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ABSTRACT 

In chemical engineering, mathematical models of various processes/systems 

often appear in the guise of different types of equations, e.g. algebraic equations [AEs], 

ordinary differential equations [ODEs] and partial-  differential equations [PDEs]. For 

instance, AEs arise in the steady state modeling of lumped parameter systems, such as 

CSTR, tray in a separation column and evaporators. Several constitutive models are also 

represented by AEs, e.g. thermodynamic equations of state and friction factor equations. 

ODEs are ensued in the unsteady state modeling of lumped parameter systems, e.g. 

CSTR or series of CSTRs, or in the steady state modeling of distributed parameter 

systems, e.g. PFR, packed bed columns/reactors. Also, steady state modeling of various 

processes, such as reaction-diffusion process inside a porous catalyst and heat transfer 

process from a fin, give rise to the formation of ODEs. PDEs may appear in the steady 

or unsteady state modeling of various processes/systems, such as unsteady reaction-

convection-diffusion process, unsteady reaction-diffusion process, unsteady operation 

of a PFR, steady or unsteady operation of packed bed columns and steady state 

boundary layer flows. In general, these model equations are nonlinear and since 

analytical/approximate solutions of these nonlinear equations are difficult and 

sometimes even impossible to obtain, numerical methods are used to solve them. 

However, due to their obvious advantages over numerical solutions, 

analytical/approximate solutions are preferred and thus are explored first. 

The present research work is basically an attempt in this direction and is 

concerned with the analytical/approximate solutions of several selected nonlinear model 

equations, which arise in the modeling of various chemical engineering processes and 

systems, e.g. heat transfer processes, fluid flow process, reaction-diffusion processes, 

rotary kiln and tubular chemical reactor. Besides, two constitutive equations, i.e. 

thermodynamic equation of state and friction factor equation, have also been considered 

for obtaining their approximate solutions. These selected model equations are 

mathematically represented by nonlinear AEs and nonlinear ODEs, and from the critical 

survey of the literature pertaining to the solutions of these equations, it is revealed that 

the analytical solutions exist for a few of them only. Moreover, these analytical 

solutions are merely applicable to a few specific situations. Similarly, the approximate 



solutions existing for some of the processes/systems are valid in a restricted range only. 

Besides, use of some recently developed efficient approximate methods, e.g. Adomian 

Decomposition Method [ADM], Homotopy Analysis Method [HAM] and their variants, 

for obtaining the approximate solutions of some of the processes/systems has not been 

fully explored. Due to the nonlinear nature of the model equations, only some of them 

could be solved analytically, and for obtaining the analytical solutions, several well 

known methods, e.g. separation of variables in combination with the partial fraction 

decomposition method and derivative substitution method, have been used. On the other 

hand, model equations, which could not be solved analytically, have been solved in an 

approximate manner by using ADM, HAM, and/or their variants. 

In particular, the selected heat transfer processes include transient convective 

cooling of a lumped spherical body, transient convective-radiative cooling of a lumped 

spherical body, steady state heat conduction in a metallic rod, radiative heat transfer 

from a rectangular fin and convective heat transfer from a rectangular fin. The model 

equations of these processes are represented by nonlinear first and second order ODEs 

constituting IVPs and BVPs, respectively, and have been solved by using the well 

known separation of variables method in conjunction with the partial fraction 

decomposition method and derivative substitution method. For all of these model 

equations, the obtained analytical solutions have been verified with the corresponding 

numerical solutions. Besides, the limitations of existing approximate solutions, which 

have been found to be valid in a restricted range of parameters' values, have also been 

highlighted by comparing them with the respective analytical solutions. For one of the 

processes, i.e. the transient convective-radiative cooling of a lumped spherical body, an 

available experimental study has also been successfully simulated. Likewise, due to the 

general nature of the model equation of convective heat transfer from a rectangular fin, 

the criteria of existence, uniqueness/multiplicity and stability of the solutions have also 

been studied. 

The model equation of rotary kiln, considered in this work, describes the bed 

depth profile of solids flowing in the kiln and is represented by a nonlinear first order 

ODE constituting an IVP. This equation has been solved by using the separation of 

variables method in conjunction with the partial fraction decomposition method and the 

obtained analytical solution has been successfully validated with the numerical solution. 

Effects of various parameters have been studied in detail and it is shown that the present 
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analytical solution is accurate in the entire range of E [local fill angle of the solids] 

unlike the existing approximate solution, which is accurate only in the range, 20.05 deg 

< e < 65.89 deg. Usefulness of the derived analytical solution has been shown by 

successfully simulating some of the existing experimental results pertaining to the solid 

bed depth profile. 

The model equation selected from the area of fluid flow describes the Poiseuille 

and Couette-Foiseuille flow of a third grade fluid between two parallel plates, and is 

given by a nonlinear second order ODE constituting a BVP. This model equation has 

been solved by using the derivative substitution method, and the analytical solutions of 

velocity profiles and flow rate have been obtained. Beside the successful validation of 

analytical solutions, a discussion regarding the effects of various parameters has also 

been presented. Limitations of the available approximate solutions have also been 

highlighted by comparing them with the analytical and numerical solutions. It is shown 

that the velocity profiles obtained by using the existing approximate solutions depict an 

opposite trend and starts deviating from the true profiles even for moderately higher 

values of /i a dimensionless parameter dependent on the material moduli. 

Thermodynamic equation of state is represented by a nonlinear AE and is 

concerned with the estimation of gas volume at a given pressure and temperature.. 

Approximate solutions of this equation have been obtained for finding the gas volume 

by using ADM and one of its variants, i.e. Restarted Adomian Decomposition Method 

[RADM]. Advantages and limitations of these two methods have been highlighted and 

the limitations can be avoided by following the proposed guiding principles. 

The friction factor equation is also expressed by AE and is used to find the 

friction factor for the laminar and turbulent flow of fluids in smooth pipes. In this work, 

the fluid considered is a Bingham fluid. This equation has also been solved by using 

ADM and RADM, and several explicit approximate solutions of friction factor with 

reasonable accuracy have been derived. These solutions have been successfully 

compared with the corresponding numerical solution as well as with the available 

explicit correlations. For turbulent regime, the derived RADM solution of friction factor 

exhibit an error less than 0.005%, which is smaller than that exhibited by the available 

correlations. Similarly for laminar regime, the error in RADM solution of friction factor 
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is found to be within ± 5.2 % error, which can further be reduced by considering more 

terms in the RADM solution. 

The model equations of reaction-diffusion processes-inside a porous catalyst slab 

and sphere describe the concentration profile of reactant, and are used in evaluating the 

effectiveness factor. These equations are represented by second order ODEs constituting 

BVPs, and have been solved by using ADM and RADM. It is revealed that the ADM 

solutions yield erroneous results for reaction order n < 1 [n # 0] and for higher Thiele 

modulus [c > 2]. These limitations can be avoided by using RADM, which not only 

yields accurate results but is also applicable to other forms of reaction kinetics. The 

model equation of reaction-diffusion process inside a porous catalyst sphere has also 

been successfully solved by using another efficient approximate method based on 

HAM, i.e. Optimal Homotopy Analysis Method [OHAM]. It is shown that due to the 

presence of convergence control parameter, the error in OHAM solutions can be 

minimized, which renders the OHAM solutions better than the other existing 

approximate solutions. Moreover, the approximate solutions obtained by using ADM or 

its variants can also be obtained by using OHAM as a special case. 

The axial dispersion model equation of a tubular chemical reactor describes the 

concentration profile existing in the reactor and is represented by a second order ODE 

constituting BVP. This equation has also been solved in an approximate manner by 

using OHAM and the obtained OHAM solutions have been verified with the 

corresponding numerical solutions. Besides, utility of OHAM has been depicted by 

trapping multiple solutions which exist for the non-monotonic reaction kinetics. 

It is our view that the analytical and approximate solutions of selected process 

models, obtained in the present thesis, will be useful in many ways, i.e. for simulating 

experimental studies and for the estimation of parameters. Use of techniques and 

methods adopted for solving AEs and ODEs can also be made to other process models. 

We feel that if such an attempt is made it would certainly prove to be advantageous in 

terms of better understanding of the process and also in ease of obtaining solutions. 
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CHAPTER I 

INTRODUCTION 

Chemical engineering is one of the broad and versatile branches of engineering, 

and with the passage of time many allied disciplines have emerged from it. In chemical 

engineering, one frequently encounters processing of chemicals in process equipments, 

e.g. reactors. The operations occurring there in may be one or more of numerous unit 

operations and processes, e.g. separation, reaction, mixing, heating/cooling, which when 

modelled with the help of physico-chemical principles and phenomenological relations, 

give rise to different types of equations (Mickley et al., 1957; Himmelblau and Bischoff, 

1967; Rice and Do, 1995; Varma and Morbidelli, 1997; Pushpavanam, 1998; Bird et al., 

2002; Babu, 2004). In fact many important mathematical equations of varied 

complexity levels have originated from the modelling of various chemical process 
equipments. 

In general, mathematical modelling of a chemical engineering system or 
equipment is carried out by applying the fundamental laws of science [conservation of 

mass, momentum and energy] and also by searching the appropriate constitutive 

relations pertaining to these systems (Himmelblau and Bischoff, 1967; Rice and Do, 

1995; Pushpavanam, 1998; Bird et al., 2002; Babu, 2004). Depending on the degree of 

details and the level of complexity required, these resulting models can be 

mathematically represented by algebraic equations [AEs], ordinary differential 

equations [ODEs] and partial differential equations [PDEs]. Table 1.1 highlights the 

instances in which these equations appear while modelling various chemical 
engineering systems or equipments. 

The methods which may be used to solve these model equations can be 

classified into three types, namely analytical methods, approximate methods and 

numerical methods, each having its own merits and demerits. Generally, analytical 

methods are desirable as these yield accurate solutions and provide better insight of the 

process. Moreover, these can also serve as benchmarks for the future testing of 



Table 1.1: 	Chemical Process Equipments/Systems, and their Model Equations 

Process Equipment/System Operating Process Model Consists of 
S. No. or Component Condition AEs ODEs PDEs 

Ideal CSTR Steady state 1' - -  

1  (Fogler, 1992) Unsteady state - ✓  _ 

Series of ideal CSTRs Steady state ✓  - -  

2  (Fogler, 1992) Unsteady state - ✓  - 

3  
Ideal batch reactor Unsteady state - 

✓  
- 

(Fogler, 1992) 

Ideal tubular reactor [PFR] Steady state - ✓  -  

4  (Fogler, 1992) Unsteady state - -  ✓  

Tubular reactor with axial Steady state - 
✓  

-  
dispersion 

5 (Villadsen and Michelsen, 
Unsteady state - -  

✓  
1978; Fogler, 1992) 

Tubular reactor with axial Steady state - - ✓  
6 and radial dispersion 

(Finlayson, 1980) Unsteady state - - ✓  

Reaction-diffusion process 
in a porous catalyst slab or Steady state - ✓  -  

7 sphere 
(Villadsen and Michelsen, Unsteady state - - ✓  
1978) 
Falling film reactor Steady state - - ✓  

8  ( Gupta et al., 1986; Rice 
and Do, 1995; Bird et al., Unsteady state - - ✓  
2002) 
Transient cooling of a 

9  spherical body [lumped Unsteady state - ✓  - 
parameter model] 
(Campo and Blotter, 2000) 

Contd... 



Table 1.1 Contd. 

S. No. Process Equipment/System Operating Process Model Consists of 

AEs ODEs PDEs or Component Condition 

Transient cooling of a 

10 spherical body [distributed Unsteady state - - ✓  parameter model] 
(Liao et al., 2006) 

Heat conduction in a Steady state - ✓  - 
11 metallic rod 

(Rice and Do, 1995) Unsteady state• - - ✓  

Heat transfer from a Steady state - ✓  - 
12 rectangular or cylindrical fin 

(Bird et al., 2002) Unsteady state - - ✓  

Double pipe heat exchanger Steady state - ✓  -  
13 

(Pushpavanam, 1998) Unsteady state - - ✓  

Multiple effect evaporators Steady state ✓  - -  
14 

(Zaire and Kumar, 1995) Unsteady state - ✓  - 

Single tray of a separation 
Steady state ✓  - -  

15 column 
(Himmelblau and Bischoff, 
1967) Unsteady state - ✓  -  

16 Flash drum  
Steady state ✓  - - (Gupta, 1995) 

Separation columns Steady state ✓  - - 
17 (Himmelblau and Bischoff, 

1967; Gupta, 1995) Unsteady state - ✓  - 

Falling film absorber Steady state - - ✓  
18 (Rice and Do, 1995; Bird et 

al., 2002) Unsteady state - - ✓  

19 Batch adsorption column 
Unsteady state - - ✓  (Rice and Do, 1995) 

Contd... 



Table 1.1 Contd. 

S. No. Process Equipment/System 
or Component 

Operating 
Condition 

Process Model Consists of 

AEs ODES PDEs 

Boundary layer flow over a Steady state - - ✓  
20 . flat plate 

(Bird et al., 2002) Unsteady state - - ✓  

Couette and Poiseuille flow 
of Newtonian and non- Steady state - ✓  - 

21 Newtonian fluids 
(Bird et al., 2002; Siddiqui Unsteady state - - ✓  
et al., 2008b) 

Fully developed laminar and Steady state - ✓  - 
22 turbulent flow in a pipe 

(Bird et al., 2002) Unsteady state - - ✓  

Transport of solids in a Steady state - ✓  - 
23 rotary kiln 

(Liu et al., 2009) Unsteady state - - ✓  

Other Type of Models 

Thermodynamic equation of 
24 state (Smith et al. 2003; - ✓  - - 

Annamalai and Puri, 2002) 

25 
Frictional factor equation 
(Bird et al., 2002) 

- ✓  - - 

11 



various approximate and numerical solutions. However, it is not possible to obtain the 

solutions of most of the model equations analytically. On the other hand, approximate 

methods such as perturbation methods and S-decomposition methods are applicable to a 

relatively large number of nonlinear model equations (Nayfeh, 1981; Liao, 2003). But, 

these methods require the presence of small or large parameters' values and are 

sometimes problem specific (Rama and Wanchoo, 1984; Haswani et al., 1995). 

Likewise, the weighted residual based approximate methods are specific to a model 

equation (Villadsen and Michelsen, 1978; Finlayson, 1980). Being approximate in 

nature, the question of accuracy and convergence of these approximate methods arise, 

which is normally addressed by using various theorems. While numerical methods 

constitute a powerful class of methods and are equally applicable to all types of model 

equations (Dennis and Schnabel, 1983; Gupta, 1995), these suffer from two limitations: 

(i) results are obtained in discrete form with truncation errors present in the solution, 

and (ii) generally, an entirely new computation is required for each set of parameters' 
values and/or auxiliary quantities (Pushpavanam, 1998; Liao, 2003). In order to solve 

the model equations, one generally first opts for analytical or approximate method, and 

if these do not work or are cumbersome, then the numerical methods are adopted. 

The present research work is focused on obtaining the analytical or approximate 

solutions of some of the selected model equations which arise in the modelling of 

various chemical engineering processes and systems, such as heat transfer processes, 

fluid flow process, rotary kiln, reaction-diffusion processes and the real tubular 

chemical reactor. In particular, the selected heat transfer processes include transient 

convective and/or radiative cooling of a lumped spherical body, steady state heat 

conduction in a metallic rod, and steady state radiative/convective heat transfer from a 

rectangular fin. In a rotary kiln, the selected model equation is concerned with the axial 

transport of solids along the kiln length. Similarly, the model equation selected from the 

area of fluid flow describes the Poiseuille and Couette-Poiseuille flow of a third grade 

fluid. Likewise, the model equations selected from the area of reaction engineering 

describe the reaction-diffusion process inside a porous catalyst slab and sphere, and the 

axial dispersion model of a tubular chemical reactor. Beside these model equations, two 

constitutive correlations, i.e. thermodynamic equation of state and the friction factor 

equation, have also been considered for obtaining their approximate solutions. 
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The following section presents discussion about the above mentioned processes 

and systems, and their model equations along with the critical review of solution 

methods employed in the past. 

1.1 SELECTED CHEMICAL ENGINEERING PROCESSES/SYSTEMS: 

MODEL EQUATIONS AND THEIR SOLUTION METHODS 

For convenience, the discussion presented in this section has been divided into 

the following four categories. 

1.1.1 Heat Transfer Processes 

(i) Transient convective cooling of a lumped body 

The process of transient convective cooling of a lumped body is encountered in 

several instances of heat transfer operations, e.g. cooling of stirred jacketed vessels, 

smaller metallic bodies and electronic components etc. This process is modelled by a 

first order ODE constituting an initial value problem [IVP]. In recent past, this model 

equation has been solved by several researchers by using various approximate methods, 

e.g. homotopy perturbation method [HPM], homotopy analysis method [HAM], 

variational iteration method [VIM] and optimal homotopy analysis method [OHAM] 

(Ganji, 2006; Abbasbandy, 2006a; Tari et al., 2007; Marinca and Herisanu, 2008), and 

the approximate solutions for the transient temperature profiles have been obtained. 

However, these approximate solutions are found to have a limited validity for a certain 

range of parameters' values. 

(ii) Transient convective-radiative cooling of a lumped body.  

The process of transient convective-radiative cooling of a lumped body is also 

encountered in various heat transfer operations, e.g. gas burners, bulb filament, metallic 

bodies etc. The model equation of this process is given by a first order ODE constituting 

an IVP. Recently, a similar process, i.e. the transient convective-radiative cooling of a 

spherical body [metal ball bearings], has been experimentally studied by Campo and 

on 



Blotter (2000). These researchers have also successfully simulated the obtained 

experimental results [transient temperature profiles] by numerically solving the model 

equation. A simpler model equation, depicting the specific case of this process, i.e. the 

transient cooling of a lumped body in an environment of absolute zero temperature, has 

been solved by Ganji et al. (2007), Rajabi. et al. (2007), and Domairry and Nadim 
(2008) by using different approximate methods, e.g. HPM, HAM, VIM and PM 
[perturbation method], and the approximate solution for the transient temperature 

profile have been obtained. However, the approximate solutions derived by these 

researchers have been found to work in a limited range of parameters' values. 

(iii) Steady state heat conduction in a metallic rod 

The process of steady state heat conduction in a metallic rod arises in several 

instruments/processes, e.g. in heat flow meters, heat conduction through walls (Bejan 

and Kraus, 2003). This process is modelled by a second order ODE constituting a 

boundary value problem [BVP]. The allied boundary conditions [BCs] are of Dirichlet 

type. Recently, several researchers have solved this model equation by using various 
approximate methods, e.g. HPM and HAM (Rajabi et al., 2007; Sajid and Hayat, 2008a; 

Domairry and Nadim, 2008), and the approximate solutions for the temperature profiles 

along the rod length have been obtained. Here too, these approximate solutions are 

found to be suitable for a certain range of parameters' values only. 

(iv) Steady state radiative heat transfer from a rectangular fin 

The process of radiative heat transfer from a rectangular fin occurs in the heat 

transfer operations in outer space. This process is modelled by a second order ODE 

constituting a BVP. The associated BCs are given by a Dirichlet BC at the fin base and 

a Neumann BC at the fin tip. Recently, this model equation has been solved in an 

approximate manner by Ganji (2006) and Abbasbandy (2006a) with the help of HPM 

and HAM, respectively, and the approximate solutions for the temperature profiles 

along the fin length have been obtained. Similarly, Tan et al. (2007) and Marinca and 

Herisanu (2008) have used VIM and OHAM, respectively, to obtain the approximate 
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solutions [temperature profiles] of this model equation. Due to their approximate forms 

these approximate solutions are also susceptible to errors. 

(v) 	Steady state convective heat transfer from a rectangular fin 

The process of convective heat transfer from a rectangular fin is widely 

encountered in various heat transfer operations, e.g. refrigerators, air conditioners, CPU 

of a computer, electrical transformers etc. The model equation of this process is 

represented by a second order ODE which constitutes a BVP. The BCs are same as 

those used in the model equation of the previous process, i.e. a Dirichlet BC at the fin 

base and a Neumann BC at the fin tip. Recently, a similar but a more general type of 

model equation, incorporating the temperature dependent thermal conductivity and heat 

transfer coefficient, has been solved analytically by Moitsheki et al. (2010b). These 

researchers have employed the symmetry methods to obtain the analytical solutions of 

the temperature profile and the fin efficiency. However, only a few specific cases of this 

model equation have been solved by these researchers. 

1.1.2 Rotary Kiln and Fluid Flow Process 

(i) 	Rotary kiln 

Rotary kilns are widely used in the chemical industries for performing different 

operations on granular solids, e.g. mixing, drying, roasting, and gas-solid reactions etc 

(Liu et al., 2009). Some of the solid materials produced in rotary kilns are: cement, lime 

and alumina etc. An important problem related to the design of rotary kiln is to estimate 

the solid bed depth profile along the kiln length (Liu et al., 2009), for which the model 

equation proposed by Saeman (1951) is invariably employed. This model equation is 

represented by a first order ODE constituting an IVP. In literature, several researchers 

have solved this model equation by using various specific approximations and obtained 

the approximate solutions for the solid bed depth profile (Kramers and Croockewit, 

1952; Liu et al., 2009). The approximate solution derived by Liu et al. (2009) is the 

most recent one and is found to be more accurate as compared to those of Kramers and 

Croockewit (1952). Although, Liu et al. (2009) have successfully simulated several 



available experimental studies (Sai et al., 1990; Spurling, 2000) by using their 

approximate solution, yet, due to approximation used, their approximate solution has 

also been found to be prone to errors in some situations. 

(ii) 	Fluid flow process 

Many engineering fluids, e.g. slurries, pastes, lubricants, different polymer 

solutions etc are characterized as non-Newtonian fluids (Siddiqui et al., 2010). One such 

type of fluid is the third grade fluid (Oldroyd, 1950; Rivlin and Ericksen, 1955; Bird et 

al., 1987) and due to its engineering importance, different studies pertaining to various 

flow situations of these fluids have been carried out. One such study is related to the 

flow process describing Poiseuille and Couette-Poiseuille flow of a third grade fluid 

between the two parallel plates. This fluid flow process is modelled by a second order 

ODE which constitutes a BVP with Dirichlet BCs. This model equation has recently 

been solved by Siddiqui et al. (2008b, 2010) in an approximate manner by using two 

approximate methods, namely HPM and Adomian decomposition method [ADM]. In 

both these studies, however, these researchers have obtained the approximate solutions 

for the velocity profiles and no solution expression was obtained for the flow rate. 

Moreover, these approximate solutions also suffer from a limited range of applicability. 

1.1.3 Thermodynamic Equation of State and Friction Factor Equation 

(i) 	Thermodynamic equation of state 

Thermodynamic equation of state is generally employed to estimate the volume 
of a non-ideal gas at a given temperature and pressure. One of the popular 

thermodynamic equation of state is the Beattie-Bridgeman equation of state, which is 

basically a quartic equation in volume. Since analytical solution of this quartic equation 

is cumbersome and the approximate solution of this equation is not available, _ it is 

generally solved by using numerical methods, e.g. Newton-Raphson method (Gupta, 

1995). Use of some of the newly developed approximate method, e.g. ADM, to solve 
this equation is unavailable. 
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(ii) 	Friction factor equation 

For the flow of fluids through pipes and conduits, friction factor equation is used 

to evaluate the friction factor which in turn is used for finding pressure drop. Depending 

upon the type of fluid [Newtonian, non-Newtonian etc], the flow regime [turbulent and. 

laminar] and the geometry of the system [circular pipe, rectangular channel], properties 

of the contacting surface [smooth, rough], different friction factor equations exist. In the 

present work, the friction factor equations for the laminar and turbulent now of 

Bingham fluids through smooth circular pipes have been selected. For the laminar flow 

of Bingham fluids, the friction factor equation is given by a quartic equation. Whereas, 

for the turbulent flow of Bingham fluids in smooth pipes, the implicit Nikuradse-

Prandtl-Karman [NPK] equation is applicable; NPK equation is also valid for the flow 

of Newtonian fluids in smooth pipes. Hence, the various approximate explicit 

expressions of friction factor for the turbulent flow of Newtonian fluids, given in 

literature (Serghides, 1984; Manadilli, 1997; Romeo et al., 2002), may also be used for 

the Bingham fluids. However, no approximate explicit expression of friction factor is 

available for the laminar flow of Bingham fluids. 

1.1.4 Reaction-Diffusion Processes and Tubular Chemical Reactor Model 

(i) 	Reaction-diffusion processes 

The well known reaction-diffusion process occurring inside a porous catalyst is 

widely encountered in many heterogeneous catalytic reactions. Due to its importance in 

the design of heterogeneous catalytic reactors, this process has been the subject of great 

interest to chemical engineers and an enormous amount of research work is available in 

the literature (Thiele, 1939; Wheeler, 1955; Aris, 1975; Finalyson, 1980; Kubicek and 

Hlavacek, 1983; Mehta and Aris, 1971; Magyari, 2008; Moitsheki et al., 2010a). At 

steady state, this process is modelled by a second order ODE, which constitutes a BVP 

with Dirichlet and Neumann BCs at the catalyst surface and the catalyst center, 

respectively. For a porous catalyst with slab geometry, the model equation of this 

process gives rise to a non-singular BVP, whereas it results into a singular BVP for the 

porous spherical catalyst. 
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Recently, several researchers have approximately solved the model equation of 

this process for a porous catalyst slab by using various approximate methods, e.g. ADM 

and HAM (Sun et al., 2004; Abbasbandy, 2008), and obtained the approximate 

solutions for the reactant concentration profile and catalyst effectiveness, factor. 

However, these solutions are limited to the power-law kinetics only. Moreover, it has 

been observed that the solutions obtained by Sun et al. (2004) by using ADM break 

down in those cases, where reaction order is smaller than unity [ n <1, n ~ 011 and Thiele 

modulus is high [ 0 >_ 2 ]. In another work, Gottifredi and Gonzo (2005) have applied the 

perturbation and matching procedure to solve the model equation of this process for a 

porous catalyst slab and obtained the approximate solutions for the reactant 

concentration profile and catalyst effectiveness factor. It is found that the approximate 

solution for effectiveness factor is fairly accurate in its prediction and is valid for any 

type of kinetics. However, the approximate solution for concentration profile shows 

deviations near the pore center. Besides, like the ADM solution of Sun et al. (2004) and 

the HAM solution of Abbasbandy (2008),_ the approximate solution of Gottifredi and 

Gonzo (2005) is only valid for the catalyst slab. Several other researchers have also 

obtained the approximate and analytical solutions of the same model equation of a 

porous catalyst slab (Mehta and Aris, 1971; Magyari, 2008; Moitsheki et al., 2010a). 

However, these solutions are valid for the power-law kinetics only. 

The model equation of reaction-diffusion process for a porous spherical catalyst 

has also been solved by many researchers. Recently, Shi-Bin et al. (2003) have 

approximately solved this model equation by using ADM and obtained the approximate 

solutions for the concentration profile of reactant and the catalyst effectiveness factor. 

However, these approximate solutions are applicable for power-law kinetics only, and 

here too, the ADM solutions fail for the reaction order smaller than unity [ n <1, n ~ 0 ] 

and higher Thiele modulus [ b >_ 2].  In another work, Li et -al. (2004) have 

approximately solved the same model equation for a bio-catalyst with the help of series 

expansion method and obtained the approximate solutions for the reactant concentration 

profile and catalyst effectiveness factor. In this case, biochemical reaction follows the 

Michaelis-Menten kinetics. In a few situations, however, approximate solution of Li et 

al. (2004) has also been found to be prone to errors. In yet another study, Kumar and 

Singh (2010) have approximately solved similar types of singular BVPs by using a 

modified Adomian decomposition method [MADM]. 
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(ii) 	Tubular chemical reactor model 

The flow patterns existing in real tubular chemical reactor are by and large 

represented by using axial dispersion model (Fogler, 1992). Under steady state, the axial 

dispersion model of a tubular chemical reactor results in a second order ODE which 

constitutes a BVP. The associated BCs are expressed by a non-homogeneous Robin BC 

at the reactor inlet, whereas homogeneous Neumann BC at the reactor outlet. These BCs 

are collectively known as the famous Danckwerts boundary conditions. For a tubular 

chemical reactor sustaining nonlinear kinetics, this model equation has been solved by 

many researchers by using different methods, e.g. approximate methods have been used 

by Freeman and Houghton (1966), Burghardt and Zaleski (1968), Wissler (1969), Fan et 

al. (1971), Ray et al. (1972), Marek and Stuchl (1975), Shah and Paraskos (1975) etc 

and numerical methods have been employed by Fan and Bailie (1960), Lee (1966), Wan 

and Ziegler (1970), Rao et al. (1981) etc, and obtained the approximate solutions for the 

reactant concentration profiles. However, the recently developed approximate methods, 

e.g. ADM, HAM, or their variants, have not yet been applied to solve this model 

equation. 

1.1.5 Remarks 

From the above discussion about the selected model equations and their 

available solutions, the following observations can be made: 

(i) Analytical solutions exist only for the model equations of convective heat 

transfer from a rectangular fm and reaction-diffusion process inside a porous 

catalyst slab. However, these analytical solutions are valid for a few specific 

situations only. 

(ii) Approximate solutions, existing for the model equations of convective and/or 

radiative cooling of a lumped body, heat conduction in a metallic rod, radiative 

heat transfer from a rectangular fin, Poiseuille and Couette-Poiseuille flow of a 

third grade fluid and the reaction-diffusion processes inside a porous catalyst 

slab/sphere, are applicable in a limited range only. 
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(iii) Approximate solutions for the thermodynamic equation of state, friction factor 

equation, and axial dispersion model of a tubular chemical reactor, have not yet 

been found by using some of the recently developed approximate methods, e.g. 

ADM, HAM and their variants. 

Keeping the above observations in view, the present research work has been 

planned with the main aim of finding the analytical and approximate solutions of the 

above discussed model equations along with the validation and discussion of the 

obtained results. It should, however, be noted that due to the nonlinear nature of these 

model equations, only some of them may be solved analytically. Whereas, those model 

equations, which may not be solved analytically, are proposed to be solved in an 

approximate manner by using two recently developed approximate methods, namely 

ADM, HAM, and/or their variants. These two techniques have been proved to be quite 

efficient and promising for solving nonlinear equations of different kind, and have been 

successfully applied in various branches of engineering and allied sciences. Since, the 

main concern of this research work is to obtain the analytical/approximate solutions of 

the model equations of selected chemical engineering processes/systems, the 

development of model equations has been omitted. Nevertheless, the derivations of 

these model equations can be found in any of the standard texts available on modelling 

and simulation of chemical engineering systems (Himmelblau and Bischoff, 1967; Rice 
and Do, 1995; Bird et al., 2002; Babu, 2004). 

1.2 OBJECTIVES 

On the basis of review presented in the previous sections, objectives of the 
research work in the thesis have been formulated as follows: 

[A] 	To Obtain Analytical / Approximate Solutions of Models of the following 
Processes/Systems. 

(a) Heat Transfer Processes 

Transient convective cooling of a . lumped body; Transient convective-

radiative cooling of a lumped body; Steady state heat conduction in a 
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metallic rod; Steady state radiative heat transfer from a rectangular fin; 

Steady state convective heat transfer from a rectangular fin 

(b) Rotary Kiln and Fluid Flow Process 

Rotary kiln; Fluid flow process 

(c) Thermodynamic Equation of State and Friction Factor Equation 

Thermodynamic equation of state; Friction factor equation 

(d) Reaction-Diffusion Processes and Tubular Chemical Reactor Model 

Reaction-diffusion process in a porous catalyst slab and sphere; Tubular 

chemical reactor model 

[B] 	To Compare the Obtained Analytical/Approximate Solutions with the 

Numerically Obtained Solutions as well as with the Approximate Solutions 

Available in Literature. Table 1.2 provides their essential details. 

1.3 ORGANIZATION OF THE THESIS 

The thesis has been organized into six chapters as discussed below. 

Chapter II covers the detailed literature review of the solution methodologies 

employed by different researchers for solving the selected chemical engineering 

processes and systems along with their brief description. Chapters III to VI are the 

main contributions of the thesis, and pertain to the development of the 

analytical/approximate solutions of the selected model equations. In Chapter III 

analytical solutions of the selected heat transfer processes have been presented, 

whereas, in Chapter IV analytical solutions of the rotary kiln and the fluid flow process 

14 
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have been given. In Chapter V the approximate solutions of the thermodynamic 

equation of state, the friction factor equation and the model equations of reaction-

diffusion processes have been obtained by using ADM and RADM. In Chapter VI the 
approximate solutions of the reaction-diffusion process and the tubular chemical reactor 

model have been obtained by using OHAM. Finally, the Chapter VII presents the 

conclusions of the thesis and the recommendations for future research work. 

Due to the mathematical nature of this thesis, the mathematical symbols have 

been used in abundance. Hence, to avoid any ambiguity, the symbols have been defined 

at the end of each chapter. Similarly, to avoid the discontinuity in the text, the detailed 

mathematical steps used in obtaining the solutions of some of the model equations have 

been given in appendices. 
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CHAPTER II 

LITERATURE REVIEW 

2.0 INTRODUCTION 

In this chapter, the literature pertaining to the solution methodologies adopted by 

several researchers to solve the model equations of selected chemical engineering 

processes/systems has been reviewed in detail. Besides, the literature relating to the 

presently employed approximate methods, namely ADM, HAM, and their variants, has 

also been described. For convenience, the literature review of similar processes/systems 

has been combined and presented at the same place. It should, however, be noted that 

the cited literature is in no way an exhaustive review, but just represents a part of the 

abundant literature available on the selected processes/systems, which is relevant to the 
present study. 

2.1 SELECTED HEAT TRANSFER PROCESSES 

In this section, the review of previously adopted methods to solve the model 

equations of five selected heat transfer processes has been presented. The selected heat 

transfer processes are: transient convective cooling - of a lumped body, transient 

radiative-convective cooling of a lumped body, steady state heat conduction in a 

metallic rod, steady state radiative heat transfer from a rectangular fin and the 

convective heat transfer from a rectangular fin. 

2.1.1 Transient Convective and/or Radiative Cooling of a Lumped Body 

The process of transient cooling of a body by the individual or combined 

mechanisms of convection and radiation is widely encountered in different areas of heat 

transfer operations. Some of the specific examples are: cooling of gas burners, broiler, 

automobile radiators, bulb filament, industrial furnaces, combustion chambers, building 

walls, cooling of metals in various metallurgical processes, rocket nozzles, radiation 



devices in outer space applications (Parang et al., 1990; Siegel and Howell, 1992; 

Modest, 2003; Bejan and Kraus, 2003; Tan et al., 2009). There also exists a different 

class of moderate temperature operations in which radiative fluxes are small, however, 

in conjunction with the free convective • heat transfer, the radiative part may be 

comparable to the convective part; some of the examples include cooling of electronic 

components and heat removal by convecting-radiating fins and spines, cooling of hot 

metallic bodies (Bejan and Kraus, 2003; Campo and Blotter, 2000). 

In literature, several mathematical modelling approaches have been applied to 

portray the above unsteady convective-radiative heat transfer processes, starting from 

the simple lumped parameter model to the more complex distributed parameter model 

(Siegel and Howell, 1992; Bejan and Kraus, 2003; Cortes et al., 2003; Modest, 2003; 

Su, 2004; Liao et al., 2006; Tan et al., 2009; Kupiec and Komorowicz, 2010). For 

example, the distributed parameter model has been employed to simulate some of the 

similar heat transfer processes, e.g. the process of groundwater freezing and metal 

solidification (Parang et al., 1990), thermal chemical vapour deposition 

(Theodoropoulou et al., 1998), and cooling of a spherical body (Liao et al., 2006). 

Likewise, the lumped parameter model has been applied to represent various heat 

transfer processes, e.g. the freezing of water in the night sky in deserted areas (Bird et 

al., 2002), cooling of metal ball bearing (Campo and Blotter, 2000), baking.process in 

an oven (Sakin et al., 2009; Tan et al., 2009) and dielectric barrier discharge reactor 

(Sadat et al., 2010). 

The distributed parameter models of these processes are represented by PDEs, 

and provide the spatial and temporal details of the temperature of the concerned body. 

However, numerical solution of the so derived PDEs is cumbersome and time 

consuming especially in repeated calculations. To overcome this difficulty, various 

attempts have been made to propose different improved lumped models so as to obtain 

the sufficiently accurate information with minimum efforts (Cortes et al., 2003; Su, 

2004; Kupiec and Komorowicz, 2010). The equations characterizing the lumped model 

of a system are derived after performing some spatial averaging over the distributed 

parameter model and the governing PDE is rendered into a nonlinear ODE. In contrast 

to the distributed model equation, the so derived lumped model equation of a system is 

mathematically tractable and is generally preferred. However, it only provides the 

temporal details of the temperature of the body. The choice between the lumped and 
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distributed parameter approaches basically depends on the degree of accuracy and the 

level of details required, and should only be made by properly evaluating the concerned 

Biot number, Bi. It should be noted that the lumped model approach is valid if Bi < 0.3 

(Liao et al., 2006; Campo and Blotter, 2000). 

Recently, the model equation of transient convective cooling of a lumped body, 

a nonlinear first order ODE constituting an IVP, has been solved by several researchers 

by using some newly developed approximate methods, e.g HPM (Ganji, 2006), HAM 

(Abbasbandy, 2006a), VIM (Tani et al., 2007) and OHAM (Marinca and Herisanu, 

2008), and different approximate solutions of transient temperature profile were 

obtained in terms of some finite series. It should also be noted that in some of these 

studies (Ganji, 2006; Abbasbandy, 2006a), analytical solution of this model equation 

has also been found, however, the form of analytical solution is implicit and to the best 

of our knowledge, explicit analytical solution for this process has not yet been found. 

A similar process of transient convective-radiative cooling of a lumped spherical 

body [metal ball bearing] has been experimentally studied by Campo and Blotter 

(2000). The model equation of this process was described by a nonlinear first order 

ODE constituting an IVP and was numerically solved by these researchers by using RK-

Fehlberg method. The obtained numerical results for transient temperature profiles were 

successfully crosschecked against the experimentally obtained results. However, no 

attempt was made for obtaining the analytical/approximate solution of the concerned 

model equation. 

In another recent study, a simplified model equation of this process, represented 

by a nonlinear first order ODE constituting an IVP and depicting the transient cooling 

of a lumped body in an environment of absolute zero temperature, has been solved by 

several researchers by using various approximate methods. Rajabi et al. (2007) have 

employed HPM to solve the same model equation and -obtained the approximate 

solution of transient temperature profile. Ganji et al. (2007) have applied PM, HPM and 

VIM to obtain the approximate solution of transient temperature profiles and compared 

the obtained results so as to judge effectiveness of these methods. Domairry and Nadim 

(2008) have applied HPM and HAM and compared the obtained results to prove the 

superiority of HAM. However, to the best of our knowledge, analytical solution of this 

model equation is also unreported till date. 
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2.1.2 Steady State Heat Conduction in a Metallic Rod 

The process of steady state heat conduction in a metallic rod arises while 

measuring the thermal conductivity of metals by using flow meters (Bejan and Kraus, 

2003). The model equation of this process is represented by a linear second order ODE 

constituting a BVP, and in case of temperature dependent thermal conductivity, this 

model equation becomes nonlinear. Recently, one such nonlinear model equation in 

which the thermal conductivity is assumed to vary linearly with temperature has been 

solved by several researchers by using various approximate methods. For example, 

Rajabi et al. (2007) and Sajid and Hayat (2008a) have solved the resultant model 

equation by using HPM and HAM, respectively, and obtained the approximate solution 

of temperature profile in the form of some finite series. Domairry and Nadim (2008) 

have shown the superiority of HAM over HPM by solving the same model equation by 

both the methods. However, none of these studies have reported the analytical solution 

of this model equation, and to the best of our knowledge, it is also not available 

elsewhere. 

2.1.3 Steady State Radiative/Convective Heat Transfer from a Rectangular Fin 

Extended surfaces also called fins play a vital role in removing the heat energy 

from any system, and are frequently encountered in many heat transfer applications, e.g. 

radiators in space vehicle, refrigerators, air conditioners, CPU of a computer, electrical 

transformers, heat exchangers, engines and electrical motors etc. A lot of theoretical and 

experimental studies. have been carried out to analyze different types of fins and an 

excellent account of work can be found in the books by Sunden and Heggs (2000) and 

Kraus et al. (2001). 

In real situations, fins with familiar geometries, e.g. rectangular or cylindrical, 

are quite common. The steady state process of heat transfer through these fins is, in 

general, represented by a second order ODE constituting BVP. On the basis of the heat 

transfer conditions [transient boiling, laminar film boiling/condensation, turbulent 

convection, nucleate boiling], these model equations, can be linear and nonlinear. 

Linear model equations, depicting the constant thermal conductivity and heat transfer 

coefficient, are solvable analytically. However, in applications where large temperature 

24 



gradients exist, the model equations become nonlinear due to the variation of thermal 

conductivity and heat transfer coefficient with temperature. These nonlinear model 

equations are normally difficult and sometimes impossible to solve analytically. Despite 

this difficulty, numerous attempts have been made by several investigators to get the 

approximate and/or analytical solutions of these nonlinear model equations. Nonlinear 

model equation with constant thermal conductivity but power-law temperature 

dependent heat transfer coefficient [a nonlinear second order ODE constituting a BVP] 

has been approximately solved by Aziz and Benzines (1976) by using perturbation 

method. Dul'kiii and Garas'ko (2002) have exercised some fitting procedure to get the 

approximate solution of the same model equation. In some recent works, several 

researchers have also employed various approximate methods for solving the same 

model equation, e.g. Lesnic and Heggs (2004), and Chang (2005) have employed ADM, 

whereas Chowdhary and Hashim (2008) have used HPM. On the other hand, analytical 
solutions of the same model equation have also been obtained by different workers (Sen 

and Trinh, 1986; Yeh and Liaw, 1990; Abbasbandy and Shivanian, 2010). 

Recently, a similar type of model equation represented by a nonlinear second 

order ODE constituting a BVP and depicting the process of radiative heat transfer from 

a rectangular fin to the free space has been solved by several researchers by using 

different approximate methods. For example, Ganji (2006) and Abbasbandy (2006a) 

have, respectively, employed HPM and HAM to solve this model equation, and 

obtained the approximate solution of temperature profile. Similarly, Tari et al. (2007) 

and Marinca and Herisanu (2008) have employed VIM and OHAM, respectively, to 

solve the same model equation, and obtained the approximate solution of temperature 

profile. However, in all these studies no attempts have been made to obtain the 

analytical solution of this model equation. 

In another recent study, a more general model equation depicting the process of 

convective heat transfer from a rectangular fin has been analytically solved by 

Moitsheki et al. (2010b). These researchers have applied symmetry methods to solve 

this general model equation and obtained the analytical solutions of temperature profiles 

and fin efficiency. Although, this equation is also represented by a nonlinear second 

order ODE constituting a BVP, but it now incorporates the different power-law 

functions of temperature for thermal conductivity and heat transfer coefficient. 

However, neither all of the cases appearing in this model equation have been solved by 
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these researchers, nor any discussion regarding the existence, uniqueness/multiplicity 

and stability/instability of the obtained solutions is presented. 

It should be noted that the model equations of the following processes are the 

specific cases of this general model equation: 

• The convective heat transfer process from a rectangular fin with the assumption 

of constant thermal conductivity but power-law temperature dependent heat 

transfer coefficient (Aziz and Benzies, 1976; Sen and Trinh, 1986; Yeh and 

Liaw, 1990; Dul'kin and Garas'ko, 2002; Lesnic and Heggs, 2004; Chang, 2005; 

Chowdhury and Hashim, 2008; Abbasbandy and Shivanian, 2010). 

• The radiative heat transfer process from a rectangular fin with the assumption of 

constant thermal conductivity (Ganji, 2006; Abbasbandy, 2006a; Tari et al., 

2007; Marinca and Herisanu, 2008). 

• The reaction-diffusion process taking place in a porous catalyst slab with the 

assumption of power-law kinetics and constant diffusivity (Mehta and Aris, 

1971; Sun et al., 2004; Abbasbandy, 2008; Abbasbandy et al., 2009; Magyari, 

2008; Moitsheki et al., 2010a). 

Hence, the solutions obtained for the above more general model equation may 

also be applied to the above mentioned processes. 

2.2 ROTARY KILN AND FLUID FLOW PROCESS 

In this section, the literature related to the solution methodologies adopted by 

various researchers to solve the model equations of rotary kiln and fluid flow process 

has been presented. The model equation of rotary kiln describes the axial transport of 

solids, whereas the model equation of fluid flow process concerns with the flow of a 

third grade fluid between two parallel plates. 
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2.2.1 Rotary Kiln 

Rotary kilns are widely used in the chemical and allied industries for performing 

various operations on the granular solids, e.g. mixing, heating and gas-solid reactions. 

Some of the processes in which these operations occur are calcination and sintering. 

Rotary kilns are basically a type of reactor in which solids travel down the cylinder with 

the hot gas flowing co-currently or counter-currently. The heat transfer takes place from 

the hot gas to the solid particles and the above different operations take place 

simultaneously. Because of the industrial importance of rotary kiln, a lot of theoretical 

and experimental studies are available in the literature. 

An important problem in the design of rotary kiln is to estimate the solid bed 

depth profile along the kiln length (Liu et al., 2009). The heat transferred to the solids in 

a kiln strongly depends on their residence time and hold-up, which are basically 

dependent on the bed depth profile. Once the bed depth profile is known, these 
quantities can easily be found thereafter. 

The process of axial transport of solids in a rotary kiln- was first studied 

experimentally by Sullivan et al. (1927). Based on the obtained experimental results, 

these researchers derived empirical relations for the time of passage of solids through 

the rotary kiln. However, it was Saeman (1951) who initially established a sound 

theoretical background for the flow of granular solids in a rotary kiln and presented a 

nonlinear model equation for fording the bed depth profile. Due to the simplicity of the 

Saeman's model equation and its close agreement with the experimental data, it is 

widely used in literature. This model equation is represented by a nonlinear first order 

ODE constituting an IVP, and to the best of our knowledge, its analytical solution is not 

available. However, in some studies approximate solutions of this model equation have 

been reported. For example, Kramers and Croockewit (1952) derived the approximate 

solution for finding the bed depth profile and fractional hold-up. But, due to higher error 

in its prediction in certain cases, it is generally not preferred (Liu et al. 2009). 

Recently, Liu et al. (2009) have derived a more accurate approximate solution of 

the bed depth profile by simplifying the nonlinearity in the Saeman's model equation. 

These researchers have also successfully simulated the experimental data taken from 

two different sources (Sai et al., 1990; Spurling, 2000), and shown that their 

approximate solution is superior to the one derived by Kramers and Croockewit (1952). 
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However, the approximate solution of Liu et al. (2009) has also been found to be 

susceptible to errors and in some cases, it develops deviations in its predictions. In their 

work, Liu et al. (2009) have also pointed out this shortcoming. 

There have been several other experimental and simulation studies to investigate 

different aspects of the rotary kiln. For instance, Lebas et al. (1995) have performed 

experimental and simulation studies for finding the bed depth profile and residence 

time, whereas Spurling et al. (2001) have developed the dynamic mechanistic model for 

studying the transient response to large step changes in various operating variables. The 

experimental and theoretical studies to investigate the residence time distributions of 

solids inside the rotary kiln and the effect of different dam configurations have been 

carried out by Sai et al. (1990) and Scott et al. (2008), respectively. However, none of 

these studies have reported the analytical solution of the Saeman's nonlinear model 

equation. 

2.2.2 Fluid Flow Process 

In general, many engineering fluids and fluid-solid mixtures, e.g. slurries, 

emulsions, pastes, lubricants, different polymer solutions, and various . biological and 

pharmaceutical fluids, .e.g. ketchups, honey, blood, are characterized by non-Newtonian 

fluids (Hillier et al., 2002; Ali et al., 2009a; Siddiqui et al., 2010; Mehdizadeh and 

Oberlack, 2010; Wang et al., 2011). Most of these non-Newtonian fluids exhibit 

numerous strange features unlike their Newtonian counterparts, and thus, the classical 

Navier-Stokes equations become redundant in describing their rheological behaviour 

properly (Wanchoo et al., 1996; Wanchoo et al., 2007a; Wanchoo et al., 2008). Some of 

the attributes of these non-Newtonian fluids are the strong dependence of fluid 

viscosities on the velocity gradients, display of elastic effects and presence of nonzero 

and unequal normal stresses. Due to this reason, various rheological models have been 

proposed to correctly portray the non-Newtonian flow behaviour (Oldroyd, 1950; Rivlin 

and Ericksen, 1955; Bird et al., 1987; Bird et al., 2002). One such type of rheological 

model is the differential type fluid model and the third grade fluid is one of the subclass 

of these differential type fluid models. Due to the ability of the third grade fluid in 

successfully capturing various non-Newtonian effects, viz. shear thinning, shear 

thickening as well as normal stresses, it has been the subject of many investigations 



ranging from fundamental studies to the practical flow situations. For example, 

thermodynamical aspects of these fluids have been investigated by some of the 

researchers (Fosdick and Rajagopal, 1980; Rajagopal, 1980; Patria, 1989). Studies, 

related to the existence and uniqueness of solutions of the concerned model equations, 

have been carried out by Bellout et al. (1999), Passerini and Patria (2000), and 

Vajravelu et al. (2002). Besides, some basic flow situations arising in the flow of a third 

grade fluid have also been tackled by several investigators, e.g. the model equations 

describing the pulsating Poiseuille flow of third grade fluid have been numerically 

solved by Rajagopal and Sciubba (1984), the process of pulsatile flow of blood [an 

important example of third grade fluid] due to body acceleration has been studied by 

Majhi and Nair (1994). Similarly, the flow of third grade fluid in a single rotating 

cylinder and between two rotating cylinders has been examined by Vajravelu et al. 

(2002) and by Akyildiz et al. (2004), respectively. The model equations representing the 

flow of a third grade fluid over flat plate has been solved by several researchers by 

using various approximate methods, e.g. HAM (Ayub et al., 2003; Sajid and Hayat, 

2008b) and HPM (Siddiqui et al., 2008a). The model equation of a similar flow process 

has been analytically solved by Hayat et al. (2008). Slip effects for the peristaltic flow 

of third grade fluid in tubes have been studied by Ali et al. (2009b). Model equations of 

heat and mass transfer processes with chemical reaction in unsteady flow of a third 

grade fluid have been solved approximately by Hayat et al. (2010) by using HAM. 

Recently, the model equations of similar flow processes, i.e. the Poiseuille flow 

and Couette-Poiseuille flow of a third grade fluid between the two parallel plates, have 

been solved by several researchers with the help of two approximate methods, namely 

HPM (Siddiqui et al., 2008b) and ADM (Siddiqui et al., 2010). These flow processes 

are described by nonlinear second order ODEs constituting BVPs. In both these studies, 

these researchers have obtained the approximate solutions of the velocity profile, 

however, no solutions were found for the flow rate. It should be noted that in many fluid 

flow processes, it is the flow rate that is conveniently measured, whereas the 

measurement of velocity profile is generally not done. Nevertheless, in our knowledge, 

the analytical solutions of velocity profile and flow rate have not yet been found for 

these flow processes. 



2.3 EQUATION OF STATE AND FRICTION FACTOR EQUATION 

In this section the appraisal of literature pertaining to the solution methods used 

for solving the thermodynamic equation of state and friction factor equation has been 

presented. 

2.3.1 Thermodynamic Equation of State 

The thermodynamic equation of state basically describes the relationship 

between two or more state functions, e.g. temperature, pressure and volume. There exist 

many equations of state, e.g. Beattie-Bridgeman equation, Peng-Robison equation, 

Redlich-Kwong equation, BWR [Benedict—Webb—Rubin] equation, each having its own 

advantages and disadvantages (Annamalai and Puri, 2002). In chemical engineering, 

these equations of states are used in predicting the properties of gases, liquids, solids 

and mixtures of gases and mixtures of liquids. Mathematically, these equations are 

represented by nonlinear AEs and are, in general, solved by using numerical methods. 

One such equation of state is the Beattie-Bridgeman equation of state, which is 

widely used in estimating the volume of a gas at a given pressure and temperature. This 

equation of state is given by a quartic equation in volume. However, due to the 

cumbrous analytical solution of this equation, it is normally solved by using numerical 

methods, and use of some recent approximate methods, e.g. ADM and RADM, to solve 

this equation is unavailable. 

2.3.2 Friction Factor Equation 

The prediction of frictional losses is a vital issue in various pipe-flow problems, 

viz, pressure drop evaluation for estimating the pump size or to find the flow-rate in a 

piping network for a given pressure drop. Frictional losses are computed with the help 

of friction factor, which is normally given by implicit algebraic equations. In a huge 

piping network involving different pipe elements, a large number of implicit algebraic 

equations have to be solved for evaluating the friction factor (Bralts et al., 1993). This 

task becomes tedious as the network size increases and to gain a computational 

efficiency, a good initial guess of friction factor has to be specified for each pipe 
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element. Therefore, to avoid these cumbersome numerical iterative processes, explicit 
expressions of friction factor are needed. 

Since many industrially important non-Newtonian fluids, e.g. pastes, gels, 

plastics, are represented by Bingham fluids (Bird et al., 2002), it becomes essential to 

express the friction factor equation in explicit form in order to evaluate friction factor 

conveniently. The friction factor for the laminar flow of Bingham fluids in smooth pipes 

depends upon Bingham Reynolds number [ Re = PV ] and Hedstrom number 
IB 

[ He = ~°p 2 ], and is given by an implicit quartic equation whose closed form 

analytical solution is possible (Govier and Aziz, 1972; Sablani et al., 2003). However, 

due to its complexity this analytical solution is rarely employed, and as per our 

knowledge, no approximate explicit solution is available. Therefore, other approaches, 

e.g. numerical method, artificial neural network [ANN], are employed to find the 

friction factor (Sablani et al., 2003). Similarly, for turbulent flow of Bingham fluids in 

smooth pipe, the famous implicit NPK [Nikuradse-Prandtl-Karman] equation is 

applicable (Sablani et al., 2003), which can be deduced from the well-known 

Colebrook-White equation (Colebrook, 1939) under smooth pipe condition (Romeo et 

al., 2002). It should be mentioned that the NPK equation is the same equation as the one 

used for Newtonian fluids in turbulent flow in smooth pipes. Therefore, corresponding 

explicit correlations can also be used for these fluids. Some of the explicit correlations 

used in place of implicit NPK equation are those proposed by Churchill (1977), Chen 

(1979), Zigrang and Sylvester (1982), Serghides (1984), Manadilli (1997) and Romeo et 

al. (2002). Out of these, the correlations proposed by Serghides (1984), Manadilli 

(1997) and Romeo et al. (2002) yield reasonably close results to those of NPK equation. 

The friction factor correlation proposed by Serghides (1984) is valid for Re >2100 and 

for any value of relative roughness [ s/D], whereas the correlation proposed by 

Manadilli (1997) is applicable for 5000< Re <108 and for any value of E/D. The 

correlation given by Romeo et al. (2002) is valid for 3000 < Re < 1.5 x108 and 0 < 

E/D< 0.05. Beside these, some other studies have also been carried out for evaluating 

the friction factor. 
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For example, Sablani et al. (2003) have developed an explicit procedure for 

finding the friction factor for Bingham fluids in smooth pipes using an empirical soft 

computing tool, i.e. artificial neural network [ANN], but no explicit correlation was 

provided. Goudar and Sonnad (2003), and More (2006) have obtained explicit 

expressions of friction factor for turbulent flow of Newtonian fluids by solving the NPK 

and Colebrook-White equations, respectively, by using Lambert W function (Keady, 

1998). 

However, use of ADM and RADM to obtain the explicit expressions of friction 

factor has not yet been reported in any of the above studies. 

2.4 REACTION-DIFFUSION PROCESSES AND TUBULAR CHEMICAL 

REACTOR MODEL 

2.4.1 Reaction-Diffusion Process in a Porous Catalyst Slab 

The reaction-diffusion process inside a porous catalyst plays an important role in 

the design of gas-solid heterogeneous reactors and has been a subject of great interest 

for chemical engineers (Thiele, 1939; Wheeler, 1955; Pushpavanam and Narayanan, 

1988; Fogler, 1992; Levenspiel, 1999). In these processes, the reactant diffuses and 

reacts inside the catalyst pores to give the desired product. The amount of costly 

catalysts to -be used in the reactor and the proper design of the reactor are primarily 

dictated by the prediction of diffusion and reaction rates inside the catalyst. Therefore, it 

becomes an essential task to obtain the accurate solution of the model equation of 

reaction-diffusion process. 

Under steady-state and isothermal conditions, the model equation of reaction-

diffusion process is represented by a second order ODE constituting a BVP. However, 

the presence of frequently encountered complicated kinetics terms render this model 

equation nonlinear, and to obtain the analytical solution for such cases becomes almost 

infeasible except in very special cases, e.g. for first order kinetics (Thiele, 1939). Many 

workers have studied this process in detail and obtained the solution of its model 

equation for several important situations. However, because of the nonlinear nature of 
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the model equation, these approaches have been limited to various linearization or 

numerical techniques. For example, the finite difference techniques have been employed 

by Kubicek and Hlavacek (1983), whereas weighted residual techniques have been 

applied by Villadsen and Michelsen (1978), and Finalyson (1980). For power-law 

kinetics, the asymptotic and analytical solutions of this model equation have been given 

by Mehta and Aris (1971). Recently, Magyari (2008) and Moitsheki et al. (2010a) have 

also obtained the analytical solution of this model equation by using derivative 

substitution method and symmetry methods, respectively. However, the analytical 

solutions obtained by these researchers are limited to the catalyst slab sustaining power-

law kinetics. In some other studies, several approximate methods, e.g. ADM and VIM, 

have also been applied by different researchers to solve the same model equation 

(Lesnic, 2007; Mo, 2007; Wang and He, 2008). A good account of work related to the 

multiplicity and stability of solutions of this model equation can be found in voluminous 

books by Aris (1975). 

Recently, Sun et al. (2004) and Abbasbandy (2008) have employed ADM and 

HAM, respectively, to solve the model equation of this process, and obtained the 

approximate solutions of concentration profile and effectiveness . factor. However, the 

approximate solutions obtained by these researchers are restricted to catalyst slab and 

power law kinetics only. Moreover, the ADM solution obtained by Sun et al. (2004) 

breaks down in those cases where reaction order is smaller than unity [ n <1, n ~ 01 and 

Thiele modulus is high [ 0 >_ 2]. In another study, Gottifredi and Gonzo (2005) have 

obtained the approximate solutions of concentration profile and effectiveness factor 

with the help of perturbation and matching procedure. These solutions are applicable to 

any types of kinetics but are valid for slab geometry only. Moreover, unlike the 

approximate solution of effectiveness factor which is found to be good enough in 

accurately predicting its value, the approximate solution of concentration profile shows 

significant deviations near the pore end for high Thiele modulus. These limitations have 

also been pointed out by Gottifredi and Gonzo (2005). 

