
A NOVEL APPROACH IN DESIGN AND DEVELOPMENT

OF OBJECT-ORIENTED HETEROGENEOUS

DISTRIBUTED DATABASE MANAGEMENT SYSTEM

A THESIS

Submitted in Fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMPTER ENGINEERING
Ace.

By

tw._%fl=a^. a

GUR SARAN DAS VARIVrA*"

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

APRIL, 1994

G<

•

. •

i

.

•

'

3':

: •

i

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in
the thesis entitled A Novel Approach In Design and Development of
Object-Oriented Heterogeneous Distributed Database Management
System in fulfillment of the requirement for the award of the
Degree of Doctor of Philosophy and submitted in the Department of
Electronics and Computer Engineering of the University is an
authentic record of my own work carried out during a period from
January 9, 1992 to April 25, 1994 under the supervision of Dr. R.
C. Joshi and Dr. K. Singh.

The matter presented in this thesis has not been submitted
by me for the award of any other degree of this or any other
University.

(Gur Saran Das Varma]

This is to certify that the above statement made by the
candidate is correct to the best of our knowledge.

Date: (Dr. R. C. Jcishi)
Professor

Electronics and Computer
Engineering Dept., U.O.R.

(Dr. Kf-Sitngh)
Prof, and Director

Continuing Education
Dept., U.O.R.

7*|^

The Ph.D. Viva-voce examination of Mr. Gur Saran Das Varma
Research Scholar, has been held on \Q~v-w V\^ S^ '

&^}& 1$ V-Cr fAs^^
Dr. R. C. Joshi Dr. K. Singh Signature of External Examiner

v~<(Dr. R. P. Agrawal)
Professor and Head

Electronics and Computer
Engineering, U. 0. R.

ACKNOWLEDGEMENT

I am deeply indebted to my guides Dr. R. C. Joshi, Profes
sor, Department of Electronics and Computer Engineering and Dr.
K. Singh, Prof, and Director, Continuing Education Department
University of Roorkee, Roorkee, for their invaluable guidance and
support in pursuing this research work.

I would also like to express my sincere gratitude to Prof.
P. S. Satsangi, Director, D.E.I. (Deemed) University, Dayalbagh,
Agra, for his continuous encouragement and motivation to carry
out further research in the field of Distributed Processing.

I wish to thank Dr.R. P. Agrawal, Dr. S. C. Gupta, Dr. A. K.
Sarje, Dr. (Mrs.) K. Garg, Dr. J. p. Gupta, Professors, Depart
ment of Electronics and Computer Engineering and Dr. R. Thaper
Reader, Department of Electronics and Computer Engineering'
University of Roorkee, Roorkee for providing encouragement and
support for the research work.

Thanks are due to all my friends and relatives who have
directly or indirectly contributed to the implementation of GURU
Object-Oriented, Heterogeneous, Distributed Database Management
System. I would specially like to thank my Grandparents and
Parents for their constant encouragement and interest throughout
my research work.

(Gur Saran Das Varma)

ABSTRACT

Object-Oriented Heterogeneous Distributed Database

Management Systems (OOHDDBMS) are used to handle databases using

the object-oriented programming (OOP) philosophy in a wide range

of application domain, such as, running with different kinds of

Database Management Systems, and using different programming

languages. Object-Oriented Query languages (OOQLs) are more

powerful than the relational query languages which are used

widely.

Here a new OOHDDBMS named, GURU is designed and imple

mented to supplement the various problems faced with OOQLs, which

are available with research prototypes only. To tackle this

problem, a new OOQL named, GSQL is designed and implemented which

provides userfriendliness and runs the complete popular ANSI

standard SQL (Structured Query Language) designed for relational

database systems. Apart from this, GSQL supports its own powerful

Object-Oriented Programming Language with semantic constructs.

GSQL compiler uses its own (used with GURU) translator/mapper to

support heterogeneous programming languages through GURU'S shell.

The existing systems do not have the intelligent local

query mechanism with object-oriented support which can work with

different indexes automatically. We have presented an approach to

handle data definition language part with intelligence to support

queries in heterogeneous environment for the quick replies. This

scheme helps in maintaining the perfect consistency of the

database with the intelligent design of schema. The local schema

is derived from the global schema and the site autonomy is

preserved accordingly. The heterogeneous database fragments are

designed to provide the maximum access efficiency at the local
sites.

An approach is suggested which integrates the

heterogeneous schemas and provide the environment design accord

ingly, for handling an application at different remote terminal

nodes with different database management systems. A design of

translator/mapper is presented which helps in a heterogeneous

global domain. A process known as user application registration

is illustrated which is very helpful in the integration of the

schemas. Further, a concept of cooperative system is provided,

which helps network terminal nodes for the maintenance of appli
cations on the global network with a modified master/slave con
cept.

An intelligent server design is presented which uses

the knowledgebase to provide the different fragment allocation

schemes with the available knowledge using trigger methods. The

server helps the different other blocks like Object Manager, Data

Manager etc. to coordinate the proper fragment handling opera

tions. A concept of general object is presented which uses no

files and no messages in the system. The different complexity >
measures are suggested. Later, the different ways are suggested,

using them the complexity can be reduced considerably.

A concept of message-task is explained, which is used

to provide great power to handle objects. The messages are sched- ;

uled like normal tasks by GURU and the burden on Operating

System, to create separate processes and execute message-task is

reduced. The three different layers are explained which are

associated with GURU. These layers have the individual assigned

tasks to maintain the isolation among the system, network and the

•

fc.V

•

application tasks for the better privacy, security and operation

al efficiency.

A dynamically changing environment with changing object

structures is proposed with no limits for the changes. The

support of metaclass concept is also illustrated. There need not

be any prior proposed ways in which the structure of the objects

can be changed. The different thread and trigger mechanisms are

suggested to trace the active objects and maintain the required

consistency in the system. The concept of intensional and

extensional notions are explained with GURU and the both notions

are used with the proposed object structure in GURU. Further, the

designs of object manager and data managers are explained which

maintain the different versions of the objects and the database

fragments used as objects. A concept of virtual object and object

migration is explained with GURU.

The different privacy and security arrangements are

explained with the dynamically changing object structures. The

tight security with a new concept of extended object structure is

provided which also helps in the protection of the object's view.

The suggested methods use the object's privacy locks with embed

ded data in the object's structure. Some other information can

also be used to relax locking dynamically, which extends a wide

range of userfriendliness in the system.

GURU has been developed in C language, which consists

of about 60,000 lines source code. A comparative study of GURU

with the other existing DBMSs has been made.

2PC

2PL

ADT

AT

CAD

CAI

CAM

CPU

DBMS

DDBMS

DMTS

DSMS

DVSMS

GSQL

I/O

ISO

LAN

MBCS

MM

NLRB

OID

OODB

OOHDDBMS

OOP

OOPL

OOQL

OSI

SQL

LIST OF ABBREVIATIONS

2 Phase Commitment

2 Phase Locking

Abstract-Data Type

Acceptance Test

Computer-Aided Design

Computer-Aided Instructions

Computer-Aided Manufacturing

Central Processing Unit

Data Base Management System

Distributed Data Base Management System

Distributed-Message Task Scheduling

Distributed Shared Memory System

Distributed Virtual Shared Memory System

GURU Structured Query Language

Input-Output

International Systems Organization

Local Area Network

Message-Based Communication System

Main-Memory

Named-Linked Recovery Block

Object-Identifier

Object-Oriented Database

Object-Oriented Distributed Database Management

System

Object-Oriented Programming

Object-Oriented Programming Language

Object-Oriented Query Language

Open System Interconnection

Structured Query Language

TABLE OF CONTENTS

Pages

ABSTRACT i

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

r
CHAPTER 1 Introduction and Statement of the Problem 1

1.1 Introduction 1

1.2 Motivation for the Current Work 5

1.3 Statement of the Problem 12

1.4 Organization of the Thesis 13

CHAPTER 2 Review and General Considerations 17

2.1 Introduction 17

2.2 Network Scaling Problems 21

2.3 Distribution Design Methodology 22

2.4 Distributed Query Processing 25

2.5 Distributed Transaction Processing 28

^L 2.6 Integration with Distributed

Operating Systems 31

2.7 Distributed Multidatabase Systems 34

2.8 Object-Oriented Data Model 38

2.8.1 Objects and Object Identifiers 40

2.8.2 Aggregation 43

2.8.3 Methods 46

2.8.4 Metaclasses 54

2.8.5 Inheritance 55

2.8.6 Operational Aspects 60

2.8.7 Versions 60

CHAPTER 3 Query Automation

3.1 Introduction

3.2 Query Handling 66

3.3 Distributed Schema Handling 67

3.3.1 Global Schema Handling 69

3.3.2 Local Schema Handling 72

3.3.3 Applications of Schema for

Local Processing 74

3.3.4 Server Design to Access Local

and Global Schemas 75

3.4 Approach 78

3.4.1 Constraints 82

3.5 Design View 33

3.6 Fragment Design 88

3.6.1 Horizontal Fragment Design 88

3.6.2 Vertical Fragment Design 89

3.6.3 Mixed Fragment Design 90

3.6.4 Fragment Allocation 91

3.6.5 Versioning 92

3.7 Query Maintenance 93

3.7.1 Dependency Check 93

3.7.2 Index Organization 96

3.7.3 Query Transformation 101

3.7.4 Backlog Handling 103

3.7.5 Log Management 104

3.7.6 Server Management 105

3.7.7 Catalog Management 107

3.7.6 Data Dictionary Management 108

3.8 Conclusion 115

CHAPTER 4 Schema Design 118

4.1 Introduction 118

4.2 Approach 119

64

64

\ 4.3 Schema Design Process 125

4.4 Distributed Schema Design 130

4.5 Local Schema Management 144

4.6 Conclusion 153

CHAPTER 5 Schema Integration 156

5.1 Introduction 156

5.2 Object Model's Properties 157

5.3 Environment Design for Schema

Integration 159

5.3.1 Design Objectives 160

5.3.2 Design View 161

5.4 Intelligent Translator/Mapper Design 183

5.5 Heterogeneous DDBMS's Objectives

Affected With Schema Design 190

5.6 Conclusion 193

CHAPTER 6 Complexity Measures 195

6.1 Introduction 195

6.2 Intensional and Extensional Notions 196

6.2.1 Applications 199

6.3 Brief Architecture of GURU 200

6.4 Complexity in Distributed Schema

->. Handling 202

6.4.1 Query Mapping 203

6.4.2 Query Rerouting 203

6.5 Complexity With Transaction Handling

Tools 204

6.6 Complexity Measures in Fragment

Handling 204

6.6.1 Optimal Fragment Allocation 206

6.7 GSQL instructions 209

6.8 Conclusion 225

CHAPTER 7 Message-Task Scheduling 227

7.1 Introduction 227

7.2 Objects and Messages 228

7.3 Heterogeneous Message-Task Scheduling

Policies

7.3.1 Objects

7.3.2 Task Handling 236

7.3.3 Message-Task Conversation 239

7.4 Conversation Policies 239

7.4.1 Conversation Structure 239

7.4.2 Exit Procedures 245
1

7.4.3 Acceptance Test 250

7.4.4 NLRB Scheme 252

7.4.5 Abstract Data Type Scheme 252

7.4.6 Heterogeneous Systems 253

7.5 Thread Management and Concurrency

Control 253

7.6 Problem Implementation 255

7.7 Conclusion 260

CHAPTER 8 Objects and Dynamic Environments 262

8.1 Introduction 262

8.2 Structural Tools 263

8.3 Class and Object Structures 264 £

8.4 Extended User Defined Area 277

8.5 Class and Object Creation Methods 278

8.6 Object Management 286

8.6.1 Object Manager 287

8.7 Problem Implementation 287

8.7.1 Scenario 288

8.7.2 Implementation Strategies 289

8.8 Conclusion 292

CHAPTER 9 Object Protection and System

Administration 293

>

230

230

*

T

9.1 Introduction

9.2 Kinds of Protections

9.3 System Level Protection

9.4 Extended User Defined Procedures

9.4.1 Triggers

9.5 System Administrator and User Level

Protection

9.6 Message Protection

9.6.1 Ciphering

9.6.2 Port Arbitration

9.7 Problem Handling

9.8 Conclusion

CHAPTER 10 Conclusion and Future Scope of Work

10.1 Conclusion

10.2 Future Scope of Work

APPENDIX-A

APPENDIX-B

APPENDIX-C

APPENDIX-D

APPENDIX-E

APPENDIX-F

BIBLIOGRAPHY

293

295

298

305

310

313

318

319

319

320

320

323

323

327

329

331

368

379

384

401

406

•r

U

ERRATA

fage No. Para. No. Line No. Present Words Should be

read/modified as

95 3 2 continue continuous

110 2 11 appointment appoint

139 2 6 can can be

140 2 2 but, and also

144 1 6 form form of

150 2 1 creates create

154 3 11 provide provides

155 1 1 provide provides

170 2 6 both of both

176 1 2 assume assumed

176 1 4 send sent

182 2 3 DBMS DBMSs

200 2 6 a an

203 3 8 terminal terminals

206 2 11 operation operations

214 2 3 .not. .not. are

214 2 6 give given

217 3 6 belong belongs

225 4 4 fragment fragments

313. B 3 9 becomes become

315 2 9 committed. The committed, the
318 2 1 kind lfi nrla

CHAPTER - 1

Introduction and Statement of the Problem

1.1 INTRODUCTION

A need of getting data and information from the remote

computer terminal nodes is increasing rapidly. In the present day

environment the latest data and knowledge play a major signifi

cant role. The lack of the latest data and information could

create various adverse effects in the wide range of human and

machine environments and the sufferings may not be repairable.

Distributed database technology is one of the most important

computing developments of the past few years. During this period

a number of first generation commercial products have been

evolved. It is expected that the distributed database technology

will be effective for data processing in the same way as central
ized systems did about a decade ago.

A distributed database is a collection of different

logically interrelated databases, distributed over a computer
network, connecting the different computer terminals, kept geo

graphically apart. A distributed database management system

(DDBMS) is a software system that manages the distributed data

base and makes the distribution transparent to users. The term

distributed database management system is used to refer the

combination of the distributed management component and the
distributed databases.

The most of the current systems are built in the local

area network environments, consisting of the each site a single

computer system. The database is distributed so that each site

manages a single local database. The design of next generation

DDBMSs will be different, however, as a result of technological

developments especially the emergence of affordable

multiprocessors and high-speed networks with the upcoming object-

oriented design philosophy. System design will also be affected

by the increasing use of database technology in application

domains that are more complex than business data processing and

by the wider adoption of client-server mode of computing,

accompanied by the standardization of the client-server

interface. Thus the distributed DBMS environment will include

multiprocessor database servers connected to high speed networks

linking them and the other repositories to client machines that

run application code and participate in executing database

requests. Distributed relational DBMSs of this type are already

appearing, and several existing object-oriented systems also fit

this description.

One of the common feature of the next generation

database systems is that they will need a data model more

powerful than the relational model, without compromising its

advantages (data independence and high-level query languages).

When applied to more complex applications such as CAD/CAM,

software design, office information systems, and expert systems,

the relational model exhibits limitations in terms of complex

object support, type system, and rule management. To address

these issues two important technologies - knowledge bases and

Object-oriented databases - are being investigated. Another major

issue is going to be system performance as more functionality is

added. Exploiting the parallelism available in multiprocessing

computers in one promising way to provide high performance.

Techniques designed for distributed databases can be useful but

need to be significantly extended to implement parallel database

systems.

Object-oriented database management systems (OODBMSs)

combine object-oriented programming and database technologies to

provide greater modeling power and flexibility to programmers of

data intensive applications [200]. Over the last five years,

OODBMSs have been the subject of intensive research and

experimentation, which led to an impressive number of prototypes

and commercial products. But the theory and practice of

developing distributed OODBMSs have yet to be fully developed

[182],[142]. Distributed environments will make the problems even

more difficult. In addition, the issues of data dictionary

management and distributed object management have to be dealt

with. However, distribution is an essential requirement, since

applications that require OODBMS technology typically arise in

networked workstation environments. The earlier commercial

OODBMSs (for example, Gemstone) use a client-server architecture

in which multiple workstations can access the database

centralized on a server. However, distributing an object-oriented

database within a network workstations (and servers) is becoming

very attractive. In fact, some OODBMSs already support some form

of data distribution transparency (Ontos and Distributed Orion,

for example).

Knowledge base management systems try to make database

management more intelligent by managing knowledge in addition to

data. Capturing knowledge in the form of rules has been

extensively studied in a particular type of knowledge base system

called deductive database. Deductive database systems manage and

process rules specified over large amount of data within the DBMS

rather than in separate subsystem. Rules can be deductive

(assertions) or imperative (triggers). Rule management is

essential, since it provides a uniform paradigm to deal with

semantic integrity control, views, protection, deduction, and

triggers. Much of the work in deductive databases has

concentrated on the semantics of rule programs and on processing

the deductive queries, particularly in the presence of recursive

and negated predicates. But much work is needed to combine the

rule support with object-oriented capabilities. For reasons

similar to those for OODBMS applications, knowledge base

applications are likely to arise in networked workstation

environments. These applications can also arise in parallel

computing environments when the database is managed by a

multiprocessor database server. In any case we can simplify a

number of issues by replaying on distributed relational database

technology. Unlike most OODBMS approaches, which try to extend an

object-oriented programming language, this similarity is a strong

advantage for implementing knowledge bases in distributed

environments. Therefore the new issues have more to do with

distributed knowledge management and processing and debugging of

distributed knowledge base queries than with distributed data

management.

Parallel distributed systems are designed to exploit

recent multiprocessor computer architectures to build high-

performance and fault-tolerant database servers[13]. For example,

by fragmenting the database across multiple nodes, we can obtain

more interquery and intraquery parallelism. For obvious reasons

such set-oriented processing and application portability, most of

the work in this area has focused on supporting SQL.

The design problems of parallel database systems, such

as operating system support, data placement, parallel algorithms,

and parallelizing compilation, are common to both kinds of

>

architectures. If parallel data servers become prevalent, we can

foresee an environment in which several of them are placed on a

backbone network, giving rise to distributed systems consisting

of processor clusters [81]. An interesting concern in such an

environment is networking. Specifically, executing database

commands that span multiple, and possible heterogeneous, clusters

creates at least the problems that are seen under distributed

multidatabase systems. In addition, the queries must be optimized

not only for execution in parallel on a cluster of servers, but

also for execution across a network.

Here a new object-oriented heterogeneous distributed

database management system, GURU is designed and implemented

which runs its own structured query language known as GSQL (GURU

Structured Query Language). GSQL supports the complete SQL along

with its own object-oriented powerful query language with

semantic constructs. The basic aim in the design of GURU is to

remove the many more existing problems in the existing OOHDDBMSs

apart from a few discussed above.

1.2 MOTIVATION FOR THE CURRENT WORK

The working environment for the design can be defined

in the three dimensions:

Autonomy refers to control distribution and indicated

the degree to which individual DDBMSs can operate independently.

It involves a number of factors including whether the component

systems exchanges information. Whether, they can independently

execute transactions, and whether one is allowed to modify them.

Three types of autonomy are tight integration, semiautonomy and

full autonomy. In tightly integrated systems a single image of

entire database is available to users who want to share the

information in multiple databases. Semiautonomous systems consist

of DBMSs that can operate independently but have been designed to

operate in a federation to make their local data shareable. In

fully autonomous systems, however, the individual components are

stand-alone DBMSs, which know neither of the existence of the

other DBMSs nor of how to communicate with them.

Distribution deals with data. The two cases can be

considered: Either data are physically distributed over multiple

sites that communicate with each other over some form of

communication medium or they are stored only at one site.

Heterogeneity occurs in various forms, ranging from

hardware heterogeneity and differences in networking protocols to

variations in different data managers. The important forms of the

heterogeneity from the perspective database systems are

differences in data models, query languages, interfaces and

transaction management protocols. The taxonomy classifies DBMSs

as the homogeneous or heterogeneous.

Centralized database management system have taken us

from a data processing paradigm in which data definition and

maintenance were embedded in each application to one in which

these functions are abstracted from the applications and placed

under the control of a server called the DBMS. This new

orientation results in data independence - the immunity of

application programs to changes in the logical and physical

organization of the data and vice versa. Distributed database

technology intended to extend the concept of data independence to

environments in which data is distributed and replicated over a

number of machines connected by a network. Data independence

>

provided by several forms of transparency: network (and

therefore, distribution) transparency, replication transparency
and fragmentation transparency. Transparent access to data

separates a system's higher level semantics from lower level

implementation issues. Thus, database users would see a logically
integrated single-image database, even though it was physically
distributed, enabling them to access the distributed database as

if it was a centralized one. In its ideal form, full transparency

would imply a query language interface to a distributed DBMS no

different from that to a centralized DBMS.

Most commercially distributed DBMSs do not provide a

sufficient level of transparency. Part of the problem is the lack

of support for replicated-data management. Some systems do not

permit the data replication across multiple databases; systems

that do permit it require that the user be physically logged on

to one database at a given.time. Some DDBMSs attempt to establish

their own transparent naming schemes, usually with unsatisfactory

results, requiring the users either to specify the full path to

data or to build aliases to avoid long path names. An important

part of the problem is the lack of proper operating system

support for transparency. Network transparency can easily be

supported by a transparent naming mechanism in the operating

system. The operating system can also assist in replication

transparency, leaving the task of fragmentation transparency To

the DDBMS.

It is agreeable that the management of distributed data

is more difficult transparent access is provided to users, and

that the client server architecture with RPC-based communication

is the right approach. In fact some commercially distributed

DDBMSs are organized in this fashion (Sysbase, for example).

However, the original goal of providing the transparent access to

distributed and replicated data should not be abandoned because

of the difficulties. The issue is, what should take over the

responsibility of managing distributed replicated data-the DDBMS

or the application? It should be distributed DBMS, whose

components can be organized in a client-server fashion. The

related technical problems are among the remaining research

issues that must be added.

Distributed DBMSs are intended to improve reliability,

since they have replicated components and thereby eliminate

single point of failure. The failure of the single site, or a

communication link failure that make one or more sites

unreachable is not enough to bring down the entire system. In

distributed database this means that the some of the data may be

unreachable, but, with proper care users may be permitted to

access other parts of the database. This proper care comes in the

form of support for distributed transactions.

A transaction consists of a sequence of database

operations, executed as an atomic action that transforms a

consistent database state to another consistent state, even when

a number of such transactions are executed concurrently(some time

called concurrency transparency), and even when the failures

occur(called failure atomicity). Therefore, a DBMS supports full

transaction support guarantees that current execution of user

transactions will not violate the database consistency in the

face of system failures as long as each transaction is correct-

that is, obeys the integrity rules specified for the database.

Distributed transactions execute at multiple sites,

where they access the local database. With full support for

>

h

distributed transactions, user applications can access a single
logical image of the database and reply on the distributed DBMS

to ensure that their requests will be executed correctly no

matter what happens in the system. Correctly means that the user

applications need not be concerned with coordinating their access

to individual local databases, nor need they worry about the

possibility of site or communication link failures during

execution of their transactions. There is a link between a

distributed transactions and transparency, since both involve

distributed naming and directory management.

Data replication increases the data availability;

copies of the data store at a failed or unreachable site exist at

other operational sites. However, replica support requires the

implementation of the control protocols that enforce a specified

replica access semantics. The most straightforward semantics is

one-copy equivalence, which can be enforced by the ROWA (read

one, write all) protocol. In ROWA, a logical read operation on a

replicated data item is converted to one physical read operation

on any one of its copies, but a logical write operation is

translated to physical writes on all copies. More complicated,

j less restricted replica control protocols based on deferring the

rights on some copies, have been studied but are not implemented

in any known system.

Better performance, The case for distributed DBMSs

superior performance is usually based on two points. First, a

distributed DBMS fragments the conceptual database, enabling data

to be stored in closed proximity to its point of use. This

feature is called data localization, has two potential

advantages: (1) Since, each site handles only a portion of the

database, contention for CPU and I/O is not as severe as

centralize databases, and (2) Localization reduces remote access

delays, which usually occur in wide area networks (for example

the minimum round trip message propagation delay in satellite-

based systems is about one second). Most DDBMSs are structured to

gain maximum benefit from data localization. Full benefits of

reduced contention and reduced communication overhead can be

obtained only through a proper fragmentation and distribution of

the database.

The second point in the favor of DDBMS's performance

advantage is that the inherent parallelism of distributed systems

can be exploited for interquery and intraquery parallelism

results from the execution of multiple queries at the same time.

Intraquery parallelism is achieved by breaking up a single query

into a number of subqueries, each executed at different site,

accessing a different part of a distributed database. If the user

access to distributed database consisted only of querying (read

only access), then provision of interquery and intraquery

parallelism would imply that as much of the database as possible

should be replicated. However, since most database accesses are

not read-only, the mixing of read and update operations requires

the implementation of the elaborate concurrency control and

commit protocols.

Today, commercial systems employ two alternative

execution models (other than the implementation of full

distributed transaction support) to realize improved performance.

The first alternative is to have the database open only for

queries (read-only access) during regular operating hours, while

updated are batched. The database is then closed to query

activity during off-hours, when the batched updates are run

sequentially. This run time-multiplexing between read activity

10

and update activity. The second alternative is based on

multiplexing the database: Two copies of the database are

maintained, one for ad hoc querying (called the query database)

and the other for updates by application programs (called the

production database). At regular intervals, the production

database is copied to query database. The alternative does not

eliminate the need to implement concurrency control and

reliability protocols for the production database, since these

are necessary to synchronize the write operations on the same

data: however it improves the performance of queries, since they

can be executed without transaction manipulation overhead.

The performance characteristics of the distributed

database systems are not well understood. There are not enough

true distributed database applications to provide a sound basis

of practical judgments. In addition, performance models are not

sufficiently developed. The database community has developed a

number of benchmarks to test the performance of transaction-

processing applications, but it is not clear whether they can be

used to measure the performance of distributed transaction

management. The performance results of commercial DBMS products,

even with respect to these benchmarks, generally are not openly

published. Nonstop SQL is one product for which performance

figures, as well as experimental setup used in obtaining them,

have been published.

Easier, more economical system expansion. In a

distributed environment, accommodating increasing database sizes

should be easier. Major system overhauls are seldom necessary;

expansion can be usually handled by adding processing and storage

power to the system. This is known as database size scaling, as

opposed to network scaling. It may not be possible to obtain a

11

linear increase in power, since this also depends on the

distribution overhead, but significant improvements are still

possible.

1.3 STATEMENT OF THE PROBLEM

The main objective of this work is to design and

develop a new Object-Oriented Heterogeneous Distributed Database

Management System (OOHDDBMS), which has the following features

apart from the existing features in the modern OOHDDBMS:

(i) To design and implement a Structured Query Language (SQL)

with semantic constructs supporting Object-Oriented features. The

SQL with the system, provides the support to heterogeneous

environment management with a powerful compiler support for the

concurrency control.

(ii) Some efforts will be made to design and implement an

intelligent server, to process the different queries efficiently

and to provide better user friendliness in the overall

heterogeneous environment handling all kinds of fragments.

(iii) To introduce a concept of intelligent schema design and a

new technique of schema integration with on line application

registration in heterogeneous environment.

(iv) To propose a concept of object structures with triggers for

complexity and performance measurement of the heterogeneous

system.

(v) To modify the existing master/slave concept in Object-

Oriented system, supporting the interaction among the active

12

V

objects for the global heterogeneous network environment.

(vi) To implement the concept of metaclasses in the Structured

Query Language.

(vii) To provide a concept of virtual memory support with the

object managers and the concept of message-task in a large
database system environment.

(viii) To introduce the concept of unlimited support for

dynamically changing object structures maintaining the different

required versions in global heterogeneous environment.

(ix) To maintain the consistency, privacy and security in

dynamically changing object structures and privilege levels.

1.4 ORGANIZATION OF THE THESIS

In Chapter 2, the review and general consideration for

the existing database management systems are presented. Which

discusses the various centralized and distributed database

management systems. Further, the different existing homogeneous

and heterogeneous distributed database management systems are

compared with their specific features and later, the object-

oriented distributed database management systems are compared.

An intelligent method to handle heterogeneous

distributed queries is explained with the index mechanism in

Chapter 3. A method is discussed which is used to handle schema

in GURU OOHDDBMS uses the intelligent techniques. The several

existing approaches are discussed to explain the data structures

used in memory to reply queries locally. It discusses the various

13

kinds of heterogeneous fragments and their design. Later, the

fragment allocation is discussed. The server design and

management to handle the intelligent techniques is also

explained. Some important tools which are used for query handling

and recovery are also explained. These tools include backlog,

log, catalog and data dictionary for the distributed database

management systems. A technique of maintaining the different

versions of the database fragments is also explained.

The basic mechanism known as heterogeneous schema, used

in GURU to handle the heterogeneous distributed database, through

which all other remote terminal nodes can access the global

database is presented in Chapter 4. An intelligent database view,

which helps in providing good site autonomy is explained. The

different ways are suggested which could be used for the object-

oriented schema design approach to fetch the local schema.

A process of heterogeneous schema integration is

illustrated in Chapter 5. The various kinds of schemas are

explained which could be linked to provide global schema. A

procedure known as user's schema registration is explained for

the three kinds of registration procedures. Further, the design

of server is discussed for the efficient translation process. The

intelligent translator/mapper design is also presented. Later,

the effects of heterogeneous database are discussed for the

overall performance of the system. And the effect of schema

integration on DDBMS objectives is illustrated.

Chapter 6, discusses the various complexity issues in

the design of a heterogeneous distributed database management

system. The intensional and extensional notions are explained for

the object design from the complexity view point. Later, a brief

14

^

architecture of GURU is explained. Further, the allocation of

heterogeneous fragments is discussed which affects the complexity

for replying queries.

A concept of message-task in GURU is explained in

Chapter 7, which provides a wide flexibility to control objects

and handle the communication among objects efficiently. The

procedure of object interaction for replying queries is discussed

in detail. The mechanism of synchronously and asynchronously

exited active objects is illustrated with a proper comparison.

Some other communication protocols are also illustrated for the

communication purposes among the different distributed objects.

The mechanism used in GURU to protect the system through the

different layers is also explained.

The changing object structures in dynamically changing

environments are discussed in Chapter 8. The different kinds of

procedures are illustrated which are used to change the object

structures and maintain the database consistency. The changes of

database view and the trigger procedures to watch changes and

control the required objects is discussed. The mechanism to

invoke objects using threads is explained. The design of object

manager and the data manager with the object version support is

also illustrated.

An arrangement to protect view of the objects is

explained in Chapter 9. The existing protection schemes are

discussed which are used to protect databases in various ways.

The object-oriented design philosophy and the protection of

object view in dynamically changing environment are illustrated.

The various arrangements used with user level, system level and

the process level protection are discussed. Some trigger schemes

15

are also suggested for guarding the various views of the objects.

In Chapter 10, the conclusion of the whole work is

explained and the comparison of GURU with the existing

distributed DBMSs is presented. Later, the future scope of the

work and new research areas are illustrated.

16

X

CHAPTER - 2

Review and General Considerations

2.1 INTRODUCTION

The previous chapter discusses the current state of

commercial DDBMSs and how well they meet the original objectives

set for the technology. Obviously, the commercial state of art

still has a way to go. The situation is not only that commercial

systems have to catch up with and implement research results, but

that significant research problems remain to be solved. The

following issues still require more work:

(1) performance models, methodologies and benchmarks to

better measure the sensitivity of the proposed algorithms to the

underlying technology;

(2) distributed query processing to handle queries more

complex than select-project-join, multiple query processing to

save on common work, and optimization cost models to determine

when such multiple query processing is beneficial;

(3) advanced transaction methods that differ from those

defines for business data processing, better reflecting the

processing mode (cooperative sharing, user interaction, long

duration) common in the applications distributed database

technology is going to support;

(4) Analysis of replication and its impact on

distributed database system architecture and algorithms, and

development of efficient replica control protocols that improve

system availability;

(5) distributed DBMS implementation strategies that

emphasize a better interface and cooperation with distributed

17

operating systems;

(6) theoretically complete, correct, and practical

design methodologies for distributed databases; and

(7) the full set of problems related to the

interconnection of autonomous information-processing systems.

The distributed database management systems can be

classified into two categories, homogeneous and heterogeneous.

The homogeneity and heterogeneity can be considered at the

different levels in the distributed database. They are mainly the

hardware, operating system and the local DBMSs. The differences

at the various levels can be considered by observing the behavior

with the communication software. The homogeneous DDBMS refers to

a DDBMS with the same DBMS at the different sites on the computer

network even if the computer systems and the operating systems

are not same. A heterogeneous DDBMS at least uses two different

DBMSs. Heterogeneous DDBMS adds the translation procedure to the

complexity of homogeneous DDBMSs. Although the problems with

heterogeneous DDBMSs are very hard and therefore, still the

heterogeneous DDBMSs exist only as the research prototypes.

As seen earlier, many important technical problems

await solution, and new ones will arise as distributed database

management systems develop. These problems should keep

distributed DBMS researchers and implementers busy for some time

to come.

The first and most relevant application of database

management systems technology were for business and

administration. This influenced data organization and usage in

DBMSs.

18

Recently, however, innovations have opened a market to

new applications that require adequate software tools [33].

Typical examples include computer-aided design, office

information systems, hypermedia systems, documentation of complex

mechanical systems, knowledgebases, and scientific applications.

These applications require effective support for

management of complex, possibly multimedia, objects. For example,

hypermedia applications require handling of text, graphics and

bit map pictures, while design applications might require support

for geometric objects. Other crucial requirements derive from the

evolutionary nature of applications and include multiple versions

of the same data and long-lived transactions.

The support of complex objects imposes several

requirements on both the object data model and object management.

The data model should support the modeling of object structures

and interrelationships in a natural way. The model should support

not only an object structural definition, but also the modeling

of object behaviors and dynamic constraints. In addition, in the

intended application environments, the object structures,

behavior and interrelationships evolve over time.

From the object management view point, the application

characteristics, the object dimensions, and the length of

operations require extending or completely modifying traditional

DBMS architectures, techniques and algorithms to deal with a

number of issues. For instance,

* Two modalities of access to objects should be

provided (that is, access to a single object) based on some

object identifier or name, and access to sets of objects, based

19

on declarative queries. 4

* Object versioning mechanism should be provided to

take into account different object evolution states, validity

times, and information about alternatives.

* Transaction can extend in time and involve large

amounts of data. This requires revisiting the recovery and

concurrency control mechanisms.

* The evolutionary nature of applications makes schema

modifications the norm rather then the exception. Therefore,

execution of schema modification operations should be supported

without requiring system slowdown and shutdown.

* Protection mechanisms should be based on the object,

which is the natural access unit.

To satisfy these requirements, one direction undertaken

in the database is the design and development of object-oriented

database management systems (OODBMSs). An object oriented data

model lets the user model every conceptual entity by using a

single modeling concept: the object. In addition mechanism such

as aggregation and generalization let the user represent

relationships among objects, and among object collections.

The object-oriented paradigm was primarily introduced

in the design of advanced programming languages and environments

such as Smalltalk. A first attempt to apply this paradigm to data

management has result in building of object-oriented interfaces

on top of relational DBMSs. Mainly for performance reasons, this

solution is generally unsatisfactory.

More advanced systems such as Avence[28], Encore[200],

Gemstone[36], Iris[192], 02[67], Orion[96], and Vbase[12], have

taken the approach of designing an architecture to directly

r

*
20

support the object-oriented paradigm.

The problem can be discussed more precisely in the

following sections scalability, design methodology, query

processing, transaction processing, integration, autonmy,

multidatabase, and object-oriented data models etc.

2.2 Network Scaling Problems

The database community does not have a full

understanding of performance implications of all the DDBMSs

design alternatives. Specially, questions have been raised about

the scalability of some protocols and algorithms as systems

become geographically distributed or as the number of system

components increases[77]. One concern is the suitability of the

distributed transaction-processing mechanisms(the 2PL and,

particularly, the 2PC protocols) in distributed database systems

based on wide area networks. A significant overhead in associated

with these protocols and implementing over a slow wide area

network may pose difficulties[172].

Scaling issues are only a part of more general problem:

There is no good handle on the role of network architectures and

protocols in the DDBMS performance. Almost all the performance

studies assume a very simple cost model, some time so unrealistic

as to use a fixed communication delay independent of all network

characteristics such as load, message size, network size, and so

on[5],[22]. The inappropriateness of these models can be demon

strated easily. Consider, the DDBMSs that run on an Ethernet-type

local area network. Message delays in Ethernet increases as the

network load increases and generally cannot be bounded. There

fore, realistic performance models of an Ethernet-based DDBMS

21

cannot realistically use a constant network delay or even a delay

function that does not consider the network load. In general, the

performance of the proposed algorithm and protocols in different

local area network architectures is not well understood, let

alone their comparative behavior in moving from local area net

works to wide area networks.

The proper way to deal with scalability to deal with

general, sufficiently powerful performance models, measurement

tools, and measurement methodologies. Such work has been going on

for some time for centralized DBMSs but has not been yet

sufficiently extended to DDBMSs. The questions raised regarding

the suitability of the existing benchmarks, detailed and

comprehensive situation studied do not exist either. Although

there are plenty of DDBMS performance studies, they usually

employ simplistic models, artificial work loads, or conflicting

assumptions, or they consider only a few special algorithms.

Making generalization on the basis of existing performance

studies require a giant leap of faith. This does not mean that

there is no understanding of trade-offs. In fact certain trade

offs have long been recognized, or even the designers of the

earlier systems considered them. For example, the query processor X

of SDD-1 system was design to execute distributed operations most

efficiently on slow wide area networks[122]. Later, studies

considered the optimization of query processor in faster,

broadcasting local area networks. But these trade-offs can mostly

spelled out only in qualitative terms; their quantification

requires more research on performance models.

2.3 Distribution Design Methodology

Distributed database design methodology varies

22

T

»

according to system architecture. For tightly integrated

distributed databases, design proceeds top-down from requirements
analysis and logical design of the global database to physical

design of each local database. For distributed multidatabase

systems, the design process is bottom-up and involves the

integration of existing databases.

The step of interest to us in the top-down process is

distribution design, which involves designing local conceptual
schemas by distributing global entities over the sites of the

distributed system. The global entities are specified within the

global conceptual schema. In the relational model, both the

global and local entities are relations, and distribution design

maps global relations to local ones[49],[50]. The important

research issue that requires attention is the development of a

practical design methodology and its integration into the general

data-modeling process. The two aspects of distribution design are

fragmentation and allocation. Fragmentation is the partitioning

of each global relation into a set of fragment relations.

Allocation concentrates on the (possibility replicated)

distribution of these local relations across the distributed

system's sites. Research on fragmentation has concentrated on

horizontal (or selecting) or vertical (or projecting)

fragmentation of global relations. Numerous allocation algorithms

based on mathematical optimization formulations have also been

proposed[37] ,[99], [113] ,[183] .

No underlying design methodology combines the

horizontal and vertical partitioning techniques; horizontal and

vertical partitioning algorithms have been developed completely

independently. If one starts with a global relation, there are

algorithms to decompose it horizontally and algorithms to

23

decompose it vertically into a set of fragment relations.

However, there are no algorithms that fragment a global relation

into a set of fragment relations of which some are decomposed

horizontally and others vertically. Researchers always point out

that most real-life fragmentations would be mixed, that is, would

involve both horizontal and vertical partitioning of a relation;

but research on how to accomplish this is lacking[182],[3],[40].

A distribution design methodology is needed that encompasses the

horizontal and vertical fragmentation algorithms and uses them as

part of a more general strategy. Such a methodology should take a

global relation and a set of design criteria and come up with a

set of fragments, some from horizontal and others from vertical

fragmentation.

r

Allocation that the second part of distribution design,

is typically treated independently of fragmentation. The process,

therefore, is linear,- the output of fragmentation is input to

allocation. At first site isolation of the fragmentation and the

allocation steps appears to simplify the formulation of the

problem by reducing the decision space. However the closer

examination reveals that isolating the two steps actually

contributes to the complexity of the allocation models. Both

steps have similar inputs, differing only in that fragmentation

works on global relations whereas allocation considers fragment

relations. They both require the information about the user

applications (such as how often they access data and what the

interrelationship of individual data object is), but each ignores

how the other uses these inputs.

The end result is that the fragmentation algorithms

decide how to partition a relation partly on the basis of how

applications access it, but the allocation models ignore the part

24

this input plays in fragmentation[40],[65]. Therefore, the

allocation models have to include all over again a detailed

specification of the relationship among the fragment relations

and how user applications access them. A more promising approach

is to extend the methodology discussed above so that it reflects

the interdependence of the fragmentation and the allocation

decisions. The approach requires the extensions of exiting

distributed design strategies[115] ,[116] .

The integrated methodologies such as the one proposed

here may be complex. But combining these two steps may have

synergistic effects enabling the development of acceptable

heuristic solution methods. Some studies give us hope that such

integrated methodologies and proper solution mechanism can be

developed. In these studies, researchers build a simulation model

of the DDBMS, taking as input a specific database design, and

measure its effectiveness. Using such methods to develop tools

that aid human designers rather than attempting to replace them

is probably the appropriate approach to the design problem.

2.4 Distributed Query Processing

Distributed query processors automatically translate a

high-level query on a distributed database, which is seen as a

single database by users in a efficient low level execution plan

expressed on the local databases. Such translation has two

important requirements[182],[180]. First, the translation must

be a correct transformation of the input query so that the

execution plan actually produces the expected result. The formal

basis for this task is the equivalence between the relational

calculus and relational algebra, and the transformation rules

associated with relational algebra. Second, the execution plan

25

must be optimal - that is, it must minimize the cost function

that incorporates resource consumption. Thus, the query processor

must investigate equivalent alternative plans to select the best

one.

Because of the difficulty of addressing each two

aspects together, they are typically isolated in two sequential

steps; data localization and global optimization[141]. These

steps are generally preceded by query decomposition, which

simplifies the input query and rewrites it in the relational

algebra. Data localization transforms and input algebraic query

expressed on the distributed database into an equivalent fragment

query (a query expressed on database fragments stored at

different sites), which can be further simplified by algebraic

transformations. Global query optimization generates an optimal

execution plan for the input fragment query by making decisions

regarding operation ordering, data movement between sites, and

the choice of both distributed and local algorithms for database

operations. Global operation gives rise to a number of problems.

These have to do with the restrictions imposed on the cost model,

the focus on a subset of the query language the trade-off between

optimization costs and execution cost, and the optimization-

reoptimization interval.

The cost model is central to global query optimization

because it provides the necessary abstraction on the DDBMS

execution system in terms of access methods and it provides the

abstraction of the database interims of the physical schema

information and related statistics[180], [200] . The cost model is

used to predict the execution cost of alternative execution plans

of a query. Important restrictions are often associated with the

cost model, limiting the effectiveness of optimization in

26

improving throughput. Work in extensible query optimization, is

useful in parametrizing the cost model, which can then be refined

through experimentation.

Although query languages are becoming increasingly

powerful, (for example, new version of SQL), global query

optimization typically focuses on a subset of the query language,

namely select-project-join queries with conjunctive

predicates[178], [179] . This is an important class of queries for

which good optimization opportunities exist. As a result of a

good deal of theory has been developed for join and semijoin

ordering. However other important queries warrant optimization,

such as queries with disjunctions, unions, fixpoints, aggregation

or sorting [1], [201] . A promising solution is to separate the

language understanding from the optimization itself, which can be

dedicated to several optimization modules.

A trade-off is necessary between optimization cost and

the quality of the generated execution plans. Higher optimization

costs are probably acceptable to produce better plans for

repetitive queries, since these plans would reduce the query

execution cost and amortize optimization cost over many

executions. However, higher costs are unacceptable for ad hoc

queries executed only once. Optimization cost is incurred mainly
by searching the solution space for alternative execution plans.

In a distributed system the solution space could be quite large

because of wide range of distributed execution strategies[185] .

Therefore, developing efficient strategies that avoid the

exhaustive search approach is critical.

Global query optimization is typically performed prior

to the execution of the query (hence, it is called static

27

optimization). A major problem with this approach is that the

optimization cost model may become inaccurate because of changes

in the fragment size or database reorganization, which is

important for load balancing. The problem therefore, is to

determine the optimal interval of query recompilation and

reoptimization, taking into account the trade-off between

optimization and execution cost.

2.5 Distributed Transaction Processing

It may be hard to believe in an area as widely

researched as distributed transaction processing there are still

important topics to investigate, but it is true[56], [49] . The

scaling problems of transaction management algorithms are already

discussed. Additional topics include replica control protocols,

more sophisticated transaction models, and nonserializable

correctness criteria.

In replicated DDBMSs, database operations are specified

on logical data objects. The replica control protocols are

responsible for mapping an operation on a logical data object to

an operation on multiple physical copies of this data object. In

so doing, they ensure the mutual consistency of the replicated

database. The ROWA rule discussed earlier is the most

straightforward method of enforcing mutual consistency.

Accordingly, a replicated database is in a mutually consistent

state if all copies of every data object have identical values.

The field of data replication needs further research

and experimentation on replication methods for computation and

communication and the systematic exploitation of application-

specific properties. Experimentation is needed to evaluate the

28

claims made by algorithm and system designers, and lacks a

consistent framework for comparing competing techniques. One of

the difficulties in quantitatively evaluating replication

techniques is the absence of commonly accepted failure incidence

models. For example, Markov models, some times used to analyze

the availability achieved by replication protocols, assume the

statistical independence of individual failure events and the

rarity of network partitions relative to site failures [57] . It is

not currently known that either of these assumptions are tenable,

nor it is known how sensitive Markov models are to these

assumptions. Validation of the Markov models by simulation cannot

be trusted in the absence of empirical measurements, since

simulations often embody the same assumptions that underlie the

Markov analysis. Thus, empirical studies are needed to monitor

failure patterns in real life production systems, with the

purpose of constructing a simple model of typical failure loads.

To achieve the twin goals of data replication

availability and performance - there is a need to provide

integrated systems in which replication of data goes hand in hand

with replication of computation and communication (including

I/O). Only data replication has been studied intensively;

relatively little has been done in the replication of computation

and communication[9], [185] . Computation replication has been

studied in several settings, including the execution of

synchronous duplicate process as "hot standbys," and the

implementation of different versions of the same software to

guard against human design errors. Replication of communication

messages, primarily by retry, has been studied in the context of

providing reliable message delivery, and a few papers report on

the replication of I/O messages to enhance the availability of

transactional systems. However, more study is needed of how these

29

tools can be integrated with data replication to support such {

applications as real-time control systems, which may benefit from

all three kinds of replication. This work would be invaluable for

guiding operating system and programming language designers in

developing the proper set of tools to support fault-tolerant

systems.

In addition to replication, but related to it, more

elaborate transaction models are required, especially models that

exploit application semantics to achieve higher availability and

performance, as well as concurrency[73], [74], [102] . As the

database technology enters new application domains, such as

engineering design, software development, and office information

systems, the nature and requirements of transaction change. Thus

work also is needed on correctness criteria other than

serializability.

As a first approximation, transaction models can be

classified along two dimensions: the structure of transactions

and the structure of objects that transactions operate on. Along

the transaction structure dimension, it recognizes flat

transactions, closed-nested transactions such as sagas, and ^

structures that include both open and closed nesting, in

increasing order of complexity. Along the object structure

dimension, it identifies simple objects (such as pages), objects

as instances of abstract data types, and complex objects, again

in increasing complexity. The last two are distinguished to

indicate that objects as instance of abstract data types support

encapsulation (and therefore are harder to run transactions on

that simple objects) but do not have a complex structure (do not

contain other objects), and their types do not participate in an

inheritance hierarchy.

30
:*

Within this framework, most of the transaction model

work in distributed systems has concentrated on the execution of

flat transactions on simple objects. This point in the design

space is well understood. While some work has been done in the

application of nested transactions on simple objects, much

remains to be done, especially in distributed databases.

Specially the semantics of these transaction models are still

being worked out [110], [3] . Similarly, work has been done on

applying simple transactions to objects as instances of abstract

data types and to complex objects. These are initial attempts

that should be followed up to specify their full semantics, their

incorporation into a DBMS, their interaction with recovery

managers, and their distribution properties.

Complex transaction models are important in distributed

systems for several reasons. First, transaction processing in

distributed multidatabase systems can benefit from the relaxed

semantics of these models. Second, the new applications that

distributed DBMSs will support in the future (such as engineering

design, office information systems, and computer assisted

cooperative work) require transaction models incorporating more-

abstract operations that execute on complex data. Furthermore,

these applications have a sharing paradigm different from typical

database access we are accustomed to. For example, computer

assisted cooperative work environment require participants to

cooperate in accessing the shared resources rather than to

compete for them as is usual in database applications [81] ,[103] .

These changing requirements necessitate the development of new

transaction models and accompanying correctness criteria.

2.6 Integration with Distributed Operating Systems

31

The undesirability of running a centralized or

distributed DBMS as an ordinary user application on top of a host

operating system has long been recognized [81], [173] . There is a

mismatch between the requirements of the DBMS and the functions

of current operating systems. This is even more true in the case

of distributed DBMSs, which require functions that existing

distributed operating systems do not provide - for example,

distributed transaction support with concurrency control and

recovery, efficient management of distributed persistent data,

and more complicated access methods. Furthermore, DDBMSs

necessitate modifications in how the distributed operating

systems perform their traditional functions (task scheduling

naming, buffer management). Here, the various issues are

highlighted in distributed DBMS - distributed operating system

integration: system architecture, transparent naming of

resources, persistent data management, remote communication, and

transaction support[159], [191], [200] .

An important architectural consideration is that the

coupling of distributed DBMSs and distributed operating systems

is not a binary integration issue. The communication network

protocols also must be considered, adding to the complexity of

the problem. Thus the architectural paradigm must be flexible

enough to accommodate the distributed DBMS functions, distributed

operating system services, and communication protocols standards

such as the ISO/OSI (Open System Interconnection) model or the

IEEE 802, in the context efforts that include too many database

functions inside the operating system kernel or those that modify

tightly-closed operating systems are likely to prove

unsuccessful[63], [67], [74], [114] . In our view the operating

system, should implement only essential operating system services

32

X

T

and only those DBMS functions that it can implement efficiently:

then it should get out the way. The model that best fits this

requirements seems to be the client server-architecture with a

small kernel that provides the database functions that can be

provided efficiently and does not hinder the DBMS in efficiently

implementing other services at the user level (examples are Mach

and Amoeba). Object orientation may also have a lot to offer as a

system structure to facilitate this integration.

Naming is the fundamental mechanism available to

operating system for providing transparent access to system

resources. Whether or not access to distributed objects should be

transparent at the operating system level is a contentious issue

involving the trade-off between the data management flexibility

and ease of use on the one hand and the system overhead on the

other[137], [148] . For a distributed DBMS, transparency is

important. As is indicated earlier, many distributed DBMSs

attempt to establish their own transparent naming scheme without

significant access. Further investigation of the naming issue and

the relationship between distributed directories and operating

system name servers is needed. A worthwhile naming construct that

deserves some attention in this context is the capability

concept, which was used in older systems such as Hydra is being

used in more modern operating systems such as Amoeba.

Storage and management of persistent data - data that

survives past the execution of the program that manipulates it

is the primary function of the database management systems.

Operating systems have traditional dealt with persistent data by

means of files systems. If a successful cooperation paradigm can

be found, it may be possible to use the DBMS as the operating

system file system. At a more general level, cooperation among

33

the programming languages, the DBMS, and the operating system

manage persistent data requires further research. Distributed

file systems do not address distributed DBMS concerns because

either they do not provide for concurrent access to data or

granularity of sharing is too large.

Two communication paradigms that have widely studied in

distributed operating systems are message passing and the remote

procedure call [201], [160] . The relative merits of these

approaches have long been debated, but the simple RPC semantics

(blocking one-time execution) have been appealing to distributed

system designers. As discussed earlier an RPC-based access to the

distributed data at the user level is some times proposed in

place of fully transparent access [81]. But implementing an RPC

mechanism for heterogeneous computing environment is not easy.

The problem is that the different vendors' RPC systems do not

interoperate. It may be necessary to view communication at higher

levels of abstraction to overcome heterogeneity or at lower

levels of abstraction (message passing), to achieve more

parallelism. This trade-off needs further study.

In current DBMSs, the transaction manager is ^

implemented as part of the DBMS[189], [187], [111] . Whether

transactions should and can be implemented as part of standard

operating system services has long been discussed. There are

strong arguments on both sides, but the clear resolution of the

issue requires more research as well as more experience with the

various general-purpose (that is non-DBMS) transaction management

services.

2.7 Distributed Multidatabase Systems

34

Multidatabase system organization is an alternative to

logically integrated distributed databases. The fundamental

difference between the two approaches is the level of autonomy

afforded the component data managers at each site. While

integrated DBMSs' components are designed to work together, the

multidatabase management system consist of components that may

have no notion of cooperation. Specially, these components are

independent DBMSs, which means, for example, that although they

may have facilities to execute transactions, they are incapable

of executing distributed transactions that span multiple

components.

The autonomy and the potential heterogeneity of

component systems create problems in query processing and

especially in query optimization. The basic problem is the

difficulty of global optimization when local cost functions are

not known and the local cost values cannot be communicated to

multi-DBMS[183]. It has been suggested that semantic optimization

based on qualitative information may be the best we can do, but

semantic query processing is not fully understood either. It may

be possible to develop the hierarchical query optimizers that

perform some amount of global query optimization and then let

each local system perform further optimization on localized

subquery. This may not provide an optimal solution but may enable

some optimization. The emerging standards, also may make sharing

some cost information easier.

The autonomy of the underlying DBMSs makes transaction

processing in autonomous multidatabase systems more difficult.

Since they are autonomous, they have their own transaction

processing services (transaction manager, scheduler, recovery

manager) and are capable of accepting local transactions and

35

running them in completion. The multi-DBMS layer has its own

transaction-processing components, in charge of accepting and

coordinating global transactions that access multiple databases.

A global transaction is divided into subtransaction, each of

which is submitted to one of the component DBMSs [187] . However,

since the multiDBMS is not aware the local transactions, it

cannot control the local conflicts, nor can it control indirect

conflicts between global transactions caused by the interference

of local transactions.

Various solutions have been proposed to deal with

concurrent multidatabase transaction processing. Some use global

serializability of transactions as their correctness criterion;

others relax serializability. Most of this work should be treated

as preliminary attempts at understanding and formalizing the

issues. Many issues remain to be investigated [147] . One area of

investigation is revisions in the transaction model and

correctness criteria. Initial attempts have been made to recast

the transact ion model assumptions, and this work should continue.

The nested-transaction model looks particularly promising for

multidatabase systems, and its semantics, based on knowledge

about the transaction's behavior, need to be formalized. In this

context the meaning of consistency in multidatabase systems

should be considered. A good starting point is the four degrees

of consistency defined by Gray[81].

Another difficult issue that requires further

investigation is the reliability and recovery aspects of

multidatabase systems. The autonomy of individual DBMSs makes it

difficult to incorporate 2PC into global transaction processing,

thus making it difficult to enforce distributed transaction

atomicity. Although researchers have addressed the topic in

36

recent studies, their approaches are initial engineering

solutions. Reliability and recovery protocols for multidatabase

systems still need to be developed and integrated with

concurrency control mechanisms[147].

