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ABSTRACT

Adaptive arrays are currently the subject of extensive
investigations, as a means for reducing the vulnerability of the
reception of desired signals to the presence of interference signals
in radar, sonar, seismic and communication systems. The principal
reason behind this widespread interest lies in their ability to sense
automatically the presence of interference noise sources and to
suppress them, while simultaneously enhancing the desired signal
reception without the prior knowledge of the signal/interference
environment. The interference signals may not only consist of
deliberate electronic counter measures, nonhostile RF interferences,
clutter scatter returns and natural noise sources but also coherent
interferences. Coherent interferences can arise when multipath
propagation is present or when “smart" Jammers deliberately introduce
coherent jamming by retrodirecting the signal energy to the receiver.
Also, the signal environment may consist of either narrowband or
broadband signal and interferences.

An adaptive array can be best described as a collection of
sensors, feeding a weighting and summing network, with automatic
signal dependent weight adjustment to reduce unwanted signals and/or
emphasize the desired signal. In the case of broadband adaptive
arrays, a tapped delay line is connected behind each sensor to
compensate for the inter-element phase shift. The weight coefficients
are adjusted recursively using suitable algorithms.In an adaptive
array, the interference Supﬁression is obtained by appropriately

steering beam pattern nulls in the direction of interference sources,



while signal reception is maintained by preserving desirable main lobe
features. Therefore, an adaptive array system relies heavily on
spatial characteristics to improve the output signal-to-noise ratio
(SNR).

A wide range of algorithms have been reported in the signal
processing literature which can be used for adjusting the weights of
an adaptive array. These include the conventional least-squares (LS)
solution by direct matrix inversion or by Cholesky factorizétion, the
classical least-mean-square (LMS) algorithm, the recursive
least-square (RLS) algorithnm, the fast RLS algorithms, QR
decomposition algorithms based on Givens, Householders and Modified
Gram-Schmidt techniques, and the rotation based fast RLS algorithms.
Some of these algorithms are suitable for implementation using VLSI
technblogy. Moreover, due to the recent advances in parallel computing
architectures and VLSI technology, various computational, numerical
and architectural concepts have merged. Consequently, it is becoming
increasingly difficult to comprehend the interrelationships and
tradeoffs among these concepts and approaches. A few of the above
techniques, viz, the direct matrix inversion and the LMS algorithm,
have been widely studied in the context of adaptive arrays. The
difficulties in obtaining the inverse of the correlation matrix, when
the matrix is ill conditioned, and the slow convergence and dependence
of the time constant on the eigenvalues in LMS algorithm, make these
techniques less attractive for application to adaptive arrays.

The QRD-LS algorithm based on Civens rotations has been
recommended in the literature for narrowband adaptive array

applications. This algorithm has fast convergence and is numerically



stable but, unfortunately, it is computationally expensive because of
the square-root operations involved. Some of the other techniques,
viz, the RLS algorithm in the case of narrowband beamformers and
multichannel fast transversal filters (MFTF) and QRD-multichannel
lattice algorithms for broadband arrays have been discussed only
briefly in the literature and detailed investigations have not been
carried out so far. The recursive modified Gram-Schmidt (RMGS) and the
multichannel least-square Lattice (MLSL) algorithms have not been
studied at all in the context of adaptive arrays.

The adaptive arrays based on above mentioned algorithms are
effective in suppressing the interferences and enhancing the desired
signal reception in a noncoherent signal environment. However, these
techniques fail to suppress the coherent interferences. To overcome
this problem, methods such as the structured correlation matrix method
(redundancy averaging) and the spatial smoothing preprocessing scheme
have been proposed in the literature. Of the two, the spatial
smoothing scheme is more attractive and has received relatively wider
attention. Several modifications of this scheme have also been
proposed in the literature. Of these, the modified or forward/backward
spatial smoothing scheme is important. However, the adaptive
implementation in various algorithm based arrays has not received much
attention so far.

This work encompasses the study of adaptive arrays covering
the above aspects. A comparative study of the structured correlation
matrix method and the spatial smoothing scheme using an optimum
beamformer revealed that the structured correlation matrix method

introduces a bias while placing nulls in the direction of



interferences. Also, the method is not suitable for broadband adaptive
arrays as in this case the correlation matrix is nontoeplitz even in
noncoherent situation. Moreover, the adaptive implementation of this
method in various algorithm based processor is not possible, where as
the spatial smoothing scheme is a practical method to suppress
coherent interferences in an adaptive array.

We next consider the study of adaptive arrays based on
recursive leasf—square algorithms having a computational complexity of
the O(Pz), where ‘P’ 1is the number of sensors in the array. It has
been found that the conventional RLS algorithm based array suffers
from numerical instability and fails to produce nulls in the direction
of interferences arriving from endfire directions. Though the QRD-LS
array based on Givens rotations has excellent numerical properties and
supefior nulling performance, it is computationally expensive because
of the involvement of square-root operations. As an alternative, we
have proposed the use of RMGS algorithm and its error feedback version
- for adaptive beamformers. These algorithms can also be implemented
using systolic structures. The arrays based on these algorithms have
numerical properties and nulling performance that are comparable with
Givens rotation based QRD-LS array and at the same time, they are
computationally less expensive. Therefore, the proposed RMGS
algorithms based arrays represent a good compromise between the
numerical stability and computational cost in the adaptive beamforming
problems. For broadband arrays, however, these algorithms turn out to
be compptationally expensive with a complexity of the O(PZMZ), where

‘M’ is the number of taps in each delay line.



Next, we consider the arrays based on Fast-RLS algorithms
for realizing broadband arrays. We have proposed the multichannel
least-square Lattice [MLSL] algorithm for broadband adaptive array
which has a computational complexity of O(PSM). Using MLSL algorithm
as the Dbasis, we formulate the Givens rotation based QRD-MLSL
algorithm and apply it to the adaptive beamforming problem. We then
derive the MFTF algorithm and study the adaptive arrays based on these
algorithms. The algebraic approach has been used to derive these
algorithms. Of the three broadband arrays realized, the MFTF algorithm
has the least computational complexity.

Finally, we have considered, the spatial smoothing scheme
and the forward/backward spatial smoothing scheme as an effective
means to suppress coherent interferences. Our studies have revealed
that, in optimum beamformers, both the methods are effective in
placing nulls in the direction of coherent interferences. The adaptive
implementation of spatial smoothing scheme on the QR decomposition
algorithms, such as QRD-LS and RMGS algorithm based arrays, has
received little attention so far. We have proposed a method of
implementing spatial smoothing scheme on the arrays based on these
algorithms. In this method, the elements of the upper triangular
matrix are smoothed first and after a fixed number of snapshots, this
smoothed upper triangular matrix is used to’ compute the optimum
welghts of the beamformer. The proposed method has been tested through
computer simulations and produces deep nulls in the direction of
coherent interferences. In the forward/backward spatial smoothing
scheme, the signals of the respective forward and complex conjugated

backward subarrays are first averaged. Then, the resultant signals are



used to smooth the weights or the elements of upper triangular matrix.
Our numerical experiments show that the conventional spatial smoothing
scheme has a much superior nulling performance as compared to the
forward/backward spatial smoothing scheme.

The performance of various algorithms has been evaluated for
the narrowband and broadband arrays in noncoherent as well as coherent
interference environment, using computer simulations. Convergence
characteristics of various beamformers have been tested by computing
the residual power as a function of the number of adaptation samples.
The comparative study has revealed that, QRD-LS array based on Givens
rotations has the fastest convergence and the least residual power.
The RMGS algorithm based array with error feedback has characteristics
comparable with those of the QRD-LS array.

The nulling performance of various arrays has been studied
with the help of voltage patterns. In the case of broadband arrays,
the output waveforms has also been extracted to demonstrate the

ability of the beamformers to track the desired signal.
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CHAPTER - 1

INTRODUCTION

Adaptive arrays are currently the subject of extensive
investigation as a means to reduce the vulnerability of reception of
desired signal to the presence of interference signals in radar, sonar
and communication systems. Interference signals may consist of
deliberate electronic countermeasures, nonhostile RF interference,
clutter scatter returns and natural noise sources. Adaptive arrays
have the ability to sense automatically the presence of interference
sources and to suppress the signal from- these sources, while
simultaneously enhancing the desired signal reception without any
prior knowledge of signal / interference environment.

An adaptive array consists of an array of sensor elements
and a real time adaptive signal processor. The adaptive processor
automatically adjusts the array beam sensitivity pattern so that a
measure of the quality of the array performance is improved.
Interference signal suppression is obtained by appropriately steering
the beam pattern nulls and reducing sidelobe levels in the direction
of interference sources. At the same time, the desired signal
reception is maintained by preserving desirable main lobe features. An
adaptive array systen, therefore, relies heavily on spatial
characteristics to improve the output signal-to-noise ratio (SNR).

In the following sections, we present a brief summary of the
earlier work carried out in the field of adaptive arrays, followed by

the statement of the problem and organization of the material in this

dissertation.



1.1 SURVEY OF THE EARLIER WORK

The term ‘Adaptive Antenna’ was first used by Van Atta [60]
to describe a self phasing antenna array that automatically reradiated
a signal in the direction from which it was received, thereby acting
as a retrodirective systen.

The development of phase locked loops was a major step that
made self-steering or self-phasing type of adaptive array possible
[1}. A phase-lock-loop array operates by aligning the phase of the
signal from each element with that of a reference signal, before
summing the signals to produce the array output. In the 1960’s, this
type of arrays were extensively studied. Some typical phase-lock-loop
arrays are described in a special issue [23] on active and adaptive
antennas. However, these arrays are vulnerable to interferences
because the phase-lock-loops can track only one signal at a time. If
an interference signal arrives that 1s stronger than the desired
signal, it can easily capture the antenna beam.

In 1957, Howells invented a sidelobe cancellor capable of
automatically nulling out the effect of one Jjammer [20]. In 1966,
Applebaum derived the control law govern%ng the operation of the
adaptive array antenna. The algorithm derived by Applebaum is based on
maximizing the signal-to-noise ratio at the antenna array output and
included the sidelobe cancellor as a special case. His 1966 report was
reprinted in the 1976 issue of IEEE Transactions on Antennas and
propagation. -

In 1966, Shor [54] introduced an adaptive array based on a
maximum signal-to-noise ratio (SNR) concept like the Applebaum array,

but differing from the latter in that, the Shor feedback loops are



based on a steepest ascent optimization of signal-to-noise ratio.
However, this array has not received much attention in the literature
because of its complexity.

Widrow and his coworkers at stanford university proposed the
LMS algorithm for weight adjustment in adaptive arrays in 1967 [65].
The LMS algorithm is based on the method of steepest descent [22] and
minimizes the mean-square-error between the actual array output and
the 1ideal array output. There is little difference between the
Applebaum array and the LMS array from mathematical viewpoint [8].
Rather, the difference between the fwo is more of application. The
Applebaum array is useful when the desired signal arrival angle is
known in advance, whereas, the LMS array is useful when a reference
signal correlated with the desired signal is available.

The adaptive arrays based on the LMS and maximum SNR
algorithms are simple from the point of view of implementation and
computational complexity. However, their slow rate of convergence
limits their applications to adaptive control problems presented by
small communications and data collection arrays [41]. For more complex
problems, such as command and control of remote vehicles or rapid
angular tracking in radar communication systenms, algorithms with much
faster rate of convergence are often required. We briefly summarize
here the work carried out in the field of adaptive signal processing
for the above purpose.

The area of adaptive signal processing has grown at a rapid
rate during the last decade. The demand for high performance systems,
combined with the availability of ever increasing computational power,

has motivated the search for more sophisticated signal processing



algorithms capable of operating in uncertain, time varying
environments. The basic aim is to reduce the computational complexity
to a level comparable to that of IMS algorithm and, at the same time,
achieve a much faster convergence. This has led to several new
algorithms. These algorithms are based on the method of least-squares
in which the. index of performance minimized is the sum of weighted
error squares. Depending on the structure used for implementing the
adaptive filter, four different classes of algorithms are identified
that originate from the method of least-squares.

(i) Recursive Least-squares Algorithm

The RLS algorithm bears a close relationship with the Kalman
filter algorithm [17] and has been derived independently by
several investigators. However, the original reference on the
RLS algorithm appears to be that of Plackett [47].

This algorithm assumes the use of a tapped delay line
structure (transversal filter) as the basis of the adaptive
filter. The transversal filter is a continuous time device
whose input is formed as a linear combination of voltages taken
from uniformly spaced taps in a non-dispersive delay line [27].
The derivation of the algorithm is based on a result in linear
algebra known as matrix inversion lemma [22]. The RLS algorithm
provides a much faster rate of convergence than the LMS
algorithnm, at the expense of increased computational

complexity.

(ii) Fast Recursive Least-squares (Fast-RLS) Algorithm

By exploiting certain properties that arise in the case of



(iii)

serialized data, various schemes have been developed to
overcome the computational complexity of RLS algorithm. There
are two families of fast RLS algorithms viz, the fast
transversal filter (FTF) algorithm [6] and the fast Lattice
algorithms [12]. The FTF algorithm uses a parallel combination
of four transversal filters. On the othér hand, the Lattice
algorithm uses multistage lattice predictor as the structural
basis of the adaptive filter to resolve the issue of
computational complexity. This predictor consists of a cascade
of stages, each in the form of lattice. An important property
of multistage lattice predictor is that its individual stages
are decoupled from each other in a time averaged sense. This
property is exploited in the derivation of recursive
least-square lattice algorithm [12]. The multistage lattice
filter has a highly pipelined modular structure and is well
suited for implementation using very large scale integration
(VLSI) technology.

These algorithms effectively retain the advantages of the
conventional RLS algorithm and yet, their computational
complexity is reduced to a level comparable to that of simple

LMS algorithm.

QR Decomposition Least-square Algorithms

These algorithms are based on orthogonal transformations.
There are three well established orthogonalization techniques,
viz, Givens, Householders and modified Gram-Schmidt procedures

[29], which are termed as QR techniques in mathematics



literature. This term comes from the fact, that these
algorithms perform decomposition of the data matrix as a
product of an orthogonal matrix Q and an upper triangular
matrix R.

The QR decomposition algorithm based on Givens rotations is
popularly known as QRD-LS algorithm and was introduced in 1981
by Gentleman and Kung [15]. The algorithm configuration
consists of two stages. The first stage involves an orthogonal
triangularization process that is achieved by applying the QR
decomposition method, based on Givens procedure, directly to
the input data matrix in a recursive fashion. As new input data
enters the computation, the recursivg procedure conducts a
linear transformation of the 1input data matrix into wupper
triangular form. At the end of entire recursion, this special
structure of the data matrix 1is exploited to compute the
least-square weight vector. The algorithm is stable, robust,
rapidly convergent but computationally expensive.

Ling and Proakis [36] have derived another equally
efficient, but computationally less expensive, QR decomposition
recursive least-square algorithm using modified Gram-Schmidt
procedure [61]. This algorithm is known as recursive modified
Gram-Schmidt (RMGS) algorithm. They have also derived an error
feedback form of this algorithm which has better numerical
properties compared to the basic RMGS algorithm. These
algorithms also act directly on the input data matrix in a
recursive fashion and convert it into an upper triangular form.

All the above mentioned algorithms may be implemented using



a systolic array which represents a highly efficient and
dedicated structure. The systolic structure offers the
desirable features of modularity, local interconnections, and
highly pipelined and synchronized parallel processing. All
these properties make systolic arrays particularly well suited

for VLSI implementation.

(iv) The QR-LSL Algorithm

The fast-RLS algorithms, viz, the FTF and least-square
lattice algorithms have a computational complexity that is
comparable to the simple LMS algorithm. However, they are not
very stable in the numerical sense. On the other hand, QR
decomposition algorithms are highly stable but computationally
expensive. Due to this reason, there has been an increasing
interest in rotation-based fast-RLS algorithms which are
numerically more robust. These algorithms are also known as
fast QR algorlithms. Cioffi [7] has developed a fixed order fast
adaptive ROTOR’S (FAR) algorithm which can be interpreted as a
QR-based fast Kalman algorithm. This algorithm can be
implemented with a pipelined array of processors called

"ROTORS" and "CISORS".

Ling [37] has described an order-recursive-rotation- based
QR-LSL algorithm using the relationship between Givens
rotation based algorithms and modified Gram-Schmidt method.
Proudler et al, [49] have suggested another approach of

deriving a QR-LSL algorithm from the Givens rotation based



QRD-LS algorithm. Regalia and Bellanger [51] introduced a
family of QR-lattice fast least-square algorithms by exposing
the duality between the Gram-Schmidt orthogonalization and the
lattice algorithm. Yang and Bohme [68] have pointed out a
fourth possibility. It differs from previous ones in that it
starts directly with lattice recursions. In this approach, the
LSL algorithm is reformulated to a rotation-based one by
suitable transformation of the filter quantities. This is
achieved in two steps: first by the wuse of Cholesky
decomposition to transform from covariance domain to
information domain and, subsequently, using the time recursive
QR-update technique to incorporate new data into square-root
factor produced by Cholesky decomposition.

These algorithms have the advantages of both the approaches,
that is, the numerical robustness of the QR algorithms and the
computational simplicity of lattice algorithms. Further, they

can be implemented using highly pipelined structures.

Of the above mentioned algorithms, the RLS algorithms have
been suggested by Brennan et al, [4] and Baird [3] for adaptive
beamforming applications, but extensive results on the performance of
RLS beamformer are not available in the literature. Ward et al [62]
have proposed the QRD-LS algorithm based on Givens rotations to the
adaptive beamforming problem. This beamformer has been reported to
have excellent numerical properties and nulling abilities, but is
computationally expensive. Application of fast RLS algorithms, viz,

FTF and LSL., and the hybrid QR-LSL algorithms to adaptive beamforming
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requires their multichannel formulations. Slock and Kailath [58] have
presented a form of multichannel FTF algorithm for broadband
beamforming. Similarly, QR-multichannel LSL algorithm has been
presented by Mcwhirter ‘and Proudler [40] for broadband beamforming.
However, they have not provided results on the performance of these
algorithms in adaptive beamformers. The fast lattice (LSL), RMGS and
the QR-LSL algorithm based on Cholesky factorization have not been
studied so far, in the context of adaptive beamformers.

The interfering signals in the signal environment of an
adaptive array may be either noncoherent or coherent with respect to
the desired signal. The coherént interference problem arises due to
multipath propagation or due to ‘smart’ Jjammers. Smart Jjammers are
used in a hostile environment to induce such phenomenon deliberately.

The adaptive arrays, viz., the Howell-Applebaum array and
the LMS array are designed under the assumption that the interfering
signals are noncoherent with the desired signal. These conventional
forms of adaptive beamformers breakdown in the presence of coherent
interfering signals. This problem was intially identified by White
[63], Gabriel [14] and Widrow et al, [64]. Shan and Kailath [57]
described an adaptive beamformer that incorporates ‘Spatial Smoothing’
as a means to overcome the coherent interference problem. Spatial
smoothing is a preprocessing scheme that partifions the total array of
sensors into subarrays and generates the average of the subarray
covariace matrices. They have also shown that when this averaged
covariance matrix is used in conjuction with conventional arrays, a
minimum of 2K sensor elements are required to null (K-1) coherent

interferences. Thus, the method suffers from reduced effective



aperture area. To overcome the problem of reduced effective aperture
area, a modification to the spatial smoothing scheme, known as
forward/backward spatial smoothing scheme, has been suggested by Evans
[11]. This method has been further investigated by Williams et al,
[66] and pillai et al, [50] in the context of direction-of-arrival
estimation, using signal subspace algorithms. The method has been
reported to provide a larger effective area as compared to the spatial
smoothing scheme, without much increase in computational burden.

An alternative solution, known as structured correlation
matrix method, to the problem of coherént interferences in adaptive
beamforming has been suggested by Godara [18]. In this method, the
output covariance matrix of the array is averaged along the diagonals,
and each element on the diagonal is replaced by its average. This
method preserves the array aperture and, thus, does not suffer from
the problem of reduced effective aperture.

. Of the above mentioned spatial averaging schemes, the
spatial smoothing scheme has received wider atgention and has been
studied by various researchers [52,69] using an optimum beamformer.
However, in real time applications, it is necessary 'to implement the
scheme adaptively which can be done by wusing time recursive
algorithms, such as, LMS, RLS and QR decomposition algorithms. The
adaptive implementation of spatial smoothing schéhé, using various
time recursive algorithms has not received much attention. Only Shan
‘and Kailath [57] have briefly discussed this aspect. using LMS
algorithm. Similarly,'implementatibn of the forward/backward spatial

smoothing scheme for adaptive beamformers has also not received much

attention. Only Park and Un [45] have discussed the adaptive
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implementation of this scheme. In £heir scheme, the forward/backward
spatial smoothing scheme is incorporated by rearranging the spatial
subarray data in a parallel manner using a set of subbeamformers based
upon QRD-LS algorithm. This constitutes a parallel implementation of
forward/backward spatial smoothing scheme.

The signal environment of an adaptive array may consist of
either narrowband or broadband signal and interferences. If the
signals are broadband, a tapped delay line is connected behind each
element of the array. This type of arrays have been studied
extensively using LMS algorithm [65,16]. The multichannel FTF and the
hybrid QR—multichahnel lattice algorithms have been proposed by Slock
et al, [58] and, Mcwhirter and Proudler [40], respectively for
broadband beamforming. However, they have not provided any results on
tﬁe performance of beamformers based on these algorithms. Moreover, it
is not clearly known, whether the multichannel forms of the fast RLS
algorithm retain the advantages they possess in their single channel
form. The orthogonalization based QR decomposition algorithms, viz,
the rotation based QRD-LS and RMGS algorithms have also not been

studied, so far, in the context of broadband beamforming.

1.2 STATEMENT OF THE PROBLEM

The present work encompasses a study of various adaptive
algorithms with reference to their application to adaptive beamforming
problem. Detailed investigations have_ been carried out on the
numerical propertiés, convergénce characterisitcs and nulling

abilities of the adaptive beamformers based on different algorithms.
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The algorithms derivéd from the method of least-squares with
exponentially windowed complex signals are considered for the above
purpose. Application of spatial smoothing scheme and forward /
backward spatial smoothing scheme for combating coherent interference
problem in adaptive beamformers is also studied. Schemes to implement
these two averaging schemes in adaptive beamformers have been
presented.

The problem, as treated in this study, may be divided into
three main parts.

(i) A comparative study of adaptive beamformers based on RLS,
RMGS, RMGSEF and rotation based QRD-LS algorithms for
narrowband signal environments.

(ii) Performance evaluation of broadband adaptive beamformers
based on RLS, RMGS, RMGSEF, rotation based QRD-LS algorithm
and fast RLSlalgorithms.

(iii) A study of spatial averaging schemes using different
adaptive algorithms to combat cohérent interference in
adaptive beamformers.

In all the numerical examples presented in this
dissertation, 6-element uniform linear array of isotropic elements has
been considered, unless otherwiée specified. The desired signal of
strength 0.1 has been assumed to arrive from a df}éction broadside to
the array. Normalized centre frequency (wo) of the desired signal has
been assumed to be 1. In case the desired signal is broadband, the
bandwidth (A) has been assumed to be 0.5 and the normalized centre

frequency is 1.
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1.3 ORGANIZATION OF THE DISSERTATION

The work embodied in this dissertation has been arranged in
six chapters. In chapter 2, we review some of the basic concepts in
the area of adaptive beamforming. These include the
least-mean-square (LMS) criterion, the LMS algorithm and the Frost
array. Next, adaptive beamforming in coherent-interference environment
is briefly reviewed and the two techniques, namely, the spatial
smoothing scheme and the structured correlation matrix method, have
been compared on the basis of computer simulation résults.

The exact least-square algorithms have been discussed in
chapter 3 in the context of adaptive beamforming. We first introduce
the least-square filtering problem and present an overview of the
recursive least square algorithm. Next, the exact least-square error
criterion is redefined in data domain and the QRD-LS algorithm based
on Givens rotations is discussed. Then, we propose the RMGS algorithm
as a suitable alternative to the more computationally complex QRD-LS
algorithm for the adaptive beamforming problem. Finally, the results
of an extensive numerical study of these beamformers are presented
followed by a discussion of their relative performances.

In chapter 4, we discuss adaptive beamformers based on
least-square lattice, the hybrid multichannel QR-lattice (QR-MLSL)
and the multichannel FTF algorithms. These algorithms have been
derived wusing the algebraic approach. Finally, we discuss their
suitability for beamforming applications on the basis of computer
simulation results.

The forward/backward spatial smoothing scheme has been

introduced in chapter 5 and schemes for adaptive implementation of
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spatial smoothing and forward/backward spatial smoothing techniques,
using various adaptive algorithms, have been discussed. Finally, we
discuss their utility in adaptive beamformers to overcome the cocherent
interferences on the basis of computer simulation results.

Chapter 6 concludes the dissertation with a comparison of
adaptive beamformers based on various algorithms in noncoherent signal
environments followed by a comparison of spatial averaging schemes to
overcome coherent interference problem.

Also included are five appendices which respectively contain
the complex gradient operator, derivations of time recursive equations
of the complex RMGS algorithm, proofs for the relations between
lattice and hybrid QR-lattice algorithms and derivation of the

equation for extended Kalman gain vector.



CHAPTER - 2

ADAPTIVE BEAMFORMERS FOR NON-COHERENT AND COHERENT INTERFERENCE

SUPPRESSION - A REVIEW

In this chapter, some of the basic concepts in the area
of adaptive beamforming have been briefly reviewed. An optimum
beamformer, based upon the Least-Mean-Square (LMS) criterion, is
described first for the suppression of narrowband interferences which
are noncohérent with the desired signal. This leads to the Weiner-Hopf
equation in matrix form. The adaptive implementation is briefly
explained using the well known LMS algorithm. Next, the imposition of
signal protection constraint, which ensures a constant gain, in a
prescribed look-direction, is discussed in the context of a broad-band
adéptive array. Finally, adaptive beamforming for coherent
interference suppression are briefly reviewed and the two main
techniques, namely, the spatial smoothing preprocessing scheme and the
structured correlation matrix method, have been compared on the basis

of computer simulation results.

2.1 THE LEAST-MEAN-SQUARE ADAPTIVE ARRAY

Fig.2.1 shows a typical adaptive beamformer. It consists of
a uniform linear array of ‘P’ identical Sensors receiving ‘K’
narrowband signals, that arrive at the array from directions

<] and an adaptive processor for automatic weight

0’ @10 Oy

adjustment. The signals are  assumed to be complex analytic. The

desired signal is assumed to be at an angle @o and is of the form

[
n
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Fig.21.Adaptive Array with Automatic Weight Adjustment.
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S(t) = Soej(wot te,) 21

where SO, w, and ¢O, respectively, denote its amplitude, frequency and

phase. The phase ¢o is taken to be a uniformly distributed random

variable with the probability density function

1
5— 0 =¢ = 2n
p(¢o) _ { 2m o

. (2.2)
0

elsewhere

The remaining (K-1) signals are interfering or Jamming

signals of the form

J(t) = SieJ(wit Yo i=1,2,..... , K-1 .. (2.3)

where Si W,

>

and ¢i are respectively, the amplitude, frequency and

phase of the ith interfering signal.

We define a column vector S as

s = (s(t), Jt)1T

...{2.4)
where,
J(t) = [Jl(t),Jz(t), ..... , JK_l(t)] ...(2.5)
and the superscript ‘T’ denotes the transpose operation.
The direction or the steering vector of the ith source,
altr,) is given by
-jw. T -j(P-Nw. T T
alt,) = [1,e YOt , e Y i1 ] ,
i=0,1..... , K-1 ... (2.8)
where T, = (d/c)sinei, ‘c’ being the propagation velocity of

planewaves and ‘d’

being the interelement spacing. Here, ‘d’ is
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assumed to be less than or equal to half wavelength to avoid spatial

aliasing problems.
If we define a matrix A of steering vectors

A= lalzy), alz)), ..... , alr, )] (2.7

K-1

and assume white Gaussian noise ni(t), at each element, the received

signals at the array can be written as

T
X(t) = [xl(t), xz(t), . XP(t)]

= A S + n(t)

= alty) S(t) + A J(t) + n(t) ...(2.8)

where A is a P-by-K matrix and A is a P-by-(K-1) matrix. It is assumed
here that the signal, interferences and noise are all stationary,
zero-mean random processes uncorrelated with each other.

The output of the array, Y(t), is the weighted sum

v(t) = W X(t) ..(2.9)

where

W= [w, ,w.,...., Ww.] ... (2.10)

is a weight vector determined according to the Least-Mean-Square error
criterion and the superscript ‘H’ denotes the Hermitian transpose.

For discrete systems, the input signals of the array are in
discrete time sampled data form and the output of the array is written

as

Y(n) = W' x(n) (2.11)

¢

where ‘n’ denotes the sampling instant.
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In order that the adaptation takes place, a "desired signal"
d(t), when in time continuous form, or d(n), when sampled, must be
applied to the beamformer. The difference between the desired response

and the array output forms the error signal, e(n), given by
e(n) = d(n) - WX(n) . .(2.12)

This signal is used as a control signal for the weight
adjustment circuit. The purpose of adaptation is to find a set of
weights that permit the output of the adaptive array, at each instant
of time, to be as close as possible to the desired signal. There are
‘N’ such equations corresponding to ‘N’ instants of time and ‘P’
unknown weight values which form components of W.

When ‘N’ is very large compared to ‘P’, the minimization of
the sum of squares of errors gives the required solution. That is, a

N *
set of weights W is determined so as to minimize ngle(n)e {n). Since

the signals are assumed to be stationary, the quantity of interest is

the expected value of the mean squared error

E[e(n) e*(n)] = 52 ... (2.13)

where the asterisk denotes the complex conjugation.

The mean-square-error can be calcu}ated by substituting

eqn. (2.12) in eqn.(2.13) which yields

2 - E[d(n) d*(n)] swliow-ule - ol L (2.14)

1D
1D
1=
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where & and 6 are, respectively, the correlation matrix and the cross

correlation vector which are given by

[ * »* * T
xl(n)xl(n) xl(n)xz(n) ...... xl(n)xp(n)
* »* »*
P xz(n)xl(n) xz(n)xz(n) ...... xz(n)xp(n) . (2.15)
: »* » *
_xp(n)xl(n) xP(n)xz(n) ...... xp(n)xp(n) J
p— * -
x,(n)d (n)
1 »*
o = g|%2(m)d (n) ... (2.186)
: »
_xP(n)d (n) ]

It may be seen from eqn.(2.14), that 52 is a quadratic

function of the weight vector W. The weight vector yielding minimum of

€, which we denote by Eopt’ may be found by setting

vw{éz} =0 ...(2.17)

where Vw denotes the gradient with respect to W (See Appendix-A).