However, in our knowledge, the above restrictions present in the ADM solution 

of Sun et al. (2004) and the approximate solution of Gottifredi and Gonzo (2005) have 

not yet been rectified. 
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2.4.2 Reaction-Diffusion Process in a Porous Catalyst Sphere 

Like the previously discussed reaction-diffusion process inside a porous catalyst 

slab, the reaction-diffusion process inside a catalyst sphere is also equally important in 

the design of heterogeneous catalytic reactors. Under steady state and isothermal 

conditions, the model equation of this process is described by a second order ODE 

constituting a singular BVP (Fogler, 1992), which poses difficulty in obtaining its 

solution as the solution may blow up near the singularity. In literature, this model 

equation has also been studied by many researchers in different contexts. For example, 

aspects related to the multiplicity and stability of solutions have been discussed by Aris 

(1975). Approximate solutions of this model equation have been obtained by numerous 

researchers by using several specific approximate methods, e.g. asymptotic methods 

(Kim and Lee, 2004, 2006) and Taylor series method (Li et al., 2004). Similarly, 

different numerical methods, e.g. finite difference method, weighted residual method, 

have been applied by several researchers (Ferguson and Finlayson, 1970; Villadsen and 

Michelsen, 1978; Finlayson, 1980; Kubicek and Hlavacek, 1983). Valdes-Parada et al. 

(2008) have applied the Green's function approach to improve the finite-difference 

scheme for solving the model equation of this process for the spherical catalysts as well 

as the catalysts of other geometries. Recently, Magyari (2010) has applied symmetry 

method to obtain the analytical solution of this equation for a particular value of 

reaction order. 

One should also note that the model equation of this process resembles with the 

well known Lane-Emden equation, which has also been solved by various researchers 

by using different approximate methods. For example, ADM and its modified versions 

have been employed by various researchers (Wazwaz, 2002; Wazwaz, 2005; Inc et al., 

2005; Mittal and Nigam, 2008). Similarly, HPM (Ramos, 2008; Chowdhury and 

Hashim, 2009), HAM (Liao, 2003; Bataineh et al., 2009), VIM (Lu, 2007) and 

collocation method (Parand et al., 2010), have also been successfully used to solve the 

Lane-Emden equation. A small survey of the solution techniques used for solving 

similar types of singular BVPs has been given by Kumar and Singh (2009). 

Recently, the model equation of this process has been solved by Shi-Bin et al. 

(2003) by using ADM and the approximate solutions of concentration profile and 

effectiveness factor have been obtained. In fact, ADM was introduced for the first time 
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in chemical engineering by these researchers. However, the obtained ADM solution is 

applicable to power-law kinetics only and breaks down in case of n <1 [ n ~ 0 ] and 

0 >_ 2. To the best of our knowledge, no remedial measures have yet been taken for this 

limitation. 

2.4.3 Tubular Chemical Reactor Model 

The flow pattern existing in a real tubular chemical reactor as well as in many 

other chemical engineering systems is generally represented by axial dispersion model. 

In axial dispersion model, the non-ideal flow pattern is basically assumed as a 

combination of two types of flows, namely convective flow and dispersive flow. The 

dispersive flow is governed by a law analogous to the Fick's law of diffusion and takes 

into account all the non idealities caused by the radial mixing or other non flat velocity 

profiles. In this way, the departure from ideal plug flow is taken care of. Moreover, it 

has the advantage of reducing to two ideal flow patterns, viz, the plug flow and the 

completely mixed flow, by substituting the dispersion coefficient equal to zero or 

infinity respectively; these are the flow patterns that are used to analyze and design the 

ideal reactors. Due to these merits, it has been the subject of great interest for chemical 

engineers for more than half a century, especially in the field of tubular chemical 

reactors (Taylor, 1953; Danckwerts, 1953; Aris, 1956; Wehner and Wilhelm, 1956; 

Zwietering, 1959; Bischoff and Levenspiel, 1962a and 1962b; Deckwer and Mahlmann, 

1976; Hsu and Dranoff, 1986; Gunn, 1993, 2004; Wanchoo et al., 2007b; Babu et al., 

2007). Besides, it has also been very effective in correctly portraying the flow pattern 

existing in various other types of reactor and systems, for example: fluidized bed reactor 

(Fan and Fan, 1979), fixed bed reactor (Rodrigues et al., 1994), membrane reactor (Tan 

and Li, 2000), rotary kiln (Abouzeid et al., 1980; Sudah et al., 2002), double pipe and 

plate heat exchangers (Roetzel et al., 1994; Roetzel and Balzereit, 1997), shell and tube 

heat exchanger (Roetzel and Lee, 1993; Roetzel and Balzereit, 2000), and fixed bed 

adsorber (Liao and Shiau, 2000). Once flow pattern / mixing level is quantified, other 

issues, e.g. optimization and control, can be studied (Babu and Angira, 2005; Babu et 

al., 2005; Gujarathi and Babu, 2009; Gujarathi and Babu, 2010). 

Under steady state, the axial dispersion model is represented by a second order 

ODE, which constitutes a two point BVP. The associated BCs are known as the famous 

35 



Danckwerts BCs. In fact, the model equation is similar to the convection-diffusion 

equation. Different methods have been used to solve the axial dispersion model of 

various chemical engineering systems. In case of linear model equations, analytical 

methods, e.g. Laplace transform and Fourier transform, have been employed by several 

researchers (Rodrigues et al., 1994; Sudah et al., 2002; Roetzel et al., 1994; Roetzel and 

Balzerite, 1997), whereas nonlinear model equations have been tackled by using 

different approximate analytical/numerical methods, e.g. perturbation methods 

(Freeman and Houghton, 1966; Burghardt and Zaleski, 1968; Wissler, 1969; Ray et al., 

1972; Turian, 1973; Rahman, 1974; Marek and Stuchl, 1975), finite difference methods 

(Fan and Bailie, 1960; Wan and Ziegler, 1970), collocation methods (Fan et al., 1971; 

Shah and Paraskos, 1975), quasi-linearization with finite difference (Lee, 1966), quasi-

linearization with collocation method (Rao et al., 1981), spectral element method-

(Sporleder, 2010), inbuilt solvers in commercial mathematical softwares such as 

"MATLAB" (Tan and Li, 2000; Finlayson, 2006). Books by Villadsen and Michelsen 

(1978), Finlayson (1980), and Kubicek and Hlavacek (1983) are the excellent treatises 

on this subject. 

However, the application of some of the newly developed approximate methods, 

e.g. HAM, OHAM, has not yet been carried out to solve the - axial dispersion model 

equation of a tubular chemical reactor sustaining nonlinear kinetics. 

2.5 DECOMPOSITION METHODS 

In this section, the literature pertaining to the applications of ADM and its 

modified versions - for solving AEs and ODEs has been reviewed. Various studies 

concerning the convergence of ADM and its modified versions have also been 

presented. 

2.5.1 Adomian Decomposition Method 

Adomian decomposition method, developed by George Adomian in early 1980s, 

has proved to be an efficient approximate method for solving different types of linear 

and nonlinear equations (Adomian, 1986, 1994). Due to its versatile and effective 



nature, it has attracted the attention of many researchers and a lot of literature is 

available ranging from theoretical investigations to the applied studies. 

The basic idea utilized in ADM is to decompose the nonlinear equation into a set 

of infinite but simpler linear equations by incorporating a hypothetical parameter A 
E [0,1] . The so formed linear equations are solved in a sequential manner and the. 

obtained solutions of these linear equations are then combined to give the ADM 

solution of the original nonlinear equation. In this process, the nonlinearities present in 

the original nonlinear equations are expressed in terms of Adomian polynomials, which 

can conveniently be generated for any type of nonlinearity (Adomian, 1986, 1994). 

These polynomials are an integral part of the ADM and play a significant role in finding 

the solutions of different types of equations. The classical way of generating the 

Adomian polynomials hasbeen given by Adomian (1986), however, there also exist 

various other algorithms for generating these polynomials (Adomian, 1994; Seng et al., 

1996; Wazwaz, 2000b; Abdelwahid, 2003; Biazar et al., 2003a; Choi and Shin, 2003; 

Rach, 2008). It should, however, be noted that the Adomian polynomials are not unique 

and some other improved definitions of these polynomials [also called accelerated 

Adomian polynomials] have also been proposed (Nigam, 2009). . 

The ADM solution, found by combining the individual solutions of linear 

equations, is generally obtained in the form of a series called Adomian series. In most of 

the cases, this series is found to have better convergence as compared to the Mclaurine 

and Taylor series. A comparison between the Adomian series, Maclaurine series and 

Taylor series has been carried out by Rach et al. (1992) and Wazwaz (1998). Despite 

effectiveness, the limitations of ADM have also been reported by some researchers 

(Nelson, 1988; Golberg, 1999). The convergence related issues for the ADM have also 

been studied by several researchers (Gabet, 1994; Abboui, and Cherruault, 1994; 

Abboui and Cherruault, 1995; Abboui et al., 1995; Babolain, and Biazar, 2002a; Allan, 

2007). 

In the following two subsections, the literature concerning the application of 

ADM to solve AEs and ODEs, have been presented. 
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2.5.1.1 Algebraic equations 

The first application of ADM to solve AEs has been presented by Adomian 

himself in his book (Adomian, 1986). Thereafter, several attempts have been made by 

various researchers to solve systems of AEs. For instance, Babolian et al. (2004a) and 

Kaya and El-Sayed (2004) have successfully employed ADM to solve AEs, whereas Li 

(2009) has not only employed ADM to solve AEs but also shown that the working of 

ADM is equivalent to that of another approximate method, i.e. HPM. 

In addition to these, ADM has also been employed to improve some of the 

existing numerical schemes used for solving AEs, e.g. Abbasbandy (2003, 2006b), 

Chun (2006) and Basto et al. (2006) have separately devised Newton-Raphson like 

approximate numerical schemes for solving AEs. The convergence related aspects of 

ADM for solving AEs have been discussed by Abbaoui and Cherruault (1994, 1995), 

Cherruault et al. (1995), Babolian and Biazar (2002a) and Babolian et al. (2004a). 

2.5.1.2 Ordinary differential equations 

In literature, one of the important applications of ADM has been to solve the 

nonlinear ODEs, and numerous research studies are available in this respect. Nonlinear 

first order ODEs constituting IVPs, which arise in various engineering applications, 

have been solved by several researchers by using ADM. For example, the model 

equations of various chemical and biochemical reaction engineering processes [coupled 

first order ODEs constituting IVPs] have been successfully solved by using ADM (S en, 

1988; Biazar et al., 2003b; Kaya, 2004). Nonlinear first order ODE constituting an IVP, 

arising in the optics problem, has been solved by Sanchez et al. (2000). Similar sets of 

coupled ODEs have also been solved by other investigators (Abboui et al., 1995; Biazar 

et 'al., 2004). 

On similar lines, nonlinear second order ODEs constituting BVPs have also been 

successfully solved by many researchers by using ADM. For example, the model 

equation of well known reaction-diffusion process occurring inside a porous catalyst 

slab, represented by a second order ODE [BVP], has been solved by Sun et al. (2004) 

by using ADM. Similarly; model equation of the same reaction-diffusion process but 

occurring inside a porous catalyst sphere [a second order ODE constituting a singular 



BVP], has also been solved by Shi-Bin et al. (2003) by using ADM. The. famous Lane-

Emden and Emden-Fowler equations, also expressed by the similar types of singular 

BVPs, have also been solved by various researchers with the help of ADM (Wazwaz, 

2002, 2005; Inc et al., 2005; Mittal and Nigam, 2008). 

BVPs arising in various heat transfer, mass transfer and fluid flow operations 

have also been successfully solved by using ADM. For example, the model equation for 

the process of heat transfer from a rectangular fm [nonlinear second order ODE 

constituting a BVP] has been solved by Lesnic and Heggs (2004) and Chang (2005) by 

using ADM. Sun and Scott (2004) have solved the model equation of mass transfer 

process in a porous electrode by using ADM; the modelling equations are coupled 

second order ODEs constituting BVPs. Kechil and Hashim (2007) have solved the 

convective boundary layer equations by using the ADM, whereas Alizadeh et al. (2009) 

have applied ADM to solve Falkner-Skan equation. Holmquist (2007) has applied ADM 

to solve fluid dynamics problems. The original model equations in these studies were a 

set of nonlinear PDEs, which were first transformed into a set of nonlinear ODEs by 

using symmetry methods and solved subsequently by using ADM. 

The convergence and stability related issues of ADM for solving ODEs have 

been presented by Repaci (1990), Abbaoui and Cherruault (1994), Cherruault et al. 

(1995), Hosseini and Nasabzadeh (2006), Aminataei and Hosseini (2007). 

2.5.2 Restarted Adomian Decomposition Method 

While applying ADM to solve various types of equations, it has been observed 

that ADM exhibits slow convergence and sometimes, it diverges too (Nelson, 1988). In 

such cases, several modifications have been proposed in ADM by various researchers 

for solving different types of equations. Review of some of the related modifications in 

ADM to solve AEs and ODEs have been presented in the following two subsections, 

respectively. 
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2.5.2. I Algebraic equations 

For AEs, Babolian and Biazar (2002b) have proposed an efficient iterative 

scheme of ADM called Restarted ADM. Later, Babolian and Javadi (2003) applied the 

same RADM to successfully solve several examples of AEs. Basto et al. (2006) have 

shown that in spite of its faster convergence, the RADM, as proposed by Babolian and 

Biazar (2002b), may also diverge. In such situations, Basto et al. (2006) have given 

certain guidelines to avoid the divergence of RADM. Beside RADM, some other 

modified versions of ADM have also been proposed by other researchers to effectively 

solve AEs (El-Sayed, 2002; Jafari and Daftardar-Gejji, 2006; Jiao et al., 2008). For 

some of these modified versions of ADM, the convergence characteristics have also 

been discussed by some researchers (El-Sayed, 2002; Chun, 2006; Basto et al., 2006). 

2.5.2.2 Ordinary differential equations 

There have also been many attempts to modify ADM so as to efficiently solve 

the ODEs (Venkatarangan and Rajalakshmi, 1995; Andrianov, 1998; Wazwaz, 2000a; 

Jiao et al., 2002; Casasus and Al-Hayani, 2002; Mahmood et al., 2005; Hasan and Zhu, 

2009). For solving ODEs, the use of orthogonal polynomials in conjunction with ADM 

have been presented by several researchers (Hosseini, 2006; Layeni, 2008; Tien and 

Chen, 2009; Liu, 2009). Different numerical adaptations of ADM for solving ODEs 

have been presented by Adomian et al. (1991), Ghosh et al. (2007) and Ramos (2009). 

Various other modified versions of ADM for solving ODEs constituting singular and 

non-singular BVPs have also been proposed by different researchers (Adomian and 

Rach, 1994; Wazwaz, 2005; Inc et al., 2005; Hosseini and Nasabzadeh, 2007; Aslanov 

and Abu-Alshaikh, 2008; Jang, 2008; Hasan and Zhu, 2009; Kumar and Singh, 2010). 

Like in the case of AEs, Babolian et al. (2004b) and Babolian et al. (2005) have 

also devised RADM for lEs [integral equations] and ODEs, respectively. However, in 

the latter case merely IVPs in first order ODEs have been considered. 



2.6 HOMOTOPY METHODS 

This section reviews the literature available on another approximate method, 

namely HAM and one of its effective variants, i.e. OHAM. Various studies, concerning 

the theoretical and application aspects of these two methods have also been assessed. 

However, the main emphasis has been given to those studies, in which ODE models of 

various processes/systems have been solved by using HAM or its variants. 

2.6.1 Homotopy Analysis Method 

Homotopy analysis method, first developed by Liao in early nineties is an 

efficient approximate method for solving different types of nonlinear equations (Liao, 

1995, 2003, 2009a). Like ADM, HAM is also a hypothetical parameter based method 

and its working is somewhat similar to that of ADM. However, as compared to ADM, 

HAM is a more general and effective method, since it involves several auxiliary 

quantities, which render it more flexible for solving nonlinear equations. The detailed 

methodology of HAM to solve different types of equations has been given in a 

monograph by Liao (2003). Selection of auxiliary quantities required in HAM has also 

been given in this monograph as well as in a recent paper by Gorder and Vajravelu 

(2009). 

Due to its versatile and robust nature, profuse literature on HAM is available and 

is still increasing. For instance, model equations of various heat transfer processes have 

been effectively solved by many researchers by using HAM (Liao et al., 2006; 

Abbasbandy, 2006a; Domairry and Nadim, 2008; Sajid and Hayat, 2008a; Sweet, 2009; 

Abbas et al., 2010). Similarly, model equations of several fluid flow processes have also 

been solved by many researchers by using HAM (Hayat et al., 2007; Abbas et al., 2008; 

Sajid and Hayat, 2008b; Sweet, 2009; Dinarvand and Rashidi, 2010). Besides, model 

equations of some of the boundary layer problems have also been successfully tackled 

by a number of researchers (Liao and Pop, 2004; Cheng et al., 2008; Shateyi et al., 

2010). One should note that these boundary layer problems are represented by coupled 

PDEs, however, by using symmetry methods these PDEs were converted into coupled 

ODEs, which were subsequently solved by using HAM. In some other applications, 

PDEs were directly solved without converting them into ODEs (Liao et al., 2006; Liao, 
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2009b). The model equation of reaction-diffusion process inside a porous catalyst slab 

has been solved by Abbasbandy (2008). The Lane-Emden equation which resembles 

with the model equation of reaction-diffusion process in a porous spherical catalyst [a 

second order ODE constituting a singular BVP] has also been solved by several workers 

(Liao, 2003; Bataineh et al., 2009). 

In addition to the above applications, HAM has also been applied to solve 

different types of nonlinear equations numerically, e.g. numerical application of HAM 

to solve AEs and ODEs has been demonstrated by Abbasbandy et al. (2007) and Motsa 

et al. (2010), respectively. Similarly, PDEs have also been solved by using the 

numerical scheme of HAM (Liao, 1997; Zhu et al., 2010). Besides, multiple solutions 

arising in various ODEs [BVPs] and PDEs have also been successfully found by several 

investigators (Abbasbandy et al., 2009; Abbasbandy and Shivanian, 2010; Xu and Liao, 

2008). 

Some other mathematical aspects of HAM have also been studied by various 

workers. For example, comparison of HAM with other methods has been performed by 

He (2004), Liao (2005) and Allan (2007). Convergence related issues of HAM have 

been discussed by Liao (2009a), Odidat (2010) and Turkyilmazoglu (2010, 2011). 

Recently, Liu (2010, 2011) and Abbasbandy et al. (2011) have discussed the 

mathematical significance of the convergence control parameter, which is a vital 

component of HAM. Liu (2010, 2011) has also analyzed the relation between the HAM 

and the generalized Taylor series method. 

2.6.2 Optimal Homotopy Analysis Method 

OHAM is an efficient variant of HAM and has also been proposed by Liao 

(2010). Its working is almost similar to that of. HAM, however, in OHAM, the 

convergence control parameter is selected by minimizing the sum of square of residual 

errors instead of the so called h-curve (Liao, 2003). 

Since OHAM has been developed recently, only a few studies are available 

depicting its successful application (Wang, 2011). There exist some other versions of 

OHAM, however, these are somewhat different than the one proposed by Liao (2010). 

These modified versions have been applied to solve different equations including those 
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encountered in various flow and heat transfer processes (Marinca et al., 2008; Marinca 

and Herisanu, 2008; Idrees et al., 2010; Niu and Wang, 2010; Igbal and Javed, 2011). 

2.7 MOTIVATION FOR THE PRESENT RESEARCH WORK 

By critically analyzing the reviews of selected processes/systems presented in 

the above sections, one concludes that still there are ample possibilities of further 

research work in each case. These possible areas of research have been indicated in 

corresponding sections in this chapter. 

2.8 CONCLUDING REMARKS 

In this chapter, the literature pertaining to the methodologies adopted by 

previous researchers for solving the model equations of selected processes/systems as 

well as the solutions obtained by using these methods have been reviewed and critically 

evaluated for identifying the research gaps. The selected processes/systems arise in 

different areas of chemical engineering, namely heat transfer, fluid mechanics, 

thermodynamics and reaction engineering. These research gaps may possibly be 

addressed with a view to obtain the analytical/approximate solutions of the model 

equations of these selected processes/systems. Based upon this, the motivation for the 

proposed study has been outlined. 
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CHAPTER III 

SELECTED HEAT TRANSFER PROCESSES 
- ANALYTICAL SOLUTIONS 

3.0 INTRODUCTION 

This chapter concerns with the development of analytical solutions of the model 

equations of five selected heat transfer processes, namely the transient convective 

cooling of a lumped body, the convective-radiative cooling of a lumped body, the 

steady state heat conduction in a metallic rod, the radiative heat transfer from a 

rectangular fin and the convective heat transfer from a rectangular fin. These processes 

are frequently encountered in various heat transfer operations, e.g. broiler, automobile 

radiators, metallurgical processes, radiation devices in outer space applications, heat 

flow meters, engines and electric motors etc. 

In literature, many researchers have obtained the approximate solutions of these 

processes by using various approximate methods, e.g. HPM, HAM and OHAM etc. For 

some of these processes, analytical solutions have also been found by several 

researchers. However, these are valid for a few special cases, and to the best of our 

knowledge, analytical solutions of these processes, which cover all the situations arising 

therein, have not yet been found. 

For obtaining analytical solutions, analytical methods, namely separation of 

variables method, partial fraction decomposition method, and derivative substitution 

method, have been used individually or in a combination of two of them. These 

analytical solutions have been validated with the numerical solutions of model equation 

and with the available solutions. Besides, an existing experimental study, pertaining to 

the process of transient convective and radiative cooling of a metal ball bearing, has 

been simulated by using the derived analytical solution. Special attention has been paid 

to the process of convective heat transfer from a rectangular fin, as the model equation 

is quite general and the results obtained show a variety of features, e.g. multiplicity. 



3.1 TRANSIENT CONVECTIVE COOLING OF A LUMPED BODY 

In this section, we have shown that the model equation of this process is 

amenable to an explicit analytical solution, which can be obtained by using the 

separation of variables and partial fraction decomposition methods. 

3.1.1 Model Equation 

A body with density p, volume V and heat transfer area A , is considered. This 

body is initially at a temperature 7. At time t = 0, it is exposed to an environment at a 

lower temperature T and thus starts loosing heat energy to the surroundings by 

convection. Following assumptions have been made: 

(i) The specific heat of body varies linearly with temperature. 

(ii) The convective heat transfer coefficient remains constant. 

(iii) The body satisfies the condition of lumped model, i.e. Big  < 0.3, (Campo and 

Blotter, 2000). 

The model equation of this process can be derived by applying the unsteady 

energy balance over the body, and the following nonlinear first order ODE constituting 

an IVP is obtained (Ganji, 2006; Abbasbandy, 2006a; Tari et. al., 2007; Marinca and 

Herisanu, 2008): 

PVc p(T) ji +hA(T—T3=0 	 (3.1a) 

IC: T(0) =7 	 (3.1b) 

where e,, (T) = Ca  1 + /3 T   T,  is the heat capacity of the body showing linear 
T,.—Ta  

dependency on the temperature, and h is the constant heat transfer coefficient. For 

simplicity, we have considered the transient convective cooling of a spherical body, 

however, the presented methodology to obtain the analytical solution is also applicable 



to a lumped body with any geometry. For a spherical body, the Eq. (3.1a) reduces to the 

following equation, however, the associated IC will remain the same. 

T —T dT 3h 
pC. l+/3 	,, —+3h(T—T° )=0 	 (3.2) 

T.—T° dt R 

3.1.2 Solution and Discussion: Temperature Profile 

Before solving Eq. (3.2), we first define the following dimensionless quantities 

(Liao et al., 2006): 

T—T 	k 	at 	hR e— 
°,a= 	,z=—,Bi = 

Pc° 	R 	k 

where a is the thermal diffusivity and Bic is the Biot number for convection. In fact, 

there exists another definition of Biot number for convection, i.e. hR (Campo and 

Blotter, 2000), however, we have followed the definitions as used by Liao et al. (2006). 

Now, with the assistance of the above dimensionless variables, Eqs. (3.2) and 

(3. lb) attain the following dimensionless forms, respectively: 

(I+/.30)0'+3Bii6 = 0 	 (3.3a) 

IC: 	0(0)=l 	 (3.3b) 

where 0' denotes ~e . A simple rearrangement of the Eq. (3.3a) yields: 

(3.4) 

Integration of the Eq. (3.4) with respect to z results in the following solution: 

ln[B] + f39 = —3Bi v + C1 	 (3.5) 

where Cl is the constant of integration, and is found to be Cl = /3 by using the IC. 

Substituting back the so found value of C, in Eq. (3.5), one obtains the following 
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analytical solution: 

ln[O] + J30 = /3 — 3Biiz 	 (3.6) 

It can be noted that the above analytical solution is in implicit form and match 

well with the analytical solution obtained by Ganji (2006) and Abbasbandy (2006a). 

Here we show that by a slight rearrangement it can be expressed in an explicit form. For 

doing this, a constant term ln[/3] is added and subtracted in Eq. (3.6), and after a little 

modification the following equation is obtained: 

In [/30eR° ] = /.3 — 3Bi~r + In [/3 ] 	 (3.7) 

The Eq. (3.7) can be further expressed as: 

(fle) e(0°) = 3e133 r 	 (3.8) 

The L.H.S.. of Eq. (3.8) can be replaced by the Lambert W function, which is 

implemented as "ProductLog" function in some mathematical softwares, e.g. 

MATHEMATICA. A Lambert W function is basically the inverse function of x = 

i.e. y = Lambert(x), and is given by y = W(x) . In general, the domain and range of the 

function is the set of complex values, however, for x E [0, co) the Lambert W function 

yields single real value. For x E (—cc, —,3i), the Lambert W function does not evaluate to 

any real value, whereas, for x E [-1 e , 0) it yields two real values. Now, with this 

function, the transient dimensionless temperature profile is given by: 

9 = I ProductLog [/3eO-3Bij 	 (3.9) 

(i) 	Comparison between the analytical, numerical and approximate solutions 

To validate the above analytical solution [AS], i.e. Eq. (3.9), the dimensionless 

temperature profiles obtained by it as well as by numerical method [NS] are plotted in 

Fig. 3.1 for various values of /3. It is clear from this figure that both the profiles match 

well and thus validate the present analytical solution. 
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Figure 3.1: Transient profiles of dimensionless temperature at Big  = 1/3 for 
various values of /t 



The obtained analytical results have also been compared with those obtained by 

using the two approximate methods, i.e. HPM (Ganji, 2006) and HAM (Abbasbandy, 

2006a). In these two studies, the approximate solutions [transient temperature profiles] 

were obtained for the transient convective cooling of an irregular shaped body with 

characteristic length l P V . The two approximate solutions are reproduced below: 
A 

°Ganji ~e-=' +/3 (e =' —e-2r')+a2 (e ' —4e~2r' +3e 3t') 	 (3.1 Oa) 

G~~y~f RAL 1 
z z  

°Abbasbandy "' e  — flhleT' + flhe Z 1 + —8hl (1 + hl ) + fl 

/ 2 

 No. 2- 6 	... 

Date.  

+(I3h,(l+hl)-2'62h12)e z=' + ,82 e -2r
1 

where zl is the dimensionless time considered by Ganji (2006) and Abbasbandy 

(2006a), and is equal to hAt 	ht 1 
and 

p cQ V [= PC,:,  l 
/ is the convergence control 

parameter in HAM solution (Abbasbandy, 2006a). 

For a spherical body, 1 = R /3 ,  hence, zl = 3 Bic v . Now by taking Big = 1/3, 

the two dimensionless times become equal, i.e. v = z . Moreover, for this value of Big 

[= 1/3], the present model equations for a spherical body, i.e. Eqs. (3.3a) and (3.3b), and 

the one considered by Ganji (2006) and Abbasbandy (2006a) for an irregular shaped 

body become identical, and thus, allows the comparison between the present analytical 

solution [Eq. (3.9)] and the above mentioned approximate solutions. This value of Big 

[= 1/3] has been selected only for the comparison of the analytical results with the 

available approximate results (Ganji, 2006; Abbasbandy, 2006a), though it is slightly 

more than the prescribed upper limit for the lumped model. 

For the comparison of -these solutions, the dimensionless temperature 0, given 

by Eq. (3.9), is expanded around 8 =0 by using the Taylor series method, and the 

following expansion is obtained for Big = 1/3: 
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2 
0 e z +/3(e T —e 2v )+2  (e-z -4e2 +3e_3v)+... 	 (3.1Oc) 

2 

On comparing one finds that Eq. (3.1 Oc) harmonizes well with the Eq. (3.1 Oa) of 

Ganji (2006) as well as with the Eq. (3.10b) of Abbasbandy (2006a) for convergence 

parameter h = —1. This comparison has also been shown in Fig. 3.1, where analytical 

results [dimensionless temperature profiles] have been compared with the numerical 

results as well as with the approximate results obtained by using HPM (Ganji, 2006). 

This figure clearly shows that the analytically obtained results are in close agreement 

with the numerical results. However, the results obtained by using Eq. (3.10a), being 

approximate, exhibit considerable discrepancies except for Q = 0, where the Eq. (3.3a) 

becomes linear. 

A comparison of the initial rate of change of temperature 0'(0) [at Big  = 1/3], 

predicted by the analytical solution [Eq. (3.9)] and the approximate solution of 

Abbasbandy (2006a), has also been made. Analytical solution yields the following 

expression of 0'(0) : 

9'(0)   1  
1+13 

 (3.11) 

Fig. 3.2 compares the profiles of 0'(0) as obtained by the Eq. (3.11) and the one 

obtained by Abbasbandy (2006a). Accuracy is evident by these overlapping profiles. 

Fig. 3.2 also supports the fact that with the increase in 6, the specific heat increases, 

which in turn decreases the rate of change of temperature. 

Similar comparisons with the OHAM solution of Marinca and Herisanu (2008) 

could not been made because of their more involved solution expression. However, it is 

obvious that the present solution, being analytical in form, is superior to the 

approximate solution of Marinca and Herisanu (2008). 

3.2 TRANSIENT CONVECTIVE-.RADIATIVE COOLING OF A LUMPED 
BODY 

In the following subsections, we have analytically solved the model equation of 
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this process by using the separation of variables method and the partial fraction 

decomposition method. Besides, the simplified model equation, depicting the transient 

cooling of a lumped body in an environment of absolute zero temperature and earlier 

solved by several researchers by using different approximate methods, namely PM, 

HPM and HAM (Ganji et al., 2007; Rajabi et al., 2007; Domairry and Nadim, 2008), 

has also been solved analytically by using the same methods, i.e. the separation of 

variables method and the partial fraction decomposition method. 

3.2.1 Model Equation 

Consider a spherical body with radius R, density p, thermal conductivity k 

and heat capacity c p , respectively. Initially this body is at a higher temperature 1, and 

at the start of the process it looses heat to the surroundings [the temperature of 

surroundings is T1 and the average radiation sink temperature is T ] by convection and 

radiation. It is also assumed that the body is isotropic and opaque. By applying the 

energy balance over a thin spherical shell in this body, the following equation, along 

with the associated IC and BCs, is obtained (Su, 2004; Liao et al., 2006). 

8T_ 1 a( Zr7T~ 	 (3.12a) 
pcp at r2 ar 	ar  

The initial and boundary conditions are given as follows: 

IC: 	T=T,. at t=o Vr<_R 	 (3.12b) 

BC I: —k- =h(T—Tf )+aE(T4 —T 4 ) at r=R V t > 0 	 (3.12c) 

BC II: & =0 at r = 0 `dt>0 	 (3.12d) 

where h is the convective heat transfer coefficient, E is the emissivity of the spherical 

body and a is the well-known Stephan-Boltzmann constant. Generally, T f and T are 

equal, however, in case of different environment and sink temperatures, it is appropriate 
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to introduce the adiabatic surface temperature defined by the following equation (Liao 

et al., 2006): 

h(T –Tf )+6E(T4 –TS 4 )=0 
	

(3.13) 

With the help of adiabatic surface temperature [71j,  the BC I attains the following form, 

which, as shown later, eases the computational work. 

BC I: –k =h(T–TQ )+6E(T4 –TQ4 ) at r=R V t>O 	 (3.14) 

With the assistance of the following dimensionless variables (Liao et al., 2006), 

3 

O=TR, Bo = Ta,a= C ,r--- ,Bi,= h— ,Nr,6EkT,. 
pP 

where a is the thermal diffusivity, Big is the Biot number for convection and N,, is 

the conduction-radiation parameter, the Eqs. (3.12a), (3.12b), (3.12d) and (3.14) are 

transformed into the following dimensionless forms: 

a8_1 a 

az ri2 all ~Z a77 	 (3.15a) 

IC: 	0=1 atz=0 dri<_1 	 (3.15b) 

BC I: – 	=Bi,(9–d)+Nr~(0'-0Q) at ri =l ` t > 0 	 (3.15c) 
71 

BCII: _e =0 atri=0 Vr>0 	 (3.15d) 

3.2.1.1 Lumped Parameter Model 

For a spherical body with smaller dimensions and higher thermal conductivity, 

the spatial temperature variation can be neglected and the lumped model approach can 

be adopted. However, this should be supported by the criteria Biz. < 0.3, where 
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BiT I_ (h + hr )R  1 is the overall Biot number and takes into account the Biot numbers 

for convection and radiation (Campo and Blotter, 2000; Liao et al., 2006; Tan et al., 

2009). Here, it should be noted that the definition of B4 is based on the one proposed 

by Liao et al. (2006). 

For a spherical body, the equation for lumped parameter model is obtained by 

using the following definition of the spatially averaged dimensionless temperature (Su, 

2004). 

9Q„ = 3f 0772dJ1 
a 

(3.16) 

The above definition renders the earlier obtained PDE into a first order nonlinear 

ODE constituting an IVP. Thus from Eqs. (3.15a)-(3.15d) and (3.16), one finally finds 

the following dimensionless equation to describe the transient convective-radiative 

cooling of a lumped spherical body: 

dBav _ _3Bic(8~ —0o )-3Nrc(O,v -0Q) 
dz 

(3.17) 

Similarly, the associated IC, i.e. Eq. (3.15b), with the use of Eq. (3.16), is 

expressed in terms of the spatially averaged temperature and attains the following form: 

IC: 	Bav =1 	atz=0 V 7i<_1 	 (3.18) 

3.2.2 Solutions and Discussion: Temperature Profile 

In this section, analytical solutions for the three cases, i.e. (i) 6Q ~ 0, B4 < 0.3, 

(ii) Oa =0,  Big =113 and (iii) Oa = 0, Big = 0, have been obtained below, 

individually. The value of Big =113  in case (ii) is chosen solely for the comparison 

purposes with the available results (Ganji et al., 2007; Rajabi et al., 2007; Domairry and 

Nadim, 2008). The obtained results of these three cases have been compared with the 

corresponding numerical results as well as with the available results. 
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3.2.2.1 General Case: 0Q # 0, BiT < 0.3 

After rearranging Eq. (3.17) and integrating it with the help of Eq. (3.18), one 

finds: 

1 
J 

B~ 	dOa, 	= —3Jdr 
	 (3.19) 

rc 

The partial fraction decomposition of the integrand in Eq. (3.19) yields the following 

simplified form: 

1 B~ A,dB~ + B~ B,d9~ + 	 (ClB~ 	 B0 +D,)doa„ 	_ —3 f dz (3.20) 
r~ J, (0a„—r) 	JI (0a ,—rz ) 	J, (8—(r3 +r4 )0a,+Y r4 ) 	0 

where Jj , Y2 , r and r4 are the roots of the quartic equation 

Big (°v — 0") + (9Q — 0) = 0; the explicit expressions of these roots are given in 
Nrc 

Appendix Al, where, it is also revealed that r is real and positive, r2 is real and 

negative, and r and ra are complex conjugates. Al , Bl , C, and DI are the constants 

appeared during the process of partial fraction decomposition, and their expressions are 

given in Appendix A2. 

Now, expressing the complex conjugate pair r and r4 as r3 = a + ib and 

r4 = a — ib , and integrating the Eq. (3.20), we obtain the following equation: 

ea~ 1 (D1+C1a) 	B°"—a +iC,ln L(BQ~,—a)2+b2]+A,ln[0.,,—r,]+Blin[0Q„—rT] 
N 	 b 

tan-' 
b 	 ]  2 rc  ~ 

_ —3$dv 	 (3.21) 
0 

After substituting the limits in the above equation, the following analytical solution is 

found: 

1 [(Di +C1a)(e —a  tan-' a° 	I— tan  °v 
Nrl 	b 	L b 	 b 	2 ' 	(1—a)2 +b2 



	

+A,ln 0. —_  + A 0. —r2 	= —3z 
1 —r, 	eov  —r2  

(3.22) 

(i) 	Comparison between the analytical, numerical and approximate solutions 

For various values of Big , N and 6, Fig. 3.3 shows the transient profiles of 

the spatially averaged dimensionless temperature QV  obtained by using the above 

analytical solution [Eq. (3.22)] and the numerical method. A close agreement is 

observed between these profiles, which validates the analytical solution. 

3.2.2.2 Simplified Case I: ea  =0,  Big  =1/3 

This particular situation is characterized by the fact that both the surroundings 

and the sink temperatures are assumed to be the same and are equal to zero, i.e. 

T8, = T1  = 0 ,and this implies that [from Eq. (3.13)] TQ  = 8, = 0. This situation may 

arise in the outer space or in a vacuum. The model equation of this specific situation has 

been solved by several researchers by using various approximate methods, e.g. PM, 

HPM and HAM (Ganji et al., 2007; Rajabi et al., 2007; Domairry and Nadim, 2008). 

Although, this model equation, as considered by these researchers, becomes invalid, 

since at Oa  =0 [absolute zero temperature of the surroundings], there will be no 

convective heat transfer, i.e. Big  = 0. Moreover, for the chosen value of convection 

Biot number [ Bit  =1/3] the assumption of lumped body. becomes invalid [as Bit  > 

0.3] and the same is true for the model equation and its solution. However, we have 

considered this situation just for the sake of comparison, and the realistic model 

equation for this situation has been considered in the next subsection. 

As a consequence of the above assumption, the Eq. (3.17) assumes the following 

form, which is same as the one considered by the above researchers (Ganji et al., 2007; 

Rajabi et al., 2007; Domairry and Nadim, 2008). However, the associated IC remains 

the same, i.e. O(0) = 1. 
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Bav  + 0", + s6 v = 0 	 (3.23) 

where E [= 3N1]  is a parameter considered by these researchers. After minor 

rearrangements of terms in Eq. (3.23) and the subsequent partial fraction decomposition 

of the resulting equation, the following equation has been obtained: 

dew , 	EOa dO  _ _ dr 	 (3.24) 
6a, 	1 + s9 1 

Integrating the above equation with the associated IC, the following explicit solution 

expression is found: 

 _ e V 

(3.25) 
(1+e_ee 3T)l'3 

As expected, the above analytical solution reveals: 6av 	0 as r -> co Vs. 

(i) 	Comparison between the analytical, numerical and approximate solutions 

Now if one expands the Bav  [Eq. (3.25)] around E = 0 by using the Taylor series 

method, the following series is obtained: 

Da, 	e T — 3 Ee-4T(—l+e3r)+ 2  gee 7T(1+e6r —2e3z) 	 (3.26) 

On comparing, it is observed that Eq. (3.26) is exactly the same as the 

approximate solutions obtained by using PM and HPM (Rajabi et al., 2007; Ganji et al., 

2007). Similarly, Eq. (3.26) also matches well with the approximate solution obtained 

by Domairry and Nadim (2008) by using HAM for the convergence control parameter 

equal to "-1", considered therein [it should be noted that there are some typographical 

errors in the work of Domairry and Nadim (2008)]. 

However, being approximate in form, the solutions obtained by these researchers 

have a limited applicability. This fact is also revealed in Fig. 3.4, where the results 

[transient temperature profiles] obtained by using the analytical solution, have been 

compared with those obtained by using the numerical method as well as with those 

obtained by the available approximate solution of Rajabi et al. (2007) and Ganji et al. 
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(2007). It is clear from this figure that the results obtained by using the analytical 

solution, i.e. Eq. (3.25), matches well with the numerical results for all values of s [= 0, 

0.6, 2, 5]. On the contrary, the results obtained by using the approximate solutions of 

Rajabi et al. (2007) and Ganji et al. (2007), i.e. the above Eq. (3.26), deviate appreciably 

even for moderate values of E and become superfluous for larger values of E 

3.2.2.3 Simplified Case II: 0, =0,  B i, = 0 

In this subsection, we have presented the appropriate model equation for the 

previous case I, i.e. when the surroundings temperature is absolute zero [ 0a =01.  This 

model equation is given below in dimensionless form along with the associated IC [it 

should be noted that the convective heat transfer term is absent in this equation, because 

Big =0]: 

dew, +3N~9~ = 0 	 (3.27a) 
dz 

IC: 	0(r = 0) = 1 	 (3.27b) 

Integrating the above equation after separating the variables and using IC, one 

finds the following analytical solution: 

OcIV 

= 	

1 

(1+9Nrcz) 	
(3.28)

13 

(i) 	Comparison between the analytical and numerical solutions 

For the several values of parameter N, [=s/3= 0, 0.3, 0.6, 0.9], the 

dimensionless temperature profiles obtained by using the analytical solution and the 

numerical solution are plotted in Fig. 3.5. These values of Nm satisfy the lumped model 

criteria. The Fig. 3.5 shows an agreement between these profiles, which validates the 

presently obtained analytical solution. 
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3.2.3 A Case Study 

In this subsection, the practical applicability of the presently obtained analytical 

solution, i.e. Eq. (3.22), has been demonstrated by simulating an existing experimental 

study of cooling of metal ball bearing by the mode of convection and radiation (Campo 

and Blotter, 2000). The lumped model approach for this experimental study was shown 

to be justified by these researchers, i.e. Bi,. <0.3.  Where BiT  r=  (h+h' )R  1 is the 

6 E  (T 4  —T 4 ) overall Biot number and h, _ 

	

	 is the radiative heat transfer coefficient. 
(T —T ) 

Later, we have also verified this condition. Therefore, this process can conveniently be 

represented by a lumped model and thus the application of the presently derived 

analytical solution is justified. 

Out of the two tests carried out by Campo and Blotter (2000), the data of test 1 

have been selected in this study, although, the experimental results of test 2 can also be 

.simulated in a similar fashion. Necessary details of the test 1 are summarized in Table 

3..1 and the complete details can be found in the original work (Campo and Blotter, 

2000). The parameters, p, c p  and k were not given by Campo and Blotter (2000), 

hence, in the present study, their values have been taken from Bejan and Kraus (2003); 

these values do not affect the results in any significant way and the results almost 

remain intact. 

This heat transfer process is governed by the same model equations, i.e. Eqs. 

(3.17) and (3.18), however, the convective heat transfer coefficient is now a weak 

nonlinear function of temperature and is given by the following relation (Campo and 

Blotter, 2000): 

h(T) = 9.03 + 2.95(T - 302)0.25  (W/m2  K) 
	

(3.29) 

With the introduction of the above expression for convective heat transfer 

coefficient, the lumped model equation attains the following dimensional form: 

PC R dT =-[9.03+2.95(T-302)0.25](T-T)-O-
E(T4-TQ4) 	 (3.30) 

IC: 	T(0) = T = 823K 	 (3.31) 
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Table 3.1: 	Experimental data used for simulation 

Variables/Parameters Value 

Source: Campo and Blotter (2000) 

Initial temperature of ball bearing T 823 K 

Constant room air temperature T f 302 K 

Radiation sink temperature T 302 K 

Diameter of ball bearing D 0.953X10 2  m 

Emissivity of ball bearing E 0.7 

Source: Bejan and Kraus (2003) 

Density of ball bearing P 7865 kg.m 3  

Specific heat of ball bearing CP 460 J.kg 1.K' 

Thermal conductivity of ball bearing k 47 W.m I.KI  
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Now, to show the applicability of the derived analytical solution [Eq. (3.22)], the 

average value of the convective heat transfer coefficient, hay over the concerned 

temperature range [T — TQ ] is used in place of its temperature dependent form [Eq. 

(3.29)]. The average value of the convective heat transfer coefficient is found to be 

20.3051 W/m2K and has been evaluated by using the following relation: 

T 

= 	f h(T)dT 
(T TQ~ ro 

(3.32) 

By replacing the temperature dependent h(T) with its average value ham, in Eq. 

(3.30), one gets the following equation: 

pc 3 dT 
	

(3.33) 

The Eq. (3.33) is now forced to attain the dimensionless form similar to the Eq. 

(3.17) by using the previously defined dimensionless variables. In doing so, the values 

of 9Q , Bic and N, are found to be 0.366950, 0.002059 and 0.002243, respectively. 

One should note that the value of Big is based on h . Besides, the maximum values of 

h and h,, i.e. at the beginning of the cooling of bearing, are 23.1239 W/m2 K and 

34.3099 W/m2 K, respectively, and corresponding to these values, the maximum value 

of the total Biot number [Bit] is 0.005823, which satisfies the lumped model criteria 

[ B4. <0.3].  Hence, the assumption of lumped model is valid for whole of the duration 

of this experimental study. 

Now, corresponding to the above values of 6Q , Big and N,r , the four roots are 

found to be: r (= 9Q ) = 0.366950, r2 = -1.076538, r3 = a + bi and r4 = a - bi; a = 

0.354794, b = 0.879018. Substituting these values in Eq. (3.22), one obtains the 

following equation: 

404.24805 + 183.80592 tan-' [0.40362 —1.137639Q„] + 399.70488 ln[6a,, — 0.36695] 

— 145.10981 ln[0.77267 + (0qv — 0.35479)2 ] —109.48525 ln[6Q ,, + 1.07654] 

= —3z 	 (3.34) 



(i) 	Comparison between the analytical, numerical and experimental results 

A comparison between the analytical, numerical and experimental results has 

been made by plotting the respective temperature profiles in Fig. 3.6. The numerical 

results have been found by numerically solving the Eqs. (3.30) and (3.31) with thehelp 

of an inbuilt command "NDSolve" of MATHEMATICA. As evident from Fig. 3.6, 

these numerical results depict a close agreement with the experimental results of Campo 

and Blotter (2000) [one should note that some of the experimental readings in our work 

have been read from the Fig. 2 of Campo and Blotter (2000) with the help of user-

friendly software "Plot Digitizer", available online for free, as only a few values have 

been tabulated in Table 1 of Campo and Blotter (2000)]. 

Beside these two temperature profiles, Fig. 3.6 also shows the temperature 

profiles obtained by using the analytical and numerical solutions of the modified 

equation, i.e. Eq. (3.33). From the figure, it is clear that a close match exists between 

these two solutions, and thus it signifies the correctness of the analytical solution. 

Moreover, like the numerical results of Eq. (3.30), the results of Eq. (3.33) obtained 

either by the analytical solution [Eq. (3.34)] or by the numerical method, also match 

well with the experimental data. This validates the use of analytical solution and the 

average convective heat transfer coefficient, ham, . Hence, it can be concluded that no 

appreciable change in the results is observed if one models the above heat transfer 

process using Eq. (3.33) instead of Eq. (3.30). 

3.3 STEADY STATE HEAT CONDUCTION IN A METALLIC ROD 

Here, the explicit analytical solution of the model equation of this process has 

been obtained in two different ways, i.e. by simplifying the equation and by using the 

derivative substitution method. For brevity the application of derivative substitution 

method to obtain the analytical solution has been given in Appendix A3. 

3.3.1 Model Equation 

Consider a metallic rod of length L and uniform cross sectional area 4. The two 
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ends of this rod are kept at different but fixed temperatures and the heat transfer takes 

place by conduction. It is assumed that the thermal conductivity of the rod varies 

linearly with temperature and there is no heat loss to the surroundings from the curved 

surface of the rod. The model equation of this process is derived by applying the steady 

state energy balance over a control element of the rod, and the following second order 

ODE along with the allied BCs is obtained (Rajabi et al., 2007; Domairry and Nadim, 

2008; Sajid and Hayat, 2008a): 

d AkT dT =0 	 / 
dx 	( ) dx 	

(3.35a) 

BCI: T=T° atx=0 	 (3.35b) 

BC II: T =Tb  at x=L; 	T°  Tb 	 (3.35c) 

where k(T) = k°  1 + /3  T 	is the temperature dependent thermal conductivity of 
Tb –T°  

the rod. 

3.3.2 Solutions and Discussion: Temperature Profile 

With the introduction of the following dimensionless variables, 

x 	T – T°  L,  0= —
T –T ' b 	° 

the model equation and the associated BCs, i.e. Eqs. (3.35a)-(3.35c), are transformed 

into the following dimensionless equations: 

(1+/3B)0"+ .18(B')2 =0 	 (3.36a) 

BCI: 0(0)=0 	 (3.36b) 

BC II: 0(1) =1 	 (3.36c) 

where 0' and 0" represents the first and second order derivatives of 0 with respect to 

4 , respectively. 
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A careful examination of Eq. (3.36a) shows that it can be conveniently 

expressed into the following form: 

((1+so)0')' = 0 
	

(3.37) 

Integrating the above equation two times with respect to 4 , we obtain the following 

quadratic equation in 0 : 

2 

(3.38) 

where C, 
L
=1 + j'j and C2 [= 0] are the constants of integration and have been found 

from the associated BCs. Substituting these values in Eq. (3.38) and solving for 0 , the 

following two different explicit solutions are found; two solutions appear because of the 

nonlinear nature of the model equation. 

(3.39a) 

e _ —1 — 1+2l +/324 	
(3.39b) 

10 

It should be noted that the second solution gives negative temperature values and 

is therefore unrealistic. Moreover, this second solution does not satisfy the concerned 

BCs, and is therefore discarded. 

(i) 	Comparison between the analytical, numerical and approximate solutions 

If one expands 0 [Eq. (3.39a)] around /3 = 0 by using the Taylor series method, 

the following approximate solution is obtained: 

e^ ~+2~( -~z)+2,82 ( 3 - 2)+... 	 (3.40) 

On comparing the above approximate solution with the approximate solution 
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obtained by Rajabi et al. (2007) by using HPM and the approximate solution obtained 

by Domairry and Nadim (2008) by using HAM for the convergence control parameter 

h, = —1 used therein, we observe an exact conformity. However, due to their 

approximate forms, these solutions have a limited applicability. This fact is also 

revealed in Fig. 3.7, where the temperature profiles, obtained by using the analytical 

solution [Eq. (3.39a)], the approximate solution (Rajabi et al., 2007) and the numerical 

method, have been plotted for several values of 83 [= 0.5, 2, 5]. This figure clearly 

illustrates that the approximate temperature profiles obtained by Rajabi e. al. (2007) 

deviates appreciably even for moderate values of /3 and becomes redundant for larger 

values of /3. Although not shown, the same characteristics can also be attributed to the 

approximate solution obtained by Domairry and Nadim (2008) by using HAM for the 

convergence control parameter hl  = —1. On the other hand, no deviation is observed in 

analytical solution, even for higher values of /3. It is also clear from Fig. 3.7 that as 8 

varies from 0 to oo, the temperature of the rod tends to .reach the higher temperature 

[0 = 1] and thus establishes the fact that with the increase in thermal conductivity the 

rate of heat transfer increases and so the temperature of the rod. 

However, we could not compare our results with those of Sajid and Hayat 

(2008a), as no such solution expression was given by them. Nevertheless, in this case 

the results have been judged against those of Sajid and Hayat (2008a) by tabulating the 

values of temperature gradients at =0 and =1 in Table 3.2. This table also shows 

the corresponding numerically obtained values of temperature gradients. It is observed 

that our results match perfectly well with the numerical results and those obtained by 

Sajid and Hayat (2008a) by using HAM. 

3.4 STEADY STATE RADIATIVE HEAT TRANSFER FROM A 

RECTANGULAR FIN 

This section uses the derivative substitution method to solve the model equation 

analytically. 
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3.4.1 Model Equation 

Consider a rectangular fin having cross sectional area 4, perimeter P, length L 

and the constant thermal conductivity k, and emissivity E. The fin base is maintained 

at a higher temperature T and the fm is transmitting the heat energy into space by the 

radiation. It is assumed that the steady state is prevailing and negligible heat transfer 

takes place from fin tip. Keeping these assumptions in view, the model equation can be 

derived by applying the steady state energy balance over a control volume in the fin and 

is given by the following nonlinear second order ODE along with the allied BCs (Ganji, 

2006; Abbasbandy, 2006a; Tan et al., 2007; Marinca and Herisanu, 2008): 

d (A.k dT _ Pa E (T 4  —T4 ) 	 (3.41a) dxdx 

	

BC I: T = Tb  at x = L (at fin base) 	 (3.41b) 

	

BC II: 	= 0 at x =0 (at fin end) 	 (3.41 c) 

where T is the space temperature and a . is the Stephan-Boltzmann constant. 

3.4.2 Solution and Discussion: Temperature Profile 

It is worthwhile to note that the space temperature can very well be replaced by 

the absolute zero temperature, i.e. T = 0 (Ganji, 2006; Abbasbandy, 2006a; Marinca 

and Herisanu, 2008). Taking this fact into account and by defining the following 

dimensionless variables, 

	

T 	x 	a r=PT,L2  

	

b 	 c 

we obtain the following dimensionless forms of Eqs. (3.41 a)-(3.41 c): 

d29 
 = 804  d z (3.42a) 
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Table 3.2: 	Comparison of the slopes of dimensionless temperature profile at 

both ends of the rod 

/3 Numerical 
solution 

Sajid and 
Hayat, 
(2008a) 

Analytical 
solution 

[Eq. (3.39a)] 

Numerical 
solution  

Analytical 
solution 

[Eq. (3.39a)] 
0.5 0.833333 0.833333 0.833333 1.250000 1.250000 

2 0.666667 0.666667 0.666667 2.000000 2.000000 

5 0.583333 0.583333 0.583333 3.500000 3.500000 

50 26/51 26/51 26/51 26.000000 26.000000 

1.2 
2.0  5.0 

0 	0 	o NS 
--------- - - - • - - AS 
------- - - - - • • - RPM (Rajabi et al., 2007) 

.- . , 

,e-,.e ,.a •

•~ 	 _ -  

mod, 

ai hi 
0.8 

hi hi 

0.6 r 

0.4 

0.2 

0  0.2  0.4  0.6  0.8  1 

Dimensionless rod length, e 

Figure 3.7: Dimensionless temperature profiles along the rod length for various 
values of /3 
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BC I: 0=1 at ~ =1 (at fin base) 
	

(3.42b) 

BC II:dO = 0 at =O (at fin tip) 	 (3.42c) 

To solve the above equation, we have adopted the same approach as was 

followed for the model equation of steady state heat conduction in a metallic rod. In 

other words, here too the derivative dO is assumed to be a function of 0 only, i.e. 

d8 	 1  dO = p(0) ; where p(9) is yet to be found. This assumption leads to 0"= 
d(p(:)2) 

 
2 dB 

Replacing 0 ,, in Eq. (3.42a) by this relation, one obtains: 

d (p(e)2) 
=2g04 

d9 
(3.43) 

Now, replacing p(e)2 with y, the Eq. (3.43) attains the following linear first order 

ODE: 

dO 
= 2_94 	 (3.44) 

Integration of the above equation yields the following result: 

y=5E85 +C, 	 (3.45) 

where C, P — 5 60" ] is the constant of integration and has been evaluated with the 

help of BC II. 6 is the unknown dimensionless temperature at the fin tip and can be 

found by using BC I. Substituting this value of q in Eq. (3.45), one gets: 

z 

y= d =5E(e5-80)5 
(3.46) 

A minor rearrangement of the above equation yields the following equation. It should, 

however, be noted that for this situation, dO > 0, and therefore, positive sign before the 
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radical should be considered. 

(3.47) 
g (05 -6

) 

Integrating the above equation between the limits prescribed by BC I and BC II, we get: 

f 	de 	= f d 	 (3.48) 
Bo (O _O5) 0 

Evaluation of the above integration results in the following analytical solution: 

6 
5 	 5 r- 

5 
~FOO 

e Hypergeometric2F1 1 1 6 e5 - 
i 5~ 3 2 5  2~(es—eo 	 s25eo 	2Eeo r ? 

LJ 10 

(3.49) 

The unknown 00 is computed by solving the following nonlinear equation, which has 

been obtained by forcing the Eq. (3.49) to satisfy the unutilized BC I, i.e. 0 =1 at =1. 

6 r- 
5 	1— 1 Hypergeometric2F1

[5~

1 1 6 15 
— i 5  1 	5 	 1 

2s(1—B5 ) 	00 	2 5 9Q 	2E Bo 	7 
10 

(3.50) 

where T[z] and HG Z F,[a,b,c,z] are the well known Gamma and the Gauss' 

Hypergeometric functions, respectively and are defined as follows (Abramowitz and 

Stegun, 1964): 

00 
F[z] = f tZ-'e-̀ dt 	 (3.51a) 

0 

F[c] 
f 

HG, F. [a, b, c, z] = r[b] r[c — b] tb-' (1 — t)`-b-' (1— tz)-a dt 	 (3.5 1 b) 

:1 



With the help of Eqs. (3.49) and (3.50), one can fmd the dimensionless 
temperature profile. 

(i) 	Comparison between the analytical, numerical and approximate solutions 

For several values of the parameter s [= 0.09, 0.7] the temperature profiles 

obtained by using the analytical and numerical solutions have been shown in Figs. 3.8 

and 3.9. These overlapping profiles show a close agreement and thus verify the 

analytical solution. On comparing the two profiles drawn in these figures, it is observed 

that as the parameter c increases, the temperature profile shows a sharp decrease, and 

signifies the increase in heat transfer rate. This observation is in compliance with the 

physics of the problem. 

The obtained analytical results have also been compared with the approximate 

results obtained by Ganji (2006) and Abbasbandy (2006a) by using HPM and HAM, 

respectively. It should be noted that Ganji (2006) has obtained the approximate solution 

up to the second order approximation in HPM, whereas, Abbasbandy (2006a) has 

obtained the approximate solutions for both the second and fifth order approximation in 

HAM. However, the expression for the approximate solution of fifth order 

approximation was, not given by Abbasbandy (2006a). Here, based on his approach 

[HAM] (Abbasbandy, 2006a), we have developed the fifth order approximate solution 
and obtained the results from it. 

We below reproduce the approximate solutions [second order approximation in 

HPM and HAM], as obtained by these researchers (Ganji, 2006; Abbasbandy, 2006a). 

