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ABSTRACT 

Pipe networks are used to transport liquids and 
gases from the sources to various locations of their utility. 
Analysis and design of pipenetworks, in general, involves 
the solution of a set of nonlinear simulataneous equations. 
Research efforts are naturally made in order to either 
improve the efficiency/convergence of existing methods or 
to reduce the total number of equations in the given set of 
nonlinear equations, used to simulate the network. 

There are four types of formulations of pipe network 
which are described in detail in the literature 

review alongwith their advantages and disadvan age 
present work, a new method of formulation, called Mixed 
me .hod of formulation, is proposed to solve the pipe network 
problems, Its storage requirements are low and at the same 
time it is computationally efficient. In essence it has the 
advantages of both the formulation-.1 and formulation-.3. 

Efficient software packages have been developed to 
analyse the pipe networks by using existing methods or by 
the proposed mixed method of formulation. These packages are 
also capable of carrying out sensitivity analysis of the 
network, which may be of help in identifying critical nodes 
or to plan future expansion of the network. 

In software packages Newton Raphson method has been 
used to solve the set of nonlinear equations due to its 
quadratic convergence. During development of the computer 
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programs, it is observed that this method is sensitive 

to initial guess of values of parameters-. A convergence 

scheme is proposed to reduce its dependence on initial 

guess S. 

Lastly a computer-aided loop selection method has 

also been developed and programmed, which selects the 

set of independent loops of pipes in a given network. This 

set of independent loops is required in the Formulation--4 

and any error in the selection of this set of independent 

loops, which is likely during manual inspection of the large 

networks, results in the divergence of the solution. 
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NOMENCLATURE 
~-s:al~.ssi4 

A,B 	= constants of pump characteristics curve, 
cc] 	= fundamental cycle matrix 
CHW 	= Hazen Williams constant for pipe material 
Cis j = constant obtained using Hazan Williams equation, 

for pipe connecting node 1 and j 
D 	= diameter of pipe in c-.m. 
d 	= distance between nodes 

F-LB 	= elevation of node in meter 
e 	•. equivalent roughness in pipes 
e 	= error tolerance 
f 	= friction factor 
f(x) = function of x (vector) 
{F) 	= column vector of function f(x) 
g 	= acceleration due to gravity 
G 	= graph 
[H] 	= approximation of Jacobian [J] in Broydens method. 
Hi 	= head at node i in meter 
hf 	= frictional head loss 
h 	= srxpply head of the pump 
Ho 	= constant obtained for pump 
i 	=nodei 
J 	= number of nodes 
{j] 	= j ac ob i an matrix 
Kip j = exponent in Hazen Williams equation for pipe 

connecting nodes i and j. 
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L 	= Length of pipe in meter,. 

L 	= distance from node i. 

I 	= number of loops 

[M] 	= incidence matrix 

N 	= number o r nodes 

n 	= number of equations 

P 	= number o pipes in network 

pi 	= pressure at node i 

pig  . 	 pressure in pipe connected to node i and j 

pk 	= pressure in pipe k 

Qk 	= flow in pipe k in cubic meter 

q.= flow in pipe connected to node i and j 1,3 
qi 	= consumption at node i 

oQ 	= corrective flow rate in loop 

Re 	= Reynolds number 

= damping factor 

tk 	- damping factor in iteration k in case of 
Broy de ns method. 

u 	= external variable 

VAl 	= set of pipes-, which brings flow towards node i 

VBi 	= set of pipes, which takes away flow from node i 

V 	= velocity of fluid in pipe 

x 	= function variable 

{y} 	= solution vector 

yk 	= vector of change of residuals in successive 
iterations in Broyden method. 

Z k 	= revised function variable in Broyden method 

function of x in Wolfe" s method 

c5' 	= vector of pressure drop. 
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CHAPTER -- I 

INTRODUCTION 

Pipe networks are common appearances in mechanical, 
chemical and other process industries. The term * pipe 
networks  means, mesh of pipes along with other piping 
elements such as booster pumps,, valves etc. The purpose 
of pipe network is to transport incompressible or corn - 
pressible fluid from one location such as reservoirs and 
storage tanks to various locations of its use * under steady 
state or unsteady state conditions. Various examples of 
pipe networks are, distribution . of lubricants from a storage 
tank to various machines, supply of process fluids to various 
process units such as heat exchangers, reactors etc., trans-
portation of crude petroleum from oil wells to various 
refineries, the municipal water supply and the distribution 
of cooking gas in big cities. 

Analysis and design of simple pipe network (Number 
of pipes < 5) is simple and can be carried out by usual 
methods of fluid mechanics. However complex networks 
(shown in figure (1,.l)) pose various problems to designer 
and computational engineer, and offer wide scope for inno-
vative research. Various aspects associated with analysis 
and design of pipe network are shown in figure (1'.2) (Block 

diagram). From block diagram one can easily imagine the 
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complexity and magnitude of the problem and it is 
obvious now that the analysis and design of pipe net-
work is not simply calculation of flow and pressures. 

A study of literature review described in chapter•-

II, indicates that there are more than one formulations 

of pipe network problem. These formulations in general 
results in a set of algebraic and transcendental equa - 
tions, which are solved by suitable numarical methods. 
In this thesis the methods of solution of these formula-
tions have been studied from the point of view of conver-
gence and computational efficiency and the modifications 
in existing methods are proposed. Finally efficient soft-
Ware packages for these formulations of pipe network 
problem are developed,. 
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CHAPTER 

LITERATURE REVIEW 

In this chapter existing literature in the area of 

steady state process design of pipe, network for transpor-

ting incompressible fluids has been reviewed. 

2.1.1 FLUID MECHANICS CORRELATIONS 

Here few correlations are described which are required 

for analysis of pipe networks,. These correlations are used 

to calculate frictional head losses. 

There are three main equations which are used for 

calculation of frictional head loss for flow of fluid through 

pipes-. 

i) Hazen Williams equation - This is most commonly 

used equation for flow of water through pipes 

which is given in Jeppson [l] . 

10.7 L  h -  f - C17.852 
HW 

where, 

h f  - Head loss in meter. 

L = Length of pipe in meter 

D = Diameter of pipe in cm. 

Q = Flow rate in cubic meter 

CHW  - Hazen Williams Coefficient for 
pipe material given in table (2.1) . 
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ii) Manning equation 
10.29 n2L 2 

hf ~ 	
D5 333 

n = Manning constant for pipe material given in 

table (2.1) 

However results obtained by Manning' s equation 

are not accurate. So as far as possible the use 

of Manning' s equation is avoided. 

iii) Darchy Weisbach Equation 

ht = f LV2/ 29.D 	 ...(2.3) 

f = friction factor 

g = acceleration due to gravity. 

Here for determination of friction factor, accurate 

values of flow rate in pipes are needed to calculate Reynold's 

number. Hence above equation cannot be used as accurate flow 

rates are not initially known-. The table (2.2) gives some 

expressions, which are Used to calculate friction factor. 

In which e/D is the ratio of wall roughness to the diameter 

of pipe. 
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TABLE 2.1 

Values of the Hazen Williams Coefficient (CHW ) and Manning's 
n for Common Pipe Materials 

Material 	 CHW 	 n 

PVC pipe 	 150 	0.008 
Very smooth pipe 	 140 	0.011 
New cast iron or welded steel 
Wood, concreat 
Clay, new riveted steel 
Old cast iron, brick 
Badly corroded cast iron or steel 

	

130 	0.014 

	

120 	0.016 

	

110 	0.017 

	

100 	0.020 

	

80 	0.035 

2.2.1  METHODS OF FORMULATION 

There are more than one way of formulating the pipe 
network problem. The computational efforts required for 
the solution naturally vary from formulation to formulation 
There are two methods generally used for formulating the 
problem. 

(a)  PROBLEM FORMULATION BY HAZEV-WILLI AMS EQUATION 

This is Simplest method of formulation described by 
Shamir and Howoard [4] . They have used only Hazen Williams• 
equations given in equation (2-.1) for formulation. Here 
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the equations of pressure drop in loops or equations 
of nodal flows are directly written down. Detailed dis-
cussion regarding this type of formulation is given in 
Chapter-- 3. 

(b) PROBLII'1 FORMULATION USING GRAPH THEORY 

This formulation is same as described in (a), only 
the graph theory facilitates in writting down equations of 
nodal flows or pressure drops in loops. 

In graph theory topology of network is represented 

by suitable matrices-. Consider figure (2-.1) with J number of 
nodes and 1 loops with P pipes connectieg J nodes. The graph 
is set of J and P. First of all each node, pipe and loops 

are labeled properly. Usually nodes are tabled with numbers 

(1,2, ..-.,J), pipes with number enclosed in paranthesis ((1), 

(2 ), .. -.P) and loops with Roman numbers (I ,I I , ... ). This 
method is followed by Epp and Fowler [5]. Such graph is 
called a 'Tabled graph'. This labeled graph provides important 
informations like degree of node i.e. number of pipes connec- 
ted to that node,, path of graph which is a sequence of pipes 
such as any two consecutive pipes have common node. In case 
a path has a common node then graph is cyclic. The graph 
which does not contain any cycles or loops, is called a 'tree'. 



q1 Q3 

q4 
	

q6 

FIG. 2.1 AN EXAMPLE NETWORK 

3 Fi 

FIG.2.2 A DIGRAPH 



In most of design applications the direction of flow is 
either known or it is convenient to assume. If direction 
of flow is mentioned on pipe then graph is called 'digraph` 
and pipe is called arc'. 

i) 	Matrix re pres entatj ojgp 

Representation of the digraph in terms of matrices 
containing only elements 0,1- and -1 is called a 'matrix 
representation'. Further there are two laws, which governs 
the flows in pipes-. These are analogous to Kriehoff' s laws 
for an electrical circuits. These laws are's 

The algebraic sum of flows at each node must be zero. 

