
T

FAD

DESIGN OF A FUNCTIONAL COMPUTATION MODEL

FOR MULTIPROCESSOR ARCHITECTURE

A THESIS

submitted in fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMPUTER ENGINEERING

By

PADAM KUMAR

Arc hc.^4?/ V

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

September, 1990

Deci± ca. -fced

to

my JP.a.T~eT2 tzss

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in
the thesis entitled Design of a Functional Computation Model for
Multiprocessor Architecture in fulfilment of the requirement for
the award of the Degree of Doctor of Philosophy submitted in the
Department of Electronics and Computer Engineering of the
University is an authentic record of my own work carried out
during a period from September 1987 to August 1990 under the
supervision of Dr. J.P. Gupta.

The matter embodied in this thesis has not been submitted by
me for the award of any other Degree.

(PADAM KUMAR)

This is to certify that the above statement made by the
candidate is correct to best of my knowledge.

Date •S*.y* .W, \°i°>o

Dept.

\<K

(J.P. GUPTA)
Professor

of Electronics & Computer Engg.
University of Roorkee, Roorkee

The Ph.D. viva-voce examination of Sri Padam Kumar Research

Scholar has been held on "2.1 U'ao- IS^O •

(Signature of Guide) nal Examiner)

ABSTRACT

Functional languages, due to their straightforward declarative way
of expression, are finding favour as an elegant programming
medium. Further, their properties of referential transparency and
freedom from side-effects make them highly attractive for
programming multiprocessor systems. These merits are pushing them
more and more into the domain of computer research directed
towards achieving higher execution speeds and/or increasing
programming comfort. The research has generated radically
different computation systems called reduction computers.

This thesis reports the design of a multiprocessor computation
model based on the functional approach. The various features that
the model supports include pattern-matching, data structures, lazy
evaluation of conditional expressions, and recursion. The
complete design consists of two phases : first, the translation of
program definitions into an intermediate form suitable for machine
interpretation,- and second, the evaluation of the translated
program through reduction in a multiprocessor environment.

Program input to the model is a set of supercombinator definitions
and an expression for evaluation. The definitions are like user
defined functions having no fixed reduction rules, and have been
compiled down to an intermediate representation called Structured
Director String (SDS) term. The terms express the supercombinator
definition bodies as variable-free annotated graph structures and
are used as templates for function instantiation. They are a
generalisation of Kennaway & Sleep's DS terms, and are obtained
through a pattern-abstraction process for which an algorithm has
been developed and tested.

For dealing with local definitions within definitions, the SDS
term notation has been enriched by including pointers and a
concept of context-list. Various types of local definitions (non-
recursive, recursive and mutually recursive) have been interpreted
via lambda calculus into the enriched notation.

A coarse-grain, message-passing multiprocessor reduction scheme
has been proposed. SDS term reduction rules, which are based on a
modified set of (3-reduction rules framed for dealing with
structured arguments, have been developed and are used during
template-instantiation of a function. The reduction strategy is
basically applicative (eager) so as to exploit parallelism,
wherever possible.

For reduction, a program expression is organised into a task-graph
where each task is the smallest unit of computation consisting of
a function applied to all its arguments. Tasks in task-graph
reduce (as per the proposed conditions of reducibility) and
communicate through messages enabling other tasks to reduce. The

process continues till the result of the expression is obtained.

Several control mechanisms, in the basic scheme, have been
incorporated to support selective laziness in dealing with
infinite data structures, lazy evaluation of conditionals, and
controlled recursion through the fixed-point combinator. Safety
aspect of the applicative order has been improved to some extent
by leaving a sub-expression in unorganised form, although no
strictness analysis of functions has been performed.

The complete reduction strategy, the organisation algorithm and
the message handling schemes have been formally specified in a
Pascal-like notation.

(ii)

ACKNOWLEDGEMENTS

I wish to express my gratitude to my supervisor, Prof. J.P. Gupta,

for offering guidance, help, encouraging comments and useful

suggestions throughout.

The co-operation and help extended by Prof. R. Mitra, the Head of

the Department of Electronics and Computer Engineering, is

gratefully acknowledged.

I am indebted to Dr. Surendra Kumar, Reader Chemical Engineering

Department and Prof. R.K. Gupta, Mathematics Department for some

useful and critical discussions and friendly advice. I have a

word of special thanks to Prof. Kailash Chandra, Director USIC,

for constant encouragement.

I am also indebted to Prof. D.R. Wilson and Dr. S.C. Winter at

Polytechnic of Central London, London, for providing useful

suggestions and comments.

Finally, I am grateful to all my colleagues and friends here for

their friendly co-operation and encouragement.

CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

LIST OF SYMBOLS AND ABBREVIATIONS

1 INTRODUCTION

1.1 INTRODUCTION

1.2 FUNCTIONAL BASED COMPUTATION

1.3 STATEMENT OF THE PROBLEM

1.4 ORGANISATION OF THE THESIS

(i)

(iii)

(iv)

viii)

1

1

4

7

9

2 FUNCTIONAL PROGRAMMING AND LAMBDA CALCULUS 11

2.1 FUNCTIONAL PROGRAMMING 12

2.2 LAMBDA CALCULUS 17

2.2.1 Lambda Syntax 17

2.2.2 Lambda Semantics 19

2.2.3 Reduction Order 21

2.2.4 Recursion 23

3 REVIEW OF COMPUTATION MODELS 26

3.1 INTRODUCTION 26

3.2 REDUCTION COMPUTER 28

3.2.1 Program Representation 30

3.2.2 Reduction Options 31

3.2.3 Intermediate Forms As Machine Languages 33

3.2.3.1 Combinators 34

3.2.3.2 Director string terms 35

3.2.3.3 Supercombinators 37

3.3 SUPERCOMBINATOR REDUCTION MACHINES 41

3.4 THE PROPOSED MODEL 43

4 IMPLEMENTATION OF PATTERN-MATCHING : A LAMBDA CALCULUS BASIS 45

4.1 PATTERN-MATCHING 46

4.2 LAMBDA CALCULUS INTERPRETATION 48

4.2.1 Matching Algorithm 52

4.2.2 Reduction Semantics Of \p«e 55

4.3 CONCLUDING REMARKS 59

5 COMPILATION OF PATTERN-MATCHING DEFINITIONS 61

5.1 COMPILATION PROCESS 62

5.1.1 Compilation For Clause Selection 62

5.1.2 Compilation For Reduction 65

5.1.2.1 Atomic directors 65

5.1.2.2 Structured directors 67

5.1.2.3 Pattern-abstraction 72

5.1.2.4 Pattern-abstraction rules 76

5.2 AN EXAMPLE 81

5.3 GUARDED EQUATIONS 85

5.4 CONCLUDING REMARKS 87

(v)

6 COMPILATION OF LET AND LETREC DEFINITIONS 89

6.1 DEALING WITH LOCAL DEFINITIONS 90

6.2 ADDITIONAL ABSTRACTION SCHEMES 92

6.3 COMPILATION PROCESS 96

6.4 D-CODE STRUCTURE 105

6.5 CONCLUDING REMARKS 109

7 MULTIPROCESSOR REDUCTION 112

7.1 SDS TERM REDUCTION 113

7.2 TASK STRUCTURE 116

7.3 ORGANISATION OF PROGRAM EXPRESSION 122

7.3.1 Organisation Algorithm 126

7.4 TASK REDUCTION 134

7.4.1 Task Reducibility 136

7.4.2 Reduction Mechanism 137

7.4.2.1 Application 138

7.4.2.2 Organisation 140

7.4.2.3 Communication 140

7.4.2.4 Removal 141

7.4.3 Message Handling 142

7.4.3.1 Result message 143

7.4.3.2 Link message 147

7.4.3.3 Argument (arg) message 149

7.5 MODIFICATIONS 152

7.5.1 Laziness 153

7.5.2 Simple Recursion 160

7.5.3 Mutual Recursion 164

7.5.4 Pattern-matching 166

(vi)

7.6 CONCLUDING REMARKS 169

8 CONCLUSIONS 172

8.1 CONCLUSIONS 172

8.2 RECOMMENDATIONS FOR FUTURE WORK 180

REFERENCES 182

APPENDIX 191

RESEARCH PAPERS OUT OF THE WORK 203

(vii)

LIST OF SYMBOLS AND ABBREVIATIONS

a (a,, a, a), a n-tuple structured variable

@. Unary application node-type

@2 Binary application node-type

A A-scheme abstraction operator for abstracting out x

B B-scheme abstraction operator for abstracting out x

c Constructor function

C Constant

CN Computability number

d Director

d-i unary director
d2 binary director
d r-ary director

/\ binary director for bothways
/ binary director for left
\ binary director for right

binary director for discard
! unary director for substitution
unary director for discard
• hole

{d} pattern director
{d^} list director made up of k number of d-i directors
dA director resulting from the abstraction through A„

vt x

D Director string

Dj director string of unary directors
D2 director string of binary directors
D director string of r-ary directors

DST Director String Term

e, e^, E Expression

6 belongs to (in sets)
i. does not belong to (in sets)

p, p^ pattern

Ir Irrefutable pattern-type
s sum-constructor for a pattern
t product-constructor for a pattern
T(p^), t- type of pattern p.

SDST Structured Director String Term

t, t± SDS term

U AL Ax U A2 U ... U Ar (set union)
i = l

w, wi Task

D dummy task-type
E executable task-type
P partial task-type
W waiting task-type
N name-field in task structure

A ancestor field in task structure
N^ name of an ancestor A
F function-field in task structure
S(I) Ith successor of a task
SC successor count field in task structure

$ Identifying symbol as first character in a
supercombinator name

Pointer

• Syntactic equality

(ix)

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Despite the extraordinary progress in computers, the basic model

of computation (von Neumann architecture [1]) has not changed much

over the past 40 years. In its most simplified form, the model

consists of a single processor with a single connection to the

memory store (Fig. 1.1). While executing a program, the machine

passes instructions and data, one word at a time, through this

single path between the processor and memory.

Quest for higher and higher computation speed has been a main

endeavor of computer research. In von Neumann model, improvements

in speed have been possible only by faster data transfer through

the single connection which, very appropriately, has been referred

as von Neumann bottleneck by Backus [2]. The attempts can be seen

in the development of faster and faster semiconductor

technologies, the use of registers and cache memories (which limit

the number of memory accesses and thus relieve traffic in the

bottleneck), and wider instruction buses. But the advances in

semiconductor technology are fast approaching theoretical limits

of speed whereas the growth of demands from scientific and

engineering applications is showing no signs of saturation.

A rather obvious alternative in the situation is to employ several

processors together. The idea has been made more feasible, both

economically and technically, with the advent of VLSI technology

memory

bottleneck

processor

Figure 1.1 The von Neumann computer

which has reduced the cost-status of processors to that of circuit

components [3]. Initial attempts in the direction of

multiprocessing have been limited to applying some clever

engineering extensions to the von Neumann model, e.g., pipelining

(where several instructions are inserted in a pipeline of

processors, each executing a part of an instruction), vector

processing (where same instruction is executed in different

processors on different data - Single Instruction Multiple Data

(SIMD) approach [4]) and multiprocessing (where different

instructions on different data can be executed asynchronously by

each processor - Multiple Instruction Multiple Data (MIMD)

approach). It may be observed that by the same terminology, von

Neumann model is a Single Instruction Single Data (SISD) machine.

The first two approaches have given rise to some powerful

computers such as CRAY [5], ICL's DAP [6], Burrough's Scientific

Processor (BSP) [7] etc..

The MIMD approach to parallelism is the most generalised and

flexible one and seems potentially capable of exploiting the gains

of VLSI technology. This approach, however, when realised using

the von Neumann model and, rather more importantly, when

programmed using conventional languages (FORTRAN, Pascal etc.),

leads to severe difficulties of coordination and communication

between processors which is necessary for ensuring that different

parts of the program are executed in the prescribed sequence and

that there are no unanticipated side effects. Although a number

of newer programming languages such as Ada, Occam allow organising

programs into relatively independent communicating processes, but

the programmer is required to generate parallelism and indicate it

explicitly. Thus the features may be useful for handling small

amounts of parallelism on a gross level but to ask the programmer

to specify large scale parallelism and take care of coordination

among thousands of processes is too much to expect from human

capability to handle complexity.

The challenge of multiprocessing requires seeking alternatives to

von Neumann concepts both in hardware and languages. In the last

decade, research in computer architectures has given rise to a

novel class of computing systems. The principal stimuli for these

have come from the pioneering work on data flow by Dennis [8,9]

and on reduction machines by Berkling [10], These architectures

are inherently parallel and there is no concept of sequencing

through program counter. Similarly, on the software front, there

has been a growing interest in a new class of programming

languages called declarative languages which are naturally

compatible with parallel processing and do not depend on the

programmer to specify parallelism. Removing the concept of step-

by-step sequential execution, they allow the programmer to think

declaratively (specifying what is to be done) rather than

imperatively (specifying precisely how a task is to be done).

Functional languages, forming a sub-group of the declarative

group, have a mathematical base and possess the useful property of

referential transparency which means that the meaning of an

expression depends on the meaning of its component sub-expressions

only and not on any history of the computation. These languages

do not suffer from any side effects and lend themselves naturally

to a parallel mode of evaluation. Interestingly, their

development initially was not prompted by the special needs of

parallel processing but by a desire to do something about the

lamentable state of imperative programming [2]. Subsequently, the

interest in their use in parallel processing, through the

development of efficient implementation schemes using reduction

architectures, has been constantly increasing [11].

1.2 FUNCTIONAL BASED COMPUTATION

A program in a functional language consists of function

definitions and an expression for evaluation where the definitions

act as user defined reduction rules. Expressions in this type of

language have a natural representation as tree/graph structures

because they are mainly built through the binary operation of

applying an operator to an operand. These expressions can be

evaluated through graph transformation steps called reductions,

the whole process being called graph reduction. The order of

reductions, which can be parallel too because there are no side

effect causing constructs, is not required to be specified by "the

programmer.

For implementation purposes, it is necessary to translate the

higher level functional program into an intermediate language

suitable for interpretation by a machine. Lambda calculus [12] is

a mathematical tool of great relevance in this context and it acts

as the basis of all other intermediate forms used. Although its

simple syntax can represent all features of functional languages,

yet its direct use as an intermediate machine language is not so

efficient due to the presence of free variables. Further, the

process of 0-reduction (substituting an argument for each

occurrence of a formal parameter) is slow due to the need to visit

every leaf (in the tree of a function body) to look for an

occurrence of the formal parameter (bound variable). To overcome

these inefficiencies, some variants of lambda calculus such as SK-

combinators [13], Director String Terms (DST) [14], Super-

combinators [15] etc., have been developed. The use of SK-

combinators converts an expression into variable-free form

eliminating the problem of free variables. It also helps in

simplifying graph reduction due to fixed reduction rules for

combinators. DST (simply an alternative form of SK-combinators)

is also a variable-free representation. Instead of guiding an

argument to its destination in a function body through reduction

of combinators, the DST attaches directing symbols, called

director strings, at each node of a function tree. An argument

coming in for substitution against a variable is guided by these

at run time.

In a parallel reduction machine, granularity of work division is

also an important factor which affects the ratio of time spent on

administrative overheads to total execution time. SK-combinators

are not so satisfactory from this point of view as they divide the

work into uneconomically tiny steps. The use of supercombinators

improves the situation by increasing the grain size of work,

though at the cost of making the reduction rules more generalised

as compared to the fixed ones for SK-combinators. Definitions of

supercombinators look like those of user defined functions only

but they have no free variables. Refinement of supercombinators

in the form of Serial combinators [16] represents an attempt

towards optimising grain size without losing parallelism.

After translating the source program into a suitable intermediate

language, the next step in computation is the reduction of graph

representing the program expression. The matter requires

decisions about' reduction order and argument passing mechanisms.

Choice for reduction order is mainly between normal order and

applicative order. The former uses arguments in unreduced form

and implements a call-by-need semantics i.e. a computation is

taken up only when needed. The applicative order, on the other

hand, reduces the arguments before substitution thus giving a

call-by-value effect. It is eager in approach because all

arguments are simplified without establishing need. Normal order

is safe as it never gets entangled in unneeded work and thus

6

always terminates unless the program itself is non-terminating.

Applicative order, though unsafe, provides better utilisation of

parallelism in a program. Choice for argument passing mechanism

is mainly between string reduction (where a complete copy of the

argument is substituted) and graph reduction (where a pointer to

the argument is substituted). Normal order coupled with graph

reduction implements lazy evaluation i.e. an expression is

evaluated only when needed (due to normal order) and that too only

once (due to graph reduction).

Research on the reduction models of computation, based on above

ideas of functional computation, is continuing and is still in its

developmental stage. The present work is concerned with the

design of a reduction type multiprocessor computation model based

on the functional approach.

1.3 STATEMENT OF THE PROBLEM

A major goal set for the model is to support, (i) pattern-matching

function definitions (functions defined on structured parameters),

(ii) simple and recursive local definitions within definitions,

and (iii) recursion. In addition, the model should be able to

utilise parallelism without excessive communication overheads.

A brief explanation of the solutions suggested in the thesis for

meeting the above objectives is now given. The model takes

programs in supercombinatory form (algorithms are already

available for compiling programs in higher level functional

languages into this form). Thus the input to the model is a set

of supercombinatory definitions and an expression for evaluation.

The problem of computational model design then, as treated in the

thesis, consists of three main parts:

(1) development of a lambda calculus basis for the concept of

pattern-matching keeping in view a parallel processing of the

matching work - Here an algorithm for the matching, and a set

of modified 0-reduction rules for dealing with lambda

abstractions which bind general patterns rather than simple

variables have been developed.

(2) compilation of supercombinator definitions - The main work

here is compilation of definition bodies into a language of

Structured Director String Terms (SDST) which is an extension

of DST [14]. A concept of structured directors (pattern

director and list director) has been introduced for dealing

with structured arguments appearing due to pattern-matching.

These directors advise structure breaking only when essential

and to the extent it is necessary. The modified 0-reduction

rules form a semantic base for these directors. For local

definitions, a concept of context list whose elements are

connected to the main body through pointers, has been

suggested.

(3) development of a reduction mechanism in a multiprocessor

environment for the compiled program - The work here starts

with the framing of reduction rules for SDS terms

representing a definition body. The program expression is

organised into a graph of tasks (each may be handled by an

8

individual processor) where a task is an indivisible piece of

work comprising a function and its arguments. Design of task

structure takes care to keep the communication between

processors low even at the cost of elaborate fields in task

structure.

Although compiling supercombinators into director strings may look

like going from large execution steps to small fine grained ones

and thus losing the advantage of lesser communication overheads,

but the model still has coarse grain reductions. A redex, here,

is a supercombinator applied to all its arguments and it is

considered as a monolithic piece of work (a task) handled by one

processor only. The compilation to structured director strings is

being used only to simplify and mechanise the process of argument

substitution.

1.4 ORGANISATION OF THE THESIS

We begin in chapter 2 by giving a brief introduction to functional

programming and lambda calculus which has been included feeling

that the general reader in the area of computer science is not so

familiar with these topics. Chapter 3 reviews the computation

models and experimental machines based on reduction concepts for

functional languages. A brief discussion of the proposed model is

also included in this chapter. The design of the model begins in

Chapter 4 with the development of a lambda calculus basis for

pattern-matching. In Chapter 5, a compilation scheme for

converting pattern-matching supercombinator definitions into the

9

variable-free form of SDS terms is developed which includes a

pattern abstraction algorithm. Chapter 6 continues with the

compilation while dealing with simple and recursive local

definitions in a supercombinator body. The results of 'the

complete compilation are packed here into a structure named as D-

code. Chapter 7 is then devoted to the development of a

multiprocessor reduction mechanism where the compiled definitions

are used as 'mechanised' rules for evaluating the program

expression. The structure of a task is developed and the message

passing schemes described. Handling of recursion and shared sub

expressions is also discussed in this chapter. The complete

reduction mechanism is illustrated through some examples in the

Appendix. Finally conclusions and scope for future work are given

in Chapter 8.

10

CHAPTER 2

FUNCTIONAL PROGRAMMING AND LAMBDA CALCULUS

Refinement of programming languages has been a continuous process

directed towards easing the job of a programmer. Backus, however,

in his Turing award lecture [2], says that the development of

various imperative languages after FORTRAN has not contributed

much in this direction, and stresses that a radical change in

programming methodology is necessary to achieve a breakthrough. A

program in an imperative language is a cunningly designed maze,

through a single thread of control, and a reader is forced to go

round this criss-cross, doing a mental execution all the time, to

find its meaning. In other words, programs have an operational

reading. Although structured programming, Backus says [2], is an

effort to bring some order to this chaotic world, but it

accomplishes little in attacking the fundamental problems created

by the word-at-a-time considerations in imperative style of

programming.

Functional programs, on the other hand, have, like mathematical

analysis, a denotational reading i.e. programs offer a static

meaning without the need to go through the process of a mental

execution. Functional languages have more expressive power

[17,18], and their use can increase programmer productivity by

allowing him to concentrate more on algorithmic thinking instead

11

of worrying about low level details such as keeping track of

variables through the not-so-orderly sequencing of imperative

languages which is made further complicated by the presence of

side effect causing constructs such as assignment.

The first functional language was LISP invented by McCarthy as a

formalism for reasoning about recursion equations as a model of

computation [19]. Some other functional languages which have been

developed are FP [2,20], SASL [21], HOPE [22], KRC [23], Ponder

[24], Lazy ML [25], Miranda [26], Orwell [27], Haskell [28].

2.1 FUNCTIONAL PROGRAMMING [11,29-33]

The type of 'statements' contained in a functional language are

definitions and expressions. An expression states the intention

of program while definitions act as rewrite rules for evaluating

the expression. Expressions are built through a single concept of

binary application representing an operator applied to an operand

(it gives the languages another name - applicative languages).

Application is expressed by juxtaposition e.g. the expression (SQ

3) denotes the application of a function SQ (square) to the

argument 3. It has left-association property so that an

expression (f g x) means ((f g) x) i.e. f applied to g and the

result applied to x, and not (f (g x)).

Definitions are used to define functions in terms of other simpler

or primitive functions. Programming allows building up of a

hierarchy of functions where more complicated ones are built on

the earlier defined ones. A function is a kind of program which

12

accepts inputs (in the form of arguments) and produces output (the

value of the function call).

The concept of a function in functional languages is same as in

mathematics although a little different notation is used. In

mathematics, functions are written by enclosing the variables

within brackets, e.g.,

f(x) = (x * x) + 3

max(x.y) = if x > y then x else y ... (2.1)

In functional notation, f(x) is interpreted as f applied to x, and

therefore the brackets enclosing the variable are dropped.

However, an interpretation problem arises with functions of more

than one variable such as 'max' or the operator '+' on the right-

hand side of f(x). Currying, a method introduced by Schonfinkel

[34] and extensively used by Curry [35], is used to resolve it.

The method represents all multi-argument functions as sequences of

unary ones. For example, the '+' operator takes two arguments,

and following the mathematical notation it would be written as (+

(x,y)). Its type is expressed as [N x N --> N] where N is the set

of natural numbers. In Curryed form, it will be expressed as ((+

x) y) with type representation as [N --> [N --> N]]. Now '+' is

understood as a unary operator which when applied to x, yields

another unary function (+ x) which adds x to an argument presented

to it. Based on the above, the function definitions in Eq. 2.1

are written as (all function names are typed in italics for easy

recognition)

13

f x = + (* x x) 3

max xy=IF(>xy)xy (2.2)

In the definition of max, the if-then-else construct has been

replaced by a Curryed IF operator which is a primitive function

whose semantics is given by «

IF True x y = x

IF False x y = y

A function for finding the maximum of three numbers can be built

on the definition of function max as

max_of_three x y z = max (max x y) z

An expression (max_of_three 2 7 5) is evaluated using definitions

of max and max_of_three through following rewrites:

max_of_three 2 7 5 —> max (max 2 7)5

--> max (IF (> 2 7) 2 7) 5

--> max (IF False 2 7)5

--> max 7 5

--> IF (> 7 5) 7 5

—> IF True 7 5 —> 7

A powerful feature of functional style is to allow recursion in

definitions. A very common example is the factorial function

factorial n=IF(=On)l(*n factorial (- n 1))

In a recursive definition, a function invokes itself on the right-

hand side.

14

Data structures are introduced in functional languages through

constructor functions for data types. For example, CONS is a list

constructor, sometimes written as infix operator ' : ' also.

Similarly, BRANCH is constructor for tree type structures. Data

structures can appear as parameters to a function e.g., a function

length returning the length of a list is defined as

length NIL = 0

length (x:xs) = + 1 (length xs)

where NIL stands for an empty list. The above definition

illustrates another feature, called pattern matching, where

several equations (clauses) are written each defining the function

with a particular case of the data structure involved. Pattern

matching is discussed in more detail in chapter 4.

Functional languages draw no distinction between functions or

data. Functions can be passed around as data objects serving as

arguments for other functions. Such functions which take other

functions as parameters are called higher order functions. Turner

[21] has described it saying that functional languages treat all

objects equally and that there are no "first or second class

citizens". An example of a higher order function is a function

map defined as

map f NIL = NIL

map f (x:xs) = (f x) : (map f xs)

The function map takes a unary function f and a list as arguments

and produces another list whose elements are the results of

15

applying f to the elements of original list.

Functional style of programming is further illustrated in the

following program (in Miranda style) that returns a list of square

upto a given integer, and uses the function map:

square_list n = map SQ (count 1 n)

map f NIL = NIL

map f(x:xs) =(fx): (map f xs)

count i k = IF (> k i) NIL (i : count (+ 1 i) k)

square_list 5

The function SQ, taken as a primitive operator, has not been

defined further. The program returns a list [1, 4, 9, 16, 25].

It may be seen that there is no execution ordering implied by the

program nor the programmer has to worry about it. An

implementation, however, applies a dynamic ordering which is

decided by the reduction strategy. The matter is discussed in

next section. The variables, used in a definition, have a scope

limited to the right-hand side and they get bound to arguments

during the reduction of an application.

All functional languages derive their semantic base in the lambda

calculus developed by Alonzo Church [12]. Ability to translate a

high level program into lambda notation has given rise to the

possibility of their efficient machine implementations. Besides

that, lambda calculus provides an appropriate framework for

mathematical reasoning about functional programs.

16

2.2 LAMBDA CALCULUS [12,31,33,36-38]

Lambda calculus is a product of the work on computability theory

regarding the ability to define precisely the notion of computable

functions. Although it has been used as a semantic base for

functional languages, but it is interesting to note that certain

concepts of ALGOL 60 (and similar languages) can be viewed as

syntactic variations of lambda calculus [39].

2.2.1 Lambda Syntax

In mathematical notation, we are used to expressing functions as

f(x) = exp where x is a variable over which the function is

defined, and exp is the body of the function. A general view is

that a function takes some values as arguments and returns another

value as result. Lambda calculus discards this viewpoint and

allows functions to take functions and return functions. For

example, lambda calculus would allow a function apply to be

defined as (in mathematical notation)

apply (f,y) = f(y)

One of the arguments to the function apply is a function. Concept

of higher order functions in functional programming is similar to

this idea.

Another big difference in expressing functions in lambda calculus

is the flexibility in naming them. Lambda calculus advocates that

in order to create and manipulate functions as objects, a notation

for unnamed functions is required. This is achieved by a process

17

known as abstraction. Through abstraction, an expression can be

made to behave like a function. As an example, consider a

function f(x) = x * x + 2. The right-hand side of this definition

is converted into a new form as

Xx.x * x + 2 ...(2.3)

The above form is called a lambda-abstraction where 'X' is an

abstraction operator, the prefix 'Xx.' abstracts the function f

(with respect to variable x) from the expression on right-hand

side, and the expression following the dot is known as the body of

the abstraction.

The unnamed function in Eq. 2.3 can be applied to values just like

the function f. In mathematical notation, f(3) represents the

value of f at x = 3. In lambda notation, it is interpreted as an

application and is written as (f 3) because juxtaposition denotes

application. Using the unnamed function, the application (f 3) is

written as

(Xx.x * x + 2) 3

Functions of several variables are expressed through multiple

abstractions as

Xx^.Xxg. ... Xx .E

or as [36]

Xx.E where x = Xj, Xg, ..., x

It may be noted that abstraction associates to the right. The

18

function max in Eq. 2.2 would be expressed as a lambda abstract by

Xx.Xy. IF (> x y) x y

Applicative expressions in lambda notation are written as Curried

applications (as discussed in section 2.1). Thus, strictly

according to lambda syntax, the abstraction in Eq. 2.3 should be

written as

Xx.+ (* x x) 2 (2.4)

The complete syntax for lambda expressions is summarised in the

following definition [30]:

E : : = constant

variable

E E |
1 2 I

(E) j

Xvariable.E

2.2.2 Lambda Semantics

built-in constant

variable names

application

bracketing

abstraction ...(2.5)

Lambda expressions having syntax governed by Eq. 2.5 are well

formed expressions in lambda calculus. The calculus is comple'ted

by a set of lambda conversion rules which convert one expression

to another having an equivalent meaning but, may be, of a simpler

form. To introduce the rules, we need to know the terms bound and

free occurrences of a variable.

An occurrence of a variable in a lambda expression is bound if

there is an enclosing lambda which binds it and is free otherwise.

19

For example, in the X-expression (Xx.+ x y), x occurs bound arid y

is free, but considering the body only, both x and y occur free.

Returning to conversion rules, the rule of maximum importance is

0-rule which deals with the application of a lambda abstraction to

an argument. The rule, in words, says,

"The result of applying a X-abstraction to an argument is an
instance of the body with argument substituted for all free
occurrences of the bound variable."