(x2 _1'  z x4 — 6x2 + 5 
OGanji —1+~ 2 +s 	6 (3.52a) 

6 
2 _ 
 2_  4 _ 2 

6Abb bm~~ =1—Eh, x 2 1 	x 2 J+s1 zh,2 x 	+5 	(3.52b) 

where h, is convergence control parameter in HAM and is evaluated from h-curve 

(Abbasbandy, 2006a). The dimensionless temperature profiles obtained by the above 

approximate solutions have also been shown in Figs. 3.8 and 3.9 for the same values of 



the parameter E [= 0.09, 0.7] as those considered by Ganji (2006) and Abbasbandy 

(2006a), respectively. It is clear from Fig. 3.8 that the profile obtained by Ganji (2006) 

slightly deviates with the numerically obtained profile, whereas, the profile obtained by 

the analytical solution shows a close matching with the numerically obtained profile. 

Similarly, in Fig. 3.9 the approximate solution of Ganji (2006) yields divergent 

results, whereas, the approximate solution of Abbasbandy (2006a) [second order 

approximation in HAM] shows minor deviation with the numerically obtained profile. 

However, the approximate solution of Abbasbandy (2006a) [fifth order approximation 

in HAM] matches well with the numerically obtained profile. In contrast to this, the 

profile obtained by using the analytical solution is in complete agreement with the 

numerically obtained profile. It can be verified that the deviations in the approximate 

solutions of Ganji (2006) and Abbasbandy (2006a) will increase with the increase in the 

value of e, however, this is not true for the analytical solution. Hence, the analytical 

solution derived here is better than these approximate solutions. Because of complexity 

in the approximate solution obtained by Marinca and Herisanu (2008) by using OHAM, 

we have not considered it. 

3.5 STEADY STATE CONVECTIVE HEAT TRANSFER FROM A 
RECTANGULAR FIN 

The derivative substitution method has been used to solve the model equation of 

this process, and the analytical solutions of the temperature profile and fin efficiency 

have been obtained in terms of the familiar algebraic and non-algebraic functions 

(Abramowitz and Stegun, 1964) for all the cases arising in this model equation; 

Moreover, the discussions of the obtained analytical solutions with regard to the 

existence, uniqueness/multiplicity and stability/instability have also been presented. 

3.5.1 Model Equation 

The model equation of this process can be derived by applying the steady state 

energy balance over the fin element, and the following dimensional equation along with 

the related BCs is obtained (Moitsheki et al., 2010b). In this equation, it has been 
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Figure 3.9: Dimensionless temperature profiles along the fin length at E = 0.7 



assumed that the fm tip is insulated. 

A 
	
dx)–Ph(T)(T –TQ)=0 
	

(3.53a) 

BC I: —=0   at x = 0 (at fin tip) 	 (3.53b) 

BC II: T = Tb  at x = L (at fin base) 
	

(3.53c) 

where L, P and 4 denote the length, perimeter and cross sectional area of the 

rectangular fm, respectively. Tb  is the temperature of the fin base, and TQ  is the 

temperature of the surroundings fluid. k(T) and h(T) are the thermal conductivity of 

the fm and the heat transfer coefficient, respectively. In case of large temperature 

gradients, the assumption of constant heat transfer coefficient and thermal conductivity 

does not hold true, and this situation is normally addressed by introducing various types 

of nonlinear fin models in which the thermal conductivity and/or heat transfer 

coefficient are assumed to be temperature dependent. In this section, we have dealt with 

one such nonlinear fin model, in which the heat transfer coefficient and thermal 

conductivity are assumed to vary as distinct power-law functions of temperature, and 
I , n 

are given by: k(T) = kb 
(T –i 	and h(T) = hb T –T°  , respectively (Moitsheki et

,J Tb  – Ta 	 Tb  – TQ  

al., 2010b). It can be noticed that for different values of n, h(T) can represent the heat 

transfer coefficient for various heat transfer phenomena, i.e. n = – 4 for transition 

boiling, n = –x for laminar film boiling/condensation, n = 0 for forced convection, 

n = 1 4  for laminar free/natural convection, n = 1 3  for turbulent free/natural 

convection, n = 2 for nucleate boiling, n = 3 for radiation (Yeh and Liaw, 1990; 

Moitsheki et al., 201Ob). 

It should also be noted that the similar types of model equations also arise in 

various other processes: (i) the previously considered process of radiative heat transfer 

from a rectangular fin to the outer space, (ii) the process of convective heat transfer 

from a rectangular fin with power-law dependent heat transfer coefficient, and (iii) the 

reaction-diffusion process inside a porous catalyst slab sustaining power-law kinetics. 



The performance of a fin is measured by the fin efficiency [q ], which is defined 

as the ratio of the actual heat transfer rate to the heat transfer rate had it been evaluated 

at the base temperature (Sunden and Heggs, 2000; Kraus and Aziz, 2001). For a 

rectangular fin, it is mathematically expressed as follows (Moitsheki et al., 2010b): 

k(Tb) dT 
_ A 	dx 

 L 

_ 

7  — PL h(Tb)(Tb —T) 	
(3.54a) 

or 

L 

f h(T)(T -T )dx 

77 	h()(7-7)L 	
(3.54b) 

3.5.2 Solutions and Discussion: Temperature Profile and Fin Efficiency 

Before finding the analytical solution of Eqs. (3.53a)-(3.53c), it is convenient to 

introduce the following dimensionless variables (Moitsheki et al., 2010b): 

0 T—T 	x N_ hbPL2  
Tb—Ta' 
	 L 	k6A,  

With the incorporation of the above dimensionless variables, the Eqs. (3.53a)-(3.53c) 

become: 

(9Qe')'— N2e'+n  =0 	 (3.55a) 

BC L: 0'(0) = 0 	 (3.55b) 

BC II: 0(1) =1 	 (3.55c) 

where 0' denotes the first order derivative of 0 with respect to 4 . By expanding the 

Eq. (3.55a), one obtains the following equation: 

Dag "+/30Q-' (0 ')2 — N 2o I+„ = 0 
	

(3.56) 



Similarly, by using the above dimensionless variables, the fin efficiency is also 
expressed in terms of the following relations: 

_ O'(1) 
77 NZ 	 (3.57a) 

or 

(3.57b) Jo 

Once the analytical solution of 0 is available, the fm efficiency it can easily be 

found by substituting the analytical solution of 0 in any of the above equations. We 

now apply the derivative substitution method to obtain the analytical solution of the Eq. 

(3.56) for the associated BCs [Eqs. (3.55b) and (3.55c)]. For this we assume that 

0' = p(0) , where p(0) is some unknown function of 0. With this postulation, one 

d z 

finds 
0" =- 

de , and by substituting these relations into the Eq. (3.56) and slightly 

rearranging the resultant equation, the following first order ODE is obtained: 

d( P2 + 2l6-' p2 — 2N20I+n-Q =0 
d6 

(3.58) 

Replacing p2 (= (0 1) 2) with y, the above equation can further be reduced into the 

following first order linear ODE: 

y'+ 2/3e-' y — 2N2e'+n-Q = 0 
	

(3.59) 

where y -denotes Y . The above equation can be solved by using the integrating factor 

method and the particular solution is obtained by employing BC I. An equivalent 

condition corresponding to BC I is: y(00 ) = 0, where 00 is the unknown temperature at 

~ 

 

=0, i.e. 00 = O( = 0) . In this way, the expression of y can be found in terms of 0 

and 00 , which will subsequently be used to obtain the expression of 0 by integrating 

the previously defined relation, i.e. (8')z = y between the limits 0 = 0o at = 0 to 0 at 

~ . After getting the expression of 0, the unknown 0 can automatically be found by 



using the prescribed BC II. 

Before proceeding further, it is worthwhile to mention that for different 

combinations of /3 and n, the Eq. (3.59) reveals various forms of solutions, each 

having its own peculiar characteristics. Because of this reason, these solutions have 

been divided into different cases and are tackled separately. However, the above general 

procedure is applicable to these cases, as demonstrated below. 

3.5.2.1 Case1(a):/3+n=-2 & /30n 

(i) 	Temperature profile 

For the above set of parameters, the Eq. (3.59) reduces to 

y'— (4 + 2n)0-' y — 2N2e3+2n =0 
	

(3.60) 

Solution of the above linear equation can be obtained by using the integrating 

factor method and is given by: 

z 

y = p(0)2 _ 
dO = o4+2n (Cl + 2N 21n[O]) (3.61) 

where q [ = —2N 21n[00 ] ] is the constant of integration and has been found by satisfying 

the homogeneous BC I, i.e. 0'(0) = 0 or y(00) =0.  Substituting the value of q in Eq. 

(3.61), one obtains the following expression of y: 

2 d e 2 = e4+2n  
1 2N 2 [, /o ]J1n y = p(

e
) 

=L eJ O 
(3.62) 

Integrating the above Eq. (3.62) between the limits 0 = 0 at =0 to 0 at , the 

following integral is resulted: • 

f dB 	
= f d~ 

8, e2+n 2N
2In e 	0 

Bo 

(3.63) 



Solution of the above integral between the specified limits yields the following 

analytical solution of the dimensionless temperature 0. 

r- i(l n) N Z 
81+" Erf (l + n)ln 	= 	 (3.64) 

 o 	 0 

where Erf [z] is the well known error function, i.e. Erf [z] _ 	f e l2 dt . It can be 
~o 

noted that 00 in Eq. (3.64), is still unknown and can be computed by the following 

equation, which has been obtained by forcing the Eq. (3.64) to satisfy the remaining BC 

II, i.e. 0(1) =1. 

1 Erf (1 + n)ln 1 =1 	 (3.65) ri(l n)N 2 Bol+" 	[ o iJ0 

For a given n and N, 00 is obtained from Eq. (3.65), and thus obtained value of 

eo is substituted back in Eq. (3.64) to get the complete profile of dimensionless 

temperature, 6( ). 

(ii) Fin efficiency 

Fin efficiency is found either by using the Eq. (3.57a) or Eq. (3.57b). To find i 

from the Eq. (3.57a), one can resort to Eq. (3.62) from which de 	can directly be 

found, and the following analytical solution of q is obtained: 

77N2 N 
_ 1 ) _ e2+" 2Zn[yo] = N —2ln[eo 11 (3.66) 

However, if one prefers to find r7 from the Eq. (3.57b), then one may 

straightforwardly proceed by integrating the Eq. (3.55a) with respect to 	from 0 to 1 

and again obtain the same analytical solution of rj . 



(iii) Solution properties and discussion of results 

Since, the original Eqs. (3.55a)-(3.55c) form a nonlinear BVP, hence, there 

exists a possibility of more than one solutions. In the present case [ /3 + n = —2 & 

/3 ~ n ], this fact is supported by the nonlinear implicit form of the Eq. (3.65), which 

can yield more than one feasible value of 00 E (0,1) for a particular value of N, and 

corresponding to each 00 one can have a different solution. For verifying this 

supposition, the dimensionless temperature of the fin tip [00 ] has been drawn in Fig. 

3.10 against the fin parameter N for various combinations of n and /1. Eq. (3.65) is 

used to evaluate Oo for different values of N. 

The solution properties can also be found in a non-graphical way by making use 

dN 
of the quantity, which is the inverse of the slope of 00 curves plotted against N. 

0 

diV is an important quantity in analyzing the characteristics of these solutions and can 
dB° 

be obtained by differentiating Eq. (3.65) with respect to eo . For this case, dN is given 
0 

by the following Eq. (3.67). It is clear from Fig. 3.10 that if there exist more than one 

solutions then the inverse of the slope of 0o curve will be zero I dN =0 atleast once 
0 

for 00 e (0,1) . The value of 60 , where the inverse of the slope becomes zero, can be 

found by substituting d~ = 0 in Eq. (3.67) and solving the resultant equation for 00 . 
0 

This value of 90 is denoted by 0,, and the corresponding value of N is denoted by 

Nm . 

dN 

	

de 	2r(12 n) B z+„ Erf (1 + n)ln 	— 	1 	 (3.67) 
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From the inspection of the Fig. 3.10 and by analysing the numerical value of 

d N  , we observe that for several combinations of the parameters [ N , n, /3],  no 
d Bo  

solution, single solution and even dual solutions may be present. The following points 
decide their existence: 

(i) 	For n > -1, 0o  decreases monotonically from 00  =1 at N = 0 and approaches 

00  -+ 0 as N - oo . In other words,  d e°  < 0 [or  
dN 	d Bo  

entails that only single value of 00  and thus only single solution can exist for 

N E [0, x).  dN  <'0  implies that the so found single solution is stable. For such 
0 

cases [ n = -0.5, 6 = -1.5; n = 0, 83 = -2; n = 1, /3 = -3; n = 2, /3 = -4], the 

plots of 00  against N have been shown in Fig. 3.10, whereas, Fig. 3.11 displays 

the single dimensionless temperature profiles for one such case [ n = 0, /3 = -2]. 

It is also important to pay attention on the variation of rj with N. Although not 

shown, r for this case [Eqs. (3.66)] will start decreasing from its maximum_ 

value, i.e. unity [ r7. =1 ], to its minimum value, i.e. zero [ rj„11,, - 0 ], as N is 

increased from its minimum value, i.e. zero [ Nmin  = 0 ], to the maximum value, 

i.e. infinity [ N. -+ oc ]. 

(ii) For n <-1, an altogether different situation, also shown in Fig. 3.10, appears: 

dual 04  exist for N E (0, Nmax)  , and  '
j11 

 can be > 0, = 0, <0 in this range. This 
0 

signifies that two solutions exist for N E (0, Nma) , and at N = Nmax these two 

solutions merge to give a single solution, whereas, at Nmjn  = 0, single solution 

exists. Moreover, for N> N. no solution can be found. 0oc,i, can be found by 

equating Eq. (3.67) to zero and solving for 00.  The corresponding value of N, 

i.e. Nm  , can be found by evaluating N at 00  = Boc,.;, with the help of Eq. (3.65). 

The plots of 00  against N have also been depicted in Fig. 3.10 for such 

situations [ n = -3, /3 = 1; n = -2, /3 = 0; n = -1.5, /3 = -0.5; n = -1.25, /3 = 
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-0.75], and for some of them [ n = -2, /3 = 0; n = -1.5, 83 = -0.5] the dual 

temperature profiles have been plotted in Fig. 3.11. Although not shown, it can 

be verified that the solution corresponding to the larger temperature gradient 

dN  [ 	> 0  ] is unstable. 
dO0  

Unlike the situation for n > —1, r 	increases from r]m;n  =1 to 

r7. _ F-21n(O0 1 ) , as N increases from Nr;n  =0 to N.a,, . It can be seen that 
N. 

77 is greater than unity, because for n <-1, the heat removal terms in Eq. 

(3.55a), i.e. N 2 B'+' , will be higher for smaller, temperature. This fact can also be 

substantiated from Eq. (3.57b). 

For the following cases, analytical solutions of the temperature profile and fin 

efficiency have been obtained in the same way as described above. Hence, for brevity 

only solutions and their discussions are presented here; the details of their derivation 

have been deferred to the Appendix A4. 

3.5.2.2 Case1(b):/t+n=-2 & #=n=-1 

(i) Temperature profile 

0 = OO Exp  N2 	 (3.68) 
	J 

where 00  is given by: 

00 = Exp (-N 2 /2) 	 (3.69) 

This case has also been tackled by Moitsheki et al. (2010b), and the present 

analytical solution [Eq. (3.68)] matches well with the one obtained by these researchers. 

(ii) 	Fin efficiency 

For this case: 	=1 V N. This is because the heat transfer from the fin is 

independent of temperature for n = —1, i.e. N 29'+' = N z  [see Eqs. (3.55a) or (3.57b)]. 
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Figure 3.11: Dimensionless temperature profiles along the fin length for case 1(a) 
and case 1(b) 
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(iii) Solution properties and discussion of results 

For this case [n = -1, Q = -1], the variation of 00  with N is shown in Fig. 3.10 

and the expression for dN  is given below: 
0 

dN 	1 
dOo 	60.j-21n[60 ] 

	 (3.70) 

The Fig. 3.10 reveals the same features as described in the point (i) of case 1 (a), 

i.e.  dN  <0 V N E [0, cc), and 00  =1 at N = 0 and 00  -+0 as N - cc. Hence, only 
deo  

single value of 00 , and consequently, only single and stable solution can be found for 

N E [0, cc). The dimensionless temperature profile corresponding to this case [ n = -1, 
/3 = -1]  for N =1.2 have been displayed in Fig. 3.11. 

3.5.2.3 Case2(a):/3+n96-2 & /3=n#-1 

(i) 	Temperature profile 

0=0.( 	])'+" 	 (3.71) 

where 00  is given by: 

-1 

00  = ( cosh[N 	 (3.72) 

One should note that Moitsheki et al. (2010b) have obtained two different 

analytical solutions for this case by using symmetry method. The first solution was 

valid for n E (-cc, -1) U (-1, oo) , whereas, the second solution was valid for n E (-1,0) 

-1 < n < 0. However, here, we have directly obtained the first solution, i.e. Eq. (3.71), 

which is valid for all n E (-cc, -1) U (-1, oo) . 



(ii) Fin efficiency 

1 (1_002nf2) 

N (1 + n) 
(3.73) 

With the help of Eqs. (3.72) and (3.73), the following expression of r7 is 

obtained for n =0,  which also matches with that of Moitsheki et al. (2010b). 

11—e 
2 tanh[N] 

N 	~ = N 

(iii) Solution properties. and discussion of results 

Using Eq. (3.72), the variation of 90 with N' [Fig. 3.12] and the following 

dN 
expression of de [Eq. (3.74)] have been obtained. 

0 

dN _ 	l + n 00-2-n 
dOo  ,,J9 -2-n —1 j602-n +1 

(3.74) 

A close look on the plots of 90 , shown in the Fig. 3.12, reveals the following facts: 

(i) 	For n <-1 , 00 varies periodically with N, hence, innumerous values of N can 

have the same fin tip temperature, 00 . However, there can be no realistic 

solution for N>_ N., i.e. after the first positive zero of the 6o curve [marked 

with the bold circles in Fig. 3.12]. Nmax can be found by substituting 00 =0 in 

Eq. (3.72) and solving the resultant equation for the minimum positive value of 

div 
N .® <0 for 0 <— N < Nmax , which signifies the existence of single and stable 

0 

solution in this range. Fig. 3.12 shows the variation of 00 with N for n = /3 = -
2 and n = /3 = -3/2, and the Fig. 3.13 shows the corresponding dimensionless 

temperature profiles [single solution] for N = 1. 
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Figure 3.12: Variation of Bo with N for case 2(a) 
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Figure 3.13: Dimensionless temperature profiles along the fin length at N = 1 for 
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FL1( - e2n+2) 

For this situation, rj increases from rJm;n =1 to 
77 = N+ n) 

when 

N increases from Nm;,, = 0 to Nma . It can be noted that 17 >-1 [for the same 

reason as mentioned in the point (ii) of case 1(a)]. 

(ii) 	For n > -1, d~ <0 V N E [0, co) . Thus, only single solutions exist for 
0 

N E [0,c*). For some of these situations [ n = Q = -1/2; n = /3 = 0; n = /3 = 

1; n = /3 = 2], the variation of 00 with N and the corresponding dimensionless 

temperature profiles have also been depicted in Fig. 3.12 and Fig. 3.13, 
respectively. 

For this condition, q decreases from i7, =1 to i7,, ->0 as N increases from 

N = 0 to N —>ao. 

For the sake of comparison, the dimensionless temperature profiles for the same 

values of n as considered by Moitsheki et al. (2010b), i.e. n = -x [laminar film 

boiling/condensation], n = 0 [forced convection], n =)<  [laminar free/natural 

convection], n = < [turbulent free/natural convection], n = 2 [nucleate boiling], n = 3 

[radiation], have also been drawn by using the analytical solution and are shown in Fig. 

3.14. It can be seen that a close agreement exists between these profiles and those 

drawn by Moitsheki et al. (201 Ob). Similarly, the variation of with N [ n = /3 = 01 has 

been shown in Fig. 3.15, which also matches with the one given by Moitsheki et al. 

(201 Ob). 

3.5.2.4 Case2(b):/f+n:-2 & /30n & 2J1+n#-3 

(i) 	Temperature profile 

The following implicit analytical solution of 0 is obtained: 
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l+Q 	
02+n+/j 

	_
1+13 	1 3+n+2/3    02+n+/l 

B 	1— 00+n+a HGZF 2+n
+,8 ' 2 ' 2+n+18 

2N2 (02+n+Q — 02+3)  
(1+) 	

2+n+/3 

—~(2+n+~3)B o+~ I' 3+n+2/3 
2+n+/3 = 	

(3.75) 

(1+/3) 2N Z9 Z+n+Q I 4+n+3,8 

where F[ z] and HG 2 F [a, b, c, z] are the well known Gamma and the Gauss' 

Hypergeometric functions, respectively, and have been defined earlier in Eqs. (3.51a) 

and (3.51b), respectively. The unknown 0° , in Eq. (3.75), is obtained by solving the 

following equation. 

1 	1+/3 1 3+n+2/3 	1 
l021+ HGzF 2+n+,6'2' 2+n+/3 ' 00+"+Q 

2N2(1-00+n+,) 
(1+~) 	

2+n+/3 

I' 
3+n+213 

— L 2+n+/3 	1 	 (3.76) 
(1+p) 2N 2o2+n+Q I' 4+n+3,8

° 14+2n+2,8j~ 

(ii) Fin efficiency 

— N (2+n+f3) 1—B° 
	 (3.77) 

Form Eq. (3.57b) it can be deduced that r7 =1 for n = —1 and for any value of /3 

and N. 
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Figure 3.14: Dimensionless temperature profiles along the fin length at N = 5 for 
case 2(a) for the same values of parameters as those considered by 
Moitsheki et al. (2010b) 
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Figure 3.15: Variation of fin efficiency with N for case 2(a) for the same-values of 
parameters [n = /1 = 0] as those considered by Moitsheki et al. 
(2010b) 
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(iii) Solution properties and discussion of results 

The variation of e° with N, and the respective temperature profiles are have 

been shown in Figs. 3.16-3.19. d~ is given by the following equation: 
0 

1_2(1 F~2+n:,8)7r  0°5+,i+3/3 (1 _e0 2-n-QF 1+

T 	 0 	 12+n+ ,81  

d60 	
2/(1+,3)e° (_1+6°z+n+Q) r —n+ fi 

14+2n+2,8 

1_e Z+n+Q 
(2+n+~} 	° 

2+n+/3 
+ 2i(1 +  J3)00 (—i+0°2+n+Q )" 

1+  
0 	2 1  2'2+n+/3' 2+n+/3 62+n+a 

(3.78) 

A careful assessment of the Figs. 3.16 and 3.18 showing the variation of 00 with 

N, discloses the following three situations: 

(i) 	Fig. 3.16 reveals that dN < 0 for N E [0, N.J. Hence, only single and stable 
d e° 

solutions exist for N E [0, Nma.) , and no solution exists for N >— N. . Nm can 

be found from Eq. (3.76) by substituting 00 =0.  For some of the parameters' 

values pertaining to this case [n = -1, 63 = 1/2; n = -1, 8 = 1; n = -1, /3 = 2; 

n = -1, /3 = 4], these plots have been shown in Fig. 3.16 and the corresponding 

single temperature profiles are shown in Fig. 3.17. 

2 rj increases from rj =1 to 17max = Nl 	(2 + n -i-f3)  ̀
1— 60 ;'+R) when N 

max 

increases from N = 0 to Nm . However, i =1 for n = -1 and for any value of 

/3 and N . 
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(ii) As shown in Fig. 3.18 for n = -1.5 and /3 = -2, dN <0 for N c [0, x). Thus, 
0 

single and stable solutions can be found for N E [0, oo) . The respective 

temperature profile is shown in Fig. 3.19. q increases from 71 n =1 to 

	

1 	2 	z+,t+p 
71ma 	N 	(2+n+/j) (l—eoc,,r ) 

m~ 

from N = 0 to Nm. 

[since n <-1]  when N increases 

(iii) For other situations [ n = --1.5, /3 = 1; n = -1.5, /3 = 2; n = -1.5, /3 = -0.25; 

n = -1.5, /3 = 0.5] also shown in Fig. 3.18, 00 exists for 0 S N S Nmax. For 

N E [0, NT ) , 00 is single valued and dN < 0, therefore single and stable 
dO0 

solution can be obtained. NT can be computed from Eq. (3.76) by substituting 

00 = 0. For N E [NT , Nm ) , 00 is double valued and dN can be negative or 
d90 

positive, therefore dual solutions [one stable and the other unstable] can be 

obtained. At N = N. dN = p the dual solutions merge into a single solution. 
d eo 

For N> N., no solution can be found. This situation has been portrayed in 

Fig. 3.18 and the corresponding dual temperature profiles [for n = -1.5, /3 = -

0.25 and n = -1.5, /3 = 0.5] are shown in Fig. 3.19. 

Here also, q increases from 7 min =1 to 77 = 1 	2 	(I — B2+n+ ) 
max Nma. (2 + n + /3) 	

ocr 1: 

when N increases from N = 0 to Nma.. 

It should also be noted that the previously considered model equation of 

radiative heat transfer from a rectangular fin is a special case of case 2(b), and therefore, 

the results and discussions of this case are also applicable to it. 
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Figure 3.17: Dimensionless temperature profiles along the fin length at n = -1 and 
N= 0.6 for case 2(b) 

109 



N 

N 

II 
a2 

II 
e~ 

II 
=. 

II 	II 
. 

0 v 	b 
o 

'c7 Z 

/ — 
1  ~ 

1 	I' 	1 

I, /  1 ~ 
1 	1 

/ Iii 1 	I' 	I 

,1 p 
li 

I 	1 	1 
I 	1 	1 
I 	1 	1 	1 
1 	1 	1 	1 

I_I 
F 
z 

rn l 	°0 	° 1 	p 1 
'C.I 	tt-I0001 	0I 
or 	o 1 o 	jlxl 

, 	z;z~ 	z~ 

	

NI 	Vll l 	01 . l 	c" I 	r 	N1 
0 of  o 

Il I 	I & 	II 	1  

c~ 	of 	0 	0l 

I v1 
o N 
O O O O 

OB 



1.4 

1.2 

= 0.5 	0.5 	-0.25 	-0.25 	-2 
N=0.8 	0.8 	1 	1 	0.75 

o 	o 	0 	0 	0 	NS 
----- — —• ----- — —  AS 

	

Dual solutions 	 Single solutions 

_ tee- -   - - 

0.8 

p 0.6 

0.4 

0.2 

C 

0  0.2  0.4  0.6  0.8 

Dimensionless fin length, ~ 

Figure 3.19: Dimensionless temperature profiles along the fin length at n = -1.5 
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3.5.2.SCase2(c): f+n0-2 & /30n & 2/3+n=-3 

(i) 	Temperature profile 

It can be noted that the analytical solution of the previous case 2(b), i.e. Eq. 
(3.75), fails whenever 2/3 + n = —3. This is because both the Hypergeometric function 

and the Gamma function become indeterminate for 2/3 + n = —3. Hence, in such 

situations, the whole steps starting from Eq. (3.55a) have to be worked out again as 

shown in Appendix A4. Finally, the following implicit analytical solution of 0 is 

obtained for this case: 

(l+n)  (1+n) 

e Z 	B 4 
— 1— 	+sin-' 

l+n 	 8 	 0 

(1+n) 
(I+n) 	 2 

N(000 )Z 1—  

(-1+n) 

1ZB -(1+n) e

° 

2 

+ ° 	= 

2N (1 + n) 
00 

(3.79) 

where 00 is evaluated by the following equation. 

1: 	

(l+n) 

1 

	

	
(]+n) 

— e° 2 
p+n)  

l+n 	
[_i— B° z +sin-' B° 4 

(l+n) 	 (l+n) 
N90 2 	1— B° 2 

(-1+n) 

,re°-(l+n) e° 2 + 	
=1 

2N (1 + n) 
B° 

(3.80) 

(ii) Fin efficiency 

2 	1 	n+] 

~ N n+1 1-9°2 
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(iii) Solution properties and discussion of results 

The variation of 00  with N is shown in Fig. 3.20. For this case, the 

dimensionless temperature profiles have been drawn in Fig. 3.21. The expression of 

dN  is given by the following Eq. (3.82): 
d9°  

l+n 

	

1+2n 1 —  B 2 	 1+n 
-(7+4n) 	12(1+n)O0    4 	° 	[_3+4o-- 3 + 40 2  — B 1+n 

dN 	00  4  	1+ n 	o 	0 

	

_____ ______ 	 D _ 	° 	5 	1—B°  z 
de° 	 1+"  z 	 1+ n  3 

	 ]+n 	l+n 

8[1-0 
 ° 2 	 —31r 	B° 4  0°  2  1— 20°  2 + 

B°  

	

—(7+4n) 	
FI+ 

8 4 	 " 	 I+n 	 I+n 
+ 	° 5 -6(1 + n)9°4 1-20°  2  + eol+n s -1 B° 4  

I+n 2 
8 1-0° 2 

(3.82) 

By examining the Fig. 3.20, the following two observations have been made: 

(i) 	For n<-1,  00  exist for N E [0, Nmax ] in which  dN  < 0, > 0, = 0, in other 

words NT  = 0. Therefore, only dual solutions will exist for N E (0, Nm.) . At 

N = N these two solutions merge into a single solution. For N> NN  , no 

solution is possible. For some of the parameters' values pertaining to this case [ 

n = -3, /3 = 0; n = -2, /3 = -1/2], the variation of 00  with N has been shown in 

Fig. 3.20, and for n = -3, /3 = 0 and N = 0.4, the obtained dual temperature 

profiles are shown in Fig. 3.21. It can also be observed that for n = -3 and /3 = 

0, results [Figs. 3.20 and 3.21] match well with those of Abbasbandy and 

Sivanian (2010). 

n+l 
r increases from imin  =1 to 77f„ax = N Fn+ 1— 9" when N 

max 

increases from Nmjn  = 0 to Nmax , [same observations as in point (ii) of case 

1(a)]. 
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(ii) 	For n > -1, Fig. 3.20 shows that dN <0 V NE [0, oo) . Therefore, only 
0 

single stable solutions will be present for N c [0, oo) . Fig. 3.20 also draws the 

plot of °0 against N [ n -= 0, /3 = -3/2; n = 1, /3 = -2], and Fig. 3.21 shows the 

temperature profile corresponding to n = 1 and /3 = -2 for N = 1. 

r7 decreases from r~ =1 to rj -  0 when N increases from N = 0 to 

N -  oo [same as in point (ii) of case 2(a)]. 

For all the above cases, the temperature profiles have also been obtained by 

using numerical method and are shown in various figures [Figs. 3.11, 3.13 - 3.15, 3.17, 

3.19, 3.21] along with the presently obtained analytical profiles; a close match between 

these profiles validates all the derived analytical solutions. 

3.5.2.6 Resemblance with Previous Works 

(i) For /3 ~ 0, Moitsheki et al. (2010b) have obtained the analytical solutions of the 

same model equation for cases 1(b) and 2(a) only. On the contrary, in the present 

study we have successfully simulated all the cases including those considered by 

Moitsheki et al. (2010b). 

(ii) For 83 =0,  the original Eqs. (3.55a)-(3.55c) reduce to the well known equations 

of heat conduction-convection and reaction-diffusion processes, which were 

earlier tackled by various investigators for obtaining the approximate and 

analytical solutions. It can be easily examined that the presently obtained 

analytical solutions cover all the previously found analytical solutions of these 

processes (Sen and Trinh, 1986; Yeh and Liaw, 1990; Abbasbandy and 

Shivanian, 2010; Magyari, 2008; Moitsheki et al., 2010a; Moitsheki et al., 

2010b). 

3.6 CONCLUDING REMARKS 

In this chapter, model equations of the following selected heat transfer processes 
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have been solved analytically and the conclusions pertaining to these processes are 

summarized below. 

(i)* 	Transient Convective Cooling of a Lumped Body 

Explicit analytical solution of the transient temperature profile has been obtained 

in terms of Lambert W function by using the separation of variables method followed by 

partial fraction decomposition method. The obtained analytical solution has been 

successfully verified with the numerical solution, and a comparison between the 

analytical and the available approximate solutions (Ganji, 2006; Abbasbandy, 2006a; 

Marinca and Herisanu, 2008) reveals that the analytical solution is better than the 

approximate solutions. 

(ii) Transient Convective-Radiative Cooling of a Lumped Body 

Implicit analytical solution of the transient temperature profile has been obtained 

by using the separation of variables method and the partial fraction decomposition 

method. The analytical solution has been validated with the numerical solution, and the 

practical utility of the analytical solution has been shown by successfully simulating an 

existing experimental study of the cooling of metal ball bearing (Campo and Blotter, 

2000). While simulating this experimental study, it is shown that the temperature 

dependent heat transfer coefficient can effectively be replaced by its average value. 

Besides, explicit analytical solution of the transient temperature profile for the 

specific case of transient cooling of a lumped body in an absolute zero temperature has 

also been obtained. Limitations of an existing model equation of this specific situation 

and its available approximate solutions (Rajabi et al., 2007; Ganji et al., 2007; Domairry 

and Nadim, 2008) have also been discussed and rectified. 

(iii) Steady State Heat Conduction in a Metallic Rod 

Explicit analytical solution of the temperature profile has been obtained by using 

two different methods, i.e. by simplifying the model equation and by using the 
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derivative substitution method. By comparing the results obtained by using the 

analytical, numerical and the available approximate solutions (Rajabi et al., 2007; 

Domairry and Nadim, 2008; Sajid and Hayat, 2008a), the validity of analytical solution 

has been established and it is shown that the analytical solution is better than the 

available approximate solutions. 

(iv) Steady State Radiative Heat Transfer from a Rectangular Fin 

Analytical solution of the temperature profile has been obtained in terms of an 

implicit hypergeometric function by using the derivative substitution method. The so 

obtained analytical solution has been successfully verified with the numerical solution 

and is found to be better than the approximate solutions available in literature (Ganji, 

2006; Abbasbandy, 2006a; Marinca and Herisanu, 2008). 

(v) Steady State Convective Heat Transfer from a Rectangular Fin 

Analytical solutions of the temperature profile and fin efficiency have been 

obtained in implicit/explicit forms of the well known algebraic/non-algebraic functions 

by using the derivative substitution method. These analytical solutions have been found 

for all the possible values of parameters [N, /3 and n] and also include the analytical 

solutions earlier obtained by Moitsheki et al. (2010b). These analytical solutions have 

been effectively validated with their numerical counterparts and may also be employed 

for other similar processes, e.g. reaction-diffusion process in a catalyst slab. 

It is observed that for some sets of parameters' values the model equation 

exhibited no solution, single solution and dual solutions. All the single solutions so 

found are stable, whereas in case of dual solutions, the one corresponding to higher heat 

transfer rate [or the one for which dam' > o ], is unstable. For some cases, it is shown that 
dO0  

the fin efficiency does not exceed a certain maximum value, which is determined by the 

value of the parameter N prevailing at the boundary of the region of solution existence. 
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NOMENCLATURE 

Abbreviations 
AS 	 analytical solution 

NS 	 numerical solution 

HPM 	 homotopy perturbation method 

HAM 	 homotopy analysis method 
Exp. 	 Experimental 

Notations 

A 	 [m2] 	heat transfer area of the body 

4 	 [m2] 	cross-sectional area of the rod / rectangular fin 

Bi 	 [-] 	Biot number for convection for a spherical body 

hR 

k 

Bil. 	 [-] 	overall Biot number for convective and radiative 

heat transfer for a spherical body = 
(h+h)R 

k 

Ca 	 [kJ.kg I .K-'] 	specific heat of the body at temperature T 

cP 	 [k3.kg'.K-'] 	constant specific heat of the body 

c, (T) 	[kJ.kg'.K-1] 	specific heat of the body at temperature T 

=ca 1+~3 
(T—T) 

(Ti —TQ ) 

q, C2 	 [-] 	constants of integration 

D 	 [m] 	diameter of the ball bearing [= 2R] 

e 	 [-] 	exponential function 
h 	 [W.m 2.K-'] 	convective heat transfer coefficient 

k 	 [-] 	convergence control parameter in HAM solution 

given in the present Eqs. (3. l Ob) and (3.52b) as 

used by Abbasbandy (2006a) 

h 	 [W.m-2.K-'] 	average convective heat transfer coefficient [Eq. 
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(3.32)] 

17,, [W.m 2.K-'] convective heat transfer coefficient at temperature T 

h 
r 

[W.m 2.K-'] radiative heat transfer coefficient 

a E (T 4  —T4 ) 
(TT) 

h(T) [W.m 2'.K-'] convective heat transfer coefficient at temperature T 

i [-] imaginary.  unit [ = 	]; index variable 

k [W.m I .K 1 ] 
constant thermal conductivity of the body / 
rectangular fin 

kQ  [W.m 1 .K-1 ] thermal conductivity of the rod at temperature T 
kb  [W.m 1 .K-1 ] thermal conductivity of the rectangular fin at 

temperature T 

1 [m] characteristic length of the body 

L [m] length of the rod / rectangular fin 

n [-] dimensionless parameter in convective heat transfer 

coefficient 
hPL2  uz 

N 	 [-] 	dimensionless fin parameter = 
b 

kbA  

N 	 [-] 	maximum possible value of dimensionless fin 

parameter 

N . 	 [-] 	minimum possible value of dimensionless fin 

parameter 

NT 	 [-] 	 value of dimensionless fin parameter at 00  =0 

N 	 [-] 	dimensionless conduction-radiation parameter 

6 E RT,.3  
k 

d8 
p(9) 	 [-] 	function of 0 

(1= 
d 

p 	 [m] 	perimeter of the rectangular fin 

r 	 [m] 	radial coordinate 

root [Appendix Al] 
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R [m] radius of the spherical body 

T [K] temperature of the body / rod / rectangular fin 

T [K] initial temperature of the body 

T [K] radiation sink temperature 

V [m3] volume of the body 

Greek letters 

a [m2.s-1] thermal diffusivity of the body 	= 	k 
Pco 

Q [-] dimensionless parameter in specific heat 

E [-] emissivity of the body 

P [kg.mJ3] density of the body 

[-] at dimensionless time 	= t 
R 

zl [-] dimensionless time considered by Ganji (2006) and 

Abbasbandy (2006a) 	= h A t 
Pca V 

[W.m 2.K~] Stephan-Boltzmann constant [= 5.669 x 10-8] 

[-] 
x 

dimensionless distance 	= L 

Section 3.1 
Notations 
t [s] time 

T [K] ambient temperature 

x [-] dimensionless independent variable 

Y [-] dimensionless dependent variable 

Greek letters 

e [-] dimensionless temperature 	= T —T 
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Section 3.2 
Notations 
a, b 	 Li 	real and imaginary parts of the complex roots [ 

and r4 ] 

G j~l 	[-] 	constants appearing in the partial fraction 
decomposition 

t 	 [s] 	time 

T 	 [K] 	adiabatic surface temperature [Eq. (3.13)] 

Tf 	 [K] 	ambient temperature of the surroundings [ambient 

temperature] 

Greek letters 

[-] dimensionless parameter defined in Ganji et al. 

(2007), Rajabi et al. (2007), Domairry and Nadim 

(2008) [ = 3N, ] 

77 [-] r dimensionless radial coordinate 	= -  
R 

0 [-] dimensionless temperature 	= T 
T! 

e A [-] dimensionless adiabatic surface temperature 

1 I 
T 

9 [-] spatially averaged dimensionless temperature [Eq. 

(3.16)] 

Section 3.3 
Notations 

k(T) [W.m'.K1] thermal conductivity of the rod [=k (1+/30) ] 

T [K] temperature of the rod at the x = 0 

T [K] temperature of the rod at the x = L 

x [m] distance along the length of the rod 
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d8 2  
Y 	 [-] 	function of 0 

[1= 

p(e)2 = d 

Greek letters 

B 	 [_] 	dimensionless temperature =  T —TQ  

Section 3.4 
lip ILIUM 

a, b, c 	 [-] 	constants in Eq. (3.51b) 

t 	 [-] 	dummy variable in Eqs. (3.51a)-(3.51b) 

Tb 	 [K] 	temperature at the base of rectangular fin 

x 	 [m] 	distance from the tip of rectangular fin 

Y 	 [-] 	function of B = p2  = 
d8 2
d  

z 	 [-] 	dummy variable in Eqs. (3.51a)-(3.51b) 

Greek letters 

E 	 [-] 	conduction radiation parameter for the rectangular 

fin _ a-  E PT3 L2  
k4 

B 	 [-] 	dimensionless temperature = T 
Ta  

eo 	 [-] 	dimensionless temperature at the fin tip 

Section 3.5 
Notations 
k(T) 	 [W.m '.K-' ] 	thermal conductivity of the rectangular fin at 

temperature T 

t 	 [-] 	dummy variable 

T 	 [K] 	temperature of the surroundings 
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T 	 [K] 	temperature at the base of the rectangular fin 

x 	 [m] 	distance from the tip of the rectangular fin 

Y 	 [-] 	function of 0
1=

2 _ de Z p d~ 

z 	 [-] 	dummy variable 

Greek letters 

17 [-] 	fin efficiency 

17 [-] 	maximum possible value of the fin efficiency 

77 [-] 	minimum possible value of the fin efficiency 

e [-] 	dimensionless temperature 	= T —TQ 

eo [-] 	dimensionless 	temperature 	at 	the 	tip 	of 	the 
rectangular fin 

0O t [-] 	dimensionless temperature at fin tip corresponding 

to 

127 



CHAPTER IV 

ROTARY KILN AND FLUID FLOW PROCESS 
= ANALYTICAL SOLUTIONS 

4.0 INTRODUCTION 

This chapter is concerned with the development of analytical solutions of the 

model equations of rotary kiln and fluid flow process. The model equation of rotary kiln 

is used to determine the bed depth profile of solids flowing in it, whereas the model 

equation of fluid flow process describes the Poiseuille and Couette-Poiseuille flow of 

the third grade fluid between two parallel plates, and may be used to compute the 
velocity profile. 

In literature, several researchers have obtained the approximate solutions of 

these model equations by using various approximate methods. However, to the best of 

our knowledge, analytical solutions of these model equations have not yet been found. 

For obtaining analytical solutions, analytical methods, namely separation of 

variables method, partial fraction decomposition method, and derivative substitution 

method, have been used independently or in a combination of two of them. The 

obtained analytical solutions have been validated with the numerical solutions as well as 

with the approximate solutions available in literature. Besides, an existing experimental 

study, pertaining to the axial transport of solids in a rotary kiln, has been simulated by 

using the derived analytical solution. 

4.1 ROTARY KILN 

In this section, the model equation of a rotary kiln, also referred to as Saeman's 

nonlinear ODE model (Liu et al., 2009), has been solved analytically by using 

separation of variables and partial fraction decomposition methods. 



4.1.1 Model Equation 

The mechanistic model equation of Saeman considers that the bed depth profile 

is influenced by several factors: the dimensions of the kiln [ L , R and h0 ], the operating 

conditions [ rim , n and /3]  and the properties of the flowing solids [ p and 0 ]. 

Mathematically, this model equation is represented by a nonlinear first order ODE 

constituting an IVP and has been presented below. For brevity, the details of the 

derivation of this model equation have been omitted and the reader is referred to the 

original work (Saeman, 1951). 

Consider a rotary kiln with radius R and length L, inclined with the horizontal 

at an angle /3 and spinning at an angular speed n, as shown in Fig. 4.1. The granular 

material having density p, particle diameter d and dynamic angle of repose 8, is 

being fed to the upper end of the kiln with a mass flow rate m . Due to the inclination 

and rotation, the solids move downward spiralling. Based on the geometry and the 

mechanism involved in the movement of the particles, the profile of solid bed depth 

along the kiln length is represented by the following equation (Saeman, 1951; Kramers 

and Croockewit, 1952; Liu et al, 2009). 

dh 3tan(B)  m [R2 —( h— R)2 ]-3"2 —  tan(J3)-  
dx 4irn p 	 cos(@) 

(4.1a) 

where h is the solid bed depth at the axial distance x from the discharge end [x = 0 ]. 

The associated initial condition is given by the solid bed depth at the discharge end 

[ x = 0 ], and is equal to the height of the dam if present, i.e. 

IC: 	h(0) = ho  [height of the dam] 
	

(4.1b) 

In case of the absence of dam, the solid bed depth at the discharge end is taken equal to 

the particle diameter d, i.e. 

IC: 	h(0)=d 	 (4.1 b') 

The solid bed depth h can also be expressed in terms of the fill angle E and the radius 
of kiln R , as shown below (Liu et al., 2009): 

h = R[1 — cos(s)] 	 (4.2) 
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Cross section 

Figure 4.1: Schematic diagram of a rotary kiln 
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Substitution of this relation in Eq. (4.1a) yields the following equation (Liu et al., 2009): 

d£  —  3 tan(0) m 	1  _  tan(,8) 	1 	
(4.3a) dx 4irnR4  p sin4  (£) Rcos(0) sin(s) 

and the allied IC becomes: 

IC: 	s = so  = cos-' [1 _  h(0)  ] =cos ' [1– h°  ] , if dam is present, 	(4.3b) 

	

R 	 R 

otherwise 

IC: 	£ = Eo  = cos-' [1– h(0)  ] = cos 

	

R 	
'[1– d ], if dam is not present. 	(4.3b') 

R 

4.1.2 Solution and Discussion: Bed Depth Profile 

Before finding the analytical solution of Eq. (4:3a), it is convenient to express it 
into the following dimensionless form: 

d£ a  b 
dX sin4  (£) sin(s) 

3tan(6)L m where a and b are the dimensionless constants, and are given by a = 4  -  
47rnR p 

Ltan 
and b = 

	

	( , respectively. X = x is the dimensionless axial distance from the 
R cos (e ) 	) L 

discharge end. 

Eq. (4.4) can be rearranged into the following form: 

sin4  (£) 	d£ = dX 	 (4.5) 
a–bsin3(£) 

After performing the polynomial division of the bracketed term, one obtains: 

–sin(s) de  – a 	sin(s) 	ds  _ dX 	 (4.6) 
b 	b sin' a (£) –- 

b 
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By decomposing the bracketed term, the Eq. (4.6) can further be represented as follows: 

—sin(s)d£  — a  sin(s)  
de = dX  (4.7) 

b 	b (sin(£) — r,)(sin(£) — r2  )(sin(£) — r3  ) 

where Yl  , r2  and r3  are the roots of the cubic equation: sin' (s) — =0,  or r3  — - = 0, 

and are given by the following expressions: 

 I 3 
r, =(

a)Y3
—(-1) 3

(a)yl 
 

Since a > 0 and b > 0, it is clear that one of the roots will be real and positive [say ii], 

whereas, the, remaining two roots will be imaginary [say r2  and Y3  ]. This means all the 

three roots are distinct, and thereby render the process of partial fraction decomposition 

very simple. Now, the partial fraction decomposition of the bracketed term in Eq. (4.7) 

is carried out and the following equation is obtained: 

—sin(s)  d£ ----t a_ r;  de — a 
	 r2 	dE 

b 	b (Y —rr )(Y —Y3 )(Sm(£) —Y) 	b (Y2  —rl)(Y2  — r3)(sin(£) —Y2 ) 

R 	 Y3   )d, = dX 
b2  ( r3 _)(1 —)(sin(s) —)J  

(4.9) 

Eq. (4.9) is integrated with respect to X between the limits: Ea  at X = 0 and s at X, 

i.e. 

E  sin(s)a  a  r,  d£  a 	r2 	 E  d£  
Eo 	b 	b2  (Y —r2 )(i —Y3 ) eo  (sin(£)—Y) b2  (r2  —Y)(r2  —r3 )  (sin(£) —Y2 ) 

a r3  r d£ 
 fdX 

b2  (Y3  --Y)(r3  — Y2 ) EJO 
 

(sin(s)—)  
= 

Y3 	o 

Integration of the above equation is straightforward and the following results are 
obtained: 

(4.8) 
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E 

1—r, tan 
b cos(e)  E  — 	Y 	1 	tan' 	2  L2a 	(r — Y2)(r — r3) r2  —1 	r2  —1 

Eo  

IC 

[1—r2tanl - III  
—  r2 	 1  tan-' 	2  

(Y2 	 )(Y2 — Y3) r2  —1 	r2 1 
E0 

E 

	

1—r3  tan £ 	 2  

r3  	tan-' 	2 	_ b X 
(r3 —Y)( r3 —r2) Y3 —1 	Y2  —1 	2a 

Eo  

After substituting the limits, one gets the following implicit analytical solution of s: 

b(cos(s)—cos(60)  _ 	r, 	1 	tan-' 1—r tan(e/2)  —tan-'  I —r tan(60  /2) 
2a 	(rl -r2)(r -r3) r2  -1 	 r2  -1 	 r2  -1 

— 	r2 	1 	tan-' 
 [1—r2 tan  (6  / 2)  —tan_1  [1—r2 tan (so  / 2) 

	

r2 —1 	 r2 —1 

r3 	1 	_, 1—r3  tan(E/2) 	, 
—tan 1

—r3  tan(Eb  /2) tan 	r2  —1 	
r3 —1 

b2X  — 

	

	 (4.10) 
2a 

For the evaluation of e for each X, the above Eq. (4.10) can easily be solved 

numerically by using any of the available soft computing tools, e.g. MATLAB, 

MATHEMATICA and MAPLE. Once s is known, the solid bed depth can be found by 

using the Eq. (4.2). 
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(i) 	Comparison between the analytical, numerical and experimental results 

For the comparison of analytical results [AS] with the numerical results [NS] 

and with the existing experimental results, several experimental conditions have been 

selected from various sources (Lebas et al., 1995; Spurling et al., 2001; Scott et al., 

2008; Liu et al., 2009). These experimental conditions have been presented in. Table 4.1 

and the corresponding experimental bed depth profiles have been shown [by symbols] 

in Figs. 4.2 - 4.8. These experimental values of bed depth profiles have been read from 

various figures plotted in the respective references with the help of a user-friendly 

software "Plot Digitizer" available online for free. Moreover, these figures have been 

shown in the same format in which these appeared in the concerned reference. This is 

because: (i) visual comparison of the figures may be easy and (ii) the experimental 

values read with the help of "Plot Digitizer" remains intact. For the same experimental 

conditions, the bed depth profiles have been calculated by using the analytical solution 

[Eq. (4.10)], and the obtained results are also plotted in Figs. 4.2 - 4.8. Numerical 

results have also been obtained by solving the original Eqs. (4.3a), (4.3b) or (4.3b') with 

the help of a soft computing tool, i.e. MATHEMATICA. For this we have written a 

computer code in the programming language of MATHEMATICA, in which the inbuilt 

command "NDSolve" has been used. The numerical values thus obtained have also 

been shown in Figs. 4.2 - 4.8. These figures clearly show that the results obtained by 

using the analytical solution match well with the numerically obtained results as well as 

with the experimental results, and thus validate the analytical solution. 

(ii) 	Comparison between the analytical solution and the approximate solution of 
Liu et al. (2009) 

The Eq. (4.4) has recently been solved by Liu et al. (2009) in an approximate 

manner to yield the approximate implicit solution of the solid bed depth profile. In their 

work, Liu et al. (2009) have approximated s [in Eq. (4.4)] by 

"0.39sin2 (E) +0.86sin(s)" and obtained the following form of Eq. (4.4). 

(0.78 sin(s) + 0.86) d sin(c)  _ a _ b 
cdX sin4(s) sin(s) (4.11) 
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It can be observed that by using the above approximation for s, these 

researchers were successful in retaining the dependent variable in the form of "sin(s) " 

only, instead of both 8 and sin(s). Due to this modification, the original Eq. (4.4) got 

transformed into the above easily solvable form. For convenience, we reproduce below 

the solution of Eq. (4.11) as obtained by Liu et al. (2009). 

0.14 

	

a I  (Y 2  +,uY + JU2)(u —Y0 )2 	(Yo3  —Y3) 
 +0.43 	+0.261 (YoZ  —Y2) 	(bI'o3 —a) n 	 +0.26 n 

b21i 	(I'o2  +tY +µ
2 )(fi — fl 2 	b 	b 	bY3  —a 

+0.5  a  tan-' 1.15 Yo  + 0.58 — tan-' [1.15L! +0.58J1  = X 	 (4.12) 

Q y 
where Y = sin(s), Y = sin(E0) and u = 

((—J b 

For the purpose of comparison, we have found the bed depth profile by using the 

above approximate solution for the same experimental data as listed in Table 4.1. The 

obtained approximate results [APS] have also been shown in Figs. 4.2 - 4.8. It is clearly 

visible from these figures that in most of the cases, the results obtained by using the 

approximate solution of Liu et al. (2009), i.e. Eq. (4.12), successfully match with the 

analytical results, the numerical results as well as with the experimental results. These 

cases are present in all of the Figs. 4.2 - 4.8, i.e. bed depth profiles for data numbers 2 

and 3 in Fig. 4.2; for data numbers 5 and 6 in Fig. 4.3;-for data numbers 7-9 in Fig. 4.4; 

for data numbers 12 and 13 in Fig. 4.5; for data numbers 14 and 15 in Fig. 4.6; for data 

numbers 17-19 in Fig. 4.7 and for data number 22 in Fig. 4.8. However, in some cases 

the bed depth profiles show some deviation from the true values, e.g. profiles 

corresponding to the data number 1 in Fig. 4.2, data number 4 in Fig. 4.3, data number 

10 in Fig. 4.4, data number 11 in Fig. 4.5, data number 16 in Fig. 4.6, data number 20 in 

Fig. 4.7 and data number 21 in Fig. 4.8. Such discrepancies in the predictions of 

approximate solution appear in case of (i) higher filling ratio [25% corresponding to 

s > 65.89 deg or ,u >— 0.91 ] or (ii) lower filling ratio [0.9% corresponding to s < 20.05 

deg or p 5 0.4]. This fact can also be observed from the corresponding values of u 
shown in Table 4.1. The former situation emerges when the bed depth profile is 

increasing, whilst the latter one occurs when the bed depth profile is decreasing. These 
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deviations in the prediction of approximate solution are due to the restricted validity of 

the approximated form of the nonlinearity as assumed by Liu et al. (2009), i.e. 

e ; 0.39 sine  (&) + 0.86 sin(c) . It can be noted that the percentage error in this 

approximation decreases monotonically from 12 % at E = 2.86 deg to -0.35% at 

e = 28.65 deg and then increases continuously to 17% at e = 85.94 deg. These errors in 

the approximation of c are quite significant from the view point of accuracy, as the 

subsequent operation, e.g. integration, may further enhance the errors in some cases. 

Nevertheless, the optimum range, for this approximation to be valid, is found to be lying 

between E = 20.05 deg [,u 0.4 ] to E = 65.89 deg [,u 0.91 ]. 

It is noteworthy that Liu et al. (2009) have also pointed out the first type of the 

discrepancy, i.e. the one arising due to the higher filling ratio, and reported that their 

approximate solution deviates from the numerical solution in the case of higher filling 

ratio [25% corresponding to c >_ 65.89 deg or µ? 0.91]. On the contrary, the results 

obtained by using the analytical solution are found to be in good harmony with the 

numerical results as well as with the experimental values for all the cases considered 

herein. Therefore, the analytical solution, being valid for the entire range, has wider 

applicability as compared to the approximatesolution of Liu et al. (2009), especially in 

those cases where s [or p ] may lie outside the optimum range set for the approximate 

solution. Moreover, since the rotary kiln may also operate outside this optimum range• 

[as also revealed from the data shown in Table 4.1], the use of analytical solution 

becomes essential, and this establishes the usefulness of the analytical solution. 

Since both the present analytical solution and the approximate solution of Liu et 

al. (2009), are implicit in forms, therefore, these have to be solved numerically with the 

help of some mathematical soft tools, e.g. MATHEMATICA, MAPLE, MATLAB. 

However, it should be noted that these soft computing tools require the initial estimate 

of the unknown variable(s), while solving the nonlinear algebraic equation(s), and care 

should be taken in selecting the initial guess before solving the nonlinear algebraic 

equation(s). Otherwise, the solution may either give imaginary or even unrealistic 

multiple roots. Unfortunately, this fact is true for both the solutions, i.e. the analytical 

solution [Eq. (4.10)], and the approximate solution [Eq. (4.12)]. 

Here it is important to mention that we have not considered the approximate 

solution- of Kramers and Croockewit (1952) to find the bed depth profile, since it is 



reported in the literature that under certain circumstances it can exhibit up to 50% error 

in its prediction (Liu et al. 2009). 

(iii) Analysis of the effect of various parameters 

Several independent numerical experiments have also been carried out to study 

the effect of various parameters on the bed depth profile, and a careful analysis of the 

obtained results is summarized below: 

• The dimensionless bed depth [Y ] is found to be dependent on three 

dimensionless variables, namely a, b and co  . 

• For a fixed value of eo  [or h(0) ], the dimensionless bed depth [YRI  increases 

with the increase in a and vice-versa, and the reverse is true for b , i.e. Y 
decreases with the increase in b and vice-versa. This also means that by 

properly manipulating these two variables, their effect can be neutralized, and 

one can achieve a constant bed depth. These facts can also be verified from the 

following Eqs. (4.14a)-( 4.14c). 

• Whether the bed depth first increases or decreases, it eventually reaches a 

constant value after certain length of the kiln and that minimum length in 

dimensionless form is given by the following Eq. (4.15). 

Along with the bed depth profile, other useful information are: 

• Maximum/minimum depth reached by the bed 

• Increasing/decreasing trend of the bed depth profile 

• Minimum kiln length after which the bed depth remains static. 

The maximum/minimum depth reached by the bed is easily obtained by forcing the 

dh  = 0 in Eq. (4.1 a) and simplifying the resultant equation. The maximum/minimum 
dx 

bed depth is given by: 

149 



hmax/min R(1— 1— r z )=R(1— 1—µ2 ) 
	

(4.13) 

In a similar fashion, the following inequalities, deciding the increasing or decreasing 

trend of the bed depth profile, can also be obtained. 

• Bed depth will be higher than the dam height, i.e. dh > 0, if 
dx 

a 

sin(so ) < ~.i'13 or 	1— 1— h(0) <P 	 (4.14a) 

• Bed depth will be lower than the dam height, i.e. dh <0, if 
dx 

z 

sin(e0 )>p"3 or 	1— 1— hR0) >P 	 (4.14b) 

• 	Bed depth will be same throughout the kiln length as that of the end constriction 

[dam height], i.e. dh = 0, if 
dx 

sin(S0 ) = p3 or 1-1— h(0)
R 

	= 
	

(4.14c) 

These observations and equations are in agreement with those reported by Liu et 

al. (2009). As far as the minimum kiln length corresponding to h nin is concerned, it 

is found by substituting by n [Eq. (4.13)] along with the use of Eq. (4.2) into Eq. 

