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ABSTRACT

Adaptive arrays are currently the subject of extensive

investigations, as a means for reducing the vulnerability of the

reception of desired signals to the presence of interference signals

in radar, sonar, seismic and communication systems. The principal

reason behind this widespread interest lies in their ability to sense

automatically the presence of interference noise sources and to

suppress them, while simultaneously enhancing the desired signal

reception without the prior knowledge of the signal/interference

environment. The interference signals may not only consist of

deliberate electronic counter measures, nonhostile RF interferences,

clutter scatter returns and natural noise sources but also coherent

interferences. Coherent interferences can arise when multipath

propagation is present or when "smart" jammers deliberately introduce

coherent jamming by retrodirecting the signal energy to the receiver.

Also, the signal environment may consist of either narrowband or

broadband signal and interferences.

An adaptive array can be best described as a collection of

sensors, feeding a weighting and summing network, with automatic

signal dependent weight adjustment to reduce unwanted signals and/or

emphasize the desired signal. In the case of broadband adaptive

arrays, a tapped delay line is connected behind each sensor to

compensate for the inter-element phase shift. The weight coefficients

are adjusted recursively using suitable algorithms. In an adaptive

array, the interference suppression is obtained by appropriately

steering beam pattern nulls in the direction of interference sources,



while signal reception is maintained by preserving desirable main lobe

features. Therefore, an adaptive array system relies heavily on

spatial characteristics to improve the output signal-to-noise ratio

(SNR).

A wide range of algorithms have been reported in the signal

processing literature which can be used for adjusting the weights of

an adaptive array. These include the conventional least-squares (LS)

solution by direct matrix inversion or by Cholesky factorization, the

classical least-mean-square (LMS) algorithm, the recursive

least-square (RLS) algorithm, the fast RLS algorithms, QR

decomposition algorithms based on Givens, Householders and Modified

Gram-Schmidt techniques, and the rotation based fast RLS algorithms.

Some of these algorithms are suitable for implementation using VLSI

technology. Moreover, due to the recent advances in parallel computing

architectures and VLSI technology, various computational, numerical

and architectural concepts have merged. Consequently, it is becoming

increasingly difficult to comprehend the interrelationships and

tradeoffs among these concepts and approaches. A few of the above

techniques, viz, the direct matrix inversion and the LMS algorithm,

have been widely studied in the context of adaptive arrays. The

difficulties in obtaining the inverse of the correlation matrix, when

the matrix is ill conditioned, and the slow convergence and dependence

of the time constant on the eigenvalues in LMS algorithm, make these

techniques less attractive for application to adaptive arrays.

The QRD-LS algorithm based on Givens rotations has been

recommended in the literature for narrowband adaptive array

applications. This algorithm has fast convergence and is numerically
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stable but, unfortunately, it is computationally expensive because of

the square-root operations involved. Some of the other techniques,

viz, the RLS algorithm in the case of narrowband beamformers and

multichannel fast transversal filters (MFTF) and QRD-multichannel

lattice algorithms for broadband arrays have been discussed only

briefly in the literature and detailed investigations have not been

carried out so far. The recursive modified Gram-Schmidt (RMGS) and the

multichannel least-square Lattice (MLSL) algorithms have not been

studied at all in the context of adaptive arrays.

The adaptive arrays based on above mentioned algorithms are

effective in suppressing the interferences and enhancing the desired

signal reception in a noncoherent signal environment. However, these

techniques fail to suppress the coherent interferences. To overcome

this problem, methods such as the structured correlation matrix method

(redundancy averaging) and the spatial smoothing preprocessing scheme

have been proposed in the literature. Of the two, the spatial

smoothing scheme is more attractive and has received relatively wider

attention. Several modifications of this scheme have also been

proposed in the literature. Of these, the modified or forward/backward

spatial smoothing scheme is important. However, the adaptive

implementation in various algorithm based arrays has not received much

attention so far.

This work encompasses the study of adaptive arrays covering

the above aspects. A comparative study of the structured correlation

matrix method and the spatial smoothing scheme using an optimum

beamformer revealed that the structured correlation matrix method

introduces a bias while placing nulls in the direction of
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interferences. Also, the method is not suitable for broadband adaptive

arrays as in this case the correlation matrix is nontoeplitz even in

noncoherent situation. Moreover, the adaptive implementation of this

method in various algorithm based processor is not possible, where as

the spatial smoothing scheme is a practical method to suppress

coherent interferences in an adaptive array.

We next consider the study of adaptive arrays based on

recursive least-square algorithms having a computational complexity of

2
the 0(P ), where 'P' is the number of sensors in the array. It has

been found that the conventional RLS algorithm based array suffers

from numerical instability and fails to produce nulls in the direction

of interferences arriving from endfire directions. Though the QRD-LS

array based on Givens rotations has excellent numerical properties and

superior nulling performance, it is computationally expensive because

of the involvement of square-root operations. As an alternative, we

have proposed the use of RMGS algorithm and its error feedback version

for adaptive beamformers. These algorithms can also be implemented

using systolic structures. The arrays based on these algorithms have

numerical properties and nulling performance that are comparable with

Givens rotation based QRD-LS array and at the same time, they are

computationally less expensive. Therefore, the proposed RMGS

algorithms based arrays represent a good compromise between the

numerical stability and computational cost in the adaptive beamforming

problems. For broadband arrays, however, these algorithms turn out to

be computationally expensive with a complexity of the 0(P n), where

'M' is the number of taps in each delay line.
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Next, we consider the arrays based on Fast-RLS algorithms

for realizing broadband arrays. We have proposed the multichannel

least-square Lattice [MLSL] algorithm for broadband adaptive array

3
which has a computational complexity of 0(P M). Using MLSL algorithm

as the basis, we formulate the Givens rotation based QRD-MLSL

algorithm and apply it to the adaptive beamforming problem. We then

derive the MFTF algorithm and study the adaptive arrays based on these

algorithms. The algebraic approach has been used to derive these

algorithms. Of the three broadband arrays realized, the MFTF algorithm

has the least computational complexity.

Finally, we have considered, the spatial smoothing scheme

and the forward/backward spatial smoothing scheme as an effective

means to suppress coherent interferences. Our studies have revealed

that, in optimum beamformers, both the methods are effective in

placing nulls in the direction of coherent interferences. The adaptive

implementation of spatial smoothing scheme on the QR decomposition

algorithms, such as QRD-LS and RMGS algorithm based arrays, has

received little attention so far. We have proposed a method of

implementing spatial smoothing scheme on the arrays based on these

algorithms. In this method, the elements of the upper triangular

matrix are smoothed first and after a fixed number of snapshots, this

smoothed upper triangular matrix Is used to compute the optimum

weights of the beamformer. The proposed method has been tested through

computer simulations and produces deep nulls in the direction of

coherent interferences. In the forward/backward spatial smoothing

scheme, the signals of the respective forward and complex conjugated

backward subarrays are first averaged. Then, the resultant signals are



used to smooth the weights or the elements of upper triangular matrix.

Our numerical experiments show that the conventional spatial smoothing

scheme has a much superior nulling performance as compared to the

forward/backward spatial smoothing scheme.

The performance of various algorithms has been evaluated for

the narrowband and broadband arrays in noncoherent as well as coherent

interference environment, using computer simulations. Convergence

characteristics of various beamformers have been tested by computing

the residual power as afunction of the number of adaptation samples.

The comparative study has revealed that, QRD-LS array based on Givens

rotations has the fastest convergence and the least residual power.

The RMGS algorithm based array with error feedback has characteristics

comparable with those of the QRD-LS array.

The nulling performance of various arrays has been studied

with the help of voltage patterns. In the case of broadband arrays,

the output waveforms has also been extracted to demonstrate the

ability of the beamformers to track the desired signal.
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CHAPTER - 1

INTRODUCTION

Adaptive arrays are currently the subject of extensive

investigation as a means to reduce the vulnerability of reception of

desired signal to the presence of interference signals in radar, sonar

and communication systems. Interference signals may consist of

deliberate electronic countermeasures, nonhostile RF interference,

clutter scatter returns and natural noise sources. Adaptive arrays

have the ability to sense automatically the presence of interference

sources and to suppress the signal from these sources, while

simultaneously enhancing the desired signal reception without any

prior knowledge of signal / interference environment.

An adaptive array consists of an array of sensor elements

and a real time adaptive signal processor. The adaptive processor

automatically adjusts the array beam sensitivity pattern so that a

measure of the quality of the array performance is improved.

Interference signal suppression is obtained by appropriately steering

the beam pattern nulls and reducing sidelobe levels in the direction

of interference sources. At the same time, the desired signal

reception is maintained by preserving desirable main lobe features. An

adaptive array system, therefore, relies heavily on spatial

characteristics to improve the output signal-to-noise ratio (SNR).

In the following sections, we present a brief summary of the

earlier work carried out in the field of adaptive arrays, followed by

the statement of the problem and organization of the material in this

dissertation.



1.1 SURVEY OF THE EARLIER WORK

The term 'Adaptive Antenna' was first used by Van Atta [60]

to describe a self phasing antenna array that automatically reradiated

a signal in the direction from which it was received, thereby acting

as a retrodirective system.

The development of phase locked loops was a major step that

made self-steering or self-phasing type of adaptive array possible

[1]. A phase-lock-loop array operates by aligning the phase of the

signal from each element with that of a reference signal, before

summing the signals to produce the array output. In the 1960's, this

type of arrays were extensively studied. Some typical phase-lock-loop

arrays are described in a special issue [23] on active and adaptive

antennas. However, these arrays are vulnerable to interferences

because the phase-lock-loops can track only one signal at a time. If

an interference signal arrives that is stronger than the desired

signal, it can easily capture the antenna beam.

In 1957, Howells invented a sidelobe cancel lor capable of

automatically nulling out the effect of one jammer [20]. In 1966,

Applebaum derived the control law governing the operation of the

adaptive array antenna. The algorithm derived by Applebaum is based on

maximizing the signal-to-noise ratio at the antenna array output and

included the sidelobe cancel lor as a special case. His 1966 report was

reprinted in the 1976 issue of IEEE Transactions on Antennas and

propagation.

In 1966, Shor [54] introduced an adaptive array based on a

maximum signal-to-noise ratio (SNR) concept like the Applebaum array,

but differing from the latter in that, the Shor feedback loops are



•

based on a steepest ascent optimization of signal-to-noise ratio.

However, this array has not received much attention in the literature

because of its complexity.

Widrow and his coworkers at Stanford university proposed the

LMS algorithm for weight adjustment in adaptive arrays in 1967 [65].

The LMS algorithm is based on the method of steepest descent [22] and

minimizes the mean-square-error between the actual array output and

the ideal array output. There is little difference between the

Applebaum array and the LMS array from mathematical Viewpoint [8].

Rather, the difference between the two is more of application. The

Applebaum array is useful when the desired signal arrival angle is

known in advance, whereas, the LMS array is useful when a reference

signal correlated with the desired signal is available.

The adaptive arrays based on the LMS and maximum SNR

algorithms are simple from the point of view of implementation and

computational complexity. However, their slow rate of convergence

limits their applications to adaptive control problems presented by

small communications and data collection arrays [41]. For more complex

problems, such as command and control of remote vehicles or rapid

angular tracking in radar communication systems, algorithms with much

faster rate of convergence are often required. We briefly summarize

here the work carried out in the field of adaptive signal processing

for the above purpose.

The area of adaptive signal processing has grown at a rapid

rate during the last decade. The demand for high performance systems,

combined with the availability of ever increasing computational power,

has motivated the search for more sophisticated signal processing



algorithms capable of operating in uncertain, time varying

environments. The basic aim is to reduce the computational complexity

to a level comparable to that of LMS algorithm and, at the same time,

achieve a much faster convergence. This has led to several new

algorithms. These algorithms are based on the method of least-squares

in which the index of performance minimized is the sum of weighted

error squares. Depending on the structure used for implementing the

adaptive filter, four different classes of algorithms are identified

that originate from the method of least-squares.

(I) Recursive Least-squares Algorithm

The RLS algorithm bears a close relationship with the Kalman

filter algorithm [17] and has been derived independently by

several investigators. However, the original reference on the

RLS algorithm appears to be that of Plackett [47].

This algorithm assumes the use of a tapped delay line

structure (transversal filter) as the basis of the adaptive

filter. The transversal filter is a continuous time device

whose input is formed as a linear combination of voltages taken

from uniformly spaced taps in a non-dispersive delay line [27].

The derivation of the algorithm is based on a result in linear

algebra known as matrix inversion lemma [22]. The RLS algorithm

provides a much faster rate of convergence than the LMS

algorithm, at the expense of increased computational

complexity.

(ii) Fast Recursive Least-squares (Fast-RLS) Algorithm

By exploiting certain properties that arise in the case of



serialized data, various schemes have been developed to

overcome the computational complexity of RLS algorithm. There

are two families of fast RLS algorithms viz, the fast

transversal filter (FTF) algorithm [6] and the fast Lattice

algorithms [12]. The FTF algorithm uses a parallel combination

of four transversal filters. On the other hand, the Lattice

algorithm uses multistage lattice predictor as the structural

basis of the adaptive filter to resolve the issue of

computational complexity. This predictor consists of a cascade

of stages, each in the form of lattice. An important property

of multistage lattice predictor is that its individual stages

are decoupled from each other in a time averaged sense. This

property is exploited in the derivation of recursive

least-square lattice algorithm [12]. The multistage lattice

filter has a highly pipelined modular structure and is well

suited for implementation using very large scale integration

(VLSI) technology.

These algorithms effectively retain the advantages of the

conventional RLS algorithm and yet, their computational

complexity is reduced to a level comparable to that of simple

LMS algorithm.

(Hi) QR Decomposition Least-square Algorithms

These algorithms are based on orthogonal transformations.

There are three well established orthogonalization techniques,

viz, Givens, Householders and modified Gram-Schmidt procedures

[29], which are termed as QR techniques in mathematics



literature. This term comes from the fact, that these

algorithms perform decomposition of the data matrix as a

product of an orthogonal matrix Q and an upper triangular

matrix R.

The QR decomposition algorithm based on Givens rotations is

popularly known as QRD-LS algorithm and was introduced in 1981

by Gentleman and Kung [15]. The algorithm configuration

consists of two stages. The first stage involves an orthogonal

triangularization process that is achieved by applying the QR

decomposition method, based on Givens procedure, directly to

the input data matrix in a recursive fashion. As new input data

enters the computation, the recursive procedure conducts a

linear transformation of the input data matrix into upper

triangular form. At the end of entire recursion, this special

structure of the data matrix is exploited to compute the

least-square weight vector. The algorithm is stable, robust,

rapidly convergent but computationally expensive.

Ling and Proakis [36] have derived another equally

efficient, but computationally less expensive, QR decomposition

recursive least-square algorithm using modified Gram-Schmidt

procedure [61]. This algorithm is known as recursive modified

Gram-Schmidt (RMGS) algorithm. They have also derived an error

feedback form of this algorithm which has better numerical

properties compared to the basic RMGS algorithm. These

algorithms also act directly on the input data matrix in a

recursive fashion and convert it into an upper triangular form.

All the above mentioned algorithms may be implemented using



a systolic array which represents a highly efficient and

dedicated structure. The systolic structure offers the

desirable features of modularity, local interconnections, and

highly pipelined and synchronized parallel processing. All

these properties make systolic arrays particularly well suited

for VLSI implementation.

(iv) The QR-LSL Algorithm

The fast-RLS algorithms, viz, the FTF and least-square

lattice algorithms have a computational complexity that is

comparable to the simple LMS algorithm. However, they are not.

very stable in the numerical sense. On the other hand, QR

decomposition algorithms are highly stable but computationally

expensive. Due to this reason, there has been an increasing

interest in rotation-based fast-RLS algorithms which are

numerically more robust. These algorithms are also known as

fast QR algorithms. Cioffi [7] has developed a fixed order fast

adaptive ROTOR'S (FAR) algorithm which can be interpreted as a

QR-based fast Kalman algorithm. This algorithm can be

implemented with a pipelined array of processors called

"ROTORS" and "CISORS".

Ling [37] has described an order-recursive-rotation- based

QR-LSL algorithm using the relationship between Givens

rotation based algorithms and modified Gram-Schmidt method.

Proudler et al, [49] have suggested another approach of

deriving a QR-LSL algorithm from the Givens rotation based



QRD-LS algorithm. Regalia and Bellanger [51] introduced a

family of QR-lattice fast least-square algorithms by exposing

the duality between the Gram-Schmidt orthogonalization and the

lattice algorithm. Yang and Bohme [68] have pointed out a

fourth possibility. It differs from previous ones in that it

starts directly with lattice recursions. In this approach, the

LSL algorithm is reformulated to a rotat ion-based one by

suitable transformation of the filter quantities. This is

achieved in two steps: first by the use of Cholesky

decomposition to transform from covariance domain to

information domain and, subsequently, using the time recursive

QR-update technique to incorporate new data into square-root

factor produced by Cholesky decomposition.

These algorithms have the advantages of both the approaches,

that is, the numerical robustness of the QR algorithms and the

computational simplicity of lattice algorithms. Further, they

can be implemented using highly pipelined structures.

Of the above mentioned algorithms, the RLS algorithms have

been suggested by Brennan et al, [4] and Baird [3] for adaptive

beamforming applications, but extensive results on the performance of

RLS beamformer are not available in the literature. Ward et al [62]

have proposed the QRD-LS algorithm based on Givens rotations to the

adaptive beamforming problem. This beamformer has been reported to

have excellent numerical properties and nulling abilities, but is

computationally expensive. Application of fast RLS algorithms, viz,

FTF and LSL, and the hybrid QR-LSL algorithms to adaptive beamforming

8



requires their multichannel formulations. Slock and Kailath [58] have

presented a form of multichannel FTF algorithm for broadband

beamforming. Similarly, QR-multichannel LSL algorithm has been

presented by Mcwhirter 'and Proudler [40] for broadband beamforming.

However, they have not provided results on the performance of these

algorithms in adaptive beamformers. The fast lattice (LSL), RMGS and

the QR-LSL algorithm based on Cholesky factorization have not been

studied so far, in the context of adaptive beamformers.

The interfering signals in the signal environment of an

adaptive array may be either noncoherent or coherent with respect to

the desired signal. The coherent interference problem arises due to

multipath propagation or due to 'smart' jammers. Smart jammers are

used in a hostile environment to induce such phenomenon deliberately.

The adaptive arrays, viz., the Howel1-Applebaum array and

the LMS array are designed under the assumption that the interfering

signals are noncoherent with the desired signal. These conventional

forms of adaptive beamformers breakdown in the presence of coherent

interfering signals. This problem was intially identified by White

[63], Gabriel [14] and Widrow et al, [64]. Shan and Kailath [57]

described an adaptive beamformer that incorporates 'Spatial Smoothing'

as a means to overcome the coherent interference problem. Spatial

smoothing is a preprocessing scheme that partitions the total array of

sensors into subarrays and generates the average of the subarray

covariace matrices. They have also shown that when this averaged

covariance matrix is used in conjuction with conventional arrays, a

minimum of 2K sensor elements are required to null (K-l) coherent

interferences. Thus, the method suffers from reduced effective



aperture area. To overcome the problem of reduced effective aperture

area, a modification to the spatial smoothing scheme, known as

forward/backward spatial smoothing scheme, has been suggested by Evans

[11]. This method has been further investigated by Williams et al,

[66] and pillai et al, [50] in the context of direct ion-of-arrival

estimation, using signal subspace algorithms. The method has been

reported to provide a larger effective area as compared to the spatial

smoothing scheme, without much increase in computational burden.

An alternative solution, known as structured correlation

matrix method, to the problem of coherent interferences in adaptive

beamforming has been suggested by Godara [18]. In this method, the

output covariance matrix of the array is averaged along the diagonals,

and each element on the diagonal is replaced by its average. This

method preserves the array aperture and, thus, does not suffer from

the problem of reduced effective aperture.

Of the above mentioned spatial averaging schemes, the

spatial smoothing scheme has received wider attention and has been

studied by various researchers [52,69] using an optimum beamformer.

However, in real time applications, it is necessary to implement the

scheme adaptively which can be done by using time recursive

algorithms, such as, LMS, RLS and QR decomposition algorithms. The

adaptive implementation of spatial smoothing scheme, using various

time recursive algorithms has not received much attention. Only Shan

and Kailath [57] have briefly discussed this aspect, using LMS

algorithm. Similarly, implementation of the forward/backward spatial

smoothing scheme for adaptive beamformers has also not received much

attention. Only Park and Un [45] have discussed the adaptive

10



implementation of this scheme. In their scheme, the forward/backward

spatial smoothing scheme is incorporated by rearranging the spatial

subarray data in a parallel manner using a set of subbeamformers based

upon QRD-LS algorithm. This constitutes a parallel implementation of

forward/backward spatial smoothing scheme.

The signal environment of an adaptive array may consist of

either narrowband or broadband signal and interferences. If the

signals are broadband, a tapped delay line is connected behind each

element of the array. This type of arrays have been studied

extensively using LMS algorithm [65,16]. The multichannel FTF and the

hybrid QR-multichannel lattice algorithms have been proposed by Slock

et al, [58] and, Mcwhirter and Proudler [40], respectively for

broadband beamforming. However, they have not provided any results on

the performance of beamformers based on these algorithms. Moreover, it

is not clearly known, whether the multichannel forms of the fast RLS

algorithm retain the advantages they possess in their single channel

form. The orthogonalization based QR decomposition algorithms, viz,

the rotation based QRD-LS and RMGS algorithms have also not been

studied, so far, in the context of broadband beamforming.
t

1.2 STATEMENT OF THE PROBLEM

The present work encompasses a study of various adaptive

algorithms with reference to their application to adaptive beamforming

problem. Detailed investigations have been carried out on the

numerical properties, convergence characterises and nulling

abilities of the adaptive beamformers based on different algorithms.
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The algorithms derived from the method of least-squares with

exponentially windowed complex signals are considered for the above

purpose. Application of spatial smoothing scheme and forward /

backward spatial smoothing scheme for combating coherent interference

problem in adaptive beamformers is also studied. Schemes to implement

these two averaging schemes in adaptive beamformers have been

presented.

The problem, as treated in this study, may be divided into

three main parts.

(i) A comparative study of adaptive beamformers based on RLS,

RMGS, RMGSEF and rotation based QRD-LS algorithms for

narrowband signal environments,

(ii) Performance evaluation of broadband adaptive beamformers

based on RLS, RMGS, RMGSEF, rotation based QRD-LS algorithm

and fast RLS algorithms,

(iii) A study of spatial averaging schemes using different

adaptive algorithms to combat coherent interference in

adaptive beamformers.

In all the numerical examples presented in this

dissertation, 6-element uniform linear array of isotropic elements has

been considered, unless otherwise specified. The desired signal of

strength 0.1 has been assumed to arrive from a direction broadside to

the array. Normalized centre frequency (o> ) of the desired signal has

been assumed to be 1. In case the desired signal is broadband, the

bandwidth (A) has been assumed to be 0.5 and the normalized centre

frequency is 1.

12



1.3 ORGANIZATION OF THE DISSERTATION

The work embodied in this dissertation has been arranged in

six chapters. In chapter 2, we review some of the basic concepts in

the area of adaptive beamforming. These include the

least-mean-square(LMS) criterion, the LMS algorithm and the Frost

array. Next, adaptive beamforming in coherent-interference environment

is briefly reviewed and the two techniques, namely, the spatial

smoothing scheme and the structured correlation matrix method, have

been compared on the basis of computer simulation results.

The exact least-square algorithms have been discussed in

chapter 3 in the context of adaptive beamforming. We first introduce

the least-square filtering problem and present an overview of the

recursive least square algorithm. Next, the exact least-square error

criterion is redefined in data domain and the QRD-LS algorithm based

on Givens rotations is discussed. Then, we propose the RMGS algorithm

as a suitable alternative to the more computationally complex QRD-LS

algorithm for the adaptive beamforming problem. Finally, the results

of an extensive numerical study of these beamformers are presented

followed by a discussion of their relative performances.

In chapter 4, we discuss adaptive beamformers based on

least-square lattice, the hybrid multichannel QR-lattice (QR-MLSL)

and the multichannel FTF algorithms. These algorithms have been

derived using the algebraic approach. Finally, we discuss their

suitability for beamforming applications on the basis of computer
simulation results.

The forward/backward spatial smoothing scheme has been

introduced in chapter 5 and schemes for adaptive implementation of

13



spatial smoothing and forward/backward spatial smoothing techniques,

using various adaptive algorithms, have been discussed. Finally, we

discuss their utility in adaptive beamformers to overcome the coherent

interferences on the basis of computer simulation results.

Chapter 6 concludes the dissertation with a comparison of

adaptive beamformers based on various algorithms in noncoherent signal

environments followed by a comparison of spatial averaging schemes to

overcome coherent interference problem.

Also included are five appendices which respectively contain

the complex gradient operator, derivations of time recursive equations

of the complex RMGS algorithm, proofs for the relations between

lattice and hybrid QR-lattice algorithms and derivation of the

equation for extended Kalman gain vector.
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CHAPTER - 2

ADAPTIVE BEAMFORMERS FOR NON-COHERENT AND COHERENT INTERFERENCE

SUPPRESSION - A REVIEW

In this chapter, some of the basic concepts in the area

of adaptive beamforming have been briefly reviewed. An optimum

beamformer, based upon the Least-Mean-Square(LMS) criterion, is

described first for the suppression of narrowband interferences which

are noncoherent with the desired signal. This leads to the Weiner-Hopf

equation in matrix form. The adaptive implementation is briefly

explained using the well known LMS algorithm. Next, the imposition of

signal protection constraint, which ensures a constant gain, in a

prescribed look-direction, is discussed in the context of a broad-band

adaptive array. Finally, adaptive beamforming for coherent

interference suppression are briefly reviewed and the two main

techniques, namely, the spatial smoothing preprocessing scheme and the

structured correlation matrix method, have been compared on the basis

of computer simulation results.

2.1 THE LEAST-MEAN-SQUARE ADAPTIVE ARRAY

Fig. 2.1 shows a typical adaptive beamformer. It consists of

a uniform linear array of 'P' identical sensors receiving 'K'

narrowband signals, that arrive at the array from directions

e0t©j» •••t©K_j. and an adaptive processor for automatic weight

adjustment. The signals are assumed to be complex analytic. The

desired signal is assumed to be at an angle e and is of the form
o



xp(t) O

Circuit for

automatic weight

adjustment

y(t)
> -> Output

eft) ^>v Desired
c ( Z V«— signal
Error ^-^+ d(t)
signal

Fig.2.1.Adaptive Array with Automatic Weight Adjustment
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Sit J - SQe o ^o ... (2. i)

where Sq, wq and 0qJ respectively, denote its amplitude, frequency and

phase. The phase <f>Q is taken to be a uniformly distributed random

variable with the probability density function

'."{
1

o
- 0 z <j> s 2n

! ° ...(2.2)
0 elsewhere

The remaining (K-l) signals are interfering or jamming

signals of the form

J.(t) = S.eJ(V + V i - 1,2 K-l ... (2.3)

where S., «. and 0. are respectively, the amplitude, frequency and

phase of the i interfering signal.

We define a column vector S as

S=[S(t), J(t)]T ...(2.4)

where,

J(t) • fj1(t),j2(t) JK-i(t)1 ...(2.5)

and the superscript 'T' denotes the transpose operation.

The direction or the steering vector of the 1th source,

a(x ) is given by

a(x.) -[l,e-JVi e-J(P-l)Vi ]T,
1 =°.l K-l ...(2.6)

where t. = (d/c)sine., 'c' being the propagation velocity of

planewaves and 'd' being the interelement spacing. Here, 'd' is

17



assumed to be less than or equal to half wavelength to avoid spatial

aliasing problems.

If we define a matrix A of steering vectors

A= [a(x0), a(Tj) at-c^)] ...(2.7)

and assume white Gaussian noise n.(t), at each element, the received
1

signals at the array can be written as

X(t) =[XjCt), x2(t) ,xp(t)]T
= A S + n(t)

= a(TQ) S(t) + A J(t) + n(t) ...(2.8)

where A is a P-by-K matrix and A is a P-by-(K-l) matrix. It is assumed

here that the signal, interferences and noise are all stationary,

zero-mean random processes uncorrelated with each other.