Since,

20 +23W _ ... (2.18)

qu
[yl
\V)
—
Il

we find

¢ Eopt &

... (2.19)
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or

W o= lg ... (2.20)
—opt =

where & is assumed to be nonsingular, so that its inverse exists. If
this Hopt is used in eqn.(2.11) to compute the output of the array,
the beamformer is called an ‘optimum beamformer’. Eqn.(2.20) is the
Wiener-Hopf equation in matrix from and is, consequently, referred to
as the optimum Wiener solution.

If we use d(n) = S(n), it then follows from equations (2.1)

and (2.8) that

6 = E[X(n) d*(n)] =52 a(tr ) ... (2.21)
= = o=""0

Therefore,

W =52 671 acr ) ... (2.22)
—opt o - o

Since the desired signal, interferences and noise are all
assumed to be uncorrelated with each other, the correlation matrix,

% in the above equation can be expressed in factored form as [41]

3=5%a(t) al(r) +0. +06°7 .. (2.23)
o=-""0 = 'Y JJ

where I is the identity matrix.

In eqn. (2.23), Si g(ro) gH(TO) represents the correlation
matrix of the desired signal, ¢jj is the correlation matrix for the
interferences and 02I is the noise component.

We can write

.. + 0”71 =@
jj nn ... (2.24)
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so that

d = S2 al(t ) aH(r ) + & ... (2.25)

o - 0o = o nn
Using matrix inversion lemmal[22], eqn.(2.22) can be

simplified as
s, . |
Yoot = 5H — an g(ro). ... (2.28)
°p 1 +S ai(t) o alt )
o= 0o 'n

In the above equation, the term ihside the square brackets

is a scalar and, therefore, Eopt can be written as

ol
Wopt = B & alr) .. (2.27)

where B is a scalar constant.

Besides the Least-Mean-Square error criterion discussed
above, other criteria can also be used for optimizing the adaptive
array. All these criteria, however, lead to the same expression for
the optimum weight vector (eqn.(2.27)) ; only the value of the scalar
constant B changes. For example, Howell-Applebaum array is also an
optimum array that maximizes the signal to interference plus noise
ratié (SINR). In the case of Frost array, which will be discussed
subsequently, the optimal weight vector is obtained by minimizing the
array output power, subject to unity gain constraint in the look
direction.

The ability of the array to place nulls in the direction of
interferences can be explained as follows. If we express the

correlation matrix ij in modal representation [57], then
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K-1

H A e, el . (2.28)
1

<1>_=KE[J(n)J(n)] Al - . e,
- - i= 1 -1 —~1

Where Ai and € respectively, denote the nonzero eigenvalues and
corresponding eigenvectors of the P-by-P matrix ¢jj' The matrix will
have a rank (K-1) because A has full rank. Also E[g(n)gH(n)] has rank
(K-1), it being the Covariance matrix of (K-1) noncoherent
interferences. If we assume that the noise intensity is very small

compared to the interference signals ji(t), so that

Ai >> 02 and (1/02) >> 4¥14~—2 for i = 1,2,...., K-1
A, + ¢
i
Then we can write
W = B la(t )
-opt nn- o
K-1 P
= B4 ¥ ‘12 e g? L) (1/02) e, g? g(ro)
i=1 Al + o i=K
~ 2 P
= (B/0™) Y p. e, ... (2.29)
. i =i
1=K
Where p;, = g? g(ro). By construction, the direction vectors
{é(rl),..., g(TK_l)} of the interference signals, which are columns of

matrix K, lie in the span of first (K-1) eigenvectors {él""gK—l}

and are, therefore, orthogonal to the remaining eigenvectors

Thus we have

P
> B * H _ _ .
W 2(7)) 2 S L ey el alt) =0, L=1,.... LK. .(2.30)
o i=K
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Therefore, the beam pattern will have deep nulls in the direction of
interferences.

It can be seen from eqn.(2.20), that the computation of the
optimum weight vector, Eopt requires the knowledge of two quantities :
(i) the correlation matrix & and (ii) the cross correlation vector 6.
The correlation matrix ® plays a key role in the statistical analysis
and design of optimum beamformers. Hence, it is necessary to know its
properties. The correlation matrix & is Hermitian and Toeplitz 1in
structure and is always nonnegative definite. Also, all the
eigenvalues of the matrix ¢ are real and nonnegative and the
eigenvectors corresponding to distinct eigenvalues are linearly
independent with each other {22].

Although the solution of eqn.(2.20) is straight forward, it
presents serious computational difficulties when the number of
elements ‘P’ is large and the data rate is high. Not only it is
necessary to invert a P-by-P matrix, but P(P+1)/2 autocorrelation and
cross correlation measurements are required to obtain the elements of
®. Also, no perfect solution of eqn.(2.20) is possible in practice,
because larger number of samples would be required to estimate the
elements of the correlation matrix accurately [65].

An alternative method for minimizing the mean-square-error
is the Least-Mean-Square[LMS] algorithm. This method does not require
explicit measurements of correlation functions or matrix inversion aﬁd

accomplishes the minimization by gradient search technique.
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2.1-1 The Least-Mean-Square[LMS] Algorithm
The LMS algorithm is based on the method of steepest descent
[42]. According to this method, the value of the weight vector at time

(n+1) is computed using the simple recursive relation
1 A
Win+1) = W(n) + 5 ”[—V(n)} ... {2.31)

where W(n) and W(n+1), respectively, represent the weight vector
before and after adaptation, p is a scalar constant controlling the
rate of convergence and e(n) is the estimate of the gradient vector.
In the LMS algorithm, the estimate of the gradient vector,
e(n), where the symbol ‘A’ denotes the estimate, is developed by
substituting the instantaneous estimates of the correlation matrix, ¢
and the cross correlation vector 8, in eqn.(2.18). These instantaneous

estimates are based on sample values of the input signal vector and

the desired response which are defined as

®(n)

X(n) x7(n) . (2.32)

6(n) = X(n) d (n) .. (2.33)

Correspondingly, the instantaneous estimate of the gradient

vector is given by

A * H
V(n) = -2X(n) d (n) + 2X(n) X'(n) W(n) ... (2.34)

A
Substituting V(n) in eqn.(2.31), we get

W(n+1) = W(n) + u g(n)[a*(n) - xn y(n)] ... (2.35)

Equivalently, this result may be written in the form of a
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pair of equations given by

e(n) = d(n) - Win) X(n) ... (2.36)
W(n+1) = W(n) + pu X(n) e (n) . (2.37)
Eqn. (2.36) defines the estimation error e(n), the

computation of which is based on the current estimate of the weight
vector W(n). The iterative procedure is started with an initial guess
W(0)for which a convenient choice is the null vector. The scalar
constant ,u, controls the rate of convergence and the stability of
algorithm. For convergence to occur, p should be so chosen that,
0 < u< 2/Amax where Amax is the largest eigenvalue of the correlation
matrix ©o.

The main virtue of LMS algorithm is its simplicity, since it
requires only 3P arithmetic operations per time sample. However, it
needs a large number of data samples to guarantee convergence. Also,
it cannot handle a scenario of multiple Jjammers with different powers
[70], and 1is sensitive to signal statistics. The algorithm is
summarized in Table 2.1.

2.1-2 Sample Results

The following numerical example compares the performance of
the LMS beamformer with that of the optimum beamformer.

In £his example, a uniform linear array of six isotropic
elements has been assumed. The signal environment consists of a
desired signal and four noncoherent interferences. The arrival angles

and signal strengths of the interferences are given in Table-2.2.
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Table 2.1
Summary of the LMS Algorithm

Input definitions
wi(o) = o, i=1,2,..... , P

<
0 < pu Z/Amax

Algorithm Complexity

For n =1,2,.... N do

For i = 1 to P do

e(n) = d(n) - w:(n) xi(n) P (T 2.11)
wi(n+1) = wi(h) + U xi(n) e*(n) 2P (T 2.12)
Total 3P
Table 2.2

Interference Parameters for Narrowband Beamformers

parameter Interference 1 Interference 2 Interference 3 Interference 4

s, 10.0 10.0 10.0 10.0
o, 30° -30° 60° -60°
w, 1.1 0.9 1.2 0.8

In the case of the optimum beamformer, the array correlation
matrix, ®, was computed using 1000 snapshots of data and then a noise
power 0'2 = 0.001 was added to its diagonal elements. Gaussian
elimination technique was used to obtain its inverse. The eigenvalues
of the correlation matrix are. 783.76, 452,96, 596.79, 564.01, 0.05,
0.001 and as expected, these are all real and nonnegative.

In the case of LMS array, the weight vector was initialized
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with all its components set to zero. Corresponding to the largest
eigenvalue, the permissible upper bound for u was found to be 0.0255;
a value of 0.0001 was selected for the present problem. The internal
antenna noise was simulated by generating independent, normally
distributed, random numbers using Box-Muller’s transformation on
uniformly distributed numbers in the range (0,1) [55]. Since, the LMS
algorithm takes a large number of iterations to converge, 1000
iterations were used.

The performance of the array was evaluated by computing the
array pattern. A unit amplitude test signal was assumed to be incident
upon the array from an angle ©. The voltage pattern was then obtained
by computing the array output Y (eqn.2.11) as a function of o.

Fig.2.2 shows the computed patterns for the optimum
beamformer and the LMS array. As can be seen from the figure, both
techniques succeed in placing nulls in the direction of interferences.
However, the nulls placed by the LMS array are relatively shallow as
compared with those produced by the optimum beamformer. This is
because the LMS algorithm is based on a statistically defined error
criterion and uses instantaneous estimates for the correlation matrix
¢ and the cross correlation vector 8. Moreover, the LMS algorithm is
based on the steepest descent technique which is an approximate
technique.

To illustrate the numerical properties and the convergence
characteristics of the LMS array, the output residual power as a
function of the number of adaptation samples is shown in Fig.2.3.

Here, the output residual power at the time instant ‘n’ has

been defined as
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P (n) = [e(n)|® = |¥(n) - d(n)|? ... (2.38)

As can be seen from the figure, the LMS array exhibits poor
convergence. The residual power gradually reduces from about - 17dB to

a steady state value of about -40dB after 500 iterations.

2.2 THE BROADBAND ADAPTIVE ARRAY

In sec.2.1, it has been assumed that the signals are
narrowband. The pattern nulls are placed in the direction of
interferences by a set of weights denoted by the weight vector W. In
the event the desired signal and the interference signals are
"broadband”, that is, signals have a frequency content encompassing a
significant bandwidth, the performance of the array will be degraded.
This is because the interelement phase delay depends on frequency
which makes the selection of appropriate weight vector for one

frequency w not appropriate for a different frequency w., and the

1’ 2

array pattern null shifts as the value of wavelength of the desired
signal, AO, changes. This fact leads to the conclusion that different
weight vectors are required at different frequencies, if an array null
is to be maintained in some direction for the frequencies over a band
of interest (41,8].

A simple and effective way of obtaiding different weight
vectors at a number of frequencies over a band of interest is to use a
tapped delay line network coupled with weights, as shown in Fig.2.4.
The tapped delay line network allows the array to insert a variable
amount of phase delay behind each element. This delay can be used by

the processor to compensate for the interelement propagation delay. If
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Fig.2.4.Tapped-delay line multichannel processor for wideband

| signal processing.
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the tap. spacing is sufficiently close, the network approximates an
ideal filter which allows complete control of gain and phase of each
frequency in the pass band.

The basic configuration of a broadband beamformer is shown
in Fig.2.4. Behind each of the ‘P’ sensors, a tapped delay line is
connected which consists of ‘M tap points, (M-1) time delays of &
seconds each and ‘M’ complex weights. If xl(t),...., xp(t) denote the

signals at the array input, we may define a complex vector Xl(t), such

that

1><

(t) = [xl(t),xz(t), ...... , X (t)] ... (2.39)

In all the delay lines, signals appearing at the second tap
point are merely a time delayed version of the signals appearing at

the first tap point. So a complex vector Kz(t) may be defined as
T
X2(t) = [xl(t—é), X, (t=8), ... ...  x (t—a)] ... (2.40)

Continuing in the same manner for all M tap points, the

complete signal vector for the entire array becomes

x1(t) = [X¥(t), Xy(t), ... , gT(t)] ) .. (2.41)

The reason for expressing the signal vector in this form is
that this construction leads to a block Toeplitz form for the
correlation matrix, &, of the input signals.

Similarly, the weight vector for the entire array can be

written as
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T T T
= ... (2.42)
W [ !1’ !2' ..... , HM]
where
WT= W W W W .etc ...(2.43)
-1 11’ "21’ 731" " Pl

As a consequence of signal and weight vector definitions

introduced above, the array output can be written as

M H
Y(t) = ¥ [»_«m] X ()

m=1

= W x(t). .. (2.44)

which is exactly of the same form as in eqn.(2.11).

2.2-1 Adaptive Array with Constraints

The addition of constraints to the LMS adaptive array was
first described by Frost [13]. This algorithm called the "constrained
LMS" algorithm, is a simple stochastic gradient élgorithm in which the
direction of the arrival of the desired signal and a frequency band of
interest are defined a priori. A major advantaée of this algorithm is
its self-correcting feature. This feature permits it to operate for
arbitrarily long periods of time in a digital computer implementation,
without deviating from its constraints, because of cumulative round
off and truncation errors [13].

Assuming that, the signals are in discrete time sampled

form, eqgn.(2.44) can be written as
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Y(n) = Wl X(n) ... (2.45)

The expected output power of the array is

E[Y(n) y*(n)] = £| v xtm) ®fn) y(n)]

... (2.48)

il
S

1=

The constraint that the weights on the mth vertical column

of tap points sum to a chosen number 1m is- expressed by the

requirement
T
C W=1, m=1,2, ..... , M ... (2.47)
-m - m
where PM-by-1 vector gm has the form
g; = [O ........ 0,0......... 0,1........ 1,0,,,,,0] ... (2.48)

mth group of P elements

Constraining the weight vector to satisfy the M equations in
(2.47), W is restricted to a (PM-M) dimensional plane.

Now, we define the constraint matrix C. as

C =[g1, ........ S ,c] ... (2.49)

which is of dimension PM-by-M.

We also define $ as the M-dimensional vector of welghts of
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the lock-direction equivalent tapped delay line (Fig.2.5), as

$ = [11, ............ c e : 1M] ... (2.50)

C W=8§ ... (2.51)

As the look-direction frequency response is fixed by M
constraints, minimization of the nonlook-direction noise power is the
same as the minimization of total output power. Thus, the problem of

finding the optimum weight vector yopt can be summarized as

minimize [!H ¢ y]
W

Subject to CT W=g ...(2.52)

This is called the constrained LMS problenm.

The optimum weight vector Ho is found by the method of

pt

Lagrange multipliers and is given by [13]

-1
W =¢_1c[c ) C] $ ...(2.53)
~opt =

The above equation is not easy to interpret because of the
complicated way the constraint matrix C appears in the equation.
However, a simple example will make it clear. Suppose it is desired to
minimize the interference and noise, while maintaining the array

response 1in the desired signal direction equal to unity. The
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constraint is then

a(t ) W-=1. ...(2.54)
o

Therefore,

C=a(r) and § = 1 ... (2.55)

Substituting for C and $ in eqn.(2.53), we get

-1
W = o ! alr )[aH(‘r ) oL a(e )] ...(2.58)
—-opt - o’ |- o . =0

Comparing the above equation with eqn. (2.27), We have

1

H _ -1
B = [a (z)) ¢ g(ro)] | ... (2.87)

Since B is a scalar, premultiplying the eqn. (2.56) by

aH(To), we have

H gH(T ) 97! a(t )
2t ) W = e =1 ... (2.58)
° Top a'(r)) @ alt)

So the desired constraint relation is automatically satisfied.

There are also other ways of using the constraints. For
example, a constraint could also be used to produce a fixed null in
the array pattern in a certain direction, if desired. Such a
constrained null might be useful if a source of interference exists at

some known angle [8]. -
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2.2-2 Broadband Signal Simulation

When statistically independent white noise samples are
filtered, the shape of the Pesultihg power spectrum, or "colour", of
the resulting sequence is determined by the transfer function of the
filter [55]. The digital filtering algorithm, in general, produces
samples that are correlated, resulting in a nonwhite spectrum.

For the simulation of a random function with a predetermined
power spectrum, the input power density, gxx’ is made equal to unity
at frequencies below one-half of the sampling rate. Thgrefore, the

variance of the input samples is

n/2

2 _ 1 = . _ 1

o~x_ -2?.[ Sxx(Jw) dw—T ...(2.59)
-n/2

where T is the sampling interval. Thus, if ro is the nth independent
uniform random sample between 0 and 1 generated by a computer library

routine, then

a, =/ 12 [Pn_ 5] ... (2.60)

would be the appropriate white noise sample.

In a general purpose computer program, the process begins
with the generation of independent random samples Pn in the interval
(0,1). Each sample T is then converted to dn’ a sample of the white

uniform sequence using eqn. (2.60). It is then fed through a bandpass

filter to produce the desired sample set, g

As an example, we consider the generation of the random
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sequence of a broadband signal with unit power density, having all its
power concentrated between 0.75Hz and 1.25Hz. We use a sampling
interval_of T = 0.05 sec, which is well below one half the sampling
rate of the centre frequency 1Hz of the desired broadband signal.

The situation calls for a bandpass filter with a pass band
0.75Hz-1.25Hz. We have used the Butterworth bandpass filter routine
SPFIL2 [55], with five sections in cascade, to simulate the filter on
the computer. The details of the sequence generation process are
illustrated in Fig.2.6. The program causes a white uniform sequence
to be génerated and then filtered to produce gm. The routine is called
with frequencies 0.0325 and 0.0625. The filter has been assumed to
have 10 two-pole sections.

The entire sequence gm, a broadband signal of bandwidth

0.75-1.25Hz, is shown in Fig.2.7.

Band pass filter
0.75 Hz-1.25 Hz -
white uniform Non-white random
sequence sequence

N
—2

Fig. 2.6 Generation of a broadband signal

2.2-3 Sample Results
" The following example simulated on the combuter illustrates
the ability of the Frost array to null broadband interferences.
We consider a uniform linear array of six isotropic
elements. The output of each sensor is processed using a tapped delay
line containing four multiplying weights and three ideal time delays

of (1/4wo) seconds each. The signal environment consists of one
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desired signal and two interferences that are broadband in nature. The

arrival angles and signal strengths are given in Table 2.3.

Table 2.3
L]
Interference Parameters for the Frost Array
parameter Interference 1 Interference 2
Si . 0.01 0.01
o, 50° -50°
w, 1.0 w 1.2 w
i o o
A * 0.4 * 0.5

A constraint of unity gain in the look-direction has been
used. The desired signal strength has been assumed to be equal to
0.001. Optimum weights have been computed by forming the correlation
matrix, &, from 1000 snapshots of input data. A white noise component
of variance 0.0001 has been added to the diagonal elements of &.

The array pattern, shown in Fig.2.8, illustrates the ability
of the Frost array to place nulls in the direction of the broadband
interferences. It may be noted here that a 6-element array with a half
wavelength Spacing has its natural nulls located at #20° ang +40°, As
is seen in Fig.2.8, the adaptation process leaves the nulls at +20°
undisturbed while the other two nulls are steereq to iSOO, that is, in

the direction of interferences.
2.3 BEAMFORMING IN THE PRESENCE OF COHERENT SIGNALS

A key assumption in the discussion, so far, is that the

desired signal, interference and noise are all zero-mean processes
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uncorrelated with each other. The assumption is not valid in practical
situations where due to the presence of multipath propagation or due
to smart jammers, even fully coherent interferences can exist.

If the signals impinging on the array are coherent, then the

vector AS in eqn.(2.8) can be written as [5%]

K-1
AS-= g(ro) s(t) + ¥ g(Ti) ji(t)
i=1
= La(ro) tagalr) s * agq alrg 1)] s(t)
= b s(t) .(2.861)
where
b = [e_l(ro) Yy g(rl) o * ¥y g(rK_l)] ... (2.82)
¥y being the fixed constants given by
7, = [s.l/so] (878 =1, ..... , K1 ...(2.83)

It may be noted that since b is a linear combination of all the
steering vectors, it yields another steering vector.
Substituting for A S in eqn.(2.8), we get the received

signals at the array as
X(t) = b s(t) + n(t) ...(2.64)

In this case, the covariance matrix A E[§§H] AH will have
rank one. Therefore, the correlation matrix @ will have one non-zero

eigenvalue Al + 02 and (P-1) eigenvalues equal to 02 [57].
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In this situation, the weight vector in eqn.(2.27) reduces to

2 -1
Hopt - So ¢ g(To)

A
2 P 1 H
=S L — [91 g(ro)] e ... (2.865)

[
Z.‘h:
=
2

Y(n)

a (t ) e [p s(t) + Q(t)] ... (2.86)

})

2'%3 - %p

there will be no desired signal output from the conventional array

Since the vector b lies along e, and is orthogonal to {

when the desired signal is coherent with the interfering signals [57].
The output Y(n), in this case, will simply be a weighted combination
of the noise vector n(t).

The signal cancellation phenomenon can also be explained
with the help of a Frost array, subject to unity gain constraint in
the look-direction. In this case, the optimal weight vector is

obtained by minimizing the array output power, Therefore, if an

interfering signal, say from the direction e is coherent with the’

i)
desired signal, the minimum will be achieved if and only if, the array
gain in the direction ei is such that the interfering signal exactly

cancels the desired signal.

Moreover, steering vector g(ri) has a Vandermonde structure.
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The orthogonality of b and Eop will imply nonorthogonality of Ho

t pt

and any of the {g(rl), ........ , g(rK_l)}. Therefore, there can not be
nulls in the direction of the interfering signals [57].

To overcome the above mentioned problem, several methods
have been proposed in the literature for the cancellation of coherent
interferences with different degrees of success [57,11, 18]. A
practical approach to remove coherence between the sources is "the
spatial smoothing scheme" suggested by Evans et al [11]. An analysis
of this scheme and its application to adaptive bgamforming has been
given by Shan and Kailath [57]. This scheme essentially decorrelates
the signals and, thus, eliminates the problem encountered with

coherent signals.

2.5-1 Spatial Smoothing Preprocessing Scheme [SSPS]

Under noncoherent signal conditions, the correlation matrix,
®, 1is Toeplitz in the case of narrowband beamformers, and block
Toeplitz, in the case of broadband beamformers. When coherent signals
are present, this Toeplitz structure is destroyed and also, the rank
of the matrix & reduces to unity. A suitable algorithm is, therefore,
required to restore the rank of the covariance matrix to K, where K is
the number of sources.

The spatial smoothing scheme restores fhe rank of the matrix
®, through progressive diagonalization, thereby decorrelating the
sources effectively. In this scheme, the uniform linear array of ‘P’
sensors is extended by augmentihg it with ‘L’ additional sensors. The

extended array is then divided into overlapping subarrays of size ‘P’
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with first subarray formed from sensors {1, ...... , P}, the second from
{é, ...... , P+1}, and so on, as shown in Fig.2.9. First the correlation

matrix of each subarray is formed. Next, a spatially smoothed
correlation matrix, &, is defined by taking the mean of the subarray

correlation matrices, That is

... (2.67)

If the number of subarrays, so formed, is equal to or
greater than the number of sources ‘K’ and the number of elements in
each subarray, ‘P’ is greater than the number of sources, then the
correlation matrix, &, has full rank and the source correlation matrix
approaches the same form as the source correlation matrix for
noncoherent situation, i.e., a Toeplitz structure. This spatially
smoothed correlation matrix can then be used in an optimum beamformer.

The phenomenon of restoration of rank of the correlation

matrix can be explained as follows [57].

Let the signal vector for the first subarray be given by
T
Zl(t) = [xl(t), x,(t), —=-—- ) xp(t)] ...(2.68)

By shifting down the subarray one element at a time, we form
gz(t),gg(t), ......... , ZL+1(t). If we assume that the signal from all
the ‘K’lsources are coherent and are of the form e‘](wot * ¢i), i =0,1

..... , K-1, then we can write for the kth subarray
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Fig.2.9. A uniform linear array of ‘P+ L’ sensors
divided into overlapping subarrays of
size ‘P’each.
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Z,(t) =AD" s+ (t) .. (2.69)

where Dk_1 is the (k—l)th

{e_onri,i:o,g.u L)K—l}.

The covariance matrix of the kth subarray is given by

power of the diagonal matrix D with entries

H
(k) _
° E[gk(t)[gk(t)] ]

H
= apK7! @SS[Dk'l] Al 42 I ... (2.70)

where ¢ss is the source covariance matrix defined by

o _ = E[§ §H] L (2.71)

The spatially smoothed correlation matrix is now given by

L+1
- 1 (1)
7 = Tooo
L+1 121 zz
1 HH 2
= a1 AAZ AN A + 071 oo (2.72)
where A = DO D1 DL and X = [ ¢ i block di 1
LD , = L+1<g) ss 1S a bloc iagona

matrix with ¢ss on the diagonal.

By defining

[0p]]
1]

A XA ... (2.73)
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the eqn. (2.73) can be written as

= — ASA + o1 . (2.74)

Since, all the K input signals are coherent, the signal
covariance matrix ®SS is a nonnegative definite matrix of rank one.

Hence, it can be written as

] =

1/2
¢l/2[¢H ] _ H
SSs SSs

rr .. (2.78)
sS - -

where r is a vector of dimension K and is given by

T
= . L .76
r [ro,rl, ....... , rK—l] (2 )

I ri is zero for some i, it means that the ith column and
.th . . .
1 b row of ¢ss would be zero, which is contrary to the assumption that
all inputs are coherent with nonzero power. Therefore, a reasonable

assumption is that

r. =0, i=0,1,....... , K-1 o (2.77)

using p{A} to denote the rank of A, we can say that

p{é} = p{A p) AH} = p{zH/2 AH} ... (2.78)

After some algebraic operations it can be shown that [57]

p{ZH/Z AH} = p{F diag(g)} .. (2.79)
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. . th
where F is a vandermonde matrix with (i+1) column as

-

and diag{r} is a diagonal matrix with elements {gi,ko L,;_-)K-l}

Matrix F has full rank because Ti are assumed distinct. Diag{r} has

also full rank as r has nonzero entries

Therefore,

p{é} - p{p} - min{L+1,K} . (2.80)

It is thus evident that the rank of the matrix S will be restored to
K, if and only if, L + 1 = K.

Once S has rank K, the signal subspace will not collapse.
Then the noise eigenvectors will be orthogonal to columns of A and by
the analysis given in sec.2.1, will give nulls in the interference
directions. From the above analysis, it is seen that the minimum
number of subarrays required to restore the rank of the correlation
matrix is K. At the same time, the number of elements in each subarray
should be atleast K+1. Therefore, we must have atleast twice as many
sensors as signal sources. In other words, the spatial smoothing
scheme suffers from reduced effective aperture.

It may be recalled that, the spatial smoothing scheme
restores the rank of the matrix o, through progressive
diagonalization, thereby effectively deéorrelating the sources. The
rate at which diagonalization takes place depends on the number of

subarrays formed. This is referred to as the degree of smoothing [52].

YTV

. s -':',"-‘\ !
Ny /
e

{

']

50

-———

e - o )

o
>f



This decorrelation results in reduced signal cancellation and
increased rejection of the coherent interference as a function of
degree of spatial smoothing. However, the spatial smoothing scheme
still suffers from signal cancellation effect and the interference
rejection is also not total.

The spatial smoothing scheme has been investigated by
several authors. Reddy et al [52] have shown that signal cancellation
and interference rejection are strongly influenced by the correlation
between the desired signal and interference, with high correlation
leading to significant signal loss. This coupling between the
correlation and beamformer performance 1s somewhat weakened as
additive sensor noise is increased. These authors have also
demonstrated that the rate at which spatial smoothing scheme
progressively decorrelates the incident wave fronts, depends upon the
spacing and direction of arrival of sources. The number of subarrays
required for decorrelating the sources increases as the angular
separation |@O—ei| becomes smaller and smaller. In particular, the
number of elements required goes up when the sources approach the
end-fire directions. Yeh et al [69] have derived an expression for the
oufput signal-to-noise ratio(SNR) for a spatially smoothed adaptive
array. Their results show that the arréy performance depends upon the
number of subarrays, the angular separation, relative power levels and
initial phase difference between the desired signal and coherent

interference. In order to have good interference suppression, |®O—e

i |

should be greater than the beamwidth of the array. There is a
compromise between increasing the number of subarrays and decreasing

the number of elements in each subarray for better performance.
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Lineberger and Johnson [33j have analysed the structure of the
correlation matrix in a coherent signal environment and have shown
that coherence among signals induces a modulation along the diagonals
of the correlation matrix, ®, because of which the matrix loses its
Toeplitz structure. They also show that, the spatial smoothing is
essentially restricted to equally spaced arrays and even after spatial
smoothing the sources may remain coherent. Further, inspite of the
rank being restored, the correlation matrix may be badly conditioned.
In essence, the spatial smoothing scheme suffers from the reduced
effective aperture, signal cancellation phenomenon and the
interference suppression is also not total.

Several modifications and improvements over the basic
spatial smoothing scheme and some alternative spatial averaging
schemes have been suggested in the literature to overcome these
limitations, viz, the reduced effective aperture, signal cancellation
phenomenon and the incomplete suppression of coherent interferences.

An important modification is the forward/backward spatial
smoothing scheme [11] which achieves a larger effective aperture as
compared to the spatial smoothing scheme without much increase in
computational burden. Though this scheme has received wide attention
in Direction-of-Arrival(DoA) estimation [66,50], not much attention
has been paid to its application in adaptive beamférming.

The salient features of the methodl can be explained as
follows. First, the subarrays are formed as in the spatial smoothing
scheme. These are referred to as forward subarrays. In addition, an
equal number of identical subarrays are formed in the backward

direction with the last element in the array being treated as the
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first element of the first backward subarray. The input signal to the
backward subarrays are complex conjugated. Next, the subarray
correlation matrices for each of the forward and backward subarrays
are formed. Forward and backward subarray correlation matrices are
averaged separately to obtain the forward and backward smoothed
correlation matrices. Finally, these two correlation matrices are
averaged and forward/backward smoothed correlation matrix is formed.
This method has been reported to effect a saving of 1/4K elements in
the required 2K elements of the spatial smoothing scheme.

Su et al [56] have presented an alternétive approach called
the "spatial processing algorithm” to combat the signal cancellation
effect. This method employs a number of subbeamformers having the same
structure as the conventional beamformers which are arranged in a
parallel manner. For the first time instant, the first subbeamformer
is employed to update the weights and then these weights are copied
into the remaining subbeamformers. For the second time instant, the
weights are updated using the second subbeamformer and then the
welghts are copied 1into the remaining subbeamformers. So the
adaptation process sequentially propagates, one by one, along the
Subbeamformers.iAfter the adaptation reaches the last subbeamformer,
the process restarts from the first one. The array output is then
computed by averaging the delayed outputs of all these subbeamformers.
In  this method, this weight propagation from one subbeamformer to
another incorporates spatial averaging.

