
ADAPTIVE LOAD BALANCING FOR CLUSTER
ARCHITECTURE USING TRAFFIC MONITORING

WITH CONTENT AWARENESS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

By

ARCHANA NIGAM
I, 	K

CC) 'r.t7

2-;
CP,

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
MAY, 2012

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"ADAPTIVE LOAD BALANCING FOR CLUSTER ARCHITECUTRE USING

TRAFFICE MONITORING WITH CONTENT AWARENESS" towards the partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Information Technology submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand (India) is an

authentic record of my own work carried out during the period from July 2011 to April

2012. under the guidance of Prof. Padam Kumar, Head of the Department,

Electronics and Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date:)6 s-/ /4
Place: Roorkee (Archana Nigam)

CERTIFICATE

I his is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: 9 Cid 3.1

Place: Roorkee

F6-t-k37-c
(Pro . Padam Kumar)

Head of Department

Electronics and Computer Engineering

IIT Roorkee.

ii

ACKNOWLEDGEMENTS

It has been a great privilege to be an M.tech student in the Electronics and Computer

Engineering department at IIT, Roorkee and work closely with my advisor Prof. Padam

Kumar, Head of the Department, Electronics and Computer Engineering, IIT Roorkee.

I express my deepest gratitude to him for his valuable guidance, support and motivation

in my work. I have a deep sense of admiration for his inexhaustible enthusiasm and

readiness to help me. The valuable discussion and suggestion with him have helped me a

lot in supplementing my thoughts in the right direction for attaining the desired objective.

My special sincere heartfelt gratitude to all my friends, whose sincere prayer, best wishes,

support and unflinching encouragement has been a constant source of strength to me

during the entire work. On a personal note, I owe everything to the Almighty and my

parents for always being my side and their support.

(Archana Nigam)

iii

ABSTRACT

With the rapid growth of both information and users on the Internet, how to effectively

improve the quality of network service becomes an urgent problem to be addressed. Load

balancing is a solution to this problem in an effective way. Different adaptive load

balancing methods have been developed to estimate servers load performance. However,

they suffer from either increased processing load on the servers, or additional traffic on

the network and the servers, or are impractical in real time scenario. Need of high

scalability, high reliability and high availability are key issues in load balancing. Load

balancing algorithm along with cluster architecture fulfills all the needs.

In this dissertation, we introduce the concept of content based queues, and have used

RTT passive measurement technique to get an adaptive load balancing algorithm inside

the cluster. Using the same queue for each type of request results into overload on server,

so we introduce the concept of different queue for different type of request. The whole

load balancing task is performed by a webproxy inside and outside the cluster, a proxy

that has access to all servers so it also removes the drawback of dynamic algorithm in

which most of the load balancing task is performed by server itself.

iv

TABLE OF CONTENTS

Candidate's declaration 	ii

Acknowledgement 	iii

Abstract ..iv

Table of Contents 	

List of Figures 	vii

Chapter 1 	 1

Introduction and Statement of the Problem

1.1 Introduction and Motivation 	 1

1.2 Statement of the Problem 	 .3

1.3 Organization of the Report 	 5

Chapter 2 	 6

Background and Literature Review

2.1 Static Load Balancing 	6

2.1.1 Round Robin Algorithm 	 .7

2.1.2 Randomized Algorithm 	.8

2.1.3 Static Centralized Load Balancing Algorithm 	 9

2.1.4 Threshold Based Load Balancing 	 11

2.2 Dynamic Load Balancing 	 12

2.2.1 Central Queue Algorithm 	 12

2.2.2 Local Queue Algorithm 	 13

2.2.3 Symmetrically-Initiated Algorithm 	 15

2.2.4 Dynamic Load Balancing Algorithm for Scalable Heterogeneous Web Server

Cluster with Content Awareness 	 17

2.2.5 Centralized Dynamic Load Balancing Algorithm 	 19

2.2.6 Modified Centralized Approach for Dynamic Load Balancing 	 21

2.2.7 Centralized dynamic cluster based load balancing algorithm 	 23

2.2.8 A Content-Based Load-Balancing System 	 .24

Chapter 3 	

Proposed Algorithm for load balancing

.26

3.1 New Adaptive Load Balancing Algorithm (I) 	 26

3.1.1 Architecture 	 26

3.1.2.Algorithm (I) 	 ..28

3.2 New Adaptive Load Balancing Algorithm (II) 	 30

3.2.1 Architecture 	 30

3.2.2 Algorithm (II) 	 ..31

Chapter 4 	 .34

Implementation Detail And Experimental Result

4.1 Implementation detail and experimental result of algorithm (I) 	

4.2 Implementation detail and experimental result of algorithm (II) 	

.34

42

Chapter 5 	 .46

Conclusion and Future Work

5.1 Conclusion 	 ..46

5.2 Future work 	 46

References 	 48

Publications 	 51

vi

List of Figures

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Classification of static load balancing algorithm [7] 	 ..7

Flow chart of Round Robin Algorithm [10] 	 8

Flow chart of Randomized Algorithm [10] 	 ..9

Static Centralized Load Balancing Algorithm [10] 	 10

Threshold Based Static Load Balancing Algorithm [10] 	..12

Central Queue Algorithms [16] 	 13

Local Queue Algorithms [17] 	 14

Flowchart of the Sender-Initiated Algorithm [18] 	 ..16

Receiver Initiated Algorithm [18] 	 17

Flow Chart of Dynamic Load Balancing Algorithm

for Heterogeneous Web Server Cluster [19] 	 ..19

Architecture of Centralized Load Balancing Algorithm [20] 	 20

Flow chart of Centralized load balancing algorithm [20] 	 21

Architecture of Modified Centralized Load Balancing Algorithm [20] 	22

Flow chart of Modified Centralized Algorithm [20] 	 ..23

Centralized dynamic cluster based load balancing algorithm 	24

RTT Passive Measurement [6] 	 25

Architecture of Proposed Adaptive Load Balancing Algorithm (I).... 	27

Flow Chart of

Proposed Adaptive Load Balancing Algorithm (I) 	.29

Architecture of Proposed Adaptive Algorithm (II) 	 ..30

Flow chart of Proposed Adaptive Algorithm (II) 	.33

Graph Showing Simulation Result For Round Robin Static Algorithm 	36

Graph Showing Simulation Result For Randomized Static Algorithm 	36

Graph Showing Simulation Result

For Threshold Based Static Algorithm 	37

Graph Showing Simulation Result

For Content Routing Based Dynamic Algorithm 	 37

vii

Figure 4.5 Graph Showing Simulation Result for

Modified Centralized Dynamic Load Balancing Algorithm 	38

Figure 4.6 Graph Showing Simulation Result for

Proposed adaptive load balancing algorithm (I) 	38

Figure 4.7 Total Response Time Comparison of Round Robin Algorithm

And New Adaptive Algorithm(I) 	 .39

Figure 4.8 Total Response Time Comparison of Random Algorithm And

New Adaptive Algorithm(I) 	40

Figure 4.9 Total Response Time Comparison of Threshold Based Algorithm And

New Adaptive Algorithm(I) 	40

Figure 4.10 Total Response Time Comparison of Round Robin Algorithm And

New Adaptive Algorithm(I) 	41

Figure 4.11 Total Response Time Comparison of Content Based Routing And

New Adaptive Algorithm(1) 	 41

Figure 4.12 Graph Showing Simulation Result for Dynamic load balancing

Algorithm for heterogeneous web server cluster 	 43

Figure 4.13 Graph Showing Simulation Result for Centralized dynamic

cluster based load balancing algorithm 	 .44

Figure 4.14 Graph Showing Simulation Result for

Proposed Adaptive Algorithm(II) 	 44

Figure 4.15 Total Response Time of Above Three Algorithm 	 .45

viii

Chapter 1

Introduction and Statement of the Problem

•

1.1 Introduction and Motivation
Distributed System:

Coulouris et al

A distributed system is one in which components located at networked computers communicate

and coordinate their actions only by passing messages [1] .