The output of the array, Y(t), is the weighted sum

Y(t) = w" X(t) ...(2.9)

where

TW = [w1(w2 , wp] ...(2.10)

is a weight vector determined according to the Least-Mean-Square error

criterion and the superscript 'H' denotes the Hermitian transpose.

For discrete systems, the input signals of the array are in

discrete time sampled data form and the output of the array is written

as

Y(n) =^ X(n) ...(2.11)

where 'n' denotes the sampling instant.
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In order that the adaptation takes place, a "desired signal"

d(t), when in time continuous form, or d(n), when sampled, must be

applied to the beamformer. The difference between the desired response

and the array output forms the error signal, e(n), given by

e(n) = d(n) - V^Xtn) ...(2. 12)

This signal is used as a control signal for the weight

adjustment circuit. The purpose of adaptation is to find a set of

weights that permit the output of the adaptive array, at each instant

of time, to be as close as possible to the desired signal. There are

'N' such equations corresponding to 'N' instants of time and 'P'

unknown weight values which form components of W.

When 'N' is very large compared to 'P', the minimization of

the sum of squares of errors gives the required solution. That is, a

N ,
set of weights W is determined so as to minimize S.e(n)e (n) Since

n=l

the signals are assumed to be stationary, the quantity of interest is

the expected value of the mean squared error

E|e(n) e(n)j =e2 ...(2.13)

where the asterisk denotes the complex conjugation.

The mean-square-error can be calculated by substituting

eqn.(2.12) in eqn.(2.13) which yields

-2
c =Ed(n) d*(n)j +w" $W-w" 6-§H W ...(2.14)
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where $ and 6 are, respectively, the correlation matrix and the cross

correlation vector which are given by

Xj(n)x (n)

$ = E
x2(n)x (n)

XptnJx^n)

9 = E

x (n)d (n)
1 *

x2(n)d (n)

Lxp(n)d (n)

xx(n)x2(n) x (n)x (n)

x2(n)x2(n) x2(n)xp(n)
...(2.15)

xp(n)x2(n) xp(n)x (n)

.(2.16)

-2 .It may be seen from eqn. (2.14), that e is a quadratic

function of the weight vector W. The weight vector yielding minimum of
-2
e , which we denote by W , may be found by setting

VM" ..(2.17)

where Vw denotes the gradient with respect to W (See Appendix-A)

Since,

we find

#}' -2 9 + 2 $ W

$ W =9
-opt

.(2.is;

(2.19]
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or

-opt - * § ...(2.20)

•

where $ is assumed to be nonslngular, so that its inverse exists. If

thiS -opt is used in eqn. (2.11) to compute the output of the array,

the beamformer is called an 'optimum beamformer'. Eqn.(2.20) is the

Wiener-Hopf equation in matrix from and is, consequently, referred to

as the optimum Wiener solution.

If we use d(n) = S(n), it then follows from equations (2.1)

and (2.8) that

§= E[x(n) d*(n)] =S2a(To) ...(2.21)

Therefore,

W™t = S2 * Xa(r ) (0 ~o1-opt o - o ...(2.22)

Since the desired signal, interferences and noise are all

assumed to be uncorrected with each other, the correlation matrix,

* in the above equation can be expressed in factored form as [41]

*=Sq a(xo) a (x )+• + cr2 I ...(2.23)

where I is the identity matrix.

In eqn.(2.23), S2 a(xQ) aH(TQ) represents the correlation
matrix of the desired signal, $JJ is the correlation matrix for the
interferences and cr2I is the noise component.

We can write

*..+ <r2 I = $
JJ nn ...(2.24)
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so that

2 H
$ = S a(x ) a (x ) + * ...(2.25)

o - o - o nn

Using matrix inversion lemma[22], eqn.(2.22) can be

simplified as

,2

w *-opt

S
o

1 + S2 aH(x )$ * a(x )
o - o nn - o

*^a(ro). ...(2.26)

In the above equation, the term inside the square brackets

is a scalar and, therefore, W can be written as
-opt

V " 0 *nn ^V ...(2.27)

where fi is a scalar constant.

Besides the Least-Mean-Square error criterion discussed

above, other criteria can also be used for optimizing the adaptive

array. All these criteria, however, lead to the same expression for

the optimum weight vector (eqn.(2.27)) ; only the value of the scalar

constant 0 changes. For example, Howe11-Applebaum array is also an

optimum array that maximizes the signal to interference plus noise

ratio (SINR). In the case of Frost array, which will be discussed

subsequently, the optimal weight vector is obtained by minimizing the

array output power, subject to unity gain constraint in the look

direct ion.

The ability of the array to place nulls in the direction of

interferences can be explained as follows. If we express the

correlation matrix * in modal representation [57], then
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K-l
#. . = A
JJ

E[j(n) JH(n)] AH=Va. e. .« ...(2.28)

Where A. and e., respectively, denote the nonzero eigenvalues and

corresponding eigenvectors of the P-by-P matrix $JJ. The matrix will
have a rank (K-l) because A has full rank. Also E[J(n)JH(n)] has rank

(K-l), it being the Covariance matrix of (K-l) noncoherent

interferences. If we assume that the noise intensity is very small
compared to the interference signals j.(t), so that

\ » <r2 and (l/«r2) » -J for y=1>2> R
A. + cr

1

Then we can write

W , = 8* 1a.(T '
-opt ' nn- o

K-l , P
r __ 1 H _

ll

= ^^^^^ -..(2.29)
Where p. = e. a(TQ). By construction, the direction vectors

(atTj),..., aCT^jj of the interference signals, which are columns of
matrix A, lie in the span of first (K-l) eigenvectors L e 1

\-l"-K-lJ

and are therefore. orthogonal to the regaining eigenvectors

Thus we have

-opt ^(V " -2 ZP! 2l a(Tl) -0, 1-! K ...(2.30)

'H 2 —2e e"+ £ (i/c-2) ,H
1-1 A, + «/ 1 * i=K _1 -1
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Therefore, the beam pattern will have deep nulls in the direction of

interferences.

It can be seen from eqn.(2.20), that the computation of the

optimum weight vector, W requires the knowledge of two quantities :

(i) the correlation matrix $ and (ii) the cross correlation vector 9.

The correlation matrix * plays a key role in the statistical analysis

and design of optimum beamformers. Hence, it is necessary to know its

properties. The correlation matrix $ is Hermitian and Toeplitz in

structure and is always nonnegative definite. Also, all the

eigenvalues of the matrix $ are real and nonnegative and the

eigenvectors corresponding to distinct eigenvalues are linearly

independent with each other [22].

Although the solution of eqn.(2.20) is straight forward, it

presents serious computational difficulties when the number of

elements 'P' is large and the data rate is high. Not only it is

necessary to invert a P-by-P matrix, but P(P+l)/2 autocorrelation and

cross correlation measurements are required to obtain the elements of

$>. Also, no perfect solution of eqn. (2.20) is possible in practice,

because larger number of samples would be required to estimate the

elements of the correlation matrix accurately [65].

An alternative method for minimizing the mean-square-error

is the Least-Mean-Square[LMS] algorithm. This method does not require

explicit measurements of correlation functions or matrix inversion and

accomplishes the minimization by gradient search technique.
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2.1-1 The Least-Mean-Square[LMS] Algorithm

The LMS algorithm is based on the method of steepest descent

[42]. According to this method, the value of the weight vector at time

(n+1) is computed using the simple recursive relation

W(n+1) =W(n) +|Mr-V(n)l ...(2.31)

where W(n) and W(n+1), respectively, represent the weight vector

before and after adaptation, u is a scalar constant controlling the
A

rate of convergence and V(n) is the estimate of the gradient vector.

In the LMS algorithm, the estimate of the gradient vector
A *

V(n), where the symbol 'a' denotes the estimate, is developed by

substituting the instantaneous estimates of the correlation matrix, $

and the cross correlation vector 9, in eqn.(2.18). These instantaneous

estimates are based on sample values of the input signal vector and

the desired response which are defined as

•<n) =X(n) XH(n) ...(2.32)

9(n) =X(n) d*(n) ...(2.33)

Correspondingly, the instantaneous estimate of the gradient
vector is given by

A

V(n) =-2X(n) d*(n) +2X(n) XH(n) W(n)
..(2.34)

Substituting V(n) in eqn.(2.31), we get

W(n+1) =W(n) +MX(n)[d*(n) -XH(n) W(n)l ...(2.35)
Equivalently, this result may be written in the form of a
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pair of equations given by

e(n) = d(n) - WH(n) X(n) ...(2.36)

*

W(n+1) = W(n) + u X(n) e (n) ...(2.37)

Eqn. (2.36) defines the estimation error e(n), the

computation of which is based on the current estimate of the weight

vector W(n). The iterative procedure is started with an initial guess

W(0)for which a convenient choice is the null vector. The scalar

constant ,u, controls the rate of convergence and the stability of

algorithm. For convergence to occur, u should be so chosen that,

0 < u < 2/A where A is the largest eigenvalue of the correlation
max max

matrix $.

The main virtue of LMS algorithm is its simplicity, since it

requires only 3P arithmetic operations per time sample. However, it

needs a large number of data samples to guarantee convergence. Also,

it cannot handle a scenario of multiple jammers with different powers

[70], and is sensitive to signal statistics. The algorithm is

summarized in Table 2.1.

2.1-2 Sample Results

The following numerical example compares the performance of

the LMS beamformer with that of the optimum beamformer.

In this example, a uniform linear array of six isotropic

elements has been assumed. The signal environment consists of a

desired signal and four noncoherent interferences. The arrival angles

and signal strengths of the interferences are given in Table-2.2.
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Table 2.1

Summary of the LMS Algorithm

Input definitions

w^o) = o, i = 1,2 P

0 < u < 2/A
max

Algorithm

For n = 1,2,.... N do

For i = 1 to P do

e(n) = d(n) - w.(n) x.(n)

w^n+1) =Wi(n) +u x.(n) e*(n)

Total

Complexity

P (T 2. 1.1)

2P (T 2. 12)

3P

Table 2.2

Interference Parameters for Narrowband Beamformers

parameter Interference 1 Interference 2 Interference 3 Interference 4

10.0

30°

1. 1

10.0

-30°

0.9

10.0

60°

1.2

10.0

-60°

0.8

In the case of the optimum beamformer, the array correlation

matrix, <*, was computed using 1000 snapshots of data and then a noise

power o-2 = 0.001 was added to its diagonal elements. Gaussian
elimination technique was used to obtain its inverse. The eigenvalues

of the correlation matrix are. 783.76, 452.96, 596.79, 564.01, 0.05,

0.001 and as expected, these are all real and nonnegative.

In the case of LMS array, the weight vector was initialized
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with all its components set to zero. Corresponding to the largest

eigenvalue, the permissible upper bound for u was found to be 0.0255;

a value of 0.0001 was selected for the present problem. The internal

antenna noise was simulated by generating independent, normally

distributed, random numbers using Box-Muller's transformation on

uniformly distributed numbers in the range (0,1) [55]. Since, the LMS

algorithm takes a large number of iterations to converge, 1000

iterations were used.

The performance of the array was evaluated by computing the

array pattern. A unit amplitude test signal was assumed to be incident

upon the array from an angle ©. The voltage pattern was then obtained

by computing the array output Y (eqn.2.11) as a function of e.

Fig.2.2 shows the computed patterns for the optimum

beamformer and the LMS array. As can be seen from the figure, both

techniques succeed in placing nulls in the direction of interferences.

However, the nulls placed by the LMS array are relatively shallow as

compared with those produced by the optimum beamformer. This is

because the LMS algorithm is based on a statistically defined error

criterion and uses instantaneous estimates for the correlation matrix

$ and the cross correlation vector 9. Moreover, the LMS algorithm is

based on the steepest descent technique which is an approximate

technique.

To illustrate the numerical properties and the convergence

characteristics of the LMS array, the output residual power as a

function of the number of adaptation samples is shown in Fig.2.3.

Here, the output residual power at the time instant 'n' has

been defined as
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FIG.2.2 VOLTAGE PATTERNS OF NARROWBAND BEAMFORMERS
WITH INTERFERENCES ARRIVING AT 30o,-30°,60° & -60°.
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Pp(n) = |e(n)|2 - |Y(n) -d(n)|2 ...(2.38)

As can be seen from the figure, the LMS array exhibits poor

convergence. The residual power gradually reduces from about - 17dB to

a steady state value of about -40dB after 500 iterations.

2.2 THE BROADBAND ADAPTIVE ARRAY

In sec.2.1, it has been assumed that the signals are

narrowband. The pattern nulls are placed in the direction of

interferences by a set of weights denoted by the weight vector W. In

the event the desired signal and the interference signals are

"broadband", that is, signals have a frequency content encompassing a

significant bandwidth, the performance of the array will be degraded.

This is because the interelement phase delay depends on frequency

which makes the selection of appropriate weight vector for one

frequency c^, not appropriate for a different frequency u and the

array pattern null shifts as the value of wavelength of the desired

signal, Aq, changes. This fact leads to the conclusion that different

weight vectors are required at different frequencies, if an array null

is to be maintained in some direction for the frequencies over a band

of interest (41,81.

A simple and effective way of obtaining different weight

vectors at a number of frequencies over a band of interest is to use a

tapped delay line network coupled with weights, as shown in Fig.2.4.

The tapped delay line network allows the array to insert a variable

amount of phase delay behind each element. This delay can be used by

the processor to compensate for the interelement propagation delay. If
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the tap. spacing is sufficiently close, the network approximates an

ideal filter which allows complete control of gain and phase of each

frequency in the pass band.

The basic configuration of a broadband beamformer is shown

in Fig. 2.4. Behind each of the 'P' sensors, a tapped delay line is

connected which consists of 'M' tap points, (M-1) time delays of 5

seconds each and 'M' complex weights. If x^t) xp(t) denote the

signals at the array input, we may define a complex vector X (t), such

that

X[(t) =[Xl(t),x2(t) xp(t)] ...(2.39)

In all the delay lines, signals appearing at the second tap

point are merely a time delayed version of the signals appearing at

the first tap point. So acomplex vector X2(t) may be defined as

X^(t) =jxjU-3), x2(t-S) xp(t-6)l ...(2.40)

Continuing in the same manner for all M tap points, the

complete signal vector for the entire array becomes

XT(t) =[xj(t), jg(t) xj(t)] ...(2.41)

The reason for expressing the signal vector in this form is

that this construction leads to a block Toeplitz form for the

correlation matrix, *>, of the input signals.

Similarly, the weight vector for the entire array can be

written as
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where

[T T T]
-1' -2* -Mj

-1 [Wll" W21'W31' , w
PI

..(2.42)

.etc, .(2.43:

As a consequence of signal and weight vector definitions

introduced above, the array output can be written as

Y(t) = ] Xm(t
M ,. -H

• E w x
u.\ -m -n

m=lL J

= W11 X(t). (2.44]

which is exactly of the same form as in eqn.(2.11).

2.2-1 Adaptive Array with Constraints

The addition of constraints to the LMS adaptive array was

first described by Frost [13]. This algorithm called the "constrained

LMS" algorithm, is a simple stochastic gradient algorithm in which the

direction of the arrival of the desired signal and a frequency band of

interest are defined a priori. A major advantage of this algorithm is

its self-correcting feature. This feature permits it to operate for

arbitrarily long periods of time in a digital computer implementation,

without deviating from its constraints, because of cumulative round

off and truncation errors [13].

Assuming that, the signals are in discrete time sampled

form, eqn.(2.44) can be written as
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Y(n) = W** X(n) ...(2.45)

The expected output power of the array is

EJY(n) Y*(n)l =e[ w" X(n) XH(n) W(n)l

= 2 * W ...(2.46)

thThe constraint that the weights on the m vertical col umn

of tap points sum to a chosen number 1 is expressed by the

requirement

^m y = V m = l>2 M ...(2.47)

where PM-by-1 vector C has the form
-m

cT =
-m =[° °>° o.i i,o,,,,,ol .(2.48)

th ^ r, ,m group of P elements

Constraining the weight vector to satisfy the M equations in

(2.47), W is restricted to a (PM-M) dimensional plane.

Now, we define the constraint matrix C as

'[£. S* Em] ..(2.49;

which is of dimension PM-by-M.

We also define $ as the M-dimensional vector of weights of
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the look-direction equivalent tapped delay line (Fig.2.5), as

?= [h lu 1m] -..(2.50]

The constraints in eqn.(2.47) can now be written as

CT W = $ ...(2.51

As the look-direction frequency response is fixed by M

constraints, minimization of the nonlook-direction noise power is the

same as the minimization of total output power. Thus, the problem of

finding the optimum weight vector W can be summarized as
-opt

nimize VT^ $ Wmi

T
Subject to C W = § ...(2.52)

This is called the constrained LMS problem.

The optimum weight vector W
-op

Lagrange multipliers and is given by [13]

The optimum weight vector W is found by the method of
-opt

,-1

-opt =*X£fcH *_1 S] t ...(2.53)

The above equation is not easy to interpret because of the

complicated way the constraint matrix C appears in the equation.

However, a simple example will make it clear. Suppose it is desired to

minimize the interference and noise, while maintaining the array

response in the desired signal direction equal to unity. The
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constraint is then

ij

a (tq> W = 1. ...(2.54)

Therefore,

C = a(TQ) and $ = 1 ...(2.55)

Substituting for C and | in eqn.(2.53), we get

V =*_1 ^V^V V1 5(To}] ...(2.56)

Comparing the above equation with eqn.(2.27), We have

0=[^H(t0) $_1 5(to)J ...(2.57)

Since 0 is a scalar, premultiplying the eqn.(2.56) by

a (x ), we have
- o

it a (t ) * a(x )
•,nr_ in - o - Oa (x ) W = — _ =i f? RR1o -opt H, , -1 , . •••1^-SoJ

a (t ) * a(x )
- o - o

So the desired constraint relation is automatically satisfied.

There are also other ways of using the constraints. For

example, a constraint could also be used to produce a fixed null in

the array pattern in a certain direction, if desired. Such a

constrained null might be useful if a source of interference exists at

some known angle [8].
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2.2-2 Broadband Signal Simulation

When statistically independent white noise samples are

filtered, the shape of the resulting power spectrum, or "colour", of

the resulting sequence is determined by the transfer function of the

filter [55]. The digital filtering algorithm, in general, produces

samples that are correlated, resulting in a nonwhite spectrum.

For the simulation of a random function with a predetermined

power spectrum, the input power density, §xx, is made equal to unity

at frequencies below one-half of the sampling rate. Therefore, the

variance of the input samples is

7T/2

"x = 2i J §xx(>) dw =| ...(2.59)
-7T/2

where T is the sampling interval. Thus, if rn is the nth independent
uniform random sample between 0 and 1generated by acomputer library
routine, then

d = 12 (v 1]n V T In 2J ...(2.60)

would be the appropriate white noise sample.

In a general purpose computer program, the process begins

with the generation of independent random samples rn in the interval
(0,1). Each sample rn is then converted to ^ asample of the white
uniform sequence using eqn. (2..60). It is then fed through a bandpass
filter to produce the desired sample set, g .

m

As an example, we consider the generation of the random
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sequence of a broadband signal with unit power density, having all its

power concentrated between 0.75Hz and 1.25Hz. We use a sampling

interval of T- 0.05 sec, which is well below one half the sampling

rate of the centre frequency 1Hz of the desired broadband signal.

The situation calls for a bandpass filter with a pass band

0.75Hz-1.25Hz. We have used the Butterworth bandpass filter routine

SPFIL2 [55], with five sections in cascade, to simulate the filter on

the computer. The details of the sequence generation process are

illustrated in Fig.2.6. The program causes a white uniform sequence

to be generated and then filtered to produce g^ The routine is called
with frequencies 0.0325 and 0.0625. The filter has been assumed to
have 10 two-pole sections.

The entire sequence g^ a broadband signal of bandwidth
0.75-1.25Hz, is shown in Fig.2.7.

white uniform
sequence

Band pass filter
0.75 Hz-1.25 Hz

Non-white random
sequence

Fig. 2.6 Generation of a broadband signal

2.2-3 Sample Results

The following example simulated on the computer illustrates

the ability of the Frost array to null broadband interferences.

We consider a uniform linear array of six isotropic
elements. The output of each sensor is processed using atapped delay
line containing four multiplying weights and three ideal time delays
of (l/4«o) seconds each. The signal environment consists of one
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desired signal and two interferences that are broadband in nature. The
arrival angles and signal strengths are given in Table 2.3.

Table 2.3

Interference Parameters for the Frost Array

parameter Interference 1 Interference 2

Si 0.01
0.01

6i 50° -50°

Wi

Ai

1.0 u
o

± 0.4

1.2 u
o

± 0.5

A constraint of unity gain in the look-direction has been
used. The desired signal strength has been assumed to be equal to
0.001. Optimum weights have been computed by forming the correlation
-trix, ., from 1000 snapshots of input data. Awhite noise component
of variance 0.0001 has been added to the diagonal elements of #.

The array pattern, shown in Fig.2.8, illustrates the ability
of the Frost array to place nulls in the direction of the broadband
interferences. It may be noted here that a6-element array with ahalf
wavelength spacing has its natural nulls located at ±20° and ±40°. As
is seen in Fig.2.8, the adaptation process leaves the nulls at +20°
undisturbed while the other two nulls are steered to ±50°, that is, in
the direction of interferences.

2.3 BEAMFORMING IN THE PRESENCE OF COHERENT SIGNALS

A key assumption in the discussion, so far, is that the
desired signal, interference and noise are all 7Prn

are all zero-mean processes
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uncorrelated with each other. The assumption is not valid in practical

situations where due to the presence of multipath propagation or due

to smart jammers, even fully coherent interferences can exist.

If the signals impinging on the array are coherent, then the

vector AS in eqn.(2.8) can be written as [5?]

K-l

A S = a(x ) s(t) + £ a(x.) j.(t)
i=l l 1

=[&<V +yj a(Tj) + +y^j atx^)] s(t)

= b s(t) ...(2.61)

where

^= |a<To) +Tj a(Tj) + +yK_1 aCx^jjl ...(2.62)

7. being the fixed constants given by

7i =[Si/So] ej(0i_0o) - 1=1 K-l ...(2.63)

It may be noted that since b is a linear combination of all the

steering vectors, it yields another steering vector.

Substituting for A S in eqn. (2.8), we get the received

signals at the array as

X(t) = b s(t) + n(t) ...(2.64)

In this case, the covariance matrix A E[SS ] AH will have

rank one. Therefore, the correlation matrix $ will have one non-zero

2 9eigenvalue Aj + c and (P-l) eigenvalues equal to cr [57].
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In this situation, the weight vector in eqn.(2.27) reduces to

W„„f = S2 * 1 a(x )-opt o - o

= S i- .. e? ♦ i J- e eH
-i -i

= S

2 -1 -1 ^ p -Lj + (T i=2 </

£ •? (S" SCV] d

The array output will now be given by

a(x )
- o

»l»
i=2 cr'

H H, ,
? e a (x ) e.
d -l - o-i [*b s(t) + n(t)

...(2.65)

..(2.66)

Since the vector blies along e and is orthogonal to <e e e}
i " -2'—3'''•'_p'*

there will be no desired signal output from the conventional array
when the desired signal is coherent with the interfering signals [57].
The output Y(n), in this case, will simply be a weighted combination
of the noise vector n(t).

The signal cancellation phenomenon can also be explained
with the help of a Frost array, subject to unity gain constraint in
the look-direction. In this case, the optimal weight vector is
obtained by minimizing the array output power. Therefore, if an
interfering signal, say from the direction e. , is coherent with the
desired signal, the minimum will be achieved if and only if, the array
gain in the direction e, is such that the interfering signal exactly
cancels the desired signal.

Moreover, steering vector a(x.) has a Vandermonde structure.
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The orthogonality of b and W will imply nonorthogonal ity of W
-opt -opt

and any of the ja(x1), a(x )I. Therefore, there can not be

nulls in the direction of the interfering signals [57].

To overcome the above mentioned problem, several methods

have been proposed in the literature for the cancellation of coherent

interferences with different degrees of success [57,11,18]. A

practical approach to remove coherence between the sources is "the

spatial smoothing scheme" suggested by Evans et al [11]. An analysis

of this scheme and its application to adaptive beamforming has been

given by Shan and Kailath [57]. This scheme essentially decorrelates

the signals and, thus, eliminates the problem encountered with

coherent signals.

2.3-1 Spatial Smoothing Preprocessing Scheme [SSPS]

Under noncoherent signal conditions, the correlation matrix,

*, is Toeplitz in the case of narrowband beamformers, and block

Toeplitz, in the case of broadband beamformers. When coherent signals

are present, this Toeplitz structure is destroyed and also, the rank

of the matrix * reduces to unity. A suitable algorithm is, therefore,

required to restore the rank of the covariance matrix to K, where K is

the number of sources.

The spatial smoothing scheme restores the rank of the matrix

*, through progressive diagonalization, thereby decorrelating the

sources effectively. In this scheme, the uniform linear array of 'P'

sensors is extended by augmenting it with 'L' additional sensors. The

extended array is then divided into overlapping subarrays of size 'P'
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with first subarray formed from sensors -ll, pi, the second from

J2 P+lI, and so on, as shown in Fig.2.9. First the correlation

matrix of each subarray is formed. Next, a spatially smoothed

correlation matrix, $, is defined by taking the mean of the subarray

correlation matrices, That is

1 L+1 Ml
* - TTT- E * ...(2.67)

L** i=l

If the number of subarrays, so formed, is equal to or

greater than the number of sources 'K' and the number of elements in

each subarray, 'P' is greater than the number of sources, then the

correlation matrix, S>, has full rank and the source correlation matrix

approaches the same form as the source correlation matrix for

noncoherent situation, i.e., a Toeplitz structure. This spatially

smoothed correlation matrix can then be used in an optimum beamformer.

The phenomenon of restoration of rank of the correlation

matrix can be explained as follows [57].

Let the signal vector for the first subarray be given by

Zj(t) =[XjU), x2(t), ,Xp(t)l ...(2.68)

By shifting down the subarray one element at a time, we form

ZgftJ.^ft) ?L+1(t)- If we assume tnat the signal from all
the 'K' sources are coherent and are of the form ev^(wot + ^i', i= 0, 1

K-l, then we can write for the k subarray
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Fig.2.9. A uniform linear array of 'p-f L'sensors
divided into overlapping subarrays of
size'P'each.
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Zk(t) =ADk_1 S+nk(t) ...(2.69)

k—1 t h
where D is the (k-l) power of the diagonal matrix D with entries

{e-JVi,U0jV-..vK-l}.
The covariance matrix of the k subarray is given by

^AD*"1 .^p-'jV.̂ I ...(2.70)
r

where $sg is the source covariance matrix defined by

*ss =E[§?H] ...(2.71)

The spatially smoothed correlation matrix is now given by

L+l

I
1= 1

*"'-TTT E *(1)L+l .*•„ zz

fJI AAZAH AH +o-2 I ...(2.72)

where A=[d^D1, D^j and z=̂ g^ is &blocR diagonal
matrix with $ on the diagonal

ss -ia8°r

By defining

~S"m" ...,2.73-
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the eqn.(2.73) can be written as

• - ^ AS AH +cr2 I 12.74)

Since, all the K input signals are coherent, the signal

covariance matrix $ is a nonnegative definite matrix of rank one.
ss

Hence, it can be written as

* *1/2
ss ss

,1/2

ss

where r is a vector of dimension K and is given by

[ro'rr K-l

.(2.75)

...(2.76)

If r. is zero for some i, it means that the i column and

.th
l row of * would be zero, which is contrary to the assumption that

all inputs are coherent with nonzero power. Therefore, a reasonable

assumption is that

r. = 0,
l

i =0,1, , K-l

using p{A> to denote the rank of A, we can say that

p{§} - p{a zah} =P{z^2 AH}

After some algebraic operations it can be shown that [57]

JSH/2 AH} =pJF diag(r)}
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where F is a vandermonde matrix with (i+1) column as

[. -jw x. -j2w x. -jLw x.l
l,e " o 1, e ° 01 eJ oi

and diag{r> is a diagonal matrix with elements Ir. ,i'O^ L, ..i:.K-1 >.

Matrix F has full rank because x. are assumed distinct. Diag{r} has

also full rank as r has nonzero entries

Therefore,

pjsj =p|f| =minJL+l.KJ ...(2.80)

It is thus evident that the rank of the matrix S will be restored to

K, if and only if, L + 1 £ K.