(4.10), and simplifying the resultant equation. The following expression for minimum 

kiln length is found: 

_ cos(Cn Wn»,) — cos(E0) 
X̀  i 	b 

3 	 1— r, tan CO 	1— r tan Emax/min 

+ 	2'u Y 	tan-' 	2 — tan-̀  	 2 
b(Y —r,)(i _)J2 —1 	 N Z —1 

	

1 	

JJ 
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3 

	

1–r  z tan —O 	[i_tan mtm 1Tin 

+ 	2'u ~2 	tan-' 	2 –tan' 	2  
r 2 1 

[1–r 
+ 2.p3 i 	 t 1 [ 	

3 tan E0 	r_7 3 tan[mi 1T min 

 3 an-2 – 
b(rl —Y3)(r2 — r3 ) Y 2 —1 	 r 1 	 r21 	

JJ 

(4.15) 

where emax/min = cos-' 41- 2 ) 

4.1.3 A Case Study 

In this subsection, we illustrate the use of the presently derived analytical 

solution to find the bed depth profile for one of the experimental runs [for data no. 7 in 

Table 4.1]. Corresponding to this experimental condition, the experimentally obtained 

bed depth profile has been shown in Fig. 4.4. The procedure starts with the evaluation of 

which is obtained by using Eq. (4.3b), and for the selected experimental condition 

[data number 7 in Table 4.1], it is found that: so = 39.04 deg. Thereafter, the 

dimensionless constants a [=0.204961] and b [=0.399663] are evaluated. Once the 

values of a and b are available, the roots of the cubic equation r3 --s- =0 are found 

with the help of Eq. (4.8), and are given below. 

r, = 0.800435 

rz =-0.400217-0.693 1971 

r3 =—O.400217+0.693197/ 

Substituting these values in the Eq. (4.10), one obtains the following nonlinear algebraic 

equation: 
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—(0.669902 — 0.590535i) tari ' [(0.165119 + 0.819124i) + (0.633898 + 0.213367i) tan(c/2)] 

—(0.590535 — 0.669902i) tank-' [(0.819124 + 0.165119i) + tan(s/2)] + 2.50211 cos[,-] 

+1.78293 tanh-' [1.668828(1-0.800435 tan(E/2))] + (-2.16534 + 2.80063i) = X 

(4.16) 
In Eq. (4.16), the value of 6 for 'a given X can be found numerically. For 

example, for X = 0.3 the value of s is found to be 45.59 deg, which corresponds to 

the bed depth h = 0.0154601 m. It can be verified that exactly the same value of h is 

found from the numerical method for the same value of X. This is also evident from 

Fig. 4.4 for data number 7. In a similar way the whole profile for the bed depth can be 
obtained. 

4.2 FLUID FLOW PROCESS 

In this section, the model equations describing the Poiseuille and the Couette-

Poiseuille flow of a third grade fluid between two parallel plates have been solved 

analytically by using the derivative substitution method. The explicit analytical 

solutions of the velocity profile and the flow rate have been obtained for all the flow 

situations arising herein. The pure Couette flow of third grade fluid has not been 

considered, since the analytical solution for this flow process has already been given by 
Siddiqui et al. (2008b). 

4.2.1 Model Equation 

Consider the Fig. 4.9, in which the flow of a third grade fluid between two 

parallel plates separated by a distance 2h , is shown. The fluid movement is caused by 

(i) the pressure gradient resulting in the Poiseuille flow, and/or (ii) the movement of one 

of the plates [say upper plate], resulting in the Couette flow. It is assumed that the 

steady state and the isothermal conditions are prevailing, and the fluid properties 

[density, viscosity] are constant. With these assumptions, the application of mass and 

momentum balances along with the constitutive equations of third grade fluid results in 

the following model equation. For briefness, the details of derivation have been avoided 
here and are given in Appendix B 1. 
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A 

Figure 4.9: Pure Poiseuille Flow and Couette-Poiseuille Flow 
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dp  —  dzu
(

dU 2  d zu 
d µ dxz 	z 3 dX dXz Y 

(4.17) 

where p is the generalized pressure, X32  and /33  are the material moduli, p is the 

coefficient of viscosity, and u is the nonzero velocity component in the y direction 

(Rajagopal and Sciubba, 1984; Siddiqui et al., 2008b). It should be noted that the Eq. 

(4.17) will remain unchanged while portraying the different flow situations arising in 

the current flow process. However, the allied BCs will differ from one situation to the 

other, and thus give rise to different analytical solutions for each of the situations. In the 

following subsection, these situations have been discussed in detail and the 

corresponding analytical solutions have been obtained. 

4.2.2 Solutions and Discussion: Velocity Profile and Flow Rate 

Basically, two main situations arise in the current flow process, i.e. the pure 

Poiseuille flow and the Couette-Poiseuille flow. These two situations have been divided 

into case 1 and case 2, respectively. In case 2, three situations appear, which have 

further been divided into three sub-cases, i.e. case 2(a) - case 2(c). For each of these 

situations, the corresponding analytical solutions [velocity profile and flow rate] as well 

as the discussion and comparison of the obtained analytical results, have been presented 

below. 

4.2.2.1 Case 1: Pure Poiseuille Flow 

In this situation, the movement of fluid is solely due to the pressure gradient and 

the flow is governed by the Eq. (4.17) along with the following BCs: 

BC I: u =0 at x = h [upper stationary plate] 
	 (4.18a) 

BC II: u =0 at x = —h [lower stationary plate] 	 (4.18b) 

The solution of Eq. (4.17) in conjunction with the above BCs yields the velocity 

profile for this case. It is convenient to nondimensionalize the Eqs. (4.17), (4.18a) and 

(4.18b) by defining the following dimensionless variables: 
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2 z 	2 

x=, 16=(/z+P3) — dp h 	
_dph 

h 	 dy ~3 U u 	dy u 

Eventually, the following dimensionless forms of the Eqs. (4.17), (4.18 a) and . (4.18b) 

are obtained: . 

d2U+6~ dU 2 d2U =-1 
dX2 	dX dX 2  (4.19a) 

BC I: U =0 at X =1 [upper stationary plate] 	 (4.19b) 

BC II: U = 0 at X = —1 [lower stationary plate] 	 (4.19c) 

From the above BCs, it can be observed that the resultant velocity profile will be 

symmetric around X =0,  hence, one of the BCs [say BC II] can easily be replaced by 

the following equivalent BCII', i.e. 

BC II': d U = 0 at X = 0 [middle of the two plates] 	 (4.19c') 
dX 

Now, by using the transformation 	= f (U) , where f (U) is some unknown 

z 
function of U, one finds 

dz U — 1 d
, With these derivatives, the Eq. (4.19a), after 

dX 2 dU 
slight rearrangement, is rendered into the following first order nonlinear ODE. 

w'(1+6lw) =-2 	 (4.20) 

where w = f 2 (U) and w' = d'N . Eq. (4.20) is easily amenable to the following 
dU 

analytical solution: 

w+3/3w2 =2U+C, 	 (4.21) 

where Cl is the constant of integration and by using the modified BCII', it is found to 

be Cl = 2U0 . Uo is the unknown dimensionless velocity at the centreline [ X = 0]. 

Substituting q in Eq. (4.21) and solving the quadratic equation for w, one obtains the 

following equation: 
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w= f2 =(U')2 = —1± 1+24fl(Uo —U) 

6/3 
(4.22) 

In the above equation, the negative sign of the radical is dropped so as to avoid the 

imaginary value of the velocity gradient [U'],  and the following expression is obtained 

for U': 

U , — dU —+ / —l+j[+24fl(u0 —u) 
dX 	 6/3 

(4.23) 

The sign of U' is determined by the form of the velocity profile. For this case, the 

physically feasible velocity profile suggests that U' is positive for —1 _< X < 0, negative 

for 0 < X <_ 1 and zero at X =0 [see Fig. 4.10]. Since velocity profile is symmetric 

about X =0,  hence, without any loss of generality one can select the region 0 _< X <_ 1, 

for which the Eq. (4.23) becomes: 

U , — dU -- —1+ 1+24/3(Uo— 	
for 0<_X1 

U) 	
<_ 

dX 	 6/3 
	 (4.24) 

The above equation is integrated between 0 to X, and the following integral is 

obtained: 

U 	— 6,(3dU 	— X 

UO —1+ 1+24 fl(Uo —U) Jo 
(4.25) 

Solution of the above integral yields the following implicit analytical solution of U: 

—1+ 1+24f3(Uo —U) (2+jl+24p(u0 —U))  — 

3 6/3 	 = X 	 (4.26) 

The unknown Uo is found by forcing the above equation to satisfy the yet unutilized 

BC I, and one obtains the following implicit expression of U0 : 

—1+ l 224,8Uo (2-i-j1+24flu0 ) - 
-1 	 (4.27) 

3 6~3 
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Fortunately, Uo  in the above equation can be represented explicitly. However, it is 

observed that three explicit solutions exist for Uo  and only one of them is real. The 

remaining two solutions are complex conjugates and have been ignored. 

Considering only the real solution, the following explicit expression is obtained for U0 : 

_ 	 —1+108/3  

U0 12/3  24/3 (-1 1— 270/3 + 1458/32  + 6J 8/3 + 324'32  + 4374/33  + 19683/34) 
 1/3 

)I/3 

—1-270/3 +1458/32  +6.J 8/3 +324/32  +4374'83  +19683634  

(4.28) 

In a similar manner, the implicit analytical solution of U [Eq. (4.26)] can also be 

expressed explicitly and the following explicit analytical solution of U is obtained. 

Like in the case of U0 , here too, the two complex conjugates relations appear for U. 

However, due to the complex nature, these two have been discarded. 

U=1-T 2 +24U0 /3  
24/3 

21/3 
where T=-1+  

(2+K; X Z  + 4K; X Z  +K; X 4  ) 

(4.29) 

+ (2+K;X 2 + 4K;X2+K;X4)
1/3 

21/3 

and K, = —3 6,8 . 

Now, for a given value of /3, one can directly find Uo  and U with the help of Eqs. 

(4.28) and (4.29), respectively. 

Another important quantity, from the viewpoint of pumps and piping design, is the flow 

rate. The flow rate per unit width of the plates is given by the following equation: 

11 

q = 5 udx 	 (4.30) 
-h 

In nondimensionalized form, it can be expressed as follows: 
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Figure 4.10: Dimensionless velocity profiles for the Poiseuille flow 
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1 

Q = f UdX 
-~ 

(4.31) 

3 

where Q = q — dam' h , and U and X are the earlier defined dimensionless dy ,u 

velocity and dimensionless distance, respectively. Due to the symmetrical velocity 
profile, the above Eq. (4.31) reduces to: 

I 
Q = 2f UdX 

0 

(4.32) 

However, because of the complicated form of U [Eq. (4.29)], the analytical 

integration in the above equation is not practically possible, hence, the following 

different approach has been adopted to find the explicit analytical solution of Q. 

	

1 	 0 

Q=  

	

2f 	UdX = 2$U_1   U U 	 (4.33) 

 

0  vo 

Using Eq. (4.24), the Eq. (4.33) yields the following integral: 

0 

	

Q = 2$ 	— 6flU 	-'U 	 (4.34) 
uo —l+ 1+24$(U0 —U) 

Solving the above integral, one finally obtains the following explicit analytical solution 

of Q :  

M 
—1+ 1+24/3U0 (1—~1+24,OU,, +24Uo/3(13+5 1+24/3U0 ) 

315J/332 (4.35) 

The above expression yields the positive value of Q, which signifies that the flow is in 

positive y direction. 
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(i) 	Comparison between the analytical and numerical solutions 

For this case, the velocity profiles obtained by using the analytical solution and 

the numerical solution have been shown in Figs. 4.10 and 4.11 for various values of fl. 
Numerical solution has been obtained by solving the Eqs. (4.19a)-(4.19c) using the 

inbuilt ODE solver of MATHEMATICA, i.e. "NDSolve". It is clear that the velocity 

profiles obtained by these two solutions overlap with each other and thus validate the 

analytical solution. 

The values of flowrate per unit width of the plates obtained by using the 

analytical solution and the numerical solution have been shown in Table 4.2. Here also, 

we observe a close agreement between the values of Q obtained by using the analytical 

solution and numerical solution. 

(ii) Effect of parameters 

Here, the effect of parameter fi on U and Q have been analysed. For a 

limiting case of /3 =0,  the fluid behaves as a Newtonian fluid and the Eq. (4.19a) 

reduces to U " _ —1. Solution of this resultant equation for the allied BCs gives the 

following analytical solutions of U and Q,  which match well with the established 

results (Bird et al., 2002). 

U = 2 (1—X 2 ) 	 (4.36a) 

U0  = 1 	 (4.36b) 2  

Q = 3 	 (4.36c) 

In another limiting case of /_3 = oo , the Eq. (4.19a) becomes U " = 0. By solving 

this resultant equation along with the concerned BCs, one finds: U =0 and Q =0.  

Hence, one can conclude that with the increase in fi , U decreases and so as Q.  This 

fact is also evident from the Fig. 4.10, which shows that with the increase in /3, the 

velocity profile tends to be flat and signifies the decrease in flow rate. 
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Figure 4.11: Dimensionless velocity profiles for the Poiseuille flow 

Table 4.2: 	Comparison of the values of flow rate per unit width of the plate for 
the Poiseuille flow: Case 1 

Q % Error 
RPM solution HPM solution Analytical Analytical Siddiqui et al. Numerical Siddiqui et al. solution solution (2008b) solution (2008b) [Eq. (4.35)] [Eq. (4.35)1 [Eq. (4.38)] [Eq. (4.38)] 

A=O 

0 0.66667 0.66667 0.66667 0 0 

0.4 0.89524 0.52465 0.52465 -70.635 0 

0.7 1.78667 0.48019 0.48019 -272.073 0 

1 3.29524 0.45013 0.45013 -632.071 0 

1.5 
F 

o 
a 

0.5 
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(iii) ' Comparison between the analytical solution and the approximate solution of 
Siddiqui et aA (2008b) 

We have also compared analytical results with those available in literature. For 

this purpose, the approximate solution obtained by Siddiqui et al. (2008b) by using 

HPM, has been chosen. It is worthwhile to mention that the dimensionless variables 

defined by these researchers are slightly different, however, for B =1 [a dimensionless 

parameter considered by these researchers], the governing model equation and the 

associated BCs employed by Siddiqui et al. (2008b), become identical to those used in 

the present study. In this way, the analytical solution and the approximate solution 

obtained by Siddiqui et al. (2008b) can be compared in an unbiased manner. Moreover, 

these investigators have considered the presence of heat transfer effects in flow process, 

whereas, in this work we have considered the isothermal situations. However, despite 
this difference, the present comparison is justified, since in their work Siddiqui et al. 

(2008b) have assumed that the equation of momentum is independent of temperature 

and can be solved independently. This results into the same velocity profiles whether 

the heat transfer effects are considered or not. These facts are also true for all other 
cases tackled later on. It can, however, be noted that the assumption of independent 

momentum equation, as considered by Siddiqui et al. (2008b), is only true for small 

temperature differences, while for large temperature gradients this assumption will no 

longer be valid as the density and viscosity will not be constant, especially for non-

Newtonian fluids, and the momentum equation cannot be solved independently. 

Therefore, the approximate solution found by these researchers is either applicable to 

isothermal situations or where smaller temperature effects are prevailing. The 

approximate solution of velocity profile [UM],   as obtained by Siddiqui et al. (2008b) 

by using HPM, is reporduced below. 

UHPM = 2(1-X 2 )_ 1,8(1—X 4 ) + 2,8 2 (1—X 6 ) 	 (4.37) 

For comparison, the velocity profiles obtained by using the analytical solution, the 

numerical solution and the above approximate solution, have been drawn in Fig. 4.11 

for the same values of /3 as those considered by Siddiqui et al. (2008b). It is clear that 

the velocity profiles obtained by using the analytical solution and the numerical solution 

match very well for all the values of /3,  whereas, the velocity profiles obtained by 
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using the approximate solution match only for /3 =0 and deviate significantly for other 

values of /3. Moreover, the approximate solution depicts an opposite trend in the 

velocity profiles as /3 increases, which is not valid as discussed earlier. With these 

observations it can be concluded that the approximate solution obtained by Siddiqui et 

al. (2008b) by using HPM are valid only for /3=0. 

In addition to the above, a comparison between the values of Q predicted by the 

analytical solution, the numerical solution and the above approximate solution has also 

been made. The approximate solution of velocity profile yields the following expression 

of Q. 

_ 	=  2_4 24 
QHPM 	UHPM 	 3 5  / + 7 

-1 
(4.38) 

For various values of /3  , Table 4.2 compares the values of Q obtained by using 

these three solutions, and it is clear that except for 83 =0,  the predictions of 

approximate solution deviate with the numerical values and the percentage error 

increases with the increase in /3 . On the other hand, Q predicted by the analytical 

solution matches well with its numerical counterpart for all values of /3. 

4.2.2.2 Case 2: Couette-Poiseuille flow 

In this situation, the fluid movement is due to the two effects superimposed over 

each other: (i) due to the movement of one of the plates [say upper plate], which moves 

with certain velocity [say a] resulting in the Couette flow and (ii) due to the pressure 

gradient on the fluid resulting in the Poiseuille flow. The model equation for this 

situation will remain same as that of the previous case, i.e. Eq. (4.17), however, the 

allied BCs will be slightly different incorporating the plate movement. These BCs are 
given below: 

BC I: u = a at x = h [upper moving plate] (4.39a) 

BC II: u =0 at x = —h [lower stationary plate] (4,39b) 
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Positive value of a denotes that the upper plate moves in the positive y direction, 

whereas, the negative value of a indicates that the upper plate moves in the negative y 

direction. Considering the previously introduced dimensionless variables in addition to 
the following dimensionless plate velocity 

a 
dp h2 ' 

dY u 

the Eq. (4.17) and the related BCs, i.e. Eqs. (4.39a) and (4.39b), are transformed into the 
following dimensionless forms: 

d ZU 	dU z dzU _ 
dX2 

+ 6~3 dX dX
2 —1 	

(4.40a) 

BC I: U = A at X =1 [upper moving plate] 	 (4.40b) 

BC II: U =0 at X = —1 [lower stationary plate] 	 (4.40c) 

For solving the above Eqs. (4.40a)-(4.40c), the same steps of derivative substitution 

method, as adopted in case 1, have also been followed here, and the following 
expression is obtained for U': 

U , = dU = + / _1+Jl+12p(q _2U) 
dX — 	6,8 

(4.41) 

where CI is the constant of integration. The integration of Eq. (4.41) with the help of 

appropriate BCs yields the expression for velocity profile. However, unlike the previous 

case, the resultant velocity profile for this configuration will not be symmetric around 

X = 0. Hence, U'(0) # 0. Instead U' =0 at some unknown position X = X , and at 

this position the fluid velocity will be maximum and is denoted by U0 . In fact, the 

location of X' depends on the magnitude of the plate velocity and can lie inside or 

outside the region of interest [ —1 <_ X <_ 1]. Owing to this, one needs to consider the 

whole region, i.e. —1 <_ X —1. Following three situations may arise in the present case: 

(i) Upper plate moves in the positive y direction [same direction as that of the flow 

due to the pressure gradient], but with a velocity smaller than the maximum 
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velocity of the moving fluid [ A <U0  ]. In this situation, the location of the 

maximum velocity will be near to the moving plate [upper plate], i.e. 0 <X <1. 

Figs. 4.12 and 4.13 depict this state. On the contrary, if the upper plate moves in 

the negative y direction [opposite to the flow-due to the pressure gradient], but 

with a velocity smaller enough such that the maximum velocity of the fluid is still 

in the positive y direction [ U0  > 0], then the location of the maximum velocity 

will be near to the stationary plate [lower plate], i.e. —1 <X <0.  Fig. 4.14 shows 

this situation. In both these situations, U'(X* ) =0. 

(ii) Upper plate moves in the positive y direction, but with a velocity higher enough 

such that the maximum fluid velocity equals to that of the moving plate [ U0  = A]. 

Thus the location of the maximum velocity will lie on the moving plate [ X' =1 ]. 

However, U'(X*  =1) >0.  This situation is presented in Fig. 4.15. 

(iii) Upper plate moves in the negative y direction, but with a velocity higher enough 

such that the maximum positive velocity of the fluid equals to that of the 

stationary plate [U0  = 0]. Hence, X* = —1 and U'(X*  = —1) <0.  Fig. 4.16 

-exemplifies this situation. 

For each of the above cited situations, the analytical solutions of Eqs. (4.40a)-

(4.40c) assume different forms, i.e. the solutions depend upon the direction as well as 

the magnitude of the plate velocity. In other words, the location of X dictates the form 

of the solution. It can also be noted that the maximum fluid velocity and its location, i.e. 

Uo  and X", are unknown for the conditions mentioned in point )(i), and can be 

evaluated by using the corresponding BCs. However, for the situations mentioned in 

points (ii) and (iii), these two are known a priori. The analytical solutions of these cases 

are obtained below, however, for each of them the procedure remains same as followed 

in the previous case. 
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Figure 4.12: Dimensionless velocity profiles for the Couette-Poiseuille now [upper 
plate is moving slowly in the positive y direction] 
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Figure 4.13: Dimensionless velocity profiles for the Couette-Poiseuille flow [upper 
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Figure 4.14: Dimensionless velocity profiles for the Couette-Poiseuille flow [upper 
plate is moving slowly in the negative y direction] 
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Figure 4.15: Dimensionless velocity profiles for the Couette-Poiseuille flow [upper 
plate is moving quickly in the positive y direction] 

171 



0 
p= 	0.1 	1 	10 	 X*=-1 

0 	0 	o 	NS 	 U(X*) = Uo = 0 
AS 	 U'(X*) < 0 

-0.4 
Q<0 

R 

1  -0.8 N 
O 
y II 

W2 H II 

-1.2 I~ ~ 

Poiseuille Flow 

Couette Flow 

-2 

-1 -0.5  0  0.5  

Dimensionless distance, X 
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(a) 	Case 2(a): Couette Poiseuille Flow with Upper Plate Moving Slowly in Any 

Direction (I AI is Small) 

For this situation, X* will be positioned between the two plates, and therefore, 

indicates that U'> 0 for —1 <— X < X# , U < 0 for X` <X <-1 and U' =0 at X. . 

Since, U' = 0 at X = X [ ~ 0], one only needs to consider the region X' <_ X <— 1 for 

the integration of Eq. (4.41). However, now the negative sign before the radical in Eq. 

(4.41) should be considered. The unknown C in Eq. (4.41) is found by using the 

condition U'=0  at X = X * and is given by: C1 = 2U0 . Substituting this value of C1 in 

Eq. (4.41), and considering the region X' <— X <-1 only, one obtains: 

dU 	—1+ 1+248(Uo —U) 
6/3 	for X <_X<-1 (4.42) 

Integration of the above equation from X* to X gives the following implicit analytical 
solution of U: 

V-1+ 1+24l(Uo —U) (2+J1-i-24/3(U0 —U)) - 
-X—X 	 (4.43) 

3 6/3 

From the above equation, U can be expressed explicitly and is given below [here also, 

three explicit solutions of U appear, however, two of them are complex conjugates, and 

are therefore neglected]. 

U-1—T 2 +24Uof3 
24/3 

21/3 

where T=—l+  I/3 
(2+K(XX*)2 + 4K; (X—X* )2 +K; (X—X* )4 ) 

(4.44) 

1/3 

(2+KI (X —X* )z + 4K, (X —X* )z +K; (X —X* )4 ) 
+ 	 21/3 	 and KI = —3 6/3 

The above analytical solution of U gives U' = 0 at X = X' [ ~ 0], and is valid for 

whole of the region —1 <— X <-1. For the particular values of 8 and A, the unknown 
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U0  and X*  are found by solving the following coupled equations. These equations have 

been found by solving the equation of U', i.e. Eq. (4.41), for both the regions, 

respectively, and satisfying the relevant BCs, i.e. Eqs. (4.40b) and (4.40c). 

j_l+Jl+24/3(U0 _A)(2+J l+24f3(U0 _A)) - 
-1— 	 (4.45a) 

3 6,3 

j—1-Fl+24/3U0  (2+jl+24flu0 ) 

= l+X 	 (4.45b) 
3 6,3 

With the help of Eqs. (4.44), (4.45a) and (4.45b), one can explicitly find U. Once the 

analytical solution of U is available, Q can easily be found by using Eq. (4.31). 

However, due to the complicated form of U [Eq. (4.44)], one has to follow the same 

approach as was followed in case 1, i.e. 

1 

Q = J UdX 
-1 

Uo  

= f U dU  U 

dX 
for —15XSX 

A 

+ f U 
1 
 U 

Uo dX 
for XX<_] 

(4.46) 

Substituting the expressions of U' for both the regions in the above equation, and 

evaluating the above integrals between the specified limits, one obtains the following 

explicit analytical solution of Q. 

—1+ 1+24f3Uo  (—l+,[1+24,8U,, —24U0,6(l3+5 1+24/.3U0  ) 

630sj/33
"
2  

J —l+l+24fl(U0  —A) 

630J33 '2  

(1_Vl+24fl(uo  —A) +18A,13(6+5 1+24/3(Uo  —A))+24fUa  (13+5 1+24l(Uo  —A))) 

(4.47) 

Depending on the value of A, Q obtained from the above equation can be positive or 

negative, which corresponds to the net flow in the positive and negative y directions, 

respectively. 
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(i) 	Comparison between the analytical and numerical solutions 

For this subcase, we have validated the analytical solution with the numerical 

solution by plotting the respective velocity profiles in Figs. 4.12-4.14 for various values 

of /3. These figures depict both the co-current and counter-current movements of the 

plate, and a close look on these plots reveals an agreement between the analytical and 

numerical results. Besides, for A = 1, the Table 4.3 compares the values of Q obtained 

by using the analytical solution and the numerical solution, and a close match is 

observed between these values. Although not shown, the same is also true for A = -1. 

(ii) Effect of parameters 

For this subcase, the limiting value of /3 = oo gives: U = 	+ X) and Q = A, 
2 

whereas, for /3=0 (Newtonian fluid) one finds: U =1(1+   A + AX - X 2 ) and 

Q = 3 + A. This means that with the increase in /3, the flow tends to be a Couette flow 

and results in the decrease in Q.  Since, for this subcase A > 0, Q will be maximum for 

Newtonian fluid. This fact is also supported by Figs. 4.12-4.14. 

Table 4.3: 	Comparison of the values of flow rate per unit width of the plate for 
the Couette-Poiseuille flow: Case 2(a) 

Q %o Error 

HPM solution 
Siddiqui et al. 

(2008b) 
[Eq. (4.49)1 

Analytical 
solution 

Eq. (4.47)] 

Numerical 
solution 

HPM solution 
Siddiqui et al. 

(2008b) 
[Eq °(4.49)] 

Analytical 
solution 

[Eq. (4.47)] 

A=1 
0 1.66667 1.66667 1.66667 0 0 

0.2 1.30667 1.4866 1.4866 12.10346 0 

0.3 1.12667 1.44032 1.44032 21.77641 0 

0.4 0.946667 1.40413 1.40413 32.57982 0 

0.6 0.586667 1.34904 1.34904 56.51226 0 
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(iii) Comparison between the analytical solution and the approximate solution of 
Siddiqui et al. (2008b) 

The approximate solution for velocity profile [ UHPM ], as obtained by Siddiqui et 

al. (2008b), is reporduced below for the purpose of comparison. 

- 

UHPM  (1 2 
X

)+ i (1-X 2 )+ A (3(-1+X 2 )+4(X-X 3 )+2(-l+X 4 )) 
2 

(4.48) 

Fig. 4.13 portrays the velocity profiles obtained by using the above approximate 

solution [Eq. (4.48)] along with those obtained by using the analytical solution and the 

numerical solution. It can be observed that except for /3 =0, the velocity profiles 

obtained by using the approximate solution diverge significantly with the numerically 

obtained velocity profiles, and the deviation in these profiles increases with the increase 

in /3. Moreover, for higher values of /3, the approximate solution predicts the negative 

[opposite] velocity in the vicinity of stationary plate, which is not physically viable, as 

discussed above. Furthermore, consideration of higher terms in the approximate solution 

will rather enhance this discrepancy instead of rectifying it. Therefore, for this case too, 

the approximate solution obtained by Siddiqui et al. (2008b) has limited applicability. 

Similar conclusions can also be drawn by comparing the values of Q obtained 

by using' the analytical solution, the numerical solution and the approximate solution. 

The above presented approximate solution of velocity profile, i.e. Eq. (4.48), gives the 

following approximate solution for Q. 

5 9 /~ 
QHPM = 3 5 13 (4.49) 

For various values of /3, the values of Q predicted by the analytical solution, i.e. Eq. 

(4.47), the approximate solution, i.e. Eq. (4.49), and the numerical method, have been 

tabulated in Table 4.3. It is noticeable that except for /3 = 0, the values of Q predicted 

by the approximate solution deviate with the numerically obtained values and the error 

increases with the increase in )3 . In contrast, the flow, rates, predicted by the analytical 

solution, match exactly with their numerical counterparts. This confirms the accuracy of 
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the presently obtained analytical solution and highlights the limitations of the 

approximate solution of Siddiqui et al. (2008b). 

(b) 	Case 2(b): Couette-Poiseuille Flow With Upper Plate Moving in Positive y 
Direction with a High Velocity (A>O and Large) 

By following the same steps as were adopted in the previous subcase, one 

obtains the following explicit analytical solution of U [details of the derivation have 

been given in Appendix B2]. 

U =1—T 2 +12C1 /3 

24/3 
(4.50) 

I/3 

3(2)I/3 	{K3 + —2916 + K3 } 
where T=-1+ 	 1/3 + 	I/3 	, 

(K3 + —2916+K3) 	3(2} 

K, =-3 6i , K2 = —1+ l+12Cl/3 (2+ l+12CIf) and 

K3 =54+27K,2 +54K,K2 +27K2 +54K,X+54K1 K2 X+27K,X 2 . 

The unknown C is found by solving the following equation: 

—4-1+ 1+12/3(C, —2A) (2+j1+12/3(q —2A)) 

	

I

-1+ 1+12,6C, (2+ 1+12,6CI ) = 6j 	 (4.51) 

Similarly, by proceeding as in the previous subcase, the following explicit analytical 

solution of Q can be obtained: 

—1+ 1+12CIl (-1+ 1+12CIp-12C,/.3(13+5 1+12C,p) 

630..J /(33/2 

j-1+l+12q/3-24A/3 
+ 	

630~630J/33h12
[_1+j1+l2qfl_24Afl 
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-12C,/3(13+5 1+12C,/3-24A/3)-18A/3(6+5 1+12C,J3-24Af3)] 	(4.52) 

Since, A > 0, Q is always positive, and corresponds to the net flow in the positive y 

direction. 

(i) Comparison between the analytical and numerical solutions 

For this subcase, the velocity profiles obtained by using the analytical solution 

have been plotted in Fig. 4.15 along with the numerically obtained velocity profiles. 

This figure reveals that a close harmony exists between the velocity profiles obtained by 

using the analytical solution and the numerical solution. Although not shown, the 

similar conclusions can also be drawn by comparing the values of Q obtained by using 

the analytical and numerical solutions. However, we could not compare these solutions 

with the solutions of Siddiqui et al. (2008b), as these researchers did not explore this 
situation. 

(ii) Effect of parameters 

For this subcase, the same expressions of U and Q are obtained for the limiting 

values of /3 = oo and /3 =0,  as those obtained in the previous subcase. 

(c) 	Case 2(c): Couette-Poiseuille Flow with Upper Plate Moving in Negative y 

Direction with a High Velocity (A <0 and I AI is Large) 

The following explicit analytical solution of U is obtained [Appendix B2]: 

U=  1—T2  +12C,,(3 
24/3 

113 

3(2)'/3 	(K3  +' —2916+K3 ) 
where T=-1+ 	 1/3 + 	 li3  

(K3  + —2916+K3) 	3(2) 

(4.53) 
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K, = —3 8 , K2 = —1+ 1+12C,1i (2+ 1+12C1/3) and 

K3 = 54+27I( 2 —54K1 K2 + 27Kz + 54K; X — 54K, K2 X + 27K; X 2 

The unknown C, can be found from the following equation: 

—1+ 1+128(C, —2A) (2+jl+12J3(C1 —2A)) 

— —1+ l+12/3C, (2+jl+12,Bc1 ) = 6J 	 (4.54) 

On comparison with the case 2(b), one fmds that the equation used for finding q, i.e. 

Eq. (4.54), only differ in sign with that of the previous subcase, i.e. Eq. (4.51). 

Moreover, except K3 , all the other expressions [U, T, K1 , K2 ] are same as that of the 

previous case. 

The following explicit analytical solution of Q is found: 

Q— j-1+ 1+120,/3 (-1+ 1+12C,f —12C,/3(13+5 1+12C,/3)) 

630j/.3312 

—1+ 1+12C,f3 -24,4/3 
3~Z 	P

1+ 1+12C,f3-24Af3 
63 0J~ 

—12C1/3(13+5 1+120,/3-24A,3)-18A/3(6+5 1+12C1/3-24A13)] 	(4.55) 

Here also, we observe that the above analytical solution just differ in sign with that of 

the previous case 2(b), i.e. Eq. (4.52), and gives negative values of Q, which implies 

that the net flow is in the negative y direction. 

(i) 	Comparison between the analytical and numerical solutions 

For this subcase, velocity profiles obtained by using the analytical and numerical 

solutions are depicted in Fig. 4.16. It is apparent from this figure that a close agreement 

exists between the predictions of these two solutions. Here also, we have not shown the 
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comparison between the analytical and numerical values of Q.  However, it can be 

verified that the values of Q obtained by using both the solutions match exactly. We 

have not compared our results with those of Siddiqui et al. (2008b) as this situation was 

not dealt with by them. 

(ii) Effect of parameters 

The limiting values of 8 [ = 00,0 ] gives the same expressions of U and Q as 

those obtained in the case 2(a). Since, A <0 for this subcase, Q is always negative. 

Negative Q signifies the flow in negative y direction. However, since A <0,  IQI 

= 3 + A will be minimum for Newtonian fluid. 

4.3 CONCLUDING REMARKS 

In this chapter analytical solutions of the model equation of rotary kiln and fluid 

flow process have been obtained and the conclusions pertaining to them are presented 

below. 

(i) 	Rotary Kiln 

Implicit analytical solution for estimating the solid bed depth profile has been 

obtained by using the separation of variables and partial fraction decomposition 

methods. It is revealed that the present analytical solution is accurate and covers the 

entire range of e unlike the implicit approximate solution of Liu et al. (2009), which is 

accurate only in its optimum range [20.05deg <_ s <_ 65.89deg or 0.4 <_ u <_ 0.91]. 

Several available experimental results have also been successfully simulated by using 

the derived analytical solution, which proves its practical utility. 
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(ii) 	Fluid Flow Process 

Explicit analytical solutions of the velocity profile and the flow rate have been 

obtained with the help of derivative substitution method for all the possible 

configurations of plate's movement which also include the flow situations previously 

considered by Siddiqui et al. (2008b). All these analytical solutions show an excellent 

agreement when crosschecked against their numerical counterparts and are found to be 

superior to the approximate solutions obtained by Siddiqui et al. (2008b). 

It is found that the Couette flow features start dominating as /3  and/or IAI are 

increased, and for a given plate velocity, the effects of Poiseuille flow are more 

pronounced in the Newtonian fluid [/3=0]. 
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NOMENCLATURE 

Abbreviations 
AS analytical solution 

NS numerical solution 

APS approximate solution 

Exp. experimental 

HPM homotopy perturbation method 

Notations 
A [-] dimensionless velocity of the plate 

ap 	dp 	 1 
h2 

B [-] dimensionless parameter considered by Siddiqui et 

al. (2008b) 	= _ h2 dp 
,uUdx 

q, C2 [-] constants of integration 

d [m] diameter of solid particle 

D [m] diameter of the rotary kiln 

f(U) [-] function of U 	= dUIJ 
K1 , K2 [-] constant terms 

K3 [-] function of X 

L [m] length of the rotary kiln 
in . 	[kg.s-'] mass flow rate of the solids 

n [revolution.s-1] rotational speed of the kiln 

P [N.m 2] generalized pressure 

q [m2.s-1] fluid flow rate per unit width of the plate 

Q [-] dimensionless fluid flow rate per unit width of the 

R~ 	dP 	1 plate 	= 	— h3 



QHPM 	 [-] 	Q obtained by using HPM 

r; 	 [-] 	i'h root given by the Eq. (4.8) 

R 	 [m] 	radius of the rotary kiln 

T 	 [-] 	function of X 

u 	 [m.s 1] 	fluid velocity in the direction of y coordinate 

u~ dp  U 	 [-] 	dimensionless fluid velocity = h2 — 	-' 
 dy 

U M [-] 	U obtained by using HPM 

Uo [-] 	dimensionless maximum fluid velocity 

w [-] 	function of U [ = f(U)2 ]  

y [-] 	sin(s) in Eq. (4.12) 

Y [-] 	sin(s0 ) in Eq. (4.12) 

Greek letters 

A [kg.m 1.s] material moduli 

/133 [kg.m'.s] material moduli 

E [degree] local fill angle of the solids 

£o [degree] local fill angle of the solids at the exit of the kiln 

emwdmin [degree] local fill angle of the solids corresponding to 

0 [degree] dynamic angle of repose of the solids 

P [kg.m 3] bulk density of the solids 

Section 4.1 
Notations 

a 
I-] 

dimensionless parameter 	
^ 3 tan(9)Lrh 

P 	 41rnR4P 

b [-] dimensionless parameter 	= L tan(,3) 
R cos(0) 

h [m] depth of the solid bed 
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k [m] 	height of the dam at the discharge end 

h.Vnin  [m] 	maximum/minimum depth finally attained by the 
solid bed 

x [m] 	axial distance from the discharge end along the kiln 
length 

X [-] 	dimensionless axial distance from the discharge end 

along the kiln length 	= x 
L 

[-] 	minimum value of X corresponding to 

Greek letters 

[degree] 	inclination of the kiln to the horizontal 

a  

	

[-] 	dimensionless parameter = — 
b 

Section 4.2 
Notations 

a 	 [m.s-'] 	velocity of the plate 
2h 	 [m] 	separation between the two plates 

x 
X 	 [-] 	dimensionless distance in x direction = -) 

 

X' 	 [-] 	dimensionless distance where maximum fluid 

velocity occurs 
x, y , z 	 [m] 	distances in x, y and z directions, respectively 

Greek letters 

2 h)  
/3 	 [-] 	dimensionless parameter 

H 
 (I 2  +'33) — 	3  

dy ,u 

µ 	 [kg.m l.s 1 ] 	fluid viscosity 



CHAPTER V 

EQUATION OF STATE, FRICTION FACTOR EQUATION 
AND REACTION DIFFUSION PROCESSES 

- APPROXIMATE SOLUTIONS BY ADM 

5.0 INTRODUCTION 

This chapter describes the development of approximate solutions of 

thermodynamic equation of state, friction factor equation, and the model equations of 

reaction-diffusion processes occurring inside a porous catalyst slab and sphere.. 

Thermodynamic equation of state is concerned with the estimation of gas volume at a 

given pressure and temperature, whereas, the friction factor equation is used to find the 

friction factor for the laminar and turbulent flow of fluids in smooth pipes. The fluid 

considered in the present study is Bingham fluid. The model equation of reaction-

diffusion process is used in evaluating the concentration profile and effectiveness factor. 

The thermodynamic equation of state and friction factor equation are nonlinear 

algebraic equations, whereas, the reaction-diffusion process in a catalyst is represented 

by a second order ODE. 

In the literature, the thermodynamic equation of state and the friction factor 

equation have been solved by using various numerical methods. Besides, for the friction 

factor equation, several explicit correlations used as a substitute for this equation have 

also been developed. However, to the best of our knowledge, use of some recent 

approximate methods, e.g..ADM and RADM, for obtaining the solutions of these 

equations are unavailable._ On the other hand, the model equations of reaction-diffusion 

process have been solved by several researchers by using various approximate methods, 

namely ADM, and perturbation and matching procedure. However, it is observed that 

these approximate solutions become invalid in some situations. 

For obtaining the approximate solutions of these equations, two approximate 

methods, namely ADM and RADM have been employed. For judging the effectiveness 

of these two methods the obtained results have been compared with the numerical 

results as well as those obtained by using the available approximate solutions. For the 



sake of completeness, ADM and RADM have, respectively, been described in sections 

5.1 and 5.2, along with their methodologies. In order to demonstrate their use in solving 

AEs and ODEs, two simple illustrations have also been presented. 

5.1 ADOMIAN DECOMPOSITION METHOD [ADM] 

Developed by George Adomian in 1980s, ADM has proved to be an effective 

approximate method for solving various kinds of nonlinear equations, e.g. AEs, ODEs, 

PDEs and IEs [integral equations] (Adomian, 1986 and 1994). This parameter based 

method is attractive since it can deal with all types of nonlinearities and does not require 

the presence of any small or large parameter unlike other approximate methods, e.g. 

perturbation method or S- decomposition method (Adomian, 1986, 1994). Because of 

this, it has been widely applied by many researchers to solve a variety of nonlinear 

equations and a vast amount of published literature is available. Chapter II presents 

some of the relevant studies. 

The basic idea of ADM, while solving a nonlinear equation, is to break it into a 

set of infinite but simpler linear equations. This is done by expanding the, linear and 

nonlinear terms of the given equation in the Taylor series of a hypothetical parameter, 

A, E [0,1] . Thereafter, a homotopy equation from the original equation is formed. The 

terms having same powers of A in the so formed homotopy equation are equated to 

obtain the infinite set of linear but simpler equations. While linear terms are 

decomposed easily, the nonlinear terms are decomposed into components called 

Adomian polynomials, 4.  These polynomials can easily be generated for any type of 

nonlinearity with the help of several effective algorithms (Seng et al., 1996; Wazwaz, 

2000b; Biazar et al., 2003a; Abdelwahid, 2003; Choi and Shin, 2003; Rach, 2008). The 

obtained linear equations are solved sequentially and the ADM  solution [solution 

obtained by using ADM] is found by adding the individual solutions [also called 

decomposed parts of the ADM solution] of these linear equations (Adomian, 1986, 

1994). Ultimately, the ADM solution is obtained-in the form of a series called Adomian 

series. This series is basically a generalized Taylor series around a function rather than 

around a point and in general, converges more rapidly than the Taylor series (Rach et 
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al., 1992; Cherruault et al., 1995; Wazwaz, 1998). Hence, in general, smaller numbers 

of terms are sufficient to represent the solutions as compared to the Taylor series. 

5.1.1 Adomian Polynomials 

In this section, the procedure of generating the Adomian polynomials for any 

type of nonlinearity has been described. The procedure presented below has been 

adopted from Adomian (1986, 1994) in which a detailed course of action is given for 

generating these polynomials for different types of nonlinearities, viz. y", e'", sin y2 . 

Besides, the stepwise procedure for finding the solutions of different types of equations 

have also been given in it. 

For generating the Adomian polynomials, we consider a nonlinear function 

N(y) of unknown variable y. y is assumed to be dependent on a hypothetical 

parameter E [0,1] , i.e. y = y(A) . Using Taylor series y is expanded around A = 0 

and the following equation is obtained (Adomian, 1986, 1994): 

Y(A) _ j A`Yi = Yo + AY1 + A Y2 + ... 	 (5.1) 
i=o 

l ~y 
where y; _ —

a~, 	
. Similarly, N(y(A)) is expanded around % = 0 and one obtains: 

i ! 	A~ 

N(y) _ Z A,`A; = Ao + ~.A, + A2 A2 + ... 
=o 

(5.2) 

where 4 = 1 a N(y) 	
is the i`h Adomian polynomial for nonlinearity N(y) , and 

can be found by substituting the expanded form of y [Eq. (5.1)] into Eq. (5.2) and 

collecting the terms having same powers of A . For example, Adomian polynomials for 

N(y) = y2 are obtained as follows: 

(i) From Eq. (5.1), one assumes 

Y(.%) = yo +) y1 + 2y7 +... 



(ii) Substituting the above expression in the concerned nonlinearity, i.e. N(y) = y2 

N(y) = y2 = (Yo + ~yj + A2Y2 + ...)
z 

or 

N(y) = Yoe + 2, .yoYi + A2 (YOY2 + Y12) + ... 

(iii) On comparing the above expanded form of nonlinearity N(y) = y2 with Eq. (5.2), 

one finds: 

A0 = Yo
Z 

 

Ai = 2y0y1 

4 = (YOY2 + Y12 ) 

In this way, one can obtain the expressions of As for a given N(y) . One should 

note that there also exist some other algorithms to generate these polynomials more 

efficiently (Seng et al., 1996; Wazwaz, 2000b; Biazar et al., 2003a; Abdelwahid, 2003; 

Choi and Shin, 2003). 

Once the expressions of As are known, they are properly substituted into the 

concerned equations [AEs, ODES, PDEs]. Thereafter, each type of equation is solved in 

their respective manner. It should be noted that the above steps of generating the A,s and 

the subsequent steps to solve the concerned equations [described later] can easily be 

implemented in the programming language of robust symbolic computational tools like 

MATHEMATICA and MAPLE. 

5.1.2 Algebraic Equation: Solution by ADM 

In this subsection, the application of ADM has been demonstrated for solving a 

nonlinear AE. For this we consider a nonlinear equation in a single variable N(y) = 0, 
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and express it in the following canonical form (Adomian, 1986; Babolian and Biazar, 

2002a, -2002b): 

y=Co  +F(y) 	 (5.3) 

where N(y)=C0  + Fo  (y) — y , Co  is a constant and F(  y) is some function of y . Now, 

corresponding to Eq. (5.3), the following homotopy is constructed (Li, 2009): 

y=Co  +AFo(Y) 
	

(5.4) 

where A is the same embedding parameter considered in the previous subsection. 

Using Eqs. (5.1) and (5.2), y and FP(y) in Eq. (5.4) can be replaced by their respective 

decomposed parts, as shown below: 

Yo + 	+A.2Y2 + ... =Co  +A(A0  + AA, +2.2 A2  +...) 	(5.5) 

where y;  = 1 aly 	is the i`h  decomposed part of the ADM solution and 4 

1  a`Fo  (y) 	_ 1 a`  l Fo ( E y:) 	is the i`h  Adomian polynomial corresponding i! 82. L=o 	i! a2 	i=o 	Lo)  

to the nonlinearity Fo  (y) . 

On comparing the terms in Eq. (5.5) having same power of A , one finds 

Yo = Co, Yi = A.(Yo), Y2 = 4(Y.,YI),..., Y, = -A-,(Y.,Y1,•••,Y,-I). It is clear that as 

A --> 0 , 	y = yo = Co, 	whereas, 	if 	A—+1, 	y = Yo + yi + Yz + ••• _ 
Co  + 4  + A + A2  + ... = F(y) . This means as A tends from 0 to 1, the initial 

guess [ y = yo  = C0 ] approaches to the solution of Eq. (5.3), i.e. 

y = 	y;  = Co  + 	A1 . Obviously, there are many ways in which the above 

canonical form, i.e. Eq. (5.3), can be formed, and therefore, the convergence of the 

resultant solution strongly depends on the chosen canonical form of the equation. 

Besides, the final solution form will be different- for each of the equation forms. 

However, if the solution is convergent it will converge to the smallest magnitude root as 

proved by Adomian (1986); other roots can be found by the repeated application of 
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ADM in conjunction with the deflation method. It can be noted that the above procedure 

can also be extended, in a similar way, to obtain the solutions of coupled AEs (Babolian 

et al., 2004a; Kaya and El-Sayed, 2004). 

5.1.2.1 Illustration 5.1 

In this subsection, ADM has been applied to solve a polynomial equation of 

third degree, however,, for more examples the reader is referred to the literature 
(Adomian, 1986; Babolian et al., 2004a; Kaya and El-Sayed, 2004). 

Consider the following third degree polynomial equation: 

	

N(y)=a,y 3 +a2y z +at y+a0 =0 
	 (5.6a) 

where it is assumed that a, s are real and a0 , al ~ 0. For finding the ADM solution 

[ yADM ] of Eq. (5.6a), it is first expressed in the following canonical form: 

y = 	y z + a3 y3 	 (5.6b) 
ai 	a~ 	ai 
~~  y 

Yi 	Ca 	 0o 
i=0 

 
i=0 

Thereafter, the Adomian polynomials are found for the nonlinearity FO(y) as described 

in subsection 5.1.1, provided ao :0. In case ao =0, a constant may be added in place of 

CO and subtracted from Fo (y) . Now, using Eqs. (5.3)-(5.5), one has: 

Yl = 4(Y) 

Y, = J (Y.,Yl) 

Yi = -4-i (.YO, Y1, ..., 

Finally, the ADM solution for a finite number of terms [say nT ] is given by: 
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nr  -I 	 nT  -1 
YADM = I y; = CO + E A; 

(5.6c) 

For a better understanding, we below obtain the five terms [nT = 5] ADM 

solution of Eq. (5.6b) for the following values of as: 

a3  =1, a2 =11/6, al  =land au =l/6 

For the above values of a,s, the following components of the canonical equation are 

obtained: 

	

 = —ao = —1 	 (5.7a) CO 	a1 	6  

F0(y) _ - aZ  y Z  - a3  y3  = - f y2  - y3 	 (5.7b) 
1 	1 

After obtaining the Adomian polynomials for ] (y) , the following values of yis are 

obtained: 

yo =Co =-1/6 

yI  = A. _ — 0.0462963 

yz  = A = —0.0244342 

y3  = A, = -0.0157536 

y4 

 

= A3  = —0.0112317 

Finally, the value of five terms ADM solution is found to be: 

4 
YADM = Z y; = — 0.264382 

-a 
(5.8) 

Continuing the above steps, the ADM solution can also be found for higher number of 

terms. Table 5.1 shows the results obtained from the ADM solutions [117. = 5 and 50] 

and numerical method for several other values of a3 , a2 , a,, a0 . 
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Table 5.1: 	Solutions of cubic equation obtained by using different methods 

Solutions [smallest magnitude root] 
S. No a3, a2, a1, ao 

Numerical ~M RADM 
method . 	[nr = 5] 

0.849439 [ nT = 5], 0.918895 [m = 1] 
1 1, -6, 11, 	-6 1 0.998406 [2] 

0.997553 [ n,. = 50] 
1.00 	[3] 
0.289849 [1] 

0.264382 [ n, =5], 0.329913 [2] 2 1, -11/6, 1, -1/6 1/3 
0.328324 [ nT =. 50] 0.333329 [3] 

0.333333 [4] 
-0.918895 [1] 

-0.849439 [ nT = 5], -0.998406 [2] 3 1, 6, 11, 6 -1 -0.997553 [ n,. = 50] -0.999999 [3] 
-1.00 [4] 

-0.289849 [1] 
-0.264382[ nT = 5], -0.329913 [2] 4 1, 11/6, 1, 1/6 -1/3 
-0.328324 [ nT = 50] -0.333329 [3] 

-0.333333 [4] 
3.04703 [1] 

ADM failed as the 1.56364 [2] 
5 1, 4, 1, -6 1 

solution diverged. 1.04731 [3] 
1.00007 [4] 
1.00000 [5] 

-0.318742[ nT = 5], -0.326532 [1] 
6 1, -1/6, -2/3, -1/6 -1/3 -0.333318 [2] 

-0.333321 [ nT = 50] 
-0.333333 [3] 

0.993045[ n,. = 5], 0.998166 [1] 
7 1, 0, -7, 6 1 0.999999 [2] 

0.999999 [ nT = 50] 
1.00 [3] 

ADM cannot be used 
as the canonical form RADM cannot be used as 

8 1,-7/6,0,    1/6 -1/3 cannot be formed the canonical form cannot 

[ai =0]- 
be formed [ a, =0].   

-0.490489 [1] 

9 1, -5/4, 1/8, 1/8 -1/4 ADM failed as the -0.283132 [2] 
solution diverged. -0.250259- [3] 

-0.250000 [4] 

It is clear from this table that in some cases, ADM may either fail or exhibit slow 

convergence. These observations limit the scope of ADM for such cases. To overcome 

these limitations, some other modified versions of ADM have also been proposed (El-

Sayed, 2002; Abbasbandy, 2003; Abbasbandy, 2006b; Jafari and Daftardar-Gejji, 2006; 

Chun, 2006; Jiao et al., 2008; Li, 2009; Babolian and Biazar, 2002b; Babolian and 
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Javadi, 2003; Basto et al., 2006). Out of these, we have selected an effective variant of 

ADM, i.e. Restarted Adomian decomposition method [RADM], which has been 
described in a later subsection 5.2.1. 

5.1.3 Ordinary Differential Equation: Solution by ADM 

In this subsection, the methodology of ADM for solving a single ODE has been 

presented. However, with slight modifications, this methodology can easily be extended 

to solve the coupled ODEs (Adomian, 1986, 1994). Here, we start by representing the 
ODE in the following operator form (Adomian, 1986, 1994): 

F[y(x)] = g(x) 
	

(5.9) 

where F[y(x)]  contains various differential operators [with the assumption that the 

highest differential operator is linear] and the linear/nonlinear terms [functions and 
operators] of y(x) . g(x) is the non-homogeneous term. Eq. (5.9) is further expressed as 

follows (Adomian, 1986, 1994; Sun et al., 2004; Lesnic, 2007): 

L[y(x)] — IR[y(x)] — N(y(x)) = g(x) 

or 

L[y(x)] = g(x) + /R[y(x)]+ N(y(x)) 
	

(5.10) 

where F[y(x)] = L[y(x)]— lR [ y(x)] — N(y(x)) . L[.] is a linear, easily invertible operator 

of highest differential and /R[.] is the remainder of the linear operator. N(y(x)) 

contains the linear/nonlinear terms of y(x) . 

Now beside x, y is also assumed to be a function of a hypothetical parameter 

A. E [0,1] , i.e. y = y(x, A.) , and is expanded in the following Taylor series of A. 

(Adomian, 1986 and 1994): 

2 

+A
y(x,2) 	+ 	a2  y(x,A) 	

+... 

	

-0 	alt, A_0  2! &2 .l=° 

oo 

	

= E A.'yr (x, A) 
	

(5.11) 
s=o 
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Like in the case of AEs, here too, y, (x) = 1 a' y(x' 1,) 	
is the i h̀ decomposed part 

of the ADM solution. In a similar fashion, the nonlinearity N(y(x, ,%)) is also 

decomposed by expanding it in the following Taylor series of 2, : 

N(y(x, A)) = N(y(x, ,I)} ,,_o + 	+ i aZN(y(Z ~)) +... 
aa. 

(5.12) 

[ 
where A. = 	11 a'N(y(x,~)) 	is the ith Adomian polynomial corresponding to the 

-o 
nonlinearity N(y(x)).  For simplicity, now onwards y(x,A) and N (y (x, A )) are denoted 

by y and N(y) , respectively. 

Using Eq. (5.10) the following homotopy is constructed (Li, 2009) [other 

homotopy equations may also be constructed and the convergence of the obtained 

solution depends on the form of homotopy equation]. 

L[y] = g(x) + A (l [y] + N(y)) 
	

(5.13) 

Using Eqs. (5.11)-(5.13) one obtains: 

cc 	- 	c L[jA'y1]=g(x)+ fR[Z 2'+1 y;]+EA1+'A,(yo,y1,...,y1) 	 (5.14) 
i=0  ;=o  ;=o 

It is clear from Eq. (5.14) that as % tends from 0 to 1, the solution varies from the 

initial guess y =y0 [solution of L[ y] = g(x) ] to y = y; [solution of 
=o 

L[y] = g(x) + 0Z[y]+ N(y) ]. Applying the inverse operator L to the both side of Eq. 

(5.14), one obtains the following equation [L' actually denotes n times integration for 
an n'h order differential operator L. However, depending on the problem other 

definitions of L' can also be used. But, L' should have the same number of integral 

operators as the number of orders in the highest order derivative term and should be 

dimensionally consistent]. 
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= Cn  +Cn-1 x+ ... +C2 xn-2  +C1 x"-' +L-'[g(x)]+L-'[1R[E /I,
+'y1]] 

(5.15) 
i=o 

where L-' [o] = C" + C"-,x + ...+ C 2 x"-2  _- C1 x" ' . Cis [ i = 1, 2..., n ] are the n constants of 

integration. At this instant, the terms having same exponents of A. are compared to give 

the following relations: 

YO = C" +C"_,x+ ... + C2x"-2 +C1xn—I  +L—'[g(x)] 

Y1 = L—'[IR[yo]]+ L— '[A0(yo)] 

Y2 = L—'[/R[y1]]+L—'[ A1(yo,y1)] 

.v3 = L—'[ IR[y2]] +L—'[ A2(Y1,y1,y2)] 

Finally, the following ADM solution is obtained by adding the above decomposed parts: 

y1x_, _ 	 , y 
=o 

= C" ±...+C1x"—' +. L—'[g( x)]+ L—̀ [ IR[yo]]+L—'[ A0(yo)]+L—'[ IR[y1]] 

+L—'[ A1(y0,y1)] +... 	 (5.16) 

C 's are evaluated by using the corresponding ICs and BCs. An illustration for the 

application of ADM has been presented next. 

5.1.3.1 Illustration 5.2 

The following linear second order ODE constituting a BVP has been solved by 

applying ADM. This type of equation frequently appears in the modelling of heat 

transfer and reaction-diffusion processes (Fogler, 1992; Bird et al., 2002). 
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dZy 
dxz y = 0 

BC I: dy =0 at x=0 
dx 

BC II: y=1 at x=1 

(5.17a) 

(5.17b) 

(5.17c) 

The analytical solution of Eqs. (5.17a)-( 5.17c) is available in many texts (Bird et al., 

2002) and is given by: 

cosh[x] 

y cosh[1] 
(5.18) 

For finding the ADM solution, the Eq. (5.17a) is compared with Eq. (5.10), and 

one obtains: L[.] d Z 	g( x) 0, R[y] = 0 and N(y) 	 Therefore,  
dx 

X 

= f f [. ]dxdx and L-' (0) = C2 + C, , where q and C2 are the constants of 
0 

integration and are found from the above BCs. Using Eqs. (5.11) and (5.12), y and 

N(y) are decomposed into their respective parts, i.e. y — Z ~,~ y, and N(y) _ 	I1 `Al . 

It can be verified that for N(y) = y the Adomian polynomials are same as the 

decomposed parts of the ADM solution, i.e. A. = y1 . Now, with the help of the Eqs. 

