and (a2.51) show the additional error bounded by

respective S. and e, i = 1,2,3 (see [64] for details information).
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APPENDIX - III

A3.1 STABILITY ANALYSIS OFBOUNDEDFORMOFADAPTIVECONTROLLERSTRUCTURE
Consider the Lyapunov function candidate

V= 2 ST M(q) S + 2 eT Kl e + \ eT kg"1 § (a3.1)

Taking the time derivative of (a3.1) along the error trajectories (3.41), we
get

V= ST M(q)S + eT K^ + \ ST M(q)S + eT kg"1 § (a3.2)

Substituting S = e" + Ae + Ae in (a3.2), we get

V = ST M(q)e'+ AST M(q)e + AST M(q)e + eT K e

+ j ST M(q)S + eT kg"1 § (a3.3)

Applying properties of C(...) and skew symmetric properties i.e. i M-C = 0,
we find

V = - ASTC(q,e)e + ASTC(q,r)e - ST K, Hell - STK Hell - ST <r lien2 S
1 2 n

+ ST W(llq -Aeii, f, r')e + a ST M(q)e + AST M(q)e

+eT K^ + eT kg"1 e {a3i4)

Moreover, we have

AST M(q)e ^ Aq MM(llSll2 + uSil HAeii) (a3.5)
AST C(q,e)e ^ A0cM("Sii2 + iiSii HAeii) (a3.6)
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Substituting (a3.5) and (a3.6) into (a3.4), we find

Vs - A(K ) HSH2 + AMM HSH2 + AMM HSH2 + Ao CM HSI
+ A(K ) IISII HAeH - AMM HSH HAell + Ao MM HSH HAeH
+ aC HSll HAeii + p, C "SH HAeii - a"1 a (K ) HAeii2

n M 1 Mo M

cr ll ell
n

2 „SI|2 + st w(11q _xell| r, r')e + eT kg"1 e

ll en is adjusted for V a 0 as

e = - kg WT(q,q -Ae,f,f') (e + Ae)
A. _ *

neH = e + e (q)

hence,

V^

where,

T -,

HS ii
A (Q)

HS ll

HAeii
m HAeii

•
L -1

-cr neii2 iiSii2

W- AoCM "2AoMM -^M^ (P1+ Ao)CM]

-2[AM(K2)+ (P1+ Ao)CM]

A (Q)

L

A"1 A (K)
o m 1

(a3.7)

(a3.8)

(a3.9)

J

V is nonincreasing function. From sqaure integrability and uniform
continuity of 'e' conclude that it converge to zero. The region of attraction is

given by (a2.34a).
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APPENDIX -IV

A4.1 APPLICATION OF THE FILIPPOV'S SOLUTION CONCEPT

This concept shows that the dynamics on the switching surface is an average
of dynamics on each side of the discontinuity surface.

Let a = AI, with A > 0. The region (see (4.26)) x = 0, i.e. Hx n * a
i l 12 1

described as sliding band or sliding patch [10].

The dynamic behavior in the sliding patch of observation error (4.26) is
given as:

A\

x2 = f'-W(Xi,qr,e)S - A2 Aj1 x2 + t) + v (Aj1 x2 ) (a4.1)

The new form of variables are considered as :

sgn(Xi) = a;1 x2 (a4.2,

qr = q"' +A A1 sgn(Xi) (a4>3)

A4.2 STABILITY ANALYSISOFSLIDINGOBSERVER BASED ADAPTIVE CONTROLLER

WITH NEW UNCERTAINTY VECTOR

In this section, the stability proof of the scheme in the sliding patch and

also the closed-loop analysis for augmented error system are investigated.

A4.2.1 Stability in Sliding Patch

Consider the following the Lyapunov function candidate

V=2 STM S + \ xj x2 +2 eTre (a4.4)
Taking the time derivative of the Lyapunov function along (4.24) and

(4.26), we find
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V = S M S + 2

= ST[Ye - K S- CS + W x ] + 2 S'M S

STM S • x„' x, + e' r e

1 oTr

- T

:2

+ xV - A2a;1 x2 + WTS +t, +v] +e r e (a4.5)

According to definition of C(...) and applying skew symmetry properties

i.e. (1/2(M))-C =0, we find

y = STK S - x TA A"1 x + eT[YTS +re] + xjlu +v +r']
V 2 2 1 2

For V a 0, one can derive

e = r"V ( xi,x2,qr,qr) S

v = <

•Wr,x) +|r'|).x/|x2| if |x2||*0

0 if »x2||=0

Using (a4.2) and (a4.3), one can write

e = - r"1 Y(x .x^sgnlx^c^q/+ A^sgn (x^HS'-A^gn (x^

and

v = v(r,x,x2,r )