Tanenbaum, Van Steen

A distributed system is a collection of independent computers that appears to its users as a single

coherent system [21

Distributed System is needed to cope with the extremely higher demand of users in both

processing power and data storage. For example:

Facebook by the end of 2010[3]

• Total users: 500 millions

• Total servers: 60, 000 servers (estimate, Oct 2009)

• 50 millions operations per second

• 1 million photos are viewed every second

• Each month more than 3 billion photos are uploaded

With this extremely demand, I do believe single system could not achieve it. That's one reason

why distributed systems come in place. There are many reasons that make distributed systems

viable such as high availability, scalability, resistant to failure, etc. When the demand for

computing power increases the load balancing problem becomes important.

1

Load balancing is given the initial job arrival rates at each computer in the system find an

allocation of jobs among the computers so that the response time of the entire system over all

jobs is minimized. So the load balancing task in distributed computing is very important task.

There are three typical approaches to load balancing problem in distributed systems.

1) Global approach: In this case, there is only one decision maker that optimizes the response

time of the entire system over all jobs and the operating point is called social optimum [4].

2) Cooperative approach: In this case, there are

several decision makers (e.g., jobs, computers) that cooperate in making the decisions such that

each of them will operate at its optimum. Decision makers have complete freedom of preplan

communication to make joint agreements about their operating points[4].

3) Non cooperative approach: In this case, each of infinitely many jobs optimizes its own

response time independently of the others, and they all eventually reach equilibrium [4].

Load distributing improves performance by transferring tasks from heavily loaded computers,

where service is poor, to lightly loaded computers, where the tasks can take advantage of

computing capacity that would otherwise go unused. The usefulness of load distributing is not so

obvious in systems in which all processors are equally powerful and have equally heavy

workloads over the long term. However, Livny and Melman have shown that even in such a

homogeneous distributed system, at least one computer is likely to be idle while other computers

are heavily loaded because of statistical fluctuations in the arrival of tasks to computers and task-

service-time requirements [5]. Therefore, even in a homogeneous distributed system, system

performance can potentially be improved by appropriate transfers of workload from heavily

loaded computers (senders) to idle or lightly loaded computers (receivers).

Here performance mean is average response time of tasks. The response time of a task is the

time elapsed between its initiation and its completion .Minimizing the average response time is

often the goal of load distributing. But taking only the average response time into consideration

is not sufficient. Because in real time scenario it may happen that server connected to optical

fiber have average response time less compare to server connected through twisted pair, so it will

result into overload condition on a server connected through optical fiber. Therefore along with

average response time load distribution should also be taken into consideration.

2

Server load balancing is highly significant for network research and has broad market prospects.

Different load balancing methods have been developed to transfer load among servers. Some of

them are impractical in real time scenario while others increase processing load on the server or

on the network.

In this dissertation a new adaptive load balancing algorithm (I) inside the cluster has been

introduced where the concept of rtt passive measurement technique for selecting the cluster and

content awareness is used. By content awareness we mean having different queue for different

request types rather than having the same queue for different requests, which improves the total

execution time. Also introduced a new adaptive load balancing algorithm (II) outside the cluster.

Even if the adaptive load balancing method doesn't work then rtt passive measurement will do

all load balancing task which increases the reliability of the system. The Server Selection policy

used in dissertation is in compliance with the policy described in [6] where application layer

RTT between the router and the server is a key parameter to monitor load/performance of server.

RTT calculation is done through a passive measurement policy to remove any burden on the

network.

1.2 Statement of the Problem

A distributed system with a number of server connected with each other may suffer from uneven

load distribution due to different population densities and interests of end-users. Various static

and dynamic methods were proposed for evenly bad distribution among server. Overloaded

server causes degradation in performance of the whole system and under loaded server causes

poor network utilization. Even if they work fair., for simple architecture it may happen that there

performance degrades for cluster architecture.

3

The problem addressed in this dissertation is to distribute load evenly among the server in a

distributed system by developing a load balancing algorithm for cluster architecture with the

following key properties:

1. Dynamic: Load balancing algorithm is invoked whenever there is an uneven distribution of

load among servers, or whenever a server becomes overloaded. This can happen if a large

number of requests is transferred to a particular server.

2. Adaptive: Load balancing algorithm is modifiable as the system states changes.

3. Reliability: Not depend on single method of load balancing. If algorithm fails then also there

must be a mechanism to perform load balancing.

4. Distributed: A distributed load balancing algorithm is more scalable, and preserves the

original system's property of no single-point-of-failure.

4. Transparent: Client does not experience interruptions in service while load balancing occurs.

Its entire operation requires zero-human involvement.

6. Content Awareness: Having different queue for different request types rather than having the

same queue for different requests, which improves the total execution time.

7. Cluster: It provides high availability, high reliability and high scalability.

To date, very limited amount of research has been done in load balancing that cover all the seven

above mentioned parameters.

"Adaptive load balancing for cluster architecture using traffic monitoring with content

awareness" cover all the above mentioned parameters. This can be achieved by:

• Implementation of rtt measurement technique for selecting the appropriate cluster to improve

reliability of the system.

• Implementation of proposed adaptive load balancing algorithm (I) inside the cluster.

• Implementation of proposed adaptive load balancing algorithm (II) outside the cluster.

4

1.3 Organization of the Report

This dissertation report comprises of five chapters including this chapter that introduces the topic

and statement of the problem. The rest of the report is organized as follows.

Chapter 2 gives the specification of different types of load balancing

Chapter 3 describes the proposed algorithms for load balancing in both inside and outside the

cluster to improve the performance of the system.

Chapter 4 gives the implementation details and result of the proposed approach.

Chapter 5 concludes the dissertation work and gives suggestions for future work.

5

Chapter 2

Background and Literature Review

In the field of load balancing in distributed system significant research work has been done. This

section presents a review on different existing load balancing algorithm. This section explains

different approach for load balancing in distributed system. Also classify the load balancing

algorithm and explain their advantage and disadvantage. The goal of load balancing is improving

the performance by balancing the loads among computers. There are two main categories of load

balancing policies: static policies and dynamic policies [7]. Static policies base their decision on

statistical information about the system. They do not take into consideration the current state of

the system. Dynamic policies base their decision on the current state of the system. They are

more complex than static policies.

2.1 Static Load Balancing
Static policies can be distinguished between distributed policies and centralized policies or can

classify them on the basis of deterministic and probabilistic. In a distributed policy the work

involved in making decisions is distributed among many decision makers. In a centralized policy

there is only one decision maker or the common decision of many cooperating decision makers

is made in a centralized way. In deterministic policy there must be some static method basis on

which server selection is made. In probabilistic policy servers will be selected on the basis of

some probability based static approach. Figure 2.1 gives classification of static load balancing

algorithm.