The algebraic sum of pressure drops around close loop 
must be zero. 

For any network with J nodes and P pipes, there are 
(J-1) independent equations based on first law and 1(=P-(J-1)) 
equations based on second law. 

For example consider a network shown in Figure (2.2). 
According to first law there are J equations. If[M]is  the matrix 
(P x J) formed by the rule which states 'Pipe that 'bring fluid 
towards node is represented by 1 and that takes away from node 
by -l', then this matrix for example is given by 
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(1) (2) (3) (4) (5) 

1 	-1 0 0 1 O"' 
MI= 	2 	1 1 0 0 _1 	

...(2.4)  

310 0 ►-1 1 1 
0 

Similarly based on second law matrix C is written 
for loops 

(1) 	(2) (3) (4) (5) 
11 	0 	0 	1 

(C] _ 	 000(2 .5) 11 0 	1 	1 	0 	iJ.  

(M') is called the °' ind.idence matrix'. But actually 
there are only (J-1) independent rows in (Mt ). Hence there 
must be one row which is a linear combination of remaining 
(J-i) rows. So by omitting one of rows of matrix (MR ) the 
matrix (M) is formed which is of same -rank of that of matrix 
(M'). 

Now from first law 

[MJ {q} = 0 	 ...(2.6) 
and from the second law 
CC] {P} = 0 	 ...(2.7) 

where {q} is column vector of nodal flows, and 
{p} is column vector of pressure drop. 
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From the above methods and two laws it is possible 
to formulate the problem of analysis of pipe network in 
four ways!. 

Now by using first law it is possible to write the 
equation of nodal, flow balance for (J-1) nodes. 

QiJ  E 
	Lk = jEV 	 k6V 	i. 
Bi  

where V 	is a set of nodes associated with the 
incidence pipes directed towards * it  and VBi  is a set of 
nodes with pipes directed away from the node 'ii ,  and q. 

i 

is consumption at. node i. 

By using fluid mechanics correlation for a set of 
pipes ; ]?l  joining nodes i and j there are 'p' number of 
equations,. For kth  pipe joining nodes i and j 

...(2.9) 

and 	6 j  = (:r is vector of pressure drop which depends 
up on the type of correlation chosen. 

By using second law equations of pressure drop is 
written down for each loop by calculating pressure drop in 
each pipe of loop'• 

cfk( qk) = 0  kcC- 
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When flow is unknown the equation 2.8 can be 
written down by knowning nodal flows fcr J-1 nodes. 

E 	(p . _Pi )/ c . - E 	(pi-p )/ cr.  k=qa.  
j£VAi 	 ksVBj 

Using these four types of equations the four methods 
of formulations may be developed-. They are listed in table 
(2.3)• 

TABLE 2.3 

Table for different formulation methods 
.Method of 	Equations Variables 	No, of Source 
Formulation No,. 	 equa 

tions 

1. -2,8 and Nodal pressures J-1+P 	Carnahan 
2.9 and flow rates and 

in pipes Christensen 
[6) 

2. 2,,8 and Flow rates J-1+k( p 	Mah[7) 
2.10 Williams 8 ] Jeppson 19 

3. 2.11 Nodal pressures J-1 	Shamir [4] 
or heads Lam and 

Wa11[10] 
Gay and 
Middleton[l1j, 

4. 2.10 	Mesh flow by 	 Epp and 
knowing flow in 	 Fowlepr [5] 
pipes 	 Gay [11] 

and Middleton 
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2.2.2 FORMULATION WITH OTTER COMPONENTS IN PIPE NETWORK 

Other components in the pipe network constitute 

reservoirs t constant discharge pumps, pressure reducing 

valves (PRV)., check valves,, booster pumps,. etc. Usually 

these components are incorporated in .the network by choosing 

their appropriate moc~.els [29], which are derived from Hazen-

Williams equations,. Table (2 04) explains the procedure. 

Figure (2-.3) gives the values of the constant for 

different types -of valves°,pumps, contractions and enlargements. 

Using these valves of constants the components are incorporated 

in the formulation in the same way as the pipes. For : pumps 

the pump characteristics curves are drawn and then these 

curves are approximated by a quadratic equation. These 

quadratic equations are incorporated in the formulation as 

explained in chapter --3. It is to be noted that. 

- 	The check valve is one which allows the flow in one 

direction only. 

-. 	The PRV is one which maintains constant pressure 

regardless how large the upstream pressure is , But 

upstream pressure is less than the valve setting the 

valve has no effect. It down-stream pressure is 

greater than the valve setting then it acts are check 

valve. 
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Table 2.4 Component characteristics for water-distribution system 

NAME SYMBOL GRAPH TEST TERMINAL ADMITTANCE 
MODEL CONDITIONS EQUATION VALUE 

RESERVOIR 
#t 

Hr  

	

H• 	H 

 

i  r 

DATUM DATUM  
CONSTANT 
DISCHARGE i i 
PUMP 	'I 

q♦ 
DATUM 

q i a- q 

CONSUMP- 
~M i ~TION 

I 
♦"" 	''" qi s q 

DATUM 

PIPE # k ~---.j I.--k+•--•j qk= Kk hk• Kk 

BOOSTER i(~1 
i  k  j 

(•_1lq b 
qk~ g0-ahk PUMP o -a 

DATUM 

CHECK O k ♦ -~}---~~ 
i 	k ~"--'~~ Hi > H1 qkz Kk hk'54 Kk VALVE k 
I 	k--~; Hi < H j qk z 0 0 

PRVa 

e 	j 
i—e 	j I 	k----~ j 

He < Hset 
H1-< H• Kk  

q 	K hO•54 
k 	k k k 

~ 

•i 	e 	k 	i 
He 	Hset 

, —O 54 
qk° Kk hk K k 

e 	I 
Hset 

Vr,

e Hi< Hi q l = q 
k 	k k 

ATUM He ' H se t 
DAT U M 

•~--{ 	--.~ 
k 

:-- -- -. 
k 

H j> H i 	g k 2 0 0 
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2°.3,0  METHODS OF SOLUTION 

Each formulation of the pipe network problem'  
results in a set of algebraic and transcendental equations 
which may be solved by suitable numerical methods. Various 
methods which are used to solve the equations, are given 
below%. 

• i) 	Newton Raphs on method 

	

ii) 	Hardy Cross method 

• •()  _Method  of  balancing heads 
(b) Method of balancing flows 

iii) Linear theory method 
iv) Generalized secant methods 

(a) BroydenI  s method 
(b) Wolfe's method 

The selection of a method for given formulation 
dependes up on the 

(a) type of the network 
(b) size of the network 
(c) degree of accuracy needed in solution 
(d) cost of computation 
(e) importance. of the network project 
(f) computer . storage available 
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Newton RaphsoriMethod 

This is iterative scheme which starts with initial 
guess. This method is based on the Taylor s•series expansion 
of function f(x) about kth iterate Xk. For further details 
please see chapter (3)'. 

Advantages of this method are, faster convergence, 
less storage requirements and easy to .implement i n computer 
algorithm. And the main disadvantage is its sensitivity to 
the initial guess 

ii)  Hardy Gross Method 

This method has, been developed long before the 
advent of computers to carry out hand calculations. Its 
development is based on the Newton Raphson method "[12]. 
In this method iterative corrections are applied to each 
equation before proceeding to next equation in the iterative 
mnner. 

This method is used for small networks using hand 
calculations and there is no need of calculating partial 
derivatives as - in the case of Newton Raphson method, This 
method is not suitable for large networks mainly because 
of.:_. is poor convergence. 

If the problem formulation is done with 2nd 
law (with loop pressure . drop equations),. then the method 
of balancing heads is applied where-as if formulation is done 
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with first law (Nodal flow equations ), then the method 
of balancing flows is applied, 

iii) . L.ne ar theory method 

In this method the system of nonlinear equations 
are converted into the system of linear equations. By 
this method ( nonlinear loop equations are converted into 
linear equations by approximating head in each pipe. 

h~ ' (Ki {o) l)g
=K q 

were qi ) "` s irk. ti al—es times 	iow-rate 
in ith pipe. Hence these number of non linear equations 
are solved by the method of linear algebra [i] till conver-
gence is reached. 

This method does not need appropriate initial guesses 
and hence suitable for large networks. But convergence of 
this method is poor and storage requirements are comparatively 
very large. 

iv) Generalized secant methods 

In these methods the partial derivatives are evalua-
ted by linear approximations using * secants* rather than 
I tangents' ,. 

(a) 	Broyden' s method 

This method is _called as quasi-Newton's method f13). 
Here the inverse of Jacobian (J) is approximated by -H and 
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successive approximations are generated by 

Hk+l- Hk-(tikZk+HkYk)ZT Hk/ZT HkYk 	..(2.13) 

where Zk = Hk £(xk) 

and 	Yk = f (xk+l) " f(xk) 
To start the initial guess of H is taken as 

identity matrix. 

This method does not need any initial guess hence 
best suited for large networks. However the advantage 
offered by this method may only be marginal; ~f sm-al-1 
network, since (H) is a fairly dense matrix and many multipli- 
cations are involved in generating an updated (H) matrix. 