Once S has rank K, the signal subspace will not collapse.

Then the noise eigenvectors will be orthogonal to columns of A and by

the analysis given in sec.2.1, will give nulls in the interference

directions. From the above analysis, it is seen that the minimum

number of subarrays required to restore the rank of the correlation

matrix is K. At the same time, the number of elements in each subarray

should be atleast K+l. Therefore, we must have atleast twice as many

sensors as signal sources. In other words, the spatial smoothing

scheme suffers from reduced effective aperture.

It may be recalled that, the spatial smoothing scheme

restores the rank of the matrix *, through progressive

diagonalization, thereby effectively decorrelating the sources. The

rate at which diagonalization takes place depends on the number of

subarrays formed. This is referred to as the degree of smoothing [52].
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This decorrelation results in reduced signal cancellation and

increased rejection of the coherent interference as a function of

degree of spatial smoothing. However, the spatial smoothing scheme

still suffers from signal cancellation effect and the interference

rejection is also not total.

The spatial smoothing scheme has been investigated by

several authors. Reddy et al [52] have shown that signal cancellation

and interference rejection are strongly influenced*by the correlation

between the desired signal and interference, with high correlation

leading to significant signal loss. This coupling between the

correlation and beamformer performance is somewhat weakened as

additive sensor noise is increased. These authors have also

demonstrated that the rate at which spatial smoothing scheme

progressively decorrelates the incident wave fronts, depends upon the

spacing and direction of arrival of sources. The number of subarrays

required for decorrelating the sources increases as the angular

separation le -e. I becomes smaller and smaller. In particular, the
1 o 1 '

number of elements required goes up when the sources approach the

end-fire directions. Yeh et al [69] have derived an expression for the

output signal-to-noise ratio(SNR) for a spatially smoothed adaptive

array. Their results show that the array performance depends upon the

number of subarrays, the angular separation, relative power levels and

initial phase difference between the desired signal and coherent

interference. In order to have good interference suppression, le -e.I
1 o l '

should be greater than the beamwidth of the array. There is a

compromise between increasing the number of subarrays and decreasing

the number of elements in each subarray for better performance.
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Lineberger and Johnson [33] have analysed the structure of the

correlation matrix in a coherent signal environment and have shown

that coherence among signals induces a modulation along the diagonals

of the correlation matrix, $, because of which the matrix loses its

Toeplitz structure. They also show that, the spatial smoothing is

essentially restricted to equally spaced arrays and even after spatial

smoothing the sources may remain coherent. Further, inspite of the

rank being restored, the correlation matrix may be badly conditioned.

In essence, the spatial smoothing scheme suffers from the reduced

effective aperture, signal cancellation phenomenon and the

interference suppression is also not total.

Several modifications and improvements over the basic

spatial smoothing scheme and some alternative spatial averaging

schemes have been suggested in the literature to overcome these

limitations, viz, the reduced effective aperture, signal cancellation

phenomenon and the incomplete suppression of coherent interferences.

An important modification is the forward/backward spatial

smoothing scheme [11] which achieves a larger effective aperture as

compared to the spatial smoothing scheme without much increase in

computational burden. Though this scheme has received wide attention

in Direction-of-Arrival(DoA) estimation [66,50], not much attention

has been paid to its application in adaptive beamforming.

The salient features of the method can be explained as

follows. First, the subarrays are formed as in the spatial smoothing

scheme. These are referred to as forward subarrays. In addition, an

equal number of identical subarrays are formed in the backward

direction with the last element in the array being treated as the
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first element of the first backward subarray. The input signal to the

backward subarrays are complex conjugated. Next, the subarray

correlation matrices for each of the forward and backward subarrays

are formed. Forward and backward subarray correlation matrices are

averaged separately to obtain the forward and backward smoothed

correlation matrices. Finally, these two correlation matrices are

averaged and forward/backward smoothed correlation matrix is formed.

This method has been reported to effect a saving of 1/4K elements in

the required 2K elements of the spatial smoothing scheme.

Su et al [56] have presented an alternative approach called

the "spatial processing algorithm" to combat the signal cancellation

effect. This method employs a number of subbeamformers having the same

structure as the conventional beamformers which are arranged in a

parallel manner. For the first time instant, the first subbeamformer

is employed to update the weights and then these weights are copied

into the remaining subbeamformers. For the second time instant, the

weights are updated using the second subbeamformer and then the

weights are copied into the remaining subbeamformers. So the

adaptation process sequentially propagates, one by one, along the

subbeamformers. After the adaptation reaches the last subbeamformer,

the process restarts from the first one. The array output is then

computed by averaging the delayed outputs of all these subbeamformers.

In this method, this weight propagation from one subbeamformer to

another incorporates spatial averaging.

Widrow et al [64] have proposed an adaptive beamforming

scheme using two beamformers(master and slave beamformers) to separate

the desired signal and the interferences during adaptation. This
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method does not involve any spatial averaging and can be explained as

follows. The Frost adaptive beamformer is employed to generate a

suitable set of weights to satisfy the look-direction gain constraint

and to minimize the output power. The weights are then deployed in the

slaved beamformer to provide jammer rejection without signal

cancellation. However, only one coherent jammer can be suppressed by

this beamformer. Recently, Pei et al [46] have replaced the

conventional Frost beamformer in the structure of reference [64] by an

optimum beamformer and have incorporated the spatial smoothing scheme

of Shan et al [57] into the master beamformer to overcome signal

cancellation.

Lee and Wu [30] have proposed an algorithm which can create

an adaptive beamformer to reject coherent jammers while providing the

desired signal reception in the look-direction. The desired signal is

removed from the received signal in an adaptive process, which is

additional to the adaptive procedure of the spatial smoothing scheme.

After the spatial smoothing process, an appropriate set of weights and

an estimate of the desired signal is obtained. A slave beamformer,

based on this set of weights, is then utilized to achieve the goal of

coherent jammer rejection while simultaneously preserving the desired
signal.

As mentioned earlier, complete suppression" of interferences

is not possible in spatial smoothing technique. The reason for this is

that the resultant spatially smoothed matrix can not be made close to

Toeplitz by simple averaging over the finite array aperture. Takao and

Kikuma [59] describe a technique called "Adaptive spatial averaging".

In this technique, the input correlation matrices of the subarrays are
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adaptively averaged so as to produce a Toeplitz matrix which would be

obtained if the interference were not correlated with the desired

signal. The averaged matrix is free from correlation terms between the

desired signal and interference and, therefore, may be used to derive

optimum weight for the array element just as in the noncoherent

interference environment.

The spatial smoothing scheme does not consider the cross

correlations of the subarray outputs. Du and Kirlin [10] have proposed

an improved spatial smoothing scheme which fully utilizes the

correlations of the array outputs and produces a more stable estimate

of the covariance matrix.

2.3-2 Structured Correlation Matrix Method [SCMM]

An alternative solution to the problem of coherent

interference suppression has been suggested by Godara [18]. This

method, called the structured correlation matrix method [SCMM],

exploits the structure of the array correlation matrix(ACM). In

noncoherent signal environment, the ACM has a Toeplitz structure which

is lost when correlated sources are present. In the structured

correlation matrix method (SCMM), this constraint, ie, Toeplitz

structure is implemented by averaging the unconstrained correlation

matrix along the diagonals. The entries along the i diagonal of this

structure correlation matrix(SCM), $ , are given by

*i = p^r £ *i,1+i.. i =°.i p-1 ...(2.81)

This structured correlation matrix is now used to compute

the weights of the beamformer.
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In this method, the size of the correlation matrix does not

change, unlike the case of spatial smoothing preprocessing scheme. The

array aperture is, therefore, preserved in this case. At the same

time, however, there is a possibility of an error creeping in because

of the difference between the elements of true correlation matrix and

the Toeplitzed matrix. Under certain circumstances, the Toeplitzed

structure may not resemble the actual correlation matrix at all.

2.3-3 Sample Results

The effectiveness of these two techniques viz, the spatial

smoothing preprocessing scheme (SSPS) and the structured correlation

matrix method (SCMM), in nulling the coherent interferences is

demonstrated by the following simulation example.

A 6-element uniform linear array of isotropic elements has

been considered. The signal environment is assumed to consist of a

desired signal and four interferences, two of which are fully coherent

with the desired signal. The various parameters of the interferences

are listed in Table-2.4.

Table - 2.4

Interference Parameters

Parameter Interference 1 Interference 2 Interference 3 Interference 4

Si 10.0 10.0 10.0 10.0

©i 15° 55° -30° -70°
"i 1.0 1.0 1.1 0.9

The above signal environment was first used in the optimum

beamformer of sec.2.1. 1000 snapshots of data were utilized to compute

the array correlation matrix. A noise variance of 0.01 was then added
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to the diagonal elements of $. The resulting pattern is shown in

Fig.2.10. It is found that while deep nulls occur in the direction of

noncoherent interferences (-30°,-70°), the beamformer fails to put

sharp nulls in the directions of coherent interferences arriving at

15° and 55°.

Next, the structured correlation matrix method and the

spatial smoothing preprocessing scheme were used in the optimum

beamformer. In the latter case, the array was augmented by four

elements and five overlapping subarrays of six elements each were

formed. The resulting patterns are shown in Fig.2.10, where it is

observed that both the techniques successfully place sharp nulls in

the direction of all the four interferences.

2.4 A COMPARISON OF STRUCTURED CORRELATION MATRIX METHOD (SCMM) AND

THE SPATIAL SMOOTHING PREPROCESSING SCHEME (SSPS)

Of the two methods discussed in the previous section, the

spatial smoothing scheme has received considerable attention and

several modifications have been proposed in the literature [11,46,56]

to overcome its two main draw backs, viz, signal cancellation

phenomenon and the reduction in effective aperture area. The

structured correlation matrix method, on the other hand, is relatively

recent and has not been studied in detail, so far. Only Indukumar and

Reddy [24] have addressed this technique in the context of

Direction-of-Arrival estimation using signal subspace algorithms [44].

They have shown that the resulting covariance matrix, in this case, is

not guaranteed to be nonnegative definite and induces a bias in DOA

estimates. We, therefore, present here a comparative study of the two
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techniques which is based on computer simulations [25].

In all the numerical examples presented here, a six element

array has been assumed in the case of SCMM. In the implementation of

spatial smoothing scheme, this array has been augmented by four

elements and five overlapping subarrays of 6 elements each have been

formed. The overall array size in SSPS, is therefore 10 elements. The

signal environment consists of a desired signal incident from

broadside and two fully correlated interferences.

As a first example, we consider two interferences which are

closely spaced to the desired signal (Table 2.5).

Table - 2.5

Interference parameters

Parameter Interference 1 Interference 2

Si 10.0 10.0

ex 10° -10°
W 1.0 1.0

The computed patterns are shown in Fig.2. 11. As can be seen

from the figure, both the methods succeed in placing nulls in the

direction of interferences. However, the nulls placed by SSPS are much

deeper than those produced by SCMM (Table 2.6). Further, in both the

methods, the maxima of pattern gain occur in directions other than the

direction of arrival of the desired signal.

59



Table - 2.6

Null Depths Produced by SCMM and SSPS Beamformers

Null depths
e

1 SCMM SSPS

10° -29dB -43dB

10° -29dB -43dB

Next, we consider two widely separated interferences which

are unsymmetrically located on either side of the desired signal at

30 and -50 . Fig. 2.12 compares the output voltage patterns for the

two techniques. It can be seen that while the spatial smoothing scheme

places sharp nulls exactly at the location of interferences, a bias is

introduced by SCMM. The null is produced at -46° instead of at -50°.

Also, there is a spurious null at 35°. The reason for this offset and

the spurious null is that the resulting matrix produces a signal

subspace which is inconsistent with that of the underlying signal

model.

Fig.2.13 shows the voltage patterns when interferences are

modelled to arrive at +70 and -70°, that is from near end-fire

directions. It can be seen that the SSPS produces sharp nulls of depth

-60dB in the direction of interferences. The SCMM, on the other hand,

fails to produce nulls at ±70°.

From the above examples, it is evident that, in the case of

structured correlation matrix method, a bias is introduced in the

placing of nulls, which increases as the interferences are moved away

from the broadside (desired signal arrival angle). This increasing

bias, ultimately, leads to the array's failure in placing nulls in the

60



ANGLE EN DEGREES
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direction of near end-fire interferences.

The simulation results show that the spatial smoothing

scheme is more promising for the suppression of interferences. Its

implementation does not change the signal processing operations

significantly; only the dimensions of the correlation matrix are

altered. The structured correlation matrix method, on the other hand,

is much simpler in implementation compared to the spatial smoothing

scheme and also, it preserves the array aperture. Extensive computer

simulation studies have revealed that only for certain combinations of

So'Si'0d'9i and P' tne SCMM nulls the interferences satisfactorily ;

for other combinations, the method fails. Moreover, SCMM is not

applicable to broadband arrays for which the array correlation matrix

will not be Toeplitz, even in noncoherent situations [25]. Finally,

the adaptive implementation of SCMM does not seem to be possible,

whereas, SSPS lends itself to adaptive implementation to real time

applicat ions.

2.5 SUMMARY

In this chapter, a general formulation of the adaptive array

utilizing the Least-Mean-Square criterion has been discussed. The

broadband signal simulation which has not been discussed in the

adaptive array literature, so far, has been discussed by devoting a

separate subsection. The reasons for the failure of conventional

beamforming arrays in coherent signal environment has been discussed

and, as a remedy, various spatial averaging schemes have been

described. A comparison of the spatial smoothing scheme and the

structured correlation matrix method using computer simulations
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revealed that the former is superior method for combating the signal

cancellation in coherent signal environment.
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CHAPTER - 3

RECURSIVE LEAST-SQUARES ALGORITHMS FOR ADAPTIVE BEAMFORMING

The computational problems associated with the calculations

of weight coefficients in the direct matrix inversion approach can be

avoided by using the LMS algorithm. However, the drawbacks of the LMS

algorithm, namely, the slow rate of convergence and the dependence of

time constant on the eigenvalue spread, has motivated the search for

adaptive filtering algorithms which provide faster convergence and are

not sensitive to signal statistics. In this, least-squares [LS]

estimation has played a prominent role. The most popular time

recursive LS estimation scheme is the RLS algorithm [3] whose time

recursive nature makes it attractive for adaptive beamformers.

However, it is sensitive to roundoff errors, when finite precision

arithmetic is used for its implementation [36]. To remedy this

problem, algorithms based on matrix factorization and orthogonal

transformations have been derived and investigated. The orthogonal

transformations, such as, Givens, Householder and modified

Gram-Schmidt, are known to be less sensitive to roundoff errors. Time

recursive version of the Givens transformation and modified

Gram-Schmidt procedure have also been developed and discussed in the

context of systolic array implementation [15,36].

The QRD-LS algorithm using Givens rotations has been applied

to adaptive beamformers by Ward et al [62]. He also discusses its

implementation using a triangular systolic array where the error

residual is extracted directly as the output of the array. If the

weight coefficients are also to be computed, the back substitution
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method "may be used which can also be implemented using a linear
systolic array.

Lewis [34] has used the above algorithm for beamforming in a

situation where the information regarding the desired signal is not

known, but a priori information in the form of signal-to-data cross

correlation vector is available. Heiligman and Purdy [19] have

described a method of weight computation using the triangular

processor itself. They have also discussed its property of graceful

degradation; the loss of one or more component processors does not

cause the computed weights to degrade catastrophically.

Little attention has been paid in the literature so far,

towards the application of time recursive form of modified

Gram-Schmidt procedure to adaptive beamforming problem. Ling and

Proakis [36] have presented a time recursive form of Gram-Schmidt

algorithm [RMGS] for solving a general least-square minimization

problem. This algorithm is reported to be robust to roundoff errors

and can be implemented using systolic structure. As a consequence, the

RMGS algorithm is well suited for adaptive beamforming problem. Ling
et al [36] have presented an improved error feedback version of the

RMGS algorithm [RMGSEF] which is more robust as compared to RMGS

algorithm. In this chapter, we present the results of extensive

computer simulations which show that the RMGS class of beamformers

offer a good compromise between the RLS and QRD-LS beamformers with

reference to stability and computational complexity.

The organization of this chapter is as follows. The exact

least-square error criterion is defined in section 3.1, with reference

to the adaptive beamforming problem. Sec. 3.2 gives an overview of
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the RLS algorithm. In sec.3.3, the exact least-square error criterion

is redefined in data domain and the QRD-LS algorithm, in general and

the QRD-LS algorithm using Givens rotations, in particular, are

discussed. The propose.d RMGS algorithm and its application to the

adaptive beamformers is presented in sec.3.4. The application of

these techniques in broadband signal environment is discussed in

sec.3.5. Results of an extensive numerical study of these beamformers,

based on computer simulations, is reported in sec.3.6. Finally, a

discussion of the relative performance of these adaptive beamformers

is presented in sec.3.7.

3.1 THE EXACT LEAST-SQUARE ERROR CRITERION

Consider the P-element linear narrowband array model of

Fig.2.1. In the RLS algorithm, the computation is started with known

initial conditions and the information contained in the new input data

samples to the array is used to update the old estimates. Therefore,

the length of the observable data is variable. Accordingly, the index

of performance to be minimized is expressed as £(n), where *n* is the

variable length of the observable data. Moreover, a weighting factor

is introduced into the definition of the performance index to ensure

that the data in the distant past are forgotten. Thus,

SCn) =EAn_i|e(i)|2 ...(3.1)
i= l

u An-i
wnere A is the exponential weighting factor and e(i) is the

difference between the desired signal and the array output. That is

e(i) = d(i) - vAn) X(i), i,1 .__n ...(3.2)
y
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where X(i) is the array input data vector at time i, defined by

X (i) = [Xjd), x2(i), Xp(i)] ...(3.3)

and W(n) is the tap weight vector at time 'n' defined by

TW (n) = [Wl(n), w2(n) ,wp(n)]. ...(3.4)

The optimum value of the weight vector, W ,(n), for which
-opt

the performance index ?(n) of eqn.(3.1) attains the minimum value

is given by

Wopt(n) -^(n) 6(n) ...(3 5)
where,

»(n) =£ An_i X(i) XH(i) ...(3.6)

and

§(n) =£ An ' X(i) d (i) ...(3.7)

The recursive relations for $(n) and 9(n) can be obtained

directly from eqns.(3.6) and (3.7) and are given by

#(n) =A*(n-l) +X(n) XH(n) ...(3.8)

§(n) =AG(n-l) +X(n) d*(n) (3 g)

The traditional approach for computing eqns.(3.5), (3.8) and

(3.9) is to use the matrix inversion lemma [22], which enables the

recursive computation of ^(n) instead of *(n) and leads to the
familiar RLS algorithm.
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3.2 THE RECURSIVE LEAST-SQUARES [RLS] ALGORITHM

The recursive equation for updating the weight vector in

accordance with the least-square error criterion can be shown to

be [22]

W(n) = W(n-l) + C(n) T) (n) ...(3.10)

«

where C(n) and 7)(n) are, respectively, referred to as the gain vector

and a priori estimation error and are given by

A_1 $_1(n-l) X(n)
£(n) « - ...(3.11)

1 + A X (n) $ (n-1) X(n)

7)(n) = d(n) - vAn-l) X(n) ...(3.12)

Using the matrix inversion lemma, the recursive equation for

the inverse of the correlation matrix is obtained as

*~ (n) = A"1 $_1(n-l) - A"1 C(n) XH(n) $_1(n-l) ...(3.13)

Equations(3.10) to (3.13) constitute the RLS algorithm which

is summarized in Table-3.1 [22].

The convergence rate of RLS algorithm is much superior to

that of LMS algorithm when convergence time is measured in terms of

the number of samples of the input data [8]. However, this improvement

in performance is achieved at the expense of a large increase in the

computational complexity. Specifically, to compute the gain vector

C(n), a P-by-P matrix $ (n) .must be adapted and stored once per

iteration. Hence, on the order of P2 arithmetic operations must be

performed per iteration of the RLS algorithm. This is in direct
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contrast to the LMS algorithm, in which an order of P arithmetic

operations are required. It may be mentioned here that the RLS

algorithm is useful only when the number of elements P in the array is

small and the eigenvalue spread is high.

Table 3.1

The RLS Algorithm

Initialize the algorithm by setting

<5 = small positive constant* 4o) =6 4,

W(o) = o

Algorithm Computational
complexity

For n = 1,2, compute

u(n) = A !$ 4n-l) X(n)

C(n) =
u(n)

[1 + Xn(n) u(n)]

n(n) = d(n) - W^n-l) X(n)

W(n) = W(n-l) + C(n) T)*(n)

-1 •1 ,-1$ (n) = A $ (n-1) - C(n) u (n]

P

P

2P

Total ((P + 2P) divisions) + 3P2+3p

(T3.1. 1)

(T3.1.2)

(T3.1.3)

(T3.1.4)

(T3.1.5)

3.3 THE QRD-LS ALGORITHM

The RLS algorithm discussed in the previous section has two

main drawbacks, namely, its sensitivity to roundoff error and the

difficulty in implementing the algorithm in VLSI technology. An

alternative approach which is numerically sound is that of orthogonal
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triangularization [61]. It is based on updating the upper triangular

matrix, which is obtained by QR decomposition of the n-by-P data

matrix. Since, the condition number of the data matrix is much smaller

than the condition number of the correlation matrix, any algorithm

that operates directly on the data is much better conditioned. The

added advantage is that these QR decomposition algorithms can be

implemented in a highly pipelined manner using systolic arrays.

In the following, we derive the QRD-LS algorithm based on QR

updating.

3.3-1 Exact Least-Square Error Criterion in the Data Domain

We have till now, defined the exact least-square error

criterion in the covariance matrix domain. The exact least-square

error criterion defined in eqn. (3.1) can also be expressed in data

domain. This is accomplished by defining a n-by-P data matrix A(n)

such that

,H
A (n) = [X(1),X(2) ,X(n)]

Vn xi(2) xi(n)
x2(1) x2(2) x2(n)

xp(l) x (2) xJn)
..(3.14)

Let n-by-1 vectors e(n) and b(n), respectively, denote the

error vector and the desired response vector, which are defined by

£ (n) = [e(l),e(2) e(n)]
..(3.15)
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bH(n) = [d(l),d(2) d(n)] ...(3.16)

The index of performance can now be redefined as

u

£(n) = e (n) A(n) e(n) ...(3.17)

where A(n) is the n-by-n exponential weighting matrix

A(n) =diagonal [An_1,An~2 ,ll ...(3.18)

The inclusion of A(n), the exponential weighting matrix, has

the effect of progressively weighting against the preceding column of
TJ

the data matrix A (n) in favour of the last column. The last column of
U

the A (n) corresponds to the input vector X(n) at time n, for which

the weighting factor is unity.

The index of performance may then be redefined as

?(n) = ||A1/2(n) c(n)||2 ...(3.19)

and is in the form of squared Euclidean norm. The problem we have to

solve is to find the least-squares value of the weight vector that

minimizes the performance index £(n).

3.3-2 QRD-LS Algorithm

Since the norm of the weight vector is unaffected by

premultiplication by an unitary matrix Q(n), the index of performance

£(n) can also be expressed as

?(n) = ||Q(n)A1/2(n) e(n)||2 ...(3.20)

The error vector e(n) is given by
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e(n) = b(n) - A(n) W(n)

1/2

.(3.21)

Hence, the vector Q(n)A (n) e(n) in (3.20) may be expressed as

1/? 1 /? 1/9
Q(n) a (n) e(n) = Q(n) a1"^) b(n) - Q(n) A^tn) A(n) W(n)

...(3.22)

The orthogonal matrix Q(n) is generated such that it applies

an orthogonal triangularization to the weighted data matrix and

transforms it to upper triangular form.

Q(n) A1/2(n) A(n) =
Qx(n)

1/2
Ai/"(n) A(n)

R(n)

0
...(3.23)

Here Q^n) contains first P rows of Q(n) and Q (n) contains

the remaining (n-P) rows. An orthogonal matrix can always be

constructed such that R(n) is a P-by-P upper triangular matrix with

nonnegative diagonal elements and '0' is an (n-P)-by-(n-P) null

matrix. This factorization is referred to in the literature as the QR

decomposition.

Rather than solve the normal equations, the QR method uses

Q(n) from (3.23) to rotate (3.22) into

Qjtn)'
Q2(n)_ a (n) e(n) •

"QjU
Q2(n _

A
L/2,

(n ) b(n) -
Qjdi)'
Q2(n)j A1/2(n) A(n) W(n)

P(n)" R(n)"

- V(n)
-

0
W(n) ...(3.24)

1/2,Here P(n) = Q^niA (n)b(n), contains the first P elements

of the rotated desired response vector, while V(n) contains the
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1/2,remaining (n-P) elements, i.e, Q?(.n)A (n)b(n).

To solve the LS problem, we choose the weight vector W(n) so

as to minimize the performance index £(n). If W .(n) denotes this

optimum value of the weight vector, it is evident from eqn.(3.24) that,

1/2
the squared norm of Q(n)A (n)e(n) is a minimum, when

R(n) W ,(n) = P(n)
-opt

...(3.25)

Correspondingly,the minimum value of the performance index is given by

Wn) • «y(n) ...(3.26:

3.3-3 Recursive Implementation

To develop a recursive implementation of the above

procedure, we assume that at time (n-1), an (n-1)-by-(n-l) matrix

Q(n-l) is known such that

Q(n-l) A1/2(n-l) A(n-l) = R!n:l2

0

(3.27)

where R(n-l) is a P-by-P upper triangular matrix and '0' denotes the

(n-l-P)-by-P null matrix.

At time n, the data matrix A(n) and the desired response

vector b(n) can be partitioned as

A(n-l)

A(n) - :3.2s:

XH(n)
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b(n) =
b(n-l

d (n)

(3.29)

Correspondingly, the n-by-n exponential weighting matrix A(n)

satisfies the recursion

0

1

A(n)
AA(n=i:

T
.(3.30:

To compute the QR decomposition of the updated data matrix

A(n), we first define an n-by-n orthogonal matrix Q(n-l) which is

related to Q(n-l) as

[Q(n-l) 0 "

Q(n-l) =
. 0T 1

Therefore,

Q(n-l)A1/2(n)A(n) -

1/2 1/2
A Q(n-1)A (n-l)A(n-l)

XH(n)

...(3.31)

A1/2R(n-i;

XH(n)

(3.32)

The n-by-P matrix on the right hand side of eqn.(3.32) is

partially triangularized in that only the last row of the matrix

consists of non-zero elements.

Similarly,

Q(n-l)A1/2(n)b(n]
1/2 1/2
A *Q(n-l)A (n-l)b(n-l)

*

d (n)

• 1/2
\ P(n-l)

1/2
A V(n-l)

*

d (n)
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The orthogonal triangularization can be completed by using

an update matrix Q(n) which rotates the bottom row into upper

triangular portion of the matrix. Mathematically, this takes the form

Q(n) Q(n-l) A1/2(n) A(n) =

Similarly, we can write

* - 1/2
Q(n) Q(n-l) a (n) b(n

R(n)

Q(n)

A1/2P(n-l)

A V(n-l)

*

d (n)

P(n)

V(n)

(3.34)

...(3.35:

Having computed the updated matrix R(n) from eqn.(3.34) and

P(n) from eqn. (3.35), we may use back substitution in eqn. (3.25) to

compute the corresponding updated value, W(n), of the least-squares

weight vector. Equations(3.25), (3.34) and (3.35) constitute the

algorithm which is referred to as the QR decomposition least-square

(QRD-LS) algorithm. A summary of this algorithm is presented in

Table 3.2 [22].

3.3-4 Givens Rotations

The orthogonal triangularization process may be carried out

using the Givens rotation procedure. Through successive application of

Givens rotations, we may develop a very efficient algorithm for

solving the linear least-square problem, where by orthogonal

triangularization of the data matrix is recursively updated as each

new set of data enters the computation [51].
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2.

Table-3.2

The Recursive QRD-LS Algorithm

Initialize the orthogonal triangularization procedure

R(0) = 0 and P(0) = 0 ...(T.3.2.1)

the exact initialization occupies the period o < n ^ P.

