
T
T)t

AN APPROACH TO GEOMETRIC

MODELING OF SOLID OBJECTS

A THESIS

submitted in fulfilment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS AND COMPUTER ENGINEERING

•*y

S. SASIKUMARAN /fo~ *<fl£«

K*

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE-247 667 (INDIA)

DECEMBER. 1988

Ace. N,... 44£&$\

VEVICATEV

TO

MV PARENTS

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented
in the thesis entitled 'An Approach to Geometric Modeling of
Solid Objects' in fulfilment of the requirement for the award
of the Degree of Doctor of Philosophy submitted in the Department
of Electronics and Computer Engineering of the University is
an authentic record of my own work carried out during a period
from February 1986 to December 1988 under the supervision of
Dr. R. C. Joshi and Dr. A. K. Sarje.

The matter embodied in this thesis has not been submitted
by me for the award of any other Degree.

(S. SASIKUMARAN)

This is to certify that the above statement made by the
candidate is correct to the best of my knowledge.

fcQ>
(R/ C. JOSHI)
Professor,
Electronics & Computer

Department

26.12.1988

Engg Electronics

Jfy^vyS
(A. K. SARJE)

Professor

Computer Engg.
Department

The candidate has passed the Viva-Voce examination held
at . The thesis is recommended foron

award of the Ph.D. Degree.

1.

(Signature of Guide) (Signature of External Examiner

(Signature of Guide)

ABSTRACT

Recent years have seen growing interest in the modeling

(representation, manipulation and display) of solid objects with

a computer. Three dimensional object modeling is essential for

computer graphics, CAD/CAM systems, image understanding systems,

and other applications.

The search for better modeling techniques have been and

continue to be one of the major problems in solid modeling.

This thesis presents a 'Hex-tree representational technique'

for geometric modeling of solid objects. This is a tree oriented,

recursive type new constructional technique for representation

and display of any 3-D object. A single cubical cell is used

as primitive in this approach. In the Hex-tree data structure,

the full identity of a node (i.e. cubical cell) is represented

in six Bits of a word, indicating the life entities in all direc

tions which represent the six faces.

In order to get a realistic display of the Hex-tree based

solid models, two Hidden-line algorithms are developed for simple

and complex objects. These algorithms are suitable for Line-

drawings display devices. A complete hidden lines removed pers

pective picture of solid models, viewed from various distances

and/or positions in space could be perceived. Provisions are

also incorporated to visualise the object models, without remov

ing hidden lines. Same algorithm can be used for both plana:1

and curve surfaced objects.

11

Necessary methods have been developed to calculate some

of the integral properties of the Hex-tree based solid models.

The volume, weight, center of gravity and moment of inertia of

an unsymmetrical model have been computed and shown. The merits

of providing 'Screen-layout' by creating multiple screen areas,

for a better user-interface are also shown.

Using this approach, it is possible to define, modify

and display any planar and curve surfaced three dimensional

object. The implementation of the geometric modeling system

has been done in the FORTRAN language on VAX-ll/780 computer

system using Tektronix-4027 graphics terminal.

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to

Prof. R. C. Joshi and Prof. A. K. Sarje for their invaluable

guidance and encouragement in planning and execution of this

research work. Their painstaking efforts in correcting the

manuscript and giving fruitful suggestions for its improvement

are gratefully acknowledged.

The suggestions and cooperation extended by Prof. N. K.

Nanda, former Head, and Prof. R. Mitra, present Head, Department

of Electronics and Computer Engg., are gratefully acknowledged.

The author is thankful to Dr. K. N. Ramachandran Nair,

Reader, Department, of Computer Science, University of Poona,

for the help he has rendered through discussions during the
initial stage of this investigation.

Thanks are also due to Mrs. Deepa Chalisgaonkar for her

sincere help during the execution of this work in the Computer

Centre of National Institute of Hydrology, Roorkee, and
Mr. Subash Kichlu of Remote Sensing Lab. of the same Institute
for taking the photographs nicely.

The author is grateful to the authorities of Regional

Engineering College, Calicut (Kerala) for sponsoring him to

persue this research work under Quality Improvement Programme.

It is a distinct pleasure for the author to acknowledge

and record his heartfelt appreciation to his wife Beena for her

patience, understanding and in cheerfully shouldering the family
responsibilities, and to his sons, Dawn & Dijo, for their

i

IV

understanding in bearing the burden imposed on them because of

his involvement in this research programme.

No words can express the author's sincere gratitude to

his Father-in-Law, Shri Raveendranathan, and other members of

the family for the help, understanding and cooperation rendered

during the tenure of this study.

The author is thankful to his fellow research scholars

and other friends for their cooperation and help during the

entire course of this research programme.

Finally, thanks are also due to the staff of Rashtriya

Commercial Institute, CBRI Colony, Shantinagar, Roorkee for neat

typing and Shri Y. D. Gupta for drawing the figures nicely.

Roorkee

December, 1988 (S. StfSIKU'MARAN)

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION AND STATEMENT OF THE PROBLEM

1. 1 Introduction

1.2 Motivation for the Present Work

1.3 Statement of the Problem

1.4 Organization of the Thesis

Page

i

iii

v

1

2

8

10

10

CHAPTER 2 OVERVIEW OF GEOMETRIC MODELING SYSTEMS \2

2.1 Historical Developments]_o

2.2 General Properties of Representation Schemes 17

2.2.1 Formal properties

2.2.2 Informal properties

2.3 Representation Schemes for Solid Models

2.3.1 Constructive solid geometry

2.3.2 Pure primitive instancing 24

2.3.3 Boundary representation scheme 25

2.3.4 Cell decompositions

2.3-4.1 Spatial occupancy
enumeration

2.3.4.2 OcL-trec representation
scheme

2.3.5 Sweep representations

2.4 Human-Computer Interfaces

1.7

19

20

20

2 8

29

29

33

34

*

2.5 Application Areas

2.6 Geometric Modeling Systems

CHAPTER 3 THE HEX-TREE APPROACH

3. 1 Introduction

3.2 Hex-tree Data Structure and Representational
Details

3.2.1 Cell description

3.2.2 Definitions

3-3 Boolean Operations on Hex-tree

3.4 Development of Curved Surfaces

3-5 Display Technique for Hex-tree
Represented Objects

3.6 Conclusions

CHAPTER 4 DEVELOPMENT OF HIDDEN-LINE ELIMINATION METHODS

4.1 Introduction

4.2 Development of Hidden-Line Algorithm
for Simple Shapes

4.3 Development of General Hidden-Line
Algorithm

4.4 Conclusions

CHAPTER 5 THREE DIMENSIONAL STRUCTURE MODELING-
IMPLEMENTATION

5.1 Introduction

5.2 Screen Layout - User Interface

5-3 Implementation Details

5.4 Conclusions

CHAPTER 6 COMPUTATION OF INTEGRAL PROPERTIES

6.1 Introduction

6.2 Calculation of Integral Properties

of Hex-tree Based Solid Models

38

41

48

49

50

52

52

56

62

65

71

72

73

77

81

86

91

92

93

97

104

111

112

114

6.3 Conclusions 121

CHAPTER 7 'CONCLUSIONS AND SUGGESTIONS
FOR FURTHER INVESTIGATIONS 122

7.1 Summary and Conclusions 123

7.2 Suggestions for Further Investigations 127

APPENDIX 130

REFERENCES 132

i

CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

Geometric modeling is the study of computer methods for

generation, storage, analysis, manipulation and display of shape

information. The system which provides facilities for entering,

storing and modifying shape information is called a geometric

modeling system (GMS). Geometric modeling systems are exten

sively used by a number of industries all over the world for

creation and manipulation of 3-D object models in their

computer-aided design and manufacturing activities. Plant

design, architectural design, molecular modeling, etc. are few

other application areas of geometric modeling system. Because

of their 3-D object modeling capability, an object represented

has the information content of a number of drawings, pages of

specification and engineering data. In a typical geometric

modeling system environment, the human-user sits at a graphic

workstation and interacts with the system through various inter

active devices (alphanumeric keyboard, digitizer, tablet,

joystick, light pen, etc.) and display devices (raster-scan

cathode-ray-tube, memory-tube displays, plotters, etc.) to get

his job done. The objects created during one such interactive

session can be stored in disc files for future examination or

modification. Also, they can be passed on to any other program

for analysis, such as, spatial interference checking, structural

analysis, or for producing Numerical Control (NC) machine tool

path data for their automatic manufacture. The possibility of

integrating the design, analysis and manufacturing activities

together, by providing a common data base is another important

advantage of geometric modeling system.

Wireframe modeling system, surface modeling system and

solid modeling system are the three types of 3-D geometric

modeling systems available [57,35J.In wireframe models, the edges

of the object are shown as lines. For objects in which there

are curved surfaces, contour lines can be added to indicate the

surface. The image assumes the appearance of a frame constructed

out of wire - hence, the name 'wireframe model'. These models

are highly ambiguous description of object geometry, virtually

not useful for complex manufacturing operations. In wireframe

models, all the lines defining the edges (and contoured surfaces)

of the model are shown in the image. This can cause the image

to be somewhat confusing to the viewer, and in some cases, the

image might be interpretable in several different ways. Though

by removing the hidden lines in the image this interpretation

problem can be alleviated to some extent, it requires substantial

manual intervention. The true volume of the object also cannot

be known through the model, as there is no knowledge of the

surfaces between the lines.

The surface models describe an object in terms of points,

edges and faces between these edges. These models are also

ambiguous due to the fact that there is no knowlege of what is

'solid' material or what is the 'inside' of an object or the

'outside'. Surface modelers are useful to find the intersection

of complex surfaces, to produce shaded colour pictures, to

generate Numerical Control tool path data for complex surface

machining etc. However, surface modelers suffer from the

following drawbacks.

i) They cannot reliably remove 'hidden lines' from

any view

ii) The creation of internal sectioned views is a

tedious task

iii) The accuracy and reliability of mass properties

(volume, moment of inertia, etc.) extracted from

surface models have limitations.

An improvement over Wireframe Model and Surface Model,

both in terms of realism to the user and definition to the

computer, is the Solid Model. The solid modeler (also referred

to as 'Geometric' or 'Volumetric' modeler) holds a complete

description of an object, in terms of space, which it occupies.

This description is unambiguous, in the sense that the system

always knows whether any point is 'inside' or 'outside' an

object, or if it lies on the surface of the object. There is

very little chance of misinterpretation as the models are

displayed as solid objects to the viewer. When colour is added

to the image, the resulting picture becomes strikingly realistic.

Other advantages of solid modelers are :

i) They can produce accurate mass properties data which

truly reflects the reality of the part.

ii) Interference between any parts can be detected

and displayed

iii) Views can be produced from any point of view, with

automatic removal or dashing of hidden lines.

Perspective can be generated for any view. Because of

this tremendous potential, geometric modeling system, with solid

modeling capability, will find wide range of applications outside

the realm of computer-aided design and manufacturing, such as,

training simulators, robotics, animation in movies, etc. [57,55,

35,34].

Various representation methods have been proposed for

geometric modeling of solid objects [55]. Among these, Construc

tive Solid Geometry (CSG) and Boundary Representation (B-Rep)

are the two widely accepted schemes for commercial geometric

modeling systems. However, these methods have several limita

tions.

The representation capabilities of these schemes are not

sufficiently robust to easily handle the object complexities

required in a realistic environment, as the objects are construc

ted from a limited number of mathematically well defined surfaces

or. solid primitives [45]. Adding new powerful primitives to

a system based on these methods or generalising the use of

existing one not only requires extensive development of mathema

tical tools and significant software modification, but also needs

substantial additional computation and memory space.

In any of these representations, object manipulations,

such as boolean operations (union, difference and intersection)

or display operations place an unacceptable burden on computa

tional resources. In these operations, it is necessary to

calculate the edge of intersection in three dimensions of two

objects (represented by several thousand primitive shapes or

surface patches), interference detection and hidden surface

removal, which require a very large amount of computation. The

searching and sorting tasks for the comparison of primitives

also increases the processing time.

Problem also arises when there is a need to store data

in a database. For a database, it is an essential requirement

to secure consistency of the stored data, like physical 3-D

interference of mechanical parts. In order to check the consis

tency of stored data in these representations, a lot of computa

tion is required [20].

The computation of integral properties, such as, volume,

surface area, moment of inertia, etc. of objects represented

by Constructive Solid Geometry scheme is a difficult operation.

If an object is defined as the union of two primitives which

penetrate each other, then the volume of the object can be

computed only if we know what portion is common to these two

primitives. The CSG representation of the object does not expli

citly give this information. Hence, computation of these proper

ties require more computational efforts.

Another disadvantage of Boundary Representation scheme

is its verbosity [55]. Even for a simple object like a cube,

the amount of information (contains details of its six faces,

twelve edges, eight vertices and their adjacency information)

to be stored is very large.

Even though Constructive Solid Geometry and Boundary

Representation schemes are the well known methods for solid

modeling, another technique known as Oct-tree (a tree based

hierarchically oriented approach) is becoming popular in recent

years [30,45]. This Oct-tree data structure is basically an

approximation of three dimensional object, by a set of cubes

in various sizes. This method also suffers from several limita

tions .

As the Oct-tree is an approximation of an object with

smooth free surfaces by cubes, it is inevitable that the encoded

object entails some notched surfaces [20]. In order to avoid

this jagged surface, it is necessary to represent an object by

a very deep level Oct-tree, which requires enormous data storage

and a high speed processor. This characteristic considerably

affects the important advantages of Oct-tree, such as, processing

speed, memory economy, etc. Also, because of this approximation,

only approximate integral properties of object can be calculated.

Geometric transformations are also problematic in this

scheme. As geometric transformation is a sort of combinatorial

problem in the Oct-tree representation, a manipulation sequence

affects the calculation time considerably. Another major limita

tion of Oct-tree data structure is the difficulty of incorpora

ting it into existing graphic software systems [13]. An object

created on a system built around either Boundary Representation

scheme or primitive solids, and transformed into an Oct-tree,

to take avantage of boolean operations, can no longer be

reconstructed back to a Boundary Representation scheme. This

irreversibility of the transformation is a drawback of using

Oct-tree in conjunction with existing Computer-Aided Design/

Computer-Aided Manufacturing (CAD/CAM) systems and databases.

For display operations also, it is not a desirable data structure

[79].

1.2 MOTIVATION FOR THE PRESENT WORK

In the light of the discussion about the computational

and other problems associated with the popular solid modeling

schemes, it is observed that these methods have limitations in

some form or the other. This outlines clearly a need for deve

loping new techniques or improvements in the existing techniques.

Some of the desirable 'design requirements' in a computer-aided

design environment are discussed in this context.

The acceptance of any computer-aided modeling system

heavily depends upon the flexibility of the modeling technique.

The approach should be simple, reliable and unified one, so that

a wide-range of 3-D objects from polyhedral to solid objects

with curve surfaced could be modeled. As far as possible, the

method should be sound enough to model the desired shapes

directly by avoiding frequent boolean operations.

Designing is an active process. As the design proceeds,

various ideas strike for improvement. It should be possible

to feed these information with computer assistance. This could

be attained only if the system is provided with a good User-

interface. Through better User-interface, not only the shape

of the object in the designer's mind can be made, but also he

gets the feel of designing with his own hands. This also allows

him to correct erroneous instructions at any stage of the design.

There can also be situations for modification of models by

combining different object models. Such modifications can be

done through boolean operations on solid models. The system

should be supported with these facilities, so that the designer-

user will be able to model the shapes of his interest. Incorpo

ration of suitable algorithms for removing the boundary of the

model, that are not visible from a given vantage point, is consi

dered as another essential requirement. This will ensure the

user a realistic, display of the modeled object. Inclusion of

software for the computation of volume, moment of inertia and

similar properties of solid models is also a desirable require

ment in a computer-aided design set up.

In view of the above discussion, it is clear that there

is a need for developing new methods or improvements in the

available schemes for the representation, manipulation and/or

display of solid objects and also to incorporate design require

ments, like, friendly user-interfaces, modification facilities,

hidden parts removal algorithms, engineering analysis software,

etc. These observations provided motivation for this thesis

work.

10

1.3 STATEMENT OF THE PROBLEM

To state the specific tasks, which the present work is

intended to cover, a list of major objectives is given below:

1. To explore the possibilities for the development of

a new representational technique for geometric

modeling of solid objects.

2. To develop Hidden-line elimination algorithms for

efficient display of solid models, based on the

proposed technique.

3. To provide suitable user-interface to the geometric

modeling system based on the suggested method.

4. To develop necessary methods for the computation of

integral properties like, volume, moment of inertia,

etc. of the proposed technique based solid models.

1.4 ORGANIZATION OF THE THESIS

A chapter-wise summary of the thesis is as follows :

In Chapter 2, an overview of geometric modeling systems

and general considerations are discussed.