(b) Wolfe' s method 

In this method one dimensional secant approximation 
is used along with Taylor's series expansion of f(x) as 

f(x2 )w f(Xl ) 
0 =1(x)  _ £(x2) + 	l 	(x-x2 ) 	• • • (2.34 ) 

The nonlinear (x x2) terms are neglected 
x2 x 

Let ----x 1 X2x1 

- x2-.x1 

In this method n+l trial solutions are required to 
solve n dimensional equations 



n+l 
S n . = 1 J =1 J 

ns -ic y fl(x
3
) _ 0 	i=1,2, ...n 

J =l 

And new approximations of x is generated by 
n+l 

= S ic. x. 
~-1 J J 

To complete the iteration of new set of. trial 
solution is formed by replacing one of the trial solutions 
xk, say by x 

TABLE 2 

No. Method 	 Formu-. Largest 	Source 
l ati on network 

solved 
J p 

1. Newton 2 22 38 Mah [7] 
Raphs on 3 70 100 Shamir and Howard (41 

Stoner[14j  , 
Donachie 115] 

4 170 307 Epp and Fowler [51 
2. Broyden 3 30 50 Lam and Wolla [10] 
3. Wolfe 1 28 35 Carnahan and 

Cristensen [6] 
4. Hardy Cross 

Balancing Heads 4 289 544 Daniel [16] 
Williams 	8i 

Balancing flows 3 20 33 Joppson[ 1J 
5. Linearization 1 22 38 Jeppson[1] 

2 46 57 Jepps anand 
Tavallaee [9] 
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TABLE 2 -. 6 

Table for comparison of CPU time 
( J - 22, P = 38) 

	

No. Method 	Formula- Number of CPU time, in tion°. 	iterations seconds 
CDC Cybei, 73 

	

Newton 	 2 	 4 	8..2 
Raphson 

2. Hardy Cross 
B alanacing 

---Heads 	 4 	59 	2.4 

	

3• Linearization 2 	 7 	3.43 

	

4 	17 	1.03 

2.4.0 TECHNIQUES FOR LARGE NETWORK 

Usually in solving large network, problem of large 
computer storage requirements and convergence arrise, This 
problem can be tackled by taking advantage of problem 
structure-. Some of the methods are given below. 

2.4.1 LOOP LABELLING ALGORITHM 

If loops are randomly labeled the storage requirements 
greatly increases. AS most of the stored matrices (incidence) 
are sparse, one can reduce the -band width to minimum. To 
find bandwidth consider a pipe which is atleast a part of two 
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loops. From the loop number of largest value substract 
loop number of smallest value-. This is done for all pipes, 
which are part of atleast two loops. Maximum of such 
difference is half the bandwidth * b' s  To reduce the band 
width the loop labelling algorithm given by Epp and 
Fowler [5] is followed so that the bandwidth of space 
matrix will be minimum. 

2.4.2  LOOP SELECTION ALGORITHM 

Formulation 2. and 4 require a set of. indeperndent 
1oQps. These independent loops are usually not unique 
Mah [7] and Epp and Fowler [5] says that there is signifi-
can.t influence of the loop selection on the corzrergence. 
The procedure of loop selection is given in chapter -.4. 

2.4.3  SPARSE COMPUTATION TECHNIQLE 

For large networks the incidence matrix (M) is 
usually sparse. Moreover this matrix is banded i.e.,_ all 
the nonzero elements lie within a band about the diagonal 
of the matrjX. Some of the methods are proposed by Stoner 
[14] to store only nonzero elements of the matrix in appro-
priate positions to reduce the storage requirements. 

2.4.4  TEARING AND DI AKOPTICS 

This method is adopted for reducing number of 
iterations required . and discussed by Ladet and Himmelbau [ii] . 
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In this method one of the values of variables are 
initially assumed and remaining equations are solved seq.. 
quentially (As discussed in Carnahan and Christensen €6) ) 
one at a time. Then we left with and model equation- at 
last, which must be satisfied. This equation is called 
tearing equation. If the initial guess is correct then 
this tear equation will be satisfied and if not correct 
then iterative process will be required:. This method is 
used only when number of tearing variables required are 
small in number and teiiga anti cam arm as~r t_o soly 
However the time taken 	computer nay be greater than 
that of with the original set of equations 

DiakoP-tics is special tearing technique and iHues-
tigated by Gay and Middleton [ii] . In this method a large 
network is transformed into small,, intermediate network so 
that their solutions can be found and these solutions are 
transformed into solution of the given network. In this way 
the computatiorx is speeded up and amount of storage Is reduced. 
However, the over all Computational performance of this 
method as reported by 8r y and Middleton (M) has not been 
impressive. But in any case Substantial reduction in storage 
is achieved. 

2X5.0 LSIGN OPTIMIZATION IN PIPE NETWORK 

So far different' types of formulation and numerical 
solution of steady state pipe line network problem has been 
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discussed:. But in actual practice problem posed to 

the design engineers is entirely different. He is 

always interested in the optimal design of the problem 

in some sense. For example, given a set of requirements 

and specifications the ultimate design goal Is to pro-

duce an optimal network that will met all constraints 

at minimum cost or maximum profit. Similarly for an 

operating -network he may be interested in minimizing 

the operating costs while meeting external demands 

or optimal. expansion of existing facilities to meet 

anticipated future demands. 

Several types of formulations of pipe line network 

problem from optimization point of view have been 

studied-. These references are grouped in two ways. 

First on the basis of field of application and the 
second on the basis of the method of optimization-. 
These are given in Table- 2-.7 and Table_2,.8. 

TABLE 2°.7 
Based. on Application - 

Application 	 Source 

Agricultural Engg;. 	Karmeli et al 17],Liang [18] 
Yang et a3 L ig . 

Gas distribution 	 Bramell.er et al [20] 
Oil and gas 	 Zimmer [21]. 
transmission 
Pres sure-.relieving 
network 	 Cheng and Maxi [22] 
Sanitary Engg. 	 Cembrowicz and Harrington [23] 
Water distribution 	Lam and Walla [ 13,1O ] , Watanatad a 

[24], Donachie [15]'. 
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TABLE 2 .8 

Based on Optimization Methods in 
Pipeline Networks 

Method 	 Source 

Conjugate gradient 	 Watanatada [24] 
Discrete merging 	 Chang and Mah [22] 
Dynamic programming 	 Lang [18]1, Zimmer [21] 
Geometric " programming 	Cheng and Mah [22] 
Gradient projection 	 Murtagh [25] 
L ine ar programming 	 rame e r 
Z ontendi jk!  s .method 
of feasible direction 	Cembrowicz and Harrington 

[23] . 

This study of optimization is classified according to 
problem requirement as follows - 

i)• Sensitivity analysis 
ii) Design optimization 

iii) Synthesis 

It should be noted that the different classifications 
listed above are not independent of each other. For example, 
design optimization based on sensitivity information can be 
classified as either design optimization or sensitivity analysis . 
Likewise optimal pipe line routing may be classified as either 
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design optimization or synthesis. 

2.5.1 SENSITIVITY ANALYSIS 

Sensitivity analysis is primarily concerned with 

the behaviour of the network to small fluctuations in 
variables with reference to the design conditions. If these 
fluctuations are large and numerous, then it will be more 
convenient to recompute the network as a whole. But in 

many cases it will be sufficient to determine the approxi-
mate behaviour. For more details one may refer chapter -3. 

2,5.,2 DESIGN OPTIMIZATION 

Here the point of view, is broad.,, that is here whole 

feasible space is included. Fo.r a given problem, the decision 
variables may be either continuous (i.e. nodal pressures) or 

discrete (i.e. pipe diameters) provided network configuration 

remains same. As the design optimization in some cases (as 
reported by [24]) may not achieve reliability constraints; so 
the design optimization process is further subdivided into 
single branch tree [18] and many branch tree [17,25?19.,21]. 

2.5.3 SYNTHESIS 

In pipe network .synthesis, network configuration is 
not specified, but only flows and pressures required are 

specified.. Synthesis is optimal design from functional require.• 

ment and specifications. Here neither the network nor its 
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elements are given, only output and input conditions 

which are required are given. As an example of synthesis 

a study of optimal pipe line routing is reported in the 

literature (Shamir L4]). 

In optimal pipeline, routing even though topology 

of single pipeline is trivial one must take into considera--

tion the factors like carridor through which pipeline,,  

passes, type of soil, tree cover, water . and rivers, roads 
and railway lines e-tc. 

It is worth while to mention that the synthesis of 

new pipe network is an area which is yet to be explored. One 

does not know that in future what type of general algorithm 

will emerge for synthesising pipe networks r. 



CHAPTER - III 

PROBLEM FORMULATION 

From literature review it is clear that the Newton 
Raphson method is best suited for most of the pipe network 
problems-. According to Lam and Wolla [10] the Broyden1  $ 

method does not need accurate initial guesses, but this 
method needs lot of matrix multiplications and hence lot of 
computer storage. Moreover it is a slow converging technique 
and its sensitivity towards improper initial guess can not 
be ruled out. Estimation of initial guess for Newton Raphson 
mathod is not very difficult job especially for formulation 
4. But for formulation 3 with improper guess the solution 
fails to converge. Most of the times this occurs because of 
the oscillations in solution. 

3.1 PROBLEM FORMULATION BY 	EN 	,5 'E'Q UATI ONS 

There are four types of formulations possible for any 
network problem as described in Table-2,.3. First two methods 
are less sensitive to initial guess, but requires lot of 
storage even though these require less number of iterations 
as reported by Mah [7], 

Formulation 3 is suitable when pressure or head. at a 
particular node is known. This method is based on Krichoff' s 
first J w. Here equations of flow balance are written for 
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each node whose head is unknown in following manner using 
Hazen Williams equation. Here the nodal flow balance is 
obtained with the nodal head. as unknown variable using 
equation (2.8) . 

E 	qz j - 	qik = qi 	 .. ,. (3,.1) 
ti 	 ksVBi 

i 

The formulation 4 is useful when input (s) and 
output (:S)• flows to the network is given. This method makes 
use of Krichoff* s second low>. Here the balance of pressure 
.drop around a closed loop is c7~tained by writting down the 
equations of head loss for each pipe in terms of flow rates 
for each loop using equation (2.10). 