6

Static

Deterministic 	 Probablistic

Round Robin,
Threshold based

Randomized algorithm

Figure 2.1 Classification of static load balancing algorithm [7]

In static load balancing, the performance of the processors is determined at the beginning of

execution. Then depending upon their performance the work load is distributed in the start by the

master processor [8]. The slave processors calculate their allocated work and submit their result

to the master. A task is always executed on the processor to which it is assigned that is static load

balancing methods are non preemptive. The goal of static load balancing method is to reduce the

overall execution time of a concurrent program while minimizing the communication delays. A

general disadvantage of all static schemes is that the final selection of a host for process

allocation is made when the process is created and cannot be changed during process execution

to make changes in the system load [7].

2.1.1 Round Robin Algorithm
This algorithm distributes jobs evenly to all slave processors. All jobs are assigned to slave

processors based on Round Robin order, meaning that processor choosing is performed in series

and will be back to the first processor if the last -processor has been reached. Processors choosing

are performed locally on each processor, independent of allocations of other processors [9]. Flow

chart of this algorithm is shown in figure 2.2.

7

CS-tart

Get job

Yes
Send it to
server i

1=0
No

i=0,1imit=no_ of
nodes

Figure 2.2 Flow chart of Round Robin Algorithm [10]

2.1.2 Randomized Algorithm

This algorithm uses random numbers to choose slave processors. The slave processors are

chosen randomly following random numbers generated based on a statistic distribution [11]. The

flowchart of Randomized algorithm is shown in Figure 2.3.

8

Figure 2.3 Flow chart of Randomized Algorithm [10]

2.1.3 Static Centralized Load Balancing Algorithm
In this algorithm [12], a central processor selects the host for new process. The minimally loaded

processor depending on the overall load is selected when process is created. Load manager

selects hosts for new processes so that the processor load confirms to same level as much as

possible. From then on hand information on the system load state central load manager makes

the load balancing judgment. This information is updated by remote processors, which send a

9

i=1

k=1

5 total jobs

i yes
Get job-i

yes 	s the node k h
F-----<'--., smallest lea

""--......„.
I No

k=k+1
Execute job-i at
node-k

1
mod total nodes

no

message each time the load on them changes. This information can depend on waiting of parent's

process of completion of its children's process, end of parallel execution .The load manager

makes load balancing decisions based on the system load information, allowing the best decision

when of the process created. High degree of inter-process communication could make the

bottleneck state. This algorithm is expected to perform better than the parallel applications,

especially when dynamic activities are created by different hosts [13].Flow chart of this

algorithm is shown below.

Figure 2.4 Static Centralized Load Balancing Algorithm [10].

10

2.1.4 Threshold Based Load Balancing
Processor choosing in this Algorithm is performed based on two threshold values, t_upper and

t_lower, that represent upper and lower threshold respectively. Both of these threshold values are

used to characterize states of a slave processor that described below:

Processor State 	 Threshold

Under loaded
	

Load < t_under

Medium 	 tunder <load <t upper

Overloaded
	

Load > t_upper

Initially, all the processors are considered to be under loaded. When the load state of a processor

exceeds a load level limit, then it sends messages regarding the new load state to all remote

processors, regularly updating them as to the actual load state of the entire system. If the local

state is not overloaded then the process is allocated locally. Otherwise, a remote under loaded

processor is selected, and if no such host exists, the process is also allocated locally [14]. Figure

2.5 depicts the flowchart of Threshold algorithm [10].

11

	1*
J.

at node IN>
t_175./

Get job

total job

Execute job i at
lode k

i=i+ 1

11111111111•

-land total nod-es

Execute job i at nod-e

1=1+1

load of node-

Execute job i at node

i =i+1

CEnd

t=t+1

t=t mod total
nodes

sr
1=1

k=1

Figure 2.5 Threshold Based Static Load Balancing Algorithm.

2.2 Dynamic Load Balancing
Dynamic policies base their decision on the current state of the system. Despite the higher

runtime complexity dynamic policies can lead to better performance than static policies. There

arc two main classes of dynamic load balancing policies: centralized and distributed [15].

2.2.1 Central Queue Algorithm
Central Queue Algorithm [16] works on the principle of dynamic distribution. It stores new

activities and unfulfilled requests as a cyclic FIFO queue on the main host. Each new activity

arriving at the queue manager is inserted into the queue. Then, whenever a request for an activity
12

into
job i and enter it

into the queue

1

N N. there is shigl> 	
entry in the ,

q''‘Nt‘icy.-Z

Call the central manager to
serve request in FIFO order

EN.

Server serve the
request

is received by the queue manager, it removes the first activity from the queue and sends it to the

requester. If there are no ready activities in the queue, the request is buffered, until a new activity

is available [10]. If a new activity arrives at the queue manager while there are unanswered

requests in the queue, the first such request is removed from the queue and the new activity is

assigned to it. When a processor load falls under the threshold, the local load manager sends a

request for a new activity to the central load manager. The central load manager answers the

request immediately if a ready activity is found in the process-request queue, or queues the

request until a new activity arrives. Figure 2.6 shows the flow chart for the same.

Figure 2.6 Central Queue Algorithms [16].

2.2.2 Local Queue Algorithm
Main feature of this algorithm [17] is dynamic migration support. The basic idea of the local

queue algorithm is static allocation of all new processes with process migration initiated by a

host when its load falls under threshold limit, is a user-defined parameter of the algorithm. The

parameter defines the minimal number of ready processes the load manager attempts to provide

on each processor. Initially, new processes created on the main host are allocated on all under

13

loaded hosts. The number of parallel activities created by the first parallel construct on the main

host is usually sufficient for allocation on all remote hosts. From then on, all the processes

created on the main host and all other hosts are allocated locally. When the host gets under

loaded, the local load manager attempts to get several processes from remote hosts. It randomly

sends requests with the number of local ready processes to remote load managers. When a load

manager receives such a request, it compares the local number of ready processes with the

received number. If the former is greater than the latter, then some of the running processes are

transferred to the requester and an affirmative confirmation with the number of processes

transferred is -returned. Figure 2.7 shows the flow chart of the algorithm.

Figure 2.7 Local Queue Algorithms [17]

14

2.2.3 Symmetrically-Initiated Algorithm
1. Sender-Initiated Algorithm

The sender-initiated algorithm, as the name implies, is activated by a sender that wishes to off-

load some of its computation. This algorithm facilitates job migration from a heavily loaded

node to a lightly loaded node. There are three basic decisions that need to be made before a

transfer of a job can take place:

• Transfer policy: When does a node become the sender?

• Selection policy: How does a sender choose a job for transfe

• Location policy: What node should be the target receiver?

GesTRAL tio
CY 	2.6 1 19 	94 '-per z* ACC No

/24/ 2-17
• Date

/I
- ' 7-- ROO*

If the queue size is the only indicator of the workload, a sender can us 	s er policy that

initiates the algorithm when detecting that its queue length (SQ) has exceeded a certain threshold

(ST) upon the arrival of a new job[18]. The location policy requires knowledge of load

distribution to locate a suitable receiver. The sender can send a multicast message to all other

nodes asking for a reply about their queue sizes. Upon receiving this information, the sender can

select the node with the smallest queue length (RQ) as the target receiver, provided that the

queue length of the sender (SQ) is greater than the queue length of the target receiver (RQ) (i.e.

SQ>RQ). Figure 2.8 depicts the flowchart of the sender-initiated algorithm.