This Chapter begins with the historical developments of

geometric modeling systems. General properties of various

representational schemes of solid objects, human-computer inter

face and application areas of geometric modeling systems (GMS)

are also presented in this Chapter.

The concept of new representational technique and the

data structure along with suggested definitions are explained

11

in Chapter 3. The usefulness of this scheme to perform boolean

operations and the development of curved boundaries are also

discussed, with supporting photographs.

In Chapter 4, two hidden-line removal algorithms for the

display of the Hex-tree represented solid models are explained.

These algorithms are suitable for line-drawings display devices.

The implementation details of the Hex-tree based geometric

modeling system with photographs of solid models produced by

the system are given in Chapter 5- An overall idea about the

various facilities incorporated in this system for a friendly

user-machine interface are also explained in this Chapter.

The computation of volume, center of gravity and moment

of inertia of Hex-tree based solid models are discussed in

Chapter 6. Computed results of a typical model are also shown.

Finally, the summary of the research work and areas for

further investigations are presented in Chapter 7.

CHAPTER 2

OVERVIEW OF GEOMETRIC MODELING SYSTEMS

/

13

2.1 HISTORICAL DEVELOPMENTS

The use of graphic displays as output devices for compu

ters has been experimented from the very early days of computers;

in the year 1950, for example, a cathode ray tube was attached

to MIT's Whirlwind I computer to generate simple pictures.

However, it was only a decade later the potential of interactive

computer graphics was realised when, in 1962, Ivan Sutherland

developed the 'SKETCHPAD' as a part of his Ph.D work at M.I.T

[65]. As its name indicates, one can feed into the computer

graphical information like points, lines and curves by drawing

them on the CRT screen with a pen like tool. This experiment

demonstrated the possibility for human beings to communicate

with a computer through pictures, and it launched the new subject

of interactive computer graphics. In the late sixtees several

projects in interactive computer graphics were taken up not only

in universities but also in research laboratories and industries

like Bell Telephone labs, General Motors Company and Lockheed

Aircraft Corporation [48].

From the very beginning, industrial applications of compu

ter graphics were widely recognized. Layout design of printed

circuit boards and generation of photographic masks for the

production of integrated circuits were done using computer

graphics techniques. In these applications, the objects handled

are purely two dimensional and their geometry is simple. In

the area of mechanical engineering design and manufacture, we

14

are mainly dealing with solid objects and their shape is an

important information for their designers and manufacturers.

Traditionally, drawings are used to communicate shape information

among various persons involved in the design and manufacture

of a product. The first efforts in computer aided design,

naturally, were to computerise drafting operations. Graphic

input devices like digitizers could be used to convert existing

drawings to their computer representations; computerised drafting

packages provided help in interactively creating new drawings,

and modifying existing ones. The usefulness of these drafting

packages were very limited since they were merely trying to

imitiate manual drafting operations. The first step in

increasing the power of these systems was to incorporate in them

three dimensional capabilities. With a three dimensional

representation of an object, many views of the object can be

produced from a single representation, unlike in the case of

drafting packages where each view needs a different represen

tation. For a 3-D representation, a list of edges of the object,

known as wireframe representation, is usually stored in the

system. Wire frame representations are ambiguous in the sense

that a single wireframe representation may correspond to more

than one solid object [57]. This serious drawback of the

wireframe representation prevented the automation of many useful

operations on solid objects, such as, mass property calculations,

sectioning, hidden line elimination and so on. Geometric

modeling systems were introduced to remove these handicaps.

Geometric modeling systems were first introduced in the

15

early seventies. Prominent among the early systems were the

BUILD system of the Cambridge University, U.K. [9], and the Part

and Assembly Description language (PADL) system of the University

of Rochester, U.S.A. [50]. The Build system used the Boundary

Representation Scheme in which solid objects are defined by

specifying their bounding surfaces. PADL used the Constructive

Solid Geometry Scheme (CSG) for representing solids, a technique

in which an object is built up from certain simple primitives

like cubes and cylinders by means of geometric transformations

and boolean operations. A number of other systems based on these

two solid representation schemes were also developed at many

universities in U.S., Europe and Japan [57,3]. Once the possibi

lity of representing solid objects unambiguously and of

performing operations on them with the aid of computers was

demonstrated by these experimental systems, some industrial

organizations and software firms began to develop commercial

geometric modeling systems. GM solid [8,7], based on PADL,

developed at the General Motors, and ROMULUS [71], based on the

BUILD Modeler, developed by the Shape Data Ltd., are examples

of such systems. These systems had very good user interfaces

and they could be incorporated into computer aided engineering

systems which are capable of computing several useful properties

of solid objects and also giving assistance in their manufacture.

Along with the development of experimentcil systems, atten

tion was also paid to build up a theoretical basis for solid

modeling, especially by researchers of the Prouction Automation

Project of the University of Rochester [55 J. Among their

16

contributions include the development of a rigorous mathematical

model of solid objects in terms of compact regular semianalytic

sets and regularised boolean operations, study of formal proper

ties of representation schemes, and development of efficient

algorithms for the boundary evaluation of solids defined by the

CSG scheme. Also around this period, many interesting applica

tions of solid modelers like finite element mesh generation,

interference analysis, kinematic simulation, Numerical control

program generation and verification, process and assembly

planning were attempted [35]. Another important development

in the late seventies is the introduction of a new solid

representation scheme known as Oct-tree [29,30]. Many

algorithms for representing solids and performing operations

on them using the Oct-trees representation are now being

developed [30, 16, 45, 79, 80]. The development of another data

stucture known as 'Polytree' which is a generalization of

Oct-tree data structure was also reported [13].

Attempts are also being made to extend the geometric cove

rage of geometric modeling systems to include solids bounded

by sculptured surfaces. These are surfaces like those of car

bodies, ship hulls and aircraft fuse lages which cannot be

defined by a single mathematical equation. Even though the area

of sculptured surfaces is well developed, the use of these

surfaces in defining solid, objects is of recent origin, and many

problems need to be solved before they can be successfully

incorporated in commercial GMS. A work in the geometric modeling

of solids bounded by sculptured surface was reported in [51].

17

2.2 GENERAL PROPERTIES OF REPRESENTATION SCHEMES

A solid representation is a symbol structure over a finite

alphabet specified according to some syntatic rules. A represen

tation scheme is then a mapping from the mathematical model space

to a set of such symbol structures [55].

Let M be the mathematical modeling space for solid

objects, i.e., M is the set of all subsets of the three dimen

sional Eucledean space E~, which are bounded, closed, regular

and semi-analytic. Members of M are called r-sets. Let R be

the set of all syntatically correct representations produced

by a grammer. R is called a representation space. Then a

mapping s from M to R is called a representation scheme. The

properties of representation schemes can be categorised as

follows :

2.2.1 Formal Properties

In a precise mathematical fashion, the various properties

are discussed here. Domain of the representation scheme is the

domain of s. The domain of a representation scheme characterizes

the descriptive power of the scheme. Members of R included in

the range of s are called valid representations, i.e., they

correspond to elements of M and are not nonsense objects. Vali

dity is equivalent to semantic correctness. One of -the issues

in geometric modeling system design is to decide that who will

be responsible for checking validity of objects in the system.

Even though it is good to have the system automatically check

validity of its objects, in some representation schemes, the

18

validity check is a costly operation in terms of computer time

and hence is left to the user. In such a system, if the user

fails to make sure that the objects he has created are valid

objects, then later on, it may lead to serious troubles and

probably program termination when operations are attmpted to

be performed on invalid objects. Validity checking by user is

not always possible in a system which tries to automate certain

stages of design activity because in such systems, objects are

sometimes created by programs within the system.

A representation r in the range V of the scheme s is said

to be complete or unambigous if it corresponds to a single

object, i.e. if s (r) contains only one element. The represen

tation scheme itself is complete or unambigous if all its valid

representations are unambigous. A complete representation of

an object has enough information to distinguish that entity from

all other entities in the domain D of the scheme. So, if we

exclude properties defined by functions that are not computable,

then theoretically a complete representation provides all

necessary information to answer any question asked about the

geometry of the object. Completeness of the representation scheme

is hence an essential property of general purpose geometric

modeling systems which are built to tackle a range of applica

tions not known in advance.

An object is said to have unique representation if there

is only one symbol structure that can be used to represent it.

A representation scheme s is unique if all the objects in its

domain are uniquely represented, i.e, the mapping s is a single

19

valued function. Uniqueness of the representation scheme helps

in easily determining equality of two objects in it. In the

absence of uniqueness, two objects A and B can be tested for

equality only by (i) computing 'S' using the expression

S - (A-*B)U*(B-*A), and (ii) checking whether S is null object

or not.

2.2.2 Informal Properties

There are a number of desirable properties of representa

tion schemes which are informal in nature. Some of the informal

properties are now discussed. Conciseness is one of the proper

ties which refers to the 'size' of representations in a scheme.

Concise representations are convenient to store and to transmit

over data links, and contain relatively few redundant data. In

practical systems, it is common to add redundant information

to object representations to help the speeding up of certain

frequently performed computations. Another desirable property

of representations is ease of creation. The ease with which

(valid) representations may be created by users of modeling

systems is of importance, especially if the users are human.

Concise representations generally are easier to create than

verbose ones. Some systems with verbose representation scheme

provide input subsystems to help the users to conveniently create

objects. Yet another desirable property of a solid representation

scheme is efficacy in the context of applications. Even though

a complete representation contains enough informations to do

most of the application processing, it may happen that given

20

a representation, there is no convenient or efficient way of

implementing some algorithms.

Since no single representation scheme available which

is good for all • applications, practical geometric modeling

systems do sometimes contain multiple representations of the

same object. There are a number of problems associated with

multiple reprsentations. First of all, the system should ensure

consistency, i.e. different representations of the same object

should agree with each other. Secondly, algorithms should be

provided to convert from one representation to another.

Sometimes it is not possible to convert one representation of

an object to another representation of the same object since

the domain of coverage of the two representations may not be

same. In such cases approximate conversion algorithms are

employed, which compute an object in the other representations

that closely approximates the original object.

2.3 REPRESENTATION SCHEMES FOR SOLID MODELS

There are a number of different schemes for representing solid

models in a computer.

2.3.1 Constructive Solid Geometry (CSG)

This is probably the most important scheme for represent

ing non-sculptured or functional objects. In this scheme, a

solid object is created by combining several primitive solids

of simple shapes. The primitives commonly used are cubes,

21

cylinders, spheres, cones, etc. Geometric transformations are

provided to change their size and to position them in space.

They are then combined together by boolean operations (Union,

difference and intersection). So, in this scheme an object is

represented by a binary tree whose leaf nodes represent either

primitives or parameters of geometric transformations and whose

internal nodes represent geometric transformations or boolean

operations. A formal definition of such a CSG tree is given

below:

<£SG treej> • ^Primitive leaf/''

<CSG tree><£oolean operator node><£SG tree^>

<\CSG tree> ^transformation node^> ^transformation

parameters^

There are a number of variations possible from the scheme

mentioned above. One of them is to use half-spaces as primitives

instead of bound solids. A half space is defined as a set of

points in the three-dimensional Eucledean space E~ given by

ki /P:F(P)<OJ , where F is a real valued analytic function in E.,
and k and i are respectively the closure and interior operators

in the usual E^ topology [53].

One of the main advantages of the CSG scheme is the possi

bility of ensuring the validity of objects represented by it.

Primitive shapes like cubes, cylinders, spheres, cones, etc.

represent valid physical objects. Since the operations performed

on these primitives are regularised boolean operations, the

resulting objects are also guaranteed to be valid [54]. However,

22

this advantage is lost if half spaces are used as primitives.

In this case there is a need to ensure that the objects in the

system are bounded and it cannot be done without spending a good

amount of computational effort.

Given a CSG representation, there exists only one solid

that corresponds to it and hence the CSG scheme is unambigous.

On the other hand, given an object there may be more than one

way of decomposing it into primitive solids and so this scheme

does not possess the uniqueness property. Consequently, special

algorithms are necessary to determine whether two representations

in the scheme represent the same object or not. One important

advantage of CSG scheme is its consciseness. If the object to

be represented can be split up into the primitive solids

available in the scheme, then the user will be able to- specify

that object with the help of a few primitive instances and

boolean operations on them.

It is quite easy to perform boolean operations on two

objects represented in a CSG scheme. All one has to do is to

create a new CSG tree with its root node containing the required

boolean operation and with the two sons of this root being the

two operands of the boolean operation. There is no other solid

representation scheme in which the boolean operations are so

easy to perform. The simplicity of performing boolean operations

is due to the implicit nature of the CSG scheme of representing

solids. This very same implicitness is a draw back of the scheme

for most other operations we would like to perform with solid

objects.

23

One example of such a difficult operation is the display

of objects. In order to display an object we should know what

portion of the solid is visible. Clearly it is only a subset

of boundary of the object that will be visible and all the

interior portions are invisible, assuming that the object is

opaque. The boundary of the solid object is a subset of the

boundaries of the primitives that constitute the object. It

may be a proper subset since some of the primitives may

penetrate each other. There are algorithms available to determine

the boundary of an object defined by CSG tree [8]. Once the

boundary of an object is evaluated, it can be displayed after

removing the hidden portions of the boundary, if necessary.

Another approach to displaying objects represented by a CSG tree,

known as ray casting [61] is to determine the visible portion

of the object directly from the boundary of the primitives

that constitute the object, instead of going through the

intermediate step of evaluating the boundary of the object.

In this method rays (semi-infinite straight lines) along all

directions and originating from the point of observation are

first generated. Then the points of intesection of these rays

with the boundaries of the various (transformed) primitive

instances are computed. These points of intersection are then

sorted and the point on each ray which is nearest to the point

of observation is then displayed. Special care must be taken

to avoid repetitive calculations and make this algorithm

efficient [2,57]. One of the disadvantages of this method is

the necessity to recompute the intersection of rays and primitive

24

surfaces whenever the viewing parameters change. In the case

of conventional approach, boundary evaluation can be performed

once for all and only the hidden portion removal is to be

repeated when the viewing parameters change. The basic operations

in ray casting can be done in parallel for various rays so, if

a number of special purpose hardware is available for doing this,

then display by ray casting will become faster.

Because of the ease of creation, consciseness and

guarantee of validity, the CSG scheme is used as the main

representation scheme in many existing geometric modeling

systems. Most important among these are the PADL systems

developed by the production Automation Project of the University

of Rochester and the GMsolid, based on PADL-2 , developed by the'

General Motors. Other systems based on the CSG scheme are GD?

of IBM, TIPS of the Hokkaido University, Synthavision of Magi

Inc., Unisolids of McAuto, Catsoft of Catronix, etc. [3,57].

2.3-2 Pure Primitive Instancing

In this scheme there are a fixed number of predefined

object types. An object of a particular type is completely

specified by a few parameters. There is no provision to combine

objects to make complex solids, and hence the domain of the

scheme is very limited. When an object type is included in the

system, the condition for the validity of an instance of this

can be easily expressed in terms of its parameters and the

corresponding checks can be incorporated in the system. This

type of representation is concise and easy to use, but algorithms

25

to compute properties of solids represented in this scheme will

have to treat each type of object separately.

2.3.3 Boundary Representation Scheme (B-Rep)

One of the most widespread representation techniques used

in geometric modeling systems is the Boundary Representation.

In this scheme, the solid is represented by its bounding surface.

This surface is usually specified by means of a list of faces

and each face is represented by its equation and bounding edges.

The edges in turn are represented by their equation and

endpoints. The geometric coverage of the scheme depends on the

type of surfaces available to represent faces of solids in the

scheme. Planar and quadratic surfaces are sufficient to cover

most of the nonsculptured solids. Sculptured solids require

bicubic parametric patches with facilities to modify their shape

interactively by the user. Among the available representation

schemes, Boundary Representation provides maximum geometric

coverage.

It is easy to display objects from their Boundary

Representation. For fast display generation during interactive

sessions the entire surface can be drawn without eliminating

hidden portions. For a more realistic display hidden-line or

hidden-surface algorithms can be used. In the case of line

drawings it is necessary to have techniques to detect silhouette

edges of curved surfaces. In the case of raster scan devices

shading algorithms are needed to compute the intensity of each

pixel to be displayed. Graphic interaction is easier in the

26

case of an object represented by its boundary. Boundary

information is also useful in many other problems like collision

detection of an object which moves in the presence of other

objects.