E 	d (qk) =0 
k=l 

.•..(3.2) 

More detailed discussion of these two formulations 
is done with the example network shown in Figure (31.1). 

The equations of the flow balance. are written using 
formulation 3 for this network. Let head be known at node 1, 
then there is no need to write down the equation for node, 
1. If the equation is represented by F then for- node 2 the 
equation is 

HC— 	 K12'+ 	) 5 +( H 	3 =0 
12 	25 	23 
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The sign convention followed here is that the pipe 

which brings the flow towards the node is -ve and that takes 

always the flow is +ve'. C is factor of correlation which is 

given by Hazen Williams equation, which is as follows. 

C = 10.7 x L/D4'.87x -Cc 52 

where, 

L. - Length of pipe in meter- 

D = Diameter of the pipe in c . m. 

CHW=Hazen Williams constant for pipe material. 

K =0.54 

Similarly for other nodes the equations of flow 
balance are written, down as above. 

In formulation 3 the effect of elevation has to be 
considered. For the given network elevation of each node is 
computed from fixed datum and following modification is done 
in equation (3.3). 

F2 	
+ E1- 

ELE
2 	~ 

K12 	H5 + ILE2 _ELE5 K2~ 
~  

2 
_ ~~

C C12 	25  

	

+ C H2 -h ..+EL,E2 -ELE 	 	23 	 (3.4 ) 
23 

where ELE = Elevation of the node from fixed datum-. 

In case of formulation 4 the equation of head loss in 
closed loops are written for each loop. For loop 1 the 
equation is. written as 
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Fl _ C1(Q14 Ql)Kl +C2(Q2 Ql~Q2)K2 

C3(Q3,Ql)K3 -C4(Q4-AQ1)K4 	.. 

where, 
Subscripts indicate pipe numbers. 
Q = Flow . rate in pipes 
K 1,852 

C = Hazen Williams . constant for pipe material 
aQ = Corrective flow for loop. 

In this case the equations are nonlinear so corrective 
flow rate AQ for each loop is added in equations. The sign 
convention followed here is that the #.oisj direction of 
flow is +vex while anticlockwise direction of flow is -ve. 

3.2 SOLUTION OF EQUATIONS 

As above equations (3.3) and (3.5) are nonlinear these 
connot be solved directly. So some iterative technique has 
to be employed to solve them. One of the power full iterative 
method is Newton Raphson method. This method needs initial 
guess. as other iterative techniques require. 

This method is based on Taylor series expansion of 
function f(x) about kth iterate xk. Here the function vector 

f(x) is represented by 

fl(xl,x2...xn) = fl(x) = 0 
= f(x) 

f n(xl,x2...xn) = fn(.x) = oJ 	•. • (3.6 ) 

rT~}_ !i rani Unive si r! Of Door~eC 
RQQE 
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Taylor series expansion of above function vector 

f(x) is 

0 = f(x) = f(Xk ) + [a i/o f.) (X—xk ) + 	...C.7) 
By neglecting nonlinear higher order terms in 

(x-xk ) and re pl ;c i ng x by xk+l  one can write 

k+1 = xk  — [afi/ax j]-1.f(x) 	.l.. (3-.8) 

Here the matrix of partial derivatives [.f/ex] 
is called as Jacobian matrix of order N x N and denoted 

by tJj-. It has to be evaluated at x = xk  in each iterations, 

In this method approximations of x are generated as  

And this method converges only when, 

11mxk =x 	
j...(3'•8) 

As exact value is immpossible to attain an error tolerance 

is generally provided for termination of the method. 

L f(x)t- 	E 

i.e., 
(xk-xk-1)/xis ( < e 	 le.(3 °..o 

In some cases the solution of f(x) oscillates. To 
avoide this the step size in each iterations is damped or 
reduced by factor ' whenever oscillations occur. Where,  ' 

should assume any value between 0 and 1. The Jacobian for 

the example shown in Figure (3?.1) for formulation 3 using 
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equation (3.3) is evaluated a,s follows. 

The set of equations for node with unknown heads are 
written first. The partial derivatives of these equafions 
with respect to each unknown nodal head is found i.e,. for 
equation (3°.3) one can obtain 

OF2 K32 ( H1-H2 )K12W ' + 25 
►•l 

( H2""H )K25 	+ 

K2 	H2 -H K23-1 

23 	23 

6F2 	K2 	HH3 K23-3. 
C23 

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 ...(3.1J-)  

,....... .......... ...... . .. ..sees , 

OF2 
a
° =° 

Hence the Jacobian matrix 

 

~8F2 	aF2 	OF 
J) 

	
8H 	a H .. .. ,. 	a - --  

	

2 	3 	6 

aF6 OF 	OF 

	

ffH2 	0113 ..'..  

and vector f(x) = F 3 F2 
F3 

F6 5x1  
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Similarly for the _.forMulation 4 partial derivatives 
of equations (2.5) with respect to corrective flow for each 
loop are written as follows. 

W1 oF  1" 	C1K1(Q1-iQ1) l~l  +C 22  (a2+'Q1.1'Q2 
a&Ql  

3 3 3 1 	4 4 l 	t 

.aF2 	 x2_1 
oa = - C2K,2 (Q2 -KaQl2  

The Jacobian matrix [J] can be written as 

	

aF1 	aFl  

	

aaQl 	aoQ2  

	

aF2 	8F2  

L aA1  
and function vector f(x) 

Fl  

f(x) - 	 ••. (3-.14) 
LJF2  

2x1 
Using equation.(3.8) the value of x (head or flow) in each 
iteration is found and procedure is repeated till convergence 
is attained. 

3.3  S FNS I TI VI TY AN ALYS I S 

Sensitivity analysis is primarily carried out for 
small fluctuations in one or two variables with reference to 
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design conditions. If these fluctuations are large and 
numerous then it is better to recompute the network as a 
whole. 

For formulation3, sensitivity analysis is carried out 
with given head as external, variable, and other nodal heads 
as state variables-. The primary aim of the sensitivity analysis 
is to find out the effect of unit change in given head (one 
at a time) on heads of remaining nodes in order to determine 
the node which is less sensitive to changes in given head. 
The analysis is helpfull in the future expansion of the 
network. 

If :u is external variable and x is the state variable 
then 

f(u sx) = 0 	 ...(3.15) 

The effect of varying u an x is given by 

df = (af/ax)u  dx + (af/au), : du 

=fx dx+f u du 
or, 

(af /ax)u (ax/au) = — (af/au)x  

.•...(3.16) 

If Newton Rapheson method is used, the matrix (af/ax)u  
is already available i.e. Jacobian [1r 	and (ax/au) is to be 
determined and called as sensitivity matrix,. 
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To determine the sensitivity matrix (8x/8u) one 

need the partial derivatives of vector function f(x) with 

respect to U. external variables-. For example network shown 

in Figure (3.1) one can write for equation (3.3) with Hl 

as an external variable u. 

8 f,2 	K 	H .- H2 Kl 

Hence the sensitivity matrix is column matrix-. 

Using this matrix,, the matrix {of/ox} u is found outs which 

in turn gives the effect of . varying the given head Hl on 
remaining heads 1s R3, • ► • H6. 

4 INCLUSION OF PUMPS AND RESERVOIRS IN NETWORK{ .er.~rrr~wrn rwaiursr~ 	 r 	 r 

In formulation 4 is applicable to networks, in which 
the external flows are assumed known. The amount of flow 
being supplied from different reservoirs and pumps, as 
suggested by Jeppson [1] j, will depend upon heads and flows 
thro ugh out the network. Hence each pump and each reservoir, 
from which flow enters or leaves the network introduces a 

additional unknowns. Thus making problem more complex as input 
and output to the network is not directly known. 

As seen in table .(2.4) the pump characteristics can 
be found out• by drawing graph of head v/s flow for pump and 
the polynomial assumed for this curve as quadratic. The 
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constants of this curve are A and B. 

In this problem flow in pipe connecting pumps and 
reservoirs are. additional unknowns, while elevation of 
the reservoir, head at the inlet of the pump and pump 

characteristics are known parametdrs. To solve these 
unknowns one need additional equations-. These additional 
equations are written by constructing pseudo loops in 
network'. The problem is explained with the help of figure 
(3'.2)-. 

The pseudo loop is as shown in figure (3.2):. This 
loop is noncyclic•. To write down the energy equation, head 
loss around a pseudo loop must be zero, which can be written 
as 

K 
I -C5Q5K5- C4Q44  + C3  33+C1Q1Kl  -hp  

_ Hl  

where, 
hp  = head produced by pump 

Hl  and H2  = Elevations of reserviors•. 

This equation can be rewritten as 

--Clt  -C3Q33  +C5Q5K5  +C4Q4K4  +hp  

=H2.-Hl 

..'. (3.18) 

'.°•'.(3.19) 

Here H2•H1  - Difference of elevations in reservoir-. 

h can be written in terms of flow as 
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h =4Q2  + BQ +H0  

where AS  B and Ho  are constants obtained from pump 
characteristics curve. 

These additional equations with the main set of 
equations as explained in (3'•l) for formulation 4, are 
used to solve the network with the help of Newton Raphson 
method-.. 
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CHAPTER - IV 

LOOP SELECTION 

For formulation 4, set of independent loops are required. 