For n > P, perform

(a) update the P-by-P matrix R(n) using the recursion

.R(n)

o

= Q(n

(b)update the P-by-1 vector P(n) using the

P(n)

"vTnT = Q(n)

...(T.3.2.2)

recursion

(T.3.2.3)

(c)compute the least-square weight vector W(n)

W(n) =R_1(n) P(n) .._ (T.3.2.4)

and the minimum value of the sum of weighted squared error

Wn) • IY«»J ..(T.3.2.5)

In this method, the update matrix, Q(n), which rotates the

bottom row into upper triangular portion of the matrix in eqn.(3.34),

is formed as the product of P Givens rotations.

Q(n) = Qp(n) Qi(n)
..(3.36)
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Each rotation matrix is of the form

I.
i-1

C.

Qjtn) =
Tn-i-l

..(3.37:

-S.

where

C. = Cos 9.(n)

S = Sin 9.(n) eJ/3.

When Q(n) is applied to eqn.(3.34), the proper selection of

rotation angles -le (n) i- will annihilate the non zero elements in the

last row of the partially triangularized matrix

1/2
A R(n-l)

XH(n)

For illustrating the procedure, let us consider the

application of Q(n) to eqn.(3.32), which becomes

- 1 /?

Q(n) Q(n-l) A1/£i(n) A(n) =
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A1/2R(n-l)
Q:(n)

0

XH(n)

...(3.38)



using (3.37) in (3.38), we get

1/2Rn(n-1) A1/2R12(n-l) A1/2Rlp(n-l
^1/2R22(n-D A1/2R2p(n-i:

n-2

0

0
*

x^n) x2(n)

1/2XL/\p(n-l)
.0

0
*

xp(n)

...(3.39)

We denote the last row of the partially triangularized
(1)matrix by g' '(n).

(1) T * * « 19j (n) = [x^n), x2(n) xp(n) ...(3.40)

The element x^n) on the lower left corner of the product

will become zero, if

1/2x^n) C2 -Ax/* Rn(n-1) S1 =0 ...(3.4L

For eqn. (3.41) to hold, the real and imaginary parts of the

expression on the left hand side must individually equal zero. Thus,

recognizing that

lsil2 * c? =i ...(3.42)

and solving eqn. (3.41) for the parameters of the transformation,
get
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and

1/2

lA Rll(n_1)

/[iv»)|2 +A|Rn(n-l) |21 ... (3.43a)

*

x (n)

S. =

1 / jXjtn) |2 +A|Rn(n-l) |2| ... (3.43b)

The Givens rotation as described above operates on the

first and n rows of matrix R(n) to annihilate the first element

*

x (n) in the last row. In this process, both the first and last rows

of the matrix R(n) are modified. In particular, the element

1/2
A R (n-1) is replaced by the new value

1/2 ,
\ R_(n-1)1/2 * * I1V11V" x'l / ? nC1 A Rn(n-1) + S1 xx(n) = 1/2 » /^(nlp + X|R (n-l)f
A 'Rn(n-1)

(3.44:

(2)We denote the modified last row as g (n), which is given by

gj2)(n) = To, *, * ,*1 ...(3.45)

Where the symbol '*' denotes the modified values. It may be

noted that other elements of R(n) remain unaffected by this

transformat ion.

We now choose Q2(n) to rotate the second element of the

(2)
resulting bottom row, g (n), into the (2,2) element of the upper

triangular matrix and so on, until all the elements of the bottom row
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are rotated into the triangular portion, thereby producing R(n). This

procedure is then repeated for the next snapshot of the data vector.

In addition, it is also easy to deduce that

Q(n)

1/2A17^P(n-l)
=

[ P(n)
1/2A^Vtn-l)

V(n)
*

d (n)

(3.46:

Thus, P(n) can be updated using the same sequence of liivens rotations.

The least-square weight vector W(n) is then obtained by solving

eqn.(3.25).

3.3-5 Direct Extraction of Residuals

In adaptive beamforming applications, the main objective is

to compute the least-squares error residual since the corresponding

weight vector is not of direct interest. Previous work by

McWhirter [62] has described a modified version of the Q-R recursive

least-square algorithm in which the least-squares residual is produced

directly at every stage of the recursive process, without any need to

derive the weight vector explicitly.

This technique may be summarized as follows.

We can rewrite eqn.(3.24) as

1 /?

Q(n) A^tn) e(n) =

P(n)

1/2
A^Vtn-l)

y(n)

R(n)

W(n)

where y(n) is the last element of the vector V(n)
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The weight vector must satisfy the eqn.(3.25). Hence, the residual

vector e(n) is given by

Q(n) A1/2(n) e(n) = Q(n) Q(n-l) A1/2(n)
e(l)'
e(2)

=

_e(n)

But Q(n) is unitary, and so we have

Q(n-l) A1/2(n)
e(l)

e(2)

e(n)

QH(n) 1/2
A^Vtn-l)

y(n)

1/2
A1/£:V(n-l)

y(n)

(3.481

(3.49)

Considering only the n element of the vector in (3.49), it

is possible to deduce that the current residual e(n) is given by

where

e(n) = a(n) y(n)

a(n) = TF c,
i=l

...(3.50)

...(3.51)

is the product of all the cosine parameters generated during the

sequence of Givens rotations. Eqn.(3.49) follows from the fact that

Q(n) is simply the product of 'P' elementary rotations given in

eqn.(3.32). The parameter a(n) may be readily computed during the

recursive update of the matrix R(n) while the scalar quantity y(n) is

available as a direct by product of the corresponding update for
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vector P(n). The current residual e(n) may, therefore, be evaluated in

a very cost effective manner.

In the foregoing, the QRD-LS algorithm based on Givens

rotation has been derived on the assumption that the Hermitian

transposed data vector XH(n) and d*(n) are available. Since, in real

time applications, X(n) and d(n) are available, the algorithm

summarized in Table-3.3 has been written under this assumption.

Table-3.3

The QRD-LS Algorithm Using Givens Rotations

Input definitions

al = 1"° xp+i(n) = d(n> (T 3.3.1)

qj - xj(n)- J = 1.2, P+l (T 3.3.2)

Algorithm Complexity

For n = 1,2 do

for i = 1,2 p+i

ru(n) =v/ |̂Al^rii(n_1)|2+|qU)(n)|2j g(p+1) (T 3.3,33

If |ru(n)| > 0, C - |r (n-1) |/r (n) (T 3.3.4)

sj =V (n)/ru(n) (T 3.3.5)

else C = 1, S = 0

«i+1(n) = ajCi (p+1) (T 3 3 6)

For j = i+1 P+1 do

, i 1/2 * (1 )r(J(n) =C\ riJ(n-l) +S^ qlj (n) 3P(P+l)/2 (T 3.3.7)

qjl (n) =_Si rij(n-1) *W2 +Cq(l)(n) 2P(P+l)/2 (T 3.3.8)1 'J iHj

2

Total 2(P+1) divisions+(P+l) square root operations)+2.5P +4.5(P+1)
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As seen in Table 3.3, the QRD-LS algorithm using Givens

rotations has a computational complexity of (2.5P2+4.5(P+1)). In

addition to this, it needs 2(P+1) divisions and (P+l) square-root

operations per time sample. Since, the square-root operations are

computationaly expensive, a square-root free Givens rotations has been

proposed in the literature [34]. Though the computational complexity
2

in this case, is reduced to P +7P

method suffers from overflow problem.

2
in this case, is reduced to P +7P operations per time sample, the

3.3-6 Systolic Array Implementation

Fig.3.1 shows the systolic array structure for implementing

the recursive QRD-LS algorithm described in Table-3.2. The systolic

array operates directly on the input data that are represented by the

matrix A (n) and the desired response vector bH(n). Accordingly, the

output of the array is y (n).

The systolic array structure consists of two distinct

sections : a triangular systolic array and a linear systolic

array[ZZ]. The entire structure is controlled by a single clock. Each

section of the array consists of two types of cells : internal cells

(represented by circles) and boundary cells (represented by two

concentric circles). Each cell receives its input data from the

directions indicated for one clock cycle, performs specified

arithmetic functions and then on the next cycle, delivers the

resulting output values to the neighboring cells as indicated in

Fig.3.1. The triangular systolic array section implements the Givens

rotations part of the QRD-LS algorithm and the linear array section

computes the Hermitian transposed weight vector, W^n), at the end of
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xi(n)

Triangular section

x2(n) x2(n-1)

*3(n) x3(n-l) x3(n-

xp(n) xp(n-l) xp(n-2) xp(n-3)

d(n) d(n-i) d(n-2) d(n-3) d(n-p)

^-VVpWj Wp

Linear section

Fig.3.1. Systolic array implementation of the recursive QRD-LS algorithm using
Givens rotations.
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the recursions.

Consider first the operation of the triangular systolic

array labeled ABC in Fig.3.1. The boundary cells and internal cells of

this section are shown in Fig.3.2. The internal cells perform only the

additions and multiplications while the boundary cells perform

square-root and reciprocal operations as shown in the Fig.3.2(b).

These operations follow directly from the discussion presented in the

previous subsection. Each cell of the triangular systolic array

section stores a particular element of the upper triangular matrix

TJ

R (n) which, at the outset of the adaptive beamforming problem, is

initialized to zero. The function of each column of processing cells

in the triangular array section is to rotate one column of the stored

triangular matrix with a vector of data received, in such a way that

the leading element of the received data vector is annihilated. The

reduced data vector is then passed to the right to the next column of

cells. The boundary cell in each column of this section computes the

pertinent rotation parameters and then passes them downward to the

next clock cycle. The internal cells, subsequently, apply the same

rotation to all other elements in the received data vector. Since a

delay of one clock cycle per cell is incurred in passing the rotation

parameters downward along a column, it is necessary that the input

data vectors enter the triangular systolic array in a skewed order, as

illustrated in Fig.3.1. This arrangement ensures that as each column

. TJ

vector X(n) of the data matrix A (n) propagates through the array, it

interacts with the previously stored triangular matrix R (n-1) and,

thereby, undergoes the sequence of Givens rotations Q(n) as required.

Accordingly, all the elements of the column vector X(n) are
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annihilated, one by one, and an updated lower triangular matrix RH(n)

is produced and stored in the process.

As the orthogonal triangularization process is being

performed by the triangular section labeled ABC, at the same time, the
TJ

vector P (n) is computed by the appended bottom row of internal cells.

In effect, this computation is made by treating the desired response
U

vector b (n) as an additional row that is appended to the data matrix
AH(n)

When the entire orthogonal triangularization process is

complete, each particular row of the lower triangular matrix RH(n), or

the associated 1-by-P vector PH(n), is clocked out to the linear

systolic array for subsequent processing. This section computes the

Hermitian transposed least-square weight vector, vAn), by using the
backward substitution method for solving the triangular system of
equations,

ril(n) ri2(n) r1D(n)IP"

22(-^ r2p(n)

rpp(n)

*

Wjtn)
*

>j(n)"

v*{n)
=

P*(n)

w*(n) J .Pp(n>.

.(3.52)

In particular, the elements of the vector wV) are computed
using the equations[22]

z[p) =0
7(k-l) _ (k) *
« i + rik(n)wkU)

P*(n) - Z(l)
w (n) = _L L

ru (n)

...(3.53)
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•<in<n>

xin(n)

<out(n)

C(n) 5(n)

(a)

C(n) S(n)

xin(") xout(n)

C(n) 5(n)

(b)

If xin = 0

C(n)««-1

S(n)«-o

rii(n)=v/fl*in(n)|2 +|rii(n-1)|2)
C(n) = rji(n-1)/rii(n)
S(n)=xln(n)/rjj(n)

°<out(n)=«<in(n).C(n)

x<>ut(n) =-S(n) rjj (n-1) + C(n) Xjn (n)

rjj (n) =C(n) r,j (n-1) + S*(n) xin(n)

C(n) = C(n)

5(n) = s(n)

Fig.3.2. Cells for the recursive QRD-LS algorithm
(a) boundary cell,(b)internal cell .

(a)

(k-1)

w.

_(k-1) _(k), *
zi =Zi + rikwk

(b)

> w

Fig.3.3. Cells for linear systolic array:(a) boundary
cell,(b) internal cell.
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(k)
Where 7 are the intermediate variables, r .(n) are elements of the

i K

u *

upper triangular matrix R (n), P.(n) are the elements of vector PH(n),
*

and w^fn) are the elements of the weight vector W^n). The linear

systolic array section consists of one boundary cell and (P-l)internal

cells. The arithmetic functions performed by these cells are defined

in Fig. 3.3 and are in accordance with eqn.(3.53). The elements of
U

the weight vector W (n) appear at the output of the boundary cell at

different clock cycles, with wp(n) leaving the cell first, followed by
*

w (n) and so on.

3.4 THE RECURSIVE MODIFIED GRAM-SCHMIDT [RMGS] ALGORITHM

As discussed in the previous section, the QRD-LS algorithm

based on Givens rotations is computationally expensive. Alternatively,

QRD-LS problem can also be solved using the Gram-Schmidt procedure,

which, however, has very poor numerical characteristics. A

rearrangement of steps of the Gram-Schmidt procedure, known as

Modified Gram-Schmidt [MGS] procedure yields a method which is

computationally sound [29]. However, the MGS procedure is designed for

block processing and is not efficient when it is implemented in time

recursive form. Ling et al [36] have presented a time recursive form

of the MGS transformations, viz, the recursive modified Gram-Schmidt

[RMGS] algorithm and its error feedback form, for least-square

estimation. Since their derivation is for real valued data while the

adaptive beamforming problem involves complex valued data, we derive

here the complex recursive modified Gram-Schmidt algorithm.
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3.4-1 The Modified Gram-Schmidt Procedure

The data matrix defined in eqn.(3.14) can be rewritten as

A(n) =

XjCi: x*(l

x:(2) x2(2]

* *

x^n) x2(n),

xp(l)

x*(2)

*

xp(n)

..(3.54)

Premultiplying by the square-root of the exponential weighting

matrix A(n) defined in eqn.(3.18), we get

A(n) = A1/2(n)A(n)

(n-1)/2 *

,(n-2)/2 • .
A x (2]

x (n)

.(n-l)/2 • ..A X2(1)
,(n-2)/2 • v
A x (2)

x*(n),

,(n-l)/2 • .A xp(l)
,(n-2)/2 * ,
A x (2)

xp(n)

Next, we define a set of P vectors of dimension n, as

X (n)
-i

(n-l)/2 * ,(n-2)/2 •
A x. (1), A x(2);

*

x;(n)

i = 1,2 P

Using eqn.(3.56), we can express A(n) as

A(n) =rX1(n),X2(n), Xp(n)l
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...(3.56)
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where X^n) X (n) are linearly independent vectors.

Next, the n-by-1 desired response vector in eqn. (3.16) is

rewritten as

b(n) =|d*(l),d*(2), d*(n)l ...(3.58)

Premultiplying b(n) by a (n), we obtain

B(n) =A1/2(n) b(n) =[a^"1}/V( 1), A(n"2)/V(2) d*(n)] (3.59)

The error vector, e(n), in eqn.(3.21) can now be written as

e(n) = B(n) - A(n) W(n) ...(3.60)

This problem can be solved using the MGS procedure[29],

where we combine the exponentially weighted data matrix A(n) and the

n-by-1 desired response vector B(n) to form an augmented matrix.

A(n) =[A(n),B»] =[xi(n),X2(n) Xp(n),B(n)l ...(3.61)

Applying the MGS procedure to the matrix A(n), we get

A(n) = Q(n) K(n) (3.62)

Where Q(n) is an n-by-P orthogonal matrix and K(n) is a(P+l)-by-(P+l)

upper triangular matrix defined respectively, as

Q(n) =[g1(n),g2(n) gp(n),e(n!
(3.63:

and
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1 K12(n) K1P^n^ Kx(n)

K2p(n) K2(n)

K(n) = ...(3.64:

*>]

The vectors jg^n) 9p(n) fand 5(n) in ecIn- t3-63) are a

set of (P+1) mutually orthogonal vectors spanning the same (P+1)

dimensional space as the vectors -|x (n),X (n), X (n) Vand Q{z\) of

the augmented matrix A(n) in eqn.(3.61). The n element of the vector

e(n) is, in fact, e(n) in eqn.(3.15) [36].

The upper triangular matrix with unit diagonal elements K(n)

in eqn.(3.62) can be written as

K(n) =

l

K(n) K (n)

oT
.(3.65)

The elements g (n), e(n) and the elements of upper

triangular matrix K (n) and K (n) are determined using the modified

Gram-Schmidt algorithm given in Table 3.4 [36].

The weight vector W(n) is obtained by solving

K(n) W(n) = K (n). ...(3.66:

Since the MGS algorithm is a block processing scheme, the

vectors X (n) and B(n), n = 1 through N, are involved in the

92



Initialization

Table-3.4

Modified Gram-Schmidt [MGS] Algorithm.

glU(n) -Vn)' «=1 P (T3.li:
-(1)
e (n) = B(n),

For i = 1 to P do

(T 3.4.2:

3i(n) -a!1}^ (T 3.4.3)
rn(n) =g»(n) gt(n) (T 3.4.4)

For j = i + 1 to P do

:n) =[gj'^n)! g^n]"'J1'" [»J "J VnJ (T 3.4.5)

KtJ(n) -riJ(n)/ru(n) (T3_4_

f(l+1^„, _ _(i),3j '<n) =9j (n) -K (n) g(», (T3^_7)

^(n) =[e(l)(n)l g^n)
(T 3.4.8)

K(n) = rd(n)/r (n)
1 » 11 (T 3.4.9:

(») ••.< '(„, -Ka(n) gi(n) (T 3.4.10]

e(n) =i(P+^(n)
(T 3.4. li:

computation of error .(„,, 0r the weight vector W(n). Therefore, t
computational complexity will increase as V increases. Hence, the
use of MGS algorithm in real time application is inefficient.

he
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3.4-2 The Complex Recursive Modified Gram-Schmidt[RMGS] Algorithm

It can be easily seen from Table 3.4 that the n components

of the vectors g. (n), g(n) and e i(n) namely, q^ (n, n), q. (n, n)

and e (n,n), satisfy the same order recursive equations as their

corresponding vectors.

Therefore,

q^n.n) =q(1)(n,n) ••• (3-67)

q(.i+1)(n,n) -q^U.n) -K.(n) q^n.n) ...(3.68)

e(l+1)(n,n) =e(i)(n,n) -Kd(n) q^n.n) ...(3.69)

e(n) = e(P+1)(n,n) ...(3.70]

In order to obtain the time recursive form of the complex

MGS algorithm [26], have to derive only the time update formulae for

the coefficients r .(n) and r (n). These time update formulae have

been derived in Appendix-B and are given by the following equations.

r (n) = Ar .(n-1) + q(.l)*(n,n) q(n,n)/a (n) ...(3.71)

and

*

rd(n) =Ard(n-l) +[e(l)(n,n)l q^n.nj/a^n) ...(3.72:

for i = 1 to P and j = i+1 to P.
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In the above equations, a (n) is a scalar quantity whose

magnitude is close to, but less than unity. It is calculated using the

order recursive equation which is derived in Appendix-C and given by

,2
|q (n,n)|

ai+1(n) " «,(n) - ...(3.73)
ru(n)

In the MGS algorithm (Table-3.4), the computation of

qJnJ.qj (n),e(n),r (n) and r (n) involves vector operations.

Replacing these equations by their corresponding time recursive form,

we obtain the complex RMGS algorithm which is presented in Table-3.5.

The complex RMGS algorithm has a computational complexity of
2

1.5P + 4.5P per time sample. In addition, it needs P2 + 3P divisions

per time sample. Using the error feedback form of the RMGS algorithm,

which is obtained by using an a priori error form [53] and

incorporating the error feedback formula [38], the number of divisions

is reduced to 0.5P + 1.5P per time sample. The error feedback form of

RMGS algorithm is summarized in Table-3.6. A distinct feature of this

algorithm is that the error e(i+1)(n,n) and a(n) are fedback to time

update the elements K^n), of the upper triangular matrix and the

elements of the vector Kd(n). Therefore, the algorithm exhibits better

numerical accuracy and is more robust to round off errors as compared

to RMGS algorithm without error feedback [36].
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Table-3.5

The Complex Recursive Modified Gram-Schmidt Algorithm

Input definitions

a (n) = 1 r (0) = 5

q[ (n) =X(n), i•1,2 Pj e(1)(n,n) -d(n)
Algorithm

For i = 1 to P do

( « ^

q.(n,n) = q (n,n)

|q (n,n)
r (n) = Ar (n-1) + —

ii ii
a (n)

a .(n) = a (n) -
i+ 1 i

For j = i+1 to P do

|q (n,n)

TTnT

Complexity

2P

(i)r ,(n) = Ar .(n-1) + q . (n,n)q (n,n)/a (n) P(P-l)
ij ij J i i

K .(n) = r .(n)/r (n)
U ij n

(T 3.5.1)

(T 3.5.2:

(T 3.5.3)

(T 3.5.4)

(T 3.5.5:

(T 3.5.6)

(T 3.5.7)

q (n,n) = q. (n,n) - K .(n)q (n,n) P(P-l)/2 (T 3.5.8)

d d (i) *r;(n) • Ar (n-1) + e (n,n)q (n,n)/a (n)

Kd(n) = rd(n)/r (n)
i i ii

(i +D, ^ (1), , ^d, , ,e (n,n) = e (n,n) - K (n)q (n,n)

e(n) = e (n,n)

2P

Total (P2 + 3P) divisions + 1.5P2 + 4.5P

* denotes complex conjugate operation.
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Table-3.6

The complex RMGS Algorithm Using Error Feedback

Input definitions

ai^n) = 1. r (o) = <S1 ii J d (T 3.6.1)

q1U)(n'n) =Xi(n)' •=1.2 P e(1)(n,n) =d(n) (T 3.6.2)

Algorithm

For i = l to P do

q.(n,n) =q|l)(n,n)

rH(n) = Aru(n-1) + <x <in) \q fn.n]

a (n)|q (n,n)|2
a. +1(n) = a^n) -

for J = l+l to P do

r,.(n)
i i

Complexity

(T 3.6.3)

3P (T 3.6.4)

3P (T 3.6.5)

qJ1+1)(n'n) =q]l)(n'n)- *,jCn-nq^n.n)) P(P.1)/2 (T 366)
Kj(n) - Kj .(n-1) +a/njq^^n.njq^n.nj/r^n) (J gg>?j

P(P-l)

ei+l(n,n)=e^(n,n)-Kf(n-l)qi(n,n) p „„.„

<(n) . Kd(n-l) +«1(n)e(l+1>(n,n)q>,n)/rii(n) 2P (T 3.6.9)
e(n) =e(l+1}(n,n)

(T 3.6.10)

T°tal (0'5p2 +1.5PJ divisions +1.5P2 +7.5p
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3.4-3 Systolic Array Implementation

As in the case of QRD-LS algorithm using Givens rotations,

the RMGS algorithm can be implemented using systolic array structure

as shown in Fig.3.4. The arrangement of the structure shown in Fig.3.1

has been retained for ease of comparison. The systolic array operates

on the data that are represented by A (n) and desired response vector

bH(n). Accordingly the output of the array is VT(n).

The triangular array section labeled ABC in Fig.3.4

implements the RMGS algorithm. The boundary cells process equations of

type (T 3.5.4) and (T 3.5.5), whereas, the internal cells process

equations of type (T 3.5.6) and (T 3.5.8) of Table 3.5. Both boundary

and internal cells of this section perform only arithmetic functions,

viz , addition, subtraction, multiplication and division. The boundary

cells are initiated to a small value, S to avoid a division by zero.

Each cell of the triangular array section stores a particular element

u

of the lower triangular matrix R (n) which are updated every clock

cycle. The function of each column of cells is to orthogonalize the

leading element of the data vector with respect to its other elements.

This process of orthogonalization produces an orthogonal vector of

random variables whose dimension is one less than that of input data

vector and a set of constants which are stored as the elements of the

H
upper triangular matrix R (n). The orthogonal vector of random

variables is then passed to the right to the next column of cells. The

process repeats till the last column of cells is reached so that all

the elements of the input data vector are orthogonal ized with each

other, thereby, decorrelating all the signals in the data vector. The

boundary cell in each column of this section, that computes r and
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7(k-1) _(k), «Z| -2] +Kj|<wk

Triangular section

1i(n,n)

r ... . .un<%na.' Ce" , boundary cellCells of the triangular systolic array section

«i+1(n)

Cells of the linear systolic array section
Fig.3.4. Systolic array implementation of the RMGS algorithm.
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a , stores the computed r and passes a diagonally to the next

column of cells. The internal cells subsequently apply the operations

given by eqns. (T 3.5.6) and (T 3.5.8) to the other elements of the

data vector to compute r and the elements for the next data vector.

The elements of the upper triangular matrix are normalized with r .

so that all the diagonals are equal to unity. The vector [K (n)] is

computed by treating d(n) as an appended bottom row of cells. The

bottom row of the internal cells compute equations of type (T 3.5.9)

and (T 3.5.11).

When the entire orthogonal t-iangularization process is

completed, each row of the triangular matrix R (n) or the associated

1-by-P vector [K (n)] is clocked out to the linear systolic array to

compute the Hermitian transposed weight vector Win).

3.5 BROADBAND ADAPTIVE ARRAYS

The broadband adaptive beamformer model introduced in

chapter-2, is only an extension of the narrowband beamformer, in

that, a tapped delay line is added behind each sensor as shown in

Fig. 2.4. That is, the dimensions of the signal vector and weight

vector increase from 'P' to 'PM' , where M is the number of taps in

each delay line.

Let X and W denote the signal vector and the weight

vector given, respectively, by
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and

XPM(J) =[x1(j),x2(J) Xp(J)>
XjU-U, x2(j-i) yj-D.

*PM{J>

XjlJ-M+D.x (j-M+l),

LW11'W21'
w w

12,w22'

w w
1M,W2M'

,w,
PI'

, w.
P2'

'wpmJ

>xp(j-M+l)j .(3.74)

(3.75)

where the subscript PM denotes the dimension of the vector.

The least-square problem to be solved is to find the weight
v-tor WpM, which minimizes the exponentially weighted sum of squared
errors given by,

n

K"J|eM(J)|2
j=l

•(3.76)

^ere e^J) is tne error .„ ^ ^.^^ Qf ^ ^.^ ^
d(j), which can be written as

gnal

JM(J) -d(j) -w« (j) xrj)
PMV°' -PM1 •(3.77:

The tap weight vector _WpM(n) which minimizes the quantity in
eqn.(3.76), is obtained by differentiating the express!,
to wPM(n) and equating the results to

-WPM(n> 2>n"J|eMCJ)|:
LJ-i

= o

ion with respect

zero. That is,

(3.78)

101



The solution of the above equation is

* (n) W (n) = 9 (n) •••(3.79:
PH( ' -PHK ' -PMU ;

where

n

*PM(n) = I ^ WJ) ^PM(J)
n-J v ,n vH ,n ...(3.80)

and

n

9pM(n) =[An_J XpM(j) d*(j:
J-l

(3.81)

Therefore, the exact least-square algorithms can be applied

to the broadband beamforming problem as well. However, the increase in

the dimensions of the signal vector and weight vector leads to an

increase in the computational complexity of these algorithms to the

order of 0(P M ). In particular, PM square-root operations will have

to be performed per time sample, in the case of Givens rotation based

QRD-LS algorithm.

3.6 SIMULATION RESULTS

In order to demonstrate the numerical properties,

convergence characteristics and nulling abilities of the exact

least-square algorithms considered in this chapter, the output

residual powers and voltage patterns of the four adaptive beamforming

techniques, viz, the RLS algorithm, the RMGS algorithm and its error

feedback form (RMGSEF) and the QRD-LS algorithm have been compared

using several computer simulated examples.
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3.6-1 Narrowband Arrays

A 6-element uniform linear array has been assumed in the

first three examples, with the signal environment consisting of a

desired signal and four interferences. A larger array of twelve

elements in a scenario of a desired signal and as many as ten

interferences has been assumed in the fourth example.

Example 3.6-1.1 In this example, the signal environment has been

modelled to have a desired signal and four interferences which are

narrowband. The desired signal arrives from the direction of broadside

to the array and is of strength 0.1. The interference parameters are
given in Table 3.7.