Implementation of boolean operations in this scheme is

somewhat difficult. If A and B are two solid objects and C is

the result of performing a boolean operation on A and B, then

it is required to compute the boundary of C from the boundaries

of A and B. Clearly, the boundary of C is a subset of the union

of boundaries of A and B. In order to determine which portion

of the boundaries of A and B constitute the boundary of C we

need a classification algorithm. The objective of this classi

fication algorithm is the following. Given a surface and a solid

object, determine which portion of the surface lies within, on,

and outside the solid object. The basic idea behind the classi

fication algorithm is to split the surface into a number of

patches such that each patch is completely inside, on, or outside

the solid. In order to determine this splitting, we first

compute the curves of intersection of the surface with the

boundary of the solid. These curves of intersection together

with the original edge of the surface ei'fects the desired

splitting of the surface since the classification of the surface

will change only when it crosses the boundary of the solid.

Using this classification algorithm we can classify the

boundaries of each of the solid A and B with respect to the other

solid and then pick up and connect together the correct surface

patches to form the boundary of C. One thing that is clear from

27

this brief description of the algorithm to compute boolean

operation is that, it involves heavy computation. Another problem

is in finding the curve of intersection of two surfaces when

a number of surface types are present in the system. In the case

of bicubic surface patches, the curve of intersection between

two such surfaces cannot be exactly represented by a single

equation of low degree, but can only be approximated by straight

line segments. Further it is also inconvenient to represent

a portion of such a surface bounded by these approximate curves

so that it can take part in subsequent boolean operations. These

type of problems have compelled the designers of some of the

existing geometric modeling systems with sculptured surface

facility to disallow boolean operations to be performed when

two sculptured surfaces intersect.

Inspite of some of its drawbacks, this scheme is very

popular and is used in many geometric modeling systems. The

BUILD Modeler developed at the Cambridge University, U.K., is

one of the earliest examples of a GMS using Boundary Representa

tion. Two commercial systems ROMULUS and DESIGN based on the

BUILD Modeler also use the Boundary Representation scheme.

GEOMED, UNISCAD, CADD, COMPAC, EUCLID, GLIDE, MEDUSA and

PROREN-2 are some of the other systems that use the Boundary

Representation [3,57]. The main advantage of Boundary Represen

tation is thau it is best suitable for display of objects.

Display of surfaces have been studied for a very long time in

computer graphics and many algorithms like hidden portion removal

and shading are well developed. Current research activity in

28

the area of geometric modeling may increase the importance of

the types of representations that are peculiar to solid modeling

like the CSG and Octtree representation, but as long as display

of object is necessary Boundary Representation will remain as

an important solid representation scheme.

2.3.4 Cell Decompositions

In this approach, a solid object is represented by dividing

or decomposing its volume into smaller volumes or cells which

are mutually contiguous and do not interpenetrate. The cell

shape is not necessarily cuboid, nor are the cells all neces

sarily identical in shape. For example, a rectilinear polyhedron

can be triangulated by decomposing it into a number of tetrahedra

which are either disjoint or are touching along a common face,

edge or vertex. Curved polyhedra can be similarly be decomposed

into curved tetrahedra. The domain of the scheme depends on

the type of cells that are available. Validity of the representa

tion is not easy to check. The representation is unambiguous.

In general, cell decomposition produces an approximate

representation of an object, since, some cells will straddle

the object boundary, so that they are partly in and partly out

of the object. Representing the object by all cells (those

entirely in, those entirely out, and those partially in the object

volume) will therefore include some 'empty space' in the descrip

tion. Such an approximate representation is often troublesome,

because it can change the 'topology' of the object. Thus, a

small hole or void in the object may not be included in the

29

cellular model, if it lies entirely within one of the ceils -

it will be replaced by the cell enclosing it. We can obviate

many of the problems associated with these approximation by

allowing the cell shape and size to vary, so that it conforms

to the object boundary.

Cell decompositions of solid objects are useful for

performing finite element analysis. Spatial occupancy enumeration

and Oct-tree representations are two particular types of cell

decomposition scheme [35].

2.3-^.1 Spatial Occupancy Enumeration

The portion of the three dimensional space that is of

interest to the user is divided uniformly into a number of small

cubes, called Voxels, of same size and faces parallel to the

coordinate planes. An object can then be specified by enumerating

the voxels that constitutes it. The scheme is unambiguous and

unique but the domain is restrictd to a subset of the set of

rectilinear polyhedra. The scheme is very verbose, but some

improvements are possible by choosing voxels that suit the

particular application area at hand. Another variation of the

scheme is to choose voxels that are of varying size.

2.3-4.2 Oct-tree Representation Scheme

Another solid modeling scheme which is becoming popular

in recent years is Octtree. This scheme is based on a hierarchy

of different cell sizes. The first level contains the largest

cells, and at the second level these cells may be sub-divided

30

into smaller cells. At each subsequent level further subdivisions

may be performed, giving rise to smaller and smaller cell sizes

and hence to higher and higher spatial resolution. Usually the

linear resolution doubles at each successive level, and always

the set of smaller cells derived from a given cell on the previous

level 'justfills' the volume of this 'parent' cell. The cells

are classified as empty, full or partial depending on whether

it is entirely outside, entirely inside or partially inside the

object to be represented. Cells which are designated as empty

or full are not sub-divided further. Cells which are designated

as partially full are sub-divided and hence taken to the next

level. The whole sub-division process can be viewed as forming

a (rooted) tree structure with the root node representing a single

enclosing cell, called the universe and the first level branch

nodes representing a sub-division into the largest cells. Some

(but usually not all) first level nodes then have branches to

second level nodes, and so on for each subsequent level in the

tree. The cells are cubes and are subdivided into eight sub-cubes

of half the linear dimensions, so this hierarchical scheme is

known as Oct-tree. These eight sub-cubes are also known as eight

octants. This recursive sub-division process continues until

a level is reached that the octants become partially filled or

empty. The accuracy of the object to be represented depends

on going to very deep level Oct-tree. Oct-tree scheme can be

used to represent any complex object shapes.

This scheme is a generalisation of the quadtree scheme

used in image processing to represent two dimensional areas.

31

Quadtrees in turn are a generalisation of binary trees used

extensively in computer science. Since the cubes are of varying

size, less number of cubes are sufficient to approximate an object

and hence Oct-tree is more space efficient than spatial occupancy

enumeration. The computation of integral properties of an object

represented by an Octtree is easy because the cubes are quasidis-

joint (i.e., they are disjoint or just touch along a face).

Because, of the enormous number of cubes required to appro

ximate objects, it is difficult for a human user to directly

specify objects in terms of their Oct-tree representation. So,

in geometric modeling systems based on Oct-tree representation,

some convenient representation for specifying objects and a

conversion algorithm to convert from the input representation

to Oct-tree is to be provided. Validity of an Oct-tree represen

tation is easy to check. Since Oct-trees are usually created

by programs, validity is guaranteed. The Oct-tree representation

is unambigous. Any complex object shape can be approximated

by Oct-trees by going to very deep levels. One of the special

advantages of this scheme is the possibility to work with

variable precision. In interactive sessions when quick response

is important we can work with a few high levels of the Oct-trees

giving a coarse approximation of the object. One of the most

important factors to be taken care of in Oct-tree method is that

of an efficient storage scheme. It is not advisable to store

the explicit tree structure as in that case pointers will occupy

a lot more space than useful data. Tree codes and leaf codes

schemes are two main approaches for compact storage and both

32

are based on similar techniques used for quadtrees [78].

Algorithms for performing boolean operations are very

simple in Oct-tree representation. The two objects on which

the operation is to be performed are first stored in the same

universal cube, if they are not already so, and then trees corres

ponding to these objects are simultaneously traversed. At any

of the leaf nodes of the trees the boolean operations are tivial

to perform and the result of such operations are used to create

a new tree. The nodes of this tree are merged together whenever

possible, and the resulting tree represents the object which

results from the operation.

Even though quadtrees were being used in image processing

for quite some time, their generalisation to Oct-trees and its

application to modeling of solid objects is relatively of recent

origin. It was first suggested by Hunter in 1978 [29]. Oct-trees

were also studied independently by several authors around this

time [30, 45J. Many algorithms for geometric transformations,

boolean operations and display were developed and some experi

mental systems based on Oct-tree representation were built

[16,29,79]. But commercial systems based on this scheme are

not available. Huge amount of storage required to represent

objects and slowness of some of the algorithms for object manipu

lations are the probable reasons for the lack of availability

of such systems. In many algorithms that operate on Oct-trees,

there are some operations that can be done in parallel on all

eight octants of a cube. This factor has encouraged researchers

33

to build special purpose hardware to perform operations on

Oct-trees in parallel. When this type of hardware becomes widely

available, Oct-tree representation will be more popular and

probably have an edge over other forms of object representations.

2.3.5 Sweep Representations

When an object moves in space, it sweeps out a volume

and this resulting solid can be represented by the object which

moves, and its trajectory. Two particular instances of this

general scheme are well known, viz., translational and rotational

sweeping. In translational sweeping, we take a subset of the

two dimensional space and moves it in a direction perpendicular

to the plane, of this object. The resulting object can easily

be represented by the boundary of the planar set being translated

and the distance through which it is moved. Rotational sweeping

is similar to translational sweeping, but instead of translatory

motion, the planar object is rotated about a fixed axis to produce

a solid object. The domains of translational and rotational

sweepings are limited respectively to objects having translational

and rotational symmetry. The object generated by the sweep

operation is valid and unambigous, if the object being swept

(are respectively valid and unambiguous. The representation is

not always unique.

Instead of planar objects, solids also can be used in

the sweeping operation. The ability to compute the volume swept

by a solid object is of great use in several practical applica

tions. One example is dynamic interference checking where it

34

is required to find out whether a solid object can move along

a given path without colliding with its surrounding objects.

It can also be used to check the correctness of cutter path

movements in a part program to produce a desired object from •

a given workpiece. The general sweeping technique is not

mathematically well understood and algorithms for computing

properties of solids represented by this method are not available.

2.4 HUMAN - COMPUTER INTERFACES

In the previous section, we have seen various schemes

for representing solid objects. Whatever be the representation

chosen, facilities should be given to the user to conveniently

create objects inside the system and to examine the shape of

objects that are already created. Some times it may be necessary

to have extra representation forms whose sole purpose is to serve

as convenient user interfaces. Such representations are called

volatile representations. The input created by the user in a

volatile representation may not be stored in that representation,

but will be converted to the main representation of the system

which is also called working representation. Similarly, when

the working representation is not the boundary representation,

the system may perform a boundary evaluation for the purpose

of display generation and the resulting boundary representation

may not be stored permanently. In this section, we are discussing

some of the commonly used input and output techniques in geometric

modeling systems.

35

Input techniques

The simplest way to provide the input is to give a sequence

of characters. This sequence of characters may either be typed

in from a terminal, or be specified by a sequence of menu

selections. This character sequence may contain only commands

to create geometric objects, or it may be imbedded in a

programming language. In the former case the user need not be

a trained programmer, whereas the later case a user with the

knowledge of the language in which the commands are imbedded

will be able to use the full power of that language to create

complex objects.

Editing facilities must be provided when the user wants

to make minor modifications on an existing object, otherwise

it will be very inconvenient to respecify the modified object

from the scratch. Also the user should be able to save on the

backup store the objects created in one interactive session.

He should later on be able to read this object definition and

use it directly or edit it to make any desired changes. It is

also good if facilities are available to create a library of

frequently used objects. Another important facility that can

be provided is the ability to convert the existing manual

representations of solids to machine representations. Drawings

which are used as the storage medium of geometric information

in manual systems can easily be read into the system by means

of digitizers. But such drawings are usually ambiguous and

algorithms to convert them to solid representations need advice

36

from human uses to create the desired object. A closely related

problem is that of converting a wireframe representation of an

object to a solid representation of the same object. In a

wireframe representation an object is represented by the set

of its edges and hence can be ambiguous [56]. Many existing

drafting packages use this type of representation and hence

it is profitable to have an algorithm to convert from wireframe

to solid representation. Algorithms are available for solving

the two conversion problems mentioned above [43?75].'

For users who are familiar with manual techniques of

specifying solid objects, facilities similar to that can be

provided. One example of such a facility is the creation of

the so-called two-and-a-half dimensional objects, i.e., objects

having translational symmetry, by specifying their cross section

with drafting like graphic input techniques and then using a

translatory sweep to create the solid. The use of graphic input

devices for specifying geometric information with reference to

objects already displayed on the screen should be provided rather

than having to type in coordinate values as sequence of digits.

Here all the available techniques of interactive computer graphics

can be made use of [48].

Output techniques

Since GMS do have complete representations of solid

objects, it is possible to output models of objects automatically

so that the use can examine their shape [38]. The easiest method

37

of conveying shape in formations to human users is through display

of objects, and all GMS provide this facility. The medium on

which pictures are drawn - CRT screen or paper - is two dimen

sional and therefore solid objects are to be mapped from the

three dimensional Eucledean space to the two dimensional Eucledean

plane by a geometric projection. Specification of viewing

parameters and type of projection can be done by methods available

in computer graphics [19]

There are two types of displays possible - line drawings

and shaded pictures. In line drawings, only certain curves that

lie on the boundary of the object are drawn. In the case of

a rectilinear polyhedron these curves are the straight line edges

of the polyhedron. For solids covered by curved surfaces, such

as spheres, cylinders, cones, etc., there are two types of curves

to be drawn - boundary edges and silhouette edges. The position

of boundary edges on the object are fixed whereas the position

of silhouette edges vary with the point of observation. There

are techniques available to detect silhouette edges of quadratic

surfaces [74] .

The other type of display, namely, shaded pictures, is suitable

for raster scan terminals whose screen is made up of a matrix

of pixels. For generating a shaded display, we have to compute

the set of pixels that constitute the boundary of the object

being displayed and the intensity with which these pixels are

to be displayed. The first of these two operations is done by

38

scan conversion algorithms, the second by shading algorithms,

and these algorithms are discussed in standard books on Inter

active Computer Graphics [24,19,48].

2.5 APPLICATION AREAS

Computer models of solid objects have many useful

applications. One of the common applications is designing an

object having a desired shape. If the required shape can be

characterised mathematically, then probably some conventional

surface fitting methods may be used to automatically create the

shape. But, there are a number of practical applications where

the desired properties are based on aesthctical cnsiderations

and hence cannot be directly mathematically formulated. In such

situations the designer creates a shape, examines it by displaying

on the CRT, makes suitable modifications and repeats the process

until he is satisfied, with the output. So, the display of an

object from its computer model itself is a useful application

of the model.

In mechanical engineering design, complex machineries

are designed, first by designing the components separately and

then assembling these components together. One of the design

problems to be solved in the assembly process is to check whether

the components interfere each other. This is known as static

interference checking and can easily be perfomed in a geometric

modeling system in which boolean operations on solid objects

can be performed. For this we need only computer intersection

39

of pairs of components and check whether the resulting objects

are null or not. Algorithms for checking whether an object is

null or not when it is represented by a CSG scheme are available

[68]. In the case of other schemes null object detection is

a trivial computation. Another problem that is closely related

to that of static interference checking is the dynamic inter

ference checking. Here, we have an object, a path along which

it is to move, a set of objects in the surrounding and the problem

is to decide whether the proposed motion of the object is

collision free or not. If we are able to compute the volume

swept by the moving object, then the dynamic interference chekcing

is reduced to static interference checking.

The facilities described above - graphics and interference

checking - are available in almost all geometric modeling systems.

There are a number of advanced features that are desirable for

a GMS to possess like automatic manufacturing, finite element

mesh generation, assembly planning and so on. Currently available

commercial geometric modeling systems may support one of these

advanced features, but it will require considerable research

effort before they can be implemented efficiently. Some of the

research activities going on in these areas are reported in a

survey article on GMS [58].

In the area of Numerical Control (NC) machines, GMS can

provide program verification support by taking as input, an NC

program, and then displaying the object that will be generated

if this program were used on an actual NC machine. In addition

40

to such visual aids, fully automated NC program verification

systems were also studied. In automatic systems, there are mainly

two types of checkings are done. First of all, for each tool

motion, invoked by an NC command, the system verifies whether

it is feasible. Other than certain technical aspects such as

directional admissibility, spatial accessibility and so on,

dynamic interference checking is perfomed to make sure that the

tool does not collide with the surrounding objects. The volume

swept by the moving tool is then subtrated from the workpiece

to get the object that results from the machining operations.

This object is then compared with the target object by a same

object detection algorithm to check the success of the entire

process of machining. Automatic generation of NC program - is

also being attempted in the research laboratories.

Finite element method for structural analysis, requires

the object under study to be decomposed into a number of small

components of simple shapes like cubes or tetrahedra similar

to cell decomposition scheme used in GMS. Algorithms for automa

tically generating such triangulations from their Boundary

representations are available. Similar techniques for Oct-tree

and CSG representations are being studied.

Because of the availability of unambigous solid represen

tation, GMS are finding applications in a number of diverse areas.