-[0(r,T) +llf'il] AiSgn (x^M, if l^sgn 1x^11*0
0 if iia sgn 1x^11=0
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with above definitions

V.-Am(K2)llSH2-Am(A2A;1) Hx2H2, if x2*0 (a4.11)

V- - MK2)liSH2, ifx2 = 0 04.12)

The region in the sliding patch is characterized as closed set so that

trajectories should lie within it.

Defining,

\™JL1 =rr>ax [A M, A (K ),A (r)]
max sup sup 2 sup

A . [L] =min [A M, A (K ),A (r)]
mm inf infV 2 ' infV n

Since V < 0, V(t) * V(0), for all t ^ 0

Amin(L) "e/ - v - v<°) s * "e (0)ii2•inn s max s

where,

eI = ^ \ ^ 04.13)

hence,

le.(0'»2 sHn •\ 04.14)
max

If, A (L) * A (L), th en
max

"es(0)l12 ^ Ai 04.15)
so that e (t) lie in sliding patch.
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A4.2.2 Stability of Closed-loop System

The closed-loop stability is investigated based on the reduced order
manifold dynamics and tracking error dynamics. From (4.24), the tracking error
dynamics equation can be expressed in state-space representation as:

e = - M(x )"1 [(C(x.x ) + K + M(x )A) e2
2 1 I * *

+ (C(x.x ) + K) Ae - Y e - W Sy

The augmented error is defined as

Z =

L

The closed-loop analysis is based on the augmented error Z.

Now, consider the Lyapunov function candidate

1oTV= ^STM S+2e{ K^ +2x2T x2 +\ eT r e

(a4.16)

(a4.17)

04.18)

Taking the time derivative along (4.26) and (a4.16) and using the skew
symmetry properties, we find

V £ -A A (Q)

L J

V a - A A (Q) HZl

X

L 2J

212

(a4.19)

(a4.20)



where,

a (0)
m

A A (K ) A (K )
m 2 M 2

0

A (K )
M 2

+ -TT A (K )
2A M 2

0

+ -TT A (K )
2A M 2

A (K )/A
m 2

0

A(Aa')M
m 2 1

(a4.21

If (a4.9) and (a4.10) are satisfied, the convergence of augmented error

depends upon the choice of matrix Q i.e., setting of K, choice of A,A and a,.

Thus for V < 0, the following inequality should be satisfied

A {KJ > AJKJ <1 + 4r )m 2 M 2 2A 04.22)

The matrix that appears in 04.21) is positive definite. Let xT = [e,e]T ;

Morever,

I L iixii2 < V(x) si L Hxi
/ m 2 M

From 04.18), it is clear that V(x) is a positive definite decrescent

function. Since V is nonpositive by hypothesis 04.22). Hence, the region of

attraction is the entire state-space, that is, defined by L and L
M
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APPENDIX-V

A5.1 STABILITY ANALYSIS OFTRACKING ERROR BASEDSLIDING OBSERVER AIDED
ADAPTIVE CONTROLLER

Applying the Filippov's solution concept (reduced order manifold dynamics,

see section A4.1) to observation error dynamics (4.45), the dynamic behaviour of

(4.45) chanage as,

A\

x2 = r'-W(xlfqr,e)S - r^ - A2 a;1 x2 + ,, + v (a;1 xj (a5.1)

where,

A,1 x2 = sgn(xi) (a5.2)

q| = q/ +A A1 sgn(xi) (a5,3)

In order to investigate the stability in the sliding patch, consider the

Lyapunov function 04.4) as,

V= \ STM S + \ x2T x2 + \ eTre (a5.4)

Following the similar procedure in Appendix-IV and taking the time

derivative of the Lyapunov function, we find

V = STM S + I STM S + x Tx + eT r e
Z 2 2

= ST[Ye - K2 S- CS + Wx2] + 2 STM S

+ *2T[f" "reer Vi"' ^2 + wTs +T) +V3 +§T r e (a5.5)
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Applying the properties of C(...) and skew symmetric properties

(1/2(M))-C -0, we find

i.e.