Thus the result of applying the abstract in Eq. 2.4 to an argument

'3' is obtained as follows:

(Xx.+ (* x x) 2) 3 --> + (* 3 3) 2

--> + 9 2 --> 11

(by 0-rule)

(by operator rules)

One application of 0-rule removes one layer of abstraction and

performs the job of substituting arguments into the body. This

process has resemblance to the association of actual parameters

with formal parameters in a procedural language. The action of 0-

rule is also expressed through a notation [Q/x]E meaning, 'the

expression E with Q substituted for all free occurrences of x in

it'. Using this notation, all conversion rules are stated as

(a-rule)

(0-rule)

(f|-rule)

Xx.E <—> (Xy.[y/x]E), y is not free in E

(Xx.E) Q <--> [Q/x]E

(Xx.E x) <--> E, x is not free in E and E is a
function.

a-rule is mainly a variable-name change rule. It says that an

expression remains unchanged if a variable in it is changed

20

consistently. It is like in algebraic equations where a change in

a variable name everywhere makes no difference. The rule is

basically used to avoid name clashes [11]. T) -rule is a kind of

optimisation because it removes redundant abstractions. For

example, the expression (Xx.+ 1 x) is ^-convertible to (+ 1)

because both ultimately add 1 to an argument. The rules when used

from left to right, are called reductions (instead of conversion)

and are written with a '—>' symbol instead of '<—>'.

2.2.3 Reduction Order

An important issue, while simplifying an expression through

reduction rules, is that of the reduction order. This is

important because an expression may contain several redexes

(reducible sub-expressions) and reduction can proceed via several

alternate routes. When the expression contains no redex, it is

said to be in normal form.

All expressions do not have a normal form, and not all reduction

sequences necessarily reach the normal form, if one exists. For

example, the expression (Xx.x x) Xx.x x has no normal form

(because a 0-reduction results back in the same expression), and

the expression

(Xx.3) (Xx.x x) Xx.x x

has a normal form '3' which can be reached if the left-most redex

is evaluated first. But if we start reducing the sub-expression

((Xx.x x) Xx.x x) first, the evaluation fails to terminate. It

means that the order of reduction affects the outcome of an

21

evaluation. However, two theorems, called Church-Rosser Theorems

(CRT) I and II [40], are highly reassuring in this state of

affairs.

Theorem I : If E --> Ej and E --> Eg then there exists an

expression F such that E-^ --> F and Eg —> F.

An important corollary of this theorem is that no expression can

be converted to two distinct normal forms (two normal forms are

distinct if they are not a-convertible). Thus all reduction

sequences will reach the same result provided they terminate. The

theorem assures that we could use any reduction sequence without

any fear of reaching a wrong result, but a particular sequence may

not terminate.

Theorem II : If Ej --> Eg and Eg is in normal form, then there

exists a normal order reduction sequence from E* to Eg.

The theorem says that the normal order reduction always reaches

the result if it exists. Put together, the theorems say that

there is at most one possible result and normal order must reach

it. The proofs of the theorems can be seen in [37,40].

A normal order reduction sequence selects, at every stage, the

left-most (outermost) redex for reduction. Another reduction

s

free of internal redexes (innermost) is chosen. The two orders

have their own merits and demerits. While normal order is safe

(it guarantees to terminate in normal form if one exists), it

generally takes more number of reductions than the applicative

22

equence is called an applicative order where the left-most redex

order because it substitutes the arguments in an unreduced form

into a body and hence reduces them as many times as the bound

variable occurs in the body. Its advantage is that it does not

reduce the argument if it is not needed. The same thing makes it

safe too. The applicative order, on the other hand, reduces the

argument to normal form before substitution and thus avoids

repeated reductions. It does so without checking the need and

hence is unsafe because an unneeded argument could be a non-

terminating one. Applicative order can allow more parallelism by

selecting all innermost redexes simultaneously.

The reduction strategies are related to parameter passing

mechanisms of imperative languages. The applicative order is like

call-by-value while normal order implements call-by-need. A very

appropriate term for normal order is that it is lazy (taking up a

job only when needed). The applicative order is similarly called

eager. Wadsworth [41] improved upon normal order by suggesting to

pass pointers to arguments (graph reduction) instead of actual

arguments and thus avoid repeated computations. This makes normal

order further lazy in the sense that an expression will be

evaluated only when needed and that too only once.

2.2.4 Recursion

Recursion is generally handled through Y combinator, known as the

fixed point combinator. It is a lambda-abstraction of the form

Y = Xh.(Xx.h (x x)) (Xx.h (x x))

23

The definition can be used to show that the reduction rule for Y

combinator is *

Y H —> H (Y H)

Almost all implementations for functional languages use Y as a

built-in operator with above reduction rule rather than using its

lambda definition. Applicative order has a serious defect that it

cannot come out of a (Y H) reduction because of its eagerness to

reduce (Y H), the argument to H after first reduction, to normal

form. In this situation, the laziness of normal order is a great

help.

It may be observed that lambda calculus has a simple syntax, and

functional languages tend to follow its style. Programs written

in functional languages can be translated into lambda calculus and

then evaluation can be done according to its conversion rules.

There are some drawbacks in the process. Lambda expressions are

not easily amenable to mechanised reduction, firstly due to the

presence of free variables, and secondly due to 0-reduction

requiring to search for all occurrences of bound variable in the

body (specially difficult if the body is large). Besides, a-

conversions may be required to take care of name clashes.

In view of these problems, some other representations which are

basically variations of lambda calculus only, have been developed

and used to implement functional languages. SK-combinators [13]

is one example which is a variable-free representation. It

eliminates the problem of free variables. Some other

24

representations are director strings [14], de Bruijn numbers [42],

supercombinators [15], categorical combinators [43] etc.. The

next chapter reviews the computation models and reduction machines

based on these variants of lambda calculus and presents a view of

our model in that context.

25

CHAPTER 3

REVIEW OF COMPUTATION MODELS

3.1 INTRODUCTION

A computation model acts as a bridge between the software and

hardware levels of descriptions. The traditional von Neumann

model [1] of computation essentially says that a computation is a

sequence of fetch/compute/store cycles. The imperative style of

programming is greatly influenced by this model. A program in

these languages is a sequence of commands where the variables are

visualised as locations in the memory, and the assignment

statement imitates the fetch/compute/store cycles. In short, the

imperative languages are "high level versions" of the von Neumann

computer.

The concept of functional languages has developed more or less

independently of an underlying computation model. Realising their

importance as a highly expressive and elegant programming medium,

the research on designing suitable models for them (or adapting

von Neumann model) is active. Obviously, in this case, the

language is having an upper hand in the model design rather than

model dictating terms with the language.

There are three main models available for the implementation of a

functional language: Control Flow, Data Flow and Reduction

26

[44,45]. The von Neumann computer is a sequential control flow

model where control is passed from instruction to instruction

either implicitly (through program counter to the next instruction

in sequence) or explicitly (through GOTO). Control flow considers

instructions as active agents that transform the passive data. ;'

Data flow [46-48], in contrast, treats data as active agents

moving through the passive instruction graph (hence the name data

flow). The programs in data flow model are represented as

directed graphs (DG), called data-flow graphs, where arcs indicate

the flow of data between instructions. The arcs also serve as

communication paths for the messages (tokens) generated by nodes

or supplied from the external environment. The nodes are executed

(fired) in a data-driven manner. Sequencing of firing is based on

data dependencies only and so a greater degree of parallelism,

compared to control flow, can be supported. Several data flow

architectures are operational/under development [49-54].

Reduction model has no concept of a 'flow' of control either

program based (Control flow) or data based (Data flow). The model

makes no distinction between program and data. Both instructions

and operands are expressions. Reduction model is based on

mathematical reasoning where program execution goes like

simplifications of mathematical expressions. Depending on how the

expressions are passed as operands, one can have either string

reduction (where expressions are formed of literals or values) or

graph reduction (where expressions are literals or references).

Discussing the various implications of the three models, Treleaven

27

et al [45] have concluded : control flow lacks useful mathematical

properties for reasoning about programs, and parallelism is alien

to its concept; data flow permits highly parallel implementations,

but its utility as a general-purpose program organisation is

questionable and is more suited to specialist applications;

reduction appears to be the most natural candidate for providing

efficient support to functional programming. Graph reduction is

inherently a parallel activity supporting simultaneous and

asynchronous reductions at several sites within the graph, and

hence functional languages, using pure functions with no side

effects, would be best utilised by this kind of model.

As our work is about the design of a reduction based model, the

discussion is now restricted to the developments in reduction

models.

3.2 REDUCTION COMPUTER

A reduction machine does not run a program in the conventional

sense. It rather operates on an expression, continually

simplifying (reducing) it until it is in the simplest possible

form which is then delivered as the value of the expression. If

the expression given to the machine is a program in a high level

functional language, then the final result is the value of

program. However, expressions in a high level language would be

quite unsuitable for a machine and hence there is a need for an

intermediate language in which the high level expressions can be

conveniently represented within the machine, and which has some

simple rules for reduction. The design of such an intermediate

28

language and the translation of user programs into it is a major

concern of any model design.

In its simplest form, a reduction model can be represented as

shown in Fig. 3.1. Various reduction models differ in the

intermediate language used. Lambda calculus [36] is one such

language and it forms the basis for all others. Through its

simple syntax (Eq. 2.5), it can represent all features of a high

level functional language. Lambda expressions are easily

expressible as tree structures in a machine.

high level functional
program

Translation

intermediate machine

language form

reduction machine

value of the program

reduction rules

of the inter

mediate form

Figure 3.1 Representation of a reduction computer

29

3.2.1 Program Representation

A X-expression is represented in the form of a tree which reflects

its syntactical structure. The leaves of the tree are constant

values (such as 0, True), built-in operators (such as +,'IF, =),

or variable names. The application of a function to an argument

is represented as (binary tree)

•

/ \
f a

where '@' sign indicates an application type node. Functions of

several arguments, dealt through Currying, are shown through left-

associative application resulting in a left linear binary tree

such as

e

/ \
@ 7

/ \
* 5

The tree denotes the expression (* 5 7). A function (lambda

abstract) is of the form X(formals).(body), and its application to

actual parameters is reduced through ©-reductions expressed as

(X(formals).(body))actuals —> body (with actuals substituted
for formals)

A lambda abstract is represented by a lambda node as shown in Fig.

3.2(a) and its application to arguments as in Fig. 3.2.(b). A 0-

reduction constructs a new copy of the lambda body (an instance)

where free occurrences of a bound variable are replaced by an

argument. The process is called instantiation.

30

X (formals)

I body /

(a)

/\1
/

X(formals)
/ \

r4!body (

(b)

>actuals

Figure 3.2 Representation of a lambda abstract - (a) lambda node,
(b) lambda abstract applied to actuals

3.2.2 Reduction Options

The lambda body in Fig. 3.2(b) may have several occurrences of a

formal parameter so that while reducing, there are two options :

(1) the argument may be copied for substitution into each

occurrence (string reduction), or

(2) a pointer to the argument may be substituted into each

occurrence (graph reduction).

String reduction suffers from heavy copying (if the argument is a

large expression) and wasteful work (if argument contains redexes

which get duplicated in copying). The performance of the method

can be improved if .used with applicative order where the argument

is always in normal form before a 0-reduction is taken up. GMD

reduction machine [55] is a lambda calculus based string reduction

machine. The aim of this project was to demonstrate reduction

machines as an alternative to conventional architectures. It

31

concluded that string reduction is a useful technique but may be

inefficient if adhered rigorously. Mago's [56,57] cellular tree

machine, implementing Backus FP [2] class of languages, is based

on distributed string reduction and relies on massive parallelism

to overcome its inefficiency. CTDNet [58,59] is an applicative

order lambda reducer which uses a modified form of string

reduction (permitting limited use of pointers) to improve

performance. Berkling has done extensive work on string reduction

systems based on applicative X-expressions [60].

The second option, of graph reduction, was suggested by Wadsworth

[41]. The method eliminates the inefficiency due to repeated

computations and also the need for copying big expressions by

converting multiple references for a common sub-expression into

multiple arcs (pointers) directed to the root of the common sub

graph. Using normal order with graph reduction, Wadsworth

combined the benefits of both normal order and applicative order

yielding a reduction system called normal order graph reduction or

lazy evaluation [61]. The method is safe (having the Church-

Rosser property [40] of normal order) and, like applicative order,

reduces expressions once (rather at most once) only.

Graph reduction serves as a general reduction model, and is used

with many different types of intermediate forms of machine

languages although the above discussion was in the context of

lambda calculus language.

32

3.2.3 Intermediate Forms As Machine Languages

Lambda calculus has some drawbacks when directly used as a machine

language. 0-reduction, a fundamental operation here, is

inefficient because the instantiation process has to visit every

leaf of the lambda body to check for a free occurrence of the

bound variable. There is a danger of inefficiency while

substituting into very large bodies. Further, new instances of

sub-expressions containing no free occurrences of the bound

variable get constructed unnecessarily.

A solution to the above problem is to compile each lambda body

into a fixed code which, when executed, builds an instance.

Unfortunately, the presence of free variables in lambda

expressions makes a complete mess of it because the compiled code

is going to be different for different values of a free variable.

SECD machine [29,62] permits parameterising of code sequences on

the values of free variables. It is an abstract architecture that

implements applicative order reduction of X-expressions. The

machine maintains four data structures called the Stack, the

Environment, the Control and the Dump. In the machine, lambda

abstractions are compiled into a package, called closure,

consisting of the abstract and an environment for its free

variables.

Another approach, different from the above 'environment' model for

dealing with variables in applicative languages, has been

developed by Turner [13] which is based on a result in logic that

variables, as used in logic and mathematics, are not strictly

33

necessary [34], Certain intermediate languages, for program

evaluation, have been developed around these ideas which are being

discussed now.

3.2.3.1 Combinators

Schonfinkel [34] and Curry and Feys [35] have developed a theory

of combinators which is a recast of the entire lambda calculus.

Combinators are equivalent to closed X-expressions i.e. the ones

which contain no free variables. Turner suggested the use of this

combinator theory in developing a variable-free representation of

expressions. His algorithm is a process of abstraction which

removes all occurrences of a variable from an expression yielding

variables-free abstracts. For a function f, defined by f(x) =

exp, an object equivalent to f is obtained by abstracting out the

variable x from exp, which is written as [x]exp. Application of

this functional object to a value v is written as ([x]exp) v, and

the connection between application and abstraction is defined by

([x]exp) x = exp

which is same as (Xx.body) x = body, in effect. Turner's

algorithm is based on three simple abstraction rules :

[x] x =1 (I for identity function)

[x] y = K y, x ^ y (K for constant)

[x] e1 eg = S ([xje^ ([x]eg) (S for steering)

where S, K and I are primitive functions called combinators and

their application is defined by following reduction rules :

34

I X > X

K y x —> y

S f g x --> f x (g x) ... (3.1)

Through repeated abstractions, all variables may be eliminated

from an expression and thus the substitution operation of 0-

reduction becomes meaningless. The problem of name-clash in X -

expressions is also eliminated. A problem with SK combinators

is that they yield a code quadratically expanding with successive

abstractions. Turner optimised [63] the algorithm to convert the

quadratic expansion into a linear build up by introducing some

additional combinators. Two of them have the following reduction

rules:

B f g x —> f (g x)

C f g x --> f x g ... (3.2)

The B and C combinators are optimised versions of S. B steers its

third argument to the second while C to the first. Various

experimental computing engines based on combinator reduction have

been developed and studied [64-67]. Hybrid graph reducer based on

a unified model of combinator reduction and X-style reduction has

also been reported [68,69].

3.2.3.2 Director string terms

Reduction rules for combinators show that they behave like

argument directing operators. They replace the substitution

process of 0-reduction by combinator reduction. Kennaway and

35

Sleep [70] suggested the use of directors as annotations at the

nodes of a tree (representing an expression) to achieve the same

effect. As an example, let (p q) be an expression where p and q

are some•further expressions. Let both contain references to a

variable y. Abstracting y from (p q) gives

[y](P q) = S yp yq

where yp denotes the result of [y]p and yq that of [y]q. The tree

structures for (p q) and (S yp yq) are

@ @

/ \ / \
p q @ yq

/ \
S yp

Here the intention of S combinator can also be expressed using a

director at the node in the expression (yp yq) as

A e
/ \

yP yq

The director '/\', annotating the application, indicates that the

node is a function expecting one argument which on arrival, should

be sent into both the branches (/\ indicating both ways).

Abstracting out more than one variable leads to a string of

directors at the nodes, called director strings. Comparing the

syntax trees for (S yp yq) and (yp yq) , it can be seen that the

former requires an extra node. Thus the use of director strings

leads to a more compact variable-free code.

Kennaway and Sleep have given an algorithm [71] for converting X"

expressions into what they call Director String Terms (DST). In

DST notation, a node is represented as a 3-tuple term written as

36

(d2D2®2' tl' t2^ where d2D2 is a binary director string (indicated

by subscript 2) with dg as the leading director; @g stands for a

binary application node; t1, tg are the DS terms for left and

right sub-trees at this node. Similarly, the leaves are

expressed as pair terms (d1D1©1, tj). The subscript 1 now

represents a unary case. A leaf, having variable, is converted

into a hole representing an empty space to be filled by an

argument which reaches it following the directors. The Director

String Calculus (DSC) [71], a calculus of DST, captures the

essence of the combinators introduced by Turner. DSC reduction has

been shown to preserve beta-equivalence under backward translation

to lambda terms. The algorithm for conversion to DST has been

further optimised from code size point of view [72,73].

Director strings have been used in one of the versions of SKI

machine [74]. CTDNet [59] is a lambda reducer which, using

director string annotated process graphs, improves the efficiency

of 0-reduction. Another use of director strings has been reported

in COBWEB-2 [75].

3.2.3.3 Supercombinators

The idea of SK combinators (or of director strings) is quite

appealing from implementation point of view because the machine

has to handle a fixed set of combinators which can be implemented

directly on hardware eliminating the need for an extra level of

interpretation. However, an individual reduction does very small

amount of work. Each reduction simply produces the effect of

pushing an argument down by one step in the syntax tree of a

37

function body. Their fine grain size is 'uneconomical' due to the

overheads (such as finding next combinator, accessing the argument

etc.) dominating the execution time. It can be argued that each

reduction should do sufficient work to justify the time spent on

preparation. Hughes [15] proposed the idea of 'customised'

combinators derived from user programs. His combinators, named as

supercombinators, are bigger in grain size and hence avoid the

dominance of overheads in the execution time.

A supercombinator $S ('$' sign indicating a supercombinator

identifier) of arity n is equivalent to a X-expression of the

form [11]

Xx^.Xxg. ... Xxn.E, n > 0 ... (3.3)

where E is not a X-abstraction such that, (i) $S has no free

variables, and (ii) any X-abstraction inside E is a super

combinator. Thus a supercombinator is a function of n variables

containing no reference to any other variable. Its definition may

be written as

H> O X-i Xn ... X — fci

The definition acts as its reduction rule. A reduction consists

of applying the supercombinator to all n arguments, and the result

is an instance of the supercombinator body E with appropriate

arguments substituted for all occurrences of the formal

parameters. Thus the reduction is equivalent to performing

several 0-reductions simultaneously.

38

Johnsson has developed a transformation algorithm [76], called

'lambda-lifting', which converts a X-expression into super

combinatory form. The algorithm starts with the innermost lambda

abstraction, making its free variables into extra parameters of a

supercombinator. The process is continued till no lambda is left

in the expression. To make the supercombinators fully lazy (so

that no repeated evaluations may occur), Hughes generalised the

idea of free variables to free expressions i.e., ones not

containing any occurrence of the bound variable. According to

him, the value of a free expression will be same between all

instances, and hence should be shared to preserve laziness. His

transformation [77] makes each maximal free expression (instead of

a free variable which is actually a minimal free expression) into

an extra parameter of a supercombinator.

Using the above transformations, a program in a higher level

language can be converted into a supercombinatory program of the

form

Supercombinator definition

Expression to be evaluated ... (3.4)

The stages involved in the conversion are shown in Fig. 3.3.

39

source program in high level language

compile to lambda expressions

program in lambda calculus enriched
by let and letrec

lambda-lifting transformation

supercombinatory program

Figure 3.3 Compilation to supercombinatory form

Many systems consider supercombinator definitions as a set of

rewrite rules [78]. A reduction then consists of rewriting an

expression which matches the left-hand side of a rule with an

instance of the corresponding right-hand side, thus constituting a

term rewrite system [79-82].

There have been some extensions to the idea of supercombinators

such as Serial combinators [16,83] which have an optimised level

of grain size without sacrificing parallelism; or refined super

combinators [84] which are based on the detection of sharing of

partial function applications, and they avoid unnecessary

overheads in cases where no sharing occurs.

Categorical combinators [43,85] is another line of action which

aims, like supercombinators, at performing the equivalent of

several 0-reductions simultaneously. The combinators utilise the

40

concept of de Bruijn numbers [42]. The related research and some

abstract machines based on them are discussed in [85-87].

3.3 SUPERCOMBINATOR REDUCTION MACHINES

Supercombinator reduction has generated maximum interest as an

efficient method for implementing functional languages e.g., G-

machine [88-90], GRIP [91,92], ALICE [93,94], Flagship [95-99],

TIM [100]. As supercombinators are no primitive operators having

fixed reduction rules, a pre-processing of their definitions in a

program is essential to facilitate reduction. Thus all machines

which use supercombinators, have an additional step of compiling

the supercombinator program (Fig. 3.3) further.

G-machine, developed at Chalmers Institute of Technology, Sweden,

is an extremely fast implementation of supercombinator graph

reduction. In this machine, the pre-processing consists of

compiling each supercombinator definition into a sequential code

of stack manipulative instructions (the G-code). During

expression evaluation, whenever an application of a super

combinator is encountered, the machine executes the G-code

compiled from its definition. The execution builds an instance

using the arguments from stack. This reduction in G-machine has

been termed as programmed graph reduction [89].

The original G-raachine was a uniprocessor model but research

effort in the direction of realising a parallel G-machine is

continuing. One attempt has been to allow multiple execution

threads of control, allocating a stack for each thread [101-103].

41

These designs lead to multiple and arbitrarily deep stacks giving

a 'cactus stack' structure which is difficult to implement

efficiently. Another direction is represented in the development

of GRIP architecture [91,92] - a project supported by UK Alvey

Programme in collaboration with ICL and High Level Hardware

Limited. The machine implements supercombinator graph reduction

in parallel. Initially, it planned to represent supercombinators

as tree-structured 'templates' which are instantiated when applied

to arguments. The machine is based on a high-bandwidth bus

architecture. The bus provides, access to a large, distributed

shared memory, and by using Intelligent Memory Units (IMU) and

packet-switching protocols, it can support a large number of

processors working in parallel. Several other implementations of

parallel functional programming such as parallel combinator

reduction, parallel G-machine etc., are being tried [104,105]

using this architecture.

ALICE [94] and Flagship [95] (later version of ALICE) compile a

-supercombinator definition into an imperative code block which is

kept in memory, with an identifier, as code packet. The machine

uses some other types of packets also which represent an

application of a supercombinator to its arguments [97]. The

application is reduced by executing the code packet of that

particular supercombinator. All packets reside in different

memory locations and constitute a graph through their links. The

architectures allow parallel threads of control, and a packet

communication system maintains track of the graph transformations

being done in parallel. Simulation studies on Flagship measure

42

program parallelism in terms of the length of critical path - the

longest sequential thread of computation [99].

TIM (three instruction machine) [100] draws ideas from G-machine

and SECD machine [62], and is claimed to be faster than G-machine..

It compiles a supercombinator definition into a sequential code

made using instructions from a small set of three instructions

only. The execution follows the style of SECD machine.

3.4 THE PROPOSED MODEL

The aim of the research work taken up was to design a super

combinator based computation model for a multiprocessor

environment. The pre-processing of supercombinator definitions in

the models, discussed above, consists of compiling them into

linear sequences of instructions which when executed, build an

instance. The other approach to supercombinator reduction is

template-instantiation [11,92]. Here a supercombinator body is

kept as a tree and instantiation is done through tree-walking as

in 0-reduction.

In the proposed model, the template-instantiation is being used,

and the language of director string terms (DST) [71] is adapted to

improve the efficiency of tree-walking mechanism. Director string

annotations at the nodes in a definition body tree act- as

'signposts' so that the instantiator need not 'try' every leaf or

sub-tree to find an occurrence of the formal parameter. Lot of

unnecessary tree-walking can be avoided by this. Hence the pre

processing of supercombinator definitions in this model consists

43

of compiling each definition body into director string terms

through a process of abstracting out the formal parameters. To

take care of pattern-matching definitions, the language of DST has

been enriched by introducing a concept of structured directors -

the directors which can extract and direct components of a

structured argument into different sub-trees. Terms of the

enriched language have been called Structured Director String

Terms (SDST).

It .might appear that compiling supercombinators to director

strings amounts to going back from the large execution step (and

hence lesser overheads) of supercombinators to small ones of the

director string model. It is not so. The model implements super

combinator reduction using SDST, not as an intermediate language

for program representation, but as a tool to mechanise the process

of instantiation. A redex still consists of a supercombinator

applied to its arguments, and is handled by a single processor

using SDS term of the function body like a template having

'prompts' for argument substitution. In other words, the

instantiation takes place in one large step of reducing a super

combinator (where the processor walks over the template) rather

than through several small steps of reduction in director string

spirit.

44

CHAPTER 4

IMPLEMENTATION OF PATTERN-MATCHING : A LAMBDA CALCULUS BASIS

Higher level functional languages make extensive use of pattern-

matching to increase their expressive power and elegance. A

pattern-matching definition of a function has several clauses and

evaluation of an expression having reference to such a function

requires the ability to select the applicable clause according to

the structure-type of actual parameters. The selected clause is

then used, alongwith parameters, in reduction. This chapter

develops a lambda calculus view of the whole issue which acts as a

basis for the compilation of pattern-matching definitions

discussed in next chapter. The discussion, here, is divided into

two parts: one for the clause selection phase where a lambda

calculus interpretation suggesting concurrent action on matching

has been evolved, and the second for the reduction phase where a

modified set of 0-reduction rules has been developed. These rules

deal with the changed circumstances of 0-reduction when X~

abstractions binding structured variables (called patterns) are

involved.

The chapter begins with a brief introduction to pattern-matching

and its implementation. Section 2, starting with the enriched

lambda calculus view of pattern-matching, gives a different

interpretation suggesting matching in parallel. The section then

45

bifurcates into two sub-sections: one giving a matching algorithm

to be used for clause selection, and the other giving reduction

semantics for pattern-binding lambda abstractions in the form of

modified 0-rewrite rules. Finally, section 3 gives conclusions of

the work reported in this chapter and its link with the next.

4.1 PATTERN-MATCHING

It is a notational device for defining a function which requires a

case analysis to be performed on its parameters. A pattern-

matching definition contains several alternative equations

distinguished by the use of different types of formal parameters

called patterns. An invocation of such a function results in the

use of that particular equation whose formal parameters match the

arguments.

Patterns used in a pattern-matching definition are conceptually

different from the variables used in an ordinary function

definition. A pattern stands for a subset of the values belonging

to a given data type whereas a variable stands for the complete

set. A pattern is more specific and from that point of view,

variable is a degenerate case of pattern. As an example, if N is

the set of natural numbers then n is a variable representing any

arbitrary value from N, and specific values such as 1, 5, 9 etc.

are patterns defined over N. Structured data types lead to more

complex patterns. Pattern formation can use data constructor

functions also resulting in hierarchical patterns. A pattern is
formally defined as [11]

46

Definition 4.1 : pattern

pattern

construetor_pattern

Constructor

pattern list

= Constant j variable J constructor_pattern

= Constructor pattern_list

= sum-constructor | product-constructor

= NIL | (pattern, pattern_list)

A pattern-list in a constructor-pattern has as many patterns as

the arity of its constructor. If the constituents of a pattern

are not further constructor-patterns then it is called a simple
pattern.

A general pattern-matching definition for a function f, in a high
level functional language, is given as

f PU p12 ... plm

f p21 P22 *•' P2m

= E-

= E.

f pnl Pn2 ' • • Pnm = En ...(4.1)

where PiJ (i = 1 to n, j = 1 to m) are patterns and E^s are
expressions in the high level language. The definition has n

clauses, each defining the function in terms of mparameters.
Here an expression Ed is known as the body of the ith clause and
the patterns on left-hand side are its formal parameters.
Following is an example of a definition in pattern-matching style
for a function Sumlist, returning the sum of a list of integers:

Sumlist [] =0

Sumlist (x:xs) = + x (Sumlist xs)

47

..(4.2)

where ':' represents the list constructor CONS, x stands for the

head of the list and xs for the tail. The definition has two

clauses: the first to be used for an empty list and the second for
a non-empty list.

Implementation of pattern-matching involves two steps:

(1) selecting the applicable clause by trying to match the
arguments with formal parameters of each clause.

(2) evaluating the body of the selected clause in an environment
where the variables referred by the body are bound to

appropriate arguments or their constituents, as applicable.

For example, if the Sumlist function (Eq. 4.2) is applied t

list [5:7:9] then the pattern-matching process will select second

clause, and the bindings produced for the evaluation would
be, x —> 5; xs --> [7:9] .