15

=beast
eceivers and
receive RQ's

Figure 2.8 Flowchart of the Sender-Initiated Algorithm [18].

2. Receiver-Initiated Algorithm

Sender-initiated algorithm is a push model, where jobs are pushed from one node to other nodes.

A receiver can pull a job from other nodes to its queue if it is underutilized [18]. The receiver-

initiated algorithm can use a similar transfer policy of the sender-initiated algorithm, which

activates the pull operation when its queue length falls below a certain threshold (R7), upon the

departure of a job. Figure 2.9 depicts the flowchart of the receiver-initiated algorithm.

16

Figure 2.9 Receiver Initiated Algorithm [I 8]

3. Symmetrically-Initiated Algorithm

Since the sender-initiated and receiver-initiated algorithms work well at different system loads, it

seems logical to combine them [18]. A node can activate the sender initiated algorithms when its

queue size exceeds one threshold ST, and can activate the receiver-initiated algorithm when its

queue size falls below another threshold RT. As such, each node may dynamically play the role

of either a sender or a receiver.

2.2.4 Dynamic Load Balancing Algorithm for Scalable Heterogeneous Web
Server Cluster with Content Awareness
The dependence on Internet for the web applications like utility bills, net banking, .e-Learning,

information based services etc. is increasing at an exponential rate. To improve the availability

and reliability, the web sites need more than one server and a Web Server Cluster (WSC) is used.

To evenly distribute the load among the servers on the WSC, dynamic load balancing (DLB)

techniques are used. DLB algorithms serve homogeneous WSC and can't be directly used in the

17

heterogeneous environment. Therefore, author [19] proposes a DLB algorithm which supports

heterogeneity, scalability and content awareness. The process starts with the establishment of

cluster. Algorithm starts with initialization of parameters and load tables in different categories.

As soon as scheduler receives the requests, it identifies its category and least loaded server in this

category and the request is forwarded to the least loaded server. Response to the request is

provided by the server without involving the scheduler. Figure 2.10 depicts the flowchart of the

algorithm for the same.

Algorithm [19]

1) Parameters, load tables and response table of WSC are initialized.

2) Step (a) to step (h) will be repeated infinitely.

a) WSC scheduler waits for the client requests.

b) After arrival of requests, scheduler identifies the requests category.

c) Scheduler refers the load table to identify least loaded server.

d) Requests are redirected to the least loaded serer by rewriting the servers address.

c) Response table is updated.

Load table is updated if the change in load level of the servers occurred.

g) If all the servers in a category are critically loaded, addition of servers is requested.

h) Go back to step 2 (a).

18

Intislin parameters of WS c

'Request for more server

i.vait for client requests
4-

identiEy the request category

locate the to tided server in
load table

4-
Redirect the request to the
least loaded server

update the response table

Figure 2.10 Flow Chart Of Dynamic Load Balancing Algorithm for Heterogeneous Web Server Cluster [19].

2.2.5 Centralized Dynamic Load Balancing Algorithm
Centralized dynamic load balancing [20] works on the principle of dynamic distribution. As

shown in diagram, initially processes are stored in queue or process can be allotted as they arrive.

Figure 2.11 depicts the architecture of centralized load balancing algorithm.

19

Load
Migration

L
0

A
Process Queue

0

Process
In

Node n

Nodes

Node 1

Node 2

Node2

a

0

Figure 2.11 Architecture of Centralized Load Balancing Algorithm [20].

If these are placed in queue, processes are allotted one by one to primary nodes. Processes are

migrated from heavily loaded node to light weighted node. Process migration is greatly affected

by the network bandwidth and work load. In order to reduce the traffic, nodes are grouped into

clusters. First a light weighted node is checked in the same cluster, if such primary node is

available, load transfer takes place between these two nodes and load is balanced, otherwise if

such light weight node is not available, one centralized node is available to accommodate the

overload of a primary node. This centralized node is not assigned any process initially; it is given

only the overload of primary nodes [20]. Centralized node has some better structure as compared

to other nodes in the cluster. Traffic between centralized node and primary nodes kept minimum

to avoid network delay. Figure 2.12 flow chart centralized load balancing algorithm.

20

Select the least
loaded server in

ster,if found ?

Figure 2.12 Flow chart of Centralized load balancing algorithm [20].

2.2.6 Modified Centralized Approach for Dynamic Load Balancing
In Centralized approach there is single node, so process the load at high speed by using

switching but still a limitation is there. An approach is there to remove the limitation is to split

the centralized node into small nodes called supporting nodes (SNs). Figure 2.13 architecture of

modified centralized load balancing algorithm.

21

Figure 2.13 Architecture of Modified Centralized Load Balancing Algorithm [20].

But still here supporting node are not allotted load initially. Many times supporting nodes is idle

or they are not properly loaded as only overload is assigned to supporting nodes. This is wastage

of power of supporting nodes [20]. We can also use the free time of SN by making them busy for

this free time. So a further approach is developed here in which supporting nodes are given some

load initially and SNs maintain a priority list of process or order in which the process at the SN

will execute. Suppose a process Pi is currently executed by SNi and a Primary node Ni is

overloaded so that it finds a supporting node SNi suitable for transferring its overload, so Ni will

interrupt the SNi, then SNi will assign Priority to the coming process and call the interrupt

service routine to handle the interrupt. Interrupt Service Routine actually compares the priority of

each coming process with the currently executing process and perform the switching between the

currently executing process and process coming from the primary nodes, Otherwise, each

supporting node is maintaining a priority queue in which process to be executed are sorted

according to the priority, in which coming process are stored in this queue with a priority. In

figure 2.13 Each node whether primary node or secondary node (assuming initially process is

22

S elect the least
loaded server in

sterjf found ?

job is send to the
lightly loaded server

does SN's
is already occupied?

call the interrupt routine and
SN's will serve the job i first

there) is assigned some Task .Process and transferred from PN to SN if overload occur at any

PN. Figure 2.14 flow chart of modified centralized algorithm.

Figure 2.14 Flow chart of Modified Centralized Algorithm [20].

2.2.7 Centralized dynamic cluster based load balancing algorithm
In Centralized dynamic cluster based load balancing algorithm there are two load balancer. In

cluster architecture one balancer is outside the cluster for performing load balancing task outside

the cluster and other balancer is inside the cluster for performing load balancing inside the

cluster, In this method balancer inside the cluster keeps data of all the servers. It transfers the

request to the server which is minimal loaded. Balancer outside the cluster keeps data of all the

clusters and it is responsible for transferring the load from one cluster to another cluster to make
23

whole system balanced. In centralized dynamic cluster based load balancing algorithm outside

balancer and inside balancer is bottleneck. Figure 2.15 shows the architecture centralized

dynamic cluster based load balancing algorithm.

Figure 2.15 Centralized dynamic cluster based load balancing algorithm

2.2.8 A Content-Based Load-Balancing System
Content-based routing is another technology that can be used to enhance a network's features. In

the above example, the load-balancing router simply distributed network traffic evenly across a

list of servers. The router selects the best server then forwards the request to the chosen web

server and acts as a middleman thereafter, passing packets from the client to the server and from

the server to the client in a forwarding mode. So to select the appropriate web server application

layer RTT is used. The application layer RTT includes the network delay and the server

processing delay [6] as shown in figure 2.16

24

Client

[Reorst

•

Data
....---

P. outcr wilts uct wort: support 	 S 	ef

Savet
proce3-iing
delay

Rrr- Network d clay + Server processing delay

Figure 2.16 RTT Passive Measurement [6]

In some situations, server latency may be dominant due to the load on the particular server. In

this case, user response time may be improved by selecting a server that is lightly loaded. In

another situation, network delay may be dominant due to congestion. In this case, network delay

should be used for server selection. To realize good selection of servers, we believe that both

server processing delay and network delay should be taken into account. To do so, we use the

application layer RTT between the router and the server as information for server selection [6].

