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ABSTRACT

Exploiting parallelism is now a necessity to improve the throughput

of the computer systems. In terms of hardware, this typically means

providing multiple, simultaneously active processors. In terms of

software, it means structuring a program as a set of largely independent

subtasks. The structuring of a program is usually represented by a

problem graph. The nodes of the graph denote the subtasks of a program

and the links/arcs between them represent the precedence data relations

among the subtasks. Research is active in the direction of developing

new multiprocessor architectures and schedule the partitioned program

onto it in order to achieve higher execution speeds and/or increased

programming comfort.

The present work, reported in this thesis, is concerned with the

development of a new multiprocessor network, called a Linearly

Extensible Tree (LET) network and a dynamic scheduling scheme, named as

Minimum Distance Scheduling (MDS) scheme, for parallel execution of

tree-structured problems. In addition to this, simulation studies are

carried out to compare the performance of LET multiprocessor network and

the proposed scheduling scheme MDS with other similar multiprocessor

networks and related scheduling schemes available in literature, on

different types of problem graphs- general and tree-structured in

particular.

The model proposed is a linearly extensible tree (LET)

multiprocessor network, which exhibits the desirable properties of

similar types of multiproceesor networks. The LET network combines

linear extensibility with small number of processing elements per

extension. The network has lower diameter, hence reduces the average

path-length travelled by all messages and contains a constant degree per

node.

A dynamic scheduling scheme MDS has been developed, which forces

minimum distance constraint, based upon only the adjacency matrix

information of the LET network, and with relatively small overhead, it

oversees that the task arrives at the proper processor maintaining the

(i)



task relations even for grossly unbalanced problem graphs or In the
presence of failing nodes or links. This scheduling scheme is compared
with other available static and dynamic scheduling schemes in the
literature for implementation on LET network and other similar
multiprocessor networks for graph problems in general and
tree-structured problems in particular. The superiority of the developed
organisation i.e. LET network and MDS scheme on other existing
organisation such as Binary deBruijn Multiprocessor (BDM) network and

Round-Robin (R-R) scheme, BDM network and Minimum Load (ML) scheduling,
hypercube and Dimension Exchange Method (DEM) scheme, hypercube network
and Gradient Model (GM) scheme, and hypercube network and Hierarchical
Balance Method (HBM) has been established.

Performance of LET network has also been studied for problems
having an Acyclic Precedence Graph (APG) structures. In this connection

a static Latest Precedence Scheduling (LPS) algorithm has been developed
which runs faster compared to a similar other algorithm. The LPS

algorithm preserves minimum distance. Performance of LET under this
algorithm for APG'S has been tested and compared to other networks.

(ii)
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CHAPTER 1

INTRODUCTION

High speed computing is essential to modern research and

development as the demands for more and more computational power

continue to grow. We have started relying more and more on computer

simulation rather than on analysis or experimentation. A strong

high-performance computer industry is essential for a successful modern

economy. Critical security areas and a broad range of private sector

activities depend on high-performance computers.

Most of the computer performance improvements made so far, have

been based on technological developments. In fact the so called four

generations of computers are defined by improved technologies (from

tubes to VLSI). Semiconductor technology already has reached a point of

maturity that significant switching-speed improvements are difficult to

obtain. The fundamental limitation is the speed of light, because

electrons can not move faster than this speed limit. Thus the source for

increasing computing power must be looked for in an area other than

switching technology. This has forced the designers to embrace parallel

processing and to look for new architectural concepts that have the

capability of providing orders-of magnitude performance increases. It is

in this context that parallel processing plays a growing role in the

computer industry [58,71].

The basis of most high-performance computer systems, according to
r

Flynn's taxonomy!morgan], is the Multiple Instruction-stream and

Multiple Data-stream (MIMD) organization. These systems employ multiple



processors which execute Independent Instruction streams accessing data

autonomously. The design of such systems requires careful consideration

of the number of processors and their interconnection topology, besides

the proper choice of scheduling strategies for allocating the work.

Initial MIMD models often called multiprocessors, were based on the

shared memory concept where the processors were connected to a number of

memory modules to form a common global shared memory. However, such

models can produce severe memory contention problems when processors try

to access data residing on the same memory module. To overcome the

memory contention problem the distributed memory MIMD model was

introduced. In such a configuration the memory is distributed amongst

the processors, with each processor and its associated local memory

implemented on the same hardware device. If data needs to be accessed

from local memory of another processor, then it is transferred using the

interconnection network. Thus, the distributed MIMD model is scalable to

higher orders of parallelism compared to shared memory model. However,

the distributed model is associated with the overhead of interprocessor

communication.

1.1 PARALLELISM AS A CONCEPT

It was natural that the first efforts in parallel processing were

extensions of the sequential von Neumann Model [6]. The main techniques

used to extend the sequential von Neumann model to parallel

architectures are by employing the concept of 'Pipelining, Vector

processors, Array processors and Multiprocessors.

1.1.1 Pipelined processors :

The process of pipelining divides a task T into subtasks



T1,T2''-'TK and assi8ns tnem to a chain of processing stations. These

sections are called pipeline segment processors. Parallelism is achieved

when several segments operate simultaneously.

1.1.2 Vector processors :

Vector processors are specially designed to handle

computations formulated in terms of vectors. A vector processor has a

set of instructions that treat vectors as single operands. Since vectors

are one-dimensional arrays and the same sequence of operation is

repeated for every vector element, vector processing is ideally suited

to pipeline arithmatic.

1.1.3 Array processors :

The term array processor refers to a synchronous parallel

computer, in which the same instruction is performed on different data

that each processor fetches from its own memory. This is why this model

is sometimes called data-parallel model. The interconnection network

facilitates data communication among the processing units, memory

processing units and memories. This type of computer is also called

Single-Instruction-Multiple-Data (SIMD) computer. The source of

parallelism in SIMD computers is that one instruction operates on

several operands simultaneously.

1.1.4 Shared-memory multiprocessors:

Another way of introducing parallelism is to use several

processors, each including a control unit, an ALU, shared memory and I/O

modules. Communication between processors is via a common memory. Each

processor operates its own instruction stream, fetched either from the



local memory or from shared memory on the data fetched from the shared

memory. The interconnection network facilitates data exchanges between

processors, and between processor and shared memory.

1.1.5 Message passing multiprocessors:

In this model, the memory is distributed among the processors

such that each processor has its own program and data memory. The

communication of shared data is achieved via messages exchanged directly

between processors through an interconnection network. It has been shown

that this model is scaleable to several hundred, possibly thousands of

processor/memory units and that this is the defacto standard of high

performance parallel computers. However the design and optimisation of

the interconnection network in these large parallel machines is an area

that still requires considerable research and development.

Following terms are commonly used in multiprocessors:

a) Processor complexity - It refers to the CPU power and the internal

structure of each processing element. Processor complexity varies from

one architecture to another. Homogeneous systems - These systems have

all processors with identical capabilities. Heterogeneous systems -

These systems have processors which are not identical.

b) Mode of operation - It is a general term referring to both

instruction control and data handling. The traditional mode of operation

is command-flow, so called because the flow of events is triggered by

commands derived from instruction sequences. Another method is to

trigger operations as soon as their operands become available. This is

known as data-flow operation. In this case, the control is determined by

the availability of data. Yet another mode of control is demand-flow, in

>



which computations takes place only if their results are required by

other computations. Combinations of these control modes are also

possible.

c) Memory structure - It refers to the mode of operation and the

organization of computer memory. In some new computer models, such as

connectionist architecture and neural networks, memory consists of

interconnection weights that indicate how easily connection can be made.

In ordinary computers, memory organization and the size of the memory

files are closely related to data structure.

d) Interconnection network - It refers to the hardware connections among

processors and between processors and memories. The architecture of

interconnection network should match the algorithm communication

geometry as closely as possible. Computers with simple interconnection

networks are efficient only for a small number of algorithms, whereas

complex interconnection networks can be configured for a broad range of

applications. Of course, the price paid in this case is increased cost

and extra switching time.

e) Number of processors and memory size - It simply indicates how many

processors the parallel system contains and how large the main memory

is. In general, more processors provide more computing power which

enables the system to approach more complex problems. When the size of

the algorithm is greater than the size of the system, algorithm

partitioning is required. Algorithm partitioning may have undesired

side-effects, so ideally the number of processors should match the size

of the algorithm.



1.2 NEED FOR PERFORMANCE EVALUATION

Currently, one of the most Important issues in parallel processing

is how to effectively utilize parallel computers that have become

increasingly complex. It is estimated that many modern super computers

and parallel processors deliver only 10 percent or less of their peak

performance potential in a variety of applications. Yet high performance

is the very reason why people build complex machines.

The causes of performance degradation are many. Performance losses

occur because of mismatches among application, software, and hardware.

In complex systems, mismatches may occur among software modules or

hardware modules. The communication network bandwidth may not correspond

to the speed of the processor or that of memory introducing unwanted

latency.

Mapping applications to parallel computers and balancing parallel

processors is indeed a very difficult task, and the state of

understanding in this area is quite inadequate. Moreover, small changes

in problem size while using different algorithms or different

applications may have undesirable effects and can lead to performance

degradation.

The various indices responsible for system performance Include Load

Imbalance Factor (LIF) and communication overhead, the complexity of the

system and algorithm, efficiency of the system and speedup which are

measures of different aspects of a computer system's performance. It is

precisely in this area that the work presented in this thesis is based

and it will be shown that a Linearly Extensible Tree (LET) network with

high overall performance has been instantiated.
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1.3 MOTIVATION

A declarative machine project, known as CTDNet, is being undertaken

by the University Of Roorkee (India) in collaboration with University of

Westminster (U. K) supported by UGC (India) and British Council. The main

object of the project has been the development of an extensible parallel

machine to support functional programming languages. Some background of

the project, which has been the main motivation behind the work carried

out in this thesis, is given below.

The first phase, which was named CTDNet [20], introduced the

development of a reduction machine that was designed originally for a

Cube Type Distributed (CTD) multiprocessor. A CTDNet program is a binary

lambda graph in which every node represents an application expression.

The evaluation strategy was basically eager, which encouraged concurrent

computation, with lazy implementation of conditional and iteration

structures. One major criticism of CTDNet relates to its efficiency: in

simulation runs, the number of messages generated and the number of

process instantiations were very high. Another criticism is that* it had

no provision for modeling input/output within the lambda calculus

framework.

A later version CTDNet-2 was developed to overcome the shortcomings

of the original version [86]. This handles program expressions by graph

reduction rather than string reduction, which improved CTDnet-2's

performance. However, the major drawback in such networks is due to the

small grain size of the computation and the consequent heavy

communication overhead.

In an effort to overcome the short comings of the original CTDNet,

due to the development of supercombinators, which had a profound effect



on the design of the machine model and, not surprisingly, on CTDNet.

model as well, the latest version of CTDNet, known as CTDNet-3, was

developed with the main objective of increasing the grain size in order

to minimize the communication overheads.

For efficient implementation of functional language programmes

(which are mostly tree structured task graphs), on parallel machines,

apart from designing a parallel evaluation model, it is essential that a

suitable topology for processor interconnection coupled with appropriate

scheduling strategy is used and parallelism is exploited to the optimum

extent possible. Suitable topology and appropriate scheduling strategy,

referred to as an organization model, depends on various factors

including the dynamic behavior of the programs. In CTDNet project [86],

several types of networks were experimented for executing functional

programs such as shared bus, ring network, tree structure, hypercube,

de-Bruijn network etc., but the optimal network of any particular type

of architecture was not established.

The present work is motivated by the requirement for the design and

development of network model which can improve upon the results for

other networks experimented on. The proposed architecture has been

tested for binary, ternary and arbitrary task trees. Randomly generated

structured task graphs, which are most commonly generated out of the

functional language programs, have also been incorporated in the

simulation runs for testing the performance of organisation model.

1.4 STATEMENT OF THE PROBLEM

The complete work, as presented in this thesis, can be divided into

three parts. The first part is concerned with the design and development



of a tree structured network model. The main aim of this model is to

reduce the run time overheads and therefore reduce latency in the

interconnection network. The second part is concerned with the

development of a scheduling scheme that can maintain a highly balanced

load profile on the new network (LET) for tree structured problems and

randomly generated task graph structures. Repeated simulation

experiments have been performed to evaluate the performance of the

interconnection system. The third and the last part of the thesis

presents the implementation of different static/dynamic scheduling

schemes on the developed systems and compares it with various other

similar networks. A comparative simulation study has been carried out

and the superiority of the system is established.

1.5 ORGANIZATION OF THE THESIS

This thesis is organized as follows:

Chapter 2: Review of the multiprocessors architectures and

scheduling schemes. In this chapter the basic concepts and properties

of various tree-structured multiprocessor network has been discussed in

the first part. In the second part, a review of the scheduling schemes,

starting from the classification to the present scenario, based on tree

structured problems and the tree type architectures is presented.

Various factors influencing the run time overheads have been discussed.

* Chapter 3: Linearly extensible tree network. This chapter discusses

the design and analysis of a linearly extensible tree network and its

various properties followed by its comparision with the BDM and

hypercube.



* Chapter 4: Minimum distance dynamic scheduling scheme. Thin chapter

discusses different dynamic scheduling schemes suitable for tree type

networks. A new dynamic scheduling scheme called Minimum Distance

Scheduling (MDS) scheme has been described for LET network. The MDS

scheme has been implemented, through simulation, on the LET network and

other networks in order to confirm the performance of scheme.

* Chapter 5: Comparison of MDS scheme with other scheduling schemes.

In this chapter other scheduling schemes have been discussed briefly.

The MDS scheme along with these static/dynamic scheduling schemes have

been implemented on LET network. The concept of organisation model i.e.

the implementation of a scheduling scheme on a network has been

discussed in short and a comparison of proposed organisation model with

existing models has been done in the last.

* Chapter 6: Performance of LET for graph - structured problems. This

chapter addressed the issue of static scheduling for graph structured

problems. A static scheduling algorithm called latest precedence

scheduling for acyclic precendence graphs has been described. The scheme

has been implemented on the LET and other networks for graph structured

problems. Various simulation experiments carried out have been reported

here.

Chapter 7: Conclusion and future work. This chapter presents

conclusions and recommendations for future extensions of the work.
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CHAPTER 2

REVIEW OF MULTIPROCESSOR ARCHITECTURES AND SCHEDULING SCHEMES

Multiprocessing is the simultaneous execution of task on a parallel

asynchronous computer system. A parallel asynchronous computer is a

system whose active nodes are either processors or simple computers that

cooperate closely but independently. These are multiple-instruction

multiple-data stream (MIMD) computers. There are two basic

multiprocessor models: shared-memory and message-passing systems. The

shared-memory model provides a globally shared physical address space,

which is highly desirable from the programmer's point of view. However,

simultaneous access to shared-memory by many processors complicates the

design of such systems. In contrast, message-passing model provides

memory assoicated with each processor and data between processors is

passed through messages.

MIMD computers are suitable for a much larger class of computations

because they are inherently more flexible. This flexibility is achieved

at the cost of a considerable more difficult mode of operation.

The organisation of this chapter is divided in two parts. In the

first part of this chapter theory of shared memory and message passing

multiprocessor architecture has been discussed. The properties of

commonly used four multiprocessor architectures using Hypercube,

de-Bruijn, hypertree and hyper de-Bruijn networks have been explained in

detail. The second part of this chapter deals with basic definition and

various classifications of scheduling schemes. Finally a review of

different scheduling schemes on related multiprocessor networks has been
given.