Widrow et al [64] have proposed an adaptive beamforming
scheme using two beamformers(master and slave beamformers) to separate

the desired signal and the interferences during adaptation. This
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method does not involve any spatial averaging and can be explained as
follows. The Frost adaptive beamformer is employed to generate a
suitable set of weights to satisfy the look-direction gain constraint
and to minimize the output power. The weights are then deployed in the
slaved beamformer to provide jammer rejection without signal
cancellation. However, only one coherent Jammer can be suppressed by
this beamformer. Recently, Pei et al [46] have replaced the
conventional Frost beamformer in the structure of reference [64] by an
optimum beamformer and have incorporated the spatial smoothing scheme
of Shan et al [57] into the master beamformer to overcome signal
cancellation.

Lee and Wu [30] have proposed an algorithm which can create
an adaptive beamformer to reject coherent jammers while providing the
desired.signal reception in the look-direction. The desired signal is
removed from the received signal in an adaptive process, which is
additional to the adaptive procedure of the spatial smoothing schenme.
After the spatial smoothing process, an appropriate set of weights and
an estimate of the desired signal is obtained. A slave beamformer,
based on this set of weights, is then utilized to achieve the goal of
coherent jammer rejection while simultaneously preserving the desired
signal.

As mentioned earlier, complete suppressiod/of interferences
is not possible in spatial smoothing technique. The reason for this is
that the resultant spatially smoothed matrix can not be made close to
Toeplitz by simple averaging over the finite array aperture. Takao and
Kikuma [59] describe a technique called "Adaptive spatial averaging".

In this technique, the input correlation matrices of the subarrays are
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adaptively averaged so as to produce a Toeplitz matrix which would be
obtained if the interference were not correlated with the desired
signal. The averaged matrix is free from correlation terms between the
desired signal and interference and, therefore, may be used to derive
optimum weight for the array element Jjust as in the noncoherent
interference environment.

The spatial smoothing scheme does not consider the cross
correlations of the subarray outputs. Du and Kirlin [10] have proposed
an improved spatial smoothing scheme which fully utilizes the
correlations of the array outputs and produces a more stable estimate

of the covariance matrix.

2.3-2 Structured Correlation Matrix Method [SCMM]

An alternative solution to the problem of coherent
interference suppression has been suggested by Godara [18]. This
method, called the structured correlation matrix method [SCMM],
exploits the structure of the array correlation matrix(ACM). In
noncoherent signal environment, the ACM has a Toeplitz structure which
is lost when correlated sources are present. In the structured
correlation matrix method (SCMM), this constraint, ie, Toeplitz
structure is implemented by averaging the unconstrained correlation
matrix along the diagonals. The entries along the '1th diagonal of this
structure correlation matrix(SCM), QS, are given by

, P
; 5T 4’1,1+1-' i=0,1,...... , P-1 ... (2.81)

e~

1=1

This structured correlation matrix is now used to compute

the weights of the beamformer.
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In this method, the size of the correlation matrix does not
change, unlike the case of spatial smoothing preprocessing scheme. The
array aperture 1is, therefore, preserved in this case. At the same
time, however, there is a possibility of an error creeping in because
of the difference between the elements of true correlation matrix and
the Toeplitzed matrix. Under certain circumstances, the Toeplitzed

structure may not resemble the actual correlation matrix at all.

2.3-3 Sample Results

The effectiveness of these two techniques viz, the spatial
smoothing preprocessing scheme (SSPS) and the structured correlation
matrix method (SCMM), in nulling the coherent interferences is
demonstrated by the following simulation example.

A B-element uniform linear array of isotropic elements has
been considered. The signal environment is assumed to consist of a
desired signal and four interferences, two of which are fully coherent

with the desired signal. The various parameters of the interferences

are listed in Table-2.4.

Table - 2.4
Interference Parameters

Parameter Interference 1 Interference 2 Interference 3 Interference 4

s, 10.0 10.0 10.0 ) 10.0
o, 15° 55° -30° -70°
w, 1.0 1.0 1.1 0.9

The above signal environment was first used in the optimum
beamformer of sec.2.1. 1000 snapshots of data were utilized to compute

the array correlation matrix. A noise variance of 0.01 was then added
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to the diagonal elements of ®. The resulting pattern is shown in
Fig.2.10. It is found that while deep nulls occur in the direction of
noncoherent interferences (—300,—700), the beamformer fails to put
sharp nulls in the directions of coherent interferences arriving at
15° and 55°.

Next, the structured correlation matrix method and the
spatial smoothing preprocessing scheme were used in the opt imum
beamformer. In the latter case, the array was augmented by four
elements and five overlapping subarrays of six elements each were
formed. The resulting patterns Aare shown in Fig.2.10, where it is
observed that both the techniques successfully place sharp nulls in

the direction of all the four interferences.

2.4 A COMPARISON OF STRUCTURED CORRELATION MATRIX METHOD (SCMM) AND
THE SPATIAL SMOOTHING PREPROCESSING SCHEME (SSPS)

Of the two methods discussed in the previous section, the
spatial smoothing scheme has received considerable attention and
several modifications have been proposed in the literature [41, 46,561
to ovefcome its two main draw backs, viz, signal cancellation
phenomepon and the reduction in effective aperture area. The
structured correlation matrix method, on the other hand, is relatively
recent and has not been studied in detail, so far. Only Indukumar and
Reddy [24] have addressed this technique in the context of
Direction-of-Arrival estimation using signal subspace algorithms [44].
They have shown that the resulting covariance matrix, in this case, is
not guaranteed to be nonnegative definite and induces a bias in DOA

estimates. We, therefore, present here a comparative study of the two
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NONCOHERENT INTERFERENCES AT -30° & -70°
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techniques which is based on computer simulations [25].

In all the numerical examples presented here, a six element
array has been assumed in the case of SCMM. In the implementation of
spatial smoothing scheme, this array has been augmented by four
elements and five overlapping subarrays of 6 elements each have been
formed. The overall array size in SSPS, is therefore 10 elements. The
signal environment consists of a desired signal incident from
broadside and two fully correlated interferences.

As a first example, we consider two interferences which are
closely spaced to the desired signal (Table 2.5).

Table - 2.5

Interference parameters

Parameter Interference 1 Interference 2
Si 10.0 10.0
o, 10° -10°
w 1.0 1.0

The computed patterns are shown in Fig.2.11. As can be seen
from the figure, both the methods succeed in placing nulls in the
direction of interferences. However, the nulls placed by SSPS are much
deeper than those produced by SCMM (Table 2.6). Further, in both the
methods, the maxima of pattern gain occur in directions other than the

direction of arrival of the desired signal.
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Table - 2.6

Null Depths Produced by SCMM and SSPS Beamformers

Null depths

Q,

! SCMM SSPS
10° -29dB -43dB
10° -29dB -43dB

Next, we consider two widely separated interferences which
are unsymmetrically located on either side of the desired signal at
30° and —500. Fig.2.12 compares the output voltage patterns for the
two techniques. It can be seen that while the spatial smoothing scheme
places sharp nulls exactly at the location of interferences, a bias is
introduced by SCMM. The null is produced at -46° instead of at -50°.
Also, there is a spurious null at 35°. The reason for this offset and
the spurious null is that the resulting matrix produces a signal
subspace which is inconsistent with that of the underlying signal
model.

Fig.2.13 shows the voltage patterns when interferences are
modelled to arrive at +7OO and —700, that is from near end-fire
directions. It can be seen that the SSPS produces sharp nulls of depth
-B0dB in the direction of interferences. The SCMM, on the other hand,
fails to produce nulls at +70°. ’

From the above examples, it is evident that, in the case of
structured correlation matrix method, a bias is introduced in the
placing of nulls, which increases és the interferences are moved away
from the broadside (desired signal arrival angle). This increasing

bias, ultimately, leads to the array’s failure in placing nulls in the
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direction of near end-fire interferences.

The simulation results show that the spatial smoothing
scheme is more promising for the suppression of interferences. Its
implementation does not change the signal processing operations
significantly; only the dimensions of the correlation matrix are
altered. The structured correlation matrix method, on the other hand,
is much simpler in implementation compared to the spatial smoothing
scheme and also, it preserves the array aperture. Extensive computer
simulation studies have revealed that only for certain combinations of
So’Si’ed’ei and P, the SCMM nulls the interferences satisfactorily ;
for other combinations, the method fails. Moreover, SCMM 1is not
applicable to broadband arrays for which the arfay correlation matrix
will not be Toeplitz, even in noncoherent situations [25]. Finally,
the adaptive implementation of SCMM does not seem to be possible,

whereas, SSPS lends itself to adaptive implementation to real time

applications.

2.5 SUMMARY

In this chapter, a general formulation of the adaptive array
utilizing the Least-Mean-Square criterion has been discussed. The
broadband signal ~simulation which has not been discussed in the
adaptive array literature, so far, has been discussed by devoting a
separate subsect;on. The reasons for the failure of conventional
beamforming arrays in coherent signal environment has been discussed
and, as a remedy, various spatial averaging schemes have been
described. A comparison of the spatial smoothing scheme and the

structured correlation matrix method using computer simulations
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revealed that the former is superior method for combating the signal

cancellation in coherent signal environment.
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CHAPTER - 3

RECURSIVE LEAST-SQUARES ALGORITHMS FOR ADAPTIVE BEAMFORMING

The computational problems associated with the calculations
of weight coefficients in the direct matrix inversion approach can be
avoided by using the LMS algorithm. However, the drawbacks of the LMS
algorithm, namely, the slow rate of convergence and the dependence of
time constant on the eigenvalue spread, has motivated the search for
adaptive filtering algorithms which provide faster convergence and are
not sensitive to signal statistics. In this, least-squares [LS]
estimation has played a prominent role. The most popular time
recursive LS estimation scheme is the RLS algorithm [3] whose time
recursive nature makes it attractive for adaptive beamformers.
However, it is sensitive to roundoff errors, when finite precision
arithmetic is used for its implementation [36]. To remedy this
problem, algorithms based on matrix factorization and orthogonal
transformations have been derived and investigated. The orthogonal
transformations, such as, Givens, Householder and modified
Gram-Schmidt, are known to be less sensitive to roundoff errors. Time
recursive version of the Givens transformation and modified
Gram-Schmidt procedure have also been developed and discussed in the
context of systolic array implementation [15,36].

The QRD-LS algorithm using Givens rotations has been applied
to adaptive beamformers by Ward et al [62]. He also discusses its
implementation using a triangular systolic array where the error
residual is extracted directly as the output of the array. If the

weight coefficients are also to be computed, the back substitution
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method 'may be used which can also be implemented using a linear
systolic array.

Lewis [34] has used the above algorithm for beamforming in a
situation where the information regarding the desired signal is not
known, but a priori information in the form of signal-to-data cross
correlation vector is available. Heiligman and Purdy [19] have
described a method of weight computation using the triangular
processor itself. They have also discussed its property of graceful
degradation; the loss of one or more component processors does not
cause the computed weights to degrade catastrophically.

Little attention has been paid in the literature so far,
towards the application of time recursive form of modified
Gram-Schmidt procedure to adaptive beamforming problem. Ling and
Proakis [36] have presented a time recursive form of Gram-Schmidt
algorithm [RMGS] for solving a general least-square minimization
problem. This algorithm is reported to be robust to roundoff errors
and can be implemented using systolic structure. As a consequence, the
RMGS algorithm is well suited for adaptive beamforming problen. Ling
et al [36] have presented an improved error feedback version of the
RMGS algorithm [RMGSEF] which is more robust as compared to RMGS
algorithm. In this chapter, we éresent the results of extensive
computer simulations which show that the RMGS class of beamformers
offer a good compromise between the RLS and QRD-LS beamformers with
reference to stability and computational complexity.

The organization of this chapter is as follows. The exact
least-square error criterion is defined in section 3.1, with reference

to the adaptive beamforming problem. Sec. 3.2 gives an overview of
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the RLS algorithm. In sec.3.3, the exact least-square error criterion
is redefined in data domain and the QRD-LS algorithm, in general and
the QRD-LS algorithm wusing Givens rotations, in particular, are
discussed. The proposed RMGS algorithm and its application to the
adaptive beamformers is presented 1in sec.3.4. The application of
these techniques in broadband signal environment is discussed in
sec.3.5. Results of an extensive numerical study of these beamformers,
bésed on computer simulations, 1is reported in sec.3.6. Finally, a
discussion of the relative performance of these adaptive beamformers

is presented in sec.3.7.

3.1 THE EXACT LEAST-SQUARE ERROR CRITERION

Consider the P-element linear narrowband array model of
Fig.2.1. In the RLS algorithm, the computation is started with known
initial conditions and the information contained in the new input data
samples to the array is used to update the old estimates. Therefore,
the length of the observable data is variable. Accordingly, the index
of performance to be minimized is expressed as €£(n), where ‘n’ is the
variable length of the observable data. Moreover, a weighting factor
is introduced into the definition of the performance index to ensure

that the data in the distant past are forgotten. Thus,

... (3.1)

where A"7? is the exponential weighting factor and e(i) is the

difference between the desired signal and the array output. That is

e(i) = d(i) - W'(n) X(1), 1:1, _ _.n .(3.2)
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where X(i) is the array input data vector at time i, defined by

xT(1)

It
—_
x
—_
e
~—
X
—
o
—

and W(n) is the tap weight vector at time ‘n’ defined by

HT(n) = [wl(n), wo(n), . ..., .. s wo(n)]. ... (3.4)

The optimum value of the weight vector, W

(n), for which
~-opt

the performance index €(n) of eqn. (3.1) attains the minimum value

is given by

Wopt (M) = 2 (n) 6(n) ... (3.5)
where,
2 n-i H
¢(n) = ¥ A" x(i) x7(1) ... (3.8)
i=1
and
n -3 *
o(n) =3 A" x(1) d (i) ... (3.7)
i=1

The recursive relations for ®(n) and 8(n) can be obtained

directly from egns. (3.6) and (3.7) and are given by

®(n) = A o(n-1) + X(n) x'(n) ..(3.8)

6(n) = A 8(n-1) + X(n) d" (n) ..(3.9)

The traditional approach for computing eqns. (3.5), (3.8) and
(3.9) is to use the matrix inversion lemma [22], which enables the
recursive computation of ¢_1(n) instead of ®(n) and leads to the

familiar RLS algorithm.

68



3.2 THE RECURSIVE LEAST-SQUARES [RLS] ALGORITHM
The recursive equation for updating the weight vector in
accordanée with the least-square error criterion can be shown to

be [22]
W(n) = W(n-1) + C(n) n (n) ... (3.10)

where C(n) and 7m(n) are, respectively, referred to as the gain vector

and a priori estimation error and are given by

At e -1 X(n)
C(n) = L (3.11)
- 1+ a7 ¥ o 1) x(n)
a(n) = d(n) - Win-1) X(n) ...(3.12)

Using the matrix inversion lemma, the recursive equation for

the inverse of the correlation matrix is obtained as

o ') = a7 o -1 - a7 e ®n) o Y (-1 ..(3.13)

Equations(3.10) to (3.13) constitute the RLS algorithm which
is summarized in Table-3.1 [22].

The convergence rate of RLS algorithm is much superior to
that of LMS algorithm when convergence time is measured in terms of
the number of samples of the input data [8]. However, this improvement
in performance is achieved at the expense of a large increase in the
computational complexity. Specifically, to compute the gain vector
C(n), a P-by-P matrix ®_1(n),-must be adapted and stored once per
iteration. Hencé, on the order of P2 arithmetic operations must be

performed per iteration of the RLS algorithm. This 1is in direct
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contrast to the LMS algorithm, in which an order - of P arithmetic
operations are required. It may be mentioned here that the RLS
algorithm is useful only when the number of elements P in the array is
small and the eigenvalue spread is high.

Table 3.1
The RLS Algorithm

Initialize the algorithm by setting

¢_1(o) = 6_11, d = small positive constant
Wio) = o
Algorithm Computational
complexity
For n=1,2,.......... compute
utn) = 27" ¢ N (n-1) X(n) p? (T3.1.1)
u(n)
C(n) = i
[1 + X (n) u(n)] P (T3.1.2)
n(n) = d(n) - W(n-1) X(n) P (13.1.3)
»
W(n) = W(n-1) + C(n) % (n) P (T3.1.4)
e ') =27t o e - cm) My 2p2 (13.1.5)
2 s e 2
Total ((P” + 2P) divisions) + 3P +3p

3.3 THE QRD-LS ALGORITHM

The RLS algorithm discussed in the previous section has two
main drawbacks, namely, its sensitivity to roundoff error and the
difficulty in implementing the algorithm in VLSI technology. An

alternative approach which is numerically sound is that of orthogonal
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triangularization [61]. It is based on updating the upper triangular
matrix, which is obtained by QR decomposition of the n-by-P data
matrix. Since, the condition number of the data matrix is much smaller
than the condition number of the correlation matrix, any algorithm
that operates directly on the data is much better conditioned. The
added advantage is that these QR decomposition algorithms can be
implemented in a hjghly pipelined manner using systolic arrays.

In the following, we derive the QRD-LS algorithm based on QR

updat ing.

3.3-1 Exact Least-Square Error Criterion in the Data Domain

We have till now, defined the exact least-square error
criterion in the covariance matrix domain. The exact least-square
error criterion defined in eqn.(3.1) can also be expressed in data

domain. This is accomplished by defining a n-by-P data matrix A(n)

such that
H
A (n) = [X(1),X(2),......... , X(n)]
Fxl(l) x1(2) ........... ,xl(n)
x2(1) x2(2) ........... ,xz(n)
... (3.14)
_XP(l) xP(Z) ........... ,xP(n)J

Let n-by-1 vectors e(n) and b(n), respectively, denote the

error vector and the desired response vector, which are defined by

e (n) = [e(1),e(2),........ ,e(n)] ... (3.15)
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b(n) = [d(1),d(2),........ ,d(n) ] ...(3.16)
The index of performance can now be redefined as
£(n) = e'(n) a(n) £(n) L (3.17)
where A(n) is the n-by-n exponential welghting matrix
A(n) = diagonal [An_l,xn_z, ...... ,1] ...(3.18)

The inclusion of A(n), the exponential weighting matrix, has
the effect of progressively weighting against the‘preceding column of
the data matrix AH(n) in favour of the last column. The last column of
the AH(n) corresponds to the input vector X(n) at time n, for which
the weighting factor is unity.

The index of performance may then be redefined as

) = |12

(n) e(n)|? ... (3.19)

and is in the form of squared Euclidean norm. The problem we have to
solve is to find the least-squares value of the weight vector that

minimizes the performance index €(n).

3.3-2 QRD-LS Algorithm
Since the norm of the weight vector is unaffected by

premultiplication by an unitary matrix Q(n), the index of performance

€(n) can also be expressed as
£n) = Jama2(m) em))? ...(3.20)
The error vector e(n) is given by
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e{n) = b(n) - A(n) W(n) ... (3.21)

Hence, the vector Q(n)Al/Z(n) €(n) in (3.20) may be expressed as

an) A2(n) ) = atm) A¥2(n) bn) - atn) AYZ(n) A(n) W(n)
... (3.22)
The orthogonal matrix Q(n) is generated such that it applies
an orthogonal triangularization to the weighted data matrix and

transforms it to upper triangular form.

Q(n) A1

Q,(n)
0

’2(n) Aln) = { !

R(n)
o) A2(n) A(n) = [ } ..(3.23)
2

Here Ql(n) contains first P rows of Q(n) and Qz(n) contains
the remaining (n-P) rows. An orthogonal matrix can always be
constructed such that R(n) is a P-by-P upper triangular matrix with
nonnegative diagonal elements and ‘O’ is an (n=P)-by-(n-P) null
matrix. This factorization is referred to in the literature as the QR
decomposition.

Rather than solve the normal equations, the QR method uses

Q(n) from (3.23) to rotate (3.22) into

Q (n)} [Q (n)J [Q (n)J
1 1/2 1 1/2 1 1/2
A (n) e(n) = A (n) b(n) - - A (n) A(n) W(n)
[éz(n) = Q,(n) = Q,(n) -
P(n) R(n)
vim| T | o | Hm ...(3.24)

Here P(n)

/
Ql(n)/\1 2(n)?(n), contains the first P elements

of the rotated desired response vector, while V(n) contains the
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remaining (n-P) elements, 1i.e, Qz(n)Al/z(n)Q(n).

To solve the LS problem, we choose the weight vector W(n) so
as to minimize the performance index &(n). If Eopt(n) denotes this
optimum value of the weight vector, it is evident from eqn. (3.24) that,

the squared norm of Q(n)Al/Z(n)g(n) is a minimum, when

R(n) W (n) = P(n) ...[(3.25)
~opt -

Correspondingly, the minimum value of the performance index is given by

€. ()= v |®. ... (3.26)

3.3-3 Recursive Implementation
To develop a recursive implementation of the above
procedure, we assume that at time (n-1), an (n-1)-by-(n-1) matrix

Q(n-1) is known such that

Q(n-1) A"%(n-1) A(n-1) = { —————— ..(3.27)

where R(n-1) is a P-by-P upper triangular matrix and ‘O’ denotes the
(n-1-P)-by-P null matrix.
At time n, the data matrix A(n) and the desired response

vector b(n) can be partitioned as

A(n) = | -=————- ...(3.28)
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b(n) = |- ... (3.29)

Correspondingly, the n-by-n exponential weighting matrix a(n)

satisfies the recursion

0
An) = {éa&ezllg____} ... (3.30)

To compute the QR decomposition of the updated data matrix
A(n), we first define an n-by-n orthogonal matrix Q(n-1) which is

related to Q(n-1) as

_ Q(n-1) O
Q(n-1) = T ... (3.31)
0 1
Therefore,
i o A 20-0aY2(-DA-1)] Y ZR(0-1)
Q(n-1)A"""(n}A(n) = |[-———=—=—m-m—mmmmmm = |-

... (3.32)

The n-by-P matrix on the right hand side of eqn.(3.32) is
partially triangularized in that only the last row of the matrix

consists of non-zero elements.

Similarly,

_ 172, .y 172, _

Qn-1)a"Z(n)p(n) = |} Q7 1)a 7 (n-1)bin-1)
! 4 (n)
A l2P(n-1)

= Al/zy(n—l) ... (3.33)

R
| d (n)
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The orthogonal triangularization can be completed by using
an update matrix Q(n) which rotates the bottom row into upper

triangular portion of the matrix. Mathematically, this takes the form

a(n) Q(n-1) r"%(n) a(n) = |-BR) . .(3.34)

Similarly, we can write

172
“ _ R A7 "P(n-1)
an) Atn-1) 42(n) b(n) = Qn) [-555---— _ | P
A %V(n-1) v(n)
d (n)

... (3.35)

Having computed the updated matrix R(n) from eqn.(3.34) and
P(n) from eqn.(3.35), we may use back substitution in eqn.(3.25) to
compute the corresponding updated value, W(n), of the least-squares
weight vector. Equations(3.25), (3.34) and (3.35) constitute the
algorithm which is referred to as the QR decomposition least-square
(QRD-LS) algorithm. A summary of this algorithm is presented in

Table 3.2 [22].

3.3-4 Givens Rotations

The orthogonal triangularization process may be carried out
using the Givens rotation procedure. Through successive application of
Givens rotations, we may develop a very efficient algorithm for
solving the linear least-square problen, where by orthogonal
triangularization of the data matrix is recursively updated as each

new set of data enters the computation [51].
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Table-3.2
The Recursive QRD-LS Algorithm

1. Initialize the orthogonal triangularization procedure
RﬂO) =0 and P(0) = 0O ... (T.3.2.1)
the exact initialization occupies the period o = n = P.
2. For n > P, perform

(a) wupdate the P-by-P matrix R(n) using the recursion

————— = Q(n) [-=——=mmem ... (T.3.2.2)

1/2
P)] | A FlomD)
_9(57 = Q(n) Al/ZY(n—l) ...(T.3.2.3)
_____ e
d (n)

{c)compute the least-square weight vector W(n)

W(n) = R 1(n) P(n) CLL.(T1.3.2.4)

and the minimum value of the sum of weighted squared error

2
Einm = [V(n)| ...(T.3.2.5)

In this method, the update matrix, Q(n), which rotates the
bottom row into upper triangular portion of the matrix in eqn. (3.34),

is formed as the product of P Givens rotations.

Q(n) = ép(n) ........... Q. (n) ... (3.36)
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Each rotation matrix is of the form

Ii—l
»*
R C1 Si
Q.(n) = ... (3.37)
i I .
n-i-1
-S. C.
i i
where
C. = Cos 0, (n)
i i

Sin ei(n) ev".

When Q(n) is applied to eqn.(3.34), the proper selection of

rotation angles {Oi(n)} will annihilate the non zero elements in the

last row of the partially triangularized matrix

A__ _R(nz1)
9
XH(n)
For 1illustrating the procedure, let us consider the

application of Q(n) to eqn.(3.32), which becomes

1

Q(n) 3(n-1) AY2(n) A(n) = Q, (n) . .(3.38)
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using (3.37) in (3.38), we get

I * 1 (172 1/2 1/2
C1 S1 A Rll(n—l) A Rlz(n 1) ..., A R1P(n 1)
1/2 1/2
A R22(n—1) ...... A Rgp(n 1)
L, Ai}é"';;;i;
Rep
Ot e 0
O e 0
¥ (n)
_—S1 C1 Il x,(n) %x.(n) xp(n |
(3.39)

We denote the

(1)
1

last row of the partially triangularized

matrix by q. " (n).

(1)

9, (n) = ... (3.40)

* #*
[xl(n), Xz(n),

*
The element xl(n) on the lower left corner of the product

will become zero, if

172

R

11 0

*
xl(n) C1 - A (n-1) S1 ... (3.41)

For eqn. (3.41) to hold, the real and imaginary parts of the
expression on the left hand side must individually equal zero. Thus,

recognizing that

2

2
ISI[ + C1

=1 ... (3.42)

and solving eqgn.(3.41) for the parameters of the transformation, we

get
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172

AT R (-1 |

C1 =

/[|x1(n)|2 . A]Rll(n—1)|2] ... (3.43a)
and
#*
. xl(n)
1 2 2

/[|x1(n)| + ARy (n=1)| ] ... (3.43b)

The Givens rotation as described above operates on the

first and nth rows of matrix R(n) to annihilate the first element
*

xl(n) in the last row. In this process, both the first and last rows

of the matrix R(n) are modified. In particular, the element

Al/ZRll(n—l) is replaced by the new value
1/2 x x Al/2|Rll(“_1)| P )
¢, A2 R, (e + 8] x(n) = — 1%, ()2 + AR, (n1) |
A Rll(n—l)

... (3.44)

(2)

We denote the modified last row as 91

(n), which is given by

952)(n) = [o, K , *] ...(3.45)

Where the symbol ‘*’ denotes the modified values. It may be
noted that other elements of R(n) remain unaffected by this

transformation.

We now choose Qz(n) to rotate the second element of the
resulting bottom row, g§2)(n), into the (2,2) element of the upper

triangular matrix and so on, until all the elements of the bottom row
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are rotated into the triangular portion, thereby producing R(n). This
procedure is then repeated for the next snapshot of the data vector.

In addition, it is also easy to deduce that

1/2
A A P(n)
Qn) | T17200 07T = (ol
_i___gff_iz_ V(n) ... (3.48)
E 3
d (n)

Thus, P(n) can be updated using the same sequence of Givens rotations.
The least-square weight vector W(n) is then obtained by solving

eqn. (3.25).

3.3-5 Direct Extraction of Residuals

In adaptive beamforming applications, the main objective is
to éompute the least-squares error residual since the corresponding
weight vector is not of direct interest. Previous work by
McWhirter [62] has described a modified version of the Q-R recursive
least-square algorithm in which the least-squares residual is produced
directly at every stage of the recursive process, without any need to
derive the weight vector explicitly.
This technique may be summarized as follows.

We can rewrite eqn. (3.24) as

o) A2y e(m) = [ AYZy(ne1) | - [oen W(n) ... (3.47)

where y(n) is the last element of the vector V(n).
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The weight vector must satisfy the eqn.(3.25). Hence, the residual

vector €(n) is given by

e(1) 0
o) A2(n) en) = a(m) n-1) 22y |*12)] = A 2y(ne1)
e(n) 7(n)
...(3.48)
But é(n) is unitary, and so we have
e(1) 0
= 1/2 e(2)| _ 2H, ||-—7=z—————-- ...(3.49)
Q(n-1) A™" 7(n) : = Q (n) Al/zy(n—l)
T y(n) T

ekn)

Considering only the nth element of the vector in (3.49), it

is possible to deduce that the current residual e(n) is given by

e(n) = a(n) y(n) ...(3.50)
where
P
a(n) = T C, ...(3.81)
1=1

is the product of all the cosine parameters generated during the
sequence of Givens rotations. Eqn.(3.49) follows from the fact that
Q(n) is simply the product of ‘P’ elementary rotations given 1in
eqn. (3.32). The parameter o(n) may be readily computed during the
recursive update of the matrix R(n) while the scalar quantity y(n) is

available as a direct by product of the corresponding update for
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vector P(n). The current residual e(n) may, therefore, be evaluated in
a very cost effective manner.

In the foregoing, the QRD-LS algorithm based on Givens
rotation has been derived on the assumption that the Hermitian
transposed data vector KH(n) and d*(n) are available. Since, in real
time applications, X(n) and d(n) are available, the algorithm

summarized in Table-3.3 has been written under this assumption.

Table-3.3
The QRD-LS Algorithm Using Givens Rotations

Input definitions

@, = 1.0 xp+1(n) = d(n) (T 3.3.1)
(1) _ s =
q. = x.(n), J=1,2,.......... , P+1 (T 3.3.2)
J J
Algorithm Complexity
For n=1,2,....... ,do
For i = 1,2,........... , P+1

r o (n) = /[p\l/zr“(n—n|2+lq(;)(n)(2T 3(P+1) (T 3.3.3)

If lr. (n)| >0, cC = Ir (n-1)|/r (n) (T 3.3.4)
(1)

Si =q, {n)/r (n) (T 3.3.5)

else Ci =1, Sl =0
ai+1(n) = ociCi (P+1) (T 3.3.8)

For g = i+1,......... ,P+1 do

e, () = catn (n-1) - s” q'(n) 3P(P+1)/2 (T 3.3.7)
V) = s r ey A2, c g n) 2P(P+1)/2 (T 3.3.8)

J i iJ i J

>

Total 2(P+1) divisions+(P+1) Square root operations)+2.5P +4.5(P+1)
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As seen in Table 3.3, the QRD-LS algorithm using Givens
rotations has a computational complexity of (2.5P2+4.5(P+1)). In
addition to this, it needs 2(P+1) divisions and (P+1) square-root
operations per time sample. Since, the square-root operations are
computationaly expensive, a square-root free Givens rotations has been
proposed in the literature [34]. Though the computational complexity

in this case, is reduced to P2+7P operations per time sample, the

method suffers from overflow problenm.