When a router in a network selects a server which has small application layer RTT, total

response time can be improved. Now the question arises if router selects a server based on its

application layer RTT, client request may have a tendency to concentrate at a particular server.

To avoid this situation, we apply probabilistic server selection policy [6] at the router. Selection

probability of the server whose RTT is large should be small and the server whose RTT is small

should be selected with large probability. The following simple method for calculation of the

server selection probability. A router i calculates Pu,, a probability of selecting server j, as

/ITT / Phi — 	 [6]
En=1RTT m

Where n is total number of servers serving the same service and RTT„, is the RTT between router

i and server M.

25

Chapter 3

Proposed Algorithm for load balancing

To improve the existing technique, it has been suggested to include a new adaptive load

balancing algorithm (I) where the concept of rtt passive measurement technique and content

awareness has been used. Content awareness means having different queue for different request

types rather than having the same queue for different requests, which improves the total

execution time. The new adaptive load balancing algorithm (I) is implemented for the servers

inside the cluster, this algorithm improves the total execution time as compare to static and

dynamic algorithm. The advantage of having cluster architecture is it provides high availability,

high reliability and high scalability. So to improve the execution time of the cluster architecture

along with new adaptive load balancing algorithm (I) that would be implemented inside the

cluster, a new adaptive load balancing algorithm (II) would also be implemented outside the

cluster to improve total execution time. Proposed architecture and algorithm are as follows.

3.1 New Adaptive Load Balancing Algorithm (I)

3.1.1 Architecture
As described earlier, Load balancing algorithms can be classified as either static or dynamic.

Unfortunately these methods generates additional processing load on the server, deteriorating its

performance. The function of a web server is to service HTTP requests made by client. Typically

the server receives a request asking for a specific resource, and it returns the resource as a

response. A client might reference in its request a file, then that file is returned or, for example, a

directory, then the content of that directory (codified in some suitable form) is returned. A client

might also request a program, and it is the web server task to launch that program (CGI script)

[7] and to return the output of that program to the client. Various other types of resources might

be referenced in client's request. Different request have different sizes thus required server time

is different for them.

26

Request 1

Request 2

Reauest 3

Internet

Router

Clients

Servers

Client request is transferred to the web server via router, and the router distinguishes the request

on the basis of content. As shown in Figure 3.1, each back end server keeps queues for handling

each type of request. This database is maintained by the router for each server and router

transfers the request to a particular queue of a server after rtt passive measurement. . There is a

common module for all the servers which we call as web proxy. This is the main improvement

over other adaptive load balancing algorithms. It performs the load balancing task by running the

technique and thus improves efficiency.

Figure 3.1 Architecture of Proposed Adaptive Load Balancing Algorithm (I)

RTT passive measurement technique that is used here is similar to the technique described above

for content routing based dynamic load balancing method.

Before describing the algorithm, first let us understand what is exactly mean by content

awareness and its need. Suppose there are three servers in the system and each can handle three

different type of request i.e. video, audio, and image. The current load of each of the servers is as

follows.

Server 1 : 3 video requests.

Server 2 : 3 audio requests.

Server 3: 3 image requests.

27

Consider just the length of the queues then all have same length but if the request is forwarded to

server 1 then it will result in higher response time. So the technique that has been introduced here

is to have different queue for different kind of request and whenever a server gets overloaded due

to the requests on a particular queue then transfer the request from this server to the same queue

of other server thus balancing the load.

3.1.2 Algorithm (1)
This is the adaptive load balancing algorithm run by web proxy, common for all the servers. So it

has access to the entire server's queue and can update them as needed.

Let there be n Servers and each server has m queues, where each queues is for a different types

of request. Each type of request is of different size e.g. Videos are of size say x units whereas

audio are of size say y units whereas images are of z units (much smaller than x and y) and so on.

Define the initial size of the queue which will change according to the current state of the

system.

Define load, where 1<i<n, load on id, server.

Maxi where 15j<m, maximum load injth queue.

Mind where 15j<m, minimum load in jth queue.

Initialize limit value by taking the average of the length of all the m queues on n server and

divide it into the half If value of load; is greater than limit value then transfer job from queue of

that server to same type of queue of other server. It may also possible that taken the full average

value and compared load with it, but it will be the situation where server is already overloaded

and then measures have to be taken to transfer its load and make it under loaded or lightly

loaded. In our case such a situation is not allowed to occur because here precautionary measures

are taken i.e., divide the average into half and transfer the load well before any overloaded

condition.

28

Algorithm for webproxy

Steps

I. For each i and j initialize load, , Maxi, Mini to 0.

2. Repeat step 3 to 6, till server is on

3. If (load,<Iimit)

Converts the m queues into the single queue on the basis of time and server serves the request

in FCFS form.

4. If (load,>limit) Repeat Step 5 until (load,<1imit)

5. For each queue (from 1 to m) calculate maxi and mini and transfer the request from queue j of

server x having maximum load to queue j of server y having minimum load.

6. Go to step 3.

7. Exit

Flowchart of proposed algorithm is shown in figure 3.2.

29

Start

Intialize data structure,limit,
max.min.load -value

Get job i

No
load < limit

I Yes

Webproxy converts the queue into single
queue and server serves the request in a FIFO
manner...

For all queue calculate the max and min value
and transfer the load from queue of one server
to the min queue of another server •

Figure 3.2 Flow Chart of Proposed Adaptive Load Balancing Algorithm (I).

30

■•=1111.1.1.16

Client n

queue I
queue 2

queue 3,

queue I
queue "2

/ queue 3

queue 1
queue 2

queue 3
ROLTTER

%

4%-

N •
ti

*1 • 	\ queue 1
queue

queue 3

\‘

— 	

Server
1

Web
Proxy

Server
1

Server

•

Senses

I

r

	1!

3.2 New Adaptive Load Balancing Algorithm (II)

3.2.1 Architecture

Figure 3.3 Architecture of Proposed Adaptive Algorithm (II).
The concept of cluster is used to provide higher availability,reliability and scalability than can be

obtained by using a single system. Benefit of having cluster architecture is, it provides high

availability by making application software and data available on several servers linked together

in a cluster configuration. If one server stops functioning, a process called failover automatically

shifts the workload of the failed server to another server in the cluster. The failover process is

designed to ensure continuous availability of critical applications and data. Clusters can be used

to solve three typical problems in a data center environment: Need for High Availability, High

Reliability and High Scalability.

31

So the concept of cluster has been introduced with our previously proposed architecture. In the

architecture (II), again the concept of content awareness along with RTT passive measurement

is used. Here also Client request is transferred to the web server via router, and the router

distinguishes the request on the basis of content. As shown in Figure 3.3, there are clusters of

server; each back end server inside the cluster keeps queues for handling each type of request.