4.2 LAMBDA CALCULUS INTERPRETATION

Translation of pattern-matching into lambda calculus via an

intermediate level of enriched lambda calculus [11,109] is- a way
of implementing it. The constructs in enriched lambda calculus
Provide an operational semantics whose approach to pattern-
matching work is sequential. In order to take advantage of a
multiprocessor environment, an interpretation providing matching
in parallel has been developed. The analysis begins with an
explanation of the enriched lambda calculus approach which is then
modified to yield a parallel matching strategy.

o a

48

In a high level functional language, a function definition is

given as g Vj Vg ... vm = e, where v^s are variables and e is

an expression in the concerned language. In lambda calculus, the

same definition is seen as an expression with m abstractions and

is written as [11,36]

g = Xvj.Xvg. ...Xvm.E s Xv.E

where v h Vj, ..., vm ...(4.3)

Here E is the lambda calculus version of e. The symbol '•'

indicates syntactic equality. Extending the interpretation to a

function defined on patterns as g p1 Pg ... Pm = e, we get

g =Xp.E where p s Pl, Pg, Pjn ...(4.4)

An expression of the kindXp.E is called a pattern-matching lambda

abstraction [11] which is different from a simple lambda

abstraction. Application of an ordinary lambda abstraction to an

argument is reduced by 0-reduction rule. In other words, 0-

reduction completely specifies the semantics of such an

application. However, when a pattern-matching lambda abstraction

is involved then a concept of pattern-match success/failure has

also to be taken into account besides the 0-reduction process.

Using this idea, the general pattern-matching definition (Eq. 4.1)

is translated into enriched lambda calculus [11] as

f =Xa.((XprE1)a1 ... am J ... | (Xpn.En)ai ... am ...(4.5)

where pi s p^, ..., pim, i = 1 to n; a • alf ..., am. Here a is

a set of new variable names and none of the a- occurs free in any

E.^ The symbol | (fatbar) is an infix operator meaning

49

a I b = a, if a f FAIL

FAIL J b = b

Operationally, \ evaluates its left argument; if the evaluation

yields something other than FAIL , then | returns that value

(first rule); if it evaluates to FAIL, J returns its right

argument (second rule). The word evaluation here encloses both

pattern-matching and reduction. We refer to this as a combined

view of the semantics of a pattern-matching lambda abstraction.

It can be further seen that the operational semantics suggests

sequential trials of evaluation (matching + reduction) in a

if...then...else if...' manner.

It is felt that the above sequential implementation is not

suitable for a multiprocessor environment. We are proposing an

alternative interpretation which draws ideas from an extended

lambda calculus having list handling capabilities [106-108]. This

lambda calculus dialect has, besides the usual a and 0 rules, two

fextra reduction rules called * rules. The * rules, given below,

are meant for list manipulations.

(*1) [flt fn] E —> [f1 E, ..., fn E]
0f2) Xx.tE^ En] —> [Xx.E! Xx.En]

The theme of our parallel implementation proposal, using this list

manipulative lambda calculus, is expressed in the following recast
of Eq. 4.5:

f= \a.[\f>1.E1, ..., Xpn.En] &1 ... affl

Using *1 rule for the body of lambda abstraction in Eq. 4.6, we

mua\ libram University or kuv

get

f=Xa.[(Xp1.E1) &1 ... am, ... ,(Xpn.En) &1 ... am]
...(4.7)

Eq. 4.7 suggests that elements of the list in the function body

can be handled concurrently in a multiprocessor architecture.

However, this would require making full copies of each argument to

be given to every processor, and is, therefore, expensive. The

copies are required for the twin purposes of matching and

reduction if a combined view of the semantics of a pattern-

matching lambda abstraction, as understood in Eq. 4.5, is taken.

However, matching, unlike reduction, does not require a full copy.

It can be done with the help of a structural tag only of the

argument. Hence, if we take an isolated view of the two issues of

matching and reduction, which were mixed in the combined view,

then the copying for parallel action can be restricted to

appropriate tags only. After the parallel matching is over and a

successful expression is available, the complete arguments can be

supplied for reduction to the relevant processor only. This way,

the matching work is done in parallel using multiple copies of the

tags of arguments, and the reduction is done using a single copy

of the arguments. To achieve this, we take away the job of

matching from the semantics of (Xp.E) and pass it on to a separate

function called Match_list. In the light of this discussion, the
translation in Eq. 4.6 is revised as

f=\a..[Match_list px Tag_list (\p1.E1),
Match_list pn Tag_list (Xpn-En)] &1 ... am ...(4.8)

51

where Tag.list = [(Tag a,), ..., (Tag .^j. The function
Match_list takes three arguments -a pattern list (pi), a tag list
(tl) and a function g (this function is a pattern-matching lambda
abstraction in Eq. 4.8). If pl and tl '«atch then it returns g
otherwise returns FAIL. It may be noted in Eq. 4.8 that each
Match_list is supplied with a separate copy of the Tag-list. The

parallel applications of Match_list may prove successful for ith
clause and thus return

[FAIL, ..., (Xpi.Ei), FAIL, ..., FAIL] &1 ...

which may be interpreted as

(ApVEi> al ••• am

so that the function definition applicable after matching* is

f=Xa.(Xpi.Ei) ai ... am _(4<9)

Now the matching work is already over and the lambda abstraction
of the kind (Xp.E) in Eq. 4.9 can be taken as a modified form of
an ordinary abstraction (Xv.E). The application ((Xp.E) a) is
just like any other candidate for a 0-reduction, but with an
additional care that it is binding apattern rather than a simple
variable. It has nothing to do with matching. This matter is
taken up in section 4.2.2.

*

4.2.1 Matching Algorithm

am
m

The functions Match_list and Tag, introduced in Eq. 4.8,
being explained in detail. Match_list takes two lists of

are now

same

52

length and a function, and matches the lists element by element.

It returns a FAIL if the matching fails otherwise returns the

function. It is defined as

Match_list [] [] g = g indicating a successful completion of
the matching process

Match_list (p:ps) (t:ts) g

= if (Match p t) then Match_list ps ts g

else FAIL ...(4.10)

The boolean function Match performs individual matchings according

to the following cases.

Case I : p is a constant pattern

Match p x = if (= p x) then True else False ...(4.11.1)

Case II : p is a variable

Match p x = True ;always ...(4.11.2)

Case III : p is a sum-pattern

Let p = s pCl ... pcr where s is a sum-constructor of arity r and

PCj (j = 1 to r) are the components of p. In this case, the

single tag x passed on to Match may actually be a tag-list of the

kind [s\ Xl, ..., xr]. The function Match is then expressed as

Match p x = if (= s s')

then Match_comp [pc-p ..., pcr] [Xl xr]

else False ...(4.11.3)

Case IV : p is a product-pattern

In a product-pattern, only the components are to be matched.

Match p-x =Match_comP (pcj, pcr) [^ ..,, Xp] ...(4.11.4)

53

In the last two cases, another function Match_comp has been

introduced. It is called by Match whenever a constructor type
pattern is encountered. It takes two lists and uses function

Match to compare them element by element. The two functions call

each other in a mutually recursive manner. The Match_comp is
defined as

Match_comp [] [] = True ;indicating a successful match of
Wq. . „ , . ,_ all the components of a pattern
Match_comp (pc:pcs) [] = False

Match_comp [] (tx:txs) = False

Match_comp (pc:pcs) (tx:txs)

= if (Match pc tx) then Match_comp pes txs

else False ...(4.12)

In the definition of Match_comp, it can be seen that the matching

is abandoned whenever a particular component fails to match. Now

the function Tag remains to be defined. This function is

necessary for generating a list of tags from the actual parameters

for the function Match_list. As indicated earlier, tags reduce

the amount of copying required for parallel implementation of the

matching process. The function Tag generates a single tag or a

list of tags depending on the data type. A boxed representation
of data is shown in Fig. 4.1.

type field 1]field r

Figure 4.1 Boxed representation of dat*

54

Here a sub-field elther holds , ^ ^ ^^^ ^ ^
»avi„g . type fleld and the sub.fields CQrrespondlng ^ thfi

CMPOMnt! °f ^ "—• *" t«~ of ttl. representation, the

;ructure

function Fag- is defined as

Tag x = if (x.type = simple) then x.field

else (Cons (x.type) (Map Tag (x.field-list) ...(4.13)

Definitions 4.10 through 4.13 form acomplete algorithm for the
matching process. The algorithm forms the basis for the run time
multiprocessor implementation of pattern-matching discussed in
Chapter 7. The necessary compilation of the left hand sides of a
Pattern-matching definition into a list of pattern-types is
discussed in next chapter. At run time, the compiled pattern-
types are matched with the tags of actual parameters to decide the
selection of the applicable clause.

4.2.2 Reduction Semantics of Xp.E

In the lambda calculus view „*
us 16W °f Pattern-matchingf developed

earlier, we have taken away the work of mo+ u*j urie work of matching from the

abstraction Xp.E ana passed it on to the function *atch list
Thus the semantics of an appiication «Xp.E) Q) ls to be _„ ^
reduction point of vie„ only, havi„g nothing to do „ith .atchin*.
This perception of *p.E ls dlff„.nt fpo. ^ ^^ ^ ^
.atchin. and reduction [11,109]. hence „e prefer to caii aXp.E as
a Pattern-bl„ding lambda abatractlon rather ^ ^^^
»atchi„g lambda ahstraction. ». oould call |t ainply . ^

55

abstraction but the qualifier 'pattern-binding' is to remind that
the abstraction binds patterns rather than ordinary variables. In
this section, we propose aset of 0-rewrite rules for applications
involving pattern-binding lambda abstractions.

The application of an ordinary lambda abstraction to an argument
is solved by B-reduction rule stating

(Xx.B) Q —> [Q/x] B
...(4.14)

where [Q/x] Bmeans, "the body Bwith Qsubstituted for all free
occurrences of x in it". The prefix [Q/x] symbolises a
substitution operation. If the rule is extended as such to a
pattern-binding lambda abstraction, we get

(Xp.E) Q —> [Q/p] E

But the difference, that the abstraction is binding . pattern
rather than avariable, cannot be ignored because the argument ,
i. astructured object having the same structure as p(ensured by
the etching process done prior to reduction,, and the body .may
have reference, to the components of pwhich should be substituted
by corresponding components of q and not the full (,. Thus the
substitution operation here cannot be 'worded, as simply as for
ordinary lambda abstractions.

*eveSZ U0„ has given an operationai semantics for functions!
Program where a set of a and B rules collectively implement the
substitution operation without explicitly using it. We follow the
same line of thought to circumvent the problem of stating the
substitution in the presence of pattern type bound parameters in

56

lambda abstractions. Such abstractions give rise to an extended

syntax of lambda calculus which allows patterns as valid X-

expressions. Taking this extended syntax and ignoring the

possibility of a name-clash, the rewrite rules for a 0-redex of

the kind (Xp.E) Q (by induction over E) are

(01) (Xp-p) Q —> Q

(62) (Xp.s) Q —> s> p and s are different patterns

(B3) (Xp.Pi) Q —> q.f i < i < r

(fi4) (Xp.Cj Ex ... Ek) Q -> Cl (Xp.E^Q ... (Xp.Ek)Q

(B5) (Xp'A> « "> (XPl- ... Xpr.A)qi ... qr
(fi6) (Xp.E! Eg) Q -> ((Xp.E^Q) ((Xp.Eg)Q)
(^7) (Xpa-Xpb. ... Xpx.f) q —> \pb. ... Xpx.(Xp&.f)q

Here A is an atomic expression representing a constant or a

variable, and Cj is a constructor function of arity k. The

pattern p and argument Q are matched i.e. if

P = c Pj ... pr then

Q = C q1 ... qr

Rules 01 to 04 pertain to a pattern type body where first three

are special cases of the general fourth. Rule 05 is for an atomic

body which breaks the redex into smaller redexes (using components
of Q) for further action. This is necessary in order to find out

whether the atomic body refers to some nested component of the

bound pattern. Rule 06 deals with an application in the usual

way, and multiple abstractions are tackled one by one through the
rule 07.

57

Here are some examples of 0-reduction illustrating the use of

above rules.

I- (X[].[]) [] —> [] ;rule 01

2. (XO.1) 0 —> 1 ;rule 02

3. (X(Cons x y).x)) Cons 4 5 —> 4 ;rule 03

4. (X(Cons x y).Cons x y) Cons 4 5 —> Cons 4 5) ;rule 01

5. (X(Cons x y).Cons x (Cons x y)) Cons 4 5

--> Cons ((X(Cons x y).x) Cons 4 5)

((X(Cons x y).Cons x y) Cons 4 5) ;rule 04

--> Cons 4 (Cons 4 5) ;rule 03 and 01

6. (X(Cons x y).SQ x) Cons 4 5

—> ((X(Cons x y).SQ) Cons 4 5) ((X(Cons x y).x) Cons 4 5)

--> ((Xx.Xy.SQ) 4 5) 4 ;rule 05 and 03

—> ((Xy.(Xx.SQ) 4) 5) 4 ;rule 07

--> ((Xy.SQ) 5) 4 ;rule 02

~_> SQ 4 ;rule 02

> ^ ;operator rule

The rules 01 through 07 completely specify the 0-reduction process

to be used for pattern-binding lambda abstractions. In the

general definition of a pattern-matching function (Eq. 4.1), these

rules can be used if the clauses are treated as pattern-binding
lambda abstractions of the kind

XPii-XPig. ... XPim-E^ i = 1 to n

alternatively written as

(Xp^.E^ where p\ =p.^ ..., p.^

58

If the pattern-matching process selects kth clause then we are

left with the reduction of an expression of the kind

(APk.Ek) a.^ ... a
m

where ax, ..., am are m arguments. This application can be reduced

according to the 0-rules developed here.

4.3 CONCLUDING REMARKS

A function defined differently for different cases of its

parameters is expressed in functional programming through pattern

matching. An application of such a function to actual parameters

requires an additional step of selecting the applicable definition

besides instantiation (the reduction). The selection is done on

the basis of a successful structural match between the formal

parameters of a clause and the actual parameters.

In this chapter, pattern-matching has been interpreted in an

extended lambda calculus which allows list manipulations. The

interpretation suggests a simultaneous matching of all the

clauses, and is different from that in enriched lambda calculus

[11,109] which has a sequential operational semantics. For

parallel action, the nuisance of making multiple copies of actual

parameters is greatly reduced by the observation that matching

requires only structural tag of arguments and not their full form.

Accordingly, an isolated view of the semantics of (Xp.E) has been

proposed where the matching for clause selection is done in

parallel followed by a 0-reduction on the selected clause only.

59

It helps in keeping the dynamic graph size under check as compared

to implementations which proceed with matching and reduction

together [11,109,110] keeping all the clauses active. The above

0-reduction is performed through a modified set of rules which

have been proposed to take into account the presence of patterns
as bound parameters.

Each clause in a pattern matching definition is considered to be a

supercombinator definition. As indicated in chapter 3, super

combinators need some pre-processing because they do not have

simple or fixed reduction rules. Accordingly, the next chapter

develops a scheme for compiling a definition body into a

structured director string term. The structured directors intro

duced in these terms allow mechanical implementation of the

semantics of the modified J3-reduction specified in this chapter.

The template instantiation of supercombinators through SDS terms

is greatly simplified due to their fixed term-reduction rules
discussed in chapter 7.

60

CHAPTER 5

COMPILATION OF PATTERN-MATCHING DEFINITIONS

In the previous chapter, a lambda calculus interpretation for

pattern-matching was developed. It divided the whole issue of

implementing pattern-matching into two separate parts: one

concerned with choosing the applicable clause through a matching

process, and the other with the reduction of the chosen expression

through a set of modified 0-rules. This chapter develops an

algorithm for compiling a pattern-matching definition so as to

enable efficient reduction at run time. For the matching part,

the formal parameters (patterns) in each clause are compiled into

a sequence of pattern-types which are matched with the actual

parameters at run time. For the reduction part, the body of each

clause is compiled into a Structured Director String (SDS) term

which is used in template instantiation. The two informations are

put together in the form of a pair for every clause, so that a

pattern-matching definition having n clauses gets compiled into a
list of n pairs.

Section 1 of the chapter deals with the total compilation process

and it comprises of two sub-sections corresponding to the two

parts of compilation. In section 2, the compilation is

illustrated through an example. The utility of SDS terms in

implifying reduction is also shown. Section 3 deals withs

61

functions defined through guarded equations. Finally, in section

4, conclusions and link with the next chapter are given.

5.1 COMPILATION PROCESS

Given a pattern-matching definition (general form in Eq. 4.1), the

compilation produces a list of pairs written as

L = [P1, Pg, Pn]

where Pi = <Si, ti> , i = 1 to n

A sequence Si and term tj_, forming a pair Pit are expressed as

Si = T(pn), T(pi2), T(pim), and

fci = SDS(Ei) ...(5.1)

with T(pi,) as the pattern-type of a pattern p.. and SDS(E-) as

the SDS term representation (to be discussed shortly) of the ex

pression E^. At the time of execution, the sequences S- (i = 1 to

n) are used in the process of matching whereas the SDS terms t-

support reduction. The list L constitutes a field (called the SDS

field) of a definition code (D-code) structure. Later (next

chapter), another field, called the header, is added to complete

the D-code structure. The various informations in this code,

filled at compile time from function definitions, are aimed at

simplifying the multiprocessor reduction process. The discussion

now is regarding compilation for the two items shown in Eq. 5.1.

5.1.1 Compilation For Clause Selection

Clause selection for an application involving a pattern-matching

62

function is based on a structural match between the formal and

actual parameters. From the matching point of view, the patterns,

used as formal parameters in a definition, can be divided into

three types:

(i) Constant

(ii) Irrefutable

(iii) Refutable

The constant types include all constant patterns. Although they

are refutable but they form a separate type to distinguish them

from refutable constructor type patterns.

Irrefutable types [11] always match, hence it is beneficial to

classify patterns as irrefutable, wherever possible, so as to save

matching effort on them. An irrefutable pattern is defined as

follows [11]:

A pattern p is irrefutable if it is

(i) either a variable v

(ii) or a product-pattern of the form (t p, ... p)

where p-^ , ..., pr are irrefutable patterns

In this definition, t is a product-constructor of arity r.

Refutable types include all constructor-patterns which are not

irrefutable. They present the maximum difficulty in matching

because each component of these patterns has also to be matched

before deciding the outcome. All sum-constructor patterns or pro

duct-patterns having some refutable components fall in this

63

category.

The aim of compilation is to produce a sequence S from the formal

parameters of a definition. The set from which the elements of

these sequences are drawn, consists of all constants, an

identifier 'Ir' (for irrefutable), and all data constructor

functions. The elements of a sequence may themselves be sequences

because patterns can be arbitrarily nested. The compilation

algorithm is specified through the following definition of a

function pat-type which delivers the pattern-type of a pattern:

Definition 5.1 : pat-type

pat-type(C) = val C ;val is a tag and C is a constant,

pat-type(v) = Ir ;v is a variable

pat-type(c p1 ... pr) = (c, pat-type(p1) , ..., pat-type(pr)) ,

c is a sum-constructor

= let pt, = pat-type(Pi)

• • •

ptr = pat-type(pr) in

if (ptx = 'Ir') AND ... AND (ptp = 'Ir')

then 'Ir' else (c, pt-p ...» pt),

c is a product-constructor

It can be seen in the definition of pat-type for a sum-constructor

pattern that some of its components could get listed as

irrefutable leading to saving in matching costs when it comes to

matching the components. The complete sequence Si for the ith

clause of a definition is generated by mapping the function pat-

type on the list of formal parameters as

64

S^^ = Map pat-type [pilt ..., Pim] ...(5.2)

Eq. 5.2 combined with Def. 5.1 for pat-type completely specifies

the compilation for clause selection.

5.1.2 Compilation For Reduction

The compilation of the expression on the right-hand side of a

definition (called its body) into SDS terms forms a major part of

the total compilation process. It is even continued into next

chapter for dealing with bodies having local definitions. The

compilation here converts a body into a tree structure having

director string annotations at the nodes. The idea is to

instantiate functions using their SDS terms as templates. The

annotations in these terms will provide a simple and mechanical

instantiation through 'term reduction rules' developed in chapter

7. The complete idea is based on the reduction semantics of an

application ((Xp.E) Q) specified in section 4.2.2 of the previous

chapter. This has been illustrated through an example in section

5.2. The compilation scheme for obtaining SDS terms is now

discussed starting with a description of atomic directors used by

Kennaway and Sleep in the formation of DS terms [71].

5.1.2.1 Atomic directors

The director strings, originally introduced by Kennaway and Sleep

[70], were discussed in Chapter 3. The same authors have

developed a scheme of abstracting out variables from a lambda

65

expression to convert it into a variable-free form called the

Director Strings Terms (DST) [71]. It is a more compact variable-

free representation [11] than the SK combinators, and simplifies

the process of 0-reduction by avoiding the need to visit every

leaf or sub-graph of body to look for a free occurrence of the

bound variable. It uses simple atomic directors (/\, /, \, -, !,

#) for indicating the direction of movement of an argument at a

node. As an example, the X-expression (Xf.Xx.f(x x)) gets

translated into a DS term through following steps [71]:

Xf.Xx.f(x x) = Xf.(\@g, f, Xx.(x x))

= Xf.(\@g, f, (/\«g, Xx.x, Xx.x))

= Xf.(\@g, f, (A@g, (Itj, I), (!tlf •))

= (/ \@g, Xf.f, (ASg, (Jtj, I), (ttj, •)))

= (/ \§2. (!«!• •), (Ai2. (Itlf •), (!«!, •)))

where @g and @-p appearing immediately at the end of a director

string, stand for a binary and a unary node respectively and the

symbol '•' represents a hole. In the final form, each node has

annotations, in the form of directors, for the arguments to follow

at run time. DS term reduction rules [71] imitate the 0-reduction

of lambda calculus.

We have called the directors used in DS terms as atomic directors

in view of structuring introduced in the directors. The new

directors, named as structured directors, have been used in an

abstraction scheme for converting a pattern-matching definition

body into a 'pattern free' form called the Structured Director

String Term (SDST or SDS term). The need for structured directors

66

arises because the atomic directors cannot distribute the

components of a structured argument and neither can they encode

the intention of 0-reduction rules meant for pattern-binding

lambda abstractions.

5.1.2.2 Structured directors

In DST, a binary application node is represented as a 3-tuple term

where the first element gives the director string annotation of

the node and the other two, which may be further tuples, specify

the left and right sub-trees rooted at this node. The unary nodes

(leaves) are represented as pair terms. At the time of reduction,

an argument follows the route indicated by the left-most director

which is deleted from the string after the argument has passed

(this is a mechanical way of 0-reduction similar to SK reduction).

An empty director string at a node means that the sub-tree rooted

at this node needs no more substitutions.

The above view of director string serves well as long as the argu

ments are simple objects such as primitive data values or function

identifiers. Pattern-matching definitions contain patterns as

formal parameters with bodies referring to them or their consti

tuents which may contain arbitrary nesting of further patterns.

Such definitions expect structured arguments and, therefore, a

compilation similar to that of DST needs directors which can even

point to the most deeply embedded part of the argument whenever

required by the body.

We extend the language of DST by using structured directors to

67

take care of the situation and call the resulting terms as

Structured Director String (SDS) terms. One of these directors,

named as list director, is made up of a list of directors where

each may be atomic or further structured. Notationally, its

elements are separated by commas and are enclosed within curly

brackets. Though it is a list, it constitutes a single element of

a director string. Elements of this list refer to the various

parts of a argument structure. If an argument A can be

represented as

A — c a-, ao ... a„

where c is the constructor of its structure type, then the list

director which distributes its components in a definition body

would consist of r directors written as

d = {d^, dg, ..., dr}

where a director d^ refers to an a-. Any of the d- may be a

further list director, and its elements (dii, d^g, ... etc.) would

refer to the components of a^. As an example, if the structure is

a list represented by a CONS cell in terms of its head and tail,

then its list director would consist of two atomic directors

(chosen according to the need), and the various possibilities

include

d = {/A} | {!,#] | {/,/] | {A,-} etc.

They have their usual meaning, e.g. the first means the head of

the list is to proceed to left and the tail to the right.

68

A list director suggests that the structure be broken into pieces

and the parts be distributed as indicated by its elements. If any

element is again a list director then the corresponding part be

further broken into sub-parts and distributed accordingly. In

many situations, this may lead to wasteful work. For example, let

us consider an identity function (Id p = p) defined with a complex

and deeply nested pattern p in the formal parameter place. Now

suppose the function body is compiled using a list director which

meticulously expresses all the nesting in the pattern, then on

application to a matched argument, the director will unnecessarily

force the breaking of the argument structure which will have to be

re-assembled from its pieces. All this was avoidable because the

identity function never wanted the argument to be broken and then

re-built. An optimisation is being introduced in the scheme by

proposing another structured director called the pattern director.

A pattern director transports a structured object without tearing

it apart. It amounts to postponing the decision of breaking.

Preference to use pattern director in place of list director, as

far as possible, is in the spirit of laziness (laziness in sub

dividing a structure) which is the key to avoiding wasteful work.

Let us consider the following definition of a function which

attaches the head of a list in the front:

Add_head (CONS x y) = CONS x (CONS x y)

The list-director approach will fail to see that the second CONS

cell on right hand side is same as the formal parameter, and thus

will produce a code to re-build it from the pieces x and y. The

69

SDST representation (actual compilation scheme in next section)

using list director is given as

({A.\}: . (!«!» •). (/ \: . (!«i» •)• (!«!• •)))

where ':' symbolises a CONS node. It may be seen that at the

first CONS node, the list-director {/\,\} will break an applied

argument into x and y and send x both ways and y to the right. On

the left, x is used in a hole while on the right, another CONS

cell is built from x and y. In contrast to this, the use of

pattern director would replace that complete second CONS cell by a

hole and thus avoid rebuilding it. This is reflected in the SDST

code given below (method of obtaining it will be discussed in next

section):

({/\}: , ({!,#}«!• •) . ({!>«!, •))

where {/\} and {!] are pattern directors (a pattern director is

simply an atomic director but enclosed in curly brackets). The

director {A} suggests that complete argument list (or its

pointer) be sent to both left and right sub-trees. In the right

sub-tree, the list is substituted as such and on the left, it is

broken (because of the presence of the list-director {!,#}) into

head and tail out of which tail is discarded and the head is

substituted. Thus only one new CONS cell is created which was

unavoidable.

In our compilation of pattern-matching definitions, the director

strings consist of both types of directors - atomic and

structured. The ideas of new directors are summarised in the

70

following definition of a director string (ds_of_length_n)

Definition 5.2 : ds_of_length_n

ds_of_length__n

director

atomic

structured

list director

= director ds_of_length_(n-1)

= atomic I structured

• / | \ | A | - | ! | #

= list_director j pattern_director

= {director, director] | {director,
list_director]

pattern_director::= {atomic}

Structured directors can be linked to the meaning of the 0-

reduction rules for pattern-binding lambda abstractions developed

in section 4.2.2. A close scrutiny of these rules (01 - 07)

reveals that they are specifying the 'treatment' to be given (at

run time) to the argument i.e. whether it should be broken into

its constituents, or it should be discarded, or it should be

presented to both parts of an application to decide further treat

ment, etc.. The nature of the treatment (or the 0-rule to be used

for a redex) is solely governed by the type of lambda-abstraction

or more appropriately by the correspondence of the body with the

bound pattern. It does not depend at all on the argument. The

assertion is based on the assumption that a reduction takes place

after a pattern-matching process and hence the argument must have

the same built as the bound pattern. Since a clause in a pattern-

matching definition is like a lambda-abstract, a complete

'prescription' of the treatment can be prepared from the

definition at the compile time itself. This saves the botheration

of finding, at run time, which 0-rule to apply to reduce a redex.

71

It is a sizable saving considering that the search for applicable

0-rule is quite expensive and may have to be done recursively for

the same redex.

The compilation aims at achieving the above goal so that the

reduction process, at run time, becomes a purely mechanical

exercise, a thing most suited to the temperament of a machine. It

uses the language of SDS terms for prescribing the treatment. The

body of each clause in a definition is compiled into a tree

structure (SDS term). At each node in the tree, directors are

attached indicating the treatment to be given to arguments taking

a tree-walk during reduction.

It may be noted that the structured directors have all the

necessary ingredients to indicate the argument treatment specified

by the various 0-rules. They can specify not only the direction

of movement at a node but also the decision whether to break it or

not. A list director indicates breaking and the movement of the

pieces whereas the pattern director guides a structured object

without breaking. The atomic directors indicate the movement

directions only, for simple objects. The next two sections

develop pattern-abstraction needed for compiling an expression

into its SDS term.

5.1.2.3 Pattern-abstraction

A SDS term for a definition body is obtained by abstracting out

all the pattern parameters (occurring on the left-hand side of

definition) from it. The abstraction is performed through

72

operators called the A-operators whose services are requested by a

function trans. Thus for the first clause in the general pattern-

matching definition (Eq. 4.1), the SDS term for E1 is obtained as

follows:

transit Pn ..•' Plm = Ex) = Ap[E1]

where Ap = Apn ... A^ ...(5.3)

Here A are abstraction operators having right association

property meaning that abstractions are performed from inside out

i.e. the right-most parameter (plm) is abstracted out first. In

this way, the top layer of abstraction corresponds to the first

argument to be substituted. The expression on which an abstraction

operator operates, is enclosed within square brackets. This

abstraction is different from the variable-abstraction of DST in

that it abstracts out a pattern (as a whole) rather than a

variable, making SDST a 'pattern free' representation.

Before developing the abstraction rules for A-operators, the

syntax of expression forming a definition body must be decided. To

simplify the matter a little, we start with a lambda type syntax.

It is assumed that the basic building blocks for an expression in

the syntax are constants (including built-in operators),

variables, function names and constructor functions; and the

building mechanisms are Curried application and structuring

through constructor functions. The syntax is summarised in Fig.

5.1 where c is a constructor function of arity r.

73

E ::= A I an atom

(E1 E«) application

(c E-, Eg ... Er) structuring

Figure 5.1 Simple syntax of an expression
forming a definition body

The syntax is later enriched by allowing guards (in section 5.3 of

this chapter) and recursive and non-recursive local definitions

(in the next chapter). Expressions in higher level functional

language can be translated into the enriched syntax by an upper

layer of compilation.

The simple syntax in Fig. 5.1 gives rise to two types of nodes in

the tree representation of an expression - apply nodes and

constructor nodes. The constructor nodes need not necessarily be

binary. The expressions thus acquire a general r-ary tree

structure, and a node is written as

node = (nt, node_l, node_2, ... , node_r)

where 'nt' stands for a node-type symbol. It may be @^ indicating

a leaf, @g indicating an application or a constructor indicating

structuring of some particular type.

*

The intention of SDS representation is to attach director strings

at the nodes in an expression tree through the process of

abstraction. A term in this notation is either an atom or a tuple

defined as

74

term ::= atom | (D nt, terra_l, , term_r)

An atomic term can be a constant, a function identifier or a hole

(created during abstraction for an occurrence of a parameter in

the expression). D is a string of r-ary directors (r > 1).

Tuple terms are written as (r+1)-tuples, such as pairs (r=l) for

unary nodes, triples (r=2) for binary nodes, and so on. It may be

noted that to indicate argument flow at a r-ary node, the set of

atomic directors given in Def. 5.2 must be extended to include

general r-ary directors also which although are difficult to show

symbolically but can be easily implemented through bit codes.

Having decided on the syntax of expressions and the structure of

SDS terms, we turn to the development of the abstraction rules for

an operator A (Eq. 5.3) which operates on an expression to

abstract out a pattern p. As there are three types of patterns

(Def.4.1), the set of rules is divided into three cases and each

case lists the rules for different syntactical forms of E (Fig.

5.1). In developing the rules, an idea of the variable-set of a

pattern is needed because howsoever deep may be the nesting in a

constructor-pattern, its ultimate components are variables (some

times constants) by which it is referred in the body of a

definition. Variable-set v(p) of a pattern p is a set consisting

of all the variables occurring in it, and is defined [11] as

v(p) = {x} , p is a variable x

= { } , p is a constant

r

= U v(p-) , p is a constructor pattern of arity r
i=l ...(5.4)

75

5.1.2.4 Pattern-abstraction rules

Let p be a pattern to be abstracted out from an expression. It

would be referred as the 'abstractee'.

Case I: p is a constant

Referring a constant type parameter in an expression makes no

sense (it is required for matching purposes only) and therefore

the abstraction process can always assign a discarding director

for such a parameter. .Thus the rules for abstracting out a

constant k from an expression are

(Al) Ak[A] = (#«lf A)

(A2) Ak[E F] = (-@g, E, F)

(A3) Ak[c E1 ... Er] = (#tlf c Ej_ ... Er)

Rule Al is for an atomic expression and it simply discards the

argument at a unary node. Rule A2 translates an application into

a triple, assigning '-' for discarding, and terminates the

abstraction. Rule A3 deserves a closer look. Here we do not

create the required node (as was done in rule A2) , rather the

decision is postponed by assigning a 'unary discard'. Hence the

abstraction results in a pair term and the expression is left

untouched for some later abstraction to explore. This has been

purposely done to preserve laziness which, in this context,

suggests - do not create a structural node unless essential.

Case II: p is a variable v

Abstraction of a variable leads to SDS terms with atomic directors

76

only. The rules are similar to those of DST [71]. In the context

of the chosen syntax of an expression, the rules are

(A4) A [A] = (#$!, A), A is a constant, or a variable
other than v (i)

= (!ij, •), A is a variable same as v (ii)

(A5) Ay[E F] = (dg@g, AV[E], AV[F])

(A6) Ay[c Ex ... Er]

= (#0i, c E, ... E), v does not occur in any
1 E.,j = ltor (i)

v

= (drc, Ay[E1], Av[Er]), otherwise (ii)

Some new features of the abstraction scheme appear in these rules.

Rule A4 discards the argument at a unary node if the atomic

expression is different from the variable under abstraction (first

equation). In case it is same, a pair, with second field as a

hole, is created. A hole acts as an empty space to be filled by

an argument at run time. It marks a successful end to the

abstraction 'journey'.

In rule A5, the application gets translated into a triple and the

operator A moves inside to operate on the components of

application after assigning a director dg. Leaving behind a

director when made to move in, is a general characteristic of A-

operators. It may be noted that this rule encodes the semantics

of the reduction rule 06 for an application. The rule is used

with an optimisation as follows [71]:

77

AV[E F] = (A@g, AV[E], Ay[F]), v occurs in both E and F

= (/@gi AV[E], F), v occurs in E only

= (\@g, E, AV[F]), v occurs in F only

= (-@g> E, F), v does not occur in E or F

The optimisation is that the abstraction operator is moved only to

that part of the applicative expression where the abstractee

occurs. It will henceforth be referred as movement-as-per-need

optimisation.

Rule A6 deals with data construction in a manner similar to that

for application except that it leaves the constructor expression

as such if v does not occur in it (first equation). If it occurs

then a construction node of type c> with a director dr attached,

is created and abstraction is made to move in. The movement-as-

per-need optimisation is applicable here also.

Case III: p is a constructor-pattern

Let p - s = c s-, Sg ... sk< This case makes use of structured

directors. It may be recalled that in order to prevent unnece

ssary structure breaking only pattern directors should be used, as

far as possible. Taking this into account, the rules are framed

in such a way that the decision to break a structure (i.e. to use

a list-director) is continuously postponed till a variable is

encountered in the body. The strategy is sometimes able to

completely eliminate the use of list directors. The abstraction

rules are

78

(A7) Ag[A] = ({#}#!, A), A is a constant, or a
variable x|x f v(s) (i)

= ({dAsl[A], dAg2[A], dASk[A]}@1, I),

A is a variable x|x 6 v(s) (ii)

(A8) AS[E F] = ({dg}@g, Ag[E], Ag[F])

(A9) As[c E: ... Er]

= ({!}»!, •), c E1 ... Er = s (i)

= ({#}©]_• c E1 ... Er), No variable of v(s) appears
in any E. (j=l to r) (ii)

= ({{#}i_1, {!}, i*}*'1}^, •),
c Ex ... Er = Si, i=l to k (iii)

= ((dr]c, Ag[E1], ..., Ag[Er]), otherwise (iv)

In the above notation, dr is a r-ary atomic director, {d}1 stands

for a 1-list of the director {d}, and dAg.[A] stands for the

director resulting from the abstraction A [A].
si

Rule A7, for atomic expressions, rejects the argument if it is

unwanted (first equation), but if the expression is a variable x

belonging to the variable-set v(s), the rule prepares to insert

the relevant component of argument into a hole (second equation).

The preparation is concerned with composing a list director whose

elements are drawn from the process of abstracting out the

components of the abstractee from the atomic expression. The

translation can be seen to have correspondence with the 0-

reduction rule 05.

Rule A8, for application, remains as in other cases except that a

pattern director is used. Movement-as-per-need optimisation is

79

applicable with the modification that now the need for argument in

E or F is determined by the presence/absence of a member from

v(s) in them.

Rule A9, for constructor expressions, emphasises that best efforts

are made to avoid the creation of a constructor node. If the full

expression matches the pattern under abstraction (first equation)

or any of its components (third equation) then appropriate

director is assigned to insert the full argument or its required

component into a- hole. These cases reflect the semantics of

reduction rules 01 and 03 respectively. If no member from v(s)

occurs in the constructor expression then the argument is unwanted

and hence discarded (second equation). It corresponds to the

situation of rule 02. As a last resort when no such matching of

the full expression is possible then a constructor node is created

and abstraction operator is moved to the components of the expres

sion (fourth equation). It corresponds to the general rule 04.

Further, the need for movement to a particular component is again

determined by the presence/absence of a member from v(s) in that

component.

It may be observed that the pattern-abstraction rules generate SDS

terms in such a way that the list directors are used only in the

end when an atom is encountered. At that time, no alternative

other than to break the argument, for substitution, is left.

The above cases deal with the abstraction of a single parameter

from an expression. However, a function definition may have

80

several parameters leading to multiple abstractions as in Eq. 5.3.

In such a case, the abstractions are done one after the other

starting with the right-most one (right associative manner).

Each abstraction operator gets the result of the preceding

abstraction as its input. These -intermediate expressions are not

strictly according to the syntax in Fig. 5.1 because of the

introduction of director strings and holes. Hence, the

abstraction rules A1-A9 cannot be used directly. Following are

the rules for dealing with various situations of this type:

(A10) Ap[(D1t1, E)] = (djDjtj, Ap[E])
(All) Ap[(Dg@g, E, F)] = (d2Dg@2, Ap[E], Ap[F])
(A12) Ap[(Drc, Ej, ..., Er)] = (drDrc, A^], ..., Ap[Er])

where D1 and Dg represent the already existing director strings,

and d-,^ and dg stand for the added directors (structured or

atomic). These rules have a common approach - add an appropriate

director to the left of the existing string and move the

abstraction in according to the need. However, if a sub

expression is a hole then there is no need to apply further

abstraction to it. The correspondence of these rules can be

traced to rule 07.

5.2 AN EXAMPLE

The example here illustrates the compilation process and shows its

utility in making the reduction process simple and purely

mechanical. It is the example of the function Add_head introduced

earlier in section 5.1.2.2. The function, defined as

81

Add_head CONS x y = CONS x (CONS x y),

has one parameter which is a constructor-pattern. The compilation

produces a pair given as

PjL = <S1, tj>, where Sj^ = pat_type (CONS x y)

t-. = trans(Add_head ...)

Using Def.5.1 for the function pat_type we get

S^ = (CONS, pat_type(x), pat_type(y))

= (CONS, Ir, Ir)

The sequence S-, has only one element because the definition had

one parameter but due to a constructor-pattern, the single element

itself is a sequence of three elements. Actually, the example has

only one clause meaning that no pattern-matching is involved,

hence compilation will not produce the sequence of pattern-types

needed for matching. It has been done here just for illustration.

The other part of the pair P^ which is the SDS term for the

definition body, is obtained through pattern-abstraction using Eq.

5.3 as

i

tx = A [CONS x (CONS x y)]

where p = CONS x y. The constructor in p is a sum-constructor and

v(p) = {x,y}. The input expression for A-operator is a constructor

expression, and therefore rule A9 is applicable. By a trial to

match the alternatives in that rule, fourth equation gets selected

and its use gives

82

tx = ({/\}:, Ap[x], Ap[CONS x y])

The both ways pattern director '{A}' is assigned because members

from v(p) are referred in both the sub-expressions. For

abstracting further, we have to use rule A7 for left part and A9

for the right part of the created constructor node ':'. On the

right side, the decision is straight forward for using first

equation of rule A9. On the left, the second equation of A7 is to

be used because x e v(p). Applying these rules, we get

tj = ({/\}:, ({dAx[x], dAy[x]}e1(I), ({!}«!, •))

Now,

Ax[x] = (!t1, I), and,

Ay[x] = (#@1, x), by rule A4

Therefore,

dAx[x] = !, and,

dAy[x] = #

This leads to

tx = ({/\}:, ({!,#}©!, •), ({!}@lf •))

For a simpler and compact notation, we might write pair terms

without comma and brackets. Also the symbol @. can be dropped

whenever there is no confusion so that

t1 = ({A}:, {!,#}•, {!}•)

Combining the final results of the two parts of the compilation,

83

the total shape of the SDS field of the D-code for the given

definition is

<(CONS, Ir, Ir), ({A}:, {!,#}•, {!}•)>

As stated earlier, the'SDS field in this example will not have the

the sequence Si of pattern-types because there is no pattern-

matching involved. Instead it has only the SDS term t^.

Having done all the hard work of compilation, our function is

ready to be applied to an argument in a mechanical way. The SDS

tree of the function applied to a list (CONS 1 5) is shown in Fig.

5.2. The application is reduced by allowing the argument list to

take a tree-walk over the SDS tree, and doing at each node exactly

what the leading director of the director string prescribes (the

question of selecting the appropriate 0-rule at each step and

doing accordingly has been resolved at compile time and encoded

into the language of SDS terms). The term reduction rules

developed in chapter 7 is a formal representation of this

reduction process.

Figure.5.2 SDS tree for the body of Add_head
and its reduction

84

The result of reduction is also shown in Fig 5.2. Had we followed

the 0-reduction rules (without compiling to SDS terms), the

reduction would have proceeded as follows (taking the given

definition as a pattern-binding lambda abstraction):

(X(CONS x y).CONS x (CONS x y))(CONS 1 5)

—> CONS (X(CONS x y).x)(CONS 1 5)

(X(CONS x y).CONS x y)(CONS 15) ;by 04

—> CONS 1 (X(CONS x y).CONS x y)(CONS 1 5) ;by 03

—> CONS 1 (CONS 1 5) ;by 01

In the above reduction, the rule selection procedure is invoked

three times which is costly because selection involves trials of

structure matching between the bound pattern and the body of

abstraction.

5.3 GUARDED EQUATIONS

Some functional languages allow the use of guards [11] in both

types of definitions viz.' pattern-matching types or the simple

ones. With this feature, a clause/definition can have several

alternative right-hand sides, the choice among them being decided

by guards. A guard is a boolean expression which involves the

parameters of the definition. It is written after each right-hand

side separated by a comma. An example of a guarded equation is

the greatest common divisor function which is written as

gcd a b = gcd (a-b) b, a > b

= gcd a (b-a), a < b

= a, a = b

85

The definition has three right-hand sides distinguished by the

conditions on the parameters 'a' and 'b'. The guards have nothing

to do with the matching of patterns but they do appear often in

pattern-matching definitions. A clause gets selected after the

matching process, and if it has several right-hand sides then

further selection is made by testing the guards. The guards are

tested sequentially in the same order as given in the definition.

A general form of a guarded equation is written as

f pl p2 '* * pm = El » Gl

• • •

E , G
n ' n

where E^ is an expression and G- is a boolean valued guard. The

semantics of the body of this definition can be expressed as [11]

if Gj then E1 else (... (if Gn then En else FAIL)...)

Thus the body is a conditional expression and it can easily be

compiled into a SDS term following the rules already given. In

order to stick to the syntax for expressions (Fig. 5.1), the above

semantics would be expressed as

IF Gx Ej_ (... (IF Gn En FAIL) ...)

where IF is a built-in operator and FAIL is a constant indicating

the failure of a guard. Sometimes the last guard G is omitted

giving a sense of 'otherwise'. In such a case, the inner-most

conditional is replaced simply by E .

86

5.4 CONCLUDING REMARKS

The compilation of supercombinator definitions involving pattern-

matching is divided into two parts : one for matching work where a

list of pattern-types of the formal parameters is prepared, and

the other for reduction of an application where the definition

body is compiled into a SDS term. The two informations together

form a pair for a clause in the definition. The complete

definition gets compiled into a list of pairs whose length is

equal to the number of clauses. The list constitutes the SDS

field of a D-code record structure for the definition. Another

field of the code called the header is introduced in next chapter.

The list of pattern-types, generated through a function pat-type,

relieves some matching work by utilising the ideas of refutable

and irrefutable patterns. This list will be used during reduction

when the matching algorithm, given in section 4.2.1, is executed.

The SDS term representation for a definition body, obtained

through a scheme of pattern-abstraction, serves as a means" of

encoding the intention of 0-reduction specified in the last

chapter (section 4.2.2). The structured directors (list director

and pattern director) introduced in these terms extend the DST

notation [71] so that directors acquire an additional ability to

refer to the components of a structured argument. The laziness

introduced by the use of pattern directors prevents unnecessary

structure breaking.

The SDS terms are expected to simplify and mechanise the template-

87

instantiation of a supercombinator definition. The hope is based

on the fact that the terms have fixed and simple reduction rules

referred as term reduction rules (to be discussed in chapter 7).

There is a possibility of coding these rules into hardware thus

avoiding a level of software interpretation. The G-code of G-

machine [88-89] or the imperative code of Flagship [95] do not

seem to offer this possibility.

The pattern-abstraction scheme (abstraction rules Al - A12), for

obtaining SDS terms, has been coded into a Turbo-C software

package. The software has been run successfully on IBM PC and it

yielded correct codes for several example cases (including

Quicksort function) tried during test runs. The laziness of the

algorithm in assigning list directors has been confirmed.

The next chapter is a continuation of the compilation of

definition bodies into SDS terms where the syntax of an expression

used as a body has been extended to allow local definitions

through let and letrec blocks.

88

CHAPTER 6

COMPILATION OF LET AND LETREC DEFINITIONS

In the previous chapter, a scheme for compiling pattern-matching

definition bodies into a pattern-free SDS term representation for

subsequent use in multiprocessor reduction has been developed.

The syntax of expression forming the body was restricted to atoms,

Curried applications and data structuring (Fig. 5.1). In the

present chapter, the syntax is being extended to include local

definitions through let and letrec blocks, and correspondingly,

the SDS term structure also gets enriched. In the new structure,

the local variables occurring in the main definition body are

replaced by pointers instead of holes. Also, a concept of a

context-list, forming an additional limb of the SDS term

structure, has been introduced. The context-list contains

compiled versions of the local definition bodies. Pointers and

context-list together give the SDS term a graph structure. In the

analysis presented, formal parameters of a definition have been

restricted to simple variables only and not patterns so as to

avoid mixing up of the issues of local definition and patterns.

However, the compilation can be combined with that in the previous

chapter to generalise it to pattern type parameters.

The chapter commences by an explanation of the issues involved in

dealing with local definitions. Section 2 then gives some

89

additional abstraction schemes needed. Section 3 deals with th

actual compilation process. In section 4, the D-code structure

for a definition has been further expanded. Here methods of

extracting some more useful information from a function

definition, such as computability analysis, have been presented.

Concluding remarks are finally given in section 5.

6.1 DEALING WITH LOCAL DEFINITIONS

Local definitions are introduced in a definition to express

sharing of sub-expressions. They are written using let or letrec

blocks. In the following definition for a function f

f v = (let x = E in F)

the body is a let-expression in which x is a local variable, E a

local body, and F the Main. The variable v is a parameter of the

definition.

A let-expression binds an occurrence of a local variable in the

Main to the local body. In lambda calculus, the" semantics of this

expression is denoted as

(Xx.F) E

Under 0-reduction, it has the same meaning as the original let-

expression. Using this semantics, the definition of f can be

expressed as

f V = (Ax-F> E ...(6.1)

where the definition body is a 0-redex. Inspired by Eq. 6.1, the

90

e

abstraction process for getting SDS term of the definition could

be expressed through the function trans as

transit v = (Xx.F) E) = AV[(AX[F]) E] ...(6.2)

The operator A abstracts out the local variable from the Main F

and thus generates directors and holes meant for the substitution

of local body E in it. Actual substitution is done later at run

time. In Eq. 6.2, the 0-redex ((Xx.F) E), of Eq. 6.1, has been

faithfully reproduced and preparation made, through Ax

abstraction, for handling the redex at run time. We feel, this is

unnecessary because the argument for 0-reduction (local body E) is

available at compile time itself, and hence there is no use

letting reduction wait till run time nor is the preparation

necessary for it. It is proposed that all occurrences of a local

variable in the Main be replaced by pointers to local body, and

all local bodies (there could be more than one local definition)

be kept in a list named as Context-list. This, while achieving

the effect of 0-reduction, preserves the sharing of sub

expressions as well (one common pointer for all occurrences of

local variable).

A Context-list (henceforth C-list) in our notation is written as

[x^:E|, ..., xR:En J

where x-,, ..., x are identifiers for the local bodies E^, ..., En

respectively. The C-list and the Main, when put together, make

the definition of f appear as

91

f v = F :: [XjtEj, ..., xn:En] ...(6.3)

where '::' separates Main from C-list. It may be seen that due to

the presence of common pointers for local variables and the C-

list, the Main F and therefore the SDS term also, acquire a graph

structure (without them they had a tree structure).

Introduction of pointers and C-list has added the following two

requirements to the abstraction scheme:

(1) conversion of occurrences of local variables in Main into

pointers instead of holes.

(2) abstraction of definition parameters from Main and all local

bodies.

The next section gives the details of additions required to the

abstraction scheme for accommodating these requirements.

6.2 ADDITIONAL ABSTRACTION SCHEMES

In the last chapter,,A-operators were introduced for pattern-

abstraction. These operators leave behind a trail, in the form of

directors, as they move inside to operate on the internal

components of an expression. Ultimately, when the pattern itself

or one of its constituents is encountered, it is replaced by an

appropriate director and a hole. Attaching directors at the nodes

as the expression structure is unfolded is a characteristic

feature of these operators. In order to fulfil the first

requirement for accommodating local definitions (section 6.1), a

B-scheme is being introduced in which an abstraction operator is

92

completely relieved of the burden of creating the SDS term

structure. It moves inside the expression simply to look for an

occurrence of the variable under abstraction which, if

encountered, is replaced by a pointer rather than a hole. No

directors are attached by this type of operator. The local

variables are abstracted out using B-scheme only and hence Eq. 6.2

gets modified as

trans(f v = (Xx.F) E) = AV[BX[F] :: E]

The following abstraction rules for an operator B bring out the

methodology of this scheme:

(Bl) B [A] = ~x, atom A is a variable same as x

= A, atom A is a variable other than x, a
constant or a pointer.

(B2) BX[E F] = BX[E] BX[F]

(B3) Bx[c Ex ... Er] = c BX[E1] ... Bx[Er]

The only change that B-abstraction can bring to an expression is

to replace local variables by pointers (the SDS term structure is

created by A-abstraction).

For the second requirement (section 6.1), some more rules are to

be added to A-scheme so as to be able to deal with pointers

generated by B-operators. These rules are in addition to the

rules Al to A12, given in section 5.1*2.4 for pattern-abstraction.

The additional rules cover the cases of (i) an atomic expression

being a pointer, (ii) an application having pointer(s) as its

component(s) and (iii) a constructor expression having pointer(s)

as its constituent (s) . With reference to the structure of an

93

expression arrived at in Eq. 6.3, the rules for abstracting a

variable v are

(A13) AvrXi :: [Xj.Ej, ..., xn:En]]

= x^ :: [x-pE^, ..., x^:Av[E^], ..., xn:^n],

v occurs in E-, i = 1 to n

= "x^ :: [xj:E*,...,Xj:A'[Ei],...,x_:E_3, otherwise

(A14) Av[(^Xi G) :: [xj.Ej, xn:En]]

= (A@g, Ay["xi], Ay[G]) :: [xj.Ej, ..., xn:En], v occurs

both in G and E- - the expression pointed by ~x^

= (/@2» Av["xi], G) :: [xjtEj, ..., xn:En], v occurs in
E- only

= (\@g, "x^ Ay[G]) :: [x1:E1, ..., xi:A'[Ei], ..., xn:En],

v occurs in G only

= (-@2» **i» G) :: [x1:E1, ..., x^A'tE^, xn:En],

v occurs neither in E. nor in G

(A15) Ay[(c G2 ... ~Xj ... Gr) :: [x1:E1, xn:En]]

= (#@-p c G-j^ ..."xj ...Gr) :: [xj^Ej, ...,Xj :A'[Ej], ...,

x :E], v does not occur in any G^ or E-, (i,j=l to r)

= (drc, AV[G1], ..., Av[~xj], Av[Gr] :: [x1:E1, ...,

x :E], otherwise

The rules show the behaviour of an A-operator if a pointer exists

in the Main. Rule A13 is for a Main which is simply a pointer.

94 Central libmu Oktrvsrsrtir c* »• .-
mmmtaas

In this case, the abstraction operator moves to operate on the

corresponding local body in C-list provided the variable v occurs

in it (first equation). If the variable is not referred by it

then a A'-operator is invoked to act on the local body (second

equation). An A'-operator is not an abstraction operator. It

simply creates a tree structure of a expression, without assigning

any directors. Its rules are

(A'l) A'[A] = (t^, A), A is an atom

(A'2) A'[G1 Gg] = (@g, A'tG^, A'[Gg])

(A'3) A'[c Gx ... Gr] = («lf c Gj ... Gr)

An A'-operator serves to create term structure whenever the

abstraction operator A is denied the opportunity to operate on a

local body.

Rule A14 pertains to an applicative expression. The abstraction

is done in the spirit of movement-as-per-need optimisation.

Whenever a pointed local body does not refer to the variable under

abstraction, the services of A'-operator are called to create term

structure. Similarly, in rule A15, meant for a constructor

expression, the director and movement of abstraction operator is

decided according to need.

The Main expression may have several occurrences of a local

variable which are all converted into a common pointer through

B-abstraction. In such a case, the A-scheme would create several

redundant paths (indicated by directors) leading to the same local

body. This would require unnecessary copying of an argument at run

95

time during substitution. To avoid this multiplicity of paths,

the A-scheme has been further optimised. While deciding a

director at an application node or a structural node, if the

reference of the abstractee is in two or more than two arms

through the same pointer then only a left (in case of an

application) or left-most (in case of data structuring) director

is assigned and the abstraction operator moves only to the

corresponding arm, e.g.

Av[(x- x^) :: [x^:E^, •••, xn:En]]

= (/@2, AvrXi], Axi) :: [x1:E1, ..., xn:En]

A bothways director (A) is not assigned in this situation because

that would simply provide another extra path leading to the same

local body. This optimisation is being named as keep-left

optimisation.

6.3 COMPILATION PROCESS

Equipped with the above abstraction tools, we now take the actual

compilation of definitions having locally defined local variables

into SDS terms. The SDS terms, here, have a graph structure due

to pointers and C-list. We make use of the function trans which,

while operating on a definition, invokes the services of A or B

operators as appropriate for the definition.

In general, a user defined function definition D is expressed as

f vl v2 ''' vm " E

which has m parameters (here all of them are assumed to be simple

96

variables and not patterns). E has let and letrec blocks also.

The function trans operates on D as

trans(B) = A ... Ay [trans_local(E)] ...(6.4)

There are several cases here depending on the kind of local

definition in E. The new function trans_local acts accordingly.

Case I : E is a let-expression

The expression is written as E = (let x = Ej in F). Using the

ideas of pointers and C-list, the trans_local calls a B-operator

for abstracting out the local variable x and creates a C-list as

trans_local(E) = BX[F] :: [x : trans_local(E1)] ...(6.5)

The C-list has a single element here. The recursive call of

trans_local in Eq. 6.5 is to take care of any nesting of local

definitions in E-, . If E-, contains no further local definition

then trans_local terminates by returning Ej itself and may be

defined for a let block as

trans_local(let x=E, in F)

= if E, has no let-block

then BX[F] :: [x^]

else BX[F] :: [x:trans_local(E^)]

A let-expression may also have multiple definitions as

E = (let x1 = E1

xn = En in F)

97

In that case (assuming no nesting of local definitions), the

trans_local acts as

trans_local(E) = Bv< . . . B„ [F] :: [x.rE-,, ..., x :E,J
X1 Xn X X n n...(6.6)

Combining Eqs. 6.4 and 6.6, the complete translation of the

definition D with n local definitions is given as

trans(D) = AVi ... Av [B ... B [F] :: [x, : E-,
vl vm xi xn 11

xn : En]] ...(6.7)

The result has multiple abstraction whose rules are same as given

earlier i.e. A10 - A12 (section 5.1.2.4).

Case XI : E is a letrec expression

The expression is written as (E = letrec x = E1 in F). It is

different from case I because x is bound to E^ not only in F but

also in E-. . The recursive expression gets converted into a simple

let-expression using the fixed point combinator Y [11] as

E = (let x = Y (Xx.E1) in F)

Having expressed the letrec-expression as a let-expression, the

function trans_local can be defined in a manner similar to that in

case I giving

trans_local(E) = BV[F] :: [x:Y (AY[trans_local(E.)])]
X X ...(6.8)

The recursive invocation of trans_local takes care of the possible

nesting of local definitions in Ej.

98

Recursion can be managed without Y combinator also, through cyclic

pointers [11]. If cyclic pointers are used in our compilation

scheme, it will lead to self-referencing elements in the C-list.

In'addition, if the global variables v., ..., v occur in the

local body E-, then the context is incomplete till, at run time,

these parameters are available. This means that at run time, the

updated context should replace the incomplete one for cyclic use.

This approach does not seem to offer an efficient reduction

mechanism in the model proposed and therefore, has not been

explored further.

Case III : E has mutual recursion in the letrec block

The expression is given by

E = (letrec x-. = E-,

xn = En in F) .. .(6.9)

In this expression the scope of any x. (i = 1 to n) is all E^ and

F. This set of mutually recursive simultaneous equations can be

combined into a single definition which defines a n-tuple type of

structured local variable [11,31]. It leads to

E = (letrec (x^ ..., xn) = (E-p En) in F)

which, by using Y operator, gets converted into

E = (let (xj, ..., xn)

= Y (X(Xl, ..., xn).(E1, ..., En)) in F) ...(6.10)

99

The above two expressions for E correspond to letrec case and let

case respectively. However, none of the definitions of

trans_local, used in these cases, applies here because both the

above representations of E define a structured variable rather

than a simple one. -We now apply lambda-calculus.semantics to Eq.

6.10 giving

E = (X(x1, xn).F) (Y (\(xlf xn).(Elt ..., En)))

= (Xx.F) (Y (\x.(E1, En))) ...(6.11)

where x = (x«i ..., x). It may be noted that in Eq. 6.11 the 'X'

operators are binding a structured variable. Applying "ft 2 rule

(section 4.2) of the list manipulative lambda calculus [33,106],

Eq. 6.11 becomes

E = (Xx.F) (Y (Xx.E1> ..., Xx.En))

To simplify the notation, let Xx.E- = e-, i = 1 to n. E then

simplifies to

E = (Xx.F) (Y (elf e2, ..., en)) ...(6.12)

The above form of E is a 0-redex where the bound variable is a n-

tuple but the argument is an applicative expression. In the

argument expression, the Y combinator is applied to a n-tuple

instead of a single function. Reduction for Y, in this case,

results into a n-tuple given by

Y (e^, ••., en) > (e^ (Y(e^, >>., en)), ...,

en <Y(el' •••» en))*

= (ej_ (Ye), ..., en (Y e)) ...(6.13)

100

where e = (e-,, eg, ..., e). The reduction rule in Eq. 6.13 is

being called as Mutual-Y rule, and it is an extension of the

simple Y rule Y H —> H (Y H). Here an interesting analogy with

plant life can be traced. Sowing a seed produces a plant which

contains the seed also for future reproduction. It corresponds to

simple Y rule. The analogy can be extended to mutual-Y through a

hypothetical concept of a 'group seed'. A group seed is something

capable of producing all the plants of the group. Sowing a group

seed produces a plant of each variety and each plant carries the

full group seed also for future reproduction. Thus any one plant

can produce any other plant in that group. This corresponds to

mutual recursion rule as is evident from Eq. 6.13 where a

reduction gives rise to n 'plants', each carrying the 'group

seed'.