3.3-6 Systolic Array Implementation

Fig.3.1 shows the systolic array structure for implementing
the recursive QRD-LS algorithm described in Table-3.2. The systolic
array operates directly on the input data that are represented by the
matrix AH(n) and the desired response vector QH(n). Accordingly, the
output of the array is EH(n).

The systolic array structure consists of two distinct
sections : a triangular systolic array and a linear systolic
array[22]. The entire structure is controlled by a single clock. Each
section of the array consists of two types of cells : internal cells
(represented by circles) and boundary cells (represented by two
concentric circles). ’Each cell receives its input data from the
directions indicated for one clock cycle, performs specified
arithmetic functions and then on the next cycle, delivers the
resulting output values to the neighboring cells as indicated in
Fig.3.1. The triangular systolic array section implements the Givens
rotations part of the QRD-LS algorithm and the linear array section

computes the Hermitian transposed weight vector, !H[n), at the end of
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Triangular section

xp(n) Xxp(n-1) xp(n-2) xp(n-3)

d(n) d(n-1) d(n-2) d(n-3) d(n-p)

Linear section

Fig.3.1. Systolic array implementation of the recursive QRD-LS algorithm using

Givens rotations. 85



the recursions.

Consider first the operation of the triangular systolic
array labeled ABC in Fig.3.1. The boundary cells and internal cells of
this section are shown in Fig.3.2. The internal cells perform only the
additions and multiplications while the boundary cells perform
square-root and reciprocal operations as shown in the Fig.3.2(b).
These operations follow directly from the discussion presented in the
previous subsection. Each cell of the triangular systolic array
section stores a particular element of the upper triangular matrix
RH(n) which, at the outset of the adaptive beamforming problem, is
initialized to zero  The function of each column of processing cells
in the triangular array section is to rotate one column of the stored
triangular matrix with a vector of data received, in such a way that
the leéding element of the received data vector is annihilated. The
reduced data vector is then passed to the right to the next column of
cells. The boundary cell in each column of this sectién computes the
pertinent rotation parameters and then passes them downward to the
next clock cycle. The internal cells, subsequently, apply the same
rotation to all other elements in the received data vector. Since a
delay of one clock cycle per cell is incurred in passing the rotation
parameters downward along a column, it is necessary that the input
data vectors enter the triangular systolic array in a skewed order, as
illustrated in Fig.3.1. This arrangement ensures that as each column
vector X(n) of the data matrix AH(n) propagates through the array, it
interacts with the previously stored triangular matrix RH(n—l) and,
thereby, undergoes the sequence of Givens rotations é(n) as required.

Accordingly, all the elements of the column vector X(n) are
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annihilated, one by one, and an updated lower triangular matrix RH(n)
is produced and stored in the process.

As the orthogonal triangularization process is being
performed by the triangular section labeled ABC, at the same time, the
vector BH(n) is computed by the appended bottom row of internal cells.
In effect, this computation is made by treating the desired response
vector QH(n) as an additional row that is appended to the data matrix
A" (n).

When the entire orthogonal triangularization process is
complete, each particular row of the lower triangular matrix RH(n), or
the associated 1-by-P vector EH(n), is clocked out to the linear
systolic array for subsequent processing. This sectiog computes the
Hermitian transposed least-square weight vector, EH(n), by using the

backward substitution method for solving the triangular system of

equations,
- * - * -
(rll(nJ rlz(n) .......... rlp(n) [ wl(n) r'Pl(n)
# *
r o) | [Py(n) ... (3.52)
22(n).......... rzp(n)

* *
I PPP(n) 1L wP(n) | _Pp(n)j

In particular, the elements of the vector HH(n) are computed

using the equations[22]

Z(P) =0
1
k-1 *

Zf ) - ka) + rik(n)wk(nJ -+ (3.83)
N P:(n) - 251)

Wi(n) = r (n)
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If x;p=0
%in(n "

C(n) <1 _
S(n) <0
Xip () rii(n) = (|xin(n)|2+|r“(n-1)|2)
CM = v (n=1)/rif (n)
Lot (M S(n)=xjn(n)/Tij(n)
Xout (M=Kjn(n).C(N)

C(n) S(n)

c(n) s(n)
Xout(n)==5(n)rj;(n-1)+ C(n) xjn (n)

rij(n)=C(n) rij(n-1)+S*(n)Xin(n)
Xin (n) Xout(n)  c(ny=c(n)
$(n)=15(n)

C(n) s(n)

(b)

Fig.3.2. Cells for the recursive QRD-LS algorithm :
(a) boundary cell,(b)internal cell .

(k-1) k
Z; Zj
¥ ¥

Wk Wk

[
bi— 7] (k=1 _(k) x
W= —— Zy = Zj oF rigwy
1]

(a) | (b)

Fig.3.3. Cells for linear systolic array:(a) boundary
cell,(b) internal cell .
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Where ka) are the intermediate variables, r (n) are elements of the

ik
H E
upper triangular matrix R (n), P (n) are the elements of vector P (n),
1

*
and w (n) are the elements of the weight vector EH(n). The linear

k
systolic array section consists of one boundary cell and (P-1)internal
cells. The arithmetic functions performed by these cells are defined
in Fig. 3.3 and are in accordance with eqn.(3.53). The elements of
the weight vector HH(n) appear at the output of the boundary cell at

E 3
different clock cycles, with wP(n) leaving the cell first, followed by

wP_l(n) and so on.

3.4 THE RECURSIVE MODIFIED GRAM-SCHMIDT [RMGS] ALGORITHM

As discussed in the previous section, the QRD-LS algorithm
based on Givens rotations is computationally expensive. Alternatively,
QRD-LS problem can also be solved using the Gram-Schmidt procedure,
which, however, has very  poor numerical characteristics. A
rearrangement of steps of the Gram-Schmidt procedure, known as
Modif'ied Gram-Schmidt [MGSj procedure yields a method which is
computationally sound [29]. However, the MGS procedure is designed for
block processing and is not efficient when it is implemented in time
recursive form. Ling et al [36] have presented a time recursive form
of the MGS transtormations, viz, the recursive modified Gram-Schmidt
[RMGS] algorithm and its error feedback form, for least-square
estimatipn. Since their derivation is for real valued data while the
adaptive beamforming problem involves complex valued data, we derive

here Lhe complex recursive modified Gram-Schmidt algorithm.
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3.4-1 The Modified Gram-Schmidt Procedure

The data matrix defined in eqn. (3.14) can be rewritten as

o * *
xl(l) x2(1) ....... xP(l)
* * #*
Aln) = x1(2) x2(2) ....... xP(Z) .. .(3.54)
* *
_xl(n) X, (n)....... xP(n)—
Premultiplying by the square-root of the exponential weighting
matrix A(n) defined in eqn.(3.18), we get
Aln) = Al/z(n)A(n)
[ (n-1)/2_* ]
- * *
A(n 1}/2 x. (1) A(n 1)/2x (1) " A XP(l)
! 2 (n-2)/2_*
(n-2)/2 * (n=2)/2 % _....... A x,(2)
- 2 (20 A X5(2) 2 @359
* *
xl(n) Xo(n)o.o oo o, P(n)
Next, we define a set of P vectors of dimension n, as
T
— #* — * *
Xi(n) = A(n 1)/2xi(1),?\(n 2)/2xi(2), ....... ,x (n)
i = 1,2, .P ... (3.56)
Using eqn. (3.56), we can express A(n) as
Aln) = [gl(n),gz(n),....,xp(n)] ... (3.57)
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where Xl(n), ............ ,XP(n) are linearly independent vectors.
Next, the n-by-1 desired response vector in eqn. (3.16) is

rewritten as

#* * * T
b(n) = [d (1),d (2),..... ,d (n)] ... (3.58)
Premultiplying b(n) by Al/z(n), we obtain
1/2 (n-1)/2 * (n-2)/2 * * T
B(n) = 2?(n) b(n) = [)\ a" (1), d(2),.. . .a (n)] (3.59)

The error vector, €(n), in eqn.(3.21) can now be written as
e(n) = B(n) - A(n) W(n) ... (3.60)

This problem can be solved using the MGS procedure[29],
where we combine the exponentially weighted data matrix A(n) and the

n-by-1 desired response vector B(n) to form an augmented matrix.

A(n) = LA(n),B(n)] = [Kl(n),gz(n), ..... ,Kp(n),B(n)] ... (3.61)

Applying the MGS procedure to the matrix K(n), we get

A(n) = Q(n) K(n) ...(3.862)

Where Q(n) is an n-by-P orthogonal matrix and k(n) is a(P+1)-by-(P+1)

upper triangular matrix defined respectively, as

Q(n) = [gl(n),gz(n),....,gp(n),é(n)] ...(3.83)

and
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_ d. .-
1 Klz(n) ..... KlP(n) Kl(n)
d
1 ... KZP(n) Kz(n)
K(n) = | ... (3.64)
1 K3 (n)
| 1 -
The vectors {gl(n), ..... ,gp(n)} and é(n) in eqgn. (3.83) are a

set of (P+1) mutually orthogonal vectors spanning the same (P+1)

dimensional space as the vectors {Xl(n),gz(n), ..... , X (n)} and B(n) of

the augmented matrix A(n) in eqn.(3.61). The nth element of the vector
é(n) is, in fact, e(n) in eqgn.(3.15) [38].

The upper triangular matrix with unit diagonal elements K(n)

in egn. (3.62) can be written as

K(n) Ed(n)

K(n) = ...(3.865)
o' 1

The elements gi(n), é(n) and the elements of upper
triangular matrix Kij(n) and K?(n) are determined using the modified
Gram-Schmidt algorithm given in Table 3.4 [36].

The weight vector W(n) is obtained by solving

K(n) W(n) = K%(n). . ...(3.66)

Since the MGS algorithm is a block processing scheme, the

vectors Xl(n) and B(n), n = 1 through N, are involved in the
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Table-3.4

Modified Gram-Schmidt [MGS] Algorithm.

Initialization

o' n) = x (), C= 1 P (T 3.4.1)
¢V = Bn, (T 3.4.2)
For i = 1 to P do
_ (1) 3)
g,(n) = q, "(n) (T 3.4.
H
F“(n) = ql(n) ql(n) (T 3.4.4)
For j =1 + 1 to P do
(1), 1M
I rlj(n) = [?J (n)} q,(n) (T 3.4.5)
lJ(n) = rij(n)/rli(n) (T 3.4.8)
(1+1) _ (1) _
i 9 (n) = 9 (n) Kij(n) q,(n) (T 3.4.7)
H
r(n) = [é(i)(n)] q,(n) (T 3.4.8)
Kn) = rln)/r () (T 3.4.9)
¢y = MWy - k%) g (n) (T 3.4.10)
e(n) = g P (T 3.4.11)
computation of error e(n), or the weight vector W{n). Therefore, the

computational complexity will increase as ‘n’ increases. Hence, the

use of MGS algorithm in real time application is inefficient.
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3.4-2 The Complex Recursive Modified Gram-Schmidt [RMGS] Algorithm
th
It can be easily seen from Table 3.4 that the n components

) (1)

i t
of the vectors ggl (n), gi(n) and e '(n) namely, qf )(n,n),ql(n,n)
and e(i)(n,n), satisfy the same order recursive equations as their

corresponding vectors.

Therefore,

qi(n,n) = qu)(n,n) ... (3.87)
(1+1) _ () _

qj (n,n) = q\j (n,n) Klj(n) qi(n,n) ...(3.88)

e(1+1)(n,n) = e(i)(n,n) - K?(n) qi(n,n) ...(3.869)

e(n) = e(P+1)(n,n) ... (3.70)

In order to obtain the time recursive form of the complex
MGS algorithm {26], have to derive only the time update formulae for
the coefficients rij(n) and r?(n). These time update formulae have

been derived in Appendix-B and are given by the following equations.

r n) =Ar .(n-1) + qpl)*(n,n) q (n,n)/a (n) ... (3.71)
1J iJ J i i
and
*
r?(n) =2 r?(n—l) + {?(1)(n,n)] qi(n,n)/ai(n) ... (3.72)
for i =1 to P and j = 1+1 to P.
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In the above equations, ai(n) is a scalar quantity whose
magnitude is close to, but less than unity. It is calculated using the

order recursive equation which is derived in Appendix-¢ and given by

|qi(n,n)|2
« . (n) = a(n) - —— ... (3.73)
! r (n)

i1
In the MGS algorithm (Table-3.4), the computation of
qi(n),qéi+1)(n),e(n),rij(n) and rid(n) involves vector operations.
Replacing these equations by their corresponding time recursive form,
we obtain the complex RMGS algorithm which is presented in Table-3.5.
The complex RMGS algorithm has a computational complexity of
1.5P2 + 4.5P per time sample. In addition, it needs P2 + 3P divisions
per time sample. Using the error feedback form of the RMGS algorithm,
which 1is obtained by using an a priori error form [53] and
incorporating the error feedback formula [38], the number of divisions
is reduced to O.5P2 + 1.5P per time sample. The error feedback form of
RMGS algorithm is summarized in Table-3.6. A distinct feature of this
algorithm is that the error e(i+1)(n,n) and ai(n) are fedback to time
update the elements Kij(n), of the upper triangular matrix and the
elements of the vector Kd(n). Therefore, the algorithm exhibits better

numerical accuracy and is more robust to round off errors as compared

to RMGS algorithm without error feedback [36].
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Table-3.5

The Complex Recursive Modified Gram-Schmidt Algorithm

Input definitions

al(n) =1 r”(O) =3 (T 3.5.1)
a V= xm,  i=12....p, Mmn = am (T 3.5.2)
Algorithm Complexity
For i = 1 to P do
qi(n,n) = qgl)(n,n) (T 3.5.3)
|q (n,n)|
r (n) = ar (n-1) + —— 2P (T 3.5.4)
ii ii
oc,l(n)
_ 2
|9, (n,0) | (T 3.5.5)
a ,(n) = a(n) - P
i+1 i
r (n)

[ r ) = Ar ne1) qgi)(n,n)qt(n,n)/ai(n) P(P-1) (T 3.5.8)
K .(n) =r .n)/r (n) (T 3.5.7)

i]j 1 i
D)y = qgi)(n,n) - K, ,(n)q,(n,n) P(P-1)/2 (T 3.5.8)
r?(n) = Ar?(n—l) + e(i)(n,n)qt(n,n)/ai(n) 2P (T 3.5.9)
K?(n) - r?(n)/ri“n) (T 3.5.10)
(1+1)(n,n) = e(l)(n,n) - K?(n)qi(n,n) P (T 3.5.11)
e(n) e(P+1)(n,n) (T 3.5.12)

2 e e . 2
Total (P™ + 3P) divisions + 1.5P” + 4.5P

* denotes complex conjugate operation.
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Table-3.6

The complex RMGS Algorithm Using Error Feedback

Input definitions

al(n) =1, rii(o) =3 (T 3.6.1)
qsl)(n,n) = x.(n), i =1,2,....,P e(l)(n,n) = d(n) (T 3.6.2)
Algorithm Complexity
For i = 1 to P do
_ (1)
qi(n,n) =q, (n,n) (T 3.6.3)
P = Ar 1)+ a(n) [q (n,n) |2 3P (T 3.6.4)

ii

oc?(n)[qi(n,n)(2

ai+1(n) = ai(n) - 3P (T 3.6.5)
rii(n)
For j = i+1 to P do
q€i+1)(n n) = q(l)(n n)- K (n-1)q (n,n)) P(P-1)/2 (T 3.6.86)
J ’ J ’ N i
K .(n) =K (n-1) + « (n)q(i+1)(n n) *(n n)/r (n) (T 3.6.7)
1] 1] 1 J (Rqn, 11 T
P(P-1)
e(i+¥)(n,n) = e(’)(n,n) - K?(n—l) qi(n,n) P (T 3.6.8)
K?(n) = K?(n—l) + al(n)e(1+1)(n,an:(n,n)/ri}n) 2P (T 3.6.9)
e(n) = e(i+1)(n,n) . (T 3.8.10)
2 s . 2
Total (0.5P% + 1.5P) divisions + 1.5P™ + 7.5p
-—
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3.4-3 Systolic Array Implementation

As in the case of QRD-LS algorithm using Givens rotations,
the RMGS élgorithm can be implemented using systolic array structure
as shown in Fig.3.4. The arrangement of the structure shown in Fig.3.1
has been retained for ease of comparison. The systolic array operates
on the data that are represented by AH(n) and desired response vector

bH(n). Accordingly the output of the array is EH(n).

The triangular array section labeled ABC 1in Fig.3.4
implements the RMGS algorithm. The boundary cells process equations of
type (T 3.5.4) and (T 3.5.5), whereas, the internal cells process
equations of type (T 3.5.8) and (T 3.5.8) of Table 3.5. Both boundary
and internal cells of this section perform only arithmetic functions,
viz , addition, subtraction, multiplication and division. The boundary
cells are initiated to a small value, & to avoid a division by zero.
Each cell of the triangular array section stores a particular element
of the lower triangular matrix RH(n) which are updated every clock
cyclé. The function of eaéh column of cells is to orthogonalize the
leading element of the data vector with respect to its other elements.
This process of orthogonalization produces an orthogonal vector of
random variables whose dimension is one less than that of input data
vector and a set of constants which are stored as the elements of the
upper triangular matrix -RH(n). The orthogonal vector of random
variables is then passed to the right to the next column of cells. The
process repeats till the last column of cells is reached so that all
the elements of the input data vector are orthogonalized with each

other, thereby, decorrelating all the signals in the data vector. The

boundary cell in each column of this section, that computes T and

98



Triangular section

~
I | \\\
| ~
I } I
%}L - {'l}——-—
S ) Q)
\ \ \
T’ 77 g
|. | X, _
| | L -
I | = -
| ¥ e
7 N\
| \ ) -
I ~ // //
} - Linear section
\ .
( \ //
h /:// ri(m «;(n)
- qi(nln)
qj(i)(n'n) q)('”)(n,n) form
qi(nn) gj(n,n) <. 4 (N)
I 7 rl"(n) ".1(

Internal cell . Boundary cell
Cells of the triangular systolic array section

(k-1)

: < %
Wi Wi

Z (kN Z(K)

i
Zi" 4+ Kk wy wi= !ﬂc:(-Zi
ji -

Cells of the linear systolic array section
Fig.3.4.Systolic array implementation of the RMGS algorithm .

99



o« stores the computed Ty and passes o diagonally to the next

+1° 1+1

column of cells. The internal cells subsequently apply the operations
given by eqns.(T 3.5.6) and (T 3.5.8) to the other elements of the
data vector to compute Plj and the elements for the next data vector.
The elements of the upper triangular matrix are normalized with LA
so that all the diagonals are equal to unity. The vector [Igd(n)]H is
computed by treating d(n) as an appended bottom row of cells. The
bottom row of the internal cells compute equations of type (T 3.5.9)
and (T 3.5.11).

When the entire orthogonal t-iangularization process Iis
completed, each row of the triangular ma.rix RH(n) or the associated

1-by-P vector [Ed(n)]H is clocked out to the linear systolic array to

compute the Hermitian transposed weight vector EH(n).

3.5 BROADBAND ADAPTIVE ARRAYS

The broadband adaptive beanformer model introduced in
chapter-2, is only an extension of the narrowband beamformer, in
that, a tapped delay line is added behind each sensor as shown in
Fig.2.4. That 1is, the dimenéions of the signal vector and weight
vector increase from ‘P’ to ‘PM’, where M is the number of taps in
each delay line.

Let X

and W denote tre signal vector and the weight

PM PM

vector given, respectively, by

100



KPM(J) = [xl(j),xz(j), ............. ,xP(J),

xl(j—l), XZ(J—l), ........ ,XP(J—l),
....... .
X (M 1) o, (G-Me1), L ,xP(j—M+1)J ... (3.74)
and
HPM(J) [wll,w21, ........ »Wpy
Wigr ooy o, ) Wpo
T
wlM’w2M' ........ ’wPM] ... (3.75)

where the subscript PM denotes the dimension of the vector.

The least-square problem to be solved is. to find the weight

vector HPM’ which minimizes the exponentially weighted sum of squared

errors given by,

n

) An_J[eM(J)IZ ... (3.78)
J=1

where eM(J) is the error

in the estimation of the desired signal

d(J), which can be written as

ey(d) = d(9) - bl () Xopy(J) .. (3.77)

The tap weight vector EPM(n) which minimizes the quantity in

eqn. (3.78), is obtained by differentiating the expression with respect

to EPM(n) and equating the results to zero. That is,

n

n-j 2 ... (3.78
Wpy(n) Z A J[eM(J)[ =0 ( )
J=1

v
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The solution of the above equation is

¢PM(n) EPM(n) = QPM(n) ... (3.79)
where
n
. © D L JH ...(3.80)
py(n) = ) AT X (3) Xpu ()
J=1
and
... (3.81)

n

_ n-j . * .

QPM(n) = Z A KPM(J) d (J)
J=1

Therefore, the exact least-square algorithms can be applied
to the broadband beamforming problem as well. However, the increase in
the ‘dimensions of the signal vector and weight vector leads to an
increase in the computational complexity of these algorithms to the
order of O(PZMZ). In particular, PM square-root operations will have
to be performed per time sample, in the case of Givens rotation based

QRD-LS algorithm,

3.6 SIMULATION RESULTS

In order to demonstrate the numerical properties,
convergence characteristics and nulling abilities of the exact
least-square algorithms considered in this chapter, the output
residual powers and voltage patterns of the four adaptive beamforming
techniques, viz, the RLS algorithm, the RMGS algorithm and its error
feedback form (RMGSEF) and the QRD-LS algorithm have been compared

using several computer simulated examples.
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3.6-1 Narrowband Arrays

A B-element uniform linear array has been assumed in the
first three examples, with the signal environment consisting of a
desired signal and four interferences. A larger array of twelve
elements in a scenario of a desired signal and as many as ten

interferences has been assumed in the fourth example.

Example 3.6-1.1 In this example, the signal environment has been
modelled to have a desired signal and four interferences which are
narrowband. The desired signal arrives from the direction of broadside
to the array and is of strength 0.1. The interference parameters are
given in Table 3.7.

Table 3.7

Parameters of the Interferences in Example 3.6-1.1

Parameter Interference 1 Interference 2 Interference 3 Interference 4

s, 10.0 10.0 10.0 10.0
) 30° -30° 60° -60°
w 1.1 0.9 1.2 0.8

i

Fig.3.5 shows the residual power as g function of the number
of adaptation samples for RLS, RMGS, RMGSEF and QRD-LS algorithm based
beamformers. An inspection of Fig.2.3 clearly showévthat in comparison
to these beamformers, the LMS beamformer has a much lower convergence
speed and, also, a larger residual power. Of the four beamformers
considered here, the QRD-LS array is found to exhibit fastest
convergence speed. It attains convergence, in the present interference

environment, in about 40 iterations (Fig.3.5(d)). The other three
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beamformers, however, take about 150 samples to converge. All these
beamformers, except RLS beamformer exhibit the same residual power of
-60dB after attaining convergence. In the case of RLS beamformer,
however, it is found that the residual power continuously exhibits
sharp fluctuations and after about 700 samples, it has an increasing
trend (Fig.3.5(a)). This phenomenon may be attributed to the numerical
instability of the RLS algorithm.

The weight coefficients of these beamformers at the end of
1000 samples are listed in Table.3.8. It is found that the four
beamformers converge to nearly the same weight vector. This is not
surprising because, all the beamformers are based upon the same exact
least-square error criterion. It is also observed that the imaginary
parts of the weight vector are negligibly small. This is because, the
desired signal and the interferences have been assumed tovbe of the

J(w1t+¢1). Since the interferences have been assumed to

same form Sle
have identical amplitudes and initial phase, and are symmetrically
located, the weight vectors are expected to be real.

The voltage patterns of these beamformers are shown in
Fig.3.6 and the null depths are listed in Table.3.9. On comparing the
voltage patterns with that of the LMS beamformer (Fig.2.2), it can be
seen that the exact least-square beamformers produce much deeper nulls
in the direction of interferences. The RLS beamformer produces nulls

which are of slightly lesser depth as compared to the other three

beamformers.
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Table-3.8

Weight Coefficients of the Four Beamformers

Weight
Coeffi- RLS RMGS
ceints

RMGSEF QRD-LS

w,  0.65265+j0.00006 0.69004+j0.0005

W 1.846827+j0. 00001

—

. 888371+ j0. 0008

w, 2.500289+j0.0002 2.508312+j0.00002
w,  2.530421+j0.0001 2.490292+j0.00001
w.  1.82325+j0.0001 1.813210+j0.00001

W 0.64430+j0.0001 0.613382+j0. 00002

0

1

2

2

1

.66073+j0.00012 0.714327+j00008
.851891+j0.00019 1.92534+ j0.0002
.502833+j0.0006 2.512530+j0. 0007
. 498551+ J0. 00006 2.42127+j0.0007
. 840683+ j0. 00001 1.78683+ jO.0007

.624320+j0. 00018 0.578134+j0.0001

Table-3.9

Null Depths Produced by the Beamformers in dB

6, RLS RMGS RMGSEF QRD-LS
30° -117 -130 -130 -129
-30° -120 -134 -134 -132
60° -120 -136 -136 -135
-60° -120 -131 -131 -128

Example 3.6-1.2 In this example, two interferences are modelled to

arrive from directions very close to the desired signal (5O and —50)

(o]

while the other two arrive from near endfire directions (85 and

o} s s
-857). The remaining parameters of the interferences are the same as
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given in Table-3.7.

The output residual power characteristics for the four
beamformers are shown in Fig.3.7. The problem of instability, which
was noted in the previous example, can be seen more clearly here. The
RLS beamformer (Fig.3.7(a)) does not show any signs of convergence
even after 1000 samples and further, the residual power is also very
large. In particular, the residual power is greater than 0dB at about
650 samples. The RMGS and RMGSEF array (Fig.3.7(b) and (c)) converge
in about 200 samples and have a residual power of about -40dB after
convergence is achieved. The QRD-LS beamformer (Fig.3.7(d)) exhibits
much faster convergence and attains convergence in about 80 samples. A
comparison of Fig.3.7 with Fig.3.5 shows that when interferences
arrive from near endfire as well as near broadside directions, these
beamformers require more number of samples to converge.

The corresponding voltage patterns are shown in Fig.3.8. All
the four beamformers succeed in placing nulls in the direction of
interferences arriving very close to the desired signal, ie, at
+5° and -5°. However, deep nulls are obtained in the case of RMGS,
RMGSEF and the QRD-LS beamformers which are on the order of -100dB.
Since the two interferences are very close to the desired signal and
fall with in the main beam of the array, the grating lobes invariably
appear.

It can be seen from Fig.3.8(a), that the. RLS beamformer
fails to produce nulls in the direction of near endfire interferences.
This is possibly because the RLS beamformer has very poor convergence
characteristics for this interference environment and the residual

power is also very large. On the other hand, the other three
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beamformers place well defined nulls of -100dB or more depth in the

direction of endfire interferences.

Example 3.6-1.3 In this example, an interference environment
consisting of two near endfire interferences arriving at +80° and -80°
has been assumed. The other two interferences have been assumed to
arrive at +60° and -60°. The remaining parameters are same as in
Table-3.7.

Fig.3.9 shows the residual power as a function of the number
of adaptation samples for the four beamformers. The RLS beamformer has
the lowest convergence speed and converges after about 250 samples
while the RMGS and RMGSEF beamformers converge in about 150 samples.
The QRD-LS beamformer exhibits fastest convergence and converges in
about 40 samples.

From the voltage patterns of the four beamformers shown in
Fig.3.10, it is found that all the beamformers place deep nulls in the
direction of interferences arriving from +60° and -60°. However,
inspite of achieving convergence, the RLS beamformer again fails to
produce nulls in the direction of endfire interferences arriving from
+8Oo and —800. The other three beamformers, viz, the RMGS, RMGSEF and
the QRD-LS beamformers (Fig.3.10(b)-(d))} place sharp nulls in the

direction of +8OO and —800.

Example 3.6-1.4 As a final example for the narrowband case, we

consider a total of 10 interferences whose parameters are given in

Table-3. 10.
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Table-3.10
Parameters of Interferences in Example 3.6-1.4

Parameter 1 I I I I I I 1 I I

1 2 3 4 5 6 7 8 9 10
S, 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
) 15° -15°  30° -30° 45° -45° e0° -60° 75° -75°
w 1.1 0.9 1.2 0.8 1.3 0.7 1.4 0.6 1.5 0.5

The residual power characteristics for this problem are
shown in Fig.3.11. As can be seen from Fig.3.11(a), the RLS beamformer
exhibits poor convergence in this case also. Though the beamformer
converges in about 200 samples, the residual power characteristics
exhibits undesirable overshoots at regular intervals. The other three
beamformers exhibit much better convergence characteristics. The RMGS
and RMGSEF beamformers converge in around 200 samples while the QRD—LS
beamformer (Fig.3.11(d)) once again converges quickly. All these three
beamformers exhibit approximately the same amount of residual power.

From the voltage pattern plots in Fig.3.12, it can be seen
that the RLS beamformer produces a spurious null at 850. Also, the
null depths in the direction of interferences is small as compared to
those produced by the other three beamformers. The RMGS, RMGSEF and
the QRD-LS beamformers produce nulls, more or less the same depth

(>120dB) in the direction of interferences.
3.6-2 Broadband Arrays

For the broadband case, we consider a 6-element uniform

linear array with four taps behind each element and a tap delay of
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174w (0.25) each. For the first four examples the signal environment
0
consists of a desired signal and two interferences while four

interferences have been assumed to be present for the fifth example.

Example 3.68-2.1 In this example, the signal environment has been
modelled to consist of two broadband interferences whose parameters
are given in Table-3.11.

Table-3.11

Parameters of the Broadband Interferences in Example 3.6-2.1

Parameter Interference 1 Interference 2
S1 10.0 10.0
0, 60° -60°
wi 1.0 1.2
A 0.8 1.0

Fig.3.13 shows the residual power characteristics of the
four beamformers. It is found that the RLS and the QRD-LS beamformers
converge in about 50 samples which is approximately equal to twice the
number of weights in the array. The RMGS and the RMGSEF beamformers
(Fig.3.13(b) and(c)) on the other hand, exhibit a relatively lower
convergence speed and take about 200 samples to converge. It may be
noted that although the RLS beamformer has a faster convergence speed
it exhibits undesirable fluctuations at regular intervals. The RLS,
RMCS and the RMGSEF beamformers have nearly the same amount of
residual power (-75dB) while the QRD-LS beamformer has the residual

power of about -80dB.
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The voltage patterns and the output signal waveforms of
these beamformers are shown in Fig.3.14 and Fig.3.15, respectively. It
can be seen that the RLS, RMGS and the RMGSEF beamformers produce
120dB nulls depth in the directions of two interferences. The QRD-LS
beamformer exhibits better null depth, on the order of 135dB.
Further, a comparison of Fig.3.15 with Fig.2.7 shows that all the

beamformers track the desired signal satisfactorily.