Atomicity is the major contributor to additional

complexity of multidatabase systems. One of the main impediments

to further development of these systems is the lack of

understanding of the nature of autonomy. The autonomy is itself

probably composed of several factors. Thus, the nature of

autonomy must be clearly and precisely characterized.

Furthermore, most researchers treat autonomy as if it were an

all-or-nothing feature. Even the taxonomy considered here,

indicated only three points along this dimension. But the

spectrum between no autonomy and full autonomy probably contains

many distinct points [110] ,[111] . It is essential in our opinion,

to (1) precisely define what is meant by "no autonomy" and "full

autonomy," (2) precisely delineate and define the many different

levels of autonomy, and (3) identify the degree of database

consistency possible for each level. At that point, it will make

sense to discuss the different transaction models and execution

semantics appropriate at each level. In addition this process

should enable the identification of the layered structure,

similar to the ISO/OSI model, for the interoperability of

autonomous and possibly heterogeneous database systems. Such a

structure would allow us to specify interfacing standards at

different levels. Some work is already under way on the remote

data access (RDA) standard, and this line of work will make

practical solutions to the interoperability problem possible.

The initial promises of distributed database management

systems - transparent management of distributed and replicated

37

data, improved system reliability by means of distributed

transactions, improved system performance by means of interquery

or intraquery parallelism and easier and more economical system

expansion - are met to varying degrees by today's commercial

products. Full realization of these promises depends not only on

commercial technology's catching up with research results, but

also on our solving a number of problems.

The changing nature of technology underlying

distributed DBMSs will make parallel database servers

feasible[31]. This will affect the database systems in two ways.

First, implementing distributed DBMSs on these parallel database

servers will require revision of most of the existing algorithms

and protocols to operate on the parallel machines. Second, the

parallel database servers will be connected as servers to

networks, requiring the development of distributed DBMSs that

will have to deal with a hierarchy of data managers. Further

more, as distributed database technology infiltrates nonbusiness

data processing domains, the capabilities required of these

systems will change, forcing a shift in emphasis from relational

systems to more powerful data models. Current research along

these lines concentrates on object-oriented and knowledgebase

systems.

2.8 Object-Oriented Data Model

The object-oriented paradigm is based on five

fundamental concepts [164], [200] i

(1) Each real-world entity is modeled by an object.

Each object is associated with a unique identifier.

(2) Each object has a set of instance attributes

38

i

(instance variables) and methods; the value of an attribute can

be an object or a set of objects. This characteristic permits

arbitrary complex objects to be defined as an aggregation of

other objects. The set of attributes of an object and the set of

methods present the object structure and behavior respectively.

(3) The attribute values represent the object's status.

This status is accessed or modified by sending messages to the

object to invoke the corresponding methods.

(4) Objects sharing the name structure and behavior are

grouped into classes. A class represent a template for a set of

similar objects. Each object is an instance of some class.

(5) A class can be defined as a specialization of one

or more classes. A class defined as a specialization is called a

subclass and inherits attributes and methods from its

superclass (s) .

However, there are many variations with respect to

these five concepts. In fact they are used mainly as a way to

organize the discussion, rather than as definition of the object-

oriented paradigm.

An OODBMS can be defined as DBMS that directly supports

a model based on the object-oriented paradigm. Like any DBMS, it

must provide persistent storage for objects and their descriptors

(schema). The system must also provide a language for schema

definition and for manipulation of objects and their schema. In

addition to these basic characteristics, an OODBMS usually

includes a query language and the necessary database mechanisms

for access optimization, such as index and clustering,

concurrency control and authorization mechanisms for multiuser

accesses, and recovery.

39

2.8.1 Objects and Object Identifiers \

In object-oriented systems, each real world entity is

uniformly represented by an object. Each object is uniquely

identified by an object identifier. The identity of an object has

an existence independent of its value. Using OIDs lets objects

share subobjects and makes possible the construction of general

object networks.

The notion of an object identifier is different from „

the concept of key in the relational data model[94], [156] . A key

is defined by the value of one or more attributes and therefore,

can undergo modifications. But, two objects are different if they

have different object identifiers, even if their all attributes

have the same values. Note that sharing objects in models where

identity is based on value leaves the applications to manage key

values and the associated normalization problems.

However, there are models in which both objects and

values are allowed; in these models not all entities are objects.

Informally a value is self-identifying and has no associated OID.

In some models, all the primitive entities, such as integers or \

characters are values, while all other entities are objects.

Other models, notably Avance[28], and 02. provide the

possibility of defining complex (or structured) values. Complex

values cannot be shared among objects. They are built using the

same constructors as those provided for objects.

In general complex values are useful in situations

where aggregates (or sets) must be defined to be used as

components of other objects but will never be used alone. If

40

complex values are not allowed, these aggregates must be defined

by using a class and must have an OID associated with them.

Therefore, some performance penalty is incurred.

An example is dates. Suppose a date is defined as a

tuple of three components, respectively, representing month, day

and year. Dates are likely to be used as components of other

objects. However it is unlikely that user will issue a query on

the class of all dates. Therefore, it appears more convenient to

define dates as complex values rather than as objects.

The notion of object identity introduces at least two

different notions of equality among objects. The first denoted

here by =, is the identity equality. Two objects are identity-

equal, or identical if they have the same OID.

The second, denoted here by ==, is the value equality.

Two objects are value-equal if all their attributes that are

values are equal and all their attributes that are objects are

recursively value equal. That is, the two objects have the same

content, even if they have two different identifiers. Two

identical objects are also value equal, but two value equal

objects are necessarily identical.

Different approaches for building OIDs can be devised.

For example, in the approach used in Orion system[96], an OID

consist of the pair <class identifier, instance identifiers The

first element is the identifier of the class to which the object

belongs, and the second identifies the object within the class.

The complete definition of attributes and methods for

all instances of a class is factored and kept in an object

41

representing the class itself (called a class-object) . When a

message is sent to an object, the system extract the class

identifier from the object identifier and access the class object

to determine the message validity and fetch the corresponding

method. This approach has the major disadvantage of making object

migration from one class to another (for example, in case of

object reclassification) difficult or even impossible, since this

would require the modification of all object identifiers[81].

Therefore, all references to migrated objects would be

invalidated.

In another approach, used for example in the Iris

system, the OID does not contain the class identifier. The

identifier of the class to which an object belongs is generally

kept as control information stored in the object itself. To

determine whether a message is valid for a given object, the

system must first fetch the object and then retrieves it from the

class identifier. Therefore, nonvalid messages cause useless

object accesses, and type checking is rather expensive.

In both previous approaches the OID is logical; that is

it does not contain any information about the object location and

secondary storage. Therefore, a correspondence table exists for

mapping OIDs onto physical addresses.

Based on physical identifiers, 02 uses a different

approach, in which each object is stored in a Wisconsin Storage

Subsystem record and the OID is the record identifier. The OID

does no change even if the record is moved to a new page, for

example, when the record grows too big for the page it resided

on. A forward marking technique (as in the relational systems

System R and Ingres) handles cases of records that are moved to

42

different pages.

The approach used in 02 has the main advantage that the

persistent OIDs are provided that support fast access to objects,

since there is no need to map the OID on the physical location.

The major disadvantage is that the temporary OID must be assigned

to an object created on a site different from the object store

site (for example, on a workstation).

To avoid excessive message exchange, the permanent OID

is assigned only when the object is stored on the corresponding

Wiss record, at a transaction commit time[187], [188] . This

implies that all reference generated during the transaction to

newly created objects must be updated at transaction commit time.

The OID can also contain the object location for

distributed databases. For example, in the distributed version of

the Orion system[96], the OID contains the identifier of the site

where the object was created. When an object migrates to a

different site, its OID does not change. The object creation site

keeps information concerning the new storage site of the object,

so messages can be appropriately forwarded to the object.

2.8.2 Aggregation

The values of an object's attributes can be other

objects, both primitive and nonprimitive[191]. When the value of

an attribute of an object 0 is nonprimitive object 0', the system

stores the OID of 0' in 0. When complex values are supported by

the model, the system usually stores in the object attribute the

entire complex value.

43

Using complex values as components are more efficient

than using objects. In the first case once the object 0 is

fetched, all components that are complex values are usually

fetched as well. When objects are used as components, the object

0 contains only the OIDs of its components.

Additional access messages might be needed to retrieve

the component objects. Therefore, the data model might provide

the possibility of defining complex values. As pointed out in

Bjonerstedt and Hulten[28], depending on these differences, the

database designer can implement an entity as an object or as a

complex value, if the data model supports both. More

sophisticated strategies, however, are used when (complex) values

are large (typically larger than the page size), such as in the

case of multimedia data types. In this situation, the value is

not stored with the object of which it is a component. Deux

describes an example of storage strategy for large (complex)

values[67].

In defining complex objects and values, different

constructors can be used. A minimal set of constructors that

should be provided by a model includes set, list, and tuple[13]. ^

In particular the set constructor, allows multivalued attributes

and set objects to be defined. The list is similar to the set,

but it imposes an order on the elements. Finally, the tuple

constructor is important because it provides a natural way to

model properties of an object.

As discussed in Atkinson et al.[13], the object

constructors should be orthogonal; that is any constructor should

be applicable to any object, including, of course, objects

constructed using any constructor whatsoever. This is noted that

44

some models impose the constraint that the tuple be the first-

level constructor. This implies, for example, that when defining

a set object, the object must be defined as a tuple of a single

attribute, which is in tern defined as a set.

The notion of a composite objects is found in some

object models. As stated, a complex object can recursively

reference any number of other objects. The references, however

don't imply any special semantics that can be interest to

different classes and applications.

One important relationship that could be superimposed

on the complex object is the part-of relationship, that is, the

concept that an object is part of another object. A set of

component objects forming a single entity is a composite object.

A similar concept is found in Atkinson et. al.[13],

where two different types of references are defined: general and

is-part-of. The pair of relationship among objects has some

consequence on object operations. For example, if the root of the

composite object is removed, all component objects are deleted.

Moreover, in some models of composite objects, an

object can be part of only one object; that is, the part-of

relationship imposes an exclusivity constraint. In some systems,

a lock on the root of a composite object is propagated to all the

components.

Some extended relational models and object-oriented

programming languages (for example, the loops language) also

provide the notion of composite objects [80]. However in some

models and papers, the term complex object means the composite

45

object. J^

2.8.3 Methods

Objects in an object-oriented database are manipulated

using methods. In general, a method definition consists of two

components. The first is the method signature, specifying the

method name, the name and classes of the arguments, and the class

of the result, if there is one.

Some systems like Orion[96], don't require the class of

arguments and the results to be declared. This happens when the

type checking is executed at runtime and there is therefore no

need to know this information in advance.

The second component is the method implementation,

consisting of code written in some programming language.

Different OODBMSs use the different languages for method

implementation. For example, both Vbase ad 02 use C language,

while Orion uses Lisp. Gemstone uses Opal, which is nearly

identical to Smalltalk.

In addition to the method signature and implementation,

other components can be present in the method definition. For

example, in Vbase the method definition can specify some trigger

methods in addition to the base method and exceptions that can be

raised by the method execution. Trigger methods are often used to

augment the semantics of inherited methods and system defined

methods - for example, the creation and deletion methods.

The language used to write methods is also used to

write applications. In addition, some systems provide access to

46

A

the database from conventional languages. Gemstone, for example,

supports access from C and Pascal.

Often, an object's attributes cannot be directly ac

cessed in object-oriented programming languages. The only way to

access attributes is to invoke the methods available at the

object interface (strict encapsulation).

In databases, a lot of applications read or write

attribute values. Queries are often expressed as Boolean

combinations of predicates on attribute values. Therefore, most

OODBMSs provide direct access to attributes by means of system-

defined methods. Examples of these methods are "get" and "set" of

Vbase[12], used to respectively read and write a given attribute.

These methods, provide the part of the system, have an

efficient implementation and save the user from having to write a

large amount of trivial code. The major drawback of providing

these system-defined methods is that an object attribute must

sometimes be manipulated only through some user defined methods.

If, however, these system defined methods are available, nothing

prevents a user from using the system-defined method rather than

the user-defined method (unless the user employs authorization or

they're disciplined).

Therefore, some systems (for example, Vbase[12] and the

system described in Bertino et al[26].) let the user redefine the

implementation of these methods for a given attribute. Each time

the attribute is accessed the user defined method implementation

is invoked, instead of system defined implementation. This allows

the right semantics to be imposed, when needed on the system-

defined methods. Moreover, as discussed in Andrews and

47

Harris[12], this capability is useful when importing data from

external databases.

In 02, it is possible to make attributes visible from

outside objects on user demand. Two special clauses of the class

definition language, public read and public write, provide the

function of making attributes directly available for reading and

writing, If the public read (and, respectively public write)

clause is associated with an attribute of name Aname appearing in

the definition of class C, the system makes the attribute public

for reading (and, respectively, writing).

In OODBMSs characterized by distributed or client-

server architectures, an important architectural issue concerns

the site where an invoked method is executed. In Gemstone, for

example, the application designer has the option of moving an

object on which a method has been invoked to the workstation (and

then executing the method locally) or executing the method

remotely on the server.

A simple option is provided in 02 system. In general,

the choice concerning the method execution site can be rather \

complex, since different factors must be taken into account, such

as complexity of manipulations executed on the object, the

references made to other objects during method execution, the

network bandwidth and the competition for the network and for the

server.

Classes and instantiation mechanisms. Instantiation is

the first reusability mechanism (the second is inheritance) in

that instantiation makes it possible to reuse the some definition

to generate objects with the same behavior and structure. Object-

48
Y

oriented data models provide the concept of class as the

instantiation basis. A class is an object that acts as a

template. As such a class specifies the intended purpose of its

instances by defining

* a structure, that is, a set of instance attributes

(or instance variables);

* a set of messages that define the external interface;

and

a set of methods that are invoked by messages.

In this sense a class can be viewed as a specification

for its instances. Since the class factors the definitions of set

of objects, it is also an abstraction mechanism.

Given a class it is possible to generate through the

instantiation mechanism objects that answer all messages defined

in the class. The system keeps the attribute values for each

object separately. Replicating the message and method definitions

is not necessary. These are kept in the class object, since they

are the same for all the class instances.

All instances of a given class have the same structure

and behave similarly. The 02 system however, lets exceptions be

defined at instance level. In 02, an instance can have additional

attributes and methods. Additional methods characterize the

exceptional behavior of an instance. If an additional method has

the same name as a method defined at class level, the instance

method definition overrides the method definition provided at

class level.

An alternative approach to instantiation is using

49

prototypical objects. This involves generating a new object

starting from another existing object by modifying its attributes

and/or its behavior. Therefore, a prototype is an individual

object containing its own description; a prototype can also be

used as a model for creating other objects.

This approach is useful when objects evolve (that is,

modify their structure and behavior) quickly and are

characterized more by their differences than their similarities.

The approach is also useful when there are few instances for each

class. In this way, the proliferation of many classes, each with

few instances, is avoided.

In general, the approach based on the instantiation

mechanism is more appropriate for mature application environments

in which object properties and behaviors are consolidated. In

fact, the approach based on instantiation makes it to more

complicated to experiment with alternative object structures and

behaviors.

The prototype-based approach appears more appropriate

based on the initial phase of application design, in application ^

environments that evolve quickly with fewer consolidated objects

and, in applications in which classes have few instances.

OODBMSs have usually adopted the instantiation approach

since, in most cases, database applications have a lot of

instances of each class for which an efficient storage

organization must be provided. However, expect the broadening of

the scope of database applications to also result in the use of

prototypical objects or similar mechanisms.

50
T

So far, it is implicitly assumed that an object is an

instance of only one class. However in some models, the instances

of a class C are also members of the superclasses of C. As Moon

shows[128], to distinguish between the notions of instance of a
class and member of a class.

An object is an instance of a class C if C is the most

specialized class associated with the object in a given
inheritance hierarchy. An object is a member of a class C if it
is an instance of C or some subclass of C.

Most object-oriented data models restrict each object
to being instance of only one class, even though they let an

object be a member of several classes through inheritance.
However, object-oriented data models[200] can be found and let an
object be an instance of several classes.

As an example, consider a class Person with subclass

Student and Pilot and the case of person P being a student and a

pilot. This situation can be easily modeled by associating both
classes with P. Therefore, P will be an instance of both Student

and Pilot and will also be a member of Person through the
inheritance hierarchy.

These models provide the name classification mechanisms
so to solve ambiguities deriving from attributes and methods,
with the same name being used in the class of which an object is
an instance[157]. Note, however, that even if the data model
imposes the restriction that each object is an instance of only
one class, multiple inheritance (discussed later in this article)
can be used to handle situations like one discussed above. For
example, a subclass could be defined as Student-Pilot, having a

v<

51 7K\

superclass both Student and Pilot, and make instance of this

subclass.

In all object-oriented database models, each attribute

has associated a domain specifying the class of the possible

objects that can be assigned to it as values. This differs from

certain programming languages, such as Smalltalk, in which

instance variables don't have an associated type. For data

management applications requiring efficient management of

persistent data to allocate the appropriate storage and access

structures, the system must know the types of the possible values

taken by attributes. Thus, even the Gemstone[36] system, derived

from Smalltalk, requires the declaration of the instance variable

domains in certain cases.

The fact that an attribute of a class C has a class C

as domain implies that each instance of C takes an instance of

class C, or any subclass of C , as the value of the attribute.

This establish an aggregation relationship between the two

classes.

An aggregation relationship from class C to class C ^

specifies that C is defined in terms of C . Since C in tern

defined in terms of other classes, the definition of class C

results in aggregation hierarchy. An aggregation hierarchy can

contain cycles, since classes can be recursively defined.

An important question concerning instances and classes

is whether an object can change class. The ability to change the

class of objects provides support for object evaluation. It lets

an object change its structure and behavior and still retain its

identity. The Encore[200], Gemstone[36], and Iris[192] systems

52
V

provide this capability, while most of the OODBMSs don't.

A domain constraint problem arises when objects are

allowed to change class. As discussed earlier the value of an

attribute A of an object 0 can be another object 0'. If the 0'

changes class and its new class is not compatible with the class

domain of A, 0 will contain an incorrect object as the value of

A. A possible solution, illustrated by Zodnik [200] , consist of

placing a tombstone in 0', to indicate that the object has
changed class. The major disadvantages of this solution is that
the applications must contain code to handle the exception of
referenced object being an instance of a class other than the
expected one.

In addition to acting as a template, the class in some

systems also denotes the collection of all its instances, that
is, its extension. This is important because the class becomes
the base on which queries are formulated.

The concept of query has meaning only if applied to
sets of objects. In systems where the class does not have this
extensional function, the model provide set constructors for
object grouping. Queries are then issued on the sets defined by
these constructors. In this respect, there are differences among
the various systems. For instance,

* In some systems, for example Gemstone [36], the class
has only the specification meaning. a collection constructor
groups objects of the same class. It is also possible to define
several collections all containing instances of same class.
Queries are issued on object collections. Moreover, indexes are
defined on collections and not on classes.

53

* In other systems, for example Orion[96], the class

has a meaning of both specification and extension.

* Finally, other systems, for example 02, provide the

notions of type and class. In 02 instances of type are values and

therefore don't have OIDs (that is, type generate complex

values), while instances of class are objects. Moreover, in 02, a

class has associated its extension only if explicitly required by

the user in the class definition (through the special keyword

with extension). Therefore in 02 the class has extensional

function only if required by the user.

In general, the notion of decoupling specification from

the notion of extension is found correct. The major draw back is

that the data model becomes more complex compared to a simpler

model in which the class acts both as object template and object

extent.

2.8.4 Metaclasses

X

i

If each object is an instance of a class, and a class ^

is an object, the model should provide a notion of metaclass. A

metaclass is a class of a class [93], [94]. Metaclasses are crucial

to support expert systems and AI applications. However, most

OODBMSs don't provide metaclasses.

Finally, some data models provide the possibility of

defining attributes and methods that characterize the classes as

objects. Such attributes and methods, called class-attributes and

class-methods, specify the properties and behavior of the class

and not of its instances of a class. An example of a class-

54

V

attribute would be an attribute containing the average of an

attribute value, evaluated on all instances of a class.

2.8.5 Inheritance

The concept of inheritance is the second reusability

mechanism. It lets a class, called a subclass, be defined

starting from the definition of the another class called the

superclass. The subclass inherits the superclass attributes,

methods, and messages. In addition subclass can have specific

attributes, methods and messages that are not inherited.

Moreover, the subclass can override the definition of the

superclass attributes and methods.

Therefore, the inheritance mechanism lets a class

specialize another class by additions and substitutions.

Inheritance represents an important form of abstraction, since

the detailed differences of several class descriptions are

abstracted away and the commonalities factored out as a more

general superclass.

A class can have several subclasses. Some systems let

a class have several superclasses (multiple inheritance), while

the other impose a restriction of a single superclass (single

inheritance). Based on inheritance, the set of classes in the

schema can be organized in an inheritance graph (orthogonal to

the aggregation hierarchy). The inheritance graph is a tree when

the model does not provide multiple inheritance. Unlike the

aggregation hierarchy, an inheritance graph might not have

cycles.

The possibility of defining a class from other classes

55

simplifies the task of class definition [128] . However, it can

cause conflicts, especially in the case of multiple inheritance.

If the name of an attribute (or method) explicitly defined in a

class is the same as the attribute of a superclass, the attribute

from a superclass is not inherited; that is, the definition in

the subclass overrides the superclass definition.

If the model provides multiple inheritance, other types

of conflicts can arise. For example, two or more superclasses

might have an attribute with the same name but different domains.

Usually, rules are defined for solving conflicts. If

the domains in the superclasses are related by inheritance

relationships, the most specific domain is chosen for the

subclass. If the domains are not related by inheritance, the user

can specify from which superclass the attribute must be

inherited.

In 02, for example, the name of an attribute in a

subclass can be followed by the from clause containing the

superclass from which the attribute definition must be inherited.

If the user does not specify the inheritance paths, the solutions

used in most models is to inherit the attributes (or methods)

based on an order of precedence among superclasses.

In the last two cases questions might arise on the

validity of inherited methods. An inherited method can contain in

its implementation a reference to an attribute A. This attribute,

however has not been inherited in a given subclass C, since an

attribute with the same name but different domain has been

inherited in the subclass from a different superclass.

56
<f

When an inherited method is invoked on an instance of

the subclass, inconsistencies can arise when the semantics and

properties of A are not those expected in the method.

As mentioned earlier, the inheritance mechanism lets

the implementation of an inherited method be overridden in the

subclass. This is accomplished by defining in the subclass a

method with the same name and a different implementation.

Each time a message is sent to an instance of the

subclass, the implementation local to the subclass will be used

to execute the method. This results in a single name denoting

different method of implementations. However, this unit of change

(that is the entire method) can be too course, since in some

situations it might be desirable to refine the object behavior

rather than completely change it.

Mechanisms to accomplish this have been proposed in the

framework of object-oriented programming languages. For example,

Smalltalk supports procedural combination of new and inherited

behavior through pseudovariable send super (denoted as <- Super).

When send super is used during the execution of a method invoked

by a message m, the superclass method answering message m is

invoked.

The CLOS language[128] provides mechanisms supporting

declarative method combinations, based on the notion of before

method, primary method, and after method. All before methods are

invoked before the primary method, whereas all after methods are

invoked after primary method.

Before and after methods are subject to some

57

limitations in that they cannot modify the control structure or

the results of the primary method. In addition, CLOS provides

"around" methods supporting procedural methods combinations. An

around method, if applicable, takes precedence over all other

methods and controls whether and when all other methods are

called. Moreover, an around method can modify the input

parameters and results of the methods it invokes.

Vbase[12] is an OODBMS that provides procedural method

combination and a pseudovariable '$$' for this purpose. As

discussed earlier, a method definition in this system can contain

a base method and an arbitrary number of trigger methods.

When a method is invoked, the first trigger method is

actually invoked. This trigger method then transfers the control

to the next method by using '$$' syntax. The next invoked method

is the next trigger method, or the base method, if there are no

more trigger methods.

4

Once the base method is executed, the superclass method

is invoked. Therefore, in Vbase there is a fixed invocation

order: first all trigger methods, on the basis of their v

declaration order in the method definition, then the base method,

and finally the superclass method.

When there are no trigger methods, the '$$'

pseudovariable behaves like the <- Super of Smalltalk. This

method combination is procedural, since the control to the next

method must be explicitly passed by using the '$$' syntax.

Therefore, the first invoked method might decide, on the basis of

certain conditions, to return from the execution without invoking

the other methods.

58
Y

Often, the notion of subtyping is also found in

OODBMSs. It is important however, not to confuse inheritance with

subtyping, even if there is often a unique mechanism providing

both functions.

For this discussion, a brief characterization is

presented for the difference between these two concepts as

follows. Inheritance is a reusability mechanism allowing a class

to be defined from another class, possibly by extending and/or

modifying the superclass definition. A type T, on the hand, is a

subtype of a type T' if an instance of T can be used in place of

an instance of T'. Therefore, subtyping is characterized by a set

of rules ensuring that no type violations occur when the instance

of a type T replaces an instance of supertype of T.

The fact that a class C is a subclass of a class C

does not necessarily imply that C is also a subtype of C .

Subtyping, however, influences inheritance, since it can restrict

the overriding and can impose conditions on multiple inheritance

so that the subtyping rules are not violated. An example of

restriction on overriding is the requirement that when the domain

of an attribute is redefined in a subclass, this domain must be a

subclass of the domain associated with the attribute in the

superclass. Wenger discusses inheritance and subtyping[191].

For this article, the behavioral and structural (or

inclusion) subtyping are distinguished. In behavioral subtyping,

a type T is a subtype of T' if T provides methods with the same

name and the same (or compatible) arguments as T' (and possibly

additional ones).

59

The criteria for behavioral subtyping are often based >

on the notion of conformity[29]. Conformity can only be used when

the method signatures include the type of arguments and the

result. In structural subtyping, a type T is a subtype of T" if T

provides the same attributes as T' or attributes compatible with

those of T' (and possibly additional ones).

Usually, most OODBMSs enforce only structural

subtyping, even if subclasses inherit both attributes and methods

from the superclasses. For example, the 02 system[67] uses j
structural subtyping, while methods use a condition different

from conformity. This condition leads to a less restrictive type

system that does not guarantee that an instance of a subclass can

always be safely used in place of an instance of a superclass.

Instead, the Vbase system[12] enforces both structural and

behavioral subtyping, using the notion of conformity.

2.8.6 Operational Aspects

Effective support of an object-oriented data model

requires the techniques and algorithms traditionally used for

data management to be extended and/or modified. Moreover, -f

applications that are expected to use OODBMSs require additional

functionalities, such as version mechanisms or long transactions,

that are not usually provided by traditional DBMSs.

2.8.7 Versions

In traditional DBMSs, once transaction updated have

been committed and permanently installed, the previous values of

data usually are discarded. However, advanced applications,

especially design applications, require facilities to maintain

60

^

object versions, that is, to keep different states of the same

object. This requirement is inherent in applications that are

exploratory and evolutionary.

Versions are useful mechanisms for maintaining object

histories, that is, to keep track of object evolutions during

time. Moreover, versions can be used to provide different

alternatives of the same object. This is particularly useful in

design applications, where different designers might need to

explore different design choices in parallel. OODBMSs providing

versions include Avance[28], Iris[192], and Orion[96].

In an OODBMSs, a versioned object 0 is a collection of

objects that derived directly or indirectly from 0. The fact that

a version V^ is derived from a version V- establishes a

derivation relationship between the two version objects. The set

of all versions related by derivation relationships is a version

hierarchy[96].

Vi and Vj are first class objects. Therefore, they have

their own OIDs and can be directly accessed and modified. Each

version is a snapshot of an object state. The version management

mechanism maintains all the information necessary to connect all

versions of an object.

A common way to represent the version hierarchy is to

store it in a special object, called the root object. This object

has its own OID, like any other object. All version mechanisms

provide operations for the management and inspection of version

hierarchies, such as determining the predecessor or successors of

a given version. Bjornerstedt and Hulten present a taxonomy of

operations[28] .

61

A versioned object 0 can be referenced by an another

object by either a specific reference (also called static), or a

generic reference (called dynamic by Kim[96]).

In the first case, the reference to a specific version

of 0, while in the second case, the reference is to the root

object of 0. When using a generic reference, the system has a

task of determining the version to be returned. This is the

default version; it is usually the last generated.

The Iris [192] system provides a more sophisticated

mechanism to solve generic reference to versioned objects. The

mechanism is declarative and is based on the notion of context. A

context is a set of user-defined rules triggered on the

invocation of methods. Using those rules, a user can specify that

if certain conditions are true, each time a generic reference to

an object is found during the execution of a method, a given

version is to be used instead of the default version.

Object versions are often classified as stable or

nonstable. Stable versions are considered consolidated enough to

be used as a basis for branching alternatives or important enough

to be saved as a reference point in object histories. In general,

some restrictions are placed on modifications that can be

executed on a stable version. For example, it is possible to

delete but not modify a version if other versions have been

derived from it.

Updating a stable version would require update

propagation algorithms to ensure that versions derived from it

are properly updated. As Kim noted[96], if a stable version needs

62

4

\

t

modification, a version can be derived from it containing the

desired changes.

Nonstable versions are not yet consolidated and

therefore can undergo modifications. A nonstable version can

change into a stable version on explicit user request (through

operations such as freeze[28] or promote[6]) or automatically by

the system. For example, in Orion[96], a nonstable version is

automatically promoted by the system if a version is derived from

it.

In general, most version mechanism don't support

version merging. That is, a new version is constrained to have

only one direct predecessor.

The Avance system[28] provides some limited support for

version merging. Whenever a new version must be derived as a

merge of several existing versions, the user has to indicate one

more version. Only a main version is copied into the new version,

while it is left to the user to access the other versions to be

merged and extract relevant information from them. The system

connects a direct successor the new version with the merged

versions. Therefore, the version hierarchy becomes a general

graph.

Some version mechanisms support versions of classes. A

major application of this is in the support of schema evolution,

since it is possible to first define a class and then modify it

without losing the previous class definition and the instances

generated from it. The design features of GURU are discussed in

the subsequent chapters. In the next chapter, discussions about

the query automation are presented.

63

CHAPTER - 3

QUERY AUTOMATION

3.1. INTRODUCTION

In the present available database management systems
this has been found that the process of structuring the fragments
on different query structures is complicated [57], [6], [143], [47]
Most of the DDBMSs handle only the horizontal and vertical frag
ments. A very few DDBMSs deal with the mixed kind of fragments
[142]. The effectiveness, the efficiency and the response time
are mostly dependent on the locality and the optimum size of the
fragments and their distribution [180], [197] .

Whenever any interquery or intraquery arrives to be
processed on a terminal node, first it is required to be properly
analyzed and tuned as per the available database and index
structure. This is carried out by the server deployed for access
ing the right structure.

In general, this has been a practice with distributed
database management systems that, while programming the applica
tions on a computer system using adata definition language and a
data manipulation language, the programmers have to be totally
dependent on the database structure and the query structure to
process queries. The query processing efficiency could be
increased if a good structuring between the two is established
[152]. That shows, if the existing scheme works with the
available query languages, that the programmer needs to know the
individual details of the fragments and their respective

64

maintenance done by the distributed database management system, J.

would lead to the difficulties and inefficiency in processing

queries. The database being maintained by a DDBMS is configured

in the way required by the owner. Therefore, the task of

maintaining the database fragments requires deep understanding

about the system [50],[90]. During the system maintenance there

has to be a perfect understanding about the system, so that, the

programming is done efficiently in the required application

domain [3]. Any wrong information furnished in the system leads

to wrong results. Further, this has been observed practically

that, maintaining indexes manually with large databases is a

tough task and prone to errors[52].

Therefore, this is desirable, if the entire loading

operations are made in built and automatic with the system so

that the required tasks can be carried out efficiently. This

removes the possibility of wrong specifications and maintaining

the other specifications externally, hence solving a great appli

cation programming task. To automate these tasks, a required

intelligent support structure, not available with the local

schema and the terminal node can be automatically maintained by

the DDBMS. Therefore, users are not required to be bothered about >

the understanding of the global and local schemas also.

This is necessary that the concept of class should be

maintained during the all kinds of transactions performed among

the different terminal nodes of the network intended to change

the schema structure [126], [26], [180] . The classes have

subclasses and superclasses and the different classes can be cou

pled inside an object and the different objects can be placed

inside a class [108] . Therefore, the very nature of the classes

and their inheritance should be maintained in the subclasses and

65

v

the superclasses. This maintenance with OOP is a tough task and
leads to confusion, specially with large number of objects and
classes. Therefore, an attempt has been made to design and devel-

an intelligent indexing mechanism to provide fast query sup-op

port.

3.2 QUERY HANDLING

To process a query, the first step is to check the
available local schema whether, all required domains in the query
satisfy the local schema or not. The query is required to satisfy
the attributes for vertical fragments and the domain structure
or tuples for the horizontal fragments. Besides this, there could
be some mixed fragments also. The mixed fragments have some key
associated with them like the vertical fragments and the key
lies with the fragment support structure. The key has a specific
relation with the class of objects lying in the local schema of
the current terminal node. The individual fragments are linked
with some basic pointers, stored with the individual attributes
(objects). The pointers address the specific terminal nodes with
the physical address of the fragments. This helps in locating the
right attributes at the specified keys but it is different for
horizontal fragments. The horizontal fragments maintain the
fragment qualifier in the catalog, and also in the global and
local schemas.

The consistency of the data is maintained after watch
ing the object-oriented view that is, the concept of subclasses
and superclasses being maintained. The benefit of resolved hier
archical structure is to get inheritance of the relationships at
the higher and related nodes. There is a concept of parent,
sibling and child, which makes the all other nodes informed about

66

the search procedure. Therefore, the concepts of supernodes, J.

which belong to the parent part or the subnodes, which belong to

the child part, are provided. The required relations are traced

by following a sequence from the root node in the hierarchy. The

different nodes could only be searched, if the software accessing

them has the permission for the search. This is done because the

different groups of the users have the different privilege lev

els, assigned by the system administrator and they would get

access over the nodes accordingly. The server checks if the

appropriate object requiring to access a class is authorized for

the same or not. If the user is performing some unauthorized

operations with the database then he or she is informed accord

ingly with some messages.

There are two ways to process the queries, either by

seeing the destination to which the query is referred and the

results are subsequently processed from it, or shifting the re

quired fragments, which are transferred to the current node.

Later, the new fragments are updated at the appropriate levels in

the local schema. Finally, the query is processed at the local

terminal node increasing the future locality of the system, but

at the same time it is also increasing the redundancy. This V

transfer of the fragments also increases the overhead of main

taining the new fragments in the catalogs. The catalog maintains

the information, like version numbers and the different addresses

of the fragment's destinations etc. on the different terminal

nodes.

3.3 DISTRIBUTED SCHEMA HANDLING

In GURU DDBMS there are the two kinds of basic schemas,

which are global and local schemas.

V

67

A

i

4

ELECTRONICS
AND

COMPUTER e.

DEPARTMENT

UNIVERSITY
OF

ROORKEE
DEPARTMENTS

ELECTRICAL

ENGINEERING

DEPARTMENT

MECHANICAL

ENGINEERING

DEPARTMENT

CIVIL

ENGINEERING

DEPARTMENT

FIG. 3.1

^^s^s^xmsshr
68

3.3.1 Global Schema Handling

The global heterogeneous schema maintains the entire

details about the relationships among various objects and classes

at an instant of time. Every class can have so many other objects

and classes. Thus, providing the high scalability to the data

base. The objects consist of the basic entities or attributes to

have better cohesiveness or integration for the purpose of pro

viding perfect privacy and security and the better operational

efficiency. These objects and classes also maintain the linked

information about the various kinds of fragments, which can be

given access to the right users operating the system. The global

schema is common for the entire application as a whole and can be

kept at more than one terminal nodes of the distributed system.

This increases the availability of the distributed system. The

more replicated copies in the system enhance the availability of

the system.

The distributed schema design can be illustrated with

some example pertaining to University of Roorkee and the mainte

nance of the data for the same. Roorkee University is organized V

with so many Managerial Heads, which come under its administra

tion. The university tree is represented in the form of a block

diagram in Fig. 3.1. The several departments of the university

are under its direct administration with a head, University of

Roorkee Depaixments, which is divided under so many heads like

Electronics and Computer Engg. Deptt., Electrical Engg. Deptt.,

Mechanical Engg. Deptt., and Civil Engg. Deptt. etc. Further the

Electronics and Computer Engg. Deptt. is sub-divided in the

following heads like Student's Section, Deptt. Library, Deptt.

Software Lab., and Deptt. Hardware Lab. etc. Then, the head

V

69

Student's Section is sub-divided in the heads like Studies, and

Co-curricular Activities etc. And again, there is a sub-division

possible and so on and so forth.

The schema showing the structural relationships, which

can be prepared from the symbolic notations is given bellow:

NODE-1.

U-0-R-D(E-C-E-D, E-E-D, M-E-D, C-E-D).

E-C-E-D(STUD, D-L, D-S-L, D-H-L).

STUD(STUDIES, C-C-A).

All nodes of the tree represent the head names, and the

child nodes represent the child node's head name and its rela
tionship with the parent node.

The following are the GSQL instructions used to

construct the above schema and process queries:

define structure stud

datafiles frg_l

fields studies, c_c_a

procedure stud;

define structure e_c_e_d

include structure stud, d_l, d_s_l, d_h 1
procedure e_c_e_d;

define structure u_o_r_d

include structure e_c_e_d, e_e_d, m_e_d, c_e_d
procedure u_o_r_d;

70

-• \\ »
\ *\ \\ v \

i

I \ v_ •— • .-_
% —— • — — —

POINTERS <

P- PARENT
S- SIBLING

HF- HORIZONTAL FRAGMENT
RC- REPLICATION COPY
C - CHILD

NF NOT FILLED

HF-N HORIZONTAL FRAGMENT NODE
RC-N REPLICATION COPY NODE

g)J—fgh}- Fn HOR|ZONTAL FRAGMENT n
—-* RELATIONAL POINTER

RG. 3-2 GLOBAL SCHEMA STR
UCTURE

71

I

/

V

create diversity with u_o_r_d;

list studies of university;

Different objects are invoked with the messages sent to

them. In brief, the following are the activities associated with

GURU:

* GURU system is composed of named address spaces

called objects. Objects provide data storage, data manipulation,

data sharing, concurrency control, and synchronization.

* Control flow is achieved by threads invoking objects.

* Data flow is achieved by parameter passing.

3.3.2 Local Schema Handling

The local autonomy is provided by maintaining the local

schema with the individual terminal nodes, which is maintained

at the different individual sites. The local schema depends on

the requirements of the site for the data updates to be made in

the local terminal node exclusively [76], [57] . Therefore, the

local schemas are designed to see the site requirements at an

instant of time. These classes and the objects can further have

the different classes and the objects into them, as discussed in

case of the global schema. Encapsulation of the various objects

and the classes is done to ensure the privacy, security and the

tight integration among the various entities available in the

classes and the objects. In the local schema, the details of the

various fragments are recorded at every node as illustrated in

Fig. 3.2. The local catalog is also maintained at the local

terminal node to record this information. The local database

72

SUB-SCHEMA-1 (CLASS-1)

E-C-E E- E- D M- E C- E

DUMMY FORMAT-1

STUD. D-L D-S-L D-H-L

SUB-SCHEMA-2 (CLASS-2)

LATION-2

•; SUB-SCHEMA-3 (CLASS-3)

STUDIES C-C-A

En.No-, Name , Marks

En.No..Name, Marks

En.No,Name,Marks

INSTANT

REQUIRED

FORMAT

CLASS ='M.Sc"

F20
\ •

CLASS ="BE"

F20'
1

CLASS 5*M.E*

F20

CLASS ="M,Sc"

F22

CLASS :"B.E"

•

F22'
t

CLASS ""m.e"

F22

FIG. 3.3 LOCAL SCHEMA

73

En.No.,Name, Performance

En.No. .Name , Performance

En.No,Name, Performance

INSTANT

REQUIRED

FORMAT

i

V

maintained at the different local sites is having the entire

information regarding the different entities with the database

and the kind of fragment relationships as shown in the global and

local schemas of Fig. 3.2 and Fig. 3.3 respectively. In this way,

it helps in maintaining the different indexes, which are recorded

with the different relationships of the fragments. For the dif

ferent entities, which are common between the two fragments,

maintaining a relationship, the different indexes are created.

These indexes take the view of any order of the entities required

by the queries otherwise, one concatenated index could easily be
maintained for the two fragments. The information regarding the
various common entities is marked in the global and local

schemas. And the indexes are recorded in the catalog. The infor

mation about the indexes is also being indirectly maintained in
the global and local schemas by placing the address of the cata

log entry, where the information about index files is lying.

3.3.3 Applications of Schema for Local Processing

In GURU DDBMS the global and the local schema both,
record the information regarding the various fragments, about

their physical placements and the type of the fragments. In this
way, the system locates quickly the required information from the

local or global schema. The limits of the fragments are also
recorded, which further help in mapping the query to the right
limits lying in the area of the fragments. If the local schema
does no'_ find a required fragment then the intraquery is routed
to the required closest cost effective terminal node through the
coordinator. The information is furnished from the catalog to
provide transparency. The results are subsequently received by
the server and finally the global computations are performed and
the results are routed to the requester.

74

V

I
3.3.4 Server Design to Access the Local and Global Schemas

.

To process queries, the fragments are placed with the

proper indexing mechanism depending upon ^the query attributes and

the indexes available. In case, when the high frequency of the

intraqueries is available on certain key areas of the fragments

then, there is a mechanism' introduced in the system which auto

matically creates those index tables on the specified key values.

The indexes are placed in such a way to configure the system with

duplicate key values, if found in the database. And if the dupli

cate key values are present, then the system looks for some more

common attributes within the two or more classes, and the server

loads the different required indexes simultaneously to acquire
the right sequence. The indexes created by the system on its own

through the frequency of arrival of certain queries are marked

separately and remain transparent to the users. Depending upon

the necessity, the fragments are created and if the frequency of
access goes down, the fragments are removed automatically from

the system. The detailed statistical analysis and maintenance of

the fragments is discussed in chapter 6.

If the required attributes are missing from the local

schema, the global schema is traced out for the purpose. The
attributes are traced for the optimal fragment sizes and the

control is handed over to the terminal node consisting the se

lected fragments, through the global coordinator. These opera
tions are performed by the coordinator through the current cata

log, holding the information regarding the current alive systems

on the network. Finally, the terminal node is requested to per

form the actions through its requester, which performs the tasks

as if they are being required by the local terminal node. Server

75

>

V

REQUESTER

m

CATALOG

© "1© ©

LOCAL

COORDINATOR

O

TERMINAL
INPUT

OUTPUT

LOCAL

SCHEMA

©

©

r

©

SERVER
UNIT

STATISTICAL
UNIT

©

©

GLOBAL

SCHEMA

©

©

TRANSLATOR

/

MAPPER

3L
LAN

QUERY

PROCESSOR

FRAGMENT

TRACER

&

INTERFACE

LOG

MANAGER

© .,©

L OG

LAN

W

©

TERMINAL TERMINAL
NODE node

T

INDEX

DATA-BASE
MECHANISM

@
• 1

*® ©

INTELLIGENT

DATA BASE

CONTROLLER

F'G. 3. 4 INTELLIGENT LOCAL QUERY PROCESSING
IN GURU DDBMS

76

performs the operations and hands over the results to the reques

ter which sends them back to the query originator terminal node

through the coordinator. The whole operations are implemented

transparently.

Intelligent local query processing is shown in Fig.

3.4. Whenever a query is required to be processed at any terminal

node, it is routed through the requester, which takes it to the

server after converting it into the required format of the GURU

(local) DDBMS. The server requires the catalog to form the local

schema into the memory. The different required attributes are

traced out and the other mechanism like indexing scheme etc. is

looked into the server for the analysis to be carried out through

the Ureal schema. Server, then places the data to its query

processor, and sends the directives to the fragment tracer. Which

sends commands to the intelligent database controller to give the

final shape to the databases with the proper indexes loaded in

the memory. Query is processed by placing the required data back

to the server. These operations are recorded in the log at the

same time and verified. In the last the results are sent to the

requester. After getting the results converted into the user's

format the results are sent to the required output unit.

The above discussion is purely for the queries based on

the local terminal database. If the query is having the entity
faults, i.e., the required attributes are missing from the local

schema then the server sends the information to the requester for

sending the global schema (in case its copy is not available with

the local terminal node). The requester places the request for
global schema to the local coordinator, which directs the message
to the addressed terminal node. That terminal node sends the

catalog fragment consisting the global schema to the local coor-

77

dinator which directs to the sever through the requester. The
global schema is loaded in the memory and the required classes
are traced. The query is distributed to those terminal nodes

through the local coordinator which are carrying the fragments.
The resultant fragments are sent to the current terminal node and

they are synthesized maintaining the serializability of the
intraqueries at the current terminal node. Rest of the operations
are performed as were in the previous case of the local database
query processing. Finally, the results are directed to the re
quired output unit.

A local area network (LAN) is shown in Fig. 3.4, con
necting other .terminal nodes with the local coordinator. To
process queries in the system, the user does not require to
provide any internal details manually for the fragments but they
are arranged automatically based on the query structure required
by the user. A complete data transparency is provided with a
required degree of site autonomy to the users, for which LAN
controller plays an important role,

3.4 Approach

With the present object-oriented programming (OOP)
philosophy used with database query languages, it is difficult to
access the different required attributes unless one adopts the
right approach to activate right object's procedures [76]. These
procedures if found correct, provide the attributes through the
relationships among the different database fragments linked with
each other, otherwise amessage like, 'Trying to invoke wrong
procedure' will be resulted.

The details about the various fragment types are re-

A

>

*

corded in the global schema, which consists of the following

fragment types:

1. Horizontal fragments

2. Vertical fragments

3. Mixed fragments

4. Replicated fragments of the above kinds

5. Overlapped fragments

The above listed fragments can reside on any terminal

nodes kept geographically apart but connected with a network. The

approach helps in maintaining the entire details about the var

ious kinds of the fragments, which can be accessed transparently
by the available servers at the various terminal nodes of the

computer network. This approach is very helpful in handling the

heterogeneous data. This is done by converting the various data

types required to be fitted in the local database configuration

and hence the converted fragments can be tackled in the same way

as if the homogeneous data is brought in. The server helps in
maintaining the data by putting it to form the proper relation

ships with the existing local or global databases.

This has been a practice that the appropriate fragments
which are required by a user, are known to the user in advance.

In this way, there is no fragment transparency available to the

users. The queries of any kind, which are processed on a computer
terminal node belonging to an application, need the required data
fragment configuration in the memory. The data fragment
configuration for the application is loaded in the memory by the
server. one does not require to load fragments manually, the

query is simply assigned to the system and it becomes the task of

the system to load whatever becomes necessary for it to be loaded

79

in a view to process the assigned query. This task is carried out

by the intelligent server of the distributed database management
system. First, the server tries to trace the required parameters

from the local schema of the terminal node. If an attribute is

missing then an attribute fault is generated and the global
schema is looked for the attribute. If the attribute is found,

then the address and the fragment name is traced through the

global schema, which itself could be on some remote terminal. In

this way, the server places the request about the query to be
processed at the remote terminal through the coordinator. The

intraquery could be processed and the derived fragment can be
brought to the current place where the global query can be proc
essed.

In this case the knowledgebase is explored which traces

the local schema to process the query. There could be a possibil
ity that the query requires more than one fragment, which lie

under the different objects and at the current terminal node.
Then, the fragments could be joined on some recorded key, by
indexing the fragments on the common key value and a semi join
operation is applied. The semi join operation together with
clustering is performed so that the efficient way in retrieving V
the data from the fragments is adopted. This method is used for

those queries, which are pertaining the high arrival rate and the
other is for the queries not having high arrival rate. The last
method does not disturb the existing fragments in the configura
tion or does not create any other fragments. In this way, redun
dancy is also reduced but on the cost of the processing speed.
These types of queries are required to maintain a data fragment
configuration in the memory. Which decides the different kinds of
fragments in the memory in such a way that they properly maintain
relationships, which help in keeping the different tuple pointers

80

FRAGMENT

N0.1

INDEX

NO-1

RELATIVE
TUPLE SEQUENCE

. NUMBER

J
RELATIVE

INDEX

SEQUENCE

MAP

J
RELATIVE

TUPLE

LOCATOR

INDEX

NO. 2

BUFFER-2

AREA-1

FIG. 3. 5 FRAGMENT LINK MECHANI SM

81

FRAGMENT

NO 2

BACKUP
BLOCK

•

i •

to the right places in the fragment configuration, as shown in

Fig. 3.5. Similarly, so many pointers start moving in different

fragments, such that, one pointer remains with one fragment, and

all these fragments are organized on some relation maintaining

the .required indexes. Hence, the required data can be read or

written to the specified fragments.

The different fragments maintain different kind of

keys, and also maintain the relationships among them as shown in

Fig. 3.5. This approach is very much applicable in maintaining

the heterogeneous keys. Some indexes based on certain key values

are shown with index, no_l and index, no_2, which are connected

to the fragment, no_l and fragment, no_2 respectively. The frag

ments shown are vertical or the mixed type, of the original frag

ments. Which are based on the key attribute values, for later

processing on the key expression. The given two indexes, no_l and

no_2 by linking with the database fragments, no_l and no 2,

provide a relative index to the database fragment, no_2. To
process the query based on any key value, the locator finally

searches the tuple sequence no. through the sequence map. This

directs the database fragment, no_2 and the index, no_l to trace
the right tuples and place them in the buffers. These values are

later transferred to the backup memory.

3.4.1 Constraints

The constraints which affect the local processing effi
ciency are the type of terminal node, the network used, the live

terminal nodes carrying the precious information like global
schema, various fragments, redundancy, atomicity, serializabili

ty, current network average throughput, deadlocks, fragment size,

timeouts, site autonomy, heterogeneity of the data, available

82

index structures, the clustered ready fragments and statistical

intelligence available with the server to have forecasting of the

type of queries going to be arrived in future etc.

3.5 DESIGN VIEW

The search mechanism used with local and global schemas

is illustrated with the help of an example. The available intel

ligent data in the catalog directs it to configure and load the

required configuration of the data fragments, with the index

mechanism, so that, the query is processed efficiently. To pro

vide an efficient access, the data tuning is done before the data

is accessed. This task is taken up by the server, and whenever a

query is processed, it gets registered in the catalog in the

appropriate categories, after watching the synthesis part of the

query and the corresponding tables. Which record the different

kinds of the queries analyzed periodically, considering the
various kinds of remote fragments and maintaining the logs. In

this way, periodically, the frequency of queries is calculated

with respect to the network congestion. If required a few copies
can be maintained individually of some fragments, lying at the

remote terminal nodes, which can be brought and recorded at the

local terminal node and the local schema is updated automatical

ly. Similarly, if network traffic is not high and safe transmis

sion with reachable performance is obtained then, certain repli
cated fragments are removed by the server and hence updating the
local and global schemas accordingly.

At any time if a terminal node is not alive due to some

reason, which was processing the global schema, the other depend

ent terminal nodes place the request to some other registered

terminal nodes for the application, following the 2PC and 2PL

83

>

>

communication protocols, to provide the current ^ Qf ^
global schema. Later the lo=al catalog and its global schemas are
updated. The changes made during certain time interval are re
corded in alog, and the log lets the changes finally made, or
removes the changes with some atomic instructions, it commit or
abort signals are received respectively.

using the above discussed methodology, decisions are
taken to maintain the required fast access mechanism for the data
to be processed. Certain indexes based on some keys are created
and by linking those indexes to the basic database, some new
Clusters are created, and the data is recorded in them. Using
tta. method, the queries, with higher frequencies are processed '
But, „ certain cases, which are found enough fast, this
procedure of getting the local fragments in a different
replicated form is not maintained. lts decision is taken
considering the another fact of increasing the local redundancy
which obviously could not be increased to the higher vaiues due I
to mainly two reasons. One is not to let so much of the disk
space and the other is the local maintenance cost for every:
update, which increases proportionately with the replicated
copies. Therefore, an interactive approach is suggested, which is
found very suitable, using this approach the different database
fragments are connected with the different pointers which make
use of the specified index table mechanism hence making the
server, retrieve or manipulate the data efficiently.

A iocal schema is discussed in Fig. 3.3. For example, -
In thls case the query is issued as follows:

list En_no, ivame, Marts, Performance for class .»B.E,. of
University

84

AREA

NAME

LOGICAL AREA

CODE

VERSION

NO-

RAM-1 K- D-S 57 32

RAM-2 G-H-S 29 27

NIL NIL NIL NIL

INDEX CODES

IC
11

IC
12

IC
18

IC
21

IC
22

IC

20
IC
31

IC

32
IC
38

IC
NIL

IC
NIL

IC
NIL

FIG. 36 BACKLOG FRAGMENTS AND INDEX MAINTENANCE

85

>

V

The "of" construct above loads the local schema (as an

Object not with strict encapsulation) with the name, Uor_st.
Suppose, that the one class in the local schema, University
consists of the attributes as En_no, Name, class and Marks with

the fragment name, K_D_S, and the other class consists of the

attributes as En_no, Name, Class, Performance and Address, with

the fragment name, G_H_S. The processing of these fragments is
illustrated in Fig. 3.3. The actual internal process is shown in

Fig. 3.6, and Fig. 3.5. The fragment names as fragment, no_l and
the fragment, no_2 are used for the logical replicated derived

fragments, K_D_S and G_H_S (as shown in Fig. 3.6) respectively.
These fragments remain transparent to the users. The working
details are explained later. Finally, the query after getting
processed, supplies the list of the resultant fragment with the

attributes, En_no, Name, Marks, Performance to the screen of the
local terminal.

•

In GURU DDBMS, the maximum 26 fragments (each fragment

can have any number of linked horizontal fragments) can be loaded

together to form one logical fragment, this limit can be extended

as and when necessary as shown in Fig. 3.6. Each fragment can

consist of maximum up to 254 attributes and can be associated

with 8 index files to give proper sequences to the individual

database fragments. Therefore, total 208 files (fragments) can be

opened simultaneously. The indexes, which are active can be

changed as per the requirements of the system as shown. Any time,
the scheme activated inside the computer active memory can be

changed with a new assignment over the database. This could be

done with the help of a method known as backtracking..Where every
possibility is explored from the available set of knowledgebase

to find that the query is satisfactorily replied with the avail

able scheme. Therefore, the distributed database management

86

CATEGORIES

OF

SECURITY

DATA

COMMUNICATION

MESSAGES

PROCEDURES

(1) PRIVATE

(2) PROTECTED

(3) LOCKED PUBLIC

(4) GENERAL PUBLIC

1 ALL KINDS OF DATA

OBJECT COMMUNICATION
STRATGY

STATUS REQUIRED TO BE
MAINTAINED

> SECURE PROCEDURES

FIG.3.7 GENERAL OBJECT

87

>.

V

>

system uses its own supervisor to find that, if any time a frag

ment does not meet the required condition, then, the alternative

condition will be required to be checked. This is done to have an

another view of the active memory scheme. Hence, altering the

present linked structure and getting a new structure set up in

the memory by placing a new index order. This method provides the

good solution with reasonable access efficiency.

In Fig. 3.7, an encapsulation is illustrated of the

data and procedures. The communication is done with the messages,
which consist of certain codes to get the identity and required
features, which are send to get the data from the object (cap
sule) .