This database is maintained by the router for each server and router transfers the request to a

particular queue of a server after rtt passive measurement. There is a common module for all the

servers which we call as web proxy. This is the main improvement over other adaptive load

balancing algorithms. It performs the load balancing task by running the algorithm (explained in

the next section) thus freeing the servers from performing load balancing technique and thus

improves efficiency.

3.2.2 Algorithm (II)
The above mentioned proposed adaptive load balancing algorithm (I) run by webproxy, common

for all server inside the cluster, is used to perform load balancing inside the cluster and the new

proposed load balancing algorithm (II) common for all the cluster is used to perform load

balancing outside the cluster. So webproxy has access to the entire server's queue and can update

them as needed.

Let there be n Servers and each server has m queues, where each queues is for a different types

of request. Each type of request is of different size e.g. Videos are of size say x units whereas

audio are of size say y units whereas images are of z units (much smaller than x and y) and so on.

Define the initial size of the queue which will change according to the current state of the

system.

Define load, where 1 <i<n, load on ith server inside the cluster.

Load, where 1<c<k, load on cth cluster.

Maxi where 15j<m, maximum load in jth queue.

Min, where 1.5j<m, minimum load in jth queue.

Initialize limits value by taking the average of the length of all the m queues on n server and

divide it into the half If value of load, is greater than limit value then transfer job from queue of

32

that server to same type of queue of other server. It may possible that taken the full average value

and compared load with it, but it will be the situation where server is already overloaded and

then measures have to be taken to transfer its load and make it under loaded or lightly loaded. In

our case such a situation is not allowed to occur because we take precautionary measures i.e.,

divide the average into half and transfer the load well before any overloaded condition. The same

precautionary would be taken for cluster architecture also. Let a the value by taking the average

of the length of all the m queues on n server of k cluster. Let cluster Cr , 0<r<k, has maximum

number of server say a and total number of server in a cluster Cr is 3r .

Initialize limit, value by following formula

Limiter (a/a)*13, 	 where 0<r<k.

Algorithm for webproxy

Steps

1. For each i and j initialize load; , Maxi, Mini to 0.

2. Repeat step 3 to 6, till server is on

3. If (load,<lim its)

Converts the m queues into the single queue on the basis of time and server serves the request in

FCFS form. Go to step 6.

4. Else (loadi> limits) Repeat Step 5 to 6 until (loadi< limits)

5. For each queue (from 1 to m) calculate maxi and mini and transfer the request from queue j of

server x having maximum load to queue j of server y having minimum load.

6. if (loadc>limit,) Repeat Step 7 to 8 until (loaki,<Iimitc)

7. For each queue (from 1 to m of cluster el and c2) calculate maxi and mini and transfer the

request from queue j of server x of cluster el having maximum load to queue j of server y of

cluster c2 having minimum load.

8. Go to step 3.

9. Exit

Flow chart of proposed adaptive algorithm (II) is shown below.

33

Intialize data structure,liait,
triax.inin.load value

Get job i

No _.--- loadi <

1Yes
Vcbproxy converts the queue into single
uruc and server serves the request in a FIFO

llailflef-

No. 	Yes

For all queue of both the cluster
calculate the max and min value and
transfer the load from queue of one of
one cluster to the ruin queue of another
server of another duster

For all queue calculate the max and in value
and transfer the load from queue of one server
to the min queue of another server

Figure 3.4 Flow chart of Proposed Adaptive Algorithm (H)

34

Chapter 4.

Implementation Detail and Experimental Result

4.1 Implementation detail and experimental result of algorithm (I)
A. Simulation

We have implemented the adaptive algorithm (I) in netbeans 7.1 using multithreading. Each

thread created corresponds to a particular server. We designed a client module that generates

requests from the web and handed over to the router. The generated requests are of different

types. On the basis of type of request, router puts them in an appropriate queue. Router transfers

the request to the webproxy where the entire relevant load balancing task is performed. We have

also implemented the static algorithm based on round robin technique [9], randomized technique

[11], threshold technique [14] ,dynamic algorithm based on load balancing by content based

routing technique [6] and modified centralized approach for dynamic load balancing

algorithm[20] for making necessary comparison.

B. Simulation Results

For simulation, we have used the request from web and these requests are of different sizes and

types. Algorithm 1 is round robin static algorithm, Algorithm 2 is randomized static algorithm,

Algorithm 3 is threshold static algorithm, Algorithm 4 is content based routing algorithm ,

Algorithm 5 is modified centralized approach for dynamic load balancing algorithm and

Algorithm 6 is proposed adaptive load balancing algorithm (I). We compare these algorithms on

the basis of load distribution among servers and total response time.

C. Analysis of Results

From Figure 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 it may be concluded that the load distribution is fairer in

Algorithm 5 i.e. in adaptive algorithm (I).

In case of round robin static algorithm, request are transferred from server 1 to m, where m is

the total server and when server m is reached process is repeated but it may happen that large

size request are concentrated over a particular server so that server might get overloaded. As

shown in figure 4.1, Server 3 get overloaded. This algorithm works fine for same type of request.

35

In case of randomized static algorithm, server is selected randomly, as shown in figure 4.2 most

of the time server 3 is selected by random method, it will result into the overloaded server.

In case of Threshold based static algorithm, as shown in figure 4.3 it work fine under normal

condition till threshold value is not reached, but it may happen that threshold value is reached for

all the server at the same time so it will result into the overloaded server.

But all the static method work fine for same type of request. For different type of request, load

distribution is not balanced.

In case of Content based routing dynamic algorithm, as shown in figure 4.4 server is selected on

the basis of their response time. But in real time scenario both network delay and processing

delay is important. But the main emphasis of this algorithm is on network delay. So it will result

in to the overload on the server having minimum network delay.

In modified centralized approach for dynamic load balancing algorithm, as shown in figure 4.5

supporting nodes are given some load initially, when load on server exceed, load is transferred to

supporting nodes and supporting nodes process the request on the basis of its priority. In this

method although the load at server remains balanced but load on supporting node increases with

increase in number of requests.

Proposed Adaptive Algorithm (I) as shown in figure 4.6, works 'fine under the both scenario for

same as well as for different type of request and also make decision on the basis of both network

and processing delay. As compared to other algorithm for same number and type of request load

distribution is fairer.

36

160

140

1120

a 100

c4 80

4 60
O
A 40

)4 20

0 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I

160

140

120

100 4

—*—Server 1
-0- Server 2
—1— Server 3

REQUESTS

Figure 4.1 Graph Showing Simulation Result For Round Robin Static Algorithm.

20 •

L
O

A
D

 O
N

 S
E

R
V

E
R

 (
K

13
s)

60

AAA
So

AOC

40
JA-71
InossassaV"

20 	— 	.4)(+40444.41411,•••

-.--Server
Server 2

-at-Server 3

REQUESTS

Figure 4.2 Graph Showing Simulation Result For Randomized Static Algorithm.

37

L
O

A
D

 O
N

 S
E

R
V

E
R

 (
K

I3
0

140

120

100

80

60

40

20

0

—r►-- Server 1

- Server 2

—1,—Server 3

Server 1

—El— Server2

Server 3

rl

200
180
160
140
120
100
80
60
40
20 L

O
A

D
 O

N
 S

E
R

V
E

R
(K

B
s)

0

REQUESTS

Figure 4.3 Graph Showing Simulation Result for Threshold Based Static Algorithm.

REQUESTS

Figure 4.4 Graph Showing Simulation Result for Content Routing Based Dynamic Algorithm.

38

REQUESTS

LO
A
D

 O
N

 SE
R

V
E

R
(K

B
s)

80

—1— Server 1
—0—Server 2
—A—Server 3

70

60

50

40

30

20

10

0 111111111€11IIIIIIIIIIIIIIIIIIII111111

120

100

80

60

40

20

LO
A

D
 O

N
 S

E
R

V
E

R
S(

K
B

s)

—A—Server 1

—X— Server 2

—0— Supporting
Node

Figure 4.5 Graph Showing Simulation Result for Modified Centralized Dynamic Load Balancing Algorithm.

Figure 4.6 Graph Showing Simulation Result for Proposed adaptive load balancing algorithm (I)

39

- Round Robin
Algorithm

R
O

U
N

D
 T

R
IP

 T
IM

E
(m

se
c)

1111(1111111f1111t111117111111f111 11 11 1

18

16

14

12

10

8

6

4

2-4

0 	111

—10—New Adaptive
Algorithm (I)

Initially response time of Round robin algorithm is less or same as proposed adaptive algorithm
(I), as shown in figure 4.7. But as the load increases response time of round robin algorithm
increases exponentially.

Random static algorithm works fine till load on the servers is balanced, as shown in figure 4.8 as
the load increases response time of the algorithm increases.

Threshold based static algorithm works fine till threshold value is not reached, as shown in figure
4.9 but if all the servers reached their threshold value then it will result into the overloaded server
and hence response time increases.

Total response time of modified centralized approach for dynamic load balancing algorithm is
less compared to proposed adaptive algorithm (I) for less number of requests, when the load on
supporting nodes increases total response time of modified centralized approach for dynamic
load balancing algorithm increases, as shown in figure 4.10.

For the less number of requests response time of content based routing dynamic algorithm is less
compared to proposed adaptive algorithm (I),as shown in figure 4.11 but for the overloaded
condition response time of proposed algorithm is less compared to content based routing
dynamic algorithm.

REQUESTS

Figure 4.7 Total Response Time Comparison of Round Robin Algorithm And New Adaptive Algorithm(I)

40

25

1.Q

1 5

10

0

—0—Threshold 2-11gorittun
—111—Ilew Adaptive Algorithm (I)

16

14

12

10

8

6

4

2

0

T
O

T
A

L
 R

E
SP

O
N

SE
 T

IM
E

(m
se

c)

—4—Random
Algorithm

--New
Adaptive
Algorithm
(I)

111.111111111 	1111111111111111[1111IIIIIIIIIII

REQUESTS

Figure 4.8 Total Response Time Comparison of Random Algorithm And New Adaptive Algorithm(I)
• •

•

0 ! 	 -"T 1

REQUESTS

Figure 4.9 Total Response Time Comparison of Threshold Based Algorithm And New Adaptive Algorithm(I)

41

30

5t 25
E

20

cr)
15

5

0.0
c/)
al 10
*4
•eC

0
E—(

—A—Modified
Centralized
Dynamic
Algorithm

—E—New Adaptive
Algorithm (I)

1111111i 	111111

REQUESTS

Figure 4.10 Total Response Time Comparison of Modified Centralized Dynamic Algorithm And New Adaptive

Algorithm(I).

30

4t --A—Content bases Routing

20 ..—, e..? f..1

iki -41-linv Adaptive algorithm
Algorithm

0 iitearA,
:a tHilkiliVr " 1.11111.414X2fil 5 	 ViC------------ -

0

REQUESTS

AStiO
tiS

rel W
IO

1

Figure 4.11 Total Response Time. Comparison of Content Based Routing And New Adaptive Algorithm(I)

42

4.2 Implementation detail and experimental result of algorithm (II)
A. Simulation

We have implemented the adaptive algorithm (II) in netbeans 7.1 using multithreading. Each

thread created corresponds to a particular server. We designed a client module that generates

requests from the web and handed over to the router. The generated requests are of different

types. On the basis of type of request, router puts them in an appropriate queue. Router transfers

the request to the webproxy where the entire relevant load balancing task is performed. We have

also implemented the Dynamic load balancing algorithm for web cluster [19] and centralized

dynamic cluster based load balancing algorithm [21].

B. Simulation Results

For simulation, we have used the request from web and these requests are of different sizes and

types. We compare these algorithms on the basis of load distribution among servers and total

response time.

C. Analysis of Results

From Figure 4.12, 4.13, 4.14 it may be concluded that the load distribution is fairer in proposed

Algorithm (II).

In dynamic load balancing algorithm for scalable heterogeneous web server cluster with content

awareness, this algorithm identifies the category of request and request is forwarded to the least

loaded heterogeneous server, as shown in figure 4.12. But the performance of algorithm degrades

when number of request of same type increases as it will get concentrated over a particular

heterogeneous cluster of server while other server remain under loaded.

In case of centralized dynamic cluster based load balancing algorithm. Balancer inside the cluster

perform load balancing for servers inside the cluster and balancer outside the clusters perform

load balancing for clusters, as shown in figure 4.13.The main disadvantage of the centralized

dynamic cluster based load balancing algorithm is bottleneck of balancer.

In proposed adaptive load balancing algorithm (II), it neither uses concept of heterogeneous

server nor the concept of centralized adaptive algorithm. As shown in figure 4.14 , it is

concluded that performance of proposed adaptive load balancing algorithm is fairer as compare

to other two algorithm.

For the total response time, initially for both dynamic load balancing for scalable heterogeneous

web cluster algorithm and centralized dynamic cluster based load balancing algorithm total
43

160

140

120

Ca 100
C.,
44
Cd
IN 	80
rd
1:2 60
k.
0
A 40
0 a

response time is less as compare to proposed algorithm (II).As shown in figure 4.15, when the

number of requests increases there is slight increase in response time of proposed algorithm(II)

but tremendous increase in response time of both the algorithm.

REQUESTS

• CLUSTER
1 Server 1

--CLUSTER
2 Server 1

* CLUSTER
2 Server 2

-II- Cluster 3 Server
1

—a—CLUSTER
3Server2

-a—CLUSTER
3 Server 3

--CLUSTER
3Server 4

Figure 4.12 Graph Showing Simulation Result for Dynamic load balancing algorithm for heterogeneous web server

cluster.

44

100 -

90

80

70

60

50
C4
fa4 	40

ti 	30
0

23
0

10

.00mCluster 1_Server 1

-0- Cluster 1 Server 2

-41- Clod er 2_Server I

4- Cluster 2_Server 2

-0- Cluster 3_Server 1

-0- Cluster 3_Server 2

RFQUFSTS

Figure 4.13 Graph Showing Simulation Result for Centralized dynamic cluster based load balancing algorithm

60

50

L
■ >

AD
 O

N
 SE

R
V

E
T

S(
K

B1
1)

-0-Cluster l_Server 1
4.- Cluster l_Server 2

-6- Cluster 1_Server 3
-0- Cluster 2_Server 1

-0-Cluster 2_Server 2
-Is-Clutter 2_Server 3

■•■Cluster 2_Server 4

REQUESTS

Figure 4.14 Graph Showing Simulation Result for Proposed Adaptive Algorithm(II)

45

20

18

Wet•Slu st er
Algorithm

—II—Distributed Dynamic
Algorithm.