(5.14) and (5.15), one obtains the following relations: 

yo=C2+C1x 

Y1 = L—' [Ao] = L—' [Yo] 

Yz = L—' [Ai] = L[y1 ] 

Y3 = L—' [Az ] = L—' [Y2 ] 

However, q =0 from BC I, and the above relations reduce to: 

Yo =C2 



x2  
Y' = L-1[A0]  = L'[Yo]  = Cz  

x4  
Yz =L'[A1]=L-'[Y,]=C2 24 

x6  
Y3 =L'[A2]=L—'[Y2]=C2 X20 

Ya = L ' [A3]=L—' [Y3]=C2 x8  
40320 

Eventually, the five terms [ii. = 5] ADM solution is found to be: 

4 	x2 	x4 	xG 	x8 

YADM = y, = Cz  + C2  - + Cz  - + C2 	+ Cz 	 (5.19) 
,_0 	 2 	24 	720 	40320 

C2  can be found from BC II and is given by: 

_  4480 

Cz  6913 
(5.20) 

Substituting this value of C2  in Eq. (5.19), the following ADM solution is obtained: 

YADM = 0.648054+0.324027x2  +0.027002x4  +0.0009x6  +0.000016x8 	(5.21) 

Taylor series expansion of the analytical solution [Eq. (5.18)], around x = 0 and up to 

the eight power of x, yields the following series solution: 

y 0.648054 + 0.324027x2  + 0.027002x4  + 0.0009x6  + 0.000016x8 	(5.22) 

It can be seen that both the solutions [Eqs. (5.21) and (5.22)] match well, and thus the 

validity of the ADM solution is established. We have also compared the ADM solutions 

[for different nT] with analytical solution by plotting them in Fig. 5.1. This figure clearly 

shows that with the increase in number of terms [nT ], the ADM solution approaches to 

the analytical solution. 
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5.2 RESTARTED ADOMIAN DECOMPOSITION METHOD [RADM] 

Sometimes due to the poor selection of various quantities, e.g. initial guess, 

linear operator, canonical form of the equation, the solutions of AEs, ODEs, PDEs 

obtained by using ADM may diverge. In such circumstances, various modifications in 

ADM have been proposed. In the following subsections, one such modified version of 

ADM, namely RADM has been presented for fmding the solutions of AEs and ODEs. 

5.2.1 Algebraic Equation: Solution by RADM 

As shown earlier in the subsection 5.1.2.1, the ADM solution of an AE may 

converge slowly or may even diverge. This may happen either due to the poor selection 

of canonical form or due to the presence of complex roots (Adomian, 1986). To 

overcome this problem as well as to get the results more accurately and quickly, several 

researchers (Babolian and Biazar, 2002a, 2002b; Babolian and Javadi, 2003) modified 

the ADM by devising an iterative procedure for updating the Eq. (5.3). The updated 

equation was then solved by using ADM and this modified ADM was named as 

Restarted Adomian decomposition method [RADM]. Although, RADM is also not fool 

proof but many a times it performed better than ADM. The steps involved are 

summarized below and the details of these modifications can be found in the original 

works of Babolian and Biazar (2002a, 2002b), and Babolian and Javadi (2003). 

Following updating procedure is adopted for Eq. (5.3): 

Step 1: 	C = Co 	for m = 1 	and 

C. = y ( m_l ) for m > 1 	 (5.23a) 

Step 2: 	F(Y)= Fo(y)—yFo(c,,,)+Co 	 c 	form>_1 
1-1(C,) 

and Fo (Cm ) ~ 1 	 (5.23b) 

Step 3: 	y("'' = C + Fm (y) 	for in >_ 1 	 (5.23c) 
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Figure 5.1: Comparison of the solutions of illustration 5.2 obtained by using 

different methods 
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where y(m) denotes the solution obtained after the m`h iteration of RADM and Fo 

denotes dF° . Co and F,(y) in Eq. (5.3) are updated using the steps 1 and 2 [one 
dy 

should note that at m = 1, Cl is taken equal to Co ]; thereafter, the solution is obtained 

for each iteration by applying ADM to the updated equation, i.e. Eq. 5.23c . In the next Y 	 P 	q 	~ 	q• ( 	) 

iteration, the value of the so found solution is used to update C„, and F (y) through 

Eqs. (5.23a) and (5.23b), respectively. With the updated Cm and F,,(y), the newer 

canonical form, i.e. Eq. (5.23c), is formed and solved by using ADM. This procedure is 

repeated until one gets the result of desired accuracy. 

Using the above step wise procedure of RADM, we have solved all the examples 

mentioned in Babolian and Javadi (2003) and the results matched up to the last digit. 

The following illustration explains the procedure of RADM for solving AEs. 

5.2.1.1 Illustration 5.3 

The application of RADM has been demonstrated by solving the previously 

treated third degree polynomial equation, i.e. Eq. (5.6a), for the same values of a, s as 

those given in Table 5.1. For demonstration, we have considered the values of a, s given 

at serial number 5 in Table 5.1, i.e. aj = 1, a2 = 4, a1 = 1, ao = - 6. This is because, 

ADM failed to get the solution for this set of values. Here also, five terms [nT 5] have 
been considered in the RADM solution. 

Following canonical form is selected, before the first iteration [m = 1] of RADM 
is executed: 

y = Co+FO(y) 
	

(5.24a) 

Ca = — a° = 6 and .F (y) = - a2 y2 - a3 Y 3 = —4y2 —y3 	 (5.24b) 
a1 	 a1 	a1 

In the first iteration, the corresponding values of updated equation, evaluated from Eqs. 

(5.23a)-( 5.23c), are: 
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Cl = Co = 6 and 

F, (y) = -5.96178+  0.99363 ly - 0.0254777y2 -0.00636943y3 	(5.25a) 

The updated canonical form is given by: 

y = Cl +F (y) 	 (5.25b) 

By solving the Eq. (5.25b) with the help of ADM, one finds the following solution for 

the first iteration of RADM: 

y(l) = 3.04703 

In the second iteration [m = 2], one has: 

C Z = y~`I = 3.04703 

and 

F2 (y) = -2.93431±0.981213y-0.0751463y2 -0.0187866y3 	(5.26a) 

y = C2 +F2(y) 	 (5.26b) 

Solving the Eq. (5.26b) by using ADM, one obtains the following solution for this 

iteration: 

y(2) = 1.56364 

Similarly, in the third iteration [m = 3], one finds: 

C3 = y(2) = 1.56364 

and 

F3 (y) = -1.27579 + 0.952025y - 0.191901y 2 - 0.0479752y3 	 (5.27a) 

y = c3 +F (y) 	 (5.27b) 

Applying ADM to Eq. (5.27b), the following solution is obtained for the third iteration: 

y(3~ = 1.04731 
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In this way, one solves the Eq. (5.24b) by using RADM. For several values of a, 

s, the RADM solutions of this equation have also been presented in Table 5.1. It is 

observed that RADM successfully found the solutions in a few iterations, except where 

canonical form cannot be formed. In few cases, this method may also diverge and for 

such a situation, Basto et al. (2006) have given a remedy. However, in the present 

illustration, this situation did not apse. 

5.2.2 Ordinary Differential Equation: Solution by RADM 

As stated in the case of AEs, the ADM solutions of ODEs may also diverge in 

some cases, discussed later in last two problems. In such situations, a modified version 

of ADM, namely RADM can be adopted. RADM was first developed by Babolian et al. 

(2004b) for solving the IEs, however, we have found that this method works well for 

many ODEs, and here, the same methodology has been adopted for solving ODEs as 

was followed by these researchers to solve IEs. 

The RADM for ODEs is basically a type of iterative ADM and is somewhat 

similar to the RADM for AEs. In this subsection, we describe the working of RADM by 

focussing on the Eq. (5.10), which was earlier solved by using ADM in subsection 

5.1.3. The key steps of RADM are as follows: 

(i) The first iteration [m = 1] is same as that of fording the ADM solution. In other 

words, first the ADM solution of Eq. (5.10) [given by Eq. (5.16)] is found. Let 

this solution be denoted by: 

YRADM,m=1 = YADM 
	 (5.28a) 

(ii) In the second iteration [m = 2], the same iterative steps are followed for finding 

the y, s, which were followed in ADM. However, now the following modified 

relations of yo  and yl  are used, whereas, the definitions of rest of the y, s remain 

the same. 

YO = YRADM,nn=1 

y1 = L' [R[y0 ]] + L' [4 (y0 )] + C,1  + Cn-1  x + ... + C2xn-2 + Clxn—' + L' [g(x)] yRADM,.=1 
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.Yz = L-' [ iR[y1]] +L-'[ A1(y0,Y1)] 

Y3 = L—'[tR[y2]]+L—'[A2(Yo,Y►,Yz)] 

For this iteration [m = 2] and for n7. number of terms, the solution obtained by 

using RADM is given by: 

n7-1 

YRADM,,n=2 = 	Yi 	 (5.28b) 
=o 

C,. s are found by using the associated ICs and BCs. 

(iii) For higher iterations [m = 3, 4... ], the step (ii) is repeated for a specified number 

of times, i.e. 

YO = YRADM.m=2 

Y1 = 

 

L '  [/R[y0 ]] ± L 1[4(y0)]+Cn ±Cn-1x+ ... + C2xn-2  +C,l.xn-1 +L 1 [g(x)] YRADM,m=2 

Y2 = L-'[R[Y1]]+L-'[A.(Y0,Y1)] 

Y3  

And the solution for this iteration of RADM is given by: 

nr-1 

YI.,wM,m=3 = I Yf 
=o 

(5.28c) 

C,. s are again found by using the associated ICs and BCs. This step may be 

repeated as many times as required. For a better understanding of RADM, an 
illustration is presented in the next subsection. 
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5.2.2.1 Illustration '5.4 

For the purpose of comparison, the same ODE, earlier solved in illustration 5.2 . 

by using ADM [Eqs. (5.17a)-(5.17c)], has been solved here by using RADM. However, 

to show the efficacy of RADM over ADM, only two terms [ n~. = 2] have been 

considered in RADM solution. Moreover, the same defmitions of L[.] , L '[.I , g(x) , 
IR [.] and N(y) have been used in RADM, which were used in ADM. 

As described in step (i), the following two terms ADM solution is found in the 
first iteration [m = 1]. 

2 1 2 
YRADM,m=1 = YADM = 3 + 3 x (5.29) 

By pursuing the step (ii), the following relations of y0 and y1 are obtained in the second 

iteration [m = 2]. It should be noted that, here too, Cl will be zero [due to BC I] for all 

the iterations of RADM. 

2 1 2 
Yo = YJMDM ,m=1 = YADM = 3 + 3 x 

Y1 = L-'[-'401 + C2 YRADM,m=3 

_ 
= L

1 
[Y0 ] + C2 Y/L1DM,m=1 

=C2 _2+36x4 

Finally, the following two terms solution is obtained after the second iteration of 

YRADM,m=2 = YO + Y1 

=C2+3x2+36x4 

= 0.638889 + 0.333333x2 + 0.0277778x4 	 (5.30) 
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where C2  [= 0.638889] has been found from BC II. Similarly, in the third iteration' 

[m = 3], one has: 

y0 = YRADM,m=2 = 0.638889 + 0.333333x2  + 0.0277778x4  

.y1 = I' [y0] + C2 — YR9DM,,n=2 

Adding . yo  and yl  yields the following two terms solution after the third iteration of 

RADM: 

YRADM,m=3 = YO + Yl 

= 0.651852 + 0.319444x2  + 0.0277778x4  + 0.0009259x6 	(5.31) 

where C2  [= 0.651852] has again been found from BC II. In this way, RADM solutions 

can be found for higher number of iterations. The above obtained RADM solutions have 

been plotted in Fig. 5.1 along with the earlier obtained analytical and ADM solutions. It 

is clear from this figure that the accuracy of the approximate solutions obtained by using 

RADM increases with each iteration [m]. This fact is also evident from Eq. (5.31), 

which is approximately same as the Taylor series expansion of the analytical solution, 

i.e. Eq. (5.22). In contrast to this, the two terms ADM solution shows deviation from the 

analytical solution. 

It is also noteworthy that the above iterative procedure works only for 

polynomial nonlinearities. Since, for other complicated forms of nonlinearities, e.g. 

non-integer power of y or some polynomial fractions of y, the above procedure gives 

rise to some un-integrable terms. However, in such cases the nonlinearity can be 

expressed as a polynomial nonlinearity by approximating it with the help of some 

appropriate orthogonal polynomials [OPs]. Moreover, after each iteration of RADM, the 

terms in solution expression, which when used in the next iteration, may yield even 

larger expression. Hence, these solutions may also be approximated after each iteration 

of RADM by using some suitable OPs. Use of OPs with RADM has been shown later in 

this chapter, while solving the model equations of reaction-diffusion processes. 
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5.3 THERMODYNAMIC EQUATION OF STATE 

In this section, we have solved the Beattie-Bridgeman equation of state, by using 

ADM and RADM. This equation has been chosen since ADM and RADM exemplify 

some important characteristics and one can get a better insight for the usefulness or 

limitations of these methods. 

5.3.1 Beattie-Bridgeman Equation of State 

The Beattie-Bridgeman equation of state is a well known relation and is widely 

used to predict the gas volume at a given pressure and temperature. It is basically a 

fourth degree polynomial equation [quartic equation] in volume. In standard form this 

equation of state is written as (Annamalai and Puri, 2002): 

PV = RT + fl + yZ  + y3 	 (5.32) 

where /3 = RTBO  — 4 — z , y = — RTBob + a4— T 2  c  and 6 = T  Zbc 

5.3.2 Solutions and Discussion: Gas Volume 

Here, the Eq., (5.32) has been solved by taking n-butane as an example, and the 

volume of this gas, corresponding to different pressures but at a fixed temperature 

T = 425K, has been found. Three different canonical forms of Eq. (5.32) are considered 

and the effects of these canonical forms on the convergence of ADM and RADM 

solutions have been studied. The constants for n-butane have been taken from 

Annamalai and Puri (2002) and are given below. It should be noted that for the 

following set of values, the volume of n-butane has been computed in litre (1). 

A0  = 17.794 atm.12  , B0  =0.2462 moll , b =0.094231,  c=350x104 1.K.mol, 

R = 0.08206 atm.l.K-' .mol-' , a = 0.121611 
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5.3.2.1 Solution by ADM 

(i) Canonical Form - I 

The following canonical form of Eq. (5.32) has been considered: 

_RT +t 
 1

(3 	y 	8 
V 	P 	PV + PVZ  + 

 PV3 	 (5.33) 

CO 	 FQ(V) 

Proceeding as described in subsection 5.1.2., the following two decomposed pats of the 

ADM solution are obtained: 

RT 
Yo = P 

RT(RT /3 + Py) + P28 
Y1 = 	R3T 3 

Hence, the two terms [ n7. = 2] ADM solution of Eq. (5.33) is given by: 

VIM = )'0 +j'1  

RT  =-- P 
RT(RT/3 + Py) + P28 

R3 T3  
(5.34) 

In a similar fashion, the ADM solutions for higher number of terms [ nT = 5, 15] have 

also been obtained and the results obtained by using them have been tabulated in Table 

5.2. As shown in this table, the above obtained two terms ADM solution [Eq. (5.34)] 

gives rise to ±1% error up to 10 atm. pressure. It is also observed that as the terms in 

ADM solution are increased, the error decreases, whereas, for a fixed number of terms 

the error increases at higher pressures; even 15 terms do not give sufficiently accurate 

results and higher terms are needed for pressures above 30 atm. 

(ii) Canonical Form -II 

After little manipulation the following canonical form of the Eq. (5.32) is 

obtained: 
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V = - S + 	V4  -  RT  V3  _ Ij V2 	 (5.35) 
Y 	Y 	Y 	r 

Co 	 F0(V) 

After solving the Eq. (5.35) by using ADM, the following two decomposed parts of the 

ADM solution are found: 

y1= 

62(_/372 + 5(RT7 + PS)) 

r5  

Table 5.2: 	Results of Beattie-Bridgeman equation of state obtained by using 
numerical method and ADM 

P (at n) VNu,nerica! () 
VADM (1) 

2 nT"- 5 nT =15 

Canonical Form - I 
1 34.563900 34.566700 34.563900 34.563900 

10 3.155120 3.185950 3.155400 3.155120 

20 1.378070 1.450360 1.383170 1.378090 

30 0.735711 0.877452 0.769839 0.738326 

40 0.229100 0.595352 0.447926 0.323752 

Canonical Form - II 

1 34.563900 -0.019822 -0.049966 -7.704420 

10 3.155120 -0.019802 -0.050172 -8.030790 

20 1.378070 -0.019780 -0.050402 -8.407540 

30 0.735711 -0.019758 -0.050633 -8.799670 

40 0.229169 -0.019735 -0.050866 -9.207700 

Canonical Form - III 

1 34.563900 34.569400 34.563900 34.563900 

10 3.155120 3.209960 3.155850 3.155120 

20 1.378070 1.492620 1.388910 1.378100 

30 0.735711 0.933588 0.791929 0.740605 

40 0.229169 0.661941 0.498316 0.367304 
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Thus, the two terms [nT  = 2] ADM solution is obtained as follows: 

VADM = yo +yA 

S2  (--j3y + S(RTy + PS)) 
=--+  

Y 	 Ys 
	 (5.36) 

In a similar pattern, the ADM solutions for higher number of terms have been 

found and the results obtained from the so found ADM solutions are also given in Table 

5.2. This table clearly shows that the ADM solutions failed to yield the correct results 

for this canonical form. It is even noted that the consideration of more terms in ADM 

solution increases the divergence as can be verified by the ratio test of the generated 

solution. This divergence of ADM can be attributed to the fact that the initial guess for 

this canonical form, i.e. yo  [= C0 ] = — S , is poor. 
Y 

(iii) Canonical Form - III 

After defining y = V-1 , the Eq. (5.32) attains the following canonical form: 

	

_ P 	_  t3 2 	Y 3_ S  a 

	

y  RT 	+ RT y 	RT y  RT '  ,i 

	

CO 
	 Fo (y) 

(5.37) 

Subjecting the above equation to ADM, the following two decomposed parts of the 

ADM solution are obtained: 

P _ 
Yo — RT 

P2RT (RT/3 + Py) + P48 
R  5T  5 

And the two terms ADM solution is found to be: 

YADM = YO +Yl 

212 



p P2RT (RT J3 + Py) + P48 
YADM — RT 	 R ST S  

Therefore, the two terms ADM solution of volume [ y = V 1 ] is given by: 

= 1  __ 	 RSTS  
VADM  Y ADM  PRT(R3T3  —PRT/3 —PZ y) —P4 	 (S 	

5.38)  

On the same lines, ADM solutions have been found for higher values of nj., and 

the results obtained from thus derived solutions are presented in Table 5.2. Here also, it 

is observed that the error in ADM solution [Eq. (5.38)] decreases with the increase in 

number of terms. While no divergence occurred in the ADM solution, yet the error 
increases with the increase in pressure. 

5.3.2.2 Solution by RADM 

Following the steps described in subsection 5.2.1, the solutions of the above 

three canonicalforms [Eqs. (5.33), (5.35) and (5.37)] have also been obtained below by 

using RADM. 

(i) 	Canonical Form - I 

By solving the Eq. (5.33) with the help of RADM, one obtains the following two 

decomposed parts [ nT  = 2] of the RADM solution after the first iteration [ m = 1]: . 

RT 
Yo — P 

RT (RT (RTf3 +Py)+P2 5) 
A  RT (R3T3  + PRT + 2P27) + 3P38 

Hence, the two terms RADM solution after the first iteration is given by: 

VRADM = yens = Yo + yi 
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RT 	RT (RT (RT/3 + Py) + PZS) 
=—+ 	 (5.39) 

P 	RT (RT 3  + PRT f + 2P2y) + 3P36 

On the same lines, one can obtain the RADM solutions for higher values of nj. and m. 

For some of the values of nT  and m, the results of this canonical form obtained by 

using RADM have been presented in Table 5.3. As illustrated in this table, the RADM 

yields satisfactory results, yet increasing the terms doesn't always guarantee the quick 

and convergent solution, e.g. the results obtained for P = 40 atm by considering nT  = 15 

in RADM solution. A comparison between the results of this canonical form, obtained 

by using ADM [Tables 5.2] and RADM [Tables 5.3], suggest that the results obtained 

by using ADM do not diverge, whereas, those obtained by using RADM may 

converge/diverge or may even fluctuate as nl  is increased up to some particular value, 

and only after considering more terms in RADM, the correct results can be obtained. 

For P = 40 atm, the results of this canonical form obtained after each iteration 

of RADM, have also been shown in Figs. 5.2 - 5.4. Fig. 5.2 shows that the results 

obtained for nT  = 2 and 5 converge smoothly to the correct value. Although not shown, 

yet this is also found to be true for nT  =4 and 20; for n,. = 20 the convergence was very 

fast. Similarly, Fig. 5.3 depicts that the results obtained for nT  = 18 finally converge to 

the true value, but one or more peaks are observed; again not shown, yet this is also true 

for nT  = 8 and 16. Fig. 5.4 presents an interesting characteristic of the obtained results 

and it is noted that for n7. = 6, 10, 12 and 15, the results are quite oscillating, and 

various numerical runs have shown that these oscillations are present even after 500 
iterations: This phenomenon was also observed by Basto et al. (2006) while solving the 

AEs by using RADM, and to get the correct results for these numbers of terms, Co  in 

Eq. (5.33) was recommended to change keeping it close to the correct value. 

The above observations reveal that between the converging limits, i.e. nT  = 5 

and 20, the results obtained by using RADM may not necessarily converge, rather these 

may exhibit divergence, fluctuations or even continued oscillations. Despite these 

observations, it has been found that if the result converges for several values of nT , then 
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for larger nT  the routine needs lesser number of iterations to get the correct value and 

vice versa. 

Table 5.3: 	Results of Beattie-Bridgeman equation of state obtained by using 
RADM and numerical method for its different canonical forms 

VRADM (1 
VNurnerical P (atm) V)  nT =2 nT =5 nT=15 • ' nT =18 

Canonical Form - I 
1 34.563900 34.563900 [m=1] 34.563900 34.563900 - 

10 3.155120 
3.158230 [1] 

3.155200 3.155200 - 
3.155120 [2] 

0.795437 [1] 0.757059 

30 0.735711 
0.738723 [2] 0.735730 0.736738 -  

0.735711 0.735711 	. 
0.735711 [4] 
0.489065 [1] 0.414231 [1] 0.284262 [1] 0.257108 [1] 

40 0.229169 
0.306399 [2] 0.044825 [2] 8777.080000 [2] 2.146280 [2] 

0.229169 [12] 0.229169 [10] 8463.370000[14] 0.229169 [8] 

Canonical Form -II 

-0.029139 [m=1] 
-0.028515 [1] -0.028413 1 34.563900 • • -0.028413 [2] -0.028413 - 

-0.028413 [4] 

-0.029139 [1] 
-0.028512 10 3.155120 -0.028414 [2] 
-0.028409 

-0.028409 -  
-0.028409 [3] 

-0.029138 
-0.028506 30 0.735711 -0.028406 
-0.028402 

-0.028402 -  
-0.028402 

-0.029137 
-0.028503 40 0.229169 -0.028402 
-0.028398 

-0.028398 -  
-0.028398 

Canonical Form - III- 

1 34.563900 34.563900 [m=1] 
34.563900 34.563900 -  
34.563900 34.563900 

3.158230 [1] 
3.155180 10 3.155120 3.155120 [2] 
3.155120 

3.155120 -  
3.155120 [3] 

0.795437 [1] 0.755985 
0.736276 

30 0.735711 ... 0.735727 
0.735711 

_ 
0.735711 [4] 0.735711 
0.489065 [1] 0.417202 [1] 0.352443 [1] 0.153795 [1] 

40 0.229169 
0.306399 [2] 0.282288 [2] 0.000000 [2] 0.226123 [2] 

0.229169 [12] -0.028398 [8] 0.000000 [5] 0.229169 [4] 
- Results not computed 
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(ii) Canonical Form -II 

By applying RADM to this canonical form [Eq. (5.35)], the following two 

decomposed parts of the solution are found after the first iteration: 

82(/i72 + S (RT7 + PS)) 
Y' — y (ya  — 2,3y z8 + 3RT182  + 4P83  ) 

And the two terms RADM solution is given by: 

VRADM = YAM = YO +Yi 

8 	82  (—lye  + S (RTy + P8)) 
_ --- + 	 (5.40) 

y 	y (y 4  — 2.3y26 + 3RTy82  + 4P83  ) 

In the same way, one can obtain the solutions of this canonical form for higher 

values of of  and m. The results obtained by these solutions are also presented in Table 

5.3, which shows that the RADM failed to deliver the correct results of Eq. (5.35). This 

is due to the poor choice of the initial guess, i.e. yo  = Co  = — s . Unlike the results of 
I 

this canonical form obtained by using ADM [Table 5.2], the results obtained by using 

RADM converged to another negative real root, and increasing the terms in RADM 

decreases the number of iterations required for arriving at this negative root. Moreover, 

unlike the results of canonical form-I obtained by using RADM [Table 5.3], no 

oscillations are present in the results of this canonical form as of  is increased. 

(iii) Canonical Form - III 

For this canonical form [Eq. (5.37)], the following two decomposed terms are 

obtained after the first iteration of RADM: 

P 
yo =; 
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P = 40 atm 	 Canonical form I { 	 I —  RADM: nT=2 
T = 425 K 	 —0  RADM: nT=5 

e RADM: nT=2 
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■ RADM: nT=15 
--e— RADM: nT=18 

\ 	 _ _ — Real Root I 
— Real Root II 

0 	 2 	 4 	 6 	 8 	10 	12 
Number of iterations in RADM, in 

Figure 5.2: Variation of volume with number of iterations in RADM for 
different number of terms [nT] 
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Figure 5.3: Variation of volume with number of iterations in RADM [real root I 
is same as that of Fig. 5.2] 
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Figure 5.4: Variation of volume with number of iteration in RADM 
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PZ RT ( RT/3 + Py) + P4S 
RT (RT (RT 3  + 2PRT,8 + 3P27) + 4P36 

Consequently, the two terms RADM solution of volume is found to be: 

1 	1 _ 
YRADM 	YO + yI 

_  R5T 5  + 2PR3T 3 /3 +3P2R2T 2 y +'4P3RT8 
PR4T4  +PZ R2T 2/3+2P3RTy+3P48 

(5.41) 

Results of this canonical form are illustrated in Fig. 5.2 and Table 5.3. These 
results show some peculiar features: at lower pressures, the results converge to the 

correct value for all values of nr  requiring fewer numbers of iterations. Whereas, at 

higher pressures [30 atm], more iterations are required to reach at the correct value. At 
further higher pressures [40 atm], consideration of higher terms in RADM do not ensure 

the convergence of the solution, e.g. at P = 40 atrh, the results obtained for nT  = 2 

converge to the correct value after twelve iterations [ m = 12], however, the results 

obtained for nT  = 5 leads to another correct value [negative real root] as apparent in Fig. 

5.2 and Table 5.3. Further increase in the number of terms in RADM, i.e. liT  = 15, leads 

to divergence and still increasing the terms in RADM, i.e. nr  = 18, gives the correct 

result with comparatively lesser number of iterations. This is also illustrated in Fig. 5.2 
and Table 5.3. 

Analysis of the above ADM/RADM results, obtained for different canonical 

forms, can be summarized as follows: 

(i) Both the methods are sensitive towards the canonical form of an equation. 

(ii) Increasing the terms in both the methods does not always ensure the 

convergence. 

(iii) In general, RADM is superior to ADM and in case of breakdown of 

ADM/RADM, different canonical forms of equation may be employed or a 

constant may be added and subtracted in Eq. (5.3) so as to modify Co  and 
d F (y) as advised in Basto et al. (2006). 
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It is worth noting that the above two approaches [ADM and RADM] are also 

applicable to other nonlinear AEs and not just limited to polynomial equations. 

5.4 FRICTION FACTOR EQUATION 

In this section, the friction factor equations used for the laminar and turbulent 

flow of Bingham fluids in smooth pipes have been solved by using ADM and RADM, 

and different solutions [explicit expressions]_ of friction factor have been obtained. 

Besides, a comparison between the obtained results, the numerical results and those 

obtained by using the available correlations (Serghides, 1984; Manadilli, 1997; Romeo 

et al., 2002) have been carried out. Computational aspects of the obtained solutions have 

also been discussed in some detail. 

5.4.1 Friction Factor Equations for Bingham Fluids 

For Bingham fluids, the friction factor correlations for the turbulent and laminar 

regime are given below. 

5.4.1.1 Turbulent Regime 

For the turbulent flow of Bingham fluids in smooth pipe, the following famous 

implicit Nikuradse-Prandtl-Karman [NPK] equation is applicable (Sablani et al., 2003). 

This equation can be deduced from the Colebrook-White equation (Colebrook, 1939) 

under smooth pipe condition (Romeo et al., 2002). 

= 4.0Lo Re goo ( J7 ) — 0.40 	 (5.42a) 

where f is the Fanning friction factor and Re is the Bingham Reynolds number 

[Re = 'OT  ]. It should be noted that the Eq. (5.42a) is the same equation as the one 

used for Newtonian fluids in turbulent flow in smooth pipes. Therefore, explicit 

correlations corresponding to Newtonian fluids can also be used for these fluids. Some 

222 



of the existing correlations, whose predictions are reasonably close to those of Eq. 

(5.42a), are presented below: 

(i) Serghides (1984) proposed the following friction factor correlation valid for Re 

>2100 and for any value of E/D . 

1 = A 	(B — A)2 	
(5.42b) fD 	(C-2B+A)2 

where fD [Darcy/Moody friction factor] = 4f [Fanning friction factor], 

A = — 2.OLog I — E l D + 12 
J 

, B = — 2 .OLog ( E I D + 2.51 A) and 
3.70 	Re 	 3.70 	Re J 

C = —2.OLog~ s'D + 	
J 

2.51B) 
3.70 	Re  

(ii) Manadilli (1997) proposed the following correlation for fD by using his so- 

called sigmoidal equation. This relation is applicable for 5235 < Re < 108 and 
for any value of s/D . 

_ 
fD 	— 2.OLog 	95 	96.82 

+ 	o.9s3 — 	 (5.42c) (3.70 Re Re 

(iii) Romeo et al. (2002), after developing different expressions on the lines of 

various available models, have given an explicit relation for friction factor using 

multivariable nonlinear regression for turbulent flow of Newtonian fluids. The 

relevant range for Re and c/D lies in 3000 - 1.5x 10$ and 0 - 0.05, respectively. 

1 = —2.0Log cl D — 5.0272 Log e/D — 4.567 xLog(A) I I (5.42d) 
fD 	t 3.7O65 	Re 	3.827 	Re 

where A = 	E/D 
0.9924 + 	5.3326 	0.9345 

(3.7065) 	(208.815+Re)  

Beside the above correlations, there exist some other. correlations (Churchill, 

1977; Chen, 1979; Zigrang and Sylvester, 1982). However, the error in their predictions 

is relatively more (not shown here), and hence, these have not been considered in the 
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present work. Similarly, the explicit ANN based procedure developed by Sablani et al. 

(2003) has not been considered, •since no explicit correlation was provided. 

5.4.1.2 Laminar Regime 

• Friction factor for the laminar flow of Bingham fluids in smooth pipes depends 

on the Bingham Reynolds number [Re  = ~o vD ] and the Hedstrom number 
PB 

z 

[ He = z°PD ], and is given by the following implicit [quartic] equation (Govier and 
. µa 

Aziz, 1972; Sablani et al., 2003): 

f = 1 + He — He4 
16 	Re 	6Re2 	3Re8 f 3 

(5.43) 

Since, Eq. (5.43) is a quartic equation, a closed form analytical solution is 

possible. However, due to complexity it is rarely employed and as per our knowledge, 

no approximate solution of Eq. (5.43) is available and numerical methods are used for 

obtaining the solution. 

5.4.2 Solutions and Discussion: Friction Factor for Turbulent Regime 

In this subsection, the Eq. (5.42a) has been solved by using ADM and RADM, 

and the approximate solutions of friction factor have been obtained for the turbulent 

regime. 

5.4.2.1 Solution by ADM 

By letting y = ~I , the Eq. (5.42a) is transformed into the following canonical 
V✓  

form [similar to the Eq. (5.3)]: 

y = '4.OLog,0 (Re) — 0.40 + (-4.OLog10 (y)) 	 (5.44) 

C0 	 F0 (y) 
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After applying ADM to the above equation, one obtains the following 

decomposed parts of the ADM solution: 

Yo  = Ca  

_ 41n(C0 )  
= 

	

y' 	A° 	ln(10) 

A  — 161n(C0 )  

	

Y2 	' 	CO1n2 (10)  

321n(C0 )(-2 + ln(C° )) 

	

= A2  Y3 	= 	CO 2 in3  (10) 

— A  = 1281n(C0 )(6-91n(C0 )+21n2 (C0 )) 

	

Y4 	3 	 3C031n4(10) 

where Co  = 4.OLog10  (Re) — 0.4 and Loglo  (Co ) = ln(C0  )1 ln(10) . From the above 

parts, the two terms [ nT  = 2] ADM solution can be found as follows: 

1  
=Y =Yo +Yi 

r1  = C°  — 1.737181n(C0  ) 
UJ 

(5.45a) 

Similarly, the 'five terms [ Y T  5] ADM solution is given by: 

1  
=Y=Yo +Yi + Y2 +Y3 + 

or 

1 	(C04  —1.73718(0 —1.73718)(3.01779 + Co2 )ln(Co  ) 
= 	 3 	 + 

C0  

(2.62122C0  —13.6606)1n2C0  +3.035681n3C0) 	 (5.45b) 
 3  CO 

225 



For convenience, the discussion of results obtained by using the above ADM 

solutions [Eqs. (5.45a) and (5.45b)] has been presented along with those of RADM. 

Application of RADM for obtaining the approximate solutions of turbulent regime 

friction factor has been shown in the following subsection. 

5.4.2.2 Solution by RADM 

For solving the Eq. (5.44) by using RADM, first the following updated canonical 

form, similar to Eq. (5.23c), is obtained for the first iteration [ m = 1]: 

y = C + F(y) 	 (5.46) 

where C = C = 4.OLoglo  (Re) — 0.4 and F, (y) _ _  4(C°  — y+C°ln(y)) 
4+ C1n(10) 

Afterward, ADM is applied to solve the Eq. (5.46) and the following decomposed parts 

are obtained for the first iteration of RADM. 

YO = CO 

4 C01 (C° ) 
y' = A° _ _  4 + C1n(10) 

Y z =A1 =0 

= A  = 32C01n 2 (C0 ) 
y3 	z 	(4 + C01n(10))3  

= A  = 256C01n3(C0 )  
Ya 3 3(4+Coln(1O))4 

Hence, the two terms [ nT  = 2] RADM solution after the first iteration is found to be: 

1  
r =Y =Yo +Yl 

or 
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1  = C, 	1.73718C°ln(C°  ) 
j ° 1.73718+C°  

(5.47a) 

Similarly, the five terms [ nT  = 5] RADM solution after the first iteration is found to be: 

1 
r =Y=Y° +Yl +Y2 +Y3 +Y4 

or 

1 = C  —  1.73718C0ln(C0 )  +  2.62122 Coln2(CO)  +  3.03568C0ln3 (C0) 
° 	1.73718 + C° 	(1.73718 + CO)' 	(1.73718 + C0)4  

(5.47b) 

In a similar fashion, the RADM solutions for higher number of iterations can be 
obtained, and for several values of Re pertaining to the turbulent regime, the results 
obtained by using the so derived solutions have been tabulated in Tables 5.4 and 5.5 

along with those obtained by using the known correlations as well as the . numerical 

method. From Table 5.4, it is evident that the accuracy in the ADM and RADM results 

increases with the increase in number of terms, however, the convergence in the ADM 

results is lesser as compared to the RADM results. On comparing these results with the 

numerical results, it is found that the RADM results matched well even with two terms 

and two iterations. Besides, by comparing the number of iterations required by RADM 

and Newton-Raphson method to achieve the same values, it is revealed that the two 

terms RADM solution outperformed the latter one; the starting guesses for both the 

methods are taken to be the same and are equal to 1 / Co2  [since, initial guess y0  [= Co 

_ 	]. This can be attributed to the faster convergence properties of Adomian series as 

compared to the Taylor series (Abbaoui and Cherrault, 1994; Rach et al., 1992; 

Wazwaz, 1998). Table 5.4 also depicts that in case of RADM, the effect of number of 

iterations [m] has a more pronounced effect on the result quality as compared to the 

number of terms 

Table 5.5 compares the values of turbulent regime friction factor obtained by 

using different correlations used as alternatives of NPK equation. Fig. 5.5 shows the 
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Table 5.4: 	Comparison between the values of turbulent regime friction factor 

obtained by using different methods 

INPX 
Iterations Iterations f 

Re Numerical 
required in Method  required 

solution 
Newton- in RADM nr  ° 2 nr = 5 
Raphson [ml 

ADM - 0.01126290 0.00998333 

4000 0.00998597 4 
1 0.01014430 0.00998623. 

RADM 2 0.00998606 0.00998597 
3 0.00998597 ... 

ADM - 0.01049160 0.00935432 

5000 0.00935658 4 
1 0.00949628 0.00935688 

RADM 2 0.00935666 0.00935658 
3 0.00935658 ... 

ADM - 0.00852989 0.00772571 

10000 0.00772713 4 
1 0.00782357 0.00772745 

RADM 2 0.00772717 0.00772713 
3 0.00772713 ... 

ADM - 0.00562191 0.00522598 

50,000 0.00522650 4 
1 0.00527122 0.00522673 

RADM 2 0.00522651 0.00522650 
3 0.00522650 ... 

ADM - 0.00480185 0.00450003 

100,000 0.00450038 .4 

RADM 1 0.00453358 0.00450055  
2 0.00450038 0.00450038 

ADM - 0.00304959 0.00291271 

1,000,000 0.00291282 4 

RADM 1 0.00292662 0.00291290 
2 0.00291282 0.00291282 

corresponding profiles of percentage errors for these correlations [percentage errors 

have been evaluated with respect to the results obtained from NPK equation]. It is clear 

from this figure that the RADM solution with n7. = 5, m = 1, i.e. Eq. (5.47b), 

outperformed all other correlations, and throughout exhibits an error of less than 

0.005%. Sablani et al. (2003) have reported that the friction factor values predicted by 
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Table 5.5: 	Comparison between the values of turbulent regime friction factor . 

obtained by using different correlations 

f 
Re NPK  

[Numerical 
solution 

Serghides 
(1984) 

Manadilli 
(1997) 

Romeo 
et al. (2002) 

RADM 

AnT  , 	= 2, m = 1 nr = 5, m =1 

4000 0.00998597 0.00997674 0.00997692 0.00999134 0.01014430 0.00998623 

5000 0.00935658 0.00934814 0.00934837 0.00936171 0.00949628 0.00935688 

10000 0.00772713 0.00772063 0.00772067 0.00773112 0.00782357 0.00772745 

50000 0.00522650 0.00522271 0.00522276 0.00522863 0.00527122 0.00522673 

100000 0.00450038 0.00449730 0.00449766 0.00450207 0.00453358 0.00450055 

1000000 0.00291282 0.00291118 0.00291291 0.00291373 0.00292662 0.00291290 

0.1 
Romeo et al. (2002) 

z  Manadilli (1997) 
p 0.08 Serghides(1984) 

0.06 

0.04 

0.02 

it 

4. +3 2.E+5 	4.E+5 	6.E+5 	8.E+5 
-0.02 

d 

-0.04 

-0.06 
Reynolds number, Re 

Figure 5.5: Variation of percentage error in friction factor values with Reynolds 
number [turbulent flow] 
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their optimal ANN configuration had mean relative error of 1.32%, whereas, the best 

model of Romeo et al. (2002) exhibits errors between 0.02 - 0.05%. Therefore, it is 

resolved that the RADM solution with nT  = 5 and m = 1 [Eq. (5.47b)], having very 

small error, is better as far as the explicit correlations are concerned. 

Beside measuring the accuracy of these correlations, we have also measured the 

computational efforts. For achieving this objective, a computer program was developed 

in the programming language of MATHEMATICA for evaluating the friction factor 

from different correlations. This code was run on a machine with the following 

configuration: Intel Core 2 Duo processor with clock rate equal to 2.2GHz and physical 

memory [RAM] equal to 4 GB. Two approaches were adopted for this purpose: (i) 

Measuring the absolute CPU time and (ii) measuring the relative CPU time. For the first 

approach, most of the mathematical softwares have several inbuilt commands, e.g. 

"Timing" command is implemented in MATHEMATICA. Using this command, the 

approximate absolute timings [CPU time] in evaluating the friction factor by using 

various correlations, have been recorded and are shown in Table 5.6. However, no 

concrete conclusions can be drawn from these results as almost equal CPU time was 

spent in evaluating friction factor from all the mentioned correlations. This is because: 

as compared to the available powerful machine configuration and the robust software 

[MATHEMATICA], the efforts made by the computer to solve this equation are 

insignificant. Moreover, many a times the program resulted in zero CPU time. This is 

also true for other smaller operations, because after the first session of the program, the 

variables and the data get stored in the system cache, and recalling and reprocessing the 

data requires negligibly small time. Because of the above disadvantages, this approach 

was dropped. 

In the second approach, the program was instructed to run for many iterations 

for each correlation for the same value of Re. The overall time consumed by CPU, now 

a much higher value, is then reported. Dividing it by the number of iterations yields the 

average CPU time spent in a single iteration for each correlation. Though, in this case 

the system would be using data stored in system cache and thus would not give a true 

picture of the time consumed by CPU. However, it definitely provides a relative 

estimate of the duration spent in the processing of each correlation. The results obtained 

from this approach have been depicted in Fig. 5.6. One notes that the CPU time per 
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Table 5.6: 	Comparison of the absolute time consumed by CPU for evaluating 

the turbulent regime friction factor by using different correlations 

Re Sessions 

Approximate absolute time consumed by CPU (s) 

NPK Manadilli 
1997 ( 	) 

RADM 

nT  =2,m =1 nT  =5,m =1 
1 0.016 0.015 0.015 0.016 

2 0.016 0.015 0.016 0.015 

4x103  3 0.015 0.015 0.015 0.015 

4 0.016 0.016 0.016 0.016 

5 0.016 0.015 0.015 0.016 

1 0.016 0.015 0.015 0.016 

2 0.015 0.015 0.016 0.015 

106  3 0.016 0.016 0.015 0.016 

4 0.015 0.015 0.015 0.016 

5 0.016 0.015 0.016 0.015 

iteration becomes constant as the number of iteration increases. From this figure, it is 

clearly visible that the Colebrook-White correlation (Colebrook, 1939) and the 

Serghides' correlation (Serghides, 1984) consumed much greater CPU time per iteration 

as compared to the other correlations. The CPU times spent in evaluating the friction 

factor from the correlation proposed by Romeo et al. (2002) and from the RADM 

solution [nT  = 5, m = 1], i.e. Eq. (5.47b), are approximately same. Similarly, the 

correlation proposed by Manadilli (1997) and the RADM solution [nT  = 2, m = 1], i.e. 

Eq. (5.47a), took approximately the same amount of time in their processing. Moreover, 

the time spent in evaluating the friction factor from the solution obtained by using 
RADM [nT  = 5, m = 1 ] is slightly greater than that needed by the Manadilli's 

correlation (Manadilli, 1997). However, as evident in Fig. 5.5, the accuracy obtained by 

the former one [Eq. (5.47b)] is much higher than the latter one, and offsets the price 

paid in terms of marginally higher CPU time. Although not shown, it is noteworthy that 

the same observations have also been made while using another mathematical tool, i.e. 
MATLAB. 
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Figure 5.6: CPU time consumed per iteration for evaluating the friction factor 
by using different correlations [turbulent flow: Re = 106] 
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5.4.3 Solutions and Discussion: Friction Factor for Laminar Regime 

In this subsection, the Eq. (5.43) has been solved by using ADM and RADM, 

and the approximate solutions of laminar regime friction factor have been obtained. 

5.4.3.1  Solution by ADM 

To solve Eq. (5.43) by using ADM, it is transformed into the following 
canonical form by taking y = f : 

16 16He l6He4 
Y Re + 6Re2 + — 3Re8y3 

CO 
	 F(Y) 

(5.48) 

After solving the above equation with the help of ADM, the following decomposed 

parts of the ADM solution are obtained: 

Yo =co =K, 

K, 
Y~=Ao= K 3 

3K22 
y2 =A, = — K7 

15K23 
Y3 =  

91K24 
Ya — A3 = 

t 

16 	16He 	2 = 16He4 where K, = 	+ 	and K 	_ 	Now with the decomposed parts 
Re 6Re 	3Re8  

available, the two terms [ n~. = 2] ADM solution is given by: 

f =Y=Yo+YI 
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f 	KZ  = K, + K3  (5.49a) 

Likewise, the five terms [T  5] ADM solution cab also be obtained and is given by: 

1=Y=Yo + + Y2 +Y3 + y4 

f = K +  K2  —  3K22  +  15K23  _  91K24  
1 	 7 	K 11 	15 K, 	K, 	, 	K, 

(5.49b) 

Here also, the discussions of the results obtained by using the above ADM 

solutions [Eqs. (5.49a) and (5.49b)] have been combined with those of the RADM. 

Solutions by RADM have been obtained in the next subsection. 

5.4.3.2 Solution by RADM 

For the first iteration [ m = 1 ] of RADM, the following updated canonical form 

of Eq. (5.48) is obtained. For convenience, here also f is denoted by y. 

y=C, +F(y) 	 (5.50) 

where C, = Co  = K, and F,(y) =  Kz(K14  -3K,y3  +3y4 ) 
(K1 4  +3K2 )Y3 

By solving the Eq. (5.50) with the help of ADM, the following decomposed 

parts of the RADM solution are obtained: 

yo =Co =K, 

A - 	K1 K2  = yl 	o — K1 4  + 3K 2  

Therefore, the two terms RADM solution after the first iteration attains the following 
form: 

=y=yo +y1 
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f = K + ' K1K2 	 (5.51) 
K 1 4 + 3K 2 

In the next iteration of RADM [ m = 2], the following canonical form is obtained: 

y = C2 + F2 (y) 	 (5.52) 

where 	= K 	 ( 3 	) CO 	i~ CZ = K,+ (K~ 3K) 
and F2(Y)=—Cz+K'+~+ KC3~C2 1 	z  22 

Applying ADM to the above revised canonical form [Eq. (5.52)], one obtains the 

following two decomposed parts: 

Yo = C2 = Kl + KKK 3K2 

K 	4K2 
Y1 = 4= —C2+ 	

, +  

].+~2 C23 1+ 3Kz 
z  C2 

Therefore, the two terms RADM solution after the second iteration is given as: 

f=Y=Yo.+Y1 

or 

f = K, + 4K2 	3 	+ 	3K2 	(5.53) 

1K+  K1K2 K + KJK2 
1 K14 + 3K2 	 ' K,4 + 3K2 ) )  

In the same way, the five terms [ n7. = 5] solution is obtained by using RADM. 

For this, one again starts with the following canonical form for the first iteration of 

RADM[m=1]: 

y=C, +F,(y) 	 (5.54) 
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where Co  = Cl  = Kl  and F =  Kz (K14  4  3K1Y 3  33Y 4  ) 
(K1  +3K2 )y 

The following decomposed terms are obtained after solving the above equation by using 

ADM. 

yo = Co = K1 

	

A 	K' K2  Y 1 = 	= o 	K1 4  + 3 K, 

Yz=-4= 0 

6K1K23  
y3 =4=

(K14 +3K2 )
3  

_ _ 10KI K24  
Y4 A3 	 4 

(K14 +3Kz ) 

The five terms RADM solution after the first iteration is given by: 

.f=Y=Y0+A +Y2+Y3 +Y4 

or 

	

= — 

1OK24 	6K23 	 K2  
f K' 1 	 4  + 	 3  + ( K 4  +3K) 	

(5.55) 
(K14 +3Kz ) 	(K,4 +3Kz ) 	, 	z 

Similarly, for the next iteration of RADM [ m = 2], the following canonical form is 
obtained. 

y = C2  + F2 (y) 

where Co  = K1 , C2  = T, FZ  = —T +  Kl  +K2  (y-3  + 3 yT -4)  and 
1 + 3KZT-4  

(5.56) 
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T — K 1 — 	10K24 	+ 	6K23 	+ 	K2  
1 	(K14  +3K2 )4 	(K14  +3K2)3 	(K14  +3K2

) 

Applying the ADM to solve Eq. (5.56) one gets 

yo= C2  =T 

_ T(K2  +(K, —T)T 3 ) 

y' 	3K2  +T 4  

y2 =o 

— 6K2T(K2  +(K, —T)T 3 )2  
y3 	 (3K2  +T 4 )3  

1OK2T(K2  +(K, —T)T 3 )3  
y _4 	 (3K2  +T4 )4  

Hence, the five terms RADM solution after second iteration is given by: 

1=Y=Yo + Yi  + Y2 +y3 + 

1 	( T(1 16K24  + K1T 15  + 3K23T3  (11K, + 36T) + 3K22T6  (-4K,2  + 21K1T + 4T 2 ) 

f  (3K2  +T 4 )4   +K2T9  (-10K13  + 36K,2T — 33K1T2  +20T 3 ))  

(5.57) 

In a similar way, the RADM solutions can be obtained for higher number of 

iterations. However, before finding the friction factor values from these solutions as 

well as those derived by using ADM, one should note that for the flow of Bingham 

fluids to be in laminar regime, the Reynolds number for a given Hedstrom number 

should be less than the corresponding critical Reynolds number [Ret ]. For a given 

Hedstrom number, the critical Reynolds number can be found by using the method 

described by Hanks and Pratt (1967). Using this method, the plot of critical Reynolds 

number versus Hedstrom number has been reproduced in Fig. 5.7. With the help of this 

figure, several possible combinations of Re and He for laminar flow, have been selected. 

Subsequently, the friction factor values for these sets of Re and He have been obtained 

by using the ADM and RADM solutions, and are shown in Tables 5.7 and 5.8. These 
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two tables clearly show that the friction factor values obtained from the ADM and 

RADM solutions match closely with their numerical counterparts. 

In Fig. 5.8, the effect of number of terms on the accuracy of the friction factor 

values has also been shown. It is observed that the accuracy of friction factor values 

increases with the increase in number of terms irrespective of the type of flow, i.e. 

laminar or turbulent. Though, this effect is more pronounced in the latter case. For the 

same number of terms, the results obtained by using RADM are better than those of 

ADM and the accuracy increases with increase in number of iterations. Here too, the 

number of iterations in RADM has a more significant effect on the result quality than 

the number of terms. 

Table 5.7: 	Comparison between the values of laminar regime friction factor 

obtained by using different methods 

He Method nT 
f 	` 

Re=102  Re= 103  

Numerical - 0.186658 0.0162667 

2 0.186658 0.0162667 
ADM 

5 0.186658 0.0162667 102  

2 0.186658 [m = 1] 0.0162667[l] 
RADM 

5 0.186658 [1] 0.0162667 [1] 

Numerical - 2.47480 0.0419439 

2 2.59052 0.0419800 
ADM 

5 2.49409 0.0419439 
104  2.51155 [1] 0.0419452 [1] 2 2.47554 [2] 0.0419439 [2] 

RADM 2.4748 [3] 
5  2.48368 [1] 0.0419439 [1] 2.4748 [2] 
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Figure 5.7: Variation in critical Reynolds number with Hedstrom number for 
Bingham fluids 
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Figure 5.8: Variation of percentage error in friction factor values with number 
of terms in ADM and RADM [laminar flow: Re = 105, He = 1010; 
turbulent flow: Re = 5x103] 
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Table 5.8: 	Comparison between the values of laminar regime friction factor 

obtained by using different methods 

He Method nT  .f 
Re =104  Re = 5x104  Re =105  

Numerical. - 0.02474800 - - 

ADM 
2 0.02590520 - - 
5 0.02494090 - - 

106 0.0251155 [m = 1 ] 
2 0.0247554 [2] - - 

RADM 0.024748 [3] 

5  0.0248368 [1] 
0.024748 [2] 

- - 

Numerical - - 0.0837146 - 

ADM 
2 - 0.0958373 - 
5 - 0.089387 - 

0.0907662 [11 

108  2  - 0.0856263 [2] - 

RADM 
0.0837146 [5] 

0.0879638 [1] 
5  - 0.0841171 [2] - 

0.0837146 [4] 

Numerical - - - 2.012720 

ADM 
2 - - 2.385630 

5 - - 2.219780 

2.25552 [1] 
1010  2 - - 2.11543 [2] 

RADM 
2.01272 [8] 

2.18172 [1] 
5  - - 2.06262 [2] 

2.01272 [5] 
- 	Combination not possible 

5.5 REACTION-DIFFUSION PROCESS IN A POROUS CATALYST SLAB 

In this section, the model equation of reaction-diffusion process has been'solved 

by using ADM and RADM, and the approximate solutions of the concentration profile 

and effectiveness factor have been obtained for different reaction rates. The obtained 

results have been compared with the numerical and available results (Sun et al., 2004; 

Gottifredi and Gonzo, 2005). 
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5.5.1 Model Equation 

Consider a heterogeneous catalytic reaction-diffusion process in which a 

gaseous reactant A diffuses into the pores of a catalyst slab and simultaneously reacts on 

the active sites available on the walls of the pores, as portrayed in Fig. 5.9. It is assumed 

that an isothermal uni-molecular reaction is taking place inside the pores of catalyst 

with the following stoichiometry: 

A 	> Products 

Material balance over species A yields the following general continuity equation 

(Sun et al., 2004). For brevity, the derivation of this equation has been omitted and can 

be found in many texts (Levenspiel, 1999; Bird et al., 2002): 

COCA _, O.D~.00
A - (-rA ) of 

(5.58) 

where De is the effective diffusivity of A, and is assumed to be constant along the pore 

length L . CA is the concentration of A inside the catalyst pore and ( —rA ) is the reaction 

rate. Under steady-state conditions, the Eq. (5.58) reduces to the following second order 

ODE constituting a BVP (Sun et al., 2004; Gottifredi and Gonzo, 2005; Abbasbandy, 

2008): 

z 
DQ d CA  

' 2 
(—rA ) 	 (5.59a) 

dx 

The associated boundary conditions are: 

BC I: CA = CAS at x' = L [pore mouth] 	 (5.59b) 

BC II: ! CC =0 at x' =0 [pore end] 	 (5.59c) 
dx' 

With the following definitions of dimensionless variables (Gottifredi and Gonzo, 2005), 

x = x , y = CA , (—r,) = ('ii) and F~A 
L 	CAS 	 ( — BAs) 	as 

the Eqs. (5.59a)-(5.59c) are reduced into the following dimensionless forms: 
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Figure 5.9.: Catalytic reaction-diffusion process in a cylindrical pore of catalyst 
slab 
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dxy q  (—r) 	 (5.60a) 

BC I: y =1 at x =1 [pore mouth] 	 (5.60b) 

BC II: dy- = 0 at x = 0 [pore end] 	 (5.60c) 
dx 

where 0 is the Thiele modulus and q52  signifies the ratio of intrinsic chemical reaction 

rate in the absence of mass transfer limitation to the rate of diffusion through the 
catalyst (Fogler, 1992): 

reaction rate at the catalyst surface 
diffusion rate through the catalyst pores 

For the purpose of comparison, the expressions of dimensionless reaction rate 
for the power-law and Langmuir-Hinshelwood kinetics have been taken from Gottifredi 

and Gonzo (2005), and are given by: (—rl,) = y" and (—ry ) = 	 , respectively. Using 1 
 Ky 

these dimensionless reaction rates, the Eq. (5.60a) acquires the following dimensionless 

forms. However, the BCs I and II remain the same. 

z 

dx2  

d  2Y  - (p2  Y  -o 
dx2  1+Ky 

In addition to the dimensionless concentration [y], there is another quantity 

called effectiveness factor [ rl ], which is defined as the ratio of the total reaction rate 

with diffusion to the reaction rate had it been evaluated at the pore mouth (Finalyson, 

1980; Fogler, 1992; Levenspiel, 1999). This is an important quantity, since the design of 

a catalytic reactor is directly linked to it. For a catalyst slab, it is mathematically 

expressed by the following equation (Sun et al., 2004; Gottifredi and Gonzo, 2005): 

_  1 dy 
77 lZ dx x=,  (5.61) 
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5.5.2 Solutions and Discussion: Concentration Profile and Effectiveness Factor 

In this subsection, the approximate solutions of dimensionless concentration 

profile and effectiveness factor have been obtained for power-law kinetics and 

Langmuir-Hinshelwood kinetics by solving the Eqs. (5.60a)-(5.60c) and (5.61) with the 

help of ADM and RADM. 

5.5.2.1 Solution by ADM 

(i) 	Power-law kinetics 

By following the procedure outlined in the subsection 5.1.3, one finds the 

following relations for Eq. (5.60a) for power law kinetics: 

L[.]_ Viz] or L'[.]=JJ[.]dxdx, !R[y]= 0 , g(x)=0 and  
0 

Thus, Eq. (5.60a) acquires the following operator form: 

L[y] = 02N(y) 

Using Eqs. (5.11)-(5.14), the above equation becomes: 

L[jA'y;]=o2 Z 

Operating on both sides of the Eq. (5.63) by L'[.], i.e 

equation is obtained: 

~ AiYi = C1 x + CZ + o2 L-1 A'+'
A; 

(5.62) 

(5.63) 

S 

f f [.]dxdx , the following 
0 

(5.64) 

where y1 s are the decomposed parts of the so called ADM solution [ y~M ] and A; s are 

the Adomian polynomials for the nonlinearity N(y) = y" and. L-' [0] = C1 x + C2 . Ci 

and C2 are the unknown constants of integration, and can be found from the associated 

BCs [Eqs. (5.60b) and (5.60c)]. It is easy to verify that BC II requires C to be zero, 



since 	= 0 at x = 0. Now comparing the terms having same powers of )t in Eq. 

(5.64), one finds: 

yo =c2 

A0(Y0)=Yu =C2n 

Y1 = L 1 [024 ] =1 C2nq 2x2 
2 

n-1 	2n-1 2 2 
A1(y0, Y1) = ny0 Y1 = 2 nC2 qi x 

Y2 = L' [c2A~ ] = 1 nC22„-lbax4 
24 

A2(Y0 , y1,Y2) = 2 n(n _'l)Yo-2yl +nyo-1y2 = 24 n(4n -3)C2-2+3„oax4 

3)3 = L I [ b2A2 1 720 
n(4n — 3)C23„-206x6 

A3(Y0,Y1, y2 , y3 ) = 6 (n-2)(n-1)nyo-3 y; +(n—I)ny0-2Y1Y2 +nyO-'Y3 

= 720-n(30-63n+34n2)C2a„-3g6x6 

Finally, the following ADM solution for some finite number of terms [n7.] is found: 

,T -1 

YADM = Ij Y; 
-o 

= C2 
+ C2xx202 + 24 nC2

2„-1x404 +... 	(5.65) + 
720 

n(4n — 3)C23n-2x6~i6  

For the particular values of n and ¢, C2 is found by solving the following equation, 

which has been obtained by satisfying the above equation with BC I. 

ra. 



	

YADM(1) =1 = C2 + i C2ir 2 + 	nC22n-1~4 + 	n(4n_3)C23n-2q6 +... 	(5.66) 
2 	24 	720 

By substituting the so found value of C2 in Eq. (5.65), one obtains the desired ADM 

solution. From Eq. (5.65) it can also be noted that C2 signifies the dimensionless 

concentration of reactant A at the pore end [x = 0], i.e. y,DM (0) = C2 . 