3.6 FRAGMENT DESIGN

3.6.1 Horizontal Fragment Design

These fragments are based on certain key expression,

and the all tuples with all attributes present in the class or

the object are divided with the tuples satisfying the key expres
sion. There is a condition that, there should be at least one

tuple in the fragment which satisfies the key expression. These

tuples forming a new fragment can now be placed any where
throughout the network in any terminal node. This fragmentation
is done on the requirement of the database on some of the sites

where the maintenance of the fragment would be done to increase

the overall access efficiency and the local autonomy. These
horizontal fragments are also divided into two kinds: primary
fragments and the derived fragments. Primary fragments are those,
which are of nonoverlapping type i.e., the two primary fragments
cannot overlap with each other. The tuples belonging to them are

two disjoint sets. Whereas, the derived fragments can overlap.

88

That means that, some tuples can belong to two or more fragments. ^

Derived fragments are also designed to provide the fast access

over the database. The overlapping of the fragments is designed

to keep in mind that the common tuples of the two or more frag

ments should have mostly the read operations to maintain the good

access efficiency. But, at the same time if the update operations

are performed over the replicated tuples then, it may lower down

the overall efficiency. Since, the update operations to the

replicated tuples belonging to the other fragments and sites are

also required to be performed at the same time. Therefore, the
f

network is accessed for the additional operations.

The size of the fragments is chosen on the requirements

of the various sites. If some query expressions require certain

database to be accessed more frequently, at some of the sites

then those attributes (the all fragment attributes for the

horizontal fragmentation) required with that query, to be

processed would be fragmented with the required fragment

qualifiers and kept on the site having the highest required

frequency. This method is known as the best fit method. The

selection of the site is done with the help of cost calculations.

If the cost of some other site is lower for those query V

operations then this fragment could be allocated to that site.

3.6.2 Vertical Fragment Design

Vertical fragments are designed on the requirements of

some of the sites, needing some attributes of one or more

classes. There could be some common attributes among some

vertical fragments, which would be considered for the all tuples

present in the fragment. These common attributes are again kept,

keeping in mind that these attributes would mostly be used for

89
V

the read operations to be performed. Otherwise, the similar

things would matter as in the case of horizontal derived frag

ments discussed above. The fragmentation criterion is chosen on

some of the attributes as required by the various sites.

3.6.3 Mixed Fragment Design

The mixed fragments are designed by combining the two

approaches of the horizontal and vertical fragmentation schemes.

These fragments are also required by the various sites hence

their placements are done in the similar manner, as was done

with the previous two cases of the horizontal and vertical frag
ment allocations.

All kinds of fragments can be created with GURU DDBMS,

which are presented in the earlier discussions. The classes
consisting of various kinds of attributes are illustrated in one

layer and are connected with sibling pointers as shown in Fig.
3.2. Therefore, so many classes can be maintained in global and
local schemas, where each class can consist of one or more
attributes. Each and every attribute belonging to some class is
connected with some child nodes. The vertical nodes connected

with the horizontal attribute nodes represent the horizontal
fragments. These horizontal fragments can be of any number and
size, and all horizontal fragments are connected vertically.
These fragments have certain replicated copies which are shown
with the horizontal RC (Replication Copy) of the horizontal
fragments. The other kind of the fragments are the overlapped
fragments and can be subsequently some subsets of the existing
horizontal fragments. Therefore, they are marked with a special
flag kept in the replicated fragment node, which denotes that the
fragment is the replicated fragment but, it is a subset of the

90

primary horizontal fragment or is a derived fragment of the jj

primary horizontal fragment.

Each and every fragment node consist of the following

information:

1. Terminal code

2. Owner's directory

3. Class (Object) name (Logical name)

4. Size field (flag field)
f

5. Total number of tuples (Cardinality)

6. Key expression

7. Time stamp (modification time)

8. Catalog address (for reference)

The above first three points, locate the right class

and its replicated copies through the links. The fourth point is

kept specially for overlapped fragment adjustments, considering

it as the partial fragment of the derived horizontal fragment, or

it is the replicated copy as a whole. The above fifth point tells

the total tuples for size optimization criterion selected by the

server. Sixth point tells the fragmentation criterion selected. V

Seventh point tells about the latest updates made in the fragment

and the last one is further to refer about the other details

recorded in the catalog like the maintained indexes etc.

3.6.4 Fragment Allocation

The fragment allocation criterion is basically decided

by the cost factor as discussed in the fragment design section

above. The basic criterion for the calculation of cost of the

fragments is depending upon its requirements over some sites in

91

an application. The requirements of the fragment could be of the

two kinds, one is only for reading that fragment, the other is

to update that. Therefore, the total local references to that

fragment would be the sum of the products of the frequency of

query arrival for the fragment on the site, with the total indi

vidual fragment references for that application. This is multi

plied by the cost, gives the total fragment reference cost. There

are some other factors like the type of the terminal node and the

memory speed etc., which are also considered for the cost calcu

lation criterion.

The system is designed to have the fragments allocated

in such a way, that the fragments can be accessed quickly and the

fragments should also take the minimum memory space. Therefore,

the fragments should also be provided with the minimum local

replication. Further, the fragments should be maintained in an

order to have the proper relationships among the various at

tributes through the classes. Therefore, there is a technique

called common clustering, which is used to provide fast backup

access[169]. All related domains are maintained on the given key

orders, and are placed together forming a common physical record

structure on some specified keys. This is done after watching the

characteristics from the log. Which results in quicker replies to

the queries, since all attributes are common clustered, as if all

belong to the one class and are also recorded at the same place.

The other kind of the fragments, which are not tuned as in the

earlier case can be placed ordinarily. If the common clustered

scheme is not used for processing queries, so many pointers are

formed which move synchronously to the corresponding individual

fragments, hence taking more time.

3.6.5 Versioning

92

To establish the perfect relations among the various

objects in the local schema, certain time and date stamps are

maintained on each and every fragment brought from the other node

[198]. Not only this but, a version number decided by the server

depending upon the arrival of the new fragments is also marked in

the local schema. Which helps in maintaining the various versions

of the fragments as shown in Fig. 3.6. These versions help in the

following ways:

1. For concurrency control, which maintains the users

accessing the information simultaneously, and keeping the data

fragments protected from the simultaneous changes made by others,

who had a control over that fragment.

2. For recovery of the damaged versions due to certain

crashes occurred in the system or transaction failures.

3. To enhance the performance of the distributed sys

tem. More are the copies on the network, better would be the

locality, hence the response time would be short.

4. For implementing the databases without updates. This

is done to maintain the separate copies of all the modifications

done in the database. This helps in maintaining the various

versions of the database, which may be required in future.

3.7 QUERY MAINTENANCE

3.7.1 Dependency Check

The query expression is expressed and elaborated in

93

i

f

V

v

such a way to load the required indexes in the memory which are

used to access the required data from the database efficiently.

These indexes are loaded following the intelligent scheme. A

query is analyzed for the comparison operators (>, <, >=, <=,

etc.) used with queries, which could be seen for the dependency

checks as bellow:

SNO > 5

The attribute, SNO is compared with a constant, there

fore, the only index on the key SNO is loaded which is used to

check the required condition in the database. If another expres

sion, SNO > 5 + X is expressed, which comprises of an identifier,

X, not as an attribute in the database, therefore, it does not

lead to complication. But, if x is an attribute in the database,

this keeps changing its value for every fresh tuple, which would

require to deload the other index, SNO from the main memory. The
other expression for the similar discussion could be seen as
below:

SNO * EN_NO > 5 + X

The SNO and EN_NO both are the attributes, both tend to

have different values for the tuples. Therefore, in such an

expression, it is difficult to establish any index in the memory
which provides the quick access with least searching the tuples.
A procedure used to watch such activities closely in the database

maintains a separate activity chart in the relevant objects. This
chart with the help of the catalog and data dictionary in the

system maintains the entire information related to the dependency
of the different attributes in the database. If an index for such

a database fragment is prepared then at the same time after

94

finding from the dependency chart (through the programming in \

GSQL) a separate dependent index is created, which records the

relative orders in the dependent attributes after finding the

characteristic pattern from the memory. The information regarding

the characteristic pattern is obtained by watching the type of

changes in the data belonging to some attribute over the other in

the normal index behavior. This information is analyzed from a

knowledgebase and knowledge is updated for the different patters

of the data.

r
Some arithmetic operators are used between two at

tributes, operated for the generation of characteristics of the

data in the database. The process could be seen for the basic

arithmetic operators as for the expression, SNO - EN_NO, assuming

the both attributes numeric. If the data pattern for the corre

sponding tuples is increasing (ascending order), it is concluded

that the two attributes have correspondence in their values. This

makes the index with one of the attributes working successfully.

The different tuples are getting their values changed

with respect to time in the database. Therefore, a continues

monitoring regarding the changes in values is done and the drift y

from the original pattern of the data is checked. Some tuples may

have the different sequence than the sequence observed among

others. Therefore, these tuples are separated out in the index.

If the drift is among a few tuples, they are marked in the

relative index created separately for the purpose. The separate

index provides the negative values in the original index. This

indication helps in not scanning those tuples specially marked.

These would be scanned subsequently either sequentially or using

a separate index made for them. The procedure depends on the

number of tuples. If the tuples are very few, they would be

95
>

scanned sequentially otherwise, a separate index depending upon

the previous guide lines would be prepared. The attributes are

tried accordingly for the different other arithmetic operators.

For these operators, the different patterns are observed for the

data in the database, used for the later processing. The differ

ent patters are recorded in the catalogs and the object extended

structures, which are activated on the later requirements.

3.7.2 Index Organization

The indexes can be created based on the different keys.

A key can consist of any number of attributes partially or fully.

The object requiring to mention a key is depending upon the

defined key with the current object and the other linked objects

and classes. The environment existing for the indexes being

created may not be present in future when a query needs to be

processed. Therefore, the indexes are defined in such a way that

they also work in the dynamically changing environments. The

index created consists of the pointers to the different tuples

and the value of the keys required for the individual tuples.

This method facilitates in providing the right sequence to the

different tuples in the dynamically changing object environments,

which could affect the different tuple sequences due to the

changing environmental scenario. The indexes consist of the

following structure:

1. Fragment Name

2. Fragment Qualification

3. Index Formula

4. Order

5. Pointers

6. Key Values

96

To create an index for a database fragment lying with

an object, the following instructions are used:

Index on <key expression> to {<index name>\ <tag name> [of

<multiple grouo index file>]} [unique] [descending]

The key expression above specifies the value of the key

with the specified objects on which index is to be prepared on

the specified index name or the specified tag name of the

multiple group index file carrying the multiple indexes of the

different (remote) database fragments. The specified key can have

the attributes present partially or fully from the specified

fragments declared in the current object or any other inherited

or related objects. The size of the index key should not increase

beyond 950 characters. The key can consist of any kind of the

data defined as the passive objects. The unique clause above

specifies that there should not be any duplicate key values. If

the duplicates are found then a message is displayed to the user

and the index is not created. The order of the index created

above is ascending otherwise if mentioned as descending

separately. The following instructions are also used to create

indexes:

create [unique] index <index name> on <database fragment name>

<column name> [{asc desc}] [, <column name> [{asc | desc} ...]] ;

The column name is the name of the attribute defined in

the database fragment with ascending or descending order. The

other things are applicable as were in the last instruction.

Once an index is created, the index can be loaded

97

A

f

\

externally by the programmer and the following are the commands

used to load the index along with the fragment to reply the
required kind of queries:

use {fragment name | ? [in <work area>]} [index <index names>]
[order [tag] <index name> [of <multiple group index file>]]
[alias <alias name>]

[exclusive]

[noupdate]

[again]

The fragment name above is the name of the database

fragment, which would be loaded in the current work area or in

the specified work area with in clause. If the name of the

current fragment is required then a question mark (?) is used; if

the no database fragment lies in the current work area then the

all database fragments related to the current user are displayed

from the catalog. Which displays the name of the database and the

indexes loaded in the current work area. The index names

specifies the list of the indexes to be loaded with the current

database fragment. The sequence of the indexes starts from the

primary index to the next relative priority secondary indexes.

With one specified fragment the maximum eight indexes can be

loaded simultaneously to provide a sequence to the tuples. This

limit can also be extended if required, by allocating more space
for the indexes. With a multiple group index file the different

indexes can be loaded and maintained automatically as and when

required through the GSQL instructions. The tag names specify the

tags, monitored in the multiple group index file. Their orders

are also maintained in the current working multiple group index
file.

98

The order clause names an index or a tag from a >

multiple group index file as the controlling index. The optional

of clause could be used to identify the name of the multiple

group index file that contains the selected index tag; this might

be necessary to avoid ambiguity when an open index file and an

index tag have the same name.

In the optional alias clause, an alternate name can be

provided that identifies the database fragment while it is open.

If the alias name is omitted, it takes the fragment name as the

alias or the prior assigned name for the work area could be

considered. The alias name could be given in maximum eight

characters; the first character must be an alphabet or an

underscore character (_); the other characters may be included as

the alphabets or the numeric digits.

If the optional exclusive clause is provided then the

database fragment is only accessible to the owner of the database

or only to the current user. A database fragment opened for

exclusive use cannot be shared by the other users on the network.

The noupdate database fragment is opened for only read operations

and not for updating.

The maximum 26 database fragments are opened simultane

ously on the network for one user. The again clause makes the

same database fragment open for more than one work area, for some

special purpose operations to be performed among the remote

objects.

The instruction that defines the different work areas

which could be used by the user for placing the different

database fragments on the network is following:

99

f

select alias <work area name>

The select clause selects the different work area for a

new database fragment to be made ready for processing. Alias

specifies above the work area name as discussed earlier. The

other select clauses are used with the query launching

instructions, which would be discussed subsequently.

The following instruction rebuilds the all indexes or

the tags from the multiple group index file in the current active

work area -.

reindex

The process of rebuilding the indexes in the backup

memory is to update the indexes with time. The order of the

indexes could be altered by using an instruction, which changes

the primary index; the newly activated secondary index becomes

the primary index and the indexes are rotated in the order

selected towards left, starting from the new primary index. The

following instruction performs this operation:

set order to [{identifier | numeric literal \ [tag] <tag name>

[of <multiple group index file>] \ <index name>}]

The value of the identifier can vary from 1 to N (where

N is the number of maximum indexes used in current work area,

which can go maximum up to 8) for the current set index

mechanism, which could be enhanced for the later requirements.

The numeric literal's value also lies in the above range. The

optional tag clause includes the tag name of the index from the

100

multiple grouped index file. The optional index name includes the

name of the index activated for the current use. If no clause is

found after set order to, the all active indexes are deactivated;

this works in the same way as the set order to 0 works.

The instruction discussed below directly searches the

indexes and no further search is required.

seek {expression literal}

r
The expression consists of a value after getting it

resolved which would be searched from the current indexes. The

literal's value can be any thing defined as a passive object. The

other instruction listed below searches a numeric value only:

find <numeric number>

It works in the same way as the seek works but it

searches only numeric numbers.

The following instruction takes the pointer to the next

tuple through the current active index. y_

next

The other instructions used to manipulate the indexes

with different applications involved directly or indirectly are

provided in Appendix - B.

3.7.3 Query Transformation

Optimal equivalent query transformation to the avail-

101

able fragments is the required objective to process query effi

ciently. With available structure of the local and the global

schema, the distribution of intraqueries in the canonical form is

the most desirable feature. To transform the queries, the rela

tional algebra with some set of rules is used. These rules govern

the various equivalent operations for the unary and binary opera

tors. The equivalent and related operators are recorded to form

the required query transformation. When the query is requested to

be processed the unary and binary operators are so operated to

form the query structure from the class or the object structures

(for the attributes) available preferably locally or otherwise,

based on the global schema.

Intelligent query processing is the another approach

which fetches the all attributes or identifiers around the unary

and the binary operators and put them into the knowledgebase.

These are further synthesized based on certain operator rules

which further govern the query tree and the query comes out from

them as the transformed query.

The optimal selection of query processing strategy

involv< s :

1. The query needs materialization for its efficient

processing, but with the available fragment structure, it is

difficult.

2. The execution order of the query is important for the

query to go through the minimum cardinality of the fragments.

3. The selection of the method of execution of the

individual procedures is important. The unary and binary

102

operators and the required efficient way of their grouping play

an important role.

The basic objective in query optimization is the

performance criterion of the overall system with optimal cost of

processing. The system must perform the operations in the way so

that the fast execution of the different intraqueries could be

performed. The basic four parameters are considered for the

performance evaluation of the overall global system, which are:

the use of local I/O, the use of CPU, the use of the network and

the degree of heterogeneity with required links on the network.

The detailed discussions about the issue of complexity and

performance are considered in chapter 6.

r

3.7.4 Backlog handling

Backlogs are to record the information of various

intermediate operations during the query transformation stage,

index manipulation stage, data access and the manipulation stages

etc. [90]. These backlogs can be maintained preferably in the

cache memory to provide fast access to the relevant operations,

as shown in Fig. 3.6, with the recorded details of some V-

fragments, which would be accessed for regular and fast access.

These details are recorded in the backup for safe operations to

be performed. The updates to these logs can be done in two modes

of operations, which are quick and lazy. Quick mode of operation

is used for immediate operations to be recorded in the backlog.

But, the lazy operation is beneficial from the view point of

overall speed. The data goes in a lazy queue, which gets updated

when system has relatively free time.

A backlog, BR, for a relation, R, is a relation that

103
V

contains the complete history of change requests to relation R.

3.7.5 Log Management

The log is given importance to record the all transac

tion's Ready states, the Commit states and the Abort states. Any

time when a transaction is started, the name of the transaction

with the data is recorded. Since, the transactions are performed

to process queries, the individual queries are broken in the

intraqueries and they are processed over several terminal nodes

of the network, which carry the related application. Any time,

any failures on some terminal nodes may require the all other

intraqueries previously operated to be undone and require to

explore the other possibilities of the query, which would be

broken up (transformed) subsequently for the new values of the

intraqueries. To undo these things, the log stores the all values

into it. The previous values would be taken from the log and they

would be stored to the places where they were before this proc

essing of the last ready state (the last Checkpoint). In this

way, some of the intraqueries might get the same shape for some

other possibility of the query, which had faced the failure on

some terminal node previously. In this case, the previous opera

tions have to be applied through the log to redo the last opera
tions which were done previously.

Log maintains the complete past history of transac

tions, which were dumped on tape. So that in future, if any past

transactions are required to be used then, they could be fetched

back through the log dump. The log approach is also helpful in

retrieving the past data if some hazards affect the volatile

memory of a terminal node.

104

Log is also helping in maintaining the serializability

of the concurrent operations. The atomicity of the operations is

maintained using the log. The all kinds of transactions performed

among the different terminal nodes communicated to the local

terminal node are recorded in the local log. If an operation is

committed then this operation is seen through the log and the

later operations can go in synchronization. Thus, maintaining the

serializability of the concurrent operations. The log record

contains:

1. The transaction identifier

2. The record identifier

3. The type of action being performed

4. The old record value which is being replaced

5. The new record value to be put into

6. The pointer to the previous value of record for the

recovery

3.7.6 Server Management

Basically, servers are implemented to perform, the

database access and computations for the database servers, have V

a close coordination with requesters. Requesters have the proper

interface with local coordinator and act as interface to it,

which performs field validation, convert data to the required

data format based on the format of the current database manage

ment system and controls the results given by the server for

communication to the terminal user.

To access and manipulate the data, the proper fragments

are loaded in the memory which form some standard configuration

which helps in fast access to the data. Therefore, servers are

105

V

ATTRIBUTE

LOGICA.

NAME-1

S-R-NAME

FRAGMENT

LOGICAL

NAME- 1

RAHIM-1

ATTRIBUTE

LOGICAL

NAME-2

S- R-NAME

FRAGMENT

LOGICAL

NAME-2

RAHIM-2

RELATION

S-R-NAME

FIG. 3-8 CATALOG RECORD FRAGMENT

106

LOGICAL

INDEX

NAME

R-D-S

implemented to study the situation and do the needful and J
maintain efficiency, and autonomy as per the requirements. To

achieve this, certain in built intelligence is necessary which

helps it to acquire information from the catalog, the data

dictionary and the local log. As per the recorded information,

controls are generated to perform the transfer of the required

fragments from remote terminal node to the current terminal node.

The replicated fragments could also be maintained at the current

terminal node, which would not be needed at all or would be

required with lower access frequency. Therefore, those fragments

are transferred to some other terminal nodes as per their

requirements, or they may be deleted from the current terminal

nodes.

3.7.7 Catalog Management

Catalogs record the information about the database and

its access procedures. Catalog itself is a fragment which is

required to be distributed on the need, as shown in Fig. 3.8 with

some example. Therefore, these fragments are required to be

allocated efficiently. The catalogs are of three types: central

ized catalogs, fully replicated catalogs and local catalogs. y

Centralized catalogs are used normally in the case of centralized

database management systems but are also used with distributed

database management systems having no site autonomy. Fully-repli

cated catalogs are recorded on all sites. The modifications made

on some of the sites, are also required to be made on all other

related sites on the network. The local catalogs are kept only at

the local sites where the data is handled locally. Several in

termediate ways are there, one of them is partially replicated

catalog which is used in GURU DDBMS. In this case, the replicat

ed copies of the catalog are not lying with all the terminal

107 ;

nodes but they lie with a few of them. Therefore, updates will

not be a problem.

In another way, catalogs are basically of two types

local and global catalogs. They consist of the following

information:

1. Local schema details: It consist of the name of the

fragment and the attributes lying with them maintaining the

relationships.

2. Fragment details: Since, the separate classification

is done with each attribute, the details of the qualification of

the horizontal fragments with replication or overlapping crite

rion are recorded.

3. Allocation description: It provides the details

about how the fragments are mapped to physical images.

4. Access procedure description: The details of access

procedures with the types of index files locally available are

recorded. This is different with different individual machines

storing the local database.

5. Profile description: This includes the details of

the frequency of access of the database and the time stamps of

the access left for statistical analysis of the network response
time.

6. Privacy and security description: Various attribute

level access to be provided to various level of the users for

which their authorization is watched for read, update, insert,
delete and move operations performed on the database.

3.7.8 Data Dictionary Management

Data dictionary records the information about the

108

synonyms in the database with their access procedures and so many \

other different kinds of the data, which are needed to enhance

the knowledge and performance of the system. Data dictionary is

referred by translator/mapper and the server kept in the system

to work in the heterogeneous environment in GURU DDBMS. The data

and the knowledge are recorded in the data dictionary at appro

priate places for which records are maintained in the catalog,

and also in the global and local schemas. The data dictionary

plays a very important role for any kinds of updates required in

the system. Any new incorporations on the LAN, which operate on

some different kinds of the DBMSs, need some information to be

fed in the system, to update its knowledge. Further, any improve

ments made on the current system also need regular updates on the

corresponding systems. The contents of the data dictionary re

garding the synonyms for the example of Fig. 3.1 and Fig. 3.7 are

shown in Fig. 3.5.

The organization of the different types of the indexes

during processing of a query is provided bellow:

Scenario

Here, an example with a university is considered. A

university is consisting of a Central Administrative Block, a

Hospital, Student Hostels, Staff Hostels, a Central Library, a

Central Computer Centre, and Teaching Departments etc. The

different students getting admission to the various departments

are enrolled at various places in the university. One student

seeking admission to a course B.E. in Computer Engineering is

enrolled with the following sections: Department of Computer

Engineering, a under graduate hostel, a hostel mess, Central

Library, the Central Computer Centre, the Hospital etc. To

109

v

>

evaluate the overall performance of the student, the different

sections of the university are considered. The actual time the

student has spent at the various places could be calculated with

various aspects such as the academic achievements, the general

fitness etc. This helps in the judgment of a right kind of a

student with the abilities in the various required arenas for the

final selection.

Problem Implementation

The problem is implemented by recording the various

activities of the students in the computer system by providing a

master card to each and every student; who gets the permission to

enter on placing the master card in the computer's master card

reader. This method maintains the student's record on the comput

er network. The student's name and the activities are available

in the various database fragments, which could subsequently be

accessed through a wide areanetwork to the common global stu

dent's database. Therefore, the different agencies requiring to

recruit the right kind of persons, can send their willingness to

appointment the students through the network. Further, the agen

cies can finance the right students during their study schedule.

The different activities of the students can be

encapsulated in different sections. Each section consists of the

record of all students in an object. The different sections are

forming the different objects identified by the unique object

identifiers. These objects are related in nature. The following

instructions prepare a logical view of the problem:

procedure main

define structure univ_dept

110

datafiles students i

fields en_no, name, address, class, spec, year, marks

memory stud, s_add, rec_no

procedures univ_dept, ~univ_dept

functions marks, position

devices printer, keyboard, vdu;

define structure univ_hosp

datafiles patients

fields enjno, name, address, class, b_g, disease, health

memory std, s_add, h_c

procedure univ_hosp, ~univ_hosp

functions disease, cronic, history;

define structure univ_lib

datafiles ug_st, pg_st, r_s, staff, others

fields en_no, name, address, class, journals, books, date,

time_ent, time_left, overdue, excep, grade

memory std, st_add, efficiency, overdue, others

procedures univ_lib, ~univ_lib

functions overdues, exceptions, grade

device printer; y

define structure univ_cao

include structure univ_dept, univ_hosp, univ_lib as union

datafiles ug_rec, pg_rec, r_s

fields en_no, name, address, class, performance, fellowships,

scholarships, excep, awards, punish

memory st, award

procedures univ_cao, ~univ_cao

functions exceptions, awatds, punishments

device printer, vdu, keyboard;

r
in

create object o_dept with structures univ_dept;

create object o_hosp with structures univ_hosp;

create object o_lib with structures univ_lib;

create object o_cao with structures univ_cao;

x=o_dept->marks ()

y-o_dept->position ()

xl=o_hosp->disease ()

yl=o_hosp->cronic ()

zl =o_hosp - >heal th ()

x2=o_lib->overdues ()

y2=o_lib->exceptions ()

z2=o_lib->grade ()

x3=o_cao->exceptions ()

y3=o_cao->awards ()

z3=o_cao->punishments ()

procedure univ_dept of o_dept

select alias dept

use students

index on name to named

index on address to addressd

use students index named, addressd

procedure univ_hosp of o_hosp

select alias hosp

use patients

index on name to nameh

index on address to addressh

use patients index nameh, addressh

112

procedure univ_lib of o_lib \
select alias lib

use ug_st

index on name to namel

index on address to addressl

use ug_st index namel, addressl

procedure univ_cao of o_cao

set echo off

set talk off

y
select alias cao

use ugc_rec

index on name to namec

index on address to addressc

use ugc_rec index namec, addressc

set relation to name into dept

set relation to name into hosp

set relation to name into lib

procedure ~univ_dept of o_dept

select alias dept

use

procedure ~univ_hosp of o_hosp

select alias hosp

use

procedure ~univ_lib of o__lib

select alia:- lib

use

procedure -univ cao of o ca o

113

v

v

select alias cao

use

function marks of o_dept

list name, adress, marks

return .t.

function position of o_dept

select alias dept

index on marks to marksd

use students index marksd

list name, address, recno ()

select alias cao

return .t.

function disease of o_hosp

select alias hosp

list name, address, disease

return .t.

function cronic of o_hosp

list name, address for disease $ "cronic"

return . t.

function health of o_hosp

list name, address, health

return .t.

function overdues of o_lib

list name, address for overdue

return .t.

114

function exceptions of o_lib \

list name, address, execep

return . t.

function grade of o_lib

list name, address, excep

return . t.

function exceptions of o_cao

list name, address, excep
y

return .t.

function awards of o_cao

list name, address, awards

return .t.

function punishments of o_cao

list name, address, punish

return .t.

3.8 CONCLUSION

The view of query automation has been presented with

automatic generation of indexes and loading them for the launched

query. When the schema is defined, the required order of the data

in the fragments is prescribed. But, the queries never stick to

the prescribed order, this is due to a wide range of probability

in supplying the query structures. Part of this is met by the se

quences prescribed in the objects regarding the attributes from

the instruction define structure and later it is supported by

dynamically created indexes when the query frequency exceeds a

limit. This method is very helpful in avoiding the unnecessary

115

v

v

indexes hence reducing the database overhead. The dynamically

created indexes are marked in the catalog and are controlled by

the system. Further, these indexes remain transparent in the

system and do not display in the directory seen by the user. The

user's view of the data remains protected.

The suggested index structure mainly carries two things

the pointers and the index values therefore, the large main

memory size is not required and the index values do not remain in

main memory for a long time. In the specific cases, the values

stay in memory, when certain instructions need them. Based on the

query structure the different indexes are resolved and by making

use of the knowledgebase, indexes are loaded with the database.

The search procedure is loaded in the order of indexes hence

reducing the query response time. The composite indexes are

designed and implemented on the requirement of the available

pattern for the fragments. These indexes are watched strictly,-

because they involve relatively more dependence. The composite

keys play an important role in providing better integrity in the

system.

The neat description of indexes helps in locating the

right indexes with appropriate index expression, attributes and

fragment qualifiers etc. Therefore, users can design their pro

gramming environment better useful and efficient. The different

indexes on remote keys can be linked and enhance the consistency

check and future dependability over the system. The system works

efficiently in the heterogeneous environment with the suggested

schema structure and makes the database fully invertable with the

provided intelligent scheme.

The approach of intelligent server design to handle

116

various databases efficiently is very effective. Which provides a

complete transparency of various details about fragments and

attributes and their placements. A lot of burden of remembering

the techniques of efficient data access by the programmer and the

programming efforts are reduced and system itself takes the

guarantee of efficient, effective and transparent operations

required by the programmer.

A system sample program to handle indexes is given in
Appendix - E

r

v

v
117

CHAPTER - 4

SCHEMA DESIGN

4.1 INTRODUCTION

To support the wide range of application domains,

different software are being provided by the various software

companies. The software consist the different kinds of distribut

ed database management systems. Since, the applications belong to

the different domains, the access over the data could be provided

through a database management system, which could be integrated

to the heterogeneous environment to share the diversified data

types. To record the data and information in the heterogeneous

environment, the available systems use the poor techniques of

data representation which lead to poor schema design. The lack of

intelligence in the system creates the problem of poor data

maintenance, which requires a great attention to support the

heterogeneous environment.

A good database design should provide the quick and

reliable accessibility of the database available at the remote

terminal nodes with proper transparency, serializability, hetero

geneity, site autonomy, and the perfect atomicity. Several re

searchers have suggested the different data models to handle the

databases [49],[50]. The relational database model is more widely

used in the distributed databases [141]. The relatively new

approach of object-oriented database model is becoming popular in

the fast changing environment. This model needs to be improved in

many ways to provide a better schema design, which could be used

in the existing heterogeneous database environments. The intelli

gent schema design is an effort in the same direction.

118

This has been found that the object-oriented scheme is

successful in giving the least data description, that is the

unnecessary data description is avoided. This is particularly

very much useful for object-oriented designs of the schemas

[25], [127] . The object-oriented scheme provides the three main

features, namely data abstraction, structural mechanism and

behavioral mechanism. The data abstraction provides the abstract

ed data to be scanned required by the query access procedures,

the structural mechanism establishes the basic relationships

among the different class and object structures comprising the

different attributes, and lastly, the behavioral mechanism pro

vides the behavior of the data in the database. The behavioral

formalism is the unique feature, which provides the inheritance

of the different classes and the objects with their properties.

The existing object-oriented databases do not provide proper site

autonomy due to the complexity in the system.

A

f

The common existing ways to maintain the relationships

are the maintenance of the flat file structures, which are relat

ed in nature [49],[50]. The flat files are kept, maintaining the

relations among them. The system maintaining the flat files (also y

known as database fragments) distributed at different terminal

nodes is known as distributed database management system [141].

The following sections discuss the design of heterogeneous

schema:

4.2 APPROACH

The complete logical structure design of the database

essentially requires the clear declarations of the entities and

attributes with the existing relationships among themselves. This

119
V

1

A

UNIVERSITY
OF

ROORKEE

EMPLOYMENT
EXCHANGE

MAIN

BUILDING

ELECT
S

COMF
EN

RONICS

UTER
GG-

ELECTRICAL

ENGG.

DEPARTMENT
LIBRARY

DEPARTMENT
WORKSHOP

UNIVERSITY
CENTRAL
WORKSHOP

UNIVERSITY
HOSTEL

UNIVERSITY
DEPARTMENTS

MECHANICAL

ENGG.
CIVIL

ENGG.

DEPARTMENT
SOFTWARE

LAB.

DEPARTMENT
HARDWARE

LAB.

FIG. 4.1 SCHEMATIC HIERARCHICAL STRUCTURE OF UNIVERSITY

120

is possible if they are connected to provide atree like struc- ^j
ture, where the relations are so kept that one - to - many and
one - to - one relationships can only exist, which forms a hier

archical model of the database. The other possibility is that,

the relationships are complex like many - to - many relation

ships. This needs to restabilize the relationships in one to many

format, to provide a format of hierarchical structure, otherwise,

the resultant structure forms a network structure as illustrated

in Fig. 4.1. This kind of structure is difficult to handle by

most of the existing database management systems.

To define a schema, one needs to clearly define the

attributes, entities and the database fragments. Further, the

relationships and the access methods are also required to be

indicated among all the attributes, entities and the database

fragments. The object-oriented approach makes the integration

with proper consistency among all attributes, entities and frag

ments, defined as objects. Each and every defined object is

identified with an OID (Object's Identifier) and has the local

object memory variables, attributes, entities, fragments and the

various procedures and functions, known as methods in Object-

Oriented Programming (OOP). The memory variables belonging to the y

objects are accessed by the local methods of the objects. Fur

ther, they may also be accessed by the outside procedures depend

ing upon the access rights and the access environments declared

in the objects regarding them. The memory variables, which are

not allowed to be accessed by the outside environment, provide

the image of strict encapsulation. GSQL provides the feature of

accessing the memory and other variables defined in objects,

through some outside procedures, which make the system with

enhanced strength.

.

121

FIG. 4.2 GLOBAL SCHEMA STRUCTURE

122

NF - NOT FILLED
P| " FRAGMENT-l

" — - RELATIONAL
POINTER

—*- - SIBLING AND
CHILD POINTER

The different fragments having the different names of

their entities and attributes are kept in the form of the nodes

of a tree, and the branches connecting them are the relations

existing among them hence forming a class or object structure. A

fragment is organized over certain keys either with a single or

multiple attributes to form a single concatenated key for a

fragment. Secondly, one fragment can be organized on any number

of keys, and the keys can also be defined as partial values of

the attributes. This is done with a proper indexing scheme, which

is organized on the different local terminal nodes. A method is

used to define synonyms of the various objects, taking part in

the global heterogeneous environment. Which also helps in stabi

lizing site autonomy to some extent. Therefore, relieving the

global schema without modifications for the local database proc

essing, and the manipulations are done to fix up the local

schema, seeing the local requirements.

r

Apart from the prescribed relations maintained in the

form of tree structure, the relations can also form the plex or

network structures therefore, their relations are maintained in

the form of linked fragments either available at the local

terminal node or are present on some other remote terminal nodes. v

The detailed node addresses are maintained for these linked nodes

in the schema with linear linked structures, as shown in Fig.

4.2. The different classes maintain their structures as they move

from the global schema to form the local schema in the form of

transaction objects. This maintains the integrity of the data

base during dynamic transactions.

Making the separate independent global and local

schemas improve the site autonomy and provides the fast reply to

the queries with better reliability and efficiency of access.

•y
123

I

A

V

GURU'S
CHECKS

OBJECT-
ORIENTED

MODEL

GSQL

APPLICATION

DOMAIN

SEMANTIC

MODELING

SEMANTIC

DATA MODEL

CONCEPTUAL

SCHEMA

DATA EDITORS,

OPTIMIZERS,
ANALYZERS

IMPLEMENTED
SCHEMA

SCHEMA DESIGN IN GURU DDBMS
FIG. 4.7

124

Providing the better site autonomy increases the

availability of the system hence reducing the system performance

time. Therefore, a system has been designed having all the quali

ties to provide the fast transparent access to the data by pro

viding the global and local schemas accordingly. The detailed

global view of the data and the fragments of the three kinds

discussed earlier, are associated with the global schema. The

other details, defined by the users are maintained in the local

and global schemas. The description about the various access

methods used with the different database fragments like, provid

ing the index methods with different assigned indexes and any

other methods are recorded in the form of a problem template.

The data structures used in maintaining the templates

are defined by the users. The user defined data structures are

used to mechanize the system for the efficient access and the

methods used to access or link some attributes, entities and the

fragments required in the problem.

4.3 SCHEMA DESIGN PROCESS

The schema design steps are illustrated in Fig. 4.7.

The application domain provides information about an application

using schematic modeling (in natural language). The conditions

are focused on the available DDBMS (GURU), which provides the

facilities of data abstraction. The various efforts (in semantic

model) are made to categorize the problem and provide the format

which would be fitted with the available tools. System provides

data editor and optimizer to give a required shape to the data.

Analyzers are used to analyze a situation and provide information

about the various types and kinds of formats for the efficient

125

and consistent implementation of the required data. The features \
from the design environment with the feedback policies refine the

data. Later, the format is transformed by the GURU'S transformer

interface for the GURU shell. The consistency checks are applied

to verify the data consistency with the systems and a text editor

is provided to prepare the complete schema. A database program

ming language (GSQL) is used with the object-oriented data model.

Finally, the consistency is checked with consistency check proce

dures and the schema is finally implemented.

Here we have proposed a scheme, which is used to pre

pare a schema with the help of an interactive command instruction

language. The language uses all kind of constructs needing for

the definition of objects and the maintenance of their descrip

tion used for the schema integration etc.

y

ture)

The following GSQL instruction defines a class (struc-

define structure class-name

[include object object-name-list

[as {subset \ superset \ union \ intersect}]]

[include structures class-name-list Y

[as {subset superset union \ intersect}]]

[datafiles data-file-name-list

[fields field-name-list]]

[memory memory-variable-list]

[procedures procedure-name-list]

[functions function-name-list]

[privilege privilege-code]

[device device-name-list];

The define structure clause defines a class, with the

126
y

other classes and objects as subset, superset, union, or inter

sect. The other objects are inherited for their basic structures

as classes. The following procedures create the different objects

using classes.

create object with structures class-name-list;

create object object-name

[include object object-name-list

[as {subset \ superset \ union | intersect}]]
[include structures class-name-list

[as {subset \ superset | union | intersect}]]
[datafiles data-file-name-list

[fields field-name-list]]

[memory memory-variable-list]

[procedures procedure-name-list]

[functions function-name-list]

[privilege privilege-code]

[device device-name-list];

The following are the rules used to determine class

(structure) hierarchy and property (values) inheritance, where

Si, S2, and S3 represent classes (structures).

1. If SI is a subclass of S2 and S2 is a subclass of

S3, SI is a subclass of S3.

2. Subset: If Si is defined as a subset of S2, an

object OBJ-1 in SI is recognized to be a member of not only Si

but also S2. The object OBJ-1 inherits properties from S2 and

superclasses of S2. SI becomes a subset of S2.

127

3. Superset: If SI is defined as a subset of S2, all

objects in S2 belong to SI. Properties of S2 which are not speci

fied as generalized properties are inherited by SI. This means SI

also has component objects defined in S2 except the component

objects referred to by the reference name defined in generalized

properties. And methods and constraints in S2 which are not

specified by means of the reference names in the generalized

properties are acceptable to SI. SI becomes the superclass of S2

and a subclass of the classes which have been superclasses.

t
4. Intersection: If S3 is defined as an intersection of

SI and S2. S3 is considered to be a subclass of both SI and S2.

Therefore S3, inherits all properties defined in both SI and S2.

An object which belongs to both Si and S2 also becomes a member

of S3. S3 then becomes a superclass of the greatest subclass of

SI and S2. Here, the greatest subclass is the class located at

the highest level in the class hierarchy being organized by only

subclasses of both Si and S2.

5. Union: If S3 is defined as the union of SI and S2,

every object which belongs to either SI or S2 becomes a member of

S3. S3 inherits properties, which are commonly defined in SI and

S2. Then S3 becomes a superclass of both SI and S2 and a subclass

of the least superclass of SI and S2. Here, the least superclass

is the class which is located at the lowest level in the class

hierarchy being organized by only superclasses of both SI and S2.

6. If subclasses of a class newly defined are not

determined using rules 2-5, The class NULL becomes a subclass of

the class.

In a few cases, intersection operation generates a new

128
>

class with no members, and union operation generates a new class

with no properties for objects. Here, the conflict of properties

to be inherited causes some problems. The rules for conflict

resolution of property inheritance are given as below:

7. If the name of a property defined in SI is the same

as that of a property in S2 and S2 is a superclass of SI, SI

inherits the property of S2 by changing its name to the combina

tion of its class (structure) name and the property (data) name,

such as "Sl->prop_name".

8. If two or more superclasses of SI have properties

with the same name, SI inherits every property by changing its

name to a combination of its class name and the property name.

There is a provision of centralized schema, which

maintains the record of the entire database with all tuples and

domains in the system. The global schema is maintained in the

different terminal nodes in the form of replicated copies. Which

helps in providing the information about the various details of

the attributes, entities and the fragments. This information is

necessary to process queries at the different terminal nodes

connected through a network. The local schema is also maintained

at the terminal node, on which the user is working. The local

schema maintains effectively the view of the local database

which is being maintained by the users for their own, required on

the same terminal node only. Since, the data recorded by a user

is also available to other users at the different terminal nodes

concurrently, the owner has to show his or her willingness to

allow other users to access the data. On the wishes of the owner

the data can be connected in the global database environment.

But, the owner may need a complete site autonomy so that the view

129

recoded by him should not be disturbed by the other users. There- ^

fore, a kind of transparency is required in the system, so that

nothing should be disturbed on the way, user is working.

For example, an inventory system where many

different terminals are put in the different individual

departments, which record the different attributes with the

maintained classes from the global schema view point. The

purchase department purchases different goods from the different

suppliers after seeing their quotations or tenders, which are

finally recorded in the database. The issue of different items

from the stock is done to manufacture so many other items.

Therefore, the inventory is recorded about all of them.

The design of the schema is performed for global and

local operations and is discussed below:

4.4 DISTRIBUTED SCHEMA DESIGN

The system comprises the basic three layers at the

system level, through them communications are made in the system

hierarchy:

1. Terminal node level

2. Programmer level

3. Application environment level

The network consists of several terminal nodes, on them

the different programmers work for the different applications.

These three levels are identified and processed in the required

application domains. The distributed environment provides the

several connections to the different applications connected

130

r

>

>

Ai —

Pi -

APPLICATION

LOCAL TERMINAL NODE

VIRTUAL CONCEPTS IN GURU

FIG. A. 6

131

AT,

AT2

AT3

through the network. If data are required from a terminal node

from a particular programmer's application environment, the

virtual logging is performed through the network coordinator on

the local terminal node. The virtual terminal node gets connected

to the local terminal node and the two programmers (local and

remote) are linked for the required application environment. The

two environments are connected in the form of two objects and

have a mutual transfer for the required data, known as the inter

section data. Similarly, the different environments are inter

faced in the form of virtual programmers and the terminal node

planes. These planes communicate among themselves through mes

sages (remote procedure calls). The global schema maintains the

information for the different fragments and are referred through

the virtual planes. The virtual planes are illustrated in Fig.

4.6. T1(T2, T3,... are the terminal nodes, connected to a local

application environment. P1(P2, p3,... are the programmers

connected to the terminal node T1# and P^, P2',... are the

programmers registered for the different applications on terminal

node T2, and so on so forth. A1# A2,... are the applications

belonging to the terminal node T± for the programmer p^ Similar
ly, A1', A2',... are the applications belonging to the programmer

P2 on terminal node Tx. A local application forms an active link >
marked with arrows with the local applications. Similarly, the

active links are prepared among other terminal nodes for the

different programmers and applications. The global coordinator

places the control of the other terminal nodes into the local

system managed by the local coordinator. The local coordinator

disconnects a virtual link on the requirement from some applica

tion. AT1(AT2, AT3,... are the physical (actual) terminal nodes

connected through the network.

The virtual terminals, programmers and the applications

132

r

v-

1

<

,•., , v

FIG. 43 SEARCH PROCEDURE

1

]33

occupy memory space in the local terminal node. This space is

used for the required (intersection) data. Which is made avail

able on requirement from a local application. The transfer proce

dures maintain the current record of the various addresses

(pointers) in the local schema. If the local schema is a static

schema, the virtual memory required in the system is occupied for

a longer time. This time is minimum in case of a dynamic schema.

Distributed schema is nothing but a logical

representation of some related data distributed and linked on

some relations at an instant of time. The distributed schema

design is illustrated with the help of a problem. Here, it has

been illustrated with a problem of University of Roorkee and the

maintenance of data for the same. Roorkee University is organized

with so many managerial heads, which come under its administra

tion. The university tree is represented in the form of a block

diagram in Fig. 4.1. The university has some blocks which come

under its direct administration, they are like Employment Ex

change, Main Building, University Central Work-shop, University
Telephone Exchange, University Hostel Control Block, University
Departments etc. Further, a head, University Departments is sub

divided under so many heads like Electronics and Computer Engg.
Deptt., Electrical Engg. Deptt., Mechanical Engg. Deptt., Civil

Engg. Deptt. etc. Further the Electronics and Computer Engg.
Deptt. is also sub-divided in the following heads like Deptt.
Library, Deptt. Workshop, Deptt. Software Lab., Deptt. Hardware

Lab. etc. Further there is a sub-division possible and so on and

so forth. The coded Roorkee University tree is shown in the Fig.
4.3.

The schema used to represent structural relationships,

prepared from the symbolic notations is given below:

V

134
V

NODE-1.

U-0-R(E-E, M-B, U-C-W, U-T-E, U-H-C-B, U-D).

U-D(E-C-E-D, E-E-D, M-E-D, C-E-D).

E-C-E-D(D-L, D-W, D-S-L, D-H-L).

D-H-L(FURNITURE, APPARATUS, STAFF).

APPARATUS(C-R-O, D-A-S, M-C-C).

All the nodes of the tree represent head names, and the

child nodes represent the child's node name and its relationship
with the parent node.

The following are the GSQL instructions used to draw

schema and process queries:

define structure apparatus

datafiles frg_l

fields c_r_o, d_a_s, m_c_c

procedure apparatus;

define structure d_h_l

include structure apparatus, furniture, staff

procedure d_h_l;

define structure e_c_e_d

include structure d_l, d_w, d_s_l, d_h_l

procedure e_c_e_d;

define structure u_d

include structure e_c_e_d, e_e_d, m_l_d, c_e_d

procedure u_d;

135

define structure u_o_r

include structure e_e, m_b, u_c_w, u_t_e, u_h_c_b, u_d

procedure u_o_r;

create university with u_o_r;

list c_r_o of university;

The following instruction creates a flat file (database

fragment):

create frag-name;

The create instruction puts the user in a full-screen

mode for designing the structure of the new database fragment. In

this mode from 1 through 255 attributes can be defined. The five

items can be selected for the attribute type by pressing the

space bar key, which are discussed below:

1. Field name: The field name (attribute name) can be

up to 15 characters long and can contain first character as a

letter or underscore and the remaining characters could be under

score, letter or a digit.

2. Field Type: The field type is one of the five data

types: Character, Numeric, Logical, Date, or Memo. To choose one

of these types spacebar is pressed for next option. The selection

is made by pressing a return key.

3. Width: The width of the field can be up to 950 bytes

for character fields and 20 digits for numeric fields. The date

logical and memo fields have fixed width of 8, 1, and 10 bytes,

respectively. These width are entered at the time when the data

136

A

r

>

>

type is selected.

4. Dec: The decimal item specifies the number of deci

mal places for the numeric field types.

5. Index: This is a field which is reserved for the

indexes to be linked with the required fragment and carries the

information about the index tag.

When a user completes the structure definition and exit

from the create mode, system provides an option of beginning the

data entry immediately or exit. If the user chooses the begin

entering the data, the system moves to the full-screen append

mode. The default extension to a database fragment is dbf and if

memo field is selected, a new memo file has the extension mmo

which is opened with the same name prescribed for the database

fragment as alias.

create database database-name;

The above instruction opens a fresh directory in the

current system for a new database and build a catalog file in the

directory to initialize the database. GURU uses these catalog

tables to keep track of objects that a user creates subsequently

inside the database, including fragments, indexes and views.

System also creates an other file for data dictionary, where

system records the details of synonyms created for the database.

The extensions of the files for catalog and the data dictionary

are cat and ddt respectively.

The following instruction joins the two database frag

ments on a specified key and the condition and produces a new

137

database fragment: j

join with alias-name to result-frag-name

for spec-cond [fields attribute-name-list];

The alias-name is the area name or the fragment name of

the target fragment which will be joined with the current active

fragment. The result-frag-name used with to clause is the name of

the resultant fragment. The resultant fragment copies the infor

mation from the two database fragments for the specified condi

tion, spec-cond with for clause and the optional specified at

tributes, attrijbute-name-list with fields clause. Any required

attributes are selected in the following format:

alias->attribute

If the field clause is omitted all unique attributes

from both the database fragments would be copied in the resultant

fragment. But, the maximum attributes that are copied would be

255. The structure of the new database fragment is determined by

the attribute names with fields clause. Potentially, join has

combined every tuple from the first fragment with every tuple

from the second fragment, creating one new tuple for every possi

ble combination. In most cases, however, only a subset is re

quired of these combinations; the required for clause lets a

selection be made by specifying a condition.

A complete internal schema is maintained in the

computer which helps in providing the quick reply to various

queries. This schema is a logical representation and is further

divided in two ways for the distributed database management

system. Which are the global schema and the local schema. The

r

138
r

global schema is one which is common for the whole application

and further kept at more than one terminal nodes of the distrib

uted system. This is done to increase the availability of the

distributed system. More are its replicated copies present in the

system more will be its availability.

The second kind of schema is local schema, which may

also be called as the subschema. That is maintained at the

different individual sites and depends on the requirements of the

site for the later data updates to be made. Therefore, the local

schemas are designed to see the site requirements. For the above

example, the data can recorded at the terminal nodes lying in the

university hostels, which would be more likely of the student's

university enrollment no., student's name, student's class,

student's mess dues, student's room rent, student's electricity

consumption etc. They all can be recorded in a local hostel

schema or distributed hostel subschema. The hostel authorities

are nothing to do with the student's academic activities and the

student's general fitness etc. Therefore, local schema is the one

which actually records the current most relevant data required at

that terminal node. Any other information of the student can also

be recorded, which would become necessary in future. But, this is

a rare case when this information is required. Therefore, local

schema keeps the information of those items which are related and

most likely to be called at that terminal node.

With the data description to maintain the information

at various terminal nodes of the schema tree, the leaf nodes have

to specify the actual format of the data to be prescribed for

them. Therefore, here a special data description language is

designed and implemented which helps the users to define their

own global and local schemas neatly and easily.

139

The distributed database management system has to

involve the intelligence to design the local schema automatically

based on the requirements from a subschema. This has been done to

choose a method of backtracking and unifying to find the appro

priate condition. When this is found, then the local schema has a

link to be connected. This way it approaches a standard Artifi

cial Intelligence (A.I.) greedy search technique, also known as

heuristics, to find the correct related node. The full approach

of connecting a link and finding solution for the distributed

link is based on A.I. When a database is searched on a terminal

node, procedures are tried to get the results successfully ob

tained from that node. If the search fails then the next link is

tried and so on so forth. This backtracking after every trial

forces it to follow the greedy approach for a closest node from

the priority list. The system uses heuristics for the automatic

efficient data resources required in the different applications.

By keeping the replicated copies of the global schema

and local schema, increases the system availability but, in

creases the network congestion and hence delaying the throughput.

By keeping more fragments in the local system, increases the \

requirement of maintaining more backup memory, which also in

creases the access efficiency due to better availability of the

data but, at the same time, it is difficult to comment over the

network congestion. Because, maintenance of the data would in

crease the network congestion.

The data belonging to a local schema is maintained with

certain subschemas applicable with the current problem, where the

details have been recorded, maintaining the integrity of the

classes and objects, and the consistency with the inheritance.

140

A

r

V

To handle queries at the different terminal nodes of

the network, the query would be given in the form of some at

tributes required from a terminal node. Hence, all the attributes

would be brought in a way to reply this query's attribute struc

ture. Some of the attributes are found right at the terminal node

itself but others have to be brought from the other places

(terminal nodes) or the query is required to be broken in such a

way so that all the attributes present at a terminal node will

get the partial query replied, and connect the attributes present

with that node itself. The process is continued till the full

query command is satisfied with all the required attributes.

After going through this process, there should not be any chance,

when a query needs an attribute and that attribute is not avail

able on the terminal node. Hence, this type of query processing

performs parallel operations, which have to be operated at the

same time maintaining the serializability.

A perfect query analysis is repeatedly required so that

in spite of all the kinds of deadlocks and timeouts the system

works with full efficiency to reply the query. There are some

techniques that are applied to find considerably suitable an

swers. First is using the A.I. as discussed earlier, to find the

correct way to divide or break the query into sub-queries. The

mixed kind of fragments make the situation worst, getting the

repeated cancellations and making the system inefficient, with

the improper record of the fragments. Therefore, a modified

approach is suggested to go into the depth, and to find the

correct query distribution of the different kind of fragments. An

approach is used, which records the complete details of the

fragments distributed at the different terminal nodes on the

global network. The information is also recorded regarding the

141

SUB-SCHEMA- 1 (CLASS-1)

DIRECT \
REQUIRED i

LINK

I - 1 I- 2

DUMMY FORMAT-1

1 2 P

R
\a DUMMY FORMAT-a

1 2
q

RELATION-6

SUB-SCHEMA-b (CLASS-b)

I -m

FIG. 4.4 LOCAL SCHEMA

\L7

>

7

>

r

SERVER

LOCAL

SCHEMA

DATA

DICTIONARY

DATABASE

FLAT - Fl LES AND

LINK MECHANISM

INDEX FILES

(IF-1)----(IF-n)

SERVER

CATALOG

FIG. 4. 5 DEMONSTRATION OF INDEX MECHANISM
WITH LOCAL SERVERS

143

replicated and overlapped fragments and the fragment qualifiers. Ji
This technique helps users to get a proper transparent system

with the fast response. The distributed database management

system provides a requester, server and a coordinator to work

together to process queries. In Fig. 4.2, a global schema is

represented in the form a derived tree from the Fig. 4.1 and Fig.

4.3.

4.5 LOCAL SCHEMA MANAGEMENT

f
In case, when the fragmented partial query has arrived

at a fragment then, it puts the query after loading the system in

a specific manner to complete the transaction. The system uses a

new object-oriented scheme to respond queries quickly. This

technique organizes the fast search operations. The different

indexes are organized, which sit to tie files in such a way that

a correct relation of indexes is observed. The required records

or tuples are accessed from the predefined configuration, organ

ized with the prescribed keys in a prescribed manner.

To fast access these fragments, different indexes are

organized, which do not change the original sequence of records }..
in the fragments physically. This also avoids the unnecessary

replication of database fragments on the same terminal node. But,

some index files which record the pointers over these fragments

on some specified keys are also maintained. In overall way, the

system looks as organizing the one database fragment. In reality

so many fragments form a linked view to maintain a scheme so

that, it looks as one fragment is being accessed at a time.