In robotics, geometric modelers are being used to solve such

problems as that of finding collision free path for the movement

of robot arms. Even though integrated circuits (IC) are

41

essentially two dimensional structures, some properties of

circuits like capacitance can be accurately determined only from

a three dimensional model and at IBM, solid modeling techniques

are being used in IC design [36].

Inspite of their inherent limitation that solid objects

cannot be unambigously represented, existing commercial wireframe

systems provide support to some important applications like

numerical control machining. In such systems solid modelers

can act as very good frontends. In this scheme, the user can

make use of all the powerful facilities of solid modeling systems

to create and modify objects. The system then converts them

to wireframe representation and uses the existing algorithms

for wireframe objects to do the application processing. Such

systems will be used in practice until application algorithms

for solid modelers are fully developed.

2.6 GEOMETRIC MODELING SYSTEMS

In this section, we describe some of the important

geometric modeling systems developed so far. Our aim is not

to give an exhaustive list of all systems developed so far, but

we are interested in describing only those systems which

introduced major innovations and which are influential in the

development of many other systems.

We first describe the BUILD group of Geometric Modelers

whose main characteristic is the use of Boundary Representation

in defining solid objects. This group of systems originated

42

with BUILD-1, a small system developed by Braid I.C. as a part

of his Ph.D thesis work at the University of Cambridge, U.K.

in the early seventies [9]. BUILD-1 was followed by the

development of bigger systems namely BUILD-2, which was a group

effort led by Braid, but still conducted in the academic environ

ment [11]. This was an experimental system for investigating

the techniques and algorithms for geometric modeling. Even though

it was based on Boundary Representation, there were six standard

shapes that user could make use of-cube, wedge, tetrahedron,

cylinder, cylindrical segment and fillet. For building up complex

shapes, not only boolean operations but operators for local

modifications like tweaking, fillets, chamfers and draft angles

were provided. The topological structure of the boundary of

solid objects were stored in Winged-edge polyhedron [4] structure

introduced by Baumgart. In this scheme the set of edges of the

object are stored along with their adjacency information -

pointers to faces and vertices adjacent to the edge. BUILD-2

also used B-spline surface patches for representing curved

surfaces and B-spline curves for approximating curves of intersec

tion of these patches with plane surfaces. Boolean operation

in the system could not handle objects with two intersecting

.B-spline surfaces. Being an experimental system its user

interface provided only limited capabilities. One of the

important facility provided in BUILD-2 was automatic dimensioning

and tolerening analysis [27,28]. Two commercial geometric

modeling systems were developed based on BUILD system. They

are the Design developed by Manufacturing Data Systems Inc. (MDSI)

and the ROMULUS developed by Shape Data Ltd. In addition to

43

the facilities available in the BUILD system, these two systems

provided very good user interfaces also. They help users in

visualising shape of. solid objects by providing continuous

rotation of wireframe display of objects. This is implemented

by the hardware of the display processor and is fast enough for

user interaction unlike the software implemented hidden-line

and hidden-surface elimination procedures. Both of them were

incorporated in existing integrated computer aided engineering

systems. More details of these system can be had from [26].

A great deal of research and development work in geometric

modeling was conducted in the Production Automation Project at

the University of Rochester, U.S.A. One of the important contri

butions made by the Rochester group was the building up of a

firm mathematical foundation of solid modeling. They developed

in a rigorous fashion an approach to mathematical modeling of

solid objects [52]. The introduction of the concept of set

membership classification for the boundary evaluation of objects

defined by a CSG scheme is also important [69]. Based on these

mathematical foundations, a small but robust modeler, PADL-1,

was designed and implemented [50]. PADL-1 used CSG representation

where primitives allowed were only rectangular blocks and

cylinders whose axes were parallel to coordinate axes. One of

the facilities provided in PADL-1 which is of practical importance

is the specification of tolerencing and dimension information.

This system was developed during 1975-77 by a team of researchers

in the University. As a part of making available this new

4 4

technique widely to industrial users, a bigger project, PADL-2,

was started in 1978 [11,57]. This was sponsored by several

industrial organisations and a U.S. government agency. The aim

of this project was to build a set of procedures that will form

the core of several geometric modelers to be built from it by

interested users and software firms. The geometric coverage

was increased by allowing primitives like block, cylinder, sphere

and cone and also permiting any rigid body transformations to

be performed on them. Specification of dimension and tolerencing

information was not implemented in this system. To demonstrate

the utility of the core routines, a sample modeler, P2/mm, was

developed based on these core procedures [12 J. This system used

Boundary Representation as an additional representation. Boundary

evaluation algorithms were developed to convert from CSG represen

tation to Boundary representation. Quick wireframe display of

objects were then possible. For hidden-line eliminated and shaded

displays, ray casting was used. Mass property computations were

also performed by Ray casting [61]. General motors, one of the

industrial sponsors of the PADL-2 project, built a solid modeler

called GMSOLID based on PADL-2. General motors were using

computer graphics techniques for a very long period in their

design activities. They already had a Corporate Graphic System

(CGS) which is a powerful wireframe system supporting many

applications. GMSOLID was incorporated into this system so that

it can make use of the existing application procedures. More

details about GMSOLID are available in [7,8]..

The systems described were mainly designed to support

45

mechanical engineering design and manufacturing activities.

There are a few geometric modeling systems that were developed

for other applications as well. The BDS and GLIDE [17,57]

developed at Carnegie-Mellon University were mainly intended

to be used for architectural design. BDS or Building Design

System was an earlier prototype of GLIDE. These systems are

based on Boundary Representation. They use Euler operations

to define the topology of the object. Boolean operations on

solids are also available. Another important feature of these

systems is the incorporation of special data base constructs

that are suitable to handle geometric objects.

IBM also has shown interest in Solid Modeling. Initially

they marketed the CADCAM system developed by Lockheed Corporation.

This system had only 2D drafting facilities. Later on they were

supplying the CATIA system from the French Aerospace Company

Dassault. CATIA had solid modeling facilities and it was inter

faced to CADCAM. Then IBM developed their own system called

Geometric Design Processor (GDP) for finding collision free path

for robot arms [76,77]. This modeler had only blocks and

polyhedral approximation to cylinder, as primitives. Later on

a user interface for this modeler was also developed called GRIN

(GRaphic INput Subsystem) [18]. Another important problem in

the area of solid modeling that was tackled by IBM researchers

is how to convert existing geometric database to solid models.

Two types of conversion algorithms were developed - one for

converting wireframe representations and another for converting

projections [43_,75]. Since both of these representations are

46

ambigous, conversion algorithms take advice from the human users

to construct solid models from these representations.

Attempts have been made to use Oct-trees as the main

representation scheme for solid modelers. It was first proposed

by Jackins and Tanimoto [30] and several others. Many of the

geometric algorithms for processing Oct-tree encoded objects

were presented in [45]. A lot of attention is being paid

[16,79,80] to develop algorithms for processing Oct-trees.

In addition to the important developments described above,

there are a number of systems that were developed in various

countries all over the world. In Japan, at the University of

Tokyo, a modeler 'HOSAKA' was developed around 1975- This was

followed by another system called 'Geomap'. From early seventies,

work was being done in Solid Modeling at the Hokkaido University

and the modeler TIPS was developed [49]. The system has a

representation scheme based on half spaces which are intersected

to generate solids, which in turn can be combined by set union

to generate more complex objects. The type of half spaces

provided are cylindrical, spherical and bicubic. The geometric

modeler is a part of a large system for automatic design and

manufacture. Work has also been reported from University of

Tokyo on sculptured Solids [14] and Oct-tree encoded objects

[79,80]. -In the continental Europe also, a number of systems

were developed. Examples of such systems are the 'COMPAC of

the Technical University of Berlin, 'PROREN' of the University

of Rhur, 'EUCID' developed in France, 'EUKLID' developed in

47

Switzerland, GWB developed in Finland and so on [57]•

Geometric modeling systems were first developed in the

early seventies. Within a short period of ten to fifteen years,

a number of significant contributions have been made by people

who were responsible for developing these systems. Very good

survey articles are available giving more information on the

subject [3,56,57,58]. The views of various industrial users

as well as software firms confirm that there is a bright future

for solid modeling [46,70]. Within few years we will have enough

experience of using this technology in the production environment.

The experience so gained will be a valuable feedback to designers

of the system that will help them to produce still better systems.

Meanwhile, research work is going on in areas such as the

development of new representational schemes, in corporation of

sculptured surface capabilities, development of more efficient

application processing algorithms, linking of computer aided

design with computer-aided manufacture, incorporation of efficient

methods for integal properties calculations, development of better

user interfaces^ introduction of Artificial intelligence in solid

modeling, and so on. By the end of this decade or early nineties,

solid modeling will, probably be well established and become

a standard tool in industrial design and manufacturing.

i

CHAPTER 3

THE HEX-TREE APPROACH

~4

49

3.1 INTRODUCTION

Out of the several schemes evolved for computer-aided

geometric modeling of solid objects, Constructive Solid Geometry,

Boundary Representation and Oct-tree are the 3 major representa

tional techniques widely recognized. Constructive Solid Geometry

scheme uses a building-block approach whereby simple primitive

shapes are combined using boolean operators to make complex

shapes. In Boundary Representation, a solid object is represented

in terms of its boundary (enclosing surface). Oct-tree represen

tation approximates the solid object with the variably sized

spatial cubes obtained by dividing a cubic 'object space' large

enough to accommodate the object to be modeled. However, these

methods have various limitations as discussed earlier. Hence,

search for new methodological basis for solid modeling has become

essential.

As it is known, in the raster CRT graphics display

devices, the shapes are displayed by connecting discrete cells

called picture elements (Pixels) that are arranged in a two

dimensional matrix form. This shaping process can be viewed

as a 2-D constructional procedure, originating from a pixel and

growing in the X and Y coordinate directions. If this growing

process is extended in the Z coordinate direction also, it can

be culminated into a 3-D shaping procedure. This idea inspired

for the development of a new geometric modeling approach for

solid objects, by applying the pixel concept of 2-D with a

cubical cell (for 3-D). Thus, 3-D object shapes can be built

50

by constructing cubical cells on the faces (representing the

coordinate axes) of an initial cubical cell as shown in Fig.

3-1

This construction procedure can be considered as forming

a tree structure, with the root node representing the initial

cubical cell and the first level branch nodes representing 6

cubical cells on the faces of the rooted initial cubical cell.

Some (need not be all) first level nodes then have branches to

the second level nodes, and so on for each subsequent level in

the tree. Hence, this hierarchical structure is named as

HEX-TREE. In this constructional approach, solid object is

modeled by the collection of equally sized cubical cells. This

new representational method [33] is explained in this chapter.

3.2 HEX-TREE DATA STRUCTURE AND REPRESENTATIONAL DETAILS

Three-dimensional geometric modeling systems maintain

internal data structures that allow users to manipulate and

display arbitrary objects. These data structures permit implicit

or explicit definitions of the boundaries of a solid region

within a region of space. A more general representation depicts

a solid body as a three dimensional array. The array contains

information indicating the material found at every point in

space. If a large region of space contains a single material,

then many adjacent elements of the space array contained within

that region will have the same value.

(Mitral lihTflru Oiwvwsitu or soorMsi

4

/'

/

/
' • •- •

/ /
/

/ /

/
/

/

/
/

/

Fig. 3.1 Strategy for the Modeling

51

52

In the Hex-tree representational approach, any 3-D object

can be made using a single cubical cell as primitive. The number

of nodes at the n level is equal to 6n, where n varies from

zero to any finite number in this hierarchically oriented, recur

sive type data structure. The full identity of a node (i.e.

cubical cell) is represented in 6 bits of a word length, indica

ting the life entities in all six directions (i.e. the Bits 0

and 1 represent the presence of a cube in positive and negative

X-directions, Bits two and three represent positive and negative

Y-directions and Bits four and five represent positive and

negative Z-directions). Fig. 3-2 illustrates the details of

the Hex-tree representation. In this figure, the root node

corresponds to the initial cubical cell. Fig. 3-3 shows the

Bit presentation of a word.

3.2.1 Cell description

As it is mentioned, the primitive for the proposed

representational technique is a cubical cell. Fig. 3.4 shows

the cubical cell with various details. A left handed co-ordinate

system is followed in this geometric modeling system based on

Hex-tree.

3.2.2 Definitions

The different terminology suggested in this method are

explained below :

/ / i I \ \

//' \\// t\\

Fig. 3-2 Hex-tree Representation

"i w
/ / I I \ \

—QthLeve

1st Level

-2ndLevel

-3 rd Level

-Jk

1 0

-*- Positive X-direction

-*• Negative X-direction

Positive Y- direction

** Negative Y- direction

-*- Positive Z-direction

Negative Z-direction

Fig. 3.3 Bit Presentation of a WORD

4=-

J.

FACES

3

5

® © © ®

© © © ©

© © 0 ©

© © © ©
© © © rss

5 © © © (2

Fig. 3-4 Primitive cell with Origin and System Coordinates

on

Oi

56

Cell

Cell is a cubical unit entity having six faces, the

numbering of the faces are shown in Fig. 3®.

Life

A cell is said to have life in a particular direction

if and only if another cell is attached to it in that direction.

Life Sought Face

A life seeking face becomes a life sought face as soon

as one of the faces of another cell is attached to it.

Boundary Cell

A cell at the boundary of the Hex-tree is termed as the

boundary cell.

Boundarial Face

All the faces of the boundary cell except the life sought

faces are called boundarial faces.

Sleepy Face

All the faces common to two trees during the period of

boolean operations are called sleepy faces. 'S' indicates sleepy

faces in Figs. (3.6 - 3-8).

Fig. 3® shows an example of a Hex-tree. For the boundary

cell 9, Faces 1, 3, 4, 5, 6 are boundarial faces and face 2 is

a life sought face.

3.3 BOOLEAN OPERATIONS ON HEX-TREE

Almost all geometric modeling systems support boolean

operations (Union, difference and intersection) on solid objects.

/

5

5 4 3 2 1 0

0 0 0 10 0
i i i i i

5 4 3 2 1 0

0 0 1 10 0
_i i.i,]_i I

5 4 3 2 10

0 0 110 1
j l I I I L

"N

0 0 110
I -~s

5 4 3 2 1 0

c 0
I

0
i

0
l

0
i

1
i O

•9 NODES

5 4 3 2 1 0

< 1 ?1 1
1

0 0^
1 \ J

5

/
4 3

/

2 1 0

7(0 0 1
1 1

0
I 1!)

5 4 3 2

/
1 0

< 1 ??
0
i i o

5 4 3 2 1 0

0 0 0 0 1 0
_J J I L_J L J

Fig. 3.5 An example of a Hex-tree

57

58

Boundary representations (face/edge/vertex structures) for solids

defined through boolean operations are generated in these

modelers by using so-called boundary evaluation and boundary

merging procedures. These are the most complex and delicate

software modules in a solid modeler [59]. The systems developed

so far seem to have various problems [81].

i) The algorithms for boolean shape operations are very

complicated and the systems are very large. This

could cause reliability and maintenance problems

when they are brought•into practical use.

ii) Processing speed is not fast enough.

The boolean operations algorithms for the Hex-tree method

does not require boundary evaluation. These operations are

simple, fast and unified one, regardless of the surface types

(i.e. planar or curved).