These independent loops are usually not unique. Mah [7] and 

Epp and Fowler [5] have reported that there is significant 

influence of loop selection on the convergence of solution 

in terms of computer time for each iterations, or total 

number of iterations required for convergence. A method of 

loop selection provides the least number of pipes involved 

in independent loops. More over if network is complex due to 

large number of pipes and loops, an .efficient and reliable 

method of the loop selection is required because it is difficult 

to select the number of independent loops manually. At the 

same time there is possibility of making errors and an 

incorrect loop may result in a poor convergence of the solu-

tion. 

M loop selection algorithm has been suggested by Epp and 

Fowler [5). In this chapter this algorithm has been described 

in short. This algorithm requires the use of an another algo-

rithm for finding shortest path between any two nodes. This 

algorithm is difficult to use in form of programming point 

of view. Therefore the use of a new algorithm is proposed for 

finding the shortest path between two nodes-. The proposed 

algorithm is incorporated in the loop selection method of 

Epp and Fowler [5] . 
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4'.1  LOOP SELECTION ALGORITHM DUE  TO EPP AND  FOIZER  C51 

This algorithm is as follows t 

Step l - Find the degree of each node i..'e, number of pipes 
connected to that node. 

Step 2 If node of degree 1 is present,, then remove tail 
pipe form node with degree 1 and go to step 1. 
Otherwise go to step 3. 

Step 3 -- Start with node of degree 2-. It is called the key 
node. 

Stop 4 - Go to the other end nodes of the pipes connected 
to key node. 

Step 5 - Remove pipes connected to key node. 

Step 6 - Find the shortest path between these two end nodes 
and assign the loop: 

Stop 7 - If all the loops a: 'selected then stop-. Otherwise 
go to step 1 and repet the procedure with next key 
node, 

For more details of the algorithm and also of shortest 
path algorithm., employed by Epp and Fowler [5] reder is advised to 
refer the original paper'. However, the use of this algorithm 
is explained below for the pipe network shown in figure (4.1). 
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Step li Degree of node is in following table. 

Node 	Degree of 
Number 	Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3 

2 

1 

2 

3 

3 

3 

2 

3 

2 

Step 2: Since node 3 is of degree 1, therefore pipe --(1) is 

removed. Due to this nodes 2 becomes a node of 

degree-1,. Therefore pipe (2) is also removed. Now 

node 1 is of degree 2-. 

Step 3: Node, 1 has now become a key node. 

Step 4 . Node 4 and 7 are at the other ends of pipes, which 

are connected to node. 

Step 5: Pipes (3) and (5) are removed. 

Step 6: Shortest path between 4 and 7 is found and it is 

through nodes 5 and 6. It is denoted as loop I. 
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Step 7ti In this way all the independent loops are found, 
which are as follows': 

Loop 	Node numbers 	Pipe numbers 
Number 	in Loop 	in Loop 

1. 	1,4,5,6,7  
2. 5,8,9,6 	• (1O),(l1),(9),(7). 
3'. 	6,9,10,7 	(9), (12),  (8), (6). 

4.2 	PROPOSED. ALGORITHM FOR FINDING SHORTEST PATH 
BETWEEN NODES 

Di jkstra [27,28] have developed an algorithm for 
finding the shortest path, between two nodes for general 
network flows. This is now a days used for shortest route 
problems in Operation Research. This algorithm is based upon 
the principales of graph theory'. It is proposed to use this 
algorithm for finding shortest path between two nodes of a 
pipe network. If there is no pipe between two nodes, then 
distance is taken as infinite. Following nomenclature is 
required for describing this algorithm. 

d1 j  = Distance between node i and j 
L- = Shortest distance between source node S to sk 

node . 
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L - The shortest distance between source node S 

to node kusing tree arcs and atmost one non 

tree arc. For all chains from source node S 

to some node k that require more than one non 

tree arc,  

Di jks tra' s algorithm. 

Step l'.Let Lk = dsk  initially for source node s to only 

node in the tree and L55  = 0 

Step 2' Lsr - minimum of Lsk = Ls j+  djr'• Here k are neighbour 
nodes of current tree. 

Step 3sMake arc (j!  r) a tree arc. 

Step 4'sI f number of tree arcs are N-1, terminate the algorithm. 

Otherwise go to step 5. 

Step 51Lsk  = Minimum (Lsks L$r*drk)  • Go to step 2. 
The detail description of algorithm is explained with 
network shown in figure (4.2). The node numbers and 

distances are shown in Figure. For convinence label 

of type (L,i) is given to each node, where L=LSk  or 
Lsk  and i refers to last node on shortest chain from 
source node s to node k. The labels are of two types. 

If L= Lk  then label is temporary and if L=L$k, then 

it is permanent. 
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In given example, to start with node 1 as source 
node. The neighbour nodes are 3 and 2. Here 

R L lk = dIk 
i.e. 	t 

L 1,2 = ci1 2 = {4,1} 

= sl} L 1,3 = d1,3 	6 

min 	L" 1}k = Li,2 = (4,1) = L1,2 a permanent label. 
The neighbour nodes of two node tree 1-2 are 3,4 and 5. 

L ,3 = min (L 3, Ll,s 2+d2 s 3) = min (6, 4+°°) = 6 
s  

= min (L1,4, Ll_,2+d2,4) = min (°°,4+5) = 9 

L ,5 = min (Li. 
: 
5, L1. s 2+d2 s 5) = min (°°,4+5) = 9 

Shortest path is L= L1 t3= (6,l) now becomes permanent 
label. 

The neighbour nodes of tree 1-2-3 are 4 and 5. 

L~.,4 = min (L1,4,L1,3+d3,4) = min (9,6+4) = 9 

Li,5 = min (Li,5,Ll, 3+d3, 5) _ jin (9,6+7) = 9 
Here tie is orbitrarily broken anc 5 is selected as permanent 

label, i.e-. L1,5 = 9= (9,2).. Now tree is 1-2-5 and its neigh-
bouring node is 6. 
L1P6 =Min (4,6, L1,5+d5,6) _ (ao, 9+1)= 10 

Now 6 is node of destination. The shortest path is as shown 
in Figure (4.3) and shortest distance is 10 units. 



2 	 5 	 4 

1 6 

3 	 7 	 5 

FIG.4.2 AN EXAMPLE NETWORK TO DEMONSTRATE D!JKSTRAS 
ALGORITHM 

t. .1 

{ 1O,51 

FIG. 4. 3 	SHORTEST PATH 
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In this chapter loop selection algorithm due 

to Epp and Fowler has been modified by incorporating 

Dijkstras shortest path algorithms. This modified loop 

selection algorithm shall be used in conjunction with 

Formulation 4. 



CHAPTER -  V 

SOFT WARE PACKAGES 

Three software packages have been developed to solve 
the pipe network problem. These are described below. 

5l PROGRAM  FOR SOLVING THE PIPE NETWORK USING 

FORMULATION 

This program solves the network using the formulation 
3. Here the heads at few nodes, called input nodes, are known 
and the heads of remaining nodes are obtained by using 
Newton Rephson method-. Knowing head at each node the .flow 
rate in each pipe may be calculated. Sensitivity analysis of 
the network is also performed, by which the effect of unit 
change in given head at any one of the input nodes on heads 
of remaining nodes is predicted. Flow chart for this program( 
is given in Figure (5.1) and details of program( are as 
given below. 

Name of programs. 
Subroutines used 
Input Variables 
N = Number of nodes 
NP= Number of pipes 

MNRM'.FOR 
`s PNRN, SENSE, SOLVE 

AMAX= Maximum number of iterations allowed. 
ERR = Error tolerance. 
P 	= Initial estimate of head at each node in meter ; 
JPGIV 	= Code $ which mentions given . b$Q4 . - : node 

1 if head is known and 0 if head is not known. 



QN = Nodal input or output flow in cubic meter 
+ve for output flow and -ve for input flow. 

H 	= Elevation of each node in meter• 
D 	= Diameter of pipe in centimeter. . 
PL = Length of pipe in meter . 
CHW = Hazen Williams constant for pipe material 
Output variables= 
p 	= Head at each node in meter after convergence. 
Q 	= Flow in each pipe in cubic meter after convergence. 
HL, = Head loss in each pipe in meter. 
Y 	= Sensitivity of each node. 

Intermediate variables of the programe are as 
given belowt 

INCID= Matrix defining topology of the network. If value 
of the element is 1 then there is the pipe present, 
and 0 when pipe is absent'. 

ITR = Iteration number: 
C 	= Hazen Williams constant for pipe 
AA = Jacobian matrix. (j) 
AB = Column vector of the function f(x) i.e. for the nodal 

flow, balance equations,.. 
Y 	= Solution vector 
DS 	= Sens itivi ty' matrix,. 



INPUT DATA 

N ITMAX, ERR, NP , P(I),CLN (I ), H (I ), 
JPG[V (I ) , PL (1),INC[O(I,J) s O O(J ) , CHW (I) 

COMPUTE HAZEN WILLIAMS 
CONSTANT 

ITR 	1 

CALL PNRM 
TO GENERATE JACOBIAN AND FUNCTION 

I CALL SLOVE 	I 

JPGIV (I ).EQ.1 	YES 

P (I) = P (I) — Y( I )  

WRITE (P (I ) 	I c 1, N ) 

1F TRUE 
ITR . LE . ITMAX  

FALSE 
WRITE 'FUN DOES NOT 

CON VERGE' 

COMPUTE FLOW RATE EQ.(2.1) G(I) 
COMPUTE HEAD LOSS EQ. (2. 1) H.L (I ) 

IT R= I TR -I- I 

FA LSE 

IF 
AX Y(1).LE . ERR 

TRUE 

WRITE ( 0 (I) , I = 1, NP ) 
WRITE (HL(I)s I =1,NP) 

CALL SENSE 

CALL SOLVE 
TO PERFORM SENSITIVITY ANALYSIS 

WRITE RESULTS OF SENSITIVITY ANALYSIS' 
( Y (I), I= 	1, N) 

STOP 

FIG. 5. 1 FLOW CHART FOR PROGRAM MNRM. FOR 
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5.2  PROGRAh FOR SOLVING PIPE NETWORK USING FORMULATION 4 

This program.. solves the network using formulation 4 
and Newton Raphson method. This also uses computer aided 
loop selection procedure for selecting the independent 

loops in the network. Input flow(s) to the network should 
be known as the input data. The prograi results in the 

values of flow rates in each pipe, which may be subsequently 

used to calculate the head losses in each pipes. Flow chart 

for this program is given in figure (5,2) and details of 
program• are as given below: 

Name of the programs 	QNRM-.FOR 
Subroutines used : 	LOOP, SHOP., SOLVE 

Input Variable= 

N,NP-, ITMAX, ERR = same as discussed in section (5.1) 

NPUMP = Number of pumps 

NSL 	= Number of pseudo loops. 
CODE = Code for loop selection. Its value is 

it  

if loops are provided and 0 when computer 

aided loop selection has to be done. 

D, PL, cHW = Same as explained in section (5.1) 

QI 	= Initial estimate of flow rate in each pipes 
in cubic meter,. 

JLP 	= Number of pipes in the loop. 
LP 	= Pipe numbers in the each loops. 



Al, B1 = Constants A and B for pump. 
HO 	= Supply Head of the pump in meter. 
LNP 	= Pipe numbers in the each pseudo loop 
NL 	= Number of loops in the network-. 
DEL 	= Elevations of reservoirs-. 

Output Variables: 

QI 	= Flow rates in each pipes in cubic meter after 
convergence-. 

HL 	= Head loss in pipes in meter 
Intermediate variables of the program are as given 
below! 
FL Matrix storing the distance between nodes'. 
INCID = Same as explained in section (5°.1)'. 
LPP 	= Matrix storing pipe numbers between nodes. 
NN 	= Column matrix storing number of pipes in each 

loop. 
DR 	= Jacobion matrix W. 
RD 	= Column vector of function f(x) i.e. loop pressure 

drop equations. 
Y 	= Solution vector'. 
DQ 	= Corrective flow AQ for each loop. 
NCT 	Number of iteration-. 



INPUT DATA 

N. ITMAX, ERR, NP, QI(I ),PL(1 ), DD(I), 

NPUMP, NSL CODE s C H W (I ) 

COMPUTE HAZEN WILLIAMS CONSTr 
ANT FOR EACH PIPE EQ. (2. 1 ) 

FALSE 	
CODE I•FEQ• 1 	

TRUE 

CALL LOOP TO 	 R£AD LOOP INFORM 
FIND LOOPS 	 ION JLP,(LP (I,J)) 

NCT  o 1 

GENERATE MATRIX 
LLP(I,JQT STORE 

GENERATE FUNCTION R 0(1 )1  
f (x) . EQ.(3. 2) AND GENERATE 

JACOBIAN,DR(I,J) 	EQ. (3.14 

tF 
TRUE 

NPUMP. 	EQ. 	0 

FALSE 

READ PUMP CONSTANTS.,AND 
PSEUDO LOOPS AND GENERATE 
RD(I)AND DR(I,J) F R PU MP 

NCT= NCTf-1 
CALL SOLVE 

FTO SLOVE LINEAR EQ - 
FALSE 

IF IF 
NCT • LE .ITMAX 	

TRUE 
AX (Y (I))• 	LE. ERR 

FALSE 
WRITE 	FUNCTION DOES 

NOT 	CONVERGE' 
TRUE 

COMPUTE HEAD LOSS IN EACH 
PIPE 	HL(1) 	EQ. (2. 1 ) 

WRITE FLOW IN EACH PIPE 
WRITE 	HEAD LOSS IN EACH PIPE 

(S TOP 

FIG. 5. 2 FLOW CHART FOR PROGRAM QNRM. FOR 
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5113 PROGRAM. FOR SOLVING PIPE JTWORK USING MIXED 

METHOD OF FORMULATION 

In this method of formulation the .problem is 
first started with usual formulation .3. As soon as flow 
balance at input node(s) is achieved, the problem is 
solved with formulation 4. By adopting this procedure the 
in flow to the network remains fixed, while flow in other 
pipes changes and there by it stablizes the head at the 
nodes, which are away from the input node(s). After 
stabli nation, formulation 3 is used once again to obtain 
the final solution,. The algorithm for mixed method is 
as fo llows 

Step 1 -. Read Input. 
Step 2 .-. Read pipe number(s) connected to input node(s) 
Step 3 .- Start iterative procedure using formulation 3. 
Step 4 - Check for stablity of inflow in each iteration. 

If they are stablized proceed, otherwise go to 
step 3. 

Step 5 - Perform iterative procedure using formulation 
4 till convergence is attained. 

Step 6 - Compute head losses in pipe* and there by 
oompute head at each node. 

Step 7 -Again use formulation3 to achieve final solution. 

Flow chart for this programr is given in figure (5.3) 
and detailed of this program are as given below. 



INPUT DATA 

N, I T M A X. ERR , NP •  P C I) . H (I) , QN (I) . 
JPGIV (1) , Pt (I) , DD(I ), 1NCID (1, J ),CHW (I).0 

INFORMATION OF INPUT PIPES 
IN,INP(1) 

FALSE 	COpE EQ. I 	
TRUE 

C ALL LOOP 

 

CRF-AO;Ll;OP INFORMAT- 
POR FTNDING LOO N. 	 , (LP (S ,J )) 

METHOD = 1 

5T ART 
SOLVING NETWORK USING FORMULATION - 3 

AND CHECK FOR CONVERGENCE 

TRUE  
STOP 	 AETHOD. EQ. 

1 FALSE 

COMPUTE FLOW IN EACH PIPE 
AND 

HECK FOR CONVERGENCE IN INPUT PIPES 

IF 

	

INPUT FLOW 	 FALSE 
01 (INP).LE_ 10.11- ERR 

TRUE 

GET THE SOLUTION OF 
NETWORK USING 

FORMULATION-4. ONRM. FOR 

I METHOD = 2 1 

FIG. 5.3 FLOW CHART FOR PROGRAM MIX. FOR 



Name of the program 	t MIX. FOR 
Subroutines used 	 3 PNRM, LOOP, SHOP, SOLVE, SENSE 
Input Variables 

Same as that of MNRM.FOR, which has been explained 
in section (5.1). Additional data is as given below. 

INP .% Pipe numbers connected to input node(s) 
NIP Number of pipe(s) connected to input node(s) 

Output Variables: 
Same as that of MNRM. FOR, which has been explained 

in section (5.1). 

Legends of the programe are same as that of MNRM.FOR 
and ONRM-.FOR .explained in section (5.1) and section (5.2) 
respectively. 

5.4 DESCRIPTION  OF THE SUBROUTINES  

Detail description of the Subroutines used in above 
programcD-. are as given below-. 

5.4.1 SUBROUTINE PNRN (N aP,C-1H,CST, AA AB JPGIV INCID) 
-• 	 a 	 s 

This subroutine develops the nodal flow equations and 
Jacobian matrix [J] for solution of the network problem by 
Newton Raphson method using formulation 3. Flow charts for 
this subroutine is given in Figure (5.4) and _ detiils are 
as given below: 

,' rarU Univeisith of V0o 



INPUT 	 \ 
P(I),C (I, J) , INCID(I, J) ,N . H(I), QN(I) 

J PGIV (I) 	 / 

F 
JPGIV(I )_ EQ.1 	

TRUE 

FALSE 
IF 

INCI D (1 . J) EQ. O 	
TR UE 

FALSE 

COMPUTE NODAL FLOW S([ ) 
EQ. (3.1) 

IF 
JPGI V(J) . EQ. 1 	TRUE  

FALSE 

.v
I

IF  
IN CID (I,J ). EQ.O 	TRUE  

FALSE 
COMPUTE JACOBIAN - A (I , J ) 

EQ. (3.12 ) 

IF 
I- I i 1 	TRUE 	I_ LT N 	

FALSE R ETU R N 

FIG.5.4 FLOW CHART FOR SUBROUTINE PNRM 
INPUT 

P(L) •C (1 , J) ,N , H (1) , Q N (I) , INC[ D(I,J 
JPGIV (1) 

i IF 
(i). EQ.O 	TRUE

FALSE

IF
TRUE (J)• EQ.I

FALSE
IF

(I,J).EQ.O- 	TRUE 

R 

GENERATE SENSITIVITY MATRIX 
OS t!, J) 	Co. (3.16) 

I c I+ 1 	 TRUE 	I 	LT . N 	FALSE 
J 	J F- 1 	 R E T U R N 

J • LT N 

FIG. 5.5 FLOW CHART FOR SUBROUTINE SENSE 
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Input Variables 
N,C-,P ,H-, ON INCID1  JPGIN 

Same as explained in section (5.1). 

Output Variables 

AA = Jacobian matrix [j] 
AB = Function f(x) 

5.4.2 SUBROUTINE SENSE (N,P-,C-,H=,.JPGT ,INCID-, QN,DS ) 

This subroutine performs. sensitivity analysis by 
generating sensitivity matrix DS. FJ,ow chart for this subroutine 
is given in figure (5'.5) and details are as given below; 

Input variables t 

N1, C-1P-lH- j,ON)INCID- JPGIV 

Same as explained in section (5.1). 
Output Variables 

DS = Sensitivity matrix. 

5,.4.3  SUBROUTINE SHOP U. FL:N.JS. AP)  

This Subroutine finds shortest path between any two 
nodes using Dijkstara's algorithm which has been discussed 
in Chapter 4. 

Flow chart for this subroutine is given in Figure (5.6) 
and details are as given below. 



INPUT DATA 
AM , FL , N 

IF 
YES PC (3.J )  

NO 
SET DISTANCE MATRIX 	 AP (I J) = AM AP (I ,J ) = FL (I . J ) 

I EQJ 	 YES 

NO 
SET NEAREST NODE MATRIX 

-IS  (1, J) = J 

IF 
I EQ..) OR 	 YES J . EQ -K OR 
K - EQ.! 

NO 

X = AP (I, J) + AP (J,K ) 
Y = AP C I , K ) 

!F 
Y • LT _ X 	_  YES 

NO 

SET 
AP ( I , K) = X 
JS ( I , K) = JS (I . J ) 

RET U R N 

FIG. 5. 6 FLOW ' CHART FOR SUBROUTINE SHOP 
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Input Variables - 
AM = A very large number (99999.) _> °O '• 

FL and N Same as explained in section (5.2). 

Output Variables 

JS = Matrix which gives the nearest node to each 
• node, 

.AP = Matrix which gives the shortest distance 
between any two nodes'. 

5,4,4 SUBROUTINE LOOP (INOID,FL.N.NP,.LP,NN.  NL  ) 

This subroutine gives the set of independent loops 
in the network by making use of shortest path algorithm. 
This shortest path between any two nodes is rude available 
by subroutine SHOP. Flow chart for this subroutine is 
given in Figure (5.7), and details are as given below. 

Input Variables: 
INCID, FL, N,NP 
Explained in section (5.2). 

Output Variablesi 

NL, NN E  LP 

Same as explained in section (5.2). 
S 



INCID , FL . N , NP 

FIND DEGREE OF 
EACH NODE 

IF 
DEGREE . EQ. 1 	NO 

YE S 

DELET PIPE 
CONNECTED TO 

THAT NODE 

FIND FIRST NODE C!) I 
WITH DEGREE *. 

GO TO OTHER END NODES 

OF PIPE OF CONNECTED TO 
THIS NODE CJ AND K) AND 
DELET PIPES CONNECTED TO 

IF 

IN CID (.1, K )•EQ. 1 	YES 

NO 
C• 

FIND SHORTEST PATH 
USING 

CALL SHOP 

ASSIGN LOOP K1 SET  
MATRIX OF PIPE 

NUMBERS LP 

FIND DEGREE OF 
EACH NODE 

IF 
YES 	DEGREE G~. 2 

NO 

~R E T U 	

J 

N 1 

FIG. 5.7 FLOW CHART FOR SUBROUTINE LOOP 
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5.4.5 SUBROUTINE SOLVE 

This subroutine solves set of linear equations 
with help.  of Gauss elimination method with Pivot selection. 

Input Variables: 

A = Jacobian matrix 
B = Column vector of function f(x) 
N = Number of equations or number of rows in 

Jacobian matrix. 

Output Variables s 

Y = Column vector of solutions of each variable. 



CHAPTER -- VI 

RESULTS AND DISCUSSION 

In this chapter results pertaining to the convergence 
problem associated with the Newton Raphson method of solving 
pipe network problems are reported and the new scheme is 
proposed to avoid it. Further a new method of formulation 
of pipe network problem called mixed method of formulation 
is suggested• and the results about its computational effi - 
ciency are presented. Lastly advantages of computer aided 
loop selection method is discussed. 

It is well known fact that Newton Raphson method is 
sensitive to initial guess. This aspect has been studied in 
detail and modifications in the existing algorithms are 
proposed!. It is necessary to mention at this stage that there 
is no clear out distinction between a proper guess and an 
improper guess but the following points should be taken into 
consideration for deciding the initial guess. 

-- 	Order of the values of head at nodes should be in 
accordance with the topology of the network. 

... 	The values of the head at nodes which are far away from 
the input node(s) are more sensitive to initial guess. 
So more care should be taken while supplying guess values 
at these nodes-. 
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The values of heads at nodes with lower degree are 
more sensitive as compared to the nodes with higher 
degree. Accordingly precaution should be taken. 

6.1 EFFECT OF DAMPING  FACTOR ON CONVERGENCE 

It is observed that with improper initial guess the 
values of head at nodes in case of formulation 3 oscillate. 
If these oscillations continue for number of iterations, 
the convergence can never be attained. It is also to be 

noted that these oscillations usually starts at nodes which 
are far away from input node(s)'. And due to this the head 
at remaining nodes also starts oscillating This is shown in 
Figure (61.2) for network in Figure (6.1) . In the considered 
problem., node C5) is far away from the input node (7), while 
node (1) is comparatively nearer to node (7). To an improper 
initial guess, oscillations have been observed in the values 
of head at both nodes. These oscillations persist even if 
the number of iterations increases. However the approach to 
the convergence is faster at node (1) as compared to node (25). 
This is because the node 1 is nearer to input node (7). Thus the 
improper initial guess require large number of iterations for 
obtaining final solution. 

Nit the solution has been attempted with relatively 
proper ' slues of initial guess'. Effect on convergence at 
node (1) and node (25) has been shown in Figure (6.3). 

a 
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ITERATION NUMBER -~ 

F1G.6.2 WITHOUT DAMPING CONVERGENCE NOT ATTAINED 
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ITERATION NUMBER ---+ 

FIG. 6.3 CONVERGENCE ATTAINED WITHOUT DAMPING 
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It is clear that the magnitude of oscillations at both the _ 
nodes is less in comparision to previous case, and also number 
of iterations required are less. 

It is proposed that the solution vector during iterations 
should be damped by factor ti to improve the rate of convergence. 
The value of ' varies between 0 and 1 and the exact value 
depends upon the problem being solved. Value of ti taken here 
is 0.5. It means that xk 	+O5 yk. It is observed that 

the damping accelrates the rate of convergence even with an 
improper guess. This fact is illustrated in Figure(6.4) Number 
of iterations required for these cases are tabulated in 
table (6.1)-. 

TABLE -.6.i 

Results of the network shown in Figure (6.1) by using 
formulation -3. 

S .No . Initial guess 	Method used 	Number of 
iterations taken 
for convergence 

1. Improper 	With out 
damping 

2. Proper 	Without 
damping 

3. Improper 	With damping 
factor 0.5 

4,, 	Proper 	With damping 
factor 0.5 

Terminated 
after 25 iterations 
18 

12 

11 



ITERATION NUMBER-~ 

FIG.6.4 CONVERGENCE PATTERN WITH DAMPING FACTOR 0.5 
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6.2 CONVERGENCE IMPROVEMENT BY MIXED  METHOD OF FORMULATION 

A care full study of graphs . in Figure (6.4) shows that for 
formulation3, the values of heads at the node which are nearer 
to input node(s), converge faster than the values of head at 
the nodes which are away from it-. Due to this fact a new 
method of formulation, called mixed of formulation, has been 
proposed which is already discussed in chapter 5._ However, 
one might think that this method is same as the formulation 
1, But this is not true. In fact in this method the number 

of equations solved are either (J-i) (in case of formulation 
3) or ,( (in case of formulation 4) and hence the amount of 
storage required is much smaller than in the case of formula-
tion 

, The results of the test problems ?igure(6.1) and 

Figure (6,.6))by using mixed method of formulation are 
listed in Table (6.2). 

It is noted that that the switch over from formulation 
3 to 'formulation 4 is done after 4 iterations in case of 
network in Figure (6-.1) and after 5 iterations in case of 
network in Figure (6.6). At this stage flows in pipes, 
connected to input nodes, are closely balanced first time 
during solution. If the switch over is 'carried out after this 
stage in either case, the total number of iterations required. 
for obtaining the final solution increases. 



NODE NO. = 5 

HEAD = 74. 28265m 

-0.0< 

0.0 

0. 

0. 1 

0.01 

0.001 

0 

0.001 

0.01 

0.1 

1. 

0. 

0.0 

0.0< 

0.1 

0.00 

0.0 

0. 

NO• 0 25 

= 63.49$24m 

NODE NO. a 1 

1E AD = 66. 7042 m 

0 

0• 

0 O 

0 	1 	2 	3 	4 	1 	2 	3 	4 
ITERATION NUMBER 

FORMULATION 3 	 FORMULATION 

FORMULATION 4 

FIG.6.5 CONVERGENCE PATTERN OF MIXED METHOD OF FORMULATION 



From the Figure (6.5) it is observed. that the method 
converges faster than the usual method of formulation 3. 
Also one notes that the advantage offered by this method 

for small network is limited. Hence, it is suggested that 
this method should be used for large networks. 

TABLE 6.2 
Results of Mixed Method of Formulation 

S. Method of Number of Number of 	Number of Total 
No. Formulation iterations iteration 	iterations Number of after which in Formula- by formu- iterations formulation tion 	lation 3 

3 Terminated for final 
4 	solution 

For pipe network shown in Figure 6.1 

1. Mixed 3 1 	7 11 
method o f  
formulation .a, 

5 1 	 5 li 
6 1 	4 11 
7 1 	5 13 
£3 1 	4 13 

2. By direct 
method o f - - 	12 12 
formulation 3 

For pipe network shown in Figure (6.6) 

1. Mixed 3 1 	7 11 
method of 
formulation 4 1 	, ~6 11 

6 ~.~ 	"rt 
7 1 	3 
6 1 	2  

2. By direct 	.• 	 - 	11 
method of 
formulation 3 
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6.3  ADVANTAGE OF COMPUTER AIDED LOOP SELECTION 

Use of independent loops in a pipe network assists in 
reducing the number of equations to be solved for that problem. 
The loops may be selected either by inspection or with the help 
of computer using suitable algorithm. One may commit an error in 
selecting the independent loops in network by inspection. For 
example, one may identify that there are seven loops in the 
network shown in Figure (6.7) as listed in table (6.3), while 
infact there are only six independent loops. Imo' solution is 
tried with seven loops, it starts diverging from the beginning 
Therefore it is proposed to select the loops with help of 
computer by an algorithm which has been discussed in chapter-4. 