Now, by using Eqs. (5.61) and (5.65), the following expression of effectiveness 

factor is obtained: 

_1 dyaDM 
'l cb2 dx x=] 

= C n + C 2n_1 2 — n(3 + 4n ) G, 3n-204 + n(30 — 63n + 34n2 ) C 4n-3~6 + 
2 6 2 	120 	2 	5040 	2 

(5.67) 

Although not shown, it can easily be verified that for first order reaction [ n =1], 

the Taylor series expansion of the above ADM solution [Eq. (5.65)] around x = 0 and 0 

= 0, match well with the Taylor series expansion of the analytical solution [ y = 

cosh[gx]/cosh[cb] ] around x = 0 and 0 = 0. It can also be confirmed that the presently 

obtained ADM solutions of y and q [Eqs. (5.65) and (5.67)] match well with the ADM 

solutions of Sun et al. (2004). 

For several values of n and 0 [n = 0.5, 0 = 2; n = 0.67, 0 = 2; n= 1, 0 = 10; n= 

1.73, 0 = 10], the values of C2 and r7 obtained by using the ADM solutions [Eqs. (5.66) 

and (5.67)] have been shown in Table 5.9 along with those obtained by using the 

numerical method and the approximate solution of Gottifredi and Gonzo (2005). Higher 

values of Thiele modulus [S >— 2 ] have been considered, since the deviation in the ADM 

solutions is found to be more for higher values of 0; for smaller values of 0 the ADM 

solutions do not bear any significant error. It is clear from this table that for reaction 

orders greater than or equal to unity [ n >_ 1], the values of C2 and rj obtained by using 

the ADM solutions converge to those obtained by using the numerical method, and the 

accuracy increases with the increase in number of terms in ADM solution. However, for 

reaction orders less than unity [ n <1,n  ~ 0 ], the values of C2 and rj deviate 
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significantly with the increase in number of terms in ADM solution. 

Although not shown, similar types of errors have also been observed in the 

ADM solutions of Sun et al. (2004). For example, ri values obtained from the ADM 

solution of Sun et al. (2004) for n = 0.5 and q = 2 [corresponding to nr  = 4, 6 and 10] 

are found to be 0.4782, 0.1418 and - 2.4431, respectively. However, the exact value of 
rj is 0.5682 [shown in Table 5.9], and thereby the percentage errors in rj values [defined 

as (1 -11ADM I7 JNumerical) X 100% ] come out to be 15.8%, 75.0% and 530.0% respectively. 

These errors in rj, as obtained from the ADM solution of Sun et al. (2004), are 

incongruously high and can grow as high as 1000% if more terms in ADM are 

Table 5.9: Comparison between the values of C2 and obtained by using ADM, 
approximate solution of Gottifredi and Gonzo (2005) and numerical 
method 

Method nT  

Diverging Converging 

C2  [Concentration at the center of pore] 

n=  0.5,E=2 n=0.67,gS=2 n=1,'S=10 n=1.73,0=10 

4 0.1160 0.1685 0.0005 0.0433 

5 	. x 0.1626 0.0002 0.0382 

ADM 
6 0.1467 0.1698 0.0001 0.0356 

7 x 0.1588 0.0001 0.0342 

10 0.3068 0.1966 0.0001 0.0325 

12 0.4056 0.2408 0.0001 0.0322 

Gottifredi and 
Gonzo 2005 

- 0.2183 0.2395 0.0002 0.0007 

Numerical - 0.0995 0.1658 0.0001 0.0320 

Method nT ,, [Effectiveness factor] 

4 0.4782 0.5189 0.0544 0.0423 

5 X 0.5553 0.0690 0.0514 

6 0.1418 0.4969 0.0811 0.0591 
ADM 

7 X 0.6074 0.0899 0.0652 

10 -2.4431 0.0322 0.0995 0.0774 

12 -4.5833 -0.9263 0.1000 0.0820 

Gottifredi and 
Gonzo 2005 

- 0.5600 0.5306 0.1000 0.0856 

Numerical - 0.5682 0.5336 0.1000 0.0857 

x Imaginary or no root 
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considered. This is because, for n <1 [ n ~ 0 ] and for higher Thiele modulus, the ratio 

test for the ADM solution shows divergence. These limitations have also been 

mentioned by Gottifredi and Gonzo (2005), however, no explicit comparison of the 

results was performed by them. The present comparison clearly indicates that the ADM 

solutions, obtained by us and by Sun et al. (2004), diverge and yield erroneous results 

for n <1 [ n # 0 ] and large q. It is to be noted that in the work of Sun et al. (2004), i 

values are not directly shown; rather these have been computed here by using their 

ADM solution for the purpose of comparison. 

It is also noticeable in Table 5.9 that the value of rl, predicted by Gottifredi and 

Gonzo method (2005), matches well with the exact numerical value, however, the 

prediction of C2 shows appreciable discrepancy, which increases with b. 

For one set of the parameters' values [ n = 0.5, ¢ = 2], the dimensionless 

concentration profiles [ y ] obtained by using different methods have been shown in Fig. 

5.10, and the corresponding residual error profiles are shown in Fig. 5.11; residual error 

for any solution is obtained by substituting the solution in Eq. (5.60a). It is clear from 

Fig. 5.10 that the deviation in the ADM solution increases with increase in number of 

terms. This is also clear from the corresponding residual error profiles drawn in Fig. 

5.11. The concentration profile obtained by using the approximate solution of Gottifredi 

and Gonzo (2005) is also depicted in Fig. 5.10, and it is observed that this profile 

matches well only near the catalyst surface and starts deviating as one moves towards 

the pore end. This is also evident from the corresponding residual error profile shown in 

Fig. 5.11. 

(ii) Langmuir-Hinshelwood kinetics 

For Langmuir-Hinshelwood kinetics, the choices of various operators and 

functions," i.e. L[.] , L ' [.] , iZ [ y] and g(x) , remain the same, however, the nonlinear 

function now incorporates the Langmuir-Hinshelwood kinetics. These choices are given 

below: 

~ .1 or L-' = J $[.]dxdx , az[y]=O,     g(x)=0, N(Y) = (_rV ) _ ( 1 KY) 0 
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Figure 5.10: Dimensionless concentration profiles [power-law kinetics: n = 0.5, ¢ 
= 2; x = 0: pore end; x = 1: pore mouth] 
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Figure 5.11: Residual- error profiles [power-law kinetics: n = 0.5, 0 = 2; x = 0: 
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For the above definitions of operators and functions, the application of ADM yields the 

following relations for y, and 4: 

Yo =c2 

Ao (Ya) = 	.}vO 	= 	Cz 
(1+Kyo ) (1+KC2 ) 

C 2x2 

Y1=L'[0241=2(1+KC2) 

Yl 	 C202x2 _ 
A1(Yo,Y1 ) _ (1+Ky0 )2 2(1+KC2 )3 

C 0axa 
Y2 =L 

1r02A1--24(1+KC2)3 

(—Ky12 +y2 +Kyoy2) —_ C2(1-6KC2)04x4 A(YoIY1IYz) _ 	(1+Ky0 )3 	24(1+KC2)5 

y3 = L_1 [024]=  C2 (1— 6KC2 )06x6 
720(1 + KC2 )5 

(K2 y13 — 2Ky1 y2 — 2K 2yOy1y2 +y3 + 2Ky0Y3 + K 2Y02Y3 ) A3(Yo~Y>>YvYs) = 
 

(1+K y0 )4 

_ Cz (1— 36CZK + 90 C22K2)06x6 

720 (1+KC2 )7 

... and so on. 

Finally, the ADM solution is found to be: 

	

nr-1 	
C202 x2 	C204x4 	C2 (1— 6KCz )06 x6 yADM =Ey; =CZ + 	+ 	3 + 	 5 +... (5.68) 

	

=0 	 2(1 + KC2 ) 24(1 + KC2 	720(1 + KC2 ) 

For the selected values of K and 0, C2 is found by solving the following equation, 

which has been obtained by satisfying the Eq. (5.68) with BC I. 
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.yADM (l) - = C2  + C2q i2  + 	C2 (1- 6KC2 
)q6 + ... 	(5.69) 

2(1+KC2 ) 24(1+KC2 )
3 
 720(1+KC2 ) 

The so found value of C2  is substituted back into Eq. (5.68) to get the desired ADM 

solution. Using Eqs. (5.61) and (5.68), the expression of r is found to be: 

C2
+  C

202 	C2 (1-6 KC2  )b4  C2  (1- 3 6KC., + 90K2C22  )qS6  
17ADM - (1+KC2 ) 6(1+KC2 )3  + 120(1+KC2)5  + 	5040(1+KC2)7 	

+... 

(5.70) 

For K = 2 and for different values of ¢ [= 4, 5, 6], the values of C2  and have 

been obtained from Eqs. (5.69) and (5.70), respectively, and are shown in Table 5.10 

along with those obtained by using the approximate solution of Gottifredi and Gonzo 

(2005) and numerical method. This table shows that with the increase in 0, the values 

Table 5.10: Comparison between the values of C2 and q obtained by using ADM, 

approximate solution of Gottifredi and Gonzo (2005) and numerical 

method for Langmuir-Hinshelwood kinetics y/(I+Ky) with K = 2 

Method nT  
C2  [Concentration at the center of pore] 	. 

0=5 0=6 

• 
ADM 

4 0.0602 0.0201 0.0080 

6 0.0678 0.0279 0.0081 

8 0.0670 0.0225 0.0100 

10 0.0659 0.0262 0.0076 

Gottifredi and Gonzo (2005) - 0.1523 0.0868 0.0486 

Numerical - 0.0667 0.0240 0.0087 

Method nT  
> [Effectiveness factor] 

¢=4 .0=5 0=6 

ADM 

4 0.1880 0.1592 0.1265 

6 0.1617 0.0963 0.1180 

8 0.1634 0.1563 0.0862 

10 0.1750 0.0929 0.1509 

Gottifredi and Gonzo (2005) - 0.1678 0.1343 0.1119 

Numerical - 0.1671 0.1341 0.1118 
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of C2  and 77 obtained by using the ADM solutions start diverging from the numerically 

obtained values. These results also substantiate the observations made in Table 5.9 and 

indicate that the higher the value of 0 the higher is the inconsistency in the predictions 

of ADM solution. 

For one of these parameters' values [ K = 2, 0 = 6], the dimensionless 

concentration profiles obtained by using different methods are depicted in Fig. 5.12. 

The corresponding residual errors profiles have been shown in Fig. 5.13. Fig. 5.12 

shows that the ADM solutions [ nT  = 4, 10] match approximately with the numerical 

solution and show slight deviation near the pore mouth. Besides, ADM solution 

corresponding to nT  = 4 is closer to the numerical solution as compared to the one 

corresponding to nl. = 10. This is also apparent in Fig. 5.13, which shows that the 

residual errors at the pore mouth are larger for of  = 10 than for nT  = 4. This 

observation signifies that for higher 0, the ADM solutions diverge and the error 

increases with the increase in number of terms. 

The dimensionless concentration profile obtained by using the approximate 

solution of Gottifredi and Gonzo (2005), is also shown in Fig. 5.12. It is clear that this 

profile matches with the numerical solution only near to the mouth. This fact is also 

observable in the Fig. 5.13, where small residual errors are present at the pore mouth for 

the approximate solution of Gottifredi and Gonzo as compared to the ADM solutions. 

However, this trend is -reversed at the pore end. 

5.5.2.2 Solution by RADM 

In this subsection, we have solved Eqs. (5.60a)-(5.60c) by using RADM. The 

methodology of RADM for solving ODEs has already been explained in subsection 

5.2.2. However, here use of orthogonal polynomials [OPs] has also been incorporated in 

RADM so as to serve the following two purposes: 

(i) 	In RADM, the solution obtained in an iteration is utilized in the next iteration. In 

case of complicated nonlinearity, it is observed that the iterative scheme of 

RADM gives rise to the appearance of some un-integrable terms, e.g. 
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f (a° +a,a +a,x2 +...)05 dx or $eel dx. It is important to note that these terms are not 
0 	 0 

nonlinear terms [do not contain nonlinear terms of y ], rather these can't be 

integrated in some closed form. On the other hand, if the complicated 

nonlinearity is expressed in some polynomial form, then the appearance of such 

unintegrable terms can be avoided. Since, polynomial nonlinearities do not 

create such problems, RADM can straight forwardly be used for polynomial 

nonlinearities without using OPs. The polynomial approximation of a 

nonlinearity is done as follows: 

n, 

N(y) z Ea11'(y) 
	

(5.71) 
i=o 

where a;'s are the constants, P is i`h order orthogonal polynomial and n1 is the 

numbers of these polynomials considered for approximation. al 's are evaluated 

using the orthogonal property of the OPs. For example: approximation of 

N(y) = y°' 5 is given by the following first three Shifted-Legendre polynomials 

(Abramowitz and Stegun, 1964; Gupta, 1995). 

yos (0.6667) (1) + (0.4)(—1 + 2y) + (-0.0952) (1— 6y + 6y2) 
ao 	A(Y) 	a, 	P(Y) 	 az 	 P,(Y) 

(ii) 	As shown in the illustration 5.4, the RADM solution obtained after each iteration 

has some additional terms, hence the multiple iterations in RADM will 

obviously result in a comparatively bigger series. Therefore, it is advantageous 

to approximate the solution by OPs after each iteration of RADM. This will ease 

the computation many folds, and at the same time will not affect the quality of 

results. The RADM solution [ y M ] is approximated as follows: 

n2 

vxADM (x) 	bM (x) 
	

(5.72) 
i=O 

where b, 's are again evaluated using the orthogonal property of the OPs. n2 is 

the numbers of these polynomials considered for approximation. Since, in the 

beginning, the only available solution is the ADM solution, hence, y~M is 
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Figure 5.12: Dimensionless concentration profiles [Langmuir-Hinshelwood 
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approximated by using Eq. (5.72). 

With these two modifications, the applicability as well as the effectiveness of 

RADM is increased, and short and accurate solutions are obtained within 2 to 3 

iterations without generating higher Adomian polynomials. While approximating the 

nonlinearity, in both the approximations, care should be taken in selecting the types and 

numbers of OPs so that these polynomials sufficiently represent the approximated 

function, at least in the interested domain and the accuracy of the resultant 

approximations is ensured. In the present model equation, the variables [x and y ] vary 

between 0 and 1, hence, Shifted-Legendre's polynomials have been chosen, which are 

orthogonal in this domain with unity as weighing function. As far as the number of OPs 

are concerned, generally 4 to 8 initial OPs are found to be sufficient for approximation; 

lesser number of OPs will give poor and sometimes divergent results, whereas higher 

number of OPs will offer better results but at the cost of higher computational time. 

The step by step procedure to implement the above concept is described below 

and a flowchart has been shown in Fig. 5.14. 

1. Any complicated nonlinearity is first approximated by OPs using Eq. (5.71), 

thereafter, the numbers of terms [ nl. ] in ADM are chosen and the ADM solution 

is found. To obtain a simpler form of the solution and to quickly perform the 

operations in the next iteration, this ADM solution is approximated by suitable 

numbers of OPs by using Eq. (5.72); let this be denoted by yRADM  . This 

constitutes first iteration of RADM. After obtaining this approximate solution, 

ADM is again employed but with the following modifications. 

2. Before re-applying ADM, y0  is set equal to yRADM  as a replacement for its 

previous expression, i.e. yo  =Cx+C2  [note thatq =Ofor the present reaction-

diffusion process]. 

3. Instead of the earlier relation of yl , i.e. yl  =0 2 L-'[Ao ], yl  now contains the 

unknown C2  for this iteration, i.e. y, = C Z  + ¢ ZL-' [ Ao  ] - y0 , however, the 

definitions of remaining y;s remain the same. 
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4. Although, the solution is again expressed by the relation: 

YnaDM ~Yo +Yl +•••Y. = C2 + L-'A0 + ...+ L-̀ A ,_, , but due to the appearance of 

C2 in yl instead of y, its value changes when found from BC 1. Substituting 

back the so found value of C2 into the expression gives the updated solution for 

this iteration. This solution is again simplified by proper number of OPs as 

shown in Eq. (5.72) and the approximated solution [ yRADM ] is obtained. With 

this, the second iteration of RADM is finished. 

5. To continue the third and higher iterations, the approximated solution [ y M ], 

obtained from step 4, is equated to y0 . Steps 2 onwards are repeated until one 

finds the solution of desired accuracy. 

Since, the initial guess [ yo ] gets better with each iteration, it is expected that the 

solution obtained in the next iteration of RADM will also improve. To get a more clear 

picture of the above procedure, the solution of Eqs. (5.60a)-(5.60c) has been obtained 

below for power law kinetics with n = 0.5 and ¢ = 2. 

As described in step 1, the nonlinearity N(y) = y°5 is approximated with the 

help of OPs as shown in Eq. (5.71); seven initial OPs are found to be sufficient. 

6 
a 

p (Y) 	 (5.73) 
i=o 

Computed values of a0, al ,... and a6 are respectively 0.6667, 0.4, -0.0952, 

0.0444, -0.0260, 0.0171, -0.0121, and y0'5 is expressed by the following polynomial 

equation: 

y .5 0.0718 +3.4462y —12.9231y2 +34.4615y3 —50.7692y4 +37.9077y5 

—11.2y6 

After getting the above approximate expression of the nonlinearity, the ADM 

solution is obtained. For this problem nT = 4 is selected. The values of q and CZ are 

computed by forcing the obtained ADM solution to satisfy the concerned BCs and are 
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Figure 5.14: Flow chart of RADM 
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found to be 0 and 0.1294, respectively. Substituting these values of q and C2  into the 

ADM solution, one obtains the following ADM solution. 

YADM = 0.1294+0.7262x 2  + 0.3494x4  —0.2050x6 	 (5.74) 

As per step 1, this solution should be approximated by using OPs. However, the 

solution expression is not large and we can continue to the next step without 

approximating it by using OPs, and the results will not be affected. 

Now, as stated in steps 2 and 3, yo  and yl  are updated as yo  = YADM and yl  = 

C1  x + C2  + ¢ Z L-̀  [ Ao  ] - y0 , respectively, while the definitions of higher y,s remain 

unchanged. Adding these y;s yields the RADM solution. The improved values of 

[= 0] and C2  [= 0.0970] in RADM solution are obtained after following the step 4. 

Once, q and C2  are known, the expression of yPADM  is obtained for this iteration, 

which is then approximated by using OPs as shown in Eq. (5.72). The following 

polynomial representation of yRADM  is obtained for the present iteration; for this case 

too, seven initial OPs are found to be good enough. 

6 
YAM : > b,1 (x) =o 

y., 0.0969 + 0.0027x+ 0.5908x2  + 0.1573x3  + 0.081 1x4  +0.1224x5  —0.051 1x6  

(5.75) 

As stated in step 5, one may continue until the solution with desired accuracy is 

achieved. It is worthwhile to note that the above methodology is equally applicable for 

n>-1. 

The results obtained from the above solutions have been displayed in Figs. 5.10 

and 5.11, and in Table 5.11. Fig. 5.10 shows that with the increase in iterations, the 

dimensionless concentration profile obtained by using RADM approaches to the 

numerically obtained profile, and in contrast to the profile obtained by using ADM, the 

profile obtained by using RADM after three iterations matches exactly with the 

numerical profile. This is also evident from Fig. 5.11, which shows that zero residual 

error exists throughout the pore length for the RADM solution after the third iteration. 
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Table 5.11: Approximate solutions obtained by using ADM and RADM for 

power law kinetics with n = 0.5, ¢ = 2 [numbers of Shifted-

Legendre's Polynomials considered for approximating y°5 and yRJIDM 

are seven] 

Method nT m C2 ii y 

0.115997 + 	0.681165x2 + 0.333333x4 
ADM 4 - 0.1160 0.4782 

-0.130495x6 

0.129391 + 0.726165x2 + 0.349414x4 
1 0.1294 0.4050 

- 0.204971x6 

0.0969028 + 0.00268857x + 0.590765x2 + 0.157331x3 
RADM 4 2 0.0970 0.5711 

+0.0810689x4 + 0.1224x5 - 0.0511493x6 

0.0986293 + 0.00220913x + 0.602107x2 + 0.124676x3 
3 0.0987 0.5683 

+0.138105x4 + 0.065856x5 -0.0315863x6 

Numerical - - 0.0995 0.5682 - 

Besides, these RADM profiles are also better than the one obtained from the 

approximate solution of Gottifredi and Gonzo (2005). 

Table 5.11 depicts the values of C2 and r7 obtained by using ADM and RADM 

solutions [T = 4]. This table also shows the ADM and RADM solutions of 

dimensionless concentration profile. It is clear from this table that the values of C2 and 

i obtained after the three iterations of RADM are quite close to the numerically 

obtained values [percentage error: -0.8 % for C2 and -0.02 % for r~]. On the other hand, 

the values of C. and q obtained by using ADM solution are having reasonable error 

[16.5829 % for C2 and -15.8395 % for -q]. 

For power-law kinetics [n = 0.5, qf = 2], the typical improvement in the values of 

C2 and r7 with number of iterations in RADM have been shown in Figs. 5.15 and 5.16. 

It can be observed that for lesser number of terms more iterations are required to reach 

at the correct value and vice-versa. 

In a similar fashion, the results for Langmuir-Hinshelwood kinetics [ K = 2, 0 

=6] have also been obtained by using ADM and RADM solutions, and are depicted 
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Table 5.12: Approximate solutions obtained by using ADM and RADM for K = 
2, 0 = 6 [numbers of Shifted-Legendre's polynomials considered for 
approximating y/(1+Ky) and yRADM  are six and eight, respectively] 

Method nT  m C2 V 	" y 

ADM 4 - 0.0080 0.1265 0.00804914 + 0.142589x2  + 0.41432x4  + 0.435042x6  
1 0.0079 0.1260 0.00785021 + 0.146688x2 + 0.415505x4 + 0.429957x6  

0.008858 + 0.002992x+ 0.123613x2  + 0.205272x3  2 0.0089 0.1109 
+0.09399x4  -0.09408x5  +1.40153x6  -0.742286x7  

RADM 4 0.0080854 +0.00432094x+0.0897236x2  +0.339938x3  3 0.0082 0.1125 
-0.348954x4  + 0.503699x5  +1.10698x6  -0.703916x' 

0.008629 +0.0032917x+ 0.115114x2 + 0.234571x3  4 0.0087 0.1114 
-0.002464x4 + 0.024002x5 + 1.36102x6 - 0.744276x' 

Numerical - - 0.0087 0.1118 - 

in Figs. 5.12, 5.13 and Table 5.12. Figs. 5.12 and 5.13 show the dimensionless 

concentration profiles and the corresponding residual error profiles obtained by using 

RADM, respectively. It is clear from these figures that the accuracy in the RADM 

solution increases with the number of iterations. These figures again manifest that the 

RADM solution [ nT  = 4, m = 4] is the closest one to the numerical solution, and yields 

almost zero residual error as compared to those obtained by using the ADM solutions or 

the approximate solution of Gottifredi and Gonzo (2005). Table 5.12 depicts the results 

obtained by using ADM and RADM [ nT  = 4] for Langmuir-Hinshelwood kinetics 

[K = 2, 0 = 6]. Here also, one sees that the values of C2  and 17 approach towards the 

numerical values as the iterations in RADM is increased. 

5.6 REACTION-DIFFUSION PROCESS IN A POROUS SPHERICAL 

CATALYST 

In this section, the model equation of reaction-diffusion process occurring inside 

a porous spherical catalyst has been solved by using ADM and RADM, and the 
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approximate solutions of concentration profile and effectiveness factor have been 

obtained. 

5.6.1 Model Equation 

Consider a porous spherical catalyst of radius R, in which a gaseous reactant A is 

diffusing and simultaneously reacting on the active sites of the walls of pore. The 

reaction is assumed to be unimolecular and follows power-law kinetics. It is also 

assumed that the effective diffusivity of A inside the pore [De ] is constant, and the 

steady state and isothermal conditions are prevailing. With these assumptions, the 

model equation of this process can be derived by applying the material balance of 

reactant A over the control element of the catalyst, and the following second order ODE 

constituting a singular BVP is obtained (Shi-Bin et al., 2003). The details of the 

derivation of this model equation can be found elsewhere (Fogler, 1992). 

D d2CA + 2 dCA 
	 (5.76a) 

dr2 r dr )  

BC I: CA = C AS. at r = R [pore mouth] 	 (5.76b) 

BC II: dCA =0 at r=0  [pore end] 	 (5.76c) 
dr 

where CA and C are the concentration of reactant A inside the catalyst pore and at the 

catalyst surface [pore mouth], respectively. k„ is the rate constant and n is the reaction 

order. With the help of the following dimensionless variables (Shi-Bin et al., 2003), 

2 =k~C  
y _ CA x _ r _F~_ S)R  	Thiele modulus]  , C AS R 	 C'S  

the Eqs. (5.76a)-(5.76c) are now reduced into the following dimensionless form: 

z dy 2 dy_ z» 

dxz x dx 
(5.77a) 

BC I: y =1 at x =1 [pore mouth] 	 (5.77b) 
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BC II:dy 0 at x = 0 [pore end] 	 (5.77c) 

With slight modifications, the Eq. (5.77a) can be represented in the following form. 

However, the concerned BCs remain the same. 

d z (xY) _ q 2 xy „ 
dxZ 

(5.78) 

For a spherical catalyst, the effectiveness factor [77],  is mathematically given by 

the following relation (Fogler, 1992): 

3 dy 	
(5.79) 

x=1 

5.6.2 Solutions and Discussion: Concentration Profile and Effectiveness Factor 

In this subsection, approximate solutions of the concerned model equation [Eqs. 

(5.78), (5.77b) and (5.77c)] have been obtained by using ADM and RADM. The 

obtained results have been compared with the numerical results and the available results 
(Shi-Bin et al., 2003). 

5.6.2.1 Solution by ADM 

For convenience, the ADM solutions have been obtained for the first order 

kinetics [ n = 1 ] and the n`h order kinetics [ n ~ 1 ], separately. 

(i) 	First order kinetics (n = 1) 

Following the procedure outlined in subsection 5.1.3, one recognizes that in Eq. 

(5.78), L[.] = d ] or L ' [.] = f f [.]dxdx , lR (y) = 0, g (x) = 0, and N(y) = y. Hence, 
0 

using Eq. (5.10), the Eq. (5.78) can be expressed in the following operator form: 
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L[xy] = q2x y] 	 (5.80) 

Now, using Eq. (5.11), one can express y in the following form: 

W 

Y =EAiy; 	 ( 5.81) 
=a 

where y;  s are the decomposed parts of the so called ADM solution yADM.  Similarly, by 

using Eq. (5.12), the nonlinearity N(y) is expressed in the following series of Adomian 

polynomials. 

N(Y) _ Y ,A1 	 (5.82) 
i=o 

Now using Eq. (5.13), the following homotopy is constructed: 

L[xy] = )bzx N(y) 	 (5.83) 

By using Eqs. (5.81) and (5.82), y and N(y) in Eq. (5.83) are replaced with their 

decomposed parts, and one obtains: 

L[xI  ); y,  ] _ 0 2 XE A' '
A; 
	 (5.84) 

X 

Operating by L 1  [.] , i.e. f f [. ]dxdx , on both the sides of Eq. (5.84), the following 
0 

equation is obtained: 

M 

xy,V yi  = C, +C2 x+L' g2xY, V+'A, 	 (5.85a) 

or 

OD Y Ai y;  = C1x-1 +C, + x 'L ' 02xI i2 1A, 	 (5.85b) 

where L-'[0] = C, + C 2 x . q and C2  are the constants of integration and can be found 

from the associated BCs. BC II yields C = 0, since y is finite at x = 0 [Eq. (5.77c)]. It 
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should be noted that for N(y) = y, J = y,. Now, on comparing the terms having same 

exponent of A and simultaneously evaluating the Adomian polynomials, one finds: 

yo =C2 

4=Yo=C2 

2 2 

Y~ = x-'L ' [02xAo = C2~ x 
6 

_ Cz 
2 x2 

A,—yt 	6 

Y2 = x-'L ' [02xA 	
C

, = z
Øaxa 

120 

C2 
04x4 

AZ 	
_ 

 — y2 	120 

Substituting the above expressions for y, s in 	(5.81) and setting A =1, one obtains 

the following ADM solution: 

YADM = C2 + C20Zxz + 	C20axa + 1 Cz56x6 + 	1 	Cz08x8 +... 	(5.86) 
6 	120 	5040 	362880 

For a particular 0, the integration constant C2 is evaluated from the remaining BC I. 

This is done as follows: 

Y M(1)=1 =C2 + 1 C2cbz + 1 C2q + 1 C206+ 1  
362880 

C208+... 
6 	120 	5040  

or 

C2 = 	 1 1 	 (5.87) 
0Z 	1 04 	1 	 6 	1 	0g 

l + 6 + 120 + 5040 + 362880 
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The so found value of C2 is substituted. back into Eq. (5.86) to get the ADM solution of 

the dimensionless concentration profile. Likewise, by using Eq. (5.79), the ADM 

solution of effectiveness factor can also be obtained as follows: 

_ 3 dYADM 
17ADM - 12 

(~J 	x=1 

C22 r'4 C206 C208 

	

= C2 + 	+'-'2Y' 	+ 	+... 	 (5.88) 
10 280 15120 1330560 

It is also important to compare the above derived ADM solutions [ y~M and 7 M ] 

with the following analytical solutions [ y and q ], which fortunately exist for the first 

order kinetics (Fogler, 1992): 

Binh (¢x) 

	

y x sink (0) 	
(5.89) 

3[0coth(çb)-1] 	 (5.90) 

For the purpose of comparison, the above analytical solutions [Eqs. (5.89) and (5.90)] 

are expanded around x = 0 and 0 = 0 by using Taylor series method and the following 

expansions of y and r7, up to the sixth power of x and b, are obtained, respectively: 

31 + 7x2 _ x4 + x6 )06 

6 6 J 	360 36 120 	15120 2160 720 5040 

(5.91) 

17N1_02 +204_ 06 

15 315 1575 
(5.92) 

Similarly, after substituting C2 [Eq. (5.87)] in yADM [Eq. (5.86)] and rj 	[Eq. (5.88)], 

the following Taylor series expansions of yADM and 17M around x = 0 and 0 = 0 [up 

to the six power of x and q], are obtained, respectively: 
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1 x2 z 7 xZ x4 4 	31 7x2 x4 x6 -  
6 6. 	+ 360 36 + 120 	+ 15120 + 2160 720 + 5040 

(5.93) 

~2 204 06 
- 

15 315 1575 
(5.94) 

On comparing, it is found that the above series expansions [Eqs. (5.93) and (5.94)] 

match very well with those of analytical solutions [Eqs. (5.91) and (5.92)], and thus 

validate the above ADM solutions [ y,DM and 77 M ] obtained for the first order 

kinetics. 

(ii) 	nth order kinetics (n :1) 

Proceeding as described above, the approximate solution for the nth order power-

law kinetics [ N(y) = y'], has also been obtained by using the ADM, and the following 

expressions ofy,s and Ais are obtained: 

Yo =c2 

A0 = yo = C2 n 

n 2 2 

Y1 = x-'L' [02xAo ] = C2 	x 
6 

n-1 	
nC22n-1b2 x2 

Al = nyo Y1 = 	6 

Y2 = x-'L-1 [ 2xA1 ] = nC22n-14x4 
L 	120 

1 	 n-2 2 	n-1 	n(8n — 5)C23n-204x4 
A2 = 2 n(n —1)yo Y1 + nyo Y2 = 	360 

Y3 = x-'L-' [02xA2 = 
n(8n — 5)C23n-206x6 

15120 
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4 = 6 (n — 2)(n —1)nyo-3 y; + (n —1)nyo-2 y1y2 + nyo-'Y3 

n(122n2 —183n + 70)CZ" 36x6 
45360 

Finally, the ADM solution is found to be: 

n 
YADM = C2 + 6 CZ»x202 

+ 120 
C2-1+2 nx4,4 — n12 

8 15) CZ 	
2 +3 ' x606 + 

n(122n2 —183n+70) 
C2-34 nx808 +... 

3265920 	2 
(5.95) 

Here also, the value of C2 is found by forcing Eq. (5.95) to satisfy the BC I, and in 

doing so the following equation is obtained. By solving this equation, one obtains the 

value of C2 . Substituting back the so found value of C2 in Eq. (5.95) gives the desired 

ADM solution of dimensionless concentration profile. It should also be noted that C2 

represents the dimensionless concentration at the pore end [ y~M (0) = C21. 

n 
YADM (1) = 1 = C2 + 6 C2n02 

+ 120 
C2-1+2 n,4 _ 

n(8n —) C2-2+3 n
06 + 

n(122n2 —183n+70) C -3+4 nos + 
3265920 	z 

(5.96) 

The expression for effectiveness factor has been obtained with the help of Eqs. 

(5.79) and (5.95), and is given by the following equation: 

= n 	n 2n_, Z n(8n — 5) 3n-2 4 n(122n —183n + 70) 4n-3 6 rJADM - CZ + - C2 (~ + 	 C2 ( +  
10 	840 	136080 

(5.97) 

As expected, the above Eqs. (5.95)-(5.97) reduces to the earlier derived 

equations for the first order kinetics, i.e. Eqs. (5.86)-(5.88), respectively. 

With the help of the above obtained ADM solutions, i.e. Eqs. (5.87), (5.88), 

(5.96) and (5.97), values of C2 and q have been obtained for several values of n and 0 
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[n=0.23,0=2.6;n=0.5,0=3.4;n=0.78,0=5;n=1.0=10; n = 1.44, 0 = 10; n = 

2, 0 = 10], respectively, and are displayed in Table 5.13. This table shows that with the 

increase in number of terms in the ADM solution, the accuracy in C2 and i increases 

for n>_1,  whereas, it decreases for n < 1 {n ~ 0 ] 

For n = 1 and 0 = 10, the concentration profiles obtained by using the ADM 

solutions and the respective error profiles [= YAnatygical - YADM ], have been shown in Figs. 

5.17 and 5.18, respectively. Fig. 5..17 depicts that with the increase in number of terms 

in the ADM solution, the dimensionless concentration profile obtained by it approaches 

towards the analytically obtained profile [Eq. (5.89)], and for nT = 12 the profile 

obtained by using ADM matches exactly with the analytically obtained profile. This is 
also evident from the error profiles drawn in Fig. 5.18. 

Similarly for n = 0.23 and 0 = 2.6, the concentration profiles and the error 

Table 5.13: Variation in C2 and q with different numbers of terms in ADM 
solution 

Method n. T 

Diverging Converging 

n = 0.23, 
2.6 

n = 0.5, 
=3.4 

n=.78, 
45=5 

 n =1, 
45=10 qSrlO 

n=1.44,  
4510 

C2 [Concentration at the center of pore] 

ADM 

2 0.21168 0.18079 0.13353 0.05660 0.12880 0.21678 
4 0.17152 0.07979 0.02254 0.00334 0.04378 0.12221 

6 0.20465 0.11788 0.02533 0.00121 0.03342 0.10719 

8 0.25074 0.18347 0.06503 0.00094 0.03075 0.10258 

10 0.29725 0.26012 0.21476 0.00091 0.02993 0.10083 

12 0.34026 0.33882 0.52802 0.00091 0.02967 0.10010 

Numerical - 0.12700 0.0589 0.0205 0.00091 0.029554 0.09955 

Method nT ,, [Effectiveness factor]" 

0.69969 0.42520 0.20795 0.05660 0.05227 0.04699 

4 0.67131 0.57889 0.48333 0.15602 0.12993 0.10987 

6 0.29227 0.09501 0.40984 0.22775 0.18239 0.15191 

8 -0.39983 -0.98912 -0.67399 0.26157 0.21437 0.17958 

10 -1.33652 -2.58911 -4.73029 0.26924 0.23151 0.19712 

12 -2.45452 -4.59550 -13.07500 0.26997 0.23956 0.20777 

Numerical - 0.87979 0.71401 0.50099 0.27000 0.23650 0.22157 
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profiles obtained by using ADM solutions have been shown in Figs. 5.19 and 5.20, 

respectively. However, in contrast to the Fig. 5.17, the Fig. 5.19 shows that with the 

increase in n7., the dimensionless concentration profile obtained by using the ADM 

solution diverges from the numerically obtained profile. This is also supported from the 

corresponding error profiles depicted in Fig. 5.20. Although not shown, yet the above 

-observations are found to be true [for higher Thiele modulus] for n >_ 1 and n <1 [ n ~ 0 

], respectively. Therefore, from any of these findings it can easily be judged that the 

ADM solutions are valid only for n >-1, and become redundant for n <1 [ n : 0 ] for 

higher values of 0. One should also note that these errors are also present in the ADM 

solutions of Shi-bin et al. (2003). For example, the values of r7 calculated from the 

ADM solution of Shi-bin et al. (2003) for n = 0.23 and 0 = 2.6 corresponding to YiT = 

4, 6 and 8 are found to be 0.67131, 0.29227 and - 0.39983, respectively. However, the 

correct value of q is 0.87979 [shown in Table 5.14], and thereby the percentage errors 

in the values of rj come out to be 23.7%, 66.8% and 145.4%, respectively. These errors 

are unacceptably high and can grow with the increase in number of terms in ADM 

solution. This clearly indicates that the present ADM solutions and those obtained by 

Shi-bin et al. (2003) diverge for n <1 [ n ~ 0 ] and large 0, and yield erroneous results. 

It is to be noted that in Shi-bin et al. (2003), i values are not explicitly shown, rather 

these have been evaluated here by using their ADM solutions for the above comparison. 

Table 5.14: Solutions obtained by using ADM and RADM for n = 0.23, 0 = 2.6 

[numbers of Shifted-Legendre's polynomials considered for 

approximating y°23 and yRADM are eight and six, respectively] 

Method nT m C2 1/ y 

ADM 4 - 0.17152 0.67131 0.171518 + 0.751081x' + 0.226941x4 - 0.14954x6 

0.180604 - 0.00592468x + 0.821126x' - 0.236987x' + 
1 0.18046 0.66552 

0.632352x4 -0.391029x' 

0.125964 - 0.0019004x+ 0.733081x2 - 0.0748365x' + RADM 4 2 0.12593 0.88316 
0.337355x' -0.1 19822x'  

0.12703 - 0.00144715x + 0.725064x2 -0.0509388x'+  
3 0.12700 0.88230 

0.308567x4 - 0.108402x5 

Numerical - - 0.12700 0.87979 - 
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5.6.22 Solution by RADM 

In this subsection, the model equation [Eqs. (5.78)] along with, the allied BCs 

[Eqs. (5.77b) and (5.77c)] has been solved by using RADM, and for demonstration the 

values of nand 0 have been taken as: n = 0.23 and 0 = 2.6, since ADM solution failed 

for this set of parameters' values. Here too, OPs have been coupled with the RADM for 
the same reason as described in subsection 5.5.2.2, and for convenience, we briefly 
reiterate them here. 

(i) To approximate the complex nonlinearity N(y) into polynomial form as shown 

in Eq. (5.71). 

(ii) To approximate the solution obtained by using RADM [ yRDM  ] as shown in Eq. 

(5.72). 

As described in the step 1 of the RADM in subsection 5.5.2.2, the nonlinearity 

N(y) = y0.23  is approximated with the help of OPs [shifted Legendre's polynomials]; 

eight initial OPs are found to be sufficient. 

0.23 
Y ~ Ea,P(y) -o 

Computed values of a0 , al ,... and a7  are found to be 0.813008, 0.251559, - 

0.099949, 0.058551, -0.039871, 0.029489, and -0.022993, respectively, and the 

nonlinearity N(y) = y0.23  attains the following polynomial form: 

y0.23 

0.291996+5.49484y-35.8561y2  +140.016y3  —308.629y4  +380.526y5  

244.671y6  + 63.8359y7  

After getting the above approximation for the nonlinearity N(y) = y°.23 , the 

ADM solution is obtained; for the present situation n7 . = 4 has been chosen. The 

unknown constants [C1  = 0 and C2  = 0.180463], present in the so found ADM solution, 

r: 



have been found from BCs I and II. Substituting back these values of C, and C2 yields 

the following ADM solution: 

YADM = 0.180463+0.761879x2 +0.188001x4 — 0.130343x6 	 (5.98) 

To avoid large expressions in the next iteration, the above ADM solution is 

approximated by appropriate number of OPs and the following expression [ y M ] is 

obtained; for this case, six initial OPs are found to be good enough [it should be _noted 

that the Eq. (5.98) contains fewer terms, hence, one may also proceed to the next step 

with out approximating YADM by OPs]. 

5 

YRADM 	b1(x) 
i-o 

YRADM = 0.180604-0.005925x+0.821126x2 —0.236987x3 +0.632352x 4 

` 	 —0.391029x5 	 (5.99) 

This completes step 1. Now, as stated in steps 2 and 3, yo and y, are updated as 

follows, whereas the rest of the y, s remain the same. With these modifications, the 

solution is again obtained by applying ADM as explained earlier, and one obtains the 

following decomposed parts: 

YO = YRADM 

_. 0.180604 — 0.00592468x+ 0.821126x2 — 0.236987x3 + 0.632352x4 

—0.391029x5 	 (5.100) 

Y, = C2 +~i 2 x-'L'[xA0 ]—Y 0 

= C, + 0 2 x-'L-'[xA0 ] — (0.180604 — 0.00592468x + 0.821126x2 

—0.236987x3 +0.632352x4 —0.391029x5) 	 (5.101) 

y2 =x-'L ' [02xA, 

Y3 =X-'L ' [02xA, ] 



As per step 4 the solution for this iteration is obtained by adding the above 

decomposed parts and subsequently, the improved value of C2 [= 0.12593] is found 

from BC I. Once, C2 is known, the expression for yRADM is obtained for this iteration, 

which is then approximated by using OPs as done in Eq. (5.99) and the following form 

of yRADM is obtained for the present iteration. 

S 

YRADM ^ b.1 (x) 
i-o 

yRADM 0.125964 — 0.0019004x + 0.733081x2 — 0.0748365x3 + 0.337355x4 

—0.119822x5 
	

(5.102) 

As stated in step 5, one may continue the above procedure for higher iterations 
until the solution with desired accuracy is achieved. 

In an analogous way, the solution for another set of parameters' values [ n = 

0.78, çb = 5] has also been obtained by using RADM. The results for these two sets of 

parameters' values [ n = 0.23, q = 2.6; n = 0.78, ¢ = 5] have been shown in Tables 5.14 

and 5.15, and Figs. 5.21-5.24. The obtained ADM and RADM solutions have also been 

shown in these two tables. Table 5.14 shows the values of C2 and r7 obtained by using 

the ADM and RADM solutions for n = 0.23, 0 = 2.6. Similarly, Table 5.15 shows the 

values of C2 and q for n = 0.78, 0 = 5. Unlike Table 5.13, now the values of C2 and r~ 

obtained by using the RADM solution show convergence towards numerical values and 

their accuracy increases with the increase in iteration. 

Fig. 5.21 shows the dimensionless concentration profiles obtained by using the 

RADM, for n = 0.23 andO = 2.6. It can be observed that the dimensionless 

concentration profiles obtained after the first iteration of RADM does not match with 

the numerically obtained profile as we move inside the pore, whereas, the dimensionless 

concentration profiles obtained after second and third iterations of RADM show a good 

agreement with the numerically obtained profile. This fact can also be verified from the 

corresponding decreasing error profiles shown in Fig. 5.22. 
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In contrast to Fig. 5.21, the deviations in dimensionless concentration profiles 

are not apparent in Fig. 5.23 since, the profiles obtained after each iteration of RADM 

appear to be close to the numerical profiles. This is because, very little error is present 

[of the order of 10-3  at any x between 0 and .1 ] in all the three profiles as shown in Fig. 

5.24. 

Although not shown, yet it is worthwhile to mention that the results for n >_ 1 and 

for other forms of kinetics, e.g. Langmuir-Hinshelwood kinetics, can also be obtained 

successfully in a similar fashion. With the above discussion, it is clear that RADM is an 

effective and versatile method and can successfully be employed where ADM fails. 

Table 5.15: Solutions obtained by using ADM and RADM for n = 0.78, 0 = 5 

[numbers of Shifted-Legendre's polynomials considered for 

approximating y078  and yRADM  are seven] 

Method nT  in C2  V y 

ADM 4 - 0.02254 0.48333 0.0225426+0.216337x2 +0.48582x4 +0.2753x6  
1 0.02093 0.50704 0.0209294+0.19979x2  + 0.424978x4  + 0.354303x6  

0.0215362 - 0.00558527x+ 0.274917x2  -0.36075x3  + 
2 0.02143 0.50676 

RADM 4 1.2659x" - 0.873713x5  +0.677659x6  

0.021 1 894 - 0.0056015x + 0.272554x2  -0.360189x3  + 
3 0.02109 0.50866 

1.2555x4  -0.858819x5  +0.675328x6  

Numerical - - 0.02053 0.50809 - 

5.7 CONCLUDING REMARKS 

ADM and RADM have been used to solve the thermodynamic equation of state, 

friction factor equation and the model equations of reaction-diffusion processes, and the 

conclusions pertaining to them are given below. 

(i) 	Thermodynamic Equation of State 

Approximate solutions for computing the volume of a gas, which are valid for a 
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restricted range of parameters' values, have been obtained by solving the Beattie-

Bridgeman equation of state by using ADM and RADM. Limitations of these methods 

have also been illustrated and it is observed that the convergence of these two methods 

depends on several factors, namely canonical form of the equation, number of terms in 

the solution, and the range of parameters' values. In most of the cases, it is found that 

RADM outperforms ADM, but in exceptional cases ADM can converge, whilst RADM 

may diverge. Moreover, increasing the terms in both the methods does not always 

ensure the convergence. Nevertheless, in case of failure of ADM/RADM, other 

canonical forms of the equation should be employed. 

(ii) Friction Factor Equation 

Approximate solutions of friction factor for the laminar and turbulent flow of 

Bingham fluids in smooth pipes have been obtained by using ADM and RADM. 

Reasonably accurate results are obtained by using these solutions. For turbulent flow, 

the RADM solution [ nT = 5, m = 1] exhibits a constant error of 0.005%, a smaller 

value as compared to other available correlations. Similarly for laminar flow, the error 

in the predictions of RADM solution [ nT = 2, m = 2] has been found to.be within 5.2%. 

Nonetheless, the accuracy of these solutions can be increased further by taking into 

account more terms or by increasing the number of iteration in RADM. It is also 

observed that the number of iterations [ m] in RADM has a more pronounced effect on 

the quality of results as compared to the number of terms [NT]. 

(iii) Reaction-Diffusion Process in a Porous Catalyst Slab 

Approximate solutions of the concentration profile and effectiveness factor have 

been obtained by using ADM and RADM for power-law and Langmuir-Hinshelwood 

kinetics. It is shown that for reaction order n <1 [ n ~ 0 ] and for relatively higher values 

of Thiele modulus [ c >_ 2 ], the present ADM solutions and the ADM solutions of Sun et 

al. (2004) both diverge. It is also shown that the approximate solution of Gottifredi and 

Gonzo (2005), though accurately predicts effectiveness factor, does not give satisfactory 

concentration profile especially near the pore end. On the other hand, the RADM 
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solutions are obtained without generating higher Adomian polynomials, and are in close 

agreement with the numerically obtained solutions. Moreover, the accuracy of RADM 

solutions can be increased by increasing the number of terms in the solution and/or by 

increasing the number of iteration in RADM. 

(iv) Reaction-Diffusion Process in a Porous Spherical Catalyst 

Approximate solutions of the concentration profile and effectiveness factor have 

been obtained by using ADM and RADM for the power-law kinetics. Here also, it is 

shown that the presently obtained ADM solutions as well as the ADM solutions of Shi-

Bin et al. (2003) both fail to give correct results for reaction order n <1 [ n ~ 0 ] for 

relatively higher values of Thiele modulus [ c, >_ 2 ]. However, this constraint can be 

rectified by using RADM. 
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NOMENCLATURE 

Abbreviations 

AS analytical solution 
ADM Adomian decomposition method 
APS approximate solution 
RADM restarted Adomian decomposition method 
NS numerical solution 

Notations 

a; , b, [-] constants 

[-] i``' Adomian polynomial 

C, [-] i``' constant of integration 

CA [mol.m 3] concentration of reactant A in catalyst pores 

C~ [mol.m 3] concentration of reactant A at the pore mouth 

c;, C2 [-] constants of integration 

D [m] pipe diameter 

De [m2.s'] effective diffusivity of reactant inside the pore 

f [-] Fanning friction factor 

fD [-] Darcy or Moody friction factor [ = 4 f ] 

F[Y(x)] [-] differential operators in an ODE [Eq. (5.9)] 

g(x) [-] non-homogeneous term in ODE 

He [-] Hedstrom number = z JUB2 

~BZ 

i 	 [-] 	index variable 

k„ [moll-" m3i-3s-1] 	rate constant for n'h order power-law kinetics 

K 	 [-] 	dimensionless constant in Langmuir-Hinshelwood 

kinetics 

16 16He K 	[_ ] 	constant term = — + 
Re 6Re2 
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16He4 Kz 	 [-] 	constant term = - 
3Re8 

L [m] pore length 
L[.] [-] auxiliary linear operator 

L'[,] [-] inverse operator of L[.] 

m [-] number of iterations in RADM 

nz [-] number of OPs used in the approximation of 

nonlinearity [Eq. (5.71)] 

n z [-] number of OPs used in the approximation of ADM 

solution [Eq. (5.72)] 

nT [-] number of terms considered in ADM/RADM 

N(y) [_] linear/nonlinear function of y 

P [atm] pressure of gas 

](x), I(y) [-] it' Shifted-Legendre's polynomial 

-"A [mol.m 3.s-1] reaction-rate of species A 

—1 [mol.m 3.s-1] reaction rate of species A at the catalyst surface 

—r, [-] dimensionless reaction rate 	= 	
Y~} 

(—'As) 

r [m] radial distance 

IR[ ] [-] remainder of the linear operator 

Re [-] Bingham Reynolds number 

Re, [-] critical Reynolds number 

t [s] time 

[m.s-'] average velocity of the fluid 

V [e] volume of gas 

V IM [e] volume of gas obtained by using ADM 

VIM [e] volume of gas obtained by using RADM 

VNumerical [e] volume of gas obtained by numerical method 

x [m] distance along pore length 
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y(m) 	 [-] 	solution of AE obtained after m`h iteration of 

RADM 

Y; 	 [-] 	i``' term in ADM solution 

YADM 	 L-J 	solution obtained by using ADM 

YAM 	 [-] 	solution obtained by using RADM 

Greek letters 

a [B] parameter in Beattie-Bridgeman equation of state 

/3 [atm. €2] constant in Beattie-Bridgeman equation of state 

Y [atm. e3] constant in Beattie-Bridgeman equation of state 

S [atm. e4] constant in Beattie-Bridgeman equation of state 

E [m] pipe absolute roughness 

PB [kg.m l.s 1] viscosity of Bingham fluid 

P [kg.m 3] density of Bingham fluid 

To [kg.m I .s-2] yield stress of Bingham fluid 

a [-] hypothetical parameter [ A e [0,1] ] 

77 [-] catalyst effectiveness factor: 

slab ~=  	sphere 

çb [-] Thiele modulus: 

slab 	= 	(_rAs )LZ 	sphere 	= 	( —rAS)R Z 

DeCAs 	 DCCAs 

Section 5.1 
Notations 

CO [-] constant in canonical form of AE [Eq. (5.3)] 

F (y) [-] function in canonical form of AE [Eq. (5.3)] 

n [-] order of highest linear differential operator L[.] 

x [-] independent variable 

Y(x) [-] dependent variable 
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Section 5.2 
Notations 

Co  , C,,, 	 [-] 	constants in the canonical form of AE at me" 
iteration of RADM [Eqs. (5.23 a)-(5.23 c)] 

F (y) , F (y) 	[-] 	functions in the canonical form of AE at mrh 

iteration of RADM [Eqs. (5.23b)-(5.23c)] 

„ 	 [-] 	order of highest linear differential operator L[.] 

x 	 [-] 	independent variable 

Y (x) 	 [-] 	dependent variable 

Section 5.3 
Notations 

Ao  [atm. e2 ] parameter in Beattie-Bridgeman equation of state 

b [e] parameter in Beattie-Bridgeman equation of state 

Bo  [mol.e] parameter in Beattie-Bridgeman equation of state 

C  [mol.K. e] parameter in Beattie-Bridgeman equation of state 

Co  [-] constant in canonical form of AE [Eqs. (5.33), 

(5.35), (5.37)] 

F (y) [-] function in canonical form of AE [Eqs. (5.33), 

(5.35), (5.37)] 

R [atm.e.K-I .mol-I ] universal gas constant [ = 0.08206] 

T [K] temperature of gas 

Y [-] variable 

Section 5.4 
Notations 
A, B, C [-] constants defined in Eqs. (5.42b) and (5.42d) 

CO3  C.  [-] constants in the canonical form of AE at m'1' 
iteration of RADM 

F (y) , F, (y) [-] functions in the canonical form of AE at m'h  
iteration of RADM 

T [-] constant term in Eq. (5.56) 
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Y 	 1-1 	variable 

Section 5.5 
Notations 

n 	 [-] 	 reaction order 

x 	 [_] 	dimensionless distance along pore length (= J 
L/ 

Y 	 [-] 	dimensionless concentration = CA  CAS  

Section 5.6 
Notations 

n 	 [-] 	 reaction order 

R 	 [m] 	radius of spherical catalyst 

x 	 [_] 	dimensionless distance along pore length (— Y 
R 

Y 	 [-] 	dimensionless concentration (=-- 
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CHAPTER VI 

REACTION-DIFFUSION PROCESS AND 
TUBULAR CHEMICAL REACTOR 

- APPROXIMATE SOLUTIONS BY OHAM 

6.0 INTRODUCTION 

This chapter demonstrates the development of approximate solutions of the 

model equations of reaction-diffusion process taking place inside a porous spherical 

catalyst and a tubular chemical reactor modelled by the axial dispersion model. The 

model equation of reaction-diffusion process is used in evaluating the concentration 

profile and effectiveness factor, whereas, the model equation of real tubular reactor is 

concerned with the concentration profile existing in the reactor. Under steady state these 

model equations are represented by second order ODEs constituting BVPs. 

In the literature, several researchers have solved these model equations by using 

various numerical/approximate methods, e.g. finite difference method, weighted 

residual method, perturbation method, ADM. However, to the best of our knowledge, 

application of some recent approximate methods, e.g. HAM, OHAM, for obtaining the 

solutions of these equations are unavailable. 

For obtaining the approximate solutions of these model equations, a recently 

developed approximate method, namely OHAM has been employed; OHAM is 

basically an efficient variant of another approximate method, namely HAM. For 

evaluating its efficacy, the obtained results have been compared with the numerical 

results as well as with those obtained by using the available approximate solutions. For 

the sake of completeness, the descriptions of HAM and OHAM along with their 

methodologies have been presented in sections 6.1 and 6.2, respectively. In order to 

demonstrate the procedure of OHAM, two illustrations selected from literature have 

also been solved in section 6.2. 



6.1.  HOMOTOPY ANALYSIS METHOD [HAM] 

Homotopy analysis method, first developed by Liao in early nineties, is basically 

a powerful tool for finding the approximate solutions of different types of non-linear 

equations (Liao, 1997; Liao, 2003). The basic concept of HAM has been derived from 

topology and its primary aim is to break the original difficult nonlinear equation into a 

set of infinite linear equations, which can subsequently be solved in an orderly fashion. 

The solutions of these linear equations are then combined to get the HAM solution 

[solution obtained by using HAM] in the form of series. The main advantages of HAM 

are that it can be applied to any type of nonlinearity, and unlike the perturbation method 

or the S-decomposition method, it does not require the presence of small or large 

parameters (Liao, 2003). Moreover, for a certain choice of auxiliary quantities defined 

later, the working of HAM reduces to those of other approximate methods, e.g. ADM, 

HPM and 6-decomposition method (Liao, 2003; Allan, 2007). Hence, in some sense, 

HAM can also be regarded as a generalization of these approximate tools. Besides, 

computer implementation of HAM in available symbolic soft computing tools, e.g. 

MATHEMATICA, MAPLE, is also convenient. 

A brief description of the HAM is presented below and other details of this 

method can be found in the original works of Liao (2003, 2009a, 2009b). 

6.1.1 Selection of Auxiliary Quantities and Construction of Zero Order 

Deformation Equation 

As suggested by Liao (2003), the first step in HAM is to choose the auxiliary 

quantities [parameters/functions/operators] corresponding to the given nonlinear 

equation and to form the related zero order deformation equation. For example, we 

consider the following operator form of a nonlinear ODE constituting a BVP: 

N[ y (x)] =0 with B 	dy (x) = 0  

dx 
(6.1) 

where N[.] represents the operator form of the nonlinear ODE and B[.] is the 

associated boundary operator. 
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Now corresponding to Eq. (6.1), the following homotopy, also called zero order 

deformation equation, is constructed: 

(1— A)L[V(x, A) -- yo (x)] = AhH(x)N{Y/(x, A)] 
	

(6.2) 

where A E [0, 1] is a hypothetical embedding parameter and h [~ 0] is an auxiliary 

parameter [also called convergence control parameter]. H(x) [#'0] is an auxiliary 

function and is added so as to ensure that in the later operations, the rule of coefficient 

of ergodicity is not violated. Rule of coefficient of ergodicity requires that the 

coefficients of all the component functions of the final HAM solution can be modified 

so as to ensure the completeness of the set of component functions (Liao, 2003). L[.] is 

an auxiliary linear operator with the conditions that the order of this operator is same as 

that of the highest order operator in Eq. (6.1) and L[0] =0.  yo (x) is the initial guess 

and in general contains unknown constants. These constants are found by using the 

associated ICs / BCs. t/r(x,A) is the unknown function. 