V=STK2S -xW1 x2 + eT[YTS +re] +xJh+v+K-r^] 05.6)

For V ^ 0, one can get

e = - r"V ( x.x .q,q') S
V 2 'r r

•Wr,T) + |r"|J.x/|xJ if «x2I*0

0 if l|x2||=0

05.7)

(a5.8)

ng (a5.2) and (a5.3), the form of (a5.7) and (a5.8) are modified asUsing

follows

and

=. r"1 Y(Xi,x2-AiSgn (x,), q,. q/+ AA, sgn (x,)) (S'-^sgn (x,) (a5.9)

v = v(r,x,x2,r )

•[0(r,T) +llr'll] AiSgn (x^/A, if HA^gn {xj\\*0

0
if ha sgn (x^n =0

(a5.10)

with above definitions

1, „- „2V a -A (K )IISH2 -A (A, A'1) HX2H -Ajnilell
m 2

V a - A (K )llSll2
m 2

if X * 0 (a5.11a)
2

if x = 0 (a5.11b)

,ents in Appendix-IV, from (a4.11)- (a4.15), it followsUsing the same argume

that e (t) lie in the sliding patch; ejt) [ S , x2,e ,e ]
si

s1

The c
losed-loop stability is investigated based on the reduced order
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manifold dynamics and tracking error dynamics. From (4.24), the tracking error
dynamics equation can be expressed in state-space representation as

e, = e
1 2

e2 = - M(Xi)"1 [(C(Xi,x2) + K2 + M(Xi)A) e2
+ (C(x x ) + K ) Ae - Y e - W x ]

1 2 2 1 2 (a5.12)

Stability proof for the augmented error system is investigated by following
the same procedure as described from 04.18)-(a4.20). The augmented error is
defined as ZT = [e ,e , x ]T

'12 2

Now, consider the Lyapunov function candidate

1nTV= 's' M S + i eT K e +1 T 1 .-. t
1 2 1 T 2 A2 A2 + 2

1 ~T
xo x + •« e r e (a5.13)

Taking the time derivative along (4.44) and 04.45), and using the skew
symmetry properties, we find

V a - A A (Q ) HZI

where,

A (Q)
m s

A A (KJ A (K )
m 2 M 2 2 XJr )

+ 2K Am<K2>

W AJK2)M 0

+2^ AM<K2^

2 W ° A (AAJ/A
m 2 1
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If the following condition is satisfied

A (K ) <
M 2

r

1w* A (KJ
m 2 - [A (K )]2

4 A (AA1)
m 2 1

i.

m 2

r i

1+2A

1/2

05.16)

V is nonincreasing function. If (a5.9) and (a5.10) are satisfied, the
convergence of augemented error depends upon the choice of matrix Qs i.e.,
setting of K2, choice of A,A, and A2-

The matrix that appears in (a5.15) is positive definite by hypothesis

(4.49). Let xT = [e,e]T:
Moreover,

2 Lm "xi!2 - V(x) a2 Lm HxH2

From (a5.13), it is found that V(x) is a positive decrescent function. Since
V is non positive by (a5.16). Hence, the region of attraction is the entire

state-space defined by L and LM-
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APPENDIX - VI

A6.1 PHYSICAL PROPERTIES

The following model properties are inherent to robot dynamics and are

usefull for designing the controller-observer structure [8].

(i) M(Xi) = M(Xi)T > >M(xi)"1 exists 06.1)

(ii) cr > iiM(x)h > 0 and o-' nM(x )"1H > 0 (a6 2)
o i o 1 ' '

(iii) Q(xJ * o«i (a63)

(iv) IIC(X XJII a cr Hx ll2
12 2 2 (a6.4)

(v) W*> = ax" ^C(xi'x2)x2>x -> 06.5)
2 ~ - V*

(vi) W*) = -|- {C(Xi,x2) x} (a6>6)
2 2

A6.2 STABILITY ANALYSIS OF EXTENDED NONLINEAR SLIDING OBSERVER AIDED

CONTROLLER STRUCTURE

Consider the Lyapunov function candidate with eT = [e e 1T
1 2

V(e,x2) = ^ K^ +2e^ Mfx^ +\ x\ M^)^ +e] Mfx^e,, (a6.7)
Taking the time derivative of the Lyapunov function along the error

trajectories (4.59) and (4.60), we find

V(e, x2) =eT K^ +e^ Mfx^ ^2+\e\ M(xJ e2 +x^ Mix,) x2+ \ x\ M(xJ x2
+ e] M(Xl) e2 +e] M[xJ e2 + e] M^) e2 (a6.8)
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Applying the properties of skew symmetry i.e. 2 M-C = 0, we find
V(e,x2)=e{ Kie2 -e] M<x,) ^ x2 -2eT2 Mfx,) K2 e2 -eT2 Mix,) K, e +eT2 Mlx^e,

-eT Mix,) K2 x2 -e{ Mtx'̂ e, +x\ Mix,) r-*\ (1 +-2) x2 -x^ Mix,) rj\
-x^Clx^Hx^e2) -xT2 Q(x2 -reie2) +x^ C(xlfe2) r^e2 +~x] CU^r^e2
+5xT2 C(Xi,f) e2 +2e;C(xi,r)e2 +eT2 C(x,,r) e2 +2e; Clx/) x2 +e{ C(xi,e2)e2
+xT2 C(Xi,e2) e2 - xT2 Mix,) L^gntx^ (a6-9)

Assume the following bounds

A (M) a llM(x)H a A (M)
m 1 lvl

W * l,Kl" £AM(Kl'
*JK2> * "K2" " W

Am(re2> * lire2" * W
and

co = ilC(xlfr)n £ CM urn
c° = iC(xl(e2)l - CMne2n
s = HC(X1,X2)II a CMIIX2I

q = A . {0}
^o mm

Applying (a6.10) and (a6.11) in (a6.9), we find

1
A (M) A (K )

m m 1 2V»"11AM|K,1

" Co" 2 ci

O6.10)

(a6.11)

1 A (M)A(K )-c -c lie.
2M M 2 o 3

2 KM'" W 2Am(M)[Am(K2M]-Co 2XMtM)XM(K2]
V(e,x2)a-eo

-C o- 2 U1

J a (M) a (K )-c -c lie I
2M M 2 o 3 1

+ x2 M(x,) [r'- L1 sgn(x2) ?]

1

2 'V'"" "m"v2

5 r 1 C2 Co 2 ci
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5 c 1 c2 Co 2 ci

(M) \(KJ c + q + H+ff >

(a6.12)



where,

c3 " 2xm'm» \,(rj -J \,<rj -1qo yry - (c, +cj ajfj
V(e, x2 ) is negative definite if

L"1 r"
sgn(x2) = JT- * BL1 ? ll ^ llf'll (a6.13)

In the present case

V(e, x2 ) a - A.nf{ MO^} lie/ 06.14)

where Mfe^ is a function of tracking error e , and V as

V(e, x ) < , p ne ll2 + a (M) lie ll lie
2 Z max o M 1 J

where, p = max[ A (K ) A (M)]
max m 1 M

Using these two upper bounds, we get

2

V(e0> Ai„f{M(ei)> lle "2 * (M(e )} »e ii2
VTe-T5"^ I " *-— it — 06.15)

7 p lie ll + a (M) lle ll lle ll max
Z max o M 1 2

where , P = P (p , lie H.iie II, He I
max max max o 1 2

Integrating 06.15) both sides, we find

V(e ) a v( e (0)) e"1/Pmax sl A|nf {M,ei,T)»lle0112 dT
o o

- V( eo(0)) eCi(t' (a6.16)
from which one can get

ne/, a neo(0)H2 e"Ci(t) (a6.17)

max{ A (K ), A (M), x (K )}
where A = M 1 M M 2

mm{ A (K ), a (M), a (K )} (a6.18)
m 1 m m 2 '
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For exponential stability , the following condition must be satisfied:

c1 > 0
A (M(e )} > 0 for all t a 0

inf 1

if A (M) A (K ) > 0 and
m m 1

A-(l<l) > [2 A(M) (A_(KJ-1)-c\

k +ivicyMH)^,)
a (M) {:

hence,

A {M(e )} > 0
inf

m 2

06.19)

06.20)

06.21

(a6.22)

Applying these inequality eq.(a6.14) is nonpositive and indicate that the
augmented error eQ tends to zero asymptotically means e, -> 0, e2 -> 0and x2 -»
0 as t approach co.