The Fig. 4.4 shows the linking procedures of local

schema and Fig. 4.5 shows a fragment lying with the system to be

144

V

managed by it. The local schema shown in Fig. 4.4, consists of

the traced subschemas or the classes. The dummy subschemas are

not recorded but, are shown for the consistency to be maintained

in the form of relationships among various objects of a class. In

Fig. 4.5, the methodology is shown to reply the query based on

multiple keys. This is shown with index organization mechanism.

The requester, server, and the coordinator work together with

data dictionary and catalog to reply the subclass attribute

values. During the sear-h operations, the different kinds of

fragments are found. Therefore, this has been proposed that the

fragments should be so designed to be maintained completely

indigenous in one systen as a whole. Fragments not satisfying

this condition are required to be handled by a different proces

sor either simultaneously or putting the same job in batches over

the same terminal. In this way, the operation is smoothed to

provide quick response to the queries.

The regular upiates of data do not take much time in

changing the active primary key to a new key value. This key

places the required query structure (partial query structure) in

the memory and meet the desired subquery structure accordingly.

The design of local schema is totally based on the

user's efforts to represent the data. On placing a query the user

is provided some attributas, which are totally arbitrary. During
the design of schema more knowledge is required than what is

available normally. Therefore, the subschema is obtained in

different ways. First is the new domain configuration should

strictly follow the configuration of the query, the other is with

the available structure of the attribute groups. How to obtain

this structure? Former is impractical because, this may require
many groups i.e. factorial of n, where n is the total number of

145

attributes in the global schema. Therefore, the later is taken

into practice. Which leads to fragmented relationships to be

maintained. Thus, whenever a query arrives, the fragments and

their relations are checked. If a relation does not exist, then

either the query is further broken or the fragment is copied from

the directed terminal node of the global schema. Later, it is

copied to the local terminal node by appending the subschema. The

dynamic shuffling of the fragments makes the local schema contin

uously appended. Thus, the information is needed from the global

schema, and the schema is also forced to come temporarily on the

local (current) terminal node. The other possibility is that the

global schema is also present with the local terminal node in

replicated form. Later, the global schema would be consulted to

modify the local schema of the terminal node.

The local schema is formed through the global schema by

tracing the required attribute from all parent and child nodes on

the common keys for the fragments. This is a process of a back

ward search in the tree structure for the global schema. Whenev

er, the available fragment's keys match, the operation stops and

the relationships are recorded. This operation continues until

all the relationships are getting exhaust. This procedure helps

in replying queries with long range.

The queries start processing from the local schema,

and the data structures are scanned either from the beginning or

some other stage in the middle, which is decided by the server.

No body has rights to change the global schema except with the

proper authorization. The owner of the database is recognized by

a separate secret code.

Different local schemas are adjusted with the available

146 r

fragments at their own terminals. The local schemas are recorded

as flat files belonging to the individual fragments and their

organization is maintained with respect to the global schema

entries.

After defining a class which belongs to some other

classes and objects, the instantiation procedure establishes the

correct relationships for the component objects. The relation

ships are defined with the different fragments on the basis of a

key. The following instructions define relationships with other

inherited fragments:

set relation to [{key-attribute | recnoO | mem-var |

numeric-no} into fragment-name];

The tuple pointers in all declared fragments with the

objects move independently of one another. This instruction makes

the other target fragment's pointer move dependently to maintain

the correct tuple relations between the two fragments. The cur

rents fragment acts as a parent and the linked fragment acts as a

child. The target fragment is identified by its alias name.

The key-attribute denotes the attribute name in the

target fragment. The key-attribute's name could be defined as a

synonym, if it is different from the one in the current fragment.

The recnoO is defined as a library function and is available

with the library of the system. Which works to establish a rela

tionship depending upon the relative record numbers, obtained

through indexing the two fragments on a specified attribute on a

composite key, already loaded in the system. The different se

quences can obtained using the different indexes, which control

the pointers in a required manner.

147

The ;nem-var and numeric-no represent the destination

relative tuple numbers, which becomes fixed for the current

active fragment. This acts as if the whole tuples in the current

fragment belong to one tuple in the target fragment. If the set

relation to clause is specified it removes all the relations

established with the current fragment acted as parent into other

fragments. The usage of this instruction is presented in chapter

-3.

The following instruction locates the multiple matching

tuples in a child fragment for each tuple in the parent fragment:

set skip to [fragment-alias-list];

In related database fragments the child database

(specified by the into clause of the previous discussed set

relation instruction) contains exactly one tuple for each match

ing value in the key-attribute of the parent database fragment

(the current active fragment when set relation instruction was

issued. In other words, many more tuples exist in the parent

database fragment than in the child fragment. In contrast the set

skip instruction allows users to work successfully with a rela

tion in which this scheme is reversed. The child fragment con

tains multiple matching tuples for each value in the key-at

tribute of the parent database fragment.

When set skip is activated for the child fragment, the

all matching tuples are allocated in the child fragment. Each

time the tuple pointer advances by one tuple in the parent data

base fragment, the pointer in the child database fragment

progresses through all matching tuples. For a successful skip

148

J

>

V

condition child database fragment must be indexed on the linked

key-attributes.

In the fragment-alias-list clause one or more child

database fragment names, linked with the current database frag

ment are specified. An instruction issued subsequently by a user

from the current active environment of the parent database frag

ment potentially displays all data from all matching tuples in

the linked child fragment - providing the scope of the instruc

tion encompasses more than one tuple in the parent database
fragment.

The set skip to instruction issued without parameters,

deactivates the condition for all child database fragments.

The following instruction sets the interval for updat

ing distributed records used with append/change/edit/browse

instruction, if those same records are also being modified by
some other users.

set refresh to {numeric-no mem-var};

In a distributed environment one user might be working

with a database fragment in any of the append/change/edit/browse

modes, while another user is changing the database fragment. In

this case, the set refresh instruction determines the frequency
at which system will update the information on the screen of the

user who is using editing instructions (listed earlier).

The default value for set refresh is 0. Under this

condition the refresh operation is not executed. Any value in

seconds can be assigned for the refresh time.

149

The following instruction creates synonyms:

creates synonym syn-name for curr-name;

Any names for the objects, classes, primitive objects,

or complex objects could be defined as synonyms. These names are

recorded in the data dictionary. Synonyms are very useful for

providing the short names in the system.

The following instruction sets the maximum number by

which a fragment locked by another user in a distributed environ

ment could be tried for access:

set reprocess to {numeric-no mem-var};

The default value for the set preprocess instruction is

0, the system continually attempts to access a fragment or tuple

that is currently locked by another user. The attempts are

stopped by pressing the Escape key. The status can be set to any

value in integers; or a value -1 can be set for infinite tries,

which cannot be stopped on pressing the Escape key. The read-only

operations can be checked by placing the locks. During a read

operation performed by one user on a tuple, the other user cannot

change the tuple. The following is the instruction used for this

purpose:

set lock {on off};

The default value for the lock is on. The lock can be

made to off by selecting off value. At this time another user can

change the value of a tuple, while other is reading it.

150

J

.-'

v

The following instruction displays the records, marked

for the deletion in a database, if the on clause is selected.

set deleted {on | off};

The records marked for deletion are not displayed, if

off clause is selected. The default value is on. The following

instruction controls the block size of the indexes memos used in

the system:

set blocksize to {mem-var numeric-no};

The block size for a memo attribute represent the unit

of space allocated in the memo file for each memo entry. The

default setting for the block size is 1, which corresponds to a

normal block size of 512 bytes. A value from 1 through 64 as a

block size parameter could be used. The block size in bytes is

equal to the current set blocksize value times 512. A new block

size value applies to the database that is created subsequently

under this setting, not the database already exist.

The other instructions used in the design of schema are

illustrated in Appendix - B.

A local schema is shown in Fig. 4.4. The following

instruction is processed in the below listed points:

LIST CLASS, SCORE, G-F-M FOR SN0=5 OF UNIVERSITY;

The above instruction is processed in the following
steps:

151

i
1. Establish relation among all the flat-files (frag

ments) keeping the proper information in the local schema. The

information consist of the relation between the two fragments

with their specified keys. The relations of the index files

available are also recorded in the data dictionary. This includes

the complete keys on which the index file is organized.

2. When all index files along with the database frag

ments are loaded in the memory, establish the relation among

them with the proper keys. This method helps in creating the one

logical fragment of the database. That is done for the minimum

overhead in the system.

The server supervises over the different tuples and the

fragments, places them in sequence with the required attribute

names in which they arrived through the user. Later, a required

sequence is given to the tuples and are accesses in the required

order with fast speed.

•

The terminal nodes maintaining the global schema keep

the reference of those leaf nodes, which are stored at the remote

terminal nodes. Therefore, a communication is established by

explaining the DDBMS invoking strategy giving the terminal node

name and the reference of the global schema title.

node:

The following is the information recorded in each leaf

1. DDBMS code

2. Terminal code

3. Local schema name

152 >

4. Flat-file or the recorded fragment name.

5. Fragment code qualifiers

4.6 CONCLUSION

The suggested schema design provides data transparency
by providing the concept of virtual terminal nodes, virtual
programmers and virtual application domains. The intelligent

server provides the correct routing of the information through
the schema hence it takes the minimum time of processing. Schema
helps in providing the right details about the fragments and
their qualifiers; this helps in maintaining serializability and
query materialization. The tuple search time is minimum by pro
viding the proper mechanism of indexes and their links to the

database fragments. Site autonomy is maximized by recording more
fragments at the local terminal nodes, which have higher access
frequency. The proper privacy and security locks prevent the
unauthorized access from the database, and the data cannot be

modified. The higher site autonomy increases the replicated frag
ments. This provides quick response to queries but increases the

fragment updation time. This has been tackled by providing opti
mal site autonomy by the intelligent servers (global coordina

tors) . The information regarding the frequency of access at

appropriate locations helps in resolving this issue.

Atomicity of the data transactions is maintained by
providing the correct serializability and the information about

the commits and aborts. The global commits and aborts are spe
cially watched and recorded in the log. The schema provides
information neatly by providing the details of all attributes,
about their placements and their order, which is connected

through the information on the objects regarding the databases,

153

frequency of access and formats. The information regarding the

linked attributes is quickly provided hence reducing the query

response time and present the clear view of the information for

various environments integrated with the current application

domain. The data structures regarding the various attributes are

stored in the form of linked memory elements through the extended

area, which provide a perfect view of the data using triggers.

The presented instruction set relation to provides good

dynamic links among the fragments for temporary joins with dif-
Y

ferent specified conditions through indexes. This makes available

the good cohesion in the database. The other instructions like

join works with different indexes to provide new fragments in

different orders, attributes and tuples. These fragments take a

new place in the schema to be used in the system.

The object-based operations subset, superset, union and

intersection provide a facility of connecting the different

objects, database fragments, attributes and tuples on the differ

ent required relationships. Therefore, it helps in reducing the

redundancy, improving performance, and connecting the various

database fragments to provide the greater power with the database

for a wider application domain. This facility also provides quick

response to the queries by the optimal attribute settings. Fur

ther the suggested object-oriented model takes the advantages

from all the previous data models and fits the data structures

for the optimal usage. The developed approach provide the two

modes of operations the static and dynamic modes. The both modes

are advantageous in the different situations. The static mode is

more efficient when the database is used by successive instruc

tions therefore, it saves time in reloading the database struc

ture. The dynamic structure is used for relatively different

V
154

application domains for the successive queries, and provide good
access efficiency.

155

CHAPTER - 5

SCHEMA INTEGRATION

5.1 INTRODUCTION

A heterogeneous schema is an integrated view of some

schemas with different DBMSs. Which are lying on some terminal

nodes of the network and provide the complete definition of all

the data in the distributed database as if, the entire data is

available at the local terminal node [17], [18], [80]. These
schemas may belong to the different kinds of database models. The

complete heterogeneous view of the database requested to be

linked on a common network, gives rise to a heterogeneous schema.
If the native database organization is based on an object-orient
ed database model then, this schema is called as heterogeneous
object-oriented schema. In this schema all the attributes of the

various database organizations are mapped to the objects in the
native database, having the global naming scheme [108]. Each and

every object is given a separate identifier (synonym) for the

native database. When these objects are put to work to their own

environments to which they belong originally, their names will be

given back after conversion to the individual naming schemes.
Therefore, each and every object in the native heterogeneous
schema remains with a unique name. This helps in maintaining the
integrity of the database when the changes occur in the heteroge
neous global schema view [15]. The different terminal users

access the different database fragments transparently through the
heterogeneous object-oriented global schema.

The heterogeneous schema is the most important tool,

around which the whole heterogeneous database is built. If the

156

schema is perfectly designed and implemented then, lot of prob

lems phased by the users during the programming on a system could

easily be sorted out. Since, the heterogeneous schema is the

integrated view of some local schemas on some terminal nodes

connected with the network therefore, it consists of so many

limitations. Like, two persons perfect in speaking two different

languages want to communicate with each other but, they lack to

communicate properly. Similarly, the two different database

management systems cannot be connected in an efficient manner to

share the two databases belonging to them. This arrangement would

have been better efficient if the same joined database were to

belong one of them only. In the earlier case, it is only possible

if an intelligent translator is available between the persons.

Similarly, by improving the design process of heterogeneous

schema with intelligent translators, more efficient model can be

prepared. Which needs further investigations of the parameters

affecting the overall system for the various reasons [80].

Indispensable to any full-scale automation database

design, like design processes in general, is the availability of

a computer-based design environment. Indeed, considerable effort

has gone into the development of database design environments[4].

All of them seem to suffer from the same weakness as design

environments in other areas: they emphasize the mechanization of

tedious routine work like drawing and book keeping, but give

little immediate support to the creative and decision making

processes. Hence, to place the automation of the schema integra

tion process into context a detailed view has been presented

into the following sections.

5.2 OBJECT MODEL'S PROPERTIES

157 V

In object-oriented model, various objects are grouped

in different objects and classes, which maintain the relation

ships among the different objects and classes. Since, the differ

ent objects carry the different names, the clear relationships
can be defined and maintained giving better structural integra

tion to the database. The following are the properties associated
with our object-oriented model:

Encapsulation, all the data and the functions inside an

object or class are grouped together to provide the better cohe-

siveness and tight integration among them. All the local identi

fiers belonging to the object are only accessed by the member

functions (or also known as the methods). But, outside the ob

jects those identifiers are accessed, which are declared as the

protected, general or locked public type declaration.

Inheritance, objects can consist of some other objects

or classes into them. Similarly, an object can be a subset of

some objects and the super set of some other objects. All super
sets can access all protected identifiers of their subsets but,

cannot access the private declared identifiers.

Polymorphism, this is also known as overloading of the

functions. The functions and procedures inside an object or class

can be declared with same identifier names but, with different

number and types of the arguments. Certain operators could also

be defined carrying multiple meanings, depending upon their

environments. This is known as operator overloading.

Structural object-orientation emphasizes the agreement

of objects into clusters, with establishing relationships between

the objects. Behavioral object-orientation focuses on objects as

158

computation agents which consists of a set of methods(procedures I

or/and functions) that describe its external behavior, and a

private memory. Both categories classifies object classes into

generalization hierarchies and provide for inheritance mechanisms

which exploit these hierarchies. In behavioral object-orientation

much of the application semantics is hidden in the private memory

and methods of objects. In structural object-orientation these

semantics remain visible in the form of structure that can be

manipulated.

Y
5.3 ENVIRONMENT DESIGN FOR SCHEMA INTEGRATION

The conceptual schema is the result of modeling an

application domain under the constraints of semantic data model

chosen. Construction has been done internally via editors. In

termediate stages of the final design are analyzed for certain

formal properties such as logical consistency, nonredundancy,

minimality. If these properties are not satisfied, an explanation

is given to the designer, and/or automatic correction by means of

optimizers be attempted. The adequacy of the schema as a descrip

tion of the application domain is checked via validation tools,

e.g., by some kind of prototyping.

Once the conceptual schema is deemed satisfactory,

automatic transformation into an implementation schema for a

database system with a given data model start under the con

straint that as much of the semantics as possible is being passed

on the implementation schema. It requires close interaction be

tween transformation tools and the human designer. Intelligent

explanation components should support the dialogue. Properties

that are not be mapped, are identified and either automatically

converted into consistency constraints, or presented to the

159

>

r

designer for inclusion within application programs. Finally, the
implementation schema is subjected to some kind of formal analy
sis and/or manual post-editing.

Usually the design results in a set of local schemas

that cover small sections of the application domain. Schema

integration takes place as the conceptual level, subjecting then
the total conceptual schema to transformation. Alternatively, the
schemas are individually transformed so that integration is done

on local implemented schemas. Under the hypothesis that richer

expressiveness of a data model contributes toward more automation

of the schema integration process, one should choose the level

which provides a reasonably rich set of modeling concepts. In
general this is the conceptual level.

5.3.1 Design Objectives

The following are the main objectives considered to

implement the heterogeneous object-oriented distributed schema:

1. The schema should correctly represent the relation

ships among various attributes of the heterogeneous database as
if the system is a homogeneous system.

2. All the different databases having the difference in

the units, they are recorded in, should be correctly translated
with the right values.

3. All the relationships existing among the different

attributes should be correctly transformed.

4. There should not be any types of conflicts in the

attributes with the correct representation of different at

tributes belonging to the different databases and linked togeth

er. If so conflicts should be resolved before getting integrated

160

with the heterogeneous schema. I

5. The different fragment qualifiers should be correct

ly transformed.

5.3.2 Design View

The schema integration includes the following activi

ties :

1. Comparison: This phase consists of checking all

conflicts in the representation of the some objects in the dif

ferent schemas. The basic two types of conflicts are distin

guished: The former arises in connection with concept classes and

attributes. The problems encountered here are that synonyms occur

when classes or attributes with different names represent same

concept or attribute, respectively, and homonyms occur when the

names are the same but different concepts are represented. Homo

nyms can relatively easily be detected, e.g., by examining names

derived automatically by string comparison. Where as synonyms are

often difficult to determine even under intellectual inspection

and should be specified in the form of assertions. Structural

conflicts arise as a result of different choice of modeling

constructs. Several kinds of conflicts can be distinguished: type

conflicts; dependency conflicts; key conflicts.

2. Conformation: The goal of this activity to conform

or align schemas to make them compatible for integration. Achiev

ing this goal accounts to resolving the conflicts, which in turn

requires that schema transformations be performed. In order to

resolve a conflict, the designer must understand the semantic

relationship among the concepts involved in the conflict. Simple

renaming operations can be used for naming conflicts. For struc-

161

>

>•

tural conflicts a wide variety of transformations have been

suggested that depend on the particular data model used. Trans

formations are required to be information preserving.

3. Integration: The conforming schemas are merged by

means of super imposition of common concepts, and subsequently

restructuring operations are performed on the integrated schema

obtained by such merging. The objectives of restructuring are
completeness, minimality, and understandability. Completeness is

achieved by introducing class hierarchies, additional relation

ships, or discriminating attributes. Minimality seeks to discover

and eliminate redundancies. Understandability obviously is a

subjective goal where alternatives must be presented to some sort

of arbiter because no objection measures exists as yet for it.

One of the foremost challenges to integration is the

discovery of concepts in different schemas that can be considered

the same but are presented differently and may even give rise to

conflicts, and of concepts that, though not being the same, are
however are related.

The following are the design phases to be followed for

the integrated schema design:

(1) Object's integrity

The existing relational data model is not good enough

to maintain the proper relationships among the different attrib

utes to maintain the integrity of the data. Any one can change

the existing relationships. Therefore, some kind of integrity
check is required to be maintained with the structure of the

database. Any ambiguous changes should not be allowed to be made,

162

so that the entire view of the data is not affected adversely. j

The solution to this problem is given by providing the concept of

objects and class. The concept of an object provides an inherited

link to the various objects and classes hence, ensuring the data

integrity.

The another problem is that since, the data and proce

dures are two separate entities, any wrong procedure can be ap

plied to some data for the purpose of changing the existing

relationships etc. Similarly, any wrong data can be applied to a

procedure. In this way, the properties of the data cannot be

recorded in the database properly. Therefore, a scheme, known as

encapsulation is made available to the objects. Objects comprise

of some data and procedures which are also known as methods in

GURU SQL (GSQL). These methods in the objects can access the data

pertaining to them. The internal data is protected from the

unauthorized accesses by the external world as is shown in Fig.

3.7. There are four kinds of protection schemes available with

the GURU'S Objects, which are discussed below:

i. Private: This type of declared identifiers can be accessed

inside the methods only but, cannot be inherited in

the subclasses or the superclasses.

ii. Protected: This type of declared identifiers can be accessed

inside the methods and are inherited with the

concept the subclasses or the superclasses.

iii. Locked Public: This type of declared identifiers can be

accessed in outside environment provided

the privilege level is up to mark.

163

r

>

r.

iv. General Public: This type of declared identifiers can be

accessed by all categories of the users.

The above methods provide a tight security among the
objects. Which cannot be broken up by any wrong procedure applied
to access the objects or the identifiers hence, maintaining the
required integrity in the database and protecting the schema,
from the unprivileged processes.

All the attributes required to be transferred to the

integrated heterogeneous schema are required to be mapped into
the objects of appropriate kinds. Since, the attributes can have
some common names with the heterogeneous schema, which might lead
to confusion with the schema object identifiers. Therefore, a
naming scheme is implemented, which maintains the synonyms creat
ed by the heterogeneous schema manager, on the heterogeneous
schema. These, synonyms can later be referred for their local
identifier names from the data dictionary, which is maintained
regularly.

(2) The Design Structure

To design the integrated heterogeneous schema, the two
schemas which need integration should be made available to the
local server. To make them available at the different terminal
nodes, a process known as registration is invoked. Through this
process, any other terminal node wanted to take part in a specif
ic global application being carried out on the current network
can take part as an active participant. The database which would
be linked subsequently is controlled in the integrated environ
ment, enabling the whole application to work with more data and
knowledge and thus, enhancing the growth rate of application for

164

the overall incremental application growth. The other alternative (

is that for a specific application working for a goal, can dis

tribute it in many independent subgoals. These subgoals would be

performed independently at the different terminal nodes situated

geographically apart but connected with a network. Therefore, by

fulfilling the subgoals, serves the main objective of achieving

the overall goal. In this way the complete global tasks can be

divided into some dependent and independent tasks which can work

for a common goal hence, contributing in the entire upliftment of

the global regime. There are vast amount of applications for this

area, where knowledge grows with much faster speed due to so many /

parallel operations independently performed to meet a common

goal.

(3) Registration Process

The following are the schemes working for the process

of registration:

i. User requested scheme: Any user can place a request

to GURU DDBMS to provide a list of heterogeneous global schemas

for some applications through its own DDBMS on which the user is

working. Then the requester would be provided a list of available

global schemas for the required application. The list consists of

the details about the various objects and their relations set in

the global schema through a schematic. Further, the amount of the

objects is decided by the system depending upon the privilege

level of the requester. The requester with the top privilege

level is given the entire global view of the objects and the

relationships being maintained among them. Others can get the

objects depending upon the value of the privilege they have. In

Fig. 3.7, one object is illustrated with the four types of

165

>

^

restricted access levels for its identifiers and the methods.
This restricted level access is imbibed in the objects.
Therefore, enabling the automatic in built procedures to be

worked out for the various granules of the data for providing
access to its own encapsulated identifiers.

Later the user fills a form representing the entire

relationships and the detailed entities in the format specified
in the form. This form carries the complete logical relationships
of the data, which are required to be linked in the global schema
along with the limits of the fragments or the database recording
the information on specific key values. The following information
is required to be furnished with the form:

1. The name of the application of the heterogeneous
schema with which requester wants integration.

2. Structure of the local schema in the required for
mat .

3. The key expressions of the various individual data

base fragments required to be linked.

4. Place in the heterogeneous schema, where requester
is requesting to have integration, with a fragment
qualifier.

5. Fragments scheme.

The requested local schema to be linked with the system
is analyzed for the various synonyms, specified in the requested
schema and the integrity as a whole is studied through the map
per, which uses the other prescribed information provided by the

166

PURCHASE

DEPT.

ITEM

MANUFACTURED

ITEM ="BATH"

ITEM

MANUFACTURED

ITEM, • „

BANARSI 0A5S

&

BROTH-

ITEM

QUALITY

CODE

FIG. 5.5

167

MARKETING

DEPT.

DATE OF
MANUFACTUR
ING FOR ITEM*

WASH
DATE OF

MANUFACTURING

ITEM ="BATH

PRICE PER
ITEM FORITEM
s'WASH"

PRICE PER

ITEM

FOR
ITEM ="BATH'

J

t

>

r

T

A

-i

ITEM-

MENU

INTEGRATED

PART

NF

FIG. 5. 6

I 68

NOT FILLED

RELATIONAL

POINTER

obj-7

— SIBLING AND

CHILD POINTER

user regarding the various units used to record the data and i
their validity with respect to time. If the whole information

provided by the user is found consistent and satisfactory then,

the integrity check is applied and if found successful the mapper

transforms the entire names specified by the user through a

different naming scheme, used to maintain the synonyms. These

synonyms are recorded in the data dictionary. Finally, the inte

gration is performed by converting the specified form format to

the object format or transforming the different entities in

separate objects with object identifiers. These object identifi

ers are new with the naming scheme in the heterogeneous global

schema. The integration scheme is shown in Fig. 5.5 and Fig. 5.6.
All objects in the heterogeneous global schema have certain

information which is stored with them to be retrieved in the

specific queries. This lets the fragments accessed based on the

individual requirements of the queries, by retrieving information
stored in the various objects. The following is the information

that is stored with the objects, to locate the right requested
fragment:

* Terminal code on the network.

* DBMS code.

* Application code.

* Fragment code.

ii. User reguested automatic scheme-. Under this scheme

a user specifies the application name to which the required data

base is to be linked with. Then requester obtains a form (in the

prescribed format) from the GURU DDBMS which would be later

filled by the requester. The form comprises the details of the

local schemas required to be integrated. The form needs the

details of the data and their relationships, which are to be

given with the qualifiers and the identifiers of the data

169

>

aggregates. The form is later received by the GURU DDBMS for

further processing. If all the entries are found satisfactory

after verification then the local schema is integrated using

heuristics. This approach is the most efficient approach for the
schema integration.

iii. User reguested manual scheme: Under this scheme a

user can personally approach the owner of the global application

to get his database also integrated with the heterogeneous data

base for the purpose of incremental growth of the application. If

owner agrees then the heterogeneous schema is modified by linking

the requested schema through manual programming. Thus, both of

the persons (owner and requester) are benefited. Rest of the

operations remain same, which are available in the earlier
schemes.

(4) Conflicts in Integration and Their Handling

Heterogeneous schema is constructed using bottom up

approach from the existing remote database models. It is possible

that the similar views are seen from more than one DBMS's and it

is also possible that the two descriptions do not represent the
way to be integrated with the heterogeneous schema. Differences

in the data definition of the similar objects are called
conflicts. Conflicts can be classified as below.-

i. Conflicts due to names: These are the conflicts due to

the different facts denoted by same name and also are known as

the homonyms. The other is the different names for the same fact

and are also known as synonyms. This problem is rectified by
giving a global naming scheme, which transforms all the names

into some new object identifier names and recording this informa-

170

tion in data dictionary for later references. y

ii. Conflicts due to different scales: In this case differ

ent units are used to measure in the two places of heterogeneous

schema before integration and the schema required to be integrat

ed with the heterogeneous schema. This can be further tackled by

recording the information of the interconversion factor of the

different units in the data dictionary. The latest information is

regularly updated in the data dictionary about the conversion

factors of the chosen scales. For example, the money can be

recorded in rupee, pound and dollar. Since, the corresponding

conversion values do change with time therefore, they need to be

updated periodical.

Hi.Conflicts due to structure: The structural differences

come at those places where same facts are reported in two schemas

by using the different elements of the data model. For an exam

ple, with a common model including the entities and attributes,

consists of the same fact as an autonomous entity in one schema

and as the attribute of the different entity in the other schema.

This can be controlled using the two different structures main

tained separately with different names.

iv. Conflicts due to different levels of abstractions: In

this one schema contains more detailed information than the

other. That is more attributes in one schema than the other. This

can be checked by transforming the correct type attributes (or

objects) into the new synonym objects at the heterogeneous schema

site and the missing object types at the heterogeneous site can

be created new in the same class with the other objects.

(5) Integration Process Design

171

r

>

r

GSTART }

INITIALIZE
&

COMMONALITY
CHECK

MERGE WITH

SCHEMA

JL
ADD INDEPENDENTS

IN

THE SCHEMA

f ST0 P^

KNOWLEDGE UPDATE
KNOWLEDGE

BASE

NO CHANGE

NAMES

i i

YES TRANSFORM

MODEL

J

v SCHEMA
/"MERGING

HETEROGENEOUS SCHEMA INTEGRATION PROCESS
FIG. 5.8

1 72

y SCHEMA
CONFORMATION

J

1
The integration process is the step by step procedure

to be followed to link the two schemas in the heterogeneous

environment. To organize the integration process the two basic

phases of schema integration are chosen, which are the schema

comparison and the schema confirmation. Lastly a phase is chosen

to merge the schemas.

First the similarities of the two schemas are located.

If two structured object types have some common types, then they
are assumed to be similar. The environments of the two structures

within their respective schemas are compared. This comparison is
made for the respective predicates, selecting the ranges and

types. If the conditions satisfy then, the modeling conflicts are

checked, if conflicts are found then renaming scheme is applied
as discussed previously. The structural models are tested to

incorporate the knowledgebase to resolve structures using the
available knowledge. This knowledgebase is recorded in the data

dictionary provided with the DDBMS. Later the conflicts due to

abstractions are removed by introducing the new objects in sys
tem. Finally, the two schemas are integrated.

The steps for schema integration are explained with the k

help of a flow diagram (refer Fig. 5.8). The integration steps
have been organized into the two interleaving and iterative

phases of schema comparison and confirmation and a succeeding
phase of schema merging. To perform overall steps, a knowledge
about the individual schemas as well as heterogeneous schema has

to be managed. The iterative phase basically manages the compari

son operations between two schemas to state the similarities. The

similarities can be arranged into two groups conformed and sus

pected. The process of initialization starts by initializing all

the conformities. The two structures (small group of attributes)

173

i

>

PURCHASE

DEPT.

ITEM

MANUFACTURED

BANARSI DASS

&

BROTH.

PRODUCTION

DEPT.

FIG. 5.1

m

MARKETING

DEPT.

DATE OF

MANUFACTURING

PRICE PER

ITEM

RAVI DASS

&

BROTH.

ITEM

MANUFACTURED

DATE OF

MANUFACTURING

FIG. 5. 2

175

PRICE PER

ITEM

I

r

>

are taken from two schemas and compared. If two structured ob

jects have same component types in common, they are assume to be

similar. The next step asks about the similarities for the last
selected group. If they are not found common, the groups are send
to the merging operations otherwise the similarities in the

structure would be checked. If the structural similarities are

not found, the names are changed and the knowledgebase is updated
for the new group, and the knowledge is circulated. If the struc
tures were found similar, the data model is checked, if the two

data models are same then the knowledgebase is updated and
recirculated. If the data models were different, they are trans
formed and the names are changed to support in the data model.

Later, the knowledge is updated and the operations are performed
till the all attributes of the two schemas are exhausted. The
merging of the independents is done in the schema. The whole
process is implemented in terms of check procedures (predicates).
The structures are finally resolved into a heterogeneous schema.

The distributed global schema design can be illustrated

with the help of an example easily. Here, it has been illustrated
with the help of some problem of two companies Banarsi Dass &

Broth, and Ravi Dass & Broth, both are connected through a LAN
and are manufacturing all kinds and varieties of soaps. The
company Ravi Dass & Broth, is a new company in comparison to

Banarsi Dass & Broth, company. The Ravi Dass & Broth, company is
working in ORACLE for its database and wanted to link their own

database with the database of Banarsi Dass & Broth., which is

working in GURU DDBMS in heterogeneous environment with some
other companies. The Individual schematics are represented in the
Fig. 5.1 and the Fig. 5.2 for the Banarsi Dass & Broth, and the
Ravi Dass & Broth, respectively. The internal schemas of the two

companies, Banarsi Dass & Broth, and Ravi Dass & Broth, are shown

176

P

0

N *
T

•**•*,
N

E

R
S•" "v

\ NF
MARK-DP NF

NF
V y- NF

177,

P - PARENT

S - SIBLING

HF - HORIZONTAL FRAGMENT

RC - REPLICATION COPY

C - CHILD

i

r

V

V

FIG. 5.3

"">

i

FIG. 5.4

178

NF NOT FILLED

*> RELATIONAL POINTER

NF 1

SIBLING AND

CHILD POINTER

NAME SY NONYM
DBMS

CODE

R- D- B OBJ-1 56- 27

M - I OBJ-2 56- 27

D-O-M OBJ-3 56- 27

P- I OBJ- U 56-27

FIG. 5.7 SYNONYM TABLE IN DATA DICTIONARY

f 79

>

r

in Fig. 5.3 and Fig. 5.4 respectively. The integrated schematic
is shown in Fig. 5.5 for the two companies. The heterogeneous
view for the integrated schemas is shown in Fig. 5.6. In Fig.
5.5, the intelligent integration is shown through the search
process and in Fig. 5.6, the synonym Obj_l is shown for the block

abbreviated name R_D_B. and other synonym 0bj_2 is shown for
ITEM_MANU etc. These synonyms are recorded in data dictionary as
shown in Fig. 5.7. The schemas prepared with symbolic notations
are given bellow:

The structural schema prepared for Banarsi Dass &
Broth, from Fig. 5.1:

B_D_B(PUR_D, PROD_D, MARK_D).

PROD_D(ITEM_MANU, I_Q_C, M_D, P P I).

The structural schema prepared for Ravi Dass & Broth,
from Fig. 5.2:

R_D_B(M_I, D_0_M, P_I).

All the nodes of the tree in Fig. 5.3 consist of five

basic pointers parent pointer, sibling pointer, horizontal frag
ment pointer, replication copy pointer and child pointer, by
which these nodes can maintain the various kinds of relation
ships to the various other named nodes in the tree. In Fig. 5.3
all the nodes in one horizontal layer are belonging to one class
and every node is an object.

GURU Data Models-.

The data models in GURU DDBMS are classified as below:

180

i. Type: Type declarations have unique names and can also

represent the group of objects that share the

common characteristics. Types are organized in a

directed cyclic graph that supports generalization

and multiple inheritance. Objects that are in

stances of a type are also instances of its super-

types .

ii. Objects: They are uniquely identified by their object

identifiers. Some objects like numeric, char

acter, logical, date and memo are self identi

fying characters in GURU DDBMS. Objects may

gain and loose types dynamically.

iii. Methods: They are the manifestations of operations and

provide mapping among objects. To represent

relationships among objects, giving their

properties and computations on objects are

expressed as methods. Arguments of the methods

and the results given by them are typed.

The integration process can be illustrated as one stu

dent working as a student in one schema model and the same

student can work as a teacher in the other schema model, they can

be integrated for the common results with a name gentle-man,

which shares both the properties of a student and as a teacher

and is represented by the instructions in GSQL as below:

CREATE OBJECT RAM WITH STRUCTURES GENTLE_MAN;

INSERT OBJECT STUDENT, TEACHER INTO RAM;

181

>

r

The above first instruction creates an object with identifi-

m er RAM of type GENTLE_MAN. By the second instruction shown above
The two objects STUDENT and TEACHER are joined (inserted) in RAM.
The name RAM is the superset of the two objects STUDENT and the
TEACHER above.

(6) Role of Translator/Mapper

Translator or Mapper in a heterogeneous system, trans

lates the various queries which are going to be processed at the
terminal nodes having the different DBMS. It takes the help from
the data dictionary carrying the all information. The information
may consist of some scale factors of some of the objects to be
transformed. For an example, at the terminal node 1 some objects
are processed in object-oriented database management with the

value rupees and at the other terminal node 2, where the intra
query is going to be processed, the database management system is
a relational model based system and is handling the data in
dollars. Then the translator first converts the synonyms from the
synonym table of data dictionary and then, converts the object
into simple identifier with the name collected from the data
dictionary. Next, the identifier with the attribute name is

t traced through the local database manager in the terminal node 2.
The values are read out from the specified fragment located from
the information stored in the heterogeneous schema. These values
are now tested with the help of the predicate intraquery which is
transformed using the scale factor, already described.

In the above case, result fragments are required from
the different terminal nodes connected to the network. in that
case, the scale factors are multiplied to the values lying in the
fragments then, these fragments are transferred to the terminal

i 182

node 1. Therefore, translators or mappers play an important role.

To test the correctness of the operations performed by the map

per, in integration of the two schemas into heterogeneous schema,

some queries are required to be supplied on the local terminal.

If the same queries are supplied in transformed conditions on

some other terminal nodes then the same results should have come.

In this way the testing can be performed of the integrated

schema.

Mapper is designed to work in extreme cases to resolve

conflicts of all the kinds as discussed previously. The mapper

uses the intelligent schemes of fast and correct transformations

for the various schema structures, the predicates and the frag

ment qualifiers. This is found that the transfer of environment

takes lot of problems in transforming the queries. Since, queries

may contain plenty of functions treated differently in various

database management system's query languages therefore, a com

plete understanding about the various structuring etc. is needed.

To process a query, the different functions and operators have to

be translated in the heterogeneous environment. Further, the

different DBMSs have their individual efficiency of working. This

all makes the performance evaluation of the heterogeneous system

a trivial task. But, the problem can be simplified to some extent

by incorporating the various knowledgebases into the system,

evaluating the delay in different intraqueries, and periodically

updating the knowledgebases with proper information about the

various fragment allocations. In translator, the knowledgebase is

accessed and updated periodically which is stored in the data

dictionary.

5.4 INTELLIGENT TRANSLATOR/MAPPER DESIGN

183

A

>

The translator/mapper is designed to help in integrat
ing the two schemas to form one heterogeneous global schema. This

helps further in resolving the various conflicts in the two

schema structures and decide one optimal configuration which is

in any way equivalent to the completely integrated schemas. The
integrated schema gives the same results to any query launched
from any of the terminal nodes on the network. In Fig. 3.4, the
intelligent design of the translator/mapper is shown. The follow
ing are the functional blocks of the translator/mapper:

1. Operator Ecjruator

Different queries and the fragment qualifiers in the
global and local schemas are based on certain predicates. These
predicates form the different syntaxes on the different DBMSs.
For example, the logical operator ".AND." in GSQL is equivalent
to "AND" in SQL, and the logical operator ".OR." in GSQL is
equivalent to "OR" in SQL etc. Therefore, when a query is
launched at any terminal node for an application, this tries to
locate the all identifiers from the local schema. If the local
schema fails to locate some of them then, the heterogeneous
global schema is consulted by sending the intraquery to a node
consisting of heterogeneous global schema. The intraquery does
not have the syntax of the query language of the DBMS to which it
is required to be routed. Therefore, the translator is invoked
for the purpose. This along with the knowledge operator syntax
equator converts the intraquery operators to destination DBMS
syntax equivalence operators. The intraquery after complete
equivalent transformations belonging to the destination DBMS
formats, is sent to the destination terminal for later
processing.

184

2. Function Equator 1

As the discussions held in the Operator Syntax Equator

paragraph, apart from the operators the different function pro

grams are also available in the intraquery. These function pro

grams are also required to be converted into equivalent function

programs to be operated at the different terminal node with

different DBMSs. For example, the function "int(x)" in GSQL is

equivalent to the function "integer(x)" in some other language of

some DDBMS. The transformation into equivalent functions is a

difficult process because, it is quite possible that the equiva

lent function does not exist at all at the DBMS where the intra

query or interquery is suppose to be executed. Secondly, if the

similar situation occurs for certain fragment qualifier predi

cates consisting of the different function names. In such situa

tions the alternative condition must be thought about that, the

intraquery or interquery should be sent to some other terminal

node from where this can be processed. In the case of fragments

also, the fragment should not be replicated at the place where

such things happen. But, the alternative to this problem is to

develop some equivalent functions with respect to those in the

destination DBMS. This is possible that the knowledgebase could

be used for such purposes and using heuristics equivalent func

tions can be prepared. Finally, the equivalent function programs

are substituted and the interquery or intraquery can be dis

patched.

3. Object Equator

When the interquery or intraquery is suppose to be

launched at the different terminal node then the synonyms are

also required to be put back in the format of the destination

185
>'

DBMS. If the query is being routed from the object-oriented DBMS

to the relational DBMS, the all object identifiers belonging to

the query are converted into synonym identifiers from the data

dictionary and then the intraquery or interquery can be launched.

4. iVame Ecjuafcor

When the intraquery or interquery is suppose to be

launched at the different terminal node then the synonyms of the

identifiers are also required to be put back in the format of the

destination DBMS, then the intraquery or interquery can be
launched.

5. Scale Equator

The different scales are available at the different

local schemas about some objects. Then, before launching the
query to the destination terminal node with a different DBMS, the

query object should get the scale of the destination DBMS's

object. This is done by rescaling that object in the query with
the corresponding scale factor stored in the data dictionary.

6. Structure Equator

In this scheme two structures are compared to be re

solved in the heterogeneous schema. There are various ways of
launching a query. The same query can be launched carrying the
same meaning but the different operators. Hence, the fragment
qualifier predicates and the intraqueries can take different

shapes syntactically but having the same meaning. Therefore, to

check those fragment qualifier predicates and the intraqueries
the relational algebra is used. In this way some operators can be

186

equated by substituting the equivalent values of the operators.

For example, the operator ">=" is equivalent to the operator "not

<", and the operator ">" is equivalent to the operator "not <="

etc. This technique is applied using heuristic approach and the

solution corresponding to the intraquery equivalent format is

achieved. In this way the equivalent structure is obtained and

the relation is found in the required format. Later, the two

structures can be integrated using the earlier discussed ap

proach.

7. Abstraction Equator

In this case there is a conflict of more number of

objects inside a class than the attributes of some local schema

to be integrated. Since, the GURU DDBMS uses the single attribute

transform as an object and this object belongs to some class.

But, still this object is used as a separate identifier with some

privilege level. Therefore, in GURU DDBMS this does not create

any problems and the local schema can easily be transformed into

heterogeneous schema with synonyms.

8. Direct Format Resolver ^

This is the best technique available in GURU DDBMS to

hook up speed by inferencing the knowledgebase and finding the

exact equivalent expressions most likely used by some queries.

This makes the system quickly responded for general category

queries. This is done with continuous observations and applying

statistics for such queries. This process updates the knowledge

base periodically to increase the efficiency of the system.

9. Translation time evaluation

187

RECOVERY

PROCEDURES

FIG.5.9 INTELLIGENT TRANSLATOR MAPPER

188

BLOCK DIAGRAM

The system continuously records information about the

various response times provided to the different queries by some

other systems. These systems are finally evaluated periodically

for certain queries with the remote values of the cardinalities.

Finally, the system records these performance measures of the

other systems with some kind of query messages which have the

higher frequencies of their arrivals. In this way, the fragment

allocation policy can be applied more fruitfully.

10. Programming the Inference Engine

The inference engine is designed for some kind of

applications. These applications have the procedural programming

to the inferencing operation to be performed by the inference

engine for some applications. These applications are normally

resolving conflicts among certain predicates to provide consist

ency. For example, the structural equator uses this approach

mostly. In other kinds of applications like, direct format re-

solver, the inferencing is done to maintain consistency among the

knowledgebase and the predicate rules. When the conflict set is

resolved, it provides a unique solution.

In Fig. 5.9, Inference engine is programmed to be ap

plied to some applications like, structure equator, the all

rules of relational algebra are loaded into the memory and the

.inferencing is done after loading the required predicate into the

knowledgebase. Soon as the consistency is obtained among the

rules and the predicate, that rule is selected and the equivalent

format is obtained. These rules are stored in the data diction

ary. The recovery procedures are the procedures recovering the

previous consistent set for the query recovery.

189

>

5.5 HETEROGENEOUS DDBMS'S OBJECTIVES AFFECTED WITH SCHEMA DESIGN

The following objectives are maintained while perform
ing the integration of two schemas:

1. Transparency: This is the first and foremost re

quirement in GURU DDBMS to implement the complete transparent
system having transparent fragmentation, fragment allocation and

the global database etc. In this way, the user is not required to
indulge in complexities of the database unnecessarily.

2. Site autonomy: For better site autonomy, it is

desirable that most of the data needed to support queries should
be available at the local terminal node without using the net
work. This provides quick response to the queries irrespective of
the network conditions. In this way high site autonomy can be
achieved by independent operations on individual sites.

3. Atomicity of distributed transactions: A transaction

is an atomic unit. The atomicity is required to be maintained in

heterogeneous transactions. During the transaction execution a

transaction passes through various phases, and if at any phase it

does not succeeds, all the previous operations performed have to

be undone to maintain the atomicity of the distributed transac

tion. If the heterogeneous schema is well designed, which records
the various probabilities of the failures then the transaction

would not be routed to that terminal node hence, improving the
performance.

4. Quick response: The schema has been designed in such

a manner that optimal fragment replication is done and the allo-

190

cation is done at the sites where higher query frequencies are ^

found for the fragments. The replication increases the time of

updates, but reduces the read only time of the transactions.

Therefore, the optimal number of fragments are allocated after

watching the frequency of updates and the frequency of read only

queries for the application.

5. Concurrency control: Concurrency control is done to

maintain the parallel operations performed by the DDBMS. There

are basically two kinds of the parallel operations, one is the

independent operation the other is dependent operation. There

fore, the independent operations need not to be worried about, as

compare to the dependent operations [198] . The reason is that

independent operations need not follow serializability criterion

i.e., after the operations are performed in parallel the results

are given. But, in case of dependent operations, the second

operation would only take start when first is finished execution.

Later, the results are provided to the second operation. Hence,

taking more time as compare to the independent operations. This

is known as serializability of the operations. If the serializa

bility criterion is not maintained, obviously wrong results would

be obtained.

6. Quick recovery from failures: The failures occur due

to various reasons. Some are due to the network link failure,

memory failure, terminal node failure due to deadlocks, and fail

ure due to timeouts etc. If such kinds of failures occur, the

recovery process to the data has to be started. If other copy of

the data is lying on the network then it could be recovered. In

case of deadlocks, an alternative terminal node with the repli

cated copy of the fragment could be approached. Thus, the data

replication provides the fast possible recovery.

191

/

Y

V

v

7. Reliability: More are the replicated copies of the

fragments on the network more would be the reliability. There
fore, the schema design should be done in a manner to have more
fragmentation.

8. Deadlocks prevention and timeouts: Deadlocks occur

due to many reasons, here one reason could be a poor schema
design. If conflicts are found in access procedures of the data

base then deadlocks are bound to occur. Poor written software
normally cause deadlocking, in GURU DDBMS a timout signal is
given during a deadlock. The other reason of timeout is the
network congestion due to which more delay occurs in the transac

tions. If certain transactions take more time due to preoccupen-
cy of the system, timeouts are generated. This makes the system
follow an alternative path to get quick response.

9. Minimum cost of operations-. The replicated frag
ment's allocation is done at those terminal nodes, where their

demand is the highest. The network congestion is reduced hence,
making the system respond quickly. This also reduces the use of
the network if the query could be replied locally (with the local
database of the current terminal node) hence, minimizing the cost
criterion.

10. Privacy and Security. The privacy and security
control of the system is provided by providing the various privi
lege levels to the various kinds of users [83]. The system has
its built in security by providing the restricted access to the
processes that can access the system.

11. Integrity: The integrity of the system is main-

192

tained by providing the complete integration to the database.

Here the integration is provided by providing the object-oriented

design, which helps in maintaining the integrity by its own

properties and the external privilege levels.

12. User friendliness: This is the another feature

which makes the learning of the database quick and fast. Lot of

restrictions in programming make the users nervous and the dis

liking for the system start building up. Therefore, this is the

very bad symptom for a healthy design of the software, which

lowers down the productivity. The object-oriented features make

the system easily programmable with less efforts thus, providing

good user friendliness.

5.6 CONCLUSION

We have successfully integrated two heterogeneous

schemas. The intelligent translator/mapper have translated the

query and fragment structures with the machine dependent (hard

ware) transformations. For the real life applications, a system

running ORACLE interfaced with GURU has supported the heterogene

ous schema. Good data transparency is obtained with the data

dictionary and intelligent sever. A method of schema integration

with knowledgebase is illustrated to provide consistency in the

database. The various kinds of conflicts are resolved by the

comparison of the two schema models with the suggested thumb

rules. The operator equator, function equator and direct format

resolers resolve the structures in a perfect manner and help in

the schema integration.

The different methods are suggested to improve the

integrated schema by preserving the laid out objectives for the

193

/

Y

V

v

integration.

*

The intelligent approach gives rise the complete trans

parency of various details about fragments and attributes and

their placements. A lot of burden of remembering the techniques

of efficient data access by the programmer and the programming

efforts are reduced and the system itself takes the guarantee of

efficient, effective and transparent operations required by the

programmer.

4
194

CHAPTER - 6

COMPLEXITY MEASURES

6.1 INTRODUCTION

The heterogeneous distributed database environments are"

complex compared to homogeneous environments. The reason is that

whenever the global database environment is used, the different

kinds o£ database environments are faced, to solve the problem

submitted to the local terminal node [13], [180] . The solution of

the problem submitted in the heterogeneous environment is based

on several factors. The most dominant factor which affects the

performance to the worst condition, is the speed of the slowest

terminal node, participating in the process.

Seeing the problems with the heterogeneous DDBMSs, it

is very difficult to measure complexity and performance. Thus, a
very few successful efforts are made in this area of research

[142]. Since, the whole problem, distributed among the different

terminal nodes have to maintain the serializability of the opera
tions. Therefore, the actual time taken to process the whole

problem would add up with the maximum time, taken by the slowest

terminal node. The problem of heterogeneous environments is

simple to explain with an example, the two experts in one field

but, knowing the two different languages and want to communicate

with each other, to produce some fruitful results in the field.

But, they fail to communicate properly. Because, there are not

enough similarities found, between the two languages so that the

clear understanding can be established. So, this becomes an

exercise in futility. The degree by which the two languages are

different with each other is known as the degree of heterogenei-

195

A

A new incoming DBMS can be tested in the heterogeneous

integrated environment with some application. The application

should run on the system from any of the terminal nodes and

should provide the same results. The testing can be performed

with different test sets, written in different languages to be

run on different DBMSs [98]. In heterogeneous integrated environ

ment the different DBMSs linked through a network play around the

different kinds of interfaces. The DBMS is interfaced with the

operating system and the operating system is interfaced with the

network manager, which launches the data and instructions on the

network. And on the other side of the network, the order is

reverse of the earlier discussed interfaces. In this way, the two

terminal nodes are communicating through many kinds of operating

systems and database management systems, which are designed to

work in different environments. The complexity and execution time

increases due to the different environments thus, reducing the

global task efficiently. Because, on a network a variety of

different kinds of environments are available locally, it is very

difficult to predict the performance of the system. To trace the

criterion of complexity and performance, the different domain >

objects are mapped after transforming to the other domains. The

process uses an inefficient way of accessing the data from the

database which do not belong to the DBMS, originally.

To depict the clear understanding of complexity and

performance measures the discussions are based on certain facts

of internal assignments to the heterogeneous object-oriented GURU

DDBMS.

6.2 INTENSIONAL AND EXTENSIONAL NOTIONS

>

196

'

To handle queries using object-oriented query process
ing approach, the procedures and functions (methods) are catego
rized under different kinds, which when executed define appropri
ate required actions. These methods are executed through a call
from the other methods like, defining a method for read opera
tions to be performed on a special kind of fragment etc. The
methods are typed automatically in some categories. Which are
defined when the classes or objects are defined using the object-
oriented philosophy. Therefore, whenever certain methods are re
quired in the system, they are invoked automatically from the
appropriate objects. This method is very useful in the cases,
where the different procedures are specified to operate the
defined objects in the different application domains.

The above method is also helpful in managing a large
number of methods defined for different classes and objects. The
applications are categorized in different domains. These applica
tion domains are loaded dynamically to deal with specific appli
cations. Further, the different kinds of environments belonging
to some application domains are linked in different ways, thus,
providing a heterogeneous application platform. The behavior with
the heterogeneous platform becomes very important to handle, for
the applications requiring the unique results with the interroga
tion of the other results.

The defined classes and the objects are placed in
racks. A rack basically is an object, which helps in providing a
good logical concept, that is very useful with the different
application programming tasks. These racks are helpful in defin
ing the basic elementary operations.

197

Some basic methods are classified with the object or

class configuration, which are, constructor and destructor used

for the user specified procedures to be invoked at the time of

the object instantiation and the deletion of object from the

memory respectively. The another category of methods are defined

in such a way, that a user has an option to perform any opera

tions at an appropriate time. These methods could also be invoked

automatically without the intervention of the user. Whereas the

other methods defined in GSQL need the user's procedure call to

invoke them. GSQL provides a facility where, the different ob

jects are passed as arguments and they play an important role in

defining the different procedures. This process is known as

polymorphism for the defined procedures.

For handling the specific applications, GSQL provides a

wide range of instructions for activating the specific proper

ties required for some specific behavioral model. The database in

GSQL can be handled using all kinds of procedures mentioned by

the users. Some of the methods use intensional notions, which are

the specifications made in the programming language (here GSQL)

and uses the existing object module or the object structure. But,

GSQL provides a facility of extensional notions also, used for >

the enhanced scheme in the object structure, designed with GURU.

This scheme is very helpful in specific applications like, the

complexity and performance measures etc. The extensions suggested

in the object structure provide a wide range of data and knowl

edge, which could be imbibed at the specific places in the object

structure and executed using trigger procedures, at any required

instant during the application execution. These methods could be

very helpful in maintaining the secret records for some applica

tions, such as specific defense applications etc. Thereby provid

ing a complete monopoly with the specified applications for

*

198
>

general purposes and for the general public.

For example, the following triggers are used to measure
complexity at schema and subschema levels:

* Attribute trigger

* Fragment trigger

Database trigger

Index trigger

* Sort trigger

* View trigger

* Form trigger

* Print trigger

At appropriate levels these triggers are activated. An

attribute trigger is activated when any attribute is accessed, a
fragment trigger is activated when a fragment is required, and so
on. The different triggers are activated for some specific pur
poses and activating the required procedures to take necessary
actions required in the system.

6.2.1 Applications

Some of the basic primitives defined for the general
applications are like, the different methods defined in the

objects for reading and writing a specific database, from a tape
drive of number my-89032, using the procedure names tape-read-my-
89032, and tape-write-my-89032 respectively.

In the object-oriented approach the existing computer
philosophy with the existing hardware and software is not recom

mended for the general applications considering the efficiency

199

*

•ik-

view point. But since, they are already in use with standard

available infrastructure for which already a lot of investment is

done in past therefore, the existing computer infrastructure is

used with the new implemented concepts. One of them is the use of

enormous available main memory (MM), which is very cheap and

easily supported in large sizes with the recent operating sys

tems, running on the general purpose computers. With these con

cepts there is a system which works without any files and

messages, and runs very efficiently. Because, the files need the

serial conversion of their data unnecessarily, when they are

saved on the backup and the reverse conversion is required, when

they are read into the main memory from the backup. Similarly,

the messages are not needed as the concept of distributed shared

memory works out to be very efficient. Using these concepts, the

different efficient procedures are written to access main memory

and provide very fast and efficient mechanisms for the general

purpose applications.