Example 3.6-2.2 In this example, the interferences are modelled to
arrive close to each other but far away from the desired signal. The
interference arrival angles are 50° and 60°. The remaining parameters
are as in Table 3.11.

Fig.3.16 and 3.17, respectively, show the residual power and
the voltage patterns for the four beamformers. In this situation also,
all the beamformers perform satisfactorily with QRD-LS being

marginally better.

Example 3.6-2.3 In this example, the two interferences have been
modelled to arrive from directions very close to the desired signal,
i.e. +5° and -5°, The remaining parameters of the interferences are as
in Table.3.11.

From the residual power characteristics shown in Fig.3.18,
it can be seen that all the beamformers exhibit a larger residual
output power as compared to the residual power produced in the
previous two examples. Further, wunlike the previous two cases, the
éonvergence of RLS beamformer, is slow and it requires about 400

samples to converge. The remaining three beamformers, however, exhibit
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the same convergence speed as in earlier examples.

From Fig.3.189, it is seen that all the four beamformers
successfully place deep nulls in the directions of interferences and
the largest null depths is again obtained in the case of QRD-LS

beamformer.

Example 3.6-2.4 1In this example, the interferences arrive from near
endfire directions, ie, 80oand —800. The remaining parameters are as
in Table 3.11.

A study of Fig.3.20 indicates that for this signal
environment, both the RLS and the QRD-LS beamformers exhibit fastest
convergence and take only 40 samples to converge. The RMGS and RMGSEF
beamformers take about 100 samples to converge which is approximately
half the number required in previous examples. After convergence is
achieved, all the beamformers produce, more or less, the same amount
of residual power,

The voltage patterns are shown in Fig.3.21. The RLS
beamformer produces deep nulls of about -115dB depth in the direction
of interferences. However, it also produces a spurious null at about
85°. The other three beamformers produce nulls (>120dB) in the
direction of the Interferences.

Example 3.6-2.5 In order to compare the performance of exact
least-square algorithms in the narrowband and broadband signal
environments, we consider here the case of four interferences whose

parameters are given in Table-3:12.
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Table -3.12

Parameters of the Broadband Interferences in Example 3.6-2.5

Parameter Interference 1 Interference 2 Interference 3 Interference 4

S1 10.0 10.0 10.0 10.0

o o] o o

0, 30 -30 60 -60
1

w, 1.0 1.2 1.1 0.8

A 0.8 1.0 0.8 0.6

Fig.3.22 shows the residual power characteristics for the
four beamformers. On comparison with Fig.3.5, it is evident that the
RLS beamformer (Fig.3.22(a)) exhibits faster convergence in the
broadband signal environment. Further the residual power does not show
any increasing trend which was observed in the narrowband case. In
other words, RLS beamformer exhibits better numerical stability in
broadband signal environment. The other three beamformers viz, the
RMGS, RMGSEF and the QRD-LS exhibit the same convergence
characteristics irrespective of the signal environment (Fig.3.5(b), (c)
ad (d)).

A comparison of th¢ voltage patterns of broadband
beamformers (Fig.3.23) with those of narrowband beamformers (Fig.3.6),
shows that while the interference suppression is satisfactory in both
the cases, the depth of nulls in the broadband case is about 10dB less

than that in the narrowband case.
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3.7 CONCLUSIONS

In this chapter, a detailed study has been carried out on
the adaptive beamformers based on exact least-square algorithms, viz.,
the RLS, RMGS, RMGSEF and the QRD-LS algorithm. Both narrowband and
broadband arrays have been investigated by considering several typical
signal environments in the computer simulations. The results of these
investigations can be summarized as follows.

Of the four beamformers considered here, the RLS beamformer
has been found to give the poorest performance. It suffers from
numerical instability, which is evident from a study of residual power
plots for narrowband, and in certain situations, fails to place nulls
in the directions of the interferences. For example, when a large
number of interferences are present, or when interferences arrive
simultaneously from directions close to the desired signal as well as
from near end-fire, the RLS beamformer fails to null the end-fire
interferences. The performance is better in broadband signal
environment, so far as numerical stability is concerned, but the
convergence is slow when interferences arrijve very close to the
desired signal,

On the other hand, the beamformers based on QR decomposition
techniques viz, the RMGS, RMGSEF and the QRD-LS algorithms, exhibit
good numerical stability and place deep nulls in the direction of
interferences, in both narrowband and broadband signal environments. A
better numerical stability is expected here since all the calculations
are carried out in data matrix domain and involve only scalar
operations. Of these three beamformers, the QRD-LS beamformer exhibits

the best performance in terms of convergence rate and the depth of
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nulls. Although RMGS and RMGSEF beamformers have a slower convergence
rate relative to QRD-LS, they exhibit a comparable
interference-suppression ability in all the signal environments
considered here.

All the four beamformers considered here have a
computational complexity on the order of O(Pz). Table-3.13 compares
the number of operations required per time sample, in each case. In
the case of QRD-LS and RMGS beamformers another P(P-1)/2 operations

are needed to compute the weight vector W.

Table-3.13

Computational Complexity of Exact Least-Square Beamf ormers

RLS QRD-LS RMGS RMGSEF
3P2+3P 2.5P2+6.5P 1.5P2+4.5P 1.5P2+7.5P

2 s s s 2 2
+(P“+2P) +2P divisions +(P7+3P) +(0.5P"+1.5P)
divisions +P square-roots divisions divisions

It is clear from Table-3.13 that the QRD-LS beamformer has
the highest computational complexity as it involves ‘P’ square-root
operations. In the <case of broadband beamformers, where the
computational complexity is O(PZMZ), the number of square-root
operations, increases to ‘PM’ which makes it computationally very
expensive. On the other hand, the RMGS class of beamformers have the
least computational complexity of all and at the same time, exhibit an
interference-suppression capability which is comparable to that of

QRD-LS beamformer. Therefore, it may be concluded that the RMGS class
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of beamformers, in particular the RMGSEF beamformer, offers a good

compromise between good performance and computational complexity in

most adaptive beamforming applications.
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CHAPTER - 4

FAST RECURSIVE LEAST-SQUARE ALGORITHMS FOR ADAPTIVE BEAMFORMERS

In the previous chapter, adaptive arrays based on recursive
least-square algorithms, viz, the RLS, the QRD-LS algorithm based on
Givéns rotations and the RMGS algorithms have been discussed. These
algorithms have a computational complexity of the O(P2) in narrowband
beamforming problems. The complexity increases to the O(PZMZ) in the
case of broadband arrays, where ‘M’ is the number of taps in each
tapped delay line.

Adaptive filters for broadband beamforming are two
dimensional filters with one dimension being space and the other
dimension being time. The filtering 1in time dimension is a simple
convolution and, hence, fast algorithms can exploit the computational
redundancy in this dimension [58]. Corresponding to the two filter
structures, there are two families of such fast algorithms ; the fast
lattice [12] and the fast transversal filter [FTF] algorithms [6].
The broadband beamforming application requires the multichannel
for&ulation of the fast lattice and the FTF algorithms.

The fast lattice algorithm solves the general adaptive
filtering problem using both order and time recursion. As a
consequence, the number of sections can be easily increased or
decreased without affecting the parameters of the remaining sections.
On the other hand, the FTF algorithm is fixed in order and solves the
filtering problem recursively in time.

Although different multichannel least-square lattice [MLSL]

algorithms have been developed [28,39,32,35,68] and discussed
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context of adaptive filtering, their application to the adaptive
beamforming problem has received little attention in the scientific
literature. Lee et al [31] have used the multichannel lattice filter
to realize a generalized sidelobe cancellor. In their scheme, the
P-by-1 forward and backward prediction error vectors at the mth stage
and the P-by-P forward and backward coefficient matrices are
recursively updated, wusing the LMS approach to minimize the mean
squared values of local errors. However, the multichannel lattice
algorithm in its exact form has not been applied to the adaptive
beamforming problem, so far.

Slock and Kailath [58], have proposed the use of
multichannel FTF algorithm for adaptive broadband beamforming. Using
the geometric approach, they have derived a modified version of the
algorithm that is suitable for parallel implementation. However, they
have not provided any simulation results.

The application of QRD-LS algorithm using Givens rotations
to the narrowband beamforming, and its extension to broadband
beamforming, has been discussed in the previous chapter. It was shown
that: the algorithm has excellent numerical properties but 1is
computationally expensive. Recently, there has been an increasing
interest in QRD-LS rotation-based fast-RLS algorithms, since they
combine the advantages of both the algorithms, i.e., the numerical
stability of the QRD-LS algorithm and reduced computational complexity
of the lattice algorithms.

McWhirter and Proudler [40] have recently proposed
least-square lattice algorithm for broadband beamforming which has at

its root, the Givens rotation based QRD-LS algorithm. The algorithm
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also contains within it, the QRD-based lattice algorithm for solving
multichannel least-square linear prediction.

Yang and Bohme [67] have shown how it is possible to
transform a conventional Lattice algorithm into a QRD-based one.
Following Lewis [35] and McWhirter [40], they transform a multichannel
lattice algorithm into one, composed only of orthogonal operations.
They achieve this in two steps : (i) transformation from covariance
domain to data domain by the use of Cholesky decomposition (ii) using
time recorsive QRD update technique [62] to incorporate new data into
the square-root factor produced by Cholesky decomposition.

Since a detailed study of beamformers based on these
algorithms is lacking in literature, in this chapter, we present the
adaptive beamformers based on the multichannel least-square lattice,
the hybrid multichannel QR-lattice [QR-MLSL] and the multichannel FTF
algorithms. We first derive these algorithms using the algebraic
approach, which has not been reported so far, and then compare their

performance on the basis of computer simulation results.

4.1 THE MULTICHANNEL LEAST-SQUARE LATTICE [MLSL] ALGORITHM
The basic least-square problem to be solved in the broadband

beamformer is to find a set of PM dimensional vector E {n) which

PM
minimizes the exponentially weighted sum of squared errors
n
_ n-j 2
£(n) = Y 2 ey () | Lo (401)
J=1

where eM(j) is the error in the estimation of the desired signal d(j)

and is given by
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i} = - U
eM(J) = d(J) W (n) XPM(J) ( )

In the above equation, the PM dimensional vectors XPM(j) and

(j) are defined, respectively, as

L
Koyl J) = [xl(J),xz(j), .............. %500,

xl(J—l),xz(J-l), .......... ,xP(j—l),
.................................. ;
xl(j-M+1),x2(J-M+1), ..... ,xp(j—M+1)] ... (4.3)

PM(J) [ (3),wo, ()i ’wP1(J)'
wlz(J),wzz(j), ............ ,wpz(j),
................................ )
wlM(j),sz(j) ............. ,pr(j)] ... (4.4)

The following equations follow from sec.3.5.

¢PM(n) EPM(n) = QPM(n) ... (4.5)
where,
n
n-j H
2oy (D Z AR (3) Xpy(3) ... (4.8)
J=1
n-Jj *
Opy(P Z AT Epy(d) d )
' *
= AQPM(n—1) + XPM(n) d (n) L. (407)

158



Similarly, nM(n) denotes the a priori error and is defined
as
n,(n) = dn) - W (ho1) X (n) . .(4.8)
M “PM ZPM
The multichannel least-square lattice algorithm [MLSL]

solves eqn.(4.1) recursively, in both order and time, in terms of

%n(j), m=1,2,....,M, at each instant of time. It may be noted that
en(9) = d0)) - Wh (D) X, () .. (4.9)
Where ypm(j) minimizes the exponentially weighted sum of squared

errors defined in eqn.(4.1) for M = m, and gpm(j) is defined as

X, () = [xl(j),xz(J), .......... (3),
xl(j—l),xz(j—l), ...... ,xP(J-l),
.............................. :
xl(J—m+1),x2(j—m+1), ..... ,xP(j—m+1)]_ ... (4.10)

The multichannel least-square lattice algorithm is an
extension of the single channel least-square lattice algorithm
considered in [22]. The extended data vector KP(m+1)(n) can be

partitioned as

X(J)
X (J) = .. (4.118)
~P(m+1)
5Pm(3—1)
or e
XPm(J)
X (j) = ... (4.11b)
P(m+1) X(j-m)
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where,

T
X(J) = [xl(J),xz(j), ........... ,xp(j)] . (4.12)
gpm(J—l) = [xl(j—l),xz(j—l), ........... ,XP(J—l)
xl(j—Z),xz(j—Z), ............ xP(J—Z)
T
Xl(J—m),XZ(J-m), ............ XP(J—m)] ...(4.12b)
Xpm(J) = [xl(j),xz(j), ........... ,xP(j),
xl(j—l),xz(j—l), ........ ,XP(J 1),
T
xl(j-m+1),x2(J—m+1),....,xP(j—m+1)]
...(4.12c)
T
X(j-m) = [xl(J—m),xz(J~m), ........ ,XP(J—m)]. ...(4.124)

Using the partition properties of X

—P(m+1)(n)’ given in

eqn. (4.11), the autocorrelation matrix Qp(m+1)(n) can be partitioned

as
a(n)  Qh(n)

)] (n) = . ...(4.13a)
P(m+1)
Qm(n) ¢Pm(n-1)
¢Pm(§) Um(n)
¢ (n) = ... (4.13b)
P(m+1) Uﬂ(n) u(n)
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where P-by-P Hermitian matrices q(n), u(n) and the P(m-1)-by-P

matrices Qm(n), Um(n) are given by

n s H
atn) = £ A" xh ¥y .. (4.143)
J=1
n s H
uln) = £ A" x(4-m) xf(y-m) ... (4.14b)
J=1
2 n-j H ‘
Q,(m) = Fa Xor (J=1) X'(J) ...(4.15a)
J=1
n . H
U, = 2 A" x5y xHy-m). ... (4.15b)
m j=1 Pm

We next define the mth order P-by-1 forward and backward

error residual vectors, gi(n) and g:(n), as

[}
o}
n

X(n) - Agm(n) X, (n-1) ... (4.16a)

®
=}
1l
[><
i
3
I
o]
U=
E
o]
I><
U
3
o)

... (4.16b)

APm(n) and BPm(n) are called one-step-forward and one-step-backward

multichannel predictor coefficients and are chosen so as to minimize

n -5 ¢ P H
Trace of | 5 A"7J of(y) [e (j)] .. (4.17a)
J.=1 -m —m

and

o .n-j b N b i
Trace of | ¥ A"7J ¢ (J) [e (j)} ... (4.17b)
=1 =m =m
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with respect to Apm(n) and BPm(n), respectively.
Using the results given 1in Appendix-A, eqn. (4.17a) can be

minimized to obtain
_ - =0 ... (4.18)
¢Pm(n 1) Apm(n) Qm(n)

f
and ri(n), the error variance matrix of the forward error vector gm(n)

is given by
f _ _ AH
rm(n) = q(n) Qm(n) Apm(n) ... (4.19)

Equations (4.18) and (4.19) can be combined into a single

augmented equation as,

q(n) Qg(n) 1 rg(n)

... (4.20)
Qm(n) ¢Pm(n—1) -A_ (n)

Pm 0
Where O is a null matrix of dimension P(m-1)-by-P.
Equations similar to (4.18)-(4.20) are obtained by
minimizing (4.17b) with respect to BPm(n).
Using matrix inversion lemma [48], the inverse of ¢P(m+1)(n)

may be written as

-1
®_(n) 0 ~-B_ (n) -1
-1 _ Pm Pm b s
¢P(m+1)(n) - + [Pm(n)] [Bpm(n) I]
0 0 I
... (4.21a)
or
0 0 I -1
-1 f H
5 (n) = R [r (n)] [1 A (n)]
P(m+1) -1 m Pm
0 @Pm(n—l) —Apm(n)
... (4.21b)

162



Substituting (n-1) for n in eqn. (4.21a) and premultiplying

by Q (n), we get the following order update equation for APm(n)

m+1

A. (n) -B,_(n-1) . -1
A (n) = + n r°(n-1) K (n) ... (4.22)
P(m+1) 0 I m m

where Km(n) is a P-by-P matrix, defined as
K (n) = -8 (n-1) 1] g (n). .. (4.23)
m Pm m+]

Similarly, the order update equation for Bpm(n) is obtained

as
0 I £ -1 .
Bp(me1) (M) = Bon(n=D | 7 [-a, (n) [Pm(“’] Kp(n)
... (4.24)

where

K =1 A ] o (4.25)

mn = Pmn m+1n. .

It may be easily shown that

K (n) = kH(n) (4.26)

n = mn. .

The order update recursions for the forward and backward

f b .
error residual vectors gm+1(n) and gm+1(n) can be derived by

Substituting eqn. (4.22) in (4.16a) and eqn. (4.24) in (4.16b) and are

given by
ep () = efn) - g [ob e
€nep (D) = e, (n m(n rm(n—l) e (n-1) ... (4.27a)
b b P Y.
€neq (M) = e, (n-1) - Km(n)[rm(n)J e (n) ... (4.27p)
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The (m+1)th order forward and packward error variance

matrices can be written as

-1
o) = ol - KH(n)[rb(n—l)] K (n) .. .(4.28a)
m+1 m m m m
b b £ 1
r (n) =r (n-1) - K (n)[r (n)] K (n) ...(4.28Db)
m+1 m m m m

The two recursive equations 1In (4.27) specify the
multichannel lattice filter. The initial conditions on the order

updates are

b

ef(n) = eP(n) = x(n) ... (4.29)
e, e, X
n
f b - . H, .
) = Py = T I x(9) X
=1
= arf (n-1) + X(n) % (n) ...(4.30)

We next derive the time update equation for Km(n), using

1
K (n) = U_,(n) . (4.31)

-APm(n)

This requires a time update equation for Apm(n) which may be

written as [60]

H
_ _ _ f
Apm(n) = APm(n 1) + gpm(n 1)[§m(n)] ... (4.32)

Similarly, we can also write

H
- _ b
BPm(n) = BPm(n 1) + me(n)[gm(n)] ... (4.33)
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In eqns. (4.32) and (4.33), gpm(n) is a complex vector given
by

_ .1
gpm(n) = ¢Pm(n) gpm(n). ... {4.34)

Using equation (4.21a) in (4.34), we get

c (n) -B (n) -1
C. (n) = [‘P(""“ } . [ P(m-1) J[r‘b(n)] e2(n).
=Ir'm m =m

P 0 I
...(4.35)
Using eqn. (4.32) in (4.31), Km(n) may be rewritten as,
H
eb(nrl)[ef(n)J
~m =m
K (n) = AK (n-1) + ...(4.36)
m m
« (n-1)
m
where am(n) is a scalar real constant, given by
H -1
_ _ b b B b
« (n) = a 1(n) [gm_l(n)] [rm_l(n 1)] en-1(n) ... (4.37)

In order to complete the derivation of multichannel
least-square lattice algorithm, eqn. (4.5) should be solved

recursively, which may be rewritten as,

_ o1
Won(n) = ¢, (n) 6, (n). ... (4.38)

Pm

Substituting for ¢;;(n) from eqn. (4.21a), we get

0 I

W (n) -B (n) -1
_ [-P(m-1) P(m-1) b
Wo,(n) = [ } + [ }[Fm_l(n)J d ()
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where
_ | B
gm_l(n) = [ Bp(m_1)(n) I]QPm(n) ... (4.40)

The P-by-1 dimensional vector gm(n) satisfies a time update

equation which is obtained from the time update equations for BPm(n)

and QPm(n), given by (4.33) and (4.7) respectively. Thus,
b *
d (n) = Ad (n-1) + e_(n)e_(n)/a _(n). ... (4.41)
-m -m =m m m
With eo(n) = d(n), the order update equation for the error

residual of the multichannel least-square lattice filter can be

written as,

e (n) = d(n) - W (n) X (n) . (4.42)
m —-Pm -

Pm

Substituting eqn. (4.39) for Epm(n), the above equation can

be simplified as

-1
_ _ H b b
em(n) = em_l(n) gm_l(n)[rm_l(n)] gm_l(n). ...(4.43)

Thus, we have obtained the order and time update relations
for the multichannel least-square lattice algorithm based beamformer,

which are summarized below.

H
eb(n—l)[ef(n)]
~m =m

K (n) = AK (n-1) + ...(4.36)
m m
o (n-1)
“m
F =l - ) [rn-1 o
€1 n) =e. n n n rm n-1) gm(n—l) ... {4.27a)
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-1

b _ b £ £
€neq (D) = e (n-1) Km(n)[rm(n)] e, (n) ... (4.27p)
f f H b -l
rm+1(n) = rm(n) - Km(n)[rm(n—l)] Km(n) ... (4.28a)
b b N R
r.,(n) =r (n-1) - K (n)[r (n)] K (n) ... (4.28b)
m+1 m m m m
H -1
_ _ b b, b
@ (0 = @ (n) [gm(n)] [r‘m(n 1)] e, (n) ... (4.37)
b »
d (n) = Ad (n-1) + e (n)e (n)/a (n) ... (4.41)
=m ~m ~m m m
H b, v17 b
€ne1 (M) = e (n) - dm(n)[r‘m(n)] e (n) ... (4.43)

Here, the order update equations for r£+1(n) and r£+1(n) are
computationally expensive as they 1involve multiplication of three
P-by-P lﬁatrices. Moreover, these equations may cause numerical
instability as they use the inverses of Pﬁ(n—l) and r;(n) for order
updat ing r£+1(n) and r2+1(n). Therefore, a better strategy is to use
their respective time update equations.

We obtain the time update equations for ri(n), by

substituting for APm(n) from (4.32) in eqn. (4.19). This gives

H
ef(n) [ef(n)]
£ ¢ =~m =m
r (n) = ar (n-1) + _— ... (4. 4q)
m m
am(n—l)

Similarly we can write

H
eb(n) [éb(n)]
-m =m

rb(n) = Arb(n—l) t_ ... (4.45)
m m
am(n—l)
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The above time update equations do not involve either matrix
multiplications or the inverse of rﬁ(n) and ri(n—l). Therefore, these
equations are superior with respect to both computational complexity
and numerical stability [671.

Using equations (4.44) and (4.45), ‘the multichannel

least-square lattice algorithm can be rewritten in the following form.

H
ef(n) [ef(n)]
=m =m

rf(n) = Arf(n-l) + ... (4.44)
m m
« (n-1)
m
H
eb(n-l) [eb(n-l)]
b b o "
rm(n—l) = Arm(n—Z) + ...(4.45)
« (n-2)
m
H
P(n-1) [?f(n)]
=m -m
Km(n) = AKm(n—l) + ... (4.36)
o (n-1)
m
of () =ef(n) - kn) [rPn-1) o
e (1) = gpln Ry n-1 gm(n—l) ...(4.27a)
b (n) = &(n-1) - K (n) [r} et
e 1M = € n e rm(n) gm(n) ...(4.27b)
H -1
@ (n) = o (n) - [t_ez(n)] [r‘;(n—n] e2(n) ...(a.37)
= b *
gm(n) = Agm(n-l) + gm(n)em(n)/am(n) ... (4.41)
o, [b, .1 b
em+1(n) =e (n) - gm(h)[fm(n)] e (n) ...(4.43)
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Modifications can be made to some of the above equations
without affecting the optimality of the algorithm. In the conventional
method, the reflection coefficients and the ladder gain are computed

according to the following relations.

-1
f _ _H b _
Am+1(n) = Km(n)[rm(n 1)] ... (4.48)
b f -1
Am+1(n) = —Km(n)[rm(n)] ... (4.47)
H b, 171
€ (n) = -d (n)[r (n] ...(4.48)
~m ~m m

In MLSL algorithm, the weight vector is not computed
explicitly as it is computationally costlier. However, MLSL algorithm
can be wused for broadband adaptive beamforming, since the error
residue em+1(n), for m + 1 = M ig available which is of primary

interest. The MLSL algorithm and its initialization are given in Table

4.1 and Table 4.2, respectively.

Table-4.1

The MLSL Algorithm Using A Posteriori Errors

Algorithm Complexity
Forn=1,2.... ...
For m =o0,.... . , M-1
H
ef(n) [ef(n)J
£ £ A 2
r (n) = Ar (n-1) + — =~ = P™M (T 4.1.1)
m m
am(n—l)
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H
eb(n—l)[eb(nml)]
<m “m

P(n-1) = arP(n-2) + PoM (T 4.1.2)
m m
a (n-2)
m
H
eb(n—1)[ef(n)]
=m ~m 5
K (n) = AK (n-1) + P™M (T 4.1.3)
m m
o (n-1)
m
£ H b -1 3
A (n) = -K (n)[r (n—l)] P™M (T 4.1.4)
m+1 m m
b £ -1 3
A {n) = -K (n)[r (n)] P™M (T 4.1.5)
m+1 m m
£ _f £ b, 2
eneq (D) = gm(n) + Am+1(n)gm(n 1) P™M (T 4.1.86)
eb (n) = eb(n—l) + Ab (n)ef(n) P2M (T 4.1.7)
-m+1 -m m+1 -m

-1

H
« (n-1) = « (n-1) - [eb(n—l)] [rb(n—z)] P(n-1) (PP4P)M (T 4.1.8)
m+1 m -m m -m

Joint process estimation

Forn = 1,2 .....
For m = 0,..... , M
b »
d (n-1) = Ad (n-2) + e (n-1)e (n-1)/a_(n-1) P(M+1) (T 4.1.9)
“m “m =m m m

-1
e (n-1) = e (n-1) - dH(n—l)[rb(n—l)] eP(n-1) (P%+P)(M+1) (T 4.1.10)
m+1 m ~-m m -m

Total 4PM divisions + 2P3M + 6P2M + P2(M+1) + 3P(M+1)
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The MLSL algorithm requires about [2P3M + 8P2M + PZ(M+1) +
3P(M+1)} operations per time sample. In addition, it requires 4pPM
divisions. Further, for each order, inverses of two P~by-P error
variance.matrices ri(n) and rz(n) are to be computed, which requries
about ZPB(M—l) operations per time step.

Table-4.2

Initialization of the MLSL Algorithm with A Posteriori Errors

1. To initialize the algorithm, at time n = 0 set

Km(O) =0 form=0,1,..... M-1
r;(o) = 81, 3 = small positive constant
r2(-1) = a1
m
2. At each instant, n = 1, generate the various zeroth order

variables as

f _ b _
€,(n) = e (n) = X(n)
) = rP) = arf(n-1) + x(m)xf(n)
o, o} o} - -
3. For joint process estimation, initialize the algorithm by setting

at time n = 0
d (0) =0
~-m
at each instant n = 1, generate the zeroth order variable

eo(nJ = d(n).
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4.2 THE QR-MLSL ALGORITHM

In this section, we reformulate the MLSL algorithm derived
in the previous section to a Givens rotation-based MLSL algorithm by
suitable transformation of filter quantities.

In order to derive the QR-MLSL algorithm, we start with
multichahnel lattice recursions (4.44), (4.45), (4.36), (4.27),
(4.37),‘(4.41) and (4.43), and write the error covariance matrices

f b . .
rm(n) and rm(n—l) in terms of their upper triangular cholesky factors

RL(n), R%(n-1) as (67]
m m
H
£, [.f f
rm(n) = [Rm(n)] Rm(n) ... (4.49)
b b H b
rm(n—l) = [Rm(n~1)] Rm(n-l) ... (4.50)

Following [67], we next introduce a new set of variables

-H

b b H (4.51b)
P = [Ren] K SR

m m m

-H

£
gl (n) = [Ri(n)] et (n) . .(a.51c)
b b Hy
Qm(n—l) = [Rm(n—l)] gm(n—l) ...(4.514d)

&m(n) = v&m(n) ... (4.51e)
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sfn) = eftn) /& (n-1) ... (4.51f)
~m =m m
~b b ~

= ...(4.5
e (n) e (n) / am(n) (4.51g)

-H
...(4.5

(n-1) = [Rb(n—l)] d (n-1) (4.510)
-m m -m
em+1(n) = em+1(n) / am(n) ... (4.511)
In the above equations, superscript ‘H’ denotes the

Hermitian transposed matrix. The errors §£(n), §g(n) and gm(n) are the
geometric mean of the a posteriori and a priori errors, which are also
known as ‘angle normalized’ or ‘rotated errors’ in the QR
decomposition literature [67]. It is also well known that the maximum
likelihood factor &m(n) is the conversion factor between the geometric

mean and the a priori errors, which are related as

n (n) = e (n) / a (n) ... (4.52)
m m m

It can be seen that, the Cholesky factors, and all the
variables 1in eqn. (4.51), can be updated using only two orthogonal
transformations. Accordingly, we construct two suitable block matrices

and apply two orthogonal transformations Qi(n) and Qﬁ(n).

f £
VAR (n-1) va© [ (n-1) 0
éi(n)
~F H ~b H ~
| [gm(n)] [gm(n—l)] « (n-1)
f
R (n) S 8L (n)
H
H ~b ~
0 [gm+1(n)] « ()

...(4.53)
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AWR(n-2) VK[ b-1) & [ (2 0
éb(n)
" ~b i e 10 ~* ~
L [gm(n—l)] {sm(n)] e (n-1) a (n-1)
[ b b e b
R (n-1) [, [ (1) B, (n-1)
H
H ~f ~ ~
L 0 [§m+1(n)] em+l(n—1) am+1(n-1)
... (4.54)

All the matrix elements appearing on the left hand side of
eqns. (4.53) and (4.54) are assumed to be known from the previous time
and order-recrursions. As explained in chapter-3, the two orthogonal
matrices 6§(n) and 6E(n) are designed to eliminate the vectors
[éi(n)]“’ and [%ﬁ(n—l)]H, while keeping Rg(n) and Rﬁ(n) upper
triangular. This is accomplished with the help of Givens rotations, as
in chapter 3. The resulting quantities on the right hand side of eqns.
(4.53) and (4.54) are the desired updates of the corresponding
positions on the LHS.

The above statement can be proved by using the orthogonality

of matrices Qi(n) and Qi(n). From the orthonormality relation

[Qi(n)]H[Qi(n)] = IP' we have the following identity [87].

H._ _ H ~f B
B1 82 = A1 A2 for Qm(n) [Al AZ] = [Bl BZ]

...(4.55)
The above identity is a powerful tool in designing rotation

based algorithms. By associating A1 and A2 with suitable columns of

the left hand sides of the eqns. (4.53) and (4.54), we can arrive at
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the MLSL recursions (4.44), (4.45), (4.36), (4.27), (4.37), (4.41) and

(4.43).

