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ABSTRACT

Pipe networks are used to transport liquids and
gases from the sources to various locations of their utility.
Analysis and design of pipenetworks, in general, involves
the solution of a set of nonlinear simulataneous equations,
Research efforts are naturally made in order to either
improve the efficiency/convergence of existing,methods or
to reduce the total number of equations in the given set of

nonlinear equations, used to simulate the networke.

There are four types of formulations of pipe network
' ’

—problem, which are desoribed in detail in the literature

review alongwith their advantages and disadvantages,Trmthe—
present work, a new method of formulation, called Mixed
method of formulation, is proposed to solve the pipe network
Problemse. Its storage requirements are low and at the same
Time it is computationally efficient. In essence it has the

advantages of both the formulation-l and formulation-3.

. Efficient software packages have been developed to
analyse the pipe networks by using existing methods or by
the proposed mixed method of formulation, These packages are
also capable of carrying out sensitivity analysis of the
network, which may be of helyp in identifying critical nodes

or to plan future expansion of the network.

In software packages Newton Raphson method has been
used to solve the set of nonlinear eqgquations due to its

qQuadratic convergence, During development of the computer



pPrograms, it is observed that this method is sensitive
to initial guess of values of parameters. A convergence
scheme is proposed to reduce its dependence on initial

BUeSSe

Lastly a computer-aided loop selection method has
also been developed and programmed, which selects the
set of independent loops of pipes in a given network, This
set of independent loops is required in the Formulation-4
and any error in the selection of this set of independent
loops, which is likely during manual inspection of the large

networks, results in the divergence of the solution,
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CHAPTER =~ I

INTRODUCTION

Pipe networks are common appearances in mechanical,
chemical and gther process industries. The term " pipe
network! means, mesh of pipes along with other piping
elements such as booster pumps, valves etce. The purpose
of pipe network is to transport incompressible or com -
Pressible fluid from one location such as reservoirs and
storage tanks to various locations of its use,s under steady

state or unsteady state conditions. Various examples of

pipe networks are, distribution of lubricants from a storage
tank to various machines, supply of process fiuids tc various
Process units such as heat exchangers, reactors etc., trans-
portation of crude petroleun from oil wells to various
refineries, the municipal water supply and the distribution

of cooking gas in big cities,

Analysis and design of simple pipe network (Number
of pipes < 5) is simple and can be carried out by usual
methods of fluid mechanics. However complex networks
(shown in figure (1l.1)) pose various problems to designer
and computational engineer, and offer wide scope for inno-
vative research. Various aspects associated with analysis
and design of pipe network are shown in figure (l.2) (Block

diagram)e From block diagram one can easily imagine the



compPlexity and magnitude of the problem and it is
obvious now that the analysis and design of pipe net—

work is not simply calculation of flow and pressures.

A study of literature review described in chapter-
II, indicates that there are more than one formulations
of pipe network problem, These formulations in general
results in a set of algebraic and transcendental equa -~
tions, which are solved by suitable numarical methods,
In this thesis the methods of scoclution of these formula-
tions have been studied from the point of view of conver-—
gencé and computational efficiency and the modifications
in existing methods are proposed. Finally efficient soft—
ware packages for these formulations of pipe network

problem are developed,
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CHAPTER — IT

LITERATURE REVIEW

In this chapter existing literature in the area of

-~

steady state process design of pipe network for transpor—

ting incompressible fluids has been reviewed.

2eles1l FLUID MECHANICS CORRELATTONS

Here few correlations are described which are required

for analysis of pipe networks. These correlations are used

to calculate frictional head losses.

There are three main equations which are used for

calculation of frictional head loss for flow of fliuid through

Pipes.e

i)

Hazen Williams equation ~ This is most commonly

used equation for flow of water through pipes

which is given in Jeppsocon [1].

£ T ode852 He87 e
HwW
where,
hf = Head loss in meten

L Length of pipe in meter

D = Diameter of pipe in cme

Q = Flow rate in cubic meter

CHW = Hazen Williams Coefficient for

pipe material given in table (2.1).



ii) Manning equation
2

16;29 n-L
hf - .Q
D5 ‘® 333

3..(2.2)

n = Manning constant for pipe material given in

table (2.1)

. However results obtained by Manning's equation
are not accurate. So as far as possible the use

of Manning's equation is avoided.

iii) Darchy Weisbach Equation

he = £ LV/ 29.D ‘ eee(2.3)
f = friction factor '

g = acceleration due to gravitys

Here for determination of friction factor, accurate
values of flow rate in pipes are needed to calculate Reynold's
numbers Hence above equation cannot be used as accurate flow
rates are not initially knowne The table (2.2) gives some
expressions, which are used to calculate friction factor,.

In which ¢/D is the ratio of wall roughness to the diameter

of pipe..



Vaiues of the Hazen Williams Coefficient (CHW) and Manmmingds
n for Common Pipe Materials

Material CHW n

PVC pipe 150 0.008
Very smooth pipe 140 0.011
New cast iron or welded steel 130 0.014
Wood, concreat T 120 0.016
Ciay, new riveted steel 130 0.017
Old cast iron, brick 100 0.020
Badly cofroded cast ifon or steel- 80 0.035

e

2e2e¢l METHODS OF FORMULATION

There are more than one way of formulating the pipe
network problem, The computational efforts required for
the solution naturally vary from formulation to formulation

There are two methods generally used for formulating the

Problems, )

(a) PROBL.LEM FORMULATION BY HAZEN-WILLTAMS EQUATION

This is Simplest method !of formulation described by
Shamir and HowWoard [4}e. They have used only Hazen Williams

equations given in equation (2.,1) for formulation. Here
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8

the equations of pressure drop in loops or equations
of nodal flows are directly written downe. Detailed dis-
cussion regarding this type of formulation is given in

Chapter~ 3,
() PROBLEM FORMULATION USING GRAPH THEORY

This formulation is same as described in (a), only
the gramn theory facilitates in writting down equations of

nodal flows or pressure drops in loopPsSs

In graph theory topology of network is represented
by suitable matrices. Consider figure (2,1) with J number of
nodes and 1 loops with P pipes connecting J nodes. The graph
is set of J and Pe. First of all each node, pipe and loops
are labeled properly. Usually nodes are labled with numbers
(1,2, 4ee3J), pipes with number enclosed in paranthesis ((1),
(2), eesP) and loops with Roman numbers (I,II,e...{)e. This
method is followed by Epp and Fowler [5]). Such graph is
called a ‘labled graph'., This labeled graph provides important
informations like degree of node i.e. number of pipes connecw—
ted to that node,. path of graph which is a sequence of pipes -
such as any two consecutive pipes have common node., In case
a path has a common node then graph is cyclic. The graph

which does not contain any cycles or loops, is called a ‘tree'.



(s)

7
'()

FIG. 2.1

AN EXAMPLE NETWORK

FIG.2.2 A DIGRAPH

a3



b

In most of design applications the direction of flow is
either known or it is convenient to assume, If direction
of flow is mentioned on pipe then graph is called ‘'digraph'

and pipe is called 'arc'.

i) Matrix representation of - digraph,

Representation of the digraph in terms of matrices
containing only elements 0,1 and -1 is called a ‘matrix
representation® .« Further there are two laws, which governs
the flows in pipes, These are analogous to Krichoff's laws

for an electrical circuits. These laws areds
The algebraic sum of flows at each node must be =zero.

The algebraic sum of pressure drops around close loop

must be zeroe.

For any network with J nodes and P pipes, there are
(J-1) independent equations based on first law and 1(=P-(J-1))

egquations based on second lawse

For example consider a network shown in Figure (2.2).
According to first law there are J equations. If[M]is the matrix
(P x J) formed by the rule which states 'Pipe that bring fluid
towards node is represented by 1 and that takes away from node

by -1', then this matrix for cxample is given by



10

(1) (2) (3) (4) (5)
: 1 -1 o
(M= o o 1] eee(2.8)
3 1 -1
4 | 5 3 0 _

Similarly based on second law matrix C is written

for loops
(1) (2) (3) (4) . (5)
T {1 0 0 1 1
[c] ="' ) 000(205)
II10 1 1 0 1t

(M') is called the ‘indidence metrix'. But actually
there are only {(J=1) independent,rows in (M'). Hence there
must be one row which is a linear combination of remaining
kJ;l) rowse So by omittihg one of rows o% matrix (M') the
matrix (M) is formed wﬁich is of same -rank of that of matrix
™).

Now from first law

(M} {q} =0 ' eee(2.6)
and from the second law

[C] {P} = 0 . ’000(207)
where {q} is column vector of nodal flows, and

{r} is column vector of pressure drope.
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: From the above methods and two laws it is possible
to formulate the problem of analysis of pipe network in

four waysie

Now by using first law it is possible to write the
equation of nodel flow balance for (J=1) nodese.
jg " 9 5 —kngi LUy = 4 e e(2.8)
|  121,2,0..0-1
where V,, is a set of hodes associated with the
incidence pipes directed towards "i' and Vp; is a set of

nodes with'pipes directed away from the node Yi s and q.
: , i

is consumption at node i.

By usihg fluid mechanics correlation for a set of

pipes *P' joining nodes i and j there are 'p' number of

equations. For kth Pipe Jjoining nodes i and J
R AL cee(2.9)
and - G . = ok'is vector of pressure drop which depends

iJ _
up on the type of correlation choseme
By using second law equations of pressure drop is
written down for each loop by calculating pressure drop in
each pipe of loopi.
kE:C‘i o o "
! i=l,2,’o".:.l v



i2

When flow isbuhknown the equation 2.8 can be
written down'by knowning nodal flows fcr J-1 nodess.
'_gv (p'j'Pi)/O}__j -kg (pi"pk)/o}.L:’qi eee(2,11)
JEV AL Bi
Using these four types of equations the four methods
‘of formulations may be developed. They are listed in table
(2403)'. .

TABLE 2.3

Table for different formulation methods
‘Method of Equations Variables No. of Source
Formulaticn NoW : equa - .
o ' ~tions
1. 2.8 ahd . Nodal Pressures J=1+P .Carhahan
' 249 and flow rates and
in pipes Christensen
61
2. 28 and Flow rates J=l+f=p Mah[7]
2.10 Williams 8]
~Jeppson L9
3. 2.11 Nodal pressures  J=1 Shamir [4]
_ ~or heads Lam and
Wal1[10]
Gay and .
Middleton[11]
b4, 2410 Mesh flow by £ Epp and
knowing flow in Fowleg [5]
pLpes Gay [11]

and Middleton




2 +.2.,2 FORMULATION WITH OTHER COMPONENTS IN PIPE NETWORK

Other components in the pipe network constitute
reserv01rs, constant discharge pumps, pressure reducing
valves (PRV)_-,__:check valyes, booster, pumps, etc. Usually
these componehtscéfé incorporated in the netﬁork by choosing
thelr approprlatermmjels[29], which are derived from Hazen-

W:Llliams equatlons’ Table (2e4) expl-a:.ns the procedure.

| | Figure (2;3) gives the values of the constant for
dlfferent types of'valVes,pumps, contractions and enlargements.
U31ng these Valﬂes of constants the components are 1noorporated
n.n the formulat:.on in the same way as the p:.pes For .-pumps

the pump characterlstlcs curves are drawn and then these

curves are approximated by a quadratic equation. These
guadratic equations are incorporated in the formulation as

explained in chapter -3, It is to be noted that.

- The check valve is one which allows the flow in one
direction only.

-~ The PRV is one which maintainé constant pressure
regardless how large the upstream pressure is. But
ups tream pressure is less than the valVe setting the
valve has no effect. It down~stream pressure is
greater than the valve setting then it acts are check

valve,
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Table 2.4 Component characteristics for water-distribution system

NAME SYMBOL GRAPH TEST TERMINAL ADMITTANCE
_ MODEL [CONDITIONS | EQUATION VALUE
T - - -
RESERVORR | T i i Hi= H,
> ' 4 i .
DATUM | “DATUM .
CONSTANT . . :
DISCHARGE | —a—we / qj*-q
PUMP W | DATUM
TION # i - 9 = q
DATUM ,
PIPE # Kk | ool | &Ko i T N I
k k''k K
ok
BOOSTER ,i_a_,n ) b .
PUMP - qo % % %M | -a
DATUM
: ik : , . 0-54
CHECK | &pp—al | ——o) | HIZ>Hj fay= K hy Ky
VALVE ° ! —
o—-———-oj Hi < Hj q =0 0
PRV L e . ‘ .
i : i| 1k j| He< Hset =K hO54
i o—t—8’ | oo q. =K h K
.——l%.l H] < H; k "kk k
| ko - ,-0-54
k. rﬁ ! | e He> Hse' qk: K‘khk Klk
X .
: e e Hy < H] 3.= a
\ Hset K k k
He = H
b DATUM DATUM e set
i . .
O—D}—ol F—, Hj > H;j q, =0 o
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24340 METHODS OF SOLUTION \ S o

_»Each formulation of the pipe network problem"
results in a set of algebraic and transcendental equations
Which may be'solved by suitable numerical methods., Various

methods which are used to solve the equations, are given

belows
i)' . Newton Raphson method - -
ii) Hardy Cross method
'(a)_Method of balancing heads
A(b)‘Method of balancing flows
1ii) Linear theory method
iv) Generalized secant methods

(a) Broyden's method
(b) Wolfe's method

The seiection of a method for given formulation

deprendes up on the.

(a) type of the network

(b) size of the network

(c) degree of accuracy needed in solution
(d) cost of computation

(e) importance of the network project

”(f),cbmpgter storage available
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i) Newton Raghsoglﬂethod‘

This is iterative scheme which starts with initial
guess. This method is based on the Taylor's series expansion
of function-f(x)'about kth iterate Xk' For further details
please see chapter (3).

Advantages of this method are, faster convergence,

_less storage requlrements and easy to implement in oomputer

algorlthm. And the maln disadvantage is its sensxtlvity to

the initial guess.

ii) f_ig;gy Cross_Method

This»method has_been developed long before the
advent of computers to carry out hand calculations. Its-
gevelopment 1is based on the Newton Raphson methpdfﬁizjl
In this method iterative corrections are epplied"te each
equation before proceeding to next equationfin the iterative

mannere

ThlS method is used for small networks using hand -
calculations and there is no need of calculating partlal
derivatives as’ in the case of Newton Raphson method. This
.method is not Sultable for large networks mainly because

of.its poor convergence.v

If the problem formulatlon is done w1th an
law (w1th loop pressure drop equatlons), then the method

of balan01ng heads is applled where—as if formulatlon is done
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with first law (Nodal flow equations), then the method
of balancing flows is applieds |
iii) Linear theory method
In this method the System of nonlinear equations
are converted-ihtd the syStem of linear eQuatidns. By
this method [ nonlinear loop equations are converted into

linear equations:by7apbra#imatihg head in each pipe.

where q; (0)™" 1 Is initial estimate of flow rute
ih ith pipee. Hencé these [ number of hon linear equations
are solved by the method of‘linear algebra [1] till conver-

gence is reached.

This method does not need appropriate initial guesses
and hence suitable for large networkse. But convergence of
this method is poor and storage requirements are comparatively

very large,.

iv) Generalized secant methods

In these methods the partial derivatives are evalua=
ted by linear approximations using ‘secants' rather than

¢ ‘bangen‘tS' ‘s )

(a)  Broyden's method

This method is called as gquasi=-Newton's method [13].

Here the inverse of Jacobian (J) is approximated by -H and
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successive approximotions are generated by

where

and

_ T T |

Hy 9= Hkg(cKzK+HKYK)zK H /Z, HY, eee(2,13)
-Zk = H f(xk)

Yk. = ﬁ(xk_'_l) - f(xk)

To start the initial guess of H is taken as .

identity matrix.

This‘method does not need any initial guess 'hence»

best suited for large networks. However the advantage

offered by this method may only be marginal, for smail —

netwdfk, since (H) is a fairly dense matrix and many multipli-

cations are involved in generating an updated (H) matrix.

(b) Wolfe's method

In this method one dimensional secant approximation

is used along with Taylor's series expansion of f(x) as

Let

: f(xz)-f(il)

0 = f(x) = f(x,a) + — (x-xz) ..v.(2v.‘1,‘14)1

x2=¥%y
The. noniinear (.x-;xz) terms are neglected
KXo =X ‘
2
n = C . .
17 X%y
X=X '

In ,this method n+l trial solutions are required to

Solve n dimensional equations
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n+l
Z . = 1
g=1 9
_h+l

ry m. £, (X ) =0 i=l,_2, oo ol
J=1 J * j_

And new approximations of x is generated by
— h+l | o
X JEl na xa
- To complete the iteration of new set of trial
solution is formed by replacing one of the trial solutions

X,» Say by Xe

TABLE 2.5
Noe Method Formu~ Largest Source
lation network
s olved
J P
1. Newton 2 22 38 Mah [7]
Raphson 3 - 70 100 Shamir _and Howard [4]
Stoner[14
Donachie 15]
4 170 307 Epp and Fowlex [5]
2+ Broyden 3 30 50 ‘Lam and Wolla [10]
3¢ Wolfe 1 28 35 Carnahan and
: Cristensen [6]
44 Hardy Cross: :
Balancing Heads 4 289 544 Daniel [16]
: Williams (8
Balancing flows 3 20 33 ‘Jeppson[1
5 Linearization 1 22 38 Jeppson[1]
2 L6 57 Jeppsanand

Tavallaee [9]
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Table for conparison gf CPU time
( J = 22, P = 38)

No. Method = Formula- Number of CPU time, in
. - tione iterations seconds
' : CDC Cybepagj
. g
1. Newton 2 4 8.2
' Raphs on
24 Hardy Cross
Balanacing
Heads 4 59 2.4
3« Linearization 2 7 343
4 17 1.03

2.4.0 TECHNIQUES FOR LARGE NETWORK

Usually in solving large network, problem of large
computer storuge requirements and convergence arrise, This
Problem can be tackled by taking advantage of problem

structure. Some of the methods are given below.

2¢441 LOOP LABELLING ALGORTITHM

If loops are randomly. labeled the Storage requirements
greatly increases. As most of the stored matrices (incidence)
are sparse, one céﬁ.reduce the ‘band width to minimum, To

find bandwidth consider a Pipe which is atleast a Part of two
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1oops.}From the loop number of largest value subg%réét‘
loop number of smallest values This is done for all pipes,
which are part of atleast two loops. Maximum\of Suoh'
difference is half the bandwidth "b', To reduce the band
width the lcop labelling algorithm given by Epp and
Fowler [5] is followed so that the bandwidth of space

matrix will be minimume -
2.4,2 LOOP SELECTION ALGORITHM

Formulation 2 and & require a set of independent

M

= . . . . . __M
logpse« These independent 1oop5«are usually not unique

Mah [7] and Epp and Fowler [5] says that there is 51gn1f1-
cant influence of the loop selection on the convergence.

The procedure of loop selection is given in chapter -4.

2el443 SPARSE COMPUTATION TECHNIQUE

For large networks the lnCLdence matrix (M) is
usually sparse. Moreover this matrix is banded i Cay all
the nonzero elements lie within a band about the diagonal
of the matrix. Some of the methods are Proposed by Stoner
- [14] to store only nonzero elements of the matrix in apbro—

priate positions to reduce the storage requirements.

2ohh TEARING AND DIAKOPTICS

. This method lS adopted for reducing number of

iterations required and discussed by Ladet and Himmelbsu [11].
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In thls method one of the values of varlables are
1n1t1a11y assumed and remaining equations are solved se=
uentlally (As discussed in Carnshan and Christensen [6])
one at a timee. ihen we left with one model equation at
last, which must be satisfied. This equation is called
tearing equation. LEf the Lnitial guess is correct then
this tear equétion will be satisfied and if not correct
then 1herat1ve process will be requlred. This method is
usead only when number of tearing variables required are
small 1n,number and tearlﬁg“quatxensﬁare ea§¥~§9~§g§<f:i
Achever»the tlme takcn by conputer may be greater than

that of with the orlglnal set of equations.

Diakoptlcs is special tearing technique and inves—
tiga'ted by Gay and Midadleton {11]e In this method a large
network is transformed 1nto small intermediate network so
that their sclutions can be found and these solutions are
transfarmed into solution of the given netwofk, In this way
Tthe computation is speeded up and amount of storage is reduced.
However, the over all Computational performance of this
method as reported by @ay and Middleton (M) has not been

impressive. But in any case substantial reduction in storage
is achievede.

2¢5.0 DESIGN OPTIMIZATION IN PIPE NETWORK

So far differen‘t;' types of formulation and mumerical

solution of steady state Pipe line network problem has been
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dlscussed. But in actual pr actice problem posed to

the design engineers is entirely differente. He is

always interested in the optimal design of the problem

in some senseaAFor example, givenra set of requirements
and spe01£1catlons the ultlmate desxgn goal is to pro=-

duce an optlmal network that w111 me®t all constralnts
at minimum cost or maximum proflt. Similarly for an

'operatlng network he may be 1nterested in minimizing

the operating costs while meeting external demands

or optlmal expansxon of existlng facllltles to meet

antlclpated future demands.

Several types of formulations of pipe line network
problem from optimization point of view have been
studied. These references are grouped in two ways.
First on the basis of field of application and the
second on the basis of the method of optimizations.
These are given in Table- 2,7 and Table-2.8-

TABLE 2.7

' ‘Based on Application

Application | Source
Agricultural Engge Karmeli et al 517] ,Liang (18]
, L Yang et al [19 .
Gas distribution - Brameller et al [20]
Oil and gas ‘ Zimmer [21].
transmission
Pressure~relieving .
network ' Cheng and Mah [22]
' Sanitary Engg. Cembrowicz and Harrington [23]
Water distribution - = Lam_and Walla [13, 10],Watanatada

[24], Donachie [15].
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b}

TABLE 2:48

Based on Optimization Megthods in
Pipeline Networks

Method ’ - | Source

Conjugate gradient . - Watanatada [24]) -

Discrete merging . ' Chang and Mah [22]

Dynamic programming Lang [18], Zimmer [21]
Geometric’programming | Cheng.and.Mah [22]
Gradient projection | Murtagh [25] |
Lineariprogrammihg: . -Bramellé?‘ét“ai—faé}——n——~
ZontendijkisAmethod |

oi feasible direction %S??TOWiCZ and Harrington

This study of optimization is classified according Yo
problem requirement as follows -
i) Sensitivity analysis
ii) Design optimization

iii) Synthesis

‘It should be noted that the different classifications
listed above are not independent of each other. For example,
design optimizatipn.based'on sensitivity informetion can be
classified‘as either design optimization or sensitivity analysis .

Likewise optimal pipe line routing may be classified as either
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design optimization or Synthesis;
2e561 SENSITIVITY ANALYSIS

Sensitivityuénalysis is primarily concerned with
the behaviour of the network to small fluctuations in
variables withjreferenpe to.the design conditionse. If these
fluctuations are large and humerous, then it will be more
oonvenlent to recompute the network as a whole. But in
mnany cases it w111 be sufficient to determlne the approxi-

mate behavioure. For more details one may refer chapter -3,

2 «542 DESIGN OPTIMIZATION

Here the point of view is broad, that is here whole
feasible space is included., For a given problem, the decision
variables may be either continuous (ie.ce nodal pressures) or =
discrete (i. 1= plpe diameters) provided network configuration
remains same. AS the design optimization in some cases (as
reported by [24])may not achieve reliability constraints,so

the design optimization process is further subdivided into

single branch tree [18] and many branch tree [17,25,19,21].

In pipe network synthesis, network configuration is
not specified, but only flows and pressures required are
specified. Syhxhesis is optimal design from functional requirece

ment and spedifications. Here neither the network nor its
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elements are given, only output and input conditions
which are required are givens. As an example of synthesis
-a study of optimal pipe line routing is reported in the

literature (Shamir [4]).

‘In optimal pipeline. routing even though topology
of s:.ngle pz.pellne is trivial one must take into considera-
tlon the factors like carridor through which. plpellne'
passes, type~of<5011,<tree cover, water. and rlvers, roads

and railway 1ines etc.

It is worth whlle to mentlon that the synthesxs of
new pipe network is an area whloh is yet to be explored. One
does not know that 1n future what type of gcneral algorithm -

w111 emerge for synthe5151ng ripe networko.



CHAPTER = IIT

PROBLEM _ FORMUL ATION

From literature review it is clear that the Newton
Raphson method is best suited for most of the pipe network
problems, According to Lam and Wolla [10] the Broyden?s
methbd does not neéd accurate initial guesses, but this
method needs lot of matrix multiplications and hence lot of
computér“Storage.-Mdrecvér it is a slow converging technique
and its sensitivity towards improper initial guess can not
be ruléd'out, Estimaﬁién-of initial guess for Newton Raphson
mathod is not very difficult job especially for formulation
4o But'for>formulation 3 with improper guess the solution
fails to converge. Most of the times this occurs because of

the oscillations in solutions

3.1  PROBLEM FORMULATION BY HAZEN WILIIZMS EQUATLONS

There are four types of formulations possible for any .
network problem as described in Table-2.3. First two methods
are less sensitive to initial guess, but requires 1dt of
storageveVQn though these require less number of iterations
as reported by Mah [7]9

Formulation 3 is suitable when pressure or head at a
Particular4node is knowh. This method is based on Krichoff's

first law, Here equations 6f flow balance are written for
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each node whose head is unknown in following manner using
Hazen Williams equatione. Here the nodal flow balance is
obtained with the nodal head as unknown variable using
equation (2.8).

-z ’ qij handd z qﬂ.k = qi ...!.(3'.1)

Al keVgy
1 = 1’2’ ‘. .‘.,J"'l

The foimulation 4 is useful when input (s) and
outputs (8) flows to the network is given, This method makes
:vuSe of Krichoff's second lew. Here the balance of pressure
drop around a cloéed loop is cktained by writting down the
equatlons of head 1oss for each pipe in terms of flow rates
for esch loop uSLng equation (2.10).

§=1 G (q) =0 een(342)
More detailed discussion of these two formulations

is done with the example network shown in Figure (3wl).

The equations of the flow balance. are written using
formulation 3 for this network, Let head be known at node 1,
then there is N0 need to write down the equétion for node,
le If the equation is represented by F then for node 2 the

eguation is

. H.-H, K
Fym =( 2.
12

wel] e HowH
D (2P -0

23 |
se’s (303 )
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The sign convention foliowed here is that the pPipe
which brings the flow towards the node is -=ve and that takes
always the flow is +ve, C is factor of correlation which is

given by Hazen Williams equation, which is as follows,

C = 10.7 x L/D**87x 12852

where,

LJ=:Length of pipe in meter‘i

D = Diaméter of the pi?e in c.me.

QHW;Hazen Wllllams constant for ripe material.
K"=O5LL '

Similarly for other nodes the equations of flow

- balance are written down as above.

In formulation 3 the effect of elevation has to be
considereds For the given network elevation of each node 1s
oomputea from fixed datum and follow1ng modification is done

in equation (3.3).

K K
2 = = p + 025
‘ 12
L K
- — 270 wen(Falt)

where ELE = Elevation of the node from fixed datum,

In case of formulation &4 the equation of head loss in
closed loops are written for each loop. For loop 1 the

equation is written as
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Fp = C(Qy400y (0400, =20,
K3 KQ
where, |

Subscripts indicate pipe numbers:

Q

Flow rate in pipes
K = 1.852
C = Hazen Williams constant for pipe material

AQ.s.CorrectiVe flow for loope

In this case the equations are nonlinear so corrective
flow rate aQ for each loop is added in equations. The sign
convention followed here is that the GaioekwiB< direction of

flow is +ve, while anticlockwise direction of flow is =ve,

362 SOLUTION OF EQUATIONS

As abéve equations (3.3) and (3.5) are nonlinear these
connot be solved directly. So some iterative technique has
tO'be'employed to solve thems, One of the power full iterative
. method is Newton Raphson methods This method needs initial

guesse as other iterative techniques require,

'This method is based on Taylor series expansion of

th

function £(x) about k"' iterate x,_. Here the function vector

k-.
f(x) is represented by

o

fl(xl,'xz...xn) = £,(x) =0
£(x)

fn(}CI,XZ;’ ’Xn) = fn(.X) = 0 oo 0(506>

B —

-1 1irary University of RoOTE
" ROOREER
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Taylor series expansion of above function vector

f(x) is

o

!

f('x-)' = f(xk)_ + [afj_/a:j] (x~x, ) + eee(3e7)

By neglecting nonlinear higher order terms in
(x-xk) and replacing x by X1 one ch write
= | o (B
Here the matrix of partial derivatives [o£;/0x ]
is called as Jacobian matrix of order N x N and denoted
by [J}s It has to be evaluated at x = Xy in each iterations.
In this method approximations of x are gencrated as X 9¥XpeeX

k
And this method converges only when,

e o cen(3.8)

As exact value is immpossible to attain an error tolerance

is generally provided for termination of the method.

[£(x)l < =

| (=, 1 W% ) < e vee(3410)

In some cases the solution of f(x) oscillates. To
avoide this the step size in each iterations is damped br
reduced by factor © whenever oscillations occur, Wherae T -
should assume ény'value between O and ls. The Jacobian for

the example'shownvin Figure (3W1) for formulation 3 using
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equation (3.3) is evaluated as follows.

The set of equations for node with unknown heads are
written first. The partial derivatives of these eqpafibns
with respect to each unknown nodal head is found i.e. for

equation (3+3) one can obtain

0F, K5 Hl"'Hz Kozt Ky o HyeHy fas™t
m, ~ g, (T ) oral _,25 )
Koz ( Holls JKoz—l
+.EZ§ S e
- - o2 (B T
0l
.‘........~.....'............"..."‘.... ".(3.11)

e 000000 40000 nssss 0 0escss s 08B0 R
oF
2
e = O
5y

Hence the Jacobian‘matrix

-

. -
3H, 5H | 0

| e ve s eseseeasa0ebesene

0000050 S PO OOV OLOOIS POEOS

| oF F, OF,
R N
I, T, et F
| M 3 6 |

and vector £(x) = F = |

;.;(3;12)
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Similarly for the .forfiulation 4 partial derivatives
of equations (2.5) with respect to corrective flow for each

loop are written as follows.
vaFl _ Kl-l K£1
T = 0aKa(Q1#a0)) T 405K (05440, -005)
- . Kx=1 K, ~1
3 . - 4

oF, -1
BZ%&= ~'02K2(Q2+AQ1.AQ2)K2

The Jacobian‘matrix.[J] can be written as

=% % 7]
- jesqy 38Q,
{ oF, oF, .
| 359, 2% | exe

and function vector f£(x)

se’s (3011")

Using equation (3.8) the Value of x (head or flow) in each
iteration is found and procedure is repeated till convergence

is attained.

3,3 SENSITIVITY ANALYSIS

“

Sensitivity analysis is primarily carried out for

'sma11 fluctuations in one or two variables with reference to
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design conditions, If these fluctuations are large and

numerous then it is better to recompute the network as a

whole.

For formulationB, sensitivity analysis is carried out
with giveh héad as external variable, and other nodal heads
as state variables, The primary aim of the sensitivity analysis
is to find out the effect of unit change in given head (one
at a time)on heads of-remaiﬁing nodes in order to determine
the node which is lesg sensitive to changes in given heade
‘Thé analysis is helpfull in the future expansion of the

'networka

If:a is external variable and x is the state variable

then
f(u-ﬁC) =0 | ."‘.(3.15)
The effect of varying u on x is given by

daf

|

(3£/0x), ax + (8£/0u), : du

g

fo dx + £, du eee(3e16)
oIy

(af/ox)u (ax/du) = = (af/au)x

If Newton Rarheson method is used, the matrix (ai‘/ax)u
is already available i.e. Jacobian [J] and (8x/du) is to be

determined and called as sensitivity matrix.
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To determine‘fhe sensitivity matrix (8x/du) one
need the partial derivatives of vector function f£(x) with
respect to u. external variables, For example network shown
in Figure (3.1) one can write for equation (3.3) with Hy

as an external variable u.

0 K ]l : -
5;‘2; 12 ( 'Aa'— 12 . | '0’6'0(3’017)

Hence the sensitivity matrix is eolumn matrix;
Using this matrix, the matrlx {aflax} is found out, which
in turn gives the effect of*Varylng the glven head Hi on
yenaining heads Hév H3:-vo HSb '

%,4  INCLUSION OF PUMPS AND RESERVOIRS IN NETWORK

In formulation 4 is applicable to networks, in which

the external flows are assumed known. The amount of flow
being supplied'from different reservoirs and pumps, as

suggested by Jeppson [1], will depend upon heads and flows
through out the network. Hence each pump arid each reservoir,

from which flow enters or leaves the network introduces a

additlonal unknowns. Thus making problem more oomplex as input

and output to the network is not directly known.

As seen in table (2.4) the pump characteristics can
be found out by drawing graph of‘head v/s flow for pump and

the polynomisl assumed for this curve as quadratic. The
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constants of this curve are A and B.

In this problem flow in pipe connecting pumps and
reservoirs are additional unknowns, while elevation of
The reservoir, head at the inlet of the pump and pump
characteristics are known parametdrs. To solve these
unknowns wéne need additional equations. These additional
equations are written by constructing pseudo loops in
network. The problem is explained with the help of figure
(3. 2).

‘The pseudo loop is as shown in flgure (342)s This
loop is noncyclioy'To write down the energy equation, head
loss around a pseudo loop must be zrero, which can be written

as
K K K K
5 4 3 1
= Hl 10'0’0(3'018)
where,

hp = head produced by pump

Hl and.H2 = Elevations of reserviocrss.

This'equation can be rewritten as

K3 .K5 KQ

=I-12_I-]1 , ‘s ’0’0(31019‘)

Here H2-..-Hl = Difference of elgvations in reservoire.

hp can be writien in terms of flow_as



10 UNITS 1 2 s 25 UNITS
NPUT a0 5 —t—2
(%) t (2) 3] )
2.5 UNITS = (3) > (1) > 5.0 UNITS
“ 3 6

FIQ. 3.1 AN EXAMPLE NETWORK

-

e e e —— — — — — — — — — —— e Sovws . — . ———— A —— ]

A PSEUDO LOOP

C(3) (4)

(1)

.. e
Il

bt

IIII

"~ |

il

Iy !

FIG.3.2 A PSEUDO LOOP



36

A 2
hp::AQ +BQ+HO

where A, B and’Ho are constants obtained from pump

characteristics curve.

These additional equations with the main set of
equations as explained in (3wl) for formulation 4, are

used tc solve the network with the help of Newton Raphson
method.
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CHAPTER — IV

LOOP SELECTION

For formulation 4, set of independent loops are required.
These independent loops are usually not uﬁique; Mah [7] and
Epp and Fowler [5] have reported that there is significant
influence of loop selection on the convergehqe of solﬁtion
in terms of .computer time for each iterations, or total
number of iterations required for convergence, A method of
loop selection provides the least number of pipes involved
in independent loops. More over if network is complex due to
large number of pipes and loops, an .efficient and reliable
method of the loop selection is required because it is difficult
to select the number of independent loops manually. At the
Same time there is possibility of making errors and an
incorrect loop may result in a poor convergence of the solu-
tions

E loop selection algorithm has been suggested by Epp and
Fowler £5J.‘In this chapter this algorithm has been described
in short. This algorithm requires the use of an another algo=~
rithm for finding shortest path between amy tWO’nodes. This
algorithm is difficult to use in form of programming point
of view, Therefore the use of a new algorithm is pProposed for
finding the shortest path between two nocdes. The proposed
algorithm is incorporated in the loop selection method of

Epp and Fowler [5].
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o —

4,1 00P SELECTION AILGORITHM DUE TQ EPP AND FOWLER [5]
This algorithm is as follows?

Step 1 - Find the degree of each node i.ee. number of pipes

connected to that nodea{

Step 2 ~ 1f node of degree 1 is Present, then remove tail

pipe form node with degree 1 and go to step 1.
Otherwise go to step 3,

Step 3 - Start with node of degree 2, It is called the key

nodes.

Step 4 -~ Go to the other end nodes of the pipes comnected
to key node.

Step 5 — Remove pipes connected to key nodes

Step 6 ~ Find the shortest path between these two end nodes

and assign the loop.

Step 7 - If all the loops ave selected then stop., Otherwise
go to step 1 and repet the procedure with next key

~ node,

For more details of the algorithm and also of shortest
path algorithm, employed by Epp and Fowler [5] reder is advised to
refer the original paper. However, the use of this algorithm

is explained below for the pipe network shown in figure (4.1).



Step ls

Step 22

- Step 3%
Step 43

Step 5%
Step 6%

Degree of node is in following table.

Node Degree of
Numbker Node
1 3
2 2
3 1
L 2
5 3
6 3
7 3
8 2
-9 3
10 2

Since node 3 is of degree 1, therefore pipe -(1) is
removed. Due to this nodeg 2 becomes 8 node of.
degree~1l. Therefore pipe (2) ié also removede. Now
node 1 is of degree 2, |

Node 1 has now become a key nodes,

Node 4 and 7 are at the other ends of pipes, which
are connected to nodes,

Pipes (3) and (5) are removed.

Shortest path between 4 and 7 is fcocund and it is
through nodes 5 and 6. It is deﬁoted as loop I.
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Step 7y In this way all the independent loops are found,

which are as follows$

Loop Node numbers Pipe numbers
Number in Loop | in Loop
l. 134,5’6,7 (3)’(4)'(7)! (6)!(5)
24 | 5,8,9,6 - (10),(11),(9),(7).
3 6,9,10,7 (9),(12),(8),(6).
Ly o2 PROPOSED ALGORITHM FOR FINDING SHORTEST PATH

BETWEEN NODES

Dijkstra (27,28] have developed an algorithm for
finding the shortest path between two nodes for general
network flows, This is now a days used for shortest route
Pproblems in Operation Researth'This algorithm is based upon
fhe principales of graph theory. It is proposed to use this
algorithm for finding shortest path between two nodes of a
pipe network, If there is no pipe between two nodes, then
distance is taken as infinite., Following nomenclature is

required for describing this algorithm,

i

dij Distance between node i and J
LSK = Shortest distance between source node 8 +to

nocde K.
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L;k = The shortest distance between source node S
to node Kusing tree arcs and atmost one non
tree arc., For all chains from source node 8
to some node k that require more than one non

tree arc, L'sk_= 'y

Dijkstra's algorithm.

Step 1ilet L;k = dgy initially for source node s to only

node in the tree and LSS =0

Step 2% Lsr = minimum of L;k = L4+ djpe Here k are neighbour

Jr
nodes of current tree,

Step 3sMake arc (Jyr) a tree arc,

Step 48If number of tree arcs are N-1l, terminate the algorithm.

Otherwise go to step 5.

)e Go to step 2,

: 4 . . 1
Step 5‘Lsk = Minimum (Lsk’ Lg+d,

The detail description of algorithm is explained with
network shown in figure (4.2). The node numbers and
distances are shown in Figure., For convinence label
of type (L,i) is given to each node, where LéL;k or
LSK and i refers to last node on shortest chain from
source node s to node k., The labels are of two types.
If L= LY, then label is temporary and if LelL.,, then

it is permanent.
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In given example, to start with node 1 as source
nodes The neighbour nodes are 3 and 2., Here

]
L 1k = dIs

=
-
!

1,2 = 41,2 = 14,1}
. — —
L'y,3 = 91,3 = 16,1}
min Ltl,k = Li’z = (4,1) = L,,p @ permanent label,
The neighbour nodes of two node tree 1~2 are 3,4 and 5.
- . T .
L1,3 = min (L1’3, L1‘2+d2’3).= min (645 44°) = 6

Li’4 = min (Li’4, Ll)2+d2’4) = min (e,445) 9

R s b -] 00 — .
L], 5 = min (L1,5, L132+d2’5) = min (°,44+5) =9

Shortest path is Li_3= Ly 3= (6,1) now becomes permanent
? »
label,

The neighbour nodes ¢f tree 1-2=3 are 4 and 5.

L} . 1 .
L:L’L" = Mmin (Ll,ll-,Ll,3+d3,4) = mir (9,61'4) = 9

] . | -
1’5 = mlp <Ll,5,L1,3+d3’5) = HRinN (9,6+7) = ?

L
Here tie is orbitrarily broken anc § is selected as permanent
label, i.ee Ly 5 = 9= (9,2). Now tree is 1~2~5 and its neigh-
bouring node is 6,
1% . 1 . _
L1’6 = Hin (L1,6, L1’5+d5’6) = (0, 9+1)= 10
Now 6 is node of destination. The shortest path is as shown

in Figure (4.3) and shortest distance is 10 units.



FIG.4.2 AN EXAMPLE NETWORK TO DEMONSTRATE DIJKSTRAS
v ALGORITHM

{s-1} {9.2}

F1IG.4.3. SHORTEST PATH
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In this chapter loop sclection algorithm due
to Epp and Fowler has been modified by incorporating
Dijkstras shortest path algorithm, This modified loop
selection algorithm shall be used in conjunction with

Formulation 4.
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CHAPTER =~ V

SOFT WARE PACKAGES

Three software packages have been develodped to solve

the pipe network problem. These are described below,

5.1 PROGRAM _FOR SOLVING THE PIPE NETWORK USING
FORMULATION 3

This program solves the network using the formulation
5« Here the heads at few nodes, called input nodes, are known
and the heads of remaining nodes are obtained by using
Newton Rephson method, Knowing head at each node the .flow
rate in each pipe may be calculated. Sensitivity analysis of
the network is also performed, by which the effect of unit
change in given head at amy one of the input nodes on heads
of remaining nodes is predicted. Flow chart for this programe
is given in Figure (5.1), and details of program¢ are as

given below,

Name of program. s MNRM,FOR
Subroutines used s PNRM, SENSE, SOLVE

Input Variagbles

N = Number of nodes
NP= Number of pipes

ITMAX = Maximum number of iterations allowed.

ERR = Error tolerances.
P = Initial estimate of hecad at each node in meter ;
JPGIV = Code, which mentions given :@ Bedd -: node

1 if head is known and O if head is not knowne.
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QN = Nodal input or output flow in cubic meter .

+ve for output flow and ~ve for inpat flowe.

H = Elévation of each node in meter. ,
D = Diameter of Pipe in centimetker. .
VPL = Length of pipe in meter . -

CHW = Hazen Williams constant for pipe material

Output variabless

P = Head at each node in meter after convergence.

Q = Flow in each pipe in cubic meter after convergence.
HI. = Head loss in each pipe in meter.
Y

= Sensitivity of each node,

Intermediate variables of the programe are as

given belows

INCID= Matrix defining topology of the network. If value
of the element is 1 then there is the pipe present,
and O when pipe is absentTe

= Iteration number,

= Hazen Williams consfant for pipe

Jacobian matrix. (J)

5k ° g

= Column vector of the function f(x) ie.e. for the nodal
flow. balance equations.

= Solution vector

g <

Sensitivity matrix,.



FIG. 5.1

INPUT OATA

N,ITMAX, ERR, NP , P(I),AQN (1), H(I },
JPGIV (1), PL(1),INCID(1,1): DD(2), CHW(I)

COMPUTE HAZEN WILLIAMS
NSTANT
£a . TzA0
ITR = 1
3
CALL PNRM i
TO GENERATE JACOBIAN AND FUNCTION
CALL SLOVE
e
[P(!) P(L) — Y (1) [ s5vr=17TR + 1 ]
1

1.N)"]

ﬁuatracp(t) 1=

TRUE

[wm'rs 7

COMPUYE FLOW RAYE EQ.(2.1) GQ(1)
f COMPUTE HEAD LOSS EQ.(2.1) HL(I)

!

WRITE (a (1),
WRITE (HL(I) »

- ERR

‘FUN DOES NOT TRUE

CONVERGE?”

foees — —

b d

1,
1 4+ NP

A

fcaLL sense |

CALL SOLVE
TO PERFORM SENSITIVITY ANALVSIS

4

WRITE RESULTS OF SENSITIVITY ANALYSIS®
Yy (1), :” 15 N)

FLOW CHART FOR PROGRAM MNRM., FOR
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542 PROGRAM. FOR SOLVING PIPE NETWORK USING FORMULATION 4

This program:.. solves the network using formulation 4
and Newton Raphson method. This also uses computer aided
loop selection procedure for selecting the independent
loops in the network., Input flow(s) to the network should
be known as the input datae. The Prograr results in the
values of flow rates in each Pipe, which may be Subsequently
used To calculate the head losses in each pipes. Fiow chart
for this program is given in figure (5.2) and details of

Program. are as given below?

Name of the program. ! ' QNRMJ.FOR
Subroutines used LOOP, SHOP, SOLVE

Input Variableg
N, NP-y ITMAXs ERR = same as discussed in section (5.1)

NPUMP = Number of pPumps
NSL - = Number of pseudo loops.

CODE Code for loop selection. Its value is %,

if loops are provided and O when computer
aided loop selection has to be done.

Dy PLy CHW = Same as explained in section (5.1)

QL = Initial estimate of flow rate in each pipes
in cubic meter,
JLP = Number of pipes in the loop,.

LP = Pipe numbers in the each loopr



Al, Bl

LNP
‘NL

Output

Qx

HL

i

i

Constants A and B for pump.

Supply Head of the pump in meter,
Pipe numbers in the each pseudo loop
Number of loops in the network.

Elevations of reservoirs.

Variabless:.

-—
=

Flow rates in each pipes in cubic meter after
convergences

Head loss in pipes in meter .

Intermediate variables of the program( are as given

belows
FL
INCID
LPP

DR

NCT

Ml

i

]

i

Matrix storing the distance between nodes,

Same as explained in section (5.1).

Matrix storing pipe numbers between nodes,

Column matrix storing number of pipes in each
loope.

Jacobion matrix (J).

Column vector of function f(x) i.e. loop pressure
drop equations,

Solution wvectors.

Corrective flow AQ for each loop.

Number of iteratione.



INPUT DATA

N, ITMAX,.ERR, NP, Q1(1),PL(}), DD(1),
NPUMP, NSL , CODE >, CHW (1)

~ -

[compure HAZEN WILLIAMS CONSTr
A ]

NT FOR E ACH PIPE EQ. (2.1)

IF :
FALSE w TRUE

LY K ] .
CALL LOOP YO j READ LOOP INFORMAT=
‘ FIND LOOPS ION JLP,(LP (152))
'l

GENERATE MATRIX
LLP(] ,J)ABO STORE

!

GENERATE FUNCTION RD(1)
f(x}). EQAS. 2) AND GENERATE
‘JACOBIANDR(1,3) EQ. (3.14

TRUE
EQ.

NPUMP .

N READ PUMP CONSTANTS ,AND
PSEUDO LOOPS AND GENERATE
. P
ROD(1)AND I%Rm(l {Ja)é%ﬁ PUM

[ NCT= NCT + 1]

[ )
CALL SOLVE
TO SLOVE LINEAR EQ -

FALSE

[ WRITE "FUNCTION DOES
NOT CONVERGE’

-COMPUTE HEAD LOSS IN EACH
PIPE HtL (1) EQ.(2.1)

WRITE FLOW IN EACH PIPE
WRITE HEAD LOSS IN EACH PIPE

FIG. 5.2 FLOW CHART FOR PROGRAM QNRM. FOR
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5.3 PROGRAM. FOR SOLVING PIPE NETWORK USING MIXED
METHOD OF FORMULATION '

In this method of formulation the problem is
first started with usual formulation 3, As soon as flow
balance at input node(s) is achieved, the problem is
solved with formulation 4, By adopting this procedure the
in flow to the network remains fixed, while flow in other
pipes changes and there by it stablizes the head at the
nodes, which are awgy from the input node(s). After
stablization, formulation 3 is used once again to obtain
the final solutione. The algorithm for mixed mefhcd‘is

as followss, ‘ i i

~

Step 1l — Read Inpute.
Step 2 - Read pipe number(s) connected to input node(s)
Step 3 - Start itérative procedure using formulation 3,
Step 4 ~ Check for stablity of inflow in each iteration.
If they are stablized proceed, otherwise go to
step 3. ’ ' |
Step 5 ~ Perform iterative procedure using formulation
4 +ill convergence is attained, ,
Step 6 ~ Compute head losses in pipes and there by

ocompute head at each nodee.

Step 7 -'Again use formulation3 to achieve final solution.

Flow chart for this programr is given in figure (5.3)

and detailed of this program are as given below.



INPUT DATA

NP, P(I).H(D ,QN (1),

N ,ITMAX , ERR ,
JPGIV(3),PL (1Y, DD(1)},INCID(3,J),CHW (1),COP

INFORMATION OF INPDT PIPES
N, INP(3)

(3
FALSE

t

- cCOo@E - EQ. 1
CALL LOOP \/
FOR FINDING LOOPS

rS
READ LOOP INFORMAT- Y’
SION. JLP, (LP (1 43 )) )

TRUE

[MeETHOD = 1 ]}

STARTY
SOLVING NETWORK USING FORMULATION - 3
AND CHECK FOR

CONVERGENCE

sToOP TRUE

COMPUTE FLOW

AND

IN EACH PIPE
HECK FOR CONVERGERNCE

IN INPUT PIPES

INPUT FL OW
Q1 (INP).LE. 10.-#% ERR

FALSE

GET THE SOLUTION OF
NETWORK USING :
FORMULATION - 4, QNRM. FOR

4
fMeTHOD = 2 |

FIG. 5.3 FLOW CHART FOR PROGRAM MIX. FOR



Name of the . program- T MIX, FOR
Subroutines used . t+ PNRM, LOOP, SHOP, SOLVE, SENSE

Input Variables ¢

Same as that of MNRM.FOR, which has been explained

in section (5.1). Additional data is as given below.
INP %’Pibe numbers connected to input node(s)
NIP % Number of pipe(s) connected to input node(s)
Qutput Variables$

Same as that of MNRM. FOR, which has been explained

in section (5.1).

Legends of the programe are same as that of MNRM.FOR
and QNRM,FOR explained in section (5.1) and section (5.2)

respectively.

5.4 DESCRIPTION OF THE SUBRQUTINES

Detail description of the Subroutines used in above

Programé&. are as given below,

5.4.1  SUBROUTINE PNRM (N,P,C.,H,0N, AA AB JPGIV INCID)
ot ] ’ ‘

This subroutine develops the nodal flow equations and
Jacobian matrix [J] for solution of the network problem by
Newton Raphson method using formulation 3, Flow charts for
this subroutine is given in Figure (5.4) and .details are

as given belows

|7\ A H07)
¢ 1 rary Universitg of Roorkee



INPUT
P(1),C(1,J) , INCID(1,J) 2N

JPGIV (1)
p—

H(I), QN(I)

TRUE

JPGIV(1). EQ.1

TR UE

INCID(1,J).EQ. O

COMPUTE NODAL FLOW B(l)
: EQ. (3.1

\ COMPUTE JACOBIAN - A (I ,J) !

.
L]
+

EQ.{(3.12)
)
iF
TRUE I - LT - N PALSE
J - LT - N ¥
CR ETUR N )

FIG. 5.4 FLOW CHART FOR SUBROUTINE PNRM

JPGIV (1)

INPUT
P(I) »C (1,J) LN, H((I), QN (1), INCID(LJ

INCID (I, J).EQ.O.

— -

L]
- -
+4

GENERATE SENSITIVITY MATRIX
0S{(1,3) €EQ.(3.16)
|
TRUE il FALSE
I . LY. N RETURN )

Jd - LT N

FIG. 5.5

FLOW CHART FOR SUBROUTINE SENSE
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Input Variables
N, CP JH, GN INCID; JPGIN
Same as explained in section (5.1).
Output Variables 2
AA = Jacobian matrix [J]
AB = Function f£(x)
5.%4.2 SUBROUTINE SENSE (N,P-sC-sH,JPGI'V,INCID, QN,DS)

This subroutine performs sensitivity analysis by
generating sensitivity matrix DS. Flow chart for this subroutine

is given in figure (5.5) and details are as given belows
Input variables ¢
N ’ C’, P"’-H‘, Q_N_i.I N CID-, JPGLV
Same as explained in section (5.1).
Output Variables?

IS = Sensitivity matrix:.

5¢4.3  SUBROUTINE SHOP (AM, FL,N,JS, AP)

This Subroutine finds shortest path between any two
nodes using Dijkstara's algorithm which has been discussed
in Chapter 4.

Flow chart for this subroutine is given in Figure (5.6)

and details are as given belows



FIG. 5.6

INPUTY DATA
AM , FL , N

YES

FL (1,J.EQ. ©

=am |

SET DISTANCE M ATRIX :
/ AP (1,3) = FL C1.J) 2 fap .0

SET NEAREST NODE MATRIX
JS (1,J) = J

X = AP (1,J) —+ AP (J,K)
Y = AP (1,K)

FLOW " CHART FOR SUBROUTINE SHOP



Input Variables g

M = A very large number (99999.) =2 % %
FL and N Same as explained in section (5.2).

Qutput Variables?®

JS = Matrix which gives the nearest node to each

- node,

AP = Matrix which gives the shortest distance

between any two nodes.,

5.4 .4 SUBROUTINE LOOP (INCID, FL,N,NP,LP,NN,NI )

--This subroutine gives the set of independent loops

in the network by making use of shortest path algorithm.

This shortest path between any two nodes is nmde available

by subroutine SHOP, Flow chart for this subroutine is
given in Figure (5.7), and details are as given below.
Input Variables:

INCID, FL, N,NP

Explained in section (5.2).
Output Variablesty

NL, NN, LP

Sgme as explained in section (5.2).

>



INPUT DATA
( INCID , FL o N , NP )
ol
e |
FIND DEGREE OF

EACH NODE

DEGREE . EQ. 1 NO

DELEY PIPE
CONNECTED TO
THAT NODE

y

FIND FIRST NODE (1)
WITH DEGREE 4

GO TO OTHER END NODES -

OF PIPE OF CONNECTED TO

: . THIS NODE (J AND K ) AND
DELET PIPES CONNECTED TO
NODE

YES
NO
FIND SHORTEST PATH
USING
CALL SHOP
ASSIGN LOOP K1 SET N

MATRIX OF PIPE

NUMBERS LP

FIND OEGREE OF i
EACH NODE

YES

DEGREE - G}. 2

CEEED

FIG. 5.7 FLOW CHART FOR SUBROUTINE LOoPr
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5.4.5 SUBROUTINE SOLVE

This subroutine solves set of linear equations

with help of Gauss elimination method with Pivot selection.

Input Variables?

A = Jacobian matrix
B = Column vector of function £(x)

Number of equations or number of rows in

Jacobian matrix.
Output Variables 1

Y = Column vector of solutions of each variable.



CHAPTER -~ VL

RESULTS AND DISCUSSION

In this chapter results pertaining to the convergence
Problem associated with the Newton Raphson method of solving
Pipe network problems are reported and the new scheme is
pProposed to avoid ite Further a new method of formulation
of pipe netwerk problem called mixed method of formulation
is suggested. and the results about its computational effi - .

ciency are presented, Lastly advantages of computer aided

Jloop selection method is discussed.

It is well known fact that Newton Raprhson method is
sensitive to initial guess. This aspect has been studied in
detail and modificatidns in the existing algorithms are
Proposed. It is necessary to mention at this stage that there
is no clear cut distinction between a proper guess and an
improper guess but the following points should be taken into

consideration for deciding the initial guess.

— Order of the values of head at nodes should be in

accordance with the topology of the network.

— The values of the head at nodes which are far away from
the input node(s) are more scnsitive to initial guess.
So more care should be taken while supplying guess values

at these nodes.
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~ The values of heads at nodes with lower degree are
more sensitive as compared to the nodes with higher

degree, Accordingly precaution should be taken,

6.1 EFFECT OF DAMPING FACTOR ON CONVERGENCE

It is observed that with improper initial guess the

values of head at nodes in case of formulation 3 oscillate.
If these oscillations continue for number of iterations;

the convergence can never be attained. It is also to be
noted that these oscillations usually starts at nodes which
are far away from input node(s). And due to this the head

ét remaining nodes also starts oscillating This is shown in
Figqre (6+2) for network in Figure (6.1). In the considered
pﬁob}em, node (25) is far away from the input node (7), while
nodex(;ﬁ is comparatively nearer to node (7). To an improper
initial guess, oscillations have been observed in the values

of ﬁead at both nodes. These oscillations persist even if
the pg@ber of iterafions increases, However the approach to
the gohvergenoe is faster at node (1) as compared to node (25).
Thisvis because the node 1 is nearer to input node (7). Thus the
improper initial guess require large number of iterations for

obtaining final solutions.

Next the solution has been attempted with relatively
propeﬁﬁﬁalues of initial guess., Effect on convergence at

node (i) and node (25) has been shown in Figure (6.3).
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ITERATION NUMBER

FIG. 6.2 WITHOUT DAMPING CONVERGENCE NOT ATTAINED
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FROM MEAN

FLUCTUATION

0-75

0-8 NODE NO.=1
HEAD = 68.7042 m

04+

0.2

0-0

A
TN VOV

o-sr
_ NODE NO. = §
' HEAD = 74. 28265 m

NODE NO. = 25
HEAD = 63.49824m

M oaa

0.5

0.25

0.0

0.25

0.50

1.0

(TERATION NUMBER ——o

FIG. 6.3 CONVERGENCE ATTAINED WITHOUT DAMPING
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It is clear that the magnitude of oscillations at both the .
nodes is less in comparision to previous case, and also number

of iterations required are less.

It is proposed that the solution vector during iterations
should be damped by factor T to improve the rate of convergence.
The value of ¢'varies between O and 1 and the exact value
depends upon the problem being solved, Value of T taken here
is Oe¢5e¢ IT means that x =xk;lf0%5 Yke It is observed that
the damping accelrates the rate of convergence even with an
improper guess. This fact is illustrated in Figure(6.4) Number
of iterations required for theseléases éreltabulated in

table (64el).

Results of the network shown in Figure (6.1) by using
formulation ~3.

SeNoOe Initial guess Mathod used Number of

iterations taken
for convergence

Lo Inmproper With‘out Terminated
damping after 25 iterations
2 Proper Without 1i8
damping
3 Improper With damping 12
factor 05
4, Proper With damping 11

factor Q.5




°
g
T

01 , : ’ ‘ NODE NO. = 1
_ HEAD = 68.7042 m
0.0% |- ' A
T /\ J\
0.0 \//\ .

o.1 NODE NO. = §

HEAD =74 28265 m
0.001.-> /\ /\

o
©
-

]

o
o

0-001 }—

o
T

NODE NO-= 25
o1 o, HEAD = 63. 49824m

FLUCTUATION' FROM MEAN ——
o)
°
i

i | 1 1 | | 1 1 1 1 1 ]
(o] 1 2 3 4 S 6 7 8 9 10 " 172

_ ITERATION NUMBER —
FIG.6.4 CONVERGENCE PATTERN WITH DAMPING FACTOR 0-5
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642 CONVERGENCE IMPRQVEMENT BY MIXED METHOD OF FORMULATION

A care full study of grapﬁsfin Figure (6.4) shows that for
formulation3, the values of heads at the node which are nearer
ﬁo input node(s), converge faster than the values of head at
the nodes which are away from it, Due to this fact a new

" method of formulation, called mixed of formulation, has been
proposed Which'is already discussed in chapter 5.,. However,
one might think that this method is same as the formulation
le But this is not true, In fact In this method the number

of equations solved are either (J-1) (in case of formulation
3) or £ (in case of formulation %) and hence the amount of
storage required is muéh smaller than in the case of formula-

tion

% The results of the test problems figure(6.1) and

Figure (646))by using mixed method of formulation are
listed in Table (6.2 ).

It is noted that that the switch over from formulation
3 to formulation 4 is done after 4 iterations in case éf
network in Figure (6.1) and after 5 iterations in casé of
“network in Figure (6.6). At this stage flows in pipes,
connected to input nodes, are closely balanced first time
during solution. If the switch over is carried out after this
Stage in either case, the total number of iterations reguired

for obtaining the final solution increases.,



0.1

0.01

0- 001

-0.001

0-01

0- 01

0.001

0.001

0-01

1.0

0-1

0.01

0.001

0-001

o NODE NO. z 1
' HE AD = 68. 7042 m

R NODE NO.z §
HEAD = 74. 28265m

NODE NO- = 25
L. HEAD = 63.49824m

| 1 I} 1 I | 1 |

(o 1 2 3 4 1 2 3 4

ITERATION NUMBER

L FORMULATION 3 [* 1. FORMULATION 3}
U IR ] ]

FORMULATION 4

FIG.6.5 CONVERGENCE PATTERN OF MIXED METHOD OF FORMULATION
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From the Figure (6.,5) it is observed that the method
converges faster than the usual method of formulation 3
Also one notes that the advantage offered by this method
for small network is limited. Hence, it is suggested that
this method should be used for large networks,

TABRLE 6,2
Results of Mixed Method of Formulation

Se Method of Number of Number of Number of Total
No«. Formulation iterations iteration iterations Number of
after which in Formula~ by formu- iterations
formulation tion lation 3
3 Terminated for final
4 solution

For pipe network shown in Figure 6,1

l. Mixed 3 1 7 11
Mototon & 1 o 9T

5 1 5 "1

6 1 4 11

7 1 5 13

8 1 4 13

2.. BY d.ir’ect
method of - — 12 12
formulation 3

For pipe network shown in Figure (6.6)

1. Mix§§ 3 1 7 11
method of
formulation b 1 f\éi 11
| > T 3\\25;\b 10|
6 1 b A
7 1 3 Thag
8 1 2 \\\‘1
2« By direct -~ -~ 11 -

method of
formulation 3
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6e3 ADVANTAGE OF COMPUTER AIDED LOOP SELECTION

Use of independent loops in a pipe network assists in
reducing the number of equations to be solved for that problem.,
The loops may be selected either by inspection or with the help
of computer using suitable algorithm. One may commit an error in
selecting the independent loops in network by inspection. For
example, one may identify that there are seven loops in the
network shown in Figure (6.7) as listed in table (6.3), while
infact there are only six independent loops. I£ solution is
tried with seven léops, it starts diverging from the beginqing
Therefore it is proposed to select the loops with help of

computer by an algorithm which has been discussed in chapter—&4.