In order to perform boolean operations on Hex-tree

approach consider two trees Hex-tree 'X' and Hex-tree 'Y' (repre

senting object 'X' and object 'Y®. Let Hex-tree 'Z1 (represent

ing the object 'Z© be the resultant tree obtained after merging

these two trees. While scanning the two trees for boolean opera

tions, during the initial scan the sleepy faces are identified,

and depending on the operations to be performed, the face

identity is modified to 1 or 0. UNION, DIFFERENCE and INTER

SECTION processes are shown in Figs. (3.6 - 3.8). Various steps

/ / ® ©1
1

/& /z

r
B ! 0 0 0 0 11

v 1 I I I I

C '

Object X

5 4 3 2 10

0 0 0 0 0 1
-J I I I I l_

5 A 3 2 1 0

©

5 A 3 2 1 0

0 0 0 0 1 0
_! I I I ! I

Hex - tree X

S j/
/

®D /

Object Y

5 4 3 2 1 0

°(0 0
i i

0
i

0
i

0,)

5 4 3 2

!
/

1 0
f ' *n

H 0 0
i i

0
i

0 10)
Hex -tree Y

5 A 3 2 1 0

(0 0 0 0 0 1 I
V. i i i i i i J

/
/

/
>

5 4 3 2 1 0

c 0 0 0 0 1T)
i i i i i i y

/

/
/

5 A 3 2 1 0

r
\

V

0 0 0 S 1 0
• 1 1 1 1 1 1 >

Hex-tree X

after first scan

Fig. 3.6 UNION Operation

5 A 3 2 1 0

< 0 0 S 0 0 1)
/

/

/

5 4 3 2 * 0

< 0 0 0 0 10)
i i i i i i J

Hex-tree Y

after first scan

/WW
/ / / / /

\

/ A / B ©c /
Object Z

5 4 3 2 10

Al 0 0 0 0 0 1
V 1 I 1 1 I 1)

/
5 4 3 2 10

b(0 0 0 0 11)
/

r

5 4 3 2 10
f

c i 0 0 0 110
1 1 1. 1 1 1

)
/

/
5 4 3 2 10

D(0 0 10 0 1
V I I i 1 I I

\

V

5 4 :. 2 1 0

E 0
1

0 0 C 1 0

Hex-tree Z

after UNION operation

\
\

\
N

iN\
\\

\

\
\

\\

>
\

\
\

\
u

\
\

C
O

\

1*
\

N
l

u3
"

ouITou

o

(~
\

ot
—

o
-

(N
o

-

e
n

o
-

+
9

o
-

i
n

o
-

o*
—

n*•?

t
o

o
-

oo
-
i

oo
-
t

O
)

o
IT

—
~

-
o

-

r
s

o
-

r*s
o

-

M
o

-

in
o

-

a

r^
\

o
T

—
—

—
o

-

r
s
i

o
-

r
o

o
-

<
t

o
-

i
n

°
i

ot
—

'

o
-

o
-

o

L
JC

Q

®
~

®
o

,
—

—

1
—

•

C
st

o
-

P
I

o
-

v
r

o
-

in
o

-

C
Q

r
^

\

o
o

-

t
-

T
—

"*

C
N

O
-

f
t

o
-

<
:

o
-

in
o

-

iu

o
,

.
—

r
—

C
N

o
-

m
o

-

-
•
-

o
-

L
D

o
-

C
Q

o
o

-

1
—

•
-
-

J
N

O
-

0
0

o
-

s
r

o
-

L
0

O
-

®
JDo

-

1
0

o
-

oo

J
s

•

o

®
s
r

0
)

XX

®
®

o
o

-

*
-

r
-

-

C
N

T
—

m
O

-

v
»

o
-

tn
o

-

O

IU
M

<
_)

*
u

].2

'
u.

a

*
La>

^"~
®

o
O

-

r
-

>

fM
o

—

K
cn

L
O

-

<
J

O
-

I
D

o
-

Q

/
\

o
,
—

-
o

-

(N
o

-

f
l

r
-
-
.

-
J

o
-

in
o

-

a

r
~

\
o

O
-

«
—

r
-
-

f
\|

O
-

m
O

-

•<?
o

-

IT
)

°
-

V
)

L
'J

6
0

;<
d

O
j

L
_

C
D

Ifl
C

)
i—

1
—

O
.
—

1
V

—

i.U

(
)

I
•

I

c
I
d

I.'..

|JL

Ot
o

r
)

o
o

-

'
-

r
-

-

C
^

l
o

-

r
o

o
-

v
T

o
-

K
)

o
-

>
<

(Q

-

\
\

\
\

"
\

°
\

X
)

O

®
®

o
o

-

—
o

-

C
N

I
o

-

l»
)

-
-

s
j

o
-

ID
O

•

z
®

oi
-

c
U

O
111

—

n
j

<\>
I
-

u
.

-
,

O

r
®

o
t
o

-

—
o

-

r
s

o
-

m
i
n

-

-
j

o
-

i
n

o
-

®
J

®
®

o
-

"

—
o

-

X
-i

o
-

e
n

o
-

N
j

o
-

IT
)

o
-

\

\

f~
\

o
o

-

-
1

0
-

r
x

i
o

-

m
o

-

•vT
o

-

If)
o

-

v
)

L
Uoooo

-/

m

Ca
>

-
uin

O
r

L
.

u
.

1
.
.
-

XI

L
.

\

r
n

<
r

i
n

\
\

o

f
>

«
w

o
O

-1
\

\
>

•
-

o
-
^
-

-
-

®
a

u
Q

j

\
\

o
r
x

j
o

-
r
s
j

o
-

u
.

\
\

H
i

nO

r
n

o
-

o
-

r
n

o
-

o
-

*
•*

\
®

)
X

\
I
D

o
-

i
n

o
-

X

\
\

\
XK

\\
\

oX
)

o

r
®

o
.
—

—
o

-

(
N

o
-

r
o

o
-

•T
o

-

m
o

-

<
t

U
J

ooo
-

oH
i

f
\

o
-

L
O

-

C
O

"

o
-

o
-

o
-

\
)

c_>

co-
wd01a
.

ca
o

x
ui/i

Q
J

in

2o1
—

X
I

o
<L>

<b
Ii

1
'X

.
*

>
to

a
n

:

L
d

1
-

C
O

mD
l

6
1

62

for the boolean operations are given here through a typical

example.

1. Form the Hex-tree 'X' and Hex-tree 'V representing the two

objects 'X' and 'Y®

2. Select the nodes of Hex-tree 'X' involved in the boolean

operations.

3. Change the identity of these nodes as explained in Figs.

(3-6,3® & 3.8) depending on the boolean operations to be

performed.

® Repeat steps 2 and 3 for the Hex-tree 'Y®

5. Form the Hex-tree 'Z' representing the resultant object 'Z'

as shown in Figs. (3.6, 3® & 3.8).

Results of boolean operations of two Hex-tree encoded

objects (object 'X' and object 'Y® are given in Figs. (3.9,

3.10 & 3.11). .5.:

3.4 DEVELOPMENT OF CURVED SURFACES

In shape designing process, it is required to represent

wide range of objects with planar surface to curved surface.

Most of the computer aided geometric modeling systems currently

available consider these shapes independently due to their under

lying theory and practice. In a computer aided design environ

ment, this is definitely not a desirable feature, because

63

Fig. 3-9 Two views of UNION operation on two Hex-tree
encoded objects

Fig. 3.10 DIFFERENCE operation on two Hex-tree
encoded objects

Fig.3.11 INTERSECTION operation on two Hex-tree
encoded objects

BA

65

practical engineering objects have wide range of shapes. Also

the important matters in modeling shapes are, not only producing

fine and precise models quickly but also flexible representations

of the shape for various modifications and useful techniques

of changing the shapes. Attempts are already initiated for

developing unified shape modeling techniques to design objects

having polyhedral shape to curved surfaces [14,44,31]. The

Hex-tree representational technique is a unified approach for

modeling objects having planesurface to curved surface.

The curve-surfaced objects are modeled by growing the

primitive along the six faces. If the approximate object shape

is not obtained, repeat the modeling by changing the size of

the primitive. The process of changing the primitive size and

checking whether the target object shape is reached or not

continue, until a satisfactory result is arrived. The smoothness

of the curved surface depends on the size of the primitive

cubical cell. An advantage is that it requires only a single

set of manipulation and analysis algorithm for all types of

curved shapes. Figs. (3.12 - 3.17)show views of different curved

objects.

(Note: Figs. (3.12, 3-14 & 3-16) show the results on large

cubical cell basis. The true representation of curved

surfaces can be achieved by taking smaller cells).

3.5 DISPLAY TECHNIQUE FOR HEX-TREE REPRESENTED OBJECTS

One may attempt to develop a number of representational

66

Fig.3.12 A single layer curved object with 25 cells

Fig.3.13 A single layer curved object with 121 cells

67

Fig. 3.14 A single layer curved object with 25 cell;

Fig.3.15 A single layer curved object with 221 cells

69

techniques for an object, but the measure of undestanding

increases considerably with a pictorial display. All geometric

modeling systems necessarily provide display facility as this

is the easiest method of conveying shape information to the user.

Hence, through display, not only the designer gets an opportunity

to examine the shape of the modeled object, but also he can

modify it if necessary, before finalising the design. Since

display operation is done frequently, a quick display function

is desirable.

Popular solid modeling techniques are not efficient in

display operation. In CSG and B-Rep schemes, it is necessary

to determine the boundary of the object in a situation when one

primitive penetrate on another. So, much computation is required

for finding out whether a specific section is to be included

in the final object or not, before displaying it. In order to

get a realistic line-drawings display of an Oct-tree encoded

object, it is required to evaluate the boundary of the Oct-tree

as a set of polygons [51] and then apply hidden line elimination

algorithms.

In the Hex-tree method, since the whole chain of represen

tation and display is on face basis, the question of penetration

of primitives does not arise. Hence, boundary evaluation as

required in Constructive Solid Geometry and Boundary Represen

tation Schemes are not needed. Since the method is suitable

for line-drawings display, the display operation problems of

Oct-tree are also not there. Display process of this approach

Start

Read all nodes
of an Hex-tree

Draw a ci be .

in the pos live

X - direct ion

Draw a cube

in the nc •gative
X-• direction

Draw a cube

in the positive
Y- direction

Draw a cube

in the negative

Y- direction

Draw a cube

in the positive

Z - direction

Draw a cube

in Ihe negative
Z- direct ion

Fig. 3.10 Flow diagram for display operation

70

71

is given in Fig. 3-18. Searching is done by logic operations.

Because of these reasons, Hex-tree displaying is faster and more

efficient.

3.6 CONCLUSIONS

A new constructional solid modeling scheme known as

Hex-tree has been proposed for the representation and display

of any type of 3-D objects, using a single cubical cell as

primitive. It provides several advantages over existing popular

representational techniques. Using a common hierarchical data

structure, any 3-D objects of arbitrary complexity can be

represented to a specified precision of the primitive size.

Efficient algorithms have been developed for boolean and display

operations. Due to Bit level approach, the memory requirements

are less. Because of the face basis approach and efficient

searching algorithms for tree traversal, the suggested technique

is computationally faster and efficient.

CHAPTER 4

DEVELOPMENT OF HIDDEN-LINE ELIMINATION METHODS

73

4.1 INTRODUCTION

Hidden-line removal is one of the challenging problems

in Computer Graphics. This is the problem of determining which

edges of a solid object are visible (and which invisible) from

a given vantage point. The hidden-line problem is not as easy

as it might at first seem. A reason for this is the variety

of possible complex three-dimensional solid shapes that it has

to cope with.

Robert [60] developed the first program capable of

removing hidden lines in 1963- The algorithm required an inor

dinate amount of computer time even for relatively simple

objects. The same has been found characteristic of a number of

other algorithms in computer graphics. After Robert's work,

the race to develop a fast hidden-line (removal) algorithm was

on. In 1966, Ruth Weiss [74] developed the program called

BEVISION which consists of a Fortran Subroutine package for

generating orthographic projections of both planar faced and

quadric-surfaced objects. Although capable of producing

impressive pictures, the program was based essentially on a point

by point testing approach and required long computation times.

Weiss's work was followed by a series of papers describing

hidden-line algorithms limited to planar-faced bodies. Appel

introduced the concept of quantitative invisibility, which

permitted the information about the invisibility of a vertex

or a line segment to be transferred to adjacent vertices and

line segments [1]. This approach was also taken by Loutrel [42],

74

Galimberty and Montanari [22]. Loutrel paper was based on the

concept that once the invisibility (or visibility) of one vertex

was determined, maximum use of this information should be made

in determining the invisibility (or visibility) of neighbouring

vertices and edges. In effect, the problem, would thus be solved

by a process that propagated from vertex to vertex until all

vertices and edges had their visibility established. During

these periods algorithms capable of solving hidden-line problem

of surfaces bounded by quadric surfaces like spherical,

ellipsoidal, cylindrical, paraboloidal etc. were also developed.

Simultaneously with the foregoing developments, work on

hidden line elimination was also going forward following an

approach that concentrated more on the 2-D projections than on

the 3-D object from which it was derived. Notable among the

latter was the algorithms of Warnock[72], Watkins [73] and

Newell, et al. [47]. Unlike Appel-Loutrel- algorithms which

are vector (line-drawing) oriented, these algorithms are raster

oriented. Bouknight and Kelley [6] presented an algorithm

producing shaded pictures with shadows and movable light sources

Newell's algorithm is well suited for generating half-tone (and

colour) images on a raster type display. Gouraud [23] had shown

how one could smooth the surfaces represented by multiple planar

sections. An important algorithm closely related to the hidden—

line problem is that of clipping. Sproull and Sutherland [63],

Sutherland and Hodgman [66] brought clipping algorithms appli

cable to both 2-D and 3-D displays. These methods provide a

75

good basis for subsequent hidden-line computation.

Kubert, Szabo and Giulieri in their paper describe a

perspective transformation by which a surface S - F(X,Y) is

projected on to a plane from an arbitrary observation point and

then plotted with a digital plotter. He adopted the technique

of eliminating hidden lines in perspective projections of 3-D

surfaces described as functions (single or multivalued) of two

variables.

It seems that most of the work on hidden line elimination

took place during the seventies and early eighties. To the

author's knowledge, Stuart Sechrest and Donald P. Greenberg [64].

Yoshio Ohno [82], John R. Rankin [32] are a few researchers whose

papers are seen in this area in the middle of eighties and

afterwords.

A survey paper [67] gives a comprehensive details

regarding various approches on hidden line and hidden surface

elimination. Hidden surface problem is very similar in nature

as Hidden line elimination problem, except the fact that one

must include or omit entire or partial surface areas rather than

just the lines or part of the lines representing edges. Some

methods are heavily dependent on memory and involves less

computation. Other methods involve more processing time and have

less memory demands. Most algorithms however apply only to

special types of three dimensional objects and they apply to

specific kinds of graphics equipment [32]. Hidden line and

hidden surface algorithms have been classified as object space

Fig. 3.16 A double layer curved object having
50 cells

Fig. 3.17 A double layer curved object with 242 cells

68

76

methods or image space methods or a combination method.

Generally hidden-surface algorithms use raster image-space

methods while most hidden line algorithms use object space

methods.

Object space algorithms are implemented in the physical

co-ordinate system in which the objects are described. Very

precise, generally to the precision of the machine can be

obtained. These results can be satisfactorily enlarged many

times. These algorithms are particularly useful in precise

engineering applications. Image space algorithms are implemented

in the screen co-ordinate system in which the objects are viewed.

Calculations are performed only to the precision of the screen

representation.

Some of the principles [67] based on which hidden line

elimination methods can be developed, depends on the modeling

techniques, equipment availability, application requirement etc.,

are :

1. Use of plane equations

2. Minimax tests,

3. Surrounder test,

4. Edge intersection tests,

5. Segment comparisons.

These principles can be applied individually or in

combination depends on the modeling environment. Sorting

principles also plays an important role in the development of

77

the algorithms.

In short, it appears that even though there are many

different hidden-line algorithms available, none of these is

the best. Some are application oriented and others need

improvements and modifications before applying them for a

particular application. In this chapter, two hidden-line

algorithms, developed for the Hex-tree based solid models are

explained [62].

4.2 DEVELOPMENT OF HIDDEN-LINE ALGORITHM FOR SIMPLE SHAPES

In this algorithm, when a line of the object is tested

for visibility, it is assumed that the line is completely visible

or invisible. Visibility checking is made under the assumption

that if a face of an object is found visible, then all the edges

which form this face are considered as visible. Due to this

reason, the method is found satisfactory in modeling of simple

object shapes only. Provisions are also incorporated to get

an overall shape of the object by showing the invisible edges

as 'dashed lines', if desired.

Since the primitive in the Hex-tree technique is a cube,

the functional representation of the surface in a simple linear

polynomial in x,y and z is f(x,y,z) = Ax + By + Cz - D. This

also enables us to divide space into two parts. For all points

(x,y,z) such that f(x,y,z) = 0 lie on the surface, those with

f(x,y,z) •> 0 lie in one part and those with f(x,y,z)<^0 lie in

the other. If it is required to find out whether two points

78

lie on the same side of a surface or not, all that is to be done

is to check whether the sign of the above equation in these two

points are same. If these have opposite signs, then the two

points lie in opposite sides of the surface. In such a case

the line joining these two points intersect the surface.

The perspective projection of any point can be calculated

as follows. Assume that the origin is the eye and the axis of

cone of vision is the positive z axis. Let the perspective plane

is kept perpendicular to the cone of vision at a distance d

(known as PD) from the eye as shown in Fig. 4.1. To find out

the coordinates of P' = (x' , y' , d) , the projection point of

P = (x,y,z) in the z = d plane, the principle of similar tri

angles can be used. Considering, the y-coordinates, we can

write

y'/d = y/z

i.e. y' - y(d/z) ... (4.2.1)

Similarly,

x' = x (d/z) ... (4.2.2)

hence, P' = (x(d/z), y(d/z), d).

Equations 4.2.1 and 4.2.2 can be used to find out the perspective

projections of points.

These principles are used in this algorithm to check

whether a face of the object is visible .or not when an observer

at some general point is looking towards the origin of the object

y'

p

4

Eye position-

Fin 4.1 The principle for the calculation of
perceptive projection of any point

79

80

and also to calculate the perspective projection. If the parti

cular face under visibility test is visible, then the functional

equations in (x, y, z) coordinates of the origin and the observer

point give opposite signs. A stepwise description of this Hidden

line elimination method is given below :

1. Select a face of the object modeled using Hex-tree technique.

2. Take two adjacent sides of this face which give three non-

collinear points, as one point is common.