6.3 BRIEF ARCHITECTURE OF GURU

GURU is composed of three major components a local

database management system, a data communication component which

provides message transmission with a message-task concept, a

server, also known as a transaction manager which coordinates the

implementation of multisite transactions. The local database

management system can be further divided into three components: a

object manager which controls objects and classes through the

object and class tables respectively and a data manager required

to handle the read and write operations on the data, and a

database language processor which translates high-level GSQL

instructions into operations on the storage system.

200
>

An application program places requests to GURU through

its local site. All intersite communications are between GURU and

the other DDBMSs, here for our discussions GURU is mainly
responsible for locating the distributed database for its own
users.

The server at the site of the application considers the

first GSQL statement which is not within explicitly defined
transactions as the start of a transaction, and implicitly per
forms a begin transaction. When the user completes a session, an
implicit end transaction is assumed and all the work done is
committed.

Explicit commit and abort instructions can enclose

several GSQL instructions, when the application programmer wants

them to be considered as an atomic unit by the server; after any
explicit abort instruction, GURU will assume that the next in

struction begins a new unit of work, and implicitly issues a
begin transaction.

To each transaction, the server assigns a unique trans
action identifier, made with a local transaction counter and the

identifier of the site. GURU uses the local process model for

computations. Instead of allocating a fresh process to each

database access request. Thus, the number of processes assigned
to an application is limited and the cost of process creation is

reduced. User identification is performed only once at the time

of creation of a process and all the active objects required to
process the application are loaded into the process memory.

An active object activated at a remote site can, intern

request the activation of other objects at another sites. This

201

process provides a tree of objects activated for an application.

The problems which are due to the concurrent execution of several

active objects on behalf of the same transaction at the same site

are avoided by strictly serializing their access.

Objects communicate using sessions which are estab

lished when a remote process is created and are retained for the

whole processing. Thus, active 'objects and sessions constitute a

stable computational structure for an application. Sessions are

particularly useful for the detection of processor and communica

tion failures; communication failures are reported to the commu

nicating active objects, taking the advantage of low-level proto

cols. When the session between two communicating objects fails,

the current transaction is aborted; objects which cannot communi

cate with parents are deactivated and also destroy the sessions

communicating with their children, while other sessions are

retained for subsequent attempts to continue the application with
the different access strategy.

6.4 COMPLEXITY IN DISTRIBUTED SCHEMA HANDLING

In GURU DDBMS there are the two kinds of basic schemas,

which are global and local schemas. The complexity can be seen in

the heterogeneous schemas as discussed below:

The process of searching the various objects from the

schema using the supporting tools like, backlogs, logs, catalogs
and data dictionary take considerable computer time therefore,

the schema handling is a complex operation creating lot of

complexity of operations. The efficient methods to access and

maintain schemas are very important.

202
>

6.4.1 Query mapping

When the query approaches the terminal node requested

to process the query, its structure is mapped into its local

schema at the local terminal node by the local server and the

required database along with the fast access procedures is loaded

into the memory. These fast access procedures are certain index

mechanisms, if the index mechanisms are found on that query
structure. Otherwise, the query is processed with what best is

available at the terminal node. This method involves certain

complexities since, the terminal node may not be having the

efficient index mechanism required in the query structure. The

other aspect is the poor access time due to the poor data tuning

in the database in case of queries not having fast access
mechanisms.

6.4.2 Query Rerouting

In certain cases, due to certain reasons of not reply

ing the queries within the assigned time slot, the timeouts are

generated and the query is required to be routed at some other

alternative terminal node. This takes more time and increases the
complexity.

After processing the query at the assigned terminal

nodes, the results are sent back to the terminal node requested
the query processing. But, if the results are carrying bigger
size of the fragments then, the routing them through the network

increases network congestion. Therefore, a strategy can be adopt
ed before routing the results to the requester terminal node, the

requester terminal node is informed about the cardinality of the

resultant fragment. This is done by all the terminal processing

203

the different intraqueries. The query originator terminal node

sends the intermediate intraquery to be followed subsequently to

a node, to which the other processed smaller fragments can be

routed for the operations like, semi-join etc., by sending the

intermediate intraquery to the terminal node. These operations

reduce the fragment size considerably. The process is repeated

till the whole query is processed. Hence, passing the minimum

data through the network which improves the speed of operations

and reduces the complexity.

6.5 COMPLEXITY WITH TRANSACTION HANDLING TOOLS

The procedures used to maintain the data in the

required format with the available methods create complexity due

to the access requirements of backup storage. The applications

not requiring access of the backup memory run much faster than

those requiring access to the backup memory. Most of the

transaction tools with general purpose computer systems require

backup access hence, this area is important from the view point

to investigate complexity.

6.6 COMPLEXITY MEASURES IN FRAGMENT HANDLING

Fragmentation is done to fulfill the requirements of

the various users of the database. The data are grouped in dif

ferent classes and the objects. These classes have different

properties on the behavior model of the attributes. All at

tributes required in some application are maintained in some

class where the behavior model of these attributes can be repre

sented. These attributes are named as the molecular objects in

GURU DDBMS. The different attributes can consist of some type of

data. This type declaration is done to maintain structural ato-

204

>

>

>

micity of the attributes. In GURU SQL (GSQL) the five types are

defined as the basic types which are Character, Numeric, Logical,
Date and Memo. Any user can choose one among the basic five types

for preliminary declaration. Later, the different groupings can
be done to handle the basic five types, to form some new types,
by putting them in a capsule known as an object.

Any such groups (classes) maintain the structural model

to record the data and form the proper groups, which can be

transferred from one terminal node to the other, on the require
ments. The various relationships among the different fragments
are maintained in the schema, which represent the complete rela

tionships among the various attributes and the fragments. The
schema in GURU DDBMS directly helps in locating any kind of

relationships and the fragments. The fragments can be replicated,
partially replicated or can be relocatable to any terminal node

and DBMS. The size of these fragments depends mostly on the

requirements given by the user. These requirements may be area

based or on the basis of some other criterion selected by the
user. The replicated and the partially replicated fragments are

selected by the system required by the different terminal node

users. The complexity in providing the access to these fragments

on the demand of the users increases if, the fragment is not

lying on the current terminal node. Secondly, if the fragment
lies on the current terminal node but its portion is lying on
some other terminal node. This increases the complexity since,

the system follows a longer path to reply the query. Therefore,
the system provides tuning periodically to reduce the complexity.
Certain fragments which have the higher frequency of access can

be replicated and the copy is brought to the central place from
where most of the queries are routed, requiring to access the
fragment.

205

A
Distributed fragments are designed to cater the needs

of the distributed database processing, to increase the site

autonomy, access efficiency, system availability, concurrency of

the operations and reliability of the system. The following is

the design methodology adopted for the various kinds of the

fragments design:

6.6.1 Optimal Fragment Allocation

>
In GURU DDBMS, the extra cost calculation and to handle

the subtle conditions of varying frequencies of access require

ments, an intelligent system is designed. Which provides the cost

in addition to the minimum cost calculated previously. This

criterion is mostly based on the past experience with the system,

for the more frequently used queries. An intelligent system using

heuristics is shown in Fig. 5.9, which provides the additional

cost criterion of the system based on the different DBMS's per

formance. Further, fragment access schemes are divided into two

categories, one is time multiplexing, in this scheme the fragment

for read and update operation is the same fragment but, the read

and update operations are time multiplexed. The other scheme is

the fragment multiplexing, in this case there are separate frag

ments for read and update operations. The updated fragments are

copied back periodically, to provide latest data. The second

scheme is more popular and is applicable to GURU DDBMS.

The cost calculations are worked out periodically, for

the optimal fragment allocation. Before, looking to record the

important parameters for the fragment allocation criterion, the

situation is analyzed. There has to be some record maintained

periodically, about the terminal nodes, taking part in the cur-

206
>

<

TERMINAL
1

TERMINAL

CODE

TERMINAL

1

TERMINAL

2

TERMINAL

3

GLOBAL CHART

-A^
SCHEMA NO. OBJECT FRAGMENT

ATTRIBUTE QUALIFIER FREQUENCY

SCHEMA-1 ATTRIBUTE-!
QUALIFIER-!

QUALIFIER-2

SCHEMA-! ATTRIBUTE-2

QUALIFIER-!

QUALIFIER-2
30

100

QUALIFIER-3 201

SCHEMA-! ATTRIBUTE-3
QUALIFIER-!

QUALIFIER-2

105

1001

SCHEMA-! ATTRIBUTE-4 QUALIFIER-!

SCHEMA-2

—\

FIG. 6.1 GLOBAL CATALOG (DATABASE)

207

>_

T1

T2 3 T2

TA

Tn 0

FRAG-1 FRAG-2

rent application are alive or not. This is recorded in the cata

log maintained in the system. Each and every terminal node con

nected with the network and taking active part in the heterogene

ous environment are requested to send their identity to the

terminal nodes, requiring the terminal node for some applica

tions. This is done to maintain the record of alive nodes. In the

situation when some of the intraqueries are routed to these

nodes, if these nodes are not alive or are in the hangup state

due to some reasons, the intraquery would not be allowed to be

routed to such terminal nodes. Some times it happens that some of

the terminal nodes are busy with some important work being car

ried out with them and the owner of the terminal node does not

want any disturbance in the performance of the terminal node,

that terminal node will not send the alive message. Therefore,

the work would not be distributed to that terminal node by the

other terminal nodes.

A

A continuous evaluation record is shown in Fig. 6.1,

which has been maintained at each and every terminal node having

information about the global schemas, for some applications on

the current network. This record is maintained in some special

heterogeneous database like, the other heterogeneous databases y

are maintained in the global system. This database can also be

distributed, when required on the network. The chart shown con

sists of the details about the terminal node, application name,

global schema name, object/attribute name, fragment qualifier to

which an object or an attribute belongs to, and the record of all

the terminal nodes having accessed the fragments in the past

fixed time slot decided by the global systems, to which the

object/attribute belongs to, and the total accesses required over

a fragment. This table is analyzed by the statistical unit con

nected with the system which is in direct control of the server.

208

The statistical unit tries to locate the hot zones, where the

maximum queries require a fragment. The performance of the system
can be improved if a copy of the fragment can be located to the

terminal centrally placed in the hot zone. If the maximum queries
are read only queries, the performance would be increased signif
icantly, if the update frequencies are high, the performance
after placing a copy to that terminal may not be improved, due to
more updates required to be done in all the copies, of that
fragment as is discussed under ROWA scheme.

6.7. GSQL INSTRUCTIONS

The GSQL instructions used to reduce complexity and
recover the data from the accidental losses are discussed subse
quently.

. .

The following instruction restores one or more database
fragments (flat files):

rollback [{frag-name \ alias-name}] ,•

The rollback instruction is used within the begin
transaction...end transaction structure to restore a database to

its original state prior to the begin transaction instruction.
Begin transaction starts a transaction,- after this instruction -

and until an user issues a corresponding end transaction instruc

tion - system keeps track of database changes in a special log
file, stored on the disk as gtlog.log (GURU Transaction Log).

The tuples can be added and updated using instructions

such as append, edit, change, browse, replace and update. The

tuples can be marked as deleted using the instruction delete. All

209

these operations are recorded in the log file. A subsequent i

rollback instruction instruct the system to use log file to

restore the contents and the status of the original database.

While a transaction is still in effect - that is, before the end

transaction instruction has been issued. The rollback can be

executed only as a single word instruction without a parameter.

At the time of some accidental crash in the system, it

takes restart and when a new session is started, the system

displays the following warning message with a beep:

Uncompleted Transaction found in frag-name

The user subsequently can issue an instruction

rollback with the parameter of the database fragment name, and

the system will restart the database to its pretransaction

contents. The rollback instruction could be issued without a

parameter to restore all database changes that were recorded

during the last transaction. The frag-name is the name of the

database fragment and alias-name is the name of the work area

where fragment is lying.

The following instruction commits the changes made during

the last transaction:

commit;

The changes are performed after the last begin transac

tion or last end transaction issued are written finally in the

database. The changes made are by the instruction edit, change,

append, insert, delete, and update etc. After using this instruc

tion the changes made are irreversible.

210

V

i

The following instruction always commits an instruction
or make it reversible:

set autocommit {on off};

The changes made are irreversible, if on clause is used

otherwise, it can be governed with rollback instruction as
discussed previously, with the off clause.

The following instructions prepare a transaction block:

begin transaction [path-name];

[GSQL instructions]

[rollback];

[GSQL instructions]

end transaction;

When begin transaction and end transaction with

rollback are used, this sets up a transaction. This provides a
option of changing a database and then restoring a database to
its original state.

a

The begin transaction operation starts the operation.
After this instruction is issued -and until a corresponding
instruction end transaction is found - system keeps track of
database changes in the system log file. The tuples can be edited
using instructions edit, browse, change, update and replace. The
tuples can be appended and by using instruction delete, they can
be invoked for the deletion. All these operations will be
searched in the log file.

211

If the path-name is given the log file would be traced >
into the give path directory. A subsequent instruction rollback
instructs the system to use the log file to restore the contents
and status of the original database. The instruction end
transaction finishes the transaction, makes the changes
permanently and log file is marked accordingly.

The following instruction places a query along with the
required format for dynamic schema:

\
select [all | distinct] {expression-list | *;
[into mem-var-list]

from frag-name-list

[where cond-statment]

[group by expression-list having cond-statement]
[{union | intersection | minus } select-clause]
[order by attribute [asc \ desc], attribute [asc |
desc]...]

[for update of expression-list]

[save to temp frag-name [expression-list] [keep]];

Select is apowerful GSQL instruction that extracts, >
combines, and/or calculates data from one or more database frag
ments or views. The output from select, called a result fragment,
can be displayed on the screen, or it can be a source to some
other GSQL instruction. Several GSQL instructions take select
instructions as subset clauses, including create view, insert,
declare and select instruction itself.

In complexity and scope of purpose, the select instruc
tion is akind of sublanguage in itself. The select clause pro
vides a list of expressions that will be included in the result-

212
>

I

ant fragment. The default keyword all specifies that all selected

records will appear in the fragment; in contrast, the distinct

keyword results in a fragment that contains no duplicate tuples
for the listed attributes. The asterisk symbol (*) is used to

select all attributes from a given fragment or view. The various

GSQL functions such as avg () , count (), mini), max(), and sum()

could also be used to compute statistics from the values in the

specified attributes. In combination with group by clause, the

same functions return statistics about group of tuples.

The Optional into clause lists memory variables in

which the values of the resultant fragment would be stored. The

clause is available only select instructions that are embedded in

GSQL programs, and it is typically used when the resultant frag
ment consists of only one tuple. (If the fragment consists of

multiple tuples then only the first tuple is stored in the memory
variables) Only the select, from and where clauses are used with

select instruction that includes an into clause.

The required from clause lists one or more fragments

and views from which data is extracted for the result fragment.

In this clause the temporary variable can also be assigned as
alias names for each fragment and view;

frag-name-1 aliasl, frag-name-2 aliasl,...

These alias names can then be used in subsequent
clauses of the select instruction. A from clause that lists more

than one fragment results in a join operation that combines data

from the fragments listed. Potentially, a join operation combines

each tuple of each fragment with each tuple of second table,

resulting in an abnormally large result fragment. The where

213

clause is used typically to select a subset of tuples from amonq
/

all these combinations.

The optional where clause expresses a condition for

selecting the tuples of data that will make the result fragment.

The GSQL logical operators .and., .or., and .not. for building

compound conditional expressions. In addition GSQL predicates

between, in, and like are available for special condition. Be

tween tests to see if a give value is between two expressed

values. In tests a value for membership in a list of values. Like

provides an skeleton string with wildcard characters for testing

string values.

The optional group by clause produces a representative

tuple for each group of tuples. A group consists of all tuples

with identical data entries for a specified attribute. Each

attribute name in the select clause must also be listed in group

by clause; the select clause, however, can also contain aggregate

functions that execute statistical calculations on the data on

each group. In addition, the optional having clause could be

included with the group by clause; having expresses a condition

that each representative group tuple must meet to be included in

the result fragment.

•

The optional union, intersection, and minus clauses

are always followed by a subselect clause and results into union,

intersection and minus operations on two fragments. For the

successful operation each component fragment must have the same

number of attributes - and corresponding attributes in the compo

nent fragments must match in type and width. The result fragment

consists only unique tuples; the duplicates are eliminated.

214

V

>

The optional order by clause specifies the order of

tuples in the result fragment. The one or more attribute names

can be specified to fix up the order - the attribute is the

primary key in the resulting sort, the second attribute is the

secondary key, and so on. An attribute can also be identified by

an integer that represents the position of the column in the

result fragment. Finally, each column name and integer can be

followed by the keyword asc (ascending order, the default condi

tion) or desc (for descending order).

The optional for update of clause is used in the subse-

lect statement of declare cursor instruction. Thus clause lists

cursor columns that can subsequently be updated. For update of
excludes the use of into, order by, and save to temp clauses.

The optional save to temp clause saves the result

fragment as a temporary fragment that can be recorded during the

current GSQL session. In addition, the optional keyword keep
saves the result fragment on disk as a GURU database file. Save

to temp excludes the use of the for update or or into clauses.

The following instruction sorts a database fragment:

sort [scope] on attribute-list-order

[ascending \ descending]

[for cond-expression] [while cond-expression]
to frag-name;

The sort instruction creates a sorted copy of the

current database fragment and stores the result on the disk as a

new database fragment. The on clause specifies a list of key
attributes (or a single attribute) upon which the sort is execut-

215

ed. Character, numeric, logical and date attributes can serve as >
f

keys to the sort. The first attribute in the list is the primary

key, the second is the secondary key, and so on.

Each attribute listed on the on clause can include an

optional code to specify the sorting order, in this format:

attribute-name[/order]

The orders are represented by letters. The sorting

orders are:

/a Ascending

/d Descending

/c Alphabetic case ignored

/ac or /ca Ascending, case ignored

/dc or /cd Descending, case ignored

The optional keywords ascending and descending apply to

any attributes that do not have their own orders. By default sort

arranges the tuples in ascending order, uppercase first (ASCII

collating sequence).

The to clause specifies the name of the new fragment

(flat-file) that is to be created on disk. The GURU assigns the

default extension name dbf (database fragment). The optional

scope and cond-express ion clauses to specify a subset of tuples

to be included in the sorted version of the database fragment.

Without these clauses the entire database fragment is sorted. At

the same time when a new fragment is opened it is recorded in the

catalog.

216

>

The following instructions define methods (procedures
and functions) used with GSQL:

procedure proc-name [of object-class-name];

A procedure can be declared inside and outside of

objects or classes. A procedure is a structured block of state

ments that execute a defined task. The procedure instruction

identifies the block as a procedure and provides a name. The

optional clause of follows with a name object-class-name of the

class or object to which the procedure belong to. A procedure is

executed by do instruction, which calls the procedure by name.
After the procedure instruction, a procedure consists of:

1. An optional parameters instruction specifying the

number of parameters that will be required for an execution of

the procedure. The optional with clause in the do statement sends
parameter values to the procedures.

2. Any number of instructions that define the actions
of a procedure.

3. A return instruction that marks the end of the

procedure and sends control back to the calling program.

The names of procedures can contain up to 30 charac

ters, always beginning with a letter. Subsequent characters can

be letters, digits or underscore(_) characters. A procedure that

is part of an open procedure file can be called from the GURU

shell or from with in program. Several external procedures and

functions can be included in the procedure using a include in

struction. These are called directly from the GURU shell and

217

included in the procedure. A procedure can also appear within a

large program file, in which case the program can call the proce

dure any time during the execution. The procedures can also be

called recursively.

Functions are defined as bellow:

function func-name [parameter mem-var-list]

[of object-class-name];

GSQL instructions

return val-returned;

A user-defined function is a routine that can accept a

defined number of arguments and returns a single value as its

result. The function identifies a routine as a user-defined

function and identifies the name of the function. After the

function instruction, a function definition consists of:

1. An optional parameters instruction, specifying the

number and types of arguments that will be required in a call to

the function.

2. Any number of instructions that define the action of

the function.

3. A return instruction that provides the function's

return value.

The optional clause of follows with a name

object-class-name of the class or object to which the function

belong to. A call to user defined function always appears as part

of an expression or statement that uses the value that function

218

A

returns. Such a call appears in the same format as calls to any
of the built-in GSQL functions: The name of a function is fol
lowed by a list of argument values, enclosed in parentheses. For
a user defined function that does not require arguments, the
function name must be followed by a pair of empty parentheses.

The name of the user-defined function can contain up to
30 characters, always beginning with a letter. Subsequent charac
ters can be letters, digits or underscore characters. A functi
that is a part of an open procedure file can also be called f
the GURU shell or from a program. A function can appear within a
larger program file, in which case the program can call the
function any time during execution.

on

rom

The following instruction defines the global memory
variables:

public mem-var-list

The public declares one or more memory variables or
array-variables as global. Any procedure or function in a program
can access or changed the value stored in a global variable.

Variables declared as public are also retained in
memory after a program's execution is complete. Later, the values
of these variables can be examined from the GURU shell.

bles :

The following instruction defines local memory varia-

private {all \ mem-var-list | all like skeleton
all except skeleton}

219

The private instruction defines one or more memory var

iables as local to a given procedure, even when the same proce

dure names would normally be available to a procedure from anoth

er level of the program. The memory variables listed in the

private instruction can therefore have the same names as global

memory variables used else where in the program, without inter

facing with the values of those global memory variables.

Private values are available only to the procedure in

which they are declared and are released from memory as soon as

that procedure relinquishes control. The names are selected in

the following ways:

1. A list of variable names

2. An all clause, specifying all currently defined

memory variables.

3. An all like clause, using the * and ? whildcard

characters to specify memory variable names with common elements.

4. An all except clause, also using wild card charac

ters, but this time it specify variable name that are to be

excluded from the private list.

The following instruction that saves the memory varia

bles and arrays to a disk file:

save to file-name [{all like skeleton | all except

skeleton}]

The save instruction stores defined variable and arrays

- and their current values in a memory file on a disk. The values

stored in the memory file then be loaded back into memory using

220

>

7

T

the restore instruction. Unless one specifies otherwise, save
create a file with the extension name mem.

By default, save stores all currently defined variables

in the memory file. However, a user can define an optional all
like or all except clause to select only certain group of varia

bles for inclusion in, or exclusion from the file. These clauses

can use any combination of the two wildcard characters, * and ?.

The asterisk stands for any number of characters, and the ques
tion mark stands for a single character.

The following instructions send text to the screen or
the printer:

text

[lines of textj

endtext

The text...endtext block is a convenient tool for

outputting several sequential lines of text from a program to the
screen or the printer. It takes the place of the series of ?

instructions. All the lines of text located between text and
endtext are sent to the current output device.

tions:

The following instructions control the printing opera-

printjob

instructions

endprintjob

The printjob and endprintjob keywords enclose a block

221

of instructions that represent a particular printing operation. y

The behavior of this structure depends specially on the settings

assigned by the user - in advance - to several of GURU environ

ment variables. Most importantly, the printjob structure reacts

to these values as bellow:

1. The _num_cop variable contains an integer specifying

the number of printed copies that the printjob structure will

produce. In other words, the instructions located between print-

job and endprintjob are executed _num_cop times.

2. The _cond_eject variable indicates when an eject

should be executed during the printjob. This variable consists of

code for the following values:

before: Eject will be executed before each copy of

the printjob.

after: Eject will be executed after each copy of the

printjob.

both-. Eject will be executed both before and after

each copy of the printjob.

none: No eject will be executed.

3. The _con_before provides special codes that the

printjob instruction will send to the printer before each page of

the print job.

4. The _con_after provides codes that the endprintjob

will send to the printer after each page of the print job.

The following instruction displays a list of objects

currently stored in memory:

222

V

1

display memory [to {printer \ file file-name}]

The display memory instruction provides information

about the following definitions stored in memory:

1. Memory variable, both private and public

2. declare arrays

3. Windows

4. Pop-up menus, bar memos and pads

5. System memory variables

If the display takes up more than one screen, system

pauses the operation at the end of each screen until a key is

pressed to continue. The to printer option sends the information

to the printer. The to file clause stores the list in a text file

on disk, with a default extension name txt.

The following instruction displays the information

about the users on the network with the current system:

display users

The display users instruction displayed all the users

logged in virtually in the system for the global application

domains. This instruction provides the complete information

regarding the users and the applications used by them.

The following instruction displays the complete data

base structure loaded in current area of the memory:

display structure [in work-area] [to {printer \ file
file-name}]

223

The display structure displays the fragments structures

with respect the currently selected database fragment or of the

database fragment with related fragments selected by a user with

in clause.

If the display takes up more than one screen, the

display structure pauses at the end of each screen until a user

hits a key to continue. The to printer option sends the informa

tion to the printer. The to file clause stores the information in

a text file on disk, with a default extension name of txt.

The following instruction processes the control struc

ture to process tuples of a database fragments:

scan[scope][for cond-expression][while cond-express ion]

GSQL instructions

[loop]

[exit]

ends can

Scan.. .endscan is a structure that loops through the

records of the current database. By default, scan begins its

activities with the first tuple in the database (or the first

tuple in the indexed order) and proceeds tuple by tuple through

the entire database. All the instructions located between the

scan and endscan are executed for each tuple.

If the scan and endscan is not required to be processed

for the entire database, a scope or condition clause or both can

be included to restrict the action to a subset of tuples. The all

scope clause is the default. Next selects a specified number of

224

/

f

tuples, starting from the current one. Rest selects the remaining

tuples, moving forward from the current one. Record specifies a

single tuple by number (an unlikely scope for the scan structure,

which is normally used to process multiple tuples).

The for condition clause works through the database

from the beginning to end; a given tuple is included in the

processing only if the for condition evaluates to true for the

tuple. In contrast, the while clause starts with the current

tuple and processes each record that follows until it encounters

a tuple for which the specified condition evaluates to false.

6.8 CONCLUSION

The heterogeneous environment is complex in the way

that, many DBMSs which belong to different areas and working

environments are connected in a global integrated environment and

work fur different kinds of applications. The applications may

not be included in the domain for which the DBMSs are designed.

Therefore, they meet most of the kinds of conflicting languages,

data and the structural and behavioral constructs, which becomes

a tedious task for any system, to handle it properly. A few meth

ods suggested using the intensional and extensional notions with

triggers are effective to check the complexity and help in reduc

ing it.

The different schemes suggested to implement better

fragmentation criterion are based on the requirements of the

particular application, which help in improving the performance

considerably. The fragment are allocated with the criterion of

hot points and the involvement of the complexity of different

DDBMSs. This helps in boosting the performance and reducing the

225

complexity considerably. The method includes the coding scheme j

for the current alive terminal nodes and the speed code corre

sponding to the application efficiency. This scheme appeals very

much in the selection of the right terminal.

The complexity can be reduced by intelligent procedures

using triggers. The instruction select helps in reducing the com

plexity with the proper planning of attribute placements. Proper

index loading mechanism in the system with appropriate grouping

of fragments makes the system better operated. The intelligent

schema and proper fragment loading schemes with clearly defined

fragment qualifiers are making the system, materialize queries

efficiently. The proper instructions to form transaction blocks,

such as begin transaction and end transaction with rollback and

coimwit instructions save data from the accidental damages. Proper

allocation of the fragments at the different terminal nodes

reduces the access time hence reducing complexity.

The all discussed methods help in reducing the

complexity to a great extend and rendering the system to achieve

good efficiency.

A sample program using GSQL is shown in Appendix - A.

The data structures for the GSQL instructions are given

in Apppendix - B. The first and the next reserved words are given

Appendix - C and Appendix - D respectively.

226

t

CHAPTER - 7

MESSAGE-TASK SCHEDULING

7.1 INTRODUCTION

In Message Based Communication System (MBCS), the

messages are communicated in the form of separate packets, de

signed for the purpose of the communication network being used
for the distributed environment. The packets are later assembled

and form the complete message. In this system, maximum communica

tion efficiency for the packets is maintained from the network

view point. In Distributed Shared Memory System (DSMS), the

memory being distributed is converted in some fixed size of pages

and these pages are sent to the destination. Later, these pages

are translated in the local environment and are accessed as data

for the local application. This method is inefficient over MBCS

due to the limitation of fixed page size and the handling of the

DSMS needs a separate layer between application and a message
passing system.

The message-task is sent in the form of packets. The

size of the packets depends on the local communication network

used to connect the distributed environment. These packets are

later assembled to form the complete message-task. The assembled

packet is having the shape of the distributed virtual memory

segment comprising a new task to be assigned to the Task-schedul

er. If the task is a heterogeneous one, it is translated in the

local system's language, which is recognized from the type field

in the message packet. Later, this task is executed as a virtual

shared memory segment at the local terminal node, to perform the

actual functions. Application programmer understands well about

227

the abstraction, since, the access protocol is such to access

data sequentially. This communication process remains totally

transparent to the application programmer, working on the system.

Therefore, application programmers need not be conscious about

the data movement between processes and the complex data struc

tures, which can be passed by reference.

There is a wide need of passing messages to the various

objects in the object based systems [11],[26],[60]. These mes

sages play an important role for handling objects in a specific

manner. The objects can access data for the procedures inside the

object and a kind of the messages can alter or change the struc

ture of the existing objects in a required manner [180]. The

messages changing the structure of the object are known as struc

tural messages. The structural changes of the objects could be

brought to a limited level, as per the plans laid out earlier in

the object handling system [129], [168] . Since, the limitations of

the system are that the objects can only be changed as per the

prior assigned schedule, none of the later changes in the objects

could be performed by the application programmers in the way

other than the prescribed ones. This limitation exists in the

system due the fact that the changes made in the system could

adversely affect the integrity of the objects. The remaining

sections discuss about the message-tasks and their sheduling.

7.2 OBJECTS AND MESSAGES

Object-oriented database systems are superior to con

ventional tuple or record-oriented database systems in their

ability to handle the database with unique way of their data

representation and maintenance of the privacy and security of the

data. The conventional systems consisting of tuples or record-

228 *

oriented database, represent the unit of information. This record

and entity based system poses a great difficulty to the applica

tion programmers, due to the fact of understanding all the as

pects at the same time. This leads to more time and insecure

operations performed by the application programmer. Object-

oriented databases consist of only a set of objects and classes,

which ultimately correspond to some entity in the real world. The

ability to maintain hierarchies in the object-oriented databases

makes the development of the system more systematic and simple.

Objects can be categorized in the different categories

and can be linked in a manner to form an object hierarchy.

Different objects connected in the hierarchy have certain

properties. All these properties of the above nodes are inherited

in the nodes bellow in the hierarchy. These objects are given

different object identifiers, due to which they can be identified

in the system. The data and the procedures consisting in an

object can be accessed at an appropriate level in the object

hierarchy. The privacy and security of the data and procedures

can also be maintained in the objects based on the assigned codes

by the application programmers, to the different entities present

in the object. Message-task can be adopted to tune the objects,

change the structure of the objects and reschedule the object in

the object hierarchy. In the object based system, the number of

the objects grows to an extent that the main memory cannot record

all of them. Therefore, a virtual object management scheme is

suggested to record the objects in the virtual memory. Some of

these objects are assigned by the application programmer special

ly to be recorded in the virtual memory. Therefore, the large

databases and the large number of objects can easily be handled

by the system. The system can also choose some of the objects to

be directed to the virtual memory. But, the amount of thrashing

229

required to be controlled, which should be of a limited value, in

the overall design provided by the application programmer.

The overall criterion is to have the fastest

communication speed, to go through a rout, which takes the

minimum cost. This cost factor depends upon the network structure

used, which is the topology of the network, the heterogeneity of

the medium and lastly the communication protocols used. The

message-task is sent in the form of packets. The cost of

synchronization for the packets being received and acknowledged

should be minimum. At the time of acceptance test (AT) for the

process as a task, it has to maintain the synchronization to have

the serializability of the operations. After the acceptance test

is successful, the exit procedure adopted takes time in the

global environment and follows the specific procedure for the

commitments to be done synchronously. In case, if the test is

failed, all processes are abandoned and the previous states have

to be reestablished through the rollback procedure. The another

time taken is the cost of acceptance test, which is nothing but

execution of the acceptance test procedure.

7.3 HETEROGENEOUS MESSAGE-TASK HANDLING POLICIES

7.3.1 Objects

A GURU database is a set of objects. Each object

represents a certain entity in the real world. Each and every

object is a different object than the other objects, if the names

are different. Therefore, the different objects have the separate

object identifiers. Objects in a database are divided into

primitive and complex objects.

230

V

y

A primitive object keeps a particular value in a

database like some prior defined value in GURU. Primitive objects
belong to the prior defined classes or subclasses, known as

structures in GURU. Functions and procedures are also defined as

the primitive objects in GURU apart from the regular defined

values. The defined procedures or functions, also known as

methods are executable. These are defined to fetch and store the

values, establish the relationships, presenting the view etc. for
the objects.

A complex object is defined as the combination of some

objects, defined earlier. The objects form a hierarchy, when
defined at the different places using the other classes or/and

the objects as the sub-objects. The objects form the complex

object by associations in different ways with the component
objects.

A structure also known as a class, is regarded as a set

of objects. Which is used to share same data and properties

defined to the other structures and objects. Each and every
object belongs to one or more class (structure in GURU). A

structure description maintains the definitions of other objects

bound to the structure and the hierarchy of objects, methods for

objects and the relationships to the other structures.

An object hierarchy is defined by complex and component

object relationships. It defines the conceptual schema to manage
the objects in a database. The object hierarchy is a union set of

possible object structures, which objects in the class can take.

The structure of each object can be changed by passing messages.

The message which changes the structure of the object is called a

structural message, and the derived object structure is known as

231

the aggregation hierarchy of the object
1

At the time of creation of an object, one object
supervisor is bound to the object, which supervises all the
activities of the object, the activities include the checking of
access to objects, method (also known as procedure/function in
GURU, calling, mapping the other objects, and the message-task
scheduling activities etc. in GURU. The supervisor takes care of
executing the object tasks by proper mapped functions, which
delude the memory variables, databases, procedures, and
functions, of local and inherited classes and objects. Apart >
from this, supervisor contains the information of the state
descriptions for all the objects in the object and the class
hierarchy, the task synchronization constraints to be enforced
the regular scheduling to be performed, and the managerial
policies regarding the local resources.

The supervisor spawn processes (active objects) after
getting attached to an object to provide the service on request
and to execute some procedure or function. The supervisors tied
up with the objects, remain active till the life of the active
ejects (task, .To process the outside requests, the supervisors
remain at the front end. On request, the supervisors invoke the >
different procedures or functions and guarantee the integrity of
the conflicting objects. The supervisors provide the message-task
scheduling to the different messages coming, to be processed. The
basic message-task structure in GURU is divided into following
three categories.-

i. Application task

ii. Network task

iii. System task

232

TASK-1

<

GURU FUNCTIONAL LAYERS

FIG. 7.1

233

TASK-2

The tasks (shown in Fig. 7.1) required to process some

category of application are known as application tasks. The

application task is a complex task, where the different objects

are linked and form a global data structure with relations. For

example, these relations form a schema for some application for a

database to be handled. The different entities belonging to

different fragments are connected with some relation among them,

hence, establishing some data structures to relate various tuples

among them. The tuples belonging to the different fragments are

linked in some specific order. These can be accessed later by the

different users. The procedures accessing them can be associated

separately by the application programmer. The other aspect is

that, the procedure to access a given data item can be provided

on request by the dedicated supervisor, made to provide such kind

of services. Therefore, users are provided a facility to write

their own procedures to certain operations and make them

available to the object as a procedure or function, to perform

the required operations. For example, some fast access procedures

may be written by the users to access the database. These

procedures could be some indexing methods, or some hashing

mechanisms etc. for the database to be accessed.

The network task is the task provided to handle some

applications not available locally with the terminal node.

Therefore, such tasks are shipped to different terminal nodes for

further processing. The shipping operation is performed through a

network, connecting the current terminal node with the remote

terminal node, to which the task is shipped for further execution

at its end. This service provides the user tasks the illusion of

all hardware and software resources residing on current terminal

site, whereas, in reality they could be stored anywhere. The

234

>

network task managers at this level will create tasks to manage
the interaction on the two sites for the user and server so that

they need not know or be aware of the actual processes that

provide the service. The detailed discussion about this is done
later in this chapter.

The last task is the System task, which makes use of

the GURU system routines to handle the tasks. This task resides

on each physical site of the computer terminal node or the

individual computer, which is required to process it. This task

is basically handled by the GURU system for the management of the
rest of the processes to be coordinated to run on it. This task

acquires the GURU'S supervisor, which ultimately is responsible
for the overall activities in the task handling mechanism. GURU

is responsible for scheduling the tasks, resource management,
checking the integrity of the tasks, further allowing the access

procedures after verifying the access rights for the requesters,

requesting the resources etc., but it must interface and react to

the rest of the system just as the another task would react to

its requests. The systems architecture is structured as a

hierarchy, it consists of three layers: virtual machine layer,
system support layer, communication layer. Virtual layer consists

of the high level tasks available through the GURU'S language
GSQL. All the tasks can reside in any of the three layers. To

provide the proper transparency to the users. All supervisors are

given the unique names, through which they can be invoked.

Since, GURU works in a distributed environment,

therefore, there is a need to provide the interaction with the

inter-computer and intra-computer mechanisms to provide processes
with control and information. The message passing mechanism is

used for the inter-task communications. The procedures are called

235

to invoke a task using the conventional protocols. All

communications between the tasks are through messages. GURU

provides the scheduling to these message-tasks and could be

independently executed. The messages coming, form a shape of the

process to be executed. This process is scheduled by the

scheduler and the required actions are obtained. This facility

helps in programming the objects intelligently in the entirely

dynamic environment. The messages are formatted in a specific

format, which helps in detecting the kind of the message. Later,

the message could be detected as the pure data format, the

control format or lastly the procedure format. The last procedure

format tells the message-task needs scheduling. After the

message-task gets properly scheduled, the supervisor takes up the

responsibility of executing the operations performed by the

control task. The control task carries the high level GSQL in

structions made to provide certain directions to modify the

object structure in the required format (the high level instruc

tions of GSQL). This facility helps in keeping the GURU, better

suitable in the heterogeneous environment. Which needs the struc

ture of the required objects working with the other heterogeneous

DDBMS to modify as per the requirements lying with the local

DDBMS. This facility upgrades the requirements to cope up the

basic deficiencies of other environments to match the existing

local DDBMS environment.

7.3.2 Task Handling

Tasks are defined as active objects in GURU. The mes

sage is also handled as an active object to be executed independ

ently. All objects consist of some mailbox with each and every

object, where the requests can be stored, when the objects are

busy. Soon after, the object becomes free from its last activi-

236

*

(a) (b)

PASSIVE OBJECT

O ACTIVE OBJECT

I } OBJECT-TASK
<*>.'

TASKS IN GURU

FIG. 7. 2

237

Out-side

Environment

ties, requests are processed from the mailbox. All requests

consist of certain identity codes, which help in replying the

requests with process identification and the class hierarchy to

which an object belongs to. A requester wishes to perform some

operations on another objects, which may require certain access

to a database fragment bound with an object. The server object

will provide the data from the database if the requester has the

rights to access the data from the database. Moreover, if the

granularity of operations is high, better would be the efficiency

to process the overall task.

For handling the remote objects, the conversation from

the remote objects will be required. This conversation needs

messages to be exchanged. The mechanism to support this is the

system support service called the messenger. A messenger is the

task that provides the control of communications within the

network for requesting and serving tasks. Messengers are

available with each layer within the GURU architecture. These

messengers provide the interface between adjacent layers and to

the network communication subsystem. The messengers are

themselves active objects, which take participation in message

communication to the adjacent layers and these messages are

stored in the corresponding mailboxes of the objects.

The unauthorized operations performed by the remote

messages, over the objects can be controlled by the privacy and

security codes, which are recorded in the object structures for

the individual operations. The all messages are checked for the

authorization codes, if some message does not have the right for

the requested operation, then reply is sent accordingly.

An object structure is shown in Fig. 7.2, which com

prises a local object supervisor, a few active and the passive

238

objects, and object tasks. Each object can have a number of sub-

objects, which can act as separate tasks. The tasks maintain a
class hierarchy.

7.3.3 Message-Task Conversation

The process of message conversation is shown in Fig.

7.2 (b). The various objects are sending the different messages,

which could be executed as separate message-tasks. The conversa

tion among the various objects can access the object's resources,
these resources could be a few memory variables, databases,

hardware equipment, software etc. Further, the messages may
invoke some procedures or functions tied up with the objects. The
front end processor of the object is the local object supervisor,
which remains active all the time for the object.

7.4 CONVERSATION POLICIES

In this section some brief description of conversation

policies is presented. The two basic conversation methods

synchronously exited and asynchronously exited with mailbox

technique are discussed. The mailbox serves the basic inter-

message communication task to reduce the overall service time of

the processes. These two approaches differ in the way to provide
the different system performances. A brief comparison of the two

is presented in the end of this section.

7.4.1 Conversation Structure

A conversation is defined as the session established

between two or more interacting processes (active objects), which

can be recovered to their previous states, if required. To have

239

PROCESS
CHECK

POINT

A, B.C .D , B', B' - PROCESS RECOVERY POINTS

E ,F,G,H,e', e"—POINTS OF ACCEPTANCE TEST

INTERACTING ACTIVE-OBJECTS (PROCESSES)

FIG. 7.3

240

CONV-1

OBJECT CONVERSATION
FIG. 7.4

2L\

the conversation, some well defined rules are followed. None of

the processes can violate these rules. A two dimensional sketch

is shown in Fig. 7.3, consisting of a few processes interacting

in time space. The X direction represents the process interaction

time and the Y direction represents the distinct processes inter

acting among each other. The objects interacting with active

objects (processes) are shown in Fig. 7.4. The active objects can

sprout any number of active sub-objects. The sub-objects later

called as active objects, can further take part in conversation.

The process recovery points, A, B, C, D, B', B" are shown in Fig.

7.3, these points are maintained in Log, so that the recovery of

any active object pan be performed on the rollback operation. The

process checkpoint, is also recorded in the Log, which helps in

maintaining the complete previous state of all the operations

performed after the check-point is established. Therefore, any

dead-locks or system failures will not cause the loss of data.

There are four active processes shown, which are taking part in a

session. These four processes are marked as AO-1, AO-2, AO-3 and

AO-4. The active object (object task) AO-2 finishes its execution

and passes its acceptance test and exits at point E from the

synchronous state and sprout in two other tasks using lookahead

scheme as shown with the names AO-2' and AO-2". These two tasks

establish synchronism with the previous sub-tasks AO-1, AO-3, A0-

4, which belong to the same one task, AO originally. The conver

sation is established by passing messages among the active ob

jects. The messages passed are recorded in the mailboxes of the

objects.

The four tasks using the message-task scheme are shown

in Fig. 7.4. The various messages communicated among them are

CONV-1, CONV-2, CONV-3, CONV-4, and CONV-5. The messages sent and

received by the different local supervisors s-1, s-2, s-3, and s-

242

V

I

HEAD PARTICIPANT

DISTRIBUTED ACTIVE-OBJECT TASK GRAPH
FIG-7. 5

243

4 of the active objects are shown. When an object is under the

running state, it remains locked for all the outside requests

made by the other active objects. The outside requests are stored

in the mailbox of the object. The process (active object) needing

the service of the other active object, waits till an another

message is received regarding the required results of the re

quest, placed earlier. The active object finishing the task

checks the mailbox and services the requests from it. Each par

ticipant process consists of one or more try blocks or program

blocks designed to produce the same or similar results, as well

as an acceptance test which is a logical expression representing

the criterion for determining the acceptability of the execution

results of the try blocks.

For example, refer Fig. 7.5, a query, A being executed

at a local terminal node, needs the three fragments, B, C, D of a

globally distributed database, a few fragments may be the remote

fragments, therefore, query needs to be broken and formed in a

shape of different sub-queries out of which the remote queries

are to be distributed at the remote terminal nodes following the

routs 1, 2 and 3 respectively. The query at fragment, D needs

further two different fragments, E and F following the routs, l'

and 2' respectively. The fragment, E further needs the two

fragments G and H following the routs 2" and 1" respectively. The

results are processed and follow up the rout back to the

fragment, E. The fragments E and F are processed and follow back

to fragment, D, later, fragments B, C and D are processed and

return back to requester terminal node for the query, A, where

they can be processed to provide the required results, which are

further communicated to the user through the local terminal node.

These individual results are finally combined to provide the

final result. The splitting of the query can be performed in a

244

V

>

*

number of ways therefore, the different sets (try blocks) of the

main query can be generated on the requirement. The process

recovery points are the individual recovery points for the sub-

processes to be rollback to their previous states when any ac

ceptance test of the sub-processes fails. The recovery points are

mark of the processes before the processes started interaction.

Any process taking part in conversation goes through an accept

ance test, which succeeds or fails. On a success the other linked

processes continue to execute. But, on failure another alternate

set of processes is tried out. The alternate try blocks define an

alternate interacting session.

A conversation succeeds only if all the sub-processes

succeed in their individual acceptance tests. Therefore, the

participants are allowed to leave the conversation session if all

the participants have passed their acceptance tests. A set of

processes finish their conversation session on successful

acceptance test. The conversation occurs among only active

processes.

7.4.2 Exit Procedures

All the processes enter the conversation session

asynchronously but get synchronized themselves on their entry to

the conversation session. The synchronization can add

considerably to the time and the cost of the conversation scheme.

The basic approach required to reduce time of synchronization is

known as lookahead. This approach makes the exit of a participant

on success of its acceptance test. This has the understanding

that the other participants can fail in their acceptance test in

future. Therefore, the rollback would be needed. This increases

the overall cost of the recovery procedures but saves the syn-

245

SYNCHRONOUS EXIT STATE-DIAGRAM
FIG. 7 6

24 6

V

chronization overhead.

There is a choice of making the conversations beyond
the unfinished conversation without any limits, but, one should
limit the extent of lookahead conversation with respect to con
trolling the implementation complexity. Some limits of the looka

head conversations, where the data recovery is not possible
should not be crossed. These limits are the critical irreversible
limits. The conversations which belong to the lookahead category
are known as asynchronous exited conversations and where looka

head is not allowed are known as synchronous exited conversa
tions. A synchronous exited conversation is shown in Fig. 7.6,
which passes through the following states:

i. Blocked state

ii. Running state

iii. Successful state

iv. Failed state

v. Unsuccessful state

The blocked state represents the no conversation,
running state provides at least one conversation, successful

state provides the all participants have passed the acceptance
test, the failed state provides that at least one participant is
failed in the acceptance test, lastly the unsuccessful state
provides that all alternate sets (try blocks) are failed in
acceptance test.

The asynchronous exited conversation, a process exiting
from a conversation session enters into an another conversation.

If the second conversation however does not depend on the first

one, the conversation should not exit finally, because in case of

247

ASYNCHRONOUS EXIT STATE-DIAGRAM

FIG. 7.7

248

>

4

failure rollback operation is required to be started.

An asynchronous exited conversation is shown in Fig.

7.7. this has the following six states of operation:

i. Blocked state

ii. Running state

iii. Partially successful

iv. Successful state

v. Failed state

vi. Unsuccessful state

In the above list only one new state has been

introduced, which is not there in synchronously exited

conversation. This state is just to represent at least partial

success of some participant, which exited and continued an

another conversation. The system performance would increase with

the asynchronous exits of the participants. The performance

improvements would be particularly conspicuous, when the

acceptance test failure probability is very low and the number of

participants are large.

With the asynchronous exit conversation approach, the

complete information needed for rollback (try block entry points)

prior values for the external variables which have been changed

after the process entered the conversation, should be kept until

the conversation is completely successful. To maintain this

information GURU provides a facility of local log, which

maintains the complete information of all the participants in the

session. All conversations are being maintained in the local log,

this log maintains the dynamically created main memory object

images. The object images are finally linked, till the

249

conversation is over or enters to the successful state. After the

conversation, the removed active objects make the images also

removed from the local log. This activity is performed with

proper checkpoints in the local log. These checkpoints help in

the data recovery. The conversation records are linked

hierarchically to maintain the structure of the conversation

process. The main memory variables being processed at the remote

terminal nodes maintain the values to be sent for the remote

terminal nodes. These values are recorded in the form of variable

list and the values to be supplied to them on the log. The values

are finally extracted from the logs along with the final results

to be communicated to the remote terminal nodes and are supplied

to the network layer manager of GURU. These values are sent to

the remote terminal nodes in the form of message-task, where they

were required.

7.4.3 Acceptance Test

The acceptance tests for the conversation is divided

into basic three categories centralized, decentralized and semi-

centralized.

Centralized acceptance test, provides the test proce

dure to only one participant known as head. And all other partic

ipants communicate with this participant by sending the results

in the form of message-tasks. These results are processed at this

node and the rollback or commit indications are sent to the other

participants. The declaration of head can be done in two ways,

static head or the dynamic head. The static head is prior defined

head, which always execute the acceptance test. Where as a copy

can be provided to some participants and the process executing

over the last participant node can execute this procedure or any

250

>

V

other node out of the participant nodes can execute the accept

ance test procedure. With the synchronous exit procedure, this is

one of the same thing that any node can execute the acceptance

test procedure. Since, the all participants are running with

synchronism. The all participants are exited at the same time,

and hence there is no advantage of getting the concurrency of the

acceptance test procedure for the component participants. Howev

er, in the case of asynchronous exit procedure the dynamic place

ment of the head designation is efficient than the static head

approach. This is due to the requirement of communicating some

extra message in static head placement than the dynamic head

placement policy.

Decentralized acceptance test, provides individually

all the participants, to perform their individual acceptance

tests. Further, the results are exchanged by the participants as

are needed by the requester. In this case the communication cost

is very high due to sharing of all results among all the

participants and analyzing them. Secondly, the acceptance test

procedure has to be divided to be executed at the remote terminal

nodes.

Semi-centralized acceptance test, provides the

compromise over the previous two methods. In this case all local

acceptance tests are done as usual, as in the case of

decentralized acceptance test procedure, but the head is only one

to which the final results are communicated. This makes the

communication burden little reduced. But, still, the acceptance

test procedure requires to be divided as in the case of

decentralized acceptance test procedure.

The above discussed all the three schemes have certain

advantages and disadvantages among them. But, the semi-

251

centralized acceptance test procedure is the best among the

three. Some other schemes declared by the users for reducing the

overall complexity for the division of the acceptance test

procedure and also the head placement policies can be programmed

externally by the users. The one of the scheme is known as the

Name-Linked Recovery Block (NLRB) scheme and the Abstract Data

Type (ADT) conversation scheme. In case of NLRB scheme a set of

procedure is illustrated, which is supplied to all the

participant terminal nodes. After executing the given procedure

for the different try blocks, provided by the external user, the

terminal node will be found which runs the acceptance test for

the participant. Therefore, there is no need to divide the ac

ceptance test procedure and the performance could be improved.

7.4.4 NLRB Scheme

This scheme is the extension of the previous discussed

schemes, one conversation identifier is associated in the

recovery block, to identify the conversation. The different try

blocks are tried out for the acceptance test. The set of name-

linked RB's, each executed by a different process but having the

same conversation identifier, compose a conversation construct.

This scheme is advantageous in the large distributed environment.

7.4.5 Abstract Data Type (ADT) Scheme

This scheme was proposed as a remedy the

shortcomings of the earlier described NLRB scheme. This is due to

the nonuniform way of constituent recovery blocks in this scheme,

blocks are organized in a structured form of abstract data type.

The different processes are attached the conversation identifier.

Which helps in identifying the conversations and presenting a

252

V

t

uniform way. This scheme adds to the data format a few more

bytes. But, is quite helpful in locating the processes belonging

to one conversation.

7.4.6 Heterogeneous Systems

Before taking part in the process of sharing the data

from a network, the process of registration in the global network

environment is a must, This heterogeneous pool of resources is

maintained with the coordinating processes running at the

different geographical places and connected with a network. These

processes belong to the different computer systems and also being

run on different database management systems and the different

operating systems. Such an environment for handling the shared

database is known as heterogeneous database environment. To

communicate through such an environment, the messages have to be

translated in the language so that the two sites communicating

with each other can successfully and exactly understand each

other. Therefore, the messages being sent from the requester to

the server needs proper translation at the different stages. The

messages cannot be delivered without the proper translation

procedure. Hence, the messages are the task, executed for the

proper translation. This process of translation can be performed

in various ways. Since, the translators and their availability

again matters for the distribution. Therefore, the message task

is considered for the scheduling to the most suitable terminal

node, which can be helpful in the required task with proper local

and the global efficiency of message conversation task.

7.5 THREAD MANAGEMENT AND CONCURRENCY CONTROL

The different activities in GURU can be invoked using

253

threads. A thread is a logical path of execution of different

processes known as active object processes. To communicate among

the different objects, a message is sent, the message invokes

certain procedure or function in GURU. Which gets executed and

forms a thread to link with other procedure calls. The thread can

be invoked by a programmer with the help of some program. When a

thread executes a logical space of an object, it accesses or

updates the persistent data in the database of the object or the

primitive objects inside the object. Further, the procedures and

the functions may invoke the other objects. In such an event

thread can leave temporarily the calling object, and enters to

the called object. After processing the results it goes back to

the calling procedure with the results. The object invocations

can be nested or recursive. When a process finishes execution

after providing the results to the requester the thread is termi

nated. Several threads can enter an object and execute concur

rently. They can share the common primitive objects inside an

object using the standard procedures known as locks and sema

phores to work concurrently. The basic system consists of objects

and threads. Inter-object interfaces are procedural. The objects

are invoked using procedure calls, which work in the boundary of
GURU.

Consistency of the operations is maintained through the

users atomic instructions. This scheme is known as user based

consistency control. The scheme is used in locking the primitive

objects inside the object. These objects can be clustered in the

different segments and these segments can also be locked through

the user's instructions. Since, the segments are user defined,

therefore, the granularity of the locking scheme is directly

controlled by the users.

254

>

V

i

7.6 PROBLEM IMPLEMENTATION

The following procedure illustrates the message-task

communication made in GSQL (GURU SQL) for some example

protection scheme using object-threads. The users writing the

system level programs are also required to provide the different

protection schemes so that the unauthenticated applications

cannot be entertained by the designed application procedures.

Such kinds of implementations are carried out in GURU, which lets

the application programmers define the different levels of pro

tection to their own primitive and complex objects. The following

instruction in GSQL shows the different levels of protection

provided to its primitive objects:

define structure marks_sheet

privilege protect

memory sno, name, class, marks

privilege print

device printer_3, printer_7

privilege read

datafiles mohan

privilege general public

procedures read_record, readjmarks;

The above instruction in GURU defines a class named

marks_sheet, which has the memory variables sno, name, class and

marks defined with privilege protect. The protect privilege lets

the memory variables known in its own class environment and the

different environments inheriting this class, marks_sheet. All

other objects or classes inheriting the class, marks_sheet can

refer all the memory variables but from out side this environ

ment, they cannot be accessed. The next declaration in the in-

255

struction is device with privilege declared as print. This shows

that the devices declared in the list of the device names i.e.

printer_3, printer_7 can only be referred inside the class,

marks_sheet with the privilege, print only. No other operation is

allowed on these devices. This scheme protects the devices de

clared from the other processes. The other clause in the last

instruction is datafiles with the declared privilege, read only.

The declaration, datafiles is the declaration for the directory

names of the database fragments. Therefore, the database frag

ment, mohan has only privilege to read its own tuples. The proce

dure declaration in the above instruction is for the procedures

defined by the application programmer to handle the assigned

tasks. The procedures, read_record and read_marks are separately

written in GSQL and have the privilege to be called from any

where including the outside environment.

Similar operations as defined above are implemented in

the system software, which run on the system to support various

system tasks. Further, the different objects can be created using

the classes and enforcing the new instructions in the same object

to support additional tasks. The following instruction creates an

object: \

create object m_s

privilege protect

include structures marks_sheet

privilege private

memory ch_l

privilege general public

functions test_ty;

The above instruction creates an object, m_s, which

256

>

>

PRIVILEGE IN

BASE PRIVILEGE AT NEXT LEVEL RESULTANT PRIVILEGE
IN BASE PRIVATE- 1

PROJECT- 2

GEN-PUB -3

- LOCK-PUB-4

NOT ACCEPTABLE

1
i

0

0

1

3
1

-u

0

i
4

0

2
1

1

2
2

2

2
3 2

2
4

4

3 1
1

3
2 2

3 3
3

3
4

4

4 1
4

4
2

4

4
3

4

4

' • i.
4

4

™ • ———

CLASS INHERITANCE TRUTH TABLE WITH METACLASS
SUPPORT

FIG. 7.8

257

inherits class marks_sheet. The privilege of inherited class is

declared as protect. Therefore, the primitive objects derived

from the structure (class) , marks__sheet are only known to the

object m_s and the other objects inheriting this object. The

additional memory variable, ch_l is only known inside the object,

m s. The function test_ty is available to all the environments.

The table shown if Fig. 7.8, discusses the final inherited

privileges of the new classes and objects. Which become finally

applicable to the various classes and objects after the

inheritance. The another instruction which creates an object from the

class inheritance procedure is given below:

create object d_r with structures marks_sheet;

>

The object, d_r is created with the class, marks_sheet.

The complete jet of primitive objects in the class marks_sheet is

obtained and the privileges hold the same values as are present

in the structures (classes) declaration. Let us discuss the

privilege obtained with the inheritance of an object in more than

one objects as shown in the Fig. 9.3. The primitive objects of

the sub-object are known to the different objects inheriting the

sub-object, are different. Because, the privilege levels associ

ated with various objects are different. The following are the

instructions used to construct the scheme.

create object registrar

privilege private

include objects m_s

privilege general public

memory remarks

procedures givejmarks;

258

This

create object student

privilege general public

include objects registrar

memory s_marks

procedures displayjnarks;

create object teacher

privilege protect

include objects m_s

privilege protect

memory t_marks

procedures enter_marks;

The first instruction creates an object, registrar,

object inherits the other object m_s. The object m_s is

created earlier. The only primitive objects declared in the

object m_s having the privilege, protect and above will be

accessible maximum to the object registrar. Further, the object,

student inheriting the object, registrar for the purpose of

knowing marks, will be available. The another object teacher is

inheriting the object, m_s. This procedure is illustrated to

maintain the marks of the students. The teacher enters the marks

for the object, m_s through the procedure, enterjnarks of the

object, teacher. These marks are accessible to the object,
registrar directly and the object, registrar checks these marks

through the procedure, give_marks. Later the modified marks or

the correct format marks are available to the object, student by
the procedure, display_marks. Object, student here cannot know,

who has given the marks and actual marks given etc. Therefore,

this scheme is successful in providing the marks of the students
with proper protection.

259

To invoke a procedure the following are the steps which

help through an object-thread procedure to invoke a thread:

do procedure enter_marks of teacher;

The above instruction calls the procedure, enterjnarks

of the object, teacher. The procedure, enterjnarks can further

invoke some other object, registrar for the procedure inside

that object, registrar being invoked. Therefore, the thread moves

from the object, teacher to the object, registrar. The procedure

in the object, registrar is invoked with some arguments to be

passed as message. The arguments would be the marks of the stu

dents and the other reference for the database, where the marks

would be entered. Finally, the procedure in registrar finishes

execution and gives back control to the object, teacher hence,

returning the thread to the object teacher. The method shows to

control the procedure calls through a mechanism of thread, which

helps in maintaining the atomicity and concurrency of operations.

7.7 CONCLUSION

The methods discussed for handling messages as tasks in

the object-oriented heterogeneous environment are very effective

from the view point of inter-object communication. The separate

allocation of task is done in the form of the active objects,

which are invoked using the thread procedure. This procedure

helps in many ways such as, for the recovery of the data in cases

of rollbacks in concurrency control mechanism, tracing the active

object paths in heterogeneous distributed environment, perform

ance evaluation of block operations, concurrency control etc. The

asynchronous exited protocol with path assigning scheme provides

a better concurrency in the system over other methods.

260

y

*

For some existing applications, we have found that
message-task can result in superior performance. This is possible
for two reasons, first with memory DSM algorithm, data is moved
between hosts in large blocks. Therefore, if the application
exhibits a reasonable degree of locality in its data accesses,
reducing overall communication requirements. Second, many (dis
tributed) parallel applications execute in phases, where each
compute phase is preceded by a data exchange phase. The time
needed for the data exchange phase is often dictated by the
throughput of existing bottlenecks. In contrast, DSM algorithm
typically move data on demand as they are being accessed elimi
nating the data exchange phase, spreading the communication load
over a large period of time, all allowing for a greater degree of
concurrency.

The different layers separating the application,
network and system tasks are properly coordinating and the
message-task is efficiently handled by GURU shell.

A few Library functions running in GSQL and GURU are
provided in Appendix - F

261

CHAPTER - 8

OBJECTS AND DYNAMIC ENVIRONMENTS

8.1 INTRODUCTION

Often, during the object-oriented database handling, it

is necessary to modify the object and class structures due to the

changing object behavior [108], [180] . Most of the time the ob

jects keep changing their environment and therefore, their struc

ture needs modification [80],[83]. The modifications in their

structures can be performed by adding or deleting some classes or

objects from the current structure of the object, or some primi

tive objects can be added or removed in the object or class

structure. Later, the initial structure can also be recovered

from the backlogs if needed. In some applications, it is desired

to maintain the previous structure of the object or class, which

existed in past, at a given time [69], [198] .

The changes made in the objects are reflected to the

overall environment connected with the object. This environmental

change may cause inconsistency, which can adversely affect the

integrity of the system as a whole and leads to chaos. Due to the

changes made dynamically in the global schema, the consistency of

the distributed environment tends to change and hence it needs to

be preserved. The control messages are passed to the different

objects maintaining the database fragments to change the schema.

These messages are executed to incorporate the required changes

in the schema maintaining the consistency.

With the existing database management systems, the

facility of changing object structures is very rarely available

262

[4],[13]. Only a few prototype systems such as ORION and MORE

have the facility of changing structures but, that is up to the

prior defined instructions, which are mostly menu driven [25].

The available communication networks with workstations

need fast device control to meet the fast transparent distributed

database requirements. Due to many limitations on the networks,

the data cannot be provided with fast speed. Therefore, the

object environments need variable kind of support, which can be

handled with dynamically changing environments based on the
k

available network conditions.

In the following sections, efforts are made to support

the demands for changing object environments with the proper

design of object structures.

8.2 STRUCTURAL TOOLS

A dynamically changing environment is presented by an

example, the activities of a person can be clubbed in the differ

ent groups. Each group has some activities which belong to a

category of a task. Like, a person can be a good player of

tennis, a good teacher in the area of Computer Science and

Engineering, and also a good father. These distinct activities

are assigned to different classes, which are sports activities,

professional activities and the household activities. By clubbing

these activities the behavior of a person can be identified.

Further, the classes can also be broken into sub-classes like,

the sports activity can be further classified in indoor and

outdoor games activities etc. By linking these classes the task

becomes simplified, and well organized in a hierarchy. The top

node of the hierarchy is known as root node and the lower nodes

263 f

in the hierarchy are known as sub-nodes. A root node in the

hierarchy can access all primitive and complex objects of its

sub-nodes. The different component objects belonging to primi

tive and complex objects can be protected with locks in the

hierarchy. Which provide the tight privacy and security to the

component objects. Locking is made better userfriendly by provid

ing the different privilege levels, which can be used to identify

the right user. Therefore, the users do not require to assign any

external keys unnecessarily. But, whenever external locks are

required for some confidential data, the external keys are as

signed, only once in a while or as is relevant with an applica

tion. Which may become sufficient to retrieve the data from

objects with complete privacy and security. The unauthorized

access over the objects can be prevented by providing the proper

locking scheme.

The changes in the object structure may affect the

database adversely, in the sense, if the wrong manipulation is

done on certain data and the data structures, then the possibili

ties of loosing data would increase. Which may provide the wrong

results on querying the database from the different terminal

nodes in the distributed environment. To check the consistency

effect of the last operation, the intermediate locking arrange

ment proves to be a very useful scheme. Further, the facility of

maintaining backlog can prove to be an asset for the fast recov

ery operations. The backlogs provide the different previous

states of the operations from the last checkpoint. Which are

required for the rollback instruction invoked due the failure of

the acceptance test.

8.3 CLASS AND OBJECT STRUCTURES

264

A class can be defined as a category of the related

objects in some problem domain, which is identified based on

certain properties. For example, in the earlier discussed

example, Profession is a class. A class can inherit different

other classes and objects. The different classes are assigned

different class identifiers, which help in locating a particular

class.

An object can be defined as the collection of a few

small entities of the real world belonging to a class. An object

can inherit one or more classes and objects, in other way

representing the overall view as a class. At any instant of time

contents of an object provide the real status of the object. The

process of deriving an object from some other objects and classes

is known as instantiation of the object. GURU database is a set

of objects, where each object represents certain entity in the

real world. The objects can be differentiated by the unique

object identifiers and the objects can be categorized as the

active and passive objects. The passive object is an element in

an object which comprises of some values like memory variable,

the field variable etc. A passive object cannot be executed on

its own to process values. Where as an active object can be

executed and can process values on its own.

Further, the objects can be classified as primitive

objects and complex objects. The primitive object is the smallest

entity of the object defined in terms of some active or passive

element of the object like, some memory variables, database field

names, device name or some procedure/function of the object. A

complex object can be defined as the combination of a few objects

linked together. The complex objects can be linked in the form of

hierarchies, where different objects encapsulated in an object

265

♦

*

INPUT

A

OUTPUT

LOCAL MEMORY

' s

u

p

DATA BASES

SECURITY LOCKS

E

R DEVICES

V

1
PROCEDURES

S

0

FUNCTIONS

R CONSTRUCTOR

DESTRUCTOR

EMBEDDED DATA
STRUCTURES

EXTENSIONS

OBJECT IN GURU

FIG. 8.1

2 66

are known as the sub-objects of the object. The object, which

encapsulates the other objects is known as the super-object. The

data structure connecting the objects can be obtained by linking

the various pointers to the various other objects to form some

relation. The objects organizing the complex objects are known as

the component objects. The component objects manage with other

component objects and form a hierarchy with ordered set as

predecessor and successor of a component object as determined

individually in a complex object.

An object is shown in Fig. 8.1, which comprises the

individual components. Each and every object consists of a super

visor, which is also known as a guardian. The supervisor manages

all the activities of the object. The management of the individ

ual primitive objects is done with the help of a supervisor. The

supervisor, is something transparent as far as the structure of

the object is concerned. Therefore, the supervisor belongs to the

third dimension of the object. All kinds of transactions within

an object are done via the supervisor of the object. The transac

tions may include the different messages to be delivered to the

primitive objects. Which can store these messages in the mailbox

of the object, if the object is busy in some other activities.

Later, the message is executed after fetching it from the mail

box. The different primitive objects are as local memory, data

bases in the form of fragments, locks, devices, procedures,

functions, constructors, destructors, embedded data structures,

and the extensions.

Local memory in the objects comprises the memory

variables of different kinds, in GURU they can belong to some

basic classes or derived classes. The basic class memory

variables are of type character strings, numerics, Boolean, date

and a general type to record any kind of the data in any size,

267

an

CD

\

OBJECT

NAME

DATABASE

FRAGMENT

ALIAS

>

DATABASE

REFERENCE

NAME

FRAGMENT

DESCRIPTION

CODE

ADDRESS

OF

FRAGMENT

IDENTIFIER

FRAGMENT IDENTIFIER

'• i •
i

FRAGMENT HANDLING DATA STRUCTURES

FIG. 8. 2

INDEX

DESCRIPTION

CODE

which is known as a memo. The character string can have any mixed

characters which can be of maximum size as 950 characters wide.

Numerics can be of type integer, real or the floating point data.

Boolean variables can be recorded as logically true or false, or

yes or no type. Dates can be recorded in a standard format of the

data requested by the user. The various countries have their own

different formats in specifying dates. Therefore, an appropriate

format can be selected and stored. The memo can store any kind

and size of data. Derived classes, can define the individual name

to the passive object and in their own formats. Which can be used

later to define any kind of data with the objects as the passive

object memory variables.

Databases can be defined with their fragment names

(refer Fig. 8.2), which are recorded in the memory and as the

object is being referred, the fragments are loaded in the main

memory to be manipulated as required. The fragments are governed

in accordance with their qualifiers. Before accessing a fragment

its qualifier is checked for its selection. If the query

satisfies the fragment qualifier, then the query is processed by

loading the fragment in the main memory. Otherwise, the query

needs to be checked on other fragment qualifiers. If the

required fragment does not exist with the current terminal node,

then the query is routed to the terminal node where the fragment

exists. Later, the query is processed and the results are sent to

the current terminal node. This operation is carried out

transparently. The user thinks as if the fragment lies with the

current terminal node only. Finally, the results are obtained by

the terminal node, where the user is working. The fragments can

also be maintained from the local user's perspective. Where the

complete local autonomy is established. To establish the local

autonomy the different fragments maintain their synonyms and are

269
*

M

locked with the directives of the programmer. Locks are basically
divided into four kinds, which are private, protect, locked

public and general public. The private declared database can be

accessed in the object, where this is defined and cannot be

accessed by any other class or object inheriting this class or by

the other classes inherited into this class. Protected databases

defined with an instruction protect can be accessed in the inher

ited classes or objects but not outside. The locked public kind

of objects can be accessed any where, provided the key of the

lock is provided. Lastly, the general public declared databases

can be accessed any where in the database environment. These

locks can be used for any declared primitive object inside a
class or an object.

The individual fields can be protected by specifying

the appropriate lock, therefore, making a view in an object or a

class to be protected as required by the application programmer.

If some fields are not specified separately, which means that the

fields have the same lock as is specified with the fragment name

of the database. Otherwise, the field names are required to be

mentioned along with the kind of locking needed. The key of the

lock as discussed previously can be based on the privileges

assigned to the various users of the system. These privileges can

change with time and also can vary with the environment of the

problem.

The devices can also be made available to the object

environment, for example, hardware and software resources can be

defined as the devices, which are printer, plotter, video display

unit, keyboard, some area of hard disk, some interface software

etc. The reason in defining the various devices in the object is

to protect them with the unprivileged processes and have proper

270

control over them. For example, some data is needed to be

displayed on the user's terminal, then this data will only be

displayed to the user, provided the user has the privilege of

accessing the display unit in the current object's environment.

This makes the task very suitable from the privacy and security

view point. The provision of fine grain control applied on the

various defined devices provides the better integrity and

consistency.

Procedures and functions are basically methods in GURU,

these methods are separately defined by the users to process some

of the activities in the local object or class environment. These

activities are the user defined activities and may or may not be

existing with the internal configuration of the supervisor

belonging to the object. For example, a few database fragments

are required to be accessed in the way programmer wants, or .some

of the data structures defined be the programmer are required to

be handled in the ways the programmer requires. Therefore, apart

from the power available with the supervisor, the user defined

activities are also executed. To support these activities, GURU

provides the two kinds of methods: Procedures, which are

separately called by a programmer. The procedures have the power

to pass many arguments, and the results are returned back in the

same arguments, after the procedure is executed. This method of

getting the returned values in the corresponding arguments, is

known as call by reference method and provides more than one

results. Where as the other method known as Function, provides

the only one result and the arguments passed to the function

remain intact with the values given to them, after the function

is executed. Functions can be used in general expressions, where

they can play an important role to return the values in the

expression after getting executed, which are subsequently

271
"*

processed in the expressions.

Constructors are the procedures which are executed to

construct the block of the object in the memory and initialize

the different values to the object block. These values are as

signed to the memory variables or some prior defined status of

the object. In GURU, constructors are optional procedures, to be

declared by the programmers. If the constructors are not included

by the programmer, the supervisor initializes the values to all

the elements present in the object automatically with the default

values, when the object is instantiated.

Destructors are the procedures which are executed at

the time when the object is required to be removed. Destructors

make the memory free, which was occupied by the object. The

destructors are also the optional procedures, declared by the

application programmer. The user assigns a destructor program

separately, which is intended to remove all the area occupied by

the object as well as, the application programmer can perform

many more operations, to compensate the deletion of the object.

The method could be used to inform the other objects related to

the object being removed, regarding the policies to be adopted

after the current object is removed. This operation updates the

data structures dependent on the current object.

Embedded data structures are the mechanisms through

which the different fragments of the database can be controlled

and the extended structures help in preparing the various views

and many more operations could be performed with them. The status

of the object can be defined, the procedures and functions are

linked with proper relations, the inheritance of classes and

objects can be recorded and lastly making a room for the changes

272

LOCKS /
/

PROCEDURES

+

FUNCTIONS

+

EXTENSION

COMPLEX OBJECT

FIG. 8. 3

273

V

CLASS HIERARCHY

FIG. 8.4

27L

SINGLE PROCESSOR\ ,, NULL

to be incorporated in the data types and the structure as a whole

of the object. The extensions mentioned make a room for the new

kind of primitive objects which could be declared by the

programmers.

A complex object is shown in Fig. 8.3, which comprises

the two sub-objects. The complex object is also known as super-

object of the two sub-objects. Similarly, the different objects

can be connected to form a hierarchy of objects. A super-object

can access all the resources of its sub-objects. The resources

can be made available to the higher objects in the hierarchy,

provided they have the privilege to do so. The locks are shown to

lock the access of the lower objects. Therefore, to perform

operations with the lower level objects in the hierarchy, the

keys should be made available with the super-objects. The keys

defined in GURU are applicable automatically in some cases of the

objects, which belong to the higher privilege level. This makes

the objects relieved from the burden of specifying keys to commu

nicate with other objects. The primitive objects of the lower

objects in the hierarchy are controlled from the higher level in

the object hierarchy. The primitive objects are local memory,

database fragments, devices, procedures, functions and the exten

sions. The extensions are the declared class or object struc

tures which modify the structure in a non-standard prescribed

way. The type of passive objects can be associated to declare the

format of the data, for which the extended data structures can be

used to have the proper primitive object linking. The further

discussions are done later regarding the class and object table

maintenance for the extended structures. For example, a class

name, computer is classified in Fig. 8.4, with the sub-objects as

micro-computer, mini-computer, main-frame-computer and super

computer. Next level can further be achieved which consists of

275

V

^

I/O, CPU, and memory, the new level of that could be further

derived as VDU, key-board, parallel processor, single processor,

main-memory and back-up memory. In the end all the last level

components can further be emerging in a common null pointer. That

shows the leaf nodes are all connected to a null pointer. In this

way a class or object hierarchy is organized. The behavior of any

object node in the hierarchy can be seen through the other nodes

linked as sub-object nodes to the object node in the hierarchy.

In distributed environment the structure of the remote

objects can be changed by sending messages to the object. The

message which requires to change the structure of some object is

known as the structural message in GURU. The format of a message

is shown in Fig. 8.5. To start with the message packet, the

length of the message is given in terms of bytes. The size of the

message packet comes first. Next is the number of terminal nodes

to which the message is required to be directed and after this

the addresses of the terminal nodes lying on the heterogeneous

network, to be communicated. Along with each of the terminal node

the address of the DBMS is also enclosed, which tells about the

DBMS to which the message belongs to. Next the user specifies its

own identification in terms of User's name and the password.

Which makes the system to accept the message, if the user's name

and the password are correct. Later, the user specifies the name

of the application the user wants to interact and along with this

user also specifies the name of the schema in that application,

to which user wishes to interact. After getting the last

procedure accepted, the type of operation requested by the user

is being indicated through a message code. The structural

messages given for changing the structure of the class or object

have a specific indicated code. The message data is given,

276

through the type of message byte. The message is accepted as

structural message and there after the message is translated in

the actual language code with the help of an intelligent transla

tor. The last item in the message format is the end flag, which

indicates the end of the message packet.

The translator discussed earlier comprises all regis

tered DBMSs translation codes on the network. If any DBMS is

registered to participate in the distributed environment and

share the common database among the different terminal nodes

running the different DBMSs, then the translator is a must to

support the global environment. Which translates the different

languages in exactly equivalent instructions to the other lan

guages in the global environment. If the exact translator is not

available with the terminal node to which the message is direct

ed, then the message is directed to the terminal node which

translates the message and the translated message is sent to the

place where it is to be processed. A procedure known as registra

tion is executed to identify any new terminal node, which wanted

to participate in the activities of the global data sharing

scheme.

8.4 EXTENDED USER DEFINED AREA

This area has been playing an important role in the

dynamically changing environment, by maintaining the different

details of the trigger functions discussed in the next chapter.

The different tasks can be performed with the help of triggers

which become beneficial from the view point of checking

performance and other details with the system. The other

objectives which are solved from this extended area are the

intelligent functions which can be built with the system to help

277

V

in various ways like efficient query handling, with the least
provided information the system performs, as is required by the
user etc.

The following GSQL instructions use the extended user
defined area of object structure:

copy object s-object-name to extended structure of object
d-object-name;

copy extended structure of object s-object-name to object
d-object-name;

The above first instruction write the properties (con
tents) of the object s-object-name to the programmable extended
structure area of the destination object d-object-name. Any
properties of s-object-name can be copied to the d-object-name
and later can be retrieved by the same object or the object
inherited from the class used by the s-object-name to maintain
consistency. This instruction is mostly used to store the data
required for triggers.

The instruction move extended..., copies the extended
structure data as properties of an object. The extended structure
data of the object s-object-name is copied to the object d-ob
ject-name, the d-object-name starts having the new properties
after the instruction is executed. For maintaing consistency, the
directions of the first instruction should be followed.

8.5 CLASS AND OBJECT CREATION METHODS

A class can be created by specifying the nature of the
primitive objects to be defined. Most of the kinds of passive

278

MESSAGE

LENGTH

DESTINATION

TERMINAL

CODE

TYPE OF

MESSAGE

SOURCE

TERMINAL

CODE

DESTINATCON

DBMS

CODE

SOURCE

DBMS

CODE

MESSAGE FORMAT

FIG. 8. 5

^

USER

NAME ft

PASSWORD

APPLICATION

NAME
SCHEMA

NAME

*

CM

objects are supported in a class. These structures can be

recorded in the memory to inherit the properties of the defined

objects. A class in itself is an environment, which supports a
complete behavior of the involved objects. The following instruc
tions create a class in GSQL:

define structure class-name

[include object object-name-list

[as {subset \ superset \ union \ intersect}]]
[include structures class-name-list

[as {subset \ superset \ union | intersect}]]
[datafiles data-file-name-list

[fields field-name-list]]

[memory memory-variable-list]

[procedures procedure-name-list]

[functions function-name-list]

[privilege privilege-code]

[device device-name-list];

The above instructions, create a class with the name,

class-name. The statement, structure is called a class in GSQL.

Therefore, the class-name is a must to be defined, to declare a

unique class-identifier. A dynamic class table is shown in Fig.

8.6. The table records the class identifier as a class name. A

class can inherit all kinds of objects and the classes. The

include clause is an optional instruction, which provides the

different classes and the different objects to be inherited in

the defined class. Constructors can be defined by the name of the

class in the class structure under the procedure statement. The

defined constructors play an important role to establish the

various data structures and maintain the right position of the

class in the class hierarchy. Constructors also maintain the data

structures to place the different relationships of the other

280

classes and objects with the database fragments maintained in

terms of datafiles. The database fragments of a class are related

with certain relationships maintained as the key fields organized

with required indexes and the fragment qualifiers. Therefore, by

declaring the passive objects in the class (structure), it cannot

be suffice but, there has to be certain relationships to be

declared which would be maintained with the data structures. The

established data structures, help in accessing the data from the

database and checking the different privileges to prevent unau

thorized access on the database. The data structures also provide

a path to access procedures, which access data efficiently or in

the required manner.

^

The fields clause in the above instruction is also an

optional instruction. Which provides certain locks to the fields

prescribed with the field names and the fragment name to identify

the right field. This provides a view management to the data

fields and provides the privileged access only. The privilege

clause can be used before any primitive object declaration to

provide the privilege to a primitive object. The memory clause

declares the local object memory variables, which can be used to

record the local object environment parameters. These memory

variables can also be accessed as discussed in the previous

section. The procedures and functions are also used to define the

user's procedures for certain tasks. These can simply be called

by calling their names with the request made to the supervisor of

the object. The following is the instruction used to create

objects in the memory:

create object object-name

[include object object-name-list

[as {subset superset union intersect}]]

281
*

[include structures class-name-list

[as {subset | superset \ union \ intersect}]]
[datafiles data-file-name-list

[fields field-name-list]]

[memory memory-variable-list]

[procedures procedure-name-list]

[functions function-name-list]

[privilege privilege-code]

[device device-name-list] ,-

The above instruction declares all the primitive ob

jects as usual except it has a facility of maintaining the com

plex objects with union and intersect data relations. The other

feature is that, the declared object does not essentially require

a class structure in GSQL. Later, the classes can be inherited by

other instructions. Therefore, in the beginning the skeleton of

the object can be a bared structure. The another format which

directly derive an object from a class is illustrated as below:

create object object-name with structures class-name-list;

The above procedure inherits the complete class

structure ot class-name-list in the object declared with objecL-

name. All primitive objects can be accessed by the object name

first and then with an arrow symbol '->' to the primitive object

name. For example, the memory variable, mem_var of an object objl

is written as objl->mem_var. The instructions, which change the

structure of the object are as following:

move object object-name-list of obj-class-name-1 to

obj-class-name-2;

move structure class-name-list of obj-class-name-1 to

* 282

obj-class-name-2;

move procedures procedure-name-list of obj-class-name-1 to

obj-class-name-2;

move functions function-name-list of obj-class-name-1 to

obj-class-name-2;

move memory mem-var-list of obj-class-name-1 to

obj-class-name-2;

move datafiles data-frg-list of obj-class-name-1 to

obj-class-name-2;

The above instructions move a list of objects from a

class or from an object to the other class or an object. In GURU,

objects are also treated as the classes for the inheritance

property. A concept of metaclass is maintained by maintaining the

class inheritance hierarchy as the object inheritance hierarchy

is maintained. Similarly, all other instructions are used to move

the primitive objects from one object or class to another object

or class. This procedure helps in changing the structure of the

class or the object as per the requirement. The other instruc

tions which remove the links from the inherited objects or class

es and with the other primitive objects are discussed as below:

>

remove object object-name-list from obj-class-name;

remove structure class-name-list from obj-class-name;

remove procedures procedure-name-list from obj-class-name;

remove functions function-name-list from obj-class-name;

remove memory mem-var-list from obj-class-name;

remove datafiles data-frg-list from obj-class-name;

The above first two instructions remove the list of

objects or classes from a given class or an object. The other

instructions remove the list of the given primitive objects from

283
*

a given class or an object. Similarly, the instructions discussed

below insert certain objects or classes into the given class or

the object. The other instructions insert primitive objects into

the given object or the class with the specified privilege.

insert object object-name-list into obj-class-name

[with privilege privilege-name];

insert structure class-name-list into obj-class-name

[with privilege privilege-name] ;

insert procedures procedure-name-list into obj-class-name
[with privilege privilege-name] ;

insert functions function-name-list into obj-class-name
[with privilege privilege -name] ;

insert memory mem-var-list into obj-class-name

[with privilege privilege-name] ;

insert datafiles data-frg-list into obj-class-name

[with privilege privilege-name] ;

as below:

The object and class handling instructions can be seen

display object object-name structure;

display structure class-name;

display memory of object object-name;

display memory of structure class-name;

display procedures of object object-name;

display procedures of structure class-name,-

display functions of object object-name;

display functions of structure class-name;

display devices of object object-name;

display devices of structure class-name;

display privilege of object object-name in structure

284

TITLE

BLOCK

CLASS

NAME

CLASS TITLE .
POINTER

• LOCK-1 I—»
SUPER CLASS

NAME-1 —»- LOCK-2

CLASS

SUPER-CLASS

COUNT
SUPEP-CLASS

NAME-2

i
i

l

POINTER
SUPER-CLASS

POINTER •
i

i
-i i p- LOCK-1

CLASS

NAME

SUB-CLASS
COUNT

| ft* SUB-C LASS
NAME-1 • w LOCK-2

SUB-CLASS

POINTER *

SUB-CLASS
NAME-2

1 r

CLASS 1
i r. . 3i

POINTER FRAGMENT

COUNT

— J

FRAGMENT
NAME-1

— »- LULft-l

| >•
+• LOCK-2

FRAGMENT
COUNTER *

FRAGMENT
NAME-2 '

1
i

FIELD

COUNT

I

I LOCK-1
FIELD

NAME-1

| *
FIELD

POINTER *•
LOCK-2

*

FIEtD

N/iME-2

i

i

DEVICE

COUNT
i
I LOCK-1

DEVICE
NAME-1

1 N
DEVICE

POINTER *•

ft*
i *- LOCK-2

DEVICE
NAME-2

1

PROCEDURE

COUNT

' i

1 1 p
-1 LOCK-1

PROCEDURE

POINTER •-

1 *» PROCEDURE ,
NAME-1

*"
1

• >\ LOCK-2

PROCEDURE

NAME-2

1
FUNCTION

COUNT

i

FUNCTION

POINTER
FUNCTION

NAME-1

I * LOCK-1
. r » • LOCK-2

ACTIVE CLASS

NAME

FUNCTION

NAME-2

-I

1

1

1ACTIVE CLASS

POINTER *•

LOCK-1
CLASS- 1

1 *" LOCK-2

EXTENSION

AREA •"

CLASS-2
i

1

I
1

LOCK-1
EXTENSION
AREA-1

1
«r

1 *. LOCK-2

I EXTENSION ,

AREA-2

•

I

1

285.A

CLASS TABLE

FIG. 8.6

-

EXTENDED

DAT A

STRUCTURES

V

VIRTUAL MEMORY

OBJECT

1

OBJECT

2

OBJECT

n

OBJECT

MANAGER

2^Jl

TRANSACTION

MANAGER

0

OBJECT HANDLING MECHANISM

FIG-8.7

255.B

D

A

T

A

M

A

N
A
G
E

R

LOGICAL

VIEW OF

OBJECTS

PHYSICAL
VIEW OF

OBJECTS

class-name;

display privilege of structure class-name in structure

class-name;

display privilege of object object-name in object
object-name;

display privilege of structure class-name in object
object-name;

display privilege of memory mem-var in object
object-name;

The above instructions display the primitive objects

from the object or class structure. The privileges of the primi

tive objects in the declared classes or objects can also be

displayed.

A dynamic class table keeps the record of the various

declared classes. A similar table is constructed which maintains

the data structures of the defined objects. The different objects

created in the application are recorded in the object table. The

created objects consist of the different classes which are re

ferred from the class table for the future reference and link

ages. The objects comprise of different sub-objects which are

listed in the table of the objects. The objects can also hold

relationship with another object as a super-object. The dynamic

table for the super objects is also constructed.

8.6 OBJECT MANAGEMENT

Objects are managed separately with the help of an

object manager. In Fig. 8.7, the transaction manager has a direct

link with the object manager, which manages the objects dynami

cally. Objects can be managed in the main memory using the virtu-

286

al memory concept. Any objects which are not referred frequently

are mapped in the backup memory using the virtual page scheme.

This procedure saves space in the memory. This also makes room

for more number of processes to be activated in the main memory

simultaneously.

8.6.1 Object Manager

The task of handling the objects is performed by the

object manager. Objects are treated as separate entities. Objects

are placed in the memory exactly alike the processes are recorded

and handled by the process scheduler or task handler. This

mechanism is implemented in the same fashion as the page tables

are referred. The object tables are referred for the objects to

be located in the memory, if an object is missing from the main

memory, an object fault is generated and the object is brought

from the backup memory into the main memory. The transfer of

object is carried out with the help of object and data managers.

The data manager traces the logical view of the data and finally

the physical data is retrieved from the object tables. The change

in the structure of the objects and classes can also be

communicated to data manager by the object manager. The logical

and physical views of the data are appended accordingly. Further,

the object and class tables are also appended. The data manager

manipulates the data in the form requested by the object manager

and any other unit of the GURU requiring the service. The

extended data structures are recorded in the memory to establish

the various links and relationships of the future referred data

types and the data referring schemes for the extensions of the

object structures.

8.7 PROBLEM IMPLEMENTATION

287

*

*

A problem can be defined and finally implemented in
GSQL to alter the object and class structures.

8.7.1 Scenario

Let us consider an example of some university running
only two departments of engineering and one Computer Centre. The
two departments are Computer Engineering Department and the other

is the Civil Engineering Department. Both the departments have
their own computer cell and the computer personnel working with
them. Since, the two departments are working in two different

problem domains, therefore, the specialization of their computer
personnel are also different. The Computer Centre is using the
computer personnel in the mixed domain. Since, both the

departments are taking their problems to the computer centre. In
this example, for the whole university, the following are the
operations suggested, where the change of the structure of the
objects would be needed:

i. For solving the problem of some mixed domain in the

department of Computer Engineering, some knowledge is required to
be shared for some project being run under the Department of
Computer Engineering. Therefore, some computer personnel are

transferred from the Civil Engineering Department to Computer
Engineering Department. This causes the structure of the object
environment dealing with Computer Engineering applications as

well as the object environment dealing with Civil Engineering
applications are changed.

ii. Let us take the other side, where some of the computers are
removed, because they were outdated in Computer Engineering
Department. This also changes the structure of the object.

288

iii. A new department, Electrical Engineering is introduced in

the university. Which at present does not have computer

facilities of its own, but, it takes the help from the Computer

Centre.

The above discussed points make use of the different

GSQL primitives to be formulated into the final changing object

environments dynamically. The dynamically changing environment is

available in the heterogeneous distributed environment, so that

it helps to the other users to know about the details of the

computer facilities in the different departments of the

university and the computer centre.

8.7.2 Implementation Strategies

The problem is formulated to handle the environment

discussed above. The two basic classes are defined in the

beginning. These classes consist of the details of Computer

Equipment at various places in the university and the other is

the computer personnel or the computer manpower. the following

are the definitions of the two classes:

Class declaration for Computers-

define structure computer

memory hp, dec, wipro, novel

datafiles hpf, decf, wiprof, novelf

procedures equipment, price

functions test_equip;

Class declaration for computer manpower-

289

k

*

define structure cjnanpower

memory maths_exp, data_struct_exp, hidro_exp
datafiles mef, dsef,hef

procedures skill, wages, efficiency

functions skill_test;

create object computer_o with computer

create object c_manpower_o with cjnanpower

The above statements define the two classes one with

name computer and the other with name c_manpower in GSQL. These

two classes can be used in creating two departments and a

Computer Centre. Further, the two objects computer_o and c_man-
power_o are created. The following instructions create the three

different objects:

create object comp_e_d

include objects computer_o, cjnanpower_o
procedures set_comp_rel;

create object civil_e_d

include objects computerjo, cjnanpower__o
functions test_civiljcel;

create object comp_c

include objects computerjo, cjnanpower_o
functions test_comp_cjrel ;

The university record consists of the two departments

and the computer centre. Therefore, the object with the name of

the university can be created in the following way:

290

create object universityjc

include objects comp_e_d, civiljs_d

functions testjiniversity;

The above instruction creates an university object with

the name university_x. Now the earlier operations are tried on

the university_x hierarchy.

i. Computer personnel are transferred from Civil Engineering

Department to Computer Engineering Department:

move memory hidrojsxp of civiljs_d to comp_e_d;

The above instruction transfers memory variable with name

hidro_exp to the object comp_e_d. After this operation the memory

variable hidro_exp is remove from the object of civil_e_d and is

added in the object of the comp_e_d.

ii. Some computers which are out dated are removed from

Computer Engineering Department as follows:

remove memory dec from compjsjd;

The above instruction removes the memory variable dec from

the object comp_e_d.

iii. A new department with name Electrical Engineering is being

inserted in the university as follows:

create object e_e_d

include objects comp_c

291

functions test_civil_rel;

insert object ejajd into object university_x,-

The above instruction inserts the department e_e_d into
the object university_x.

8.8 CONCLUSION

The various schemes of defining the objects and classes

are discussed. The objects have a wide range of the primitive

objects. Which are found exclusively better for their structure,

available with other object-oriented distributed database manage
ment systems. The metaclass approach has been implemented. The

existing object model is the best for the high speed computer

terminal nodes having the large main memory size and also han

dling the large databases in the dynamically changing heterogene

ous environment. The objects maintain the extended data struc

tures, which can be used for various purposes. The methods used

with various triggers, maintain the various finest level trans

actions going on with GURU. This approach helps in maintaining

the atomicity and the serializability of the concurrent opera

tions. The other approaches used with the extended data struc

tures provide the maintenance of the database fragments and the

virtual objects. A statistical approach is used for the purpose

of allocating the various virtual objects and the fragments at

the different terminal nodes. Further, the methods used with

extended structures are helpful in providing the strict privacy

and security to the views of the object in various environments.

292

CHAPTER - 9

OBJECT PROTECTION AND SYSTEM ADMINISTRATION

9 .1 INTRODUCTION

In the modern time of advance distributed processing,
the available protection schemes for the database and objects are
not properly established, which are leaving behind the

possibility of getting the access and power to modify, the
confidential precious data in the database by the unauthorized
processes. Therefore, there is a great need to device certain

foolproof systems, which make impossible to temper or access the

data by the unauthorized processes. In this direction so many
efforts are made [193] ,[196] , but with the current trend of
getting the massive multiprocessor environment with distributed
support running multiple processes concurrently, some times in

thousands, make the system weak, from the view point of privacy
and security. Unnecessarily putting the security locks in the

system also make the system slow, inefficient, and non-user-

friendly. Therefore, there is a great requirement of providing
the optimal locks, which make the system with tight security and
on the minimum compromising the efficiency issue of the system.

A system which changes the priority of its own objects

and the privilege levels dynamically, depending upon the require
ments, puts forward a great challenge to the privacy and security
of the different components on behalf of the other parameters to
provide support. The object-oriented distributed database manage
ment system is the one which needs more attention to guard its
objects from unauthorized processes, running in the dynamically
changing environment. Since, the processing is done on object

293

level, the objects inter-link the different processes by the

thread control mechanism [60]. One active object can deal with

multiple threads to support the current process. Therefore, the

different active objects interact in the way to access and modify

the structure of the object and the privilege levels of the

primitive objects based on the requirements. The message based

communication among the different objects threats the privacy and

security to the object access mechanism [156]. A message itself

is an object, which is transmitted through the communication

network to remote terminal nodes. Where, the message object is

reached to the required object supervisor through a message

object processing channel. This processing channel is the one

where the message object could be tempered or accessed. There

fore, vast arrangements are made by the communication network

servers to guard the objects. There are many communication net

works available to communicate with the global network environ

ment. Out of them a few are popular due to higher communication

band width and easy availability. Ethernet is the one, which is

more extensively adopted by a wide category of the people. This

provides speed of communication of about 10 megabytes per second

[196]. Using ethernet, which does not provides security to its

data but, one can have suitable fast communication among the

terminal nodes on the global network.

The communication link takes the information packet to

the terminal node to which the message is required to be

directed, the message is accepted by the terminal node from some

internal port of the node [129]. Since, the message enters to a

particular terminal node, the results may also be expected to

come via this port, hence, causing an easy threat to the results.

Therefore, a different procedure is adopted to alter the route of

the results, by changing the ports randomly, making difficult to

294
>

know which port is transmitting the results. This is illustrated
in the next section.

9.2 KINDS OF PROTECTIONS

Basically, three kinds of protections are used in a
computer system. First is system controlled protection, this kind
of protection is used by the system of its own, to protect the
different processes and system resources, software and hardware,
for the proper mechanization of the system. Second is controlled
by the system administrator, this kind of protection is provided
by the system administrator for proper resource utilization,
like, hardware and software utilization. System administrator
allocates the different memory pages to the different users based
on their requirement. System administrator makes available the
different system software, databases and application software
required by the users based on the actual necessity to the right
kind of user. The last kind is the user controlled protection,
this kind of protection is done by the users to their own re
sources and making their resources available to other users.
Before providing the control to others, the authorization of the
users is checked. All the three kinds of protection mechanisms
play their individual important role to guard the computer re
sources from unauthorized processes.

All the above three kinds of protection mechanisms are
implemented in GURU. System protection is implemented of its own,
which is done by GURU with the help of a shell, which protects
and maintains the various access levels in the system software
from the outside processes. The internal processes of GURU are
protected by providing the different consistency measures and the
privilege levels. The Second kind of protection is made available

295

DOM-4 DOM-5DOM-1 DOM-2 DOM-3

l-3y

JT >•

/ / /
i-2y / / y^

T-1/ "y? X S fc
Or

OBJ-1
p-1
P-2

P-3
P- 1
P- 2
P-3

P-1
P-2

OBJ-2 NIL P- 1 P- 1
P-4

P-1

OBJ-3 P-1
P-2

P-2 NIL NIL

,

OBJ-A
P-1

9-U
P-2 NIL NIL

OBJ-5 P-4 NIL NIL NIL

OBJ-6 NIL P- 1 P-3 NIL

OBJ-7

i

1
i

i *

'

if/

OBJ- n ' OBJECT-n

T - n '• TIME - n

DOM- n '. DOMAIN- n

P- n ; PRIVILEGE-n

NIL •. NO PRI'yiLEGE

LIMITED PRIVILEGE CONTROL IN DYNAMICALLY CHANGING ENVIRONMENT

FIG. 9.1

.. 'j *.

296

-4

A

>

by the system administrator. In GURU, the system administrator
defines the basic access rights of the persons logging in the
GURU DDBMS environment. The resource access and manipulation
rights are granted by the administrator, which fixes the user
under some resource sharing domain. The type of the domain and
the available facilities, which can be shared by the person
depend on the type of the person and the category under which the
person is a registered user. The last category provides the
access grant rights to the different domain users by the resource

owner. In this kind of protection, the users themselves define

the other users who can access owner's resources in the way owner
has assigned. The all the three kinds of protection schemes are
discussed with the new features in GURU using the object-oriented
approach in dynamically changing environments.

The different considered objects are designed and
implemented for a few domains only. The protection scheme for the
view is implemented in the form of access matrix. In case of
changing environments the few domains are interchanged or they
are added to some domains etc. as shown in Fig. 9.1. This pro
vides a set of access matrices for changing domains. This method
is only applicable where, the domains vary with the given limits.
These limits essentially are very few. Otherwise, it increases
the burden of handling a large number of access matrices. And,
the different approaches like sparse matrix handling and some
other kinds of matrix handling techniques are used to solve the
problem of protection. These methods cannot be used to protect
data of a heterogeneous database in the object changing environ
ment. Therefore, we have suggested a scheme which requires the
structures to be implemented in the different problem domain and

can be solved using the concept of object-oriented design philos
ophy. For this, GURU provides the enormous extended power of

297

changing structures and the privileges, so that the other chang

ing structures are automatically implemented in the structural

object data structures designed and implemented in the changing

environment.

9.3 SYSTEM LEVEL PROTECTION

System level protection is implemented with most of the

systems working to protect their environment in which the system

processes are running. Without this protection, the whole system

cannot run smoothly, because, the other application processes can

disrupt or over write system memory where the system programs are

running and finally the system is crashed. To guard such chaos

most of the systems are equipped with the hardware which protects

the memory. The latest processors have the in-built facility to

protect the memory areas, where the system programs are running.

Some special instructions are implemented with the latest proces

sor chips, which distinct the operations being executed in the

different regions of the memory and generate interrupts if any

process is intended to write in the protected memory zone, where

the system programs are running. Besides this, the different

privileges and priorities are assigned to the different system

processes, which are executed in accordance with the privileges

assigned to them.

A limited privilege control in dynamically changing

environment is shown in Fig. 9.1. On X-axis, various domains,

DOM-1, DOM-2, DOM-3, DOM-4, and DOM-5 are shown. On Y-axis,

various objects, OBJ-1, OBJ-2, OBJ-3, OBJ-4, OBJ-5, OBJ-6, and

OBJ-7 are shown. The different objects can be allocated to

different domains with the provided privileges. At an instant of

time, T-l domain, DOM-1 is assigned an object, OBJ-1 with the

298
>

i

XNOR

XOR

AND

OR

T4XI + Z1 /' M-L-C-q

OOM-XI+y,

p-n i PRIVILEGE-n
X-n ! INTEGER
y-n ."INTEGER

F-L-C-n : FINE LEVEL
CONTROL-n

M-L-C-n: MEDIUM LEVEL
CONTROL -n

T+XI+22

{ DOM-Xl +y7

INTERCHANGE
OPERATION

OR
AND

SAMPLE OPERATIONS ON PRIVILEGE
FIG.9.2

299

(M-L

T+XI + 23

DOM-XH-y3

NIL

C-p

U-A-P-r

S-A-A-P-n

S-A-P-p: SYSTEM
ASSIGNED
PRIVILEGE
SYSTEM
ADMINISTRATOR
ASSIGNED
PRIVILEGE
USER
ASSIGNED
PRIVILEGE

S-A-A-1

U-A-r

privileges P-1 and P-2 and no other privileges are assigned.

Therefore, DOM-1 can operate the OBJ-1 for the privileges P-1 and

P-2 only. Similarly, the other domains are given access to the

different objects with the privileges assigned. When the time is

also considered as a parameter, the different domains are given

access to the objects in the time frame specified with the

minimum slots as T-l, T-2, T-3 etc. These slots are known as

timestamps of the different domains with different objects and

the privileges vary accordingly. The three dimensional matrix

shown in Fig. 9.1, is very difficult to store, due to its large

memory requirement. Therefore, a method is suggested as shown in

Fig. 9.2. The vertical columns represent the X-axis and the Y-

axis elements as usual from the Fig. 9.1. The different domains

and objects at a time slot, known as the timestamp are produced.

The changes in the privileges at the different time

slots can be derived as shown in Fig. 9.2. The applicable

conditions at the different time slots can be governed with some

Boolean expressions, which can be applied and the resultant

timestamp privileges can be acquired. These privileges are

assigned to the resultant timestamp domains. The three kinds of

privileges can be assigned by the different processes running in

the system. The first is the system assigned privileges. These

privileges can be assigned by the different system processes

running in the heterogeneous environment with different

authentications. The privileges can be assigned based on certain

prior defined rules for the system operation at the various

levels in the global environment and are represented with the

symbol S-A-P. The next kind of privileges are the system

administrator assigned privileges and are represented with symbol

S-A-A. These privileges can be assigned by the system

administrator at any time to maintain the heterogeneous global

300

'4

\

environment. All the resources in the system have to go through
the S-A-A assigned privileges. The last kind of the privilege
assignment is the user assigned privilege and is represented by
a symbol U-A. All users having the system level privilege can
assign their resources to any other domain in the system.

Therefore, the different users can assign their privileges to any
other users working in the heterogeneous environment. This scheme

is represented in Fig. 9.2. and the direct arrows illustrate the

different time level privilege assignment to the different

domains for some privileges over the other objects, with the

forced values. The different expressions used in assigning the
privileges at the different intervals of time are shown.

The users writing the system level programs are also

required to provide the different protection schemes so that the

unauthenticated applications cannot be entertained by the de

signed application procedures. Such kinds of implementations are

carried out in GURU, which lets the application programmers
define the different levels of protection to their own primitive
and complex objects. The following instruction in GSQL (GURU SQL)
shows the different levels of protection provided to its primi
tive objects:

define structure marksjsheet

privilege protect

memory sno, name, class, marks

privilege print

device printer_3, printer_7

privilege read

datafiles mohan

privilege general public

procedures read_record, readjnarks;

301

The above instruction in GURU defines a class named

marks_sheet, which has the memory variables sno, name, class and

marks defined with privilege protect. The protect privilege lets

the memory variables known in its own class environment and the

different environments inheriting this class, marks_sheet. All

other objects or classes inheriting the class, marks_sheet can

refer all the memory variables but from the other out side of

this environment, these memory variables cannot be accessed. The

next declaration in the instruction is device with privilege

declared as print. This shows that the devices declared in the

list of the device names i.e. printer_3, printer_7 can only be

referred inside the class, marks_sheet with the privilege, print

only. No other operation is allowed on these devices. This scheme

protects the devices declared from the other processes. The other

clauses in the last instruction are datafiles with privilege

declared as read only. The declaration, datafiles is the declara

tion for directory names of the database fragments. Therefore,

the database fragment mohan has only privilege to read its \

tuples. The procedure declaration in the above instruction is for .

the procedures defined by the application programmer to handle

certain assigned tasks. The procedures read_record and read_marks

are separately written in GSQL and have the privilege to be y-

called from any where including the outside environment.

Similar operations as defined above are implemented in

the system software, which run on the system to support various

system tasks. Further, the different objects can be created using

the classes and enforcing the new instructions in the same object

to support additional tasks. The following instruction creates an

object:

302 >

i r

create object mjs

privilege protect

include structures marksjsheet

privilege private

memory ch_l

privilege general public

functions test_ty;

The above instructions create an object, m_s, which

inherits the class, marks_sheet. The privilege of inherited class

is declared as protect. Therefore, the primitive objects derived
from the structure (class), marks_sheet are only known to the
object m_s and the other objects inheriting this object. The
additional memory variable, ch_l is only known inside the object,
m_s. The function test_ty is available to all the environments.

The table shown if Fig. 7.8, discusses the final inherited

privileges of the new classes and objects. Which become finally
applicable to the various classes and objects after the

inheritance. The another instruction which creates an object from the
class inheritance procedure is given below:

create object d_r with structures marksjsheet;
>.

The object, d_r is created with the class, marks_sheet.
The complete set of primitive objects in the class marks_sheet is
obtained and the privileges hold the same values as are present
in the structures (classes) declaration. Let us discuss the

privilege obtained with the inheritance of an object in more than

one objects as shown in the Fig. 9.3. The primitive objects of

the sub-object are known to the different objects inheriting the

sub-object, are different. Because, the privilege levels

303

associated with the different objects are different. The

following are the instructions used to construct the scheme.

create object registrar

privilege private

include objects mjs

privilege general public

memory rjnarks

procedures givejnarks;

/

create object student

privilege general public

include objects registrar

memory sjnarks

procedures displayjnarks;

create object teacher

privilege protect

include objects mjs

privilege protect

memory tjnarks

procedures enterjnarks;

The first instruction creates an object, registrar.

This object inherits the other object m_s. The object m_s is

created earlier. The only primitive objects declared in the

object m_s having the privilege, protect and above will be

accessible maximum to the object registrar. Further, the object,

student inheriting the object, registrar for the purpose of

knowing marks, will be available. The another object teacher is

inheriting the object, m_s. This procedure is illustrated to

maintain the marks of the students. The teacher enters the marks

304

A

>

i

for the object, m_s through the procedure, enter_marks of the
object, teacher. These marks are accessible to the object,
registrar directly and the object, registrar checks these marks
through the procedure, givejnarks after processing. Later the
modified marks or the correct format marks are available to the
object, student by the procedure, display_marks. Object, student
here cannot know, who has given the marks and actual marks given
etc. Therefore, this scheme is successful in providing the marks
of the students with proper protection.

9.4 EXTENDED USER DEFINED PROCEDURES

So far, none of the existing distributed database
management systems have provided a scheme for the protection of

the large number objects in an infinite domain, where the large
number of privileges are dynamically assigned to the objects.
These privileges are not defined earlier in the system. To handle
such kind of environment, a facility known as extended structure
facility is available for the dynamically changing object and
class structures. This facility provides the scope for the imple
mentation of allocation space for the data structures being
maintained and provide a systematic control over them to maintain
the consistency in the system. The Fig. 8.6, shows the extended
structure facility in GURU.

The changing object structures are implemented in the
system by reallocating the space for the required class and the

object. The affect on the net system is analyzed from the view
point of maintaining consistency in the overall global system. In
case, if the consistency of the system disturbs then, the system
correction procedure is invoked after checking the privileges of
the user requesting to implement such changes into the system.

305

\0-E-1

f O-E-2

REGISTRAR
TEACHER

0-n : OBJECT-n

O-E-n'. OUT SIDE

ENVIRONMENT-n

IN-n : INHERITANCE
m-s (CLASS)

EXAMPLE INHERITANCE

FIG.9.3

306

>

A

A

1

¥

The different privileges can be altered dynamically in the system
for supporting such applications.

In Fig. 8.1, the basic structure of an object is shown,

which has the facility to change structures, maintaining the

strict privacy and the security control on the smallest data item

present in the object and the database fragments assigned in the

object. The data view is maintained completely with the data

structures maintaining the individual components to be protected

in the dynamic environment. The objects can be recorded in the

virtual memory by the object manager. Therefore, to achieve good
performance a complete view can be built with the object. The

different inherited objects show view inside a view and so on.

These views are protected with proper privacy codes. The class

table shown in Fig. 8.6, can be used to obtain the object table,

just by replacing the class name with object name. The table

consists of a control block with the pointer to the object
identifier. This block carries the information regarding the
items present in the identifier table. Which identifies the

correct sequence of the items present in the table. The different

flags shown in Fig. 9.4, present in the table represent the

presence of some primitive object declaration. The names, SUP-CC

represents Super-Class Count, provides the information of this

field presence, similarly, SUB-CC for Sub-Class Count presence,

T-F-C for Total Fragment Count presence, F-C for Fields Count

presence, D-C for Devices Count presence, P-C for Procedures

Count presence, F-C for Functions Count presence, and E-F Exten

sion Field presence are maintained. The Status Flag Register of

class name block helps in saving the memory and also speeds up

the operations of reading the class structure. The class identi

fier shows the classes present in the sub-class or the super

class format which further carries a lock entry. This entry

307

represents the two kinds of locks with the system. One is the

normal privilege lock, which finds the various users with the

normal privilege levels in the system. The other lock is the key

information regarding the external lock. In case any external

lock is found at a place, this requests the lock procedure built

with the supervisor to check the key of the lock, present in the

message format. If the key is found correct then the access to

the primitive object is provided otherwise, a resultant message

is sent to supply the proper key regarding the object being

referred.

At the bottom of the identifier table an extended

structure pointer is shown. This structure pointer helps in

various ways to maintain the different control blocks in the

system. These are given as bellow:

i. Trigger entries

ii. External interrupt entries

iii. Fragment extension privacy codes and the fragment lock

qualification

iv. Field-names, statistical map for the declared fragments

v. The location table for the same field-names for

replication

The trigger entries are recorded to have the various

trigger procedures for specific applications. Which are executed

on the requirements. Some of these are the requirements for

changing the environment. The various environments can be changed

dynamically by executing the triggers. These environments can be

changed by setting certain given values to the specific objects.

Further, it can also invoke some translation procedures to

translate or express a query on a given object in the language of

308

4

1

the destination terminal node to which the query would be routed.
Some other uses are, to translate the heterogeneous object
structure in a given object-oriented DBMS format. So that the

object can be processed at the required terminal node with a
required DBMS.

Triggers also help in accessing the statistical

information from the statistical data recorded regarding the
object placement policies at different geographical places on the
computer network. This information is supplied to the local

^ central server, which takes steps to communicate with transaction

manager to reschedule the various fragments and the objects. The

different users are free to make use of the system resources by
invoking certain interrupt procedures. For this, an interrupt
number in recorded in the interrupt index table. Which is

referred to invoke a procedure, if the requester, making an
interrupt call, is having a proper privilege level.

The different qualifiers for the tuples are recorded in

the extended area with the proper privilege and privacy locks. If
a fragment needs to be accessed and it matches a tuple, which has
the tuple security lock, the tuple is allowed only if the
requester is having a proper privilege to access the tuple.
Similarly, the fragment qualifier and the field, both may be
locked. The similar, operations are performed to provide access

to the requester. There is no limit prescribed in the extended

data structures regarding the size and the number of fragment
qualifiers for the locking arrangements. The location tables are

also maintained, which provide the complete information regarding
a field-name and the fragment, which is required by some
requester. The terminal node code, DBMS code, and the

application names are provided to the server, which manages to

« 309

send the whole query after getting it translated, if the

translator is found on the current terminal node.

9.4.1 Triggers

Triggers are very helpful in organizing the activities

of the objects. Objects can be considered to play in different

activities, like providing the facility to support a well format

ted database results on the screen, making the privilege changes

to affect the environment of the formatting scheme etc. The

following are a few examples where triggers can be used, which

are recorded in the extended object structures, used for changing

the environments dynamically, with the privileges of the objects:

(1) Key Triggers

These triggers help the users to work in various

activities to divert the results in the way user requires on the

terminal node. Suppose, while getting the results from some

database on the launched query, the results may be required to be

displayed in an specific format, like giving the one line space

between the two records, the title may not be required for the

moment, the names are required in capital letters only etc. For

such applications, some macros are defined in GURU, these macros

can be invoked by the key control procedures. The effect is

realized and is taking the all kinds of privileges into account,

that is a trigger function may not have the privilege to do so,

which may be requested in an unauthorized way. Therefore, the

messages are displayed on the control panel for the user to check

the keys, which are required to have the proper privileges.

310

A

*

0 1 2 3 4 5 6 7

SUP-
CC

SUB-
CC T-F-C F-C D-C P-C F-C E- F

STATUS FLAG REGISTER OF CLASS NAME BLOCK

FIG.9.4

311

(2) Field Triggers

These triggers invoke the trigger procedures, whenever

any fields are referred, which checks the privileges

automatically and in the dynamically changing privilege levels,

the privileges are set accordingly. These procedures are

important for the applications to study the performance of the

system on certain access and modification procedures. Individual

fields can be chosen to check the performance in some required

applications. Therefore, a field known as a tag field is

established in the object extended structure, which is further

helpful in recording the access or modification time, taken for a

particular field. This makes the system well accepted for such

kinds of performance analysis and deadlock detection at an

appropriate stage.

(3) Block Triggers

These triggers are designed to handle the block

activities and protect the actual block operations being

performed. The block operations can be considered as some prior

defined areas, which are required to be protected and maintained

as per the system requirements. These areas can be considered as

query area, commit and rollback area, catalog area, log and

backlog area, data dictionary area etc. Therefore, the triggers

(procedures) can be implemented to handle the most important

part of the distributed database management system. The area

tools are helpful in maintaining the various versions of the

database and the objects in the system. The time based block

analysis is done to take care of all the aspects. Therefore, a

block for the triggers is implemented in a way to control the

overall functions in the dynamically changing environment. Fig.

312

A

1

A

/

ROLLING STRUCTURE

FAC-A:

FACILITY
ADDRESS

TRIG ! TRIGGER

INT : INTERRUPT

FRAG : FRAGMENT

FAC-A

1

TRIG-

FLAG

INT-

FLAG

FRAG-

FLAG

POINTER POINTER POINTER

TRIG

ADDRESS

LOCK-1

LOCK-2

TRIG

1

TRIG

2

I

L
2 3

L
2

L
1

FN FNlFNIFN
3 2 1

T
A

3

T
A

2

T
A •

1

•ll "

F

3
F

2
F
1

..... TS
3

TS
2

TS
1

TRIGGER
MACRO LIST

1

TRIGGER

MACRO LIST
2

I

FRAG
ADDRESS

FRAG-1

LOCK-1
FRAG-2

LOCK-2

I

T-A- n

F- n

T r-n

FN- n

L- n

TERMINAL ADDRESS- n

FREQUENCY OF REFERENCE-n

TIME STAMP- n

FIELD NAME- n

LOCK NAME-n

EXTENSION

BLOCK

H
INT

ADDRESS

i t

P-1
INT

ADDR-1

P- 2

INT

ADDR-2

I
I

i

1
1
i

F-P

T- P

FRAG QUALIFIER
1

FRAG QUALIFIER

2

FRAGMENT POINTER

TERMINAL POINTER

TRIGGER BASED OBJECT TO CATALOG PROTECTION THROUGH
EXTENDED STRUCTURES

FIG. 9.5

313.A

9.5, shows the maintenance of the catalog, log and the backlogs

being protected and the trigger actions are activated at the

various points.

(4) Form Triggers

Form triggers are used to construct a formatted form

as per the requirement of the user. These formats are made

standard initially and later activated with the present

requirements. These form triggers are good for preparing reports

and providing the database in the form, to fit them in various

environments.

(5) Application Based Triggers

These kinds of triggers can be prepared for any general

application, like, checking who are the users on the global

system using a particular application environment in a time

domain. Therefore, preparing the statistical information for the

utility of certain applications at the various geographical

terminal nodes on the system. This can be successful in

collecting the data which can be analyzed later for certain

person domain, application domain, and the resource domain etc.

Which becomes applicable to find fruitful results in some

environment.

9.5 SYSTEM ADMINISTRATOR AND USER LEVEL PROTECTION

System administrator fixes the different categories of

the users in the different user domains, and the different kinds

of computer resources in the resource domain. The users can be

categorized in terms of the privileges, required to be assigned

313.B

for the different computer resources, to be provided to them. The

computer resources can be categorized as hardware resources and

the software resources. The all hardware resources cannot be

allowed to be used by all categories of the users. Similarly, the

all software resources cannot be allowed to all. Therefore, the

two domains are assigned certain privilege levels. Further, the

different users authorized to work on computers for using the

DDBMS environment are identified with their identity codes. These

identity codes are grouped to form a user domain. Each group must

have the same privilege level so, it is called one domain. There

fore, the management of the users and the computer resources with

time is performed by the system administrator. The system admin

istrator also maintains the complete privacy and security locks

among the different resources and the different users on the

global network.

The users also have rights to allow their own resources

to the other objects in the system. Like, providing the access

rights on the objects owned by the user to the other out side

environment. To transfer the privileges, for accessing a required

object following are the instructions used in GSQL:

export privileges privilege-name to memory

memory-name-list of object object-name;

export privileges privilege-name to datafiles

fragment-name-list of object object-name;

export privileges privilege-name to devices

device-name-list of object object-name;

export privileges privilege-name to procedures

procedure-name-list of object object-name;

export privileges privilege-name to functions

function-name-list of object object-name;

314

*

*

>

The above first instruction exports the privilege specified

to the specified memory variables, memory-name-list, which belong

to the object having the name specified as object-name. The

second instruction above exports the assigned privileges to the

fragment names specified as fragment-name-list of the specified

object with name as object-name. Similarly, third, fourth and

fifth of the above instructions assign the privileges to device-

name-list, procedure-name-list and function-name-list

respectively of the corresponding objects names specified.

The changes made with the above instructions in the

primitive objects are recorded in the object data structures.

These changes are maintained with the corresponding version

numbers recorded in the backlogs. The backlogs maintain the

complete history of the transaction made throughout the life of

the applications. Any changes made in the system are recorded and

in case, if a previous version is required, then the help of

backlogs is taken. With most of the cases where transactions are

not committed. The backlogs help in the recovery of the database

records to achieve complete rollback. These versions are

maintained with the timestamps. For the changes made in the

object structures, the past object is maintained with the last

time-stamp. Therefore, the all kinds of data can follow the right

time based pattern.

As the privileges are changed for the different

objects, the similar changes can also be made in the class

structures, thereby changing the all objects derived from the

changed class structures if changes occur in the classes.

Following are the instructions which perform the changes with the

class primitive objects as defined:

315

export privileges privilege-name to memory

memory-name-list of structure class-name;

export privileges privilege-name to datafiles

fragment-name-list of structure class-name;

export privileges privilege-name to devices

device-name-list of structure class-name;

export privileges privilege-name to procedures

procedure-name-list structure class-name;

export privileges privilege-name to functions

function-name-list of structure class-name;

The above instructions work exactly alike as in case of

objects except instead of the object name, structure (class)

names are mentioned.

The instructions, which display the different

primitives of the primitive objects present in the objects and

the display instructions also display the complete primitive

object names in the form of assigned names to the primitive

objects in classes are discussed as following:

display privilege of object object-name in structure

class-name;

display privilege of structure class-name in structure

class-name;

display privilege of object object-name in object

object-name;

display privilege of structure class-name in object

object-name;

display privilege of memory mem-var in object

object-name;

316

i

A

>

display object object-name structure;

display structure class-name;

display memory of object object-name;

display memory of structure class-name;

display procedures of object object-name;

display procedures of structure class-name;

display functions of object object-name;

display functions of structure class-name;

display devices of object object-name;

display devices of structure class-name;

t

The following are the instructions, which remove the

objects and the classes:

delete objects object-name-list;

delete objects object-name-list with key key-name;

delete structures class-name-list;

delete structures class-name-list with key key-name;

The above first instruction removes the all objects

which are present in the name list, object-name-list. The second

instruction removes the all classes which are present in the

class-name-list. The all objects removed from the list are also

removed from the object identifier table. In this table, where

ever these objects are found, they are all removed. The remaining

structure left becomes the latest object structure. The similar

is the case with the classes. All the classes deleted are removed

from the class identifier table, and the inherited classes are

also removed from the hierarchy of the objects. The remaining

structure of the objects after removal of all the classes is the

latest object structure. The objects and classes created with

locks are only removed, if the right key of the lock is

317

specified. If no key or the wrong key is specified, it returns a

message that the deletion is unsuccessful.

9.6 MESSAGE PROTECTION

All kind of communications among the various objects

are done in the form of messages. The messages are sent from the

source object to the destination object through the object

hierarchy. The messages are communicated and accepted at the

destination object, only if the proper privileges and the keys of

the locks are specified. The communication is provided with the

standard communication protocol and with the standard message

formats adopted in GURU with the heterogeneous global communica

tion network. The messages are treated in the same way, even if

they come from the same terminal node or from the other terminal

nodes placed geographically apart. Quite often, the messages are

communicated to more than one terminal node at the same time.

Therefore, the message packet maintains the number of addresses

of the terminal nodes and the DBMS codes to which the message is

being routed. After receiving the message by one terminal node on

the network, the message is further communicated to the other

terminal nodes, till all the terminal nodes receive the message

packet. Each message packet consists of a packet number and the

overall size of the packet being circulated on the network. In

case if any of the message packets reach out of sequence then the

sequence is automatically maintained after tallying the packet

numbers. If a packet is not received by any terminal node, then

the message is sent to the source terminal node to resend the

message packet of the specified number, which was not successful

ly received. Later, the packet is resent. This communication

takes some time. The privileges can be modified, other locks can

be changed, objects and classes can be removed, primitive objects

318

can be ;ead or written or executed etc. All such operations are

performed through the message passing scheme implemented for the
objects.

Certain procedures are not available at some terminal

node. But these are available at some remote terminal nodes. Then

the remote procedure calls (RPC) are issued. These procedures are

executed at the different terminal nodes with the specified

arguments from the source node through the message packet. The

results are received at the local terminal node as if every thing

is carried out by the local terminal node. This transparency is
also made available with the help of proper privilege levels,

being maintained throughout the network.

9.6.1 Ciphering

This is the technique used to encrypt the long data

with some small codes. The key, on which the changes are made is

protected. Therefore, the confidential data cannot be known out

side. All the object and the class tables are encrypted. There

fore, in the faulty conditions like, some deadlock etc., the

information from the system cannot be leaked. The names written

in the tables are also encrypted. This process, makes the system

secure to some extent from the outside threat to the data privacy

and security, during the deadlock conditions.

9.6.2 Port Arbitration

This is the technique used to protect the message

object from the out side network threat to the privacy and

security of the data. The message enters to the computer terminal

and passes through the input port. The usual procedure is that

319

the results are also send back from the same port or some other

fixed port. But, in this procedure any one can temper the message

by accessing the port. Therefore, a method suggested is changing

the ports with some random number function for both the

operations, for inputting and outputting the data. The pure

random function is generated as R(a). Where, a is the address of

the input port. Therefore, the output port address would be a

pure random port having the address, R(a) among the available

ports on the terminal node.

9.7 PROBLEM HANDLING

Here, we consider a problem of changing environment of

the various privilege levels in a global problem domain. To

change the privileges in the dynamic environment, the system

triggers are implemented, which will handle the problem changes

in a real problem, based on analysis. This analysis is carried

out for a particular application domain adjustment. Like, certain

privilege dependency in mutual domain is studied. Later it fixes

up certain expression based conditions. These conditions are

evaluated on the different object environment, which changes

dynamically. Those conditions are picked up by the trigger

procedures set for the particular purpose. The object environment

is derived by the trigger procedures by invoking those procedures

from the appropriate level in the object. These procedures are

activated to set the different privileges and the locks, if

required at some places by the objects.

9.8 CONCLUSION

The proposed methods are very effective in protecting

the dynamically varying object environment using privileged

320

-i

control. The integrity and consistency of the primitive objects

can be maintained in the dynamically changing object environment.

The object extension arrangement provides the wide range of

triggers operated by the user and the system level operations in

the heterogeneous environment. Therefore, a varying privilege

environment is successfully maintained with the help of individu

al triggers. The different, changing views of the object can be

maintained. The backlogs help in providing the previous versions

of the objects. The backlogs are also protected with the object

protection schemes. The discussed approaches can be used with

other object-oriented heterogeneous DDBMSs.

321

USERS

NAIVE USERS

A

APPLICATION
PROGRAMMERS

A

DATABASE
CASUAL USERS ADMINSTRATOR

APPLICATION

PROGRAMS

I

APPLICATION

PROGRAM

MANAGER

SYSTEM

CALLS

JL
DATA

MANIPULATION
LANGUAGE

(DML)
PRECOMPILER

GURU DDBMS

SERVER

STATISTICAL

UNIT

QUERY

QUERY

MANAGER

QUERY

PROCESSOR

1

DATABASE

SCHEME

DATA
DEFINITION
LANGUAGE

(DDL)
COMPILER

NETWORK
FRAGMENT

TRACER

OBJECT

MANAGER

J TRANSACTION
MANAGER

m | m

INTER

SYSTEM

COMMUNICATION

l_.

r™
DATA MANAGER

OBJECT

SERVER

L

I

INTELLIGENT

DATABASE

CONTROLLER

T=H

lr
i i

i i
' i
i i
i i
i i

i i

I!
FILE

SERVER

GURU DISTRIBUTED DATABASE MANAGEMENT SYSTEM
FIG. 10.1

322

1

•j DATA FILES"

-c LOG

•j CATALOG [
DATA

DICTIONARY

-H OBJECTS-

-t

^

r

CHAPTER - 10

CONCLUSION AND FUTURE SCOPE OF WORK

10.1 CONCLUSION

The object-oriented heterogeneous distributed database

management system (OOHDDBMS) has been designed and implemented

successfully. its overall system block diagram has been illus

trated in Fig. 10.1. The salient features of GURU DDBMS are:

* An efficient query automation technique has been

proposed.

The intelligent design of indexes and their loading
into memory with database fragments has been provided. The right
selection of indexes on different orders of the attributes de

cides the overall efficiency. Therefore, the pattern selection
using the knowledgebase with the relative indexes and foreign
keys reduces the overall query response time. A wide range of
instructions have been implemented to support query automation.
The new intelligent approach for indexes is better than the

present OOHDDMSs (For example, Gemstone and Encore etc.).

* A concept, intelligent schema has been introduced

and implemented.

The intelligent schema carries the complete information

about the various kinds of changes in the system with the com

plete past history. And it provides the directives to the server

for splitting query appropriately into different intraqueries,
based on the fragment allocation status. A concept of virtual

323

tasks, virtual programmers and the virtual terminal nodes is

introduced in the system.

* An efficient algorithm for heterogeneous object-

oriented integrated schema has been implemented.

A procedure is implemented which integrates a complete

set of database fragments into a cohesive structure. Which works

as the best available structure for the intraqueries or inter-

queries, to process the horizontal, vertical and mixed kind of

basic fragments. The replicated and overlapped fragments are also

processed. The horizontal and mixed fragments use multiple keys

for their allocation. Schema integration in heterogeneous envi

ronment is not better in any existing system (Orion, Iris, Vbase

etc.) than the suggested method.

* Some complexity measures are successfully employed

for dynamically changing environment.

The different procedures are implemented to tackle

complexity of a heterogeneous system. A procedure for efficient

allocation of heterogeneous fragments is illustrated. An approach

is suggested to implement intensional and extensional notions.

Procedures are explained to resolve the complexity in the system

using trigger and extended object-structure methods. The differ

ent kinds of triggers which include the base, arbitrary and

programmable methods are implemented in the system. GURU provides

better trigger methods over Vbase, Orion etc.

* Message-task scheduling is implemented through active

object procedures.

324

A

-

*

r

An approach is suggested to implement the message as a

task. The variable size message packets can be handled with the

changing object structures, where objects act as active objects
and execute the task, as the distributed shared memory process.
The dynamically changing structures are trigger controlled. The

task scheduling with synchronously and asynchronously exited
methods for concurrency control are implemented. GURU provides
message-task concept which does not exist in Vbase, 02, Orion,
Gemstone, Encore and Iris.

* Dynamically changing environment with extended object
shell has been implemented.

Objects change their structures in the dynamically
changing environments by changing the properties and behavior. A

method is explained which changes the object structures without

any limits. The method uses triggers for the purpose. The differ

ent versions of the objects are maintained in the system. The
metaclass support is provided in the system. The approach is

totally new and better than MORE, which does not support unlimit
ed object structure modifications.

* A scheme is implemented to provide optimal privacy

and security in a large application domain.

The complexity of access procedures and the degree of
prevention from an unauthorized process with a limited privilege
level is suggested. So that, with dynamically changing access
procedure privileges, the proper privacy and security to the

primitive and complex objects is provided. The different schemes

are suggested to protect the objects from unauthorized access

like by providing the random allocation to ports for the differ-

325

ent threads, the data ciphering, encrypting the object names, en

crypting the process addresses, the primitive and complex object

locking, and the lock exchanging. The existing objects-oriented

databases do not provide better privacy and security of objects

than the suggested approach.

GSQL supports a very large instruction set having most

of the features of modern compilers. It provides a feature of

building overlays automatically; makes available the large memory

to place the object structures,- a version support is provided

with objects; makes a big room for placing the object and class

tables. The objects are using the most recent structures to

support the environment for modern CAD/CAM and CAI applications.

A wide range of programming capabilities are provided with GURU.

A virtual programmer concept enhances the features in the system.

The dynamically created knowledgebase and A.I. techniques have

made the enormous power to deal with heterogeneous data. Since,

GURU is written in C language, it is portable on any computer

system running a C compiler. The system has a wide range of

privacy and security locks which add to its qualifications for

extremely confidential data handling. GSQL uses mostly close to

the semantic constructs and provide a vast range of clause

switching therefore, it is better userfriendly. A variety of

applications can be programmed in GSQL because, it carries a wide

range of instruction support. The enhanced features in object-

oriented programming have made the system extremely useful for

the engineering design applications.

The view design (heterogeneous schema design) attracts

the commercial organizations to choose their systems in the

distributed environment. The powerful library functions have

provided a facility to test the different environment support to

326

1

provide foolproof functioning in the adverse conditions with a

large1 number of integrated environments.

The block structuring, deadlock detection and preven

tion have made the system working in the adverse conditions on

the network. The system competes better with a few existing
prototype models, such as GEMSTONE, ORION, MORE and 02 DDBMSs.

10.2 FUTURE SCOPE OF WORK

In this area, further research can be done to develop
some approaches, to find the ideal solution, for the queries not

having the entities and attributes at all in the system. This can

be done to find out a way, so that the system administrator finds

the most likely required data on the system, which can tune the

system. Some new ways can be devised to optimize query fragmenta

tion for the adverse network conditions.

Efforts can be made in optimizing the size of the

fragments with different network conditions. Various models can

be studied and implemented to show the best performance of the

database manipulation considering the local autonomy into ac

count. The new ways can be devised to study behavioral aspects of

object-oriented heterogeneous schema and the linked application
domains.

Problems can further be extended for optimizing size of

the fragments with different network conditions and resolving-
the complex sets, which require heterogeneous integration to

their schemas. Various models can be studied and implemented to

show the best performance of the database manipulation consider

ing the local autonomy into account.

327

Possibilities can be explored to suggest some useful

methods for resolving the complexities of complex sets in the

integrated heterogeneous environment to achieve site autonomy,

and efficiency. Various models can be studied and implemented to

show the best performance of the database manipulation consider

ing the local site autonomy into account.

Schemes can be suggested for providing the fault toler

ance with the system using threads and trigger procedures.

New techniques can be developed to maintain the effi

cient memory allocation policies for object mapping. The triggers

can be used with other tools to check the system performance in

the heterogeneous environment.

A system can be realized in changing environment for

different objects with a large problem domain. Further, perform

ance of such system can be tested with different kinds of problem

domains. The performance with the different kind of privacy and

security locks in dynamically changing environment on different

network conditions can be tested with the different test sets and

the areas can be devised for further improvement for GURU

OOHDDBMS.

328

A

-

APPENDIX - A

A sample problem using GSQL is given bellow:

A shopkeeper has two sections (purchase and sales

sections) connected through a network where he purchases some

motor parts and sales them after taking 7 percent profit. The

sales section has to get a list of parts from the purchase sec

tion. The following GSQL instructions perform this task.

procedure main

define structure purchase

datafiles p_f

fields pji, p_n, pjp

devices printer;

define structure sales

datafiles sjp

fields pj2, p_na, pjs

procedure salesjpro

devices printer1;

create object purcjp with structures purchase;

create object salejp with structures sales;

do salesjpro of salesjp

?"Final task"

procedure salesjpro of salesjp

select alias pp

use pf index pi

select alias sp

use sjp index si

329

set relation to pji into pp

do while .not. eof ()

p_s=0.7*pp->pjp

? P-n> P_na> P_s> PP->P_P

skip

enddo

?"Finished job"

4

330

APPENDIX - B

The following data structures are used for GSQL in

structions :

<21>

<09>

*

<09>

?

0

<36>

FUNCTION <57>

PICTURE 09>

STYLE <40>

AT <01>

??

0

<36>

FUNCTION <57>

PICTURE <39>

STYLE <40>

AT <01>

???

0

<36>

%

<41> TO <41> DOUBLE

331

<41> TO <41> PANEL

<41> TO <41> <42> COLOR <07>

<41> TO <41>

%

<41> CLEAR TO <41>

0

<41> FILL TO <41>

COLOR <07>

@

<41>

SAY <3 6>

FUNCTION <57> PICTURE <39>

PICTURE <57>

GET <16> FUNCTION <57> PICTURE <39> RANGE <05>

GET <16>

VALID <03> ERROR <00>

VALID <03>

WHEN <03>

DEFAULT <01>

MESSAGE <00>

OPEN WINDOW <06>

WINDOW <06>

COLOR <03>

ACCEPT

<14>

TO <06>

ACTIVATE

MENU <28>

PAD <29>

ACTIVATE

POPUP <28>

ACTIVATE

332

SCREEN

ACTIVATE

WINDOW ALL

WINDOW <27>

ALTER *

TABLE <04>

ADD <48>

APPEND

0

BLANK

APPEND

FROM ?

FOR <03>

DELIMITED WITH BLANK

DELIMITED WITH <00>

TYPE SDF

TYPE DIF

TYPE SYLK

TYPE WKS

SDF

DIF

SYLK

WKS

APPEND

FROM <04>

FOR <03>

DELIMITED WITH BLANK

DELIMITED WITH <00>

TYPE SDF

TYPE DIF

TYPE SYLK

TYPE WKS

333

SDF

DIF

SYLK

WKS

APPEND

FROM ARRAY <33>

FOR <03>

APPEND

MEMO <34> FROM <04>

OVERWRITE

ASSIST

0

AVERAGE

<02>

WHILE <03>

FOR <03>

TO ARRAY <33>

TO <13>

<13>

BEGIN

TRANSACTION <49>

BROWSE

0

FIELDS <52>

LOCK <01>

FREEZE <16>

WIDTH <01>

WINDOW <27>

NOINIT

NOFOLLOW

NOMENU

NOAPPEND

334

*

*

NOEDIT

NODELETE

NOCLEAR

COMPRESS

FORMAT

CALCULATE

<02>

FOR <03>

WHILE <03>

TO <13>

TO <33>

<13>

CALL

<17>

WITH <00>

WITH <06>

CANCEL

0

CASE

<03>

CHANGE

<02>

WHILE <03>

FOR <03>

FIELDS <16>

NOINIT

NOFOLLOW

NOMENU

NOAPPEND

NOEDIT

NODELETE

NOCLEAR

335

CLEAR

0

ALL

FIELDS

GETS

MEMORY

TYPEAHEAD

MENUS

POPUPS

WINDOWS

CLOSE

ALL

ALTERNATE

DATABASES

FORMAT

INDEX

PROCEDURE

CLOSE *

<37>

COMPILE

<04>

RUNTIME

CONTINUE

0

CONVERT

0

TO <01>

TO <06>

COPY

FILE <04> TO <04>

COPY

INDEXES <13>

336

TO <04>

COPY

MEMO <34> TO <04>

ADDITIVE

COPY

STRUCTURE TO <04>

FIELDS <16>

COPY

STRUCTURE EXTENDED TO <04>

COPY

TAG <06>

OF <04>

TO <04>

COPY

TO ARRAY <33>

<02>

FOR <03>

WHILE <03>

FIELDS <16>

COPY

TO <04>

FIELDS <16>

WHILE <03>

FOR <03>

DELIMITED WITH BLANK

DELIMITED WITH <00>

TYPE SDF

TYPE DIF

TYPE SYLK

TYPE WKS

SDF

DIF

337

SYLK

WKS

COUNT

<02>

WHILE <03>

FOR <03>

TO <06>

CREATE

<04>

CREATE

<04> FROM <04>

CREATE

APPLICATION <04>

CREATE

LABEL <04>

CREATE

QUERY <04>

CREATE

REPORT <04>

CREATE

SCREEN <04>

CREATE

VIEW <04>

CREATE

DATABASE <04>

CREATE *

UNIQUE

INDEX <04> ON <04> <24>

CREATE *

SYNONYM <34> FOR <04>

CREATE *

TABLE <04> <48>

338 ?

CREATE *

VIEW <04>

<16>

AS SELECT

WITH CHECK OPTION

CREATE

VIEW <04> FROM ENVIRONMENT

DBCHECK

<04>

DBDEFINE

<04>

DEACTIVATE

MENU

DEACTIVATE

POPUP

DEACTIVATE

WINDOW ALL

WINDOW <27>

DEBUG

<04>

WITH <13>

DECLARE

<50>

DECLARE *

CURSOR <37>

FOR UPDATE OF <16>

ORDER BY <24>

FOR SELECT

DEFINE

BAR <01> OF <30> PROMPT <14>

MESSAGE <00>

SKIP FOR <03>

339

SKIP

DEFINE

BOX FROM <01> TO <01> HEIGHT <01>

AT LINE <13> SINGLE

AT LINE <13> DOUBLE

AT LINE <13> <10>

AT LINE <13>

DEFINE

MENU <28>

MESSAGE <00>

DEFINE

PAD <29> OF <28> PROMPT <00>

AT <41>

MESSAGE <00>

DEFINE

POPUP <30> FROM <41> TO <41>

MESSAGE <00>

PROMPT FIELD <16>

PROMPT FILES LIKE <22>

PROMPT FILES

PROMPT STRUCTURE

DEFINE

WINDOW . 27> FROM <41> TO <41>

DOUBLE

PANEL

NONE

<25>

COLOR <07>

DEFINE

OBJECT <43>

INCLUDE OBJECTS <47>

DATAFILES <04>

340 T

FIELDS <16>

MEMORY <13>

PROCEDURES <45>

FUNCTIONS <46>

PRIVILEGE <44>

DELETE

<02>

WHILE <03>

FOR <03>

DELETE *

FROM <2 0>

WHERE <03>

DELETE *

FROM <04> WHERE CURRENT OF <37>

DELETE

TAG

<06> OF <04>

DIR

0

<22>

DIRECTORY

0

ON <08>

<08>

LIKE <22>

<22>

DISPLAY

FILES

LIKE <22>

<22>

TO PRINTER

TO FILE <04>

341

DISPLAY

HISTORY

LAST <01>

TO PRINTER

TO FILE <04>

DISPLAY

MEMORY

TO PRINTER

TO FILE <04>

DISPLAY

STATUS

TO PRINTER

TO FILE <04>

DISPLAY

STRUCTURE

IN <20>

TO PRINTER

TO FILE <04>

DISPLAY

USERS

DISPLAY

<02>

WHILE <03>

FOR <03>

TO PRINTER

TO FILE <04>

OFF

FIELDS <16>

<16>

DO

CASE

DO

342

T

WHILE <03>

DO

<23>

WITH <13>

DROP *

DATABASE <04>

DROP *

INDEX <06>

DROP *

SYNONYM <06>

DROP *

TABLE <04>

DROP *

VIEW <04>

EDIT

<02>

WHILE <03>

FOR <03>

FIELDS <16>

NOINIT

NOFOLLOW

NOMENU

NOAPPEND

NOEDIT

NODELETE

NOCLEAR

EJECT

0

PAGE

ELSE

0

END

343

TRANSACTION k

ENDCASE

0

ENDDO

0

ENDIF

0

ENDPRINTJOB

0

ENDSCAN

o i

ENDTEXT

0

ERASE

?

ERASE

<04>

EXIT

0

EXPORT

TO <04>

<02>

k
FOR <03>

WHILE <03>

TYPE PFS

TYPE DBASE

TYPE FW2

TYPE RPD

PFS

DBASE

FW2

RPD

344

FIELD <16>

FETCH *

<37> INTO <13>

FIND

<36>

FUNCTION

<35>

GO

RECORD <36> IN <20>

<36> IN <20>

TOP IN <20>

TOP

BOTTOM IN <20>

BOTTOM

<36>

GOTO

RECORD <36> IN <20>

<36> IN <20>

TOP IN <20>

TOP

BOTTOM IN <20>

BOTTOM

<36>

GRANT *

ALL PRIVILEGES

ALL

<44>

ON TABLE <12>

ON <12>

TO PUBLIC

<53>

WITH GRANT OPTION

345

HELP

<05>

IF

<03>

IMPORT

FROM <04>

TYPE PFS

TYPE DBASE

TYPE FW2

TYPE RPD

TYPE WK1

PFS

DBASE

FW2

RPD

WK1

INCLUDE

<12>

INDEX

ON <16> TO <04>

ON <16> TAG <34> OF <04>

UNIQUE

DESCENDING

INPUT

<14>

TO <06>

INSERT

BLANK

BEFORE

INSERT *

INTO <04>

<16>

346

VALUES <05>

INSERT *

INTO <04>

<16>

SELECT

JOIN

WITH <20> TO <04> FOR <03>

FIELDS <16>

LABEL

FORM ?

LABEL

FORM <04>

<02>

WHILE <03>

FOR <03>

SAMPLE

TO PRINTER

TO FILE <04>

LIST

HISTORY

LAST <01>

TO PRINTER

TO FILE <04>

LIST

MEMORY

TO PRINTER

TO FILE <04>

LIST

STATUS

TO PRINTER

TO FILE <04>

LIST

347

STRUCTURE

TO PRINTER

TO FILE <04>

LIST

USERS

TO PRINTER

TO FILE <04>

LIST

0

<02>

WHILE <03>

FOR <03>

TO PRINTER

TO FILE <04>

OFF

FIELDS <16>

<16>

LOAD *

DATA FROM <04>

DELIMITED WITH BLANK

DELIMITED WITH <00>

TYPE SDF

TYPE DIF

TYPE SYLK

TYPE WKS

TYPE DBASEII

TYPE FW2

TYPE RPD

TYPE WK1

SDF

DIF

SYLK

348

WKS

DBASEII

FW2

RPD

WK1

INTO <04>

LOAD

<04>

LOCATE

<02>

WHILE <03>

FOR <03>

LOGOUT

0

LOOP

0

MODIFY

APPLICATION ?

APPLICATION <04>

MODIFY

COMMAND <04>

WINDOW <27>

MODIFY

FILE <04>

WINDOW <27>

MODIFY

STRUCTURE <04>

MODIFY

LABEL ?

LABEL <04>

MODIFY

QUERY ?

349

QUERY <04>

MODIFY

REPORT ?

REPORT <04>

MODIFY

SCREEN ?

SCREEN <04>

MODIFY

VIEW <04>

MOVE

WINDOW <06> TO <41>

NOTE

<09>

ON

ERROR <21>

ON

ESCAPE <21>

ON

KEY <21>

KEY LABEL <00> <21>

ON

PAD <29> OF <28>

ACTIVE POPUP <30>

ON

PAGE

AT LINE <01> <21>

ON

READERROR <21>

ON

SELECTION PAD <29> OF <28> <21>

ON

SELECTION POPUP ALL <21>

350

'

>

SELECTION POPUP <30> <21>

OPEN *

<06>

OTHERWISE

0

PACK

0

PARAMETERS

<13>

PLAY

MACRO <06>

PRINTJOB

0

PRIVATE

<13>

PRIVATE

ALL

PRIVATE

ALL LIKE <22>

ALL EXCEPT <22>

PROCEDURE

<23>

PROTECT

0

PUBLIC

ARRAY <51>

PUBLIC

<13>

QUIT

0

READ

0

351

SAVE

RECALL

<02>

WHILE <03>

FOR <03>

REINDEX

0

ALL

RELEASE

MODULE <17>

RELEASE >

MENUS <28>

RELEASE

POPUPS <30>

RELEASE

WINDOWS <27>

RELEASE

ALL LIKE <22>

ALL EXCEPT <22>

ALL

RELEASE

<13>

RENAME

<04> TO <04>

REPLACE

FIELD <34> WITH <36>

<02>

WHILE <03>

FOR <03>

REPORT

FORM ?

REPORT

352 "V

FROM <04>

<02>

WHILE <03>

FOR <03>

PLAIN

HEADING <00>

NOEJECT

TO PRINTER

TO FILE <04>

SUMMARY

i RESET

IN <20>

RESTORE

FROM <04>

ADDITIVE

RESTORE

MACROS FROM <04>

RESTORE

WINDOW ALL FROM <04>

RESTORE

WINDOW <27> FROM <04>

RESUME

RETRY

0

RETURN

<36>

RETURN

0

TO MASTER

TO <23>

REVOKE

353

ON TABLE <12>

ON <12>

&

FROM PUBLIC

FROM <53>

&

ALL PRIVILEGES

ALL <44>

ALL

ROLLBACK

0

<04>

ROLLBACK *

WORK

RUN

<21>

RUNSTATS *

<04>

SAVE

TO <04>

TO ALL LIKE <22>

TO ALL EXCEPT <22>

SAVE

MACRO TO <04>

SAVE

WINDOW ALL TO <04>

WINDOW <13> TO <04>

SCAN

0

<02>

WHILE <03>

FOR <03>

^4
354

SEEK

<36>

SELECT +

ALL <16>

DISTINCT <16>

<16>

FROM <12>

WHERE <03>

CONNECTED BY <03> START WITH <03>

CONNECTED BY <03>

GROUP BY <16> HAVING <03>

UNION SELECT

INTERSECT SELECT

MINUS SELECT

ORDER BY <24>

FOR UPDATE OF <16> NOWAIT

FOR UPDATE OF <16>

SAVE TO TEMP <04> <16>

KEEP

SELECT

ALIAS <20>

SET

0

SET

ALTERNATE ON

ALTERNATE OFF

SET

ALTERNATE TO <04>

ADDITIVE

SET

AUTOSAVE ON

AUTOSAVE OFF

355

SET

BELL ON

BELL OFF

SET

BELL TO <13>

SET

BLOCKSIZE TO <06>

SET

BORDER TO SINGLE

BORDER TO DOUBLE

BORDER TO PANEL

BORDER TO NONE

SET

BORDER TO <25>

SET

CARRY ON

CARRY OFF

SET

CARRY TO <16>

ADDITIVE

SET

CATALOG ON

CATALOG OFF

SET

CATALOG ?

CATALOG TO <04>

SET

CENTURY ON

CENTURY OFF

SET

CLOCK ON

CLOCK OFF

^

356 ^

CLOCK TO <13>

SET

COLOR ON

COLOR OFF
I

COLOR TO <07>

COLOR OF <54> TO <07>

SET

CONFIRM ON

CONFIRM OFF

SET

i- CONSOLE ON

CONSOLE OFF

SET

CURRENCY LEFT

CURRENCY RIGHT

CURRENCY TO <00>

SET

DATE TO AMERICAN

DATE AMERICAN

DATE TO ANSI

DATE ANSI

DATE TO BRITISH

* DATE BRITISH

DATE TO FRENCH

DATE FRENCH

DATE TO GERMAN

DATE GERMAN

DATE TO INDIAN

DATE INDIAN

DATE TO JAPAN

DATE JAPAN

SET

f 357

DEBUG ON

DEBUG OFF

SET

DECIMALS TO <01>

SET

DEFAULT TO <08>

SET

DELETED ON

DELETED OFF

SET

DELIMITERS ON

DELIMITERS OFF

DELIMITERS TO <00>

DELIMITERS TO DEFAULT

SET

DESIGN ON

DESIGN OFF

SET

DEVELOPMENT ON

DEVELOPMENT OFF

SET

DEVICE TO PRINTER

DEVICE TO SCREEN

DEVICE TO FILE <04>

SET

DISPLAY TO MONO

DISPLAY TO COLOR

DISPLAY TO EGA25

DISPLAY TO EGA4 3

DISPLAY TO MON043

SET

DOHISTORY ON

S

)

358

DOHISTORY OFF

SET

ECHO ON

ECHO OFF

SET

ENCRYPTION ON

ENCRYPTION OFF

SET

ESCAPE ON

ESCAPE OFF

V- SET

EXACT ON

EXACT OFF

SET

EXCLUSIVE ON

EXCLUSIVE OFF

SET

FIELDS ON

FIELDS OFF

FIELDS TO ALL LIKE <22>

FIELDS TO ALL EXCEPT <22>

FIELDS TO ALL

FIELDS TO <16>

FIELDS TO

SET

FILTER TO FILE ?

FILTER TO FILE <04>

FILTER TO <03>

SET

FIXED ON

FIXED OFF

SET

359

FORMAT TO ?

r

FORMAT TO <04>

SET

FULLPATH ON

FULLPATH OFF

SET

FUNCTION <57> TO <00>

SET

HEADING ON

HEADING OFF

SET ^

HELP ON

HELP OFF

SET

HISTORY ON

HISTORY OFF

HISTORY TO <01>

SET

HOURS TO 12

HOURS TO 24

SET

INDEX TO ?

A-

INDEX TO <12> ORDER TAG <04> OF <04>

INDEX TO <12> ORDER <04> OF <04>

INDEX TO <12> ORDER <04>

INDEX TO <12>

INDEX TO

SET

INSTRUCT ON

INSTRUCT OFF

SET

INTENSITY ON

360 ^

INTENSITY OFF

SET

LOCK ON

LOCK OFF

SET

MARGIN TO <01>

SET

MARK TO <00>

SET

MEMOWIDTH TO <01>

SET

MENU ON

MENU OFF

SET

MESSAGE TO <00>

SET

NEAR ON

NEAR OFF

SET

ODOMETER TO <01>

SET

ORDER TO TAG <06> OF <04>

ORDER TO <01>

ORDER TO <06>

ORDER TO <04>

SET

PATH TO <18>

SET

PAUSE ON

PAUSE OFF

SET

POINT TO <00>

361

SET 4

PRECISION TO <01>

SET

PRINTER ON

PRINTER OFF

PRINTER TO FILE <04>

PRINTER TO <08>

SET

PROCEDURE TO <04>

SET

REFRESH TO <01> V

SET

RELATION TO <16> INTO <20>

RELATION TO <56> INTO <20>

RELATION TO <01> INTO <20>

RELATION TO

SET

REPROCESS TO <01>

SET

SAFETY ON

SAFETY OFF

SET

SCOREBOARD ON

SCOREBOARD OFF

SET

SEPARATOR TO <00>

SET

SKIP TO <26>

SET

SPACE ON

SPACE OFF

SET

362

SQL ON

SQL OFF

SET

STATUS ON

STATUS OFF

SET

STEP ON

STEP OFF

SET

TALK ON

TALK OFF

SET

TITLE ON

TITLE OFF

SET

TRAP ON

TRAP OFF

SET

TYPEAHEAD TO <01>

SET

UNIQUE ON

UNIQUE OFF

SET

VIEW TO ?

VIEW TO <04>

SET

WINDOW OF MEMO TO <06>

SHOW *

DATABASE

SHOW

MENU <28- PAD <29>

MENU <28>

363

SHOW

POPUP <30>

SKIP

0

<01> IN <31>

<01>

SORT

ON <24>

<02>

WHILE <03>

FOR <03>

TO <04>

START

DATABASE <32>

STOP

DATABASE <32>

STORE

<05> TO <13>

SUM

TO <13>

TO <33>

<02>

WHILE <03>

FOR <03>

<05>

SUSPEND

0

TEXT

0

TOTAL

ON <16> TO <04>

<02>

364

WHILE <03>

FOR <03>

FIELDS <34>

TYPE

<04> TO PRINTER <01>

<04> TO PRINTER

<04> TO FILE <04> <01>

<04> TO FILE <04>

<04> <01>

<04>

UNLOAD

DATA TO <04>

&

FROM TABLE <04>

DELIMITED WITH BLANK

DELIMITED WITH <00>

TYPE SDF

TYPE DIF

TYPE SYLK

TYPE WKS

TYPE DBASE

TYPE FW2

TYPE RPD

TYPE WK1

SDF

DIF

SYLK

WKS

DBASE

FW2

RPD

WK1

365

UNLOCK

0

ALL

IN <31>

UPDATE

ON <16> FROM <20> REPLACE

&

FIELD <16> WITH <05>

RANDOM

UPDATE *

<04> SET <55>

WHERE <03>

UPDATE *

<04> SET <55>

WHERE CURRENT OF <37>

USE

0

USE

? IN <20>

<04> IN <20>

7

<04>

INDEX <12>

ORDER TAG <3 8> OF <04>

ORDER <38> OF <04>

ALIAS <21>

EXCLUSIVE

NOUPDATE

AGAIN

WAIT

0

<14>

366

)

TO <06>

ZAP

0

367

&

0

12

24

i. <00>

<01>

<02>

<03>

<04>

<05>

<06>

<07>

<08>

<09>

<10>

<11>

<12>

<13>

<14>

<15>

<16>

<17>

<18>

<19>

<20>

<21>

APPENDIX - C

The following next reserve words are used for GSQL:

368

<22>

<23>

<24>

<25>

<26>

<27>

<28>

<29>

<30>

<31>

<32>

<33>

<34>

<35>

<36>

<37>

<38>

<39>

<40>

<41>

<42>

<43>

<44>

<45>

<46>

<47>

<48>

<49>

<50>

<51>

<52>

<53>

369

)

<54>

<55>

<56>

<57>

<58>

<59>

<60>

<61>

<62>

<63>

<64>

<65>

<66>

<67>

<68>

<69>

<70>

•?

@

ACTIVE

ADD

ADDITIVE

AGAIN

ALIAS

ALL

ALTERNATE

AMERICAN

ANSI

APPLICATION

ARRAY

AS

AT

370

AUTOSAVE

BAR

BEFORE

BELL

BLANK

BLOCKSIZE

BORDER

BOTTOM

BOX

BRITISH

BY

CARRY

CASE

CATALOG

CENTURY

CHECK

CLEAR

CLOCK

COLOR

COMMAND

COMPRESS

CONFIRM

CONNECTED

CONSOLE

CURRENCY

CURRENT

CURSOR

DATA

DATABASE

DATABASES

DATAFILE

DATAFILES

371

)

DATE

DBASE

DEACTIVATE

DEBUG

DECIMAL

DECIMALS

DEFAULT

DELETED

DELIMITED

DELIMITERS

DESCENDING

DESIGN

DEVELOPMENT

DEVICE

DIF

DISPLAY

DISTINCT

DOHISTORY

DOUBLE

ECHO

EGA25

EGA4 3

ELSE

ENCRYPTION

ENDCASE

ENDDO

ENDIF

ENDTEXT

ENVIRONMENT

ERROR

ESCAPE

EXACT

372

EXCEPT

EXCLUSIVE

EXIT

EXTENDED

FIELD

FIELDS

FILE

FILES

FILL

FILTER

FIXED

FOR

FORM

FORMAT

FREEZE

FRENCH

FROM

FULLPATH

FUNCTION

FUNCTIONS

FW2

GERMAN

GET

GETS

GRANT

GROUP

HAVING

HEADING

HEIGHT

HELP

HISTORY

HOURS

373

IN

INCLUDE

INDEX

INDEXES

INDIAN

INSTRUCT

INTENSITY

INTERSECT

INTO

JAPAN

KEEP

KEY

LABEL

LAST

LEFT

LIKE

LINE

LOCK

LOOP

MACRO

MACROS

MARGIN

MARK

MASTER

MEMO

MEMORY

MEMOWIDTH

MENU

MENUS

MESSAGE

MINUS

MODULE

374

MONO

MONO43

NEAR

NOAPPEND

NOCLEAR

NODELETE

NOEDIT

NOEJECT

NOFOLLOW

NOINIT

NOMENU

NONE

NOUPDATE

NOWAIT

OBJECT

OBJECTS

ODOMETER

OF

OFF

ON

OPEN

OPTION

ORDER

OTHERWISE

OVERWRITE

PAD

PAGE

PANEL

PATH

PAUSE

PFS

PICTURE

375

>

PLAIN

POINT

POP

POPUP

POPUPS

PRECISION

PRINT

PRINTER

PRIVILEGE

PRIVILEGES

PROCEDURE

PROCEDURES

PROMPT

PUBLIC

QUERY

RANDOM

RANGE

READERROR

RECORD

RECORDS

REFRESH

RELATION

REPLACE

REPORT

REPROCESS

RIGHT

RPD

RUNTIME

SAFETY

SAMPLE

SAVE

SAY

376

SCOREBOARD

SCREEN

SDF

SELECT

SELECTION

SEPARATOR

SET

SINGLE

SKIP

SPACE

SQL A

START

STATUS

STEP

STRUCTURE

STYLE

SUMMARY

SYLK

SYNONYM

TABLE

TAG

TALK

J
TEMP

TITLE

TO

TOP

TRANSACTION

TRAP

TYPE

TYPEAHEAD

UNION

UNIQUE

377

UPDATE

USERS

VALID

VALUES

VIEW

WHEN

WHERE

WHILE

WIDTH

WINDOW

WINDOWS

WITH

WK1

WKS

WORK

378

i

ScSc

*

?

??

???