11



2.1 MULTIPROCESSOR ARCHITECTURE

A multiprocessor system is a single computer incorporating a number

of independent processors that work together to solve a given problem.

Figure 2. 1 shows the relations among algorithm granularity, degree of

hardware coupling and communication mode, and the difference between

distributed and parallel processing. Distributed processing occurs when

hardware resources cooperate loosely to process jobs. Examples of

distributed processing are use of multiple-computers connected through

networks to solve different jobs. Whereas in parallel processing

hardware resources cooperate closely to process tasks simultaneously

[22,34,58,59,71].

JOB LEVEL

TASK LEVEL

PROCESS LEVEL

INSTRUCTION LEVEL

VARIABLE LEVEL

BIT LEVEL

DISTRIBUTED

SYSTEMS

PARALLEL

PROCESSING

SYSTEMS

ALGORITHMIC GRANULARITY

COMPUTER NETWORKS

MULTICOMPUTERS

MULTIPROCESSORS

HARDWARE

DEGREE OE COUPLING

MESSAGE

PASSING

SHARED

MEMORY

COMMUNICATION

MODE

Figure 2.1 Relation between algorithmic granularity and

multiprocessing systems.

There is an important difference between multiprocessors and

multiple computers. A multiple computer consists of several computers -

each with its own processor(s), memory, I/O and operating system,

whereas a multiprocessor system has only one operating system and its

processors share memory and I/O resources through an interconnection

12



network. As the number of processors Increases, the interconnection

network plays an important role in the overall performance of the

system. Multiprocessors can be classified as shared-memory systems or

message-passing systems.

2.1.1 Shared-memory systems

Multiprocessor architectures with shared-memory, also known as

tightly coupled systems, have complete connectivity between processors

and memory modules. A simplified block diagram of shared-memory systems

is shown in Figure 2.2. It consists of a set of n processor elements,

not necessarily identical, a set of m memory modules, and an

interconnection network. The primary memory may be centralized (m=l) or

partitioned into several modules. The common memory must be accessed by

all processors in the system [71].

Data exchange between processors and memories is frequent and

intense. The interconnection network is a potential bottleneck for these

systems. While memory contention (memory access conflict) has always

been a performance factor in uniprocessor systems, it becomes more

important in parallel shared-memory systems simply because of the need

of many processors to simultaneously access the same memory locations.

To decrease the communication traffic in the network and the chance of

memory contention, several alternative solutions exist. A local memory

(LM), directly accessed by the processor, may be placed near the

processor, thus reducing the number of memory requests through the

interconnection network. Also, a cache memory may be provided in order

to increase the memory bandwidth. A memory mapping (MM) unit is required

to decide which memory requests are local and which are global.

13



INTERCONNECTION NETWORK

Figure 2.2 Shared-memory systems

The major limitation of a shared-memory system is the possibility

of primary memory access conflicts. This restriction tends to put an

upper bound on the number of processors that can be effectively

incorporated in the system and supported by a single operating system.

Shared-memory systems are efficient for small to medium sized

mult iprocessors.

2.1.2 Message-passing systems

Message-passing systems, also known as loosely coupled systems,

consist of several computer modules and an interconnection network. Each

14



computer module has a processor, a memory and an I/O interface. Data

communication is carried out through messages, not through shared

variables as in the previous case. The length of message varies, but

usually each message consists of a number of fixed-size packets. Inter

computer communication follows a predetermined communication protocol.

Thus the active node in a message-passing system is a computer and the

degree is not as great as that of shared-variable systems [58,71] as

shown in Figure 2.3.

• • ©

Figure 2.3 Message-passing systems

Shared-memory models can perform message-passing primitives easily,

but the reverse is not true. This is because data structures are shared

among processors in the former model. Properties such as simplicity and

scalability make message-passing multiprocessors prime candidates for

very large systems. Message-passing systems are more efficient for

problems that can be partitioned into larger tasks that do not interact

very frequently.

15



2.2 MULTIPROCESSOR INTERCONNECTION NETWORKS

2.2.1 Interconnection organisation

As a result of increasing the number of functional modules in a

multiprocessor, the interconnection network becomes increasingly

complex. Examples of multiprocessor interconnection networks are -

time-shared or common buses, crossbar switches, multiport memories,

Hypercubes, meshes and multistage interconnection networks. The

multistage interconnection networks are feasible interconnections for

large multiprocessor systems. Multistage interconnections allow

processor-to-processor and processor-to-memory communications in a more

general way than the other organisations [46-48,58,59,71].

2.2.2 Network characteristics

Some important characteristics of a multistage interconnection

network are its mode of operation, switching technique, routing

technique and interconnection network topology [34,58,59,71].

(i) Operation modes

There are two basic modes of network operation: synchronous and

asynchronous. In the synchronous mode, the network is centrally

supervised. The connection paths are established simultaneously and

remain set until the control disconnects them. In the asynchronous mode,

connection paths are setup or disconnected on an individual basis. The

asynchronous mode of operation is more appropriate for multiprocessor

systems.

16
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(11) Switching techniques

There are three basic switching techniques: circuit switching,

packet switching and wormhole switching. Circuit switching sets up the

switches and ports and establishes a dedicated path between an

input-output pair. This technique is efficient for larger transmissions.

Packet switching refers to a technique in which messages between any two

terminals are broken into several shorter, fixed-length packets, which

are routed independently to their destination using store-and-forward

procedures. In wormhole switching a message is also broken into smaller

parts (called flits), as in packet switching; however, the difference is

that here all flits follow the same route. Compared with circuit

switching, packet switching is efficient for shorter and more frequent

transmissions.

(Hi) Routing techniques

The routing technique is the method of establishing communication

paths and resolving conflicts. Three basic routing techniques have been

considered: centralized, distributed and adaptive. In the centralized

routing scheme, a central control makes all the logic decisions needed

to setup communication paths. This scheme is more flexible for small to

medium scale systems. In the distributed scheme, logical decisions are

made locally, based on current conditions. In adaptive scheme,

information about the network is collected globally, but routing

decisions are made locally.

(iv) Interconnection network topology

The network topology is the way in which the switches are
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Interconnected. The topology is perhaps the most Important factor

determining network performance. The binary Hypercube having a robust

topology , is highlighted in the next section.

2.2.3 Hypercube interconnection network

Many interconnection structures for loosely-coupled multiprocessors

have been proposed in the literature. Examples includes: Binary tree,

Lattice structure, Flip net, Omega net, Indirect n-cube, de-Bruijn net,

Hypertree [9,37,40] and Hyper de-Bruijn network [37]. Some of the most

successful networks are based on the Hypercube.

The Hypercube represents a class of message-passing architectures

using cube (or exchange) interconnection topology. Hypercube networks

are some of the first and most successful commercial multiprocessors.

Each node in this network is connected through bidirectional,

asynchronous point-to-point communication channels to n other nodes. The

first Hypercube system was built at Caltech in the early 1980's as an

experimental parallel computer for scientific numeric computation

[22,58,61,71].

2.2.3.1 Hypercube topology

A Hypercube multiprocessor consists of 2n processors. Consecutively

numbered with binary integers using a string of n bits. Each processor

is connected to every other processor whose binary number differs from

its own by exactly one bit. The connection scheme places the processors

at the vertices of an n-dimensional cube. Hypercube interconnection

networks for n nodes varying from 1 to 4 are shown in Figure 2.4. The

Hypercube has the property that it can be defined inductively. A
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Hypercube of order 0 is a single node, and the Hypercube of the order

n+1 is constructed by taking two Hypercubes of order n and connecting

their respective nodes. Some important properties of this

interconnection used in parallel processing, are given below

[10,20,37,89] :

1) As the number of processor increases, the number of connection

wires and related hardware (such as ports) increases only

logarithmically, so that the systems with a very large number of

processors become feasible.

2) A Hypercube is a super set of other interconnection networks such

as rings, multistage cube network, trees etc. because these can be

embedded into a Hypercube by ignoring some Hypercube connections

[10,20,89].

3) Hypercubes are scalable - a property that results directly from the

fact that Hypercube interconnections can be defined recursively.

4) Hypercubes have simple routing schemes. A message-routing policy

may send a message to the neighbour whose binary tag agrees with

the tag of the final destination in the next bit position, with the

bits scanned in some order. The path length for sending a message

between any two nodes is exactly the number of bits in which their

tag bits differ. Numerous possible paths connecting any two nodes

exist; this redundancy can be used to enhance the communication

bandwidth and the fault tolerance of the Hypercube.

Hypercube nodes are usually identical. However, they do not have to

be identical as long as their message-routing protocols are the same. In

a heterogeneous system, some nodes may have special I/O or processing

capabilities [10,46-48,51,58,59,85].
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Figure 2.4 Hypercube interconnections

Hypercube computers have been contemplated since the appearance of

microprocessors in 1970's. The first Hypercube multiprocessor was built

and used at Caltech in 1983. Since then, interest in this type of

parallel computer has grown so fast that today there are several

companies offering a wide range of Hypercubes largely classified under

two generation of Hypercubes. The machine in the first generation
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include the Caltech Cosmic Cube, the Intel iPCS 1, the AMETEK System 14,

the NCUBE/ten and the Floating Point Systems T Series. Whereas the

second generation of Hypercubes began with the advent of some more

powerful message-passing schemes* in 1988. Representative machines of

this generation are the Intel iPSC 2 and AMETEK 2010 series. The main

characteristics of this generation are: 1) 32-blt processors with

integrated floating-point accelerators, 2) large node memory facilitated

by the availability of megabyte-chip RAM technology, and 3) message

routing that is performed in hardware and become invisible to programmer

[58,61,71]. The elimination of software overhead for message-passing,

coupled with the technological improvements in CPU and memory, has

improved the node performance by one or two orders of magnitude. s\
$0>j 'A

The disadvantage of this network from requirements point of view,

is that it is not truly expansible. Whenever the number of nodes grows

beyond a power of two, all nodes have to be changed since they have to

be provided with an additional port. Thus, the module of this network is

not constant predefinable building block. Moreover, a useful expansion

of this structure has to occur by doubling the number of nodes.

2.2.4 Basic concept of tree

A tree is an acyclic connected graph [32,70]. The following theorem

summarizes the basic properties of trees:

Let G(V,E) be a graph. Then G is a tree if and only if one of the

following properties holds:

1) G is connected and \E\ = \V\ - 1,

2) G is acyclic and \E\ = \V\ - 1,

3) There exists a unique path between every pair of vertices in G.
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The proof of this theorem is straight forward. An end point of a

tree is atree vertex of degree one. Anontrivial tree has from 2to |V|
- 1 end points. A center of a tree is a tree vertex of minimum

eccentricity. A tree has exactly 1 or 2 centers. A star is a tree of

diameter 1 or 2. An arbitrary acyclic graph is called forest.

Arooted tree is a tree in which a distinguish vertex V, calllas^
the root. The level of a vertex is defined as: vertices at a distance i

from the root lie at level (i+l); V itself lies at level 1. The height

of the rooted tree is defined as its maximum level.

We call onward a digraph a tree if its underlying undirected graph

is a tree in the sense; a vertex V is a root of a digraph G if there

are directed paths from V to every other vertex in G. A digraph is a

directed tree and contains a root; a vertex of outdegree zero is an end

point in a directed tree.

An ordered tree is a directed tree in which the set of children of

each vertex is ordered. A binary tree is an ordered tree in which no

vertex has more than two children. One of the children is called the

left child, while the other is called a right child. The sub tree rooted

at the left child of V is called the left sub tree of V, and the one at

the right is the right sub tree of V. In a complete binary tree, every

vertex has either two children or none. In a balanced complete binary
tree, every end point has the same level.

An N-ary tree is a generalization of binary trees where we allc

each vertex to have as many as N ordered children. In a complete

balanced N-ary tree, every end point hus the same level.

Low

Le
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2.2.4.1 Hypertree network

A hypertree network combines the best features of the binary tree

and the n-dimensional Hypercube [9,40,42]. The basic skeleton of

Hypertree is a binary tree structure, and as in the half-ring or

full-ring structures, additional links in Hypertree are horizontal and

connect nodes which lie in the same level of the tree. In particular,

they are chosen to be a set of n-cube connections, connecting nodes

which differ by only one bit in their address, shown in Figure 2.5.

Figure 2.5 Hypertree interconnections

The two underlying structures permit two distinct logical views of

the system. Problems which map particularly nicely onto a tree structure

can take advantage of the binary tree, while those that can use the

symmetry of the n-cube can be assigned to the processors in a way that

t
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efficiently uses the n-cube links. The regular structure allows the

implementation of simple routing algorithms, which require no detailed

knowledge of network interconnections. With relatively small additional

overhead, a routing algorithm can be constructed that is robust enough,

so that messages will arrive at the proper node even for grossly

unbalanced trees or In the presence of falling nodes or links. This is a

requirement for easy expansibility of the system and for graceful

degradation In the presence of communication hardware failures. The

network is readily expansible in an incremental way. All nodes have a

fix number of ports regardless of the size of the network.

2.2.4.2 Binary de-Bruijn Multiprocessor (BDM) network

The de-Bruijn Interconnection network has the property of a binary

tree folding onto itself giving the appearance of infinite depth

[82,83,90]. Let Q be a set of N identical processors, the topology then

can be defined in terms of two functions L and R, which map Q into Q.

The function L and R establish links from the processor P to the left

and right child processors L(P) and R(P), respectively, for each

processor P in Q. It turns out, as a result of the above definition,

that each processor has a connectivity of four in the network depicted

in Figure 2.6.

The network possesses a versatile topology. It admits an N-node

linear array, an N-node ring, (N-l) node complete binary trees etc. The

de-Bruijn networks are proven to be fault tolerant as well as

extensible.
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Interconnection scheme for eight processors

Undirected binary deBruijn graph

Figure 2.6 Binary de-Bruijn interconnections
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2.2.4.3 Hyper de-Bruijn network

The new class of graph called the Hyper de-Bruijn graph [37] have

the following properties:

1) These networks allows the construction of large networks with any

desired degree. In particular, 2n node network (for n*4) can be

designed to have any degree in the range of 4 to n.

2) These networks admit simple routing algorithms. They are flexible

and fault tolerant, scalable and partit'ionable.

3) These networks have many computationally important topologies as

sub networks, shown in Figure 2.7.

01

10 11

<l>
10

Figure 2.7 Hyper de-Bruijn interconnections

2.3 PROPERTIES OF AN INTERCONNECTION NETWORK

The selection of right topological layout for processing elements

requires the incorporation of some important topological properties.

These properties are listed below [37,40,47] :
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1) Worst case distances : One important measure of the power of an

interconnection network is the distance that message must travel in the

network. It is advantageous to make this parameter as low as possible,

since it will not only reduce traveling time for messages but also

minimize message density in the links.

2) Average distance : Of even more importance may be the average path

length travelled by all messages. In order to obtain a meaningful

comparison between different networks, some normalization has to be

made, in particular if networks between processors with different

numbers of ports per node are considered. With no limits on the number

of ports, a fully interconnected network could be designed, which would

lead to an average distance of one. For a constant communication

bandwidth per node, the bandwidth available through each port is then

B/p, where p is the number of ports and B is the total bandwidth

available from that processor [40].

Another factor influencing the average message path length is the

distribution of pairs of communicating nodes. In the absence of any

specific information about the communication patterns required by a

particular task, one might assume a uniform distribution in which all

nodes send messages with equal probability to all other nodes.