--*—Adaptive Load
Balancing Algorithm
(a)

REQUESTS

Figure 4.15 Total Response Time of Above Three Algorithm

46

Chapter 5

Conclusion and Future Work

5.1 Conclusion
We have implemented adaptive load balancing with some enhancements and concluded its

valuable characteristics, which are as follows:

• Used the concept of Rtt passive measurement technique. It select the server on the basis of

minimal Rtt. Thus improving the reliability of the whole system.

• We introduce content awareness. By content awareness we mean having different queue for

different request types rather than having the same queue for different requests, which

improves the total execution time

• We introduced the new adaptive load balancing algorithm (I) inside the cluster. Its

performance is fairer as compared to other proposed algorithm.

• We introduced the new adaptive load balancing algorithm (II) outside the cluster and

combine this algorithm with adaptive load balancing algorithm (I) inside the cluster along

with rtt passive measurement technique for improving the overall performance of the system.

5.2 Future work
In future we are trying to deploy these algorithms over real time system where response time has

a crucial point for different data source (Video, audio, Image, Text). In the future, distributed

application frameworks will support mobile code, multimedia data streams, user and device

mobility, and spontaneous networking so among these recent futures computing, fare load

distribution is a vital demand and we have to modify and enhance different aspect of our

proposed algorithm to sustain these demands.

47

References

[I] 	G. Coulouris, J.Dollimore, T. Kindberg, and G. Blair. "Distributed systems: concepts and

design", Addison-Wesley Longman, 2005.

[2] A. Tanenbaum and M.V. Steen. "Distributed Systems: Principles and Paradigms",

Prentice Hall, Pearson Education, USA, 2002.

[3] R. Miller. "Facebook Server Count : 60,000 or more", Internet:

http://www.datacenterknowledge.condarchives/2010/06/28/facebook-server-count-

60000-or-more/, June 28, 2010.

141

	

	D.Grosu,and A. T. Chronopoulos. "Algorithmic mechanism design for load balancing in

distributed systems." IEEE Transactions on Systems, Man, and Cybernetics- Part B:

Cybernetics, vol. 34, no. 1, pp. 77-84, 2004.

(5]

	

	N.G.Shivaratri, P. Krueger, M. Singhal. "Load distributing for locally distributed

system.", Computer, vol. 25, no.12, pp. 33-44, 1992.

[6] 1-1.Miura, M.Yamamoto. "Content Routing with Network Support Using Passive

Measurement in Content Distribution Networks.", IEICE Transation on

Communications, Special Issue on Content Delivery Networks E86-B(6), pp. 1805-1811,

2003.

[7] D. Grosu and A. T. Chronopoulos. 'A game-theoretic model and algorithm for load

balancing in distributed systems.", In Proceedings of the 16th IEEE International

Parallel and Distributed Processing Symposium, pp. 146-153, Ft Lauderdale, Florida,

USA, 2002.

[8] K. Benmohammed-Mahieddine, P. M. Dew, and M. Kara. "A periodic symmetrically-

initiated load balancing algorithm for distributed systems.", In Proceedings of the 14th

IEEE International Conference on Distributed Computing Systems, pp. 616-623,

Norwood, June 1994.

[9] Zhong Xu, Rong Huang, "Performance Study of Load Balancing Algorithms in

Distributed Web Server Systems", CS213 Parallel and Distributed Processing Project.

48

[10] H.Rahmawan and Y. S. Gondokaryono. "The simulation of static load balancing

algorithms," IEEE., 2009 International Conference on Electrical Engineering and

Informatics (IEEE 2009), pp. 640-645, Selangor, Malaysia, August 2009.

[11] R.Motwani and Raghavan. "Randomized Algorithms.", ACM Computing Surveys, vol.28,

no. 1, pp. 33-37, 1996.

[12] P. L. McEntire, J. G. O'Reilly, and R. E. Larson, "Distributed Computing:Concepts and

Implementations ", New York : IEEE Press, 1984.

[13] S.Sharma, S.Singh and M.Sharma. "Performance Analysis of Load Balancing

Algorithms," World Academy of Science, Engineering, and Technology, vol. 38, pp. 269-

272, 2008.

[14] A. Saxena and D. Sharma," Analysis of Threshold Based Centralized Load Balancing

Policy for Heterogeneous Machines ", International Journal of Advanced Information

Technology (IJAIT), vol. 1, no. 5, pp.39-53, 2011.

[15] H. G. Rothitor. "Taxonomy of dynamic task scheduling schemes in distributed computing

systems". IEE Proc.-Computers and Digital Techniques, vol. 141, no. 1, pp. 1-10, 1994.

[16] W.Leinberger, G.Karypis, V.Kumar, R. Vishwas "Load Balancing Across Near

Homogeneous Multi-Resource Servers",In 9th Heterogeneous Computing Workshop

(HCW2000), pp. 2-3, Cancun, Mexico, February 16, 2000.

[17] P.Saxena,G.Saxena, S. Kumar, A. Kumar, R. Belwal. "Functioning Analysis of Load

Balancing Algorithms in a Distributed Computing Environment" International Journal of

Computer Science and Telecommunications (IJCST 2012), vol. 3, no. 1, 2012.

[18] T.Taibi, A.Abid and E.F.E.Azahan. "A Comparison of Dynamic Load Balancing

Algorithms." Jordan Journal of Applied Science Natural Sciences, vol. 9, no. 2, pp. 125-

133, 2007.

[19] A.Tiwari and P.Kanungo. "Dynamic load balancing algorithm for scalable

heterogeneous web server cluster with content awareness.", Trendz in Information

Sciences & Computing (TISC), pp. 143 — 148, Chennai, 2010.

[20] P.Jain,and D. Gupta. "An Algorithm for Dynamic Load Balancing in Distributed

Systems with Multiple Supporting Nodes by Exploiting the Interrupt Service.",

International Journal of Recent Trends in Engineering, vol. 1, no. 1, pp. 232-236, 2009.

49

[21] S. K. Goyal, R. Patel, and M. Singh. "Adaptive and Dynamic Load Balancing

Methodologies For Distributed Environment: A Review," International Journal of

Engineering Science, vol. 3,no. 3, pp. 1835-1840,.2011.

50

Publications

[1] Archana Nigam, Dr. Padam Kumar, Anuj Tiwari, Ankita Singhal, " Adaptive Load

Balancing for Server Using Traffic Monitoring With Content Awareness ", In

International Conference on Recent Advances in Engineering and Technology

(ICRAET 2012), pp. 109-112, 29-30 April 2012 , Hyderabad, India.

[2] Archana Nigam, Dr. Padam Kumar, Anuj Tiwari, Ankita Singhal, " Adaptive Load

Balancing for Server Using Traffic Monitoring With Content Awareness" In the

Special Issue of International Journal of Systems, Algorithms and Applications (IJSAA

2012), vol. 2, issue. ICRAETI2, pp. 13-16, May 2012.

[3] Archana Nigam, Tejprakash Singh, Anuj Tiwari, Ankita Singhal, "Adaptive Load

Balancing for Cluster Architecture Using Traffic Monitoring With Content

Awareness" In International Journal of Advanced Research In Computer Engineering

and Technology Volume 1, Issue 1, pp. 18-23 March 2012.

[4] Archana Nigam, Dr. Padam Kumar, Ankita Singhal, Anuj Tiwari, "Load Balancing for

Clusters Using Traffic Monitoring With Content Awareness", In Third International

Conference on Computing, Communication and Networking Technologies (ICCCNT) ,

2012 India. (communicated)

51

	ECDG21996.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References