3. Get the (x,y,z) co-ordinate of these points

4. Calculate A, B, C, D values of the plane equation

Ax + By + Cz - D = 0 using the (x,y,z) co-ordinates of these

three points.

5. With the A, B, C, D values known, check whether the origin

of the object and any observer point line in the same side

of the plane by putting the (x,y,z) co-ordinates values of

the origin and observer point in the functional form of the

equation f(x,y,z) = Ax + By + Cz - D.

6. If the signs are opposite, then the face is visible and hence

all the sides of this face are considered as visible.

7. Put these sides of the face in a list

8. Repeat the process 1 to 7 for all the faces of the object.

9. Arrange a list of the visible edges of the object by deleting

duplications, if any

10. Draw the complete perspective picture of the object, based

on the above list

11. Form another list of invisible edges of the object from the

total list of the edges of the object

81

12. Draw the invisible edges in dashed line if the full shape

of the object is required.

4.3 DEVELOPMENT OF GENERAL HIDDEN-LINE ALGORITHM

In this general algorithm, in order to produce hidden

line picture of the Hex-tree based modeled object, each line

on the model is tested for visibility with every face. In such

a situation it is possible that part of the line may be visible

and parts invisible (behind a face). This algorithm is developed

to meet such a requirement. The method is suitable for removing

hidden lines of any complex object.

Let (x1 ', y-i ', z-, ') and (x ', y ', z ') are two end points

of a typical line L~ in 3-D space. A general point on this line

is (l-0)(x1', yi'i zi') + 0(x2'' ^2*' z2*^ where 0 is similar

to << in equation A.l. Suppose that these two points are perspec-

tively projected on to two points (x,, y,) and (x?, y?) on the

perspective plane. Thus L., is projected to the line L? in this

plane with the general point (1 - ^)(x..,y..) + /\(x„, y) where

0 is not necessarily equal to A . Let a typical face F., be

projected to an area F„ on the perspective plane, and assume

that the vertices on this projected face are

A -{<5i. r±: l-i. •i
where N is the number of vertices

thThus the i ' edge in F? has a general point

(l-u)(xi, f±) + u (x"i+1, y"i+1) where o£ u£ 1

82

where u, r\ are semilar to oC in equation A.l. In an ordinary

perspective picture every line L2 would be drawn on the screen.

If a face F^ lies between the eye and L^ then part, and perhaps

all, of L„ will be hidden. If L~, lies in the face F^, then L^

is on the surface of the face and any view of this line cannot

be obscured by that face. If this line is not an edge of the

face, a detailed examination is necesary. If F„ is not intersec

ted by L? then F^ can have no effect on the line. In order to

find out whether L„ intersect F? assume that Lp cuts the extended

ith edge of F„ at the point,

(l-u.)(x., y.) + u. (x*. ,,, y~. ,.)
11' J1 ii+l' Jl+l

If u. <0 or u. >1, then L„ intersects the ith edge at a point

outside the area F„; if 0 •< u. <C. 1 then L„ crosses the area F„

at a point on its ith edge. Since the perspective projection

of a convex face is a convex area on the perspective plane, then

the number of crossing points will be either zero (and hence

there is no intersection) or two. In this latter case we find

the two crossing points on the line L0 given by the values u .
6 H 2 B J mm

and u , u . <L u , that is the points are (1 - u .)(x., y.)
max' mm ^ max' l mm 1' Jl

+ u . (x0, yn) and (1 - u)(x.. y,) + u (x„, y0).
mm 2' J2 max 1' Jl max 2' J2

It is now necessary to discover whether the subsegment

of L„ between these two points is visible or not. This is

checked by finding the midpoint of the segment

(x ,, y .,) = (1 -u .,)(x., y,) + u .,(x„, y0), ... 4.1
mid' Jmid mid 1' Jl mid 2' J2''

where u . , = (u + u .)/2
mid max mm

A A /s. , .
Let (x, y, z) be a point on L^ that has (x . ,, y . ,) as its

83

perspective projection. The line subsegment is hidden if and
only if (£,. y, £) and any obsrver poinfc Ue ^ q
of the infinite plane containing F„.
as follows:

>pposite sides

A A\
3- ^x» y, z) can be found out

^ xmid and ymid are the perspective projection of
IX. y, z), we can write, based on Fig. 4.%
A A /s,

x x X PD
mid

mid

(z + DT

A

y x pd

A

(Z + DT)

4.2

4.3

Where PD is the distance between the observer point (eye
position) and the perspective plane, and DT =J^T^T^F.
EX, EY, EZ are the coordinates of the observer point.

A A

As (x, y, Z) lies on L for some value of 0
A
x = (1 - 0) x I + 0,
A

d-0)y1' + 0y2'
z - (l-0)Zl' + 0z2-

Substituting equation 4.4 in equation 4

Lmid

(l-0)x'1 + 0X'2 x PD

U-0)z' J + 0P"2 ~r~m

2 and 4.3 we get

4.4

[X'j + (x12 - x'1)] x PD

Lz'1 + 0 (z'2 - z'x)J + DT

Similarly,

[y1! + 0 (y'2 - y^)] x pd
ymid""" [z'x + 0 (z'2 Z'-)] + DT

Using equations 4.5 and 4.6, 0 can be written as

0 =•
xmid (z'l + DT) " x'l x PD

x -x1,) x PD x midU,2--zll)

or

yr•ymid(z'1 + DT) - y' x PD

0 " (y'2 - y'i> x PD - ymid ^,2-z'i)

84

(4.5)

(4.6)

(4.7)

This value of 0 is utilized to find out the point (x, y, z).

Now we have the point (0, 0, - DT) of the observer point in the

A A A,
negative Z-axis, and the point (x, y, z) in the line subsegment.

Using these two points and the equation f(x, y, z) = Ax + By

+ Cz - Dj the visibility of this line subsegment is tested.

Various steps involved in this algorithm are given below

1. Select an edge of the model

2. Select a face of the model

3. Check whether the edge considered in step 1 is one of the

edges of the face considered in step 2. If yes go to step

85

2, otherwise go to step 4. This checking is done at 3-D

level.

4. Find the intersection, if any, between the edge and the face

at the perspective 2-D level. Check whether the gradient

value u is >1 or<0. If yes discard the face and go to step

2. Otherwise go to step 5-

5. If u value is between 0 and 1, consider the next edge of

the face at 2-D level and do the intersection test. Let

the u values be u„. and u .
mm nidA

6. Find out x ., and ymid using equation 4.1
A A A.

7. With x and ymid, find the 3-D point (x, y, z) using

equations 4.7 and 4.4

8. Check the subsegment visibility using (0, 0, - DT) of

observer point and (x, y, z) by putting in the functional

equation for plane f(x, y, z) = Ax + B + Cz - D. If both

are having opposite signs, then the subsegment is visible.

If subsegment is visible go to step 2. If not go to step

9.

9. Adjust the visible segment arrays and the corresponding u

values. If all the faces are checked, go to 10 otherwise

go to step 2.

10. Visible edge segments are drawn at perspective 2-D level

for the edge under consideration

11. Repeat the steps 2 to 10 for other edges of the model.

86

Few results obtained using the above mentioned algorithms

are given in Figs. (4.2 - 4.7).

4.4 CONCLUSIONS

Two hidden-line removal algorithms, suitable for line-

drawings display devices, developed for the Hex-tree representa

tional technique based solid models, are presented. A face basis

visibility testing was adopted in the first algorithm whereas

a part of line segment level visibility testing was followed

in the second algorithm. The complete hidden line perspective

picture of an object viewed from various distances and/or

positions are facilitated. In case an overall shape of the

object model is desired, provisions are incorporated in the first

algorithm to perceive the invisible parts with dashed lines.

Few photographs obtained using these algorithms are also given.

Fig. U. 2 Hidden lines 'dashed'single cell with different
perspective plane distances

87

88

Fig.4.3 A Rectangular parallelepiped with hidden lines
dashed

Fig. 4.4 A Rectangular parallelepiped with hidden lines
removed

89

Fig.4.5 Single cell with hidden lines removed

Fig. 4.6 A double cell object with hidden lines removed

90

•P

Fig. 4. 7 Two objects with hidden lines removed

• i • r. t-w^i

CHAPTER 5

THREE DIMENSIONAL STRUCTURE MODEL ING-1MPLEMENTATI Of

P!

92

5-1 INTRODUCTION

Engineering components have a wide range of geometric

shapes and there are different ways to represent the geometry

of these object shapes in a computer. Even though it is neces

sary to represent solid objects having shapes from polyhedral

to curve-surfaced shapes, present day geometric modeling systems

based on popular solid modeling schemes are not been able to

achieve these requirements satisfactorily due to their various

limitations. So the search for developing new solid modeling

techniques capable for handling such complex shapes continues.

Once the representation details of the shape has been stored,

it can be used in various applications.

The basic problems behind 3-D structure modeling is the

development of a suitable data structure and display of the

represented object shape. The data structure must be versatile

enough, so that a large variety of shapes can be represented.

The display must be clear so that a realistic image of the model

can be visualised. The user should have the flexibility to view

the modeled object at any observer point in space. If the user

is interested to view the model without going for a realistic

image (by removing the hidden portion from a given vantage point)

the system should be able to present such pictures. In case

the designer wants his model to be seen by putting the hidden

lines as 'dashed lines' in order to get an idea about the overall

shape of the model, this should also be facilitated.

93

The ability to create and manipulate shapes is made a

great deal easier, if the basic boolean operations of union,

difference and intersection are available in the geometric

modeling system. However powerful a modeling system may be,

it should be supported with friendly user-machine interfaces

for its acceptance among user communities. One of the ways of

achieving this is by creating multiple screen areas.

In the foregoing chapters, the description about the

Hex-tree data structure and the hidden-line algorithms were

given. The development of screen-layout and the implementaion

details of the geometric modeling system are discussed here.

5-2 SCREEN LAYOUT - USER INTERFACE

The acceptance of a computer aided geometric modeling

system among a user group depends very much on its User-Interface

as this is the window through which the designer can look into

the system. CAD/CAM has reached a stage that it is widely used

in development and production in industry. As the users of the

systems are designers with little or no background in computer

usage, it is required that the system should be capable of

guiding the unexperienced user the modeling process and if the

user is an experienced one, he should have the possibilities

of making shortcuts to speed up the process. The user controls

the system's processes by using an input language which is

familiar to him. If graphic input is used, the input language

may contain elements like 'light pen selection', 'locate opera

tions', etc. Likewise the system formulates its output to the

94

user in an output language which may consist of elements like

'a segment of a line on the screen', 'a prompt message',

'a menu', etc. In an interactive designing process, a session

is a dialogue between the user and the system where input

language constructs are being interpreted by the system, and

followed by output language constructs to be interpreted by the

user. The interface is good if the following criteria are

fulfilled.

Concise

The user shall be able to control much of the system's

tasks in 'few words', and get much information in 'few words'.

Consequent

Similar tasks shall be controlled by similar inputs

language constructs, and output information of similar character

shall be given with similar output language sentences.

Familiar

Input and output language constructs shall reflect the

way the user thinks, and not the way the system works.

Logical

Output - and especially - input language constructs shall

reflect as close as possible the user's model of the world he

is modeling and/or simulating. They shall reflect the real

world's entities, their relations and the processes affecting

them.

95

The constructs must reflect as close as possible the

user's knowledge of the underlying system. This knowledge may

vary from user to user, therefore, the User-Interface should

be able to provide the user with further information if needed,

e.g., by an inline help function.

The best User-Interfac require extensive use of computer

graphics displays - as the whole human-computer information

exchange takes place through displays. Hence, an efficient and

optimum screen layout is an important aspect of the User-

Interface. A typical screen layout can have the following

information areas as shown in Fig. 5.1.

System status area

This area informs the user about current system status,

e.g.j_ module name, date, etc.

Master menu area

This information area gives a display of the various

command.

Submenu area

Display the description of the menu item selected from

the master menu area.

Message area

This category is a display of the interactive alpha

numeric dialogue between user and the system, i.e., prompts,

message, user input etc.

Output area

Used to display the created models, listing of database

contents , etc .

96

3

Output

Area

4

Output

Area

5

Message
Area

1

Master Menu

Area

.

2

Sub Menu

Area

5

System

Status

Area

Fig. 5-1 A typical screen- layout

97

The screen layouts incorporated with the Hex-tree modeling

system are shown in Figs. (5-2 & 5-3). Fig. 5-3 gives a

screen-layout as shown in Fig. 5.1. The flow chart for creating

multiple screen areas is shown in Fig. 5.4. Using various

alphanumeric keys, the required screen areass can be obtained.

5.3 IMPLEMENTATION DETAILS

The various features of the geometric modeling system

based on the Hex-tree solid modeling technique are explained

here by adopting a building block procedure. The schematic

diagram of the geometric modeling system is shown in Fig. 5-5

In the interactive mode, the designer can not only make

the shapes of the object in his mind, but also he can get the

feel of designing by his own hands. He is able to define the

life constraints at every step, and correct erroneous instruc

tions at every stage. He could move at any node irrespective

of any format. There is also provision in the system to respond

with a message or life presence if: life is defined on an already

live face. Using Hex-tree method, it is possible to model many

shapes directly without performing boolean operations. Fig.

5.6 and Fig. 5.7 show two typical photographs of such shapes.

Through direct mode, the modeling of objects whose shapes and

details are known can be performed. Boolean operations are

essential in any designing set up as modification of shape is

a common phenomenon in designing process. In the boolean mode,

boolean operations on pairs of solid objects represented by

98

Fig. 5.2 A screen-layout with three screen areas

Fig. 5.3 A screen-layout with six screen areas

Display

Master Menu

99

Fig. 5.4 Flov/ Diagram of the Screen Layout

Interactive

Mode

Direct Mode

Boolean

Mode
_

Display
Device

Screen

Layout

Model

Hidden-Line

Algorithms

Fig. 5.5 Schematic Representation of the Geometric Modeling System

o
o

101

Hex-tree can be performed. Typical photograhs obtained after

performing these operations are shown in Figs. (3.9-3.11).

Once the Bit indices of the nodal words are allocated

based on Hex-tree data structure, the next step is to get the

display of the model. The potential faces of each cell which

control the building up of the model in all the positive and

negative (X, Y, Z) directions are obtained, by logically searching

the nodal Bits. In this searching, .in order to find out the

status of the first Bit position of a particular node (i.e. zero

or one), a 32 bit word in which the first Bit position is one

and the remaining Bit positions carry zero was utilized.

Similarly for second Bit position checking, another word with

second Bit position is one and the remaining Bit positions carry

zero was used and so on. Fig. 5.8 dpicts this process. On a

similar way this searching process was extended to check the

status of all Bit positions of the nodal words. Nodal checking,

and the application of geometric transformation on the primitive

cell, continues until the whole Hex-tree nodes are visited.

Once this process is completed, the whole topological and

geometric information of the model are available. By applying

hidden-line algorithms explained in chapter 4, the hidden lines

removed picture could be seen through the display device. The

screen-layout discussed in Section 5.2 added the functioning

of the system more interactive. With the available geometric

information of a particular model, the integral properties can

be calculated using various algorithms which are discussed in

Chapter 6. The system is supported by the following facilities

102

Fig. 5.6 An object with a hole

Fig.5.7 An object with a central growth

ii
0

y-.

b A 3

0 0 0

103

1 0

0 0

31 5 U 3 2 1 0

0
//////'/////j

. /

0 0 0 0 1 0
'///// //////

31 5 u 3 2 1 0

0
//////'///////

0 0 0 1
i 0 0'////'/'/'/'/'////

31 5 A 3 2 1 0

0 '//////,'//////A 0 0 1 0 0 0

31 5 A 3 2 1 0
/ / / / / / ///////

0 Y//////'/////A 0 1 0 0 0 0

31 5 h 3 2 1 0

0 Y//s'///////y////, 1 0 0 0 0 0

Fig. 5-8 32 Bit word lay-out for nodal Bits checking

104

for visualising the models from any distance and/or position

in space:

i) Perspective views without the hidden lines removed

ii) Perspective views with the hidden lines removed

iii) Perspective views with the hidden lines dashed

The geometric modeling system was implemented in FORTRAN

Language on VAX-11/780 computer system using Tektronix-4027

graphics terminal. Graphics support was provided by the Inter

active Graphics Library (IGL) package. Figs. (5-9 - 5.18) show

3-D views of various modeled objects.