It can be observed in Eq. (6.2) that as the parameter A varies from 0 to 1, the 

unknown function yi (x, A) varies from the initial guess yo (x) to the solution y(x) of 

the original equation, as shown below: 

li o Vf (x, A) —> Yo (x) 	 (6.3a) 

lim yr (x, A) — y(x) 	 (6.3b) 

6.1.2 Formulation of Higher Order Deformation Equation 

After selecting the relevant auxiliary quantities and forming the zero order 

deformation equation, the next step is to construct the higher order deformation 

equation, which basically represents a family of easily solvable linear equations. For 

constructing the higher order deformation equation, the unknown function yi (x, A) is 

expanded around A = 0 by using Taylor series method and the following series is 

obtained: 
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VV (x, )) = i(x, 0) + 	
~„ a ~ (x~ ~) ~m 	

(6.4a) 
m-1 

I 	

A=Q 

or 

cc 

'(x, A) = Yo (x) + 	Y.,: (x)'Z
m 	 (6.4b) 

m=1 

where ym (x) = 1 amyf (m' /1) 	is the yet unknown m"' term [or the component 
m!  

a,=o 

function] of the HAM solution and can be found as described below. The higher m 
order deformation equation [ m >_ 1 ] is constructed by substituting Eq. (6.4b) in the zero 

order deformation equation, i.e. Eq. (6.2), and differentiating the resultant equation m 

times with respect to A., and evaluating it at A = 0. Thus obtained m`h order 

deformation equation yields me" term of the HAM solution, i.e. ym(x). By m times 

differentiating. the Eq. (6.2) with respect to A., and letting A = 0, and by also 

considering the Eq. (6.4b), one obtains the following in" order deformation equation: 

L[Ym (x) — Z,,,Ym-i (x)1 = hH(x)R,t [Ya-1(x), x] 	 (6.5a) 

where the vector ym-1 (x) denotes the following set of component functions: 

Ym-1 (x) = {Yo (x), y1 (x), ..., y,, 1 (x)} and 

1 	a 1 N[jm (x, A.)] 
Rm [Ym-1(x), x] _ (m —1) ! 	 (6.5b) 

x=o 

0, m=1 
with X. = 

	

	 (6.5c) 1, m>_2 

The Eq. (6.5a) can also be written in the form of following recursive relation. 

Y„ (x) _ .,~=Y.n-i (x) + hL-' [H (x)R,n [j,,1 _1 (x), x]l ; 	in ~ 1 	 (6.6) 

where L-'[.] denotes the inverse of the linear operator L[.]; for example, for a first 

order derivative operator [ L[. ] = [ . ] ], one has L- [. ] _ J [. ]dx and so on. However, 
0 
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care should be taken in choosing the proper .definition of L' [ .J as the convergence of 

HAM solution strongly depends on it (Liao, 2003). 

From the above recurrent relation, the following family of linear equations is 
found for different values of m [ m >_ 1]: 

Y1(x) = hL—' [H (x)R1 [Yo (x), x] ] 

Y2 (x) = y1  (x) + hL—' [H (x)R2 [Yo (x), Y1(x), x]]` 

Y3 (x) = Y2 (x) + hL—' [ H (x)R3 [Yo (x), Y1(x), Yz (x), x]] 

Y,» (x) = y 1  (x) + hL—' [H (x)R,,, [Yo (x),  Yi (x),..., y, 1  (x), x]] 

(6.7a) 

(6.7b) 

(6.7c) 

(6.7m) 

... and so on. 

6.1.3 Final Solution 

Using Eqs. (6.3b), (6.4b) and (6.7a)-(6.7m), the HAM solution for a pre-

specified number of terms [say nf. ] is obtained in the following form: 

nT  —1 
iV (x, 1) = Y(x) 	YHAM (x) = Yo (x) + I Y. (x) 

m=1 

It has been shown by Liao (2003) that if the auxiliary linear operator, auxiliary 

parameter, auxiliary function and initial guess are chosen properly then the above HAM 

solution will converge to one of the solutions of Eq. (6.1).. It should also be noted that if 

one substitutes H(x) =1 and h = —1 in Eq. (6.5), and the definitions of L[.], L'[.]  

and yo  are kept same, then the Eq. (6.5) reduces to the one obtained by using ADM. 

Normally, H(x) , L and yo  (x) are chosen before the HAM is applied, 

however, the value of h is found only after the HAM solution is available. Therefore, 

by varying h, the convergence of the so found HAM solution can be monitored. In 

classical HAM, the value of h is basically selected from the valid region of the so- 
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called h -curve (Liao, 2003). The h -curve is obtained by plotting the values of the 

function or its derivatives at known locations [usually at the boundary of the domain of 

interest] against the different values of h [plots of y , (x),  dyH (x)  or  d2  yM2
( 
x
) 
 

against h at some x belonging to the region of interest], and the valid region is that 

part of the h -curve, where these values of the function or its derivatives do not vary 

with h. However, in most of the situations the valid region for h in the h -curve is flat, 

and thus, many values of h exist which may be selected. Consequently, an uncertainty 

arises in choosing the correct value of h. To avoid this ambiguity in the selection of h, 

we have adopted an effective variant of HAM, namely OHAM (Liao, 2010). The main 

steps of OHAM are described in the following section. 

6.2 OPTIMAL HOMOTOPY ANALYSIS METHOD [OHAM] 

The key steps involved in OHAM (Liao, 2010) are the same as those in HAM, 

however, OHAM differs with HAM in the selection of h. In OHAM, h is found by 

minimizing the sum of square of residual errors of the resultant HAM solution. The 

residual error is found by substituting the HAM solution in the original Eq. (6.1), as 

given below: 

Residual error at x = N[ yHAM  (x, h)] 

And, the sum of square of residual errors can be found by the following formula: 

1 

R _ J(N[yHAM(x,h)])2dx 
0 

1 	nT  1 	 z  

= ji N  
0 	n:=0 

(6.9a) 

Since, the analytical integration of the above series may be quite cumbersome, hence 

the following simple but efficient approximation of Eq. (6.9a) has been employed: 

M 

L( N [yHAM\xi ,h )])2  AX 
1=1 
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M I 	12 

	

_ Z N 	y,,, (xi , h) 	Ax 	 (6.9b) 
i=1 	m=o 

where Ox represents the equispaced interval in the concerned region. Now, for the 

minimum value of 91, ~h = 0, and one obtains the following equation: 

a 	a ~M 	 -1 	 2 
N[

nT
E y,,, (x; , h) 	Ax 

aM 
	nr-1 	2 

_ ~h N E y (x h) = 0 (6.9c) 

Eq. (6.9c) is basically an algebraic equation in h and by solving it, one obtains the 

optimum value of h. By substituting this value of h in Eq. (6.8), the final approximate 
OHAM solution can be constructed, as shown below: 

flr-I 
Yor-raM(x) = Yo(x) + ,y,n(x,h) 

	
(6.10) 

m=I 	 h optimum 

6.2.1 Stepwise Procedure of OHAM 

The algorithm of OHAM is depicted in Fig. 6.1 and the steps involved are 

summarized below: 

(i) For a given nonlinear equation, the auxiliary quantities and the initial guess 

[ H(x) , L[.] and yo (x) ] are selected and the corresponding zero order 

deformation equation, i.e. Eq. (6.2), is constructed. 

(ii) From the zero order deformation equation, higher order deformation equation, 

i.e. Eq. (6.6), is formed. 

(iii) Using higher order deformation equation, the higher terms of the HAM solution 

[ y,,, (x) , 1 <_ m _< nr —1] are found iteratively. 
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(iv) 	After finding y,,, (x) , yHM  (x) is found by summing all the terms as shown in 

Eq. (6.8). 
n7  —I 

YAM (x) = Yo (x) + > Y,n (x) 
,n=1 

(v) 	One should note that constants of integration [ C, s] and the convergence control 

parameter [ h ] , are still unknown in Y HAM  (x) . The unknown constants of 

integration are found from the associated conditions, whereas, the optimum 

value of h is found by minimizing the sum of square of residual errors. The 

substitution of these quantities back in the HAM solution gives the OHAM 

solution, i.e. 

yOHAM ( x) = YHAM (x, h )I /1  optimum 

To increase the accuracy, one can increase the terms in OHAM solution, 

otherwise, one may restart with step (i), i.e. by making a different choices of the 

auxiliary quantities. Liao (2003) has solved several examples by using HAM and 

presents some guidelines for the proper selection of these auxiliary quantities. Use of 

OHAM has been made clear by solving the following two illustrations. 

6.2.2 Illustrations 

In this subsection, two ODEs have been solved by using OHAM. These two 

ODEs constitute singular BVPs and appear in various engineering applications. In 

literature, these two equations have recently been solved by Kumar and Singh (2010) by 

using a modified version of ADM, namely modified Adomian decomposition method 

[MADM]. MADM is basically similar to the ADM, however, these researchers have 

incorporated the usual operator proposed by Wazwaz (2005). 

6.2.2.1 Illustration 6.1: Linear Singular BVP 

The following linear second order ODE constituting a singular BVP has been 

taken from Kanth and Aruna (2008) and Kumar and Singh (2010). 



Start 

Choose auxiliary 
quantities 

~ Construct the zero order deformation equation 

Choose n,. 

Construct the m'h order deformation equation 

Use m`h order deformation equation to sequentially find 

	

Increase nr 	
y (x) , 1 < m < nT —1 

nT —I 

	

Find HAM solution, i.e. YHAM (x) = yo (x) + 	Y. (x) 
m=1 

Find unknown constants [Cs] and h from the given 
BCs/ICs and by minimizing 91 , respectively 

Substitute Cis and h in ,YAM (x) to get YOHAM (.x) 

I 	Find error [residual error and 91 1 

No 

No 	Satisfied with 

	

nT nT mom̀  	 the solution? 

	

Yes 
	 Yes 

Stop 

Figure 6.1: Flow chart of OHAM 

glob? 



d2y + 1 dy +y = 4-9x+x2 —x3 
dx x dx 

(6.11 a) 

BC I: y=O at x =1 (6.1lb) 

BC II: y=O at x =0 (6.l lc) 

For obtaining the OHAM solution of Eqs. (6.1 la)-(6. 1 i c), first the following auxiliary 
quantities are chosen: 

N[y]= 
L + 1 dy + y — 4 + 9x — xz +x3 ,  L[.] = 1 d x d[~~ or 
dx x dx 	x dx dr )  

L'[.]= f -4x[.]dxdx, H(x)=1, y0(x)=C2 
ox 

Thereafter, by using the above auxiliary quantities and with the help of the procedure 

given in subsection 6.1.1, the following zero order deformation equation, corresponding 
to Eq. (6.11 a), is constructed: 

(1- L)L[V/(x, )L) —yo (x)] = )1hH(x) Yi(x, A)] 
	

(6.12a) 

Similarly, as per the, description given in subsection 6.1.2, the following m`h order 
deformation equation is obtained from Eq. (6.12a). 

L[Ym (x) 	xmym-1(x)] = hH(x)Rm [J m-1( x), x ] 
	 (6.12b) 

From Eq. (6.12b), the following recursive relation can be obtained for finding ym s: 

S 

ym( x) = iLn7ym-1(x)+h f 1 fx(11,11[ym—1 x]—(1 /Lm)(4-9x+x2 —x3))dxdx 
o x 

(6.12c) 

Now, with the aid of the auxiliary quantities and by iteratively using Eq. (6.12c), 

the following expressions for y,,, s are obtained. It should, however, be noted that if one 

substitutes h = —1 in Eq. (6.12c), then this equation yields the same iterative steps as 

were deduced by Kumar and Singh (2010) by using MADM. However, we have 

observed that for this value of h, the sum of square of residual error is not minimum for 

the obtained solution. 
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4 
y1(x) _ —1 + Cz)hX2  + hx3  — 

hx + hx5  
4 	16 25 

y2 (x) = (-4h + C2h — 4h2  + C2h2  )x2  + (h + h2  )x3  

+ 	
hex' 

25 	576 hzx6  + 1225 

y3  (x) = 4 (-4h + C2h — 8h2  + 2C2h2  — 4h3  + C2h3  )x2  + (h + 2h2  + h3)x3  

+ 1  (-2h — 8h2  + C2h2  —6h3  + C2h3  )x4  + 1  (h + 4h2  +3h3  )x5  
32 	 25 

+  1  (-8h2  —12h3  + C
z  h

3  )x6  +  1  (2h2  + 3h3 )x' — 1  h3xs +  1  h3x9 
2304 	1225 	36864 	99225 

y4(x) = (-4h+C2h-12h2  +3C2h2  —12h3  +3C2h3  —4h4  +C2h4)x2  

+(h+3h2  +3h3  +h4)x3  + 64  (-4h —24hz  +3C2h2  —36h3  +6C2h3  —16h4  +3C2h4)x4 

+25  (h+6hz  +9h3  +4h4)x5  +71  (-4h2  —12h3  +C2h3  —8h4  +C2h4)x6  

+ 1225 (h
2  +3h3  +2h4)x7  + 

1471  (-12h
3  —16h4  +C2h4)xs  

+  1  (3h3  +4h4)x9 -  1 	h4x10 +  1 	h4x11 
99225 	3686400 	12006225 

y5  (x) = I (-4h + C2h —16h2  + 4C2h2  — 24h3  + 6C2h3  —16h4  + 4C2h4  — 4h5  + C2h5  )x2  

+(h + 4h2  +6h3  + 4h4  + h5  )x3  
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+16 	+C2  h2  —18h3  +3C2  h3  —16h4  +3C2  h4  —5h5  +C2h5 )x4  

+ 25  (h+ 8h2  +18h3  +16h4  +5h5 )x5  

+  1  (-8h2  —36h3  +3C2h3  —48h4  +6C2h4  —20h5  +3C2h5 )x6  
1152 

+  2  (2h2  + 9h3  + 12h4  + 5h5  )x' 
1225 

+  1  '  (-6h3  —16h4  + Czh4  —10h5  + C2h5  )x8  
36864 

+  2  (3h3  +8h4  +5h5 )x9  + 	1 	(-16h4  —20h5  +C2h5 )x10  
99225 	 14745600 

+ 	1 	(4h4  + 5h5 )xi I — 	1 	h5x'2 + 	1 	h5 x13 

12006225 	 530841600 	20290520025 

Finally, the following six terms [n7. = 6] OHAM solution is found. 

5 
YOHAM = Y y1  (x) 

i=0 

= C2 + 

1(-20h + 5C2h — 40h2  + 10C2h2  — 40h3  + 10C2h3  — 20h4  + 5C2h4  — 4h5  + C2h5 ) x2  

+ (5h + 10h2  +10h3  +5h4  + h5 ) x3  

+ 64 (-20h — 80h2  + 10C2h2  —120h3  + 20C2h3  — 80h4  + 15C2h4  —20h5  + 4C2h5 ) x4  

+ 5 (h + 4h2  + 6h3  + 4h4  + h5 ) x5  

+  1  (-40h2  —120h3  + 10C2h3  —120h4  + 15C2h4  —40h5  + 6C2h5 ) x6  
2304 
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1 
+ 245 (h

z  + 3h3  + 3h4  + h5 ) x' + 
147456 `

-40h3  — 80h4  + 5C21-i 4  — 40h5  + 4C2h5 ) x8  

+  2  (3h3  + 2h4  + h5 ) x9 + 	I 	(-20h4  — 20h5  + C2h5 ) xlo 
19845 	 14745600 

+ 	1 	( h4 +h5) xti — 	1 	hsx'2 + 	1 	h5x'3 	(6.13) 
2401245 	 530841600 	2029052025 

C2  is found from the associated BC I, whereas, h is found by minimizing i. [Eq. 

(6.9c)]. It can be noticed that for this choice of initial guess y0  and auxiliary quantities, 

the BC II is satisfied automatically. For nT  =6, the values of CZ  and h as obtained by 

OHAM are given below, which correspond to the minimum value of IR . 

C2  = 2.139446x10 1°  and h = —0.996758 

Corresponding to the above values of C2  and h, the six terms OHAM solution [Eq. 

(6.13)] is given below: 

yo, 	= 2.13945x10-10  + x2  —x3  +3.7759x10-" x4  — 2.20264x10-" x5  

—5.87919x10 °  x6  +2.76398x10'°   x' +2.82376x10 9   x8  —1.04908x10 9  x9  

—4.34067 x 10"9  x1°  + 1.33276 x 10"9  x" + 1.85346 x 104  x12  

—4.84903x10 1°  x13 
	

(6.14) 

It is quite interesting to note that for h = --1 and C2  = 0, the Eq. (6.13) reduces 

to the same expression as was found by Kumar and Singh (2010) by using MADM. The 

MADM solution [T  =6]  is given below: 

=23 	X 
yONAM (Cz 	

12 	— 	x13 	
(6.15) — 0h =-1) = x  — x 

 + 530841600 2029052025 	YMADM 

For the purpose of comparison, Kumar and Singh (2010) have also given the 

analytical solution of Eqs. (6.11 a)-(6.11 c), and we below reproduce the same analytical 
solution: 
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2 	3 
YAnalylica! = x — 

For several values of n7. [= 6, 7, 8], the OHAM results are presented in Fig. 6.2 

and Table 6.1 along with the MADM results [Jig. = 6] as well as the results obtained by 

using the analytical solution. It can be seen from Fig. 6.2 and Table 6.1 that the results 

obtained by using above six terms OHAM solution, i.e. Eq. (6.14), agree well with 

those obtained from the six terms MADM solution, i.e. Eq. (6.15). Besides, these results 

are also quite close to those obtained from analytical solution, i.e. Eq. (6.16). 

Fig. 6.3 shows the absolute error profiles of the OHAM and MADM solutions 

[ I YAna/yiica/ — YOHAM I and I ,Analytical — YMADM I ] on a Logi o scale. From this figure, it is clear 

that the error in MADM solution increases monotonically as one moves from x =0 to 

x=1, whereas, for OHAM solution it almost remains constant in most of the region and 

decreases sharply near x =1. Besides, by increasing the number of 'terms in OHAM 

solution the error can be reduced. Hence, for a pre-specified maximum- permissible error 

in the solution, one can choose the number of terms in OHAM solution. 

Fig. 6.4 shows the residual error profiles of the OHAM solutions [ nT  = 6, 7, 8], 

and the MADM solution [ n7. = 6], and also indicates their respective sum of square of 

residual errors. It can be seen that the residual error and the sum of square of residual 

errors of OHAM solution are less than those of MADM solution for the same number of 

terms [ n7 . = 6]. As expected, the residual error profiles of the OHAM solutions 

approach to zero as the number of terms are increased. 

6.2.2.2 Illustration 6.2:  Nonlinear Singular B VP 

The second equation considered by Kumar and Singh (2010) relates to the 

thermal explosion, and is as follows: 

d2 y +  1 dy +vey = 0 
dx2  x dx 

(6.17a) 

BC I: y=0 	at x=1 	 (6.17b) 
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+ MADM: nT=6 (Kumar and Singh, 2010) 
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Figure 6.2: Solutions of illustration 6.1 [linear singular BVP] 
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Figure 6.3: Absolute error profiles on Loglo scale for the solutions of illustration 
6.1 [linear singular BVP] 
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Figure 6.4: Residual error profiles for the solutions of illustration 6.1 [linear 
singular BVP] 
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BC II: y'=0 	at x=0 
	

(6.17c) 

Relevant auxiliary quantities are: N[y] = d
2
y + 1 dy +ve'' , L[.] = I 

d(x±[.]
) or 

dx2 x dx  x dx cfr )  

 [.1 dx dx , H(x) =1 and yo (x) = C2 . 
o x 

The corresponding zero and m°' order deformation equations are given by: 

(1— A)L[çi.' (x, A) — yo (x)] _ ZhH(x)NfV (x,,Z)] 	 (6.18a) 

L[Y, (x) — ZnYm-i (x)] = hH(x)R [Ym-i (x), x] ; m ? 1 	 (6.18b) 

A slight rearrangement of Eq. (6.18b), along with the use of inverse operator L', 

yields the following recursive relation: 

Y. (x) = ~,y, 1(x)  + h f I f x R,,, [i , x]dx dx 
o x 

(6.18c) 

Using the above auxiliary quantities, the Eq. (6.18c) is evaluated iteratively, and the 

following expressions for y; s are obtained: 

Y0(x) = Cz 

y, (x) = 4 eC2vhx2 

y2 (x) = 4 ec, (h + h
2 )vx2 + 64 ezcz h2vzx4 

Y3(x) = 4 ec,h(1+h)2vx2 + 32 e2czh2 (1+h)vzx4 + 71 e3c2h3v3x6 

And the four terms [ nl. =4]  OHAM solution is given by: 

3 

YOJL4M = Z Y; (x) 
!=0 

= C2 + veC2 hx2 + vec,h2x2 +1 Vec2h3x2 + 3 vzezczhzx4 + 1 v2ezc,h3 x4 
4  4  4  64  32 
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+ 1  V 3e3c  h3x6  
768 

(6.19) 

For v=1 the unknown C2  and h are found by using BC I [Eq. (6.17b)] and by 

minimizing 91 [Eq. (6.9c)], respectively, and are given as: C2  = 0.316503 and 

h = —0.875052. It should be noted that the BC II [Eq. (6.17c)] is satisfied automatically. 

Now the four terms OHAM solution can be found by substituting these values of C2  

and h in Eq. (6.19), and is given by: 

YOHAM = 0.316503 — 0.34241 1x 2  + 0.0281626 x 4  — 0.0022548 x6 	(6.20) 

It can again be verified that by substituting C2  = a (Kumar and Singh, 2010) 

and h = —1, one obtains the following expression, which is identical to the one obtained 

by Kumar and Singh (2010) by using MADM: 

YOHAM (C2 = a, h = —l) = a_1  4 veax2 + 64 V2e2ax4 — 

768 
V3e3ax6 = 

YMADM (6.21) 

The values of a and v given by Kumar and Singh (2010) are: a = 0.317234 and 

v =1. For the purpose of comparison. Kumar and Singh (2010) have also given the 

following analytical solution of this equation: 

— 	1+2( 8-2v— (8-2v)2 -4v 2 ) 

YAnaly,rcal — 2Log 	1 	 (6.22) 
1+2(8-2v— (8-2v)2 -4v2 )x2  

The results obtained by using the above solutions have been shown in Figs. 6.5 - 

6.7 and Table 6.2. Fig. 6.5 and Table 6.2 compare the results obtained by using the 

OHAM solutions [ nr  = 4, 5, 6] with those obtained from the MADM solution [ nT  = 4 ] 

and the analytical solution [Eq. (6.22)]. It is clear from Fig. 6.5 and Table 6.2 that a 

close agreement exists between the results obtained by using these three solutions. 

The absolute error profiles, depicted in Fig. 6.6, shows that the OHAM solution 

exhibits lesser error in comparison to the MADM solution for the same number of 

terms. Moreover, the residual error profiles of these two solutions and their respective 

sum of square of residual error, shown in Fig. 6.7, are also smaller for the OHAM 
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Figure 6.5: Solutions of illustration 6.2 [nonlinear singular BVPJ 
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Figure 6.6: Absolute error profiles on Logio  scale for the solutions of illustration 
6.2 [nonlinear singular BVP] 
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solution as compared to the MADM solution for the same number of terms. 

Hence, for both the illustrations, the solutions obtained by using OHAM are of 

better quality as compared to those of MADM. This is because: the OHAM (Liao, 

2010) is based on a more general and versatile scheme of HAM, and is more 

advantageous in comparison to the MADM (Kumar and Singh, 2010), which is based 

on ADM. One should note that in the presented OHAM, we have employed the same 

inverse operator as was proposed by Wazwaz (2005) and used by Kumar and Singh 

(2010). 

It should also be noted that Kumar and Singh (2010) have also presented another 

algorithm, in which the operator proposed by Wazwaz (2005) was replaced by a new 

operator, called new proposed operator [NPO]. However, we could not compare the 

OHAM results with those obtained by applying the [NPO], since no expressions or 

tabulated values of NPO solutions were given in the paper by Kumar and Singh (2010). 

Besides, the MATHEMATICA routine presented by Kumar and Singh (2010) was 

based on MADM only. 

6.3 REACTION-DIFFUSION PROCESS IN A POROUS SPHERICAL 

CATALYST 

In this section, the model equation of reaction-diffusion process occurring in a 

porous spherical catalyst has been solved by using OHAM, and the approximate 

solutions of dimensionless concentration profile and effectiveness _factor have been 

obtained. These solutions have been found for two types of reaction kinetics: (i) power-

law kinetics, which frequently arises in various heterogeneous chemical reactions, and 

(ii) Michaelis-Menten kinetics, which is often encountered in biochemical reactions. 

The obtained OHAM results have been compared with the numerically obtained results 

as well as those obtained by using other approximate methods (Kumar and Singh, 2010; 

Li et al., 2004). It should be noted that the same model equation has previously been 

solved by using ADM and RADM in section 5.6 of Chapter V. 
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6.3.1 Model Equation 

The steady-state model equation of this process is described by a second order 

ODE constituting a singular BVP, and is given below: 

D  (d2C, +2dCA 
 — ( rA) 

e  d 2  r dr) (6.23 a) 

BC I: CA CAS 
	at r = R [pore mouth] 

(6.23b) 

BC II:  dCA  =0 dr at r = 0 [pore end] (6.23c) 

6.3.2 Solutions and Discussion: Concentration Profile and Effectiveness Factor 

6.3.2.1 Solution by OHAM: Power-law kinetics 

Introducing the following dimensionless variables: 

	

_  CA 	 __ ( —rAS)Rz 	knCAS'R2  x= —  

	

y  CAS 	R , 	DC _ AS 	 De 

where q denotes the Thiele modulus, the Eqs. (6.23a) - (6.23c) can be reduced to the 

following dimensionless forms: 

dZ y  + 2 dy çZyn = 0 
dx2  x dx 

BC I: y =1 	at x =1 [pore mouth] 

(6.24a) 

(6.24b) 

BC II: 	=0 	at x = 0 [pore end] 	 (6.24c) 

Corresponding to the above equations, the following auxiliary quantities are 

defined: 

x 

	

1 d 	z  d[.] 	 1 	2  [.]dxdx, d z y 2 dy  z L – 	x 	or L' C ] = fx  f x N[y] = dxZ  + x dx – 	x2 dx 	d 	 o  z 
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H(x)=1, Y0(x)=C2 

Thereafter, the following zero order deformation equation is formed: 

(1— t)L[y/(x, 2.) — yo (x)] = )1hH(x)N~1/(x, A)] 
	

(6.25a) 

From the above zero order deformation equation, the following in' s order, deformation 

equation is obtained: 

L[Ym (x) 	XmY,-1(x)] = hH(x)R,n [Ym—i (x), x] 
	

(6.25b) 

The-above equation results in the following, iterative scheme for finding higher ym s: 

Y 

Yin (x) 	 1 = xmYm-. (x) + h 	x Rm 	x L[x dx 
2 

IY„~—i , ] 
0
x2 

 
(6.25c) 

For the above defined auxiliary quantities, the sequential use of Eq. (6.25c) yields the 

following parts of the OHAM solution: 

Yo = C2 

Y1 =--   Chg2x2 

1 
Y2 =-6C2(h+h2)cb2x2

+120 C2» 
>nh2o4x4 

y2 = — 6 C2 h(l + h)2 52x2 
+ 60 

C2 '-'n(l + h)h2b4x4 — 15120 C23 °-2
n(8n — 5)h3çb6 x6 

y4 =-602"h(l+h)30 x2+4002"-'n(l+h)2h2q54x4 
504002 

n(8n-5)(1+h)h3O6x.6 

+ 	1 
	

C"  3n(70 —183n + 122n2 )h4çb8x8 
3265920 

ys = -- Ch  (1 + h)4 02x2 
+ 30 C2 

"-'n(1 + h)3 h204x4 
2520 C"2 

2n(8n — 5)(1 + h)2 h3çb6x6 

+ 1 
	

C"  3n(70 —183n + 122n2 )(1 + h)h401X8 
816480 
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1 	C2"-4n(-3150 + 10805n —12642n2 + 5032n3 )h5q510x'o 
1796256000 

Ultimately, the following six terms [ nT = 6] OHAM solution is found. 

~Z" 
YOHAM = CZ — 6 C2 

(5h+10h2 +10h3 +5h4 +h5)x2 

+ no4Cz n-1 h
2 (10 + 20h + 15h2 + 4h3 )x4 — n(8n — 5)06Cz"-2 h3 (1 0+ 15h + 6h2 )x6 

120 	 15120 

+ n(70 —183n + 122n2 )08C2 n-3 
h4 (5 + 4h)x8 

3265920 

+ n(3 150— 10805n + 12642n2 —5032n3 )çb'0C2n-4 hsxlo 	 (6.26) 
1796256000 

For a particular value of n and 0, the values of C2 and h can be found from BC I [Eq. 

(6.24b)] and Eq. (6.9c), respectively [BC II is satisfied automatically]. Substituting back 

the so found values of C2 and h in Eq. (6.26), the six terms OHAM solution for the 

selected values of n and 0 is obtained. For example, one finds C2 = 0.475958 and h = 

-0.886421 for n = 0.5 and S = 2, and the following six terms OHAM solution is found 

by substituting these values in Eq. (6.26). 

YOHAM = 0.475958+0.459923x2 +0.066616x4 —0.003030x6 +0.000665x8 

—0.000133x'o 
	

(6.27) 

As described earlier, one can also obtain the six terms [ nT = 6] MADM solution 

by substituting h = -1 in the above obtained six terms OHAM solution, i.e. Eq. (6.26), 

and the following six terms MADM solution is obtained: 

= 	+ C 0
2 x- + n~4CZ»-1 x4 + n(8n — 5)~6C2"-2 x6 

YAM= 	6 	120 	15120 

+ n(70-183n+122n2 )eb8 CZi-3 x$ 
3265920 
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_ n(3150 —10805n + 12642n 2  —5032n'  )q51005n-4 

x10 	 (6.28) 
1796256000   

C2  can be found by satisfying the BC I, and for n = 0.5 and 0 = 2, one finds 

C2  = 0.475967. Substituting this value of C2  in Eq. (6.28), the following six terms 

MADM solution is obtained: 

yMIDM = 0.475967+0.459936 x2  + 0.066667 x4  —0.003068 x6  +0.000741x8  

—0.000242x10 
	

(6.29) 

In a similar fashion, the OHAM and MADM solutions have been found for 

various values of n and 0 [ n = 0.5, çb = 2; n = 2, 0 = 5; n = 1.5, 0 = 5], and the 

corresponding dimensionless concentration profiles have been shown in Fig. 6.8 along 

with numerically obtained profiles. It is obvious from Fig. 6.8 that the concentration 

profiles obtained from OHAM agree well with those of MADM and numerical method. 

For the same values of n and q, Table 6.3 compares the values of dimensionless 

concentration obtained by using OHAM and numerical method. it is clear from this 

table that and the OHAM results are quite close to the numerical results and the error in 

OHAM results decreases as the number of terms are increased. 

In Fig. 6.9, a comparison between the OHAM and MADM solutions has been 

made by portraying the absolute error profiles of the OHAM solutions 

[jYNwnerical — YOHAM1] and the MADM solutions CI yNu,nencal —YMADMI] for n = 0.5 and çb _ 

2. It can be observed in Fig. 6.9 that the errors in OHAM solutions are less than the 

corresponding MADM solutions. Similar conclusions can also be drawn from Fig. 6.10, 

where residual error profiles of the OHAM and MADM solutions have been plotted. A 

discussion regarding the convergence of OHAM solutions [n = 0.5, 0 = 2; n = 2, 0 = 5] 
has also been presented in Appendix C 1. 

A similar comparison can also be made between the OHAM solution and the 

available analytical solution for first order kinetics {n =1]. For first order kinetics, the 

analytical solution is given by the following equation (Fogler, 1992): 

sinh[çbx]  
YAnaryucar = x sinh[b] (6.30) 
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Figure 6.8: Dimensionless concentration profiles [power-law kinetics: n = 0.5, /i 
= 2; n = 2, .0 = 5; n = 1.5, 0 = 5; x = 1: pore mouth; x = 0: pore end] 
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Table 6.3: 	Results of reaction-diffusion problem obtained by numerical and 

OHAM solutions 

Method Absolute Error 
OHAM OHAM 

nT =6 nT =7 nT =8 nT=6 nT=7 nr=8 

x n=0.5,¢=2 
Numerical C2=  

0.475958 
C2= 

0.475934 
C2= 

0.475925 
_ _ _ 

-0.886421 -0.859331 -0.849534 
 _ 

0 0.475922 0.475958 0.475934 0.475925 3.617E-05 1.205E-05 3.229E-06 
0.1 0.480528 0.480564 0.480540 0.480531 3.606E-05 1.188E-05 3.040E-06 
0.2 0.494426 0.494461 0.494437 0.494428 3.547E-05 1.115E-05 2.284E-06 
0.3 0.517853 0.517889 0.517864 0.517855 3.565E-05 1.118E-05 2.332E-06 
0.4 0.551204 0.551239 0.551215 0.551206 3.520E-05 1.076E-05 2.044E-06 
0.5 0.595023 0.595058 0.595033 0.595025 3.450E-05 1.046E-05 2.072E-06 
0.6 0.650000 0.650033 0.650010 0.650002 3.284E-05 9.785E-06 2.053E-06 
0.7 0.716964 0.716993 0.716972 0.716965 2.902E-05 7.850E-06 1.230E-06 
0.8 0.796874 0.796898 0.796880 0.796875 2.385E-05 5.901E-06 9.937E-07 
0.9 0.890818 0.890832 0.890820 0.890818 1.446E-05 2.237E-06 2.836E-07 
1 1.000000 1.000000 1.000000 1.000000 0.000E+00 0.000E+00 0.000E+00 

n=2,b=5 

x Numerical 
C1= 

0.266592 
C1= 

0.266718 
c2= 

0.266661 
 _ 

- - 
h= 

-1.678745 
h= 

-1.604982 
h= 

-1.577324 
0 0.266680 0.266592 0.266718 0.266661 8.818E-05 3.758E-05 1.948E-05 

0.1 0.269663 0.269968 0.269570 0.269699 3.048E-04 9.305E-05 3.600E-05 
0.2 0.278857 0.280000 0.278517 0.278986 1.143E-03 3.397E-04 1.294E-04 
0.3 0.295038 0.296696 0.294626 0.295168 , 1.658E-03 4.120E-04 1.297E-04 
0.4 0.319666 0.320915 0.319491 0.319676 1.250E-03 1.741E-04 1.086E-05 
0.5 0.355184 0.355218 0.355376 0.355073 3.442E-05 1.923E-04 1.108E-04 
0.6 0.405602 0.404466 0.405962 0.405481 1.136E-03 3.601E-04 1.208E-04 
0.7 0.477604 0.476255 0.477829 0.477555 1.349E-03 2.254E-04 4.901E-05 
0.8 0.582792 0.582182 0.582820 0.582792 6.102E-04 2.755E-05 1.059E-08 
0.9 0.742585 0.742605 0.742559 0.742594 1.950E-05 2.674E-05 8.487E-06 
1 1.000000 1.000000 1.000000 1.000000 0.000E+00 0.000E+00 0.000E+00 

x Numerical 
C2= 

0.177480 
CZ= 

0.177548 
Cz= 

0.177509 
_ _ _ 

-1.370805 -1.369793 -1.285938 
 _ _ _ 

0 0.177518 0.177480 0.177548 0.177509 3.735E-05 3.031E-05 8.402E-06 
0.1 0.180659 0.180639 0.180683 0.180651 1.951E-05 2.432E-05 8.351E-06 
0.2 0.190387 0.190391 0.190406 0.190378 4.686E-06 1.898E-05 8.941E-06 
0.3 0.207669 0.207650 0.207703 0.207658 1.921E-05 3.381E-05 1.123E-05 
0.4 0.234322 0.234223 0.234386 0.234308 9.884E-05 6.386E-05 1.398E-05 
0.5 0.273373 0.273213 0.273451 0.273358 1.604E-04 7.724E-05 1.577E-05 
0.6 0.329733 0.329621 0.329789 0.329714 1.121E-04 5.669E-05 1.841E-05 
0.7 0.411407 0.411428 0.411444 0.411383 2.009E-05 3.684E-05 2.404E-05 
0.8 0.531771 0.531822 0.531831 0.531743 5.089E-05 5.998E-05 2.888E-05 

0.9 0.713977 0.713888 0.714051 0.713950 8.909E-05 7.440E-05 2.638E-05 

1 1.000000 1.000000 1.000000 1.000000 0.000E+00 0.000E+00 0.000E+00 
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For n=1, the following six terms OHAM solution is obtained by using Eq. (6.26): 

= C C2- (5h+10h2 +10h3 +5h4 +h5 )x2 + C2 (10h2 +20h3 +15h4 +4h5)x4 YOHAM 	 Z — 6 	 120 

6 	 8 

— 
G, 

2~ (1 Oh3 +15J + 6h5 )x6 +
G, 

2 	(5h4 + 4h5 )x8 —
C 

2

lOhS 
 x' ° 

5040  362880  39916800 

(6.31) 

where C2 is'found by using BC I and is given below: 

39916800 — 33264000h¢z + 3326400h2g2 (q 2 — 20) 	 1 

CZ = 3 9916800 —79200h302 (840 — 8402 + ¢4) + 550h402 (-60480 + 907202 — 21604 + 06 ) 

—h5q 2 (6652800 —133 056002 + 4752004 — 44006 + 08 ) 

Substituting the above obtained value of C2 in Eq. (6.31), one finds the six 

terms OHAM solution for n =1. Although not shown, it can be verified that up _to _ 

10 the so obtained six terms OHAM solution possesses less than 2% error when 

compared with Eq. (6.30). However, for higher values of 0, more terms are need in 

OHAM solution. 

It is also worthy to compare the OHAM and MADM solutions of effectiveness 

factor [ r]]. For a spherical porous catalyst, the effectiveness factor [ i ] is given by the 

following dimensionless equation: 

3 dy 
12 dx x=1 

(6.32) 

Using Eqs. (6.26) and (6.32), the following six terms OHAM solution of r] has been 

obtained: 

—5987520002 (5 + 10h + 10h2 + 5h3 + h4 ) 
+5987520Cz "-'h(10 + 20h + 15h2 + 4h3 )n02 

h 
?°HAM — 59875200 —71280Cz i-2h2 (10 + 15h + 6h2 )n(8n — 5)çb4 	(6.33) 

+44002 n-3h3 (5 + 4h)n(70 —183n + 122n2 )~6 
—CZ i-4h4n(-3150 + 10805n —12642n2 + 5032n3 )q8 
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Figure 6.9: Absolute error profiles on Loglo scale [power-law kinetics: n = 0.5, çb 
= 2; x = 1: pore mouth; x = 0: pore end] 
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Figure 6.10: Residual error profiles [power-law kinetics: n = 0.5, 4' = 2; x = 1: 
pore mouth; x = 0: pore end] 
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Table 6.4: 	Effectiveness factor [,Vl obtained by numerical, MADM and OHAM 
solutions 

n Method 
Effectiveness Factor Fiji Error 

= (7/Numerical- i,)/?lNumericaPPI00 

nr= 6 nT= 7 nT= 8 nT= 6 nT= 7 nT= 8 
• Numerical 0.879268 - - 
0.5 2 OHAM - 0.879096 0.879235 0.879249 0.020 0.004 0.002 

MADM - 0.878729 0.879528 0.87912 0.061 0.030 0.017 
Numerical 0.480055 - 

1 5 OHAM - 0.480276 0.480074 0.480056 0.046 0.004 0.000 
MADM - 0.477087 0.479632 0.480009 0.618 0.088 0.010 

Numerical 0.431958 - - 
1.5 5 OHAM - 0.432273 0.431827 0.432001 0.073 0.030 0.010 

MADM - 0.411137 0.422693 0.428071 4.820 2.145 0.900 
Numerical 0.397233 - 

2 5 OHAM - 0.396996 0.397272 0.397192 0.060 0.010 0.010 
MADM - 0.362854 0.377795 0.38654 8.655 4.893 2.692 

By substituting h = -1 in Eq. (6.33), the following MADM solution of 77 is obtained: 

5987520002 + 598752OC2 "-'n02 
1 	+7128OCzn-2n(8n-5)04 

~7MADM = 	I 	 I 	(6.34) 
59875200 +440C'  3n(70 -183n + 122n2 )Ø6 

+C2i-4n(-3150+1 0805n -12642n2 + 5032n3 )08 

For different values of n and 0, Table 6.4 shows the values of rJ obtained by using 

OHAM, MADM and the numerical method. It is clear that the OHAM predictions are 

better than those of MADM. Besides, the error decreases as one increases the terms in 

.J:1 

6.3.2.2 Solution by OHAM: Michaelis-Menten kinetics 

In this subsection, the same model equation [Eqs. (6.23a)-(6.23c)] has been 

solved by using OHAM, however, the reaction rate is now given by the Michaelis- 
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Menten kinetics [(—rA ) = r„CA /(K,» +CA )1 (Li et al., 2004). This model equation relates 

to the design of a biocatalytic reactor and is of interest to the biochemical engineers. 

Using the previously introduced dimensionless variables, in addition to the 

following dimensionless variables, 

_tl~A

a 
)R Rz 

	
CAS 

S 	DeK»3 (1+ f3) 	K,» 

the Eqs. (6.23a)-(6.23c) attain the following dimensionless forms: 

dx2 + 	— ~Z ( ~)y — 0 	
(6.35a) 

x dx (1+ /3Y) 

BC I: y=1 	at x=1 [pore mouth] 	 (6.35b) 

BC II: A =0 	at x = 0 [pore end] 	 (6.35c) 

Corresponding auxiliary quantities are: 

dz y 2 dy 2 (1+,B)y 
N[Y] = dx

2 { x dx  ~ (1+/3y)'    
	H(x) =1 ~ 	Yo (x) = C2 

x 

2 	or L'[.] = 12 f x2 [.]dxdx 
x dx 	dx 	 o x 

The corresponding zero order and rn' I' order deformation equations are: 

(1— A)L[v(x, A) —Yo (x)] = A.hH(x)N[Vi(x, A)] 	 (6.36a) 

L[Y,n (x) — x»1y»,-1(x)] = hH(x)R» [Y,n-i (x), x] 	 (6.3 6b) 

Eq. (6.36b) delivers the following recursive relation: 

`1 
Y. (x) = x»1Y»,-1 (x) + h f x2 f x2R»jY_1, x] dx dx 	 (6.37) 

0 

For the above defined auxiliary quantities, the Eq. (6.37) presents the following four 

terms [ nr = 4] of the OHAM solution: 



Yo = C2 

1+1 	2 2 
y' --6+6C2/3 C

Z h~ x 

_ (1+/3) 	 Z 
Y2 	6(1 + C213) C

2 h(1 + h) 2x2 
+ 120 1 +~C) 3 Cz h2 (1 + h)~4x4 

a 	 ( 	2/j) 

z 

y3 	6 1+ ,6) 
C2h(i+h)20Z x2 

+ 60 i+,8) 3 C2h2(1+h)04x4 

+(1+13)3(-3+10C21) C, h3 6x6 

15120(1 + C2 J3)5 	Z 

Consequently, the following OHAM solution [ nT = 4] can be obtained: 

C2h(3+3h+h2 )(1+/3)0 2 2 
YOHAM = C2 — 	6+6C2/3   x 

+ C2h2 (3 + 2h)(1 + /3)z 04 x4 + C2h3 (-3 + 10C2 /3)(1 + /3)3 çb6 x6 

120(1 + C2/3)3 	 15120(1 + Cz~3)5 	
(6.3 8) 

The unknown C2 and h can be found from BC I and Eq. (6.9c), respectively. For 

example, for 0 = 3, /3 = 1, one finds C2 = 0.20511 and h = —0.77673, and by 

substituting these values in Eq. (6.38) the following four terms OHAM solution is 

found. 

YOHAM = 0.205106+0.504909x2 +0.276144x4 +0.0138409x6 	(6.39) 

In the same way, one can find the OHAM solutions for higher number of terms and for 

different values of 0 and /3 . The results obtained from the so found OHAM solutions 

have been compared with the numerical results and with the results obtained from the 

approximate solution of Li et al. (2004). However, while comparing the results with 

those of Li et al. (2004), one should be aware that the dimensionless quantities defined 

by Li et al. (2004) are slightly different from the present definitions of dimensionless 

quantities, which have been taken from Gottifredi and Gonzo (2005). Basically, Li et al. 

(2004) have proposed the approximate solution in the form of a cubic polynomial. The 
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coefficients of this polynomial solution are found by satisfying the model equation [Eq. 

(6.35a)] and the allied BCs [Eqs. (6.35b)-(6.35c)]. However, one should note that their 

solution is specific to the Michaelis—Menten kinetics. As an example, by following their 

method, we obtain the following approximate solution of dimensionless concentration 

profile for çb =3 and /.3 = 1: 

y L;  = 0.106107 + 0.287786 x 2  + 0.606107 x 3 	 (6.40) 

For several values of 0 and /3  [q = 3, 8 = 1; 0 = 3, /3 = 10], the dimensionless 

concentration profiles computed by using the OHAM solutions, approximate solution of 

Li et al. (2004) and the numerical method are shown in Figs. 6.11 and 6.12. From these 

figures, it can be observed that the concentration profiles obtained by using OHAM 

match closely with the numerically obtained concentration profiles and are either 

equally good or are better than those obtained by using the approximate solution of Li et 

al (2004). The accuracy of OHAM solutions increases with the increase in number of 

terms. Figs. 6.13 and 6.14 show the residual error profiles of the OHAM solutions and 

the one obtained by using the approximate solution of Li et al. (2004). Here also, one 

observes that the residual error of OHAM solution decreases with the increase in 

number of terms. Although not shown in detail, a similar comparison between the 

OHAM solution and the approximate solution of Li et al. (2004) has also been 

performed for 77. For different values of 0 and ,B, the values of r] obtained by using 

these two solutions have been shown in Table 6.5 along with the numerically obtained 

values. It is clear from this table that the values of 1J obtained by using OHAM 

solutions are close to the numerically obtained values, and the error in 17 predicted by 

the OHAM solutions decreases with the increase in number of terms. However, there is 

no such provision of reducing the error in the approximate solution of Li et al. (2004). 

Table 6.5: 	Effectiveness factor Jq] obtained by numerical, Li et al. (2004) and 
OHAM solutions 

Effectiveness Factor [, ] 

Numerical solution Li et al. (2004) 
OHAM 

nT = 6 nT= 8 nT- 10 
3 1 0.7439 0.7980 0.7445 0.7441 0.7439• 
3 10 0.8679 0.8216 0.7653 0.8253 0.8474 
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Figure 6.11: Dimensionless concentration profiles [Michaelis-Menten kinetics: # 
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Figure 6.12:. Dimensionless concentration profiles [Michaelis-Menten kinetics: qi 
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6.4 TUBULAR CHEMICAL REACTOR 

In this section, the axial dispersion model of a tubular chemical reactor 

supporting nonlinear kinetics has been solved by using OHAM. The obtained OHAM 

results have been compared with the numerical results as well as with those available in 

literature. Besides, utility of OHAM has been shown by capturing the dual solutions, 

which appear for non-monotonous reaction kinetics. 

6.4.1 Model Equation 

Consider a tubular chemical reactor in which a unimolecular reaction described 

by a nonlinear kinetics ( —rA ) is taking place. The reactor is assumed to operate under 

steady state and isothermal conditions. It is also assumed that the flow pattern existing 

in this reactor can be represented by the familiar axial dispersion model [Fig. 6.15 

depicts the steady state convection-dispersion-reaction process in a tubular chemical 

reactor]. With these assumptions, the model equation of this reactor can easily be 

derived by applying the material balance for the reacting species [say A] over the 

control volume of the reactor. The so derived model equation is expressed by the 

following second order ODE constituting a BVP (Fogler, 1992; Levenspiel, 1999). The 

associated BCs at the inlet and outlet of the reactor are given by the famous Danckwerts 

BCs. 

D d2C`' — U dC~7A — 	r 	=0 
e dZ2 	dZ 

~-----'  '—..----'  Sink/Source term 
Dispersion /cnn Convection term 

BC I: UCA — De dZ = UCAO 	at Z = 0 [reactor inlet] 

(6.41 a) 

(6.41b) 

BC11: dCA =0 
dZ 

at Z = L [reactor outlet] (6.41 c) 

The above equations can be transformed into the following dimensionless form: 

z 
d y — Pe4 —PeDaf(y)=0 
dz2 	dz 

 Sink! Source term 
Dispersion term Convection term 

(6.42a) 
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BC I: y - 1 	= 1 	 at z = 0 [reactor inlet] 	 (6.42b) 
Pe dz 

BC II: d = 0 	 at z=1 [reactor outlet] 	 (6.42c) dz 

where y = c" is the dimensionless concentration, z = Z is the dimensionless axial 
Ca0 	 L )  

distance, Pei = U L I and Dai = (-̀A° )L - (-Y~° )r I are the Peclet number and the 
De 	 C .0 	CAD 

Damkohler number, respectively. z (= L
) 

is the residence time and f (y) = -rA ) is 

	

U 	 (—r~0 ) 

the dimensionless reaction rate. 

6.4.2 Solutions and Discussion: Concentration Profile 

For simplicity, the OHAM solutions of Eqs. (6.42a)-(6.42c) have been obtained 
for power-law kinetics [ f(y) = y" ], however, OHAM solutions for other forms of 

kinetics, e.g. Langmuir-Hinshelwood kinetics, can also be obtained in a similar fashion. 

Before applying OHAM to Eqs. (6.42a)-(6.42c), it is quite convenient to change the 

dimensionless axial coordinate z by 1- x. As shown in later operations, this shifting of 

the coordinate [interchanging the locations of the reactor inlet/outlet] eases the 

computational efforts by directly evaluating one of the unknown constants appearing in 

the OHAM solution. With this modification, the Eqs. (6.42a)-(6.42c) attain the 
following forms for power-law kinetics: 

+ Pe d - Pe Da y" = 0 dx2  (6.43a) 

BCI: y+ 1 =1 
Pe dx at x =1 [reactor inlet] (6.43b) 

BC II: 	= 0 
do 

at x =0 [reactor outlet] (6.43 c) 
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chemical reactor 
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6.4.2.1 Solution by OHAM 

Corresponding 'to Eq. (6.43a), the following relations can be defined for 

auxiliary quantities: 

2 

N[y] = dxZ + Pe ~ — PeDa y" 	 (6.44a) 

2 

L[ ] = dx'] 
or L'[.] = f f [.]dxdx 	 (6.44b) 

0 

H(x) =1 	 (6.44c) 

yo (x) = C,x + C2 	 (6.44d) 

where Cl and C2 are the constants and can be determined by the related BCs. 

Eventually, the following zero order deformation equation is obtained: 

(1— )L[lV (x, A) — yo (x)] =~,h d 2 	+ Pe d r ( x, A) — 	P e Da tp (x, A )" 

(6.45) 

Using Eq. (6.45), the higher mth order deformation equation is derived, which after 
slight rearrangement yields the following recursive relation: 

Ym (x) = ZnY", (x) 

1 

+ hL' 	1 	a ~n m l [ /̂(X,~') 
+ Pe dV (x,") — PeDa(x,)" 1' 1  

(m —1) ! a~ 	dx 	dx 

for ,n—>1 	 (6.46) 

Now with the chosen initial guess y0 (x) = C1x+C2 , one can easily evaluate 

higher ym s in a systematic manner by using Eq. (6.46). However, before finding higher 

ym s, it is quite useful to analyze the BC II. It can be observed that the BC II requires 

one of the integration constant to be zero, i.e. C1 =0.  Infact, this direct evaluation of 

one of the constants has only been possible due to the shifting of the axial coordinate, 
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i.e. z by 1—x. Now with Cl  =0 and by using Eq. (6.46) we get the following 

expressions for y,,, s [the detailed procedure for finding y, s for power-law as well as 

Langmuir-Hinshelwood kinetics has been presented in Appendix C2]. 

Y0(x) = Cz 

y, (x) _ — h CZ Pe Da xz  

" 	 hZ  y2  (x) _ — (1 + h)C, Pe Da x z  — 6  Cz  Pe2  Da x3  + 24  nC i, Pez  Daz xa 

z 
y3(x) _ — (1+h)Z CzPeDax2  — 3 (1+h)CzPez Dax3  

+ 1  h2Ci (2C2-'Dan + 2C2-'Dahn — hPe)Pe2Da xa  + h3  nC2"-'Pe3  Dal  xs  
24 	 60 

h3  _ 720 n(4n —3)CZn-2Pe3  Da3  x6  

z 
y4(x) _ — (l+h)3 CzPeDax2  — h (l+h)2CzPe2  Dax3  2 	 2 

+ 
 g

2 
(l+h)(CZDan+C2hPe—C2 hPe)Cz-'Pe2 Dax4  

+  120  Cz'Dah3Pe3  (6Cz"Dan + 6CZ"Dahn — C2hPe) x5  

240 Cz 
i -2Da2h3nPe3  (-3CZ'Da — 3CZ'Dah + 4Cz Dan + 4C2 Dahn — C2  hPe) x6  

5040 C
32"-2Da3h4nPe4  (16n —13)x' + 

40320 C
z" 3DaahanPea  (30 — 63n + 34n2  )x$  

After simplification, the five terms [ nT  = 5] OHAM solution is given by: 

Vi(x,1) = Y(x) '& YoxaM (x) 
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4 

= Yo (x) + Z Y. (x) 

z 
= C2 — (4+6h+4h2 +h3 )CzPeDax2 — 6 (6+8h+3h2 )CZPe2Dax3 

+ !2__(6C;1 Dan + 8CZ -'Dahn + 3CZ'Dah2n — 4hPe — 3h2Pe)CZ Pe2Da x4 

h3 _ 

120 
(-8C2-'Dan — 6Cz-'Dahn + hPe)CZ Pe3Da xs 

+ 720 (12Cz-'Da + 9C2 -'Dah —1602-'Dan —1202 -'Dahn + 3hPe)nCz "-'Pe3 Daz x6 

_ 114 	 h4 

5040 (-13 + 
16n)nCZi-2Pe4 Da3 x7 + 40320 (30 — 63n + 34n2 )nC2 n-3Pe4 Da4x8 

(6.47) 

The unknown C2 is found by forcing yoH,M to satisfy the yet unutilized BC I, i.e. Eq. 

(6.43b), as shown below: 

I dyOHAM (1) +t'o~rAM (1) = 1 	 (6.48) 
Pe dx  

And, the optimum value of h is found by using Eq. (6.9c). 

For the given values of the parameters [n, Pe and Da], the Eqs. (6.48) and 

(6.9c) are solved simultaneously so as to obtain the values of C2 and h, which in turn 

are substituted back in Eq. (6.47) to get the OHAM solution of dimensionless 

concentration. One should note that for finding the HAM solution, all the Eqs. (6.44) - 

(6.48) remain valid, however, h is found from the valid region in h -curve instead of 

Eq. (6.9c). 

For some of the parameters' values considered by several researchers, the 

dimensionless concentration profiles obtained by using the OHAM solutions have been 

plotted in Figs. 6.16 - 6.27 along with the numerically obtained profiles. Numerical 

profiles have been found in two different ways, viz, by implementing the inbuilt 

command of MATHEMATICA, i.e. "NDSolve" and by applying the orthogonal 
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collocation [OC] method. The orthogonal collocation method is used, since in some 

situations the command "NDSolve" does not respond properly and rather breaks down. 

From the Figs. 6.16 - 6.27, it is clear that a close harmony exists between the OHAM 

solutions and their numerical counterparts. It can also be observed that the accuracy of 

the OHAM solutions increases with the increase in number of terms. 

For examining the effects of Danckwerts BCs, the concentration profiles with or 

without them have been plotted in Fig. 6.27 for the parameters' values given in Rao et 

al. (1981). It can be observed that the Danckwerts BCs cause a sudden drop in 

concentration at the inlet of the reactor and thereby decreases the whole concentration 

profile. The difference between the concentration profiles corresponding to the two 

different set of BCs decreases as one moves towards the exit of the reactor. Here also, 

the OHAM solutions match well with the numerical solutions. Corresponding to these 

concentration profiles, Fig. 6.28 shows the residual error profiles of the five points 

collocation solution and the OHAM solutions, and also indicates the respective sum of 

square of residual errors. From this figure, it can be seen that there is no appreciable 

difference between the residual profiles, obtained with or without Danckwerts BCs, 

which signifies the same level of accuracy for these two situations. However, it can be 

seen that the sum of square of residual errors of OHAM solution decreases with the 

increase in number of terms, and for n2  = 8 and 10, the sum of square of residual errors 

of OHAM solutions are less than that of the five points collocation solution. The same 

observations can also be drawn from Fig. 6.29, where the profiles of absolute 

percentage error have been plotted for five points collocation solution and OHAM 

solutions. The absolute percentage error has been found by using the following 

equation: 

Absolute percentage error at x = Iy 	Y ail & I  X  loo 
yNm.;mr 

This also substantiates the accurate predictions of OHAM results. Although not 

shown, these observations have also been found to be true for other obtained profiles 

[Figs. 6.16-6.27]. In Appendix C3, convergence of the OHAM solutions has also been 

discussed by using various other approaches. 
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Figure 6.17: Dimensionless concentration profiles for the parameter values given 
in Freeman and Houghton (1966) [power-law kinetics: n = 0.5, Pe = 
10, Da=0.5] 
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Figure 6.18: Dimensionless concentration profiles for the parameter values given 
in Lee (1966) [power-law kinetics: n = 2, Pe = 6, Da = 2] 
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Figure 6.19: Dimensionless concentration profiles for the parameter values given 
in Burghardt and Zaleski (1968) [power-law kinetics: n = 0.5, Pe = 
16, Da = 0.5; n=2, Pe = 20, Da=2.5] 
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Figure 6.20: Dimensionless concentration profiles for the parameter values given 
in Wissler (1969) [power-law kinetics: n = 2, Pe = 10, Da = 0.5] 
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Figure 6.21: Dimensionless concentration profiles for the parameter values given 
in Wan and Zeigler (1970) [power-law kinetics: n = 2, Pe = 24, Da = 
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Figure 6.22: Dimensionless concentration profiles for the parameter values given 
in Fan et al. (1971) [power-law kinetics: n = 3, Pe = 4, Da = 0.5; n = 
0.25,Pe=4,Da=0.5] 
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Figure 6.23: Dimensionless concentration profiles for the parameter values given 
in Fan et al. (1971) [Langmuir-Hinshelwood kinetics: K= 0.1, Pe = 1, 
Da= 12.5;K=5,Pe=4,Da=21 
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Figure 6.24: Dimensionless concentration profiles for the parameter values given 
in Shah and Paraskos (1975) [power-law kinetics: n = 0.5, Pe = 10, 
Da=0.5; n=2,Pe= 10, Da= 1; n=2,Pe= 10, Da=2.5] 
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Figure 6.25: Dimensionless concentration profiles for the parameter values given 
in Marek and Stuchl (1975) [power-law kinetics: n = 0.5, Pe = 10, Da 
= 1] 
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Figure 6.26: Dimensionless concentration profiles for the parameter values given 
in Kubicek and Mavacek (1983) [power-law kinetics: n = 0.5, Pe = 5, 
Da = 1.8791; n 2, Pe= 5, Da = 24.8583] 
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Figure 6.27: Dimensionless concentration profiles for the parameter values given 
in Rao et al. (1981) [power-law kinetics: n = 2, Pe = 10, Da = 2] 
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Figure 6.28: Residual error profiles for the parameter values given in Rao et al. 
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Figure 6.29: Absolute percentage error profiles for the parameter values given in 

Rao et al. (1981) [power-law kinetics: n = 2, Pe = 10, Da = 2] 
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(i) Exit concentration 

Sometimes, one is interested only in the exit concentration and fortunately, exit 

concentration can easily be found by substituting x =0 in OHAM solution, i.e. Eq. 