Using Eq. 6.13 in Eq. 6.12, the expression E can be written as

E = (Xx.F) (ex (Ye), ..., en (Y e))

= (Xx.F) (Xlt Xn)

where X- = e- (Ye), i = 1 to n. Now E contains a 0-redex where

the bound variable and the argument both are n-tuples. However,

it may be noticed from the original form (Eq. 6.9) that the body F

is referring only to the individual components of the bound tuple

and not to the complete structure. Hence it may be interpreted

that the reduction of the 0-redex requires a simple multiple

substitution of the kind

[Xj^/x^, Xg/xg, ... , Xn/xn] F

101

In view of this interpretation, the original form of E in Eq. 6.9

may alternatively be expressed as

E = let x^ - X^

• • •

xn = Xn in F ... (6.14)
n n

In Eq. 6.14, the set of mutually recursive definitions of Eq. 6.9

has finally been replaced by a set of simple let-definitions. The

mutual recursion now works through (Y (Xx.E^, ..., Xx.En), the

expression present in each X^.

Based on the above discussion, the function trans_local may be

defined on the lines of Eq. 6.6 of case I as

trans_local(E) = B ... Bx [F] :: [x^:X^, ..., xn:Xn]

Each Xt = (Xx.Ej Y (Xx.E1, ..., Xx.En) can be expressed in terms

of abstraction operators as

(A~[Ei]) Y (AjIEj], ..., Ax[En]), i = 1 to n

Hence trans_local is finally given as

trans_local(E) = BX1 ... B^tF] :: [x1:(A~[E1] S), ...,
xn:(Ax[En] S)] ...(6.15)

where S = Y (A-^], A~[En]). The quantity S represents the

group seed present in each element of the C-list. The abstraction

operator A~ represents a pattern abstraction with respect to the

tuple (x1, xn). This abstraction, governed by rules A7-A9

(chapter 5), will replace an occurrence of a xi (i= 1 to n) by a

102

list director and a hole through which the relevant element of the

tuple S can be selected for use. Eq. 6.15, combined with Eq. 6.4,

gives the complete SDS term for a definition having mutual

recursion in its local definitions.

The above description of the various cases completes the

compilation of local definitions. An example here illustrates

some aspects of the process. It corresponds to the definition set

of a program for summing first m integers. It has a letrec block

in one of the definitions.

Example

$Count count m n = IF (GT n m) NIL (Cons n (count (+ 1 a)))

$Sum ns = IF (EQ NIL ns) 0 (+ HD ns) ($Sum (TL ns)))

$Sumints m = (letrec count = $Count count m in $Sum (count 1))

The '$' sign, before an identifier, indicates a supercombinator.

First two definitions have no local definitions hence A-scheme is

used. The detailed steps of abstraction for them are being

skipped.

(i) trans($Count ...) = ACQUnt Am An[IF (GT n m) ...]

= (\ / A@g, (//@g, (\\@g, IF, (\ /@g, (\@g, GT, !•)), NIL),

(\ A:, !l, (/ \@g, tl, (\@g, +1, !•))))))

(ii) trans($Sum ns ...) = Ang[IF (EQ NIL ns) ...]

= (A@g, (/@g, (\@g, IF, (\@g, EQ NIL, !•)), 0), (A@2,

(\@g, +, (\@g, HD, !•)), (\e2, $Sum, (\@g, TL, !•)))))

The third definition has a letrec-expression. We go through

complete steps of its translation.

103

(iii) trans($Sumints m ...) = Am[trans_1ocal(letrec count ...)]
;by Eq. 6.4

= VBcount[$Sum (count 1)] ::

[count:Y (ACQUnt[$Count count m])]] ;by Eq. 6.8

= Am[$Sum ("count 1)::[count:Y (Acount[$Count count m])]]
;by B-scheme rules

= Am[$Sum ("count 1) ::

[count:Y (/@g, ACQunt[$Count count], m)]] ;by rule A5

= Am[$Sum ("count 1) ::

[count:Y (/@g, (\@2, $Count, !•), m)]] ;by A5 and Al

= (\@2, $Sum, Am["count 1]) ::

[count:Y (/@g, (\@2, $Count, !•), m)] ;by A5 for Am

= (\@g, $Sum, (/@g, Am["count], 1)) ::

[count:Y (/@g, (\@g, $Count, !•), m)] ;byA14

= (\@g, $Sum, (/@g, "count, 1)) ::

[count:Am[Y (/@g, (\@g, $Count, !•), m)]] ;byA13

= (\@g, $Sum, (/@g, "count, 1)) ::

[count:(\@2, Y, Am[(/@g, (\@g, $Count, !•), m)])] ;byA5

= (\@g, $Sum, (/@g, "count, 1)) ::

[count:(\@2, Y, (\ /@2, (\@2, $Count, !•), A [m]))]
;by All

= (\@2, $Sum, (/@g, "count, 1)) ::

[count:(\@g, Y, (\ /@2, (\@2, $Count, !•), !•))] ;byA2

The graph corresponding to this SDS term is shown in Fig. 6.1. In

the appendix, the example has been taken up further to illustrate

the use of this SDS term in computation through task reduction

discussed in next chapter.

104

\@ :: count : \@
/ \ / \

$Sum /@ y \
/ \ \ /@

count 1 / \
\@ tl

/ \
$Count !•

Figure 6.1 Annotated tree corresponding to the SDS
term for the supercombinator $Sumints.

6.4 D-CODE STRUCTURE

The compilation discussed in this chapter and the previous one is

basically concerned with abstracting out the formal parameters

(patterns or variables) from a definition body, and thus yielding

a SDS term. In addition, in the previous chapter the SDS terms

corresponding to various clauses of a definition were paired with

pattern-type sequences derived from the formal parameters of each

clause. The list of pairs, so generated for a pattern-matching

definition, has been termed as the SDS-field of the D-code

structure. In the case of a single definition, the field simply

has a SDS term.

Another field, termed as header, is being added to complete the

compiled code structure. The header field contains following sub-

fields :

Identifier : a name for the function defined.

m : an integer giving the number of arguments needed
by the function i.e. its arity.

105

n : an integer giving the number of clauses in the
definition.

UL ' a list of integers giving the parameter numbers
which the definition body discards (unwanted
list).

SL : a list of integers giving the parameter numbers
which have multiple occurrences in the
definition body (sharing list).

CN : an integer indicating that the function body has
a computable sub-expression if a minimum of CN
arguments are available (computability number).

The identifier gives a name to the D-code of each function by

which it can be referred. Integer m is helpful at the time of

reduction in determining whether a function application is

saturated or not. The number n is useful in deciding the

requirement for pattern-matching. If n > 1 then matching is

required and the SDS field correspondingly contains a list of

pairs, otherwise the field has only a SDS term and no matching is

required.

UL is a list of integers indicating the unwanted argument numbers,

(if a director string has m directors then the director number k

from left corresponds to the argument number k, k = 1 to m). The

UL list is utilised at run time in deciding to discard an unwanted

argument in its raw form. It saves computation time and provides

some safety in cases where the unwanted argument is non-

terminating type. The list is generated from the director string

at the root node of the SDS term. A discardable argument has a

discarding director (- or #) at the root node itself. Such

argument numbers are included in the list. If there is no

discardable argument then the list is empty. A pattern-matching

106

definition has n such lists corresponding to the n clauses.

SL is again a list of integers listing the argument numbers which

may be shared in the definition body due to multiple occurrences

of the variables corresponding to them. The reduction strategy,

discussed in chapter 7, uses this information to preserve laziness

in computation of shared arguments. The list is generated by

following the directors for each argument in the SDS term.

Whenever a bothways (A) director (meaning sharing) is found, the

argument number is included in the list. A pattern-matching

definition has n lists, one for each clause.

The last sub-field CN needs maximum description. The integer

contained in this field gives the minimum number of arguments

required for having a computable sub-expression in the function

body. The information is used during reduction to decide whether

to go ahead with the reduction of a partially applied function or

to wait. It helps in avoiding repeated computations for the same

sub-expression. The matter is discussed in full detail in section

7.5. At present, we are concerned with how to generate CN from a

given function definition. The compile time operation of finding

this number for a given SDS term is being called computability

analysis.

Computability analysis

Let t be a SDS term for the body of a definition under analysis,

(-k)and m be the number of parameters. Let the symbol tv ' represent

the term t with (i) directors for first k arguments removed, (ii)

holes corresponding to the removed directors, and all constants

107

replaced by C (meaning computable), and (iii) the remaining holes

and data constructor nodes replaced by XC (meaning not

computable). The formation of t*~k' is with the speculative idea

that the available arguments are computable. The remaining holes

are naturally not computable. Thus t'~ ' has a binary tree

structure with leaves as C, XC or a pointer.

Using the above notation, Fig. 6.2 gives a program in functional

style for finding the computability number for a term t. If m = 0

then there is no need to find CN, otherwise compute is called to

start checking t with zero directors removed. Starting with zero

takes care of any constant sub-expression such as (square 4). The

function compute checks the computability of t'~ '. If it is

computable then k is returned as CN, otherwise the computability

of t1 ''is checked. The process stops when k becomes equal

to m because there is no point in going further. Computability of

a node or a leaf is tested through the function tree_computable

and leaf_computable respectively. As long as there are directors

at a node, it cannot be computable hence the test passes on to

left and right sub-trees or the C-list terms. A node free from

directors can be computable if both its sub-trees are computable.

Function leaf_computable returns 'True' only for a leaf having C.

For a node input, it calls back the function tree_cojnputable. The

leaf_computable cannot get a node with directors as input.

108

find_CN (t, m) = 0, m = 0

= compute (t, m, 0)

compute (t, m, k) = k,.. k = m

= if (tree_computable (t^~k')) then k
else compute (t, m, k+1)

tree_computable (leaf) = False

tree_computable ((Dg«2, tj, t2) :: [XjSEj, ..., xn:En])

= tree_computable (t-,) OR
tree_computable (tg) OR
tree_computable (E-i) OR
• • t

tree_computable (E)

tree_computable (@g, t^ , tg) = if leaf_computable (t-,)
then leaf_computable (tg)
else tree_computable (tg)

leaf_computable ("x-) = False

leaf_computable (C) = True

leaf_computable (XC) = False

leaf_computable (I) = False

leaf_cojnputable (@g, t^» tg) = tree_computable (@2, t,, tg)

Figure 6.2 Program for finding CN

6.5 CONCLUDING REMARKS

Function definitions often have let and letrec blocks where some

variables are defined locally. The feature allows sharing of sub

expressions which otherwise would require separate computation for

each occurrence in the definition body. The abstraction scheme,

discussed in chapter 5, is not suitable for abstracting out local

109

variables as it leads to an inefficient code. The code has

directors and holes for reducing a 0-redex at run time which could

easily be resolved at compile time itself.

To overcome this, the abstraction scheme has been suitably

appended by incorporating pointers and introducing the concept of

context-list (C-list) in the SDS term structure. This gives the

terms a graph structure where the SDS term of a local body,

forming an element of C-list, is connected to the main body (at

several places) through a common pointer. The use of pointers and

C-list retains sharing besides avoiding substitution of local

bodies at run time.

The route from supercombinator definitions to SDS terms consists

of an interpretation of different types of local definitions into

lambda calculus followed by an encoding of their meaning into the

modified SDS term structure. An elegant solution to mutual

recursion has been obtained where a set of mutually recursive

definitions is converted into a set of independent let-

definitions .

Giving final touches to the compilation, a D-code structure,

consisting of a SDS field and a header field is introduced for

each function definition. The SDS terms form part of the SDS

field whose other part is the sequences of pattern-types meant for

pattern matching work. The header field contains some

miscellaneous information for house-keeping jobs. In particular,

it includes a computability number (CN) which gives the minimum

number of arguments that will generate a computable sub-expression

110

in a body. An algorithm for generating this number from a given

SDS term has been devised. CN is used in the reduction process

(next chapter) for avoiding repeated computations whenever a

partially applied (unsaturated) supercombinator is shared.

The next chapter deals with the final aspect of the computation

model i.e. reduction. It develops a supercombinator reduction

mechanism where the SDS terms are used as a means of template

instantiation in a simple and mechanical way.

Ill

CHAPTER 7

The computation model, proposed in this work, starts with an

assumption that a program is available in supercombinator form

obtained through lambda-lifting transformation of the high level

program. Such a program has the following main features:

- It is made up of a set S of supercombinator definitions
and an expression E for evaluation. Each definition
expresses a function of arity m (m > 0) where the body has
no free variables, but may have other supercombinators and
built-in functions. Functions may be defined through
pattern-matching also.

- Arbitrary let/letrec blocks, defining some local variables,
may be embedded in a definition body. Prior lambda-
lifting ensures that function definitions occur only at the
top level, and not within let/letrec blocks.

- Data objects are built through constructor functions.

Through the compilation scheme discussed in previous two chapters,

each function definition in the set S gets compiled into a D-code

which, besides a header field, consists of either a SDS term for

the definition body, if a simple function is defined, or a list of

pairs of a pattern-type sequence and a SDS term, one for each

clause, if a pattern-matching function is defined.

The current chapter presents the development of a reduction scheme

for evaluating the program expression E in the light of definition

set S while making use of the D-code. Before reduction, the

112

expression is organised (a compile time operation) into a graph of

variable sized supercombinator redexes of the kind (F Q, Qg ...

Qm) where F is a function of arity m. A redex of this kind, named

as task, applies the function to all its arguments under one

computation process and thus constitutes the smallest indivisible

unit of work. It is similar to current context stack in G-machine

[88,89] or a packet in Flagship [95]. Reduction involves template

instantiation of F (if it is user defined) using its SDS term.

However, in case of a pattern-matching function, matching precedes

instantiation. F could be a primitive operator also and then the

reduction follows the operator rule. The complete task-graph

reduces in a message passing multiprocessor environment making use

of the opportunities of parallelism, wherever possible.

The chapter is organised as follows: Section 1 is preparatory to

the reduction process. It gives the reduction rules for SDS terms

applied to some arguments. Section 2 describes the task

structure. Section 3 discusses an algorithm for organising a

program expression into a task-graph. Section 4 deals with the

actual task reduction mechanism including descriptions of messages

and their handling. In section 5, some modifications to the

simple reduction strategy so as to accommodate the features of

laziness, recursion etc., are discussed. Finally section 6 gives

a summary and concluding remarks on the reduction scheme.

7.1 SDS TERM REDUCTION

The SDS term structure resulting from the compilation scheme,

given in previous chapters, is summarised in the following

113

definition of a term:

Definition 7.1 : SDS term

term

atom

value

(r+1)-tuple

C-list

= atom | (r+l)-tuple | (r+l)-tuple :: C-list

= value J hole j pointer

= constant operator | function_identifier

= (d D nt, term_l, ..., term_r)

= Nil | [P. : term, C-list]

From the above definition, the general form of a (r+l)-tuple type

term, representing a r-ary node, having a C-list is written as

((drDrnt, tlf ..., tr)::[Pi'tcl, Pn:tcnl), r > 1, n > 0

where t*t tg ... stand for arbitrary SDS terms; P^ , Pg ... are

identifier names for corresponding terms tcl, tc2 ... in the C-

list; dr is a r-ary director; Dr is a string of r-ary directors;

and 'nt' is a symbol for node-type. It may be recalled that a SDS

term represents the body of a user defined function in the form of

a graph with nodes having director string annotations for guiding

the substitution of actual parameters at run time. The reduction

rules for these terms are meant for dealing with an application of

a term t to an argument Q. Such a situation arises when the

function F associated with a redex (F Qj Qg ... Qffl) is a user

defined one. The function identifier F, in that case, is

replaced by its SDS term, and argument substitution proceeds

according to the term reduction rules. These rules, by induction

over the syntax of term (Definition 7.1), are

114

(Rl) I Q

(R2) "Pt Q

(R3) (!§!, I)Q

(R4) (SD^, tx)Q

(R5) (#D1«1, tx)Q

(R6) (/\Dg@g, tj, tg)Q

(R7) (/D2@g, ilt tg)Q

(R8) (\D2@2» tl' t2)Q

(R9) ("D2®2' tl« t2)Q

(RIO) (drDrnt, tj, tr)Q -

-> Q

-> t • Q,
CI *'

1 < i < n

-> («!• • Q)

-> (Dl@l' txQ)

-> (Dl@l> tl)

-> (Dg@g, txQ, tgQ)

-> (D2@2, t1Q, tg)

-> (D2@g, tlf tgQ)

-> (Dg@g, tl' tg)

-> (Drnt, t1Q, ..., trQ)

A general characteristics of the above reduction rules is to

transport the argument to a sub-term depending on the leading

director. Rule Rl corresponds to the terminal situation of an

argument reaching a hole. Successive applications of various

other rules may ultimately terminate in the application of this

rule. Rule R2 refers to a pointer being applied to an argument.

It says that the argument should be passed to the corresponding

term in the C-list. There is no rule for a value type term

because it does not form part of term-reduction. It is dealt at

task reduction level. Moreover, the abstraction rules (A1-A15),

for producing SDS terms, do not allow this kind of situation to

occur. Rules R3 - R5 are for pair terms, and R6 - R9 for triple

terms. In rule RIO, which is for a general (r+l)-tuple term, the

argument Q is actually passed to the sub-terms indicated by dr>

The above rules have been written with an atomic director in the

leading position. The same rules apply if the leading director is

a pattern director. However, if it is a list director then a

115

breaking of the argument structure is suggested. Let the

structure of Q be given by

Q = c q^ qg ... qk

The reduction rule then, with a list director in the front, is

(Rll) ({#j_1, !, #k_J]D1e1, tx)Q —> (Dit1§ tiqj), 1<j <k

A list director is assigned, during abstraction, only when a.leaf

is encountered in the expression tree. Hence the director occurs

in pair terms only.

In the reduction of a task, the SDS term of a function definition

acts as a template, and the term reduction rules govern the

instantiation process.

7.2 TASK STRUCTURE

An important design parameter in a parallel reduction machine is

grain size of a computation unit. The whole program can be

divided into such units and distributed over the parallel

hardware, hoping to achieve better throughput due to concurrent

action. But a necessary evil associated with all such

arrangements is the 'administrative' overheads (e.g. communication

between processors). Too fine a grain size may provide better

utilisation of parallelism, but a major part of the advantage

gained could be offset by increased overheads. On the other hand,

too coarse a grain size may lead to loss in parallelism, but the

communication costs are less (a single processor machine executing

116

an imperative program is an extreme of coarse grain - the whole

program is a single indivisible grain, hence no communication but

no parallelism too). Although the issue of optimal grain size is

difficult to resolve, but the idea of bigger grain size has found

more favor [15,83] because the ratio of inter-processor

communication time to CPU instruction time is generally quite

high.

In our model, a supercombinator definition body is compiled into a

SDS term which may look like going from the coarse grain size of a

supercombinator to the fine grain of director string model.

However, this is true only if the reduction is done in an

'incremental manner' as in, e.g. CTDNet [58,59], The proposed

reduction model treats a supercombinator/operator applied to all

its arguments as a single indivisible unit of computation named as

task. In other words, the task reduction represents a single

large step instantiation of a supercombinator body rather than a

collection of small steps with communication intervals in between

them. G-machine [88,89] and Flagship [95] architectures have

similar grain sizes.

For task reduction, the program expression, under evaluation, is

organised into a task-graph where the nodes are tasks. Each node

maintains graph links in the form of ancestors and successors.

Tasks are of variable size because different functions require

different number of arguments. The structure of a task in terms

of its various fields is represented as follows:

117

A

A

where

F SC
1

• • •

l
I ,

.

S(l) (k)

or N

/ \
F S(l) ~S(2) ,.7S(k)

N

A

F

SC

S(l), ..., S(k)

Name field

Ancestor field

Function field

Successor count field

k Successor fields, k £ 0

The N-field provides an identification for a task. Besides self

address, the field contains two more sub-fields called type and

count. Task types are defined according to the number and nature

of arguments available for a function. In a program expression (f

ej eg ... ek), let the arity of the function f be m. Depending on

the values of m and k, following three task types are possible

from this expression (the process of converting a program

expression into a task-graph is termed as organisation and is

discussed in next section):

(1) Complete : m = k, i.e. the function requirement matches the
availability.

(2) Partial : m > k, i.e. the function requires more than the
available arguments. The situation corresponds to partially
applied functions [84].

(3) Dummy : m < k, i.e. the function requirement is less than the
availability. Dummy task holds the surplus arguments (k-m)
in its successor fields and the complete task (organised from
m arguments) in its F-field.

The 'Complete' type is further divided into two sub-types called

118

Executable and Waiting depending on the nature of arguments. In

an executable task, each successor is a data value/pointer but not

a task whereas a waiting task has some successors as tasks.

The count sub-field in N-field is just an integer which has

different meaning for different type of tasks. It indicates the

number of successors in task form if the task is W type; the

shortage of arguments if task is P type; and the number of surplus

arguments if task is D type.

The type and count sub-fields have been purposely included in the

N-field. A task refers to its neighbours by their N-fields. The

presence of type and count information in this field provides a

task all the necessary knowledge about its neighbours which

otherwise has to be obtained through communication.

The ancestor field is a linkage field. It holds N-field of the

ancestor task and a number 's' indicating that the task is sth

successor of its ancestor. If a task is shared then its A-field

contains a list of A-fields indicating all those who share it. A

root task has A-field as nul.

The F-field contains the function identifier which the task is

supposed to apply to the arguments available in the successor

fields. It could have a built-in operator, a user defined

function or the N-field of another task. Sometimes, F-field may

house a pointer to an unorganised expression graph also whose

implication is discussed later.

The successor fields correspond to the arguments. The fields are

119

ordered from left to right. A successor could be a task or some

data item, a pointer to a data node or an unorganised graph. For

a task type successor, the field carries the name field of the

pointed task. For other data type successors, it becomes

necessary to indicate the type i.e. whether it is a constant or

some operator or some identifier etc.. Hence, the field holds a

tagged value consisting of sub-fields 'tag' and 'qty'.

The SC field simply gives the number of successors in a task. It

may be noted that in a dummy task, the count in N-field and this

SC field will have the same value because a dummy holds the

surplus arguments as successors.

The above description is summarised in the following definition of

task fields:

Definition 7.2

N

type

count

A

SiS^ |... |s_

F

SC

S(I)

tagged_value

tag

qty

: Task fields

= (Identifier, type, count)

= E | W | P | D

= positive integer

= nul | (NA ; s) | (NAl;s1, NA2;sg, ..., NAp;sp)

= +ve integers indicating ancestor's successor no.

= opoperator | .$function_identifier | N ug"unorg
graph

= positive integer giving the no. of successors

= N | tagged_value, I = 1 to k

= (tag, qty)

= val | op | $ | ug | ds

= constant operator function_identifier |
"unorg_graph "data

120

A function_identifier refers to a user defined function and is

identified by a $ prefix. The pointer types ds and ug. refer to a

data structure and an unorganised graph respectively. As an

example, 'the expression (Twice Twice Sue 0), when organised, will

give rise to two tasks shown in Fig. 7.1. Here X and Y are task

identifiers. Task X is dummy and task Y is executable. F-field

of X points to Y task. In the A-field of Y task, s = 0 means that

nul

(X,D,1) :

(X,D,1; 0)

(Y,E,0) :

(Y,E,0) 1 valO

iTwice 2 ITwice £Suc

Figure 7.1 Task-graph for the expression
(Twice Twice Sue 0)

it is 0th successor of its ancestor (the F-field is treated as 0th

successor for link purposes). The Y task knows, through its A-

field, that its ancestor is a dummy task having one argument.

Similarly, the X task knows, from its F-field, that its 0th

successor is an executable task. This has been made possible by

including type and count sub-fields in the N-field. The above

task-graph is obtained by organising the expression (Twice Twice

Sue 0) and the next section gives the details of this organisation

process.

121

7.3 ORGANISATION OF PROGRAM EXPRESSION

The process of organisation is a compile time operation for

converting a program expression into a task-graph. It is used at

run time also, for organising the intermediate results produced by

task reduction, but in a slightly different form.

An expression in a high level functional language builds up in

size mainly through left-associative binary application and

through data structuring using constructor functions. Its atoms

consist of constants, built-in operators, and function

identifiers. Besides these, sharing of sub-expressions may also

exist. An expression may thus be viewed as an expression graph

defined as follows:

Definition 7.3 : exp_graph

exp_graph ::= node j leaf

n°de ::= @ (exp_graph, exp_graph) | c (exp_graph_l, ...,
exp_graph_r) j identifier : node

leaf ::= constant operator J function identifier I
identifier

The productions for node correspond, in order, to binary

application, data construction through a constructor function c of

arity r, and identified sub-expression (to show sharing). The

productions for leaf include constants, built-in operators,

function names, and pointers used for shared nodes. As an

example, the graph of the expression (let x = SQ 5 in + x x) is

written in textual form as (@ (3 (+ , (x : S (SQ, 5))), "x)). In

graphical form, it is shown in Fig. 7.2.

122

/ \
e "x

/ \
+ X'.%

/ \
SQ 5

Figure 7.2 Graphical representation of
(let x = SQ 5 in + x x)

The above form of expression graph is assumed as input to the

organisation module. In the task model, organisation serves two

purposes. The first is to frame proper tasks from the given

expression graph i.e. to group a function of arity m along with m

arguments (if available) under one computation process. The

second purpose is to act as a pre-condition for any reductions to

take place. An unorganised piece of graph is 'dead' i.e. it

cannot initiate any action and hence cannot reduce. Organisation

puts 'life' into it. The reduction mechanism (discussed in next

section) makes extensive use of this idea in bringing selective

laziness to an otherwise applicative strategy.

A conceptual picture of the organisation process is given by Def.

7.4 for a function Org. Here e stands for an expression, f for a

function of arity m, C for a constant value, d for a data

structure node, and w for a task (work) resulting from the

application of Org to an expression.

123

Definition 7.4 : Org

Org(C) = tag C ;tag depends on the type of C.

Org(d) = ds"d ;data constructor nodes are simply replaced by
a pointer without organising further.

Org("x) = "Org(xie^) ;"x points to the expression e^, and hence
organisation results in a pointer to the

= ~Org(e^) organised form of e*.

Org (f ex eg ... ek)

= [Org(f) (Org(ei), ..., Org(ek)],

= [wq (w^, ..., wk)], m = k ;Complete task

= [wq (w^, ..., wk, ...], m > k ;Partial task

= ttwo ^w1 wm^ ^em+l' •••• ek^' m < k ;Duramy task

Org-(IF e1 eg eg)

= [Org(IF) (Org(e1), ug."eg, ug."e3)] ;then and else arms
are not organised

= [opIF (wlf ug"eg, ug"e3)]

Org (f e1 ...ei ... em)

= [wq (w^, ..., K.p ..., wm)] ;ith argument is unwanted.

The result of organising an expression (f e< e« ... ek) is a task

which, in the notation introduced, is written within square

brackets. It consists of a function-task wQ applied to a list of

argument tasks Wj ... wR. An unfinished list of argument tasks

(indicated by a list without a closing bracket) represents a

partial task. As an example, [opt (val5, ...] is a partial task

because the '+' operator does not have a complete list of

arguments.

124

A general characteristic of Org is to avoid organisation of an

argument into a task if its need is doubtful. The feature imparts

some safety to the reduction because an unorganised expression

remains in a dormant state. The most obvious use of this feature

is in the organisation of a conditional expression where initially

only the condition part is organised. The other two parts are

left unorganised. Later when need is known, through the result of

condition, the relevant part is organised. On the same lines,

whenever m < k, only the required m expressions are organised into

a complete task. The dummy task, created for this situation,

holds the rest k-m arguments in unorganised form because it does

not know at present whether these expressions would be needed or

not. Similarly, while organising the arguments of a function f,

the organiser looks for its need in the definition of f (indicated

in the sub-field UL of the header of D-code) and does not

organise, if unwanted, thus saving the computation of an unneeded

argument. In the last case of Org definition, ith argument is

assumed as unwanted, hence a constant K. (not meaning anything) is

substituted for it and e- is rejected.

Let us take an example of organising the expression (Twice SQ (+

(* 3 5) (* 5 71))) into tasks. It is given that the arity of

Twice is 2. The organisation will proceed through following

steps:

Org(Twice SQ (+ (* 3 5) (* 5 7))))

= [(Org(Twice)) (Org(SQ), Org(+ (* 3 5) (* 5 7)))]

= [iTwice (opSQ, HOrgi*)) (Org(* 3 5), Org(* 5 7))])]

125

= [ITwice (opSQ, [(Org(+)) ([Org(*) (0rg(3), 0rg(5))],
[Org(*) (0rg(5), Org(l))])])]

= [ITwice (opSQ, [op+ ([op* (val3, val5)], [op* (val5, val7)])])]

7.3.1 Organisation Algorithm

A formal description of the organisation algorithm is being given

now. The input to this algorithm is an exp_graph defined in Def.