From table 6.3 it is also clear that +the number of
itefations taken by problem for convergence also depends on
the way in which these six loops are selected. As the computer
alded loop selection algorithm makes use of the shortest path
algorithm the set of loops selected results into minimum number
of iterations for convergence of the network problem, In any
case this algorithm saves the mannual labour required in

identifying the set of independent loopsi



TABLE 6"- 3 :

N

Results of Loop selection algorithm

Set Pipe numbers in set of Number of IS conver-
No. the loops selected iterations gence attained
for network shown in ?
figure (6.7)
1. Loops selected with help of
computers. .
i) 1 12 9
ii) 9 10 8 25 ’ Yes
iii) 10 14 13
iv) 5 4 15 6
v) 2 7 8 6
vi) 7 8 15 3
Loops selected with manmual
inspections
2e i1,ii,iii same as above
iv) 7 3 15 8
V) 2 5 4 3 27 Yes
vi) 6 15 L 5
S 1,1ii,iii sgme as above
iv) 2 3 4 5
v) 7 8 15 3 35 No
vi) 5 4L 15 6 '
vii) 2 7 8 6
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CHAPTER ~ VIL

CONCLUSLONS

Main conclusions are given below$

A new method, called Mixed method of formulation, is
Proposed to analyse the pipe netWorKsz This method is
computationally efficient and requires less computer
Storage. Although this method is tested on few large
Pipe networks, but it still requires more test on

complex networks to prove its worthiness,

Efficient software packages are developed to analyse

the pipe networks using the existing methods and the
mixed method of formulation. During the development of
computer programs following observations about the nature

of the solution are made,

~ The values of heads at nodes which are aways from

the input nodes are more sensitive to initial guess.,

-~ The values of hecads at lower degree nodes are more
sensitive to initial guess as compared to the values at

the higher degree nodes.

-~ During the solution, the values of heads at nodes near
to the input nodes converges faster than the remaining

nodes,.
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~ Newton Raphson method is sensitive to initial guess
of values of parameters, 1Its sensitivity can be reduced
by damping the solution vector by a factor 0.5, A conver-

gence scheme is also proposed for this purpose,

" [c] A computer-aided loop selection method is proposed in
the presentr§ork, which selects the optimal set of
independent loops in a given pipe networks. This procedure
should be  employed in comparision to the mannual inspection

of network as it is suceptible to errors,
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APPENDIX

Results of the test problem shown in Figure (6.1) by Mixed
method of Formulation,

Input Data

Number of nodes N = 32
Number of pipes NP = 48

Maximum number of iterations ITMAX = 25
Error tolerence ERR = 9.0001

Hazen Williams constant for all pipes = 120.0

Node Initial JPGIV(I) Nodal Elevation

No. guess of Switch Flows QN of node H
head P, cubic
meter meter

7 2 3 A s

1. 108.0 -0 0.05665 0.0

2. 101.0 o] 0.,02832 0.0

S 1020 0 0.1416 0.0

Ly 109,0 0 0.08496 0.0

5. 11345 0 0.05665 0.0

64 67 .0 0 0.05665 0.0

7o 787k 1 040 0.0

8. 730 0 0.08496 0.0

9% 7945 o] 0,08496 0.0

10, 80.0 0 0.05665 0.0

11, 79.0 0 0.11238 0.0

12 82,5 0 0.05665 0.0

con‘td. e



L

2 3 5

- 13. 80425 0 0.05665 0.0
14e 86425 0 0.08496 0.0
15. 86,0 0 0.08496 0.0
16. 83.25 0 0.0 0.0
17« 77«0 o) 0.11328 0.0 -
18, 6740 0 0.0 0.0
19. 65475 0 0.08496 0.0
20.  61.0 Q 0.05 0.0
21l. 60,5 o. 0. 05665 C.0
22.  60.0 0 0.025 0.0
23« 9940 0 0, 11.328 0.0
2L, 59.5 0 0% 05665 C.0
254 63425 0 C.0708 0.0
26+ 6245 0 0.11.328 C.C
27.  89.0 0 0.08496 0.0
28, 86.5 0 0.11328 0.0
29.  93.0 0 0, 05665 0.0
30e 8745 0 0,11328 0.0
31. 96,98 1 0.0 0.0
32. 9845 0 Oe 05665 0.C




g T

-

Pipe From To - Diameter Length

Noe node node Ce e Me
No. NO'
1 7 5 60496 60946
24 =2 8 60,96 . 60946
3. 8 17 60% 96 6096
b 17 18 30,48 914 o4
54 6 18 60496 60946
6. 6 5 30 48 60946
7 6 3 30,48 30448
8e 4 3 30.48 L57e2
9% 5 4 45,72 3048
10. 3 2 30% 48 30448
11. 1 2 30.48 60946
12. 4 1 45472 3048
13, 3 19 30,48 60946
S 14. 19 20 ; 30448 45742
15. 2 20 ' 60.96 . 609.6
i16. 19 24 3048 91404
17. 23 24 30448 30,8
18. 22 23 30.48 45742
'19. 21 22 45,72 30448
20. 20 21 60496 SRTRWA
21. 18 19 3048 457 ¢2
22, 18 26 30448 91k ol
23. 25 26 30.48 30448

oontd. Py



Pipe From To Diameter Length

No node nod Cell Mae
No, Nov

24, 25 23 50,48 45742

25 16 17 3048 91l L

26, 28 16 30.48 L5742 -
27« 27 28 30 .48 457 o2

28. 27 25 30,48 762,0

29. 10 9 ‘ 45472 6096

30 16 10 45,72 6096

31, 13 9 60 .96 30448

32 12 13 60,96 76240

33% 12 11 3048 457 «2

34, 10 11 30.48 45762

35. 14 12 6096 60946

36, 15 14 45,72 45742

37 15 16 45,72 L5742

38. 30 ' 15 - 60,96 457 «2

39. 30 28 L5 .72 365,76
40 29 30 45,72 457 «2

41, 29 27 45 .72 30478

L. 32 30 45472 365476
43, 31 32 60496 45742

L, 31 29 6096 30448

45, 32 ' 14 60,96 45742

46, 10 8 30.48 609.6

L7 8 6 30,48 60946

4g, 9 7 60,96 609,.6




-2 Qutput Results —

Head at each node after g iterations

e

Node'No; Head in meter
1. 68,7042
2, 61,8298

. 3. 63,1411
L ' 69.7137
5. - 7442826
5. 67 « 2495
7. ' 78Tl
Se 77 e l1ltly
W 79.9311

10. 80 3167

11 79.909

12. 82,8874

13, | 805901

14 86,3564

15. | 8643679

16. 83,7413

17% < 77 «0904

18- 67 o 1Lls3

19 61.88240

20. 61.4228

21. | 60,9422

22, 607065

s N = - s xw

Contde eee



T S T TR

Node No . Head in meter

- e ————

23. 6C « 1447
24, 60.0655
25 635.49082
26. 62 . 9243
27 - 89 . 0104
28a 86.8803 -
29, O93.0480
3C e ' ‘ 87 « 6126
31l 06 .98




Flow rates in each pipe after convergence

-

Pipe Now Flow rate in each pipe
cubic meter
1. O.5562
2. ‘ C 2890
3. | | 01350
4, | 0.1113
54 040735
6. ' ~ 041149
7. C.125
8. 0e1294
Se Oe3845
1C - 056674
1l | 0.1135
12. 0.1701
13 CeOl53
14, | 0. 0307
15. - Ceag527
16, C Okl
1?; 0.0121
18. 0 .0350
19. | 0.0775
20. : CWwl342
21, | 0.1148
22, 9;0700
23, _ O .O431
24. O 0905

——— * ™ ? Ebashaadiiabeibi - e e

COntdig..



Pipe NO',

Flow iate in each pipe

cubic metex

25
26,
27 o
28
29a
30
31
32
335

35
36.
37
38.
39.
40.
41,
L2,
L3,
Lt
45,
46,
47«
48,

0.0896
0.0868
0.0704
Q2043
0 .0696
C.2263
0.2880
C 3446
O 0844
0.0288
0.4857
C.0121
e 2291
Oe3262
01296
063395
03597
Ce2298
C «8450
C7557
Ce5585
0.0712
-0 402
02727
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