Table 3.7

Parameters of the Interferences in Example 3.6-1.1

x uiLeiierence \ i lnterferenc:e 3 Interference 4

s
i

10.0 10.0 10.0 10.0

e
i

30° -30° 60° -60°

i
1.1 0.9 1.2 0.8

Fig.3.5 shows the residual power as afunction of the number
of adaptation samples for RLS, «, R^ Md QRD.LS^^^
Wor™,. A„ lnspectlon of Flg 23cUariy shous ttot ^^iMn
to these beamformers. the LMS beamformer has amuch lower convergence
speed and, also, a larger residual power. Of the four beamformers
considered here, the QRD-LS array Is f„und to exhlblt .^
convergence speed. It attains convergence, In the present Interference
environment, In about 40 Iterations ,Flg.3.5(d,,. The other three
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beamformers, however, take about 150 samples to converge. All these

beamformers, except RLS beamformer exhibit the same residual power of

-60dB after attaining convergence. In the case of RLS beamformer,

however, it is found that the residual power continuously exhibits

sharp fluctuations and after about 700 samples, it has an increasing

trend (Fig.3.5(a)). This phenomenon may be attributed to the numerical

instability of the RLS algorithm.

The weight coefficients of these beamformers at the end of

1000 samples are listed in Table. 3.8. It is found that the four

beamformers converge to nearly the same weight vector. This is not

surprising because, all the beamformers are based upon the same exact

least-square error criterion. It is also observed that the imaginary

parts of the weight vector are negligibly small. This is because, the

desired signal and the interferences have been assumed to be of the

same form S eJ i M . Since the interferences have been assumed to

have identical amplitudes and initial phase, and are symmetrically

located, the weight vectors are expected to be real.

The voltage patterns of these beamformers are shown in

Fig.3.6 and the null depths are listed in Table.3.9. On comparing the

voltage patterns with that of the LMS beamformer (Fig.2.2), it can be

seen that the exact least-square beamformers produce much deeper nulls

in the direction of interferences. The RLS beamformer produces nulls

which are of slightly lesser depth as compared to the other three

beamformers.
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Table-3.8

Weight Coefficients of the Four Beamformers

Weight

Coeffi- RLS RMGS RMGSEF QRD-LS
ceints

w 0.65265+JO.00006 0.69004+jO.0005 0.66073+jO.00012 0.714327+J00008

w2 1.846827+J0.00001 1.888371+JO.0008 1.851891+JO.00019 1.92534+jO.0002

w3 2.500289+JO.0002 2.508312+JO.00002 2.502833+JO.0006 2.512530+jO.0007

w4 2.530421+JO.OOOl 2.490292+JO.00001 2.498551+JO.00006 2.42127+jO.0007

w5 1.82325+JO.0001 1.813210+J0.00001 1.840683+JO.00001 1.78683+JO.0007

w6 0.64430+jO.0001 0.613382+jO.00002 0.624320+JO.00018 0.578134+jO.0001

Table-3.9

Null Depths Produced by the Beamformers in dB

G
i

RLS RMGS RMGSEF QRD-LS

30° -117 -130 -130 -129

-30° -120 -134 -134 -132

60° -120 -136 -136 -135

-60° -120 -131 -131 -128

Example 3.6-1.2 In this example, two interferences are modelled to

arrive from directions very close to the desired signal (5° and -5°)

while the other two arrive from near endfire directions (85° and

-85 ). The remaining parameters of the interferences are the same as
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given in Table-3.7.

The output residual power characteristics for the four

beamformers are shown in Fig.3.7. The problem of instability, which

was noted in the previous example, can be seen more clearly here. The

RLS beamformer (Fig.3.7(a)) does not show any signs of convergence

even after 1000 samples and further, the residual power is also very

large. In particular, the residual power is greater than OdB at about

650 samples. The RMGS and RMGSEF array (Fig.3.7(b) and (c)) converge

in about 200 samples and have a residual power of about -40dB after

convergence is achieved. The QRD-LS beamformer (Fig.3.7(d)) exhibits

much faster convergence and attains convergence in about 80 samples. A

comparison of Fig.3.7 with Fig.3.5 shows that when interferences

arrive from near endfire as well as near broadside directions, these

beamformers require more number of samples to converge.

The corresponding voltage patterns are shown in Fig.3.8. All

the four beamformers succeed in placing nulls in the direction of

interferences arriving very close to the desired signal, ie, at

+5 and -5 . However, deep nulls are obtained in the case of RMGS,

RMGSEF and the QRD-LS beamformers which are on the order of -lOOdB.

Since the two interferences are very close to the desired signal and

fall with in the main beam of the array, the grating lobes invariably

appear.

It can be seen from Fig. 3.8(a), that the RLS beamformer

fails to produce nulls in the direction of near endfire interferences.

This is possibly because the RLS beamformer has very poor convergence

characteristics for this interference environment and the residual

power is also very large. On the other hand, the other three
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beamformers place well defined nulls of -lOOdB or more depth in the

direction of endfire interferences.

Example 3.6-1.3 In this example, an interference environment

consisting of two near endfire interferences arriving at +80 and -80

has been assumed. The other two interferences have been assumed to

arrive at +60 and -60 . The remaining parameters are same as in

Table-3.7.

Fig.3.9 shows the residual power as a function of the number

of adaptation samples for the four beamformers. The RLS beamformer has

the lowest convergence speed and converges after about 250 samples

while the RMGS and RMGSEF beamformers converge in about 150 samples.

The QRD-LS beamformer exhibits fastest convergence and converges in

about 40 samples.

From the voltage patterns of the four beamformers shown in

Fig.3.10, it is found that all the beamformers place deep nulls in the

direction of interferences arriving from +60 and -60 . However,

inspite of achieving convergence, the RLS beamformer again fails to

produce nulls in the direction of endfire interferences arriving from

+80 and -80 . The other three beamformers, viz, the RMGS, RMGSEF and

the QRD-LS beamformers (Fig.3.10(b)-(d)) place sharp nulls in the

direction of +80° and -80°.

Example 3.6-1.4 As a final example for the narrowband case, we

consider a total of 10 interferences whose parameters are given in

Table-3.10.
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Table-3.10

Parameters of Interferences in Example 3.6-1.4

Parameter Ij Ig Ig I4 Ig Ig I? Ig Ig I1Q

S 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
i

0 15° -15° 30° -30° 45° -45° 60° -60° 75° -75°
i

Ct)
i

1.1 0.9 1.2 0.8 1.3 0.7 1.4 0.6 1.5 0.5

The residual power characteristics for this problem are

shown in Fig.3.11. As can be seen from Fig.3.11(a), the RLS beamformer

exhibits poor convergence in this case also. Though the beamformer

converges in about 200 samples, the residual power characteristics

exhibits undesirable overshoots at regular intervals. The other three

beamformers exhibit much better convergence characteristics. The RMGS

and RMGSEF beamformers converge in around 200 samples while the QRD-LS

beamformer (Fig.3.11(d)) once again converges quickly. All these three

beamformers exhibit approximately the same amount of residual power.

From the voltage pattern plots in Fig.3. 12, it can be seen

that the RLS beamformer produces a spurious null at 85 . Also, the

null depths in the direction of interferences is small as compared to

those produced by the other three beamformers. The RMGS, RMGSEF and

the QRD-LS beamformers produce nulls, more or less the same depth

(>120dB) in the direction of interferences.

3.6-2 Broadband Arrays

For the broadband case, we consider a 6-element uniform

linear array with four taps behind each element and a tap delay of
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l/4wQ (0.25) each. For the first four examples the signal environment

consists of a desired signal and two interferences while four

interferences have been assumed to be present for the fifth example.

Example 3.6-2.1 In this example, the signal environment has been

modelled to consist of two broadband interferences whose parameters
are given in Table-3.11.

Table-3.11

Parameters of the Broadband Interferences in Example 3.6-2.1

Parameter Interference 1 Interference 2

S
l

10.0 10.0

6l 60° -60°

i 1.0 1.2

A
i

0.8 1.0

Fig.3.13 shows the residual power characteristics of the

four beamformers. It is found that the RLS and the QRD-LS beamformers

converge in about 50 samples which is approximately equal to twice the

number of weights in the array. The RMGS and the RMGSEF beamformers

(Fig.3.13(b) and(c)) on the other hand, exhibit a relatively lower
convergence speed and take about 200 samples to converge. It may be

noted that although the RLS beamformer has afaster convergence speed
it exhibits undesirable fluctuations at regular intervals. The RLS,
RMGS and the RMGSEF beamformers have nearly the same amount of
residual power (-75dB) while the QRD-LS beamformer has the residual
power of about -80dB.
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The voltage patterns and the output signal waveforms of

these beamformers are shown in Fig.3.14 and Fig.3.15, respectively. It

can be seen that the RLS, RMGS and the RMGSEF beamformers produce

120dB nulls depth in the directions of two interferences. The QRD-LS

beamformer exhibits better null depth, on the order of 135dB.

Further, a comparison of Fig.3.15 with Fig.2.7 shows that all the

beamformers track the desired signal satisfactorily.

Example 3.6-2.2 In this example, the interferences are modelled to

arrive close to each other but far away from the desired signal. The

interference arrival angles are 50° and 60°. The remaining parameters

are as in Table 3.11.

Fig.3.16 and 3.17, respectively, show the residual power and

the voltage patterns for the four beamformers. In this situation also,

all the beamformers perform satisfactorily with QRD-LS being

marginally better.

Example 3.6-2.3 In this example, the two interferences have been

modelled to arrive from directions very close to the desired signal,

i.e. +5 and -5 . The remaining parameters of the interferences are as

in Table.3.11.

From the residual power characteristics shown in Fig.3.18,

it can be seen that all the beamformers exhibit a larger residual

output power as compared to the residual power produced in the

previous two examples. Further, unlike the previous two cases, the

convergence of RLS beamformer, is slow and it requires about 400

samples to converge. The remaining three beamformers, however, exhibit
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the same convergence speed as in earlier examples.

From Fig.3. 19, it is seen that all the four beamformers

successfully place deep nulls in the directions of interferences and

the largest null depths is again obtained in the case of QRD-LS

beamformer.

Example 3.6-2.4 In this example, the interferences arrive from near

endfire directions, ie, 80°and -80°. The remaining parameters are as
in Table 3.11.

A study of Fig.3.20 indicates that for this signal

environment, both the RLS and the QRD-LS beamformers exhibit fastest

convergence and take only 40 samples to converge. The RMGS and RMGSEF

beamformers take about 100 samples to converge which is approximately
half the number required in previous examples. After convergence is
achieved, all the beamformers produce, more or less, the same amount
of residual power.

The voltage patterns are shown in Fig.3.21. The RLS

beamformer produces deep nulls of about -115dB depth in the direction

of interferences. However, it also produces a spurious null at about

85 . The other three beamformers produce nulls (>120dB) in the
direction of the interferences.

Example 3.6-2.5 In order to compare the performance of exact

least-square algorithms in the narrowband and broadband signal
environments, we consider here the case of four interferences whose
parameters are given in Table-3:12.
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Table -3.12

Parameters of the Broadband Interferences in Example 3.6-2.5

Parameter Interference 11 Interference 2 Interference 3 Interference 4

S
i

10.0 10.0 io.o 10.0

e
i

30° -30° 60° -60°

i

1.0 1.2 1-1 0.8

A
i

0.8 1.0 0.8 0.6

Fig.3.22 shows the residual power characteristics for the

four beamformers. On comparison with Fig.3.5, it is evident that the

RLS beamformer (Fig.3.22(a)) exhibits faster convergence in the

broadband signal environment. Further the residual power does not show

any increasing trend which was observed in the narrowband case. In

other words, RLS beamformer exhibits better numerical stability in

broadband signal environment. The other three beamformers viz, the

RMGS, RMGSEF and the QRD-LS exhibit the same convergence

characteristics irrespective of the signal environment (Fig.3.5(b),(c)

ad (d)).

A comparison of the voltage patterns of broadband

beamformers (Fig.3.23) with those of narrowband beamformers (Fig.3.6),

shows that while the interference suppression is satisfactory in both

the cases, the depth of nulls in the broadband case is about lOdB less

than that in the narrowband case. .
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3.7 CONCLUSIONS

In this chapter, a detailed study has been carried out on

the adaptive beamformers based on exact least-square algorithms, viz.,

the RLS, RMGS, RMGSEF and the QRD-LS algorithm. Both narrowband and

broadband arrays have been investigated by considering several typical

signal environments in the computer simulations. The results of these

investigations can be summarized as follows.

Of the four beamformers considered here, the RLS beamformer

has been found to give the poorest performance. It suffers fro

numerical instability, which is evident from astudy of residual power

Plots for narrowband, and in certain situations, fails to place nulls

in the directions of the interferences. For example, when a large
number of interferences are present, or when interferences arrive

simultaneously from directions close to the desired signal as well as

from near end-fire, the RLS beamformer fails to null the end-fire

interferences. The performance is better in broadband signal
environment, so far as numerical stability is concerned, but the

convergence is slow when interferences arrive very close to the
desired signal.

On the other hand, the beamformers based on QR decomposition

techniques viz, the RMGS, RMGSEF and the QRD-LS algorithms, exhibit
good numerical stability and place deep nulls in the direction of

interferences, in both narrowband and broadband signal environments. A
better numerical stability is expected here since all the calculations
are carried out in data matrix domain and involve only scalar

operations. Of these three beamformers, the QRD-LS beamformer exhibits
the best performance in terms of convergence rate and the depth of

m
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nulls. Although RMGS and RMGSEF beamformers have a slower convergence

rate relative to QRD-LS, they exhibit a comparable

interference-suppression ability in all the signal environments

considered here.

All the four beamformers considered here have a

computational complexity on the order of 0(P2). Table-3.13 compares
the number of operations required per time sample, in each case. In

the case of QRD-LS and RMGS beamformers another P(P-l)/2 operations

are needed to compute the weight vector W.

Table-3.13

Computational Complexity of Exact Least-Square Beamformers

RLS QRD-LS RMGS RMGSEF

3P2+3P 2.5P2+6.5P 1.5P2+4.5P 1.5P2+7.5P

+(P2+2P) +2P divisions +(P2+3P) +(0.5P2+1.5P)

divisions +P square-roots divisions divisions

It is clear from Table-3.13 that the QRD-LS beamformer has

the highest computational complexity as it involves 'P' square-root

operations. In the case of broadband beamformers, where the

computational complexity is 0(P W"), the number of square-root

operations, increases to 'PM' which makes it computationally very

expensive. On the other hand, the RMGS class of beamformers have the

least computational complexity of all and at the same time, exhibit an

interference-suppression capability which is comparable to that of

QRD-LS beamformer. Therefore, it may be concluded that the RMGS class
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of beamformers, in particular the RMGSEF beamformer, offers a good
compromise between good performance and computational complexity in
most adaptive beamforming applications.
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CHAPTER - 4

FAST RECURSIVE LEAST-SQUARE ALGORITHMS FOR ADAPTIVE BEAMFORMERS

In the previous chapter, adaptive arrays based on recursive

least-square algorithms, viz, the RLS, the QRD-LS algorithm based on
Givens rotations and the RMGS algorithms have been discussed. These
algorithms have a computational complexity of the 0(P2) in narrowband

beamforming problems. The complexity increases to the 0(P2M2) in the

case of. broadband arrays, where 'M' is the number of taps in each
tapped delay line.

Adaptive filters for broadband beamforming are two

dimensional filters with one dimension being space and the other
dimension being time. The filtering in time dimension is a simple
convolution and, hence, fast algorithms can exploit the computational
redundancy in this dimension [58]. Corresponding to the two filter
structures, there are two families of such fast algorithms ;the fast
lattice [12] and the fast transversal filter [FTF] algorithms [6].
The broadband beamforming application requires the multichannel
formulation of the fast lattice and the FTF algorithms.

The fast lattice algorithm solves the general adaptive
filtering problem using both order and time recursion. As a
consequence, the number of sections can be easily increased or

decreased without affecting the parameters of the remaining sections.
On the other hand, the FTF algorithm is fixed in order and solves the
filtering problem recursively in time.

Although different multichannel least-square lattice [MLSL]
algorithms have been developed [28,39,32,35,68] and discussed in t

155



context of adaptive filtering, their application to the adaptive

beamforming problem has received little attention in the scientific

literature. Lee et al [31] have used the multichannel lattice filter

to realize a generalized sidelobe canceller. In their scheme, the
th .

P-by-1 forward and backward prediction error vectors at the m stage

and the P-by-P forward and backward coefficient matrices are

recursively updated, using the LMS approach to minimize the mean

squared values of local errors. However, the multichannel lattice

algorithm in its exact form has not been applied to the adaptive

beamforming problem, so far.

Slock and Kailath [58], have proposed the use of

multichannel FTF algorithm for adaptive broadband beamforming. Using

the geometric approach, they have derived a modified version of the

algorithm that is suitable for parallel implementation. However, they

have not provided any simulation results.

The application of QRD-LS algorithm using Givens rotations

to the narrowband beamforming, and its extension to broadband

beamforming, has been discussed in the previous chapter. It was shown

that the algorithm has excellent numerical properties but is

computationally expensive. Recently, there has been an increasing

interest in QRD-LS rotation-based fast-RLS algorithms, since they

combine the advantages of both the algorithms, i.e., the numerical

stability of the QRD-LS algorithm and reduced computational complexity

of the lattice algorithms.

McWhirter and Proudler [40] have recently proposed

least-square lattice algorithm for broadband beamforming which has at

its root, the Givens rotation based QRD-LS algorithm. The algorithm
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also contains within it, the QRD-based lattice algorithm for solving
multichannel least-square linear prediction.

Yang and Bohme [67] have shown how it is possible to

transform a conventional Lattice algorithm into a QRD-based one.

Following Lewis [35] and McWhirter [40], they transform a multichannel

lattice algorithm into one, composed only of orthogonal operations.

They achieve this in two steps : (!) transformation from covariance

domain to data domain by the use of Cholesky decomposition (ii) using
time recursive QRD update technique [62] to incorporate new data into

the square-root factor produced by Cholesky decomposition.

Since a detailed study of beamformers based on these

algorithms is lacking in literature, in this chapter, we present the

adaptive beamformers based on the multichannel least-square lattice,
the hybrid multichannel QR-lattice [QR-MLSL] and the multichannel FTF

algorithms. We first derive these algorithms using the algebraic
approach, which has not been reported so far, and then compare their

performance on the basis of computer simulation results.

4.1 THE MULTICHANNEL LEAST-SQUARE LATTICE [MLSL] ALGORITHM

•. The basic least-square problem to be solved in the broadband

beamformer is to find a set of PM dimensional vector WD (n) which
-PM

minimizes the exponentially weighted sum of squared errors

n

C(n) =V An_J |eM)|2
L ' M J I ...(4 1)

j=l

where e^j) is the error in the estimation of the desired signal d(j)
and is given by
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eM(j) =d(J) -^(n) XpM(j) •••(4-2)

In the above equation, the PM dimensional vectors XpM(J) and

W (j) are defined, respectively, as
-PM

XpM(j)'= [x1(j),x2(j) Xp(J).

x1(j-l),x2(j-l) Xp(J-l),

']'

,wpM(j)]

x1(j-M+l),x2(j-M+l) ,xp(j-M+l) I

WpM(J) =[wn(j),w21(j) wpi(j),

w12(j),w22(j) wp2(j),

w1M(j),w2M(j),

The following equations follow from sec.3.5.

*PM(n) WpM(n) =Wn) '••(45:

where,

n

n~JY I il YH f 11 ...(4.6)$PM(n) =I X WJ) W^
j=l

n

*

Wn) =I>n_J WJ) d (J)-PM

J-l

*=A6pM(n-l) +XpM(n) d (n) •••(4.7)
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Similarly, yn) denotes the a priori error and is defined
as

Vn) := d(n) -WpM(n-l) XpM(n)-PMV ...(4.8)

The multichannel least-square lattice algorithm [MLSL]

solves eqn.(4.1) recursively, in both order and time, in terms of

e™Uh m=: U2 M' at each instant of time. It may be noted that

em(J> = <*<J) - W? (J) X_(j)
...(4.9)

Where Wpm(j) minimizes the exponentially weighted sum of squared
errors defined in eqn.(4.1) for M=m, and Xpm(j) is defined as

XPm(J) =[x1(j),x2(j) Xp(J)>

x1(j-l),x2(j-l) xp(j-l),

xx( j-m+l),x2(j-m+l) xp( j-m+l)l
(4.io;

The multichannel least-square lattice algorithm is an

extension of the single channel least-square lattice algorithm
considered in [22], The extended data vector Xp(m+i)(n) can be
partitioned as

X(j)

-P(m+1) (J) =

^Pm(J-^
..(4.11a)

or

-P(m+1) (J) =
X(j-m)

•••(4.lib]
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where,

X(j) =[x1(j),x2(j), ,xp(J)]

(pm(j-l) -[x1(j-l),x2(j-l) xp(j-l),

x1(j-2),x2(j-2) xp(j-2),

(4.12a)

T

Xj( j-m) ,x2(j-m) ,xp(j-m}] ... (4. 12b)

Xpm(j) =|"x1(j),x2(j) xp(j),

x1(j-l),x2(j-l) xp(J-l),

x1(j-m+l),x2(j-m+l) xp(j-m+l)I

)=[x1(j-m),x2(j-m) xp(j-m)lX(j-m

..(4.12c)

...(4.12d;

Using the partition properties of Xp(m+i)(n^' given in

eqn.(4.11), the autocorrelation matrix *P(m+1)(n) can be partitioned

as

*P(m+l)(n) =

*P(m+l)(n) =

q(n) Q"(n)
m

Q (n) *p (n-1)
m Pm

$_m(n) U (n)
Pm m

l/^n) u(n)
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where P-by-P Hermitian matrices q(n), u(n) and the P(m-l)-by-P
matrices Q^n), U (n) are given by

q(n) =£ An_J X(J) XH(j)
j=l

u(n) =£An_J X(j-m) XH(J-m)
j=l

Vn) - £An-JxPm(j-i) x«(j)
j=i

Vn) = Z^ XPm(J) XH(J-m)
j=l

•..(4.14a)

.(4.14b)

.(4.15a)

(4.15b)

We next define the mth order P-by-1 forward and backward
error residual vectors, /(n) and eb(n), as

and

&»> =W»> "A»m(n) Xpm(n-1)
•.(4.16a)

em(n) =X(n-m) -B^fn) X^tn).

In the above equations the

••.(4.16b]

Trace of
n

>n~J f,

Trace of

j=l
-m

components of Pm-by-P matrices

Apm(n) and Bpm(n) are called one-step-forward

multichannel predictor coefficient
and one-step-backward

s and are chosen so as to minimize

i, *-j ^ &4 ••.(4.17a]

»[&»]* ••(4. 17b]
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with respect to Apm(n) and Bpm(n), respectively.
Using the results given in Appendix-A, eqn.(4.17a) can be

minimized to obtain

V1^ Vn) -QmU) =°
.(4.18:

and rf(n), the error variance matrix of the forward error vector em(n)

is given by

/(n) =q(n) -<£(n) Apm(n)

Equations (4.18) and (4.19) can be combined into a single

..(4.19)

augmented equation as,

q(n) Q"(n)
m

Q (n) •p_(n-l)
m Pm

•A,, (n)
Pm

rf(n)
m ..(4.20:

Where 0 is a null matrix of dimension P(m-l)-by-P.

Equations similar to (4.18)-(4.20) are obtained by

minimizing (4.17b) with respect to Bpn|(n).

Using matrix inversion lemma [48], the inverse of *p(m+1)(n)

may be written as

*P(m+l)(n)

or

*P(m+l)(n) =

Pm

0

0

0

0 *D (n-1)
Pm

-BD (n)
Pm

-AD (n)
Pm
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Substituting (n-1) for n in eqn. (4.21a) and premultiplyi
ng

by Qm+1(n), we get the following order update equation for A0 (n)
Pm

Vm+l)(n) "
APm(n> "BPm(n-^

[rlin-1]] KmW ..(4.22:

where K^n) is a P-by-P matrix, defined as

(4.23)

Similarly, the order update equation for Bpm(n) is obtained
as

where

BP(m+l)(n) =
BPm(n-1J "APm(n)

K (n) = 1
m

It may be easily shown that

V„) =K»(n).

[*•>]
1 „

Km(n^m

...(4.24;

..(4.25)

;4.26:

The order update recursions for the forward and backward
error residual vectons £|faJ and £|tB, can be derlved by
substituting e<,n.(4.22) in (4. ,6a) and eq„.U.24, ,„ ,«. lab, „, are
given by

f , ,
emJ.i (n)-m+l

b I s

=̂ (n) -*n)[r^l)]"12J(n-1

e (n-1) -
-m V'ft-"]"1'̂
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The (m+l)th order forward and backward error variance

matrices can be written as

rf ,(n) -/(
m+1 m

n)-K»(n)[An-l)] S^n)

rb..(n) =v\n-l) - Kjn) [/(n)] icjj(n)
m+1 m

..(4.28a)

..(4.28b)

The two recursive equations in (4.27) specify the

Itichannel lattice filter. The initial conditions on the order

updates are

mu

ef(n)
-o

eu(n) = X(n)
-o

rf (n) = r(n) = Y \"~J X(j) Xn(j)
O O L,

,n~j vr n vHf r

j=l

= Arf(n-1) + X(n) XH(n)

(4.29)

(4.30:

We next derive the time update equation for K (n), using

K (n) = U"+1(n)
m m+1

"APm(n)

..(4.31)

This requires a time update equation for Apm(n) which may be

written as [60]

-iH
...(4.32)APm(n) =APm(n-n +W"'1'^1]

Similarly, we can also write

r b iH
BPm(n) =BPm(n-n +Wn)[?m(n).
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by

In eqns.(4.32) and (4.33), Cpm(n) is a complex vector given

SpJn) - On) X fn)-Pm Prn -TV ...(4.34)

Using equation (4.21a) in (4.34), we get

Wn) *
£p(m-l)(n) -BP(m-l)(n) [r^n)]'"1eb(n|_ m -m

..(4.35)

Using eqn.(4.32) in (4.31), K (n) may be rewritten as,

eb(n-l)[ef(n)l
Km(n) = AKm(n-l) +

a (n-1)
m

H

.(4.36:

where a^n) is a scalar real constant, given by

".<*> "Vl<"> - [!.-1<»']H[^1(n-l)]"1.Bb.1<„) . .. (4.37:

In order to complete the derivation of multichannel

least-square lattice algorithm, eqn.(4.5) should be sol
recursively, which may be rewritten as

ved

*Wn) =*F>> %(*). ...(4.38)

R-lSubstituting for *~'(n) from eqn.(4.21a), we get

-WPm(n) =
Wl)(n) •BP(m-l)(n)
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where

...(4.40)^-i(n» ' L-Bp(„,-,),n) ']%,n)

The P-by-1 dimensional vector oMn) satisfies a time update

equation which is obtained from the time update equations for Bpm(n)

and 8 (n), given by (4.33) and (4.7) respectively. Thus,
-Pm

d (n) = Ad (n-1) + eb(n)e*(n)/a (n). ...(4.41)
-m -m -m m m

With e (n) = d(n), the order update equation for the error
o

residual of the multichannel least-square lattice filter can be

written as,

em(n)=d(n) -Wp«(n) Xpm(n) ..-(4.42)

Substituting eqn.(4.39) for Wpm(n), the above equation can

be simplified as

..1ln).Vlto)-i1(.)[^l.l]"'t,(.l. •••(4.43)

Thus, we have obtained the order and time update relations

for the multichannel least-square lattice algorithm based beamformer,

which are summarized below.

em(l-m
:n-l)[/(n)]

K (n) = AK (n-1) + ...(4.36)
a (n-1)

m

:n) -KH(n)[rb(n-l)
m [ m

166

•1

e ,(n) = e (
-m+1 -m

eb(n-l) ...(4.27a)
-m



Wn) •5m(n-l) -Km(n)[/(n)]" /(n) ...(4.27b)

rm+l(^ "-m(n) "̂ "'[^""^yn) ...(4.28a)

Pm+l(n) -rj(n-l) "̂ [/(n)] V(n) ...(4.28b)

VlW-V»J- [S»{^]H[^^-I)]"^(n)

f f -m
rm(n) = Ar (n-1) +
m m ' — • ...(4.44)

:») [•;<")]"
a (n-1)

m

Similarly we can write

b, ^ b
r (n) = Ar(n-l) + -

m • ...(4 451a (n-1) -.l4.toJ
m
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...(4.37)

dm(n) =Adm(n-l) +eb(n)e;(n)/am(n) ...(4.41)

em+i(^=em(n) -d«(n) [rJ(n)]"V(n) ...(4.43)

Here, the order update equations for / ,(n) and rb (n) are
m+1 m+1

computationally expensive as they involve multiplication of three

P-by-P matrices. Moreover, these equations may cause numerical
instability as they use the inverses of rb(n-l) and rf(n) for order

f h m
updating rm+1(n) and r^Cn). Therefore, a better strategy is to use
their respective time update equations.

We obtain the time update equations for rf(n) bV
m ' *

substituting for Apn<n) fro. (4.32) in eqn. (4.19). This gives



The above time update equations do net involve either matrix

multiplications or the inverse of r'.Cn) and r>-l). Therefore, these
equations are superior with respect to both computational complexity
and numerical stability [67].

Using equations (4.44) and (4.45), the multichannel
least-square lattice algorithm can be rewritten in the following form.

ef(,
f f , ~m L"" i_ ...(4.44)

r (n) = Ar (n-1) + •-
mm a (n_D

m

:»> [*£<">]

eb(n-l) feb(n-l)l
-m L_n> J

rb(n-l) = Arb(n-2) + •••(4-45)
m"> a (n-2)

m

bre (i
-m

;n-l) [/(n)]
K (n) = aK (n-1) + -

a (n-1)
m

?m+l(n) =£CB-l) "K™(n) [rm(n)] e-m(n)

.(4.36)

(4.27a)

...(4.27b)

) ...(4.37)wn> •am(n) -mh [r>'i]r*>
dB(n) =Adm(n-l) +eb(n)e*m(n)/am(n) •••(^U

in) -d«(h) [rb(n)]em+l(n) =Gm(r -*n)
Lbfnl ...(4.43)
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Modifications can be made to some of the above equations

without affecting the optimality of the algorithm. In the conventional

method, the reflection coefficients and the ladder gain are computed
according to the following relations.

Ci <»>--«;.»> [rju-n] -1

C+l(n> ^m^ftH

An) r n
m [ m

c (n) = -d
-m

-1

(4.46)

...(4.47:

(4.48;

In MLSL algorithm, the weight vector is not computed
explicitly as it is computationally costlier. However, MLSL algorithm
can be used for broadband adaptive beamforming, since the error
residue e^n), for m+ 1=M is available which -s Qf ^.^
interest. The MLSL algorithm and its initialization are given in Table
4.1 and Table 4.2, respectively.

Table-4.1

The MLSL Algorithm Using A Posteriori Errors

Algorithm

For n = 1,2.

For m = 0 ,M-1

rm(n) =^(n-D ♦
£»#»>]"

ajn-l)
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2
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rb(n-l) - Arb(n-2) +
m m

H

eb(n-l)[eb(n-l)l
-m L_m J

e (
-m

K (n) = AK (n-1) +
m m

a (n-2)
m

n-l)[/(n)j

a (n-1)
m

Af (n) =-KH(n)[rb(n-l)l
m+1 m L m

Ab ,(n) =-K (n)[rf(n)l
m+1 m L m J

-1

ef ,(n) = ef(n) + Af.(n)eb(n-l)
-m+1 -m m+1 -m

eb („) = eb(n-l) + Ab 1(n)ef(n)
-m+1 -m m+1 -m

P2M

2
PM

(T 4.1.2]

(T 4.1.3)

P M (T 4.1.4]

P3M [T 4.1.5)

PM (T 4.1.6)

PM (T 4.1.7;

H —1

a ,(n-l) =a (n-1) - [eb(n-l)l frb(n-2)l eb(n-l) (P2+P)M (T 4.1.8:
m+1 m [-m [ m J-m

Joint process estimation

For n = 1,2

For m = 0, M

d (n-1) - Ad (n-2) + eb(n-l)e*(n-1)/a (n-1)
-m -m -m m m

P(M+1) (T 4.1.9)

(n-1) - dH(n-l)rrb(n-l)l eb(n-l) (P2+P)(M+1) (T 4.1.10]
-m [_ m -me .(n-1) = e

m+1 m

Total 4PM divisions + 2P3M + 6P2M + P2(M+1) + 3P(M+1)
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The MLSL algorithm requires about |2P3M +6P2M +P2(M+1) +
3P(M+1)] operations per time sample. In addition, it requires 4PM
divisions. Further, for each order, inverses of two P-by-P error

variance matrices /(n) and rb(n) are to be computed, which requries
about 2P3(M-1) operations per time step.

Table-4.2

Initialization of the MLSL Algorithm with A Posteriori Errors

1. To initialize the algorithm, at time n =0 set

Km(0) =0 for m = 0,1 M-l

f

rml J " SI" s = smaH positive constant

rb(-l) = 51
m

2. At each instant, nM, generate the various zeroth order
variables as

SQ(n) "sjj(n) -X(n)

rQ(n) =ro(n) =Ar^(n-l) +X(n)XH(n)

3- For joint process estimation, initialize the algorithm by setting
at time n = 0

d (0) = 0
-m

at each instant n fe 1, generate the zeroth order variable

eQ(n) = d(n).
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4.2 THE QR-MLSL ALGORITHM

In this section, we reformulate the MLSL algorithm derived

in the previous section to a Givens rotation-based MLSL algorithm by

suitable transformation of filter quantities.

In order to derive the QR-MLSL algorithm, we start with

multichannel lattice recursions (4.44), (4.45), (4.36), (4.27),

(4.37), (4.41) and (4.43), and write the error covariance matrices

rf(n) and rb(n-l) in terms of their upper triangular cholesky factors
m m

Rf(n), Rb(n-1) as [67]
m m

u

^f(n) =f/(n)l /(n)
m L m J m

rb(n-l) =[rV-1)1 Rb(n-1)
m [ m J

(4.49)

(4.50)

Following [67], we next introduce a new set of variables

„>) - K(n)] \m

rb(n) = [Rb(n-1
lm [ m

-H

K (n)
m

—H

€M =[Rm(n)] e-m(n)

a (n) = va (n)
m m
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...(4.51b)

.(4.51c]

..(4.51d:

..(4.51e:



~f f
5m(n) = em(n) / a (n-1)
m -m m

S(n) =?m(n) 'SB(n)

C^1' -[»5(n-l)]\(n-l)

em+l(n) = em+l(n) ' Vn)

..(4.51f)

..(4.51g)

..(4.51h)

...(4.51i

In the above equations, superscript 'H' denotes the

Hermitian transposed matrix. The errors ;f(n), Zb(n) and e (n) are the
m -m m

geometric mean of the a posteriori and a priori errors, which are also

known as 'angle normalized' or 'rotated errors' in the QR

decomposition literature [67]. It is also well known that the maximum

likelihood factor ^(n) is the conversion factor between the geometric

mean and the a priori errors, which are related as

Vn) = em(n) / « (n)m m m ...(4.52)

It can be seen that, the Cholesky factors, and all the

variables in eqn. (4.51), can be updated using only two orthogonal

transformations. Accordingly, we construct two suitable block matrices

and apply two orthogonal transformations Qf(n) and Qb(n)
m m

"f

m •

^•V"-1' ^"t^n-D

t^H" [&->]'

Rl(n)m

0

'm

[ti<»)]H
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0

a (n-1)
m

-m

m+l

..(4.53)



Qb(n)
m

vX"Rb(n-2) CrVl) V5Ti;e(n-2)
m '"

H
e (n-1)[ibm<-1»]H [£ta)]

rV-d i; b'"»

0
H

I
[ifm+l(n)]H

r e(n-n
J-mLm

e*..(n-l)
'm+1

a (n-1)
m

8b(n-i:
-m

a Mn-1)
m+1

...(4.54)

All the matrix elements appearing on the left hand side of

eqns. (4.53) and (4.54) are assumed to be known from the previous time

and order-recrursions. As explained in chapter-3, the two orthogonal

matrices QAu) and Qb(n) are designed to eliminate the vectors
m m

[if(n)]H and [Sb(n-1)]H. while keeping p£(n) and R^n) upper
-m ~m

triangular. This is accomplished with the help of Givens rotations, as

in chapter 3. The resulting quantities on the right hand side of eqns.

(4.53) and (4.54) are the desired updates of the corresponding

positions on the LHS.

The above statement can be proved by using the orthogonality

of matrices Qf(n) and Qb(n). From the orthonormality relation
m m

[Qf(n)]H[Qf(n)] = ID, we have the following identity [67].
m m P

RH B = AH ABl B2 Al 2
for am(n) [a, A2] =[Bl bJ

...(4.55)

The above identity is a powerful tool in designing rotation

based algorithms. By associating ^ and A2 with suitable columns of

the left hand sides of the eqns. (4.53) and (4.54), we can arrive at
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the MLSL recursions (4.44), (4.45), (4.36), (4.27), (4.37), (4.41) and
(4.43).

For illustration, we associate both A and A with

VA~V(n-l)
m

frH"

and B: and B2 with

m

us ing eqn. (4.53). Applying the identity in eqn. (4.55), we get

..(4.56)

Substituting eqns.(4.49) and (4.51f) for rf(n) and ef
m -m

the above equation can be simplified to

ef(n) [ef(n)l-m |_-m J
rm(n) = A rm(lW) +

a (n-1)
m

..(4.57)

Similarly, with suitable definitions of A^.Bj and B2 (See
Appendix^)), we get the following equatic

Lons.

[<™]'ff™ "*[«m<n-l>]V<n-l> ♦ £»>[£<»-.,]'
..(4.58)

175



[/(n)]Vm(n) - [ifm(n,]Sm(n-D ...(4.59)

-1)

...(4.60:

~2rn_i) ...(4.61[£(n>] <£(n> +«2+1(n) =̂ (n-i:

Using eqns.(4.51), the above equations can be simplified as
<H

J, , b, _ ,,
esf(n) feb(n-l)l
-m |_-m J

K (n) = A K (n-1) +
m m a (n-1)

m

...(4.62:

f, , ff ! ...(4.63:
e (n) = e (n)
-m -m

eb .I e1
-m+:

.,(„> -.*<„-!) -Km(n)[/(n)] /(n)

vi<-> •%l»-» - [iH"W1*"1 "(465)
Eqns.(4.57), (4.62), (4.64) and (4.65) clearly correspond to

a subset of MLSL recursions.

.Similarly eqn.(4.54) can be shown to be equivalent to

another subset of lattice recursions given by eqns.(4.45), (4.27a),

(4.37), (4.41) and (4.43).

Alternatively, ^(n-1) and ^(n) can also be computed in the

following way.

\+i(n) -m(n-11^co<ilnl ••'(4'66)
1-1
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p bVl(n"l) =«m(n-^ TT°°seJtl(n) ...(4.67)
f h

where e .(n) and 8 (n) ( 1 = n 1 o Dim, l m,i u' l x 0.1.2 ,P) are the angles of

Givens rotations corresponding to Q^(n) and Qb(n), since the last
diagonal" elements of q£(„, and ^An) are the products of cosine
parameters.

Table 4.3 summarizes the QR-MLSL algorithm. After

initialization, two orthogonal transformations per time sample and per

filter section are computed. Only one of the possibilities in

eqn. (4.66) and (4.67) is used to update ^(n). We then compute the
posteriori prediction and joint process errors using the following
equations.

f ~f
e -(n) = 5m4.i(n)a Mn-l)m+r'" Sm+1vw«m+1in-i, ...(4.68;

• Wn) =im+l(n)Vl(n) ...(4.69)

'. Vl(n"11 = Vl(n-"Vl(n-1J ...(4.70)

The joint process error •||+1(n-l) for m = M is the error

residue of the adaptive beamformer. As in the case of MLSL beamformer,

here also, the weights are not computed explicitly as it is
computationally expensive.

It may be noted that the QR-MLSL algorithm (Table 5.3) has a

computational complexity of (9P2 ♦ 6.5P) Marithmetic operations per
time sample. In addition, it needs 2PM square-root operations per time
sample.
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Table-4.3

The QR-MLSL Algorithm

Initialization

Rf(0) = Rb(-1) = 61
mm r

5 a small positive constant

j-f(o) = Tb(0) = 0,
|m lm

Algbrithm

For n = 1,2,

1^(0) = (0)

Complexity

do

2f(n) = Sb(n) = X(n),
-o -o

e (n) = d(n),
o

a(n) = 1

For m = 0,1,2 M do

Qf(n)
m

V^R^n-l) VXrAn-1)
m m

VARu(n-2)
m

VA"rb(n-l)
lm

9T [&,"»]'

V\F*(n-2]
-m

ab(n)
m

[im'"-"]" [£«»>]' e*(n-l)
m

'(n-1) rAn) C(n_1)i lm -m

H

[im+l(n)] e Mn-1)
m+1

a „(n-l) =a (n-l)ff cos 8 (n)m+1 m J^j m,l

(4.5P + 2.5P)M

+ PM sq.roots

(4.5P + 2.5P)M

+ PM sq.roots

PM

Total
(2PM square roots) + (9P M+6.5PM)
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4.3 THE MULTICHANNEL FAST TRANSVERSAL FILTER [MFTF] ALGORITHM

The MLSL and the QR-MLSL algorithms discussed in the

previous sections are recursive both in order and time and hence, are

computationally expensive. Since the number of taps behind each sensor

is equal to M, the order of the adaptive beamformer is fixed.

Therefore, here we, derive the multichannel fast transversal filter

(MFTF) algorithm, which is fixed in order and solves the eqn.(4.1)
recursively in time. We use apriori error forms of forward prediction

errors, backward prediction errors and joint process estimation errors
as the variables of interest.

In addition to the a priori error residual of the broadband

beamformer given in eqn.(4.8), the apriori forward and backward error
residual vectors are defined as

*M(n}=*^ -^(n-n^n-l) ...(4.71)

3M(n) = X(n-M) - BB (n-l)X (n)
M - PMU u*PMlnJ •••(4.72]

It can be shown that the error variance matrices r£(n+l) and
rb(n+l) of equations (4.28a) and (4.28b) for m=M, can be recursively
updated as

f
rM(n+l) = ArM(n) +5M(n+l)[3£(n+l)]

rb(n+l) =Arb(n) +Z?b(n+1) [eb(n+l)]"
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It may also be easily shown, as in [43], that the

coefficient matrices of forward and backward filters, ApM(n) and

B (n), are recursively updated in time using the following equations.

u

APM(n+1) =Wn) +Wn)[4(n+1)] •••(4-75)

BPM(n+1) =BPM(n) +£pM(n+1)[4(n+1)] •••(476)

Similarly, the weight vector WpM(n) of the adaptive

beamformer is recursively updated using

WpM(n+l) =WpM(n) +CpM(n+l)e*(n+l) •••(4.77)

The complex gain vector CpM(n+l) in the above equation is

defined as

C (n+1) = - S> 1(n) X (n+1) ...(4.78)
kPMl A PMV ' -PMU

By anology with the above equation, we define an (M+l)P-by-l

extended gain vector

=p(M.i)(nt1' • i♦;U)in> wn"1"1 •••(4'79)

where * ,(n) is the correlation matrix of the extended vector

Xp(M+1)(n+l) and is given by

H

...(4.80)*P(M+l)(n+1) v|An"J^P(M+l)(n+1)][^P(M+l)(n+1)]

180



The vector Xp(M+1)(n+l) in eqns. (4.79) and (4.80) is defined

-P(M+l)(n+1) =[x1(n+D,x2(n+l) xp(n+l),
xl(n)' x2(n) xP(n).

as

Xi(n-M), x2(n-M) xp(n-M)l
...(4.81)

In Appendix-E, it is shown that the extended gain vector

-P(M+l)(n+1) can be recursively updated

£P(M+l)(n+1)

or

£P(M+l)(n+1) =

as

aKH

C~PMM -KM(n)[rM(n)]_1 3M

KM(n)[rM(n)]Wn+1) - i
-1

*[•>>]"'
Defining

and

Wn(n+1) =
CpM(n+l)

up(n+l)

and using eqns.(4.82a) and (4.82b), we get

£PM(n+1) =ePM(n+1) +BPM(n)up(n+i;

2?M(n+l) =-^[nb(n)jup(n+l)

181

l£(n+l)

(n+1)
(4.82a)

bf ,,3M(n+l)

b, ^^3M(n+l)

(4.82b;

•..(4.83)

..(4.84)

...(4.85)



As in the case of MLSL algorithm, we define here a scalar

constant, ocAn) given by

Vn, - 1-X>> CpM(n, ..."•«>

which is recursively updated as

aM(n+l) =Vn) +I[3b(n+l)]H[rb(n)f\b(n+l) .-.(4.87)

The a posteriori error residual vectors can be updated using

a priori error residual vectors and scalar constant a^n) as

f, .... _ _f,-^w- r-l ...(4.88)
-Ml
e:(n+l) = I!M(n+l)/aM(n)

eb(n+l) =2b(n+l)/aM(n+l). ...(4.89)

The a posteriori error residual of the least-square filter

is updated as

eM(n+l) =7]M(n+l)/aM(n+l). ...(4.90)

. We can also write the MFTF algorithm using scalar constant

yw(n) which is defined as
M

yM(n) -l/aM(n). " .-.(4.91)

The extended scalar constant, using the extended gain

vector, can be written as

H
n+1) ...(4.92)Vl(n+1) =' ~[£P(M+l)(n+1)] *P(M+1)(
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Using eqn.(4.82a) and (4.82b), «M+1(n+l) can be expressed in
two different forms as

Vi^)=aM(n+i) +i[3b(n+1)]Hrrb(n)j-12?b(]

Eqns.(4.93) and (4.94) can now be rewritten in terms of

.(4.93)

'n+1 ...(4.94)

rM+1(n+l) as

and

7An)

rM+1(n+i) =
r H ~^1 "

+i[&n+1)] [#n)] ^(n+l)

rM+1(n+i)

••.(4.95;

ru(n+l) =
"7^ ^H - ...(4.96;

1+[3M(n+l)J up(n+l)yM+i(n+i)

This completes the derivation of the MFTF algorithm A
summary of the MFTF algorithm is presented in Table 4.4. It is found
that it has acomputational complexity of about (P3M +4P2M +3P2 +
2PM ♦ 4P +1), wlth aforgetUng factor A^^ ^ ^^^ ^ ^^^^

it requires about 2divisions per time sample. Further, inverse of the
error variance matrix rj(n, has to be computed _ ^ ^ ^

le.
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Table-4.4

The Multichannel Fast Transversal Filter [MFTF] Algorithm

Initialization

rAQ) = A

r..(0) = r..(0) =51, 5 a small +ve constant
M M

(T.4.4. i:

(T.4.4.2:WDM(0) = £DM(0) = 0DM, ApM(0) = BpM(0) - 0
-PM -PM PM' PMV PW PM x P

Algorithm

T^(n+1) = X(n+1) - AB (n) XDM(n)
-M PM —PM

f fe_M(n+l) = 3M(n+l) y (n)

^P(M+l)(n+1) =
>M(n) -I APM(n)[rM(n)]

ApM(n+l) =ApM(n) +CpM(n) [e^n+1)]

^(n+1) =Ar^(n) +e£(n+l) ^(n+1)] H

£P(M+l)(n+1) =
CpM(n+l)

BP (n+1)

£pM(n+l) = CpM(n+D + BpM(n)up(n+l)

b, ,
I?M(n+1 -X[rj(n)]

Vi(n+1) =

(n+1)tip

rM(n)

Complexity

P2M

ff ^2M(n+l)

(T.4.4.3)

(T.4.4.4)

f^ 413M(n+l)

P3M (T.4.4.5)

P2M (T.4.4.6)

(T.4.4.7)

(T.4.4.8)

2
P^M (T.4.4.9)

P2 (T.4.4.10)

2
P + P (T.4.4. Ii;

1 + i [>(n+1)] [rM(n)] 4 (n+1)
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Wn)
rM(n+i) =

1 + [?Min+u] ÎP(n+1)3rM+l(n+1)
2P (T.4.4.12)

-M(n+1) =3M(n+1)yM(n+1) (T.4.4. 13)

rM(n+l) = } Jj(n) +̂(n+nje^n+l)]" P2
(T.4.4. 14;

BPM(n+1^BpM(n)+CpM(n)[4(n+l)]H p2M
(T.4.4. 15;

V««> -dCi, -W^(»)JipM(ntI) pM „_

eM(n+l) =T}M(n+l)rM(n+l)
(T.4.4.17)

"W~" -W»> ♦ CpH,nt„e*,„tl, PM „_

Total (divisions 2) .(P3M .4P2M .3P2 ♦ 2PM ♦«>♦,■

4.4 SIMULATION RESULTS

Extensive computer simulations were carried out to study
fast RLS algorithms, viz, MLSL, MFTF and the QR-MLSL for adaptive
beaming in a broadband signal environment. To facilitate a
comparison with exact least-square algorithms discussed in chapter 3
signal environments corresponding to four examples presented in
sec.3.6 (Examples 3.6-2.1 to 3 R-J 41 k,

J. fa 2.4) have been considered. The

Performance evaluation has been hased upon the convergence
characteristics and the ability of these beamformers to reproduce the
^sired signal. The voltage patterns have been presented only for MFTF
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bea,for»er, which appears to be the best among the three bea-formers

considered in this chapter.

Example 4.4-1

In this example, two broadband interferences are assumed to

arrive from +60° and -60°. The remaining parameters are as given in

Table 3.11.

The output residual power characteristics of the three

beamformers are shown in Fig.4.1. It is evident from Fig.4.1(a) that

the MLSL beamformer does not converge even after 1000 samples. The

beamformer exhibits on initial convergence in the first four hundred

samples. However, during this interval, it exhibits a large residual

power of about -20dB. After 400 samples, the characteristics exhibits

continuous fluctuations, the severity of which increases with the

increase in the number of samples. These fluctuations deviate from the

mean by a large amplitude. On the other hand, the MFTF and the QR-MLSL

beamformer converge in about 50 samples and the residual powers are of

the order of -40dB and -50dB, respectively. It may be recalled that,

for the same problem, all the least-squares beamformers exhibit

numerical stability and fast convergence (Fig.3.13), with RLS and

QRD-LS beamformers producing residual powers of -75dB and -80dB,

respectively.

Fig.4.2 shows the output signal waveforms from these

beamformers. A comparison with the desired signal waveform (Fig.2.7)

shows that the output waveform of MLSL beamformer is distorted at

several places. Though the QR-MLSL beamformer tracks the desired
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signal from the beginning, its output waveform is also distorted at

many places. On the other hand, the MFTF beamformer (Fig.4.2(b))
tracks the desired signal satisfactorily just like the exact RLS
beamformers (Fig.3.15).

Example 4.4-2

In this example, the interferences arrive very close to each
other (50° and 60°) but for away from the desired signal.

From the residual power characteristics shown in Fig.4.3, it
is clear that, as in the previous example, the MLSL beamformer fails
to converge and the residual power is large (-20dB). The MFTF array
converges in about 100 samples and has the least residual power
("lOOdB). QR-MLSL array exhibits faster convergence but has alarger
residual power of the order -r^d ^en. order 60dB. On comparison with the residual
power characteristics of exact RLS beamformers (Fig.3.,6). it is clear
"Mle the RLS beamformer exhibits faster convergence as compared to
the MFTF beamformer, the RMGS beamformers (F,g.3.16(b, and (.,) and
the MFTF beamformer have more or less the same convergence speed
However, the exact RLS beamformers have a ,ower residual power of
-7SCB as compared to the MFTF beamformer. The performance of QRD-LS
beamformer (F,8.3. 16(d), is found to be superior to that of QR-MLSL
beamformer.

Fig.4.4 shows the output signal waveforms of these three
beamformers. In this case, the output signal waveforms of all the
three beamformers track the desired signal satisfactorily.
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Example 4.4-3

In this example, the two interferences have been assumed to
o pO

arrive very close to the desired signal, I.e., from +5 and o .

From the residual power characteristics in Fig. 4.5, it can

be seen that the MLSL beamformer again exhibits poor convergence with

large amplitude fluctuations. On the other hand, the MFTF and the

QR-MLSL beamformers converge quickly to a mean residual power of about

-60dB. On comparing with Fig.3.18, it is found that the RLS beamformer

(Fig.3.18(a)) takes a large number of samples (400)to converge. Also,

the exact RLS beamformers exhibit a larger residual power of the order

-30dB compared to that of MFTF and QR-MLSL beamformers. The

performance of QR-MLSL beamformer, in the present scenario, is

comparable to that of QRD-LS beamformer.

The output signal waveforms of the three beamformers are

shown in Fig.4.6. It is found that the MLSL output waveform is fully

distorted and does not resemble the desired signal waveform. The MFTF

and QR-MLSL beamformers, on the other hand, reproduce the desired

signal waveform faithfully except for some minor distortions.

Example 4.4-4

In this example, the two interferences arrive from near

endfire directions at +80 and -80 .

Figs. 4.7 and 4.8, respectively show the residual power and

the output signal waveforms of' the three beamformers. In this

situation also, the MLSL beamformer exhibits divergence and produces

an output waveform which is highly distorted. On the other hand, the
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MFTF and QR-MLSL waveforms exhibit better characteristics, as in

previous examples. A comparison of Fig.4.7 with Fig.3.20 reveals that

the exact RLS beamformers exhibit superior performance compared to
these fast-RLS beamformers.

From the above examples, it is clear that though the MLSL

beamformer exhibits initial convergence, it produces a large residual

power and tends to diverge with the increasing number of samples. In

most of the situations it fails to faithfully reproduce the desired

signal. Thus, it may be concluded that the MLSL beamformer suffers

from numerical problems which can be attributed to the repeated

computation of the inverses of the error variance matrices. Although

MFTF and QR-MLSL beamformers exhibit better performance

characteristics, the residual power is large compared with that

obtained in the case of exact RLS beamformers.

Since weight computation is an integral part of the MFTF

algorithm, the voltage patterns of the MFTF beamformer have been

computed for the four examples and are shown in Fig.4.9-4.12.

It is found that in the first example, the MFTF beamformer

places deep nulls of depth HOdB and 129dB (Fig.4.9) in the direction

of interferences (±60°), as does the exact RLS beamformers. However,
it produces shallow nulls at 45° and 60°, thereby introducing a bias

of -5° for the interference arriving at 50° (Fig.4.10). When the
interferences arrive very close to the desired signal (±5°), the null

depths are much smaller (-SOdB) (Fig.4.11) than those produced by the
exact RLS beamformers (-80dB). Finally, Fig.4.12 shows that the MFTF

beamformer fails to place nulls in the direction of endfire
interferences arriving at +80° and -80°.
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4.5 CONCLUSIONS

In this chapter, the application of fast RLS algorithms,

viz., the MLSL, MFTF and the QR-MLSL algorithms to the adaptive
broadband beamforming problem has been investigated. These algorithms

exploit the inherent delays available in the tapped delay line to
arrive at beamforming techniques whose computational complexity is on

the order of P3M. The exact number of arithmetic operations required

by these beamformers per time sample are given in Table 4.5.

Table-4.5

Computational Complexity of the Fast RLS Algorithm
based broadband beamformers

MLSL
MFTF QR-MLSL

(2P3M +7P2M +P2 (P3M ♦ 4P2M +3P2 (9P^M +6.5PM)
+ 3PCM+D) + 2PM + 4P + 1)

+ 4PM divisions + 2P divisions + 2PM Square roots

+ 2P3(M-1) for computing + P for computing

the inverses to inverses

It is found that, of the three beamformers, MFTF beamformer

has the least computational complexity. If the number of taps in the

delay line are greater than five, the computational complexity of the

MFTF beamformer is less than that of the RMGSEF beamformer. However,

it is well known that by increasing the number of taps beyond four or

five per channel, no significant gain is achieved in the performance

of the beamformer [21].

The computer simulation results have shown that the MLSL

beamformer fails to converge in different signal environments, even
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after a large number of adaptation samples. Though the MFTF and the

QR-MLSL beamformers exhibit better characteristics than MLSL, their

performance is much inferior to that of the exact-RLS beamformers, so

far as residual power, signal tracking and interference suppression

are concerned.

It may, therefore, be concluded that for adaptive

beamforming, the fast RLS beamformers have neither the advantages of

computational complexity nor superior performance as compared to the

exact RLS beamformers discussed In chapter 3.
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CHAPTER - 5

ADAPTIVE BEAMFORMERS FOR COHERENT INTERFERENCE SUPPRESSION

In the preceding chapters, beamformers based on different

adaptive algorithms have been studied in a noncoherent signal

environmemt. Additional preprocessing is necessary to decorrelate the

coherence among signal and interferences and to make these beamformers

effective in a coherent signal environment. In this context, two

techniques, namely, the spatial smoothing preprocessing scheme (SSPS)

and the structured correlation matrix method (SCMM) were discussed in

chapter 2. Through computer simulations it was shown that, of the two

techniques SSPS has a superior ability for combating signal

cancellation in coherent signal environment. Detailed analysis of SSPS

by several authors [57,52,69] has shown that it suffers from reduced

effective aperture area. A promising modification of SSPS, which

results in an increased effective area, is the forward/backward

spatial smoothing scheme (FBSS) which has been proposed and studied in

the context of direction-of-arrival (DOA) estimation [50,66]. However,
detailed investigations into its performance in beamforming
applications have not been carried out, so far.

Suitable schemes are necessary to incorporate the above

mentioned spatial averaging schemes in the adaptive beamformers

discussed in chapters 3 and 4. This aspect has not received much

attention in scientific literature. Only Shan and Kailath [57] discuss

briefly a method of implementing SSPS in the LMS array. Similarly,
Park and Un [45] have presented aparallel modified spatial smoothing
(PMSS) technique which is a parallel implementation of the
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forward/backward scheme. In this method, the array data are processed

in two steps. First, a data-domain spatial preprocessing (DDSP)

algorithm is applied, which expands the effective aperture area

without forming covariance matrices. Then, a parallel implementation

of the spatial smoothing technique is carried out to decorrelate the

coherence of signal sources. They have realized this using the QRD-LS

array.

The adaptive algorithms can be broadly divided into two

groups, viz, the weight oriented algorithms and the residue oriented

algorithms [70]. Weight oriented algorithms are those in which weight

vector is updated explicitly at each time instant. The LMS, RLS and

the MFTF algorithms are all weight oriented. On the other hand,

orthogonalization-based algorithms such as, the RMGS and the Givens

rotation based QRD-LS algorithms, do not involve any explicit

computation of weights. These algorithms are known as residue or

estimation error oriented algorithms. Different schemes are required

to incorporate the spatial averaging techniques in these two

categories of algorithms.

This chapter has been organized in the following manner. The

FBSS has been discussed in the context of optimum beamformers in

sec.5.1. Adaptive implementation of the SSPS and FBSS using various

time recursive algorithms has been described in sec.5.2 and 5.3,

respectively. Typical numerical examples are presented in sec.5.4

which demonstrate the performance of SSPS and FBSS with different

adaptive algorithms. Finally, conclusions are drawn in sec.5.5 based

on computer simulation studies.
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5.1 THE FORWARD/BACKWARD SPATIAL SMOOTHING SCHEME

In addition to forward subarrays of the spatial smoothing

scheme described in sec.2.3, the FBSS scheme makes use of complex

conjugated backward subarrays to realize a larger effective aperture
[50]

In the basic spatial smoothing preprocessing scheme (SSPS),

a uniform linear array of 'P' sensors is extended by augmenting it

with <L' additional sensors. The extended array is then divided into

(L+l) overlapping subarrays, each of size •?• , with first subarray
formed from sensors {l P|, the second from {2 P+i} and so
on, as shown in Fig.5.1.

Using the notation of chapter 2, Let z[(n) denote the signal
vector of the 1th forward subarray.
Then

?[Cn) =[Xl(n), x1+1(n) Wl^f
J = 1,2, L+l

... (5. 1)

Then the covariance matrix of the Jth forward subarray is
given by

.f.E & n) [z[(n)|
..(5.2;

The forward spatially smoothed correlation matrix, $f, is
defined as the mean of the forward subarray correlation matrices which
can be written as

*f. 1 L+1
L?1 2-1
1 L+1 f
>1 ?<, *2 ...(5.3)
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It was shown in sec. 2.3 that for this scheme to work, the

minimum number of sensors needed is 2K as compared to 'K+l' for the
conventional array.

The forward/backward spatial smoothing scheme (FBSS) makes

use of appropriate backward subarrays to reduce the required number of
elements to (3K/2).

Towards this purpose, additional 'L+l' backward subarrays

are generated from the same set of sensors by grouping elements at

JP+L, P+L_1 L+1j to form the first backward subarray,
elements of {P+L-l, P+L-2 L} to form the second and so on, as
shown in Fig.3.1. Let zj(n) denote the 1th backward subarray signal. Let 7

vector defined as

given by

?i(n) =[xP+L-i+i^- Xp+L-2(n) *L+l-j+i<n)]T
2 • 1,2 L+l

... (5.4)

Then the correlation matrix of the 2th backward subarray is

*2 = E ZbJ(n) [zb(n)]H
(5.5)

We define the spatially smoothed backward subarray
covariance matrix, ib, as the mean of the subarray correlation
matrices, ie,

-*b= A-Lz*bL+l jjj 1 ...(5.6)
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Recalling the discussion in chapter 2, it is evident that

the backward spatially smoothed covariance matrix will be of full rank

when L+l £ K. It, therefore, follows that the backward spatial

smoothing scheme also requires at least 2K sensors to restore the rank

of the correlation matrix to K.

In the forward/backward spatial smoothing scheme,

simultaneous use of forward and backward averaging schemes is made.

The forward/backward smoothed correlation matrix, *, is defined as the

mean of *b and *f [50]. That is,

4> = (ib + *fl/2.0 ...(5.7)

This matrix * is then used in an optimum beamformer to

compute the weight coefficients of the array.

In general, the modified correlation matrix will be

non-singular, regardless of the coherence of 'K' signal sources, so

long as 2(L+1) £ K [50]. Recalling that in the presence of 'K'

signals, the size 'P' of each subarray must be atleast 'K+l' and

since, 'L+l' overlapping subarrays are formed in one direction, it

follows that if P is the total number of subarrays needed, then

P £ (L+l) + P-l i K/2 + K

or

P > ----- ...(5.
1 2

5.2 ADAPTIVE IMPLEMENTATION OF THE SPATIAL SMOOTHING SCHEME

Although optimum beamformer discussed in sec.2.4 can be

utilized to combat coherent interferences, it is computationally
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expensive to estimate the correlation matrix and to compute its

inverse. Further, the correlation matrix becomes ilIconditioned when

strong jammers coexist with the desired signal [70] and the method

often required double precision, which significantly decreases the

beamformer throughput. Therefore, in real time applications, adaptive

beamformers based on time recursive algorithms are used. Although

several authors have analysed SSPS and suggested modifications into

the basic scheme, its adaptive implementation has received little

attention. In this section, we present two separate schemes to

incorporate SSPS in adaptive beamformers : one for beamformers based

on weight oriented algorithms and the other for QR-decomposition based

arrays.

5.2-1 Adaptive Processing

In SSPS, the spatially smoothed correlation matrix is

defined as in eqn.(2.67)as

^1=1 zz •••(5-9)

where

$ = E
zz

lAn) \ZAn)] ...(5.10:

?2(n) being [xj(n)> xJ+i(n> xi+pi^]
We can write the- estimate of the spatially smoothed

correlation matrix as
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N L+l

L+l

2 = 1

1 N H

n=l

N L+l
1

N(I +1 ) " "mu+iJ n=l 1=1
Z.(n) Z"(n)

Then, by analogy

N+

N+1 L+l

i " ttptWtt J, £ ?i(n) ?>>
N L+l

n=1 1=1

.(5.11)

" wV (nttttlttt £ ?i(N*1) ?>"
...(5.12)

The above equation suggests that the inverse of the

spatially smoothed matrix, *, can be recursively updated by using the

matrix inversion lemma iteratively (L+l) times, once for each Z..

Similarly, SSPS can easily be implemented in the LMS, RLS and MFTF

algorithms.

5.2-1.1 Implementation using weight oriented algorithms

In this subsection, we illustrate the adaptive

implementation of the spatial smoothing scheme in weight oriented
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algorithms by incorporating the scheme in the conventional RLS

algorithm. Fig.5.1 shows how to form the spatial data subset from one

"snapshot" and a flow-chart of the procedure is shown in Fig. 5.2. At

each time instant, the snapshot of 'P+L' data samples is divided into

'L+l' overlapping subgroups of 'P' data samples each. These subgroups
are then fed one by one into the RLS algorithm based adaptive

processor which updates the P-dimensional weight vector each time.

After all the subgroups have been processed, the same procedure is

repeated with the next data snapshot. Once the adaptation process is

over, the weight vector, so obtained, is used to compute the array
output. The algorithm is summarized in Table 5.1.

5.2-1.2 Implementation using QR decomposition algorithms

To illustrate the adaptive implementation of

QR-decomposition based algorithms, we consider the RMGSEF algorithm

for which the flow-chart is shown in Fig.5.3. As in the previous case,

at each instant of time, the snapshot of 'P+L' data samples is divided

into (L+l) overlapping subgroups of 'P' data samples each (Fig.5.1).
The subgroups are then fed, one by one, in succession into the RMGSEF

algorithm based processor, which updates the elements of the upper

triangular matrix 'R' and the associated 1-by-P vector Kd(n)

(chapters) each time. After all the subgroups have been processed, for
afixed number of snapshots, say n, where n (L+l) >2P for obtaining
convergence, the elements of the upper triangular matrix 'R' and the
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1

Input the nth snapshot
Xj (n); 1=1 to 'P+ L'

Divide xj(n ) into *L + \%
Subgroups

Zt(n)j I =1to 'l+1*

Process subgroup in RLS

algorithm based adaptive

processor and compute W.

Yes

Yes

Array output

Fig. 5.2 Flow-chart for adaptive implementation of spatial smoothing
scheme using the RLS adaptive processor
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Total

Table 5.1

RLS Algorithm for Adaptive Implementati

of Spatial Smoothing Scheme

on

Initialization

*_1(0) = 5_1 i,

W(0) = 0

Algorithm

for n = 1,2 compute

For 1 = l to L+l

For i = 1 to P

Z](n) =Xi+i-i^

u(n) =A1»^n-l) Z^n)

C(n) = u(n)/[l+z"(n) u(n)]

T)(n) = d(n) - W^n-l) Z (n)

W(n) = W(n-l) + c(n) 7»*(n)

*_1(n) =A"1 ft-^n-l) -C(n) uH(n

<5 = small + ve constant

Complexity

(T 5. 1. 1)

P2(L+1) (T 5.1.2)

P(L+1) (T 5.1.3)

P(L+1) (T 5. 1.4)

P(L+1) (T 5. 1.5)

) 2P2(L+1) (T 5.1.6)

(P +2PML+1) divisions + (3P2+3P)(L+1)

associated 1-by-P vector rdfiO«„- i • Jyr vector K (n) are clocked into the linear systoli

array to generate the optimum weight vector. The weight vector, W,
obtained is then used to generate the array output.

so
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Input the nth snapshot
xj(n) ; i = 1 to 'P+L

±
Divide x|(n) into L+- 1

Subgroups

Z,(n); I= 1 to 'L+ 1*

Process subgroup in
RMGSEF algorithm based adapt-

-ive processor

Yes

No

Yes

Compute the weight vector in

the linear systolic array

Array output

Fig. 5-3 Flow-chart tor adaptive implementation of spatial smoothing
scheme using RMGSEF adaptive processor
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Here, spatial smoothing is effected on the elements of the

upper triangular matrix 'R* and the associated 1-by-P vector Kd(n),

because updating is carried out using the overlapping subgroups of

each snapshot in succession. This is similar to adaptive

implementation of the spatial smoothing scheme using LMS or RLS

algorithms, where P-dimensional weight vector is updated in the same

fashion. The RMGSEF algorithm for adaptive implementation of the

spatial smoothing scheme is summarized in Table 5.2.

The implementation of the spatial smoothing scheme using the

rotation based QRD-LS algorithm slightly differs in detail from that

of the RMGS class of algorithms. In the case of RMGS algorithms, the

reference signal d(n) is a part of the processing itself, whereas in

the QRD-LS algorithm, the reference signal d(n) is treated as an

appended element of the signal vector. Therefore, while implementing

the spatial smoothing scheme, the reference signal should be appended

to the subarray signal vector. The QRD-LS algorithm for implementing

the spatial smoothing scheme is given in Table 5.3.

Table - 5.2

RMGSEF Algorithm for Adaptive Implementation

of the Spatial Smoothing Scheme

Input definitions

Q. (n,n) = x (n), 1= 1,2, P+L (T.5.2.1

(1)
e (n,n) = d(n), r (0) = 5, i= 1,2,

ii
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Algorithm Complexity

For n = 1,2 compute

For 1 = 1 to L+l

otjln) = 1.0 (T.5.2.3)

For m = 1 to P do

q(1)(n) =qH\ .(n,n) (T.5.2.4)

For i = 1 to P do

q (n,n) = q (n,n)

r (n) =ArH(n-l) +a (.n) |q f.n, n) |2 3P(L+1) (T.5.2.5)

a+1(n) =a(n) - a2(n) Iqfn, n) |2/r ^(n) 3P(L+1) (T.5.2.6)

For j = i + 1 to P do

q(.i +1)(n,n) =q(l)(n,n) - K (n-1) q^n.n) P(P-1) (L+l )/2
(T.5.2.7)

K,(n) =K.(n-1) +a (n) q(,l+1)(n) q (n,n)/r (n)
iJ iJ I J i ii

P(P-1)(L+1)

(T.5.2.8)

e(l+1)(n,n) =e(l)(n,n) - Kd(n-1) q^n.n) P(L+1)
(T.5.2.9)

Kd(n) = Kd(n-1) + a (n) e(i+1)(n,n)q\n,n)/r (n)
i l i in

2P(L+1)

(T.5.2.10)

e(n) = e(i+1)(n,n) (T.5.2.11)

Total (0.5P2 + 1.5PHL+1) divisions + (1. 5P2 + 7.5P)(L+1)
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Table - 5.3

The QRD-LS Algorithm for Implementation of
Spatial Smoothing Scheme

Input definitions

Q, (n) = x(n), , = 1(2,
e(n) = d(n)

,P+L (T 5.3. I!

(T 5.3.2)

Algorithm
Complexity

For n = 1,2 do

For 2 = 1 to L+l

ttl(n) = 1"° (T 5.3.3)
For m = 1 to P do

qm1)(n) " Qm+]-l(n) (T 5.3.4)
qpijCn) =e(n) (T g^gJ

For I - 1,2. P+1

•(n> ' |̂A^rii(n-l)|ii+ \q\i](n)\2ii

3(P+1)(L+1)

(T 5.3.6)

If |ru(n)| >o, ci= |rii(n-l)|/ru(n) (T 5.3.7)

Si =<*/ Cn)/ru(n) (t 5.3.8)
else Cj = 1.0 , Sj = 0.0

Vl(n) = aici (P+1

For J = l+l , P+1

•V" " C,^/2 '.jtn-D *S*q'.",„, 3P(W),ui)/2

(T 5.3.9)

.0+1),_ i/2
(T 5.3. 10)

qy'Cn). -S, r, .(n-1) A1/2 +C| ,<"(») 2P(P+l) (L+! )/2

(T 5.3.11)

l!!!^^!,!^^!!^^10- +(p+1^^q~^t7+^^^p7^
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5.3 ADAPTIVE IMPLEMENTATION OF THE FORWARD/BACKWARD SPATIAL SMOOTHING

SCHEME

In the forward/backward spatial smoothing scheme, an array

of 'P+L' sensors is divided into 'L+l' forward and 'L+l' backward

subarrays as shown in Fig.5.1. Park and Un [45] have proposed an

alternative method of forming the backward subarrays which in

combination with the forward subarrays leads to the same correlation

matrix as that for the forward/backward scheme described in sec.5.1,

except for the scaling factor 1/2 whose value has no effect on the

beamformer function. In their approach 1 backward subarray signal

vector Z (n) is defined as

Zb(n) = J [?2(n)]

[x*+p.1(n). x*+p_2(n), * * 1,xj+1(n),xJ(n)

where J is the P-by-P exchange matrix defined by

J =

0 0 0 1

0 0 10

0 0 0

...(5.13)

...(5.14)

We next introduce a set of vectors {r (n)}, 1 = 1,2, L+l

-l(n) =2|?2(n) +-l(n)] ... (5.is:
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Then, it can be shown that the spatially smoothed

correlation matrix of r (n) is given by

zero

*

$ =

L+l

LTl I ^(n^n)]
2= 1

L+lf r
hi r #

4TL+TT I|Ê(n)p(n)] ♦ JE[zj(n)] [zj(n)]

+ E

LI T r mf}(n) [zj(n)] J+jE[zj(n)] rZf(n)j
J> ...(5.ie;

If the signals and noise are assumed to be band limited with

mean Gaussian characteristics, then using the identity E [U UT] =
♦ ii — —

EtU U"] =0, the second and third terms of the above equation vanish.
We may, therefore, rewrite eqn. (5.16)

as

L+l

$ = LTl) I [*j +J#Jj]
2+ 1

(5.17)

where

*i = E ?[(n) jz^(n)l
(5.18)

Therefore, ^(n) constitutes a new input vector whose

spatially smoothed correlation matrix is equivalent to that obtained
using eqn. 5.7 [45].
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5.3-1 Implementation Using Weight Oriented Algorithms

The implementation of the forward/backward smoothing scheme

using different weight oriented algorithms is similar to the adaptive

implementation of spatial smoothing scheme employing these algorithms.

The flow-chart for implementing the forward/backward scheme in RLS

algorithm based processor is shown in Fig. 5.4. From each snapshot, the

data subsets for the forward subarrays are formed as shown in Fig.5.1.

Next, a new set of data vectors r (n), for 1 = 1,2,.., L+l, are formed

in accordance with eqn. (5.15). These data vectors are then fed, one

by one, into the RLS algorithm based adaptive processor which updates

the P-dimensional weight vector. After all the data vectors r.(n),

1=1,2....,L+l, are processed, the same procedure is repeated for the

next snapshot of data samples. When the adaptation process is over,

the updated weight vector is used to compute the array output. The RLS

algorithm implementing the forward/backward smoothing scheme is

summarized in Table 5.4.

5.3-2 Implementation Using QR-Decomposition Algorithms

The implementation of forward/backward scheme using

QR-decomposition algorithms is similar to the spatial smoothing

schemes implementation using these algorithms. After forming the data

subsets for the forward subarrays from each snapshot, a new set of

data vectors r.(n), for 1=1,2,...,L+l are formed in accordance with

eqns (5.13) and (5.15). Next, the data vectors are processed in the

RMGSEF algorithm based processor. The flow-chart of the implementation

scheme and the RMGSEF algorithm which implements the scheme are,

respectively, given in Fig.5.5 and Table 5.5.
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1
Input the ntn snapshot
*i(n); i s 1 to 'p + L'

Divide xj(n) into'L-H*subgroups
il(n)il=1 to'L+T

Form the vector £((n)

£l(n) =V2[li(n)-t-J ^(njJforlrltoL+l

Process Xi(n) in RLS algorithm
based processor and update the

weight vector .ft

Yes

Array output

Fig.5.4 Flow-chart for adaptive implementation of forward/backward
smoothing scheme u.ing RLS adaptive processor
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Table - 5.4

RLS Algorithm for Adaptive Implementation of Forward/Backward Scheme

Initialization

« X(0) = a"1!, 5 = Small + ve constant

W(0) = 0

Algorithm

for n = 1,2, compute

For 1 = 1 to L+l

For i = 1 to P

Zj(n) - *, +i_i(n)

r^n) =ifZjtn) +JZ*(n)l

u(n) =A*• 1(n-l)rj(n)

u(n)

C(n) =

["l +r"(n)u(n)j

7>(n) = d(n) -vAn-Dr^n)

W(n) = W(n-l) + C(n)T) (n)

$ x(n) = a"1* 1(n-l) - C(n)uH(n)

Total

230

Complexity

P2(L+1)

P2(L+1)

P(L+1)

P(L+1)

P(L+1)

2P (L+l)

4P2(L+1)

(T 5.4.1)

(T 5.4.2)

(T 5.4.3)

(T 5.4.4)

(T 5.4.5)

(T 5.4.6)

(T 5.11.7!



1
Z Input the ntn snapsh

Xj(n ); i = 1 to 'P+ L'
pshot

Divide Xj(n) into'L+l' subgroups
.Zi(n) I = 1 lo'L+l'

Form the vector j^i (n )
rt(") =1/2[z|(n)+J jj(n)] for 1=1 to L+1

Process rj(n) in the RMGSEF

algorithm based

processor

Yes

Compute the weight vector in
the linear systolic array

Array output J
F'9' 5'5 2222!!? f°Kr QdQpti.V* imPl*mentation of forward/backwardsmoothing scheme using RMGSEF adaptive processed
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Table - 5.5

RMGSEF Algorithm for Adaptive Implementation of

Forward/Backward Smoothing Scheme

Input definitions

Z(1)(n) = x(n), i= 1,2 P+L (T 5.5.1)
l i

e(1)(n) = d(n), r (0) =6, i= 1.2 P (T 5.5.2)
ii

Algorithm Complexity

For n = 1,2 Compute

For 1 = 1 to L+l

a (n) = 1.0 (T 5.5.3)

For m = 1 to P

Zl(n) = x (n) CT 5.5.4)
*l(n> Xm+2-ll ;

r2(n) =\ k(n) +JZ*(n)] P2+l (T 5.5.5)

For i = 1 to P

q(1)(n,n) = r!(n) (T 5.5.6)
M 2

For i = 1 to P

r (n) =Arit(n-l) +af.n) |q ^n.n) |2 3P(L+1) (T 5.5.7)

a (n)|q (n,n)|
ai+1(n) =at(n) - ±-^ 3P(L+1) (T 5.5.8)

For j = i + 1 to P
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qj •(n,n) =q^1 (n,n) -K^di-l) q^n.n) P(P-1) (L+l )/2
(T 5.5.9)

1
KtJ(n) =KiJ(n-l) +ai(n) qy+lj(n,n) q(n,n)/r An) P(P-l)(L+

(T 5.5. 10

(i+1)/ ^ (i) H(n,n) =e ;(n,n) -K^n-llq^.n) P(L+1)

l

Total

(T 5.5.11)

(n) =Kd(n-1) +a(n) e(i+1)(n, n)q*(n, n)/r, (n) 2P(L+1)

(T 5.5.12)

e(n) = e(i+1)(n,n)
' ; (T 5.5.13)

[^(0.5P +1.5P) divisions +(2.5P2 +7.5P)] (L+l)

5.4 COMPUTER SIMULATIONS

In this section, the two spatial averaging preprocessing
schemes, namely, SSPS and FBSS, have been compared with regard to
their ability to overcome the coherent interference problem in
adaptive beamformers. RMGSEF and QRD-LS adaptive processors have been
used to implement the beamformers, as they have exhibited excellent
numerical and nulling properties.

In all the examples presented in this section, the signal
environment consists of 5 narrowband signals :a desired signal and
four fully coherent interferences. Therefore, the minimum number of
elements required is, respectively 10 and 8 for SSPS and FBSS
beamformers. Auniform linear array of 6 isotropic elements has been
assumed, as the subarray size should be atleast 6 elements. The SSPS
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has been implemented by augmenting the array with four elements and

forming five overlapping subarrays of 6 elements each. In the case of

FBSS, the 6-element linear array has been augmented with 2 elements

and three forward and three backward subarrays have been formed.

During the computer simulations it was found that, in some

typical signal environments, the minimum overall array size and the

number of subarrays was not sufficient to decorrelate the

interferences and the desired signal. In such cases, the number of

subarrays were increased till the desired decorrelation was achieved.

Example 5.4-1

In this example, the interferences have been modelled to

have wide angular separation. The various parameters of the

interferences are given in Table 5.6.

Table - 5.6

Interference Parameters for Example 5.4-1

Parameter Interference

1

Interference

2

Interference

3

Interference

4

6
i

30° -30° 60° -60°

s
i

10.0 10.0 10.0 10.0

CO
i

1.0 1.0 1.0 1.0

Fig. 5.6 shows the voltage patterns of the RMGSEF and QRD-LS

beamformers. It can be seen from the figure that the SSPS-RMGSEF and

SSPS-rotation based QRD-LS beamformers place deep nulls (-120dB) in

the direction of all the four interferences. On the other hand, the

FBSS-RMGSEF and FBSS-rotation based QRD-LS beamformers place
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-30 0

ANGLE IN DEGREES

(a) RMGSEF BEAMFORMER

ANGLE DV DEGREES

(b) QRD-LS BEAMFORMER

FIG.5.6 VOLTAGE PATTERNS OF SSPS AND FBSS
ADAPTIVE BEAMFORMERS WITH INTERFERENCES
ARRIVING AT 30°,-30°,60° k -60°.
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relatively shallow nulls in the range of -45dB to -50dB. Moreover, the

FBSS-rotation based QRD-LS beamformer introduces an offset of 2 in

the nulls produced at ±60°. It may also be noted that, in the case of

FBSS-RMGSEF beamformer, the pattern nulls are sharp at ±60 which is

not the case for FBSS QRD-LS beamformer.

Example 5.4-2

In this example, we again consider a signal environment

similar to the signal environment in example 5.4-1. The only

difference is that the two interference arriving at ±60 have been

shifted to ±65°.

From the voltage patterns in Fig. 5.7, it can be seen that

both SSPS-RMGSEF and SSPS-QRD-LS beamformers work satisfactorily with

minimum number of elements. The FBSS-RMGSEF beamformer also places

explicit nulls in the direction of interferences. The FBSS-rotation

based QRD-LS beamformer fails to place explicit null at ±65 , though

the beamformer gain is about -55dB and is equal to the null depth

produced by FBSS-RMGSEF beamformer. When the number of elements in the

array is increased to 10, FBSS beamformers place deeper nulls in the

range of -65dB to -70dB in the direction of interferences. Also, the

FBSS-QRD-LS beamformer places explicit nulls at ±65 . It may be noted

however, that even with minimum number of elements, the null depths in

SSPS beamformers are much larger (-120dB) than those produced by the

FBSS beamformers.

Example 5.4-3

In this example, the interferences have been assumed to
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-60-
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FBSS(10 ELEMENTS)

0 30

ANGLE IN DEGREES
60

(a) RMGSEF BEAMFORMER
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-160-

SSPS
--- FBSS(8 ELEMENTS)

FBSS(10 ELEMENTS)

90

-60 -30 6 30
ANGLE IN DEGREES

60 90

(b) QRD-LS BEAMFORMER

FIG.5.7 VOLTAGE PATTERNS OF SSPS AND FBSS
ADAPTIVE BEAMFORMERS WITH INTERFERENCES
ARRIVING AT 30°,-30°,65° k -65°.
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arrive at 30°, -45°, 60° and -75°. The remaining parameters are given

ih Table 5.6.

The voltage patterns are shown in Fig.5.8. It is found that,

the SSPS beamformers perform satisfactorily by placing deep nulls

(>-100dB) in the direction of interferences. On the other hand, with

minimum number of elements (8), the FBSS-RMGSEF array produces a bias

of 5° in placing null at -75° and the FBSS-rotation based QRD-LS array

totally fails to steer a null at -75°. When the overall array size is

increased to 10 and 5 subarrays are formed in each direction, the FBSS

places nulls at -75° with a 2° shift in both RMGSEF and QRD-LS

beamformers. Also the null depths in the direction of interferences

arriving from 30°, 60° and -45 increases to -45 dB and -60dB. It may

again be noted that SSPS beamformers exhibit much larger null depths

compared to FBSS beamformers.

Example 5.4-4

In this example, two interferences have been assumed to

arrive from directions very close to the desired signal (±5 ) and two

from directions far away from the desired signal (±75 ). The remaining

parameters are as given in Table 5.6.

From the voltage patterns shown in Fig.5.9, it is found that

both the FBSS and SSPS incorporated beamformers produce nearly

identical patterns. The null depths are also more or less the same.

Example 5.4-5

In this example, the coherent interferences have been

modelled to arrive from directions very close to each other but far
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FIG.5.8 VOLTAGE PATTERNS OF SSPS AND FBSS
ADAPTIVE BEAMFORMERS WITH INTERFERENCES
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(a) RMGSEF BEAMFORMER
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-90-
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FBSS
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(b) QRD-LS BEAMFORMER

FIG.5.9 VOLTAGE PATTERNS OF SSPS AND FBSS

ADAPTIVE BEAMFORMERS WITH INTERFERENCES

ARRIVING AT 5°,-5°,750 k -75°.
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away from the desired signal. The arrival angles of the interferences
are -30°, -35°, 60° and 65°.