7.3. For convenience of reference, a structure for nodes and

leaves in exp_graph is being assumed as given below:

Definition 7.5 : Node and leaf structure

Node Structure

I
N :

where

N

type

ref_cnt

S(l),...,S(k)

A

Leaf Structure

S(l), ... , S(k)

tag qty

where

':: = (identifier, type, ref_cnt)

= e | c

= positive integer

= N j Leaf

= nul I N

tag ::= val op

qty ::= constant

i

operator function identifier

Here the ref cnt of a node indicates the number of nodes referring

126

to it. Shared nodes have a ref_cnt greater than 1. The

information is used by organisation module to avoid repeated

organisations of a shared sub-graph. Once a shared sub-graph is

organised, the ref_cnt of its root node is set to zero to indicate

that the graph is already organised. Taking the above structure

for nodes and leaves in an exp_graph as input, the organisation

process delivers a task-graph which is defined as follows:

Definition 7.6 : task-graph

task-graph ::= task | tagged_value j unorg_graph

unorg_graph ::= exp_graph

The structures of task and tagged_value have been given earlier in

Def. 7.2. Based on these input and output structures, the

organisation algorithm is specified formally in a Pascal-like

notation in Fig. 7.3. Here the main module Org calls Org_exp and

then Mark_type to assign task-types in the task-graph created by

Org_exp. The Org_exp, depending on the form of input exp_graph,

calls Org_leaf, Org_ds or Org_node. These modules organise a

leaf, a sub-graph at a data structure node and an application node

respectively. Some of the procedures such as get_root_task,

get_count etc., have been taken as primitive ones and have not

been specified in detail.

127

program Org;

begin

org_exp (exp_graph, task-graph);

raark_type (task-graph);

task:= get_root_task (task-graph);

task.A:= nul {set A-field of root task as nul}

end.

procedure org_exp (exp_graph, task-graph);

begin

case exp_graph of

leaf : org_leaf (leaf, tagged_value);

node : if (node.N.type = 'c') then org_ds (node, tagged_value)

else if (node.N.ref_cnt = 0) {node is already
organised}

then task-graph:= get_task (node.S(l))

else begin

E_task:= new(task); {create a new task for
the expression]

org_node (node, E_task)

end

end {case}

end;

procedure org_leaf (leaf, tagged_value);

begin

tagged_value.tag:= leaf.tag;

tagged_value.qty:= leaf.qty

end;

128

procedure org_ds (node, tagged_value);

begin

name:= node.N;

tagged_value.tag:= ds;

tagged_value.qty:= "name

end;

procedure org-node (graph, task);

begin

c_node:= get_root_node (graph); {set current node to the root
of the input graph}

nc:= 0; {initialise node-count}

repeat {repeat until the end of spine is reached}

c_node:= c_node.S(l); {move down left on the graph}

nc:= nc + 1;

until ((c_node.N.type = '@') AND (c_node.N.ref_cnt = 1));

if (c_node.N.type = 'c') OR

((type(c_node) = 'leaf') AND (node.tag = val))
{type procedure checks whether it is a leaf or a node}

then print "error"; {corresponds to a constant or data
structure in the operator position}

if (type(c_node) = 'leaf') AND (c_node.tag = op OR 1)
{an operator or function at the spine tip}

then begin

tip:= c_node;

task.F:= tip; {set the F-field of task}

if tip = p_pIF {IF operator at the tip}

then begin

fpc:= 1; {formal parameter count for IF = 1}

ul:= NIL; {list of unwanted arguments is empty}

make_task (ul, fpc, fpc, task, c_node);

129

task.S(2).tag:= ug; {then and else arms
are attached to the

task.S(2).qty:= "c_node.S(2); task in unorganised
form}

c_node:= c_node.A; {move up}

task.S(3).tag:= ug;

task.S(3).qty:= "c_node.S(2);

task.SC:= 3; {set successor count to 3}

c_node:= c_node.A;

leftovers:= nc - 3; {extra arguments that could
not be used by IF task}

if (leftovers > 0)

then begin

d_task:= new(task); {create a new task to
act as dummy}

dummy (leftovers, task, d_task)

end

end

else begin {operator is other than IF}

fpc:= get_count (tip); {get parameter count of
the function on tip}

ul:= get_unwanted_list (tip);

make_task (ul, fpc, nc, task, c_node);

end

end;

if (c_node.N.type = '@') AND (c_node.N.ref_cnt > 1)

then begin {a shared node in the operator position}

task.N.type:= 'D'; '{declare the task as dummy}

task.N.count:= nc; {set surplus count of dummy = nc}

task.SC:= nc;

save:= c_node; {save the current node}

130

end;

F_task:= new(task);

org_node (c_node, F_task);

c_node:= get_node (save); {restore node}

c_node.N.ref_cnt: = 0; {set ref_cnt = 0 to avoid
repeated organisations}

c_node.S(1):= F_task.N; {keep F_task name for
future use}

link (task.F, node.S(l)); {link F-field of task to
F_task}

arg:= 1;

while (arg < nc) do

begin

c_node:= c_node.A;

task.S(arg).tag:= ug;

task.S(arg).qty:= "c_node.S(2);

arg:= arg + 1

end {while ... do begin}

end

procedure make_task (list, pc, aa, task, node);

begin

if (aa ^ pc) {available arguments ^ parameter count}

then if (aa < pc)

then begin

group_args (list, aa, task, node);

task.N.type:= 'P';

task.N.count:= pc - aa {set shortage count}

end

else begin

131

group_args (list, pc, task, node);

leftovers:= aa - pc;

d_task:= new(task); {create a new task to act as
dummy}

dummy (leftovers, task, d_task);

end

else group_args (list, pc, task, node)

end;

procedure group_args (list, pc, task, node);

begin

save:= node;

arg:= 1; {initialise argument number counter}

task.SC:= pc;

while (arg < pc) do

begin

if (in_list (arg, list)) {argument number is in the
unwanted-list}

then begin

mark_for_GC (node.S(2)); {mark the unwanted argument
for garbage collection}

task.S(arg):= 'UNWANTED'

end

else begin

Arg_task:= new(task);

org_exp (node.S(2), Arg_task);

link (task.S(arg), Arg_task) {link current successor
and organised argument}

end;

node:= node.A; {next argument}

arg:= arg + 1 {increment argument counter}

end; {while ... do begin}

132

node:= get_node (save);

if (node.N.ref_cnt > 1) then

begin

node.N.ref_cnt:= 0; {to avoid repeated organisations}

node.S(l) :••= Arg_task.N {save organised task in S(l) field
of the shared node for future use}

end

end;

procedure dummy (unused_args, task, d_task);

begin

d_task.N.type:= 'D';

d_task.N.count:= unused_args;

d_task.SC:= unused_args;

link (d_task.F, task); {dummy-task holds task in its F-field}

arg:= 1;

while (arg < unused_args) do

begin

d_task.S(arg).tag:= ug; {a dummy keeps its arguments in
unorganised form}

d_task.S(arg).qty:= "node.S(2);

node:= node.A; {next argument}

arg:= arg + 1

end {while ... do begin}

end;

procedure mark_type (task-graph); {procedure to set N.type of all
tasks in a task-graph}

begin

root:= get_root_task (task-graph);

if (type(task-graph) = 'task') AND (root.N.type t 'P')) then

if (root.N.type t 'D') {task is other than partial or dummy}

133

then begin

I:- 1;

k:= root.SC; {store successor count in k}

wc:= 0; {initialise wait-count}

while (I < k) do

begi n

if type(root.S(I)) = 'task')

then begin

wc:= wc + 1; {increment wait-count because
successor is a task}

raark_type (root.S(I))

end;

I:= I + 1;

end; {while ... do begin}

if (wc = 0) then root.N.type:= 'E'

else begin

root.N.type:= 'W';

root.N.count:= wc {set wait-count of root task}

end

end

else mark_type (root.F) {if task is dummy then mark the task
contained in its F-field}

end;

Figure 7.3 Specification of the Organisation Algorithm

7.4 TASK REDUCTION

The compile time Org, specified in the last section, converts an

expression under evaluation into a task-graph. Besides expression

134

for evaluation, a program has definitions which get converted into

SDS terms through the earlier compilation. These may be called a

set of definition graphs. The two graphs, put together,

constitute a computation graph which is defined as

Definition 7.7 : Comp_graph

comp_graph

def_graph_set

= task-graph + def_graph_set

= { } {def_graph_l + ... + def_graph_p}

Here p is the number of definitions in the definition set of a

program. Task-graph has already been defined earlier in Def. 7.6

and a def_graph is a function body in the form of a SDS term whose

definition is given in Def. 7.1. The productions for

def_graph_set state that the set may be empty or may have p

unconnected def_graphs. The task-graph and def_graph are also

unconnected graphs. The purpose of task reduction is to reduce

the task-graph to normal form i.e. to a form when it has no

executable tasks left. In the process, it may use a def_graph

whenever a task involving application of a user defined function

is encountered.

During task-graph reduction, the tasks do not live for ever. As

soon as a task has reduced, it kills itself after passing on the

result in the form of a message to its ancestor(s). During the

tenure of its existence, it either reduces or handles messages

received from other tasks. Fig. 7.4 defines this 'life style' of

a task formally, in a Pascal-like notation. The various procedure

names introduced here are discussed later in this section.

135

task ::=

begin

while task f null do {while alive, keep on doing}

begin

if reducible

then reduce

else begin

* ? M; {receive a message M from some task}

case M.type of

result : handle_result_message(M);

link : handle_link_message(M);

else handle_arg_message(M)

end {case}

end

end {while ... do begin}

end.

Figure 7.4 Formal definition of a task life.

7.4.1 Task Reducibility

Task reduction has been designed as a graph reduction activity

with potential to exploit parallelism. The reduction strategy is

therefore basically applicative (eager) so as to allow

simultaneous action on all reducible tasks at any given time.

Based on this strategy, the conditions of reducibility for a task

in the model are

136

(1) The task is complete i.e., its successor count is equal to
the arity of the function in F-field, and the F-field
function is either a built-in operator or user defined.

(2) All the successors are either in tagged_value form, or
partial type tasks.

These two conditions are in the spirit of data flow approach [48]

that all instructions, for which input tokens are available, can

be fired. The execution of the program is thus data-driven. A

Complete task which has some of its successors as further tasks

(other than partial type), waits till results in tagged_value/

partial-task form are received from such successors through

result/link messages. Later (section 7.5), we discuss situations

where the purely eager strategy, stated above, is made selectively

lazy to accommodate some features which are otherwise not possible

with the eager order. In that case, the treatment for partial

tasks also gets modified. At present, we continue with the

details of the applicative reduction mechanism.

7.4.2 Reduction Mechanism

A complete reduction cycle for a reducible task is divided into

following steps:

(1) Application : The function in F-field is applied to the
arguments in the successor fields.

(2) Organisation : The result of step 1 is organised into a task-
graph.

(3) Communication : The organised task-graph of step 2 is
communicated to the ancestor task(s).

(4) Removal : The reducing task is removed from the computation
graph.

137

These steps are now explained further in detail.

7.4.2.1 Application

The function to be applied may be either a user defined function

(identified by a | sign) or a built-in operator. In the former

case, the application is done through what we call a $-reduction

and in the latter through primitive reduction.

$-reduction : A copy of SDS term of the F-field function is

obtained from the def_graph_set and the arguments (successors) are

substituted in it. The process follows the term reduction rules

(Rl-Rll) discussed in section 7.1. The successors in a task are

ordered in the sense that S(l) represents the first argument for

substitution, S(2) the second and so on. A function of arity m

has m directors in the director string at the root node of its SDS

term. S(l) undertakes a tree-walk guided by a leading director at

a node till it reaches the hole where it is meant. All the leading

directors which have been used in the process are deleted. On the

way, if a both ways director (A) is encountered, a copy of the

argument is made. This copying is not costly because the

arguments are in tagged_value form representing simple data values

or pointers to data structures. In case an argument is a partial

task, its name-field is used for all substitutions. At the end of

the journey i.e. at a hole, the director could be a list director

meant for a structured argument. In that case, the appropriate

component of the argument structure is extracted, and if the

component is a simple data item then it is directly substituted in

138

the hole otherwise a pointer to the component is substituted.

After finishing with S(l), the director string at root node would

consist of (m-1) directors. The leading director now corresponds

to S(2), the substitution of which is taken up in a similar

manner. The process is repeated for all the m successors. In the

end no directors are left in the copied template and it represents

an instance of the function being applied.

Primitive Reduction : In this case, the F-field contains a built-

in operator. It could be a simple operator (arithmetical, logical

or relational), a conditional operator, or the fixed point

operator Y. For a simple operator, the application is done

following the operator rule.

The handling of IF operator requires an explanation. Left to

itself, an IF-task may start action on all the three arms viz. the

condition arm, then arm and the else arm. Although in a parallel

machine, this should be encouraged, but some conditional

expressions are specifically used to avoid non-termination through

a check on a parameter value, and in such cases, the parallel

action may lead to non-termination. In CTDNet [58,59], it is

avoided by making the then and else sub-graphs inactive (tardy)

till the condition is evaluated, after which the selected graph is

activated through a message communication. In the present

computation model, all the three arms belong to the same process

(task), hence communication is not needed. Here the key to

suspension or activation of a work is organisation. When a IF-

task is created, its then and else parts are left unorganised

139

(Def. 7.4 of Org). The task, handling condition part, will

eventually send a result message depending on which the IF-task

will activate, through organisation, either then or the else part

and link it to its ancestor. In this way, the unneeded arm of a

conditional is neither organised nor computed.

The reduction mechanism for the Y operator is discussed in section

7.5 while discussing modifications to the scheme.

7.4.2.2 Organisation

The result of application step is either a value or an exp-graph.

In either case, the result is organised into a task-graph using an

organisation algorithm similar to that of section 7.3. This run

time algorithm for organising intermediate results is being called

Org_result which is slightly different from Org, used at compile

time for the program expression. The Org program, after calling

org_exp and mark_type, gets the root task and sets its ancestor to

be nul. The Org_result, on the other hand, sets this ancestor

equal to the A-field of the task under reduction. This action

transfers the parentage of the reducing task to the newly created

one and helps in maintaining the links in the dynamic graph

without any extra communication. It is part of preparation done

by the reducing task to ultimately get away from the scene.

7.4.2.3 Communication

The action, till now, has resulted in a task-graph (say G) which

is either a task or a tagged_value. The result is to be reported

140

to the ancestor task whose address is available in the A-field of

the task under reduction say, w . However, if the ancestor is nul

then no communication is needed and the reduction cycle can

proceed to the next step.

The ancestor of the reducing task can be a Waiting type, waiting

for the result from this successor. Depending on the type of

result, the reducing task w prepares a message M whose type is

given by

M.type = result, if Gr is a tagged_value

= link, if G is a task

The prepared message is sent to the waiting ancestor, and if the

A-field contains a list then a copy of the message is sent to each

ancestor. The structure of messages and their handling is

discussed in section 7.4.3.

7.4.2.4 Removal

At this stage, w has finished its work. The result of its

computation has been communicated to the ancestor(s). It has no

relevance left now, and therefore it gets away from the

computation graph by killing itself.

The complete reduction cycle is specified as procedure 'reduce' in

Fig. 7.5 in terms of the symbols used above. The org_result

referred here is same as Org except for a minor difference

mentioned earlier. Some additional features of org_result are

discussed later in section 7.5.

141

procedure reduce;

begin

if (w ,F = opoperator) {beginning of step 1}

then gr:= primitive_reduce (wr)

else gr:= $_reduce (w);

Gr:= org_result (gr); {step 2}

if (w .A i- nul) {step 3, communicate if ancestor is a task}

then begin

if (type (Gr) = 'task')

then begin

Gr.A:= w .A; {pass on the A-field of w to the
result task G }

M:= (link. Gr.N, wr>A.s)

end

else M:= (result, Gr, w .A.s);

M ! w .A {send the message M to the ancestor(s)}

end

else Gr.A:= nul;

w':= null {step 4, kill self}

end;

Figure 7.5 Procedure for reducing an executable task

7.4.3 Message Handling

In the reduction procedure, discussed in the last section, two

messages of result and link type have been introduced. In

addition, another message of type arg is required while dealing

142

with a link message. On receipt of a message, a task takes some

actions which we call as message handling. These messages and the

corresponding actions taken by a recipient task are now being

described.

7.4.3.1 Result message

This message is generated by a reducing task wr whenever the

result of its reduction is a tagged_value and not a task. The

message structure consists of three fields - type, data and

link_no, and is given by

M

type

data

link no

= (type, data, link_no)

= result

= (tag, qty)

= wr.A.s

The type field in any message is necessary for the recipient task

to decide its course of action. The data field carries the value

type result of reduction where the tag indicates whether the

value is a constant, an operator, a function identifier etc.. The

link_no field carries a successor number so that the recipient

task can know that the required data has come from which of its

successors.

A result message may be received by a W, D or P type of task only,

and depending on its type, a task takes an appropriate course of

action from the following:

143

W-type: The task simply overwrites its appropriate successor
field by the data field of the message and decrements its
wait-count in the N-field. As a result, it may become
executable if this was the last successor, it was waiting
for. In a special case when it has an IF operator in its F-
field, the' message must have come from the condition part.
Depending on the message data (True or False), it initiates a
fresh reduction cycle from step 2 (organisation) for the
selected successor. The other successor is marked for

garbage collection.

P-type: The appropriate successor field is overwritten.

D-type: The message is of use to a dummy task only if the
received data is an operator or a function identifier. In
that case, it initiates action to organise its successors
according to the needs of the function received. Depending
on the arity (say m) of this function and the number of
successors (say k) available with it, the organisation may
result into a Complete (if m =k), Partial (if m>k) or a
Complete plus a Dummy (if m<k) task. However, if the
received data is a constant, the organiser would indicate an

error.

The details of the actions are formally specified in a Pascal-like

procedure, named handle_result_message, in Fig. 7.6.

procedure handle_result_message (M);

begin

I:= M.link_no;

dtag:= M.data.tag;

case r_task.N.type of {depending on the type of recipient
task (r_task) take one of the actions}

W : if (r_task.F t opIF)

then begin

r_task.N.count:= r_task.N.count - 1; {decrement
wait-count}

r_task.S(I):= M.data {put data in corresponding
successor field}

end

else begin {operator in F-field is an IF operator}

144

c_task:= new(task);

if M.data.qty = True {if data is TRUE, organise
then part into c_task}

then org_exp (r_task.S(2), c_task)

else org_exp (r_task.S(3), c_task);

mark_type (c_task);

if type(c_task) = 'task' {check if the c_task is a
task or a tagged_value}

then begin

Mc:= (link. c_task.N, r_task.A.s);

c_task.A:= r_task.A {pass on self parentage
to c_task}

end

else Mc:= (result. c_task, r_task.A.s);

Mc ! r_task.A; {send framed message to ancestor(s)}

r_task:= null {kill self}

end;

P : r_task.S(I):= M.data;

else if (dtag = val OR ds) then indicate_error {constant in
operator position}

else convert_dummy (r_task, M)

end {case}

end;

procedure convert_dummy (task,M);

begin

fpc:= get_count(M.data); {get parameter count of the function
received in the message}

ul:= get_unwanted_list(M.data);

s:= task.SC; {save the no. of successors in the dummy under
conversion}

if (fpc > s) then begin

p:= s;

task.N.type:= 'P'

145

end

else p:= fpc;

k:= 1;

while (k < p) do

begin

org_exp(task.S(k), task-graph); {organise a successor}

link(task.S(k), task-graph); {link the organised task-graph
to the appropriate successor}

k:= k + 1 {next successor}

end;

if (fpc = s) then mark_type(task);

if (fpc < s) {a new dummy task will have to be made}

then begin

leftovers:= s - fpc; {no. of unabsorbed successors}

k:= fpc + 1; {set successor counter next to the organised
successor}

d_task:= new(task); {create a new task to act as dummy}

d_task.A:= task.A; {set its ancestor same as that of the
task under conversion}

task.A:= (d_task.N, 0) {make d_task the ancestor of the
task under conversion}

task.SC:= fpc;

d_task.N.count:= leftovers;

d_task.SC:= leftovers;

l:= 1;

while (k < s) do {make unabsorbed successors as
successors of the d_task}

begin

link(d_task.S(I), task.S(k));

I:= I + 1;

k:= k + 1

146

end;

end;

link(d_task.F, task);

mark_type(d_task)

end

Figure 7.6 Specification of handle_result_message procedure

7.4.3.2 Link message

This message is generated by a reducing task w whenever the

result of its reduction is another task, say w*., instead of a

tagged_value. Its structure is given by

M

type

data

link no

= (type, data, link_no)

= link

= wt.N

~ '*'•»» ••• • B

Data field contains the name of the task wt, created during

reduction, and the link_no field, like in result message, contains

the successor number for proper linking. A recipient task,

depending on its own type, takes a corresponding course of action

described as follows:

W or P type : The appropriate successor field is adjusted to
point to the task w+ mentioned in the data field of the
message. In addition, the W type decrements its wait-count
if the type of w^ is P.

D type : The task-name, contained in the data field of the
received message, would indicate whether w^ is of W, E, P or
D type. If it is W or E type, the recipient dummy cannot do
anything with it. It simply adjusts its F-field to point to

147

wwt* If it is P type, the dummy may get rid of some or all of
its successors depending on its own surplus and the shortage
with the P type. Similarly, if it is D type, there is no
point in keeping two dummies in series and the recipient
dummy passes on all its successors to w. and gets away from
the scene. However, before killing itself, it sends a link
message to its ancestor for linking him to w.. In the last
two cases, the surplus successors, with the recipient dummy,
are passed down through an arg_message discussed in the next
section.

A detailed formal description of handling a link message is given

in Fig. 7.7.

procedure handle_link_message (M);

begin

I:= M.link_no;

tag:= M.data.type; {data received is the N-field of a task}

r_task.S(I):= M.data;

rcount:= r_task.N.count;

rtype:= r_task.N.type;

if rtype = 'W' then if tag = 'P' then rcount:= rcount - 1;

if (rtype = 'D')

then begin

es:= rcount; {set es to surplus count with recipient
dummy}

s:= M.data.count;

if es > s

then if tag = 'P' {received task-name indicates P type}

then begin

rcount:= es - s; {update self count}

list:= (r_task.S(l) r_task.S(s));

Ma:= (arg, list, no_change); {prepare message
to send s successors}

148

Ma ! r_task.S(I); {send arg message to the
task whose name appears
in the link message}

shift_left (r_task, s) {shift the remaining
successors to the

left by s}
end

else if (tag = 'P' OR 'D')

then begin

list:= (r_task.S(1), ..., r_task.S(es));

Ma:= (arg. list, r_task.A); {prepare message
to send es successors}

Ma ! r_task.S(I);

if tag = 'P' then M.data.count:= s - es

else M.data.count:= s + es;
{modify the count field of the received task-name}

Ml:= (link. M.data, r_task.A.s);

Ml ! r_task.A; {link ancestor with the
received task-name}

r task:= null

end

end;

end

Figure 7.7 Handling of link message

7.4.3.3 Argument (arg) message

This message is generated by a dummy task while handling a link

message. It is sent to the task whose name is received in the

link message. Through this message, a dummy gets relieved of some

or all of its successors whenever the name of a partial or dummy

task is received in link message. The structure of the message,

149

when generated by a dummy task w., is

M

type

data

anc

(type, data, anc)

arg

(wd.S(l), ..., wd.S(n)), n

w,.A | no-change

no. of successor fields

to be sent

Its data field contains an ordered list of the dummy's successor

fields whose length is equal to the number of successor names to

be passed down. Through the 'anc' field, the sender dummy

communicates its A-field (for linking) when it is planning to kill

itself otherwise an indication, meaning that no change is required

in the recipient's A-field, is sent.

The recipient of an arg type message can be a P or D type only.

On receipt of the message, the two types take appropriate action

as given below:

P type : The ancestor field is adjusted according to the
'anc' field of the message. The unorganised successors,
received through the 'data' field, are organised and added at
the end of the existing array of successors.

D type : A dummy recipient performs the same actions as above
except organising the received successors.

A formal description of the handling of argument message is given

in Fig. 7.8.

procedure handle_arg_message (M);

begin

n:= length (M.data); {set n to number of arguments received}

150

k:= r_task.SC; {initialise successor counter to the existing
number in the recipient task}

I:= 0; {initialise argument counter}

count:= r_task.N.count;

if r_task.N.type = 'D' then count:= count + n

else count:= count - n; {adjust the surplus/shortage count}

r_task.N.count:= count; {set the count to the adjusted count}

while I < n do

begin

I:= I + 1;

k:= k + 1;

r_task.S(k):= M.data(I)

end; {while ... do begin}

r_task.SC:= k;

if (M.anc ^ 'no-change') then r_task.A:= M.anc;

if r_task.N.type = 'P'

then begin

k:= k - n + 1; {set the successor counter at the first
new successor}

I:- 1;

ul:= get_unwanted_list (r_task.F);

while I < n do

begin

if in_list (k, ul) {check if k is in unwanted list}

then begin

mark_for_GC (r_task.S(k));

r_task.S(k):= 'UNWANTED'

end

else begin

151

end;

arg_task:= new(task); {create a new task for
a new successor}

org_exp (r_task.S(k), arg_task);

link (r_task.S(k), arg_task)

end;

I:= I- + 1; {next argument]

k:= k + 1; {next successor}

end; {while ... do begin}

if count = 0 {partial task has become complete type}

then begin

r_task.N.type:= ' '; {prepare to mark the type
afresh}

mark_type (r_task)

end

end

Figure 7.8 Specification of the procedure for handling arg message

7.5 MODIFICATIONS

The task reduction mechanism, discussed in the previous section,

is based on a purely applicative reduction strategy. Only those

tasks are selected for execution whose F-field function is an

operator or a user defined function and the successors are in

tagged_value/partial-task form. This corresponds to an eager

order where the arguments are first reduced to value form before

being substituted in a function body. Issues such as recursion,

laziness in the computation of shared sub-expressions, safety of

computation etc. have been avoided in that discussion in order to

152

keep the initial explanations simple. This section takes up these

issues and appropriate modifications to the model, to accommodate

these features, have been suggested.

7.5.1 Laziness

Laziness is a useful property for avoiding wasteful work. It

advocates that an expression be computed only when needed and that

too only once. Thus one of its requirements is that the decision

to undertake a computation be based on need rather than the

availability of data and thus requires the ability to postpone a

computation and activate it again when the need is more clearly

established. In the task model, the process of organisation,

acting as a necessary (but not a sufficient) condition for

starting a computation, serves this purpose. It has already been

used in conditional expressions for avoiding the computation of a

discardable work. Similarly, the successors of a dummy task are

left in an unorganised form because their need is not clear at the
i

time of task creation. To accommodate this, provision for a

successor to point to an unorganised graph (Def. 7.2 for task

fields) has been kept.

The other requirement of laziness is that a needed expression

should not be computed more than once. This aspect of laziness is

connected with sharing of sub-expressions. In task structure,

sharing is allowed through multiple ancestors (a list in the

ancestor field). There is no risk of repeated computations when a

complete task is shared because the applicative strategy will

reduce the shared task to value form and communicate the result to

153

all those sharing it.

A situation of particular interest is the sharing of partial

application [84] of a function i.e. a partial task. In the task

reduction mechanism discussed so far, partial tasks were allowed

to be passed down as arguments to other complete tasks. This

approach has the risk of repeating some computation enclosed in

the partial task if the function, to whom it is passed as

argument, has several references for it. This is so because the

reduction procedure copies an argument for multiple requirements.

The situation is similar to a conventional language program loop

having some computation not involving the loop variables. Let us

consider the following program to illustrate the risk of repeated

computations:

$Xabc=*(+(SQa)b)c

$Y h = * (h 5) (h 6)

$Y ($X 3 4)

In this example, the program expression contains a partial

application ($X 3 4). Looking at the definition of $X, it can be

seen that the partial application has a computable part (+ (SQ 3)

4) for the two available arguments. Further in the definition of

$Y, the parameter h occurs twice. Thus if the partial application

($X 3 4) is passed as argument to $Y then the computable part (+

(SQ 3) 4) will be computed twice.

In the task reduction, the above problem is solved by detecting

whether a partial task has a computable part, and if it has one

154

then it is allowed to reduce before being passed as argument to

another task. Continuing with the example, the program

expression, put in task-graph form, is written textually as

[_Y ([IX (va!3. val4, ...])], and in graph form as

nul

A,W,1 _Y 1

bTp,i _x 2 val3 val4

Allowing partial task B to reduce (because it has a computable

part) leads to an 'incomplete' instance of the function _X where

one director, corresponding to the argument not available, is left

in the SDS term of _X. This incomplete instance is being called a

residual definition. A residual definition is like a def_graph

having directors for the arguments that could not be provided by

the partial task. For the example, the residual definition

resulting from the reduction of task B is shown in Fig. 7.9(a).

This residual definition, after organisation (through an Org_def

module), is shown in Fig. 7.9(b), and after reduction of the two

complete tasks, it takes the form shown in Fig. 7.9(c). The

single director on root node is for the third argument which was

not available. A pointer to this residual definition is passed by

the partial task B, as result, to its ancestor. There is no

possible computation left in the residual definition at this stage

and hence there is no risk of losing laziness in copying it for

multiple references.

155

\e
/ \

@ 1

/ \
* @

/ \
@ val4

/ \
+ e

/ \
SQ val3

(a)

/ \
/

OP* 1

/ \
/ •

OP* 1 vall3

OP+ 2 val4

(b)

opSQ 1 val3

(c)

Figure 7.9 Treatment of residual definition in the example - (a)
initial residual definition (b) after organisation (c)
after reduction

The question of detecting whether a partial application has a

computable sub-expression or not, has been resolved at compile

time for each definition through computability analysis (section

6.4). The CN sub-field of the header in each D-code has the

relevant information. When a partial task is created, it knows

that it has a computable part if the number of successors

available is greater than or equal to the computability number CN

contained in the D-code of its F-field function. Partial tasks

with built-in operator in the F-field are assumed to have no

computability.

In view of the above discussion, the conditions of reducibility of

a task (section 7.4.1) may be modified as follows:

(1) The task is complete and its F-field function is either a
built-in operator or user defined or a residual definition.

(2) All the successors are either in tagged_value form, or
partial type tasks having no computability.

156

OR

(1) The task is partial type having some computability (SC > CN)
and has more than one ancestor, or has one ancestor only but
is asked to reduce.

Thus if a successor S(I) of a W type task is a partial type with

some computability then the task checks for multiple occurrences

of the Ith argument in the D-code of its function (indicated by

the presence of the number I in sharing list SL). If sharing is

found then S(I) is asked to reduce. For a smooth working of this

idea (without any extra communication), it is proposed to qualify

the computable partial type as Computable-partial (CP) and non-

computable as simply partial. These types can be indicated in the

N-field during organisation so that a waiting type parent need not

find, through communication, about the nature of a partial

successor.

The Org_def module, introduced above for organising a residual

definition, is similar to Org-exp except that the former does not

organise holes or the nodes having some directors. The idea has

been illustrated in Fig. 7.9(b) in the example.

In view of the modified clauses for reducibility, the organisation

process for intermediate results needs to take care of residual

definitions, in addition to partial tasks that are passed as

arguments without reduction. As mentioned earlier in section

7.4.2.2, the intermediate results are organised through a

Org_result module which is similar to Org but with some additional

features which are now given in Def. 7.8. Here, 'rd' stands for a

residual definition, rd is a tag for indicating pointer-type, r is

157

the number of directors at the root node in a residual definition,

and s is the shortage count of a partial task.

Definition 7.8 : Org_result - extra features as compared to Org

Org_result(rd) - rd"Org def(vd)

Org_result(rd e-, ... ek)

= [rd"rd (w^, ..., wk, ...], r > k

= [rd"rd (wj, ..., wfc)], r = k

= [[rd"rd (wj_, ..., wr)] (er+1, ..., ek)], r < k

Org_result([w0 (wj, ..., wfc, ...]) = [wQ (wj_, ..., wk, ...]

Org_result([wq (w^, ..., wk, ...] e^ ... e.)

= [wq (w^, ..., wk, wk+^, ...»wk+j> -..]i j < s

= [wq (w1, ..., wk, wk+1, ...»wk+j)]» J = s

= [[w0 (w1, ..., wk, wk+1, «..»wk+s)] (eg+1, ..., e.], j > s

where wk+. is a task-graph coming from the organisation of e, ,

wk+• from e- etc.. While organising a residual definition in an

operand position, the Org_result yields a £d type pointer to a

task-graph generated by organising the residual definition through

Org_def which has been described earlier qualitatively. In the

operator position, a residual definition is like any other

function requiring as many arguments as the number of directors at

its root node. The Org_result, in this case, can take any of the

three courses of action depending on the values of r and k.

Similarly, for a partial task in operand position, the Org_result

returns the task without any change, but when it occurs in

operator position, applied to j expressions, the result is a

158

complete task (if j=s), a partial task (if j<s), or a dummy task

(if j>s). Definition 7.4 for Org, combined with this definition,

forms a complete definition for Org_result.

Continuing the example further, the task A reduces using the

residual definition of Fig. 7.9(c), to the form shown in Fig.

7.10(c) while passing through the intermediate steps shown in part

(a) and (b) of Fig. 7.10. It may be noted that Org_result has

been used in arriving at the final task-graph (Fig. 7.10(c)) from

part (b) of the figure. At this stage, the tasks D and E are both

executable and the reduction proceeds in the usual manner.

OP* 1 vall3

nul

(C.W.2) op*

t

/ \
\e 5

/ \
•

OP* 1 val 13

(a)

—>

/ \

op* 1 val 13

OP* 1 val 13

(b)

(D,E,0): OP* 2 vall3 val 5 (E,E,0) op* 2 vall3 val5

(c)

Figure 7.10 Use of residual definition in the example - (a) body
of $Y with residual definition substituted in it, (b)
the body with arguments substituted into holes, and
(c) the body after organisation through Org_result

159

Another area which requires laziness, is the handling of data

structures. Representation of infinite data structures is not

possible unless the data constructors are handled lazily. In Fig.

7.3, for Org algorithm, care has been taken for this laziness in

the form that the org_ds procedure does not organise the

successors of a data structure node. This way, action on reducing

the components of a structure is not initiated and the reduction

is saved from getting stuck up in computing the components of an

infinite data structure. If at any time, the structure is broken

apart then the action on a component may start, but it again stops

at any inner structural node. Example 3 in the Appendix

illustrates the utility of this facility.

7.5.2 Simple Recursion

In functional style of programming, recursion is the main

ingredient. It can be handled through the fixed point combinator

Y treated as a built-in operator. It has already been explained

in Chapter 2 that the applicative order cannot handle recursion

because in its eagerness to compute everything, it gets entangled

in the non-terminating task of reducing the application (Y H) to

normal form. Thus, if recursion is to be accommodated then it is

necessary to modify the reduction strategy so as to be able to

postpone the reduction of (Y H) till some appropriate time.

Revesz [106] has suggested a controlled recursion through an

operator Y' which can fire only once. With this combinator, the

reduction rule is

160

Y' H = H (Y H)

Here, Y is a disabled combinator which cannot initiate further

reduction. Thus the expression (Y H) is in normal form. In order

to restart the blocked reduction, Revesz suggests a modification

to the 0-reduction rule which states that during a 0-reduction an

occurrence of Y be changed to Y'.

Using the above idea and preserving the spirit of coarse grain

architecture, the Y operator in task model fires only on the

availability of as many arguments as required by H (and not of a

single argument). Y, here, is a built-in operator with no fixed

arity of its own. It acquires the arity of the function to which

it is applied. Thus, if H is a function of two parameters then (Y

H) is a partial task whereas (Y HA) is a complete one. The

reduction rule for Y then is

Y H A —> H (Y H) A •..(7.1)

The presence of the argument A, on the left-hand side, acts as a

'catalytic agent' which does not take part in the actual reduction

but without which the reduction does not proceed further whereas,

on the right-hand side, the application (Y H) is inhibited from

further reduction because Y is short of one argument. In general,

if H requires m arguments then the expression (Y H a^ ag ... ak)

is reducible only if k i m-1.

A Y-task is organised as partial unless the required number of

arguments is available. The procedure to organise an expression

into a Y-task (Org_Y) is defined in Fig. 7.11. It would be called

161

by Org_exp procedure whenever the tip of a spine has a Y operator.

The Org_Y procedure assigns to Y an arity equal to that of H

function. It is assumed that the built-in operator Y has an arity

sub-field. A Y-operator with arity r is written as Yr (Y becomes

Y during organisation).

procedure Org_Y (node,nc,task);

begin

save:= node;

node:= node.A;

h:= node.S(2); {save the right successor which is assumed to
be a $-function or a residual definition}

Y:= task.F;

if Y.arity ^' ') then fpc: = Y.arity {Y is already having an
arity, take it as fpc}

else begin

if h.tag = '_' {h is user defined}

then begin

fpc:= get parameter_count (h);

Y.arity:= fpc;

ul:= get_unwanted_list (h)

end;

if h.tag = 'rd' {h is a residual definition}

then begin

node:= get root node(rd"rd); {get root node of
residual definition}

dir:= directors(node); {find the no. of directors
at root node}

nc:= 0;

repeat

node:= node.S(l);

162

nc:= nc + 1

until type(node) = 'leaf AND node.tag = '_';

fpc:= get_parameter_count(node);

ul:= get_unwanted_list(node);

short:= fpc - nc; {shortage of the function at the
tip of residual definition}

Y.arity:= short + dir

end

end;

task.F:= Y;

node:= get_node (save);

make_task (ul, fpc, nc, task, node) {nc and task are available
from Org_exp who has

end; called this procedure}

Figure 7.11 Specification of procedure Org_Y

A complete Y-task is of the form [Yr (H, \i±, ..., wr»i)]« If

reducible, it undergoes Y-reduction (a special case of primitive

reduction) which is expressed as

[Y_ (H, wlt ..., wr-1)]

—> [H ([Yr (H, ...], wx, ..., wr_1)] ...(7.2)

The rule specifies a general case of the function H requiring r

arguments. The reduction results in a complete task where

operator position is occupied by H, and the first member in the

argument list is always a partial Yr-task having only one

argument. This partial task contains the seed of recursion from

which a fresh cycle of recursion can be initiated, whenever

163

required. The reduction now proceeds with the $-reduction of the

main H-task. The partial Yr~task has no computability and is used

as such in the $-reduction. Thus the total reduction sequence for

a complete Y-task may be expressed as

$-reduce (Y-reduce); Org_result; communicate; kill self

It is different from the usual reduction cycle, given in section

7.4.2, in the first step only which is a composite one here,

consisting of $-reduction of the result of Y-reduction. Rest of

the steps are same. Example 2 in Appendix illustrates this

reduction.

7.5.3 Mutual Recursion

A set of definitions becomes mutually recursive when there are

cross references for each other in the definition bodies. In this

case, the fixed point operator Y, instead of operating on a single

function, operates on a n-tuple of functions expressed as an

application Y(h^, ..., hR) . Reduction rule for this kind of

expression was given in Eq. 6.13 in chapter 6. The situation is

again handled through partial tasks.

In the simple recursion case, an expression (Y H) gets organised

into a partial task with no computability. Here the expression

(Y(h^, ..., hn)) is organised into a partial task given as

P_task = [Ym ((_!» hn), ...]

where Y_ is the mutual version of Y. The P_task has a

164

computability and if asked by an ancestor (through a message

reduce) , it will reduce, following Eq. 6.13, into a tuple

structure 6 given by

8 = (A^, Ag, ,.., An)

where A1 = [hj ([Y_ ((h^ ..., „n), ...], ...]

• • •

An " [hn ([Ym ((hl' •••» V « "']> •••!

Each of the components of 6 is a partial task and in each partial

task, the first successor is the P_task. The P_task contains the

'group seed' of mutual recursion from which a fresh recursion

cycle can be initiated whenever required. The structure 8 acts as

an argument to the ancestor who asked for the reduction of P_task

and the choice of a component Ai (i = 1 to n) for substitution is

decided by a list director in the SDS term being used by the

ancestor for instantiation.

The ancestor now organises the instance and in the process, the

chosen partial task A^^ may get organised into a complete task W.

of the form

Wj_ = [Ai (wx, ..., wr._1)]

= ihi ([Y_ ((hlt hn), ...], w^ ..., wr._1)]

where r^ is the arity of the function h^. If task W^^ is reducible,

it may start reducing using the SDS term for h^. However, before

doing so, it asks the first successor (the P-task) to reduce who

obliges by returning the structure 8 again. The task W;, after

receiving the structure 6 as result, appears as

165

WA = [h-^ ((Aj, ..., An), wj_, ..., wr._1)]

It now reduces in the usual manner and the process continues till

recursion terminates. If h^ refers to an h. (j = 1 to n) then it

is available from the first argument (the group seed of <• mutual

recursion) by choosing the corresponding A-.

The recursion has been controlled here by making Y(hj, ..., hn) a

partial task which reduces to the structure 6 only when asked.

The structure contains the full seed of recursion for future use.

7.5.4 Pattern-matching

A pattern-matching definition consists of n clauses out of which

the one applicable in a particular task is selected after matching

the arguments with the parameter structures in each clause. We

are, at present, concerned with the clause selection procedure. A

function f of m arguments and having n clauses gets compiled into

a D-code which, besides some information in the the header field,

has a n-list of pairs in the SDS field. The list is expressed as

[<(T(p11) T(plm)), SDS(E1)>, ...,

<(T(pnl), ..., T(pnm)), SDS(En)>]

Each pair in the list has a sequence of pat tern-types

corresponding to the parameters involved in the clause, and a SDS

term. Whenever a function has more than one clause, a process of

matching is necessary before the function can be applied.

Therefore, a task referring to a pattern-matching definition in

its F-field, has to undergo an additional step of matching before

166

starting the reduction cycle of section 7.4.2. The complete

process of evaluation starts with the matching step and when the

proper clause has been selected, the process continues with the

four steps of reduction cycle as if the function had only one

definition. The implementation of the matching step is being

described now.

A pattern-matching task has to match the arguments according to

the algorithm discussed in section 4.2.1. The task is written as

pm_task = [f (aj_, ..., a_)].

In order to make full use of the multiprocessor environment, while

doing the bulky work of matching, the pm_task creates n first

level slave tasks expressed as

Sj = [MatchJList ((Tjj, ..., tlm), (aji •••» am)]

• • •

Sn = [Match_list ((rnl, ..., rnm), (aj, ..., am)]

where r^- = T(p^-), i = 1 to n, j = 1 to m. Each slave is

entrusted with the task of matching the sequence of pattern-types

of a clause against the arguments. A slave returns a boolean

reply. For more parallelism, each first level slave further

creates m second level slaves of the kind

• Sn = [Match (ta1, [Tag (a^])]

• • •

Sim = [Match (Tim> [Tag (a_)])], i = 1 to n

Thus the initial n slaves create nxm slaves. The situation is

167

shown in Fig. 7.12. One set of m second level slaves is

answerable to one first level slave. If the reply from any one of

them is 'False' then the first level slave sends a 'False' reply

to the master without waiting for other replies. It rather stops

further execution of its slaves by killing them because the result

is not required. A clause fails to match if any one pattern-

matching fails.

if m al
• • • a

m

Match Tlm

>nl

Match Tnl

Tag am

Match Tnm /

Figure 7.12 Hierarchy of slave tasks created for matching

The Tag-tasks are shared by second level slaves. A tag

computation benefits all because a copy of the computed structure

tag is supplied to each slave. This is better than copying the

whole argument for each second level slave to do its matching.

Whenever a set of second level slaves is killed, the Tag tasks

remove their names from their ancestor list. It is possible that

168

I

the argument in a Tag task is a structured one. A Tag task kills

itself after one tag computation if the argument was a simple one,

otherwise it waits for a request from a slave to compute the inner

tags of the structure. This is necessary in order to be able to

handle infinite data structures.

After the matching process is over, the slaves no longer exist and

the pm_task is through with the clause selection. The reduction

then proceeds in the usual manner. The parallel activity in

matching is at the cost of an additional communication overhead.

The finer details of the matching step have not been worked out

but they seem to pose no special problems.

7.6 CONCLUDING REMARKS

Supercombinator reduction is a coarse-grain model aimed at

decreasing the amount of communication overheads in a multi

processor reduction machine. SDS terms, introduced to represent a

supercombinator body as a variable-free structured director string

graph, have simple and easy-to-follow-by-machine reduction rules.

A task reduction model has been proposed which utilises SDS terms

for efficient template-instantiation of supercombinators.

A task is expressed as a record structure and when reducible, it

represents either a supercombinator redex or a redex involving a

built-in operator. An algorithm to organise a given expression

into a task-graph has been developed and specified in a Pascal

like notation. In a task-graph, the nodes are tasks and the links

are maintained through ancestor and successor fields of the task

169

structure. Two neighbouring tasks refer to each other by name

field which includes, besides an identifier, some more information

about task type. The extra informative name field, though bigger

in size, decreases the need for inter-task communication.

The task-graph, combined with definition graphs (SDS terms), forms

the input to task reduction model. A task, during reduction,

applies a function to all the arguments, organises the result into

task-graph, communicates the organised result to its ancestor(s),

and kills itself. The methodology draws some ideas from CTDNet

[58,59] but the design leads to much less communication overhead.

The bigger size of task compared to a process in CTDNet is also

responsible for this. The task model has only three types of

messages (result, link and arg) compared to eight in CTDNet.

The model exploits parallelism by reducing tasks in an applicative

style. However, selective laziness has been introduced wherever

useful. Delaying of the computation of an expression is achieved

by postponing its organisation. This has been utilised in the

handling of conditional expressions and data structure nodes.

The concept of a partial task, introduced to represent a partially

applied function, is usefully employed in handling shared partial

applications lazily. A partial task knows, through the

information provided by the compile time computability analysis,

whether it has a computable part or not. If it has, and the task

is shared then it is allowed to reduce with the available

arguments before being passed as argument to another task.

The reluctance of a partial tasks to reduce on its own, has been

170

utilised in realising a controlled recursion through Y combinator

in a model which is basically applicative in its reduction

strategy. The use has been extended to mutual recursion also,

and is based on the treatment of mutual recursion developed in

chapter 6.

A parallel implementation of the pattern-matching algorithm,

developed earlier, has been suggested in the model by introducing

slave tasks. A task required to do matching creates slave tasks

to get the matching of pattern-types and argument tags done in

parallel. Slaves are special purpose tasks created to do a

specific job and are killed subsequently.

171

CHAPTER 8

CONCLUSIONS

The work presented in this thesis is an attempt towards designing

a coarse-grain computation model for executing functional programs

in a multiprocessor environment. In the model designed, a grain

of computation is a supercombinator redex, and the pre-processing

of supercombinator definitions consists of compilation into a

variable-free annotated-graph structured code (SDS terms). The

reduction of a program expression is done using the graphical code

as a template for function instantiation. The order of reductions

is basically applicative so as to allow more parallelism, but

selective laziness has been incorporated to handle conditionals,

recursion and infinite data structures. The model has some

safeguards against non-termination of the applicative order.

The design considers definition styles which allow pattern-

matching, and the use of arbitrary nesting of simple/recursive

local definitions in the bodies. The expressions are allowed to

have data structuring through constructor functions.

8.1 CONCLUSIONS

The principal features/conclusions of the research work, reported

in the thesis, are as follows:

172

(1) Lambda calculus is a powerful mathematical tool for

expressing the operational semantics of functional programs.

To support pattern-matching, recursion etc., enriched

notations of lambda calculus are available where abstractions

may bind patterns besides variables [11], and list

manipulations are permissible [33,106]. An interpretation of

pattern-matching into such an extended lambda notation has

been developed. The approach takes an isolated view of the

two aspects of implementation of pattern-matching viz.

matching and reduction. Through isolation, we are able to

handle the matching work in parallel without activating the

clause bodies. After matching is over, the reduction is done

for the selected clause only. This is in contrast to other

interpretations [11,109] which take a combined view of the

two processes and carry them out together, with the result

that the dynamic graph size may become large because all the

clause bodies are kept alive till a match failure occurs.

(2) The isolated view has led us to rename the pattern-matching

lambda abstractions as pattern-binding lambda abstractions.

An application of such an abstraction to a matched structured

object cannot be reduced through the ordinary 0-reduction

rule of lambda calculus. Accordingly, a set of modified 0-

rewrite rules has been proposed. The modified rules allow

substitution of a component of the structured argument for a

free occurrence of a component of the bound pattern, and thus

form a basis for handling data structures through lambda

calculus.

173

(3) An algorithm for the matching work has been developed which

is utilised at run time for performing the matching

operations in parallel. The algorithm has been specified

through functions defined in functional programming style.

(4) As supercombinators do not have any fixed reduction rules

(they are user defined), a pre-processing of their

definitions is essential for efficient reduction. The

proposed model aims at supercombinator reduction through

template instantiation, and for this, a pre-processing scheme

has been suggested where each definition body is compiled,

through a process of abstraction, into a variable-free form

named as SDS (Structured Director String) term. The idea of

SDS terms is a generalisation of DS terms [71] by allowing

the parameters of the abstraction process to be patterns

besides variables. The DS terms use simple atomic directors

which imitate the ordinary 0-rules, whereas the structured

directors (list and pattern types), used in SDS terms, are

designed to express the intention of the proposed modified 0-

rules. For instance, a list director indicates the breaking

of a structured argument into components for substitution

into a definition body. The breaking process is made lazy,

through the use of pattern director, so that it is done only

when essential and that too just upto the necessary extent.

(5) An algorithm for generating SDS terms, by abstracting out the

parameters of a pattern-matching definition from its various

clause bodies, has been designed. It consists of pattern-

174

abstraction rules for different types of patterns and various

syntactical forms of expression forming a body. The rules

show a preference to use pattern directors, as far as

possible, so that unnecessary structure breaking is avoided.

The complete pattern-abstraction algorithm has been coded

into Turbo-C and tested successfully on IBM PC. The test

runs for compiling different types of definitions have

confirmed that the algorithm is lazy in assigning a list

director responsible for structure breaking.

(6) To allow the use of let and letrec blocks in a definition

body, the notation of SDS terms has been enriched by

incorporating pointers and a concept of context-list (C-

list). These additions to SDS term syntax allow them to

express sharing of sub-expressions which is the purpose of

local definitions. Their use yields smaller sized terms as

compared to the alternative of using the lambda calculus

meaning of local definitions, directly, for generating SDS

terms. By having pointers, the occurrences of local

variables get connected to the relevant expressions in the C-

list at compile time only instead of waiting for a 0-

reduction to do it at run time.

(7) Another abstraction algorithm has been developed for taking

care of local definitions. The algorithm takes into account

simple let-definitions, a single recursive definition in a

letrec block and mutually recursive definitions. The mutual

recursion case has been interpreted into the SDS term

notation using the concepts of pattern-abstraction because a

175

set of n mutually recursive definitions is seen as one

definition for a n-tuple structured pattern [11,31]. Here an

intuitive reduction rule for the Y operator applied to a n-

tuple of functions, named as mutual Y rule, has been

suggested. Our only support to this is an extension of an

analogy of simple recursion to plant life.

(8) The results of pre-processing of supercombinator definitions

are packed into a D-code structure of which SDS term is one

component. Another component is a sequence of pattern-types

of the parameters of a clause which is used for the matching

purposes. These two components together constitute the SDS

field of D-code. The code has a header field also which

encloses miscellaneous house-keeping information used for

some optimisations in the reduction process. A special

information in it is the computability number (CN) generated

through a computability analysis of a definition body. The

number helps the reduction process in avoiding repeated

computations whenever a partial application of a function is

shared. The algorithm for computation of CN has been

specified in functional style.

(9) For reducing the program expression using D-code, a task

structure has been designed which represents a super

combinator or a built-in operator applied to all its

arguments as an indivisible work packet. The idea is similar

to a current context stack in G-machine [89] or the packet in

Flagship model [95], but the supporting code is SDS term

176

rather than G-code or an imperative code. The SDS terras have

simple and fixed reduction rules which can be coded into

hardware. It is felt that the fixed nature of these rules

eliminates the need for an extra level of software

interpretation which does not seem to be true for the G-code

or the imperative code of Flagship.

(10) The structure of task-fields has been designed to keep the

requirements for inter-task communication low. Specifically,

the name-field of a task carries all the information about

task-type so that a neighbouring task in the graph need not

communicate for finding neighbour-type. It is like assigning

types to the linking arcs in a directed graph.

(11) Two special task types, namely the partial and dummy, have

been introduced to take care of a function applied to too few

or too many arguments. These tasks generally do not take any

action on their own and wait for messages from other tasks to

act accordingly. However, using the CN information from D-

code, a partial task is allowed to reduce whenever it has a

computable part and is shared. This makes the reduction lazy

in such cases because repeated evaluations of the computable

part, due to sharing, are eliminated.

(12) In the model, a program expression becomes ready for

reduction only after it has been organised into a task-graph.

Correspondingly, an unorganised expression remains a inactive

part of the overall graph. The idea has been utilised in

delaying a computation, whenever useful, such as in a

177

conditional expression - for postponing action on 'then' and

'else' parts, and in a data structure expression - for

delaying computation of the arguments of a constructor

function. The latter provides implementation of infinite

data structures. The Organise procedure has been specified

formally in a Pascal-like notation.

(13) The reduction strategy employed in the model is data-driven

or applicative so as to exploit parallelism. Although normal

order is safe yet it allows less parallelism because of the

restriction that only top left-most redex is allowed to be

reduced at any time. On the other hand, the applicative

order, while allowing several redexes to reduce concurrently,

has a tendency to fall into the trap of non-termination.

This tendency has been checked to some extent by using the

organisation tool as a means of blocking a computation. For

example, the unwanted arguments of a function (identified at

compile time) are left unorganised. Similarly, a dummy task

keeps its successors in an unorganised state because it is

not sure about their need. The technique brings some limited

safety to the applicative reduction.

(14) The problem of garbage collection is an important one in the

implementation of functional models. In our model, a task

lives only as long as it is needed. Self killing is a part

of its reduction cycle. It is felt that this idea, taken

from CTDNet [58,59] - a model dealing with the reduction of

expressions represented as lambda graphs, should greatly

relieve the burden of garbage collection.

178

(15) Communication is a necessary evil in a multiprocessor model.

Bigger grain size of computation leads to lesser

communication. The fact is demonstrated by the simpler and

lesser number of messages in the model as compared to CTDNet

which is a fine-grain machine. The model has only three

types of messages as compared to eight in CTDNet. The

actions taken for handling the messages have been formally

specified through Pascal-like procedures. These procedures

are called by a task whenever it receives a message from some
other task.

(16) Recursion through Y combinator is not possible in a purely
applicative order machine. However in the task model, the

'inertia' of a partial task has been utilised in realising a
controlled recursion. A modified rule for Y operator has

been given which permits a Y to fire only in the presence of

as many arguments as required by the function to which it is

applied. An application (Y H) is cast as a partial task with

no computability and hence it is unable to proceed further,

unless more arguments are available. A scheme for dealing

with mutual recursion has also been proposed using the idea

of partial tasks, though at a conceptual level only.

(17) In the application of a pattern-matching function, the work

concerned with matching may be quite heavy. Keeping this in

mind, the matching is proposed to be done in parallel through
creation of large number o f slave tasks who carry out work

according to the d eveloped matching-algorithm The idea has

179

not been fully integrated into the task structure, and its

implications from communication requirement point of view are

not very clear yet.

8.2 RECOMMENDATIONS FOR FUTURE WORK

(1) The model has been specified to a great extent through formal

algorithms. Based on this design, the work can be further

extended by carrying out simulation studies. This will

provide a quantitative performance analysis and an

opportunity to incorporate optimisations, and have comparison

with other existing models. Similarly, some work in the

direction of designing a physical architecture for the model

may be carried out.

(2) The safety aspect of the model can be further improved by

adding strictness analysis [111] information in the header

field of the D-code of a definition. Work by Mycroft [112]

and Burn [113] on abstract interpretation, which gives the

definedness of a function in terms of the definedness of its

arguments, is relevant here. Evaluation transformers,

designed by Burn [114,115], tell that, given how much

evaluation is allowed by a function application, how much

evaluation of the arguments can be allowed without

jeopardising safety. It is expected that integrating the

information extracted through this kind of analysis into the

D-code structure could make the applicative order task

reduction perfectly safe and capable of exploiting

parallelism also at the same time.

180

(3) List comprehensions, analogous to set comprehensions in

Zermelo-Frankel set theory, were first used by Turner in KRC

[23] as ZF expressions. They have since been included in

several other functional languages such as Miranda [26], SASL

[21] and Orwell [27]. It is recommended that these

constructs be translated into SDS terms to enrich the

notation further and enhance their utility as an intermediate

form for machine interpretation.

181

REFERENCES

[I] Burks A.W., Goldstine H.H., and von Neumann J.,
"Preliminary discussion of the design of an electronic
computing instrument", Computer Design Development:
Principal Papers, by E.E.Schwartzlander Jr (ed.), pp.221-59,
Hayden Book Co., 1976.

[2] Backus J., "Can programming be liberated from the von
Neumann style ? A functional style and its algebra of
programs", Comm. ACM, vol.21, no.8, pp.613-641, Aug. 1978.

[3] Paker Y., Multi-Microprocessor Systems, APIC Studies in Data
Processing, vol.18, Academic Press, 1983.

[4] Flynn M.J., "Very high speed computing systems", Proc. IEEE,
vol.54, no.12, pp.1901-9, Dec. 1966.

[5] Cray Research, "CRAY-1", Computer System Reference Manual,
Cray Research Inc. Minneapolis, Minn., 1976.

[6] Reddaway S.F., "DAP - a distributed array processor", 1st
Annual Syrap. on Computer Architecture, Florida, pp.61-65,
Dec. 1973.

[7] Hockney R.W., and Jesshope C.R., Parallel Computers, Adam
Hilger Ltd, Bristol, 1981.

[8] Dennis J.B., "First version of a data flow procedure
language", LNCS vol.19, pp.362-376, Springer-verlag, 1974.

[9] Dennis J.B., and Misunas D.P., "A preliminary
architecture for a basic data flow processor", in Proc. 2nd
IEEE Symposium on Computer Architecture, p.126, Jan. 1975.

[10] Berkling K.J., "A computing machine based on tree
structures", IEEE Trans. Comp., vol.C-20, pp.404-418, Jan.
1974.

[II] Peyton Jones S.L., The Implementation of Functional
Programming Languages, PHI series in Computer Science,
PHI(UK), 1987.

[12] Church A., The Calculi of Lambda Conversion, Princeton
University press, Princeton, N.J., 1941.

[13] Turner D.A., "A new implementation technique for
applicative languages", Software - Practice and Experience,
vol.9, pp.31-49, Sept. 1979.

[14] Kennaway J.R., and Sleep M.R., "Director strings as
combinators", Department of Computer Science, University of
East Anglia, 1982.

182

[15] Hughes R.J.M., "Supercombinators, a new implementation
method for applicative languages", in Proc. ACM Symposium
on Lisp and Functional Programming, Pitsburgh, pp.1-10,
Aug. 1982.

[16] Hudak P., and Goldberg B., "Serial combinators : "optimal"
grains of parallelism", in Conf. on Functional Programming
and Computer Architecture, Nancy, LNCS vol.201, pp.382-388,
Springer-Verlag, 1985.

[17] Fleck A.C., "A case study comparison of four declarative
programming languages", Software - Practice and Experience,
vol.20, pp.49-65, Jan. 1990.

[18] Turner D.A., "The semantic elegance of applicative
languages", in Proc. ACM Conf. on Functional Programming
Languages and Computer Architecture, pp.85-92, 1981.