For illustration, we associate both Al and A with

2
f
VX-Rm(n—l)
H
[gf(n)]
=m
and B1 and 82 with £
R (n)
m
QT
using eqn. (4.53). Applying the identity in eqn. (4.55), we get

H H H
[Rf(n)} [Rf(n)] - A,:Rf(n—l)] RE(n-1) + Ef(n)[éf(n)J
m m m m —m -m

.(4.56)

Substituting eqns. (4.49) and (4.51f) for ri(n) and gi(n%

the above equation can be simplified to

H
ef(n) [éf(n)J
£ N =m =m
r (n) =X r (n-1) +

m m

.(4.57)
a (n-1)
m
Similarly, with suitable definitions of Al’AZ'Bl and 82 (See
Appendix-~D), we get the following equations,
H H H
f f _ f ~f ~b,
P%(nﬂ [;(n)—-AP%(nl)][; (n-1) + g“n)kmhilq
...(4.58)
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H
[Ri(n)] g ) = [éﬁ(n)]am(n-l) . (4.59)
N Ry ~b ~ ~b ~
[[; (n)] B (n) * [gm+1(n)]am+l(n) = gm(n-l)am(n-l)
(4.80)

H
[@i(n)] gl (n) + & (n) = & (n-1) .. (4.81)

Using eqns. (4.51), the above equations can be simplified as

H
el (n) [eb(n—l)]
-m -m

K (n) = A K (n-1) + ... (4.862)
m m

a (n-1)

m
ef(n) = ef(n) ... (4.83)
m =m

-1

eb (n) = eb(n—l) - K (n)[rf(n)] ef(n) ...(4.64)
-m+1 -m m m -m
H -1
I (n) = o« (n-1) - [ef(n)] [rf(n)] ef(n) ...(4.65)
m+1 m -m m -m

Eqns. (4.57), (4.62), (4.64) and (4.65) clearly correspond to
a susset'of MLSL recursions.

Similarly eqn.(4.54) can be shown to be equivalent to
another subset of lattice recursions given by eqns. (4.45), (4.27a),
(4.37), (4.41) and (4.43). ”

Alternatively, &m(n—l) and &m(n) can also be computed in the
following way.

p -
~ ~ £
am+1(n) = am(n—l) 11 cosemvl(n) ...(4.68)

i=1
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P
~ ~ b
am+1(n—1) = am(n—l) cosem,i(n) ... (4.867)

i(n) and GE (), (i =0,1,2.... .. ,P) are the angles of

where Of
m 1

Givens rotations corresponding to 6£(n) and éﬁ(n), since the last
diagonal elements of 6i(n) and 6:(n) are the products of cosine
parameters.

Table 4.3 summarizes the QR-MLSL algorithm. After
initialization, two orthogonal transformations per time sample and per
filter section are computed. Only one of the possibilities 1in

eqn. (4.66) and (4.67) is used to update &m(n). We then compute the

posteriori prediction and Joint process errors using the following

equations.
el (n) = € (Ma (1) ... (4.68)
e®  (n) = &% (ma (n) ... (4.69)
-m+1 -m+1 m+1
e, (n-1) = Em+l(n—1)&m+1(n—1) ... (4.70)
The joint process error em+1(n-1) for m = M is the error

residue of the adaptive beamformer. As In the case of MLSL beamformer,
here also, the weights are not computed éxplicitly as it is
computationally expensive,

It may be noted that the QR-MLSL algorithm (Table 5.3) has a
computational complexity of (QPZ + 6.5P) M arithmetic operations per

time sample. In addition, it needs 2PM square-root operations per time

sample,
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Table-4.3
The QR-MLSL Algorithm

Initialization

Rf(O) = Rb(-l) = 81 8 a small positive constant
m m P
£ b, _
[ =" =0, [;e(o) (0)
Algorithm Complexity
Forn=1,2, ....... do
~f ~b ~
e (n) = e (n) = X(n), e (n) = d(n), a(n) =1
&) =0 o
For m=0,1,2,........ ,M do
[ f £ ] [ f f 1
VA R (n-1) \/X\; (n-1) Rm(n) rr; (n)
Qf(n) = (4.5P2 + 2.5P)M
m g M ~b i T [~b i
[e (n)] [e (n—l)] 0 [e (n)] + PM sq.roots
=m —m - =m+1
i Pt )
VARP(n-2) VX[—b(n—l) Val_S(n-2)
m m -m
~b
Qm(n) " H " H .
[ (n—l)] [e (n)] e (n-1)
=m ~m m
b b
R (n-1) (n) f—e(n—l)
= m [n om (4.5P% + 2.5P)M
H
o! [gf (n)] g* (n-1) + PM sq.roots
m+1

P .
~ ~ b
_am+1(n~l) = am(n—l)TT cos em,i(n)

-m+1

PM
i=1

Total

2

(2PM square roots) + (9P M+6.5PM)
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4.3 THE MULTICHANNEL FAST TRANSVERSAL FILTER [MFTF] ALGORITHM

The MLSL and the QR-MLSL algorithms discussed in the
previous sections are recursive both in order and time and hence, are
computationally expensive. Since the number of taps behind each sensor
is equal to M, the order of the adaptive beamformer is fixed.
Therefore, here we, derive the multichannel fast transversal filter
(MFTF) algorithm, which is fixed in order and solves the eqn. (4.1)
recursively in time. We use a priori error forms of forward prediction
errors, backward prediction errors and joint process estimation errors
as the variables of interest.

In addition to the g priori error residual of the broadband

beamformer given in eqn. (4.8), the a priori forward and backward error

residual vectors are defined as

3
[

— — H — -—
X(n) Apy(n 1)XPM(n 1) c..(4.71)

o)
St
!

- M - pH
X(n-M) Bpy(n I)XPM(n) ... (4.72)

It can be shown that the error variance matrices r (n+l) and

r (n+1) of equations (4.28a) and (4. 28b) for m = M, can be recursively

updated ag

H
P;(n+1) AP;(n) + g;(n+1)[g;(n+l)] ... (4.73)

H
r;(n+l) Ars(n) + D;(n+1)[é;(n+l)} ... (4.749)
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It may also be easily shown, as in [43], that the

coefficient matrices of forward and backward filters, APM(n) and

BPM(n)' are recursively updated in time using the following equations.

APM(n+1)

[
>
U
X
o]
+

£ H
QPM(n)[gM(n+1)] ... (4.75)

BPM(n+1) PM

1l
jeo]
=]

+

b H
QPM(n+1)[gM(n+l)] ... (4a.78)

Similarly, the weight vector EPM(n) of the adaptive

beamformer is recursively updated using

*

EPM(n+1) = EPM(n) + QPM(n+1)eM(n+1) ... {a.77)

The complex gain vector QPM(n+1) in the above equation is

defined as.

C_.(n+1) = 17t

Com 3 PM(n) XPM(n+1] ... (4.78)

By anology with the above equation, we define an (M+1)P-by-1

extended gain vector

_ 17t
Coren) 1) = X Fp(aarn) ™) Fpueny (L) o (8.79)
where ¢P(M+1)(n) is the correlation matrix of the extended vector
XP(M+1)(n+1) and is given by
n n-j H
¢P(M+1)(n+1) =j§1A [XP(M+1)(n+1)][XP(M+1)(n+1)] ... (4.80)
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The vector XP(M+1)(n+1) In eqns. (4.79) and (4.80) is defined as

XP(M+1)(n+1) = [xl(n+1),x2(n+1), .......... ,xP(n+1),
xl(n), x2(n), ............. ,xp(n),
................................. :
xl(n-M), xg(n-M), ......... ,xP(n—M)]

In Appendix-E, it is shown that the extended gain vector

QP(M+1)(n+1) can be recursively updated as

-1
[ 1 [r £
R TIRY Ny(n+1)
Cp(mer) (n*1) = , B ... (4.82a)
_ Coy(n) - XAPM(n)[FM(n)] ny(n+1)
or
[ 1 N b
QPM(n+1) - XBPM(D)[FM(n)} QM(n+1)
Cp(me1) (n*1) = -1
11 b b
X[PM(n)] My (n+1)
....(4.82b)
Defining
Cop(n+1)
Cp(mep)(n*1) = [__EM —————— J ... (4.83)
p(n+1)
and using eqns. (4.82a) and (4.82b), we get
Cpy(n*1) = C\ (n+1) + Bpy(n)pp(n+1) .. (4.84)
b b
and DM(n+1) = A[PM(n)JEP(n+1) ...(4.85)
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As in the case of MLSL algorithm, we define here a scalar

constant, aM(n) given by

Ho oy ¢ (n) . (4.86)

oa(n) =1 - Xpy PM

which is recursively updated as

H -1
b b b
[QM(n+1)] [PM(n)] QM(n+1) ... (4.87)

>| =

aM(n+1) = aM(n) +

The a posteriori error residual vectors can be updated using

a priori error residual vectors and scalar constant aM(n) as

g;(n+1) = nﬁ(n+1)/aM(n) ...(4.88)
el(n+1) = my(n+l)/ay(n+1). .. (4.89)

The a posteriori error residual of the least-square filter

is updated as
eM(n+1) = nM(n+1)/aM(n+1). ... (4.90)

i}

We can also write the MFTF algorithm using scalar constant

vM(n) which is defined as
WM(n) = 1/aM(n). ... (4.91)

The extended scalar constant, using the extended gain

vector, can be written as

H
aM+1(n+l) =1 - [QP(M+1)(n+1)] KP(M+1)(n+1) ... (4.92)
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Using eqn. (4.82a) and (4.82b), aM+1(n+1) can be expressed in

two different forms as

H -1
ey (0+1) = a(n) + 1 ,:y;(ml)] [r;(n)} m(n+1) .. (4.83)

H -1
[y;(n+1)] [r;(n)] y:(n+1 ... (4.94)

>

aM+1(n+1) aM(n+1) +

Eqns. (4.93) and (4.94) can now be rewritten in terms of

7M+1(n+1) as

7M(n)
7M+1(n+1) = i — ... (4.95)
1 + 1 f(n+1) rf(n) ef(n+l)
PR, M M
and
7M+1(n+1)
7M(n+1) = i ... (4.96)

1+ [yﬁ(n+1)] Hp(n+1)7M+1(n+l)

This completes the derivation of the MFTF algorithm. A
summary.of the MFTF algorithm is presented in Table 4.4. It is found
that it has a computational complexity of about (P3M + 4P2M + 3P2 +
2PM + 4P + 1), with a forgetting facfor A equal to unity. In addition,

it requires about 2 divisions per time sample. Further, inverse of the

error variance matrix rﬁ(n) has to be computed once per time sample.
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. Table-4.4
The Multichannel Fast Transversal Filter [MFTF] Algorithm

Initialization

7M(O) = A
f b
rM(O) = PM(O) =8I, & a small +ve constant (T.4.4.1)
Woy (0) = Cou(0) = Oy, Ay (0) = B (0) = 0, (T.4.4.2)
Algorithm Complexity
f _ _H 2
pM(ml) = X(n+1) APM(n) XPM(n) P™M (T.4.4.3)
el tne1) = ni(n+1) 7. (n) P (T.4.4.48)
M M M R
1 [ f -1 £
5 [rM(n)] DM(“+1)
Coy(m) - 3 APM(n)[rM(n)] ny(n+1)
P M (T.4.4.5)
: f H 2
APM(n+1) = APM(n) + QPM(n)[e_M(ml)] P™M (T.4.4.8)
e = arfn) + efne1) [nf(ne1) ; p2 (T.4.4.7)
m(n = ary(n ey(n ny(n 4.4,
C.,(n+1)
| _ | =P
Co(yep) (PF1) = l ] (T.4.4.8)
. gp(n+1)
_ ~ 2
QPM(n+1) = Cpy(n+1) + By (n)p,(n+1) P™M (T.4.4.9)
np(n+1) = A[rﬁ(n)]gP(n+1) p? (T.4.4.10)
vM(n) ,
ey (PFD) = ‘ P + P (T.4.4.11)
1 [ f Hr g 1y
1+ 3 [DM(ml)] [PM(D)] ey(n+1)
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7M+1(n)

7, (n+l) = 2P (T.4.4.12)
M b H
1+ [gM(ml)] gp(n+1)arM+1(n+1)
er(n+1) = 12(n+1)7..(ne1) P (T.4.4.13)
-M -M M
b b b b H 2
ry(n+1) = Ary(n) + yM(nH)[gM(ml)] P (T.4.4.14)
b H 2
BPM(n+1) = BPM(n) + QPM(n)[éM(n+1)] P™M (T.4.4.15)
n(n+1) = d(n+1) - HgM(n)XPM(n+1) PM (T.4.4.18)
eM(n+1) = nM(n+1)7M(n+1) 1 (T.4.4.17)
. »
HPM(n+1) = EPM(n) + QPM(n+1)eM(n+1) PM (T.4.4.18)
o . 3 2 2
Total (divisions 2) + (P™M + 4P“M + 3p° + 2PM + 4P + 1)

4.4 SIMULATION RESULTS

Extensive computer simulations were carried out to study
fast RLS: algorithms, viz, MLSL, MFTF and the QR-MLSL for adaptive
beamforming in a broadband signal environment. To facilitate a
comparison with exact least-square algorithms discussed in chapter 3,
signal énvironments corresponding to four examples presented in
sec.3.6 (Examples 3.68-2.1 to 3.6-2.4) have been considered. The
performapce evaluation has - been based upon the convergence
characteristics and the ability of these beamformers to reproduce the

desired signal]. The voltage patterns have been presented only for MFTF
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peamformer, which appears to be the best among the three beamformers

considered in this chapter.

Example 4.4-1

In this example, two broadband interferences are assumed to
arrive from +60o and —600. The remaining parameters are as given in
Table 3.11.

The output residual power characteristics of the three
beamformers are shown in Fig.4.1. It is evident from Fig.4.1(a) that
the MLSL beamformer does not converge even after 1000 samples. The
beamformer exhibits on initial convergence in the first four hundred
samples. However, during this interval, it exhibits a large residual
power of about -20dB. After 400 samples, the characteristics exhibits
continuéus fluctuations, the severity of which increases with the
increase in the number of samples. These fluctuations deviate from the
mean by a large amplitude. On the other hand, the MFTF and the QR-MLSL
beamformer converge in about S0 samples and the residual powers are of
the order of -40dB and -50dB, respectively. It may be recalled that,
for the same problem, all the least-squares beamformers exhibit
numerical stability and fast convergence (Fig.3.13), with RLS and
QRD-LS beamformers producing residual powers of -75dB and -80dB,

respectively.

Fig.4.2 shows the output signal waveforms from these
peamformers. A comparison with the desired signal waveform (Fig.2.7)
shows that the output waveform of MLSL peamformer is distorted at

several places. Though the QR-MLSL beamformer tracks the desired
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signal from the beginning, its output waveform is also distorted at
many places. On the other hand, the MFTF beamformer (Fig.4.2(b))
tracks the desired signal satisfactorily just 1like the exact RLS

beamformers (Fig.3.15).

Example 4.4-2

In this example, the interferences arrive very close to each
other (50° and 800) but for away from the desired signal.

From the residual power characteristics shown in Fig. 4.3, it
is clear that, as in the previous example, the MLSL beamformer fails
to converge and the residual power 1is large (-20dB). The MFTF array
converges in about 100 samples and has the least residual power
(-100dB). QR-MLSL, array exhibits faster convergence but has g larger
residual power of the order -60dB. On comparison with the residual
bower characteristics of exact RLS beamformers (Fig.3.16), it is clear
while the RLS beamformer exhibits faster convergence as compared to
the MFTF beamformer, the RMGS beamformers (Fig.3.16(b) and (c)) and
the MFTF beamformer have more or less the same convergence speed.
However, the exact RLS beamformers have a lower residual power of
-75dB as compared to the MFTF beamformer. The performance of QRD-LS

beamformer (Fig.3.16(d)) is found to be superior to that of QR-MLSL

beamformer.

Fig.4.4 shows the output signal waveforms of these three
beamformers. 1In this case, the  output signal waveforms of all the

three beamformers track the desired signal satisfactorily.
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Example 4.4-3

In this example, the two interferences have been assumed to
arrive very close to the desired signal, l.e., from +50 and -50.

From the residual power characteristics in Fig.4.5, it can
be seen that the MLSL beamformer again exhibits poor convergence with
large amplitude fluctuations. On the other hand, the MFTF and the
QR-MLSL beamformers converge quickly to a mean residual power of about
-60dB. On comparing with Fig.3.18, it is found that the RLS beamformer
(Fig.3.18(a)) takes a large number of samples (400)to converge. Also,
the exact RLS beamformers exhibit a larger residual power of the order
-30dB compared to that of MFTF and QR-MLSL beamformers. The
performance of QR-MLSL beamformer, in the present scenario, Iis
comparable to that of QRD-LS beamformer.

The output signal waveforms of the three beamformers are
shown in Fig.4.6. It is found that the MLSL output waveform is fully
distorted and does not resemble the desired signal waveform. The MFTF
and QR-MLSL beamformers, on the other hand, reproduce the desired

signal waveform faithfully except for some minor distortions.

Example 4.4-4
In this example, the two interferences arrive from near

endfire directions at +8Oo and —800.

Figs. 4.7 and 4.8, respectively show the residual power and
the output signal waveforms of  the three beamformers. In this
situation also, the MLSL beamformer exhibits divergence and produces

an output waveform which is highly distorted. On the other hand, the
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MFTF and QR-MLSL waveforms exhibit better characteristics, as in
previous examples. A comparison of Fig.4.7 with Fig.3.20 reveals that
the exact RLS beamformers exhibit superior performance compared to
these fast-RLS beamformers.

From the above examples, it is clear that though the MLSL
beamformer exhibits initial convergence, it produces a large residual
power and tends to diverge with the increasing number of samples. In
most of the situations it fails to faithfully reproduce the desired
signal. Thus, it may be concluded that the MLSL beamformer suffers
from numerical problems which can be attributed to the repeated
computation of the inverses of the error variance matrices. Although
MFTF and QR-MLSL beamformers exhibit better performance
characteristics, the residual power is large compared with that
obtained in the case of exact RLS beamformers.

Since weight computation is an integral part of the MFTF
algorithm, the voltage patterns of the MFTF beamformer have been
computed for the four examples and are shown in Fig.4.9-4.12.

It is found that in the first example, the MFTF beamformer
places deep nulls of depth 110dB and 129dB (Fig.4.9) in the direction
of interferences (tBOOJ, as does the exact RLS beamformers. However,
it produces shallow nulls at 45° and 600, thereby introducing a bias
of -5° for the interference arriving at 50° (Fig.4.10). When the
interferences arrive very close to the desired signal (iSO), the null
depths are much smaller (-50dB) (Fig.4.11) than those produced by tﬁe
exact RLS beamformers (—80dB].'Fina11y, Fig.4.12 shows that the MFTF
beamformer fails to place nulls in the direction of endfire

interferences arriving at +80° and —800.
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4.5 CONCLUSIONS

In this chapter, the application of fast RLS algorithms,
viz., the MLSL, MFTF and the QR-MLSL algorithms to the adaptive
broadband beamforming problem has been investigated. These algorithms
exploit the inherent delays available in the tapped delay line to
arrive at beamforming techniques whose computational complexity is on
the order of PSM. The exact number of arithmetic operations required
by these beamformers per time sample afe given in Table 4.5.

Table-4.5

Computational Complexity of the Fast RLS Algorithm

based broadband beamformers

MLSL MFTF QR-MLSL

(2F3M + 7P2M + P2 (P3M + 4P2M + 3P2 (9P2M + 6.5PM)
+ 3P(M+1)) + 2PM + 4P + 1)

+ 4PM divisions + 2P divisions + 2PM Square roots
+ 2P3(M—1) for computing + P3 for computing

the inverses to inverses

It is found that, of the three beamformers, MFTF beamformer
has the least computational complexity. If the number of taps in the
delay line are greater than five, the computational complexity of the
MFTF beamformer is less than that of the RMGSEF béémformer. However,
it is well known that by increasing the number of taps beyond four or
five per channel, no significant gain is achieved in the performance
of the beamformer [21]. |

The computer simulation results have shown that the MLSL

peamformer fails to converge in different signal environments, even
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after a large number of adaptation samples. Though the MFTF and the
QR-MLSL beamformers exhibit better characteristics than MLSL, their
performance is much inferior to that of the exact-RLS beamformers, so
far as residual power, signal tracking and interference suppression
are concerned.

It  may, therefore, be concluded that for adaptive
beamforming, the fast RLS beamformers have neither the advantages of
computational complexity nor superior performance as compared to the

exact RLS beamformers discussed in chapter 3.
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CHAPTER - 5

ADAPTIVE BEAMFORMERS FOR COHERENT INTERFERENCE SUPPRESSION

In the preceding chapters, beamformers based on different
adaptive algorithms have been studied in a noncoherent signal
environmemt. Additional preprocessing is necessary to decorrelate the
coherence among signal and interferences and to make these beamformers
effective in a coherent signal environment. In this context, two
techniques, namely, the spatial smoothing preprocessing scheme (SSPS)
and the structured correlation matrix method (SCMM) were discussed in
chapter 2. Through computer simulations it was shown that, of the two
techniques SSPS has g superior ability for combating signal
cancellation in coherent signal environment. Detailed analysis of SSPS
by several authors [57,52,69] has shown that it suffers from reduced
effecti?e aperture area. A promising modification of SSPS, which
results in an increased effective area, is the forward/backward
Spatial:smoothing scheme (FBSS) which has been proposed and studied in
the context of direction-of-arrival (DOA) estimation [50,66]. However,
detailed investigations into its performance in beamforming
applications have not been carried out, so far.

Suitable schemes are necessary to incorporate the above
mentioned spatial averaging schemes in the “adaptive beamformers
discussed in chapters 3 and 4. Thisv aspect has not received much
attentiéh in scientific literature. Only Shan and Kailath [57] discuss
briefly a method of implementing SSPS in the LMS array. Similarly,
Park and Un [45] have presented a parallel modified spatial smoothing

(PMSS) technique which is a parallel implementation of the



forward/backward scheme. In this method, the array data are processed
in two steps. First, a data-domain spatial preprocessing (DDSP)
algorithm is applied, which expands the effective aperture area
without forming covariance matrices. Then, a parallel implementation
of the spatial smoothing technique is carried out to decorrelate the
coherence of signal sources. They have realized this using the QRD-LS
array.

The adaptive algorithms can be broadly divided into two
groups, viz, the weight oriented algorithms and the residue oriented
algorithms [70]. Weight oriented algorithms are those in which weight
vector is updated explicitly at each time instant. The LMS, RLS and
the MFTF algorithms are all weight oriented. On the other hand,
orthogonalization-based algorithms such as, the RMGS and the Givens
rotation based QRD-LS algorithms, do not involve any explicit
computation of weights. These algorithms are known as residue or
estimation error oriented algorithms. Different schemes are required
to incorporate the spatial averaging techniques in these two
categories of algorithms.

This chaﬁter has been organized in the following manner. The
FBSS has been discussed in the context of optimum beamformers 1in
sec.5.1. Adaptive implementation of the SSPS and FBSS using various
time recursive algorithms has been described in sec.5.2 and 5.3,
respectively. Typical numerical examples are presented in sec.5.4
which demonstrate the performance of SSPS and FBSS with different
adaptive algorithms. Finally, conclusions are drawn in sec.5.5 based

on computer simulation studies.
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5.1 THE FORWARD/BACKWARD SPATIAL SMOOTHING SCHEME

In addition to forward subarrays of the spatial smoothing
scheme described in sec.2.3, the FBSS scheme makes use of complex
conjugated backward subarrays to realize a larger effective aperture
[50].

In the basic spatial smoothing preprocessing scheme (SSPS),
a uniform linear array of ‘P’ sensors is extended by augmenting it
with ‘L’ additional sensors. The extended array is then divided into
(L+1) overlapping subarrays, each of size ‘P', with first subarray

formed from sensors {1, ..... ,P}, the second from {?,....,P+1} and so

on, as shown in Fig.5.1.

Using the notation of chapter 2, Let Z{(n) denote the signal

vector of the lth forward subarray.

Then

Zf(n) = [x (n), x, . (n), ...... X (n)]T

=1 1 LS ’ T Tl+P-1

1 =1,2, , L+1
<. (5.1)

Then fhe covariance matrix of the lth forward subarray is
given by

¢ = £ |25 ) [gf(n)]H ...(5.2)

The forward spatially smoothed correlation matrix, ¢f, is
defined as the mean of the forward subarray correlation matrices which

can be written asg
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Fig. 5.1 The forwcxrd/buckword spatial smoothing scheme
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It was shown in sec. 2.3 that for this scheme to work, the
minimum number of sensors needed is 2K as compared to ‘K+1’ for the
conventional array.

The forward/backward spatial smoothing scheme (FBSS) makes
use of appropriate backward subarrays to reduce the required number of
elements to (3K/2).

Towards this purpose, additional ‘L+1’ backward subarrays
are generated from the same set of sensors by grouping elements at

{P+L, P+L-1,....... R L+1} to form the first backward subarray,
elements of {P+L—1, P+L-2,..... R L} to form the second and so on, as

shown in Fig.5.1. Let Z?(n) denote the lth backward subarray signal

vector defined as

b _ * * * T
gl(n) = [XP+L—1+1(n)’ X (n),...... , xL+1_1+1(n)}

1 =1,2,....L+1

... (5.4)

Then the correlation matrix of the lth backward subarray is

given by

o® = £ |2°(n) [2P(n]H ... (5.5)

1 =1 =1

We define the spatially smoothed backward subarray
covariance matrix, 5b, as the mean of the subarray correlation
matrices, ie,

L+1
b _ 1 b
¢ = 1 1§1 ¢1 ...(5.8)
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Recalling the discussion in chapter 2, it is evident that
the backward spatially smoothed covariance matrix will be of full rank
when L+1 = K. It, therefore, follows that the backward spatial
smoothing scheme also requires at least 2K sensors to restore the rank
of the correlation matrix to K.

In the forward/backward spatial smoothing scheme,
simultaneous use of forward and backward averaging schemes is made.
The forward/backward smoothed correlation matrix, &, is defined as the

mean of 5b and Ef [50]. That is,

® = [Eb + Ef]/z.o ... (8.7)

This matrix ¢ is then used in an optimum beamformer to
compute the weight coefficients of the array.

In general, the modified correlation matrix will be
non-singular, regardless of the coherence of ‘K' signal sources, so
long as 2(L+1) = K [50]. Recalling that in the presence of ‘K’
signals, the size ‘P’ of each subarray must be atleast ‘K+1' and
since, ‘L+1’ overlapping subarrays are formed in one direction, it

follows that if P1 is the total number of subarrays needed, then

U
v

(L+1) + P-1 =z K/2 + K

or

3K
— ...(5.8)

5.2 ADAPTIVE IMPLEMENTATION OF THE SPATIAL SMOOTHING SCHEME
Although optimum beamformer discussed in sec.2.4 can be

utilized to combat coherent interferences, it 1is computationally
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expensive to estimate the correlation matrix and to compute its
inverse. Further, the correlation matrix becomes illconditioned when
strong Jjammers coexist with the desired signal [70] and the method
often required double precision, which significantly decreases the
beamformer throughput. Therefore, in real time applications, adaptive
beamformers based on time recursive algorithms are used. Although
several authors have analysed SSPS and suggested modifications into
the basic scheme, its adaptive implementation has received little
attention. In this section, we present two separate schemes to
incorporate SSPS in adaptive beamformers : one for beamformers based
on weight oriented algorithms and the other for QR-decomposition based

arrays.

5.2~1 Adaptive Processing

In SSPS, the spatially smoothed correlation matrix is

defined as in eqn. (2.67)as

L+1
= _ 1 (1)
®= 1 L o, ... (5.9)
1=1
where
H
(1)
¢, =E Z,(n) [Zl(n)] ... (5.10)
T
Z,(n) being [xl(n), Xpp0(0) , X1+P£2)}

We can write the  estimate of the spatially smoothed

correlation matrix as
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1 N L+1 H )
= 1 v ¥ |zmzm ... (5.11
N(L+1) n=1 1=1 1 1
Then, by analogy
~ 1 N+1 L+1 H
o1 = DAY L, L 2,(n) Z;(n)
n=1 I=1
B S NL+12()2H()
D L, b g Z)in
n=1 I=1
. L+1 .
o T Z,(N+1) Z(N+1)
(D) 2 5l 1
L+1
N 1 H
= wen W mewn (L At gt

.(5.12)

The above equation suggests that the 1inverse of ‘the

Spatiélly smoothed matrix, &, can be recursively updated by using the
matrix inversion lemma iteratively (L+1) times, once for each Zl‘
Similarly, SSPS can easily be implemented in the LMS, RLS and MFTF

algorithms.
5.2-1.1 Implementation using weight oriented algorithms

In this subsection, we illustrate the adaptive‘

implementation of the spatial smoothing scheme in weight oriented
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algorithms by incorporating the scheme in the conventional RLS
algorithm. Fig.5.1 shows how to form the spatial data subset from one
"snapshot" and a flow-chart of the procedure is shown in Fig.5.2. At
each time instant, the snapshot of ‘P+L’ data samples is divided into
‘L+1’ overlapping subgroups of ‘P’ data samples each. These subgroups
are then fed one by one into the RLS algorithm based adaptive
processor which updates the P-dimensional weight vector each time.
After all the subgroups have been processed, the same procedure is
repeated with the next data snapshot. Once the adaptation process is
over, the weight vector, so obtained, is used to compute the array

output. The algorithm is summarized in Table 5.1.

5.2-1.2 Implementation using QR decomposition algorithms

To illustrate the adaptive implementation of
QR-decomposition based algorithms, we consider the RMGSEF algorithm
for which the flow-chart is shown in Fig.5.3. As in the previous case,
at each instant of time, the snapshot of ‘P+L’ data samples is divided
into (L+1) overlapping subgroups of ‘P’ data samples each (Fig.5.1).
The subgroups are then fed, one by one, in succession into the RMGSEF
algorithm based processor, which updates the elements of the upper
triangular matrix ‘R’ and the associated 1-by-P vector gd(n)
(chapter3) each time. After all the subgroups have been processed, for
a fixed number of snapshots, say n, where n (L+1) > 2P for obtaining

convergence, the elements of the upper triangular matrix ‘R’ and the
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Input the nth snapshot
’ L]
xj(n); I=1t P+L

Divide xi(n) into ‘L+1
Subgraups

‘ »
Zi(n); L =1t L+1

Process subgroup in RLS
algorithm based adaptive
processor and compute W

No

all Subgroups

over

No

all snapshots
over

Array output

Fig.5.2 Flow-chart for adaptive implementation of spatial smoothing
scheme using the RLS adaptive processor
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Table 5.1
RLS Algorithm for Adaptive Implementation

of Spatial Smoothing Scheme

Initialization

®_1(0) = 6_1 I, 8 = small + ve constant
W) =0
Algorithm Complexity
for n = 1,2,....... compute

For 1 = 1 to L+1

For i = 1 to P

Z,(n) = X, o (n) (T 5.1.1)
u(n) = 271 ¢7l(p-1) Z,(n) PE(L+1) (T 5.1.2)
C(n) = u(n)/11+2"(n) u(n)] P(L+1) (T 5.1.3)
n(n) = dn) - win-1) z,(n) P(L+1) (T 5.1.4)
W(n) = W(n-1) + C(n) 7" (n) P(L+1) (T 5.1.5)
2 'n) =27 e net) - ey oHin) 2P%(L+1) (T 5.1.6)

Total (P°+2P) (L+1) divisions ¢ (3P%43P) (Le1)

associated 1-by-P vector gd(n)‘are clocked into the linear systolic
array to generate the optimum weight vector. The weight vector, W, so

obtained is then used to generate the array output.
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No
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over
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all snapshots
over
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the linear systolic array
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Fig.5.3 Flow-chor_t tor adaptive implementation ot spatial smoothing
scheme using RMGSEF adaptive processor
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Here, spatial smoothing is effected on the elements of the
upper triangular matrix ‘R’ and the associated 1-by-P vector gd(nL
because updating is carried out using the overlapping subgroups of
each snapshot in succession. This is similar to adaptive
implementation of the spatial smoothing scheme using LMS or RLS
algorithms, where P-dimensional weight vector is updated in the same
fashion. The RMGSEF algorithm for adaptive implementation of the
spatial smoothing scheme is summarized in Table 5.2.