5.4 CONCLUSIONS

In this chapter, an overall description about the develop

mental and implementation details of the geometric modeling

system based on Hex-tree technique have been given. A detailed

discussion regarding the importance and the basic requirements

for good user-interface has also been done. A schematic

representation of the Hex-tree based geometric modeling System

is given and its various features are discussed. Finally, 3-D

views of the modeled objects are presented through various

figures (Fig. 5-9 to Fig. 5-18).

Fig. 5.9 An object showing cell growth in ± X
and ± Y directions ,

105

Fig. 5.10 An object showing cell growth in i X,± Yand
±Z directions

106

Fig.5.11 An object grown in X-Z plane

•
Fig. 5.12 An object grown in X- Y plane

107

Fig.5.13 An object with hidden lines

Fig. 5.14 A hidden lines 'dashed'object

108

Fig. 5.15 Two hidden lines removed objects

.

Fig. 5.16 An object viewed from same observer
position with different perspective plane
distances

109

Fig. 5.17 The object shown in Fig. 5.16 viewed from
same observer position with another
perspective plane distance

• _ >

Fig.5.18 A rotated E object

L

110

CHAPTER 6

COMPUTATION OF INTEGRAL PROPERTIES

112

6.1 INTRODUCTION

When any shape has been modeled, it will often require

engineering analysis to determine its integral properties (volume,

center of gravity, moment of inertia and similar properties).

The computation of these properties is an important problem in

computer aided design, robotics and other related fields. These

properties of a solid 'S' can be defined by triple (volumetric)

integrals over subsects of three dimensional Eucledean space.

i.e. I =/pf(p) dV 6.1.1
S

where, P = (x,y,z) is a point of Eucledean 3-space (E),

dV is the volume differential, f is a polynomial and (° is the

density of the material. Depending upon the value of f(p), the

equation defines various integral properties of a homogeneous

solid, S. For example, when f(P) = p-/l, the equation defines
2 2

the volume/mass of the solid respectively and when f(P) = x + y ,

it defines the moment of inertia of the solid about z axis.

Most of the known methods for calculating these properties

of solid models are associated with representation methods [40].

Integral properties of solid represented by Boundary representa

tion scheme are evaluated by surface integration using direct

integration. In this method, the integral of a function f(x,y,z)

over a polyhedral solid (e.g. prism) is evaluated by adding appro

priately signed contributions of the prisms defined by the faces

and their xy projections. This method is attractive for poly-

113

hedral objects represented by their boundaries. . In the case

of curved objects, a polyhedral approximation method is used.

The curved objects faces are approximated with triangular facets

in this approach.

One of the techniques for computing integral properties

of solid objects represented by Constructive Solid Geometry scheme

is by converting CSG representation into approximate cellular

decompositions based on equally or variably sized blocks [41 J.

In such methods, the algorithms generate a collection of quasi-

disjoint cells whose union approximate the solid and compute

the integral properties of this solid by adding the contributions

of the individual cells.

A quasidisjoint decomposition of a solid is a segmentation

of the solid into smaller solids which have no 'holes' and have

disjoint interiors. Any quasidisjoint decompositions of a solid

'S' takes the form

S = U.C6.1.2

where, C. represent the smaller solids (cells).

Since cells C. have disjoint interiors, any integral over S can

be decomposed into a sum of integrals form

VJPfdV =Off d
5 Cc

6.1.3

Evaluation of each C.. integral is easy when the cells are of

simple shape like cubical cell. This approach is used in cellular

decomposition based schemes.

114

6.2 CALCULATION OF INTEGRAL PROPERTIES OF
HEX-TREE BASED SOLID MODELS

In the Hex-tree scheme, a solid object is represented

as the collection of cubical cells of equal size. Hence, the

integral properties can be calculated in a similar way as it

was discussed in equation 6.1.3- Some of the integral properties

can be derived as follows.

Let

l,b_,h - length, breadth, height (depth) of the cubical

cell shown in Fig. 6.1a.

N = the number of cubical cells in a model

n = density of the material

g = acceleration due to gravity

m = mass of a cubical cell

Volume

Volume of a cubical cell v - lxbxh

Volume of a model V=Nxv ...6.2.1

Weight

Weight of a cubical cell w = m x g

= v x P x g

Weight of a model W = N x w

=Nxvxpxg ... 6.2.2

Let w1 , w2 wN be the weight of each cubical cell,
fv v 7) (x v z) (z.„ yKr, zM) be the center

1' ^1' 1^' KK2'1 2' 2 N' N' N

of gravity of each cell, and (x, y, z) be the center of gravity

of the model shown in Fig. 6.1b. The coordinates of the center

Fig.6.1b A symmetrical solid model with nine cells
y

Fin. 6.1a A cell details

116

of gravity of the model can be found out using the following

relations :

y •

N

i=l

:wtxj)

£ (Wi)
i=J

<- (wj.y i)
i=l

N

^ (Wi
i = l

N

$ (Wj ^)
1=1

Z = N
K. (wi)
i = l

Moment of Inertia

6.2.3

Consider a cubical cell having mass m, shown in Fig. 6.1a.

The moment of inertia of this cell about the axes ox, oy, oz

passing through its center of gravity are :

I - 1/12 m[b2 + h2]
ox

I = 1/12 m[l2 + h2]
oy

I - 1/12 m[l2 + b2]
oz

6.2.4

In order to transfer the moment of inertia of this element

from axes passing through its center of gravity (G) to parallel

axes passing through some other point, the following relations

are used. In this regard, G has coordinates xQ, yG and zQ defined

from the new coordinates axes ox', oy' and oz'

I '
ox

I '
oy

i '
oz

*OX +m(YG2 + ZG2)
Ioy +m(xG2 + zG2)

XOZ +mUG2 +yG2)

117

6.2.5

(a) Moment of Inertia of Symmetrical Models

.Consider the symmetrical Hex-tree model shown in Fig. 6.1b

Let n , n and n be the number of cubical cells in the X,Y,Z
x' y z

directions. The moment of inertia I , I„, and I„ about the axes

passing through the center of gravity of the model can be calcu

lated using the equations given below :

•y

1/12 m[fayb)2 + (nzh)2]
1/12 m[(n l)2 + (n h)2]

1/12 m[(nxl)2 + (nyb)2]

(b) Moment of Inertia of Unsymmetrical Models

6.2.6

The moment of inertia equations in this case can be derived

in a similar way as equations 6.2.5- Consider an unsymmetrical

model shown in Fig. 6.2. Let (x«, JN , z^), (x2, y2, z2)

(xN, yN, zN) are the centers of gravity of N individual cubical

cells of the model defined with respect to the reference axes

OX, OY, OZ and x, y, z are the coordinates of the center of

gravity of the model.

Moment of inertia (I,, I2 IN) of the cells (1,2...N)

about the x-axis passing through the center of gravity of the

model can be written as :

118

-z

Fig. 6. 2 An unsymmetrical solid model with eight cells

I-, =

•N

1/12 m:(b2 + h2) + m1[(y
1/12 m2(b2 + h2) + m2[(y
1/12 m3(b2 + h2) +m3[(y

- y,r + (z

y. + (z -

y3r + (z

zx)2]
z2)2]
z3)2]

:b2 + h2) +mN[(y -yN)2 + (z - zN)2]
N

119

Hence, the moment of inertia of the model about the x-axis

passing through its center of gravity can be formed as

N

x iti
x| (b2+h2) +[(y-yi)2 + (z-Zi)2] ... 6.2.7

Similarly, the moment of inertia of the model about the

y and z axes can be derived as

y

N

i=l

N

i=l

- (l2+h2) + [(x-x,)2 + (z-z,.)2j
12 X X

i (l2+b2) + [(x-x.)2 + (y-y,)2]
12 ii

6.2.8

... 6.2.9

As the cells are cubes of same size 1 = b = h, and is

equal to 'a' (say). Hence the equations (6.2.7-6.2.9) can be

rewritten as

N

i = l

m j2 (a4) +[(y-y^2 + (z-z±)2J 6.2.10

N

I = ^ m.
y i=l x

N

I = ^ m.
z i=l x

12 (a) + [(x-x..) + (z-z..)]

12 (a) + [(x-x.) + (y-yj)]

120

6.2.11

6.2.12

The following' steps are involved in the calculation of

integral properties of a solid model represented by the proposed

technique.

1. Obtain the values of the parameters p, g

2. Get the Hex-tree details and the cell dimensions

3. Find out the appropriate cell positions by searchng the

Hex-tree nodes and then obtain (x- , y -, z-) for

i = 1, 2 ,...N

4. Compute the volume and weight of the model using equa

tions 6.2.1 and 6.2.2 respectively.

5. Calculate the center of gravity of the model using

equation 6.2.3- Moments of inertia are calculated

using equation 6.2.6 (For symmetrical models) and

equations 6.2.10, 6.2.11 and 6.2.12 (For unsymmetrical

models).

An unsymmetrical Hex-tree model consists of 8 cells as

shown in Fig. 6.2 (a view of this model is shown in Fig. 5.6)

has been considered for computing the integral properties. It

is assumed that the model is made of Aluminium material. The

properties of this model are computed and given below

* sen ot tootto

121

a = 2.00 cm d = 2700 kg/m3

Volume = 64E - 06 m3

Weight = 1.693 kg.wt

Center of gravity = C(1.75, 2.00, 0.00)

Moment of inertia

I = 0.74822E - 04 kg.m2

I = 0.65063E - 04 kg.m2

I = 1.16899E - 04 kg.m2

6.3 CONCLUSIONS

The calculation of integral properties of Hex-tree based

solid models have been discussed. A brief description about the

methods of computing these properties for constructive solid

geometry, Boundary representation and Cellular decomposition

schemes are also given. The volume, weight, center of gravity

and moment of inertia of a typical Hex-tree solid model have

been computed and the results are shown. These calculations

are easier and fast as the Hex-tree approach is based on equally

sized cubical cells.

CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER INVESTIGATIONS

4

123

7.1 SUMMARY AND CONCLUSIONS

Modeling the geometry of rigid solid objects using computer

based systems is becoming increasingly important in CAD/CAM,

computer vision, robotics and other fields that deal with spatial

phenomena. The success of a geometric/solid modeling system

greatly depends on the unambiguous representation of 3-D objects.

The major objective of this thesis work has been to explore

the possibility of developing a representational technique for

geometric modeling of solid objects. Towards this end, the

thesis has culminated in the design and implementation of a new

geometric modeling approach based on HEX-TREE representational

technique using a cubical cell as primitive. The system so

developed can create, modify and display solid objects of any

shape.

The modeling of 3-D objects has been done, by constructing

cubes over the six faces of this primitive and continuing this

process till the desired shape is obtained. This constructing

procedure can be viewed as forming a tree structure with root

node as the primitive cell and the first level branch nodes as

six cubical cells on the faces of the rooted cubical cell, and

in a similar way the subsequent level's branch nodes. The full

identity of a node (i.e. cubical cell) is represented in six

Bits of a word length indicating the cell presence or absence

on the six faces.

The development of plane-surfaced object models was straight

forward. However, curve-surfaced objects have been modeled as

124

follows :

(i) Selection of a primitive

(ii) Grow the primitive along the six faces

(iii) Check whether the approximate shape of the target

object is obtained or not

(iv) If the desired shape is not achieved, change the

primitive size till a satisfactory result is reached.

Figs (3.12 - 3-17) show few models having curved boundaries.

As the modeling of plane and curve-surfaced objects are

based on single cubical cell primitive, and due to the hierarchi

cal nature of the tree oriented data structure, any type of

object could be modeled easily, as 'compared to other popular

schemes: For example, multi-directional joint based models

(Figs. 5-9 - 5-10), multi-layer and multi-directional objects

(Fig. 5.15), object with hole (Fig. 5-6), object with central

growth (Fig. 5-7) etc. This peculiar characteristics strongly

justify the development of this scheme for curved object

modeling also.

To get the realistic view.of the models, hidden line elimi

nation algorithms have been developed for plane as well as curve

surfaced objects. Out of the two algorithms developed, the first

one is suitable for simple objects, in which visibility checking

is done on the face-basis of the object. The second algorithm

is meant for complex shapes, in which the visibility testing

is performed on part of a line-segment level. The complete

125

hidden lines removed perspective picture of an object model,

viewed from various distances and/or positions could be

perceived. Provisions are incorporated in the first algorithm

to get the hidden lines 'dashed', if so desired by the viewer,

in order to get an overall shape of the model. It is also

possible to get the screen image, without applying hidden line

algorithms. Various shapes generated using these algorithms

are shown in Figs. (4.2 - 4.7) and Figs. (5-H - 5-18).

The feasibility of the approach has been shown for perfor

ming boolean operations (Union, difference and intersection).

The details have been discussed and typical photographs obtained

after performing union, difference and intersection operations

on two objects, shown in Figs. (3-9 - 3-ID- The methods can

be extended in a similar way to complex objects also.

Necessary methods have been developed to calculate some

of the integral properties of the Hex-tree based solid models.

The volume, weight, center of gravity and moment of inertia of

an unsymmetrical model have been computed and shown in Chapter

6.

Screen layout is one of the ways of providing a friendly

User-Interface. Through the screen layout-interface provided

in the system, the designer is able to create multiple screen

areas depending on his requirements (Figj. 5-2 & 5-3).

The reported approach has several advantages over existing

popular schemes. In addition to the advantages of a tree based,

126

recursive type data-structure, the following are the major

achievements of the Hex-tree approach.

(a) It was experienced that any three dimensional object could

be modeled using this technique. The same data structure

is sufficient for both plane -faced and curve-surfaced

objects. The curved object's precision is limited to the

size of the cubical cell.

(b) Same hidden-line algorithm is applicable for the display

of both plane— faced and curve-surfaced shapes. It is

possible to view the model from various distances and/or

positions in space. Because of the avoidance of interfe

rence checking, the display of the hidden lines removed

model are fast and efficient.

(c) Boolean operations are simple and fast in this approach,

as the whole chain of representation and display are

performed on the face basis.

(d) Computation of integral properties, such as, volume, center

of gravity and moment of inertia of a Hex-tree based model

is easier and faster. This is because, in this method,

the primitive is a cubical cell and all the cells are of

equal size. Moreover, as the approach is based on equal-

sized cubical cells, the additional computational require

ment for representation conversion or polyhedral approxima

tion of curved objects required in popular schemes are

avoided.

127

(e) An overall improvement in computational efficiency and

memory saving is also achieved. This is due to the Bit

level representation, and logic based search algorithms

for tree traversal.

The object represented by the Hex-tree method is valid

as the primitive cubical cell represent a valid physical object.

Given a representation, there exists only one solid that corres

ponds to it and hence this scheme is unambiguous. Given an

object, there is only one way of decomposing it into primitive

solid and hence the scheme possesses the uniqueness property

also. Another property of this scheme is its consciseness as

Hex-tree representations are convenient to store and transmit

over data links and contain relatively few redundant data.

7.2 SUGGESTIONS FOR FURTHER INVESTIGATIONS

Following are the suggestions for further investigating

the work carried out in this thesis:

In the reported approach the primitive is a cubical cell.

It is desirable to explore the possibilities of combining common

faces of adjacent cells. An attempt in this line will result

in a good amount of memory saving. This will also result in

an enhancement in saving the computing speed for hidden line

removal process.

The smoothness of the periphery of a curved object depends

on the primitive size. This problem can be alleviated if surface

developing methods such as B-spline or Bezier techniques are

128

incorporated with the Hex-tree technique. This sort of hybrid

approach can be thought of as another investigation.

In this work we have not developed solid models of suffici

ently complex objects as our objective was mainly for the develo

pment of a feasible method. Also, we have not tried to make

use of those developed models for any specific application.

It is a good idea to take up an application area where simple

or complex models are involved and build up an entire system

based on this modeling scheme.

The success of interfacing technique of a well designed

software package is closely related to the interface between

the package and the user. A well adapted command language is

necessary to create an interactive environment for the system

to control which processes should be activated and which data

should be passed. The command language must be simple and so

adaptive that it allows the user the option either of utilizing

his knowledge and ideas without being disturbed by a dialogue

with the system, or if desired, of answering the dialogued

queries of the system. This kind of facilities and other inter

facing techniques can also be incorporated to the system to make

the user interface more attractive.

In the formation of any engineering design project, some

type of analysis is required. The analysis may involve stress-

strain calculations,heat-transfer computations, integral or mass

property calculations, etc. As we have developed methods only

#

129

for computing some integral properties, the development of

appropriate methods for other engineering analyses can also be

investigated.