From table 6.3 it is also clear that the number of 
iterations taken by problem for convergence also depends on 
the way in which these six loops are selected. As the computer 
aided loop selection algorithm makes use of the shortest path 
algorithm the set of loops selected results into minimum number 
of iterations for convergence of the network problem. In any 
case this algorithm saves the mannual labour required in 
identifying the set of independent loops. 



TABLE 6.3 
Results of Looms.. selection al, orith~m 

Set Pipe numbers in set of Number of Is conver- 
No. the loops selected iterations gence attained 

for network shown in 
figure (6.7)•  

1'. Loops selected with help of 
computer.. 

i) 11 	.12 	9 
ii) 9 	10 	8 25 Yes 

iii) 10 	14 	13 
iv) 5 	4 	15 	6 
v) 2  7  8  6 

vi) 7 	8 	15 	3 

Loops selected with mannual 
inspections 

2°. i,ii,iii same as above 

iv) 	7 	3 	15 	8 
v} 	2 	5 	43 27 Yes 

VI) 	6 	15 	45 

	

3. 	i,ii,iii 	same as above 
iv) 2 	3 45 
v) 7 	8 15 3 • 	35 	No 

vi) 5 	4 15 6 
vii) 2 	7 8 6 



FIG. 6.6 A TEST PROBLEM 

A PSEUDO LOOP 

7 
0 

FIG. 6.7 A TEST PROBLEM FOR LOOP SELECTION 



Chi APTER .. VII 

CONCLUSIONS 

Main conclusions are given below: 

[A] A new method, called Mixed method of formulation, is 
proposed to analyse the pipe networks,. This method is 
computationally efficient and requires less computer 
storage-. Although this method is tested on few large 
pipe networks, but it still requires more test on 
complex networks to prove its worthiness, 

[B] Efficient software packages are developed to analyse 
the pipe networks using the existing methods and the 
mixed method of formulation-. During the development of 
computer programs following observations about the nature 
of the solution are made,, 

- The values of heads at nodes which are aways from 
the input nodes are more sensitive to initial guess. 

- The values of heads at lower degree nodes are more 
sensitive to initial guess as compared to the values at 
the higher degree nodes. 

- During the solution., the values of heads at nodes near 
to the input nodes converges faster than the remaining 
nodes,. 
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-• Newton Raphson method is sensitive to initial guess 
pf values of parameters. Its sensitivity can be reduced 
by damping the solution vector by a factor 0.5. A oonvor-
gence scheme is also proposed for this purpose. 

[C] A computer-aided loop selection method is proposed in 
the present work, which selects the optimal set of 
independent loops in a given pipe network. This procedure 
should be employed in comparision to the mannual inspection 
of network as it is suceptible to errors. 
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APPENDIX 

Results of the test problem shown in Figure (6.1) by Mixed 
method of Formulation-. 

Input Data 
Number of nodes N = 32 
Number of pipes NP = 48 
Maximum number of iterations ITMAX = 25 
Error tolerence ERR 	0.0001 
Hazen Williams constant for all pipes = 120.0 

Node Initial JPGIV (I) Nodal Elevation 
No. guess of Switch Flows QN of node H 

head P, cubic 
meter meter 

1 2• 3 4 5 

1, 108-.0 0 0.05665 0.0 
2.  101-.0 0 0.02832 0.0 
3.  102-.0 0 0-.1416 0.0 
4-. 109=.0 0 0.08496 0.0 
5. 113-.5 0 0.05665 0.0. 
6, 67.0 0 0*.05665 0.0 
7.. 78.74 1 0.0 -0.0 
81. 73°.0 0 0,.08496 0.0 
9. 79.5 0 0.08496 0.0 
10-. 80.0 0 0.05665 0.0 
11. 79-.0 0 0.11238 0.0 
12 82,.5 0 0-.05665 0.0 

contd... 



1 	2 	 3 	4 	5 

13.  80.25 0 0.05665 0.0 

14.  86,25. 0 0.08496 0.0 

15.  86,.0 0 0.08496 0.0 

16.  83.25 0 0.0 0.0 

17.  77-.0 0 0-.11328 0.0 
18.  67.0 0 0.0 0.0 

19.. 65,75 0 0.08496 0.0 

20. 61,.-0 0 0°.05 0.0 

21-. 60-.5 0. 0-.05665 0.0 

22.  60.0 0 0.025 0.0 

23.  99.0 0 01,11328 0.0 

24.  59.5 0 0.05665 0.0 

25.  63,.25 0 0.0708 0.0 

26.  62°.5 0 0-.11328 0.0 
27.  89.0 0 0,08496 0.0 
28'. 86.5 0 0-.11328 0.0 
29, 93.0 0 0.05665 0.0 

30.  87.5 0 0.11328 0.0 

31.  961.98 1 0.0 0.0 
32.  98.5 0 0.05665 0.0 



Pipe From To Diameter Length 
No, node node c. m•, m. 

No. No'. 
1. 7 5 60.96 609.6 	V 
2,. 8 60.96 	V 609.6 

3. 8 17 60,.96 609.6 
4-. 17 18 30.48 914.4 

5-. 6 18 60.96 609.6 
6-. 6 5 30.48 609.6 
7-. 6 3 30.48 304-.8 
8. 4 V 	3 30.48 457.2 
9. 5 4 V 	45.72 304•.8 
10'.. 3 2 30.48 304.8 
11. 1 2 30.48 609.6 
12. 4 1 45.72 304°.8 
13. 3 19 30-.48 609°.6 
14'. 19 20 30,48 457-,2 
15. 2 20 60.96 . 	609.6 
16. 19 24 30,.48 914:.4 
17. 23 24 30.48 304.8 
18. 22 23 30.48 4571.2 
19. 21 22 45,,72 304-.8 
20. 20 21 60.96 914,.4 
21. 18 19 30..48 457-.2 
22. 18 26 30-.48 914,.4 
23. 25 26 30.48 304•.8 

oontd, .. 



Pipe From To Diameter Length 
No, node node c. m m. 

No. No. 

24. 25 23 30.48 457.2 
25. 16 17 30.48 914.4 
26.  28 16 30.48 457.2 
27-. 27 28 30.48 457.2 
28. 27 25 30.48 762.0 
29,. 10 9 45°.72 609,.6 
30. 16 10 45.72 609.6 
31-. 13 9 60.96 304 -.8 
32. 12 13 60.96 762.0 
33'. 12 11 30°.48 457.2 
34. 10 11 30.48 4571.2 
35. 14 12 60.96 609,.6 
36. 15 14 45.72 457.2 
37. 15 16 45.72 457.2 
38. 30 15 60-.96 457 -.2 
39. 30 28 45.72 365.76 
40. 29 30 45-.72 457.2 
41-. 29 27 45.72 304-.8 
42, 32 30 45.72 365.76 
43. 31 32 60.96 457.2 
44. 31 29 60.96 304.8 
45-. 32 14 60 -.96 457 -.2 
46. 10 8 30.48 609.6 
47. 8 6 30.48 609-.6 

48. 9 7 60,.96 6o9.6 



Output 

Head at each node after 

Node No. 

1.  

2.  

3.  
4.  

5.  
0. 
7.  

8-. 

9.. 
10.  
11.  
12.  
13.  
14'. 
15.  
16.  
17 T. 

18'. 

19. 
24°. 
21-. 
22. 

Result 

9 iterations 

Head in meter 

68.7 042 

61-.8298 

63.1411 

69.7137 

74°.2826 

67.2495 

78-.74 

77.4144 

79°.9311. 

80.3167  

79-.909 

82.8874 

80.5901 

86 -.3564 

86'.3679 

83-.7413 

77 -.0904 

67.1443 

61.88240 

61.4228 

60.9422 

60,.7065 

aontd.... 



Node No . 	 Head in meter 

23. 60 -.1.441 

24. 60 .0655 

25. 63-.4982 

26. 62.9243 

27. 89 -.0104 

28-. 	 86.8803 

29.. 	 93.0480 

3i--  - 	 87.6126 

31'. 	 96'.98 

32-. 	 89'.7262 



F.IS?w~,-rates in each pipe al- 	co nvenc.e 

Pipe No.  Flow rate in each pipe 
cubic meter 

a-. 0.5562 
2.  0.2890 

3.  0.1350 

4.  0.1113 

5.  0-.0735 
6-. -0.1149 

7.  C .125 

8.  0.1294 

9.  0.3845 

u 0.0674 

1i. 0-.1135 
12. 0-.1701 

13c! 0..0453 

if 0.0307 

15.  0.1527 

16.  0.0444 

17-. 0.0121 

18.  0.0350 

19.  0.0775 

20.   0 .3342 

21-. o .1348 
22. 0.0700 

23-. 0.0431 
24. 01.0903 

--contd.... . 



Pipe No. Flow rate in each pipe 
cubic meter 

25.  0.0896 

26.  O .088 

27.  0.0704 

28.  0-.2043 

29.  0.0696 

30-.  0-.2263 

31-.  0.2880 

32. 0.3446 

33-. 0-.0844 

34. 0-.0288 

35-. 0-.4857 

36.  0.0121 

37.  0°.2291 

38.  0.3262 

39.  0.1296 

40.  0.3393  

41.-. 0-.3597 

42. 0•.2298 

43-. Ci .8450 

44.  0-.7557 

45.  0.5585 

46.  0-.0712 

47. -0 .1.402 

48. 01.2727 
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