The implementation of the spatial smoothing scheme using the
rotation based QRD-LS algorithm slightly.differs in detail from that
of the RMGS class of algorithms. In the case of RMGS algorithms, the
reference signal d(n) is a part of the processing itself, whereas in
the QRD-LS algorithm, the reference signal d(n) is treated as an
appended element of the signal vector. Therefore, while implementing
the spatial smoothing scheme, the reference signal should be appended
to the subarray signal vector. The QRD-LS algorithm for implement ing
the spatial smoothing scheme is given in Table 5.3.

Table - 5.2
RMGSEF Algorithm for Adaptive Implementation

of the Spatial Smoothing Scheme

Input definitions

fl)(n,n) = xl(n), i =1,2,...... , P+L (T.5.2.1)

Q

e(l)(n,n)

d(n), , 7}1(0) =38, i1 =1,2,..... P {T.5.2.2)
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Algorithm Complexity

Forn=1,2,........ compute
For 1 = 1 to L+1

al(n) = 1.0 (T.5.2.3)
For m = 1 to P do

(1) _ (1)

q. (n) = Qm+l_1(n,n) (T.5.2.4)
For 1 = 1 to P do

ql(n,n) = q(li)(n,n)

e (n) =Ar (1) + @ ()q (nn)|®  3P(L+D) (T.5.2.5)

2 2
o« (n) = a(n) - o (n)[q (n,n) [7/r  (n) 3P(L+1) (T.5.2.6)

For j=1+ 1 to P do

(i+1) _ (1) _ _ ~
qj (n,n) = q‘j (n,n) Kxj(n 1) qi(n,n) P(P-1)(L+1)/2
(T.5.2.7)
K .(n) = K .(n-1) + a (n) q(Hl)(n) q’(n n)/r (n)
1J 1J 1 J 7 i

P(P-1)(L+1)

(T.5.2.8)

Dy = eWinn) - K?(n—l) q,(n.n) P(L+1)
(1.5.2.9)

K?(n) = K?(n—l) + “1(n) e(l+1)(n,n)q:(n,n)/r;}n)
2P(L+1)

(T.5.2.10)
en) = e Va0 - (T.5.2.11)
Total (O.5P2 + 1.5P)(L+1) divisions + (1.5P2 + 7.5P)(L+1)

224



Table - 5.3
The QRD-LS Algorithm for Implementation of
Spatial Smoothing Scheme

Input definitions

Qf“(n) = x,(n), L= 1,2, P+l (T 5.3.1)
e(n) = d(n) (T 5.3.2)
Algorithm Complexity
Forn=1,2,........ do

For 1 =1 to L+1

a,(n) = 1.0 (T 5.3.3)

For m = 1 to P do

(1) _ A1)
9, (n) = Qm+1_1(n) (T 5.3.4)
(1) _
qP+1(n) = e(n) (T 5.3.5)
Fory =1,2,....... , P+1

3(P+1)(L+1)

(T 5.3.6)
If |r ()] > o, C = Ir“(n—l)l/r“(n) (T 5.3.7)
_ (1)
S =q.  (n)/r (n) (T 5.3.8)
i i 11
else C1 = 1.0 , S1 = 0.0
“1+1(n) = ociCi {(P+1)
(T 5.3.9)
For j = t+1, oL , P+1
_ 1/2 B * (1)
rlJ(n) = C1 A rij(n 1) + SiqJ (n) 3P(P+1)(L+1)/2
(T 5.3.10)
(1+1) _ _ 1/2 (1)
q\j {(n) = Sl rlj(n 1) a + C1 qj (n) 2P(P+1)(L+1)/2
(T 5.3.11)

Total 2(P+1)(L+1) divisions + (P+1)(L+1) Sq. roots + (2.5P2+4.5P)(L+1)
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5.3 ADAPTIVE IMPLEMENTATION OF THE FORWARD/BACKWARD SPATIAL SMOOTHING
SCHEME

In the forward/backward spatial smoothing scheme, an array
of ‘P+L’ sensors is divided into ‘L+1’ forward and ‘L+1’ backward
subarrays as shown in Fig.5.1. Park and Un [45] have proposed an
alternative method of forming the backward subarrays which 1in
combination with the forward subarrays leads to the séme correlation
matrix as that for the forward/backward scheme described in sec.5.1,
except for the scaling factor 1/2 whose value has no effect on the
beamformer function. In their approach lth backward subarray signal

vector ZT(n) is defined as

*

b, . _ £
2,(n) =J [gl(n)]
* * *»* »* T
= [xl+P_1(n), x1+P_2(n), ..... ,x1+1(n),x1(n)]
...(5.13)
where J is the P-by-P exchange matrix defined by
0 0 1
0 0 1 0
Jd=1 ... . . . . ...(5.14)
1 0 0 0
We next introduce a set of vectors (gl(n)), 1 =1,2,...... L+1
1 [ b
Cl(n) =5 [@l(n) + Zl(n)] | ... (5.15)
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Then, it can be shown that the spatially smoothed

correlation matrix of gl(n) is given by

L+1
= 1 H
¢ = L—+lz E[gl(n)r_*l(nJ}
1=1
L+1
H * H
= 1 f f £ f
= AT E Zl(n)[gl(nJ] + JE [Zl(n)] [Zl(nJ]
1=1
H * T
+E Zf(n) [Zi(n)] J| + JE [;5(n)] [Zf(n)} J ... (5.16)

If the signals and noise are assumed to be band limited with

zero-mean Gaussian characteristics,

Elu U] < o,

We may, therefore, rewrite eqn. (5.16) as

then using the identity E (U QT] =

the second and third terms of the above equation vanish.

L+1

_ 1 *
® = ) Z [¢1 + J¢1J] ... (5.17)
1+1

where

H
2, = Elzf(n) [gf(n)] ... (5.18)

Therefore, gl(n) constitutes a new input vector whose

spatially smoothed correlation matrix is equivalent to that obtained

using eqn. 5.7 [45].
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5.3-1 Implementation Using Weight Oriented Algorithms

The implementation of the forward/backward smoothing scheme
using different weight oriented algorithms is similar to the adaptive
implementation of spatial smoothing scheme employing these algorithms.
The flow-chart for implementing the forward/backward scheme in RLS
algorithm based processor is shown in Fig.5.4. From each snapshot, the
data subsets for the forward subarrays are formed as shown in Fig.5.1.
Next, a new set of data vectors gl(n), for1 =1,2,.., L+1, are formed
in accordance with eqn. (5.15). These data vectors are then fed, one
by one, into the RLS algorithm based adaptive processor which updates

the P-dimensional weight vector. After all the data vectors r

1(n),
1=1,2....,L+1, are processed, the same procedure is repeated for the
next snapshot of data samples. When the adaptation process is over,
the updated weight vector is used to compute the array output. The RLS

algorithm implementing the forward/backward smoothing scheme is

summarized in Table 5.4.

5.3-2 Implementation Using QR-Decomposition Algorithms

The implementation of forward/backward scheme using
QR-decomposition algorithms is similar to the spatial smoothing
schemes implementation using these algorithms. After forming the data
subsets for the forward subarrays from each snapshot, a new set of
data vectors El(n)’ for 1=1,2,...,L+1 are formed in accordance with
eqns (5.13) and (5.15). Next, the data vectors are processed in the
RMGSEF algorithm based processor. The flow-chart of the implementation
scheme and the RMGSEF algorithm which implements the scheme are,

respectively, given in Fig.5.5 and Table 5.5.
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Input the nth snapshot
2i(n); iz 1to P+

Divide xj(n) into‘L+1’subgroups
Zi(n) 1=1t0 'L+ 1

Form the vector [|(n)
rinm =14 [Z[(n)+J z*l(nﬂforlﬂ to L+1

Process Li(n) in RLS algorithm
based processor and update the
weight vector W

Are \
all subgroups No

over

Are

No

all snapshots
\OVQF

Array output

Fig.5.4 Flow-chart for adaptive

implementation of forwcxrd/backward
smoothing scheme using

RLS adaptive processor
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RLS Algorithm for Adaptive

Table - 5.4

Initialization

Implementation of Forward/Backward Scheme

® (0) =8 I, S8 = Small + ve constant
W(0) =0
Algorithm Complexity
forn=1,2,....... compute
For 1 = 1 to L+1
For 1 =1 to P
1 .
z)(n) = x, +l~1(n) (T 5.4.1)
rm) =tz w02 P2 (L+1) (T 5.4.2)
-1 2|-1 -1 o
u(n) = 27" (n-Dr (n) P2 (L+1) (T 5.4.3)
u(n)
C(n) = P(L+1) (T 5.4.4)
[1 + r_‘}}(n)\_l(n)]
n(n) = d(n) - W (n-1)r (n) P(L+1) (T 5.4.5)
W(n) = W(n-1) + C(n)7 (n) P(L+1) (T 5.4.6)
2 n) = A M- - cmd(n) 2P?(L+1) (T 5.11.7)
T 2
otal 4P7(L+1)
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Input the nth snapshot
xXi{n); f =1t P+

. 4
Divide xj(n) into‘L+1 subgroups
[ ]
Z(M) =1 10'L+1

Form the vector Li(n)
M =12[zn+ Ziny] for 121 to L+1

Process Ti{n) in the RMGSEF

algorithm based

processor

Are

No

all subgroups

over

Are

No

all snapshots

over

Yes

Compute the weight vector in
the linear systolic array

e e I |

Array output

Fig. 5.5 Flow-chart for adaptive implementation of forword/buckwcnd
smoothing scheme using RMGSEF adaptive processor

231



Table - 5.5

RMGSEF Algorithm for Adaptive Implementation of

Forward/Backward Smoothing Scheme

Input definitions

2N (n) = x (n), L= 1,2, . Pl (T 5.5.1)
e(l)(n) = d(n), FH(O) = §, {=1,2,....,P (T 5.5.2)
Algorithm Complexity
For n=1,2,..... , Compute
For I =1 to L+1
al(n) = 1.0 (T 5.5.3)
For m =1 to P
i —
Z)(n) = xm+1_1(n) (T 5.5.4)
r ) =2 [z U2 p2+1 (T 5.5.5)
-1 2 -1 -1 _ T
For it =1 to P
a'V(n,n) = rn) (T 5.5.6)
For i = 1 to P
e (n) = Ar (n-1) + o (n)|q (n,n)|? 3P(L+1) (T 5.5.7)
ocf(n)|ql(n,n)|2
ocHl(n) = al(n) - 3P(L+1) (T 5.5.8)

Pli-(n)

For j=1+1toP
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(i+1) (1)

qj (n,n) = qj (n,n) - Kij(n—l) qi(n,n) P(P-1)(L+1)/2
(T 5.5.9)
K n) =K .(n-1) + « (n) q(1+1)(n n) q*(n n)/r (n) P(P-1)(L+1)
ij tJ i J ’ i it
(T 5.5.10)
e(i+1)(n,n) = e(i)(n,n) - K?(n—l)qi(n,n) P(L+1)
(T 5.5.11)

K?(n) = Kf(n—l) + % {(n) e(Hl)(n,n)q’*(n,n)/rl1 (n) 2P(L+1)

(T 5.5.12)
e(n) = Dy 1 (T 5.5.13)
Total [(o.sp2 + 1.5P) divisions + (2.5p° + 7.5P)] (L+1)

S.4 COMPUTER SIMULATIONS

In this section, the two spatial averaging preprocessing
schemes, namely, SSPS and FBSS, have been compared with regard to
their ability to overcome the coherent interference problem in
adaptive beamformers, RMGSEF and QRD-LS adaptive processors have been
used to implement the beamformers, as they have exhibited excellent
numerical and nulling properties.

In all the examples presented in thié.section, the signal
environment consists of 5 narrowband siénals * a desired signal and
four fully coherent interferences. Therefore, the minimum number of
elements required is, respecflvely 10 and 8 for sSSps and FBSS
beamformers. A uniform ]inear array of 6 isotropic elements has been

assumed, as the subarray size should be atleast 6 elements. The SSPS
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has been implemented by augmenting the array with four elements and
forming five overlapping subarrays of 6 elements each. In the case of
FBSS, the 6-element linear array has been augmented with 2 elements
and three forward and three backward subarrays have been formed.
During the computer simulations it was found that, in some
typical signal environments, the minimum overall array size and the
number of subarrays was not sufficient to decorrelate the
interferences and the desired signal. In such cases, the number of

subarrays were increased till the desired decorrelation was achieved.

Example 5.4-1
In this example, the interferences have been modelled to
have wide angular separation. The various parameters of the
interferences are given in Table 5.6.
Table - 5.6

Interference Parameters for Example 5.4-1

Parameter Interference Interference Interference Interference

1 2 3 4

0, 30° -30° 60° -60°
s, 10.0 10.0 10.0 10.0
w 1.0 1.0 1.0 1.0

Fig. 5.6 shows the voltage patterns of the RMGSEF and QRD-LS
beamformers. It can be seen from the figure that the SSPS-RMGSEF and
SSPS-rotation based QRD-LS beamformers place deep nulls (-120dB) in
the direction of all the four interferences. On the other hand, the

FBSS-RMGSEF and FBSS-rotation based QRD-LS beamformers place
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relatively shallow nulls in the range of -45dB to -50dB. Moreover, the
FBSS-rotation based QRD-LS beamformer introduces an offset of 2° in
the nulls produced at i600. It may also be noted that, in the case of
FBSS-RMGSEF beamformer, the pattern nulls are sharp at +60° which is

not the case for FBSS QRD-LS beamformer.

Example S.4-2

In this example, we again consider a signal environment
similar to the signal environment in example 5.4-1. The only
difference is that the two interference arriving at iGOO have been
shifted to *65°.

From the voltage patterns in Fig.5.7, it can be seen that
both SSPS-RMGSEF and SSPS-QRD-LS beamformers work satisfactorily with
minihum number of elements. The FBSS-RMGSEF beamformer also places
explicit nulls in the direction of interferences. The FBSS-rotation
based QRD-LS beamformer fails to place explicit null at iBSO, though
the beamformer gain is about -55dB and is equal to the null depth
produced by FBSS-RMGSEF beamformer. When the number of elements in the
array is increased to 10, FBSS beamformers place deeper nulls in the
range of -65dB to -70dB in the direction of interferences. Also, the
FBSS~-QRD-LS beamformer places explicit nulls at 165°. It may be noted
however, that even with minimum number of elements, the null depths in
SSPS beamformers are much larger (-120dB) than those produced by the

FBSS beamformers.

Example 5.4-3

In this example, the interferences have been assumed to
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o’ 60O and -75°. The remaining parameters are given

arrive at 30°, -45
ih Table 5.8.

The voltage patterns are shown in Fig.5.8. It is found that,
the SSPS beamformers perform satisfactorily by placing deep nulls
(z-100dB) in the direction of interferences. On the other hand, with
minimum number of elements (8), the FBSS-RMGSEF array produces a bias
of 5° in placing null at —750 and the FBSS-rotation based QRD-LS array
totally fails to steer a null at -75°. When the overall array size is
increased to 10 and 5 subarrays are formed in each direction, the FBSS
places nulls at -75° with a 2o shift in both RMGSEF and QRD-LS
beamformers. Also the null depths in the direction of interferences
arriving from 30°,60° and -45° increases to -45 dB and -60dB. It may
again be noted that SSPS beamformers exhibit much larger null depths

compared to FBSS beamformers.

Example 5.4-4

In this example, two interferences have been assumed to
arrive from directions very close to the desired signal (150) and two
from directions far away from the desired signal (t750). The remaining
parameters are as given in Table 5.6.

From the voltage patterns shown in Fig.5.9, it is found that
both the FBSS and SSPS incorporated beamformers produce nearly

identical patterns. The null depths are also more or less the same.

Example 5.4-5
In this example, the coherent interferences have been

modelled to arrive from directions very close to each other but far
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away from the desired signal. The arrival angles of the interferences

°, 60° and 65°,

are —300, -35

The voltage patterns of the SSPS and FBSS RMGSEF adaptive
beamformers are shown in Fig.5.10. It can be seen from the figure that
the FBSS beamformer with minimum number of elements (8) fails to place
nulls in the direction of interferences arriving from 60° and 65°.
Also, the nulls placed at -30° and -35° are not sharp. It may,
therefore, be concluded that minimum number of elements and subarrays
formed (3 forwardmand.B backward) are not sufficient to achieve the
desired decorrelation. That is, FBSS fails to achieve the expected
increase in effective aperture area for the present signal
environment. On the other hand, the SSPS beamformer with minimum
number of elements (10) Places deep nulls (>-100dB) in the direction
of all the interferences.

In order to obtain the desired decorrelation, the number of
elements in the FBSS beamformer was then increased to 12 elements and,
7 forward and 7 backward subarrays were formed. Similarly, the number
of elements in the case of SSPS beamformer was also increased to 12.
It can be seen from Figure 5.10, that FBSS beamformer, now places
sharp nulls in the directions of all the interferences. However, there
is no significant changes in the voltage patterns of the SSPS
beamformer. [t may also be noted that, the nulls produced by FBSS

beamformer are not as deep as those produced by the SSPS beamformer.

Example 5.4-86

In this example, the interferences have been assumed to

arrive from the directions 300, 400, 50° and 600. The remaining
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parameters are given in Table 5.86.

From the voltage patterns in Fig.5.11, it is clear that the
8-element FBSS beamformer failsg once again to perform satisfactorily.
It does not place nulls in the direction of interferences arriving
from 40° and 50° and introduces a bias in the nulls produced at 30°
and 600. On the other hand, the SSpg beamformer with minimum number of
elements (10), once again exhibits superiority by placing deep nulls
in the direction of all the interferences.

The number of elements was then increased gradually till the
FBSS beamformer placed nulls in the desired directions. It was found
that when the total number of elements in the array was raised to 13,
that is a total of 8 forward and 8 backward subarrays were formed, the
FBSS beamformer placed nulls in the direction of all the four
interferences Fig.5.11(b), However, the nulls were much shallower
compared to thosge placed by the SSpg beamformer with minimum number of
elements (10). 1t may further be noted that when the number of
elements ig increased to 13 in the SSps beamformer, 2 significant

improvement in the null depths results in this case.

Example 5, 4-7

In this example, the 10o spacing between the interference
arrival angles of the previous exXample has been”reduced to 50. That
. . . o o o) o)
1s the interference arrival angles are 35 » 407,457 and 50°.

As can be seen from the voltage patterns shown in Fig.5.12,
both the sspsg and FBSS beamformers with minimum number of elements (10

and 8, respectively) fail to place the nulls in the direction of

interferences.
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The number of elements was then gradually increased to 26
elements and 21 subarrays were formed in each direction. It is evident
from Figure §5.12 that SSPS beamformer places deep nulls in the
direction of interferences but the FBSS beamformer fails to place null
in the direction of interference arriving from 45°.

It may be recalled that only minimum number of element(10)
was sufficient in the case of SSPS, when the interferences arrived at
the array with a 10° spacing. Therefore, it may be concluded that as
the spacing between the interference arrival angle is decreased,
larger number of subarrays need to be formed to achieve the desired

decorrelation.

5.5 CONCLUSIONS

In this chapter, a detailed study has been carried out on
the two spatial averaging schemes, namely, SSPS and FBSS, with regard
to their ability to null coherent interferences, by 1ncorporating them
in adaptive beamformers based on RMGSEF and QRD-LS algorithms. Both
the techniques have been investigated by considering typical signal
environments in computer simulations,

It may be recalled that FBSS was initially proposed and
studied in the context of DOA estimation and it was shown that it
offers the advantage of an enhanced effective aperture area over SSPS
[50,66]. However, the present investigations show that when minimum
required number of elements are used, the FBSS beamformer fails to
place nulls in the desired directions, except when the interferences
are symmetrically located Wwith respect to the broadside and not too

near the endfire directions. When interferences are unsymmetrically
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located on either side of the desired signal arrival direction, the
FBSS array with minimum number of elements introduces a small bias (2°
- 50) in the placement of nulls. This situation can be, however,
corrected by increasing the number of elements in the array. Further,
as the angular separation between the interferences reduces, more and
more number of elements are required in the FBSS array for
satisfactory operation. Thus, FBSS fails to give the advantage of the
increased aperture area in most situations.

On the other hand, the SSPS beamformers exhibit good
performance with minimum number of elements in most signal
énvironments. Only when the angular separation between the
interferences becomes small, larger number of elements are needed in
the array to decorrelate them. Moreover, the null depths obtained in
an SSPS array are much greater than those obtained in an FBSS array
with the same number of elements, resulting in much sSuperior
interference cancellation. Finally since both QRD-LS and RMGSEF
algorithm based arrays give a comparable performance the latter is
preferable in view of its lower computational complexity,

It  may, therefore, be concluded that, for coherent
interference cancellation an SSPS-RMGSEF  beamformer is a better

choice,
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CHAPTER - 6

CONCLUSIONS

This dissertation addresses itself to a study of various
adaptive signal processing algorithms with applications to adaptive
beamforming. The study also includes spatial averaging methods which
are used to preprocess the signals in a coherent signal environment.
Although, there are many algorithms available in signal processing
literature, we have, in this dissertation, restricted ourselves to the
study of recursive exponentially windowed algorithms based on the
method of least-squares.

As the adaptive array technology has been widely studied, an
adequate description of some of the basic concepts in the field was
found essential. Accordingly, in chapter-2, the optimum beamformer has
been discussed in a narrowband signal environment, under the
assumption that the desired signal, interferences and noise are all
uncorrelated random processes. Following this, the well known [MS
algorithm has been discussed and numerical examples based on computer
simulations have been presented to demonstrate the ability of these
beamformers to sSuppress interferences.

The study has then been extended to broadband arrays, by the
addition of a tapped delay line network behind the array. The addition
of constraints, by which a constant gain in a given direction can be
fixed (Frost array), has been presented. The simulation procedure for
the generation of broadband signal has also been described. Sample

results of a simulated broadband signal and the voltage pattern of the
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Frost array have then been presented.

The inability of the above mentioned beamforming techniques
to null coherent interferences has then been discussed. A comparative
sﬁudy of the two spatial averaging techniques, namely, the SSPS and
SCMM, which are used to preprocess the signals in a coherent signal
and interference environment to overcome the signal cancellation
phenomenon, has been carried out through computer simulations. The
results show that, among the two techniques, SSPS exhibits =a much
superior performance. It has been found that SCMM introduces a bias in
placing the nulls, which increases as the interferences are moved away
from the broadside, and ultimately, leads to the array’s failure in
placing nulls in the direction of endfire interferences. Extensive
computer simulations have revealed that only for certain combinations
of arrival angles of the interferences, signal strengths and the
number of elements in the array, the SCMM nulls the interferences
satisfactorily. The method is not applicable to broadband arrays as
the correlation matrix is nontoeplitz, even in noncoherent situations.
Finally, the SCMM can not be implemented using beamformers based on
different adaptiﬁe algorithms. In view of the above, it is concluded
that SSPS is a better choice for coherent interference suppression.

We have next considered the application of the recursive
least-square algorithms to the adaptive beamformers. The conventional
RLS algorithm has been presented first and then, the Givens rotation
based QRD-LS algorithm has been derived using the algebraic approach.
Since a major problem with the -latter is its expensive computational

complexity, as an alternative, we have proposed the application of the
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RMGS and RMGSEF algorithms to adaptive beamformers. These algorithms
are computationally less expensive as compared to the Givens rotation
based QRD-LS algorithm and, at the same time, possess al} the
advantages of the latter, viz, numerical stability and implementation
using systolic structures. Comparison of the performance of adaptive
beamformers baged on these four algorithms, in both narrowband and
broadband signal environments, has shown that the QRD-LS beamformer
gives the best performance. A study of the residual power
characteristics revealed that the beamformer exhibits the fastest
convergence speed and numerically staple characteristics in both
narrowband and broadband signal environments. Moreover, the QRD-LS
beamformer places the deepest nulls, irrespective of the arrival
angles of the interferences. The BRMGS and RMGSEF beamformers have a
slightly slower initial convergence speed but the residual power
obtained in an RMGSEF beamformer is only marginally greater than that
obtainable inp the QRD-LS beamformer. Also the nul} depths in a RMGSEF
beamformer are comparable to those in the QRD-LS beamformer. Of the
four beamformers, the RLS beamformer was found to exhibit thé poorest
performance. It produces g large residual pPower when the number of
interferences are large or when the interferences arrive from near
endfire directions and fails to place nulls in the direction of
endfire interferences. However, its performance improves in g
broadband signal environment. A comparison of the computational
complexity of thesge four adaptive beamformers shows that the RMGS
algorithms, in particular the RMGSEF algorithm, has the least

computational complexity. Therefore, it may be concluded that the
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proposed RMGSEF beamformer is a good alternative to the Givens
rotation based QRD-LS peamformer for most of the adaptive beamforming
applications. a
| In chapter 4, the application of fast recursive least-square
algorithms, viz, the LSL, QR-LSL and FTF algorithms for adaptive
broadband beamformers Uhas been investigated. Since multichannel
formulations of these algorithms are necessary for beamforming
applications, these have pbeen derived using the algebraic approach.
These algorithms exploit the inherent delays available in tapped delay
line filters to arrive at beamforming techniques whose computational
complexity is of the order P3M. Of the three algorithms considered
here, the MFTF algorithm has the least computational complexity.
However, if the number of taps in the delay line are less than 5, the
computational complexity of the MFTF beamformer is more than that of
the RMGSEF beamformer. Through computer simulations, we have shown
that the MLSL beamformer fails to achieve convergence in most of the
situations. The MFTF and QR-MLSL beamformers exhibit relatively better
performance characteristics but a comparison with exact RLS
pbeamformers revealed that their performance is much inferior so far as
residual power, signal tracking and intetference suppression are
concerned. We have, thus established that the fast RLS beamformers
have neither the advantages of computational complexity, nor superior
performance as compared to the exact RLS beamformers.
Finally, we have considered the adaptive implementation af
the SSPS and FBSS using beamformers based on different algorithms. We

have proposed schemes to implement SSPS and FBSS on weight oriented
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algorithm, viz, RLS, LMS and FTF algorithm, as well as on residue
oriented algorithms, that is the RMGS class of algorithms and the
QRD-LS algorithms. Through computer simulations, it has been shown
that when minimum required number of elements are used, the FBSS
beamformer fails to place nulls in the desired directions, except when
the interferences are symmetrically located with respect to broadside
and are not too near the endfire directions. In other situations, such
as, when the interferences are unsymmetrically located on either side
of the desired signal arrival direction or when the angular separation
between the interferences is small, the FBSS array fails to null the
interferences when minimum required number of elements are used. In
such cases, larger number of elements have to be used in order for the
FBSS array to work. Thus, we have shown that the FBSS fails to give
the advantage of increased aperture area in most situations.

On the other hand, SSPS beamformers have been found to
exhibit good performance, with minimum number of elements, in most
signal environments. Only when the angular separation between the
interferences becomes small, larger number of elements are needed.
Also, the null depths obtained in an SSPS array are much greater than
those obtained in an FBSS array with the Same number of elements,
thereby resulting in much superior interference Ccancellation. Both the
QRD-LS and RMGSEF algorithm based beamformers were found to give a
comparable  performance. Since, RMGSEF algorithm has g lower
computational complexity, it may be concluded that, for coherent

interference cancellation, an"SSPS—RMGSEF beamformer is a better

choice.
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6.1 SUGGESTIONS FOR FURTHER WORK

Addition of constraints to the adaptive beamformers improves
their performance, in that a constant gain in the look-direction can
be maintained, or a null can be placed in the direction of
interference, if the interference arrival angle is known in advance.
Najm [71] has proposed constrained RLS and QRD-LS algorithms. It will
be interesting to extend this approach to the RMGS and RMGSEF adaptive
peamformers as these have exhibited good performance characteristics.

Although Givens rotation based QRD-LS algorithm studied in
chapter 3 provides a numerically sound way of computing the recursive
QR deate, it has two drawbacks. The first is the square-root
computation needed to compute the rotation factors, and the second is
four operations per column needed to implement the rotation. Both of
these drawbacks can be eliminated by the use of square-root free
Givens rotations [34]. Therefore, a natural extension of this work
would be to apply the square-root free Givens rotation based QRD-LS
algorithm to adaptive beamforming and evaluate its performance.

In the broadband signal environment adaptive beamforming is
a multichannel problem, which requires multichannel formulations of
the fast RLS algorithms, Viz, the LSL, FTF and the hybrid QR-LSL
algorithms. It has been observed that the multichannel LSL algorithm
based beamformer suffers from numerical problems, which may be due to
the computation of inverses of error variance matrices repeatedly. The
issue of matrix conditioning has not received much attenlion in the
adaptive filtering community though it is well known in the context of

Kalman filtering [58]. A direction of further work should be to study
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the conditioning of this problen.

The multichannel FTF algorithm and its application to
beamformers has been studied in chapter 4. This algorithm is a
straight forward extension of the single channel form which requires
matrix operations. Recently, to overcome the difficulties of MFTF
algorithm, Slock and Kailath [58] have proposed the scalar
implementation of the MFIF algorithm. It requires no matrix operations
and can be implemented in modular architecture with a regular and
highly parallel structure. An area of further study should be the

evaluation of this algorithm in the context of adaptive beamforming.
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APPENDIX - A

COMPLEX GRADIENT OPERATOR

Least—mean—square systems minimize the mean-square error
between the output (normally a scalar) and the desired or the
reference signal. When the signals are complex, a concise derivation
of the results can be obtained using complex gradient operator without
using the gradients of the real and imaginary parts separately.