APPENDIX

CALCULATION OF THE POINT OF INTERSECTION OF TWO LINES

A general point P = (x, y) on the line joining

two points P1 = (xx,yx) and P2 = (x2,y2) can be written

as

(1 -•C)(P1) + *C(p"2) ... (A.l)
where 0 •£: c< ^ 1

oC = (distance of P from P1)/(distance of P
2

from P1)

5 means "equivalent to"

The point of intersection Pa (x, y) of two lines

joining

i) P1=(x1, y:) to P2 s (x2, y2); and

ii) P3 = (x3, y3) to P^ = (x^, y4)

can be found out as follows :

Let a general point on line (i) is (1 - oC)? + ^ p

for some e>C , and a general point on line (ii) is (1

~/*)P3 + /3 P/| for some fl , where Bis similar to cC . Thus

the point of intersection P lies on both lines and all

that is necessary to calculate P is to find the unique

values of oC and Bsuch that

P = (l-oO)P1 +^P2 = (1 -B)P3 + BPt] ... A. 2
that is

(1 -<K)x1 +oCx2 - (1 -p)x3 +^x^
and

(i -*)y1 +<?cy2 - (i -p)y3 +^yZ|

Hence

cK^2 -
and

oC (y2 - yx) +^(y3 - y/,) = (y3 - yx)
Thus we have two equations in two unknowns

Let A - (x2 - x1)(y3 - y^) - (x3~xlj) (y2-y1) ^0
then

c< = [(x3-x1)(y3-y4) - (x3-x4)(y3-y1)]/^

Using equation A. 4, we can get the point P by substi

tuting in equation A.2.

xj + R (x0 - x,
f

131

x3 - x1)

A.3

A.4

133

8. Boyse, J. W. , 'Preliminary Design for a Geometric Modeler',

Res. Pub. GMR-2768, Comp. Science Dept., General Motors

Research Laboratories, Warren, Mich, 1978.

9. Braid, I. C. and Lang, C. A., 'Computer Aided Design of

Mechanical Components with Volume Building Blocks', pp.

173-184 in [25].

10. Braid, I.C., 'Designing with Volumes : Computations of

Weight, Centre of Gravity, Moments of Inertia and Principal

Axes', C.A.D. Group Doc. 81, University of Cambridge, U.K.,

1973.

11. Braid, I. C, 'Geometric Modelling-ten Year On', CAD Group

Doc. 103, Computer Laboratry, Cambridge University,

Cambridge, UK, 1979-

12. Brown, C. M., 'PADL-2: A Technical Summary', IEEE Computer

Graphics and Applications, Vol. 2, pp. 69-84, March 1982.

13- Ingrid Carlbon, Indranil Chakravarty and David Vandersehel',

'A Hierarchical Data Structure for Representing the Spatial

Decomposition of 3-D Objects', IEEE Computer Graphics and

Applications, pp. 24-31, I985.

14. Chiyokura, H. and F. Kimura, 'Design of Solids with Free

Form Surfaces', Computer Graphics (Proceedings of

SIGGARAPH'83) Vol. 17, pp. 289-298, 1983.

134

15. Cook, P. N., et.al., 'Volume and Surface Area Estimates

Using Tomographic Data', IEEE Trans, on PAMI , Vol. 2, pp.

478-479, Sept. 1980.

16. Doctor, L. J. and J. G. Torborg, 'Display Techniques for

Octree Encoded Objects', IEEE Computer Graphics and Applica

tions, Vol. 1, pp. 29-38, 1981.

17. Eastman, C. M. , et al., 'GLIDE, : a system for implementing

design data bases', Res. Rep. No. 76, Inst. of Phys.

Planning, Carnegie - Millon University, 1978.

18. Fitzgerald, W. , et al., 'GRIN : Interactive Graphics for

Modeling Solids', IBM Journal of R&D, Vol. 24, pp. 281-294,

1981.

19. Foley, J. D. and A. Van Dam, 'Fundamentals of Interactive

Computer Graphics', Addison Wesley, Reading, Mass, 1982.

20. Fujimura, K., Toriya, H., Yamaguchi, K. and Kunni, T. L.,

'An Enhanced Oct-tree data structure and operation for solid

modeling', Tech. Report 83-01, Dept. of Information Science,

Faculty of Science, University of Tokyo, Japan, 1983-

21. Fujimura, K. , Toriya,- H. Yamaguchi, K. and Kunni, T. L.,

'Oct-tree algorithms for solids Modelling', Tech. Report

83-04, Dept. of Information Science, Faculty of Science,

University of Tokyo, Japan, 1983-

135

22. Galimberti, R. , and Montanari, U., 'An algorithm for

Hidden-line Elimination', Comm. ACM, Vol. 12, No. 4, pp.

206-211, April 1969-

23. Gouraud, H., 'Continuous Shading of Curved Surfaces', IEEE

Trans, on Computers, Vol. C-20, No. 6, pp. 623-629. June

1971-

24. Giloi, W. K., 'Interactive Computer Graphics', Prentice

Hall, Englewood. Cliffs, NJ, 1978

25. Hatvany, J. (Ed), 'Computer Languages for Numerical

Control', North-Holland Publishing Company, Amsterdam,. 1973-

26. Hillyard, R. C. , 'The Build Group of Solid Modelers', IEEE

Computer Graphics and Applications, Vol. 2, pp. 43-52, 1982.

27. Hillyard, R. C. and Braid, I. C, 'Characterising Non-ideal

Shapes in terms of Dimensions and Tolerances' Computer

Graphics (Proceedings of SIGGRAPH '78) Vol. 12 Jpp. 234-238.

1978.

28; Hillyard, R. C. and Braid, I. C.,'The Analysis of Dimensions
and Tolerances in Computer Aided Mechanical Design',
Computer Aided Design, Vol. 10, pp. 161-166, 1978.

29 Hunter, 0. «..'^icient Computation and Data Structures
" for Graphics', P*.D. Dissertation, EE and CS Dept.,

Princeton University, 1978

136

30. Jackins, C. L. and Tanimoto, S. L.,'Octrees and their use

in Representing Three Dimensional Objects', Computer

Graphics and Image Processing, Vol. 14, pp. 249-270, 1980.

31. Jared, G.E.M. and Varady, T. , 'Synthesis of Volume Modelling

and Sculptured Surfaces in Build.', Proce. 6th International

Conf. and Exhibition on Comp. in Design and Engineering,

3-5 April 1984, pp. 481-495-

32. John R. Rankin, 'A Geometric, Hidden-Line Processing

Algorithm' , Comp. and Graphics, Vol. 11, No. 1, pp. 11-19,

1987-

33- Joshi, R. C, Durbari, H., Goel. S. and Sasikumaran. S.,

'A Hierarchical Hex-tree Representaional Technique for Solid

Modelling', Comput. and Graphics, Vol. 12, No. 2, pp.

235-238, 1988.

34. Joshi, R. C, Khushinder Nath and Sasikumaran. S.,

'Volumetric Representation: A Technic for Representing and

Manipulating 3-D Objects', National Workshop on Robotics,

Organised by Dept. of Science and Technology, Govt, of

India, PUNE, 29~30th April, 1987.

35. Joe, R. and Philip. S. (Ed.), 'Principles of Computer-Aided

Design', Pitman Publishing Company, London, 1987.

36. Koppelman, G. M. and Wesley, M. A., 'OYSTER : A study of

Integrated Circuits as Three Dimensional Structures', IBM

Journal of R&D, Vol. 27, pp. 149-163, 1983-

137

37- Kubert, B., Szabo, J., and Giulieri, S. , 'The Perspecti

Representation of Functions of Two Variables', Journal of

ACM, Vol. 15, No. 2, pp. 193-205, April 1968.

38. Lang, C. A., 'A Three Dimensional Model Making Machine',
pp. 109-118 in [25].

39. Lee, Y. T. and Requicha, A.A.G., 'Algorithms for Computing
the Volume and Other Integral Properties of Solid objects',

TM-35, Production Automation Project, University of
Rochester, 1981.

40. Lee,Y. T. and Requicha, A.A.G., 'Algorithms for Computing
the Volume and Other Integral Properties of Solids. I.

Known Methods and Open Issues, Comm. of the ACM, Vol. 25,
No. 9, pp. 635-641, 1982.

41. Lee, Y. T. and Requicha, A.A.G., 'Algorithms for Computing
the Volume and Other Integral Properties of Solids II.

A family of Algorithms Based on Representation Conversion

and Cellular Approximation', Comm. ACM, Vol. 25, No. 9,
pp 642-650, 1982.

42. Loutrel, P. P., 'A Solution to the Hidden-line Problem for

Computer-drawn Polyhdera', IEEE Transactions on Computers,
Vol. EC-19, pp. 205-211, 1970.

ve

rames'43- Markowsky, G. and Wesley, M.A., 'Fleshing Out Wiref

IBM Journal of R&D, Vol. 24, pp. 582-597, 1980.

)

138

44. Marshall, P., 'Computer-Aided Process Planning and Estima

ting as part of an Integrated CAD/CAM System', Computer

Aided Engineering Journal, pp. 187-192, October 1983•

45. Meagher, D., 'Geometric Modeling Using Octree Encoding',

Computer Graphics and Image Processing, Vol. 19,

pp. 129-147, 1982.

46. Myers, W., 'An Industrial Perspective on Solid Modeling',

IEEE Computer Graphics and Applications Vol. 2, pp. 86-97,

1982.

47. Newell, M. E. , Newell, R. C and Sancha, T. L. , 'A Solution

to Hidden Surface Problem', Proce. ACM National Conf., 1972.

48. Newman, W. M. and Sproull, R. P., 'Principles of Interactive

Computer Graphics', 2nd Ed., McGraw-Hill, New York, 1979-

49. Okino, N., et al., 'TIPS-1: Technical Information Processing

System for Computer Aided Design, Drawing and Manufac

turing', pp. 141-150 in [25].

50. Production Automation Project, 'An Introduction to PADL:

Characteristics, Status, and Rationale', Tech Memo No. 22,

Production Automation Project, University of Rochester,

1974.

51. Ramachandran Nair, K. N. and Sankar, R. , 'An approach to

Geometric Modeling of Solids Bounded by Sculptured

Surfaces', Comput. and Graphics, Vol. 11, No. 2,

pp. 113-120, 1987.

139

52. Requicha, A.A.G., 'Mathematical Models of Rigid Objects',

Tech. Memo No. 28, Production Automation Project, University

of Rochester, 1977.

53. Requicha, A.A.G. and Voelcker, H. B., 'Constructive Solid

Geometry', Tech. Memo No. 25, Production Automation Project,

University of Rochester, 1977.

54. Requicha A.A.G. and Tilove, R. B., 'Mathematical Foundations

of Constructive Solid Geometry: General Topology of Closed

Regular Sets', Tech. Memo. 27, Production Automation

Project, University of Rochester, 1978.

55. Requicha, A.A.G., 'Representations of Rigid Solids -

Theory, Methods and Systems', Computing Surveys, Vol. 12,

pp. 437-464, 1980.

56. Requicha, A.A.G. and Voelcker, H.B., 'An Introduction t

Geometric Modeling and its Applications in Mechanical Design

and Production', In 'Advances in Information System

Sciences' (Ed.) T. Tou, Vol. 8, pp. 293-238, 198I.

57. Requicha, A.A.G. and Voelcker, H.B., 'Solid Modeling: A

Historical Summary and Contemporary Assessment', IEEE

Computer Graphics and Applications, Vol. 2, pp. 9-26, 1982.

58. Requicha, A.A.G. and Voelcker, H. B., 'Solid Modeling:

Curent Status and Research Directions', IEEE Computer

Graphics and Applications, Vol. 3, pp. 25-37, 1983.

o

140

59- Requicha, A.A.G. and Voelcker, H.B., 'Boolean Operations

in Solid Modeling: Boundary Evaluation and Merging

Algorithms', Proce. of IEEE, Vol.73, No. 1, pp. 30-44,

January 1985-

60. Roberts, L. G., 'Machine Perception of Three Dimensional

Solids', Tech. Report No. 315, MIT Lincoln Laboratory, May

1963-

61. Roth, S. D. , 'Ray Casting as a Method for Solid Modelling',

Research Publication GMR-3466, Computer Science Dept.,

General Motors Research Laboratories, Waren, Mich., Oct.

1980.

62. Sasikumaran, S., Joshi, R. C, Sarje A. K. and Darbari,

H. , 'A Novel Constructional Approach for Computer Aided

Design', International Conference on Computer Graphics,

Singapore, 15~l6th September, 1988.

63. Sproull, R. H. , and Sutherland, I.E., 'A Clipping Divider',

Proc . 1968, AFIPSFJCC, Vol. 33, AFIPS Press, Montvale, N.

J., pp. 765-775-

64. Stuart Sechrest and Donald P. Greenberg, 'A Visible Polygon

Reconstruction Algorithm', Computer Graphics (Proceedings

of SIGGARAPH'81) Vol. 15, No. 3, August 198I.

65. Sutherland, I.E., 'SKETCHPAD: a man-machine graphic communi

cation system', MIT Lincoln Lab. Tech. Rep. 296, May 1965.

141

66. Sutherland, I.E., and Hodgman, G. W., 'Reentrant Polygon

Clipping', Comm. ACM, Vol. 17, No. 1, pp. 32-42, January

1974.

67. Sutherland, I.E., Sproull, R.F., and Schumaker, R.A., 'A

Characterization of Ten Hidden-Surface Algorithms',

Computing Surveys, Vol. 6, pp. 1-55, 1974.

68. Tilove, R. B., 'Exploting spatial and Structural Locality

in Geometric Modeling', Tech. Memo No. 38, Production

Automation Project, University of Rochester, 1981.

69. Tilove, R. B., 'Set-membership classification: 'A unified

approach to Geometric Intersection Problems', IEEE Trans,

on Computers, Vol. C-29, pp. 874-883, 1981.

70. Tony Bishop, David Howard and Norman Schofield, 'CAE-Key

issues for future Success', Computer-Aided Engineering

Journal, pp. 161-175, October 1985.

71. Veenman, P., 'ROMULUS - The Design of a Geometric Modeller*,

in Geometric Modelling Seminar, W.A. Carter, (Ed.),

P-80-GM-01, CAM-I, Inc., Bournemouth, U.K., pp. 127-152,

Nov. 1979.

72. Warnock, J. E., 'A hidden Surface Algorithm for Computer

Generated Halftone Pictures', Tech. Report No. 4-15,

University of Utah, Salt Lake City, Uta h, June 1969-

142

73- Watkins, G. S., A real-time Visible Surface Algorithm',

Tech. Report No. UTECH-CSC-70-101, University of Utah, Salt

Lake City, Utah, June 1970.

74. Weiss, R. A.,'BE VISION, A package of 7090 FORTRAN Programme

to Draw Orthographic Views of Combinations of Plane and

Quadratic Surface', JACM, Vol. 13, pp. 194-204, 1966.

75- Wesley, M. A. and Markowsky, G., 'Fleshing Out Projections',

IBM Journal of R&D, Vol. 25, pp. 934-954, 198I.

76. Wesley, M. A., et al. , A Geometric Modeling System for

Automated Mechanical Assembly', IBM Journal of R&D, Vol.

24, pp. 64-74, 1980.

77. Wesley, M. A., 'Construction and use of Geometric Models',

in 'Computer Aided Design', Lecture Note in Computer

Science, No. 89, Ch. 2, J. Encarnacao (Ed), Springer Verlay,

New York. I98O.

78. Woodwark, J. R. 'Compressed Quad Trees', The Computer

Journal, Vol. 27, No. 3, pp. 225-229, 1984.

79- Yamaguchi, K. , et al. , 'Octree related data structures and

algorithms', IEEE Computer Graphics and Applications, Vol.

4, pp. 53-59, 1984.

80. Yamaguchi, K. , et al. , 'Computer-Integrated Manufacturing

of Surfaces using Octree Encoding', IEEE Computer Graphics

and Applications, Vol. 4, pp. 60-65., 1984.

143

81. Yamaguchi, F. and Tokieda, T. , 'A Unified Algorithm for

Boolean Shape Operations, IEEE Comp. Graphics and Aplica-

tions, pp. 24-37, June 1984.

82. Yoshio Ohno, 'A Hidden Line Elimination Method for Curved

Surfaces', Computer Aided Design, Vol. 15, no. 4,

pp. 209-216, July 1983-

	AN APPROACH TO GEOMETRIC MODELING OF SOLID OBJECTS
	ABSTRACT
	TABLE OF CONTENTS
	CHAPTER-1 INTRODUCTION AND STATEMENT OF THE PROBLEM
	CHAPTER-2 OVERVIEW OF GEOMETRIC MODELING SYSTEMS
	CHAPTER-3 THE HEX-TREE APPROACH
	CHAPTER-4 DEVELOPMENT OF HIDDEN-LINE ELIMINATION METHODS
	CHAPTER-5 THREE DIMENSIONAL STRUCTURE MODEL ING-1 MPLEMENTATIN
	CHAPTER-6 COMPUTATION OF INTEGRAL PROPERTIES
	CHAPTER-7 CONCLUSIONS AND SUGGESTIONS FOR FURTHER INVESTIGATIONS
	APPENDIX