3) Routing algorithms : One of the desirable requirements for a large

network of processors is that messages can be routed by each

intermediate processor without total knowledge of all the details of the

network, since the storage of that information within each node can use

up an exorbitant amount of memory space. The requirement that this
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information be resident at each node also enormously complicate, the

process of modifying the network.

4) Message density : Another major goal in the design of an efficient

network topology is to distribute traffic as evenly as possible over all

existing links.

5) Expansibility : Among the importint parameters of the network are

its modularity and expansibility, and specifically the smallest

increment by which the system can be expanded in a useful way It is

generally unreasonable to demand that a system must remain balanced in

all stages of expansion. Since this may imply that its size must be

increased in large steps, i.e. powers of two.

6) Fault tolerance : The requirements for fault tolerance have greatly

increased in recent years as systems have become increasingly complex.

Certainly, an important feature of structures is that it must continue

to work correctly, although perhaps with reduced performance, when one

or more components have failed. Specifically, we expect such a system to

continue to operate properly in the presence of failure of a single link

or even a single node with all its attached links, as long as that

particular node is not involved in the computation, i.e. the node is

neither the source nor the destination for any messages [40,42].

When problem structure is such that it recursively decomposes

itself into identical subproblems, it is natural to select an

interconnection network which can be viewed as a virtual tree structure

of arbitrary depth.
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In addition to designing an appropriate network, the efficient

management of parallelism on an interconnection network involves

optimizing conflicting performance indices, like the minimization of

communication and scheduling overheads and uniform distribution of load

among the processors. Such issues are addressed at the organisational

level by appropriate scheduling mechanisms. An introduction and a review

of the scheduling schemes follows in the next section.

2.4 REVIEW OF SCHEDULING SCHEMES

2.4.1 Introduction

In response to ever-growing need for speeding up computationally

intensive tasks, a number of parallel computer architectures, where

several processing elements are connected by an interconnection network,

have been proposed. Most of these architectures may be classified into :

(a) Dedicated architectures which aim at maximizing the achievable

performance for a particular task or a class of similar tasks. There

usually exists relatively little room for optimizing the assignment of

decomposed sub tasks on these architectures, and (b) General purpose

architectures, which provide a good average performance for a broad

range of tasks. Therefore, scheduling becomes an important problem for

such type of architectures, since it has a substantial effect on the

system performance and utilization [14-17,25,57]. To determine which

task module of a parallel program has to be executed on which processor

of a multiprocessor system, so as to minimize the total execution time

of the program is a classical multiprocessor scheduling problem

[23,29,30,36,77].
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The scheduling problem assumes a set of processors and a set of

tasks (jobs) which are to be serviced by these processors according to a

specific policy. Depending on the nature and constraints of the tasks as

well as of the processors, the problem is to find an efficient policy

for managing the access to and alternatively the use of processors by

various tasks to optimize some desired performance measure. To

effectively exploit a more powerful computing facility of a

multiprocessor, the architecture of the processor network and the

problem structure both should be studied separately for the

consideration of scheduling policy.

The basic scheduling theory, classification and existing scheduling

schemes are now described.

2.4.2 Definitions

The core of all the efforts to exploit the potential power of

distributed computation are the issues related to the management and

allocation of system resources relative to the computational load of the

system. The general scheduling problem has been described a number of

times and in a number of different ways [28,39,59,100] and is usually a

restatement of the classical notions of job sequencing in the study of

production management. For the purposes of distributed process

scheduling, the broader view of the scheduling function is taken as a

resource management which is basically a mechanism or policy used to

efficiently and effectively manage the access to and use of a resource

by its various consumers. Hence, the scheduling problem may be viewed as

consisting of the following three main components :
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1) Consumer(s).

2) Resource(s).

3) Scheduler and Policy.

One can observe the behavior of the scheduler in terms of how the

policy affects the resources and consumers. The scheduler may be viewed

in terms of how it affects either or both resources and consumers. This

relationship between the scheduler, policies, consumers, and resources

is show in Figure 2.8.

Consumers

Scheduler

ResourcesPolicy

Figure 2.8 Scheduling system

One by-product of the general scheduling problem is the unification

of the two terms in common use in the literature [10,23,53,59,84]. There

is often an implicit distinction between the terms scheduling and

allocation. However, it can be argued that these are merely alternative

formulations of the same problem, with allocation posed in terms of

resource allocation (from the resources point of view), and scheduling

viewed from the consumers point of view. Thus, allocation and
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scheduling are merely two terms describing the same general mechanism,

but described from different view points.

When considering the decision-making policy of a scheduling system,

there are two fundamental components: responsibility and authority. When

responsibility for making and carrying out policy decisions is shared

among the entities in a distributed system, we say that the scheduler is

distributed. When authority is distributed to the entities of a resource

management system, we call this decentralized. This differentiation

exists in many other organization structures. Any system which possesses

decentralized authority must have distributed responsibility, but it is

possible to allocate responsibility for gathering information and

carrying out policy decisions, without giving the authority to change

past or make future decisions.

The terms dynamic scheduling and adaptive scheduling are quite

often attached to various proposed algorithms in the literature

[25,59,84] but there appears to be some confusion as to the actual

difference between these two concepts. The more common property to find

in a scheduler (or resource management subsystem) is the dynamic

property. In dynamic situation, the scheduler takes into account the

current state of affairs as it perceives them in the system. This is

done during the normal operation of the system under a dynamic and

unpredictable load. In an adaptive system, the scheduling policy itself

reflects changes in its environment. The difference here is one of level

in the hierarchical solution to the scheduling problem. Whereas a

dynamic solution takes environmental inputs into account when making its

decisions, an adaptive solution takes environmental stimuli into account

to modify the scheduling policy itself.
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2.4.3 The classification scheme

The usefulness of the four-category taxonomy of computer

architecture presented by Flynn [23] has been well demonstrated by the

ability to compare the systems through their relation to that taxonomy.

The goal of the taxonomy given here is to provide a commonly accepted

set of terms and to provide a mechanism to allow comparison of past work

in the area of distributed scheduling in a qualitative way. In addition,

it Is hoped that the categories and their relationships to each other

have been chosen carefully enough to indicate areas in need of future

work as well as to help classify future work.

The taxonomy will be kept as small as possible by proceeding in a

hierarchical fashion for as long as possible, but some choices of

characteristics may be made independent of previous design choices, and

thus will be specified as a set of descriptors from which a subset may

be chosen. The taxonomy, while discussed and presented in terms of

distributed process scheduling, is applicable to a larger set of

resources. In fact, the taxonomy could usefully be employed to classify

any set of resource management systems. However, the attention is

focused on the area of process management since it is in this area which

we hope to drive relationships useful in determining potential areas for

future work.

2.4.3.1 Hierarchical classification

The structure of the hierarchical portion of the taxonomy is shown

in Figure 2.9. A discussion of the hierarchical portion then follows.

1) Local versus Global: At the highest level, we may distinguish between

local and global scheduling. Local scheduling is involved with the
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assignment of processes to the time-slices of a single processor. Since

the area of scheduling on single processor systems [25,28,84] as well as

the area of sequencing or job-shop scheduling [20,29,53,84] has been

actively studied for a number of years, this taxonomy will focus on

global scheduling. Global scheduling is the problem of deciding where to

execute a process, and the job of local scheduling is left to the

operating system of the processor to which the process is ultimately

allocated. This allows the processors in a multiprocessor environment to

work -with increased autonomy while reducing the responsibility (and

consequently overhead) of the global scheduling mechanism. It may be

noted that this does not imply that global scheduling must be done by a

single central authority. Rather, the problems of local and global

scheduling view as separate issues, and (at least logically) separate

mechanisms are at work solving each of them.

2) Static versus Dynamic: The next level of hierarchy (beneath global

scheduling) is a choice between static and dynamic scheduling. This

choice indicates the time at which the scheduling or assignment

decisions are made.

a) Static scheduling : In the case of static scheduling, information

regarding the total mix of processes in the system as well as all the

independent subtasks involved in a job or task force, is assumed to be

available by the time the program object modules are linked into load

modules. Hence, each executable image in a system has a static

assignment to a particular processor, and each time that process image

is submitted for execution, it is assigned to that processor. A more

relaxed definition of static scheduling may include algorithms that
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schedule task forces for a particular hardware configuration. Over a

period of time, the topology of the system may change, but

characteristics describing the task force remain the same. Hence, the

scheduler may generate a new assignment of processes to processors to

serve as the schedule until the topology changes again. This can be

further subdivided into the following:

Optimal versus Sub-optimal: In the case that all information regarding

the state of the system as well as the resource needs of a process are

known, an optimal assignment can be made based on some criterion

function [10,15,84]. Examples of optimization measure are minimizing

total process completion time, maximizing utilization of resources in

the system, or maximizing system throughput. In the event that these

problems are computationally not feasible, sub-optimal solutions may be

tried [66,84]. Within the realm of sub-optimal solutions to the

scheduling problem, we may think of two general categories.

Approximate versus Heuristic: In approximate scheduling we use the same

formal computational model for the algorithm, but Instead of searching

the entire solution space for an optimal solution, one is satisfied when

we find a good one. These solutions are categorized as

suboptimal-approximate. The assumption that a good solution can be

recognized may not be so significant, but in the cases where the metric

is available for evaluating a solution, this technique can be used to

decrease the time taken to find an acceptable solution (schedule).

The second branch beneath the sub-optimal category is labeled

heuristic [23,84]. This branch represents the category of static
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algorithms which make the most realistic assumptions about a priori

knowledge of the concerned process and system loading characteristics.

It also represents the solution to the static scheduling problem which

require the most reasonable amount of time and other system resources to

perform their function. The most distinguishing feature of heuristic

schedulers is that they make use of special parameters which affect the

system in indirect ways. Often, the parameter being monitored is

correlated to system performance in an indirect way rather than a direct

way, and this alternate parameter is much simpler to monitor or

calculate.

Optimal versus Sub-optimal Approximate techniques : Regardless of

wheather a static solution is optimal or sub-optimal approximate, there

are four basic categories of task allocation algorithms which can be

used to arrive at an assignment of processes to processors :

1) Solution space enumeration and search [93]

2) Graph theoretic [42,69,97]

3) Mathematical programming [14,17,67,83]

4) Queuing theoretic [17,18].

The graph theoretic technique uses a graph to represent a task, and

applies the minimal-cut algorithm to the graph to get the task

assignment with minimum interprocessor communication. The mathematical

programming approach formulates task assignment as an optimization

problem, and solves it with mathematical programming techniques.

b) Dynamic scheduling: In the dynamic scheduling problem, the

realistic assumption is made that very little a priori knowledge is

37

more



available about the resource needs of a process. It is also unknown that

in what environment the process will be executed during its lifetime. In

the static case, a decision is made for a process image before it is

ever executed, while in the dynamic case no decision is made until a

process begins its life in the dynamic environment of the system. Since

it is the responsibility of the running system to decide where a process

is to execute, it is only natural to next ask where the decision itself
is to be made.

Distributed versus Non-distributed: Dynamic scheduling is further

subdivided into distributed and non-distributed scheduling. In

distributed scheduling the work involved in making decisions is

physically distributed among the processors [22,23,54,84 1, whereas in

non-distributed scheduling the responsibility for the task of global

dynamic scheduling physically resides on a single processor

[2,71,77,87]. Here the concern is with the logical authority of the

decision-making process.

Cooperative versus Non-cooperative: Within the realm of distributed

dynamic global scheduling, we may also distinguish between those

mechanisms which involve cooperation between the distributed components

(cooperative) and those in which the individual processors make

decisions independent of the actions of the other processors

(non-cooperative). Here the degree of autonomy is the parameter which

each processor has in determining how its own resources should be used.

In the non-cooperative case individual processors act alone as

autonomous entities and arrive at decisions regarding the use of their
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resources independent of the effect of their decision on the rest of the

system. In the cooperative case each processor has the responsibility to

carry out its own portion of the scheduling task, but all processors are

working towards a common system-wide goal.

As in the static case, the taxonomy tree has reached a point where

we may consider optimal, sub-optimal approximate, and sub-optimal

heuristic solutions. The same discussion as was presented above for

static case applies here as well.

In addition to the hierarchical portion of taxonomy already

discussed, there are a number of other distinguishing characteristics

which scheduling systems may have. The following sections which do not

fit uniquely under any particular branch of the tree-structured taxonomy

given so far, are presented here as a flat extension to the scheme, but

are still important in the way that they describe the behavior of the

scheduler. The placement of these characteristics near the bottom of the

tree is not intended to be an indication of their relative importance or

any other relation to other categories of the hierarchical portion.

Their position are primarily to reduce the size of the description of

the taxonomy.

2.4.3.2 Flat classification characteristics

1) Adaptive versus Non-adaptive: An adaptive solution to the scheduling

problem is one in which the algorithms and parameters used to implement

the scheduling policy change dynamically according to the previous and

current behavior of the system in response to previous decisions made by

the scheduling system. In contrast to an adaptive scheduler, a

non-adaptive scheduler would be one which does not necessarily modify
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its basic control mechanism on the basis of the history of the system

activity. An example of the nonadaptive scheduler would be the one which

always weighs its inputs in the same way regardless of the history of

the systems behavior.

2) Load Balancing: This category of policies, which has received a great

deal of attention recently [10,11,16,26,36,44,60,65], approaches the

problem with the philosophy that being fair to the hardware resources of

the system is good for the users of that system. The basic idea is to

attempt to balance the load on all processors in such a way as to allow

progress by all processes on all nodes to proceed at approximately the

same rate. This solution is more effective when the nodes of a system

are homogeneous since this allows all nodes to know a great deal about

the structure of the other nodes. Normally, information would be passed

about the network periodically or on demand [6,15,41,56,89], in order to

allow all nodes to obtain a local estimate concerning the global state

of the system. Then the nodes act together in order to remove work from

heavily loaded nodes and place it at lightly loaded nodes. This is a

class of solution which relies heavily on the assumption that the

information at each node is quite accurate in order to prevent processes

from endlessly being circulated about the system without making much

progress. Another concern here is deciding on the basic unit used to

measure the load on individual nodes.

3) Bidding: In this class of policy mechanisms, a basic protocol

framework exists which describes the way in which the processes are

assigned to processors. The resulting scheduler is one which is usually
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cooperative in the sense that enough Information is exchanged (between

nodes with tasks to execute and nodes which may be able to execute

tasks) so that an assignment of tasks to processors can be made which is

beneficial to all nodes in the system as a whole. A wide variety of

possibilities exist concerning the type and amount of information

exchanged in order to make decisions [1,18,23,84]. Each node in the

network is responsible for two roles with respect to the bidding

process: manager and contractor. The manager represents the task in need

of a location to execute, and the contractor represents a node which is

able to do work for other nodes. A single node may take on both of these

roles, and that there are no nodes which are strictly managers or

contractors alone. The manager announces the existence of a task in need

of execution by a task announcement, then receives bids from the other

nodes (contractors). The amount and type of information exchanged are

the major factors in determining the effectiveness and performance of a

scheduler employing the notion of bidding. A very important feature of

this class of schedulers is that all nodes generally have full autonomy.

4) Probabilistic: This classification has existed in scheduling systems

for some time [6,29,41,50,56]. The basic idea for this scheme is

motivated by the fact that in many assignment problems the number of

permutations of the available work and the number of mappings to

processors so large, that in order to analytically examine the entire

solution space would require extremely large amount of time. One of the

solutions is to randomly choose some process as the next to assign.

Repeatedly using this method, a number of different schedules may be

generated, and then this set is analyzed to choose the best from among
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those randomly generated. An alternative view of probabilistic

schedulers are those which employ the principles of decision theory in

the form of team theory [23,84]. These would be classified as

probabilistic.

5) One-Time Assignment versus Dynamic Reassignment: In this

classification, we consider the entities to be scheduled. If the

entities are jobs in the traditional batch processing sense of the term

[17,20,23], then we consider the single point in time In which a

decision is made as to where and when the job is to execute. While this

technique technically corresponds to a dynamic approach, it is also

static in the sense that once a decision is made to place and execute a

job, no further decisions are made concerning the job. We would

characterize this class as one-time assignment. In this mechanism, the

only information usable by the scheduler to make Its decision is the

information given to it by the user or submitter of the job.

In contrast, solutions in the dynamic reassignment class try to

improve on earlier decisions by using information on smaller computation

units the executing subtasks of jobs or task forces. This adaptation

takes the form of migrating processes (including current process state

information).

The general scheduling problem consist of efficiently scheduling or

assigning program (tasks) to the processors in a multiprocessor system.

The performance of the system depends basically on mapping of the tasks

to processors and then distribution of the tasks to each processor (load

balancing). Therefore, these schedul ng problems can be classified

according to the structure of the program (problem structure) and the
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architecture of the processors (topology of the network) to which they

are scheduled. There are different problem structures and various

architectures reported so far. Some important structures and

architectures are discussed here.

2.5 PROBLEM STRUCTURES

The various configurations involved in the problem structure are

[42,69,72], shown in Figure 2.10, is listed below.

(a) chain structure

(b) ring type

(c) up-rooted and down rooted tree

(d) mesh type and

(e) precedence type.

These problem structures may be again different in nature which may

be the following :

(1) tasks having different execution time.

(2) number of tasks are arbitrary.

(3) inter-task data transfer are difficult and non-negligible and

(4) task precedence relations are not constrained.

2.6 MULTIPROCESSOR ARCHITECTURES

The various topologies of the processors (system architecture) upon

which scheduling of various problem structures have been studied are

shown in Figure 2.11, and are discussed below.

Regular networks are divided into static and dynamic networks. In

static network topologies, the example networks [34] are shown in Figure

2.12.
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(a) LINEAR CHAIN

(b) DOWN-ROOTED TREE

(c) UP- ROOTED TREE

(d) MESH

Figure 2.10 Various problem structures
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*

Linear array

* Ring

* Star

* Tree

* Near-neighbor mesh

* Systolic array

* Completely connected

* Chordal ring

* 3-cube

* 3 cube connected cycle etc.

In dynamic network topologies, the example networks are:

Single stage

* Multistage

* Cross bar etc.

Among the better known networks, on which much work has been done

in particular to allow multiple, simultaneous connections between

processor banks and memory banks to permit sharing of data or concurrent

cooperation on the same tasks, are lattice structure, the flip net, the

omega net, the indirect n-cube, the p-rfect shuffle, the augmented data

manipulator, the deBruijn network, the generalized connection network,

the Banyan partitioner, and the n-cube network [38,40,60]. It is

understood that one of the chief properties of many of these networks is

the efficient interconnection of nodes in the n-dimensional Hypercube,

or n-cube configuration. Connecting all the processors in a Hypercube

topology, the hardware complexity increases as the network size grows,

whereas in deBruijn network merits for such situations, because number
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(a) LINEAR ARRAY

(d) TREE

(b) RING

^^

9-°-
(e) NEAR-NEIGHBOR

MESH

(q) COMPLETELY CONNECTED (h) CHORDAL
* RING

(j )3-CUBE CONNECTED
CIRCLE

(f) SYSTOLIC ARRAY

(D3-CUBE

Figure 2.12 Examples of some network topologies
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of connections per processor is limited to Four, and does not increase

with the size of the network [40,72,75,79]. The n-cube is particularly

compact. Whenever the number of nodes grows beyond a power of two, all

nodes have to be changed since they have to be provided with an

additional port. An expansion of this structure has to occur by doubling

the number of nodes. An incompletely populated n-cube lacks the above

mentioned properties which make it attractive in the first place and

also due to the fact that it is not truly expansible. Tree structures,

on the other hand, are expansible in a natural way, and even unbalanced

trees still retain most of the properties that make trees attractive

[38,40,42]. If the number of ports per node has to be limited, a binary

tree structure, requiring only Three ports per node, looks particularly

attractive [33,38]. For effective cooperation of several processors on

the same task, or for fast access to distributed data, high

communications bandwidth is typically required. If all processors are

simply connected onto one and the same bus, this shared resource becomes

a bottleneck preventing simultaneous communication between different

pairs of processors, and the effective throughput of the system may

actually go down as the number of processors is increased. A suitable

interconnection network is thus needed which provides as much bandwidth

as possible between any pair of processors. One possible approach is to

combine one processor and its memory with one node of the switching

network, thus creating a regular network.

2.7 CLASSIFICATION OF SCHEDULING ALGORITHMS

Rawlins [84] has reported the following six natural kind of

algorithms.
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(1) Classical algorithm:

- May be very slow

- Never lies

- Always stops

- Always predictable

- Doesn't use random numbers

(2) Heuristic algorithm:

- Always fast, if it stops

- May not solve the problem (usually this is dependent on the

input and the condition lc usually difficult to check)

- May not stop

- May not be predictable

- Sometimes uses random numbers.

(3) Approximation algorithm:

- Always fast

- Gives a near answer to the proposed problem, or the answer to

a near problem

- Always stops
»

- Always predictable

- May use random numbers

(4) Randomized algorithm:

- Usually fast

- Never lies

- Always stops- Usually unpredictable (often uses sampling)

- Uses random numbers
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(5) Probabilistic algorithm:

- Always fast

- Usually tells the truth

- Always stops

- May be unpredictable

- May use random numbers

(6) Ergodic algorithm:

- Always fast, if stops

- Usually tells the truth

- May not stop

- Unpredictable (each repetition is independent)

- Uses random numbers

There are so many variants involve, which are responsible for

optimizing the mapping and load balancing and hence finally improve the

performance of the multiprocessor system. The difficulty of solution

varies with inclusion or exclusion of pre-emption, network topology,

the number of parallel processors, cardinality, communication-overhead,

precedence constraints etc. Surveys of the rapidly expanding area of

deterministic scheduling theory and task allocation are given in

[25,51,52,84],

C. Shen and W Tsai [93], used an optimal, enumerative approach to

the task assignment problem. The criterion function is defined in terms

of optimizing the amount of time a task will require for all

interprocess communication and execution, where the task submitted by

users are assumed to be broken into suitable modules before execution.
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The cost function is called a mlnimax criterion, since it is Intended to

minimize the maximum execution and communication time required by any

single processor involved in the assignment. Graphs are then used to

represent the module to processor assignments. The algorithm is used to

find the optimal search of this solution space and to achieve a certain

degree of processor load balancing also.

The model presented by Ma et. al. [67], considers an optimum

mathematical programming formulation employing a branch and bound

technique to search the solution space. The goals of the solution are to

minimize interprocessor communications and balance the utilization of

all processors. The model given defines a cost function which includes

interprocessor communication cost and processor execution costs. The

assignment is then represented by a summation of all costs incurred in

the assignment. The algorithm then used to search the solution spaces

(consisting of all potential assignments) is derived from the basic

branch and bound technique.

In case of dynamic solutions, a more realistic assumption is made

that very little a priori knowledge is available about the resource

needs of a process. Unlike the static case, no decision is made for a

process before it is executed [25]. A dynamic programming is applied to

schedule program tasks, with no consideration to inter-task

communication, on to multiprocessor system [72]. Even for two

processors, this approach failed when number of tasks involved exceeds

50. Using the max-flow min-cut strategy, gives an algorithm for optimal

scheduling of program modules or tasks, without precedence constraints,

on to a two processor system. Extension of this approach to three or

more processors does not appear to be feasible.



An efficient 0(n) algorithm was developed by Hu [49], where the

task processing time is equal and the task graph is tree shaped. For

arbitrary precedence among the tasks, then Coffman and Graham [27]

presented an 0(n2) algorithm for two processors. If any of these

restrictions are relaxed then the problem becomes NP-hard.

A mapping strategy is proposed by Lee and Aggarwal [57], using

communication overhead as an objective function to evaluate the

optimality of mapping a problem graph on to a system graph assuming all

program tasks to be identical and the number of tasks to be less than or

equal to the number of processors in the system. The strategy in which

all problem nodes are activated simultaneously i.e. in the same phase,

tested using Hypercube as system graph. They tried to achieve good

initial assignment and then employ a pair wise exchange method to

optimize the assignment. In extension of their work, Aggarwal and

Chaudhary [25], developed a generalized mapping scheme which shows the

concept of pseudo processors for achieving a deadlock free mapping and

reducing communication overheads for generalized system. Recently a

heuristic algorithm for scheduling parallel program tasks, onto arbitrary

multiprocessor topology assuming non-negligible inter processor

communication has been proposed. However, their algorithm does not

guarantee contention-free communication.

Bokhari [14-17], describes a mapping scheme assuming no cardinality

variation. The objective function is the number of edges of the problem

graph that fall on the edges of the system graph. Therefore, the

objective function takes into account only the matched edges

(cardinality). However, the unmatched edges may, in some cases,

determine the systems performance. The problem graph edges are also
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assumed to be Identical, although In general they could have different

traffic intensities, represented as weights.

Another simplifying assumption is made in the quadratic assignment

problem [43]. The objective function is the sum of products of the

weights of problem edges and the distance of the corresponding system

edges for all problem edges i.e. the sum of communication overheads of

all problem edges, which seems to be a reasonable measure. However, this

measure does not specify exactly what is to be minimized (maximized) in

parallel processing application. Moreover, the actual distance of the

system edges is not really Independent of the problem graph unless the

problem edges share none of the system edges [51]. McDowell and Appelbe

[69] discuss the problem of assigning processes to the processors

interconnected as a ring. The problem graphs are restricted to binary

trees, and a heuristic algorithm is suggested to minimize the

communication delays. A tight, necessary condition for finding

assignments of program fragments to linearly connected processors that

require no communication delays, is presented.

Ravikanth et al [82,83], proposed the properties of ideal

performance in a multiprocessor system, to reduce communication over

head, scheduling over head and distribution of load among processors.

Selecting an interconnection network, for applicative programs, which

turns out to be deBruijn graph [82]. They considered the following

properties for performance enhancement :

* Minimum distance property.

* Static scheduling.

* Minimum load imbalance.

Restricting to the above properties, their architecture minimizes
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communication overhead for a class of applicative programs that unfolds

as complete binary tree and the network achieves an Ideal performance

using simple static scheduling mechanism. They concluded that tho

performance can not be improved by dynamic policy, which la more complex

and incurs higher overheads. They showed that for arbitrary tree

structures, the network is able to achieve a fairly good distribution of

tasks using static scheduling. The performance of the network improves

as the problem size grows larger.

In modification to this scheme, Reddy [86] proposed a scheduling

scheme and named it as minimum-load scheduling. In the Ravikanth's

scheme, when an arbitrary tree structui e is mapped onto the network, the

difference in the number of tasks scheduled on left and the right

processors may be more than one. This anomaly has cumulative effect of

increasing the load among the processors as the size of the tree

structure increases. To improve the performance, while scheduling

arbitrary tree structures, a better approach would be to exchange the

information with the immediate neighbours before scheduling a task.

Implemented on de-Bruijn and QDM networks, this scheme shows better

results for tree structured task graphs.

There have been other efforts to configure interconnection networks

to execute binary tree task structures. Martin [68] proposed the twisted

torus, which is modification of hyper torus. Sequin [91] further

modified it to obtain the doubly twisted torus. These networks, through

a static scheduling strategy, distribute binary trees assigning tasks at

level 'k' of the tree unevenly among 'k+1' processors. Since the number

of tasks at a level are related exponentially to the level number, these

networks don't achieve optimal performance.
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In another effort, Reeves et.al [103] reported five dynamic load

balancing strategies which illustrate the trade off between 1)

knowledge-the accuracy of each balancing decision, and 2) overhead -

the amount of added processing and communication incurred by the

balancing process. The Sender (Receiver) Initiated Diffusion strategies

are asynchronous schemes which only uses near-neighbour information. The

Hierarchical Balancing Method organizes the system into a hierarchy of

subsystems within which balancing is performed independently. The

Gradient Model employs a gradient map of the proximities of underloaded

processors in the system to guide the migration of tasks between

overloaded and underloaded processors. Finally, the Dimension Exchange

Method requires a synchronization phase prior to load balancing and then

balances iteratively.

Rommel [87] by using another approach, reported a general formula

for the probability of unequal load distribution in the system. This

probability can be used to define the likelyhood of load balancing

success in a distributed system. The work is divided into one regarding

information passing, and a second regarding actual distributed

scheduling algorithm. The approach for information passing include:

sender directed, receiver directed bidding and focused addressing .The

algorithm is based on the modification of Livny & Melmans probability

approach which is extended to consider a generalized server [65]. For

obtaining better load balance, another powerful mapping technique known

as Scatter Decomposition exists, which uses probabilistic model of work

load in one dimension [75]. It has been shown that scatter

decomposition minimizes the average processor work load variance and

thus better load balance.
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Recently, Barmon et al [7] reported a dynamic load balance

algorithm in a distributed computer system. Considering N identical

processors connected through a reliable and bi-directional communication

links. The processors maintained two Q's for tasks, as ready Q and local

Q. The algorithm distributes the tasks through a local processor or

transferred for processing to a neighboring processor via a reliable

communication network to the entire system. The performance of the

system is measured in terms of its overall response time and the

simulation results suggest that these algorithms perform well by

utilizing the design parameters properly. The problem of load

redistribution in a distributed system is recognized as load balancing.

In their attempt, Hwa-Chun Lin and C. Raghavendra [62] proposed a

dynamic load balancing policy with a central job dispatcher. The design

of the policy is motivated by the operation of a single Q multiserver

Queuing system and gave best result for small job transfer delays. A

modified M\M\N model of queuing system gave the accurate estimate of

average response time for mean Job transfer delays.

Research in last decade has given a number of task scheduling

algorithms for multiprocessing system including, First Come First Serve

(FCFS), Shortest processor Time First (STF), Smallest Memory requirement

First (SMF), Non-Scheduling (NS), Random Scheduling (RS), Arrival

Balanced Scheduling (ABS), End Balanced Scheduling (EBS) and Continual

Balanced Scheduling (CBS), for both, static and dynamic scheduling [12].

The above algorithms have different performance for different

applications but if the number of application tasks is greater than

twice the number of processors, CBS and EBS out perform the other

schedulers.

56

H



From the above review, it is apparent that myriad of multiprocessor

scheduling strategies exist which can be applied to specific structure

of programs and specific system architectures. An optimal scheduling can

be made based on some objective functions to enhance the performance of

overall system [7]. The objective functions mostly reported include

communication overhead and load balancing among the processors

[25,57,82,83,86]. Several researchers have categorically worked on these

two aspects to achieve optimal solution [82,83,86].

The scheduling schemes reported by Ravikanth et. al. .[82], Reeves

et. al. [103], and by Reddy [86] consider the- same performance indices

are implemented on the similar type of networks. In the next chapter a

Linearly Extensible Tree (LET) multiprocessor network has been proposed

and analysed and the properties of this network has been compared with

similar networks.
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CHAPTER 3

LINEARLY EXTENSIBLE TREE NETWORK

The demand for higher and higher computation speed and the signs of

saturation in integrated circuit technology has given a filip to the

development in multiprocessor systems. The multiprocessing approach to

parallelism is the most generalized and flexible one, but to a great

extent its success depends on interconnection topology. To this day,

the problem of interconnecting processors to achieve high computation

bandwidth and scalable parallelism has not been fully solved. The choice

of the topology of the interconnection network is critical in the design

of massively parallel computer systems. For this reason, a plethora of

interconnection network proposals have appeared in the literature, and

an enormous amount of research has centered on the design and analysis

of these networks [42]. Motivated from the above discussion, a new

multiprocessor network named as Linearly Extensible Tree (LET) network

has been proposed, which is suitable for tree-structured problem graphs.

In this chapter, an analysis of the network, its various properties and

a brief comparison with a similar type of network has been given.

3.1 MULTIPROCESSOR INTERCONNECTION NETWORKS

Interconnection networks are often modelled as undirected or

directed graphs. The nodes of such a graph represent the processors, and

the edges indicate the communication links between various processors.

The length of a path between two nodes is the number of edges

encountered in the path. The diameter of a network is the largest
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distance between any two nodes. The degree of a network Is the largest

degree of all nodes in that network. Extensibility is the property which

facilitates constructing large-sized systems out of small-sized systems

with minimum changes in the configuration of a node of the system

A tree uses the minimum number of links in a connected network, but

it has unacceptably poor communication properties. On the other hand,

the fully connected network is prohibitively expensive, since the number

of links grows as 0(N ) for a N-node network. Between these two

extremes, different families of interconnection networks exist [42].

Some of the desirable properties of interconnection networks are: high

fault tolerance, small diameter, small degree, simple routing

algorithms, efficient layout, high bandwidth and extensibility. Many of

these properties make contradictory demands and hence a compromise is

necessary in the designing of the network.

3.2 BINARY DEBRUIJN MULTIPROCESSOR (BDM) NETWORK

As the proposed network is a modification of BDM hence a

description of BDM is given first. Binary deBruijn Multiprocessor (BDM)

network has the property of a binary tree folding onto itself giving the

appearance of infinite depth. It is also called a virtual tree network.

The network may be defined as follows [82] :

Let Q be a set of N identical processors, where N is a power of 2.

The interconnection between processors are governed by two functions L

and R, which map Q into Q as follows :

If Q- <PrP2"*-PN-l> then

L(Pi)=P2i,odN and

R(Pi) = P(2i+1) mod N for a11 Pi inQ
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The functions L and R establish links from the processor P to the

processor L(P) and R(P), for each processor in Q. It turns out, as a

result of the above definitions, that each processor has a connectivity

of four in the network. Figure 3. 1 (repeated here for convenience)

shows, for instance, the interconnection for eight processors.

Figure 3.1 Binary deBruijn Multiprocessor (BDM) network with eight

processors

The BDM possesses a versatile topology having a fixed degree per

node. It is capable of high fault tolerance and can admit a number of

same family networks. The performance studies on this network show that

the network is highly suitable for complete binary tree type problem

structures because perfect mapping of problem graph onto the network is

possible.

Apart from the above mentiored properties of the BDM, it has some

draw backs. The number of nodes in the network grows exponentially. An
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•

extension in the network, like in a hypercube, requires doubling of the

processor count. Thus extension comple<ity for nth extension is 0 (2n).

In contrast to this, a network with linear growth complexity would be

more practical, because in such a network, extensions would be less

costly. A modified BDM network is proposed which is a recursively

connected Linearly Extensible Tree (LET) network.

3.3 LINEARLY EXTENSIBLE TREE (LET) MULTIPROCESSOR NETWORK

3.3.1 Design and analysis

As said earlier, the LET network grows linearly in a binary tree

like shape. In a binary tree, the number of nodes at a level j is 2 ,

whereas in LET network the number is (j+1). The network itself may be

defined through connection functions in a manner similar to that for

BDM.

Let Q be a set of N identical processors, represented as

Q={FVP1 PN-1>
The number of processors N in the network is given by

d+1

N = E k

k=l

..(3.1)

where d is the depth of the network. For different depths, networks

having 1,3,6,10,15,21,... processors are possible. Equation (3.1) Is

quadratic in d, solving which we get,

=- 2 .y(l+8N)
...(3.2)

As negative depth has no meaning, the negative sign may be dropped.
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1/2
Thus depth d is 0(N ). In a binary tree the depth Is OUog N). The

depth of LET network grows faster than that of binary tree mainly

because of lesser 'accommodation' at each level.

In order to define the link functions, we denote each processor in

the set Q as P J being the level in LET network where the processor

P1 resides. As per the LET policy, only (j+1) processors exist at level

j. Thus at level 0, PQ exists and hence it may be redesignated as P

Similarly, the processors at level 1 are P and P Figure 3.2 shows

this arrangement.

00

pll P21

P32 P42 P52

P63 P73 P83 P93

Figure 3.2 Arrangement of processors in LET

Let Q' be the set of redesignated processors of Q. Thus,

Q' = ^p1j>. 0si<N-l, 0<jsd

The link functions L and R define a mapping from Q' to Q given as

L(PU) =PU+j+l) mod N'and
R(PiJ) =P(i+j+2) modN ^ all PiJ in Q' ...(3.3)

The two functions in Eq. (3.3) indicate the links between various

processors in the network. Figure 3.3 shows a LET network for six
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processors along with its adjacency matrix. Figure 3.4 uhows a bigger

network for N = 36. To avoid cluttering of figure, the fold-back

connections have been shown by dotted lines to an extra dummy level of

processors. If the fold-back connections are ignored, it can be seen

from Eq. (3.2), that the number of leaf nodes L in a network of N

processors is given by

•(1+8N)
L =

i.e. L = d+1. The width of the network (maximum number of nodes at a

level) grows much slowly compared to that in a binary tree.

0 1110 0

10 0 110

10 0 0 11

110 0 0 1

0 110 0 0

0 0 1 10 0

Figure 3.3 LET network with six processors Adjacency matrix of LET

3.3.2 Properties of the LET network :

Here some properties of the LET network have been compared to

de-Bruijn and Hypercube networks [37,40].
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A. Number of Nodes

The number of nodes in a multiprocessor network plays a vital role

by virtue of which the complexity of the system is affected. Lesser the

number of node, lesser is the system complexity and it is more
n

economical. The number of nodes in the LET network is N = J k, whereas
k=l

the number of nodes in Hypercube and de-Bruijn network 2n.

B. Degree of Node

Degree or connectivity of a node in a multiprocessor system is the

number of connections required at each node. Connectivity of a node

determines the hardware complexity of the network. The higher the

connectivity, the higher is the hardware complexity and hence the cost

of the network. A constant connectivity implies easy extensibility with

minimum change in the hardware structure of each node. The degree of

node in the proposed structure is always 4 or less . The connectivity of

Hypercube increases with the size, though in case of de-Bruijn, it is

constant at 4.

C. Extensibility

Extensibility is a property which facilitates constructing large

sized systems out of small ones with minimum changes in the

configuration of the nodes. In the proposed network, the extension

complexity increases linearly because each extension requires adding a

single layer of (n+1) nodes. Hypercube and de-Bruijn networks though

are extensible but the complexity increases exponentially by the power

of 2.
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D. Diameter

The diameter of a multiprocessor network is a measure of the

maximum internode distance in the network. This property is important in

determining the distance involved in communications and hence the

performance of the multiprocessor system. The diameter of a network is

bound to increase as the size grows unless there is no limit on the

number of links. In the case of de-Bruijn and Hypercube. the diameter

increases by one as the number of processors is doubled. Ignoring the

fold-back connections, the diameter of LET network also increases by one

on each extension, although the fold-back connections will tend to

provide short cuts between top portion processors and the bottom layer

processors which are otherwise highly distant. The ratio of the number

of processors served by back connections to total processors is 2/(d+l).

As this ratio keeps on decreasing as the network grow;., Its effect on

reduction in diameter is negligible. Table 3.1 shows the diameter of

networks of differnt depts. the results have been obtained using

shortest path algorithm. It may be seen that the diameter does not

always increase with the addition of a layer of processors

Depth

Number

of

Processors

Diameter

Table 3.1

Diameter of various sized LET network

0123456789 10 11 15 20

1 3 6 10 15 21 28 36 45 55 66 78 136 231

7 8 8 12 16
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Table 3.2 summarizes comparison of the above properties of Hypercube,

de-Bruijn and the LET network topology.

Table 3.2

Summary of parameters

Parameter Hypercube

n

No.of processors N = 2

Degree

Extensibility

Di ameter 0(log2N)

de-Bruijn LET network

n n

N = 2 N = £ k
k»l

n+1

0(log2N) otv' n;

E. Leaf to leaf distance

Message path lengths in a network depend on the communication

patterns. The statistical distribution of the pairs of communicating

nodes can be used in calculating average message path lengths. Even in a

network with large diameter, the message path lengths can be kept low if

the communication between distant nodes can be avoided. If the

communication patterns are not known, then a uniform distribution i.e.

all nodes sending messages to all ot ler nodes with equal probability,

has to be assumed. In such a case a small diameter will help.

In many situations, leaf to leaf distances are important in

determining message path lengths. In a binary tree, there is a lack of

direct links between leaves. Messages between remote leaves have to
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travel up towards root and then come down to reach the target. In LET

network, the back connections provide a direct long distance link

between a leaf and some node in the vicinity of the root. As a result of

this, it is expected that the longest inter-leaf distance In LET network

will be 1/2 or less of that in a simple binary tree.

In conclusion, it may be said that a new network topology (LET) for

multiprocessor systems has been proposed as an attempt to combine some

desirable features of linearly extensible tree structures and compact

Hypercube or de-Bruijn structures. The proposed architecture exhibits

better connectivity, lesser number of nodes and linear extensibility

over Hypercube and BDM networks. In the next chapter, a dynamic

scheduling scheme has been discussed which takes into account the

adjacency matrix of network interconnections and with relatively small

additional overhead, it oversees that the tasks will arrive at the

minimum distance processors even for grossly unbalanced problem trees or

even in the presence of failing nodes or links.
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CHAPTER 4

MINIMUM DISTANCE DYNAMIC SCHEDULING SCHEME

To make efficient use of a multiprocessor network it is necessary

to distribute work in a manner which keeps all the processors equally

busy. If a problem could be divided into totally independent modules

then the problem of distributing is trivial: for m modules and n

processors assign round(m/n) modules to each processor and the rest to

any processor. Even if different modules have different weights, the

problem of dividing work uniformaly among processors is not very

difficult.

Scheduling problem acquires all its complexities due to data

dependencies between different modules of a problem. All computation

problems get decomposed into interconnected tasks. The nature of

interconnection' amongst problem tasks govern the kind of

interconnections among processors which can lead to optimal scheduling.

A naive solution is to have a network matching exactly in size and

interconnections with the problem graph. The solution is obviously

unacceptable.

The problem of load balancing among the processors may be tackled

through static or dynamic allocation. Static scheduling requires

partitioning the problems into a set of parallel tasks and then

statically allocating them to processors so as to have maximum balance.

A constraint on achievable degree of balance is the requirement of

keeping the necessary evil of communication overhead to the minimum. If

two communicating tasks are scheduled onto the same processor, the
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communication delay is zero; otherwise, the delay equals the message

start up time, plus the data size divided by the transfer rate. A

process start time is dictated by the communication delay, which is the

function of the number of hops from one processor to another along the

interconnection network of the machine.

Static partitioning and allocation is unsuited to applications

where the shape of the computational graph alters dynamically as the

program executes. This situation arises quite often in the

implementation of functional languages through reduction machines [53].

The aim of this chapter is to study the performance of the proposed LET

network for tree-structured problems which occur ' so commonly in

functional programs.

A dynamic scheduling scheme to suit the LET network has been

described here. The basic property of this scheme is to minimise the

distance between communicating tasks hence named as Minimum Distance

Scheduling (MDS). At the end performance studies have been carried out

using MDS scheme on the LET network and the comparative analysis has

been done on other networks considering identical problem parameters.

4.1 THE SCHEDULING TECHNIQUES

Generally, scheduling techniques can be classified into two

categories. In the first category, an application comprising a task or

set of tasks with a priori knowledge about their characteristic is

scheduled to the system nodes before run time. This type of scheduling

problem is better described as the assignment/mapping problem. This

assignment can be done in a number of ways using various optimization

techniques, depending upon the nature of the application and the target
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system. These types of techniques have also been termed as static

scheduling techniques. The second class of scheduling which takes into

account the notion of time, is used to assign tasks to processors by

considering the current state of the system. The state information,

concerning current load on individual nodes and the availability of

resources is time dependent. These type of strategies don't assume a

priori knowledge about the tasks and are known as dynamic scheduling

techniques.

The scheduling is guided by some constraints which may be different

from application to application. Since the performance of a parallel

architecture can be characterized mainly by communication delays,

distribution of load among the processors and scheduling overheads, a

close correspondence between the structure of the problem and the

architecture of processors is desired in order to minimize these

overheads [82,86].

Load balancing attempts to improve system performance by

redistributing the work load submitted to the system. It necessitates

some means of maintaining a global view of the system activity, and a

mechanism for redistributing tasks to processors on a network where they

will most benefit in terms of execution timei A strong load imbalance

produces a poor increase in performance when performed on a

multiprocessor. By contrast, a near perfect load balance will produce

linear improvements in the performance.

4.2 MINIMUM DISTANCE PROPERTY

In multiprocessor networks, interprocessor communication costs are

significant relative to intraprocessor costs and have a substantial
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effect on system performance. In order to reduce these overheads, a

scheduling strategy must be designed for an assignment of task to

processor which minimizes execution and communication costs.

Minimum distance is the property which assures the minimization of

the communication in distributing subtasks and collecting partial

results. A scheduling scheme with this property minimizes overheads thus

guaranteeing maximum possible, speedup. This property may be formally

stated as [82] :

If T and Tj are two tasks from a task tree of a given problem such

that T is the parent of Tj and if P and P are the processors on

which T and Tj are scheduled, then P should be directly connected

to P .in the network.

In the algorithm developed, adjacency matrix of the network is used

to satisfy the minimum distance property. All the above mentioned

techniques ultimately conclude that the target machine's interconnection

network affect the schedule and, in turn, the running program. Thus the

scheduling heuristic needs to include the target machine's

characteristics. After having a deep and concise following of the above

features, a Minimum Distance Scheduling (MDS) strategy for the

multiprocessor network (LET) has been developed.

4.3 THE MINIMUM DISTANCE SCHEDULING (MDS) SCHEME

The scheme has been developed for a tree type problem structure. It

is dynamic in the sense that no apriori knowledge of problem tree is

assumed except that the problem can be represented as a tree. The

simulation of dynamic load is discussed in section 4.5.
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The approach tries to maximise the load balancing among processors

under the constraint of the need to keep message path lengths to one hop

(minimum distance property). Mostly any load balancing algorithm will

consider the overall load at a processor. However, in this algorithm we

take into account the 'active load' only for this purpose. In a tree

type problem structure, it is expected that load at a particular level

only has to compete for processor time and hence the load at other

levels should not be considered for balancing. This load at a level in

the problem tree, we define as active load.

In view of the above, the algorithm calculates ideal load value for

each level, which is used by load balancer to detect load imbalances and

make load migration decisions. The load imbalance factor for kth level

of task tree, denoted as LIF, , is defined as:
k

LIFk • [max {load^P^ }-(ideal-load')k ]/(ideal-load)

where (ideal-load)k = [ loadk(P0) + load (P ) + ...+ load (P ) ]/ N,

and max (load (P.)) denotes the maximum load pertaining to level k of

the task tree on a processor P., Osi<N-l, and load (P. ) stands for the

load on processor P due to kth level of the task tree.

Based on ideal-load value, the donor (overloaded) processors and

accepter (underloaded) processors are identified. Migration of task, if

any, can take place between donor and accepter processors only.

Migration from a donor processor is done under the constraints of

minimum distance. As this constraint is always applied, a task existing

at the donor processor must have satisfied this constraint and hence
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must be transferred to an accepter, which is directly connected to the

donor. Thus for every donor, there is a set of Minimum Distance

Accepters (MDA). Tasks are not allowed to migrate to accepters which are

outside this set. With reference to Figure 3.3 of LET network,

MDA(PQ) = < PrP2,P3 }

if P is a donor.

The scheme may be seen to have three phases, namely:

1) zero distance scheduling, which is done dynamically at each

level.

2) processor selection, to select the donor and accepter processors

based on ideal-load, and

3) task migration under minimum distance constraint.

4.4 THE MDS ALGORITHM

The algorithm starts mapping the root task on the processor P . At

any subsequent level of the problem tree, each newly spawned task is

initially scheduled on the same processor as its parent task. This

provides a Zero Distance Scheduling (ZDS). However, this leads to lot of

imbalance in load. In fact, if ZDS policy is followed then tasks will

continue to be scheduled on P„ only.
0 J

After zero distance schedule at a level k, the ideal load is

calculated and the donor and accepter processors are identified. These

processors are arranged into priority queues according to the amount of

ZDS kth level load (denoted as ZDS ) at each processor, for donors it is

a-descending priority queue whereas accepters have an ascending priority

queue. The lower the ZDS load of an accepter, the higher is its

acceptance capacity. These queues are used in task migration phase.
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ALoad Table (LT) is maintained for task migration and for final

calculation of LIF value at each level. LT has a row for each level of

task tree and has columns corresponding to each processor. An element of
this table may be referred as LT [l,p] where 1 (i.e.*)) is the level

number and p(O^N-l) is the processor number. Thus in the begining,
LTtO.O] =Tr where Tj is the root task of the problem tree.

The whole algorithm, in a"C" like notation, is given below:
mds() ;

{

map root_task on P ;

store (root_task); /*store(task) will store the subtasks in a list,

let n be the length of this list V

k = 1;

do

<

for (count = 0; count £n; count ++)

{

T = select(list);
c

/* select(list) retrieves a task from the list V
store(T );

c

T_ = father(T );
i c

/* father(task) returns the father of the task •/
Pf = processor(T );

/* processor(task) returns the processor on which task is

scheduled */

map Tc on Pf /* this is zero distance scheduling V

>

update (k); /* update (k) modifies the kth row of LT V

schedule (k);

k = k+1;
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} while ( k < k );
max

>

schedule ( int k )

{

IL = ideal_load(k);

for (itno = 0; itno < 2; itno ++) { /* number of iterations */

for (i = 0; i < N; i ++) (

If (load(P.) > IL)

add_dQ(P.);

/* add_dQ(P ) puts the processor P. in donor priority queue dQ */

/* load P. gives the load on P. from LT[k,i] V

else add aQ(P );

/* add_aQ(P^) puts the processor P. in accepter priority queue aQ */

>

while(dQ not empty) {

P. = delete(dQ);

si = MDACP,,);

/* s is the set of minimum distance accepters for P */
* i

assign(P.);

/* assign(P ) tries to transfers a load equal to excess of P from P 4
1 i i

to the highest pririty accepter from s.. If not successful, P. continues

to be a donor with reduced overload.*/

}

update(k);

>

>



Tables 4.1 and 4.2 show the computer generated progress of load table

for complete ternary and arbitrary ternary trees (upto level 5)

respectively on a LET of 6 processors. In each row the entries are:

donor processors, ZD schedule, MD schedule, ideal-load and LIF obtained.

The next section deals with the details of simulation.

Table 4.1

Load Table for complete ternary task tree upto depth 5.

po
ZDS[1] 3 0 0 0 0 0 3

MDS[1] 0 1 1 1 0 0 3
Ideal-load[1] =0.5 rounded IL = 1.0

LIF[1] • 0.00

P, P^ P~
1 2 3

ZDS[2] 0 3 3 3 0 0 9
MDS[2] 1 1 2 1 2 2 9

Ideal-load[2] =1.5 rounded IL = 2.0

LIF[2] = 33.33

Po P- P
2 4 5

ZDS[3] 3 3 6 3 6 6 27
MDS[3] 3 5 5 5 5 4 27
Ideal-load[3] = 4.50 rounded IL >• 5.0

LIF[3] = 11.11

Po P„ Pr,
2 4 5

ZDS[4] 9 9 18 9 18 18 81
MDS[4] 13 13 14 14 13 14 81
Ideal-load[4] = 13.50 rounded IL = 14.0

LIF[4] = 3.70

Po Po P^
2 3 5

ZDS[5] 39 39 42 42 39 42 243
MDS[5] 39 41 41 41 41 40 243
Ideal-load[5] = 40.50 rounded IL = 41.0

LIF[5] = 1.23
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Table 4.2

Load Table for arbitrary ternary task tree upto depth 5.

0

ZDSI1] 3 0

MDS[1] 1 1
Ideal-loadfl] = 0.5
LIFtl] = 0.00

0

ZDS[2] 2 1
MDS[-2] 2 1
Ideal-load[2] = 1.00
LIF[2] = 0.00

0 0

0 1

rounded IL = 1.0

0 1

0 1

rounded IL = 1

1 2

ZDS[3] 2

MDS[3] 2

Ideal-load[3]
LIF[3] = 9.09

3 3 2

2 1 2
1.83 rounded IL = 2

1

ZDS[4] 3

MDS[4] 4

Ideal-load[4] =
LIF[4] = 14.29

6 3 3
4 3 4

50 rounded IL = 4.0

1 4

ZDS[5] 7

MDS[5] 8

Ideal-load[5]
LIF[5] = 20.00

10 8 7
8 8 8

** 7.50 rounded IL = 8.00

0

0

1

2

4

4

9

9

0

0

0

2

2

2

4

4

3

3

6

6

11

11

21

21

45

45

4.5 SIMULATION RESULTS

The above mentioned MDS scheduling scheme has been implemented on

Tata ELXI mini-super computer in the "C" language in the same

environment. The simulation run consists of generating task trees and

'executing' them on the network of processors i.e. on a six processor

LET network under the above discussed scheduling scheme, for a fixed set
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of parameter values. The parameter values which are fixed for a

particular run are the size of the network (by level) and the tree to be

generated (i.e. maximum depth). The execution grain size is assumed to

be uniform for all the tasks in the task tree. The respective average
LIF's and, seed number for generating arbitrary trees, number of trees,

the probability and fan out for the generation of the task trees etc.

are used as parameters for a given class of trees. In order to study

the behavior of scheduling mechanisms, each parameter is varied

independently over a wide range of values. The entire process is then

repeated over several classes of tree by varying the probability

distribution associated with the random variables 'Spawn' and 'Fan out'.

4.5.1 Dynamic load model

The scheduling performance of the strategy has been tested on the

LET network by simulating artificial dynamic loads. In order t

characterize a non-deterministic load, the total problem is conceived to

be an arbitrary tree which unwinds itself level by level. A task

scheduled on a processor spawns an arbitrary number of subtasks, which

are part of the whole problem tree. Thus the load on each processor is

varying at run time creating unbalance, and balancer has to be invoked

after each unwinding step.

For a meaningful simulation, tree structures that form a

representative sample of programs are needed which are to be executed on

the networks. To meet this requirement, a set of randomly created tree

structures are used, whose generation is governed by two random

variables 'Spawn' and 'Fanout*. The random variable 'Spawn' decides

whether a node should be a leaf node or an internal node and the random

o
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variable 'Fanout' decides the number of children a node should have. A

tree is built in a breadth-first manner, starting from the root node.

By repeated application of the following operations on the nodes at

the lowest level of the partially constructed tree, a tree structure is

generated up to a pre-specified level (depth):

If the depth of the node is equal to the pre - specified depth

then the node is a leaf node

else if the value assumed by the random variable Spawn is zero then

the node is a leaf node

else the node is an internal one and the number of children

it has is equal to the value assumed by the random

variable Fanout for that node.

In a tree thus generated, each node represents a task. The tree is

considered as a test problem on which the schemes are to be applied. Any

particular class of tree is characterized by probability distributions

associated with the random variables 'Spawn' and 'Fanout'. Thus,

different classes of trees are generated by associating different

probability values with 'Spawn* and 'Fanout'.

The experiments have been based upon various types of randomly

generated tree structures, which fall into one of the following

categories.

1) random binary tree structures (tree structures having a maximum

fanout of two), and

2) random ternary tree structures (tree structures having a maximum

fanout of three)
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In the former case 'Fanout* is uniformly distributed over the

range {1.2}, and for the later, it is uniformly distributed over the

range {1,2,3}.

In order to obtain tree structures having different amount of

parallelism, different probability values are assigned to the random

variable 'Spawn'. The following probability distributions have been

employed in order to generate various tree structures.

P (Spawn - 1) - l.o, P (Spawn = 0) - 0.0,

P (Spawn = 1) = 0.9, p (Spawn =0) =0.1,

P (Spawn = 1) = 0.8, P (Spawn =0) =0.2

where Spawn = 0 implies leaf node and Spawn = 1 implies internal

node. It has been observed that for distributions having lower values

for P(Spawn = l),the tree structures generated are too sparse to be

meaningful.

A task tree is generated and executed in a parallel and

breadth-first manner starting from the root task which is assigned to

some given processor in the network. The task tree grows as tasks

randomly spawn new tasks and scheduler schedule them onto neighbouring

processors (or itself) as per the scheduling rule. A task after spawning

sub-tasks enters into a wait state. A waiting task becomes executable at

a later point of time, when all of its sub-tasks have completed

execution. An executable task on being selected by the processor,

executes to produce a result packet. The result packet is then forwarded

to its destination.
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Using the above simulated dynamic load, the performance of the

network has been tested for MDS scheme. The performance is measured in

terms of load imbalance left after a balancing action at each level of

task tree. A constraint that has been forced in the scheduling is to

maintain minimum distance i.e. task do not migrate to under loaded

processors in a way so as to make the distance from parent task more

than one hop in the processor network.

4.5.2 MDS scheme on LET network

To study the behavior of the dynamic Minimum Distance Scheduling

(MDS) Scheme on the LET network, the LIFs are computed for different

classes of task structures. The estimation of LIF is obtained and the

curves are plotted as the LIF against the problem size (in terms of task

tree depth) shown in Figures 4.1-4.4.

The trend of the curves obtained, indicates the average behaviour

of the load imbalance factor with respect to the level in the task tree

for different randomly generated tree structures when MDS scheme is

implemented on the LET network. It has been observed that LIF shows a

similar behaviour in both the cases of binary and ternary tree task

structures, rising initially from zero to a peak and then reducing

asymptotically. The number of tasks, in those levels of the tree where

the LIF shows rising trend, is less than the number of processors in the

network. The LIF starts falling in these graphs once sufficient number

of tasks are available in the network. In case of arbitrary binary task

trees, the peak value of LIF remains in between 35-45%, whereas in case

of arbitrary ternary task trees, the peak value of the average LIF never

exceeds more than 25%.
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From the above observation, we can say that the MDS scheme i

performing well within the limitation for binary task trees but

performing better for ternary task graphs on LET network.

s

4.5.3 Comparison with other networks

The same MDS scheme is implemented on other networks also and the

same performance indices are evaluated. First the simulation study was

carried out on BDM network. Figures 4.5 - 4.9 show the average LIF

verses level of the task tree for binary and ternary task trees.

The comparative simulation study indicates that the MDS scheme is

performing good for binary task graphs on BDM network in comparison to

the LET network. On the other hand, the scheme is performing poorly for

ternary task graphs on BDM In comparison to LET network. The LET network

is outperforming BDM for ternary task graphs for any probability of
spawning the tasks.

This dynamic scheduling scheme when implemented on other networks,

like Hypercube, BDM and Binary along with LET, the performance results

are shown in Figures 4.10-4.13.

The performance results indicate that LIF is alwnys higher for LET

network in comparison to other networks for binary task graphs. This

indicates that LET is not performing nicely and not giving good

performance for binary task trees with respect to other networks but

even then the performance of LET is comparable to other networks for

binary task graphs as depicted in Figure 4.10. On the contrary, the LET

network is outperforming for ternary task graphs in comparison to

Hpercube, BDM and Binary networks as shown in Figures 4.11-4.13.
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The reason for better load balance in BDM for complete binary trees

is that the network itself is a virtual binary tree. In other words for

binary tree problems BDM has perfectly matched topology. However, in

case of ternary trees and to some extent in arbitrary binary trees BDM

enjoys no such advantage or it may be said that LET network is not

handicapped.

Better performance of LET network for ternary tree structures is

due to lesser number of processors. The comparison in various curves is

for 6 processor LET and 8 processor BDM or Hypercube. It is always

possible to obtain a better load balance in a smaller compact network.

It may be argued that comparision should have been made with 10

processor LET network. However, third level of extension produces 8(=23)

processor networks for BDM or Hypercube whereas a 6 processor network

for LET. The performance of 10 processor LET will have to be compared to

a 16 processor BDM.

It may be concluded that LET connection topology is able to provide

a complete network with lesser number of processors, for a comparison on

equal footing, if we were to concieve a 6 processor BDM it will be a

'broken' network not exhibiting full properties of BDM. This means LET

is providing the 'completness' of 8 processor BDM with 6 processors only

and hence better load balancing.

As LET is a linearly growing structure, an equivalent LET will

always have lesser number of processors compared to BDM or Hypercube

(Hypercube loses on another front that growth in size, it requires

processors with larger number of interconnection ports, which is

constant in BDM or LET network.). Thus another advantage flowing out. of
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linear extension in LET, is better load balancing achievable besides
lower cost.

The next chapter deals with the comparison of MDS scheme with

other existing scheduling schemes on LET network. Also, the proposed

organisation model (pair of proposed network and the scheduling scheme)

has been compared with some other models.
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CHAPTER 5

COMPARISON OF MDS SCHEME WITH OTHER SCHEDULING SCHEMES

Efficient management of parallelism involves optimizing conflicting

performance indices like minimization of communication and scheduling

overheads and of load imbalance among processors etc. A solution to this

problem can be obtained at the organizational level by selecting a

suitable layout and appropriate scheduling mechanisms.

In this chapter different scheduling schemes have been described

and various organizational models (pair of a network and a scheduling

scheme designed for it) have been compared with the proposed

organizational model. The comparison is based on the simulation studies

under the same environmental conditions.

5.1 OTHER SCHEDULING SCHEMES

The following are few scheduling schemes which have given optimal

performance on the particular multiprocessor networks for which they

have been designed.

5.1.1. Round-Robin (R-R) scheduling scheme

Ravikanth et.al. [82], implemented a Round-Robin scheduling scheme

onto a binary de-Bruijn multiprocessor network. The scheduling strategy

is described as:

Let a task T on a processor P from Q spawn two subtasks Tl and T2 then,

a simple scheduling amounts to assigning Tl to left of the processor and

T2 to the right of the processor P's childs.
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The scheduling strategy assigns the tasks spawned by a processor in

a round robin fashion between its left and right child processor. It

maps a binary tree of arbitrary depth in an optimal manner onto the

network. This is because the structure of the network is like that of a

(virtual) binary tree of infinite depth. The effectiveness of the

strategy for arbitrary tree structures is estimated by studying the load

imbalance factor (i.e. how the maximum load on a processor deviates from

the ideal load) for every level of the task tree.

To this end the term Load-Imbalance-Factor (LIF) is used which is

defined for every level of the task tree. It represents the deviation of

the maximum load on a processor from the ideal load.

The load-imbalance-factor for kth level of the task tree is defined

as (the expression exists in an earlier chapter 4) :

LIF =[max { load (P.) } - ideal l°adk 3/ ideal loadk

where ideal loadk=[ loadk(PQ) + load (Pj) + ...+ load^P^) ]/ N,

and maxdoad (P )) denotes the maximum load pertaining to level k of the

task tree on a processor P in Q., and load (P) stands for the load on

processor P due to the kth level of the task tree.

5.1.2. Minimum-Load (M-L) scheduling scheme

To improve the performance for scheduling arbitrary tree structured

tasks, Reddy [86], improves the round-robin strategy for Binary

de-Bruijn Multiprocessor(BDM) and Quaternary de-Bruijn Multiprocessor

(QDM). The approach is to exchange the information with the immediate
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neighbours before scheduling a task. The load information can be

extracted from the locality of a processor and is used while scheduling

a task onto a processor.

A subtask generated by processor P is scheduled onto left processor, or

right processor child or P itself wherever the active-load is minimum.

The term active-load refers to the load on a processor

corresponding to the level that is active(executable) in the task tree

structure. All the other tasks pertaining to lower levels of task tree

are known as passive-load. Since the tasks that undergo reduction, are

taken from active-load only, it is logical that the scheduling decision

should be based only on the active-load information, and not on total

load of the processor.

Reeves et.al. [103] proposed several dynamic scheduling strategies

for highly parallel computers. These schemes have been tested after

appropriate modification for applying them to the LET network. The

general model of the dynamic load balancing is mainly based on the load

balancing profitability determination at various sites in a

multiprocessor network. Whenever profitable, a balancer is invoked which

migrates tasks to achieve a more uniform distribution of the load on the

processors. Each donor processor, during balancing, selects most

suitable tasks (based on task dependencies) for migration, thus

maintaining minimum distance.

The balancer uses the concept of balancing domains which reduces

the overhead of the balancing process, but does not ensure a balanced

load for the entire system. This trade-off is illustrated in the

scheduling strategies.

103



5.1.3. Dimension Exchange Method (DEM) scheduling scheme

The DEM strategy was conceptually designed for a Hypercube

system. In this scheme small domains are balanced first and these are

then combined to form larger domains until ultimately the entire system

is balanced. The balancing is performed iteratively in each of log N

dimensions for an N processor Hypercube configuration. Balancing is

initiated by any overloaded processor whose load level rises above the

average level by some threshold. The DEM scheme can be described as:

DEM is a global, fully synchronous approach. Load balancing is performed

in an iterative fashion by folding an N processor system into log N

dimensions and balancing one dimension at a time.

In other words, in case of an N processor system, balancing is

performed iteratively in each of the log N dimensions. All processor

pairs in the first dimension, those processors whose addresses differ in

only the least significant bit, balance the load between themselves.

Next, all processor pairs in the second dimension balance the load

between themselves and so forth, until each processor has balanced its

load with each of it neighbours.

To implement this scheduling scheme onto LET network as given in

Fig. 3.3 in chapter 3, the pairs (or the dimension) and the order in

which tasks are transferred to balance the six processor network (refer

to Figure 3.3) are:

Processors

Processors

tPo-pi}-
(PrP3),

Processors (P -P ),

(P0-P2).

(P2"P4)
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5.1.4. Hierarchical Balancing Method (HBM) scheduling scheme

The HBM is a dynamic, synchronous, global approach which organizes

the system into a hierarchy of subsystems. Load balancing is initiated

at the lowest levels in the hierarchy with small subsets of processors

and ascends to highest level which encompasses the entire system. This

scheme centralizes the balancing process at different levels of the

problem tree with increasing degree of knowledge at higher levels. The

scheme is most suited to tree-structured networks.

In the LET network, whole of the network can not be considered at

one level, like Hypercube network. In LET network, the hierarchy level

starts from the bottom. The information of the leaf nodes are

transferred to their respective fathers at the next higher level. In the

separate domains, father and the two childs, migrate tasks from

overloaded processors to under loaded processors, the same process takes

place in other domain also till the whole network is balanced.

5.1.5. Gradient Model (GM) scheduling scheme

This scheme employs a gradient map of the proximities of the under

loaded processors in the system to guide the migration of tasks between

overloaded and under loaded processors. The proximity of a processor is

the shortest distance to lightly loaded processor. The scheme has a big

overhead of updating the proximity map from time to time. The number of

messages generated for this updating depend on network topology besides

some factors which are problem structure dependent.

5.2 PERFORMANCE STUDY OF THE MDS AND OTHER SCHEMES ON LET

The above mentioned scheduling schemes including the proposed MDS

scheme are implemented on Tata ELXI mini-super computer in the C
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language in the same environment. The simulation run consists of

generating arbitrary task trees and 'executing' them on the network of

processors i.e. on the six processor LET network under the above

discussed scheduling schemes, for a fixed set of parameter values. The

parameter values which are fixed for a particular run are the size of

the network and the tree to be generated (i.e. maximum depth of its

leaves). The execution grain size is assumed to be uniform for all the

tasks in the task tree. The respective average LIFs and, seed number for

generating arbitrary trees, number of trees, the probability and fan out

for the generation of the task trees etc. are used as performance

indices, for a given class of trees under a fixed set of parameter

values. In order to understand the behavior of scheduling mechanisms,

each parameter is varied independently over a wide range of values. The

entire process is then repeated over several classes of tree by varying

the probability distribution associated with the random variables Spawn

and Fan out.

To study the behavior of different scheduling schemes on the LET

network, the LIFs are computed for different classes of task structures.

The estimation of LIF is obtained and the curves are plotted as the LIF

against the problem size (in terms of task tree depth) shown in Figures

5. 1 - 5.4.

The trend of the curves obtained, indicate that the proposed

scheduling scheme out performs other schemes in case of complete binary

tree. The LIF obtained through MDS scheme decreases smoothly to a

minimum value of LIF, whereas for RR scheme it decreases from the very

high peak and have the very high value of LIF as compared to the MDS

scheme which has the lowest value, and similar Is the case with ML
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scheme, which decreases very slowly in comparison to the proposed MDS

scheme. On the other hand, the DEM scheduling scheme shows a close

behavior with respect to the proposed scheme for complete binary tree as

indicated in the Figure 5.1.

For complete ternary task trees, the MDS and DEM schemes show

approximately similar trend of curves for all level of the tree as shown

in Figure 5.3. The RR and ML schemes once again indicate very high peaks

for the same levels of the tree in comparison to the MDS scheme. Figures

5.2. and 5.4., show the behavior of the various schemes for arbitrary

binary and arbitrary ternary trees. The average behavior of Load

Imbalance Factor for a wide range of randomly generated tree structures

shows that the MDS scheme is performing better than rest of discussed

static as well as dynamic scheduling schemes at all levels of the trees.

5.3. THE ORGANIZATIONAL MODEL

Architecture design addresses itself to the task of configuring a

physical structure that best meets the problem requirements. Since

performance of a parallel architecture can be characterised mainly by

communication delays, distribution of load among processors and

scheduling overheads, a close correspondence between the structure of

the problem and the architecture is desired in order to minimise these

overheads. Thus, in the context of parallel architectures, this

essentially implies the need for the right choice of the. interconnection

network and a scheduling strategy which together can achieve the mapping

of the problem onto the machine so as to minimise overheads [82,83].

The basic objective of the research problem is to develop a good

organizational model (suitable topological layout and appropriate
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scheduling strategy) which should have a close correspondence with the

structure of the problem. If the parallelism is to be worthwhile, the

communication and scheduling overheads should be significantly lower.

Since communication overheads are directly dependent on the distance

through which sub-tasks as well as results have to travel in order to

reach their respective destinations, it becomes imperative to minimize

the distance between the processor scheduling the sub-task and the

processor executing it. However, this can only be achieved by an uneven

distribution of tasks among processors. Adopting a centralized

scheduling mechanism for achieving as uniform a load distribution as

possible would certainly be unacceptable due to the higher overheads

associated with such a scheme.

5.4 PERFORMANCE OF VARIOUS ORGANISATIONAL MODELS

To draw general conclusions about the utility of the scheduling

scheme and versatility of the interconnection scheme on which it is

implemented, it is desirable to experiment on tree-structured tasks that

abstract the behavior of parallel programs. A simulation run consists of

generating a task tree and executing it on various networks of

processors (de-Bruijn, hypercube and proposed networks)under different

scheduling schemes, for a fixed set of parameter values. Since a task

tree that is randomly generated is but a single instance from a class of

trees, the simulation run is repeated over several task trees(30 in case

of dense trees and 40 in case of sparse trees), chosen arbitrarily from

that class. The respective average LIFs are used as performance indices.

In order to understand the behavior of scheduling mechanisms, each

parameter is varied independently over a wide range of values. The
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entire process is then repeated over several classes of trees by varying

the probability distribution associated with the random variables Spawn

and Fan out as done in the previous chapter.

To evaluate the relative merits of various scheduling schemes on

different architectures, and suitability of one's study, extensive

simulation study have been conducted. The static scheduling scheme of

Ravikanth et. al. [82,83], onto the eight-processor de-Bruijn

multiprocessor for different task trees, to evaluate the Load Imbalance

Factor (LIF) and scheduling overheads, results have been obtained.

Reeves et.al. [103], applied the dynamic Dimension Exchange Method (DEM)

scheduling strategy onto eight-processor hypercube architecture. The DEM

scheme is applied on the hypercube using arbitrary tree-structured task

trees onto it and different results are obtained. Reddy's [86] static

scheduling scheme is implemented on eight-processor de-Bruijn

multiprocessor for various tree-type programs, LIF and scheduling

overhead are calculated for different level of the task trees. The

proposed dynamic scheduling scheme is also implemented on six-processor

LET network in the same environment for similar problems and the results

for the LIF are obtained.

5.4.1 Simulation Results

A comparative pair-wise (scheduling scheme v/s architectures) study

has been done by simulating the above schemes onto the corresponding

networks. The simulation studies conducted on tree-structured problems

in the same environment are presented in Figures 5.5 to 5.8.

The plotted curves are self explanatory, as the study indicate that

the load imbalance factor (LIF) approaches zero asymptotically as one
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goes down the levels of the task tree. When the size of the task tree is

relatively larger than the size of the network, it has been observed

that LIF approaches zero much faster. The MDS scheme on the LET network

is always having lesser LIF at every level of the task tree in

comparison to other organisation models.

The values in Figure 5.8, for arbitrary ternary tree type task

graph, show that the proposed organisational model is out performing

with the other organisational models at every level of the tree. The LIF

is always lesser in comparison to the other models and approaches to

zero value quickly.

The curves in Figures 5.6-5.7, show the value of LIF for arbitrary

binary task trees for different task levels. This is evident that the

number of tasks, in those levels of the graphs where the average LIF

shows a rising trend, is less than the number of processors in the

network. The load imbalance factor starts falling in these graphs once

sufficient number of tasks are available in the network. It is also

observed that for problems having a high degree of parallelism the LIF

approaches zero quickly. The curve plotted for the proposed study is

performing better in comparison to de-Bruijn and hypercube.

It has been observed that the LIF shows a similar behavior in all

these cases, rising initially from zero to peak and then reducing to

zero asymptotically. For every level of the task tree, average LIF for

the proposed study indicate the superior values, i.e. lesser values at

every point as well as lesser value of LIF at peaks with respect to

other studies. The maximum value of the average LIF is half to the

others values. Since the proposed organisation mode] i.e. the LET

network and MDS scheme, is having a closed correspondence to the
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structure of the problem for which the simulation studies are carried

out. Heuristically, a good organizational model (suitable topological

layout and appropriate scheduling strategy) is one which has a close

correspondence to the structure of the problem. Motivated by this

heuristic and dynamic behavior of highly parallelized programs, a

network topology has been proposed and considered for performance

evaluation. Asimple scheduling mechanism has been developed for mapping

the problem structures onto the network.

It is necessary to consider the design issues falling in the realm

of parallelism, while implementing parallel programs. Efficient

management of parallelism involves optimizing conflicting performance

indices, like minimization of communication and scheduling overheads and

even distribution of load among the processors in the network. A

judicious choice of topological layout for independent processing

elements and a scheduling strategy improve the performance of a system

implementing tree structured programs.

To justify that the choice of proposed architecture is on sound

footing, its performance is compared with that of Hypercube and

de-Bruijn architectures. Complete, arbitrary binary and ternary task

trees have been used as test problems. From simulation results, it has

been observed that the proposed architecture with proposed scheduling

mechanism performs reasonably well for all classes of task structures.

In the next chapter the performance of LET network for graph

structure problems has been shown. Also, a modified form of Dynamic

Level Scheduling (DLS) algorithm has been applied on LET, binary

deBruijn network and Hypercube networks.
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CHAPTER 6

PERFORMANCE OF LET FOR GRAPH-STRUCTURED PROBLEMS

In the previous chapters, the performance of LET network has been

discussed for tree structured problems in terms of load balance

obtainable. Another important class of problems is graphs. Problems

having precedence-graph structures frequently appear in digital signal

processing systems. In this chapter, the performance of LET network is

evaluated for a specific type of graph problems viz. Acyclic Precedence

Graphs (APG). A static scheduling algorithm for APG's called Dynamic

Level Scheduling (DLS) was proposed in [95]. In the present work, a

modified form of this algorithm has been applied on LET, binary deBruijn

and hypercube networks and the results show an overall better

performance of LET network in terms of speedup and processor

utilisation.

6.1 INTRODUCTION

A parallel program is a collection of separate cooperating and

communicating modules called tasks. Such a program may be represented as

a precedence graph G = {T,E}, where T=(T.: i = 1,2 ,n} is a set of

nodes (tasks) representing a group of sequential computations and E is

the set of directed edges. If there is a directed edge E(i,j) from task

T. to T., then it implies that T. can not execute until T. completes.

Such dependencies are due to data or control. In either case, the task

graph establishes precedence relations and data paths among all tasks

[95]. Figure 6.1 shows a sample graph. Labels on edges indicate the
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amount of data to be sent between the two tasks. The weights of the node

would be used to indicate execution time of the corresponding task. In

the discussion to follow, the network is assumed to be homogeneous.

Figure 6.1 Sample Graph

If two communicating tasks are scheduled onto the same processor,

the communication delay is zero; otherwise, the delay equals the message

start up time, plus the data size divided by the transfer rate. A

process start time is dictated by the communication delay, which is also

a function of the number of hops from one processor to another along the
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interconnection network. The algorithm will again work under minimum

distance constraint as in the case of dynamic scheduling of tree

structured problems.

A scheduling strategy in this case is usually designed with one or

more of the following objectives:

1) minimum schedule length,

2) minimum inter processor communication (IPC) overheads

3) minimum load balance among the processors.

Schedule length is the total time required to execute the program

on N processors. Interprocessor communication is required when two tasks

having precedence edge are scheduled on two different processors. IPC

overheads are a major factor that limits the schedule length. Load

balance implies uniform distribution of computation load among

processors. It is always better to keep the processors equally busy.

These objectives obviously have conflicting demands.

Performance evaluation in this case is being done in terms of

speedup and efficiency. Speedup is the ratio of execution time of

program on a single processor to the execution time on N processors.

S(N) = t./tM
1 N

Efficiency is a measure of average processor utilisation and hence

the load balance. It is defined for a N processors networks as,

E(N) = S(N)/N

6.2 LATEST PRECEDENCE SCHEDULING STRATEGY

The scheduling scheme described here is primarily based on list

scheduling technique and is modification of the work of Sih and Lee
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[95], on a compile-time scheduling strategy for APG's. This algorithm

runs faster than the one suggested by Sih and Lee but it does the same

work. A description of the development follows.

6.2.1 List scheduling

In list scheduling each task node in problem graph is assigned a

priority (according to some criterion). The tasks are then arranged in

decreasing priority order. A task is considered ready for execution if

all its immediate predecessors have been executed. Whenever a processor

is available, a ready task with highest priority is assigned to it. In

case of a tie, some tie*breaking mechanism is invoked.

Different schemes in this class differ only in the way the

priorities are assigned to tasks. HLF algorithms [1,54] have priorities

based on static levels. The static level of a task T. is defined as the

largest sum of execution times along any directed path from T. to a

terminal node, the maxima being taken over all terminal nodes (critical

path length). Thus if SL (T ) denote static level of T , S the set of

successors of Tj and E. the execution time of T then

SL (T ) = E + max (SL (succ (T )) (6 1)

Sl

HLF algorithms have been demonstrated to have near-optimal

performance when IPC costs are not included.

6.2.2 HDLF algorithm

The HLF algorithm does two things at each scheduling step. It

selects the next task to schedule, and chooses the processor to execute
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it on. These selections are done independently on each step based on

static levels, causing poor performance in the presence of IPC. Sih and

Lee [95] introduced the idea of dynamic level and thus the Highest

Dynamic Level First (HDLF) algorithm.

HDLF algorithm not only changes the task selection criterion but

goes further to suggest that a busy processor at a scheduling step need

not be kept out of the available processor list. In fact it says that

all processors be considered as candidates for scheduling. A processor

can start execution of a task T. when it has finished execution of the

last node assigned to it or when all the data required for T is
i

available at it, whichever is later. This idea is used in expressing the

dynamic level DL (T.,P ) of a task-processor pair as

DL (Ti(PJ =SL (Tj) -max (DA (T^Pj), TF (P )> ...(6.2)

Here DA (Tj.lPJ is the earliest time at which data required by T

from its predecessors is available at P. and TF (P.) is the time that P
J J j

finishes execution of its last assigned node. Dynamic level takes IPC

into account and indicates the matching of a task and processor. In task

selection for scheduling, a large static level is desirable because it

indicates a high priority for execution. In selecting processor, an

earliest start time (the second term of the right hand side of Eq. 6.2)

is desirable irrespective of whether processor is busy or idle. Thus a

task should be scheduled on a processor for which dynamic level is

highest.

The modified form of HDLF (called Dynamic Level Scheduling-DLS)

studied two cases viz. '
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1) Select a ready task with highest static level and schedule it

on the processor that maximises its dynamic level.

2) Examine all ready task and processor pairs and choose the

task-processor pair with highest dynamic level.

Obviously, computation complexity is much less in case 1) than in

case 2). The DLS algorithm has been reported to show better performance

compared to HDLF mainly due to greater freedom in processor selection.

6.2.3 Task selection

In the study of deterministic scheduling models [46], it has been

shown that task selection is an important factor in determining the

optimal schedule for a task graph. The obvious choice of taking up a

ready task on priority basis does not always yield on optimum schedule.

Figure 6.2 (a) shows a task graph. For simplicity, communication costs

have been ignored here. The figures inside circles indicate the

execution times of the tasks.

If policy of scheduling a ready task, as soon as possible, is

followed then the schedule obtained for two processors is shown in

Figure 6.2 (b) as a Gantt chart. The schedule length is 17 and processor

utilisations are P : 88.3°/., P • 70.6%. The speedup obtained is 27/17 =

1.59 for 2 processors. In contrast to this, if the scheduling of task T_
6

is postponed until 1 and T are scheduled, we get the schedule shown in

Figure 6.2 (c). Here the speedup is 27/15 = 1.8 and processor

utilisations are P : 93.3% and P : 86.77..

The idea is that the activation of T„ does not generate any extra
o

work whereas activating T and T can make more tasks ready. Thus the

tasks at higher levels (distance from terminal nodes) should get
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preference in scheduling so as to keep on generating maximum possible

work at each scheduling step.

From the above discussion, it can be concluded that all tasks at

the same level are candidates for simultaneous execution or group

scheduling. An appropriate grouping of tasks can be achieved by latest

precedence partitioning of the tasK graph. Latest Precedence Level (LPL)

of tasks may be determined as follows:

LPLCT.) = 1, T.is a terminal task
1

= 1 + max (LPL (succ (T )}, otherwise ...(6.3)

S.
l

where S. is the set of successors of task T, .
l i

Sih and Lee [95] have also indicated performance gain through task

selection. However, in their approach, task selection is done from among

all tasks whereas we propose grouping of tasks through latest precedence

partition and then choosing a task from a group only. This makes the

algorithm run faster.

Based on the developments described above, a static scheduling

algorithm for APG's has been designed which is being called Latest

Precedence Scheduling algorithm taking into account its latest

precedence partitioning of graphs for task selection. The algorithm

described in next section, incorporates minimum distance property also.

•

6.3 LATEST PRECEDENCE SCHEDULING ALGORITHM

•

The algorithm incorporates the following :

i) choosing a task for scheduling from amongst those at latest

precedence level, and

128



ii) choosing a processor, from amongst minimum distance processors

irrespective of whether it is busy or idle.

The input is a precedence graph G = {T,E}. Tasks have arbitrary

execution time and edges have labels indicating the amount of data

transfer requirements. Static levels as per Eq. (6.1) are assigned to

all tasks and the whole graph is divided into, say L, latest precedence

levels. Tasks in one group of precedence are sorted in decreasing order

of selection priority given by

SP(T.) = SL(T.) + C(max (D )) ...(6 4)
i k Kl

Here D represents the number of data units to be obtained by T.

from its predecessor before it can execute and C(D) is the cost of IPC

in terms of time units needed for this transfer. Selection of ready

nodes is based on.this priority which takes IPC into account.

Processor selection is done from a set of minimum distance

processors (MDP) defined as follows:

If a task T. is to be scheduled and T, is its immediate
l k

predecessor scheduled on processor P , then MDP consists of P

and all other processors connected directly to it in the

multiprocessors network. If T. has a number of predecessors

then MDP is obtained by taking the union of all the MDP's

corresponding to each predecessor.

Having decided the members of MDP, a task T. is scheduled on the
l

processor with earliest start time (second term of the right side of Eq.

6.2). The complete algorithm is described formally below in "C" like

notation:
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for all tasks find static level SL ;

partition input graph giving L levels of latest precedence;

for (level = L; level >0; level") (

Find selection priority SP. for each task;

Sort the tasks in decreasing order of selection priority;

for each task at current level {

Tg = task with highest SP and not yet scheduled;

Find MDP for T ;
s

for each processor P in MDP

Find earliest start time ;

Schedule Tg on processor with minimum earliest start time;

The above algorithm has been implemented for LET, binary deBruijn

and hypercube networks. The next sections deal with this experimentation

and the performance results for various networks.

6.4 GRAPH GENERATION

This section deals with the generation of an arbitrary graph of

the tasks with given specifications. These specifications include the

number of nodes N in the graph, maximum in degree and maximum out degree

for each node, range of execution time for nodes and the range of

weights to be assigned to links. Following is the algorithm for graph

generation :
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Initialize all the N nodes of the graph;

for each node, {

execution time of the node random number In execution time

range;

if(node has no parents)

outdegree = random number between 1 and max. outdegree;

else

outdegree = random number between 0 and max. outdegree;

if (outdegree > number of nodes left beyond current node with

indegree not full)

adjust outdegree;

while (outdegree > 0){

childnode = random number between next node and N-l;

if (child node is not already a child of current node and

its parent count < max. indegree)(

make a link between current node and child node;

link weight of this link = random number in link weight

range;

increment child count of current node;

increment parent count of child node;

decrement outdegree;

>

)
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6.5. PERFORMANCE OF LET AND OTHER NETWORKS

The above discussed scheduling scheme i.e. latest precedence

scheduling scheme has been implemented on the hypercube, de-Bruijn and
the proposed LET networks to obtain various performance parameters viz.

LIF, speedup and efficiency. The parameters varied to obtain the results

on the networks include number of tasks in agraph, communication cost,
and indegree and outdegree of the task nodes. The results are plotted in
Figures 6.3 - 6.10 for the graph problems.

Figures 6.3 -6.5 depict the effect of changing the value of the

degree, of the graph, other parameters remaining constant. The ratio

indegree /outdegree is varied. It is observed that LET network gives
minimum value of LIF, higher efficiency and comparable speedup as the
degree of the graph is increased.

Figures 6.6-6.8 show the effect of increasing problem size i.e.

the number of tasks in the graph. The result indicates that as the

number of task in the graph is increased, the LIF is minimum for LET in

comparison to other networks. The efficiency is maximum for LET and

reaches to a high value of above SOX only when the number of task in the

graph is 50, whereas speedup is increasing steadily.

In other graphs of Figures 6.9 - 6.10, it is observed that as the

E/C ratio is increased, both speedup and efficiency improve better in

LET network in comparison to other networks. This is due to increased

overheads at lower values of E/C ratio. From the above, it can be

concluded that for less parallelism, LIF is high and efficiency is low

and in contrast to it, with more parallelism, LIF is low and efficiency
is high.
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All the results discussed above underline one common thing in

all the networks that they are able to exploit parallelism whenever

avialable, though, LET network shows better capability for all cases. It

may be expected that hypercube will show better results as the network

size increases, because in hypercube the number of immediate neighbours

available to a processor increases with size. However, this advantage

would be accompanied by increased number of connections required at each

processor. LET network has constant degree and,it shows better results

than those in the category of fixed degree networks.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Quest for higher and higher computation speed has been a main

endeavour of computer research. The trend in the computer systems has

been towards distributing processing power over a number of identical

processors executing in parallel and connected via a communication

medium. The multiprocessing (where different instructions on different

data can be executed asynchronously by each processor - Multiple

Instruction Multiple Data (MIMD)) approach to parallelism is the most

generalized and flexible one. However, the problem of interconnecting

processors to achieve high computational bandwidth, and increased

parallelism has not been fully solved.

An efficient management of parallelism involves optimizing

conflicting performance indices, like the minimization of communication

and scheduling overheads, and even load distribution among the

processors. Such issues are addressed at the organizational level by

designing a suitable topological layout of the network and an

appropriate scheduling mechanism.

This thesis sets out to design a multiprocessor architecture model

for parallel evaluation of tree-structured problems. A dynamic

scheduling strategy has been proposed and tested for the designed

network model. Finally, a comparative study has been made to show the

superiority of the proposed model and the scheduling scheme for

tree-structured as well as for general types of problems.
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7.1 CONCLUSIONS

The overall performance of the multiprocessor system is affected by

a number of factors, such as communication delays, imbalance of load

among the processors and scheduling overheads (problem partitioning and

task allocation). A close correspondence between the structure of the

problem and processor interconnection is desired in order to minimize

these factors. Scheduling plays a vital role to improve the performance,

which is guided by some constraints, which may differ from application

to application.

The basic skeleton of the proposed multiprocessor network, named as

Linearly Extensible Tree (LET) whose size grows linearly and can provide

more uniform load distribution as compared to BDM and Hypercube networks

for graph problems in general and tree-structured problems in particular

has been developed. Some of the properties observed for the LET network

as compared to deBruijn and Hypercube networks are as follows:

1) In LET network, the number of nodes grow linearly with increase in

level whereas in a Hypercube or in deBruijn, it grows as 2n.

2) The degree of a node in the proposed model is always 4 or less. The

connectivity of the Hypercube is equal to the number of dimensions

in the cube i.e. n, while in case of deBruijn it is 4.

3) In LET network, the complexity of extension increases linearly

because each extension requires adding a single layer of (n+1)

nodes. Hypercube and deBruijn networks though are extensible but the

complexity increases exponentially by the power of 2.

A dynamic scheduling scheme known as Minimum Distance Scheduling

(MDS) has been developed and implemented onto the LET network, for

tree-structured problems. In this direction, investigations have been
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made through simulation. The MDS scheme uses two steps. In the first

step, problem graphs (task graphs) are mapped on to processors (network)

with zero distance and in the second step, the ideal load is calculated

and donor and accepter processors are identified. The tasks are diffused

from donor to accepter using the minimum distance constraint. The

behavior of the scheduling rules is evaluated In terms of the

performance index called Load Imbalance Factor (LIF) , which represents

the deviation of load among processors and achieves the optimal

performance.

In order to confirm the performance of the LET network, several

other static/dynamic scheduling schemes, such as round robin (RR),

minimum load (ML), declustering scheme, dimension exchange method ("DEM),

hierarchical balance method (HBM) and gradient model (GM) have been

compared to the MDS scheme on LET network as well as onto their

respective networks for which these schemes have been designed.

Simulation results show that all the above mentioned scheduling

schemes, when applied onto LET network, considering identical

parameters, the proposed scheduling scheme performs better or equal for

all types of problems.

Other simulation results indicate that the static scheduling scheme

i.e. the latest precedence shceme, when implemented on the LET,

Hypercube, directed BDM and undirected BDM networks for acyclic

precedence graphs, gives the best performance on the LET network. As the

number of task grows, the efficiency is higher than 80 percent for LET

network of six processors.

A comparison of the LET multiprocessor network and its inherent

qualities reveal that this network is reasonably comparable with the
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existing multiprocessor networks. From the simulation studies, it has

been found that the new dynamic scheduling scheme is performing better

on the LET network in comparison to other static/dynamic scheduling

schemes. Therefore, it can be concluded that the Linearly Extensible

Tree (LET) multiprocessor network with the new dynamic scheduling scheme

is a better organization model for parallel evaluation of all types of

problem graphs, particularly tree-structured problems.

7.2 FUTURE WORK

The following extensions are recommended to the work presented in

the thesis.

1) The LET network and the scheduler be studied for real life problems,

since the tree-structured problems may not specify the whole concept

of real problems. It is recommended that the network may be

simulated and the actual program traces are used in evaluating the

performance of the network scheduling rules.

2) The fold-back connections in LET network provide a short-cut between

leaves and top processors around the root. A different network

providing fold-back connections somewhere in the middle of the

network may be studied from the point of view of its effect on

diameter, average leaf to leaf distances and LIF obtainable.

3) In the application of Latest Precedence Scheduling the simulation

study may be extended to study the effect of increasing number of

processor in LET network on speedup and LIF.
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