The matrix that appears in (a6.12 ) is positive definite if

ei < c:
(1 [A (MMliyK,) - co4 c,)) + K^fWKMK,))

(2A (M)[A (KM] - c)]1/2 (c2 +qo +(1+^))1/2- (AJMJAJK,)),1/2

m 2

(2 ^'V^i vi V ' l2VMll^IK!|-,|'c.
1/2 - 4 A(M)A (K )-C

2 m m 2 o

(a6.23)

which is true if

ll xii < (1 [a (MM]<\,<Ki> - co-2 c,)) + [(Am(M)Am(Kl))
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2A (M)[A (K )-1] - c )]1/2 (c +q +(1+o-2))1/2- (a (M)a (K ))
° 2 o m m 1

(2 VM>VK2>-| V2 ci> f ' <2AJMH*JK)-1l-c

1/2

1/2

m m 2 o
• -4 A (M)A (K )-c

Z M M 2 o

(a6.24)

where xT = [e,e]T. By virute of hypotehsis 06.13) and 06.21), the right hand
side of 06.23) is positive. V(x) is nonpositive. Besides,

I L llxll2 - V(x) a I L llxll2
Z m 2 M (a6.25)

From (a6.12), 06.23) and 06.25), we obtained if

ix(o)n < (^[AjMMJtAjK^-c^c^) + [(A (M)A (K

/

L
m

- «

r

L
M

•.

(2A (M)[A (K )-1] - cn)]1/2 (c9 +q +(1+a-2))1/2- (a (M)A (K ))1/2
m m 12 'o

(2 XJMK(KA V2 Ci> 1' (2A (M)[A (K )-1]-c )
m in 2 o

then, V(x) s V(x(0)) vt > 0
,2

1/2

V(x) <- pi2 iieji with (?i2 a positive constant.
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A (M)A (K )-C
M M 2 o

(a6.26)



APPENDIX - VII

A7.1 STABILITY ANALYSISOFSIGN-SIGN BASEDNONLINEARSLIDING OBSERVERAIDED

CONTROLLER STRUCTURE

To establish closed-loop system as exponentially asymptotically stable,

consider the following Lyapunov function candidate with eT = [e e ]T
1 2

V(e, x2 ) =2e] K^ +\ e\ M[xJ *2 +\ xl M(xi> x2 +e! M(xi' e2(a7-1)

Taking the time derivative of 07.1) along 4.75 and 4.76 and applying skew
symmetry properties i.e. 2 M -C = 0, we find.

V(e, x.

K K K

K K

K K K
C E F-"

+ x^ M(Xi) [r'- L1 sgn(x2) ?- L2 sgn(x2) sgnO^] It ll lie I
d 2

where Ka = AJM) AJK,) , Kb = \ [a^MJ-I] xJKJ - Cq- \ c,,
Kc = 2 Am(M) Am(K2»- VW' KD = 2 AJM) [Am(K2)-U - Co,

1 , ,»„. _ ... . 5 _ 1
K, =E Z M M 2AM(M) AM(K,
AJM) , |M(Xl)l s AJM), Am(Ki) , i^ll , Am(Ki), AJK2) , l,K2H ±XjKJ,

W S"re1ll£ AM(rel'' W *"V *V^), C, = NCfX^Dll *Cm UN.,

2 Co " 2 Cl» KF = C2 + % + <1+cr2),

ci HCtx^e^n , Cjle,ll, co HCfx^x^ii , Cjx «, q^ . a_{Q},
M 2

-i ,. -...«.« i
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V(e, x ) is negative definite if
(a7.3)

ll L ? + L ll £ H r ll
1 2

IIT II > 0
d

In the present case

V(e, x2 )a- Anf {Mte,)} He/ - It,!! le^ (a7'4)

where M(e ) is a function of tracking error e,. Using the upper bounds of Vand V
1 7 < (t»to form V/V, one can get lie/ a a lie (0)B e i , where

Ci =?1- \ KjM(e^))} neo„2 dx,. P_= P^W. VM)' ••.••lei1' leS
max

CI

(a7.5)

™*{ Am(Ki)( AJM), AJK2)} (a7>6)
A = TfnrTpriicxoM]7\jiryy

1 m 1 m m 2

For exponential stability , the following inequality must be satisfied:

C > 0; A {M(e)} > 0 for all t * 0;
1 inf 1

m 1

if A (M) A (K ) > 0 and
m ml

\2

{c0+.icr2«\-(MH,\.(Ki,J
"TJmT(2X^

(a7.7)
A (K ) >

hence, a. t {M(e)} > 0
inf I

Applying these inequalities eq.(9) is nonpositive and indicates that
augmented error eQ tends to zero asymptotically means e^0,e^ 0and x^Oas
t approach ». The" region of attraction is given by (a6.24, APPendix-VI).
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