@

ACCEPT

ACTIVATE

ALTER

APPEND

ASSIST

AVERAGE

BEGIN

BROWSE

CALCULATE

CALL

CANCEL

CASE

CHANGE

CLEAR

CLOSE

COMPILE

CONTINUE

CONVERT

COPY

COUNT

CREATE

APPENDIX - D

The following are the GSQL first reserve words

379

DBCHECK

DBDEFINE

DEACTIVATE

DEBUG

DECLARE

DEFINE

DELETE

DIR

DIRECTORY

DISPLAY

DO

DROP

EDIT

EJECT

ELSE

END

ENDCASE

ENDDO

ENDIF

ENDPRINTJOB

ENDSCAN

ENDTEXT

ERASE

EXIT

EXPORT

FETCH

FIND

FUNCTION

GO

GOTO

GRANT

HELP

380

IF

IMPORT

INCLUDE

INDEX

INPUT

INSERT

JOIN

LABEL

LIST

LOAD

£ LOCATE

LOGOUT

LOOP

MODIFY

MOVE

NOTE

ON

OPEN

OTHERWISE

PACK

PARAMETERS

PLAY

PRINTJOB

PRIVATE

PROCEDURE

PROTECT

PUBLIC

QUIT

READ

RECALL

REINDEX

. RELEASE

381

RENAME

REPLACE

REPORT

RESET

RESTORE

RESUME

RETRY

RETURN

REVOKE

ROLLBACK

RUN

RUNSTATS

SAVE

SCAN

SEEK

SELECT

SET

SHOW

SKIP

SORT

START

STOP

STORE

SUM

SUSPEND

TEXT

TOTAL

TYPE

UNLOAD

UNLOCK

UPDATE

USE

382

>

t

WAIT

ZAP

383

APPENDIX - E

The following GURU system programs are loading an
index, preparing relations to be recorded with schema, global
searching with multiple indexes, and searching with an efficient

search method on the loaded indexes.

index_f_load(x,stl,fin,cac)

^ char x[] ;

int stl,fin;

unsigned char cac,-

{

unsigned char fce,seq;

unsigned int i,ii,j,k,l,m,st,tif,rec_raax,rec_size,max_len;
if((tif=open_i_files(x,stl,fin,cac,&fce,&max_len))==0) return(O);
search_f_s_point_node(&(*curr_p)->fsp,curr_fsp,AFAC),-
(*curr_fsp)->index_stat=l;

mal=(unsigned long) (2L*(*curr_fsp)->rec_max);

if((mal!=0L)&&((r_n_p=(unsigned int far *) farmalloc(mal))==NULL)
mess_no_mem(31);

mal=(unsigned long) (*curr_fsp)->rec_max;

if((mal!=0L)&&((r_n_s=(unsigned int far *) farmalloc(mal))==NULL)
mess_no_mem(32);

mal=(unsigned long) ((*curr_fsp)->rec_max*max_len);

if((mal!=0L)&&((mem=(char far *) farmalloc(mal))==NULL)) mess_no_
index_nos_read(r_n_p, &rec_max, &rec_size, FACI [fee] [0]),-
*r_n_s=0;

*(r_n_s+l) =(unsigned int) (*curr_fsp) ->rec_max-l ,-
*(r_n_s+2)=0xFFFF;

st=3;

384

j-0;

for(i=0; i < tif; ++i)

{

l=St;

index_names_read(mem,&rec_max,&rec_size,FACI[fee][i],&seq);

if (i ==0)

(*curr_fsp)->index_stat=seq+l;

for(m=0; *(r_n_s+m) !=0xFFFF,-m+=2)

{

if(i!=0)

{

if(seq==0)

{

for(il=*(r_n_s+m); il < *(r_n_s+m+l); ++il)

for(j=il+l; j < (* (r_n_s+m+l) +1) ,- ++j)

if(strncmp(mem+(rec_size*(*(r_n_p+il))),\

mem+(rec_size*(*(r_n_p+j))),\

rec_size) > 0)

swap (r_n__p+il, r_n_p+j);

}

else

{

for (il=*(r_n_s+m) ,- il < *(r_n_s+m+1) ; ++il)

for(j=il+l; j < (*(r_n_s+m+l)+1); ++j)

if(strncmp(mem+(rec_size*(*(r_n_p+il))),\

mem+(rec_size*(*(r_n_p+j))),\

rec_size) < 0)

swap(r_n_p+il, r_n_p+j),-

}

}

if (tif!=1)

{

385

A

for(il=(*(r_n_s+m)); il < (* (r_n_s+m+l)),- ++ii)

{

k=il;

while((il < (*(r_n_s+m+l)))&&\

(same_str(mera+(rec_size*(*(r_n_p+il))),\

mem+(rec_size*(*(r_n_p+ii+i))),\

rec_size,0))) ++ii;

if(k!=il)

{

Mr_n_s+l)=k;

*(r_n_s+l+l)-il;

l+=2;

}

}

}

*(r_n_s+1)=0xFFFF;

copy_blk(r_n_s,st, 1);

St=l-St+1;

}

if(r_n_s!=NULL)

farfree(r_n_s);

r_n_s=NULL;

if(mem!=NULL)

farfree(mem);

mem=NULL;

(*curr_fsp)->index_arr= r_njp;

IFL=0;

IND_STAT=1;

return(1);

}

/*******************+*+++̂ ++̂ +̂ +++++++++it ++++̂ ^+̂ +++̂ +̂ ++++it +++̂ ^

386

relation_index_build(a,f_n,f1)

char a [] , f_n [] , fl;

{

unsigned int i,j,k,l,m,n;

unsigned char ac,temp_ac,-

int nl,x,y;

long jj.ii;

char sv[512];

char **dv;

unsigned long ad,rml,rm2;

unsigned int *r_n_pl,*r_n_ri,-

char far *meml;

r_n_pl=r_n_ri=NULL;

meml=NULL;

dv=(char far **) (unsigned long) &ad;

*dv=NULL;

REL_FLAG=1;

if (exist_fn_alias(f_n,"\0",&k)==0)

{

printfC'File %s is not loaded in memory\n", f_n) ;

REL_FLAG=0;

return (0) ,-

}

ac=FAC_C[k];

if(search_f_s_point_node(&(*curr_p)->fsp,curr_fsp,AFAC)==0)

{

printfC'File not loaded in area %d\n", AFAC) ,-

REL_FLAG=0;

return(0);

}

IFL=0;

rml= (*curr_f sp) ->rec_max,-

387

>

strcpy(sv,a);
»

expression_proc(dv,sv);

if(fl==0)

l=strlen(*dv);

else

1=5;

mal=(unsigned long) 1* (*curr_fsp) ->rec_max,-

if((mal!=0L)&&((mem=(char far *) farmalloc(mal))==NULL))

{

mess_no_mem(34);

^ REL_FLAG=0;

return (0) ,-

}

if ((*curr_fsp)->index_stat!=0)

{

r_n_p= (*curr_fsp) ->index_arr,-

x-(*curr_fsp) ->index_stat,-

}

else

{

mal=(unsigned long) (2L*(*curr_fsp)->rec_max);

if((mal!=0L)&&((r_n_p=(unsigned int far *) farmalloc(mal))==0))

• (
mess_no_mem(35) ,-

REL_FLAG=0;

return(0);

}

for(i=0; i < (*curr_fsp)->rec_max,- ++i) *(r_n_p+i) =i;

X=l;

}

for(i=0; i < (*curr_fsp)->rec_max; ++i)

{

i 388

IFL=i;

strcpy(sv,a) ;

expression_proc(dv,sv);

if (fl—0)

strncpy(mem+l*i,*dv,1);

else

sprintf (*dv, "%05d",i) ,-

}

temp_ac=AFAC;

AFAC=ac;

if(search_f_s_point_node(&(*curr_p)->fsp,curr_fsp,ac)==0) >

{

printfC'File not loaded in area %d\n",ac);

REL_FLAG=0;

return (0) ,-

}

if((*curr_fsp)->relation_stat==l)

{

if((*curr_fsp)->relation_arr!=NULL)

farfree((*curr_fsp)->relation_arr);

(*curr_fsp)->relation_arr=NULL;

(*curr_fsp)->relation_stat=0;

farfree((*curr_fsp) ->relation_val) ,-

if((*curr_fsp)->relation_val!=NULL)

(*curr_fsp)->relation_val=NULL;

(*curr_fsp) ->relation_bac=0,-

}

IFL=0;

rm2=(*curr_fsp)->rec_max;

strcpy (sv,a) ,-

expression_proc(dv,sv);

m=strlen(*dv);

389 ^

mal=(unsigned long) (m*(*curr_fsp)->rec_max);

if((mal!=0L)&&((meml=(char far *) farmalloc(mal))==NULL))

{

mess_no_mem(36);

REL_FLAG=0;

return(O);

}

if((*curr_fsp)->index_stat!=0)

{

r_n_pl=(*curr_fsp)->index_arr;

^ y=(*curr_fsp)->index_stat,-

}

else

{

mal=(unsigned long) (2L* (*curr_fsp)->rec_max);

if((mal!=0L)&&((r_n_pl=(unsigned int far *) farmalloc(mal))==0))

{

mess_no_mem(37);

REL_FLAG=0;

return(0);

}

for(i=0; i < (*curr_fsp)->rec_max,- ++i) *(r_n_pl+i) =i -

Y=l; •

}

for(i=0; i < (*curr_fsp)->rec_max; ++i)

{

IFL=i;

strcpy(sv,a);

expression_proc (dv, sv) ,-

strncpy(meml+m*i,*dv,m);

}

if((*curr_fsp)->relation_stat==l)

390

r_n_ri=(*curr_fsp) ->relation_arr,-

else

{

mal= (unsigned long) (2L*rml) ,-

if((mal!=0L)&&((r_n_ri=(unsigned int far *) farmalloc(mal))==0))

{

mess_no_mem(38);

REL_FLAG=0;

return(0) ,-

}

} ^
for(i=0; i < (unsigned int) rml; ++i)

*(r_n_ri+i)=0xFFFF;

switch(x)

{

case l:

if(y==l)

{

for (i=0, j=0,- i < (unsigned int) rml; ++i)

for(; j < (unsigned int) rm2 ; ++j)

{

if((nl=strncmp(mem+(l*i),meml+(m*j),1))<=0)

• { *
if(nl==0)

{

*(r_n_ri+i)= *(r_n_pl+j);

}

break;

}

}

}

391

i

else

{

for(i=0,jj-(long) (rm2-l); i < (unsigned int) rml; ++i;

for(; jj >= 0 ; --jj)

{

if((nl=strncmp(mem+(l*i),meml+(m*jj),1))<=0)

{

if(nl==0)

{

*(r_n_ri+i)= *(r_n_pl+jj);

--jj;

}

break;

}

}

}

break;

case 2 :

if(y--l)

{

for(ii-(long) rml-l,j=0; ii >=0; --ii)

for(; j < (unsigned int) rm2 ; ++j)

<

if((nl=strncmp(mem+(l*ii),meml+(m*j),1))<=0)

{

if (nl—0)

{

*(r_n_ri+ii)= *(r_n_pl+j);

++j;

}

break;

}

392

}

}

}

else

{

for(ii=(long) (rml-1),jj=(long) (rm2-l); ii >=0; --ii)

for(; jj >= 0 ,- --jj)

{

if((nl=strncmp(mem+(l*ii),meml+(m*jj),l))<=0)

{

if(nl==0)

{

*(r_n_ri+ii)= *(r_n_pl+jj);

--jj;

}

break;

}

}

}

break;

AFAC=temp_ac;

(*curr_fsp)->relation_stat=l;

(*cu.rr_fsp) ->relation_arr=r_n_ri;

(*curr_fsp)->relation_bac=AFAC;

if((*curr_fsp)->relation_val!=NULL)

farfree((*curr_fsp)->relation_val);

i=strlen(a) ,-

if(((*curr_fsp)->relation_val=(char *) farmalloc((unsigned long) (i+l)

mess_no_mem(50);

sprintf((*curr_fsp) ->relation_val, "%s", a) ,-

if(mem!=NULL)

farfree(mem);

393

i

mem=NULL;

if(meml!=NULL)

farfree (meml) ,-

meml=NULL;

if((*curr_fsp)->index_stat==0)

if(r_n_pl!=NULL)

farfree(r_n_pl)•

r_n_pl=NULL;

search_f_s_point_node(&(*curr_p) ->fsp, curr_fsp, AFAC) ,-

if((*curr_fsp)->index_stat==0)

^ if(r_n_p!=NULL)

farfree (r_n_p) ,-

r_n_p=NULL;

REL_FLAG=0;

return (1) ,-

}

find_index_value(x)

char x[;;

{

char a [3] ,-

unsigned char fce,tfn,seq;

unsigned int i,m,n,rec_max,rec_size,max_len,p;

int k,j;

p=strlen(x);

for(i«0; i < 26; ++i) if(FAC_C[i]==AFAC) break;

fce=(unsigned char) i;

if(search_f_s_point_node(&(*curr_p)->fsp,curr_fsp,AFAC)==0)
return (0) ,-

if((*curr_fsp)->index_stat==0)

{

printf("No index file(s) loaded with the current area\n");

394

return (0) ,-

}

max_len=0;

for(i=0; (i < 8)&&(FACI[fce] [i] !=0) ,- ++i)

{

lseek((int) FACI [fee] [0] , 6L, 0) ,-

mal=0L,-

file_rd((int) FACI[fee][0],&mal,&k,2);

lseek((int) FACI[fee][0],(unsigned long) (8+k),0);

file_rd((int) FACI[fee][0],&mal,&j,2);

lseek((int) FACI [fee] [0] ,(unsigned long) (12+j+k) ,0) ,-

_read((int) FACI[fee] [i],a,2);

strtoin(&n,a);

if(n > max_len) max_len=n;

}

tfn=i;

r_n_p=(*curr_fsp)->index_arr;

mal= (unsigned long) ((*curr_f sp)->rec_max*max_len) ,-

if((mal!=0L)&&((mem=(char far *) farmalloc(mal))==0))

mess_no_mem(39);

for(i=0; (i < 8)&&(FACI[fce] [i] !=0) ; ++i)

{

index_names_read(mem, &rec_max, &rec_size, FACI[fee] [i] ,&seq) ,-

if (p > rec_size) p=rec_size,-

for(m=IFL; m < rec_max; ++m)

{

for(n=0; n < p,- ++n)

printf ("%c", *(mem+n+ (rec_size* (* (r_n_p+m))))),-

printf("\n");

getch() ,-

if(((tfn==l) &&((k=strncmp(mem+(rec_size* (* (r_n_p+m)))\

,x,p)) >= 0))\

395

>

\

II((k=strncmp(mem+(rec_size* (* (r_n_p+m))),x,p))==0))

{

if(k==0)

{

if(mem!=NULL)

farfree(mem);

mem=NULL;

IFL=m+l;

(*curr_fsp)->rec_no=*(r_n_p+m);

return(1);

4 }
else

if(tfn==l) break;

}

}

IFL=0;

}

if(mem!=NULL)

farfree (mem) ,•

mem=NULL;

return (0) ,-

}
/•****** +**+*+*** +** +*+*^* ++++++++^++++++++^+<. ++^+++^++++++++^++.

find_index_pvalue(x)

char x [] ,-

{

char a [3] ,-

unsigned char fee, flag, seq,-

unsigned int i,m,n,rec_max,rec_size,p,kl,k2,fv,iter;

int k,j ,-

n=IFL;

p=strlen(x);

4 396

for(i=0; i < 26; ++i) if(FAC_C[i]==AFAC) break;

fce=(unsigned char) i;

if(search_f_s_point_node(&(*curr_p)->fsp,curr_fsp,AFAC)==0)

return(0) ,-

if((*curr_fsp)->index_stat==0)

{

printf ("No index file(s) loaded with with the current area\n"),-

return (0) ,-

}

fv=(unsigned int) (log((*curr_fsp)->rec_max-IFL)+2);

iter=0;

lseek((int) FACI [fee] [0] , 6L, 0);

mal=0L;

file_rd((int) FACI[fee][0],&mal,&k,2);

lseek((int) FACI[fee][0],(unsigned long) (8+k),0);

file_rd((int) FACI [fee] [0],&mal,&j,2);

lseek((int) FACI [fee] [0] ,(unsigned long) (12+j+k) ,0) ,-

_read((int) FACI[fee][0],a,2);

strtoin(&rec_size,a);

r_n_p=(*curr_fsp)->index_arr;

mal=(unsigned long) ((*curr_fsp)->rec_max*((unsigned long) rec_si

if((mal!=0L)&&((mem=(char far *) farmalloc(mal))==0))

mess_no_mem(40);

index_names_read(mem,&rec_max,&rec_size,FACI[fee][0],&seq);

if(p > rec_size) p=rec_size;

flag=0;

kl=rec_max-l;

if(seq==0)

{

kl=IFL;

j=k2=rec_max-1;

if((strncmp(mem+(rec_size*(*(r_n_p))),x,p)<=0)&&\

397

i

(strncmp(mem+(rec_size*(*(r_n_p+(rec_max-l)))),x,p)>=0))

{

while((k=strncmp(mem+(rec_size*(*(r_n_p+j))),x,p))!=0)

{

if(k > 0) k2=j;

else

if(k < 0) kl=j;

if(j==((kl+k2)/2))

++j;

else

^ j=(kl+k2)/2;

++iter;

if ((k2 ==kl) ||(iter>fv)) { flag=l; break,-}

}

}

}

else

{

j=kl=rec_max-1;

k2=IFL;

if((strncmp(mem+(rec_size*(*(r_n_p))),x,p)>=0)&&\

(strncmp(mem+(rec_size*(*(r_n_p+(rec_max-l)))),x,p)<=0))

{

while((k=strncmp(mem+(rec_size*(*(r_n_p+j))),x,p))!=0)

{

if(k < 0) kl=j;

else

k2=j;

++iter,-

if(j==((kl+k2)/2))

++j;

else

i 398

j=(kl+k2)/2;

if((k2 ==kl)I I(iter -fv)) { flag=l; break;}

}

}

}

if ((flag«l) ||(iter—0))

{

if(mem!=NULL)

farfree(mem);

mem=NULL ,-

return(0) ,- >

}

if (seq==0)

{

for(i=j-l; i >= n; --i)

if(strncmp(mem+(rec_size*(*(r_n_p+i))),\

mem+(rec_size*(*(r_n_p+j))),p)!=0) break;

kl-i+1;

IFL=kl;

}

else

{

for(i=j+l; i <= n; --i)

if(strncmp(mem+(rec_size*(*(r_n_p+i))),\

mem+(rec_size*(*(r_n_p+j))),p)!=0) break;

kl=i-l;

IFL=kl;

}

if(mem!=NULL)

farfree(mem);

mem=NULL;

(*curr_fsp)->rec_no=kl+l;

399

return (1) ,-

400

APPENDIX - F

Following are some library functions working with GURU:

i &

2 ABS()

3 ACCESS ()

4 ACOS()

5 ALIAS()
0

6 ASC()

7 ASINO

8 AT()

9 ATANO

10 ATN2()

11 BAR()

12 BOF()

13 CALL()

14 CDOW()

15 CEILING()

16 CHANGE()

17 CHR()

18 CMONTH()

19 COLO

20 COMPLETED()

21 coso

22 CTOD()

23 DATE()

24 DAY()

25 DBF()

26 DELETED()

27 DIFFERENCE()

401

28 DISKSPACE()

29 DMY()

30 DOW()

31 DTOC()

32 DTOk()

33 DTOS()

34 EOF()

35 ERROR()

36 EXP()

37 FIELD()

38 FILEO

39 FIXED()

40 FKLABEL()

41 FKMAXO

42 FLOAT()

43 FLOCK()

44 FLOOR()

45 FOUND()

46 FV()

47 GETENV()

48 IIFO

49 INKEY()

50 INTO

51 ISALPHAO

52 ISCOLORO

53 ISLQWERO

54 ISMARKED()

55 ISUPPERO

56 KEYO

57 LASTKEY()

58 LEFTO

59 LEN()

402

\

c

4

60 LIKE()

61 LINENO()

62 LKSYS ()

63 LOCK()

64 LOGO

65 LOG10O

66 LOOKUP()

67 LOWER()

68 LTRIM()

69 LUPDATE()

70 MAXO

71 MDX()

72 MDY()

73 MEMLINES()

74 MEMORY()

75 MENUO

76 MESSAGE()

77 MINO

78 MLINEO

79 MODO

80 MONTH()

81 NDX()

82 NETWORK()

83 NPV()

84 ORDER()

85 OS()

86 PAD()

87 PAYMENT()

88 PCOL()

89 PK)

90 POPUP()

91 PRINTSTATUS()

403

92 PROMPT()

93 PROW()

94 PV()

95 RANDO

96 READKEY()

97 RECCOUNT()

98 RECNO()

99 RECSIZEO

100 REPLICATE()

101 RIGHTO

102 RLOCK()

103 ROLLBACK()

104 ROUND()

105 ROW()

106 RTOD()

107 RTRIM()

108 SEEKO

109 SELECT()

110 SETO

111 SIGNO

112 SINO

113 SOUNDEX()

114 SPACE()

115 SQRT()

116 STR()

117 STUFF()

118 SUBSTR()

119 TAGO

120 TIMEO

121 TRANSFORM()

122 TRIMO

123 TYPE()

404

\

124 UPPER()

125 USER()

126 VAL()

127 VARREAD()

128 VERSION

129 YEAR()

405

BIBLIOGRAPHY

1. M. Abdelguerfi, and Arun K. Sood, "Computational Complexity

of Sorting and Join Relations with Duplicates," IEEE Trans. on

Know, and Data Eng., vol. 3, no. 4, pp. 496-503, Dec. 1991.

2. S. Abiteboul and N. Bidoit, "An Algebra for Non-normalized

Relations," in Proc. 3rd ACM Int. Symp. Principles Database
Syst., 1984.

3. M. E. Adiba and B. G. Lindsay, "Database Snapshots," Proc.

Sixth Int. Conf. Very Large Databases, pp. 86-91, 1980.

4. G. Agha and C. Hewitt, "Actors: A conceptual foundation for

concurrent object-oriented programming," in Research Directions

in Object-Oriented Programming, B. Shriver and P. Wegner, Eds.

Cambrdge MA: The MIT Press Series in Computer Systems, pp. 49-74,
1987.

5. M. Agosti, "Database design: A classified and annoted

bibliography," British Computer Soc. Momnographs in Informatics.,
Cambridge University Press, 1986.

6. Rafi Ahmed, Philippe De Smedt, Weimin Du, William Kent,

Mohammed A. Ketabchi, Witold A. Litwin, Abbas Rafii, and Ming-

Chien Shan, "The Pegasus Heterogeneous Multidatabase System,"
IEEE Computer, pp. 19-27, Dec. 1991.

7. M. Ahamad, P. Dasgupta, and R. J. LeBlanc, "Fault-tolerant

atomatic computations in object-based distributed system,"
Distributed Computing, vol. 4, no. 2, pp. 69-80, May 1990.

8. M. Ahamad and L. Lin, "Using check-points to localize the

effect., of faults in distributed systems," in Proc. 8th Symp.
Reliable Distributed Syst., Seattlem, WA, pp. 2-11, Oct. 1989.

9. A. Ahmed and A. Rafii, "Relational Schema and Mapping and

Query Translation in Pagasus," Proc. Workshop in Multidatabases

and Semantic Interoperability, pp. 22-25, 1990.

10. G. T. Almes et al., "The Eden system: A technical review,"

i
406

IEEE Trans. Software Eng., Piscataway, N. J., vol. SE-11, no. 1,

pp. 43-58, Jan. 1985.

11. G. T. Almes, C. L. Holman, "Edmas: An Object-Oriented,

Locally Distributed Mail System," IEEE Trans, on Soft. Eng., vol.

SE-13, no. 9, pp. 1001-1009, Sep. 1987.

12. T. Andrews and C. Harris, "Combining Language and Database

Advances in Object-Oriented Development Environment," Proc.

Object-Oriented Programming Systems, Languages and Applications,

Addison-Wesley, Reading Mass., pp. 430-440, 1987; and also

SIGPlan Notices, special issue, ACM. vol. 22, no. 12, Dec. 1987.

13. M. Atkinson et al., "The Object-Oriented System.

Manifesto," Proc. First International Conf. Deductive and Object-

Oriented Databases, Elsevier Science Publishers B. V., Amsterdam,

pp. 40-57, 1989.

14. M. Atkinson and P. Buneman, "Types and persistence in

database programming languages," ACM Comput. Surveys, vol. 19,

no. 2, June 1987.

15. T. M. Atwood, "An object-oriented DBMS for design support

applications," in Proc. IEEE Compint, pp. 299-307, 1985.

16. F. Bancilhon et al., "The design and implementation of 02,

An object-oriented database system," in Advances in Object-

Oriented Database Systems, Lecture Notes in Computer Science 334,

K. R. Dittrich, Ed. Berlin Germany: Springer, pp. 1-22, 1988.

17. J. Banerjee et al., "Data model issues for object-oriented

applications," ACM Trans. Office Infom. Syst., vol. 5, pp. 3-26,

1987.

18. C. Batini and M. lenzerini, "A methodology for data schema

integratic in the entity relationship model," IEEE Trans.

Software Eng., vol SE-10, pp. 650-664, Nov. 1984.

19. C. Batini, M. Lenzerini, and S. B. Navathe, "A Comparative

Analysis of Methodolgies for Database Schema Integration," ACM

Computing Surveys, vol. 18, no. 4, pp. 323-364, Dec. 1986.

407

20- D. S. Batory and A. P. Buchmann, "Molecular objects,

abstract data types, and data models: A framework," in Proc. 10th

Int. VLDB Conf., pp. 172-184, 1984.

21. R. Bayer, H. Heller, and A. Reiser, "Prallelism and

recovery in database systems," ACM Trans., Database Syst., vol.

5, no. 2, pp. 139-156, June 1980.

22. P. Bernstein and N. Goodman, "Concurrency Control in

Distributed Database Systems," ACM Computing Surveys, vol. 13,

no. 2, pp. 185-221, June 1981.

23. P. A. Bernstein , V. Hadzilacos, and N. Goodmann,

(^ Concurrency Control and Recovery in Database Systems. Reading,
MA: Addison-Wesley, 1987.

24. E. Bertino et al., "Integration of Heterogeneous

Applications Through an Object-Oriented Interface," Information

Systems, Pergamon Press, vol. 14, no. 5, pp. 407-420, 1989.

25. E. Bertino, M. Negri, G. Pelagatti and L. Sbattella,

"Object-Oriented Query Languages: The Notion and the Issues,"

IEEE Trans, on Know, and Data Eng., vol. 4, no. 3, pp. 223-237,

June 1992.

26. Elisa Bertino and Lorenzo Martino, "Object-Oriented Data

base Management System: Concepts and Issues," IEEE Computer, pp.

33-47, Apr. 1991.

27. A. Bjornerstedt and C. Hulten, "Version Control in an

Object-Oriented Architecture," in Object-Oriented Concepts.

Databases, and Applications, W. Kim and F. Lochovsky, eds.,

Addison-Wesley, Reading, Mass., pp. 451-485, 1989.

28. Black et al., "Distribution and Abstraction Types in

Amerald," IEEE Software Eng., vol. SE-13, no. 1, pp. 65-76, 1987.

29. J. A. Blakeyley, N. Coburn, and P. A. Larson, "Updating

derived relations: Detecting irrelevant and autonomous computable

updates," ACM Trans. Database Syt., vol. 14, no. 3, pp. 369-400,

Sept. 1989.

f 408

30. H. Boral, "Parallelism in Bubba," in Proc. Int. Symp.,

Databases in Parallel and Distributed System, Austin in Dec.

1988.

31. R. Brachman and J, G. Schmolze, "An Overview of Kl- One

Knowledge Representation System," Cognitive Science, vol. 9, no.

2, pp. 171-216, Apr.-June, 1985.

32. D. Briatico, A. Ciuffolett, and L. Simoncini, "A

distributed domino effect free recovery algorithm," in Proc. IEEE

Symp. Reliability in Distributed Software and Database Syst.,

Silver Spring, MD, pp. 207-215, Oct. 1984.

33. Y. Brietbart, P. L. Olson and G. L. Thompson, "Database

Integration in a Heterogeneous Distributed Database System,"

Proc. Data Eng. Conf. IEEE CS Press, Los Alamitos, Calif, pp.

310-310, 1986.

34. Y. Breitbart, ed., Proc. Workshop Multidatabases and

Semantic Interperabbility, National Science Foundation with the

cooperation of University of Kentucky and Amoco, Nov. 1990.

35. Y. Breitbart, A. Silberschatz, and G. Thompson, "Reliable

Transaction Management in Multidatabase Systems," Proc. SIGMOD

Int'l Conf. Management of Data, ACM New York, pp. 215-224, 1990.

36. R. Breitle et al., "The Gemstone Data Management System,"

in Object-Oriented Concepts, Databases, and Applications, K. Kim

and F. Lochovsky, eds., Addison-Wesley, Reading Mass., pp. 283-

308, 1989.

37. S. Cammarata, "Deferring updates in a relational database

system," in Proc. Seventh Int. Conf. Very large databases, pp.

286-292, 1981.

38. M. J. Carey, D. J. Dewitt, and S. L. Vandeberg, "A data

model and query language for EXODUS," in Proc. ACM SIGMOD Conf.,

pp. 413-423, 1988.

39. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig,

"Analysis models for rollback and recovery strategies in database

409

systems," IEEE Trans., Software Eng., vol. SE-1, no. 1, pp. 100-

110, Mar. 1975.

40. M. Chandy and L. Lamport, "Distributed snapshots:

Determining global states of distributed systems," ACM Trans.

Comput. Syst., vol. 3, no. 1, pp. 63-75, Feb. 1985.

41. M. Chandy and J. Misra, Parallel Program Design: A

Foundation Reading, MA: Addison-Wesley, 1988.

42. C. Chang, "Dataplex: An access to Heterogeneous

Distributed Databases," ACM, vol. 33, no. 1, pp. 70-80, Jan.

1990.

43. T. H. Chang and A. Sciore, "A Universal Relation Data

Model with Semantic Abstraction," IEEE Trans, on Know, and Data

Eng., vol. 4, no. 1, pp. 23-33, Feb. 1992.

44. R. Chen and P. Dasgupta, "Linking consistency with

object/thread semantics: An approach of robust computations,"

Proc. Ninth Int'l Conf. Distributed Computing Systems, IEEE CS

Press, Los Alamitos, Calif., order no. 1953, pp 121-128, 1989.

45. D. R. Cheriton, "The V distributed system," Comm. ACM,

vol. 31, no. 3, pp. 314-333, Mar. 1988.

46. D. R. Cheriton, "VMTP: A transport protocol for the next

generation of communication systems," Proc. SIGcomm, pp. 406-415,

1986.

47. Pai-Cheng Chu, "Estimating Block Selectivities For

Physical Database Design," IEEE Trans, on Know, and Data Eng.,

vol. 4, no. 1, pp. 89-98, Feb. 1992.

48. R. S. Chin and S. T. Chanson, "Distributed Object-Based

Programming Systems," ACM Comp. Sur., vol. 23, no. 1, pp. 91-124,

Mar. 1991.

49. E. F. Codd, "Relational Database: A Practical Foundation

for Productivity," Communications of the ACM vol. 25, no. 2, pp.

109-117, Feb. 1982.

50. E. F. Codd, "Extending the Database Relational Model to

410

Capture More Meaning," ACM Transactions on Database Systems vol.

4, no. 4, pp. 397-434, Dec. 1979; (also ACM-SIGMOD Conference

Proceedings, 1979 May).

51. E. F. Codd, "Normalized Database Structure: A Brief Tuto

rial," Proceedings of 1971 ACM-SIGFIDET Workshop "Data Descrip

tion, Access, and Control," edited by E.F. Codd and A.L. Dean,

New York: Association of Computing Machinery, pp. 1-17, 1971.

52. E. F. Codd, "A relational Model of Data for Large Shared

Data Banks, " Communications of the ACM vol. 13, no. 6, pp. 377-

387, Jun. 1970.

53. D. E. Comer, and L. L. Peterson, "Understanding Naming in f

Distributed Systems," Distributed Computing, pp. 51-60, May 1989.

54. G. Copeland and D. Maier, "Making Smalltalk a database

system," in Proc. ACM Trans. Database Syst., vol. 2., no. 3.,

Sept. 1977.

55• p- Dadam et al., "A DBMS prototype to support

extendedNF-2-relations: An integrated view on flat tables and

hierarchies," in Proc. ACM SIGMOD Conf., pp. 356-367, 1986.

56. P. Dadam and g. Schlageter, "Recovery in distributed

databases based on nonsynchronized local checkpoints," in

Information Processing. Amsterdam, The Netherlands: North-

Holland, pp. 457-462, 1980.

57. Scott Danforth and Patrick Valduriez, "A FAD for Data

Intensive Applications," IEEE Trans, on Knowledge and Data Engi

neering, Vol. 4. No. 1, pp. 34-51, Feb. 1992.

58. Scott Danforth and Chris Tomlinson, "Type Theories and

Object-Oriented Programming," ACM Comp. Sur., vol. 20, no. 1, pp.

29-72, Mar. 1988.

59. P. Dasgupta et al., "The design and implementation of the

clouds distributed operating system," Usenix Computing Systems

J., vol. 3, no. 1, pp. 11-46, Winter 1990.

60. P. Dasgupta, R. J. LeBlanc, J. M. Ahamad, and U.

V

411

Ramachandran, "The Clouds Distributed Operating System," IEEE
Computer, pp. 34-44, Nov. 1991.

61• s- B- Davidson, H. Garcia-Molina, and D. Skeen,

"Consistency in Partitioned Network," ACM Computing Surveys, vol.
17, no. 3, pp. 341-370, Sept. 1985.

62. U. Dayal and P. A. Bernstein, "On the updatability of

relational views," in Proc. Fourth Int. Conf. Very large data
bases, pp. 368-377, 1978.

63. U. Dayal and J. M. Smith, "PROBE: A knowledge-oriented

database management system," in On Knowledge Base Management

Systems, M. L. Brodie and J. Mylopoulos, Eds. Berlin Germany:
Springer, pp. 227-258, 19986.

64. U. Dayal and H. Y. Hwang, "View Definition and

Generalization for Database Integration in a Multidatabase

System," IEEE Trans. Software Eng., vol. SE-10, no. 6, pp. 628-

645, Nov. 1984.

65. L. DeMichiel, "Performing Operations Over Mismatched

Domains," Proc. Fifth IEEE Data Eng. Conf. CS Press, Los

Alamitos, Calif., order no. 1915, pp. 36-45, 1989.

66. F. DeRemer and H. H. Kron, "Programming-in-the-large

versus programming-in-the-small, " IEEE Trans. Software Eng., vol.

SE-2, pp. 80-86, 1976.

67. Deux et al., "The Story of 02," IEEE Trans. Knowledge and

Data Eng., vol. 2, no. 1, pp. 91-108, 1990.

68. E. W. Dijkastra, "The distributed snapshot of K. M. Chandy

and L. Lamport," in Control Flow and Data Flow: Concepts of

Distributed Programming, NATO ASI Series F: Computer System

Sciences, vol. 14, M. Broy, Ed. Berlin, Germany: Springer-Verlag,
pp. 513-518, 1985.

69. Klaus R. Dittrich and Raymond A. Lorie, "Version Support

for Engineering Database Systems," IEEE Trans, on Soft. Eng.,

vol. 14, no. 4, pp. 429-437, Apr. 1988.

* 412

70. Vishweshwar V. Dixit and Don I. Moldovon, "Minimal State

Space Search in Parallel Production Systems," IEEE Trans. on

Know, and Data Eng., vol. 3, no. 4, pp. 435-443, Dec. 1991.

71. Gorden. C. Everest, "Basic Data Structure Models Explained

with a Common Example," Proceedings fifth Texas Conference on

Computing Systems, Ustin, pp. 39-46, Oct. 1976.

72. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger,

"The notions of consistency and predicate locks in database

systems," Comm. ACM, vol. 19, no. 11, pp. 624-633, Nov. 1976.

73. M. J. Fischer, N. D. Griffeth, and N. A. Lynch, "Global

states of a distributed system," IEEE Trans. Software Eng., vol.

SE-8, no. 3, pp. 198-202, 1982.

74. D. H. Fishman et al., "Iris: an Object-Oriented Database

Management System,"ACM Trans. Office Information Systems, vol. 5,

no. 1, pp. 48-69, 1987.

75. A. Furtado and L. Kerschberg, "An algebra of quotient

relations," in Proc. ACM Int. SIGMOD Conf. 1977.

76. K. S. Gadia, "A homogeneous relational model and query

languages for temporal databases," ACM Trans. Database Systems

vol. 13, no. 4, pp. 418-448, Dec. 1988.

77. H. Garcia-Molina and B. Kogan, "Node Autonomy in

Distributed Systems," Proc. Int'l Symp. Databases in Parallel and

Distributed Systems, CS Press, Los Almamitos, Calif., Order no.

893, pp. 158-166, 1988.

78. N. Gehani, "Databases and unit of measure," IEEE Trans.

Software Engg., vol. SE-8, no. 6, pp. 605-611, Nov. 1982.

79. A. Goldberg and D. Robson, Smalltalk-80, The language and

its implementation. Reading, MA: Addison-Wesley, 1983.

80. W. Gotthard, P. C. Lockemann, and A. Neufeld, "System-

guided view integration for object-oriented databases," IEEE

Trans. on Know, and Data Eng., vol. 4, no. 1, pp. 68-82, Feb.

1992.

413

81. J. N. Gray, "Notes on database operating system," in

Operating Systems: An Advance Course. Berlin Germany: pp. 393-

481, Spunger-Verlag, 1979.

82. Nabil I. Hachem and Bruce Berra, "New Order Preserving

Access Methods for Very Large Files Derived from Linear Hashing, "

IEEE Trans. on Know, and Data Eng., vol. 4, no. 1, pp. 68-82,

Feb. 1992.

83. B. Halipern and V. Nguyen, "A model for object-based

inheritance," in Reasearch Directions in Object-Oriented

Programming, B. Shriver and P. Wegner, Eds. Cambridge MA: The MIT

Press Series in Computer Systems, pp. 147-164, 1987.

84. M. Hammer and D. Macleod, "Database description with SDM:

A semantic database model," ACM Trans. Database Systems, vol. 6,

no. 3, Mar. 1981.

85. S. Hayne and S. Ram, "Multi-User View Integration System

(MUVIS): An Expert System for View Integration" Proc. Sixth IEEE

Data Eng. Conf., CS Press, Los Alamitos, Calif., order no. 2025,

pp. 402-409, Feb. 1990.

86. S. Heiler and S. Zdonik, "Views data abstractions, and

inheritance in the FUGUE data model," in Advance in Object-

Oriented Database Systems, K. R. Dittrich, Ed., Lecture Notes in

Computer Science 334, pp. 225-241, Springer 1987.

87. R. Hull and C. Yap, "The format model: A theory of

database organization," J. ACM, vol. 31, no. 3, July 1984.

88. R. Hull and R. King, "Semantic Database Modeling: Survey

Applications and Research Issues," ACM Computing Surveys, vol.

19, no. 3, pp. 201-260, 1987.

89. T. Imielinski and W. Lipski, "Incomplete Information in

Relational Databases," J. ACM, vol. 31, no. 4, pp. 761-791, Oct.

1984.

90. Christian S. Jensen, Leo Mark, and Nick Rousspoulos,

"Incremental Implementation Model for Relational Databases with

f 414

Transaction Time," IEEE Trans, on Knowledge and Data Engineering,

Vol. 3. No. 4. Dec. 1991.

91. S. Karl and P. C. Lockemann "Design of engineering

databases: A case for more varied semantic modeling concepts,"

Inform. Syst. vol. 13, pp. 335-357, 1988.

92. A. Kemper, P. C. Lockemann, and M. Wallrath, "An object-

oriented database system for engineering applications," in Proc.

ACM SIGMOD Conf., pp. 299-311, 1987.

93. W. Kent, "Solving Domain Mismatch and Schema Mismatch

Problems with an Object-Oriented Database Programming Language,"

Proc. VLDB Conf., Morgan Kaufmann, San Mateo, Calif., pp. 147-

160, 1991.

94. S. Khoshafian and G. Copeland, "Object identity," in Proc.

1st Int. Workshop Object-Oriented programming language Syst.,
Languages and Appl., Portland, 1986.

95. W. Kim et al., "A Transaction Mechanism for Engineering

Design Databases," Proc. International Conference, Very Large

Databases, Morgan Kauffmann, Los Altos, Calif., pp. 255-362,

1984.

96. W. Kim et al., "Architecture of Orion Next-Generation

Database System," IEEE Trans. Knowledge and Data Eng., vol. 2,

no. 1, pp. 109-124, 1990.

97. W. Kim, H. T. Chou, and J. Banerjee, "Operations and

implementation of complex objects," in Proc. 3rd Int. Conf. Data

Eng., pp. 626-633, 1987.

98. Won Kim and Jungyun Seo, "Classifying Schematic and Data

Heterogeneity in Multidatabase Systems," IEEE Computer, pp. 12-

18, Dec. 1991.

99. Ramesh Krishnamurty, "An Approximation Algorithm for

Scheduling Tasks on Varying Partition Sizes in Partitionable

Multiprocessor Systems," IEEE Trans, on Know, and Data Eng., vol.

41, no. 12, Dec. 1992.

415

(

100. C. Koelbel, and P. Mehrotra, "Compiling Global Name-Space

Parallel Loops for Distributed Execution," IEEE Trans, on Para,

and Dist. Sys., vol. 2, no. 4, pp. 440-451, Oct. 1991.

101. R. Koo and S. Toueg, "Checkpoints and rollback-recovery

for distributed systems," IEEE Trans. Software Eng., vol. SE-13,

no. 1, pp. 23-31, Jan. 1987.

102. H. T. Kung and J. T. Robinson, "On optimistic methods for

concurrency control," ACM Trans. Database Syst., vol. 6, no. 2,

pp. 213-226, June 1981.

103. G. Kuper and M. Vardi, "On the expressive power of the

(logic data model," in Proc. ACM Int. SIGMOD Conf. 1985.

104. H. Kuss, "On totally ordering checkpoints in distributed

databases," in Proc. ACM-SIGMOD Int. Conf. Management Data,

Orlando, FL, pp. 293-302, 1982.

105. L. Lamport, "Time, clocks and ordering of events in a

distributed system," Commun. ACM, vol. 21, no. 7, pp. 558-564,

1978.

106. T. A. Landers and R. L. Rosenberg, "An Overview of

Multibase - Heterogeneous Database System," Distributed

Databases, H. J. Schneider, ed., North Holland, Amsterdam, pp.

153-184, 1982.

107. C. E. Landwehr, "Formal Models for Computer Security,"

ACM Comp. Sur., vol. 11, no. 1, pp. 247-278, Sept. 1981.

108. C. Lecluse, P. Richard, and F. Velez, "02, An object-

oriented data model," Proc. ACM Int. SIGMOD Conf., 1988.

109. A. Leff and C. Pu, "A Classification of Transaction

Processing System," Computer, vol. 24, no. 6, pp. 63-76, June

1991.

110. G. Lelann, "Distributed systems - Towards a formal

approach," in Proc. IFIP Congress, pp. 155-160, Aug. 1977.

111. P. J. Leu and B. Bhargava, "Concurrent rohbust

checkpointing and recovery in distributed systems," in Proc. ACM-

f 416

SIGMOD Int. Conf. Management Data, pp. 154-163, 1988.

112. K. Li and P. Hudak, "Memory coherence in shared virtual

memory systems," ACM Trans. Computer Systems, vol. 7, no. 4, pp.

321-359, Nov. 1989.

113. B. Lindsay et al., "Computation and Communication in R*:

A Distributed Database Manager," ACM Trans. Computer Systems,

vol. 2, no. 1, pp. 24-38, Feb. 1984.

114. B. Liskov, "Distributed programming in Argus," Comm. ACM,

vol. 31, no. 3, pp. 300-313, Mar. 1988.

115. W. Litwin et al., "MSQL: A Multidatabase Language,"

Information Sciences, vol. 49, June 1987.

116• w- Litwin, L. Mark, and N. Roussopoulos,

"Interoperability of Multiple Autonomous Databases," ACM

Computing Surveys, vol. 22, no. 3, pp. 267-293, Sept. 1990.

117. W. Litwin, and T. Risch, "Main Memory Oriented

Optimization of 00 Queries Using Typed Datalog with Foreign

Predicates," IEEE Trans, on Know, and Data Eng., vol. 4, no.6,

pp. 517-528, Dec. 1992.

118. P. C. Lockemann and H. C. Mayr, "Information system

design: Technques and software support," Infom. Processing 86,

North-Holland, pp. 617-634, 1986.

119. R. Lorie et al, "Supporting complex objects in a

relational system for engineering databases," in Query Processing

in Database Systems, W. Kim, D. Reiner, and D. Batory, Eds Berlin

Germany: Springer, 1985.

120. J. McDermid, "Checkpointing and error recovery in

distributed systems," in Proc. 2nd Int. Conf. Distributed Comput.

Syst., pp. 271-282, 1981.

121. N. H. Madhavji, "Fragtypes: A Basis for Programming

Environments," IEEE Trans, on Soft. Eng., vol. 14, no. 1, Jan.

1988.

122. E. Mafia, B. Bhargava, "Communication Facilities for

417

I

n

Distributed Transaction-Processing Systems," IEEE Computer, pp.

61-66, Aug. 1991.

123. Roberto Maiocchi and Barbara Pernici, "Temporal Data

Management Systems: A Comparative View," IEEE Trans, on Know, and

Data Eng., vol. 3, no. 4, pp. 504-524, Dec. 1991.

124. D. Maier and J. Stein, "Development and implemenation of

object-oriented DBMS," in Research Directions of Object-Oriented

Programming, B. Shriver and P. Wegner, Eds. Cambridgem, MA: The

MIT Press Series of Computer Systems, pp. 355-392, 1987.

125. Roberto Maiocchi and Barbara Pernici, "Temporal Data

v Management Systems: A Comparative View," IEEE Trans, on Know, and

Data Eng., vol. 3, no. 4, pp. 504-524, Dec. 1991.

126. E. B. Martin, C. H. Pedersen and J. B. Roberts, "An Ob

ject-Based Taxonomy for Distributed Computing Systems," IEEE

Computer, pp. 17-27, Aug. 1991.

127. K. Marzullo, R. Cooper, M. D. Wood and K. P. Birman,

"Tools for Distributed Application Management," IEEE Computer,

pp. 42-51, Aug. 1991.

128. D. A. Moon, "The Common Lisp Object-Oriented Programming

Standard," in Object-Oriented Concepts, Databases and

Applications, W. Kim and F. Lochovsky, eds., Addison-Wesley,

Reading, Mass, pp. 49-78, 1989.

129. S. J. Mullender et al., "Amoeba: A distributed operating

system for 1990s," IEEE Computer, vol. 23, no. 5, pp. 44-53, May

1990.

130. Mullender and A. S. Tanenbaum, "Protection and Resource

Control in Distributed Operating Systems," Computer Networks, pp.

421-432, Nov. 1984.

131. S. J. Mullender, G. V. Rossum, A. S. Tanenbaum, R. V.

Renesse, and H. V. Staveren, "Amoeba, A Distributed Operating

System for the 1990s," IEEE Computer, pp. 44-53, May 1990.

132. S. J. Mullender and A. S. Tanenbaum, "A distributed file

i
418

server based on optimistic concurrency control," ACM Oper. Syst.

Rev., vol. 19, no. 5, pp. 51-62, 1985.

133• K- Narayanaswamy and W. Scacchi, "maintaing

Configurations of evolving software systems," IEEE Trans.

Software Eng., vol. SE-13, pp. 324-334, 1987.

134. S. Navathe, T. Sashidhar, and R. Elmasri, "Relationship

merging in schema integration," Proc. 10th Int. VLDB Conf., pp.
78-90, Singapore, Aug. 1984.

135. S. Navathe, R. Elmasri, and J. Larson, " Integrating user

views in database design," IEEE Computer Mag., pp. 50-62, Jan.
1986.)

136. W. Nejdl, S. Ceri and G. Wiederhold, "Evaluating
Recursive Queries in Distributed Databases," IEEE Trans, on Know,

and Data Eng., vol. 5, no. 1, pp. 104-121, Feb. 1993.

137. G. M. Nijsen, "Current Issues in Conceptual Schema," In

Architecture and Models in Database Management Systems, Edited by
G. M. Nijsen, Amsterdam: North Holland Publishing, pp. 31-65,
1977.

13 8. B. Nitzberg, and V. Lo, "Distributed Shared Memory: A

Survey of Issues and Algorithms," IEEE Computer, pp. 52-60, Aug.
1991.

139. H. L. Ossher, "A mechanism for specifying the structure

of large, layered systems," In Research Directions in Object-

Oriented Programming, B. Shriver and P. Wegner, Eds. Cambridge

MA: The MIT Press Series in Computer Systems, pp. 219-252, 1987.

140. M. Ozsoyoglu and L. Yan, "A Normal Form for Nested

Relations," In Proc. 4th ACM Int. Symp. Principles Database

Syst., 1985.

141. M. T. Ozsu and Patrick Valduriez, Principles of

Distributed Database Systems, 1st ed., Addison-Wesley, Reading,

Mass. 1990.

142. M. T. Ozsu and Patrick Valduriez, "Distributed Database

419

\

Systems: Where Are We Now?," IEEE Computer, pp. 68-78, Aug. 1991.

143. Sudha Ram, "Heterogeneous Distributed Database Systems,"

IEEE Computer, pp. 7-10, Dec. 1991.

144. C. H. Papadimitrion, The Theory of Concurrency Control.

Rockville, MD: Computer Science Press, 1986.

145. J. Peckham and F. Maryanski, "Semantic Data Models," ACM

Comp. Sur., vol. 20, no. 3, pp. 153-189, Sep. 1988.

146. S. Pilarski and T. Kameda, "A novel checkpoint scheme for

distributed database systems," in Proc. 9th ACM Symp. Principles

Database Syst., Nashvillem, TN, pp. 368-378, Apr. 1990.

147. S. Pilarski, and T. Kameda, "Checkpointing of Distributed

Databases: Starting from the Basics," IEEE Trans, on Para, and

Dist. Sys., vol. 3, no. 5, Sep. 1992.

148. C. Pu, "On-the-fly, incremental, consistent reading of

entire databases," Algorithmica, vol. 1, no. 3, pp. 271-287, Oct.

1986.

14 9. C. Pu, "Superdatabases for Composition of Heterogeneous

Databases," in Integration of Information Systems: Brdging

Heterogeneous Databases, A. Gupta ed., IEEE Press, Piscataway, N.

J., pp. 150-157, 1989; also in Proc. of Fourth Internation

Conference Data Eng., CS Press, Los Alamitos, Calif., Order No.

827, pp. 548-555.

150. C. Pu and A. Leff, "Replica Control in Distributed

Systems: An Asynchronous Approach," Proc. 1991, ACM SIGMOD

Intern. Conf. Management of Data, ACM, New York, pp. 377-386, May

1991.

151. C. Pu, C. H. Hong, and J. M. Wha, "Performance evaluation

of global reading of entire databases," in Proc. Int. Symp.

Databases in Parallel and Distributed Syst., Austin, pp. 167-176,

Dec. 1988.

152. J. Ramanujam, P. Sadayappan, "Compile-Time Techniques for

Data Distribution in Distributed Memory Machines," IEEE Trans, on

t 420

Para. andDist. Sys., vol. 2, no. 4, pp. 472-482, Oct. 1991.

153. D. P. Read, "Implementing atomic actions on decentralized

data," in Proc. 7th ACM Symp. Oper. Systems Principles, pp. 66-

74, Dec. 1979.

154. P. Reisner, "Human Factor Studies of Database Query

Languages: A Survey and Assessment," ACM Comp. Sur., vol. 13, no.

1, pp. 13-31, Mar. 1981.

155. N. Roussopoulos, "The logical access path schema of a

database," IEEE Trans. Software Eng., vol. 8, no. 6, pp. 563-573,

Nov. 1982.

156. N. Roussopoulos and H. Kang, "A Pipeline N-way Join Algo

rithm Based on 2-way Semijoin Program," IEEE Trans, on Know, and

Data Eng., vol. 3, no. 4, pp. 486-495, Dec. 1991.

157. E. A. Rundensteiner and L. Bic, "Set Operations in

Object-Based Data Models," IEEE Trans, on Know, and Data Eng.,

vo. 4, no. 3, pp. 382-399, June 1992.

158. M. Rusinkiewicz, A. Sheth, and G. Karabatis, "Specifying

Interdatabase Dependencies in Multidatabase Environment," IEEE

Computer, pp. 46-53, Dec. 1991.

159. K. Salem and H. Garcia-Molina, "Checkpointing memory-

resident databases," Tech. Rep. CS-TR-126-87, Dep. Compt. Sci.,

Princeton Univ., Dec. 1987.

160. R. E. Schantz, R. M. Thomas, and G. Bono, "The

architecture of the Cronus distributed operating system," Proc.

Sixth Int'l, Conf. on Distributed Computing Systems, CS Press,

Los Alamitos, Calif., Order no. 697, pp. 250-259, 1986.

161. H. Schek and M. Scholl, "The relational model with

relational valued attributes," Inform. Syst, vol. 11, no. 2, pp.

137-147, 1986.

162. G. Schlageter and P. Dadam, "Reconstruction of consistent

global states in distributed databases," in Proc. Int. Symp.

Distributed Databases, pp. 191-200, 1980.

421

;

163. A. Sheth and J. Larson, "Federated Database Systems and

Managing Distributed, Heterogeneous, and Autonomous Databases,"

ACM Computing Surveys, Special Issue on Heterogeneous Databases,

vol. 22, no. 3, pp. 183-236, Sept. 1990.

164. M. Shapiro et al., "SOS: An Object-Oriented Operating

System - Assessment and Perspectives," Computing Systems, vol. 2,

no. 4, pp. 287-337, Dec. 1989.

165. S. K. Shrivastava, G. N. Dixon, and G. D. Parrington," An

Overview of Arjuna Distributed Operating System," IEEE Software

vol. 8, no. 1, pp. 66-73, Jan. 1991.

166. B. Shriver and P. Wegner, Eds., Research Directions in

Object-Oriented Programming. Cambrdge, MA: The MIT Press Series

in Computer Systems, 1987.

167. T. W. Sidle, "Weakness of commercial database managemne

systems for engineering applications," in Proc. 17th Design

Automat. Conf., pp. 57-61, 1980.

168. P. K. Sinha, M. Maekawa, K. Shimizu, X. Jia, H. Ashihara,

N. Utsunomiya, K. S. Park, and H. Nakano, "The Galaxy Distributed

Operating System," IEEE Computer, pp. 34-41, Aug. 1991.

169. R. Snodgrass, " The Temporal query language TQuel," ACM

Trans. Database Syst., vol. 12, no. 2, pp. 247-298, June 1987.

170. A. Z. Spector, R. F. Pausch, and G. Bruell, "Camelot: A

Flexible Distributed Transaction Processing System," Proc.

Compcon Spring 88, CS Press, Los Almitos, Calif., Order no. 828,

pp. 432-439, Mar, 1988.

171. D. Stemple, A Socorro, and T. Sheared, "Formalizing

objects for databases using ADABTPL," in Advances in Object-

Oriented Database Systems, Lecture Notes in Computer Science 334,

K. R. Dittrich, Ed. Berlin, Germany: pp. 110-128, Springer 1988.

172. M. Stonebreaker, "The case for shared-nothing," Database

Eng., vol. 9, no. 6, June 1986.

173. M. Stonebreaker and L. Rowse, "The design of POSTGRES,"

422

in Proc. ACM SIGMOD Conf., pp. 340-355, 1986.

174. Sudha Ram, "Heterogeneous Distributed Database Systems,"

IEEE Computer, pp. 7-10, Dec. 1991.

175. Tzong-An Su, and Gultekin Ozsoyoglu, "Controlling FD and

MVD Interfaces in Multilevel Relational Database Systems," IEEE

Trans. on Know, and Data Eng., vol. 3, no. 4, pp. 474-485, Dec.

1991.

176. Y. Takahashi, "Fuzzy Database Query Languages and Their

Relation Completeness Theorem," IEEE Trans, on Know, and Data

Eng., vol.5, no. 1, pp. 122-125, Feb. 1993.

177. A. S. Tanenbaum et al., "Experiences with the Amoeba

Distributed Operating System," Comm. ACM, vol. 33, no. 12, pp.

46-63, 1990.

178. Buuba Team, "Protyping Bubba, A highly parallel database

system," IEEE Trans. Know. Data Eng., vol. 2, Mar. 1990.

179. G. Thomas et al., "heterogeneous Distributed Database

Systems for Production Use," ACM Computing Surveys, vol. 22, no.

3, pp. 237-266, Sept. 1990.

180. K. Tsuda, K. Yamamoto, M. Hirakawa, M. Tanaka and T.

Ichikawa, "MORE: An Object-Oriented Data Model with a Facility of

Changing Object Structures," IEEE Trans, on Know, and Data Eng.,

vol. 3, no. 4, pp. 444-460, Dec. 1991.

181. M. Tsur and C. Zaniolo, "An implementation of GEM -

Supporting a semantic model on a relational backend," in Proc.

ACM Int. SIGMOD Conf., 1984.

182. G. S. D. Varma, R. C. Joshi and K. Singh, "Intelligent

Environment Design for the Integration of Schemas in Object-

Oriented Heterogeneous GURU 'Distributed Database Management

System," Accepted at Sixth ISCA* International Conference on

Parallel and Distributed Computing Systems, October 14-16, 1993 *

Louisville, Kentucky, USA.

183. G. S. D. Varma, R. C. Joshi and K. Singh, "Complexity

423

\

•

i

Measures in GURU Heterogeneous Object-Oriented Distributed

Database Management System," Accepted at the 36th Midwest

Symposium on Circuits and Systems, August 16-18, 1993, Co-
sponsored by Wayne State University, Detroit, MI, USA and IEEE

Circuits and Systems Society * Detroit, Michigan, USA.

184. G. S. D. Varma, R. C. Joshi and K. Singh, "Intelligent
Object-Oriented Heterogeneous Local Query Automation in GURU
Distributed Database Management System,"Communicated to Special
Issue of the Journal of Parallel and Distributed Computing on
Scalability and Parallel Algorithms and Architectures, USA.

185. G. S. D. Varma, R. C. Joshi and K. Singh, "Intelligent
Object-Oriented Heterogeneous Autonomous Approach to Design
Schema in GURU Distributed Database Management System," To be
Communicated.

186. R. C. Joshi, G. S. D. Varma and K. Singh, "Message-Task
Scheduling in Object-Oriented Heterogeneous GURU DDBMS,"Accepted
at 23rd Annual Conference, 1994, International Conference on

Parallel Processing, August 15-19, 1994, Pennsylvania State
University, USA.

187. G. S. D. Varma, R. C. Joshi and K. Singh, "Dynamically
Changing Object Structures in Object-Oriented Heterogeneous GURU
DDBMS," Communicated to 23rd Annual Conference, 1994,

International Conference on Parallel Processing, August 15-19,
1994, Pennsylvania State University, USA.

188. G. S. D. Varma, R. C. Joshi and K. Singh, "Object View

Protection in Object-Oriented Heterogeneous GURU Distributed

Database Management System," Communicated to 23rd Annual

Conference, 1994, International"" Conference on Parallel

Processing, August 15-19, 1994, Pennsylvania State University,
USA.

189. C. Wang, A. L. P. Chen, Shiow-Chen Shyu, "A Parallel,

Execution Method for Minimizing Distributed Query Response Time, "

424

IEEE Trans, on Para, and Dist. Sys., vol. 3, no. 3, pp. 325-333,

May 1992.

190. Y. R. Wang and S. E. Madnick, "A Polygen Model for

Heterogeneous Database Systems: The Source Tagging Perspective,"

Proc. 16th VLDB Conf., Morgan Kaufman, Palo Alto, Calif., pp.

519-538, 1990.

191. W. Wegner, "The Object-Oriented Classification Paradigm,"

in Reasearch and Directions in Object-Oriented Programming, B.

Shriver and P. Wegner, eds., MIT Press, Cambridge, Mass., pp 477-

560, 1987.

192. K. Wilkinson, P. Lyngback, and W. Hasan, "The Iris

Architecture and Implementation," IEEE Trans. Knowledge and Data

Eng., vol. 2, no. 1, pp. 63-75, 1990.

193. T. Y. C. Woo, and S. S. Lam, "Authentication for

Distributed Systems," IEEE Computer, pp. 39-52, Jan. 1992.

194. D. Woelk and W. Kim, "Multimedia information management

in an object-oriented database system," in Proc. 13th Int. VLDB

Conf., pp. 319-329, 1987.

195. T. Y. C. Woo, and S. S. Lam, "Authentication for

Distributed Systems," IEEE Computer, pp. 39-52, Jan. 1992.

196. Seung-Min Yang, K. H. (Kane) Kim, "Implemetation of

Conversation Scheme in Message-Based Distributed Computer

Systems," IEEE Trans, on Para, and Dist. Sys., vol. 3, no. 5, pp.

555-572, Sep. 1992.

197. Cheong Youn, Hyoung-Joo Kim, Lawrence J. Henschen and

Jiawei Han, "Classification and Compilation of Linear Recursive

Queries in Deductive Databases," IEEE Trans, on Know. and Data

Eng., vol. 4, no. 1, pp. 52-67, Feb. 1992.

198. P. S. Yu, H. U. Heiss and D. M. Dias, "Modeling and

Analysis of a Time-Stamp History Based Certification Protocol for

Concurrency Control," IEEE Trans, on Know, and Data Eng., vol. 3,

no. 4, pp. 525-537, Dec. 1991.

425

1

199. C. Zaniolo, "The representation and deductive retrieval

of Complex Objects," in Proc. 11th Int. Conf. Very Large

Databases, 1985.

200. S. Zdonik, "Object-Oriented Type Evolution," in Advances

in Database Programming Languages, F. Bancilhon and P. Buneman,

eds., Addison-Wesley, Reading, Mass., pp. 277-288, 1990.

201. S. Zhou, M. Stumm, K. Li, and D. Wortman, "Heterogeneous

Distributed Shared Memory," IEEE Trans, on Para, and Dist. Sys.,

vol. 3, no. 5, Sep. 1992.

426

	A NOVEL APPROACH IN DESIGN AND DEVELOPMENT OF OBJECT-ORIENTED HETEROGENEOUS DISTRIBUTED DATABASE MANAGEMENT SYSTEM
	ABSTRACT
	LIST OF ABBREVIATIONS
	TABLE OF CONTENTS
	ERRATA
	CHAPTER-1 Introduction and Statement of the Problem
	CHAPTER-2 Review and General Considerations
	CHAPTER-3 QUERY AUTOMATION
	CHAPTER-4 SCHEMA DESIGN
	CHAPTER-5 SCHEMA INTEGRATION
	CHAPTER-6 COMPLEXITY MEASURES
	CHAPTER-7 MESSAGE-TASK SCHEDULING
	CHAPTER-8 OBJECTS AND DYNAMIC ENVIRONMENTS
	CHAPTER-9 OBJECT PROTECTION AND SYSTEM ADMINISTRATION
	CHAPTER-10 CONCLUSION AND FUTURE SCOPE OF WORK
	APPENDIX
	BIBLIOGRAPHY