[19] McCarthy J. et al, "Lisp 1.5 programmers Manual", MIT press,
Cambridge, Mass., 1962.

[20] Backus J., "The algebra of functional programs : functional
level reasoning, linear equations, and extended
definitions", in Proc. International Colloqium on
Formalisation of programming concepts, LNCS, vol. 107, pp.l-
43, Springer-Verlag, 1981.

[21] Turner D.A., The SASL language manual, University of St.
Andrews, Dec. 1976.

[22] Burstall R.M., MacQueen D.B., and Sanella D.T., "Hope : An
experimental applicative language", in Proc. of the Lisp
Conference, pp.136-143, Stanford, California, Aug. 1980.

[23] Turner D.A., "Recursion equations as a programming
language", in Functional Programming and its Applications,
by Darlington, Henderson, Turner (ed.), pp.1-28, Cambridge
University press, 1982.

[24] Fairbairn J., "Design and implementation of a simple typed
language based on the lambda calculus", PhD thesis, Tech.
Report 75, University Of Cambridge,. May 1985.

[25] Augustsson L., "A compiler for lazy ML", in Proc. of the ACM
Symposium on LISP and Functional programming, pp.218-227,
Austin, Aug. 1984.

[26] Turner D.A., "Miranda - a non-strict functional language
with polymorphic types", in Conf. on Functional Programming
and Computer Architecture, Nancy, LNCS vol.201, pp.1-16,
Springer-Verlag, 1985.

[27] Wadler P., Introduction to Orwell, Programming Research
group, University of Oxford, 1985.

183

[28] Hudak P., and Wadler P. et al, "Report on the functional
programming language Haskell", Dept. of Computer Science,
Yale University, Dec. 1988.

[29] Henderson P., Functional Programming Application and
Implementation, Prentice Hall Inc., 1980.

[30] Henson M.C., Elements of Functional Languages, Blackwell
Scientific Publications, 1987.

[31] Burge W.H., Recursive Programming Techniques, Addison-
Wesley, 1975.

[32] Glaser H., Hankin C, and Till D., Principles of Functional
Programming, Prentice-Hall (U.K.), 1984.

[33] Revesz G.E., Lambda-calculus, Combinators and Functional
Programming, Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 1988.

[34] Schonfinkel M., "Uber die Bausteine der mathematischen
logik", Math. Ann. vol.92 pp.305-316, 1924.

[35] Curry H.B.,and Feys R., Combinatory Logic, vol.1, North
Holland, Amsterdam, 1958.

[36] Barendregt H.P., The Lambda-calculus: its Syntax and
Semantics, North Holland, 1984.

[37] Hindley J.R., and Seldin J.P., Introduction to Combinators
and Lambda Calculus, Cambridge University press, 1986.

[38] Stoy J.E., Denotational Semantics, MIT press, 1981.

[39] Landin P.J., "A correspondence between Algol-60 and
Church's lambda notation", Comm. of the ACM, vol.8, pp.89-
101, 158-165, 1965.

[40] Church A., and Rosser J.B., "Some properties of
conversion", Trans. Amer. Math. Soc., vol.39, pp.472-482,
1936.

[41] Wadsworth C.P., "Semantics and pragmatics of the lambda
calculus", PhD thesis, Oxford, 1971.

[42] DeBruijn N.G., "Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation with
application to the Church-Rosser theorem", Indag. Math.,
vol.34, pp.381-392, 1972.

[43] Curien P-L., Categorical Combinators, Sequential Algorithms
and Functional Programming, Research Notes in Theoretical
Computer Science, Pitman Publishing Ltd., 1986.

184

[44] Treleaven P.C., "Computer architecture for functional
programming", in Functional Programming and its
Applications, by Darlington, Henderson, Turner (ed.),
Cambridge University press, 1982.

[45] Treleaven P.C., Brownbridge D.R., and Hopkins R.P., "Data-
driven and demand-driven computer architecture", ACM
Comput. Surveys, vol.14, no.1, pp.93-143, March 1982.

[46] Ackerman W.B., "Data flow languages", IEEE Computer,
vol.15,• no.2, pp.15-25, Feb. 1982.

[47] Davis A.L., and Keller R.M., "Data flow program graphs",
IEEE Computer, vol.15, no.2, pp.26-41, Feb. 1982.

[48] Gurd J.R., "Fundamentals of data flow", in Distributed
Computing, by F.B. Chambers et al (ed.), Academic Press,
1984.

[49] Watson I., and Gurd J.R., "A practical data flow computer",
IEEE Computer, vol.15, no.2, pp.51-57, Feb. 1982.

[50] Gurd J.R., Kirkham C.C., and Watson I., "The Manchester
prototype dataflow machine", Comm. ACM, vol.28, no.1,
pp.34-52, 1985.

[51] Patnaik L.M., Govindarajan R., and Ramadoss N.S., "Design
and performance evaluation of EXMAN: an Extended MANchester
data flow computer", IEEE Trans. Comp., vol.C-35, no.3,
PP.229-243, March 1986.

[52] Gurd J.R. et al, "Fine-grain parallel computing: the
Dataflow approach", in Proc. of An Advanced Course on
Future Parallel Computers, Pisa, Italy, LNCS vol.272,
pp.82-152, Springer-Verlag, June 1986.

[53] Gaudiot J-L., "Structure handling in data-flow systems",
IEEE Trans. Comp., vol.C-35, no.6, pp.489-502, June 1986.

[54] Bohm A.P.W., and Gurd J.R., "Iterative instructions in the
Manchester dataflow computer", IEEE Trans. PDS, vol.1,
no.2, pp.129-139, April 1990.

[55] Berkling K.J., "Reduction languages for reduction
machines", in Proc. 2nd Int. Symp. Computer Architecture,
Houston, pp.133-140, Jan. 1975.

[56] Mago G.A., "A network of microprocessors to execute
reduction languages", part 1 and part 2, Int. journal of
Computer and Information Sciences, vol.8, pp.349-385 and
435-471, 1979.

[57] Mago G.A., "A cellular computer architecture for functional
programming", in Proc. IEEE COMPCON, 1980, pp.179-187.

185

[58] Gupta J.P., "The realisation of a CTD multiprocessor
architecture", PhD thesis, The Polytechnic of Central
London, London, UK, 1985.

[59] Gupta J.P., Winter S.C., and Wilson D.R., "CTDNet - A
mechanism for the concurrent execution of lambda graphs",
IEEE Trans. Software Eng., Vol.15, No.11, pp.1357-1367,
Nov. 1989.

[60] Berkling K.J. and Fehr E., "A consistent extension of the
lambda calculus as a base for functional programming
languages", Information and Control, vol.55, nos.1-3,
Oct./Nov./Dec. 1982.

[61] Henderson P., and Morris J.H., "A lazy evaluator", in
Proc. ACM symposium on Principles of Programming Languages,
pp.95-103, 1976.

[62] Landin P.J., "The mechanical evaluation of expressions",
Computer Journal, vol.6, pp.308-320, 1964.

[63] Turner D.A., "Another algorithm for bracket abstraction",
J. of Symb. Logic, vol.44, no.2, pp.267-270, June 1979.

[64] Clarke T.J.W., Gladstone P.J.S., Maclean CD., and
Norman A.C., "SKIM - The SKI reduction machine", in Proc. of
the ACM Lisp Conf., Stanford, CA, pp.128-135, 1980.

[65] Scheevel M., "NORMA: A graph reduction processor", in Proc.
ACM conf. on Lisp and Functional Programming, Cambridge,
Mass., pp.212-219, Aug. 1986.

[66] Stoye W.R., Clarke T.J.W., and Norman A.C., "Some practical
methods for rapid combinator reduction", ACM Symposium on
LISP and Functional Programming, pp.159-166, 1984.

[67] Hudak P., and Kranz D., "A combinator-based compiler for a
functional language", in Proc. 11th annual ACM Symp. on
Principles of Programming Languages, pp.121-132, Jan. 1984.

[68] Oberhauser H.G., "A fully lazy lambda style graph reducer",
SFB 124-C1, 06/1986, Universitat des Saarlandes, West
Germany, 1986.

[69] Oberhauser H.G., "On the correspondence of lambda style
reduction and combinator style reduction", in Proc. of
Workshop on Graph Reduction at Santa Fe, New Mexico,
USA, LNCS vol.279, pp.1-25, Springer-Verlag, Oct. 1986.

[70] Kennaway J.R., and Sleep M.R., "Novel architectures of
declarative languages", Software and Microsystems, vol.2,
no.3, pp.59-70, June 1983.

186

[71] Kennaway J.R., and Sleep M.R., "Director strings as
combinators", Internal report no. SYS-C87-06, University of
East Anglia UK, Jan. 1987.

[72] Kennaway J.R., and Sleep M.R., "Variable abstraction in
O(nlogn) space", Internal report no. SYS-C87-04, University
of East Anglia UK, Jan. 1987.

[73] Noshita K., "Translation of Turner combinators in O(nlogn)
space", Inf. Proc. Letters, vol.20, pp.71-74, 1985.

[74] Stoye W.R., "The implementation of functional languages
using custom hardware", PhD Thesis, Computer Lab.,
University of Cambridge, May 1985.

[75] Anderson P. et al, "COBWEB-2: Structured specification of a
wafer-scale supercomputer", PARLE I, LNCS Vol.258, pp.51-
67, Springer-verlag, 1987.

[76] Johnsson T., "Lambda-lifting - transforming programs to
recursive equations" in Conf. on Functional Programming
and Computer Architecture, Nancy, LNCS vol.201, pp.190-203,
Springer-Verlag, 1985.

[77] Hughes R.J.M., "The design and implementation of
programming languages", PhD Thesis, PRG-40, Programming
Research Group, Oxford, Sept. 1984.

[78] Hoffman CM., and O'Donell M.J., "Programming with
equations", ACM TOPLAS, vol.4, no.1, pp.83-112, 1982.

[79] Barendregt H.P. et al, "Term graph rewriting", Internal
report no. SYS-C87-01, University of East Anglia, Norwitch,
UK, 1987.

[80] Klop J.W., "Term rewriting systems", in Proc. of the 1st
Autumn Workshop on Reduction Machines, Ustica, Italy,
Sept. 1985.

[81] Goguen J., Kirchner C., and Meseguer J., "Concurrent term
rewriting as a model of computation", in Proc. of Workshop
on Graph Reduction at Santa Fe, New Mexico, USA, LNCS
vol.279, pp.53-93, Springer-Verlag, Oct. 1986.

[82] van Eekelen M.C.J.D., and Plasmeijer M.J., "Specification
of reduction strategies in term rewriting systems", in Proc.
of Workshop on Graph Reduction at Santa Fe, New Mexico,
USA, LNCS vol.279, pp.215-239, Springer-Verlag, Oct. 1986.

[83] Hudak P., and Goldberg B., "Distributed execution of
functional programs using serial combinators", IEEE Trans.
Comp., vol.C-34, no.10, pp.881-891, Oct. 1985.

187

[84] Goldberg B., "Detecting sharing of partial applications in
functional programs", in Proc. 3rd Conf. on Functional
Programming and Computer Architecture, Portland, Orgeon,
USA, LNCS Vol. 274, pp.408-425, Springer-Verlag, Sept. 1987.

[85] Lins R.D., "Categorical multi-combinators", in Proc. 3rd
Conf. on Functional Programming and Computer Architecture,
Portland, Orgeon, USA, LNCS Vol. 274, pp.60-79, Springer-
Verlag, Sept. 1987.

[86] Coussineau G., Curien P-L., and Mauny M., "The categorical
abstract machine", in Conf. on Functional Programming and
Computer Architecture, Nancy, LNCS vol. 201, pp.50-64,
Springer-Verlag, 1985.

[87] Lins R.D., "A new formula for the execution of categorical
combinators", in Proc. 8th Int. Conf. on Automated
Deduction, Oxford, LNCS vol. 230, pp.89-98, Springer-Verlag,

, July 1986.

[88] Johnsson T., "The G-machine: an abstract machine for graph
reduction", in Proc. Declarative Programming Workshop,
University College London, pp.1-19, April 1983.

[89] Kieburtz R.B., "The G-machine: a fast graph reduction
evaluator", in Proc. IFIP Conf. on Functional Programming
and Computer Architecture, Nancy, LNCS vol.201, pp.400-413,
Springer-Verlag, 1985.

[90] Augustsson L., and Johnsson T., "The Chalmers lazy - ML
compiler", The Computer Journal, Vol.32, No.2, pp.127-141,
1989.

[91] Peyton Jones S.L., Clack C, and Salkild J., "GRIP : A
parallel graph reduction machine", ICL Technical Journal,
pp.595-599, May, 1987.

[92] Peyton Jones S.L., et al, "GRIP - A high performance
architecture for parallel graph reduction", in Proc. 3rd
Conf. on Functional Programming and Computer Architecture,
Portland, Orgeon, USA, LNCS Vol. 274, pp.98-112, Springer
Verlag, Sept. 1987.

[93] Darlington J., and Reeve M., "ALICE - a multiprocessor
reduction machine for the parallel evaluation of
applicative languages", in Proc. ACM Conf. on Functional
Programming Languages and Comp. Architecture, New
Hampshire, pp.65-75, Oct. 1981.

[94] Harrison P.G., and Reeve M.J., "The parallel graph
reduction machine, ALICE", in Proc. of Workshop on Graph
Reduction at Santa Fe, New Mexico, USA, LNCS vol.279,
pp.181-202, Springer-Verlag, Oct. 1986.

188

[95] Watson I. et al, "Flagship computational model and machine
architecture", ICL Technical Journal pp.555-574, May 1987.

[96] Townsend P., "Flagship hardware and implementation", ICL
Technical Journal pp.575-594, May 1987.

[97] Watson P., and Watson I., "Evaluating functional programs on
the FLAGSHIP machine", in Proc. 3rd Conf. on Functional
Programming and Computer Architecture, Portland, Orgeon,
USA, LNCS Vol. 274, pp.80-97, Springer-Verlag, Sept. 1987.

[98] Greenberg M., and Woods V., "Flagship - a parallel
reduction machine for declarative programming", Computing
and Control Eng. Journal, pp.81-86, March 1990.

[99] Greenberg M., Woods V., and Sargeant J., "Work distribution
and scheduling in the Flagship parallel reduction machine",
in Proc. of the Workshop on Architectural support for
Declarative Programming Eilat, Israel, pp.1-8, May 1989.

[100] Fairbairn J., and Wr .y S., "TIM: A simple, lazy abstract
machine to execute supercombinators", in Proc. 3rd Conf. on
Functional Programming and Computer Architecture, Portland,
Orgeon, USA, LNCS Vol. 274, pp.34-45, Springer-Verlag,
Sept. 1987.

[101] Raber M. et al, "Compiled graph reduction on a processor
network", Informatik-Berichte, GI/ITG Tagung paderborn,
1988.

[102] Augustsson L., Nilsson C, and Truve S., "The PG - machine:
a machine for parallel graph reduction", Tech. Report Memo
57, Department of Comp. Sciences, Chalmers University of
Technology, S-412 96 Gbteborg, 1988.

[103] Burn G.L., "A shared memory parallel G-machine based on the
evaluation transformer model of computation", in Proc. of
the Workshop on the Implementation of Lazy Functional
Languages, Programming Methodology Group, Gbteborg, Sept.
1988.

[104] Augustsson L., and Johnsson T., "Parallel graph reduction
with the <nu, G> machine", in Proc. IFIP Conf. on Functional
Programming Languages and Computer Architectures, London,
pp.202-213, Sept. 1989.

[105] Peyton Jones S.L., and Salkild J., "The spineless tagless G-
machine", in Functional Programming Languages and Computer
Architecture, by MacQueen D. (ed.), Addison-Wesley,
pp.184-201, Sept. 1989.

[106] Revesz G.E., "Rule-based semantics for an extended lambda
calculus", in Proc. 3rd Workshop on Mathematical Foundations
of Programming Language Semantics, New Orleans, Louisiana,
USA, LNCS vol.298, pp.43-56, Springer-Verlag, April 1987.

^

189

[107] Revesz G.E., "Axioms for the theory of lambda conversion",
SIAM Journal on Computing, vol.14, no.2, pp.373-382, 1985.

[108] Revesz G.E., "An extension of lambda calculus for functional
programming", The Journal of Logic Programming, vol.1, no.3,
pp.241-251, 1984.

[109] Wadler P., "Efficient compilation of pattern-matching", in
The implementation of functional programming languages,
by S.L.Peyton Jones, PHI series in Computer Science,
PHI(UK), 1987.

[110] Augustsson L., "Compiling pattern-matching", in Proc. IFIP
Conf. on Functional Programming and Computer Architecture,
Nancy, LNCS vol.201, pp.368-381, Springer-Verlag, 1985.

[Ill] Clack C, and Peyton Jones S.L., "Strictness analysis - a
practical approach", in Proc. IFIP Conf. on Functional
Programming and Computer Architecture, Nancy, LNCS vol.201,
pp.35-49, Springer-Verlag, 1985.

[112] Mycroft A., "Abstract interpretation and optimising
transformations for applicative programs", PhD Thesis,
University of Edinburgh, 1981.

[113] Burn G.L., "Abstract interpretation and the parallel
evaluation of functional languages", PhD Thesis, Dept. of
Computing, Imperial College of Science and Technology,
University of London, 1987.

[114] Burn G.L., "Evaluation transformers - a model for the
parallel evaluation of functional languages (extended
abstract)", in Proc. 3rd Conf. on Functional Programming and
Computer Architecture, Portland, Orgeon, USA, LNCS Vol. 274,
pp.446-470, Springer Verlag, Sept. 1987.

[115] Bevan D.I., Burn G.L., Karia R.J., and Robson J.D.,
"Principles for the design of a distributed memory
architecture for parallel graph reduction", The Computer
Journal, vol.32, no.5, pp.461-469, 1989.

190

APPENDIX

The appendix contains some examples that illustrate task reduction

mechanism through snap-shots of task-graph at various stages of

reduction. The figures used for task-graphs show a task as

A
1
1
N: F SC S(l) • • • S(k)

where the A-field either explicitly shows a task name or an arc

link to some task implies that the field contains name of the

pointed task.

•

Example 1 : The example illustrates the basic reduction strategy.

The program is

$f x = let y = SQ x in

+ (+ (* (- 9 4) y) y) (TAN (+ 22 23))

$f 2

The definition of $f gets compiled into a D-code given as

D-code = (Header, SDS)

a ((If, i, i, [], [], o), (/«2, (\@2, +, (/e2, (\e2, +,

(\@2, (@g, *, (@g, (@g, -, 4), 9)), "y)), "y)), (@g, TAN,

(@2, (@2, +, 22), 23)) :: [y:(\@2, SQ, !•)]))

Organising the program expression, through Org procedure, yields

the following task-graph:

191

nul

:w.,E,0): if 1 val2

Task W^ starts reducing, using the D-code of $f. Finding that the

function $f involves no pattern matching (number of clauses = 1),

the four step reduction cycle is initiated, using SDS term in the

D-code as a template for instantiation. The reduction proceeds

through following steps:

Step 1 : Application - a copy of the template is applied,
following term reduction rules, to the argument (va!2)
resulting into the term

(e2, (i2, +, (t2, (@2, +, (@2, (e2, *, (f2, (@g, -, 4), 9)),

»), >)), («g, TAN, (@g, (@g, +, 22), 23)) :: [y:(Sg, SQ,

Yal2)])

Step 2 : Organisation - the SDS term is now an exp_graph which is
organised using Org_result. It gives the following
task-graph:

nul

(Wg,W,2): opt

(W7,W,1):

(W3,W,2) op+

opTAN 1
1
1

(W8,E,0)

(W6,E,0)

(W4,W,2) op*

OP+ 2 val 22 val23

(W6,E,0): opSQ 1 val2

(W5,E,0): op- 2 val4 val 9

192

Step 3 : Communication - ancestor of the reducing task W< is nul
hence no communication is required.

Step 4 : Removal - task W< kills itself.

Now the dynamic graph is the one shown in step 2. Tasks Wg, Wg

and Wp can execute in parallel. It may be noted that Wg has two

ancestors - (W.,W,2;2) and (Wg,W,2;2). The three tasks reduce

simultaneously (cases of primitive reduction) and communicate the

results to their respective ancestor(s). The task-graph after

these reductions becomes

nul

(Wg,W,2) op+

(W7,E,0):

(W3,W,1): op+

opTAN 1 val45

va!4

(W4,E,0): op* 2 val5 val4

Now W^ and Wy reduce in parallel. After these reductions the

graph appears as

nul

(w2,w,i) op+

(W3,E,0)

vail

op+ 2|val20 val4

Reduction of Wg at this stage transforms the task-graph into

193

nul

W9,E,0): OP+ 2 val24 vail

Finally task Wg reduces to val25 so that the task-graph becomes a

tagged_value lying at the root as

nul

val 2 5

Example 2. : This example illustrates recursion in factorial

function using concepts of partial tasks and Y operator. The

program is

$h f n = if (= 0 n) 1 (* n f(- 1 n)

$fac = Y $h

$fac 5

The program expression gets organised into a dummy and an

executable task as shown in the following task-graph:

nul

(WlfD,l)
. 1

1 ug. -

(Wg,E,0) ifac 0

val 5

Task Wg reduces and the result of its reduction is a task given as

(Wi.D.ljO)
I

(W3,P,1): opYg 1 in

194

It prepares a 1ink message M = (link. (W3,P,1), 0) and

communicates it to W-, . Wg then kills itself. Wi, while handling

the link message, generates an arg message M = (arg. (ug"va!5),

nul), communicates it to W3 and kills itself. W3 while handling

the arg message, organises itself into the following task-graph:

nul

Wo,E,0): opYg 2

i I

In
. ,_i

val 5

Now task W3 undergoes a Y reduction resulting into the following

task-graph:

nul

(W4,E,0): Ah val 5

(W5,P,1): opYg 1 ih

It may be noted that Wg is a non-computable partial task and hence

W4 is executable. Reduction of W4, while using the SDS term of

$h, gives

nul

(Wg,W,l): opIF

val 5

3

j l

ug ug

(W?,E,0): p_p= 2 valO val 5

195

Task Wy returns a result 'False' to Wg through the message M =

(result, valFalse, 1). On receipt of this message Wg orders

organisation of S(3) (through Org_result) so that the graph

changes to

nul

(W8,W,1): op* va!5

(Wg,P,l): op_Y, ih

(W9,W,1): p_p- 2 vail val5

Task Wq now reduces and communicates its result to Wg through the

message M = (result, val4, 2), and kills itself. After taking

action on this message the task Wg becomes reducible and the graph

appears as

nul

(w8,w,i) op* va!5

(Wg,E,0): opYg 1 ih val4

The situation of task Wg now is similar to that of task (W3,E,0)

and the reduction proceeds through repetitions of reduction cycles

described above.

Example 3. :This is the example of a program which computes the sum

of first m integers. The example was taken up in chapter 6 for

illustrating the compilation of supercombinator definitions with

recursive local definitions into SDS terms. Here we proceed

further to look at its execution. The program is

196

$Count count m n = IF (> n m) NIL (CONS n (count (+ n 1)))

$Sum ns = IF (= ns NIL) 0 (+ (HD ns) ($Sum (TL ns)))

$Sumints m = letrec count = $Count count m in $Sum (count 1)

$Sumints 100

The program expression gets compiled through Org into a task-graph

given as

nul

(WltE,0) iSumints 1 vallOO

The only task in this graph is executable and it initiates a

reduction cycle using a copy of the SDS term of $Sumints. During

the first step of reduction cycle the SDS term becomes

(%2> $Sum, (©g, "count, 1)) :: [count:(@g, Y, (/Gg» (\@2,

$Count, !•), 100))]

In step 2 the resulting SDS term is organised into a task-graph.

Here the Org_exp module will call the Org_Y module while

organising the expression in the C-list. The arity of Y will come

out to be 2 because Y is applied to the expression (/@2> (\@g»

$Count, !•), 100). In this expression, one argument is required

due to a director at the root node and one more due to the

function $Count at the tip being short of one argument, hence the

total requirement of Y is 2. Thus the organisation in step 2

results into following task-graph:

197

nul

(Wg,W,l): iSum 1
1
1

(W3,E,0) Y2 2 rd vail

n
I \

\e ioo

/ \
$Count I

The ancestor of W-, is nul hence no communication is required, and

the task kills itself. Now task W3 can reduce because the Y

operator in it has the necessary number of arguments. It stands

for an expression (Yg (rd") vail) which reduces to ((rd") (Yg

(rd")) vail) by the reduction rule for Y. After this Y-reduction

the task-graph will look as

nul

(w2,w,i) iSum 1
I
1

(W4,D,1) ug"vall

(W5,E,0):

$Count

rd 1
i

1
(Wg.P.l):

/ \
\e ioo
/ \

Y2 1 rd

I \
\e ioo

/ \
$Count

Now task Wg reduces. It has a residual definition in its F-field

which makes it executable according to the modified conditions of

reducibility. Its only successor is a non-computable partial.

The result of the reduction of Wg is the task-graph

198

(W4,D,1;0)
I

(w7,p,i) iCount vallOO

(Wg,P,l) Y2 1 rd

/ \
\@ IOO

/ \
$Count

Wg prepares a message M = (link. (W7,P,1), 0) and sends it to the

ancestor W4, who on receipt, prepares two messages, M^ = (arg,

(ug"vall). (Wg,W,l;l)) for W? and M2 = (link. (W?,P,0), 1) for the

ancestor Wg. Task W4 then kills itself. The complete task-graph

after exchange of these messages and corresponding actions becomes

nul

(Wg.W.l): iSum

(W7,E,0) iCount vallOO vail

WR,P,1): rd

+
/e
I \

\e ioo

/ \
$Count I

Now task Mrj finding a non-computable partial at S(l) position,

goes ahead with reduction, using the SDS term of $Count as

template. The graph then becomes

199

nul

(w2,w,i) iSum 1
I
1

(W8,W,1): opIF ug"valNIL u&

(Wg,E,0)

/ \
i e

/ \
(wfi,p,i) e

/ \
+1 vail

OP> 2 vail vallOO

Task Wq sends a result message containing the result 'False' to

its ancestor and kills itself. As a result, task Wg organises its

S(3) and links to its ancestor. The graph then becomes

(

nul

W„,E,0): iSum ds

/ \

/ \
t

/ \
+1 vail

(Wg,P,l)

Task Wg has now become reducible. Its reduction uses the SDS term

of $Sum. After reduction the graph will appear as

200

nul

(w10,w,i)

(Wn,E,0):

(WR,P,1) 6
/ \

+1 vail

Task Wj^ returns a result 'False' to its ancestor who then

organises its S(3) giving it the ancestor nul. The graph then

becomes

nul

(W12,W,2): opt

(W14,W,1):

(W13,E,0): opHD

iSum 1

W15,E,0):ds

+

/ \
1 G

/ \
(w6,p,i) e

/ \
+1 vail

opTL 1 ds
/

Tasks W^3 and W^g reduce simultaneously producing the graph

201

nul

(W12,W,1): op+ vail

t
(W14,W,1): iSum

t
(Wg,W,l): opYg 2 rd

-**•

/•
/ \

\@ 100

/ \
$Count I

(W16,E,0): op+ 2 vail vail

The partial task Wg got organised into a complete task through

Org-result. Now task W16 reduces and the graph takes the shape

nul

(W12,W,1): OP+ 2 vail

(w14,w ,1): iSum 1
I

0 '6
1
,0): opY2 2 rd val2

/ \
\@ 100

/ \
$Count I

At this stage, the recursion has run through one cycle. From here

onwards the reduction will be repetition of the previous

reductions. Task W14 is in the same situation as was the task W2

at the time of its creation in the first snapshot of the task- f

graph.

202

RESEARCH PAPERS OUT OF THE WORK

I. Communicated

1. "Compiling Pattern-Matching Definitions into Structured
Director String Terms", Communicated to IEEE Trans.
Computers, April 1990.

2. "Supercombinator Compilation for Multiprocessor
Architecture Implementation", Communicated to IEEE
Trans. Software Engineering, July 1989.

II. Accepted/Published

3. "CTDNet II - A Coarse Grain Multiprocessor
Architecture for Functional Programs", accepted for
presentation in UNESCO Conference on Parallel Computing
in Engineering and Engineering Education, to be held at
Paris, Oct. 8-12, 1990.

4. "Implementing Pattern Matching Definitions in CTDNet-A
Multiprocessor Architecture", Proc. Fifteenth Euromicro
Symposium on Microprocessing & Microprogramming,
Cologne, West Germany, pp. 151-155, Sept. 1989.

5. "Implementation of Recursion in CTDNet - An Applicative
Order Machine", Proc. Second Int. Conf. on Software
Engineering for Real-time Systems, Cirencester, U.K.,
pp. 224-227, Sept. 1989.

203

	DESIGN OF A FUNCTIONAL COMPUTATION MODEL FOR MULTIPROCESSOR ARCHITECTURE
	ABSTRACT
	CONTENTS
	LIST OF SYMBOLS AND ABBREVIATIONS
	CHAPTER-1 INTRODUCTION
	CHAPTER-2 FUNCTIONAL PROGRAMMING AND LAMBDA CALCULUS
	CHAPTER-3 REVIEW OF COMPUTATION MODELS
	CHAPTER-4 IMPLEMENTATION OF PATTERN-MATCHING : A LAMBDA CALCULUS BASIS
	CHAPTER-5 COMPILATION OF PATTERN-MATCHING DEFINITIONS
	CHAPTER-6 COMPILATION OF LET AND LETREC DEFINITIONS
	CHAPTER-7 MULTIPROCESSOR REDUCTION
	CHAPTER-8 CONCLUSIONS
	REFERENCES
	APPENDIX
	RESEARCH PAPERS OUT OF THE WORK