The voltage patterns of the SSPS and FBSS RMGSEF adaptive
beamformers are shown in Fig.5.10. It can be seen from the figure that
the FBSS beamformer with minimum number of elements (8) fails to place
nulls in the direction of interferences arriving from 60° and 65°.

Also, the nulls placed at -30° and -35° are not sharp. It may,
therefore, be concluded that minimum number of elements and subarrays
formed (3 forward and 3 backward) are not sufficient to achieve the

desired decorrelation. That is, FBSS fails to achieve the expected
increase in effective aperture area for the present signal
environment. On the other hand, the SSPS beamformer with minimum
number of elements (10) places deep nulls (>-100dB) in the direction
of all the interferences.

In order to obtain the desired decorrelation, the number of

elements in the FBSS beamformer was then increased to 12 elements and,
7forward and 7backward subarrays were formed. Similarly, the number
of elements in the case of SSPS beamformer was also increased to 12.
It can be seen from Figure 5.10, that FBSS beamformer, now places
sharp nulls in the directions of all the interferences. However, there
is no significant changes in the voltage patterns of the SSPS
beamformer. It may also be noted that, the nulls produced by FBSS
beamformer are not as deep as those produced by the SSPS beamformer.

Example 5.4-6

In this example, the interferences have been assumed to
arrive from the directions 30°, 40° 50° and fin° tk> *" , ou and 60 . The remaining
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FIG.5.10 VOLTAGE PATTERNS OF SSPS AND FBSS RMGSEF
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parameters are given in Table 5.6.

Fro. the voltage patterns in Fig.s.H, it is clear that the
S-element FBSS beamformer fails once again to perform satisfactori ly.
It does not place noils ,„ the direction of interferences arriving
from 40° and 50° and introduces abias ,„ the noils pr„duCed at 30°
and 60°. on the other hand, the SSPS beamformer with minima number of
elements Co,, once again exhibits superiority by placing deep nulls
In the direction of all the interferences.

The number of elements was then increased gradually tin the
FBSS beamformer placed nulls in the desired directions. It was found
that „hen the total nomber of elements in th. array was raised to ,3.
that is atotal of Bforward and 8backward subarrays were formed, the
FBSS beamformer placed nulls in the direction of all the four
interferences Fig.5.n,o>. However, the nulis were much shallower
compared to those piaced by the SSPS beamformer with minimum number of

elements is increased to 13 in the <?qPQ Ko *
the SSPS beamformer, a significant

improvement in the null depths results in this case.

Example 5.4-7

In this example, the io° spacing between the interference
arrival angles of the previous example has been reduced to 6°. That
is the interference arrival angles are 35°, 40°,45° and 50°.

As oan be seen from the voltage patterns shown in Fig 512
both the SSPS and FBSS beamformers with minimum number of elements ,10
a^ B, respectively, fail to place the nulls ln the direction rf
interferences.
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FIG.5.11 VOLTAGE PATTERNS OF SSPS AND FBSS RMGSEF
ADAPTIVE BEAMFORMERS WITH INTERFERENCES
ARRIVING AT 30o,40°,50° k 60°.
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The number of elements was then gradually increased to 26
elements and 21 subarrays Here formed ,n ^ ^^ u ^^^

from Figure 5.12 that SSPS beamformer places deep nulis in the
direction of interferences but th. FBSS beamformer fails to place nuU
In the direction of interference arriving from 45°.

It may be recalled that only minimum number of elementdo)
«as sufficient ,„ the case of SSPS, when the interferences arrived at
the array with a,0° spacing. Therefore, it may be concluded that as
the spacing between the interference arrival angle is decreased,
larger number of subarrays need to be formed to achieve the desired
decorrelation.

5.5 CONCLUSIONS

In this chapter, adetailed study has been carried out on
the two spatial averaging schemes, namely, SSPS and FBSS, with regard
to their ability to null coherent Interferences, by incorporating them
in adaptive beamformers based on RHCSEF and QRD-LS algorithms. Both
the technics have been investigated by considering typical signal
environments in computer simulations.

It may be recalled that FBSS was initially proposed and
studied in the context of DOA estimation and it was shown that it
offers the advantage of an enhanced effective aperture area over SSPS
.50,66,. However, the present investigations show that when minimum
rehired number of elements are used, the FBSS beamformer fails to
Place nulls in the desired directions, except when the interferences
are symmetrioally located with respect to the broadside and not too
-ar the endfire directions. When interferes are unsymmetrically
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located on either side of the desired signal arrival direction, the

FBSS array with minimum number of elements introduces asmall bias (2°

5°) in the placement of nulls. This situation can be, however,
corrected by increasing the number of elements in the array. Further,

as the angular separation between the interferences reduces, more and

more number of elements are required in the FBSS array for

satisfactory operation. Thus, FBSS fails to give the advantage of the
increased aperture area in most situations.

On the other hand, the SSPS beamformers exhibit good
performance with minimum number of elements in most signal
environments. Only when the angular separation between the

interferences becomes small, larger number of elements are needed in

the array to decorrelate them. Moreover, the null depths obtained in

an SSPS array are much greater than those obtained in an FBSS array
with the same number of elements, resulting in much superior
interference cancellation. Finally since both QRD-LS and RMGSEF

algorithm based arrays give a comparable performance the latter is
preferable in view of its lower computational complexity.

It may, therefore, be concluded that, for coherent

interference cancellation an SSPS-RMGSEF beamformer is a better
choice.
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CHAPTER - 6

CONCLOSIONS

This dissertation addresses itself to a study of various
adaptive signal processing algorithms with applications to adaptive
beamforming. The study also includes spatial averaging methods which
are used to preprooess the signals in acoherent signal environment.
Although, there are many algorithms available in signal processing
literature, „. have, ,„ this dissertation, restricted ourseives to the
study of recursive exponentially windowed algorithms based on the
method of least-squares.

As the adaptive array technology has been widely studied an
adequate description of some of the basic concepts in the field was
found essential. Aocerdingly, ,„ chapter-2, the optimum beamformer has
been discussed in . narrouband signal enviponment ^ ^
assumption that the desired signal, interferences and noise are all
uncorrelated random processes. Following this n,. ,, ,.nuwing this, the well known LMS

algorithm has been discussed and numerical examples based on computer
simulations have been presented to demonstrate the ability of these
beamformers to suppress interferences.

The study has then been extended to broadband arrays, by the
addition of atapped delay line network behind the array. The addition
of constraints, bv whirh a ^^4-&y which a constant gain in a given direction can be
fixed (Frost array), has been presented Th* «= i ,presented. The simulation procedure for

the generation of broadband signal has also been described. Sample
-nits of asimulated broadband signal and the voltage pattern of the
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Frost array have then been presented.

The inability of the above mentioned beamforming techniques

to null coherent interferences has then been discussed. Acomparative
study of the two spatial averaging techniques, namely, the SSPS and
SCMM, which are used to preprocess the signals in a coherent signal
and interference environment to overcome the signal cancellation

phenomenon, has been carried out through computer simulations. The
results show that, among the two techniques, SSPS exhibits a much

superior performance. It has been found that SCMM introduces abias in
placing the nulls, which increases as the interferences are moved away
from the broadside, and ultimately, leads to the array's failure in

placing nulls in the direction of endfire interferences. Extensive
computer simulations have revealed that only for certain combinations
of arrival angles of the interferences, signal strengths and the

number of elements in the array, the SCMM nulls the interferences

satisfactorily. The method is not applicable to broadband arrays as

the correlation matrix is nontoeplitz, even in noncoherent situations.

Finally, the SCMM can not be implemented using beamformers based on

different adaptive algorithms. In view of the above, it is concluded

that SSPS is a better choice for coherent interference suppression.

We have next considered the application of the recursive

least-square algorithms to the adaptive beamformers. The conventional

RLS algorithm has been presented first and then, the Givens rotation

based QRD-LS algorithm has been derived using the algebraic approach.

Since a major problem with the latter is its expensive computational

complexity, as an alternative, we have proposed the application of the

250



BNGS and RMGSEF algorithms to adaptive headers. These algorithms
are computationally less expensive as compared to the Givens rotation
based QRD-LS a,gorlthm md, at t„e ^ ^ ^^ ^ ^

advantages of the latter, v,2, numerical stability and implementation
using systolic struotures. Comparison of the performance of adaptive
beamformers based on these four algorithms, in both narrowband and
broadband signal environments, has show, that the QRD-LS beamformer
lives the best performance. A study of the residual power
eharaoteristios revealed that the beamformer exhibits the fastest
convergence speed and numerically stable characteristics ,„ both
narrowband and broadband signal environments. Moreover, the QRD-LS
beamformer places the deepest nulls, irrespective of the arrival
angles of the interferences. The RMCS and RMGSEF beamformers have a
slightly slower initial convergence speed but the residual power
obtained ,„ an RMGSEF beamformer is only marginally greater than that
obtainable in the QRD-LS beamformer. Also the null depths in aRMGSEF
beamformer are comparable to those in the QRD-LS beamformer. Qf the
four beamformers, the RLS beamformen was found to exhibit the poorest
Performance. It produces a large residual power when the number of
mterferences are large or when the interferences arrive fro, near
endfire directions and fails to place nulls ,„ the direction of
endfire interferences. However, its performance improves in a
broadband signal environment. A comparison of the computational
-P.exity of these four adaptive beamformers shows that the RMGs
algorithms, ,„ particu]ar ^ ^ ^^ ^ ^ ^
computational complexity. Therefore, it may he concluded that the
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proposed RMGSEF beamformer is a good alternative to the Givens
rotation based QRD-LS beamformer for most of the adaptive beamforming

applications. '

In chapter 4, the application of fast recursive least-square

algorithms, viz, the LSL, QR-LSL and FTF algorithms for adaptive
broadband beamformers "has been investigated. Since multichannel
formulations of these algorithms are necessary for beamforming

applications, these have been derived using the algebraic approach.

These algorithms exploit the inherent delays available in tapped delay

line filters to arrive at beamforming techniques whose computational

complexity is of the order P3M. Of the three algorithms considered

here, the MFTF algorithm has the least computational complexity.

However, if the number of taps in the delay line are less than 5, the

computational complexity of the MFTF beamformer is more than that of

the RMGSEF beamformer. Through computer simulations, we have shown

that the MLSL beamformer fails to achieve convergence in most of the

situations. The MFTF and QR-MLSL beamformers exhibit relatively better

performance characteristics but a comparison with exact RLS

beamformers revealed that their performance is much inferior so far as

residual power, signal tracking and interference suppression are

concerned. We have, thus established that the fast RLS beamformers

have neither the advantages of computational complexity, nor superior

performance as compared to the exact RLS beamformers.

Finally, we have considered the adaptive implementation af

the SSPS and FBSS using beamformers based on different algorithms. We

have proposed schemes to implement SSPS and FBSS on weight oriented
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algorithm, viz, RLS, LMS and FTF algorithm, as well as on residue

oriented algorithms, that is the RMGS class of algorithms and the

QRD-LS algorithms. Through computer simulations, it has been shown

that when minimum required number of elements are used, the FBSS

beamformer fails to place nulls in the desired directions, except when
the interferences are symmetrically located with respect to broadside
and are not too near the endfire directions. In other situations, such
as, when the interferences are unsymmetrically located on either side
of the desired signal arrival direction or when the angular separation
between the interferences is small, the FBSS array fails to null the
interferences when minimum required number of elements are used. In
such cases, larger number of elements have to be used in order for the
FBSS array to work. Thus, we have shown that the FBSS fails to give
the advantage of increased aperture area in most situations.

On the other hand, SSPS beamformers have been found to

exhibit good performance, with minimum number of elements, in most
signal environments. Only when the angular separation between the
interferences becomes small, larger number of elements are needed.
Also, the null depths obtained in an SSPS array are much greater than
those obtained in an FBSS array with the same number of elements,
thereby resulting in much superior interference cancellation. Both the
QRD-LS and RMGSEF algorithm based beamformers were found to give a
comparable performance. Since, RMGSEF algorithm has a lower
computational complexity, it may be concluded that, for coherent
interference cancellation, an' SSPS-RMGSEF beamformer is a better
choice.
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6.1 SUGGESTIONS FOR FURTHER WORK

Addition of constraints to the adaptive beamformers improves

their performance, in that a constant gain in the look-direction can

be maintained, or a null can be placed in the direction of

interference, if the interference arrival angle is known in advance.

Najm [71] has proposed constrained RLS and QRD-LS algorithms. It will

be interesting to extend this approach to the RMGS and RMGSEF adaptive

beamformers as these have exhibited good performance characteristics.

Although Givens rotation based QRD-LS algorithm studied in

chapter 3 provides a numerically sound way of computing the recursive

QR update, it has two drawbacks. The first is the square-root

computation needed to compute the rotation factors, and the second is

four operations per column needed to implement the rotation. Both of

these drawbacks can be eliminated by the use of square-root free

Givens rotations [34]. Therefore, a natural extension of this work

would be to apply the square-root free Givens rotation based QRD-LS

algorithm to adaptive beamforming and evaluate its performance.

In the broadband signal environment adaptive beamforming is

a multichannel problem, which requires multichannel formulations of

the fast RLS algorithms, Viz, the LSL, FTF and the hybrid QR-LSL

algorithms. It has been observed that the multichannel LSL algorithm

based beamformer suffers from numerical problems, which may be due to

the computation of inverses of error variance matrices repeatedly. The

issue of matrix conditioning has not received much attention in the

adaptive filtering community though it is well known in the context of

Kalman filtering [58]. A direction of further work should be to study
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the conditioning of this problem.

The multichannel FTF algorithm and its application to

beamformers has been studied in chapter 4. This algorithm is a

straight forward extension of the single channel form which requires

matrix operations. Recently, to overcome the difficulties of MFTF

algorithm, Slock and Kailath [58] have proposed the scalar

implementation of the MFTF algorithm. It requires no matrix operations

and can be implemented in modular architecture with a regular and
highly parallel structure. An area of further study should be the

evaluation of this algorithm in the context of adaptive beamforming.
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APPENDIX - A

COMPLEX GRADIENT OPERATOR

Least-mean-square systems minimize the mean-square error

between the output (normally a scalar) and the desired or the
reference signal. When the signals are complex, a concise derivation

of the results can be obtained using complex gradient operator without
using the gradients of the real and imaginary parts separately.

If v is a complex scalar quantity, given by

v = x + jy

then, the following derivatives may be defined

and

where

£.„i _ 3v av
5x Jay u ....(a-1aV(v) = a*" + J^ - o

-l(v*) = d-?- + iav - o&VV ) dx +^~2 ....(A-2)

3v 3x Jdy * ....(A-3)

J. r *! .. av .av „
av dx dy U ....(A-4)

let Z be a P-by-1 vector given by

~= h'Z2 Zp] .(A-5)
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zk = xk + jyk, k= 1,2 ,P. ...(a-6:

to Z as

where

write

We also define the complex gradient operator Vz with respect

y?= iA'

_3
Sz,

_a
ax

dz2

. a

+ Jay,'k yk

..(A-7)

k = 1,2, ,P ....(A-8)

Using the above definitions and eqns. (A-l) to (A-4) we can

V (z.) = 0 ; V • (z ) = 2
Zk k Zk k

\Ul' =2•• \ (zK> -°

..(A-9)

...(A-10)

The complex gradient operator, as defined in eqn. (A-7) with

respect to a complex P-by-1 vector Z, generates another complex P-by-1

vector from a scalar function of Z. The Scalar, in general, may be

complex, although in physical applications it may be real. Typical

scalar functions of Z arising in the adaptive beamforming problem are

of the form AHZ,ZHA and ZHRZ, where A is a P-by-1 vector and R is a

P-by-P Hermition matrix. The gradient of these scalar functions with

respect to Z are given by the following equations [22].

AHZ = 0 ...(A-ll)
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7,(ZHAJ .2A
.(A-12)

V2[ZHRZ) 2R Z
...(A-13)

The above equations may be verified by expanding the
products and using the equations (A-9)-(A-10).

In an adaptive beamformer, the output at the time instant
n is given by

y(n) = WH(n) X(n)
•..(A-14)

If the desired response is d(n), then the error is

e(n) = d(n) - wH(n) X(n)
••.(A-15]

The gradient of the E[e(n)e*(n)] with respect to the complex
weight vector W(n) is obtained by using eqns.(A-l1)-(A-13) as

7W(n)[le<n>|2] -%n) [d(n) -WH(n)X(n)][d*(n) -XH(n)_W(n)]

=VW(n)['d(n)|2 "§H(n)W(n) -WH(n)e(n) ♦ WH(n)$(n)W(n)]
= - 2§(n) + 2*(n)W(n)

•..(A-16)

We next define a P-by-M matrix W
as
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where

w
11 '12-

w.
21

w.
22'

W =

PI "P2-

w. . = x , + jy, v-
l,k l,k i,k

w
1M

'2M

....(A-i7:

VM

The complex gradient operator Vy with respect to the

components of W is defined as

3w
11

__3
aw

21

du
PI

J- .—
aw 9w,..0 12 1M

J_ J_
Sw22 9W2M

a a

awP2 Swpm

(A-li

This operator generates another complex P-by-M matrix from

the trace of a matrix function of W. Typical matrix functions of W

arising in adaptive arrays using multichannel fast RLS algorithms are

of the form BH W, WH B and WH t> W, where B is a P-by-M matrix. The

gradient of the trace of these matrix functions with respect to the

components of W are given by the following equations
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v*w-{ Trace of [bhw] = 0
:a-i9)

V •{ Trace of fw" b] = 2 B
(A-20)

V Trace of |BH $ w] = 2 $ W.
.(A-21)
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APPENDIX - B

DERIVATION OF TIME UPDATE EQUATION FOR r (n)

In Table 3.4, rf An) is given by

•lj(n) -[j«'W-i H

1{n) ...(B-l

To derive the time update equation for r (n). we use

Gram-Schmidt orthogonalization theory [36] and express" g(l)(n) and
g((n) in the above equation as

3(/J(n) . j(n)-A1-1(n)[Af.1(B) A^^nJJ'̂ .jCnJXjtn]

=[l-A1_1(n)[A^_1(n) A.^Cn^V^.JxjCn

where A,_,(n) is defined as

*,-,"» -[*,(»>.%(»> ^tajj (B_4)
Substituting (B-2) and (B-3) in (B-l), r („, oan be

rewritten as

P.J( n) -X«(n)[l -Ai_l(n) [^(n)]"1 A^Cn)]"

[l "Vl(n>[»Wn)] 'AH_i(n)J ^

)

••.(B-2)

)

••.(B-3)

) ...(B-5)
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where

Vi(n) = A%iCn) A.^n)

Eqn. (B-5) can be written as [20]

-1

r .(n) = X,(n)
ij J

I-A^Cn) R\\An) k*_An)

..(B-6)

Xt(n) (B-7)

Next, we define a matrix Aj^n-l) such that

where

Vi(n)

X^K^An-l)

*?-l (n)

-i-l(n) =[xi(n)'x2(n) Xi-l(n)]

..(B-8)

...(B-9)

Using (B-2) and (B-3), the last elements in the vectors

q(i)(n) and g(n), denoted respectively by q'(n,n) and q^n.n) can
J l J

be expressed as

q, (n,n) = -*i-i(n) R»-i(n) *1/2 Ai-i(n)>

1- X^tn) \[An) X.x_An) Xj(n)

-XW27^_An) K^An) A*_An), afn)j Xln)
..(B-10)

q^n.n) = -\1/2^_An) R^n) A^n), af.n] X,(n)

(b-ii:
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where

Vn) =1- X^n) R^An) X (B)

Therefore, a (n) = 1

From B-8, we can show that

R.jCn) =XR^An-l) +Z^An) X*_An)

•..(B-121

. . . (B-13:

emma, the inverse of R (n-1) canUsing matrix inversion 1

be written as

r (n)

i »,-,<»-» -«;!,(») ♦ """" *-"" *•-*"" "•"-''"
a^n)

...(B-14!

Now, we rewrite (B-7) in the following form

XH(n) *1/2AlM(n-l
«;.,<")

on simplification, we get

.1/2.H , , HA Aj.jCn-D.X^^n) X (n)

•.(B-15!

r ,(n)=x"(n: ,-*A,-,<»-nH;i1(n)A«.1(»-i) •>wa1..wi«;>,„|)I <„,
11 1 l 1-1

1/2Ji
^1_1(n)Ri_1(n)Ai_1(n-l) a An)

X,(n]

Using eqn.(3.56) and (B-14) in (B-16),
we obtain

...(B.IB)
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r .(n) = A1/2XH(n-l),x (n)
J J

+ XH(n) K-.
— i a In)
d i

-1

i-Al-i^1)V-i(B-l,Ai-i(n"l) °

-1

A1/'A1.1(n-m;.1(n,^-i(n

a (n)
i

AX (n-1)
-i

x (n)
i

A1/2X^_1(n)R;_1(n)A1_1(n-l),ai(n) X (n)
- i

...(B-i7:

Acomparison of the above equation with (B-11) and (B-12)

;ives the desired update formula as

...(B-18)
r .(n) = Ar,j«»-» *STn) [oj("(n'n'] q.,n'n'
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APPENDIX - C

ORDER UPDATE EQUATION FOR a (n)

In Appendix-B, while deriving the time update equation for

r.jfn), a quantity ^(n) has been defined. To complete the derivation

of the complex RMGS algorithm, we derive here an order update equation
for a (n]

Aj_j(n) is given by eqn.(B-4) as

A. ,(n) =
i-l *!<«).%(n) X rn)

^ i-l

Similarly we can write

Aj(n) =("xi(n),X2(n), X (n]
i

which can be partitioned as

Ai(n) "[V^n), JCt(n)l

Substituting (C-3) in (B-6), we obtain

R (n) =
^(n) Aj.jfn) x (n)

Xf(n) A{_An) X^(n) X^n)

X-l

•..(C-2)

..(C-3)

.(C-4)

Applying partitioned matrix inversion lemma [48], the

inverse of R (n) can be written
as
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where

R_1(n) -
1

R \(n) 0
i-1

0 0
r (n)

i l

*d(n)A"-i(n-1) -i(nl
-i

fx"(n) A{_An) R'jijCn), -1
...(C-5)

. (n) =XH(n) X(n) -An) A An) R_1_ (n) X(n
ii —l i • * *

..(C-6)

Substitution of (C-5) into (B-12) gives

a .(n) = 1 - XV In)
i+ l 11

R \(n) o
i-l

0 o
*l-l(n)

XH ,<n]
-i-r" r (n)

11

R"\(n) AH .(n-1) X(n)
i-l i-l I

X^(n) kx_An) K^An)

ing (B-12) and (B-11), eqn.(C-7) can be written asusing

a =a(n) - ±^} ^(n.n)!2.
Ii

ich is the required time update equation for a^n)wh
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APPENDIX-D

RELATIONS BETWEEN MLSL AND QR-MLSL ALGORITHMS

In order to derive eqns.(4.58) and (4.59), the matrices

ArA2,Bl and ^ are defined with the help of eqn. (4.53) in the
following manner.

and

Al =

Bl =

vXRf(n-l)
m

[e£(n)]H
-m

m

A2 =

B2 =

VAT-'Cn-l)

[?m{n-1)r" «„(n-l)

Applying the matrix identity in eqn.(4.55), we get

r H

[<(n)J B>) =i^(n)«m(n-l)

-m

We next, define A A r =r.-) da1,a2,B1 and B2 using eqn. (4.53) as

A. =
^y*-D ^r:f(n-i)

m

[eb(n-D]H
-m

..(D-l)

(D-2)

(d-3;

•.(D-4)

[e^(n)]H
-m

' A2 =
a (n-1
m

•••(D-5)
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Bl =

Rf(n)
m

ff(n)
'm

[em4-i(n)]-m+1

Bf(n)
'-m

a .(n)
m+1

...(D-6)

ing the matrix identity in eqn. (4.55), we getApplying

and

[l£(n>] £tn) =im(n)am(n-l

[tf(n)]Vm(n

By defining,

Al =

Bl =

a (n-1)
L m

'§f(n)
um

a x1(n)
• m+1

+im+l(n)Vl(n) =im(n-n'am(n-1}

A„ =

B„ =

a (n-1)
m

Sf(n)
Lm

a .-(n)
m+1

Using the identity, we get

[gm(n)]H^m(n) +%+l(n) =%(n"1}

We next consider eqn.(4.54)

If,

VARu(n-2) '
m

[eb(n-l)]H
• -m

A2 =

VAR (n-2) '
m

l[eb(n-l)]HJ
1—m
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...(D-.

(D-9)

(D-10)

(D-ll)
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and

rRb(n-l)l
B, =

m

1 «H
L 9 B2 =

Rb(n-1)
m

using the identity once again, we have

(D-13)

Rb(n-1)
m

Rb(n
m

n-1.] -A[^(„-2)]H ^(n.2)] ,£,_,, [;b(n. .H

1

Substituting for ib(n-l) and Rb(n-1), the abo
•..(D-14)

ve equation can be

simplified as

*-»: Ar (n-2) +
m

^(n-^[^n-l)]H

and

a (n-1)
m

By defining,

Al =

Bl =

tS(n-l)]H [Sf(n)]H

Rm(n-1} t^n)
H ~f

em+l(n)
0

and applying the identity

A2 =

B2 =

Tftn*ln-2)

e (n-1)
m

iT(n-l)

Vi(n-1]

H

[*>-»] r>-n •>fc<n-2,fr>-2) t ?V-„;-(n-i
— L J ~TTl m
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which can be simplified as

b *
d (n-1) = Ad (n-2) + e (n-l)e (n-l)/a (n-1)
-m -m -m m m

Using eqn. (4.54), we next chose

Al =

and

vXRb(n-2) v^\rb(n-l)
m 'm

[eb(n-l)]H [Sf(n)]H
• -m -m

a (n-1
m

Bl •

Rb(n-1)
m

Jl

rb(n)
'm

~f H[e1 .(n)]M
-m+1

B2 =

Sb(n-1)
-m

We get

and

Rb(n-l)l f3An
m | -m

1) = e (n-l)a (n-1)
-m m

'rn

II

|3b(n-l) +e*1(n)aB+1(n-l)
-m -m+1 m+1

,a ,,{11-1)
L m+1

e (n)oc (n-1)
-m m

..(D-19)

(D-20:

:d-2d

:D-22)

..(D-23)

Replacing the internal variables by the definitions in eqn.(4.51),

the above equations can be simplified as

eb(n-l) = eb(n-l),
-m -m

efx1(n) =ef(n) - KH(n)
-m+1 -m m

Finally, we assign

•b(n-l)lm J

-1

eb(n-l)
-m
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.(D-25)



Al=

and

Bl =

^C(n-2) v^ARb(n-2)

.e(n-l) [eb(n-l)]H
A2 =

(n-1

lm

m+1

a (n-1)
"- m -i

Rb(n-1) " A n-1)
B„ =

-m

oH
2

-m+1 -i

Once again applying the matrix identity, we get

[IT"*-"'] omb(n-l) *e^n-llS^n-,, .;>(n.nJ ,„.,

:D-26)

:D-27)

) ...(D-28)

Which can be simplified as

Vi1""11 - •„(-» -^-"ft'h-'f^Cn-. •(D-29;
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APPENDIX - E

DERIVATION OF EQUATION FOR CDfM ,,(n+l)
—PIM+1J

The correlation matrix *P(M+1)(n+l) in eqn. (4.72) can be
updated as

Wl)(n+1) =A$P(M+l)(n) +XP(M+l)(n+1 ^P(M+l)(n+1) ...(E-l)

From eqn. (4.21b), the inverse of *^M+1)(n) is written as

*P(M+l)(n: 0 ^(n-l) -ApM(n) rM(n)
-,-1

1 -APMCn)

or

Post multiplying (E-2) by hfu ,.(n+l
A-Pl.M+1 J

-1

:e-2)

P(M+ tJ(n)] ^P(M+l)(n+1) " A
0 0

0 [*pM(n-l)]- ^P(M+l)(n+i:

•ApM(n) ["Hi1 -^.Cn)] xp(M+i

?P(M+l)(n+1) "
?PM(n) AI"APM( n) [rM(n)] I?M(n+1)

Wn(n+1)

C-PM{n) -KM(n)[rM(^]
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f
3M(n+l)

3M(n+l)

..(E-3)

(E-4)



Similarly, it can also be written in terms of C_,..(n+1) as
-PM

eP(M+l)(n+1) "

^PM(n+1) " ABPM(n]

br ,rM(n.
-1

rM(n)

5M(n)
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