If v is a complex scalar quantity, given by

V=X o+ jy

then, the following derivatives may be defined

8 _ dv Ov _
W(v) = i J‘W =0 (A-1)
. * *
a A% 0v _
8 .0
—x (V) = g% - ng =2 (A-3)
av y
and
*
3] av av
—(V)———\j_=0 (A‘4)
¥
av ax dy
let Z be a P-by-1 vector given by
T
zZ = [21,22, ........... ’ZP} (A-5)
where
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= j =1,2,...... P ... (A-B)
Zk Xk + \Jykr k 11 ’

We also define the complex gradient operator VZ with respect

to 2 as
T
fs) o) : a
v =[__,_, ............... ,_] (AT
Z 621 622 azP
where
52 = 5% j59 : K =1,2,...... P ... (A-8)
k k Yk
Using the above definitions and eqns. (A-1) to (A-4) we can
write
vV (z,) =0; V* (z) =2 ... (A-9)
Zy k Zy k
* *
VZ (z,) =2 ; Vz* (Zk) =0 ... (A-10)
k k

The complex gradient operator, as defined in eqn. (A-7) with
respect to a complex P-by-1 vector Z, generates another complex P-by-1
vector from a scalar function of 2. The Scalar, 1in general, may be
complex, although in physical applications it may be real. Typical
scalar functions of Z arising in the adaptive beamforming problem are

H H H . .
of the form A Z,Z2 A and Z RZ, where A is a P-by-1 vector and R is a
P-by-P Hermition matrix. The gradient of these scalar functions with

respect to Z are given by the following eqﬁations [(22].

v [éHZ] =0 . (A-11)

IN
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Hé] = 2A oo (A-12)
H
V,[Z2'RZ| = 2R Z . (A-13)
The above equations may be verified by expanding the
products and using the equations (A-9)-(A-10).
In an adaptive beamformer, the output at the time instant
‘n’ is given by
y(n) = w'(n) x(n) . (A-14)
If the desired response is d(n), then the error is

e(n) = d(n) - wln) x(n) .. (A-15)

*
The gradient of the E[é(n)e (n)] with respect to the complex

welght vector W(n) is obtained by using eqns. (A-11)-(A-13) as
2 * H
Vy(n)[le(n)[ ] = Vy(n)[[A(n) - EH(n)g(n)}[d (n) - X (n)y(n)JJ

= Vw(n)[ld(n)lz - " mwm) - Winyen) &’H(n)dﬂn)y(n)}

- 26(n) + 2¢(n)W(n) ... (A-18)

We next define a P—by—M matrix W as
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W g Wigeo e wlMW
Woy Moo Wou
W o= | : : (A1)
prl NPZ ........ WPM~
where
Wik T %k T Yk

The complex gradient operator Vw with respect to the

components of W is defined as

8 o 3 |
6w11 6w12 awlM
: 6 8
v, = 951 Voo OWom .. (A-18)
8 8 6
{?”P1 Ipy awPM_

This operator generates another complex P-by-M matrix from
the trace of a matrix function of W. Typical matrix functions of W
arising in adaptive arrays using multichannel fast RLS algorithms are
of the form BH W, WH B and WH ® W, where B is a P-by-M matrix. The

gradient of the trace of these matrix functions with respect to the

components of W are given by the following equations
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Vw{Tr‘ace of I:BH WJ} = O ... (A-19)
Vw{Trace of [WH B]} =2 B ... (A-20)
Vw{Tr‘ace of [BH ¢ W:’} =2 ¢ W. . (A-21)
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APPENDIX - B

DERIVATION OF TIME UPDATE EQUATION FOR rlj(n)

In Table 3.4, rij(n) is given by

(1), 78
rij(n) = [gj (nﬂ q,(n) ... (B-1)

To derive the time update equation for rlj(n), we use

(1)

Gram-Schmidt orthogonalization theory [38] and express 9j {n) and

gi(n) in the above equation as

(1)

3 (n)

-1
H H
Xj(n)—Al_l(n)[Al_l(n) Ax—l(n{] Ai_l(n)xj(n)

H 1y
[I—Al_l(n)[Al_l(n) Al_l(nJ:, Ai_l(n] xj(n)

... (B-2)
H 1y
gi(n) = I_Ax—l(n) Ai_l(n) Al_l(n) Ai_l(n) Kl(n)
... (B-3)
where Al_l(n) is defined as
Ax—l(n) = [él(n),xz(n), .......... , xl_l(n)] ... (B-4)

Substituting (B-2) and (B-3) in (B-1), r .(n) can be

rewritten as

H 1oy i
r,j(n) = XJ(n)[I - A,_,(n) Rl_l(n):l Ai_l(n)] .

-1
[I - Al_l(n)[Rl_l(n)] A}l{_l(n)] X (n) .. (B-5)



where

: -1
-1 | LH )
R L, (n) —[Al_l(n) A‘_l(n)J .. (B-6)
Eqn. (B-5) can be written as [20]
) = Hm 1 -A ) R AN | X (B=7)
R A M -1 i1 -1 2 e

Next, we define a matrix Al_l(n—l) such that

AM2A, _y(n-1)
A ,(n) = ...(B-8)
1-1 H
51—1 (n)
where
T
x, () =[x (xm) Cx ] ... (B-9)

Using (B-2) and (B-3), the last elements in the vectors

(i)(n) and g}(n), denoted respectively by qéi)(n,n) and ql(n,n) can

95

be expressed as

(1) | H -1 1/2 H
aj (n,n) = { Xi_l(n) Rx—l(n) A Aa—l(n)’
H -1
1- X, _;(n) R _;(n) Ki_l(n)] lj(n)
| 12 -1 H -
_[ A X 1(n) Ri_l(n) Al_l(n), ai(n)] Xj(n)

... (B-10)

| 1728 -1 H
ql(n,n) = [ A lx—l(n) Rl_l(n) Al_l(n), a‘(n)} xi(n)

... (B-11)
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where

H -1
= 1- ... (B-12
ai(n) 1 Xi—l(n) Rx—l(n) Xi_l(n) ( )
Therefore, al(n) =1
From B-8, we can show that
R_,(n) =AR _(n-1) + X _(n) x' (n) .. (B-13)
i—-1 -1 —i-1 —1-1

Using matrix inversion lemma, the inverse of Ri_ (n-1) can

1

be written as

-1 H -1
Ri_l(n) Xl_l(n) xl_l(n) R1 {(n)

1 -1 -1 -1
3 Rx—l(n_l) = Ri_l(n) r 7
ai(n)
... (B-14)
Now, we rewrite (B-7) in the following form
172
ATTA L (n-1) _
ron) = Xy |1 - -1 R™] (n)[kl/zAH (n-1), x" (n)J X (n)
tj J 1-1 i-1 | i
XH (n)
“1-1
... (B-15)
on simplification, we get
' I-AAi_l(n—1)R;fl(n)A?_l(n—1) A2y _1(n—1)R_{4(n)§,_1(n)
rij(n)=xj(n) 1 i l
172 _H -1
A X:—l(n)Ri—l(n)Al—l(n_l) @ (n)

... (B.186)

Using eqn. (3.56) and (B-14) in (B-16), we obtain
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-1 H
- - - - -1
. =|}1/2XH(H_1)’XJ(n) 1-A,_, (D, (n-DA, 2 (nm1) O JRK (o )

iJ J
xi(n)
0 0
1/2 -1
. XH(n) O Ai—l(n—l)Ri—l(n)Xx—l(n)
=3 ai(n)
a (n)
i

1/2 H -1
[—A gl_l(n)R‘_l(n)Ai_l(n—l),al(n{}ﬁ1(n)

... (B-17)

A comparison of the above equation with (B-11) and (B-12)

gives the desired update formula as
»

_ _ 1 (1) B
rij(n) = Arij(n 1) + E:(ﬁ) [?J (n,n;} ql(n,n) ...(B-18)
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APPENDIX - C

ORDER UPDATE EQUATION FOR ai(n)

In Appendix-B, while deriving the time update equation for
rij(n), a quantity ai(n) has been defined. To complete the derivation
of the complex RMGS algorithm, we derive here an order update equation

for ai(n).

Ai_l(n) is given by eqn. (B-4) as

Ax—l(n) = [Kl(n),xz(n), .......... , Xi_l(n)J ... (Cc-1)
Similarly we can write

A, (n) = [Xl(n),x2(n), ........... , Xl(n)J .. (C-2)
which can be partitioned as

A (n) = [Ai_l(n), X,(n)] ... (C-3)

Substituting (C-3) in (B-6), we obtain

R _,(n) A () X (n)
R (n) = ! !
i H H .(C-4)
Ki(n) Al_l(n) Xl(n) Xi(n)
Applying partitioned matrix inversion lemma [48], the

inverse of Rl(n) can be written as



H -1 B
[Xl(n) A _,(n) R (n), 1]
... (c-5)

where

... (C-B)

H Ri_l(n) 0
a  q(n) =1~ X, _1(n) X, _q(n)
! 0 0
-1 H
- XH (n).- : Ri-]( ) Ai—l(n—l) Xi(n)
“y-1 r (n)

H -1
[Xi(n) Ai_l(?) Ri_l(n), —1} Xi_l(n)
... (C-7)

using (B-12) and (B-11), eqn.(C-7) can be written as

which is the required time update equation for ai(n).
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APPENDIX-D

RELATIONS BETWEEN MLSL AND QR-MLSL ALGORI THMS

In order to derive eqns. (4.58) and (4.59), the matrices

AI’AZ’B and 82 are defined with the help of eqn.(4.53)

1 in the
following manner.
f f
\/A_Rm(n—l) VA[ " (n-1) 0
A = , A, = m ... (D-1)
~f H ~b H ~
[gm(n)] [gm(n—l)] am(n—l)
and
R (n) () B (n)
B, = : B, =| ™ ... (D-2)
1 2
, o

2 ~b H ~
[ém+1(“)] a1 (P)

Applying the matrix identity in eqn. (4.55), we get

H H H
Finn} ) < a pﬁ(nq)J 1)+ &in) Ebhrlﬂ L (D-3)

m

H
[Rg(n)] Bl (n) = gi(n)&m(n—l) ... (D-4)

We next, define AI’AZ’BI and 82 using eqn. (4.53) ag

f f 0
. VXRm(n—l) VX[; (n—;) <
17 v Ay =

(D-5)
SIS [eP(n-1);H
= —-m

a (n-1)
m
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f
RL (n) n) B (m)
m m
Bl = , BZ = . ...(D_S)
H ~b H a . (n)
0 [§m+1(n)] m+1
Applying the matrix identity in eqn. (4.55), we get
f i f ~f
[R (n)] B (n) =e (na (n-1) (D-7)
cm “m m
T LS ~b ~ ~b ~
[[; (n)] Qm(n) + gm+1(n)am+1(n) = gm(n~l)am(n—l) ...(D-8)
By defining,
0 0
A = LA, = | ....(D-9)
! a (n-1) 2 o« (n-1)
m m
and
gt (n) gk (n)
B, = |. , By = | . ... (D-10)
(n) o« .(n)
am+1 m+1
Using the identity, we get
f i f ~2 ~2
[@m(n)] @m(n) + am+1(n) = am(n—l) ...(D-11)
We next consider eqn. (4.54).
1f,
VXRﬁ(n—Z) VXRE(n—Z)
A= | L : A, =| ... (D-12)
i m-n)” 2 [18Pm-®
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and

Rz(n—l) Rﬁ(n—l)
= = N - 3
B1 I , B2 H (D-13)
0
using the identity once again, we have

H H H
[Rb(n—l)J [ﬁb(n—l)] = A [Rb<n—2)] [Rb(n—Z)] + 2oy [Eb(n—1)}
m m m m =m -m
... (D-14)

Substituting for éi(n—l) and Rg(n—l), the above equation can be

simplified as

H
gﬁ(n—1)[g§(n-1)]

rb(n—l) = Arb(n—Z) + —_— - (D-15)
m m
« (n-1)
m
By defining,
b b '
VAR (n-2) VA[ P(n-1) VXI;e(n—2)
Ay = , A, = ... (D-18)
~ ~ ~ ¥
(e2n-1)1"  (2f(m M . & (n-1)
- —m m
and
Rs(n—l) o) [n-1)
B1 = R 82 = ... (D-17)
ot oL &' (n-1)
= -m+1 m+1
and applying the identity
b H b i ~b ¥
[ﬁm(n—1)J [;e(n—l) = A[Rm(n—Z)J [ n-2) + e (n-1)e (n-1)
... (D-18)

271



which can be simplified as

d (n-1) = ad_(n-2) + eb(n—l)e‘(n-l)/a (n-1) ... (Db-19)
“m “m m m m

Using eqn. (4.54), we next chose

v

VAR® (n-2) VX(_b(n-l) 0
AL = m m , A, = ... (D-20)
(ePn-1)1% & (my " % (n-1)
=M -m m
and
R (n-1) (;b(n) @b(n—1)
B, = , B, = ... (D-21)
! H ~f H 2 -
0 (e ,,(n)] « q(n-1)
We get
b Hy ~b ~
[R (n-l)] B (n-1) = e (n-1)a (n-1) ... (D-22)
m —m 11 m
and

(n-1) = ol (n)a_(n-1) .. (D-23)
-m m

m+1 +1

H
[f;b(n)] Qﬁ(n—l) + éf (n)&m

Replacing the internal variables by the definitions in eqn.(4.51),

the above equations can be simplified as

eb(n—l) = eb(n—l), ...(D-24)
<m m

¢ £ H b, .1 '
e (n) = e (n) - K (n)[r (n—l)] e (n—-1). ...(D-25)
-m+1 -m m m -m

Finally, we assign



b
VXI;e(n—Z) VAR (n-2) 0

= A = ... (D-28)
A1 p o o , 5 i (
e (n-1) [e (n-1)] @ (n-1)
m =m
and
b
[*m-1) R (n-1) B (n-1)
B, = , B, = ... (D-27)
1 . I 2 ~
em+1(n—1) 0 am+1(n—1)
Once again applying the matrix identity, we get
H B . . _
[I;e(n—l)] @m(n—l) + em+1(n—1)am+1(n—1) = em(n—l)am(n-l) ...(D-28)

Which can be simplified as

€hep(n-1) = e (n-1) - gg(n—l)[rg(n—l)} e (n-1) ... (D-29)
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APPENDIX - E

DERIVATION OF EQUATION FOR 9P(H+1)(n+1)
The correlation matrix ¢P(M+1)(n+1) in eqn.(4.72) can be
updated as
H
®P(M+l)(n+1) = A¢P(M+l)(n) + 5P(M+1)(n+1)[KP(M+1)(n+l)] o (E-D)
. -1 . .
From eqn. (4.21b), the inverse of ¢P(M+1)(n) is written as

» 0 0 I roq-l ’
d (n) = -1, + 0 [r (n)} [I -A (n)]
P(M+1) 0 ®PM(n 1) APM(n) M PM

(E-2)
Post multiplying (E-2) by %XP(M+1)(n+1)'
1 -1 1 0 0
x{°p(M+1)(“)J o) (D) = g (@, (n-1)17" [Zp(e) (P*1)
I -1
1 f H
+ X[—APM(n)}[PM(n)] [I —APM(n)] KP(M+1)(D+1)
@) 1 I r -1
C (n+1) = + [r (n)] 7, (n+1) ... (E-3)
P(M+1) Cpy(n) A—%MUH M =
or
-1
%[rﬁ(n)] yg(n+1)
Copme) (n*1) = 1 R . ... (E~4)
Coy(n) - XAPM(n)[rM(n)] ny(n+1)
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Similarly, it can also be written in terms of QP

-1
b
QPM(ml) ABPM(H) [PM(D)] ]
C (n+1) = -1
“P(M+1) l[rb(n)] n
N M

276

M

(n+1)

as



REFERENCES

Altman, F.J. and Sichak, W., ‘A simplified diversity
communication system for behind the horizon links’, IRE Trans.
Comm. Sys., Vol. CS-4, PP. 50-55, March 1956.

Applebaum, S.P., ‘Adaptive Arrays’, IEEE Trans. Antennas and
propagat., Vol. AP-24, PP, 585-594, Sept. 1976.

Baird, C.A., ‘Recursive processing for adaptive arrays’,
proceedings of the adaptive Antenna workshop, Naval research
Laboratory, Washington, March 11-13, 1974.

Brennan, L.E., Mallet, J.D. and Reed, I.S., ‘Adapt ive arrays in
airborne MTI Radar’, IEEE  Trans. Antennas and propagat.
Vol.AP-24, PP. 607-613, Sept. 1976.

Cioffi, J.M., and Kailath, T., ‘A classification of fast fixed
order RLS algorithms’, Presented at ASSp digital signal
processing‘workshop, Chatham, Mass, Oct. 1984, Paper 1.1.1.
Cioffi, J.M. and Kailath, T., ‘Fast, recursive least-square
transversal filter for adaptive filtering’, IEEE Trans. Acoust.
Speech and signal process., Vol. ASSP-32, PP. 304-337, April
1984,

Cioffi, J.M., ‘The fast adaptive ROTOR’ S algorithm’, IEEE Trans.
Acoust. Speech. Signal Process., Vol. ASSP-38, PP. 631-653, April
1990.

Compton. Jr., R.T., ‘Adaptive Antennas : Concepts and
performance’ Prentice-Hall; Englewood cliffs, New-Jersy, 1987.
Dahlquist, G., ‘Numerical Methods’ Prentice-Hall, New York,

1874.

277



10.

11.

12.

13.

14.

15+

16.

17.

18.

18.

Du, W. and Kirlin, R.L., ‘Improved spatial smoothing technique
for DOA estimation of coherent signals’, IEEE Trans. Sig.
process., Vol.38, PP. 1208-1210, May 1991.

Evans, J.E., ‘Aperture sampling techniques for precision
direction finding’, IEEE Trans. Aerospace and Electronic sys.
Vol. AES-15, PP. 891-885, June 1979.

Friedlander, B., f‘Lattice filter for Adaptive processing’, Proc.
IEEE, Vol.70, PP.8238-860, Aug. 1982.

Frost, O.L., ‘An algorithm for linearly coﬁstrained adaptive
array processing’, Proc. IEEE, Vol.60, PP. 926-935, Aug. 1972.
Gabriel, W.F., ‘Adaptive Arrays ~ an introduction’, Proc. IEEE,
Vol.64, PP.239-272, Feb. 1976.

Gentleman, W.M. and Kung, H.T., ‘Matrix triangularization by
éystolic arrays’, Proc. SPIE, Real time signal processing-1V,
Vol.298, PP.298-303,1%L1

Griffiths, L.J., ‘A Simple adaptive algorithm for real time

processing in antenna arrays’, Proc. IEEE, Vol.57, PP.16396-1704,

Oct. 1969.
Godard, D., ‘Channel estimation using a Kalman filter for fast
data transmission’, IBM Journal Research Development, Vol.18,

PP.267-273, May 1974.

Godara, L.C., ‘Beamforming in the presence of correlated arrivals
using structured correlation matrix’, IEEE Trans. Acoust. Speech
Sig. Process., Vol.38, PP.1-28, Jan. 1980.

Heiligman, G.M., and Purdy, R.J., ‘Graceful degradation of an
adaptive beamforming processor’, IEEE Trans. Aerospace and

Electron. Sys., Vol.28, PP.305-314, Jan. 1992.

278



20.

22,

23.

24.

25.

26.

27.

28.

29.

30.

Howells, P.W., ‘Exploration in fixed and adaptive resolution of
GE and SURC’, IEEE Trans. Antennas and propagat, Vol. 24,
PP.575-583, Sept. 1976,

Hudson, J.E., ‘Adaptive Array Principles’, Peter Perigrinus,
London 18981.

Haykin, S., ‘Adaptive filter theory’, Prentice-Hall, New-Jersy,
1986.

IEEE Transactions on Antennas and propagation, Vol.AP-12, March
1964.

Indukumar, K.C., and Reddy, vV.uU., ‘A Note on Redundancy
Averaging’, IEEE Trans. Signal Process., Vol.40, PP.466-489,
Feb. 1992,

Jagadeesha, S.N., Sinha, S.N. and Mehra, D.K., ‘Spatial averaging
techniques for coherent interference suppression in optimum
beamformers’ JINA 1992, International symposium on antennas,
Nice, France, 12-14 Nov. 1992,

Jagadeesha, S.N., Sinha, S.N. and Mehra, D.K., ‘A recursive
modified Gram-Schmidt algorithm based adaptive beamformer’, To be
published in Signal processing, Vol. 39, 1994.

Kalman, H.J., ‘Transversal filters’, Proc. IRE, Vol. 28,
PP.302-310, March 1940.

Kawase, H.S.T., and Tokumaru, H., ‘Recursive least squares
circular lattice and estimation algorithms’, IEEE Trans. Acoust

Speech. Sig. Process. Vol.31, PP. 228-231, Feb. 1993,

Lawson, C.L. and Hanson, R.J., ‘Solving least square problems’,

Prentice-Hall, Englewocod Cliffs, New-Jersy, 1974

Lee, J.H., and Wu, J.F., ‘Adaptive beamforming without signal

279



31.

32.

33.

34.

35.

36.

37.

38.

cancellation in the presence of coherent Jjammers’, IEEE Proc.
Vol.136, Part-F, PP. 169-173, Aug. 1988.

Lee, B.H., Chang, B.K., Cha, I.W., Kim, W.K. and Youn, D.H.,

‘Realization of a generalized sidelobe cancellor’, IEEE Trans.

CktS. and Sys., Vol. 34, PP.759-764, July 1987.
Lev-Ari. H., ‘Modular architectures for adaptive multichannel

lattice algorithm’, IEEE Trans. Acoust. Speech Sig. Process.,

"Vol. 35, PP. 543-552, 1987.

Lineberger and Johnson, ‘The effect of spatial averaging on
spatial correlation matrices in the presence of coherent
signals’, [IEEE Trans. Acoust. Speech Sig. Process., Vol. 38,
PP.880-884, May 1990.

Lewis, P.S., ‘Multichannel recursive least—-squares adaptive
filtering without a desired signal’, IEEE Trans. Sig. Process.,
Vol.19, PP.359-365, Feb. 1991.

Lewis, P.S., ‘QR Dbased algorithms for multichannel adaptive
least-square lattice filters’, IEEE Trans. Acoust. Speech Sig.
Process., Vol.38, PP.421-432, March 1990.

Ling, F., Manolakis, D., and Proakis, J.G., ‘A recursive modified
Gram-Schmidt algorithm for least-squares estimation’, IEEE Trans.
Acoust. Speech Sig. Process., Vol.34, PP.829-836, Aug.1986.

Ling. F, ‘Givens rotation based 1east—squaré.1attice and related
algorithms’, IEEE Trans. Sig. Processing, Vol.39, PP.1541-1551,
July 1991.

Ling, F., and Proakis, J.G., ‘Numerical accuracy and stability :
two problems of adaptive algorithm caused by round off errors’,

IEEE Proc. ICASSP 84, Sandiego CA, March 1986.

280



39.

40.

41.

42.

43,

44

45,

46.

AT

48.

Ling, F., and Proakis, J.G., ‘A generalized multichannel
least-square lattice algorithm based on sequential processing
stages’, [IEEE Trans. Acoust. Speech Sig. Process., Vol.32,
PP.381-389, 1984.

McWhirter, J.G., and Proudler, I.K., ‘Orthogonal lattice
algorithm for adaptive filtering and beamforming’, INTEGRATION,
the VLSI Journal 14, PP.231-247, 1993.

Monzingo, R.A., and Miller, T.W., ‘Introduction to adaptive
arrays’, Wiley Interscience, John Wiley and Sons, 1980.

Murray, W., editor, ‘Numerical methods for unconstrained
optimization’, Academic Press, New York, 1972.

Mehra, D.K., ‘A generalized least-squares fast transversal filter
algorithm for the decision feedback equalization of dispersive
channels’, Sig. Processing, Vol-21, PP.241-250, 1990.

Orfanidis, S.J., ‘Optimum Signal processing-An Introduction,
New York, Macmillan publishing company, 1988.

Park , S., and Un, C.K., ‘Parallel modified Spatial smoothing
algorithm for coherent interference cancellation’, Signal
processing, Vol.24, PP.219-317. 1991.

Pei, S.C., Yeh, C.C., and Chiu, S.C., ‘Modified spatial smoothing
for coherent jammer suppression without signal cancellation’,
IEEE Trans. acoust. speech sig. process.;. Vol.36, PP.412-415,
March 1988.
Plackett, R.L., ‘Some theorems in least-squares’, Biometrika,

Vol. 37, PP. 149 , 1977

Proakis, J.G., ‘Digital communications’, Second edition,

New York, McGrawHill, 1989.

281



49.

50.

51.

52.

53.

54.

55,

56.

57.

Proudler, I.X., McWhirter, J.G. and Shepered, T.J., ‘QRD based

lattice filter algorithms’, proc. SPIE, Int. Soc. Opt. Eng., Aug.

1989.
Pillai, S.U. and Kwon, B.H., ‘Forward/backward spatial smoothing
for coherent signal identification’, IEEE Trans. Acoust. speech

Sig. Process., Vol.37, PP.8-15, Jan 1989.

Regalia, P.A., and Bellanger, M.G., ‘On the duality between fast

QR methods and lattice methods in least-square filtering’, IEEE

Trans. Signal processing, Vol.39, PP.879-891, April 1991.

Reddy, V.U., Paulraj, A. and Kailath, T., ‘Performance analysis

of the optimum beamformer in the presence of correlated sources

and its behaviour under spatial smoothing’, IEEE Trans. Acoust.

Speech Sig. Process., Vol.35, PP.927-936, July 1987.

Satorius, E.H., and Pack, J.D., ‘Application of least-square

lattice algorithms to adaptive equalization’, 1EEE Trans. Comm.

Sys., Vol. Com-29, PP.136-142, Feb.1981.

Shor, S.W.W., ‘Adaptive techniques to discriminate against

coherent noise in a narrowband system’, Journal of Acoustic

society of America, Vol.39, PP. 74-78, Jan. 1966.

Stearns, S.D. and Hush, D.R., ‘Digital signal analysis’,

Englewood Cliffs, New-Jersy, Prentice-Hall, 18990.

Su, Y.L., Shan, T.J. and Widrow, B., ‘Parallel spatial processing
a cure for signal cancellation in adaptive arrays’, IEEE Trans.

Antennas and propagat., Vol. 34, March 86, PP. 347-354.

Shan, T.J., and Kailath, Tl; ‘Adaptive beamforming for coherent

signals and interference’, IEEE Trans. Acoust. Speech ©Sig.

process., Vol.33, PP : 527-536, June 1986.

282



58.

59.

60.

61.

62.

63.

64.

65.

66.

Slock, D.T.M., and Kailath, T., ‘Multichannel fast transversal
filter algorithms for adaptive broadband beamforming’, 22, SPIE,
Vol. 1152, Advanced algorithms and architectures for signal
processing IV, 1989.

Takao, K., and Kikuma, N., ‘An adaptive array utilizing an
adaptive spatial averaging technique for multipath environments’,
IEEE Trans. Antenna propagat., Vol.35, PP. 1383-1395, Dec. 1987.
Van Atta, L.C. , ‘Electromagentic Reflection’, U.S. patent
2908002, October 6, 1959 (As cited in Ref. 44).

Vanloan, C.F. and Golub, G.H., ‘Matrix computations’, Oxford
Academic, 1983.

Ward, C.R., Hargrave, P.J., and McWhirter, J.G., ‘A novel
algorithm and architecture for adaptive digital beamforming’,
IEEE Trans. Antennas and propagat., Vol. AP-34, PP. 338-345,
March 1986.

White, W.D., ‘Angular spectra in radar application’, IEEE Trans.
Aerospace and Electron. Sys., Vol.15, PP.895-899, 1979.

Widrow, B., Duvall, K.T. , Gooch, B.P., and Newman, W.C., ‘Signal
cancellation phenomenon in adaptive antennas: causes and cures’
IEEE Trans. Antennas and propagat., Vol. 30, PP.469-478, May

18982,

Widrow, B., Mantey, P.E., Griffiths, L.J. and Goode, B.B.

>

‘Adaptive antenna systems’, Proc. IEEE, Vol.55, PP.2143-2157,

Dec. 1967.

Williams, R.T., Surendra Prasad, Mahalanabis, A.K., and Sibul,

L.H., ‘An  improved spatial smoothing technique for bearing

283



67.

68.

70.

71,

estimation in multipath environment’, IEEE Trans, Acoust. Speech
Signal process., Vol.36, PP.425-431, April 1988.

Yang, B., and Bohnme, J.F., ‘Rotation Based RLS algorithm; unified
derivations, numerical properties and parallel implementation’,
IEEE Trans. Sig. Process., Vol.40, PP.1151-1167, May 19892.

Yang, B., and Bohme, J.F., ‘On a parallel implementation of the
multichannel adaptive least-square lattice filter’, Proc. URSI
ISSSE, PP.236-279, Sept. 1989,

Yeh, C.C., Pei, S.C., and Pei, S.C., ‘On the coherenk
interference suppression using a spatially smoothing adaptive

array’, IEEE Trans. Antennas and propagat., Vol.37, PP.851-837,

July 1988.
Yuen, S.M., ‘Exact least-square adaptive beamforming using an
orthogonalization network’, IEEE Trans. Aerospace and Electron.

Sys. , V01127, PP.311-330, March 1891.
Najm, W.G., ‘Constrained least-squares in adaptive imperfect

arrays’, IEEE Trans. Antennas and propagat., Vol. 38,

PP. 1874-1876, Nov. 1880.

284



RESEARCH PAPERS OUT OF THE PROPOSED WORK

Jagadeesha, S.N., Sinha, S.N. and Mehra, D.K., ‘Spatial averaging
techniques for «coherent interference suppression in optimum
beamformers’ JINA 1992, International symposium on antennas,
Nice, France, 12-14 Nov. 1992.

Jagadeesha, S.N., Sinha, S.N. and Mehra, D.K., ‘A recursive
modified Gram-Schmidt algorithm based adaptive beamformer’, To be

published in Signal processing, Vol. 39, 1994.

283



	A COMPARATIVE STUDY OF ADAPTIVE ALGORITHMS WITH APPLICATIONS TO BEAMFORMING
	ABSTRACT
	TABLES OF CONTENTS

	LIST OF TABLES

	LIST OF FIGURES
	ABBREVIATIONS
	CHAPTER-1 INTRODUCTION

	CHAPTER-2 ADAPTIVE BEAMFORMERS FOR NON-COHERENT AND COHERENT INTERFERENCE SUPPRESSION - A REVIEW
	CHAPTER - 3 RECURSIVE LEAST-SQUARES ALGORITHMS FOR ADAPTIVE BEAMFORMING
	CHAPTER - 4 FAST RECURSIVE LEAST-SQUARE ALGORITHMS FOR ADAPTIVE BEAMFORMERS
	CHAPTER - 5 ADAPTIVE BEAMFORMERS FOR COHERENT INTERFERENCE SUPPRESSION
	CHAPTER - 6 CONCLOSIONS
	APPENDIX
	REFERENCES