(6.19), and is given by: 

Y(0) YOHAM (0) = C2 	 (6.49a) 

It should, however, be noted that for different nT  the value of C2  will differ 

slightly. This is because, for different nT  the OHAM will have different solutions, 

which while satisfying BC I, give rise to somewhat different values of C2 . But as 

expected, the value of C2  approaches to the true value as the terms in OHAM solutions 

are increased. 

(ii) Inlet concentration 

Like the exit concentration, the entrance concentration can also be found from 

the OHAM solution by substituting x =1. For n7. = 5, theinlet concentration is given 

below: 

Y(1) - Yo w ( 1) 

= C2  — 2C'DaPeh — I (CZ-' DaPe(12C2  + 4C2  Pe — CDanPe))h2  

- 11 
(C-Z DaPe(360C2 +240C2Pe-60C2+'DanPe+30C2Pe2  —12C+'DanPe2  

—3C"Da2nPe2  + 4C"Da2n2Pe2  )) h3  + 1  (-20160CDaPe — 2016OC2 DaPe2  
40320 

+ 5040C"-'Da2nPe2  — 5040CDaPe3  + 2016C"-' Da 2nPe3  + 504C"-2Da3nPe3  

— 672C"-?Da3n2 Pe3  — 336CDaPe4  + 168C"-'Da2nPe4  + 104Cn-2Da3nPe4  

+30C2"-3Da4nPe4  —1280»-2Da3n2 Pe4  —63C" 3 Da4n2 PL4  +34C"-3Da4n3 Pe4 )h4  

(6.49b) 
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For some of the parameters' values, Table 6.6 compares the inlet/outlet concentrations 

predicted by the OHAM solutions with those obtained by using the orthogonal 

collocation solutions as well as with those available in literature. A reasonably close 

match is found between these values; the accuracy of OHAM solutions can be increased 

by considering more terms. 

(iii) Comparison between the OHAM solution and the analytical solution for first 
order and zero order kinetics 

It is also worthwhile to compare the OHAM solution with the available 

analytical solution for first order kinetics [ n =1]. The analytical solution of Eqs. 

(6.43a)—(6.43c) [axial coordinate reversed] for the first order reaction is given by 

(Fogler, 1992): 

Pe(l_,) gcosh ~x +Pesinh 
yAnalyli.l — e 

2 	 (6.50) 
qcosh 2 + (Pe + 2Da)sinh 2 

where q = Pe P ++ 4Da . The Taylor series expansion of the above solution around 

x = 0, Pe =0 and Da =0 is given by the following series: 

Da2 Pe Da3Pe Da2 Pe2 — 11Da3Pe2 
- 

Da2Pe3 
.yAnaly f;~al ~ 1— Da + Da2 — Da3 — 

6 + 3 + 24 	120 	120 + 

7Da3Pe3 DaPexZ Da2Pex2 Da3PexZ Da3Pe2 X 2 Da3 Pe3x2 + 	— 	+ 	— 	+ 
360 	2 	2 	2 	12 	48• 

DaPez x3 Da2Pe2x3 Da3Pe2 x3 Da3Pe3 x3 + 	— 	+ 	+... 	 6.51 
6 	6 	6 	36 

Now, if one substitutes h = —1 in the five terms OHAM solution [Eq. (6.47)], the 
following series is obtained: 

_ C + C2DaPe x2 _ C,DaPe2 	
X 

+ C2Da2Pe2 x4 + C2 DaPe3 x4 — C7 Da2Pe3 xs -  YoHA"' — 2 	2 	6 	 24 	24 	60 

	

C,DaPe4 5 CZ Da3 Pe3 6 C,Da2Pe4 6 C,Da3Pe4 	C,Da4Pe4 _ 	 8 
120 x + 720 x + 240 x 	1680 x + 40320 x 
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where C2  is found from the BC I and is given by: 

40320 + 40320Da + 6720Da2 Pe — 1680Da2Pe2  + 336Da3Pe2  

C2  = 	1  +336Da?Pe3  —1 l2Da3Pe3  + 8Da4Pe3  — 336DaPe4  + 168Da2Pe4  
40320 

—24Da3Pe4  + Da4Pe4  

Substituting the value of C2  in yOHAM  and expanding the resultant around x =0,  Pe =0 

and Da =0 by using the Taylor series method, one obtains the following expansion: 

Da2Pe Da3Pe Da2 Pe2  _ 11Da3 Pe2  Da2 Pe3  
YOHAM 1— Da+Da2  —Da3  — 

6 + 3 + 24 	120 	120 + 

7Da3 Pe3  DaPex2  Da2 Pex2  Da3Pex2  Da3 Pe2 x2  Da3Pe3 x2  
360 	2 	2 	2 	12 	48 

2 3 	2 2 3 	3 2 3 	3 3 3 + 	— 	+ DaPe x Da Pe x Da Pe x Da Pe x  +... 	 (6.52) 
6 	6 	6 	36 

It is clearly evident that both the series expansions, i.e. Eqs. (6.51) and (6.52), match 

well and thus proves the validity of OHAM solution. Fig. 6.30 shows the dimensionless 

concentration profile obtained by using OHAM and numerical method for the 

parameters' values given in Ray et al. (1972), i.e. n = 1, Pe = 50 and Da 10. A close 

agreement is observed between the OHAM solutions and those obtained by numerical 

method. 

The above discussion is also true for the zero order kinetics [ n = 0]. For zero 

order kinetics, the analytical solution of Eqs. (6.43a) - (6.43c) is given by: 

Date Pe` —1)+Pe+PeDa(x-1) 
YAnalyr;car = 	 Pe 	 (6.53) 

Expanding the above solution around x = 0, Pe =0 and Da = 0 by using Taylor 

series method, one finds the following series expansion: 

DaPe  ,  DaPe2 3  DaPe3  4  DaPe4 	DaPes  
YA„ar,r,a, 	1— Da + 2 	— 6  x + 24  x — 120 x5  + 720 x6  + 

(6.54) 
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For nT  =10 and h = —1, the OHAM solution is found by following the same 

steps as were followed for first order kinetics [the relevant steps are shown in Appendix 

C2]. The Taylor series expansion of yoHM  around x =0,  Pe =0 and Da =0 is given 

below, which is exactly the same as the one obtained for the analytical solution. Thus, 
the correctness of OHAM solution is verified again. 

DaPe  z  DaPe2  3  DaPe3  4  DaPe4  5  DaPe5  
yOHAM - 1—Da+ 2  x- 6  x + 24 

x  — 120 x  + 720 x
6 +... 

(6.55) 

Fig. 6.31 shows the dimensionless concentration profile obtained by OHAM for 
n = 0, Pe =10 and Da =4 along with the numerically obtained profiles; here also a 

close conformity is observed. It should be noted that for zero order reaction, the reactant 

concentration can become zero prior to the exit of the reactor, and therefore, the above 

solution expressions [Eqs. (6.53)-(6.55)] become invalid. However, in such situations, 

one can obtain the analytical and OHAM solutions by employing the following BCs, in 
addition to the BC I: 

BC II:- = 0 	at x = S [at some position inside the reactor] 

BC III: y = 0 	at x = S [at some position inside the reactor] 

where S [ 0 _< 8 <1]  is a position in the reactor where reactant vanishes [ y = 0 ] and 

can be found by using the additional BC III. 

(iv) Dual solutions by OHAM: negative order kinetics 

The utility of OHAM is also illustrated by capturing the multiple solutions 

exhibited by the axial dispersion model of a tubular chemical, reactor sustaining a 

negative order reaction. Such rate expressions generally appear in the higher 

concentration ranges of the dual site kinetics of Langmuir-Hinshelwood type occurring 

on a catalytic surface. For example, the catalytic dehydrogenation of alcohols over 

zeolite for the production of olefins, and the oxidation of carbon monoxide . over Pt 
catalyst is given by (Elnashaie and Abashar, 1990): 
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—rA  = 	kCA  ,  and —rA  =  WACB  
(1+KACA ) 	 (1+K ACA )

z 
 

For higher values of CB  and K 4  C 4 , the above rate expressions reduce to a 

negative reaction order kinetics [ n = —1 ] and because of this non-monotonic reaction 

rate, the possibility of more than one solution exists. For a simple situation of unit 

effectiveness factor, and for the stated limiting situation of higher CB  and higher K 4  C4 

in the above kinetics, the Eq. (6.43a) becomes: 

d2  2  + Pe dy  - Pe Da y-' = 0 
dx 	dx 

(6.56) 

The concerned BCs [Eqs. (6.43b) and (6.43c)] remain the same. It can be 

numerically examined that for some region of the parameter space, the above equation 

exhibits (i) single solution (ii) dual solutions, and (iii) no solution. The single or dual 

solutions can also be found with the help of shooting or the weighted residual methods 

(Villadsen and Michelsen, 1978; Finlayson, 1980; Kubicek and Hlavacek, 1983). Here 

we have obtained the dual solutions, existing for some of the parameters' values, by 

using OHAM. However, before finding the dual solutions of Eq. (6.56), we first analyze 

the two extreme situations displayed by the axial dispersion model of a tubular chemical 

reactor. These situations are represented by the two ideal reactors namely PFR [plug 

flow reactor] and CSTR [continuous stirred tank reactor]. It can also be noted that the 

model equations of these two ideal reactors incorporate only one of the parameters 

[Da] since, the degree of mixing, described in axial dispersion model by the remaining 

parameter [Fe],  lies at the extreme border lines, i.e. no mixing [ Pe = oo for PFR] and 

maximum mixing [ Pe= 0 for CSTR]. 

(a) 	Plug flow reactor [Fe = cc ] 

The model equation of a PFR can directly be deduced from the axial dispersion 

model equation of a tubular chemical reactor by substituting Pe = cc and for negative 

order kinetics [ n = —1], it is given by the following dimensionless equation. It should, 

however, be noted that in the following equation, the axial coordinate is reversed so that 

the consistency is maintained for comparing the solution with that of axial dispersion 
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Figure 6.30: Dimensionless concentration profiles for the parameter values given 
in Ray et al. (1972) [first order kinetics: Pe = 50, Da = 101 
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model of a tubular chemical reactor. The discussion that follows will not be effected by 

the shifting of coordinates. 

4  — Day' = 0; y(1)=1 and xE[0,1] 	 (6.57) dx 

The Eq. (6.57) is amenable to the following analytical solution: 

y = 1— 2Da + 2Da x 	with x E[0,1] 	 (6.58) 

From the above equation, it can be seen that the real and single solution exists for 

0 <— Da<— 0.5 only, and for Da> 0.5 no physically realistic solution will exist. 

(b) Ideal CSTR [ Pe = 0 ] 

For n = —1, the model equation of an ideal CSTR is given by the following 

dimensionless equation: 

1 — y = Day' 	 (6.59) 

Unlike PFR, the above equation bears following two analytical solutions: 

1— 1— 4Da 	 6 y = 	2 	
(6.60a) 

and 

1— Vi+4Da 	 6 v = 	2 	
(6.60b) 

It can be easily verified that for Da < 0.25 two real solutions exist, for Da = 0.25 

only single solution exists, whereas, for Da> 0.25 no real solution exists. 

(c) Axial dispersion model 10<  Pe < co] 

Since, the predictions of axial dispersion model lie between the above two 

limiting cases, hence, for some of the values of parameters, the axial dispersion model 
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may yield single, dual or no solutions for n = —1. The above results of two ideal 

reactors lead to the following conclusions for axial dispersion model: 

• Irrespective of the value of Pe, no real solution can be found for Da> 0.5. 

• For an ideal CSTR [Pe = 0], dual solutions can be found for Da< 0.25. 

• For axial dispersion model, there is every likelihood of multiple solutions for Pe 

close to zero [for smaller Pe ]. However, as Pe is increased, then at some value 

of Pe, dual solutions would converge into one, and thus would yield single 

solution thereafter. The boundary of Pe that decides the existence of single or 

dual solutions in the region 0 <Da< 0.25, depends on the value of Da . 

(d) Dual solutions by OHAM 

Basically, the same steps of OHAM are followed that were followed earlier 

while finding the single solution and thus the same solution expression corresponding to 

the Eq. (6.47) is obtained. However, now two different sets of C2  and h are obtained 

while solving the Eqs. (6.48) and (6.9c), which in turn give rise to the dual solutions. 

For example, by solving the Eqs. (6.48) and (6.9c) for n = —1, Pe =1/5  and Da =1/5, 

the five terms OHAM solution [Eqs. (6.47)] yield the following two sets of C2  and h: 

C2  =0.23893 1,  h =-0.822218 and C2  = 0.728762, h = —0.968018 

The corresponding dual solutions [five terms OHAM solutions] are: 

First solution [ C2  = 0.238931, h =-0.822218] 

yoHAM = 0.238931 + 0.083623x2  — 0.005472x3  — 0.004554x4  

+ 0.000328x5  + 0.000672x6  — 0.000043x7  — 0.000083x8 	(6.61a) 

Second solution [ C2  = 0.728762, h = —0.968018 ] 
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yoHM = 0.728762 + 0.027444x2 — 0.001829x3 — 0.000081x4 

+ 0.000010x5 + 0.000002x6 — 0.0000003x' -- 0.000000062 (6.61b) 

Similarly, the OHAM solutions can be obtained for higher number of terms, and 

Fig. 6.32 shows the dimensionless concentration profiles obtained by using the OHAM 

solutions [ n~. = 5, 6, 7], five points collocation solution and the numerical method. It 

can be seen that a close agreement exist between these profiles, which validates the 
OHAM solutions. 

For several values of Pe and for n = —1 and Da =1/5 , the dimensionless 

concentration profiles have also been obtained by using OHAM and are shown in Fig. 

6.33, along with the concentration profiles existing in a PFR [single solution] and in a 

CSTR [dual solutions]. It can be observed that for this value of Da [= 1/5], the dual 
solutions exist for 0 < Pe <_ 1.5 , whereas, single solutions prevail for Pe >1.5. 

6.5 CONCLUDING REMARKS 

An efficient variant of HAM, namely OHAM, has been applied to solve the 

model equations of reaction-diffusion process and tubular chemical reactor, and the 

conclusions pertaining to them are summarized below. 

(1) 	Reaction-Diffusion Process in a Porous Spherical Catalyst 

Approximate solutions of the concentration profile and effectiveness factor have 

been obtained by using OHAM for two types of kinetics, i.e. power-law kinetics and 

Michaelis-Menten kinetics. The results obtained by using the OHAM solution match 

well with the numerical results, and are found to have lesser error asp compared to those 

obtained by using the MADM solution of Kumar and Singh (2010) and the approximate 

solution of Li et al. (2004). Besides, it is also shown that MADM is a special case of 

OHAM, and unlike the OHAM solutions, the MADM solutions do not correspond to the 

minimum value of sum of square of residual errors. Likewise, the approximate solution 

of Li et al. (2004) is specific to the Michaelis-Menten kinetics and there is no provision 

in the solution for improving its accuracy. In contrast to this, the OHAM is found to be 
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applicable to other forms of kinetics and the accuracy of the OHAM solution can be 

increased by considering more terms. 

(ii) 	Tubular Chemical Reactor 

Approximate solutions of the concentration profile have been found by using 

OHAM. The obtained OHAM results have been found to match well with the numerical 

results as well as those available in literature. Utility of OHAM has been demonstrated 

by capturing the multiple solutions, which appear for some of the parameters' range in 

case of non-monotonic reaction rates. 
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NOMENCLATURE 

Abbreviations 

AS analytical solution 
APS approximate solution 
HAM homotopy analysis method 
MADM modified Adomian decomposition method 
NS numerical solution 
OHAM optimal homotopy analysis method 
5 pts. OC five points orthogonal collocation 

Notations 

a 	 [-] 	constant considered by Kumar and Singh (2010) 

B[y] 	 [-] 	operator form of the BC [Eq.(6.1)] 

q, C....•C 	[-] 	constants in initial guess 

(—rA0    Da 	 [-] 	Damkohler number = 	= ( —SAO )  
C oU 	CAo 

e 	 [-] 	exponential function 

f(y) 	 [-] 	dimensionless reaction rate =  rA ) 

( —rAO ) 

h 	 [-] 	auxiliary [convergence control] parameter in HAM/ 

OHAM 

hopfimzim 	 [-] 	 optimum value of h found by using Eq. (6.9c) 

H(x) 	 [-] 	auxiliary function in HAM/OHAM 

i 	 [-] 	index variable 

k 	 [s 1]; 	rate constant(s) used in Langmuir-Hinshelwood 

[m3.mol-l .s-1] 	kinetics (Elnashaie and Abashar, 1990) 

k„ 	 [moll-n m3n-3  s-1] rate constant for n 1̀2  order power-law kinetics 

K 	 [-] 	dimensionless constant in Langmuir-Hinshelwood 

kinetics (Fan et al., 1971) 

K A 	 [m3.mo1-1] 	constant in Langmuir-Hinshelwood kinetics 
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(Elnashaie and Abashar, 1990) 

K. [mol.m 3] parameter in Michaelis-Menten kinetics 

L [m] length of the reactor 

L[.] [-] auxiliary linear operator 

[-] inverse operator of L[.] 

m [-] index variable 

M [-] number of intervals 
n [-] reaction order 

nT  [-] number of terms in HAM/OHAM solution 

nT.  [-] maximum number of terms in HAM/OHAM 

solution 

IV[Y] [-] nonlinear operator form of the equation 

Pe [-] 
UL 

Peclet number 	= 
De  

q [-] constant in Eq. (6.50) [= 	Pe Pe+4Da ] 

rA  [mol.m 3.s-1 ] reaction rate of species A 

[mol.m 3.s-1 ] reaction rate of species A at concentration CAO 

—rAS  [mol.m 3.s-1 ] reaction rate of species A at the catalyst surface 

yn,  [mol.m 3.s-I ] parameter in Michaelis-Menten kinetics 

r [m] radial distance 

R [m] radius of the spherical catalyst 

91 [-] sum of square of residual errors 

[-] term given by Eq. (6.5b) 

1= 	1 	8„ON[Y » , (x, t)] 
(m-1)!  

A=o 

U [m.s-l] bulk velocity 

Ax [-] equispaced interval length 

Yo(x) [-] initial guess in HAM/OHAM solutions 

Y,,, (x) [-] n/'' term in HAM/OHAM solutions 

YMWM [-] MADM solution 



YMM [-] 	HAM solution 

YOHAM ' [-] 	OHAM solution 

YAnalylical [-] 	 analytical solution 

• [-] 	solution calculated by OHAM or by five points 

collocation method 

YNw„e.;car [-] 	numerical solution 

Y LI [-] 	solution obtained by the method of Li et al. (2004) 

z [-] 	dimensionless axial distance from the reactor inlet 

Z 
=—=1—x 

Z [m] 	axial distance from the reactor inlet 

Greek letters 

/3 	 [-] 	dimensionless parameter in Michaelis-Menten 

kinetics I = CAS 

K., 

S 	 [-] 	dimensionless axial distance where concentration is 

zero for zero order reaction [ 0 <_ S <1]  

71 	 [-] 	catalyst effectiveness factor for spherical catalyst 

3dy 

0z 	x=t 

[-] 	hypothetical parameter [.Z E [0, 1] ] 

V 	 [-] 	constant in Eq. (6.17a) 

L 
[s] 	space time of = - 

U 

0 	 [-] 	Thiele Modulus for spherical catalyst 

_ 
(~~4 e S 

0, m < 1 
,gym 	 [-] 	constant = 1 m>2 

yi (x, A,) 	 [-] 	unknown function such that V (x, 1) = y(x) and 
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y(x, 0) = Yo (x) 

Sections 6.1 and 6.2 
Notations 
x 	 [-] 	independent variable 

Y(x) 	 [-] 
	

dependent variable 

y(x) 

concentration of species A inside the catalyst pores 

concentration of species A at the catalyst surface 

effective diffusivity of reactant inside the pore 

independent variable; dimensionless distance along 

pore length = 
R 

dependent variable; dimensionless concentration 

CA  
CAS 

Section 6.3 
Notations 

CA  

CAS  

De  

x 

[mol.m 3 ] 

[mol.m 3 ] 

[m2  .s] 

[-] 

concentration of species A and B, respectively 

inlet concentration of species A 

[m2.s '] 	dispersion coefficient 

[-] 	dimensionless axial distance from the reactor outlet 

[=1—z] 

CA  [-] 	dimensionless concentration = 
CAo 

Section 6.4 
Notations 

CA , CB 

CA0 

D 
x 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

The main conclusions of the present research work are summarized in following 

three categories: 

[Al 	Process Models solved by Analytical Methods 

Analytical solutions have been obtained for the models of the following 

chemical engineering- processes/systems: 

(i) Transient convective cooling of a lumped body 

(ii) Transient convective-radiative cooling of a lumped body 

(iii) Steady state heat conduction in a metallic rod 

(iv) Steady state radiative heat transfer from a rectangular fin 

(v) Steady state convective heat transfer from a rectangular fin 

(vi) Rotary kiln model for solid bed depth profile 

(vii) Poiseuille and Couette-Poiseuille flow of a third grade fluid between two parallel 

plates 

The obtained analytical solutions have been successfully validated with the 

corresponding numerical solutions. For all of the above processes/systems, the 

limitations of corresponding available approximate solutions have also been shown by 

comparing them with the presently derived analytical solutions. For the model equations 

of transient convective-radiative cooling of a lumped body and the rotary kiln, the 

practical utilities of the corresponding analytical solutions have also been demonstrated 

by simulating the respective experimental studies. Besides, the criteria of existence, 



uniqueness/multiplicity and stability of the analytical solutions, obtained for the process 

of steady state convective heat transfer from a rectangular fin, have also been discussed. 

[B] Process Models solved by Approximate Methods [ADM and RADM] 

Approximate solutions have been obtained by using ADM and one of its 

variants, namely RADM, for the models of the following chemical engineering 

processes/systems. 

(i) Thermodynamic equation of state [Beattie-Bridgeman equation of state] 

(ii) Friction factor equation for the flow of Bingham fluids in smooth pipes 

(iii) Reaction-diffusion process inside a porous catalyst slab 

(iv) Reaction-diffusion process inside a porous catalyst sphere 

While solving the thermodynamic equation of state, advantages and limitations 

of ADM and RADM have been illustrated, and guidelines have been proposed to avoid 

the failure of these methods. For friction factor equation, the RADM solutions have 

been found to be more accurate as compared to the ADM solutions and the available 

correlations. For reaction-diffusion processes, the limitations present in the ADM as 

well as in other available approximate solutions have been discussed and rectified by 

using RADM, which yield accurate results and is also applicable to the other forms of 

kinetics. 	 ' 

[C] Process Models solved by Approximate Method [OHAM] 

Approximate solutions have been obtained by using an effective variant of 

HAM, namely OHAM, for the models of the following chemical engineering process / 
system. 

(i) Reaction-diffusion process inside a porous catalyst sphere 

(ii) Tubular chemical reactor 



The OHAM solutions obtained for the above models have been successfully 

verified with the respective numerical solutions. For the reaction-diffusion process, 

advantages of the OHAM solutions over existing approximate solutions have also been 

highlighted. For the tubular chemical reactor, the utility of OHAM has been 

demonstrated by capturing the multiple solutions, which arise for some of the 

parameters' range in case of non-monotonic reaction kinetics. 

It is our view that the analytical and approximate solutions of selected process 

models, obtained in the present thesis, will be useful in many ways, i.e. for simulating 

experimental studies and for the estimation of parameters. Use of techniques and 

methods adopted for solving AEs and ODEs can also be made to other process models. 

We feel that if such an attempt is made it would certainly prove to be advantageous in 

terms of better understanding of the process and also in ease of obtaining solutions. 

7.2 RECOMMENDATIONS 

Research is an ongoing process and the completion of a research project opens 

many other avenues for future endeavors. The completion of this research work has led 

to an understanding of following points which require further investigation: 

(i) Beside the two familiar analytical methods used in the present work [separation 

of variables in conjunction with the partial fraction decomposition method and 

the derivative substitution method], other existing analytical methods can be 

employed for solving the nonlinear model equations. One such powerful 

analytical method is Lie's symmetry method, which transforms nonlinear 

equations into simpler linear/nonlinear equations. To the best of our knowledge, 

the potential of this method has not been fully realized in chemical engineering 

and it can be a promising tool for analytically solving some of the yet unsolved 

nonlinear model equations arising in chemical engineering. 

(ii) Other existing approximate methods, e.g. variational iteration method [VIM], as 

well as the variants of ADM and HAM with Pade approximation may also be 

employed to solve nonlinear model equations arising in chemical and allied 

engineering sciences. 

:• 



(iii) Use of some of the approximate methods, namely ADM, HAM and VIM, may 

also be made to improve the existing numerical methods, as was carried out by 

Abbasbandy (2003), Abbasbandy et al. (2007), and Motsa et al. (2010). 

(iv) In the present work, analytical/approximate solutions of models described by 

PDEs have not been attempted. It is our view that the solution of nonlinear PDE 

models of process systems by these methods and their variants would offer lot of 

challenges and opportunities, but it would certainly be a rich and rewarding 

experience. 
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APPENDIX Al 

Transient convective-radiative cooling of a lumped body 

Roots of the quartic equation
'
` (ems —6a )+(O —6)=O are given as follows: 
YC 

r, = 0" 

1 	16'/3e O 	y1/3 
la 

y l/3 	+ 21/3 el 

1 	21/3 (1 + i~)e,0. (1 — iJ) y'/3 
Y3 = 3 —BQ + 	yl/3 	 161/3 e, 

21/3 (1—li)e1O 	(1+l~)y !/3 
Y4 = 	+ 	r1/3 	 16"3e1 

where y = (-27e,2 — 2Oe,390 + 3.J 27e,4 + 40e,59a + 16e,6BQ) and e1 = ~l~ . Following 

points can be noted down regarding the properties of the roots: 

(i) First root is known a priory and is having a real positive value, i.e. r, =6,(>O). 

(ii) Second root is negative and real [say r2 ] whereas, the third and fourth roots [ r3 

and r4 ] are complex conjugates. 

(iii) No root is repeated [multiplicity of all the roots is one]. 
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APPENDIX A2 

Transient convective-radiative cooling of a lumped body 

Constants A1, BI, CI and D, appeared in Eqs. (3.20)-(3.22) due to the partial fraction 

decomposition in Eq. (3.19) are given as follows: 

A =  1  —  1 

(YY2 )((r 2 (Y3 +Y4 )Y. +Y3Y4 )) 	(Yl —Y2 )((Y —R)2 +b2 )) 

B =  1  =  1 
1 	(Y Y Y2 — (Y +Y 	 ( Y 2 	I)(\( 2 	\ 3 	4 r) 2 +YY  4)) 	l 2Y — 1)((Y2 R 2 +b2 ) 	) 

C, — 	r,+r2 — Y3 —Y4 	— 	Yl -~Y2 -2C1' 

(Y3 — Yl)(Y3 —Y2)(i — Y4)(Y2 — r4) 	((,j —a)2 +b2)1 12 —R)2 b2 

— 	Y r, — 2 (Y + Y2 ) R + 3 a 2 — b 2 

(r3 — Yl)(j3 — r2)(Yl — r4)(r2 — 	(`'i —R)2 +b2)((r2 — a)2 117 2 ) 
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APPENDIX A3 

Steady state heat conduction in a metallic rod 

Here, we show that the same analytical solutions [Eqs. (3.39a) and (3.39b)] can 

also be obtained by using the derivative substitution method. This method is generally 

helpful whenever the independent variable 4 is absent in the concerned equation and 

has been successfully applied to solve various nonlinear ODEs (Rice and Do, 1995). In 

this method, it is assumed that the solution exhibits an implicit form, i.e. f (0) = ~ . In 

other words, the derivative 0' is a function of 0 only, i.e. 0 ' = p (0) . Therefore, 

d 8 z 

e " = 1 p () , where p (0) is an unknown function of 0, only. 
2 dO 

Now, replacing 0' and 0" in Eq. (3.36a) by the above respective relations, one 

obtains: 

(i+,80)    d (p(e)2 ) + 2flp(e)Z = 0 
dO 

(A3.1) 

Substituting p(®2 = y and after little manipulation, the above equation reduces 

to the following first order linear ODE: 

(1+/36) y'+2/3y = 0 	 (A3.2) 

where y' _ 	. Now, solving the above first order linear ODE by using the integrating de 
factor method, one finds: 

_ C 
Y (1+/3B)2 

(A3.3) 

where Cl is a [positive] constant of integration. Using the relation p2 = (e')2 y, one 

obtains: 
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P(B)= d~ _ (1+/38) 	 (A3.4) 

Positive sign before the radical sign has been considered to reflect the true situation. 

Integrating the Eq. (A3.4) once more, one finds the expression for 0 [it should be noted 

that the equation below is similar to the Eq. (3.38)]: 

z 
(A3.5) 

z  
where C2 is another constant of integration. C, [= (1 + ~) and C2 [= 01 have been 

_ 
 

evaluated from the associated BCs. Substituting these values in Eq. (A3.5), and solving 

the resultant equation for 0, one arrives at the following two solutions, which are 

exactly same as those given by Eqs. (3.39a) and (3.39b). - 

0- 1+ 1+~/3~+ 32~ 	
(A3.6a) 

[also Eq. (3.39a)] 

9 = 
—1— 1+~Q +,Q2 	 (A3.6b) 

[also Eq. (3.39a)] 

The second solution is not physically viable and is discarded. 
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APPENDIX A4 

Steady state convective heat transfer from a rectangular fin 

Case1(b): /1+n=-2 & /#=n=-1 

(i) 	Temperature profile 

For this case, the Eq. (3.59) reduces into the following linear form [it should be 

noted that the following equation is independent of n and /3]: 

y'— 29-̀ y — 2N 20 =0 	 (A4.1) 

Now, by applying the integrating factor method together with BC I, the Eq. (A4. 1) can 

be solved analytically, and the following solution is obtained: 

z 

Y(e) = ( d ) = 2N 282ln [% 1 B 
(A4.2) 

Simplifying the above equation and integrating it between the limits O—O at = 0 to 

0 at , one finds the following integral: 

B 	dO f 	= f d 	 (A4.3) 
B0  2N 2921n / Bo  

Evaluation of the above integral yields the following relation for 0: 

z z 

B = OOExp N 	 (A4.4) 

[also Eq. (3.68)] 

The unknown 00  is evaluated by using the BC II, i.e. 0(1) = 1, and is given by: 

e0 = Exp (—N2/2) 
	

(A4.5) 
[also Eq. (3.69)] 
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Case2(a):/l+n~-2 & /3=n~-1 

(i) 	Temperature profile 

For this case, the Eq. (3.59) reduce to: 

y'+2iff'y-2N20 = 0 	 (A4.6) 

Solution of the above equation can be obtained by applying the integrating factor 
method and is given by: 

d9 2 / N2022" y= 	=e 2n l.,l+

(1+n) (A4.7) 

N202+2n 
where C1 = — 	° 	I is the constant of integration, and has been found by using the 

(l+n) 

BC I. Placing q in Eq. (A4.7), one finds: 

y 
 — (

dO 2 	N2 e-2n (02+2n — 02+2n ) 

d~) (l+n) 	 0 (A4.8) 

Integration of the above Eq. (A4.8) between the limits e=eo at = 0 to 0 at , yields 

the following integral: 

0 
	8"d6 	

= f d J 	z 
Bo 	N (e2+2n — e2+2n) 0 

(1+n) 	° 

(A4.9) 

Evaluation of the above integral gives the following result: 

e1+n 1 — 02+2ne-2-2n sin 1 el+no0 1-n 
0 	0 	[ 	o 	+ 	(1 + n)7z0a 	= 	(A4.10) 

(1 + n)N2 82+2" — 90+2" 	2 — (1+ n) (1 
+ n)N 2 B'+2n 

00 

After little mathematical alterations, the cumbersome expression in Eq. (A4. 10) can be 

simplified to attain the following more convenient form of 0: 

sin-' [B'+'eo' " _ 2 i (1 + n)N 2 	 (A4.11) 
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where i = 	. With some more rearrangements, the above expression can further be 

simplified into the following form: 

0 = 80 (cosh[NVIT—nfl) I+n 	 (A4.12) 
[also Eq. (3.71)] 

The unknown 00 in above Eq. (A4.12), can be found by satisfying the remaining BC II, 

i.e. 8(1) =1, and is given by the following equation: 

-1 
00 = (cosh[Nfi + 	 (A4.13) 

[also Eq. (3.72)] 

Substituting the expression of eo in Eq. (A4.12), the following explicit analytical 

solution of the dimensionless temperature is obtained: 

i 

0 	cosh[N 1 + n ] 1+i  
cosh[N 1 + n] J 	 (

A4.14 
) 

Case2(b):/1+n~-2 & /fin & 2/3+n#-3 

(i) 	Temperature profile 

For this choice of /3 and n, Eq. (3.59) stays unaltered in its most general and 

original form, and is reproduced below: 

y'+ 2,80-' y — 2N
201+n-P = 0 	 (A4.15) 

Solution of the above linear equation is found by using the integrating factor method 

and with the help of BC I, and is given by: 

2N 2  
J

= 	0 -2 fl (02+n+a —Bot„+a 

(
d~ 	2+n+/3 

(A4.16) 

On integrating the Eq. (A4.16) between the limits 0=4 at = 0 to 0 at 4, one finds 

the following integral: 
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0 

2  — d gv 	2N 	(n2+n+13 — e2+n+J6 	0 
(A4.17) 

After solving the above integral, the following analytical solution of 0 is obtained: 

+R 

	

02+ 3413 	 1+ f3 	1 3+ n+ 2,8 02+17+13 
B 	1— Bo

+n+a HG2F, 2+n+/3' 2' 2+n+~3 ' e~+n+p 

r2N2 (B 2+n+/1 — e~2+n+/3 ) 

2+n+/3 

—7r(2+n+/3)6r'o+~ 
3+n+2/3.  

[ 2
] 

4+n+3 	
(A4.18) 

(I + f3) 2N 2e~+n+P r' 	/3 
4+2n+2/3 

[also Eq. (3.75)] 

where F[z] and HG2F, [c, b, c, z] are the well known Gamma and the Gauss' 

Hypergeometric functions, respectively [Eqs. (3.51a) and (3.51b), respectively]. The 

unknown eo in Eq. (A4.18) is obtained in a usual manner as shown below, i.e. by 

satisfying the remaining BC II [ 0(1) =1 ]. 

1+/3 	1 3+n+2/3 	1 
1—eo+n+aHG2F 2+n+fl'2' 2+n+/3 'go+ n+Q 

2N 2 (1— go+n+P) 
(1+~3) 	

2+n+/3 

— 	 2+n+/3 	1 
(A4.19). 

(l+fi) 2N2eo+,t+p Fr 4+n+3 fj1 
4+2n+2/3 

[also Eq. (3.76)] 

Thus obtained value of e° is placed back in Eq. (A4.18) to get the analytical solution of 

dimensionless temperature 0. 



Case2(c):/3+n~-2 & /30n & 2/1+n=-3 

(i) 	Temperature profile 

For the values of /3 and,, pertaining to this case, the Eq. (3.59) becomes: 

(5+3n) 

y'— (3 + n)e-] y — 2N20 2 =0 
	

(A4.20) 

The solution of the above equation can be found by using the integrating factor method 

and BC I, and is found to be: 

d8 2 4N2 (3+n) 	]+n 	l+n 

y=— = eZ e2-eoz 
d 	l+n 

(A4.2 1) 

Integration of Eq. (A4.21) between limits e=00 at = 0 to e at , yields the following 

integral equation: 

j 	dB 
	d~ 

eJ 	4N2 (3+n) 	]+n 	1+n 
= 

0 

l+n 

(A4.22) 

By solving the above integral, one obtains the following analytical solution of 0 for this 

case: 

0 

2 — e0 2 	 (]+n) 	 O+n) 

l+n 	
1— e 2 +sin ' 	4 (-1+n) 

— 	
+ Id 0 (]+n) eQ 2 

,11+n) 	(1+n) 
(l+n) 	

(00 
z 	 2N 

N(96o ) z 	1- 0. 

(A4.23) 
[also Eq. (3.79)] 

Using BC II, the unknown eo is evaluated by the following equation and its subsequent 

substitution into Eq. (A4.23) yields the temperature profile. 
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FL-21 
 1 — o 2 + sin-1  e0  4  

NO0  2  1 — 0o  z 

(-1+,)  
2 

2N  (1 + n) 
00  

(A4.24) 

[also Eq. (3.80)] 
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APPENDIX B1 

Fluid flow process 

Model Equations for the Flow of Third Grade Fluid between Two Parallel Plates 

For the sake of completeness, the derivation of Eqs. (4.17), (4.19a)-(4.19c) and 

(4.40a)-(4.40c) has been taken from the works of Siddiqui et al. (2008b) [Siddiqui, 

A.M., Zeb, A., Ghori, Q.K., Benharbit, A.M., 2008. Homotopy perturbation method for 

heat transfer flow of a third grade fluid between parallel plates. Chaos Solitons Fractals 
36, 182-192], and is reproduced below. 

Basic conservation equations 

The fundamental laws of the conservation of mass and conservation of 

momentum for an incompressible fluid are given below: 

V.0=O 	 (B1.1) 

Du 
PDt  =pf +V.t 	 (B 1.2) 

where u is the velocity field, f is body force, r is the stress tensor, p is the constant 

density of the fluid and D is the material derivative [substantial derivative]. 
Dt 

Constitutive equation for a third grade fluid 

The constitutive equation for a third grade fluid is 

T = — pI + µA1  + a1A2  + a2Ai + 13A + /32(A1A2 + A2A1) + /93(trA2)A1 

(B1.3) 

where p is the fluid pressure, p is the coefficient of viscosity, ai  and ,8, are the 

material constants [material moduli (Rivlin and Ericksen, 1955)], A1, A2, A3  are the 
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kinematic tensors (Rajagopal and Sciubba, 1984) defined by 

Al =LT +L 

DAn-i 
An = Dt  + An -1L + LT A_1, n = 2, 3 

(B 1.4) 

(B 1.5) 

where L is gradient of u [= Vu]. 

Model equation for Couette-Poiseuille flow 

Consider the steady flow of a third grade fluid between two infinite parallel 

plates, which are at a distance 2h apart [Fig. 4.9]. The lower and upper plates are, 

respectively, located in the planes x = -h and x = h of an orthogonal coordinate 

system with y-axis in the direction of flow. The velocity field is assumed to be of the 

form: 

u= [0, u(x, Y, Z), 0],' u (x, Y, Z) = u (x) 
	

(B 1.6) 

We consider that the lower plate is stationary and the fluid motion is driven by the 

movement of upper plate moving with a constant velocity a as well as by the constant 

pressure gradient. With these assumptions, the continuity equation is satisfied 

identically, and the momentum equation [Eq. (B 1.2)] yields 

u  u 
+ 6(/3z  + A3) au z azu  = ap 	 (B 1.7) 

ax ax ax ay 

ap ap =o 	 (B1.8) 
ax — az 

Thus p [generalized pressure] is a function of y alone and is given by 

2 

+ ) du P=P-(2aaz dx 	 (B1.9) 

Further, from Eqs. (B 1.7) and (B 1.8) we find that 

ap  = constant = dp  . 	 (B 1.10) y 	 dy 
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APPENDIX B2 

Fluid flow process 

Derivation of the Solutions for Case 2(b) and Case 2(c) 

Case 2(b): Couette-Poiseuille flow with upper plate moving in positive y direction 

with a high velocity [a>O and large] 

In this situation, the maximum velocity of the fluid [ ( ], due to the higher plate 

velocity, will be same as that of the moving plate, and throughout the "region 

-1 < x < 1, the velocity gradient will be positive [U'> 0 ]. In other words, the location 

Xx, where U' = 0, will lie outside the region of interest, i.e. X * > 1. However, in the 

region of interest [ -1 <- X <_ 1], the location of the maximum velocity will lie at the 

moving plate, i.e. at X=1. Hence, one can replace X' > 1 with X' = 1, and U with 

A . As a result, one need not to evaluate the values of X" and U in such situations. To 

obtain the solution for this situation, the same methodology as followed in subsection 

4.2.2.2, has also been adopted here, and one can initiate again with Eq. (4.41), while 

retaining the positive sign for the slope, i.e. 

dU 	-1 + 1 + 12/3(C, - 2U) 
U' — +.! 	6

6/3
for -1SX<l 	 (B2.1) 

where q is the constant of integration. After slight rearrangement and the subsequent 

integration of the above equation, the following implicit analytical solution of U is 
obtained. 

J-1+ 1+12/3(C, - 2U) (2 + 1+12/3(C, -2U)) = 
3 6~3 	

=X+CZ 	(132.2) 

where CZ is the second constant of integration. To find the unknown q and q, the 

Eq. (B2.2) is forced to satisfy the associated BCs, i.e. Eqs. (4.40b) and (4.40c). In doing 

so, the following coupled equations are obtained: 
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-1 + 1 + 12/3C, (2+ l+l2pc1 ) _ — 

3 6 	
1 + C2 	 (B2.3a) 

—1 + 1 + 12/3 (C, — 2A) (2 + 1 + 12/3(C, _ 2A)) =
l  +c2 	 (B2.3b) 

3 8 

q can also be obtained by using the following equation, which has been obtained by 

adding the Eqs. (B2.3a) and (B2.3b). 

— —1+ 1+12/3(Cl —2A) (2+.j1+12fl(q —2A)) 

—1+ 1+12/3C1 (2+VI+12,8C,) = 6sjë 	(B2.3c) 

[also Eq. (4.51)] 

For the given 8 and A [>0], the values of q and q can be obtained by solving the 

above coupled equations. Once q and q are known, the velocity profile U can be 

obtained from Eq. (B2.2). However, instead of using the implicit analytical solution, i.e. 

Eq. (B2.2), we have used the following explicit analytical solution of U, which has 

been derived by analytically solving Eq. (B2.2) for U. 

U-1—T2 +12C1 /3 

24/3 

1/3 

3(2)1/3 	(K3 + —2916+K3 ) 
where T=-1+ 	 1/3 + 	 3(2)1/3  , 

(K3 + —2916 + K3)  

K1 =-3 6~3 , K2 =V-1+ 1+12C113 (2+ 1+12C,8) and 

K3 =54+27K,2 +54K, K2 +27K2 +54K,2X+54K1 K2 X+27K,2X2 . 

(B2.4) 

[also Eq. (4.50)] 
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Case 2(c): Couette-Poiseuille Flow with Upper Plate Moving in Negative y Direction 

with a High Velocity [ A <0 and Al is Large] 

For this subcase, the fluid moves with the upper plate in a negative y direction, 

therefore the maximum positive velocity of the fluid will be same as that of the 

stationary plate, i.e. 0, and throughout the concerned region [ —1 <— X <-1 ], the velocity 

gradient will be negative, i.e. U <0.  Alternatively, the location X', where dU = 0, 
dX 

will be positioned outside the concerned region, i.e. X' <-1. However, for a realistic 

situation the location of the maximum velocity will lie at the stationary plate. This 

implies that X * < —1 should be replaced with X' = —1, and ( with 0. Here also, one 

starts with Eq. (4.41), however, now the negative sign for U' is retained, i.e. 

U,_iu -- /-1+j1+12fl(q —2U) 
for —1 <—X—<1 	 (B2.5) 

6/3 

where q is the constant of integration. Solution of the above equation yields the 

following implicit analytical solution of U: 

—1+ 1+12P(C, —2U) (2+ 1+12(C(C, —2U)) 

6,3 	
=X+CZ 	 (B2.6) 

3/ 

where q is another constants of integration. To find the unknown q and CZ, Eq. 

(B2.6) is forced to satisfy the related BCs, i.e. Eqs. (4.40b) and (4.40c), and the 
following coupled equations are found: 

—1+ l+12/3C1 (2+ l+12/3 C, ) 
(B2.7a) 

3/ 

-1+ 1+12/3(C, —2A) (2+ 1+12,8(C, —2A)) - 
-1+C, 	(B2.7b) 

3 6~ 

The unknown q can be found from the following equation: 
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-2A) (2+yl+12p(c, —2A)) 

— —1+ 1+12/301  ( 	= '6 6,6 	 (B2.7c) 
[also Eq. (4.54)] 

For the given values of /8 and A, the values of q and 1 are found by solving the 

above equations and can either be substituted in the implicit analytical solution, i.e. Eq. 

(B2.6) or in the following explicit analytical solution, i.e. Eq. (B2.8), to get the desired 
velocity profile U. The following explicit analytical solution of U is obtained by 
analytically solving the Eq. (B2.6). 

U-1—T2 +1201 /3  
24/3 

1/3 

3(2)1/3 	(K3  + —2916+K3 ) 
where T=—l+ 	 1/3  + ` 	 1/3 	, 

(K3  + —2916+K3) 	3(2)"  

K1  = —3 6,3 , K2  = —1+ ji+1201/3 (2 + ji+1201/3) and 

K3  =54+27X2  —54K1  K2  +27K2 +54K,2X-54K, K2 X+27Kl2X2  

(B2.8) 

[also Eq. (4.53)] 
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APPENDIX Cl 

Reaction-diffusion inside a porous spherical catalyst 

Convergence Analysis of OHAM Solutions 

For the model equation of reaction-diffusion process inside a porous spherical 
catalyst, the classical h-curves (Liao, 2003) for establishing the convergence region 

have been plotted in Figs. C l . l and C 1.2 for n = 0.5, q5  = 2 and n = 2, q = 5, 
respectively. In these h-curves, the flat region, where the values of variable and its 

derivatives remain constant, offers the proper values of h. It can be noted that as the 
number of terms in the OHAM solutions is increased the region of convergence widens. 

However, as is visible from these two figures the flat region covers a wide range of h, 
and hence the visual selection of proper value of h becomes difficult. In place of this, 

the plots of sum of square of residual errors, shown in Figs. C1.3 and C1.4, offer a 

somewhat better choice for the selection of proper values of h [the sum of square of 
residual errors approaches zero as h approaches optimum value]. Here also, the 
convergence region for h widens, as one increases the terms in OHAM solution. The 

best value of h [ = hop,;,,„ ], which corresponds to the minimum value of sum of square of 

residual errors of the OHAM solution, can be found from these figures, i.e. Figs. C1.3 

and C1.4. Alternatively, one can also use Eq. (6.9c). Since, Eq. (6.9c) directly evaluates 

it is better to employ this equation instead of finding hoptfmum  from these curves. 

Another way of judging the convergence of OHAM solutions is by using the 

ratio test theorem (Kreyszig, 2001). The theorem states: if a series y, + y2  + y3  + ... with 

y n  # o En =1,2,3,...] has the property that for every 1 greater than some N 

yn  _< q <1 for n > N [where q<1 is fixed], then this series converges absolutely. On 
.yn-I 

the other hand, if for every n > N,  yn  >_ 1, then this series diverges. 
yn-1 

For the same values of parameters In = 0.5, 0 = 2; n = 2, 0 = 5], Figs. C1.5 and C1.6 

show the plots of absolute ratios of terms in different OHAM solutions. The OHAM 
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solutions with different number of terms depict a similar trend, i.e. the absolute ratios of 

terms in finite OHAM series = Y first decreases, then increases and then finally 
 

decreases monotonically. It is hoped that the same trend will also be observed for larger 

terms [approaching infinite] in OHAM solution. Therefore, there will exist a value of N, 

after which  y"  <1. Hence, from the above theorem the OHAM solution with very 
Yn-, 

large number of terms [approaching infinite, n,. 	cc] will also be convergent. Since, 

the sum of square of residual errors approaches . zero as one increases the terms, this 

convergent OHAM series solution [very large number of terms, n,. —> cc] will be the 

desired solution of the concerned equation. 

Beside these curves, the ratio [absolute] of the last two terms of different OHAM 

solutions have also been drawn in Figs. Cl. 7  and Cl .8.  These figures show that this 

ratio, decreases with the increase in number of terms in OHAM solution and is less than 

unity. 
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Figure C1.1: Classical h-curves [power-law kinetics: n = 0.5, 0 = 21 
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Figure C1.2: Classical h-curves [power-law kinetics: n = 2, 0 = 5] 
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APPENDIX C2 

Axial dispersion model of a tubular chemical reactor 

OHAM Solution for Power-Law Kinetics [n ~ 0] 

After substituting A = 0 in Eq. (6.46) the following mth order deformation 

equation is obtained for power-law kinetics [ f(y) = y fl ] 

z 
yn(x) — xY,n-► (x) + hL-' d dxz (x) + hPeL-' dy,(x) dx J 

— hPeDaL' [4i_1(y0,Y1,•••,Ym_1)] 	for m >_ 1 	 (C2. 1) 

The terms in the right most square brackets are the so called Adomian polynomials 

[ 4ria (Yo' Yl  • • •  Y,,_~ ] corresponding to the nonlinearity t'(x A)" and have been 

obtained by expanding the nonlinear term around /, =0 and equating the coefficients of 

same power of A with those of Adomian series, i.e. 

\  1 am ,( 
x„ 

= 	
1 	n' ~1 ) ] 	~m = 

	

0 m. 	a~ 
z=O 

Am(Yo,Yi,..., ym )Am 

0 

(C2.2) 

where A 	 1 
V/I 	A-0 

However, V (x, A) = y = Yyn,Am 
0 

1 any 
where yn, = — m 

in!  aA A=o 

~ 	 n 	~ 

Hence, yi (x, A)n _ Y n __ 	y1A" 	= Z A, (y0 , y1,..., ym )Am 
m=O 	 nr=0 

(C2.3) 

(C2.4) 

In this way one finds the relations between 4 and yo , y,, ...,Y, . Now, evaluating 

and simplifying the Eq. (C2. 1), the following relations for y,,,s are obtained. 

4 4 . 



Yi (x) = hL ' d ?Yo (x) + hPeL ' dyo (x) — hPe DaL-' Yo (x)" 	(C2.5a) 
dx 	[ dx J

Ao 

z 

y2 (x) = y1 (x) + hL-' d Y. (x) + hPeL ' r dyi (x)1 — hPe DaL ' nyo (x)
"-' y~ (x) dx 	 dx J 1 

(C2.5b) 

2 

Y3 (x) = y2 (x) + hL d Y2 (x) + hPeL-' dY2 (x) 
dx2 ii 	dx 

— hPe DaL-' (n --1)n /2y0  (x)i-2 Y, (x)2 + nyo (x)"-' Y2 (x) 	(C2.5c) 

A2 

2 

y4 (x) = Y3 (x) + hL-' d y3 (x) + hPeL-' dy3 (x) — hPe DaL-' 
dx2 	dx 

(n — 2)(n —1)n / 6yo (x)n-3Y1(x)3 + (n —1)nyo (x)"-2 y1 (x)Y2 (x) + nYo (x)n-' y3 (x) 
A3 

(C2.5d) 

... and so on. 

As already mentioned, the above approach of finding the Adomian polynomials can 

conveniently be extended for any type of nonlinearity. For zero order and Langmuir-

Hinshelwood kinetics the OHAM solutions are obtained as follows. 

OHAM Solution for Zero Order Kinetics [n = 0] 

Following deformation equations are obtained for zero order kinetics [f(y)  =1 ]. 

z 
Y. (x) = hL-' d Yo (x) + hPeL-' dYo (x) l — hPe 	DaL-' {Ao (x)] for m=1 

dx 	dx 

(C2.6a) 

Y, (x) _ 	 Y,,,-1 (x) + hL-' d Y,,,-. (x) 1 + hPeL-' dY",-1 (x) 	for 	m >— 2 
dx' 	dx 

(C2.6b) 
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It should be noted that the Adomian polynomials for zero order kinetics are given as: 

1 m=0 
AAm(X)

_
0 m>-1 (C2.7) 

Using the above relations one finds the following relations for 3s for f =10 and 

h=-1. 

DaPe  2 	 DaFe
z  

Yo — Cz,  y, = 2  x, 	Y2 = — 6  x 

DaPe 5 	DaPes  6 	DaPe6  7  
Ya — ` 120 x  ' Ys = 720 x  , 	Y6 =- 5040 x  

y8=— 
DaPe8  9  _ DaPe9  10 
362880 x Yg  3628800 x  

DaPe3  
Y3 =  24 

 x4' 

DaPe'  g  
Y7  = 40320 ' 

Eventually, the OHAM solution is given by the following series. 

= C DaPe  2  DaPe2  3  DaPe3  4  DaPe4  5  DaPes  6  
YOB Z

+ 	X 
— 	x  + 	x  — 	

X  + 
	

X 
 2 	6 	24  120  720 

DaPe6
x, + 

DaPe7  xg  — DaPe8  + DaPe9 
 x10  . 

5040 	40320 	362880 	3628800 	
(C2.8) 

3628800(1  —Da) —DaPe9  
where C2  = 	3628800 	

has been found from the BC I. Substituting q 

in y 	and computing the six terms Taylor series expansion around x = 0, Pe =0 

and Da =0 the resultant yields the following series expansion, i.e. 

DaPe 2  DaPe2  3  DaPe3  4  DaPe4  5  DaPes  6 Yor r 1—Da+ 2  x— 6  x+ 24 x 	120 x+  720 
x +... 

(C2.9) 

OHAM Solution for Langmuir-Hinshelwood Kinetics 

Following deformation equations are obtained for Langmuir-Hinshelwood 
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kinetics (Fan et al., 1971) f (y) Ky 

(1+Ky) 

y, (x) = hL' d Zy0 (x) + hPeL ' dy° (x) — hPe DaL ' Kyo (x) (C2. I Oa 
dx2 	dx 	 1+Kyo (x) 	) 

I. 
Ao 

z 

Yz (x) = y~ (x) + hL ' d Y' (x) + hPeL-' dy' (x) — hPe DaL-' 	Ky' (x) Z 
dx 	 dx 	 (1+Ky0 (x)) 

A, 

(C2. l Ob) 

z 	 r 
Y3 (x) = y2 (x) + hL ' d W + hPeL-' L dYdxx) ] 

— hPe DaL ' 
[_K 2Y1X 2 + Ky2 (x) + K z yo (x)y2 (x) 	 (C2. l Oc) 

(1+Kyo (x)) 
Az 

z 
y4 (x) = Y3 (x) + hL-'- d Y3 (x) + hPeL-' dy3 (x)  

dx 	dx 

K3Y1 (x)3 — 2K2 y1(x)Y2 (x) — 2K'y. (x)Y1(x)Y2 (x) + Ky3 (x) + 2K2 y0 (x)y3 (x) + K 3Yo (x)' Y3 (x) 
(1+Kyo (x))4 

113 

(C2. l Od) 
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APPENDIX C3 

Axial dispersion model of a tubular chemical reactor 

Convergence Analysis of OHAM Solutions 

The classical h-curves for the axial dispersion model equation of a tubular 

chemical reactor for the data of Rao et al. (1981), i.e. n = 2, Pe = 10, Da = 2, have been 
drawn in Fig. C3.1. Similarly, plots of sum of square of residual errors against h have 
also been drawn in Fig. C3.2. One notes that it is difficult to pick the proper value of 

parameter h, i.e. h ptimum , from the h-curve [Fig. C3. 1], since larger flat regions exist for 

all the h-curves. On the other hand, the plots of sum of square of residual errors provide 

a relatively better option for the selection of hoptimun, , and near hoptimu, the sum of 

square of residual errors approaches zero. Moreover, in this figure, the flat region 

widens with the increase in number of terms in OHAM solution, whereas there is no 

effect of number of terms in classical h-curves [Fig. C3. 1]. Like the model equation of 

reaction-diffusion process in a porous spherical catalyst [Appendix Cl],  here also one 
can select hoprimun, from Fig. C3.2 or employ Eq. (6.9c). 

In Figs. C3.3 and C3.4, the absolute ratios of terms in different OHAM 

solutions, i.e.  yn  for n E [2, AT],  and the ratio [absolute] of the last two terms of 
yn-I 

different OHAM solutions have been shown, respectively. It is visible in Fig. C3.3 that 

all the curves [corresponding to different OHAM solutions] eventually approach zero. 

Similarly, in Fig. C3.4 the ratio [absolute] of last two terms also decreases for the 

different OHAM solutions. Hence, from the ratio test theorem and subsequent 

discussion presented in Appendix Cl, the convergence of OHAM solution is 

established. This fact has also been discussed in subsection 6.4.2.1 with the help of Figs. 

6.28 and 6.29, where residual and absolute error profiles of the OHAM solutions were 
drawn. 

In the same way, the plots of classical h-curves and the sum of square of residual 
errors for dual solutions [n = -1, Pe = 0.2, Da = 0.2] have been drawn in Figs. C3.5 and 
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Figure C3.1: Classical h-curves for the parameter values given in Rao et al. (1981) 
[power-law kinetics: n = 2, Pe = 10, Da =2] 
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Figure C3.2: Variation of the sum of square of residual errors with h for the 
parameter values given in Rao et al. (1981) [power-law kinetics: n = 
2,Pe=10,Da=2] 

455 



4 
~•°••• OHAM: nT=12 

_.'• a 	OHAM: nT=8 
1 t...... OHAM: nT=4 

[ 3 `4 
•i 

••~ d' 2 •~i 

O _ 
C R. 

•̀. •"'A.... 	 .....y 
..... .. ... 

0 

0  4 8  12  16 20  24 

Term number in OHAM solution, i 

Figure C3.3: Variation of the absolute values of ratio of consecutive terms 
[= [y/yi iI, 2 < i <_ nil with term number for different OHAM solutions 
for the parameter values given in Rao et al. (1981) [power-law 
kinetics: n = 2, Pe = 10, Da =2] 

0.6 

a 
0.5 

0.4 

0.3 

0.2 

• 
•~........ .......... 

............. 

Q 	0.1 ~..... 
..................~ 

Y+I 

0 

S..............

:10 
0  4  8  12  16  24 

_ 	 ~tT 

Figure C3.4: Variation of the ratio [absolute] of last two terms of OHAM solutions 
with nT for the parameter values given in Rao et al. (1981) [power-
law kinetics: n = 2, Pe = 10, Da =21 

457 



0.75 

0.55 

0.35 

0.15 PI. a 

HAM: nT = 6 

Y(o) 	Y•(o) 	Y°(o) 	Y(1) 	Y,(1) 	Y°(1) --------- 	------- - 	--------- 	--------- 	------ 	------- Upper solution 
Lower solution 

-1.1 	-1 	-0.9 	-0.8 	-0.7 	-0.6 	-0.5 

Figure C3.5: Classical h-curves for dual solutions [power-law kinetics: n = -1, Pe = 
1/5, Da = 1/5] 

	

--------- Dual solution (upper solution) 	 OHAM: nT = 6 

7.0E-9 
	Dual solution (lower solution) 

5.0E-9 

3.0E-9 

.0E-9 

.OE-9 
-1.2 	-1.1 	 -1 	-0.9 	-0.8 	-0.7 

h 

igure C3.6: Variation of sum of square of residual errors with h for dual 
solutions [power-law kinetics: n = -1, Pe = 1/5, Da = 1/5] 

459 


	CHDG21612.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix




