
By

NEERAJ UPADHYA
C 	

P L
(

• &? 2-1 c9/7 ,„...

R 0 0

ADAPTIVE CHECKPOINTING BASED FAULT
TOLERANCE IN GRID ENVIRONMENT

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2012

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"Adaptive checkpointing based fault tolerance in grid environment" towards the

partial fulfillment of the requirement for the award of the degree of Master of

Technology in Computer Science submitted in the Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand

(India) is an authentic record of my own work carried out during the period from July

2011 to June 2012, under the guidance of Dr. Manoj Misra, Professor, Department of

Electronics and Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date: IZ-06-i2—
Place: Roorkee 	 (Neeraj Upadhyay)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: 1).- OC -12—

Place: Roorkee (Dr. Manoj Misra)

Professor

Department of Electronics and Computer Engineering

IIT Roorkce.

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor

Dr. Manoj Misra, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, for his invaluable advices, guidance,

encouragement and for sharing his broad knowledge. His wisdom, knowledge and

commitment to the highest standards inspired and motivated me. He has been very

generous in providing the necessary resources to carry out my research. He is an inspiring

teacher, a great advisor, and most importantly a nice person.

I am greatly indebted to all my friends, especially Abhishek Bafna, who have graciously

applied themselves to the task of helping me with ample moral supports and valuable

suggestions.

On a personal note, I owe everything to the Almighty, my parents and my sister. The

support which I enjoyed from my father, mother and my sister provided me the mental

support I needed.

NEERAJ UPADHYAY

ii

Abstract

Grid systems differ from traditional distributed systems in terms of their large scale,

heterogeneity and dynamism. These factors contributes towards higher number of fault

occurrences as large scale causes lower values of Mean Time To Failure (MTTF), heterogeneity

results in interaction faults (protocol incompatibilities) between communicating disparate nodes

and dynamism implies dynamically varying resource availability due to resources autonomously

entering and leaving the grid and thus effecting the jobs running on them. Another factor that

increases probability of failure of applications is that applications running on grid are long

running computations taking days to finish. Traditional approaches for tolerating faults in

distributed systems include checkpointing and replication. Incorporating fault tolerance in

scheduling algorithms is one of the approaches for handling faults in grid environment. Genetic

Algorithms and Ant Colony Optimization are a popular class of meta-heuristic algorithms used

for grid scheduling. This work designs heuristics for adaptive checkpointing based on fault

information about resources. These heuristics have been incorporated in GA and ACO. Other

adaptive checkpointing techniques developed focuses on online adaption of checkpoint interval

based on MTBF, last failure time and fault indexes of resources. Performance comparison of

adaptive checkpointing with periodic checkpointing techniques have been performed using

simulated Grid environment for wide range of scenarios such as temporally and spatially

correlated failures, real failure traces and real workload traces. Adaptive checkpointing

techniques are found to give superior performance compared to periodic checkpointing.

iii

Table of Contents
1.Introduction 	 1

1.1 Introduction 	1

1.2 Motivation 	 1

1.3 Problem Statement 	 2

1.4 Thesis Organization 	..3

2.Background and Literature Review

2.1 Grid Computing 	 4

2.2 Fault Tolerance in Grid Environment

2.2.1 Fault Detection and Handling Techniques 	 6

2.3 Research Gaps 	 18

3. Proposed Work

3.1 Batch Mode. Scheduling and Fault Model 	 20

3.2 Fault Tolerance Support in Metaheuristics 21

3.2.1 Genetic Algorithm based Fault Tolerance Techniques 	 21

3.2.2 Ant Colony Optimization based Fault Tolerance 	 29

3.3 Adaptive Checkpointing based Fault Tolerance Techniques 	 .30

3.3.1 Fault Index based Periodic Skip 	 31

3.3.2 MTBF and Last Failure based Adaptive Checkpointing for correlated failures 	32

4. Simulation Environment and Implementation details 	 34

5. Performance Evaluation and Experimental Results

5.1 Performance Metrics 	 43

5.2 Simulation Parameters 	 44

5.3 GA-based Adaptive Fault Tolerance Using MTBF of Resources. 	 45

iv

5.4 GA-based Adaptive Fault Tolerance Using Fault Ratios 	 51

5.5 ACO-based Fault Tolerance Using MTBF of Resources 	 54

5.6 ACO-based Adaptive Fault Tolerance Using Fault Ratios 	 .57

5.7 GA-based Adaptive Fault Tolerance Using Fault Ratios for Correlated Failures 	 59

5.8 ACO-based Adaptive Fault Tolerance Using Fault Ratios for Correlated Failures 	 .64

5.9 Fault Index Based Periodic Skip 	 .68

5.10 Adaptive Checkpointing Using MTBF and Last Failure times of resources 	 .73

5.11 Performance Comparison of GA-based Checkpointing Techniques Using

Failure Traces 	 .77

5.12 Performance Comparison of ACO-based Checkpointing Techniques Using

Failure Traces 	 .82

5.13 Performance Comparison of GA-based Checkpointing Techniques Using

Workload Traces 	 87

5.14 Performance Comparison of ACO-based Checkpointing Techniques Using

Workload Traces 	 103

6. Conclusions and Future Work 	 118

References 	121

List of Figures

2.1 Illustration of how real ants find shortest path 	 15

2.2 ACO Algorithm 	 15

3.1 Batch mode scheduling 	 20

3.2 Genetic Algorithm 	 ..21

3.3 Representation of Chromosome 	 22

3.4 Stochastic Universal Sampling 	 23

3.5 Single point Crossover 	 23

3.6 Last Failure Time based checkpointing 	 ..26

3.7 Fault occurrence history table 	 28

4.1 Components of Grid environment 	 ..34

4.2 Event diagram to represent interaction between different GridSim entities 	 36

4.3 Modules hierarchy used for experimentation of proposed techniques 	 39

5.1 — 5.7 Comparison between GA- based adaptive checkpointing using MTBF and GA-based

periodic checkpointing 	 (44 - 47)

5.8 -5.14 Comparison between GA- based adaptive checkpointing using Fault ratios and GA-

based periodic checkpointing 	 (48 — 50)

5.15 — 5.21 Comparison between ACO- based adaptive checkpointing using MTBF and ACO-

based periodic checkpointing 	 (51 — 53)

5.22 — 5.28 Comparison between ACO- based adaptive checkpointing using Fault ratios and

ACO-based periodic checkpointing 	 (53 — 55)

5.29 — 5.38 GA-based techniques comparison for spatially and temporally correlated failures. (57

— 60)

vi

5.39 — 5.48 ACO-based techniques comparison for spatially and temporally correlated failures.

	 (61— 64)

5.49 — 5.53 Fault Index based periodic skip vs periodic skip 	 (65 — 66)

5.54 — 5.62 Fault Index based periodic skip vs periodic skip for spatially and temporally

correlated failures 	 (67 — 69)

5.63 — 5.70 Adaptive Checkpointing using MTBF and Last failure times of resources... (70 — 72)

5.71 — 5.82 GA- based techniques comparison for failure traces 	 (73 — 78)

5.83 — 5.94 ACO- based techniques comparison for failure traces... 	 (79 — 83)

5.95 — 5.133 GA- based techniques comparison for workload traces 	 (84 — 99)

5.134 — 5.172 ACO- based techniques comparison for workload traces 	 (99 — 113)

vii

Chapter 1

Introduction and Problem Statement

1.1 Introduction

In past few decades computer network technology has taken a big leap with channel capacity no

longer being a barrier to distributed computing. This same period saw the emergence of highly

compute and data intensive applications with resource requirements hard to be fulfilled by a

single computer, cluster or even a supercomputer. All these factors lead to the inception of a new

paradigm called high performance distributed computing (HPC). Grid computing is one such

distributed HPC environment.

The vision of Grid computing is a computing environment as pervasive as electric Grid where

desired resources as electric power in electric grids would be available on-demand and in the

desired amount making computational Grid a utility similar to electric Grid. The Grid as it exists

today collaborate distributed computing resources with resource owners contributing their idle

CPU cycles. These idle cycles are used for running tasks of massively parallel scientific

applications. Thus today's Grid can be seen as an ensemble of resources from multiple domains

on a large scale to make a distributed supercomputer (with capabilities larger than a

supercomputer). Grid is a popular platform for running scientific applications such as weather

forecasting, drug design, multimedia applications, physics particle accelerator experiments etc.

However maintaining such a massive infrastructure while it continues to provide non trivial

qualities of service [4] is not that easy. Several issues such as security, job scheduling, load

balancing, failover techniques etc have to be dealt with. This dissertation report focuses on one

of the most important issues — fault tolerance in Grid environment, so that QoS can be

maintained despite resources failing during execution of jobs on them.

1.2 Motivation

Grid systems differ from other distributed systems (cluster, peer to peer) in terms of their large

scale, heterogeneity and dynamism. Scale of grid infrastructure, consisting of thousands of

computational nodes, storage devices, affects its reliability. Since the reliability of a system is a

product of the reliabilities of its components, as the complexity (scale) of the system increases its

Wage

reliability and its Mean Time to Failure (MTTF) decreases. Computing resources in grid are

highly heterogeneous with varying hardware and software architectures. Heterogeneity increases

chances of interaction faults occurring between disparate Grid nodes. Dynamicity — resources

may enter and leave at any time, dynamically varying resource load - causes loss and delay of

executing jobs. Grid resources are managed in different administrative domains each with its

own access, security policies. So following properties hold for Grid resources [1].

1. There may be no guarantee that a resource is non-malicious.

2. There may be no guarantee that a resource is reliable (reliability of resources' hardware and

software).

3. There may be no guarantee of processing power (we may have no control over resource's

scheduling policy and its load).

Another factor which further increases chances of job failure in grid environment is that majority

of the applications running on grid are compute-intensive requiring several days of computation

and large number of resources. Consider a Grid application requiring 50 computational resources

each with MTTF of 100 days and requires a week for computation. If the failure mode of

resources is exponentially distributed then the composed application has MTTF of 2 days. So in

the absence of any fault tolerance the application would rarely finish.

All the above factors necessitate the application of fault tolerant techniques for grid computing.

1.3 Problem Statement

Problem statement: "Design and performance study of adaptive checkpointing based fault

tolerance techniques in Grid environment"

The work done in this dissertation can be subdivided into two major tasks:

• Extending the metaheuristic algorithms such as Genetic Algorithm and Ant Colony

Optimization which are commonly used for job scheduling in Grid environment with

support for fault tolerance techniques such as checkpointing

• .Inventing adaptive approaches for fault tolerance in computational grids by suitable

modifying traditional approaches such as checkpointing to take into account various

21 Page

characteristics of the grid environment. These adaptive approaches would be responsive

to the present conditions such as frequency of resource failures, remaining time of

completion of jobs.

1.4 Thesis Organization

This thesis is organized into six chapters including this one which gives introduction,

motivation and problem statement.

Chapter two gives background of available fault tolerance techniques in Grid environment.

Chapter three describes the proposed work.

Chapter four gives description of simulation environment and implementation details.

Chapter five gives performance comparison of proposed technique with available techniques

and also experimental results are presented.

Chapter six concludes the dissertation and gives directions for future work.

3IPage

Chapter 2

Background and Literature Review

2.1 Grid Computing

In [2] Grid computing is defined as "A computational grid is a hardware and software

infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-

end computational capabilities." Grid thrives to achieve pervasiveness of electric Grid where

desired resources like electric power in electric grids would be available on-demand and in the

desired amount. Another definition of Grid computing [3] defines it as "coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organization." Resources

shared comprise not only the computing power but memory, secondary storage, data, special

equipments, etc. This sharing of resources occurs in a highly controlled and coordinated

environment where consumers (resource users) and resource providers clearly define the sharing

rules of what is shared, who is allowed to share and conditions under which this sharing takes

place. These individuals/organizations/institutions bounded by sharing rules together constitute a

virtual organization (VO). Example of a VO can be a set of physicists working on high energy

physics (particle accelerators) experiment or some astronomical experiments such as study of

galaxy formation. These individuals collaborate together to form a coordinated resource sharing

environment. Ian Foster gives a three point checklist [4] for deciding whether a particular

infrastructure is a Grid. To be classified as a Grid an infrastructure should have three important

features:

1) Coordination, collaboration of heterogeneous resources under Distributed control

A Grid is a decentralized environment where different organizations collaborate to provide a

coordinated access to their resources. Organizations participating in a Grid are autonomous and

have exclusive control over management of their resources. Resources owned by organizations

can be highly heterogeneous ranging desktops, workstations, clusters, supercomputers etc .Grid

deals with various issues arising in this "distributed control" environment such as security,

membership management, pricing policy, fault tolerance, scheduling, load balancing, SLA

management and synchronization.

2) Standard, open and general purpose protocols

41 Page

Services provided by Grid needs to be standard and open for interoperability in a

heterogeneous environment.

3) Non trivial qualities of service

From feasibility aspect a Grid should deliver non trivial qualities of service. The QoS

requirement may be related to response time, turnaround time, system utilization, waiting time

etc.

2.2 Fault Tolerance in Grid Environment

Some general basic definitions as given in [5] are:

Error: A deviation of the internal or external state of the system from correct state. For ex.

Memory faults may cause the state of memory cells to change from 0 tol or vice versa.

Fault: The adjudged or hypothesized cause of error.

Failure: The event that occurs when delivered service deviates from correct service.

In [6] six classes of faults that may be present in Grid environment are discussed: Hardware

faults (CPU, memory, storage faults, components used beyond specification), Application and

operating system faults (memory leaks, resource unavailable), Network faults (packet loss,

packet corruption, network congestion), Software faults (unhandled exception, unexpected

input), Response faults (Byzantine error), Timeout faults.

Other fault types are [1]: life-cycle faults (versioning faults), interaction faults (protocol

incompatibilities). According to [1] interaction, timing, and omission faults (the resource omits

the response) are more prevalent in Grid environment. In [7] taxonomy of Grid faults is

presented. One categorization based on duration is:

a) Transient faults: Transient faults cause applications, resources to malfunction for some

period and then disappear. Example: failed job due to insufficient disk space, machine reboot.

b) Permanent faults: Permanent faults cause failure of a component/resource for an undefined

period. Resource remains unavailable for the duration of job and thus cannot be used for

execution of job.

51 Page

c) Intermittent faults: These faults fluctuate between active (causing malfunction) and inactive

(normal functioning). For example load of a resource can change dynamically and this may

affect the execution of jobs on that resource.

Faults have a tendency to cause loss of information [8]. Recovery from faults is based on

redundancy. Redundancy can be of three types — spatial, temporal and information redundancy.

In spatial redundancy multiple copies of jobs are executed on different nodes. Temporal

redundancy involves multiple executions of job on same resource with different executions

skewed in time. Information redundancy involves storing additional information during

execution of job and this information is used during recovery.

As given in [9] the function of fault tolerance is "...to preserve the delivery of expected services

despite the presence of fault-caused errors within the system itself. Errors are detected and

corrected, and permanent faults are located and removed while the system continues to deliver

acceptable service." Fault tolerance increases the dependability of the system. Dependability is

defined as: "The ability to avoid service failures that are more severe that it is acceptable to the

users" [5]. Dependability encompasses a set of attributes: Availability, Reliability, Robustness,

Safety, Integrity and Maintainability. Availability is the probability that the system is in correct

state at a given time. Reliability is the probability of failure in a given interval of time. Other

terms related to reliability are mean time to failure (MTTF), Mean Time between Failures

(MTBF) and Mean time to repair (MTTR).

In [10] it has been studied that time between failures (MTBF) is best modeled by Weibull

distribution with decreasing hazard rate (Weibull shape parameter 0.7-0.8) i.e. frequency of

failures decreases with time. Mean repair time (MTTR) is well modeled by lognormal

distribution. Failures tend to cluster in time and are caused by relative small set of computational

nodes i.e. failures are temporally and spatially correlated.

2.2.1 Fault detection and handling techniques

2.2.1.1 Fault Detection

• Implementation of failure detectors is based on the concept of notifications and timeouts. There

are two models for interaction between the failure detector and monitored components: pull

6l Page

model, push model. In push model the monitored component periodically sends heartbeat

messages to failure detector. If message is not received within a certain time interval T the

component is suspected as failed. In pull model the monitor periodically sends liveness messages

("Are you alive?" messages) to monitored components and suspects crash if no response arrives

within a certain time interval. In [11] are presented problems that should be considered while

implementing failure detectors for grid system. Some of the problems are message explosion

(overloading of network with failure detection related messages), scalability, message loss,

flexibility (adapting to different types of applications).

2.2.1.2 Fault handling techniques

Fault tolerance techniques in grid can be divided into pro-active and post-active approaches. In

pro-active approach failure consideration is made before scheduling of the job and the job is

dispatched with the hope that job does not fail. In [6] an agent oriented pro-active failure

handling framework is presented where agents deal with individual faults proactively. Agents

monitor various properties of jobs and resources such as memory consumption of jobs, MTBF of

resources. Other examples of pro-active approaches are replication, fault tolerant scheduling.

Post-active approaches handle failures after they have occurred. Checkpointing is one of the

post-active approaches. In a complex dynamic environment such as Grid, where resource

conditions changes dynamically and unpredictably (unpredictable fluctuations in load), post-

active approaches have greater significance. Both pro-active and post-active approaches are

complementary and can be used in conjunction with each other.

2.2.1.3 Checkpointing and recovery

Checkpointing is a process of periodically saving the state of a running process to stable storage.

Checkpointing allows a failed process to be restarted from its last checkpoint, bounding the

amount of lost work to be recomputed. It is commonly used to ensure the progress of long

running applications. In [12] are described three checkpointing strategies for concurrent, inter

communicating processes: coordinated checkpointing, uncoordinated checkpointing, and

communication-induced checkpointing.

In coordinated checkpointing, processes synchronize their checkpoints to form a consistent

global state (consistent system state is one in which if a process's state reflects a message receipt,

7IPage

then the state of the corresponding sender reflects sending that message). Each process stores

only one checkpoint on stable storage (the latest checkpoint) and the recovery is simplified as it

only involves restart of each process from its last saved checkpoint. However, coordinated

checkpointing has a disadvantage that each checkpointing operation incurs a large overhead.

Since the number of checkpointing operations performed are much larger than the number of

failures this overhead can be considerably high. Coordinated checkpointing can be either

blocking or non-blocking.

In uncoordinated checkpointing each process takes checkpoints independent of other processes.

Consistent global state is determined during recovery procedure. This strategy has several

disadvantages. First, there is a possibility of domino effect which causes the system to rollback

to the beginning of the computation. Second, each process needs to maintain multiple

checkpoints and thus this strategy imposes greater storage requirements. Third, a process may

take useless checkpoint that will never be part of a consistent global state.

In communication-induced checkpointing in addition to independent checkpoints each process

takes some additional forced checkpoints to ensure the progress of global recovery line and thus

avoiding domino effect. Information regarding forced checkpoints is piggybacked on application

messages.

Uncoordinated checkpointing may be combined with message logging to avoid domino effect.

Message logging protocols [13] are based on the Piece Wise Deterministic (PWD) assumption

which means that a process's execution can be modeled as a sequence of deterministic state

intervals, each interval initiated by a non-deterministic event. The non-deterministic event can be

receipt of a message. In logging, information about received messages (determinant) is stored on

stable media and later replayed to recover a lost state. Message logging protocols need to ensure

that once a crashed process recovers its state is consistent with the state of other processes. This

consistency requirement can be expressed as avoiding orphan processes, which are surviving

processes whose state is inconsistent with the state of recovered process [13]. Message logging

protocols can be categorized as pessimistic, optimistic, or causal.

In pessimistic protocol no process ever sends a message until all the messages delivered before

sending it have been logged. Pessimistic protocols never create orphans and reconstructing the

Wage

state of the crashed process just involves replaying the logged messages. However pessimistic

protocols block the process for each received message, even when no process ever crashes.

In optimistic protocols processes logs determinants asynchronously into stable storage. They are

based on the assumption that logging will complete before failure occurs. Optimistic protocol

doesn't require the process to block waiting for logging to complete but may create orphan

processes, which complicates the recovery.

Causal logging protocols ensures that the determinant of each nondeterministic event that

causally precedes the state of a process is either stored in stable storage or is available locally to

that process. This ensures that no orphans are created. As in optimistic logging each process

takes asynchronous checkpoints. The causality information is piggybacked with each message.

Grid environment with its scalability, heterogeneity and dynamism presents certain issues

regarding application of checkpointing. As applications typically running on Grid consist of a

large number of interacting tasks, the overhead of synchronization required in checkpointing

protocols will be large. Storage overhead is also magnified. Techniques such as incremental

checkpointing, which only saves the memory pages modified since last checkpoint, and

probabilistic checkpointing [14] , in which unit of checkpointing is a memory block which is

smaller than a memory page, poses less storage and bandwidth overhead. Application level

checkpointing [15] with portable checkpoint files is more suitable in a heterogeneous

environment such as Grid compared to system level checkpointing.

2.2.1.3.1 Adaptive Checkpointing

Effectiveness of checkpointing techniques strongly depends on the length of checkpointing

interval. Inappropriate checkpoint intervals can have serious performance implications [16]. If

checkpointing interval is very high a large amount of work is lost on each failure. On the other

hand a very low checkpoint interval incurs a high overhead as each checkpointing operation

takes some time (checkpoint overhead). Also with larger overall checkpoint overhead the

effective running time of application increases which increases chances of failure of the

application [16]. Determining the optimum checkpoint interval is a major issue involved in

deciding the usability of checkpointing technique. Plank [17] studied the applicability of

theoretical equations for optimum checkpoint interval using data sets of three workstation

9IPage

monitoring projects for simulation. The theoretical equations assume failures to be exponentially

distributed whereas the actual failures in these data sets did not follow exponential distribution.

There are several factors affecting the optimum checkpoint interval such as application

characteristics, failure conditions of resources. The problem worsens in a highly dynamic Grid

environment where failure conditions of resources may change dynamically. Recent studies on

checkpointing have considered dynamic adaption of checkpoint interval. These studies have

leveraged the dynamic information about resource conditions and application execution times in

designing heuristics for online modification of checkpoint interval. One such technique is

cooperative checkpointing [18, 19, and 20]. In cooperative checkpointing technique the

application programmer, compiler and runtime system cooperatively decide when checkpoint

operations are to be performed. This technique dynamically skips checkpoints if the expected

cost of taking a checkpoint is greater than the expected cost if checkpoint is not taken. FT-Pro

[21] includes an adaption manager which after periodic interval (adaption points) chose one of

the three actions — skip checkpoint, take checkpoint, proactively migrate. The action chosen

depends on the failure prediction results and the failure impact during next interval. In [22] are

presented adaptive checkpointing strategies that dynamically adapt the checkpointing frequency

depending on changing system properties (resource failure frequency, remaining execution time

of jobs). It presents two adaptive checkpointing techniques — last failure dependent

checkpointing and mean failure dependent checkpointing. The last failure dependent

checkpointing technique leverage information about last failure time of resources and temporal

correlation of faults (if a resource has not failed for a long time then there is less probability that

it will fail in the near future) in skipping checkpoints. The mean failure dependent checkpointing

technique adapts the checkpoint interval online depending on remaining execution time of job

and mean failure time of resources. Mean failure dependent checkpointing technique is shown to

give performance comparable to the optimal checkpoint interval for the simulation environment

for all checkpoint intervals. In [23] is presented adaptive checkpointing technique for economy

based Grids. The presented technique maintains fault indexes of resources to adaptively decide

the checkpoint interval during job submission. Fault index is an indicator of vulnerability of

resource towards failures. When a job misses deadline (or job fails due to resource failure) fault

index of resource is incremented by one and when job completes successfully fault index is

decremented by one.

10IPage

2.2.1.4 Replication (Over provisioning)

Replication [24] involves running different replicas of the same task on different Grid resources

simultaneously with the hope that at least one of them will complete execution successfully.

Replication technique can be classified into two categories: Active replication and Passive

replication. In active replication replicas service requests in parallel and their states are closely

synchronized. In passive replication a primary replica services requests while other replicas are

passive and can take over when primary fails. Efficiency of replication depends on determining

the optimal number of replicas and can pose high overhead in highly loaded systems if the

number is not optimal. In [22] is presented an adaptive load dependent replication technique

which postpones replication when system load is high. In [25] is presented overloading of

backups of primaries of independent and dependent tasks for efficient scheduling of backups.

2.2.1.5 Task-level, workflow-level and hybrid fault tolerance techniques [26]

Workflow applications are structured in directed acyclic graph form where each node represents

a task and edges represent inter-task dependencies. In [26] two-level fault tolerance techniques

are incorporated into the workflow structure — task-level and workflow-level. Task-level fault

tolerance techniques deal with task crash failures. Retry, replication and checkpointing are three

task-level fault tolerance techniques. Workflow level failure handling techniques modify the

execution flow to deal with faults. These techniques enable handling of task-specific failures. It

includes three techniques: alternate task, workflow-level redundancy and user-defined exception

handling. hi alternate task technique if one implementation of a task fails it is replaced with an

alternate implementation with different execution characteristics. For example on memory full

exception a fast implementation, with high memory consumption, is replaced with a slow

implementation, with low memory consumption. Redundancy requires different implementations

of a task to run in parallel. User-defined exception handling technique allows defining of a

special treatment for different task-specific failures.

The above mentioned techniques can be combined to create hybrid techniques. For ex.

Replication with checkpointing, alternate task with checkpointing, etc. The fault handling

framework proposed in [26] is flexible in that different failure handling techniques can be

specified depending on application and resource characteristics such as execution time of job,

111Pa ge

MTTF of resource, downtime of resource. This is particularly beneficial for Grid due to its

heterogeneity. Conclusions derived from experimental assessment in [26] reveal that

checkpointing is more beneficial compared to retrying and replication for resources with low

MTTF. Also replication performs better compared to retrying and checkpointing for resources

with large downtimes. For low values of MTTF checkpointing and replication with

checkpointing have superior performance. If resources are reasonably reliable replication

performs best. For large downtimes replication and replication with checkpointing performs

better than other techniques. However MTTF has greater effect than downtime and for low

MTTF checkpoint performs better than replication. In case information about downtimes and

MTTF is not available replication with checkpointing is the best technique.

2.2.1.6 Other related works

2.2.1.6.1 Mobile agent based fault tolerance

Mobile agents are suited for the development of grid infrastructure [27] due to their properties of

cooperation (mobile agents can interact and cooperate with each other), autonomy (autonomous

entities with little intervention from client), heterogeneity (several mobile agent platforms can be

executed in heterogeneous environments), reactivity (can react to external events such as

resource availability variation) and mobility. In [27] fault tolerance components are developed as

mobile agents to handle node and application crashes.

2.2.1.6.2 Fault tolerance by scheduling

2.2.1.6.2.1 Fault tolerance scheduling of scientific workflows

[28] [29] presents combined fault tolerance and scheduling techniques for workflow applications.

In [29] two scheduling algorithms for heterogeneous systems, HEFT and DSH, are combined

with checkpointing and replication, with checkpointing being used during workflow execution

and over-provisioning used during scheduling and planning phase. Lightweight Checkpointing is

done after completion of each task. If task fails to finish due to resource unavailability, it is

migrated to most reliable resource. If some resources on which parent tasks were running are

also not available, then those parent tasks are restarted on some available resource.

2.2.1.6.2.2 Volunteer Availability based fault tolerant scheduling

12 Page

Desktop grid computing environment consists of clients, volunteers and volunteer servers [30]. A

client submits jobs for execution. A volunteer donates its computing resources. A volunteer

server manages jobs and volunteers. Volunteers can freely join and leave in the middle of

executions. Also, volunteers are not completely dedicated for grid use. So public executions i.e.

grid jobs get temporarily suspended by a private execution at the volunteer. These situations are

termed as volunteer autonomy failures. The proposed scheduling algorithm in [30] handles

volunteer autonomy failures by selecting an appropriate volunteer for task scheduling based on

volunteer availability and volunteering time information maintained at it.

2.2.1.6.2.3 Fault tolerant Genetic algorithms

Genetic Algorithm is a global search technique used for solving optimization problems. Genetic

algorithm use a population of search nodes (chromosomes or solutions or individuals) in its

search and uses probabilistic transition rules [31]. Genetic algorithm consists of a representation

for nodes in the search space, genetic operators for generating new individuals, fitness function

for evaluating each solution, a selection criteria, probability factors for application of genetic

operators and a termination condition. It maintains a pool of potential solutions called

chromosomes. For grid scheduling a chromosome is a mapping from job to resource. Genetic

algorithms produces new solutions by randomly combining the good features present in existing

solutions. A genetic algorithm consists of following steps [31]:

a) Initialization: initial population of chromosomes is randomly generated.

b) Evaluation of fitness function: fitness value of each chromosome is calculated.

c) Genetic operations: new chromosomes are generated by applying genetic operators to the

chromosomes.

d) Steps b and c are repeated until termination criterion is reached.

The termination criterion may be all chromosomes converging to the same fitness value or

predefined number of iterations. Crossover and mutation are two genetic operators. Crossover

operator randomly selects two chromosomes and chooses a random point in the first one

(crossover point) and exchanges the sections of both chromosomes from crossover point to the

end of each chromosome. Mutation randomly selects a chromosome and randomly selects a task

13jPage

within the chromosome and randomly assigns a new machine to it. Application of crossover

(mutation) operation is controlled by a crossover (mutation) probability.

Several research efforts incorporate fault tolerance in meta-heuristics such as Genetic algorithm,

Ant colony optimization etc. In [32] risk-resilient genetic algorithm scheduling strategies are

proposed. It considers three scheduling modes - preemptive mode, replicated mode and delay-

tolerant mode. In [33] Resource Fault Occurrence History (RFOH) information is maintained in

Grid Information Service (GIS) and this information along with response time is used for

designing the fitness function of Genetic Algorithm. So chromosomes having good fitness values

are more fault tolerant compared to the ones with lower values. In [34] is presented a genetic

algorithm for job scheduling. It uses checkpointing technique to tolerate faults but doesn't give

experimental results. In [35] a reliability aware genetic algorithm based scheduling is presented.

It designs a fitness function combining makespan, flowtime, average time to release and

reliability (modeled using exponential distribution) of the chromosome (schedule). In [36]

Genetic Algorithm based scheduling strategies supporting different fault tolerance techniques

such as retry, migration, replication and checkpointing are proposed. Experiment results

presented shows that checkpointing based strategy has best performance considering the

performance metrics — makespan, average turnaround time and job failure rate. A portion of our

work that uses checkpointing differs from work in [36] in using adaptive checkpointing

techniques and also their work focuses on permanent failures of resources and job migration on

failures (availability of spare nodes) whereas our work only considers transient failures [7] of

resources and the restart of jobs on the same resource when the resource recovers from failure.

2.2.1.6.2.3 Ant Colony Optimization (ACO)

Ant Colony Optimization [37] is one of the popular nature-inspired algorithms for solving

optimization problems. In ACO a groups of cooperating agents cooperate to find optimal

solutions to the problem. These ants indirectly communicate with each other using pheromone

which is a form of distributed memory. Figure 2.1 shows how real ants find optimal paths to

food source. At decision point two paths exist. Each ant randomly chooses one of the paths. As

ants move along a path it deposits pheromone on the path followed. Now assuming that half of

the ants follow one path and the other half second path, in a given period of time more ants will

visit the lower path compared to the upper as lower path is shorter. After a short period of time

14IPage

the difference between amounts of pheromone on the two paths will be sufficiently larger that

next ants will, in probability favor the lower path compared to upper which with a positive

feedback further increases the number of ants following the lower path. This cooperative

behavior of ants inspired the development of ant system, which further leads to the development

of more efficient system called ACO.

Alti:114,1tO!' 	 *11?li 4,0;

Figure 2.1 Illustration of how real ants find shortest path to food source [371

Ant colony optimization algorithm is shown in figure 2.2.

Initialize all parameters

Loop /* outer loop represents each iteration of ACO */

Each ant chooses a random sequence of tasks

Loop /* inner loop represents a step

Each ant incrementally builds a solution by applying state transition rule and a local
pheromone updating rule

Until all ants have completed building a solution

Apply global pheromone updating rule

Until terminate condition

Figure 2.2 The ACO algorithm

15IPage

In ACO each ant incrementally builds a solution in parallel with other ants. ACO consists of

three main features — i) pseudo-random-proportional state transition rule, ii) global pheromone

updating of only the solution of best ant and, iii) local pheromone updating rule as each ant

builds a solution. The stochastic greedy state transition rule balances exploration of new

solutions and exploitation of priori and accumulated knowledge about the problem. Global

pheromone updating rule strengthens the task to resource mappings of best solution for selection

by later iterations as mappings with higher pheromone values are more desirable. Local updating

rule reduces the pheromone value for mapping found during a step so that this mapping is less

favorable to be chosen by other ants during this iteration. This helps in moving out of local

optimum. Other important information associated with ACO is heuristic information for each

mapping. Heuristic information for each task to resource mapping can be execution time of that

task on the resource. Both heuristic information and pheromone values are used for guiding

selection.

In [38] presented ant algorithm based task scheduling in Grid environment. Scalability of ant

algorithm is tested by adding more nodes to an existing network and testing the performance of

new extended network. The routing information of solution for a network is used for finding

solution for the extended network. Ant algorithm that uses previous information performs better

than the one that does not use it. Pheromone value is associated with path between schedule

center and resource. Initial pheromone value for each path depends on MIPS of resource, number

of processing elements in that resource and transfer time (bandwidth) between that resource and

schedule center. Pheromone value for a resource is updated when task is submitted, when task

fails, and when task is completed successfully. In [39] is presented an improved ant algorithm for

job scheduling. A load balancing factor is introduced to update pheromone. This helps in load

balancing. In [42] ACO based dynamic job scheduling is used with the objective of minimizing

total tardiness time of jobs. Heuristic information is based on completion times of jobs.

Completion time of a job on a resource is sum of arrival time, release time and processing time.

In [43] ACO is used for Grid task scheduling with multiple QoS dimensions with the objective of

maximizing total utility. Five QoS dimensions are considered — time, reliability, version, security

and priority. In [44] a balanced ACO for Grid job scheduling is proposed. Each ant represents a

resource and pheromone value is associated between a job and a resource. Pheromone indicator

of each resource for each job is based on CPU execution time and transfer time of job. For each

16 1Pa ge

job pheromone indicator is used for selecting the resource for its execution. Local pheromone

update is done after each job assignment. Global pheromone update is done after each job

completion. Most influential work on ACO based job scheduling in Grid is [45] and it is the one

our work on ACO is inspired from. This work will be discussed in chapter 3.

2.2.1.6.3 Application model specific fault tolerance

2.2.1.6.3.1 Malleability support for divide and conquer applications [46]

Due to dynamic resource availability of grid the grid applications need to be fault tolerant and

malleable (ability to cope with the increasing and decreasing number of processors). Divide and

conquer applications work by dividing each problem recursively into sub problems until the sub

problems become trivial. Then the solutions of sub problems are recursively combined until final

solution is achieved. Divide and conquer applications can be run efficiently by running different

sub problems on different machines. Each processor acquires work by work stealing: when a

processor is idle it steals work from other processor's work queue. In [46] malleability

mechanism is based on recomputing jobs lost by failed processors but the amount of lost work is

minimized by restructuring the computation tree to reuse as many already computed partial

results as possible. This mechanism salvages orphan jobs (jobs stolen from crashed processors)

and partial results computed by crashed processors if they leave gracefully. Each processor

maintains a list of jobs stolen from it and the identity of the thief If a processor crashes, each of

the live processors searches for jobs stolen by crashed processor and put the stolen jobs back into

the work queue. Each job inserted into work queue is marked as restarted. Children of restarted

jobs are marked as restarted when they are spawned. To reuse results of orphan jobs, for each

finished orphan job a message containing joblD and processorID is broadcasted by the processor

computing the orphan job. Each processor on receiving this information keeps it in a local

orphan table. When recomputing jobs marked as restarted the orphan table is looked up. If the

jobID matches any of the stored entry the corresponding processor is requested for result and job

is not put in the work queue. For reusing partial results computed by leaving processors each

leaving processor sends the already computed results of finished jobs to any other processor.

These received jobs are treated as orphan jobs: processor receiving the finished job treats it as

orphan and broadcasts jobID and its processorID and the mechanism followed is as described

above.

17IPage

2.3 Research Gaps

Following research gaps have been identified in present fault tolerant techniques in Grid

environment:

• Checkpointing is one of the most commonly used approach for tolerating faults in grid

environment. But in order to be effective support for checkpointing should be provided

while scheduling jobs (checkpointing will not be beneficial on a resource with high

probability of failure as even in the presence of checkpointing technique the job will miss

its deadline in real time scenarios). Genetic Algorithms are an important class of

algorithms for grid resource scheduling. Present researches provide support for fault

tolerance in these algorithms using heuristics for checkpointing and replication. These

heuristics have been used for building the fitness functions. However another issue with

checkpointing is the size of the checkpointing interval. If the size of checkpointing

interval is small the overhead of checkpointing (capturing the snapshot of the process i.e.

its state, migrating and saving state on the checkpoint server) can be very high to make

checkpointing ineffective. On the other hand if size of checkpointing interval is high

large amount of work will be lost in case of failure. Approaches exist for online adaptive

checkpointing which modify the checkpoint interval based on the frequency of resource

failures and the remaining execution time of jobs. But no scheduling support for these

adaptive checkpointing approaches exists in the present researches.

• Grid by its definition is a collection of autonomous resources. A Grid respects the

autonomous nature of the administrative domains of which it comprises. This

autonomous nature leads to inception of new kinds of failures called volunteer autonomy

failures [30]. No heuristics exist for genetic algorithms which take into consideration this

nature of Grid environment.

• Mean Time to Repair (MTTR) of a resource is an important factor while scheduling if

checkpointing is used without support for migration. This may be the case when all

resources are heavily loaded. In this case jobs that were running on the failed resource are

restarted from the latest checkpoint on the same resource when that resource recovers

from failure. So consideration of MTTR of a resource is important when building fitness

18I Page

functions for Genetic algorithms supporting checkpointing techniques. No present

research focuses on this issue.

• Ant Colony Optimization is another subclass of meta-heuristic algorithms which have

been found effective for Grid resource scheduling. None of the available research works

focuses on incorporating support for fault tolerance techniques such as checkpointing in

these scheduling algorithms.

• A majority of study pertaining to fault tolerance are based on the assumption of failures

of resources being independent and MTTF and MTTR following exponential distribution.

In [101 it has been studied that time between failures is best modeled by Weibull

distribution with decreasing hazard rate (Weibull shape parameter 0.7-0.8) and mean

repair time is well modeled by lognormal distribution. Failures also tend to cluster in time

and are caused by relative small set of computational nodes i.e. failures are temporally

and spatially correlated.

• A majority of works in adaptive fault tolerance approaches exists in high performance

computing environment. The applicability of these approaches in Grid environment is an

area where avenues for study exist.

19IPage

Chapter 3

Proposed Work

3.1 Batch Mode Scheduling and Fault Model

In this work a batch-mode scheduler is assumed. This scheduler is a centralized scheduler

accepting job requests from grid users. The scheduling time is divided into scheduling intervals

and all job requests which have arrived in a scheduling interval form one batch of jobs to be

scheduled. Figure 3.1 shows the batch scheduling model. In this figure PE is a resource and each

job is assumed to require only one resource for its execution. A job/task executing in a resource

on failure of that node/resource is resubmitted to the same resource.

PE1

PE2

PE3 	
time

Scheduling interval Scheduling interval

Successful execution ---1 Failed execution 	Job re-submitted

Figure 3.1 Batch mode scheduling •

In this work only transient faults are considered. Job failure is any condition in hardware (node

failure, network failure, memory failure) or software (exceptions, buffer overflow) [6] which

causes the job to stop execution (fail-stop model). Failed nodes are assumed to eventually

recover from failures and the failures of nodes are independent of each other (in actual large

scale systems failures are found to be temporally and spatially correlated [10]). In addition, we

assume that the batch scheduler is running on a highly stable (or highly replicated) machine and

20IPage

does not fail. Failure of a resource is assumed to be immediately detected and recovery time in

most cases is assumed to be negligible . Weibull distribution is used for modeling resource

availability [10]. Other failure assumptions are mentioned in the sections where they apply.

3.2 Fault Tolerance Support in Metaheuristics

3.2.1 Genetic Algorithm Based Fault Tolerance Techniques in Grid Environment

Genetic Algorithm used in this work is the one used in Global Optimization toolbox of

MATLAB R2010a [53]. The algorithm is follows:

Genetic Algorithm

Generate initial population;

Evaluate initial population using fitness function;

Loop (termination criteria)

a) Selection

Select chromosomes from current population on which crossover and mutation

operators will be applied to produce new population.

b) Apply genetic operators on current population

Crossover and mutation operators are applied on chromosomes selected using

selection 	function.

c) Create new population

The new population has the same size as the current population consisting of:

i) Elite Count

ii) Crossover kids = Crossover fraction * (size of current population — Elite Count)

iii) Mutation kids = size of current population — Elite Count - Crossover kids

d) Evaluate new population

End Loop

Figure 3.2 Genetic algorithm

21IPage

A) Chromosome Representation

A chromosome is represented as a one dimensional array indexed by job id. Each entry in the

array is the id of the node to which the corresponding job is allocated. For example in Figure 3.3

job J1 is allocated to node N1 job J2 to node N8.

J1
	

J2
	

J3
	

Jn

N1 I 	N8 	I 	N5 	I 	... 	I 	N4
Figure 3.3 Representation of Chromosome

B) Initial Population

Initial population is represented as a matrix with number of rows equal to the population size and

number of columns equal to the number of jobs. Each row represents a chromosome.

C) Selection Function

Selection function selects the chromosomes from the current population which are used for

reproduction of new chromosomes using operations of crossover and mutation. Roulette wheel

based selection and stochastic universal sampling are commonly employed techniques for

selection.

1) Roulette Wheel Selection

In this technique chromosomes are one-to-one mapped to contiguous intervals which has a range

[0, Total], where Total is the sum of the fitness values of the chromosomes in the current

population. Each chromosome occupies a contiguous interval equal to its fitness value. Then a

random number in the range [0, Total] is generated and the chromosome in whose interval that

number lies is selected for reproduction. Clearly a chromosome with higher fitness value has

greater probability of being selected.

2) Stochastic Universal Sampling

This technique selects a random number between 0 and Total/n (n is the size of current

population) as initial pointer. Then n equally spaced pointers starting at the initial pointer and

with the interval size equal to Total/n are used for selecting the chromosomes. The chromosome

in whose interval the pointer lies is selected for that pointer.

221 Page

Jl
	

J2
N5 I N3 r

J2
NI 	I

J3 J4 J5
N2 NI I N4

J3 J4 J5
N5 I N4 I N2

J1
I 	N3

	

A
	

D
	

E

	

uE(O,Total/n) 	 Total/n

Figure 3.4 Stochastic Universal Sampling

D) Crossover Operator

Crossover operator is a global search technique that produces new chromosomes by combining

features of the parent chromosomes. The simplest form of crossover operator is single-point

crossover. It randomly selects a number in the range (1, num_taslcs) where num_tasks is the

number of tasks. This point is known as crossover point. The portions of the two parent

chromosomes after the crossover point are swapped to create two new chromosomes. Figure 3.5

shows application of crossover operator.

Parent chromosomes

CrossoveT point
Offspring chromosomes

JI
	

J2 	J3
	

J4
	

J5

JI

N5 I N3 I N2 I N4 j N2

J2 	J3 J4
	

J5
N3 I NI I N5 I Ni I N4

Figure 3.5 Single-point crossover operation

E) Mutation Operator
Mutation operator randomly selects a job and replaces the value in its entry in the parent

chromosome with some randomly chosen valid resource id. The role of mutation is of

guaranteeing that no possible solution in the solution space has zero probability of being

searched. This helps in moving out of local optimum.

F) Fitness function

Fitness function is used to evaluate the quality of chromosomes and it is the measure that we

want to optimize. Fitness function used in this section is a composition of two objective

23IPage

functions — makespan and flowtime. This function is similar to the one used in [35]. Our

objective is to minimize the values of makespan and flowtime of the schedule. Fitness function

is given by the following equation:

Fitness = Makespan * Flowtime 	 (1)
Makespan = max {Cr) 	 (2)
Flowtime = ET" j

	
(3)

Above notations for makespan and flowtime are similar to those used in [35]. Cr is the

completion time of jobs allocated to resource r. So, makespan is maximum of the completion

times of Grid resources and flowtime is sum of the completion times of resources (where in

equation (3) m is the total number of resources in Grid). In this paper completion time of

resource r is taken as sum of execution times of jobs allocated to r i.e.

= Zy EX,j. 	 (4)
EX) is execution time of job j on resource r to which it is allocated. In this work execution time

of a job is taken as the CPU time for running that job on the resource to which it is allocated. The

waiting time and transmission time of a job are ignored. Below are presented some heuristics for

execution time of jobs that takes into account the failure conditions of resources.

1) MTBF and LF based Adaptive Checkpointing based fitness functions

Following are fitness functions that take into account the failure characteristics of resources such

as Mean Failure Time (Mean time between failures), Last Failure Time to modify the

checkpointing interval to reduce the cost of checkpointing. These adaptive checkpointing

approaches derives the basic idea from [22] where online adaptive checkpciinting is presented.

a) Mean Failure Time Based Checkpointing

This approach modifies the checkpointing interval based on Mean Failure Time of resources.

Mean Failure Time of each resource is maintained in GIS (Grid Information Service) based on

historical failure patterns of that resource. The basic idea is that the resource with larger Mean

Failure Time (which is more reliable) will incur less checkpointing overhead and thus the

execution time on it will be low compared to other resources with comparable resource speed but

lower MTBF. If value of makespan is used as fitness function this leads to selection of former

resource for job execution against latter resources, which also results in reliable execution (less

work lost due to failures).

24IPage

If (C1 — LFn + EXn (i) < MF„)

Checkpt -interval = k * Checkpt interval (7)

=
	TaskMj

resourcem ps

MF" 	* Checkptcost
(* checkptcost 	1.2*checkptintervai En(i) = EXn(i) 	LCkeckPtinterval

EXn(i) is CPU time required for execution of job i on node n. TaskMI is task size in Million

Instructions, resourceMips is resource speed in Millions of Instructions per Second, En (i) is

execution time of job i on node n, MFn is mean failure time of node n, Checkptcnst is the
.

overhead of individual checkpoints and Checkpt- -interval is the size of checkpointing interval.

Equations 5 and 6 are based on the assumption that on failure a resource is down only for the

period required for its restart and this period is assumed to be negligible. Size of checkpointing

interval is doubled if the remaining execution time of job on that resource is less than mean

failure time of resource. Also the entire computing capability of a resource is assumed to be

available for Grid job execution and there is no local load on a resource.

b) Last Failure Time Based Checkpointing

This approach is represented by following equation

Where Cl is current system time, LFn is last failure time of node n and k is an integer > 2.

Equation for execution time can be derived as in previous approach. If multiple jobs in a batch

are assigned to the same resource then for each successively scheduled job i, LFn is set using the

formula:

LP", = Cn (i — 2) + EX„(i — 1)/2
	

(8)

In equation 8 it is assumed that last job would have failed in the middle of its execution.

Figure 3.6 shows the operation of Last Failure Time Based Checkpointing approach. Since

— LF„ 	EXn(i) < MFn checkpoint interval is increased by multiplying it by an integer k >2.

The logic behind incrementing checkpointing interval is that the node is less likely to fail during

25IPage

	

LFn 	Cl
•	

MFn

Figure 3.6 Last Failure Time based checkpointin

c.01RAL L

arch 	 !?
ti/

.22/
ti)- //3... Dato.,

CPU 	
Task!,

40 - resourcemips

the execution of this job on it. So overhead of checkpointing can be reduced by taking a higher

checkpoint interval.

EXn(i)
4

c) Checkpointing with Downtimes r. ROOV&s-
This approach takes into account the downtime (Mean Time to Repair) of resources while

scheduling jobs on them. Resources with high downtimes are less favorable during resource

allocation.

Following is presented the derivation of the heuristic for representing the execution time of a job

on a resource in presence of resource failures.

i) CPU time - The time spent in actual execution on the CPU on a resource is given by the

formula -

TaskMI is task size in Million Instructions, resourcemips is resource speed in Millions of

Instructions per Second.

ii) Total checkpoint overhead - During its execution a job periodically performs checkpoint

after Check pt interval seconds. Each checkpointing operation takes some time and this time is

equal to Checkptcost seconds. So total time spend/wasted in checkpointing operation is the

product of total number of checkpoints performed during execution

(ICPUn(i) / Checkpt - interval]) and time taken in performing each operation.

iii) Failure free execution time (EXn(i)) - Failure free execution time is the sum of CPU time

and total checkpoint overhead i.e.

EX „(i) = CPU„(i 	 cost)
1Checklitinterval CPUn(i) 	 j* Check (9)

26 IP.] ge

iv) Total time with faults (FTime) — Expected number of failures during the execution of job is

obtained by dividing total time for which a job executes on a resource by the Mean Time

Between Failures (MTBF) of the resource.

Now for each failure event the resource goes down for MTTR seconds. So for each failure event

an extra MTTR seconds is added to the failure free execution time (HMO). So total time

required for execution in addition to the failure free execution time (EX,,(0) is the product of

expected number of failures during execution of job i.e.' EXn(il and MTTR of the resource and LMTBF
hence the total time with faults is

FTime = EMI) + 1.74÷21* MTTR
	

(10)

Above formula assumes that no work is lost during failure as the fault arrives just after the

successful completion of checkpointing operation. If the work lost due to failures is taken into

account then the equation for FTime becomes

FTime = EX,i(i) +
EXn(i)1* (MTTR + Checkpi- interval 	P ., 	CheCktcost) 	(11) MTBF

Above equation is pessimistic in that the failure is assumed to occur just before the completion of

a checkpoint.

v) Total execution time (En(i)) — Total time spend in execution for a job i on resource n is the

total time with faults (FTime) i.e.

En(i) = FTimen(i)
	

(12)

d) Resource Provider Autonomy Based Scheduling

In [30] is presented volunteer autonomy failures in desktop Grids. These failures results from

resource providers freely entering and leaving the grid at any time and also due to preference of

private execution (local load of a resource) over public execution (Grid jobs). Our approach

maintains the time of resource (a volunteer) registration in Grid Information Service. Also the

mean time for which a resource remains in the grid. (stay time) is maintained. If sum of current

system time and execution time on a resource is greater than sum of present registration start

time (LRn) and mean stay time (MSn) then a penalty is added to execution time on that resource.

27 'P age

12
R7 5 	 15
R8 3 	 4

8

3
2

11
R2 5
R3 3
R4 7
R5 4
R6 6

,(FOHT[i][1] 13)) +1)
CheckPtintervai[1] = C * FOHT [i] [0]

EXn(i) =
resourceMips

.interval LiJ
En(i) EXn(i) [Ckec

(
k
E
p
x
t

n(0)
„ * Checkptcost+

(FOHT[i][0] / FOHT[i][1])* (CheCkptinterval[i] CheckPtcost)

(13)

Task MI

This is due to the possibility of resource provider disconnecting from the Grid before job

completion.

2) Fault index and Fault ratio based Adaptive Checkpointing based fitness function

The work discussed in this subsection maintains history of fault indexes of resources in a Fault

Occurrence History Table (FOHT) as is done in [33]. FOHT maintains two entries for each

resource. First entry contains the number of fault occurrences and second entry contains number

of jobs submitted to that resource. The FOHT is shown below

Figure 3.7 Fault occurrence history table

Initially all entries are set to 0. Entries for each resource is updated according to following rules

a) If a job is submitted to a resource second column is incremented by 1.

b) If a resource fails to complete job within deadline (due to resource failure) first column for

that resource is incremented by 1.

A) Fault ratio based adaptive Checkpointing

The heuristic for representing execution times of jobs is represented by following equations

28IPage

In equation 13 C represents the initial checkpointing interval for the experiment and

Checkpt -interval [i] represents the adaptive checkpointing interval for jobs submitted to resource i

set depending on FOHT values. a limits the increase in checkpointing interval and limits the

decrease in checkpointing interval.

B) Fault index based adaptive Checkpointing

-interval Checkpt 	fil = C * (min(max((FOHT[i J[1] — FOHT[i][0]) ,13),a))

EXn(i) 	
Task,"

resourceMips
(14)

(EXn(i))
En (i) = EXn(i) + L

	

	 * Checkptcost
Ckeckpttnterval[1]

(FOHT[i] [0] / FOHT[i][1])* (Checkptintervca[i] Checkptcost)
In equation 14 a limits the increase in checkpointing interval.

3.2.2 Ant Colony Optimization Based Fault Tolerant Scheduling in Grid

Various phases of ACO are explained below. This work on ACO based job scheduling is similar

to that in [45].

1) Initialization:

Parameters of ACO are set in this phase. p which controls local pheromone update and global

pheromone update is set to .1. (3 which determines weight age of heuristic value is set to 1.2. q0

which controls application of exploration vs exploitation is set to .9.

2) Pseudorandom state transition rule:

An ant chooses a resource r for a job j using the following rule

arg maxuER {[pheromone(u, j)]. (u, j)] R),
if q < q0 (exploitation)

S (biased exploration), otherwise

r= (15)

29IPage

R is the set of available resources. Pheromone(uj) is pheromone value of resource u for job j. ri

is the heuristic value of resource u for job j. (3 is a parameter greater than 1 which determines

relative importance of heuristic vs pheromone. q0 is a parameter and q is a random variable

uniformly distributed between 0 and 1. S is the resource selected using stochastic universal

sampling.

3) Local pheromone update rule:

Local pheromone update is performed by each ant after each step. Phermone value of resource r

selected for a job j is updated using the following rule:

Pheromone(r,j) = (1-p).pheromone(r,j) + p. initial_pheromon 	 (16)

Local pheromone updating rule is pheromone value of resource r for job j. So this selection will

be less for other ants. This helps is exploring the entire solution space and moving out of local

optimum.

4) Global pheromone update rule:

Global pheromone update rule is performed after each iteration for the best ant found in that

iteration. Pheromone value of job to task mappings in the best ant is updated using the formula:

Pheromone(r,j) = (1-p).pheromone(r,j) + p. score 	 (17)

score for the best ant is calculated as

score = 1 + minimum_makespan/makespan 	 (18)

minimum makespan is the minimum makespan found in all preceding iterations and current

iteration, whereas makespan is makespan of the best ant of this iteration for which score is being

calculated.

3.3 Adaptive Checkpointing based Fault Tolerance Techniques

3.3.1 Fault Index Based Adaptive Skip

Periodic skip [191 based checkpointing technique periodically skips Checkpoints for a job. For

example if a "skip parameter" d is equal to 1 then alternate checkpoints are skipped. Higher

value of d higher will be the number of checkpoints skipped. Fault index based periodic skip

301Page

uses fault indexes [23] of resources to determine the intensity of skipping checkpoints (skipping

parameter). For each resource fault index is maintained. Fault index is a measure of vulnerability

of the resource towards failures. It is incremented on each job failure and decremented on each

successful job completion. Pseudo code for fault index based periodic skip is given below

FI(i): Fault Index of resource i

FIl, FI2, FI3.....FIN fault index values such that FIl < FI2 < FI3 < <FIN

D1, D2, D3,....,DN skip parameter to determine intensity of skip such that D1 < D2 <D3

...DN

If(FI(i) > Fin) then

Perform all checkpoints

If(FIN >FI(i)>FIN-1

Use D1 has skip parameter

If(FIl >FI(i))

Use DN has skip parameter

Exit

Resources with higher fault indexes are more prone to failures. So fewer checkpoints are

skipped (or no checkpoints are skipped). On the other hand, since resources with less fault index

value are less vulnerable to failures more checkpoints are skipped for these resources. This helps

in adapting the checkpoint interval depending on failure conditions of resources. As a

consequence lesser checkpoint overhead is incurred and lesser work is lost due to failures.

Finally this would result in less execution time for resources.

In addition to adaptive fault index based periodic skip fault index based exponential backoff skip

can also be done. This technique a cooperative checkpointing technique [19] increases the

amount of saved work for each completed checkpoint. For example 1st, 2nd, 4th, 8th, 16th, etc

checkpoints are performed in each availability interval for "exponential parameter" equal to 2.

Modifying this exponential parameter depending on fault indexes of resources can be highly

useful in reducing the amount of work lost due to failures.

31IPage

Other that using fault index for determining "skip parameter" or "exponential parameter" fault

ratio as discussed in 3.2.1 can be used for the same purpose.

3.3.2 MTBF and Last Failure Based Adaptive Checkpointing for Temporally Correlated

Failures

As found in [10] failures in production HPC systems are temporally correlated. This observation

can be harnessed in online adaption of checkpoint interval for each resource. Heuristics based on

last failure and MTBF for adapting the checkpoint interval have been presented in [22]. These

heuristics are dependent on execution times, of resources which can be highly unpredictable in a

highly dynamic environment such as Grid where load on resources changes dynamically and

unpredictably. To eliminate this shortcoming following heuristic is proposed

If ((C1-Lf) > a * MTBF)

AI = AI + I for each checkpoint request in interval (a * MTBF, J3 * MTBF) where p > a and

a >1
	

(19)

If (((C1-Lf) < y * MTBF)

AI = AI - I for each checkpoint request in interval (y * MTBF, n * MTBF) where rl > y and

y < 1

where I is an initial periodic checkpoint interval and AI is adapted checkpoint interval. C 1 is

current time and Lf is last failure time of resource. The logic behind above equations is based on

two properties of temporal correlation between failures. a, (3, 7, and ri are parameters of the

technique.

i) If a node has not failed for a long time then there is less probability that it will fail in the near

future.

ii) If a node has failed recently then there is high probability that it will fail in the near future.

Concentrating on first if condition in equation 19 and point i. If difference between current time

Cl and last failure time Lf is greater than some multiple of MTBF (a * MTBF where a > 1) then

increase checkpoint interval by I for each request during interval (a * MTBF, (3* MTBF).

32IPage

Similarly concentrating on second if condition in equation 19 and point ii. If difference between

current time C1 and last failure time Lf is less than some fraction of MTBF (y * MTBF where y

< 1) then decrease checkpoint interval by I for each request during interval (y * MTBF, ri *

MTBF).

33IPage

Chapter 4

Simulation Environment and Implementation Details

Grid environment is a very complex system with resource and network conditions changing

rapidly and unpredictably. Also Grid is a decentralized environment with resources managed in

multiple autonomous administrative domains. Performance testing of developed techniques for

various aspects such as job scheduling, fault tolerance etc. in a repeatable and controllable

manner becomes very difficult in such environment. Simulation is the best tool for performance

testing in repeatable and controllable manner and we stick to this choice for evaluating our

techniques.

GridSim toolkit [47][48] is one of the most popular event driven simulator which is used for

simulating Grid environment. GridSim implements core entities that simulate resource,

information service, statistics, and shutdown services. These services are used to simulate a user

with application, a broker for scheduling, etc. Interaction between these entities takes place

through events. Events are used for service request and service delivery. Events can be internal

(generated by the entity which receives it) or external (generated by some other entity).

Figure 4.1 shows the components of the Grid environment simulated using GridSim. These

components are described below.

a) Grid user

Submits the jobs to the broker for execution using a Grid portal and receives the results back on

successful execution. Grid user may also specify certain constraints such as budget, deadline etc.

Each job has a job id, user id, length (MI) associated with it.

b) Resource broker

Resource broker is responsible for receiving jobs from the users. Its functionality is broken down

into following modules

i) Metascheduler

Meta scheduler is a batch scheduler as discussed in Section III. It is used for scheduling of

j obs.

34IPage

ii) Job Dispatcher

It is responsible for submitting jobs to resources either from the beginning or from the most

recent checkpoint.

a

User ,1 b Us User n

15. Retur
1. Job submission using portal

results

2. Get resource it formation
eta Scheduler running GA or A

h cheduleri
4. Schedule Creation

Grid Resource Broker

1364§utte''', CP u
id
	

Spee
3. Information about available

11. Get c ieckpoint

Gatewa

8. Take Check point

ned

success

s atm

—J

Job

Returned

With failed

status

. Request
7. a) If (request time — time since

last 	checkpoint) 	= 	current) 	 or taking
checkpoint interval

checkpoint

Then take checkpoint

b) If RE < Mf

increase checkpt intvl

Resource

13. ispatch job from the

ch' kpoint received

5. Dispa h jobs to

es• rtes

1. A resource S

cluster having

CPUs

2:z$1;;tneear
scheduling.

. Failure event

12 Re rn checkpoint

ROVairind
-Jength7.1

Checkpoint

14 Jo

Fi2t u

Vs ith

Job ids:
user id

Figure 4.1 Components of Grid environment

350 Page

Job Receiver

It is responsible for receiving jobs with status either marked as success, in which case result is

returned to user, or marked as failed. In case of failed status a get:_checkpoint request is

send to checkpoint server. This request contains the job id and user id.

iv) Gateway

The gateway [12] is responsible for deciding whether to take or skip a checkpoint and also to

modify the checkpoint interval.

c) Grid Resource

It is a cluster of computing nodes and is used for executing Grid jobs. Each resource in our

simulation implements a space shared policy [47].

d) Grid Information Service (GIS)

This .module maintains resource ids and other characteristics of resources such as number of

CPUs, computing power, available memory, MTBF, etc. The broker module requests

information about resources from GIS.

e) Checkpoint Server

It is responsible for maintain a table containing job id, corresponding user id and remaining

length (MI) of jobs. Only the most recent checkpoint is maintained for each job.

Figure 4.2 shows interaction between various entities and various events generated during

execution of a gridlet/job. These sequences of steps are described below.

a) At the start of simulation all Grid resource entities register themselves in GIS.

b) Grid user submits job to Grid resource broker. In GridSim a job is represented by gridlet class.

This class encapsulates all properties of a job such as its length (MI), size (PEs required), user id

(user to which this gridlet belongs), gridlet id, i/p file size, and o/p file size. This class can also

be used to encapsulate other properties such as deadline and budget constraints.

36IPage

Fault index

Manager

GIS ern-7-77—N _
Grid User

1. Submit

Gridlet

Broker Grid

,Resource

2. Request

resource list

3. GET_ FAULT

0. REGISTER_ RESOURCE

4. GRIDLET_

SUBMIT

5. HECKPOINT

6.

CHECKPOINT

_REQUE

7. TAKE_

CHECKPOINT

10. GRIDLET_RETUR

(FAILED_ RESOU

NOT a P BLE)

8. STORE_CHECKPOIN

9. RESOURCE_FAILU RE

11. INCREMENT) AULTOYE

12. GET_CHECKPOINT

DLET_

SUBMIT

14. RIDLET_

Fl ISH

15. G

(GRI

17. Return

result

IDLET R

SUCCESS)

16. DECREMENT_FAULT

INDEX

c) On receipt of job broker requests to GIS for list of available resources. Checkpoint server and

fault index manager also request GIS (not shown in figure) for list of available resources. Broker

also sends GET FAULT INDEX event to Fault index manager to get fault indexes of all

resources.

Figure 4.2 Event diagram to represent interaction between different GridSim entities

Checkpoint

Server

371Page

d) Resource broker submits the job to appropriate resource i.e. resource which meets all

requirements such as number of free PEs, size of available memory etc. In case multiple jobs

have arrived at broker, it uses appropriate scheduling algorithm (GA, ACO, etc.) to find a

schedule for jobs. Submission of a job in GridSim is modeled as a send event with

GRIDLET SUBMIT tag (Note: each event in GridSim has an integer tag associated with it that

uniquely identifies that event).

e) On receiving a job Grid resource entity allocates resources (PEs) to it according to its local

scheduling policy (time shared or space shared). Also if execution time of job is greater than

checkpoint interval an internal event with tag set as CHECKPOINT is sent to arrive after

checkpoint interval seconds.

f) On receiving an event with CHECKPOINT tag the remaining lengths of all jobs in execution

list of this resource is updated and an event (with tag CHECKPOINT_REQUEST) is sent to

gateway module of broker. The gateway module of broker decides whether to take or skip

checkpoint. If the request is granted a TAKE CHECKPOINT event is send back to the

resource. On receiving a TAKE_CHECKPOINT event the resource sends a

STORE CHECKPOINT to checkpoint server. This event contains Gridlet id, user id, and

remaining Gridlet id as its data field. Also the resource checks whether the remaining execution

time of Gridlet with which the checkpoint event was associated is less than or greater than

checkpoint interval seconds. If it is less than checkpoint interval seconds then a

GRIDLET FINISH event is send after remaining time plus checkpoint overhead seconds (to

account for overhead of checkpoint) otherwise a CHECKPOINT event is sent after the same

interval.

g) During the course of simulation GIS may send RESOURCE FAILURE events to resources.

Actually these events are sent to each resource after its MTBF interval. On receiving this event

the resource sends all executing and waiting jobs on it to their respective users. A

GRIDLET RETURN event with Gridlet status set as FAILED_ RESOURCE_ NOT

AVAILABLE is sent for each Gridlet.

h) On receiving a GRIDLET_RETURN event with Gridlet status marked as FAILED_

38 !Page

RESOURCE NOT AVAILABLE broker sends INCREMENT_FAULTINDEX event to

fault index manager to update failure information about the failed resource. A

GET CHECKPOINT event is sent to the checkpoint server to get any saved checkpoint for the

failed Gridlet. After receiving the checkpoint Gridlet is resubmitted to the same resource from its

checkpoint rather than from the start.

i) On receiving the Gridlet submission event the resource again allocates resource to Gridlet and

checks whether its execution time is less than checkpoint interval seconds. If it is less a

GRIDLET FINISH internal event is send with a delay equal to the execution time of Gridlet.

j) On receiving a GRIDLET FINISH event the Gridlet is returned to the broker with status

marked as GRIDLET SUCESS. On receiving the successfully executed Gridlet broker returns

the results/output to the user.

To simulate our techniques extensive modifications were made in the classes available in

GridSim Toolkit and also a few new classes were developed. All these classes with

modifications made are described below:

1) GridScheduler.java

This class represents centralized broker and a batch scheduler. Following functionalities were

added to this class:

a) GA and Ant colony based centralized batch scheduler for job scheduling.

b) Interaction with FTManager for incrementing and decrementing failure information of

resources.

c) Interaction with CheckpointServer for getting the latest successively saved checkpoint on

gridlet failure.

d) Gateway module for skipping and granting checkpoint requests.

e) Gridlet creation, submission, reception.

2) FTGridResource.java

391Page

GridScheduler

FailureEvent

[c

GridSim FTGridResource

CheckpointSe 	I RegionalGlSWith

rver 	 Failure

Scheduler GAandAntBas

edScheduling

GWFLoader

FailureFile

Reader

GridUser

FTolerantGIS

FTManager
AbstractGIS

ResourceFile

Reader

GridSimCore

This class models a Grid resource (cluster). It ahs following functionalities:

a) Allocation of PEs to gridlets. Allocation of multiple PE to a single gridlet is supported.

Figure 4.3 Modules hierarchy used for experimentation of proposed techniques

40IPage

b) Periodic checkpointing of gridlets with checkpointing overhead factored into the execution

time of gridlet. Each checkpoint request involves interaction with gateway.

3) FTolerantGIS.java

This class represents Grid Information Service (GIS). It maintains information about available

resources in Grid. Other added functionalities include

a) Sending failure events to resources with successive events separated by Weibull distribution

generated interval.

b) Maintaining information about last failure and MTBF of resources.

4) CheckpointServer.java

This module represents a centralized checkpoint server. It has following functionalities:

a) Storing checkpoints for gridlets. A table is maintained with each entry having three fields -

gridlet id, user (owner) id, and remaining gridlet length. As coordinated checkpointing is

assumed only latest checkpoint is stored for each gridlet.

b) Returning latest checkpoint for gridlet on request from scheduler.

5) FTManager.java

This module maintains Fault Occurrence History Table (FOHT) as discussed in chapter 3.

6) FailureFileReader.java, ResourceFileReader.java

These files are used for reading real failure traces, node information available in FTA Archive [].

Failed trace reading has been modified to ignore downtimes of resources.

7) Scheduler.java

This class is modification of a class (with the same name) available in Alea Grid simulator [41].

8) GAandAntBasedScheduling.java

This class represents a scheduling policy for job scheduling. It has following functionalities:

41IPage

a) Implementation of Genetic Algorithm for scheduling of gridlets from real workload traces

(with gridlets having different arrival times and different PE requirements) on multiple PE

resources.

b) Implementation of Ant Colony Optimization for scheduling of gridlets from real workload

traces (with gridlets having different arrival times and different PE requirements) on multiple PE

resources.

9) GWFLoader.java

This class is used for reading gridlets from .gwf files.

42IPage

Chapter 5

Performance Evaluation and Experimental Results

5.1 Performance Metrics

Following metrics are used for comparing various checkpointing techniques.

a) Makespan: It is the maximum completion time for any resource and is basically the time when all

jobs finish execution. Completion time for a resource is the point of time when all jobs allocated to that

resource completes execution.

b) Flowtime: It is the sum of the completion time for all the resources.

c) Average bounded slowdown: It is the average slowdown of a job. It is the difference between time

taken to execute a job and the CPU time (Taskmi
resourcemips

) averaged over all jobs. Sizes of jobs are taken to

be comparable to each other.

d) Work lost due to failures: It is the unsaved work which is lost due to failure of jobs.

e) Utilization: Utilization is the fraction of time of the resources which is used in executing jobs i.e. in

doing useful work. This work does not include the time spent in carrying out work which is lost due to

failures.

1) Number of Checkpoints: It is the total number of checkpoints performed during the entire

simulation run for a batch of job.

g) Average turnaround time: It is the average of completion times of jobs. Completion time of job is

the finish time of a job minus the submission time.

Makespan and flowtime are parameters which are affected by scheduling decisions. Makespan and

flowtime are also affected by arrival time of jobs. In this case these may not be useful parameter for

performance comparison. Flowtime may be better performance parameter when job results are returned

as soon as it completes execution. Average bounded slowdown is affected by two parameters — number

of checkpoints taken (checkpoint overhead) and work lost due to failures. It is an important parameter as

it shows the balance between work lost due to failures and time wasted in checkpoints. Utilization is

dependent on makespan and is inversely related to it. Turnaround time decides average response times

of jobs and is an important parameter for performance comparison. Work lost due to failures depends on

two factors — checkpoint interval and scheduling decision. Scheduling decisions that allocate more jobs

43IPage

Parameter
	

Value

bilure Distributio 614uir(51:14701
araMeter'.7,-1;1.5)j

umber of Resources (CluSters

60,ncond1

er of processors

0000 secon

3 hours to 18 hours

2

Number of jobs (200)

Number of Ants Number of reSourcesTp
Table 1 Simulation Parameters for GA-based and ACO-based fault tolerance techniques comparison

44 !Page

to stable resources compared to unstable ones have less work lost due to failures. Work lost due to

failures is directly proportional to checkpoint interval. Higher checkpoint interval causes more work loss

due to failures. Much lesser checkpoint interval may also lead to more work lost due to failures. This is

due to more time required for execution of jobs (due to greater overall checkpoint overhead) which can

increase the probability of failure of job. Other than these waiting time, response time and tardiness time

of a job are also considered in 5.13 and 5.14. Waiting time is submission time minus arrival time of a

job. Response time is the turnaround time as discussed above. Tardiness time is completion time minus

due date.

5.2 Simulation Parameters

Simulation parameters for GA-based and ACO-based fault tolerance techniques comparison are given in

table 1.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

daptive_Checkpointig (Proposed)

eriodi c_Check pointing

eriodi c_Skip

xponential_Backoff_Skip

3.50E+07

3.00E+07

2.50E+07

2.00E+07

1.50E+07

1.00E+07

5.00E+06

0.00E+00

5.3 GA-based Adaptive Fault Tolerance Using MTBF of Resources

The simulated Grid environment consists of 5 resources (clusters). Each resource has 64 processing

elements. Each job requires around 2 days of computation on 64 processing elements. A total of 200

jobs are submitted in a batch. After every checkpointing interval all processes of a job coordinates to

take a global checkpoint (coordinated checkpointing [14]). Each checkpoint incurs an overhead of 720

seconds. Processes of a job are assumed to be heavily depended on each other. So even if one of them

fails all have to be restarted from latest saved checkpoint. It is assumed that an entire resource is

allocated for execution of a job. MTBF of a resource follow Weibull distribution with resources having

shape parameters .7, .7, 1, 1, 1.5. Mean Time between failures of resources ranges from 5 hours to 18

hours. Scale parameter of Weibull distribution is calculated using the formulae

= aro+

Where ri is scale parameter, X. is failure rate and 13 is shape parameter. Failure rate (X) is inverse of

MTBF. Only transient faults are considered with recovery requiring only a restart of the failed machine

(this restart time is assumed to be negligible). On failure user jobs are returned with status marked as

FAILED RES LTNAVAIL. Resource failures are assumed to be immediately detected by polling _ _
mechanism employed by both broker and GIS. Failed job is restarted on the same resource from last

saved checkpoint available at the checkpoint server.

Figures 5.1 to 5.7 shows results of experiments performed. The checkpointing interval is varied from

1000

Figure 5.1 Makespan comparison between checkpointing techniques

45IPage

Checkpoint interval (seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ptive_Checkpointig (Proposed)

iodic_Checkpointing

iodic_Skip

onential_Backoff_Skip

40000000

35000000

30000000

..._ 25000000
-o 20000000
0
go 15000000

4. 10000000

5000000

0

W
o
r k

 lo
st

 d
u
e

to
 f
a
ilu

re
s

I 	0 1,11 I

 ptive_Checkpointig (Proposed)

iodic_Checkpointing

iodic_Skip

onential_Backoff Skip

5000 6000 7000 8000 9000 10000

Checkpont Interval (seconds)

6.00E+09

5.00E+09

4.00E+09

3.00E+09

2.00E+09

1.00E+09

0.00E+00

Fl
o
w
ti

m
e

(s
ec

on
ds

)

1000 2000 3000 4000

seconds to 10000 seconds. 5.1 shows comparison against makespan parameter. Adaptive checkpointing

performs better than periodic checkpointing for every checkpointing interval. Periodic skip has lesser

makespan for initial intervals due to its checkpointing interval (period after which checkpoint is actually

taken) being closer to the optimal checkpoint interval for the experiment. However its performance

deteriorates at higher checkpointing intervals due to the reason which is clear from figure 5.2 i.e. work

lost due to failures becomes very high at higher checkpointing intervals.

Figure 5.2 Comparison for work lost due to failures

Similar reasons explain the results for exponential backoff skip. As seen from Figure 5.2 work lost due

to failures of adaptive checkpointing is higher than that of periodic checkpointing. This is due to

adaptive increase in checkpoint interval which also increases amount of work lost due to failures.

Periodic skip and exponential backoff skip have very high values for work lost due to higher interval for

taking checkpoints. Figure 5.3 show results for flowtime of execution.

Figure 5.3 Comparison for flowtime parameter

Results for flowtime are similar to those for makespan. Adaptiiie checkpointing takes lesser number of

checkpoints compared to periodic checkpointing due to adaptive increase of checkpointing interval.

460 Page

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

N
u

m
be

r
of

 C
he

ck
p

oi
nt

s

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

• Adaptive_Checkpointig (Proposed)

Periodic_Checkpointing

■ Periodic_Skip

• Exponential Rackoff Skip

aptive_Checkpointig (Proposed)

iodic_Checkpointing

iodic_Skip

onential_Backoff_Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Checkpoint Interval (seconds)

C
200000
180000 0
160000

0 140000
-73

120000
03 	c '0 100000
C

0 	,0 80000
60000

FIJ
40000
20000

0

Periodic skip and exponential skip take very few checkpoints which is also the reason for high values for

lost work.

Figure 5.4 Comparison for number of checkpoints taken parameter

Adaptive checkpointing technique shows significant improvements in average bounded slowdown

which can be seen in figure 5.5. Results for average bounded slowdown are similar to those for

makespan and flowtime.

Figure 5.5 Comparison for average bounded slowdown parameter

Figure 5.6 gives results for utilization. Again adaptive checkpointing technique performs better than

other approaches and has higher utilization. Results for utilization are just inverse of results for average

bounded slowdown (makespan, and flowtime). For initial checkpointing intervals adaptive

checkpointing has higher average bounded slowdown (makespan, flowtime) compared to periodic skip

and exponential backoff skip. Whereas as checkpointing interval increases adaptive checkpointing

performs better. On the other hand utilization is low for adaptive checkpointing at lower checkpointing

intervals but utilization becomes higher for adaptive checkpointing with increase in checkpointing

intervals.

47IPage

■ Adaptive_Checkpointig (Proposed)

i Peri odic_Checkpointing

ri odic_Skip

ponential_Backoff Skip

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Checkpoint Interval (seconds)

0

1.60E+08

1.40E+08

1.20E+08

1.00E4-08
0.
iu 8.00E+07

6.00E+07

4.00E+07

2.00E+07

0.00E+00

—i~—Adaptive
checkpointing
(Proposed)
Periodic
checkpointing

--ntr— Periodic skip

Exponential
backoff skip

200
	

300
	

400
	

500
	

600

Number of jobs '

Figure 5.6 Comparison for utilization parameter

Figure 5.7 shows comparison between four techniques for makespan parameter for total number of jobs

varying from 200 to 600. Clearly adaptive checkpointing technique has very low values for makespan

compared to other techniques.

Figure 5.7 Comparison for makespan parameter for varying number of jobs

Figure 5.8 shows comparison between four techniques for work lost due to failures paraineter for total

number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low values

for total work lost due to failures compared to other techniques. This is due to scheduling support for

fault tolerance. Figure 5.9 shows comparison between four techniques for flowtime parameter for total

number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low values

for flowtime compared to other techniques. Figure 5.10 compares four techniques for total number of

checkpoints taken parameter.

48IPage

1.80E+08

1.60E+08

1.40E+08

1.20E+08

1.00E+08

8.00E+07

6.00E+07

4.00E+07

2.00E+07

0.00E+00

w
o

rk
 l

os
t

d
u

e
 t

o
 f

a
il
u

re

—*—Adaptive_Che
ckpointig
(Proposed)

—u-- Periodic
checkpointing

—6-- Periodic skip

--M- Exponential
backoff skip

200
	

300
	

400
	

500
	

600
number of jobs

2.50E+10

2.00E+10

E 1.50E+10

..5
p_. 1.00E+10

5.00E+09

0.00E+00

--t— Ad aptive_Chec
kpointig
(Proposed)

—0— Periodic
checkpointing

200 300 40 j number of jobs
500 600

200
	

300
	

400
	

500
	

600
number of jobs

—*—Adaptive_Checkpo
intig (Proposed)

-31E-- Periodic
checkpointing

—11.-- Periodic skip

—*-- Exponential
backoff skip

13000
12000

4 11000
c 10000 ._

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

n
u

m
b

e
r

of
 c

h
e
ck

p

Figure 5.8 Comparison for work lost due to failures for varying number of jobs

Figure 5.9 Comparison for flowtime for varying number of jobs

Figure 5.10 Comparison for number of checkpoints taken for varying number of jobs

49IPage

r
300000

av
e

ra
ge

 b
ou

n
d

ed
 s

lo
w

do
w

n

250000 -

200000 -

150000

100000

50000 -

Adaptive_Check
pointig
(Proposed)

—NI— Periodic
check pointing

0

200 	300 	400 	500 	600
number of jobs

—0— Ada ptive_Checkpoi
ntig (Proposed)
Periodic
checkpointing

—6-- Periodic skip

-X- Exponential
b a ckoff skip

200
	

300
	

400
	

500
	

600

number of jobs

0.4

0.35

0.3

0.25

r.2, 	0.2

0.15

0.1

0.05

0

Figure 5.11 shows comparison between four techniques for average bounded slowdown parameter for

total number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low

values for total average bounded slowdown compared to other techniques.

Figure 5.11 Comparison for average bounded slowdown parameter for varying number of jobs

Figure 5.12 shows comparison between four techniques for utilization parameter for total number of

jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very high values for

utilization compared to other techniques.

Figure 5.12 Comparison for utilization parameter for varying number of jobs

Figure 5.13 gives a radar plot for mean values for both adaptive checkpointing and periodic

checkpointing. Values for adaptive checkpointing relative to periodic checkpointing are -22% for

makespan, -4.84 for flowtime, -12.19% for average bounded slowdown, +22% for utilization, -15%

work lost due to failures, -2.4% for number of checkpoints taken. Negative percentages represent the

percent by which the value is smaller and positive percentages represent the percent by which the value

is greater compared to the corresponding value for periodic checkpointing.

50IPage

Makespan
140

Number of checkpoints

Work lost due to failures

Flowtime

Average bounded
slowdoWn

—4o— GA base adaptive checkpointing
using MTBF

—0—GA based periodic checkpointing

Utilization

Adaptive_Checkpointig (Proposed)

Periodic_Checkpointing

Periodic_Skip

Exponential_Backoff Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint_Interval (seconds)

M
ak

es
pa

n (
se

co
nd

s)

3000000 -

2500000

2000000

1500000 -

1000000 -

500000 -

Figure 5.13 Overall comparison between periodic eheckpointing and MTBF based adaptive checkpointing technique

5.4 GA-based Adaptive Fault Tolerance Using Fault Ratios of Resources

In this subsection 100 jobs are submitted to 10 clusters each with 64 processing elements. Shape

parameters are .7, .7, .7, .7, 1, 1, 1, 1.5, 1.5, 1.5, respectively for 10 clusters. The checkpoint overhead is

taken as 360 seconds. Others assumptions and parameters are same as subsection 5.3.

Figure 5.14 gives makespan comparison between adaptive checkpointing, periodic checkpointing,

periodic skip and exponential backoff skip.

Figure 5.14 Comparison for makespan parameter

Adaptive checkpointing technique performs better than periodic checkpointing for almost all

checkpointing intervals. Only for interval equal to 5000sec performance is slightly worse. This is due to

5000sec being the optimal checkpoint interval for the parameters used for simulation. Behavior of

periodic skip and exponential backoff skip is similar to as in subsection 4.1.

Figure 5.15 gives the work lost due to failures for the four techniques. Adaptive checkpointing technique

loses less work due to failures compared to periodic checkpointing technique due to adaptive change in

51 11 Page

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

W
o
rk

 lo
st
 (

se
co

nd
s)

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0 r f

ptive_Checkpointig (Proposed)

iodic_Checkpointing

iodic_Skip

onential_Backoff Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

rptive_Checkpointig (Proposed)

Ciodic_Checkpointing

Podic_Skip

aiadom_Backoff Skip

1.60E+09

1.40E+09

1.20E+09

1.00E+09

8.00E+08

6.00E+08

4.00E+08

2.00E+08

0.00E+00

F
lo

w
ti
m

e
(s

ec
on

ds
)

checkpoint interval depending on the failure conditions of resources. Periodic skip and exponential

backoff skip techniques have very high values for work lost which is the prime reason for their poor

performance.

Figure 5.15 Comparison for flowtime parameter

Figures 5.16, 5.17, 5.18, 5.19 give results respectively for flowtime, number of checkpoints taken,

average bounded slowdown and utilization. All these graphs shows superior performance of adaptive

checkpointing technique compared to other three techniques.

Figure 5.16 Comparison for flow•time parameter

52IPage

Ch
ec

kp
oi

nt
s T

ak
en

18000
16000
14000
12000
10000
8000
6000
4000
2000

0

• Adaptive_Checkpointig (Proposed)

EmPeriodic_Checkpointing

• Periodic_Skip

• Random_Backoff Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

70000

60000

50000

1:5

▪

/3 40000 cu c
13 0
C
• 30000 o
cu 	20000

10000
0

Adaptive_Checkpointig (Proposed)

Periodic_Checkpointing

Periodic_Skip

Exponential_Backoff Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Checkpoint Interval (seconds)

al Adaptive_Checkpointig

Periodic_Checkpointing

M Periodic Skip

m Exponential_Backoff Skip

0.9

0.8

0.7 -

0.6
0.5
0.4
0.3
0.2
0.1 -

0

0

to

7

Figure 5.17 Comparison for number of checkpoints taken parameter

Figure 5.18 Comparison for average bounded slowdown parameter

Figure 5.19 Comparison for utilization parameter

Figure 5.20 gives a radar plot for mean values for both adaptive checkpointing and periodic

checkpointing. Values for adaptive checkpointing relative to periodic checkpointing are -3.13% for

makespan, -13.43 for flowtime, -13.41% for average bounded slowdown, +2.65% for utilization, -

22.51% for work lost due to failures, -7.21% for number of checkpoints taken.

531 P a ge

M
ak

es
pa

 n
 (

se
co

nd
s)

1.80E4-07
1.60E+07
1.40E+07

1.20E+07
1.00E+07
8.00E+06
6.00E+06
4.00E+06
2.00E+06

0.00E+00

• Ada ptive_Checkpointig
(Proposed)

ti Periodic_Checkpointing (With
scheduling assisted fault
tolerance)

• Periodic Checkpointing

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

Number of checkpoints

Work lost due to failures

Flowtim e
—it— GA based adaptive checkpointing

using fault indexes

—12---GA based periodic checkpointing

Average bounded
slowdown

Utilization

Figure 5.20 Overall comparison between fault ratio based adaptive checkpointing and periodic checkpointing

5.5 Ant Colony Based Adaptive Checkpointing Using MTBF of Resources

This section compares ant colony based adaptive checkpointing with ant colony based periodic

checkpointing technique. Figure 5.21 shows values for makespan parameter. MTBF based

checkpointing has lesser makespan compared to periodic checkpointing. Figure 5.16 gives results for

work lost due to failures.

As shown in figures 5.23, 5.24, 5.25, 5.26 MTBF based ant colony techniques have lesser flowtime,

average bounded slowdown, number of checkpoints taken and higher utilization compared to periodic

checkpointing technique.

Figure 5.21 Comparison for makespan parameter for adaptive checkpointing, scheduling assisted fault tolerant periodic and
periodic checkpointing

54I Page

12000000

10000000

8000000

6000000

4000000

2000000

0

■ Adaptive_Checkpointig
(Proposed)

Periodic_Checkpointing (With
scheduling assisted fault
tolerance)

le Periodic Checkpointing

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

F
lo

w
ti

m
e
 (

se
co

nd
s)

6.00E+09

5.00E+09

4.00E+09

3.00E+09

2.00E+09

1.00E+09

0.00E+00

■ Adaptive_Checkpointig
(Proposed)

Periodic_Checkpointing
(With scheduling
assisted fault tolerance)

at Periodic Checkpointing

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

Figure 5.22 Comparison for work lost due to failures parameter

Figure 5.23 Comparison for flowtime parameter

N
u
m

b
e
r

of
 c

h
e
ck

p
o
in

ts

50000
45000
40000
35000
30000
25000
20000
15000
10000
5000

0

■ Adaptive_Checkpointig
(Proposed)

o Periodic_Checkpoi nting
(With scheduling assisted
fault tolerance)

■ Periodic Checkpointing

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint interval(seconds)

Figure 5.24 Comparison for number of checkpoints taken parameter

55 I Pa ge

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Checkpoint Interval (seconds)

II1Ada ptive_Checkpointig
(Proposed)

tT Periodic_Checkpointing
(With scheduling assisted
fault tolerance)

• Periodic Checkpointing

0 1
N

7:3

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

• Adaptive_Checkpointig
(Proposed)

Periodic_Checkpointing
(With scheduling
assisted fault
tolerance)

• Periodic Checkpointing

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Checkpoint Interval (seconds)

Number of checkpoint

Work lost due to failures

Figure 5.25 Comparison for average bounded slowdown parameter

Figure 5.26 Comparison for utilization parameter

Figure 5.27 gives a holistic view of comparison for all parameters using a radar plot. Values for adaptive

checkpointing relative to periodic checkpointing are -8.7% for makespan, -4.22 for flowtime, -7.8% for

average bounded slowdown, +6.569% for utilization, -3.24% for work lost due to failures, -10% for

number of checkpoints taken.

Makespan
110

Flowtime
—0-- Ant colony

based adaptive

checkpointing
using MTBE

Average boul)ta. Ant Colony

slowdown 	based periodic
checkpointing

Utilization

Figure 5.27 Overall comparison between M'J'BF based adaptive checkpointing and periodic checkpointing

56IPage

1.20E+07

1.00E+07

8.00E+06

6.00E+06

4.00E+06

2.00E+06

0.00E+00

M
a

k
e
sp

a
n

 (
se

co
n

d
s)

• Adaptive_Checkpoin
tig (Proposed)

n Periodic_Checkpoint
ing

• Periodic_Skip

• Random_Backoff Sk
ip

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Checkpoint Interval (seconds)

12000000

10000000

8000000

6000000

4000000

2000000

N

U
0in' • a • -0
ar C
3 0

11
tn.
0

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Checkpoint Interval (seconds)

• Adaptive_Checkpoi
ntig (Proposed)

Periodic_Checkpoi
nting

• Periodic_Skip

• Random_Backoff_S
kip

5.6 Ant Colony Based Adaptive Checkpointing Using Fault Ratios of Resources

The simulated Grid environment consists of 5 clusters with 64 PEs in each cluster. MTBF of resources is

varied from 3 to 28 hours. The overhead associated with individual checkpoints is 360 seconds. Other

parameters and assumptions are same as in subsection 5.3. As shows in figures 5.28, 5.29, 5.30, 5.31,

5.32 the adaptive checkpointing technique has poor performance for makespan, flowtime, average

bounded slowdown for initial four checkpointing intervals. This is due to excessive checkpointing

performed which is clear from figure 5.31. For rest of the checkpointing intervals adaptive

checkpointing has superior performance compared to periodic checkpointing technique.

Figure 5.28 Comparison for makespan parameter between adaptive checkpointing, periodic checkpointing and skipping
checkpointing techniques

Figure 5.29 Comparison for work lost due to failuies parameter

57 1Pa ge

3.50E+09

3.00E+09

2.50E+09

2.00E+09

1.50E+09

1.00E+09

5.00E+08

0.00E+00

Fl
ow

tim
e

(s
ec

on
ds

)

• Ada ptive_Checkpo
intig (Proposed)

11 	

 Periodic_Checkpoi

Periodic_Skip

D.
nting

ei

, 	 , • Random_Backoff
Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Checkpoint Interval (seconds)

80000
g 70000
3 60000
4; .-50000
Tp0000

g. 'd,30000
o
t "10000
g 10000
• 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Checkpoint Interval (seconds)

• Adaptive_Checkpoi
ntig (Proposed)

ra Periodic_Checkpoi
nting

Periodic_Skip

• Randorn_Backoff
kip

01 I 1 1

1 I

11

Figure 5.30 Comparison for flowtime parameter

N
um

be
r o

f C
he

ck
po

in
ts

45000
40000
35000
30000
25000
20000
15000
10000
5000

0

MI Ada ptive_Checkpoi
ntig (Proposed)

n Periodic_Checkpoin
ting

la Periodic_Skip

• Random_Backoff_S
kip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Checkpoint Interval (seconds)

Figure 5.31 Comparison for number of checkpoints taken parameter,

Figure 5.32 Comparison for average bounded slowdown parameter

581Page

0.9
0.8
0.7

c 0.6
0 • 0.5

0.4
0.3
0.2
0.1

0

■ Ada ptive_Checkpo
intig (Proposed)

ci Periodic_Checkpoi
nting

▪ Periodic_Skip

■ Ra ndom_Backoff
Skip

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Checkpoint Interval (seconds)

Figure 5.33 Comparison for utilization parameter

Figure 5.34 gives a holistic view of the comparison between adaptive checkpointing and periodic

checkpointing for all the parameters considered using a radar plot. Values for adaptive checkpointing

relative to periodic checkpointing are -6.95% for makespan, -1.55 for flowtime, -7.7% for average

bounded slowdown, +7.17% for utilization, -28.2% for work lost due to failures, +30% for number of

checkpoints taken.

Number of
checkpoints

Work lost due to
failures

Flowtime

- Ant colony based
adaptive
checkpointing using
fault indexes

— 6— Ant Colony based

Average bounded periodic
slowdown 	checkpointing

Utilization

Figure 5.28 Overall comparison between IVITBF based adaptive checkpointing and periodic checkpointing

5.7 GA-based Adaptive Fault Tolerance Using Fault Ratios of Resources for spatially and

temporally Correlated Failures

Spatial correlation means that failures are localized in space i.e. in a given time frame nodes in one

cluster may be more prone to failures compared to nodes in other clusters. Temporal correlation can be

of following two types

i) If a node has not failed for a long time then there is less probability that it will fail in the near future.

ii) If a node has failed recently then there is high probability that it will fail in the near future.

59IPage

To simulate above characteristics of failures a unique experiment has been developed. The simulated

Grid environment consists of two clusters each with 64 processing elements. First failures are generated

from Weibull distribution. Then for one resource first half of the failures generated is sorted in

ascending order and the second half in descending order. For the other resource first half is sorted in

descending order and second half in ascending order. The sorting of failures for two resources in

different order means that in a time frame nodes in one cluster are more prone to failures compared to

others (spatial correlation). Also sorting two halves of failures for a resource in alternate order helps

achieve the above properties of temporal correlation. This technique is similar to [40].

A total of 32 batches of 100 jobs each requiring 6 hours of computation are submitted one after the

completion of previous. Each job is composed of 64 processes and an entire cluster is assumed to be

allocated to a job for its execution. Coordinated checkpointing is used for performing checkpoints and it

is assumed that even if one of the processes of a job fails, all processes of that job are restarted from the

latest successively saved checkpoint. Size of checkpoint interval is 3000 seconds and each checkpoint

has an overhead of 180 seconds.

Figures 5.35 to 5.40 compares adaptive checkpointing with periodic checicpointing respectively for

makespan, work lost due to failures, flowtime, number of checkpoints taken, average bounded

slowdown, and utilization. Peaks in curves for makespan, flowtime, average bounded slowdown, and dip

for utilization are where one resource has higher rate of failures compared to others (spatial correlation)

as is clear from figure 5.41.. Adaptive checkpointing is able to take advantage of this correlation and

gives superior performance compared to periodic checkpointing. Rising above the peak is where

temporal correlation is achieved. Adaptive checkpointing gives better performance for this situation.

Falling down a peak is where anti-temporal correlation is simulated and adaptive checkpointing gives a

little poorer performance compared to periodic checkpointing for this case.

Figure 5.42 gives resource allocations for each batch of jobs for both techniques compared. Figure 5.43

gives completion time of resources for each batch of jobs for both the techniques.

Figure 5.44 gives a holistic view of comparison between the two techniques for all parameters using a

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -3.5% for makespan,

-3.1 for flowtime, -17.84% for average bounded slowdown, +1.395% for utilization, -24.84% for work

lost due to failures, -5.76% for number of checkpoints taken.

601Page

Fl
o

w
ti

m
e

(s
ec

o
nd

s)

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

0.00E+00

GA based adaptive
checkpointing
(proposed)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Iteration

M
 a
ke

sp
an

 (
se

co
nd

s)

3000000

2500000

2000000

1500000

1000000

500000

—1— GA based adaptive
checkpointing (proposed)
GA based periodic
Checkpointing

1 3 	5 7 9 11 13 i?. rat37n 19 21 23 25 27 29 31

Figure 5.35 Makespan comparison for adaptive checkpointing and periodic checkpointing

W
o

rk
 lo

st
 (

se
co

nd
s)

1800000
1600000
1400000
1200000
1000000
800000
600000
400000
200000

0

-200000

—i— GA based adaptive
checkpointing (proposed)

based periodic
Checkpointing

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Iteration

Figure 5.36 Comparison for work lost due to failures

Figure 5.37 Comparison for flowtime parameter

61 !Page

N
um

be
r o

f C
he

ck
po

in
ts

1000
900
800
700
600
500
400
300
200
100

0

GA based adaptive
checkpointing (proposed)

--ms— GA based periodic
Checkpointing

0 U
— 4— GA based adaptive

checkpointing
(proposed)

— Sc— GA based periodic
Checkpointing

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Iteration

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Iteration

Figure 5.38 Comparison for number of checkpoints parameter

18000

16000

14000
12000

Tn
-0 10000 '0

GI
'0 	8000 c
g 51' 	6000
ami 4000

2000

0
-2000

— t— GA based adaptive
checkpointing
(proposed)

—m---GA based periodic
Checkpointing

Iteration

Figure 5.39 Comparison for average bounded slowdown parameter

Figure 5.40 Comparison for utilization parameter

62 1Pa ge

1500

0:1
1000

0

500

E
z

GA based adaptive checkpointing
(Resource 1)

—X— GA based adaptive checkpointing
(Resource 2)

—6—GA based periodic Checkpointing
(Resource 1)

—X— GA based periodic Checkpointing
(Resource 2)

2000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
-500

Iteration

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

GA based adaptive checkpointing
(Resource 1)

—x— GA based adaptive checkpointing
(Resource 2)

—6—GA based periodic Checkpointing
(Resource 1)

based periodic Checkpointing
(Resource 2)

Iteration

N
u

m
b

er
 o

f j
o

bs
 s

ch
ed

u
le

d
 80

70

60

50

40

30

20

10

0

to:

Figure 5.41 Number of fault occurrences for each resource

Figure 5.42 Number of jobs scheduled on each resource

C
om

p
le

ti
o

n
 t
im

e
(s

ec
on

ds
) 3000000

2500000

2000000

1500000

1000000

500000

0

—0-- GA based adaptive checkpointing
(Resource 1)

GA based adaptive checkpointing
(Resource 2)

—a—GA based periodic Checkpointing
(Resource 1)

—x—GA based periodic Checkpointing
(Resource 2)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Iteration

Figure 5A3 Completion times of each resource

631Page

Makespan
120

Number of checkpoints

Work lost due to failures

Flowtime

Average bounded slowdown

—4--GA based adaptive checkpointing
using fault indexes

--GA based periodic checkpointing

Utilization

Figure 5.44 Overall comparison of periodic and adaptive checkpointing

5.8 Ant Colony-based Adaptive Fault Tolerance Using Fault Ratios of Resources for spatially and

temporally Correlated Failures

This subsection compares ant colony based adaptive checkpointing with ant colony based periodic

checkpointing for spatially and temporally correlate failures. Parameters and underlying assumptions are

same as in subsection 5.7.

Figures 5.45 to 5.50 compares the two techniques respectively for makespan, work lost due to failures,

flowtime, number of checkpoints taken, average bounded slowdown, and utilization for each batch of

jobs. Peaks for makespan, work lost, flowtime, average bounded slowdown, and dip for utilization is

where spatial correlation is simulated. Rising up a peak simulates temporal correlation and falling down

a peak simulates anti-temporal correlation. Other interpretations are same as in subsection 4.5.

Figures 5.51, 5.52, 5.53 respectively shows number of fault occurrences of each resource, job allocations

of each resource, and completion time of each resource for both techniques for each batch of jobs.

Figure 5.54 gives a holistic view of comparison between the two techniques for all parameters using a

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -2.3% for makespan,

-3.8 for flowtime, -20.5% for average bounded slowdown, +.97% for utilization, -25.3% for work lost

due to failures, -7.52% for number of checkpoints taken.

64IPage

— 0-- Adaptive Ant Colony
Algorithm (Proposed)

— 04— Ant Colony Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration

M
a

ke
sp

a
n

 (
se

co
n

d
s)

3000000

2500000

2000000

1500000

1000000

500000

W
o

rk
 l
os

t
(s

ec
o

n
ds

)

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

—4— Adaptive Ant Colony
Algorithm (Proposed)

—4— Ant Colony Algorithm

-200000
	

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

.400000
	

Iteration

Figure 5.45 Makespan comparison for periodic and adaptive checkpointing

Figure 5.46 Comparison for work lost due to failures parameter

Fl
o
w

th
e
 (
se

co
n

d
s)

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

0.00E+00

— 0— Adaptive Ant Colony
Algorithm (Proposed)

- Ant Colony Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1t5e61

 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 5.47 Comparison for flowtime parameter

65IPage

A
ve

ra
ge

 h
o
u

n
d

ed
 s

lo
w

d
o

w
n

 (
se

co
n

d
s)

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

—4— Adaptive Ant Colony
Algorithm (Proposed)

- Ant Colony Algorithm

.2000 	1 2 3 4 5 6 7 8 9 10 11 12 1.3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration

—4— Adaptive Ant Colony
Algorithm (Proposed)

Ant Colony Algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration

N
u

m
b

e
r

o
f

ch
e
ck

p
o
in

ts

1000

900

800

700

600

500

400

300

200

— 4— Adaptive Ant Colony
Algorithm (Proposed)

— 9e— Ant Colony Algorithm

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Iteration

Figure 5.48 Comparison for number of checkpoints parameter

Figure 5.49 Comparison for number of average bounded slowdown parameter

Figure 5.50 Comparison for utilization parameter

661 Pa ge

Adaptive Ant Colony Algorithm
(resource 1)

—0—Adaptive Ant Colony Algorithm
(resource 2)

— i—Ant Colony Algorithm (resource 1)

• —dr—Ant Colony Algorithm (resource 2)

2000

1500

1000

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
-500

Iteration

iteration

N
um

be
r o

f j
ob

s s
ch

ed
ul

ed

90

80

70

60

50

40

30

20

10

0

Adaptive Ant Colony Algorithm
(resource 1)

—w—Adaptive Ant Colony Algorithm
(resource 2)

—0—Ant Colony Algorithm (resource 1)

- Ant Colony Algorithm (resource 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Iteration

Co
m

pl
et

io
n

tim
e (

se
co

nd
s)

—Adaptive Ant Colony Algorithm
(resource 1)

— I—Adaptive Ant Colony Algorithm
(resource 2)

—a6—Ant Colony Algorithm (resource 1)

—w--Ant Colony Algorithm (resource 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30 31

3000000

2500000

2000000

1500000

1000000

500000

Figure 5.51 Number of fault occurrences for each resource

Figure 5.52 Number of jobs scheduled on each resource

Figure 5.53 Completion times of each resource

67IPage

Number of checkpoints

Work lost due to failures

Flowtime

•—•--Ant Colony based adaptive
checkpointing using fault indexes

---Ant Colony based periodic
checkpointing

Average bounded slowdown

Utilization

150 	200 	250 	300 	350
	

400

Checkpoint Interval (seconds)

M
a

ke
sp

a
n

 (
se

co
n

ds
)

160000
140000
120000
loaciao
80000
60000
40000
20000

0

!Periodic Skip

Adaptive Periodic Skip (proposed)

Figure 5.54 Overall comparison of periodic and adaptive checkpointing

5.9 Fault Index based periodic Skip

5.9.1 Comparison between periodic skip and fault index based periodic skip

This subsection compares periodic skip with fault index based periodic skip. A total of 200 jobs each

requiring around 1 hour of computation on a single processor were submitted. Checkpointing interval

was varied from 150 seconds to 400 seconds with each checkpointing operation having a cost of 30

seconds. A total of 30 resources each with a single processor are available for execution of jobs. MTBF

of resources is varied from 15 minutes to 5 hour. Figures 5.55 to 5.59 compares the two techniques

respectively for makespan, work lost due to failures, flowtime, number of checkpoints, and average

bounded slowdown. Adaptive checkpointing performs better as it is able to adapt the skipping behavior

depending on the failure conditions of resources i.e. don't skip checkpoints if failure rate is high and

skip more checkpoints if failure rate is very low.

Figure 5.55 Makespan comparison for periodic skip and adaptive periodic skip

68IPage

eriodic Skip

daptive Periodic Skip (proposed)

150 	200 	250 	300 	350 	400

Checkpoint Interval (seconds)

160000
• 140000 g 120000

oo o o
80000

o 60000
if 40000
g 20000

0

17; 1290000 -0 • 1280000
8 1270000

1260000
1250000 -

E 	1240000 -
1230000
1220000

2 	1210000 -
1200000
1190000

1

,
Pe iodic Skip

'Adaptive Periodic Skip (proposed)

150 	200 	250 	300 	350
	

400

Checkpoint Interval (seconds)

Checkpoint Interval (seconds)

N
u

m
b

e
r

of
 c

h
ec

k
po

in
ts

• Periodic Skip

Adaptive Periodic Skip (proposed)

5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0

150 	200 	250 	300 	350
	

400

Figure 5.56 Comparison for work lost due to failures parameter •

Figure 5.57 Comparison for flowtime parameter

Figure 5.58 Comparison for number of checkpoints taken parameter

69 I Pa ge

1200

1000
0 -o 	800

600
-0 13

g 400

200
43

0

■ Periodic Skip

Adaptive Periodic Skip (proposed)

150 	200 	250 	300 	350 	400

Checkpoint Interval (seconds)

Adaptive Periodic Skip (proposed)

eriodic skip

M
ak

es
pa

n
 (

se
co

nd
s)

3500000

3000000

2500000

2000000

1500000

1000000

500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Iteration

Figure 5.59 Comparison average bounded slowdown parameter

5.9.2 Comparison for temporally and spatially correlated failures

Parameters and underlying assumptions are same as in subsection 5.7. Figures 5.60 to 5.65 respectively

compares adaptive periodic skip and periodic skip for makespan, work lost due to failures, flowtime,

number of checkpoints taken, average bounded slowdown, and utilization for each batch of jobs.

Figures 5.66 and 5.67 respectively show plots for number of faults on each resource, completion time

for each resource for both techniques after execution of each batch of jobs.

Figure 5.68 gives a holistic view of comparison between the two techniques for all parameters using a

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -6.42% for

makespan, -2.25 for flowtime, -10.1% for average bounded slowdown, +5.36% for utilization, -11.425%

for work lost due to failures, -.79% for number of checkpoints taken.

Figure 5.60 iNiakespan comparison for periodic and adaptive checkpointing

70IPage

W
o

rk
 lo

st
 (

se
co

n
ds

)

2500000

2000000

1500000

1000000

500000

0

-500000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

—I— Adaptive Periodic Skip (proposed)

--X-- Periodic skip

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

0.00E+00

Fl
o

w
ti

m
e

(s
ec

on
ds

)

aptive Periodic Skip (proposed)

—NC— Periodic skip

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
Iteration

Iteration

Figure 5.61 Comparison for work lost due to failures parameter

Figure 5.62 Comparison for flowtime parameter

C
h

ec
kp

o
in

ts
 t

a
ke

n

600

500

400

300

200

100

0

+Adaptive Periodic Skip (proposed)

—3IE—• Periodic skip

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Iteration

Figure 5.63 Comparison for number of checkpoints taken parameter

711 Page

-5000
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

25000

5 20000

Adaptive Periodic Skip (proposed)

Periodic skip § O
-a 	5000

.715000
13

f, 10000

1.2

1

c 0.8

Adaptive Periodic Skip (proposed)

Periodic skip

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

0

10 0.6 N

0.4

0.2

0

— Adaptive periodic skip
(proposed) (resource 1)

—*—Adaptive periodic skip
(Resource 2)

—+—Periodic skip (Resource 1)

--x— Periodic skip (Resource 2)

Iteration

N
u

m
b

er
 o
f f

ai
lu

re
s

2000

1500

1000

500

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

Iteration

Figure 5.64 Comparison for average bounded slowdown parameter

Iteration

Figure 5.65 Comparison for utilization parameter

Figure 5.66 Number of fault occurrences for each resource

72 1Pa ge

3500000

3000000

2500000

2000000

1500000

1000000

500000

C
o

m
p

le
ti

o
n

 t
im

e
 (

se
co

n
ds

)

—.0—Adaptive periodic skip
(proposed) (resource 1.)

—I—Adaptive periodic skip
(Resource 2)

Periodic skip (Resource 1)

—0*-- Periodic skip (Resource 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
on
18 19 20 21 22 23 24 25 26 27 28 29 303132

iterati

Makespan
110

Number of checkpoints Flowtlme

—1—Adaptive Periodic
Skip (proposed)

--414— Periodic skip
Work lost Average bound ed slowdown

Utilization

Figure 5.67 Completion times of resources

Figure 5.68 Overall comparison between periodic skip and adaptive periodic skip

5.10 Adaptive Checkpointing using MTBF and Last failure times of resources

This subsection compares adaptive checkpointing using MTBF of resources with periodic checkpointing

for spatially and temporally correlated failures. For generating temporally and spatially correlating

failures in addition to the previously mentioned method (subsection 5.7) of sorting two halves of

generated failures into ascending and descending order (referred to as w = 2 in this subsection), another

method which divides the generated failures into four parts and sorts parts alternatively in ascending and

descending order (referred to as w =4) is used.

Figures 5.69 to 5.74 respectively compares the two techniques for makespan, work lost due to failures,

flowtime, number of checkpoints taken, average bounded slowdown, and utilization for 4 batches of

jobs. It is to be observed that adaptive checkpointing gives slightly poorer value for makespan. This is

acceptable as average completion time of a resource (flowtime) is significantly better for adaptive

checkpointing technique. Also the adaptive checkpointing technique has significantly better values for

average bounded slowdown as shown in figure 5.73.

73 1 P a ge

3500000

3000000

2500000

2000000

1500000

1000000

500000

0

aptive checkpointing (proposed)w = 2

iodic checkpointing w=2

aptive checkpointing w = 4

iodic checkpointing w=4

1
	

2
	

3
	

4

Iteration

1 2 3 4

ptive checkpointing (proposed) w= 2 I

odic checkpointing w=2

ir 	ptive checkpointing w = 4

odic checkpointing w=4 0

W
o

rk
 lo

st
 (

se
co

n
ds

)

900000
800000
700000
600000
500000
400000
300000
200000
100000

Iteration

Iteration

Fl
o

w
ti

m
e

(s
ec

on
ds

)

• Adaptive checkpointing (proposed) w = 2

riodic checkpointing w=2

aptive checkpointing w =4

riodic checkpointing w=4

34000000

33000000

32000000

31000000

30000000

29000000

28000000

27000000

2
	

3
	

4

Figures 5.75 and 5.76 respectively give completion times of resources and number of faults on each

resource for both techniques for each batch of jobs.

Figure 5.69 Makespan comparison between periodic and adaptive checkpointing

Figure 5.70 Comparison for work lost due to failures parameter

Figure 5.71 Comparison for flowtime parameter

741Page

N
u

m
b

e
r

o
f

ch
e
ck

p
o
in

ts
 4500

4000

3500

3000

2500

2000

1500

1000

500

0

■ Adaptive checkpointing (proposed) w = 2
resource 1

la Adaptive checkpointing (proposed)w = 2
resource 2

■ periodic checkpointing w=2 resource 1

■periodic checkpointing w=2 resource 2

▪ Adaptive checkpointing (proposed) w =
resource 1

ClAdaptive checkpointing w = 4 resource 2

DI periodic checkpointing w=4 resource 1

1
	

2
	

3
	

4
cc periodic checkpointing w=4resoUrce 2

Iteration

aptive checkpointing (proposed)w = 2

riodic checkpointing w=2

aptive checkpointing w = 4

riodic checkpointing w=4

Iteration

A
ve

ra
ge

 b
o

u
n
d

e
d

sl
ow

d
o
w

n
 (

se
co

n
d

s)

12000 -

10000

8000

6000

4000

2000

0

2 3 4

1
0.9
0.8

0.7

0.6

0.5

.6' 0.4

0.3
0.2

0.1

0

■Adaptive checkpointing (proposed) w= 2

periodic checkpointing w=2

si Adaptive checkpointing w = 4

■ periodic checkpointing w=4

1
	

2
	

3
	

4

Iteration

Figure 5.72 Comparison for number of checkpoints taken parameter

Figure 5.73 Comparison for average bounded slowdown parameter

Figure 5.74 Comparison for utilization parameter

75IPage

1 2 3 4

•Adaptive checkpointing (proposed) w = 2
resource 1.

0 Adaptive ch eckpointing (pro posed) w = 2
resource 2

• periodic checkpointing w=2 resource 1

• periodic checkpointing w=2 resource 2

B Adaptive checkpointing (proposed) w = 4
resource 1
Adaptive checkpointing (proposed)w = 4
resource 2

01 periodic checkpointing w=4 resource 1

periodic checkpointing w=4resource 2
Iteration 	.

co
m

p
le

ti
o

n
 t
im

e
 (

se
co

n
d

s)

3500000

3000000

2500000

2000000

1500000

1000000

500000

0

• Adaptive checkpointing (proposed) w =
2 resource 1

0 Adaptive checkpointing (proposed) w =
2 resource 2

• periodic checkpointing w=2 resource 1

• periodic checkpointing w=2 resource 2

el Adaptive checkpointing (proposed) w =
4 resource 1
Adaptive checkpointing (proposed)w = 4
resource 2

01 periodic checkpointing w=4 resource 1

periodic checkpointing w=4resource 2

2 4

N
u

m
b

e
r

o
f

fa
u

lt
s

3500

3000

2500

2000

1500

1000

500

Iteration

Figure 5.75 Completion times of resources

Figure 5.76 Fault occurrences on resources

76 'Page

Oadaptive_Notre(/100)
(proposed)

Operiodic_Notre

9 	10 	11 	12

■ edaptive_overnet2(/10)(prop
osed)

Operiodic_overnet2

Illadpative_skype (proposed)

Illperiodic_skype

adaptive _ucb (proposed)

Operiodic_ucb

Oadaptive_Glow(100)(propos
ed)

O periodic_Glow

9000

	

8000 	

	

1,7, 7000 	

5 6000

.▪ 5000

O.

	

to 4000 	

Y 3000

2000

1000

	

0 	

1 	2 	3 	4 	s 	geratiora

5.11 Performance Comparison of GA based checkpointing techniques using failure traces

This section compares GA based adaptive checkpointing based on fault ratios of resources with GA

based periodic checkpointing. Five failure traces overnet, skype, ucb, Notre and glow from failure trace

archive [49, 50] were used for comparing the two techniques. Following configuration is used for each

trace.

• Ovemet trace consisted of 100 nodes with each node having 1 processing element. 12 batches of

150 jobs were submitted with each job requiring 3 hours of computation on 1 processing

element. MTTR of each resource was ignored and taken to be 0.

• Skype trace consisted of 100 nodes with each node having single PE. 12 batches of 150 jobs

were submitted with each job requiring around 12 hours of computation.

• Ucb trace consisted of 80 nodes with single PE on each node. 12 batches of 120 jobs were

submitted with each job requiring around 7 to 8 minutes of computing time.

• Notre trace consisted of 25 nodes with single PE on each resource. 12 batches of 300 jobs were

submitted with each job requiring around 6 hours of computation.

• Glow trace consisted of 87 nodes with single PE on each resource. 12 batches of 150 jobs were

submitted with each requiring around 48 hours of computation.

Figure 5.77 gives comparison between adaptive checkpointing and periodic checkpointing for makespan

parameter for all failure traces. 12 iterations refer to 12 batches of jobs submitted for each trace. As is

clear from the figure adaptive checkpointing has better performance compared to periodic checkpointing

for all failure traces.

Figure 5.77 Comparison between adaptive checkpointing and periodic checkpointing for makespan parameter

771Page

4 	 fteratioA
	8 	9 	10 	11 	12

Dperiodic_Glow

■adaptive_overnet2(/10)(propose
d)

Operiodic_overnet2

121adpative_skype (proposed)

• periodic_skype

Eladaptive_ocb (proposed)

Operiodic_ucb

Oadaptive_Notre(/100)
(proposed)

Dperiodic_Notre

Dedaptive_GlowV100)(proposed)

1400

1200

1000

r

O 800

.6 600

400

II II

200

Figure 5.78 compares adaptive checkpointing and periodic checkpointing for work lost due to failures

Adaptive checkpointing technique tends to lose more work due to adaptive increase in checkpoint

interval which also results in more work lost for each failure.

Figure 5.78 Comparison for work lost due to failures parameter

Figure 5.79 compares GA based adaptive checkpointing with GA based periodic checkpointing for

flowtime parameter for all failure traces. Adaptive checkpointing technique has superior performance

for this parameter for all failure traces.

120000

100000

80000

60000

40000

20000

	■adaptive_overnet2(/10)(p reposed)
S
❑ periodic_overnet2

■adpative_skype (proposed)

■periodic_skype

—Dadaptive_ocb (proposed)

Operiodic_ucb

adaptive_Notre(/100) (proposed)

▪ periodic_Notre

	Dadaptive_Glow(/100)(proposed)

Operiodic_Glow

LL

3

5 	6 	7
Iteration

9 	10 	11 	12

Figure 5.79 Comparison for flowtime parameter

Figure 5.80 compares the two techniques for number of checkpoints taken. Adaptive checkpointing

technique takes fewer checkpoints compared to periodic checkpointing for all failure traces. The reason

for fewer checkpoints is adaptive increase in checkpoint interval due to less failure rate of resources.

78IPage

Eadaptive_overnet2(/10)(propo
sed)

Operiodic_overnet2

Illadpative_skype (proposed)

■ p erlodic_skype

Illadaptive_ucis (proposed)

Operiodic_ocb

Cladaptiee_Notre(/100)
(proposed)

Operiodic_Notre

3500

3000

2500 —

2000

1500

N
u

m
b

e
r

o
f

ch
e
ck

p
o

in
ts

1000

500

0

6 	7 teration 1

Cladaptiye_Glow1/100)(propose
d)

0 periodic_Glow 2 8 	9 	10 	11 	12

	Illadaptiye_oyernet2(/10)(proposed)

•liodic_oyernet2

patiye_skype (proposed)

rlodic_skype

aptive_ucb (proposed)

iodic_ucb

.43tiye_Notre(/100) (proposed)

odic _Notre

eptiye_Glow(/100)(proposed)
I1

2 	3
	

5 	6 	7
	

10 	11
	

113 erlodic_Glow
Iteration

I
I

I
I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5.80 Comparison for number of checkpoints taken parameter

Figure 5.81 compares the two techniques for average bounded slowdown parameter. Adaptive

checkpointing performs better for this parameter with lesser average bounded slowdown for each job.

400

350

300

250

200

150

100

50

Eadaptive_overnet2(/10)(propos
ed)

Operiodic_overnet2

A
v
e

ra
ge

 b
o

u
n

d
e

d
 s

lo
w

d
o
w

n

tladpatiye_skype (proposed)

■ periodic_skype

adaptiye_ucb (proposed)

Operiodic_ucb

Cladaptive_Notre(/100)
(proposed)

Operlodic_Notre

Cledaptiye_Glow(/100)(proposed)

Uperlodlc_Glow

0

2 	3 	4 	5 	6 	7
Iteration

8 	9 	10 	11 	1

Figure 5.81 Comparison for average bounded slowdown parameter

Figure 5.82 compares the two techniques for utilization parameter. Adaptive checkpointing has slightly

higher utilization of resources compared to periodic checkpointing.

Figure 5.82 Comparison for utilization parameter

790 Page

Madaptive_overnet2(/10)(proposed)

Llpenoclic_ovemet2

"---■adpativeskype (proposed)

	■penod(c_slome

-1:3adaptive_ueb (proposed)

—1:Ipenodie_ueb

adaptive_NotreV100) (proposed)

periodic_Notre

adaptive_GlowV100)(proposed)

period ic_Glow

10 	11 	12

9000

8000

7000

Fa 000

'goo
S000
en C oo.
2000

1000

Lieratio9 1 3 4 a

Makespan
160

Utilization
.
	 Flowtlme

—41—Adaptive checkpointing (proposed)

Average bounded slowdown
	 lat9

	_mn
Turnaround time

	• —15—Periodic Checkpointing

Work Los 	 Number of Checkpoints

Makespan
140

—4-- Adaptive checkpointing (proposed)

—u— Periodic Checkpointing
Average bounded slowdown

Utilization

. A
,..

Work Lost 	 Number of Checkpoints

Flowtime

Turnaround time

Figure 5.83 compares the two techniques for turnaround time parameter. Adaptive checkpointing has

lesser turnaround time compared to periodic checkpointing.

Figure 5.83 Comparison for turnaround time parameter

Figure 5.84 and 5.85 respectively gives overall comparison between GA based adaptive checkpointing

and

Figure 5.84 Overall comparison between GA based adaptive and periodic checkpointing (Overnet trace)

Figure 5.85 Overall comparison between GA based adaptive and periodic checkpointing (Skype trace)

80 1Page

Makespan
160

—*—Adaptive checkpointing (proposed)

Periodic Checkpointing

Flowtime Utilization

Turnaround time Average bounded slowdown
kittI 1 FA'W

.■.kr
r■

Work Lost 	Number of Checkpoints

Work Lost Number of Checkpoints

mFlowti

A 1/41

—4,— Adaptive checkpointing (proposed)

—IS-- Periodic Checkpointing

Utilization

Makespan
120

10101111111111 8U 11111111111111.60,

Average bounded slowdown Turnaround time

GA based periodic checkpointing for trace 1 and trace 2. Values for adaptive checkpointing relative to

periodic checkpointing for trace 1 are -1% for makespan, -5% for flowtime, -26.7% for average bounded

slowdown, +.96% for utilization, +58.8% for work lost due to failures, -37.5% for number of

checkpoints taken and -5% for average turnaround time. Values for adaptive checkpointing relative to

periodic checkpointing for trace 2 are -2.6% for makespan, -2.7% for flowtime, -29.8% for average

bounded slowdown, +2.4% for utilization, +36% for work lost due to failures, -32% for number of

checkpoints taken and -3.88% for average turnaround time.

Figure 5.86 and 5.87, 5.88 respectively gives overall comparison betv■;een GA based adaptive

checkpointing and GA based periodic checkpointing for trace 3, trace 4 and trace 5. Values for adaptive

checkpointing relative to periodic checkpointing for trace 3 are -5% for makespan, -7.88% for flowtime,

-42.7% for average bounded slowdown, +5.47% for utilization, +55.43% for work lost due to failures,

47% for number of checkpoints taken and -8.35% for average turnaround time. Values for adaptive

checkpointing relative to periodic checkpointing for trace 4 are -4.4% for makespan, -2.7% for flowtime,

Figure 5.86 Overall comparison between GA based adaptive and periodic checkpointing (Ucb trace)

Figure 5,87 Overall comparison between GA based adaptive and periodic checkpointing (Notre trace)

81IPage

Work Lost

Number of Checkpoints

Makespan
200

1 11%
150

00

k it")% Average bounded slowdown

Utilization

--e—Adaptive checkpointing (proposed)

Turnaround time
	 Checkpointing

Flowtime •

1 	2 	3 	4 	s 	E 	7 Reration 9 	10 	11 	/2 Operiodic_Glow

Co
ra

0.

4500

4000

3500

3000

2500

2000

1500

1000

500

0

ipr

Ri

Eadaptive_overnet2(/10)(proposed)

eriodic_overnet2

dpative_skype (proposed)

eriodic_skype

daptive_ucb (proposed)

riodic_ucb

daptive_Notre(/100) (proposed)

eriodic_Notre

daptive_Glow(/100)(proposed)

-22% for average bounded slowdown, +4.69% for utilization, +1.4% for work lost due to failures, -

23.5% for number of checkpoints taken and -3.2% for average turnaround time. Values for adaptive

checkpointing relative to periodic checkpointing for trace 5 are -3.8% for makespan, -5.7% for flowtime,

-33.43% for average bounded slowdown, +3.92% for utilization, +91% for work lost due to failures, -

32% for number of checkpoints taken and -6.7% for average turnaround time.

Figure 5.88 Overall comparison between GA based adaptive and periodic checkpointing (Glow trace)

5.12 Performance Comparison of ACO based checkpointing techniques using failure traces

This section compares ACO based adaptive checkpointing based on fault ratios of resources with ACO

based periodic checkpointing. Failure traces with configurations as given in section 5.11 are taken for

experimentation.

Figure 5.89 gives comparison between adaptive checkpointing and periodic checkpointing for makespan

parameter for all failure traces. As is clear from the figure adaptive checkpointing has better

performance (lesser makespan values) compared to periodic checkpointing for all failure traces.

Figure 5.89 Comparison between ACO based adaptive checkpointing and ACO based periodic checkpointing for makespan parameter

82IPage

O

1400

1200

1000

800

600

400

200

INadeptive_overnet2(/10)fproposed)

it
2 	 Ieration 	

9 	10 	11

Ilperiodic_skype

perlodic_ucb

0periodic_overnet2

Eadpative_skype (proposed)

id
adeptive_uch (proposed)

aptive_Notre(/100) (proposed)

riodic_Notre

aaptive_Glow(/100)(proposed)

ipperloclic_Glow

n adpative_overnet(/100)

0 periodic_overnet

• adpative_slope(/100)

Niperiodic_skype

Ei1adaptive_ucb

O periodic_ucb

0adaptive_Notre(/100)

Operiodic_Notre

O adaptive_Glow(/1000)

Operiodic_Glow

• •

r

1

1 	2 	3
	

5 	heratio;
	

9 	10 	1 	12

90000

• 80000

O
LL

70000

60000

50000

40000

30000

20000

10000

0

Figure 5.90 compares adaptive checkpointing and periodic checkpointing for work lost due to failures

Adaptive checkpointing technique tends to lose more work due to adaptive increase in checkpoint

interval which also results in more work lost for each failure.

Figure 5.90 Comparison for work lost due to failures parameter

Figure 5.91 compares ACO based adaptive checkpointing with ACO based periodic checkpointing for

flowtime parameter for all failure traces. Adaptive checkpointing technique has superior performance

(lower flowtime) for this parameter for all failure traces.

Figure 5.91 Comparison for flowtime parameter

Figure 5.92 compares the two techniques for number of checkpoints taken. Adaptive checkpointing

technique takes fewer checkpoints compared to periodic checkpointing for all failure traces. The reason

for fewer checkpoints is adaptive increase in checkpoint interval due to less failure rate of resources.

83 P a ge

ipperIodlc_Glow 2 	3 	4 	5 	6 	7 	8 	 10 	11
Iteration

	Illadaptive_overnet2(/10)(proposed)

Operiodic_overnet2

Wadpative_skype (proposed)

W :rIodIc_skype

aptive_ucb (proposed)

rIodIc_ocb

aptive_Notre (/100) (proposed)

rriodic_Notre

aptive_Glow(1100)(proposed)

3500

3000

2500

2000

1500

1000

500

0

N
u

m
b

e
r

of
 c

h
e
ck

p
oi

n
ts

2 	3 	4 	5 	6 	7
Iteration

8 	9 	10 	11 	Olarlodic_Glow

Wadaptive_overnet2(/10)(proposed)

)
Opertodic_overnet2

Wa 	ve_skype (proposed)

c_skype

e_ucb (proposed)

c_ucb

e_Notre(/100) (proposed)

c_Notre

e Glow(/100)(proposed)

0.9

0.8

0.7

g 	0.6

0.5

0.4

0.3

0.2

0.1

0

I
I
I

I
I
I

I
I
I

I 	I
I 	I
I
I
I 	I

Figure 5.92 Comparison for number of checkpoints taken parameter

Figure 5.93 compares the two techniques for average bounded slowdown parameter. Adaptive

checkpointing performs better for this parameter with lesser average bounded slowdown.

400

350

300

250

200

150

100

50

0

Iladaptive_overnet2(/10)(proposed)

A
v

e
ra

ge
 b

o
u

nd
e

d
 s

lo
w

d
o

w
n

OPerlodic_overnet2 	•

	dpative_skype (proposed)

	erlodic_skype

daptive_ucb (proposed)

dodic_ucla

daptive_Notre (/100) (proposed)

eriodic_Notre

daptive_Glow(/100)(proposed)

n Operiodic_Glow

3 	4 	5 	 8 	9 	10 	11 fteratio4

Figure 5.93 Comparison for average bounded slowdown parameter

Figure 5.94 compares the two techniques for utilization parameter. Adaptive checkpointing has slightly

higher utilization of resources compared to periodic checkpointing.

Figure 5.94 Comparison for utilization parameter

84IPage

•adaptive_overnet2(/10)(proposed)

1 	2 	3 	4 	5 	rteration 	a 	9 	10 	11 	
12 Operiodic_Glow

Tu
rn

ar
ou

nd
 ti

m
e

3500

3000

2500

2000

1500

1000

500

0

Dperiodic_overnet2

'dpative_skype (proposed)

eriodic

aptIve_ucb (proposed)

eriodic_ucb

aptive_Notre(/100) (proposed)

eriodic_Notre

daptive_Glow(/100)(proposed)

Makespan
300

Utilization 4011001111111441114, Flomime
to AO lot

,„0
%VAL "■,
thd■

Work Lost 	 Number of Checkpoints

Average bounded slowdown

--a— Adaptive check pointing

—11-- Periodic CheckpointIng Turnaround time

--a— Adaptive check pointing

—ID— Periodic CheckpointIng

Makespan
120

Flowtime Utilization

Average bounded slowdown Turnaround time

Work Lost Number of Checkpoints

Figure 5.95 compares the two techniques for turnaround time parameter. Adaptive checkpointing has

lesser turnaround time compared to periodic checkpointing.

Figure 5.95 Comparison for turnaround time parameter

Figure 5.96 and 5.97 respectively gives overall comparison between ACO based adaptive checkpointing

Figure 5.96 Overall comparison between ACO based adaptive and periodic checkpointing (Overact trace)

Figure 5.97 Overall comparison between ACO based adaptive and periodic checkpointing (Skype trace)

85 I Page

Makespan
140
20%1114iiiiiiiiii„.

StAti
, "01 '-

Illk Work Lost 	 Number of Checkpoints

Average bounded slowdown

Utilization Flowtime

- Adaptive checkpointing

— CZ— Periodic Checkpointing
Turnaround time

— 4—Adaptive checkpointing

— III— Periodic Checkpointing

Makespan
4000g.. _120

14;4'

Obi
V
tAW ti

1—■■

Average bounded slowdown

Utilization

Work Lost

Turnaround time

Flowtime

Number of Checkpoints

and ACO based periodic checkpointing for trace 1 and trace 2. Values for adaptive checkpointing

relative to periodic checkpointing for trace 1 are -4.8% for makespan, -3.7% for flowtime, -22.3% for

average bounded slowdown, +5% for utilization, +182% for work lost due to failures, -23% for number

of checkpoints taken and -4.1% for average turnaround time. Values for adaptive checkpointing relative

to periodic checkpointing for trace 2 are -2.5% for makespan, -2% for flowtime, -15.7% for average

bounded slowdown, +2.4% for utilization, +14% for work lost due to failures, -17.5% for number of

checkpoints taken and -1.86% for average turnaround time.

Figure 5.98 and 5.99, 5.100 respectively gives overall comparison between. ACO based adaptive

checkpointing and ACO based periodic checkpointing for trace 3, trace 4 and trace 5. Values for

adaptive checkpointing relative to periodic checkpointing for trace 3 are -2.3% for makespan, -4% for

flowtitne, -25% for average bounded slowdown, +2.34% for utilization, +35.5% for work lost due to

failures, -26.7% for number of checkpoints taken and -4% for average turnaround time. Values for

adaptive checkpointing relative to periodic checkpointing for trace 4 are -2.5% for makespan, -2% for

Figure 5.98 Overall comparison between ACO based adaptive and periodic checkpointing (Ucb trace)

Figure 5.99 Overall comparison between ACO based adaptive and periodic checkpointing (Notre trace)

86IPage

Makespan
200

Utilization 	 Flowtime

Average hounded slowdown Turnaround tEme

— o— Adaptive checkpointing

- Periodic Checkpolnting

Work Lost

Number of Checkpoints

flowtime, -15.7% for average bounded slowdown, +2.4% for utilization, +14.13% for work lost due to

failures, -17.5% for number of checkpoints taken and -1.8% for average turnaround time. Values for

adaptive checkpointing relative to periodic checkpointing for trace 5 are -5.4% for makespan, -5.49%

for flowtime, -33.14% for average bounded slowdown, +5.7% for utilization, +86.7% for work lost due

to failures, -33.14% for number of checkpoints taken and -5.5% for average turnaround time.

Figure 5.100 Overall comparison between ACO based adaptive and periodic checkpointing (Glow trace)

5.13 GA-based checkpointing techniques performance comparison using workload traces

This section compares GA-based adaptive checkpointing using fault ratios of resources with GA-based

periodic checkpointing for workload traces from workload trace archives [51, 52]. Alea [41] simulator is

used for simulation.

a) Trace 1(ITPC2)

This trace consisted of 3000 jobs with each job having different number of PE requirement ranging

from 1 PE to 128 PEs. Four clusters each with 4 SMPs with each SMP having 16 processors were used

for execution of jobs. Jobs are allocated processors only from one cluster. Note that there are a

maximum of 64 processors in any cluster and job requirement can be higher than that. In that case

resources are not allocated to job. Resources failures were simulated with first and third cluster having

much higher failure rate compared to second and fourth. Coordinated checkpointing is used for

performing checkpointing operation. Complete job is restarted from last successfully saved checkpoint

even if only one PE allocated to it fails.

87IPage

Figure 5.101 shows the average cluster usage per day for each cluster for adaptive checkpointing

technique. As can be seen utilization of resources is very low.

.1.2. P0 OP41.4
01100.■
C11040,

IM

P3

70

SO -

50
-

-

20

a -

a 	 • ---"e'-17......... 	 ...44••••• =V44-•••• •••1...-4---- -•.- 4----4 .--1
5 	 10 	 15 	 20 	 25 	 so

dais

Figure 5.101 Cluster usage per day for workload trace 1 (Adaptive checkpointing)

Figure 5.102 shows number of requested and used CPUs per day for GA-based adaptive checkpointing

technique. Requested CPUs are much less than the available CPUs

Oftwater021•200101426•2080100J0

270
221
210
1 OS
102
1e0
154
140
126
112
03
ea

50
42

14

0 	 13 	 20
0•114

110

Figure 5.102 Number of requested and used CPI's per day for trace 1 (Adaptive checkpointing)

otostage row...0 01401 044 OW rid

17.)

Pl

PI

70

5.2

!■1

41

311

iV

0 -4.■ MOM MS 	-400 Sim inn Mil •00.
IS 	 20 	 20

	 20
00S,

Figure 5.103 Average machine usage per day for trace 1 (Adaptive checkpointing)

88IPage

a

Figure 5.103 gives average machine usage per day for adaptive checkpointing technique. Figure 5.10,

gives cluster usage per day for periodic checkpointing technique. Cluster usage is very low.

C.42144, usage per doe IN 	 CAM* •
1:040001-3
C0441442

- -"?.410,-.404P■K`■- 	.-......... -..-:--- .7..._,.< - 	,.....eat

3 	 10 	 15 	 20 	 25 	 XI
410110

Figure 5.104 (luster usage per day for workload trace 1 (Periodic checkpointing)

Figure 5.105 gives number of requested and used CPUs per day for periodic checkpointing technique

Requested CPUs is much lower than that available.

1D0

SO

SO

70

60 -

SO -

CO

30 -

10 -

0
a

	 001010011011CP1.24
0,11010,41J4
844044100 C.S1/4

252

230
221

210
101
18/
11411
154
1 .1
120
112
143
81
70
50
42
78

1.41801:411 0000000 4(1000 CPUS

ID 	 s 	 20 	 as 	 30
000

Figure 5.105 Number of requested and used CPUs per day for trace 1 (Periodic checkpointing)

US-ape per 04, PH

ars

Figure 5.106 Average machine usage per day for trace I (Periodic checkpointing)

89IPage

Cluster_4_periodic

Cluster_3_pe hod is

■ Cluster_2_periodic

■ Cluster_1_periodic

■ Cluster_4_adaptive (proposed)

IICluster_3_adaptive (proposed)

■ Cluster_2_adaptive (proposed)

■ Cluster_1_adaptive (proposed)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 lAkY17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

800000

700000

600000

500000

400000

300000

200000

100000

0

R
es

po
n
se

 t
im

e

250000

200000

150000

100000

50000

1 2 3 4 5 6 7 8 9 1011121314 1Wv17 18192021 22232425 26272829 3031

ECluster_4_periodic

■ Cluster_3_periodic

■ Cluster_2_periodic

■ Cluster_1periodic

■ Cluster_4_adaptive (proposed)

■ Cluster_3_adaptive (proposed)

■ Cluster_2_adaptive (proposed)

■ Cluster_l_adaptive (proposed)

A
ve

ra
ge

 t
a
rd

in
es

s

Figure 5.106 gives average machine usage per day for GA-based periodic checkpointing. Figure 5.107

gives average waiting time of jobs submitted to a cluster for each day for each of periodic checkpointing

and adaptive checkpointing technique.

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

(Cluster_4_periodic

t Cluster_3_periodic

13Cluster_2_periodic

■ Cluster_1_periodic

■ Cluster_4_adaptive
(proposed)

■ Cluster_3_adaptive
(proposed)

■ Cluster_2_adaptive
(proposed)

■ Cluster_1_adaptive
(proposed)

E

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Day

Figure 5.107 Average waiting time per cluster per day for trace 1

Figure 5.108 gives average response time of jobs submitted to a cluster for each day for both techniques.

Figure 5.108 Average response time per cluster per day for trace 1

Figure 5.109 Average tardiness time per cluster per day for trace 1

90IPage

Columnl

Fauster_4_periodic

• Cluster_3_periodic

• Cluster_2_periodic

• Cluster_l_periodic

• Cluster_4_adaptive (proposed)

• Cluster_3_adaptive (proposed)

• Cluster_2_adaptive (proposed)

• Cluster_l_adaptive (proposed)

1 2 3 4 5 6 7 8 9 10111213141571819202122232425262728293031

16000

14000

12000

", 10000
2
• 8000
O

6000

4000

2000

0

Figure 5.109 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique. Figure 5.110 gives number of checkpoints

performed by jobs on each cluster for each day for each of periodic checkpointing and adaptive

checkpointing technique.

N
um

be
r o

f c
he

ck
po

in
ts

25000

20000

15000

10000

5000

0 1111111111111111
1 2 3 4 5 6 7 8 9 1011121314131*71819202122232425262728293031

• Cluster_4_periodic

• Cluster_3_periodic

• Cluster_2_periodic

• Cluster_l_periodic

• Cluster_4_adaptive (proposed)

• Cluster_3_adaptive (proposed)

• Cluster_2_adaptive (proposed)

OICluster_l_adaptive (proposed)

Figure 5.110 Number of checkpoints per cluster per day for trace 1

Figure 5.111 gives work lost due to failures on each cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.111 Work lost due to failures per cluster per day for trace 1

Figure 5.112 gives overall comparison between GA-based adaptive checkpointing using fault ratios of

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to

periodic checkpointing are 	0% for makespan, 0% for flowtime, -20.5% for average bounded

slowdown, -11.7% for work lost due to failures, -21% for number of checkpoints taken and -4.3% for

average turnaround time

91IPage

Average bounded slowdow 	 owtime

—4—Adaptive checkpointing
(proposed)

—E—Periodic Checkpointing

Work Los rnaround time

Number o C eckpoints

Figure 5.112 Overall comparison between adaptive and periodic checkpointing for workload trace 1

b) Trace 2 (LCG)

This trace consisted of 3000 jobs with each job having only 1PE requirement. Six clusters each

with 2 SMPs with each SMP having 16 processors were used for execution of jobs. Jobs are allocated

processors only from one cluster. Resources failures were simulated with first and third cluster having

much higher failure rate. Coordinated checkpointing is used for performing checkpointing operation.

Complete job is restarted from last successfully saved checkpoint even if only one PE allocated to it

fails.

Figure 5.113,shows the average machine usage per hour for adaptive checkpointing technique.

a
	

ID 11 12 13 14 	1G IT 10 10 20, '21 22 23 34

Figure 5.113 Average machine usage per hour for trace 2 (Adaptive checkpointing)

92IPage

Figure 5.114 gives cluster usage %age for each cluster for adaptive checkpointing technique.

Figure 5.114 Cluster usage per hour for trace 2 (Adaptive checkpointing)

Figure 5.115 shows the average machine usage per hour for periodic checkpointing technique.

Figure 5.115 Average machine usage per hour for trace 2 (Periodic checkpointing)

Figure 5.116 gives cluster usage %age for each cluster for periodic checkpointing technique.

Figure 5.116 Cluster usage per hour for trace 2 (Periodic checkpointing)

931 Page

-4—Adaptive checkpointing
(proposed)

—U—Periodic Checkpointing

Average bounded slowdown

Work Lost

Flowtime

Turnaround time

Number of Checkpoints

Figure 5.117 gives overall comparison between GA-based adaptive checkpointing using fault ratios of

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to

periodic checkpointing are 0% for makespan, 0% for flowtime, -15% for average bounded slowdown,

31% for work lost due to failures, -40.5% for number of checkpoints taken and -1.3% for average

turnaround time.

Figure 5.117 Overall comparison between adaptive and periodic checkpointing for workload trace 2

c) Trace 3 (NASA-iPSC-1993)

This trace consisted of 10000 jobs with each job having different number of PE requirement ranging

from 1 PE to 128 PEs. Three clusters each with 8 SMPs with each SMP having 16 processors were used

for execution of jobs. Jobs are allocated processors only from one cluster. Resources failures were

simulated with first cluster having much higher failure rate compared to second and third. Coordinated

checkpointing is used for performing checkpointing operation. Complete job is restarted from last

successfully saved checkpoint even if only one PE allocated to it fails.

Figure 5.118 shows the average cluster usage per day for each cluster for adaptive checkpointing

technique. As can be seen utilization of resources is very low.

Figure 5.119 shows number of requested and used CPUs per day for GA-based adaptive checkpointing

technique. Requested CPUs are much less than the available CPUs.

Figure 5.120 gives average machine usage per day for adaptive checkpointing technique.

9/Wage

C41ar .696 0.4f 04.'1'64

1D0

60 -

60

70 -

60 -

50 -

40

20 -

10

10 20 30

4444
40 4S

Figure 5.118 Cluster usage per day for workload trace 3 (Adaptive checkpointing)

CItzsloal

160
160 -
3a0 -
320 -
3C0 -
260 -
260 -
/40 -
220 -
200 -
160 -
I 60 -
1a0 -

120-
100 -
01 -
60
40 -
20 -
0

Nvnta. at w40tses40 ar.1 0E420 0F,..5

inemledert14
umICIPthi
amilalla CPUs

ID so 	 so
0416

Figure 5.119 Number of requested and used CPUs per day for trace 3 (Adaptive checkpointing)

Oberspe matron* 4643.1 pot 01, ny

40

30

20 -

10 -

0 	 to 	 20 	 30 	 4113 	 so
ass

Figure 5.120 Average machine usage per day for trace 3 (Adaptive checkpointing)

Figure 5.121 shows the average cluster usage per day for each cluster for periodic checkpointing

technique.

Figure 5.122 shows number of requested and used CPUs per day for GA-based periodic checkpointing

technique. Requested CPUs are much less than the available CPUs.

951Page

 pew Owt%1 .0
4:Sumac 1
Cluster 2

101 -

03 -

03 -

70

03 -

SO -

aa -

30 -

70

10 '4

0
a
	

SO

303 -
30O -
340 -
370 -
300 -
700 -
230 -
740 -
230
700 -
100 -
100-
140-
120-
ICO-

-
100-
140-
170-
100-
00 -
00 -
w -
7

20

,0 	 20

30
	

•0
	 so

dna

311
	

40
	

SO

Figure 5.121 Cluster usage per day for workload trace 3 (Periodic checkpointing)

larnabor ofrogyaa1041 awl assICPUO 	 reprars144 CPUs
W40 C14.1s
a...0.i Nr t 	■.•

0410

Figure 5.122 Number of requested and used CPUs per day for trace 3 (Periodic checkpointing)

Figure 5.123 gives average machine usage per day for periodic checkpointing technique.

Ammo mactor wain /10,

03

03

30 -

70 -

SO -

SO -

40 -

3a -

7O -

,0 -

0
0 IS 20 	 30

MOO
40 	 so

Figure 5.123 AN erage machine usage per da) for trace 3 (Periodic checkpointing)

Figure 5.124 gives average waiting time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

96IPage

•Cluster3_periodic

•Cluster2periodic

•Clusterl_periodic

•Cluster3_adaptive (proposed)

•Cluster2_adaptive (proposed)

•Clusterl_adaptive(proposed)

E

90000
80000
70000
60000
50000
40000
30000
20000
10000

0

1 3 5 7 9 11 13 15 17 19 21 23 25D2W29 31 33 35 37 39 41 43 45 47 49 51 53

Figure 5.124 Average waiting time per cluster per day for trace 3

Figure 5.125 gives average response time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

40000

35000

30000

25000

20000

15000

10000

5000

0

•Cluster3_periodic

•Cluster2_periodic

•Clusterl_periodic

InCluster3_adaptive (proposed)

•Cluster2_adaptive (proposed)

•Clusterladaptive(proposed)

R
es

po
n

se
 t
im

e

b lb J1111111144
1 3 5 7 9 11 13 15 17 19 21 23 2511,129 31 33 35 37 39 41 43 45 47 49 51 53

Figure 5.125 Average response time per cluster per day for trace 3

20000
18000
16000 -

•Cluster3_periodic

E 1:2°0° 0°0 	
•Cluster2_periodic

2000
0 Irliiiiiiiiii1111111J11 iiiiiiii11/1111111i1J11111111 mclusteri-adaPtive(Pr°P°sed)

7. 	 •Clusterl_periodic
i 1CW°
C 	 •Cluster3_adaptive (proposed)
s.
el 60100 	 •Cluster2_adaptive (proposed)

4000 	I IIII II 	1 	II II 	I
=

1 3 5 7 9 11 13 15 17 19 21 23 25110/29 31 33 35 37 39 41 43 45 47 49 51 53

Figure 5.126 Average tardiness time per cluster per day for trace 3

97IPage

3000

N
u

m
b

e
r

o
f

ch
e
ck

p
o
in

ts
 2500

2000

1500

1000

500

0 „iiiiiiillibilitaili1111111111 1111
•Cluster3_periodic

Mauster2_periodic

•Clusterl_periodic

IIICluster3_adaptive (proposed)

IICluster2_adaptive (proposed)

IIIClusterl_adaptive(proposed)

1 3 5 7 9 11 13 15 17 19 21 23 250a1/29 31 33 35 37 39 41 43 45 47 49 51 53

Figure 5.127 Number of checkpoints per cluster per day for trace3

Figure 5.126 gives average tardiness time of jobs submitted to a cluster for each day for each technique.

Figure 5.127 gives number of checkpoints performed by jobs on each cluster for each day for each of

periodic checkpointing and adaptive checkpointing technique. Figure 5.128 gives work lost due to

failures on each cluster for each day for each of periodic checkpointing and adaptive checkpointing

technique.

70000

60000

50000

40000

30000

20000

10000

0

11Cluster3periodic

IOCluster2_periodic

MIClusterl_pericdic

SCluster3_adaptive (proposed)

InCluster2_adaptive (proposed)

•Clusterl_adaptive(proposed)

0

O

01111111010

1 3 5 7 9 11 13 15 17 19 21 23 21* 29 31 33 35 37 39 41 43 45 47 49 51

Figure 5.128 Work lost due to failures per cluster per day for trace 3

Figure 5.129 gives overall comparison between GA-based adaptive checkpointing using fault ratios of

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to

periodic checkpointing are 	0% for makespan, 0% for flowtime, -19.76% for average bounded

slowdown, -13% for work lost due to failures, -29% for number of checkpoints taken and -4.85% for

average turnaround time.

98IPage

lowtime Average bounded stowdow

—4—Adaptive checkpointing
(proposed)

—a—Periodic Checkpointing

Make an
100

Work Los' 	 urnaround time

Number o C eckpoints

marago macntra !nap. per havr vidaviit

-

Figure 5.129 Overall comparison between adaptive and periodic checkpointing for workload trace 3

d) Trace 4 (LCG-2005)

This trace consisted of 10000 jobs with each job having requirement of 1PE only. Six clusters each

with 4 SMPs with each SMP having 16 processors were used for execution of jobs. Jobs are allocated

processors only from one cluster. Resources failures were simulated with first cluster having much

higher failure rate. Coordinated checkpointing is used for performing checkpointing operation.

Complete job is restarted from last successfully saved checkpoint even if only one PE allocated to it

fails.

Figure 5.130 shows the average machine usage per hour for adaptive checkpointing technique.

10

19 	11 	12 	14
	

19 	21 ^ 12 — 	21

Figure 5.130 Average machine usage per hour for workload trace 4 (Adaptive checkpointing)

99IPage

Figure 5.131 gives Cluster usage %age for each cluster for adaptive checkpointing technique.

Figure 5.131 Average cluster usage % for workload trace 4 (Adaptive checkpointing)

Figure 5.132 shows the average machine usage per hour for periodic checkpointing technique.

nsasttn• usape ;Kr raw 111-17-1 dar=1

Figure 5.132 Average machine usage per hour for workload trace 4 (Periodic checkpointing)

Figure 5.133 gives cluster usage %age for each cluster for periodic checkpointing technique.

Figure 5.133 Average cluster usage % for workload trace 4 (Periodic checkpointing)

100 IPage

Makes an
100

Average bounded slowdow

Work Los

owtIme

rnaround time

Number o C eckpoints

—*--Ad a ptive checkpointing
(proposed)

—111— Periodic Checkpointing

Figure 5.134 gives overall comparison between GA-based adaptive checkpointing using fault ratios of
resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to

periodic checkpointing are -2.2% for makespan, -2.1% for flowtime, -20.3% for average bounded
slowdown, -4.5% for work lost due to failures, -20.5% for number of checkpoints taken and -4% for

average turnaround time.

Figure 5.134 Overall comparison between adaptive and periodic checkpointing for workload trace 4

e) Trace 5 (LLNL-Thunder-2007)

This trace consisted of 1000 jobs with each job having PE requirement ranging from 4 to 128 PEs.

Four clusters each with 8 SMPs with each SMP having 16 processors were used for execution of jobs.
Jobs are allocated processors only from one cluster. Resources failures were simulated with first cluster

having much higher failure rate. Coordinated checkpointing is used for performing checkpointing
operation.

Figure 5.135 Average machine usage per hour for workload trace 5 (Adaptive checkpointing)

101 I Page

Figure 5.135 shows the average machine usage per hour for adaptive checkpointing technique. Figure

5.136 gives cluster usage %age for each cluster for adaptive checkpointing technique.

Figure 5.136 Average cluster usage % for workload trace 5 (Adaptive checkpointing)

Figure 5.137 shows the average machine usage per hour for periodic checkpointing technique.

marhme usege tsar spar Ra !n &N.

Figure 5.137 Average machine usage per hour for workload trace 5 (Periodic checkpointing)

Figure 5.138 gives cluster usage %age for each cluster for periodic checkpointing technique.

usagclartmarraq '

- 	.
IS 20 F25 '30 -35, 40 	 us au gs leo

Figure 5.138 Average cluster usage % for workload trace 5 (Periodic checkpointing)

1028 Page

Average bounded

slowdown

Work Lost

Makespan
120

Flowtime

Turnaround time

Number of Checkpoints

—•—Adaptive checkpointing
(proposed)

—6—Periodic Checkpointing

Figure 5.139 gives overall comparison between GA-based adaptive checkpointing using fault ratios of

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to

periodic checkpointing are 	0% for makespan, 0% for flowtime, -13.6% for average bounded

slowdown, -7.2% for work lost due to failures, -26.8% for number of checkpoints taken and -1.85% for

average turnaround time.

Figure 5.139 Overall comparison between adaptive and periodic checkpointing for workload trace 5

5.14 ACO-based checkpointing techniques performance comparison using workload traces

This section compares ACO-based adaptive checkpointing using fault ratios of resources with ACO-

based periodic checkpointing for workload traces from workload trace archives.

a) Trace 1(HPC2)

Configuration and parameters are same as in subsection 5.13

Figure 5.140 shows average cluster usage per day for each cluster for adaptive checkpointing technique.

MOW WSW PIN 111W1114 aN1105 arwtt
Millar 2

t.. -

00

N

00 -
-

N -

40 -

10 	 15 	 3S1 	 25 	 20

Nes

Figure 5.140 Cluster usage per day for workload trace 1 (Adaptive checkpointing)

103 'Page

252
zra
n1
210

P IN
1N
1 or

140
Is
112

SI
70
N

14

11111610/ 01111100001 nal crus 	 nqunlin CPUs
eon CPUs
■11.11110, CPUs

10 	 16

Figure 5.141 shows number of requested and used CPUs per day for adaptive checkpointing technique.

Figure 5.141 Number of requested and used CPUs per day for trace 1 (Adaptive checkpointing)

Figure 5.142 gives average machine usage per day for adaptive checkpointing technique.

160.1111 mnIns usage per ON

•01311 	11001.

0 10 10
NM

30

Figure 5.142 Average machine usage per day for trace 1 (Adaptive checkpointing)

Figure 5.143 gives cluster usage per day for periodic checkpointing technique. Cluster usage is very low.

CNN, win nor NII C10600.0

IN -
N

SO

70

• .---:"--ratifil.41-44/N+4.----. . 1 -s44444-.4 :04•4 10,444444=444.--.4444pare
a 	 la 	 IS 	 30 	 31 	 30

Inn

Figure 5.143 Cluster usage per day for workload trace 1 (Periodic checkpointing)

104 1 Page

• Cluster_4_periodic

• Cluster_3_periodic

•Cluster_2_periodic

•Cluster_l_periodic

•Cluster_4_adaptive
(proposed)

111Cluster_3_adaptive
(proposed)

•Cluster_2_adaptive
(proposed)

•Cluster_l_adaptive
(proposed)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15.16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 uay

W
a

it
in

g
 t
im

e

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

Figure 5.144 shows number of requested and used CPUs per day for periodic checkpointing technique.

Huntet of nquesIed sod tassel CPUS 	isqussIsel CPUs
252 - 	 Ine• CNA

amliatat CPUs 234

224 -

210 •

116 -

1 82

-

151 -

t 4,3 -
, _

111

Pa

ra

54

42 -
a

1•

0 	 5 	 ID 15 20 2,3 30

Figure 5.144 Number of requested and used CPUs per day for trace 1 (Periodic checkpointing)

Figure 5.145 gives average machine usage per day for periodic checkpointing technique.

Average rnactsne us ape per pal rai

,18

to -

r- 	i , 	 - - 	— T— -r--T 	T-1
5 	 10 	 15 	 20 	 25 	 30

Figure 5.145 Average machine usage per day for trace 1 (Periodic checkpointing)

Figure 5.146 gives average waiting time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.146 Average waiting time per cluster per day for trace 1

70 -

NJ

so

40 -

N -

10

a
0

105 1 Page

11Cluster 4_periodic

• Cluster_3_periodic

• Cluster_2_periodic

• Cluster_l_periodic

• Cluster_4_adaptive
(proposed)

IICluster_3_adaptive
(proposed)

• Cluster_2_adaptive
(proposed)

IICluster_l_adaptive
(proposed)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15d417 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
es

po
ns

e
ti

m
e

250000

200000

150000

100000

50000

0

I3Cluster_4_periodic

• Cluster_3_periodic

• Cluster_2_periodic

• Cluster l_periodic

• Cluster_4_adaptive
(proposed)

• Cluster_3_adaptive
(proposed)

• Cluster 2_adaptive
(proposed)

• Cluster l_adaptive
(proposed)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1501*17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

400000

350000

300000

i) 250000

ar 200000
C
172 150000 to
- 100000

50000

0

25000

20000

15000

10000

5000

0

N
um

be
r o

f c
he

ck
po

in
ts

41116111m
• Cluster_4_periodic

• Cluster_3_periodic

• Cluster_2_periodic

• Cluster_l_periodic

• Cluster_4_adaptive (proposed)

• Cluster_3_adaptive (proposed)

1•Cluster_2_adaptive (proposed)

INCluster_l_adaptive (proposed)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516171819 20 21 22 23 24 25 26 27 28 2930 31
Day

Figure 5.147 gives average response time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.147 Average response time per cluster per day for trace 1

Figure 5.148 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.148 Average tardiness time per cluster per day for trace 1

Figure 5.149 Number of checkpoints per cluster per day for trace 1

106 'Page

50000
45000 -
40000 -
35000
30000
25000 -

3 20000 -
15000
10000 -
5000

0 dllll.. 1111 11111111d
• Cluster_4_periodic

INCluster_3_periodic

11Cluster_2periodic

MICluster_l_periodic

• Cluster_4_adaptive (proposed)

IICluster_3_adaptive (proposed)

• Cluster_2_adaptNe (proposed)

111Cluster_1_adaptive (proposed)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425 2627 28293031
Day

Average bounded slowdown

Work Lost

Number of Checkpoints

Flowtime

—4—Adaptive checkpointing
(proposed)

—0—Periodic Checkpointing

Turnaround time

Figure 5.149 gives number of checkpoints taken on each cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.150 gives work lost due to failures on each cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.150 Work lost due to failures per cluster per day for trace 1

Figure 5.151 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative

to periodic checkpointing are 0% for makespan, 0% for flowtime, -39.6% for average bounded

slowdown, -87% for work lost due to failures, -38% for number of checkpoints taken and -9% for

average turnaround time.

Figure 5.151 Overall comparison between adaptive and periodic checkpointing for workload trace 1

107 'Page

3 	.4 B

•

. 	 • 	•

10 	t1 	12 • 13 	14 	14 	14 	17 	19 	19 	20 	21 	22 . 	23 	24

halm 	 ,

100

141

70

awara3n machine 41398 parInnn r101n 048.1.

• •

 9 	10, 	'11 	12 	13 	.14 ',IS 	10 	17 - 19 	113, 	20' 	21 	22 	23 	34;
- •

1143-

b) Trace 2 (LCG)

Configuration and parameters are same as in subsection 4.11

Figure 5.152 shows the average machine usage per hour for adaptive checkpointing technique.

Figure 5.'152 Average machine usage per hour for workload trace 2 (Adaptive checkpointing)

Figure 5.153 gives cluster usage %age for each cluster for adaptive checkpointing technique.

Figure 5.153 Average cluster usage % for workload trace 2 (Adaptive checkpointing)

Figure 5.154 Average machine usage per hour for workload trace 2 (Periodic checkpointing)

108 1Page

to?) 5".

/I%

0 	SD 	 35', •D 15 50 55 60 6 65 105

Flowtime

—.—Adaptive checkpointing
(proposed}

—IS—Periodic Checkpointing

Turnaround time

Average bounded slowdown

Work Lost

Makespan
140

V
Number of Checkpoints

Figure 5.154 shows the average machine usage per hour for periodic checkpointing technique. Figure

5.155 gives cluster usage %age for each cluster for periodic checkpointing technique.

Figure 5.155 Average cluster usage % for workload trace 2 (Periodic checkpointing)

Figure 5.156 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative

to periodic checkpointing are 0% for makespan, -3% for flowtime, -22% for average bounded

slowdown, +34% for work lost due to failures, -51% for number of checkpoints taken and -2% for

average turnaround time.

Figure 5.156 Overall comparison between adaptive and periodic chcckpointing for workload trace 2

c) Trace 3 (NASA-iPSC-1993)

Configuration and parameters are same as in subsection 4.11

Figure 5.157 shows average cluster usage per day for each cluster for adaptive checkpointing technique.

As can be seen utilization of resources is very low

Figure 5.158 shows number of requested and used CPUs per day for adaptive checkpointing technique.

109 1 Page

140

SO

SO

70

03

50

40

20

10

a

Clusle_ 0 nom,
Ckeslor 2

Figure 5.157 Cluster usage per day for workload trace 3 (Adaptive checkpointing)

301 -
300 -
340 -
30 -
310
203
201
240
230
2103 -
102-
I 03
1 441
1 20 -
1D0
Ul
01 -
40 -
2o -
a

N44160 of nques1s0 400 used CPUs ,...slid CPUs
sr/ CP.
ar440/0* CP116

/D
	

20 	 30
	

00
000

Figure 5.158 Number of requested and used CPUs per day for trace 3 (Adaptive checkpointing)

Figure 5.159 gives average machine usage per day for adaptive checkpointing technique.

,03 -
00 -

SO

20 -

00 -

00 -

d0 -

70 20 -

20-

II

a

IS
•
20 20 40 	 00

Figure 5.159 Average machine usage per day for trace 3 (Adaptive checkpointing)

Figure 5.160 shows average cluster usage per day for each cluster for periodic checkpointing technique.

ks can be seen utilization of resources is very low

Figure 5.161 shows number of requested and used CPUs per day for periodic checkpointing technique.

110 1 Page

Conine wage get aasI%1

100

00 -

40-

70-

40-

40 -

30-

10 -

a 	

10 20 M

Figure 5.160 Cluster usage per day for workload trace 3 (Periodic checkpointing)

HO
egg -
a40 -
am -
200 -
200 -

-
2a0 -
2A -
200 -
' SO -
103 -
140 -
120 -
co -

10 -
b -
a0
20

011001or eflossii0141 0000CPUS 4101/0010•CIP1113
411.100.114
131131011041111/s

ID 	 30 	 so 	 r 	 so
ars

Figure 5.161 Number of requested and used CPUs per day for trace 3 (Periodic checkpointing)

Figure 5.162 gives average machine usage per day for periodic checkpointing technique.

Amigo wochlto wow ow Gros]

SS -

70 -

63 -

SO -

40

la

a
10 44 SO

days

Figure 5.162 Average machine usage per day for trace 3 (Periodic checkpointing)

Figure 5.163 gives average waiting time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique. Figure 5.164 gives average response time of jobs

submitted to a cluster for each day for each of periodic checkpointing and adaptive checkpointing

technique.

111 'Page

40000

35000

30000

25000

20000

15000

10000

5000

0

MCluster3_periodic

• Cluster2_periodic

• Clusterl_periodic

• Cluster3_adaptive (proposed)

• Cluster2_adaptive (proposed)

• Clusterl_adaptive (proposed)

W
a

it
in

g
 t

im
e

1111,111111 	ffil

Day

1 3 5 7 9 11 13 15 17 19 21 23 i4v27 29 31 33 35 37 39 41 43 45 47 49

rd
in

e
ss

 t
im

e

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0 1 11/1001111001A IMAIIIMIALISIAPP,Plk

Cluster3_periodic

• Cluster2_periodic

• Clusterl_periodic

• Cluster3_adaptive
(proposed)

• Cluster2_adaptive
(proposed)

• Clusterl_adaptive
(proposed)

Figure 5.163 Average waiting time per cluster per day for trace 3

R
e

sp
o

n
se

 t
im

e

25000 -

20000

15000

10000

5000

0 	

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Day

111Cluster3_periodic

• Cluster2_periodic

• Clusterl_periodic

• Cluster3_adaptive (proposed)

• Cluster2_adaptive (proposed)

• Clusterl_adaptive (proposed)

Figure 5.164 Average response time per cluster per da3, for trace 3

Figure 5.165 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic

checkpointing and adaptive checkpointing technique.

Figure 5.165 Average tardiness time per cluster per day for trace 3

Figure 5.166 gives number of checkpoints on each cluster for each day for each periodic checkpointing

and adaptive checkpointing technique. Figure 5.167 gives work lost due to failures on each cluster for

112 IPage

80000 -

70000 -

60000

50000 -
O

40000 -

3) 30000

20000

10000

0

• Cluster3_periodic

• Cluster2_periodic

• Clusterlpenodic

IICluster3_adaptive (proposed)

• Cluster2_adaptive (proposed)

• Clusterl_adaptive (proposed)

111 1111111 II I 11

1 3 5 7 9 11 13 15 17 19 21 23 931Y27 29 31 33 35 37 39 41 43 45 47 49

Average bounded slowdow

—4—Adaptive checkpointing
(proposed)

—a—Periodic Checkpointing

Work Lo umaround time

each day for each of periodic checkpointing and adaptive checkpointing technique.

N
u

m
b

e
r

of
 c

h
ec

k
po

in
ts

3000

2500

2000

1500

1000

'Jill" 	 [1 11111111111 1111 rl 111111

500 -

1 3 5 7 9 11 13 15 17 19 21 23 Alp 29 31 33 35 37 39 41 43 45 47 49

INCluster3_periodic

• Cluster2_pericdic

• Clusterl_periodic

• Cluster3_adaptive (proposed)

• Cluster2_adaptive (proposed)

IIClusterl_adaptive (proposed)

Figure 5.166 Number of checkpoints per cluster per day for trace 3

Figure 5.167 Work lost due to failures per cluster per day for trace 3

Figure 5.168 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative

to periodic checkpointing are 0% for makespan, -1.6% for flowtime, -43.6% for average bounded

Figure 5.168 Overall comparison between adaptive and periodic checkpointing for workload trace 3

113 'Page

slowdown, -69% for work lost due to failures, -39.1% for number of checkpoints taken and -13% for
average turnaround time.

d) Trace 4 (LCG-2005)

Configuration and parameters are same as in subsection 4.11

Figure 5.169 shows the average machine usage per hour for adaptive checkpointing technique.

figure 5.169 Average machine usage per hour tor workload trace 4 (Adaptive checkpointing)

Figure 5.170 gives cluster usage %age for each cluster for adaptive checkpointing technique.

Figure 5.170 Average cluster usage "A for workload trace 4 (Adaptive checkpointing)

Figure 5.171 shows the average machine usage per hour for periodic checkpointing technique. Figure

5.172 gives cluster usage %age for each cluster for periodic checkpointing technique.

114 I Page

Numbero C eckpolnts

Average bounded slowdow

Work Los

lowtime

—0—Adaptive checkpointing
(proposed)

Checkpointing

urnaround time

Makes an
100

Asne.vractisr usato Wye.' rid n

en -

.10 	11 	12 	13' 21

Figure 5.171 Average machine usage per hour for workload trace 4(Periodic checkpointing)

Figure 5.172 Average cluster usage % for workload trace 4 (Periodic checkpointing)

Figure 5.173 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative

to periodic checkpointing are -2% for makespan, -2.3% for flowtime, -20.3% for average bounded

slowdown, -9.56% for work lost due to failures, -24.5% for number of checkpoints taken and -3.5% for

Figure 5.173 Overall comparison between adaptive and periodic checkpointing for workload trace 4

115 1 Page

15 :.50+ 65

..;t1stig,

5 so

average turnaround time.

e) Trace 5 (LLNL-Thunder-2007) .

Configuration and parameters are same as in subsection 4.11

Figure 5.174 shows the average machine usage per hour for adaptive checkpointing technique.

Figure 5.174 Average machine usage per hour for workload trace 5 (Adaptive checkpointing)

Figure 5.175 gives cluster usage %age for each cluster for adaptive checkpointing technique.

CAuttrausig5 per 60.0053 daY-

Figure 5.175 Average cluster usage % for workload trace 5 (Adaptive checkpointing)

Figure 5.176 shows the average machine usage per hour for periodic checkpointing technique. Figure

5.177 gives cluster usage %age for each cluster for periodic checkpointing technique.

Figure 5.178 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative

to periodic checkpointing are 0% for makespan, +9% for flowtime, -31.5% for average bounded

116 Page

Flowtlme Average bounded
slowdown

Makespan
120

W/4;110 —4—Adaptive checkpointing
(proposed)

—II—Periodic Checkpointing

Work Lost Turnaround time

Figure 5.177 Average cluster usage % for workload trace 5 (Periodic checkpointing)

Number of Checkpoints

slowdown, --38 % for work lost due to failures, -43% for number of checkpoints taken and -6% for

average turnaround time.

Name mead usage pie tow rm 11Tai I

Figure 5.176 Average machine usage per hour for workload trace 5 (Periodic checkpointing)

Figure 5.178 Overall comparison between adaptive and periodic checkpointing for workload trace 5

117 1 Page

Chapter 6

Conclusions and Future Work

The work done in this dissertation report can be summarized in following points:

• Design of adaptive checkpointing based fault tolerant heuristics and their incorporation in

Genetic Algorithm (GA). These heuristics are based on information related to reliability

of resources such as MTBF, fault .index and fault ratios. All adaptive checkpointing

heuristics have been compared with GA-based periodic checkpointing for a wide range of

scenarios.

• Incorporating heuristics designed in Ant Colony Optimization based scheduling in Grid.

• Design of fault index based periodic skip technique and its performance comparison with

periodic skip.

• Design of adaptive checkpointing based on information about MTBF and last failure time

of resources.

• Design of experimental scenarios for testing performance of various techniques for

temporally and spatially correlated failures.

• Performance comparison of ACO-based and GA-based fault tolerance techniques using

real failure traces available from Failure Trace Archive.

• Performance comparison of ACO-based and GA- based fault tolerance techniques for

real workload traces available from various parallel workloads archives.

The techniques developed dynamically adapt the checkpoint interval depending on current

resource conditions. This is particularly crucial for Grid due to being a highly dynamic

environment. Adapting the checkpoint interval helps in reducing the time wasted due to high

checkpoint overhead or due to work lost due to failures. This helps in delivering acceptable QoS

such as that related to turnaround time, makespan etc to users. Another major contribution from

this work is scheduling support for these adaptive checkpointing techniques. Scheduling support

takes fault information of resources on account while allocating jobs to them. This helps in

correctly deciding the number of jobs to be allocated for various resources based on their

availability information. For this two very popular metaheuristics — Genetic Algorithm and Ant

118 'Page

Colony Optimization based Grid scheduling have been designed with fault tolerance support.

Also the range of experimental scenarios developed is this work unique in itself with

experiments developed for real workload traces, real failure traces, temporally and spatially

correlated failures.

Following conclusions can be derived from the work done.

• Adaptive checkpointing techniques developed give significant performance improvement

over periodic checkpointing technique in terms of makespan, flowtime, average bounded

slowdown, and turnaround time.

• Periodic skip, exponential skip performed better for low checkpointing intervals. This is

due to less checkpointing overhead.

• Incorporating of fault tolerance and adaptive checkpointing in scheduling decisions

helped in finding appropriate schedule for a batch of jobs. This particularly helped when

failures are assumed to be temporally and spatially correlated.

• Makespan and flowtime parameters for some workload traces didn't give much

performance improvement. This is due to jobs having highly varying arrival times.

• Adaptive periodic skip performed better than periodic skip. This is due to adaptive

adjustment of the checkpointing interval depending on failure conditions of resources.

• Work lost due to failures was very high for adaptive checkpointing techniques for some

experiments. This is not an issue as total work lost is a combination of work lost due to

failures and amount of work done in checkpointing operations (total checkpointing

overhead). The combination of these two parameters is very low for adaptive

checkpointing techniques.

Future work directions are based on the work left due to time constraints. These are

• Traces — workload trace and failure traces used in this work are small portions of

available traces. Future works will focus on using complete trace for evaluation

• Experiments have been performed for workload and failure traces separately. Future

works will use both workload trace and failure trace in an experiment.

• Downtime (MTTR) of resources is ignored in this work and resource is assumed to

recover immediately from failure. This assumption will be removed in future.

119 !Page

• Checkpointing technique used considers restart after failure on the same resource.

Another technique can be checkpoint with migration where job is restarted on a different

resource. This technique along with its various issues such as spare node allocation is to

be pondered upon.

• Heuristics developed for fault tolerance are not restricted to metaheuristics. Rather they

can be incorporated in any scheduling algorithm. Future work will look into that.

• This work considers only transient faults on resources. Other fault classes are not

considered.

• Finally future work will focus on working in an actual Grid setup rather than simulated

one.

120 1 Pa ge

References

[1] Townend, P. and Xu, J. 2003. Fault tolerance within a grid environment. As component of

e-Demand project at the University of Durham, United Kingdom.

[2] Foster I., Kesselman C.,The Grid: Blueprint for a New Computing Infrastructure, The

Elsevier Series in GridComputing.

[3] Foster, I. 2001. The anatomy of the grid: enabling scalable virtual organizations. In

Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the

Grid 2001 (Brisbane, Australia May 15-18, 2001). CCGRID '01. IEEE Computer Society,

Washington, DC, USA, 6-7.

[4] Foster I. "What is the Grid? A three point checklist," Argonne National Laboratory,

fp.mcs.anl.gov/--foster/ Articles/WhatIsTheGrid.pdf, 2002.

[5] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C.; , "Basic concepts and taxonomy of

dependable and secure computing," IEEE Transactions on Dependable and Secure Computing,

vol.1, no.1, pp. 11- 33, Jan.-March 2004.

[6] Huda, M.T.; Schmidt, H.W.; Peake, I.D., "An agent oriented proactive fault-tolerant

framework for grid computing," First International Conference on e-Science and Grid

Computing, 2005, pp. 8-15, July 2005.

[7] Hofer, J.; Fahringer, T., "A Multi-Perspective Taxonomy for Systematic Classification of

Grid Faults," 16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing, 2008. PDP 2008, pp.126-130, 13-15 Feb. 2008.

[8] Jafar, S.; Krings, A.; Gautier, T.; , "Flexible Rollback Recovery in Dynamic Heterogeneous

Grid Computing," Dependable and Secure Computing, IEEE Transactions on , vol.6, no.1,

pp.32-44, Jan.-March 2009

[9] Avizienis, A., "The N-Version Approach to Fault-Tolerant Software," IEEE Transactions on

Software Engineering, vol. SE-11, no.12, pp. 1491- 1501, Dec. 1985.

121 1 Page

[10] Schroeder B. and G. A. Gibson (2006). "A large-scale study of failures in high-performance

Computing systems," International Conference on Dependable Systems and Networks, DSN

2006.

[11] Hayashibara N, Cherif A, Katayama T. "Failure detectors for large-scale distributed

systems," Proceedings of the 2151 IEEE Symposium on Reliable Distributed Systems. IEEE

Computer Society Press: Los Alamitos, CA, 2002, 404-409 October 2002.

[12] Elnozahy E, Johnson D, Wang Y. "A survey of rollback recovery protocols in message-

passing systems," ACM Computing Surveys 2002, 34(3), 375-408.

[13] Alvisi L. and K. Marzullo (1998). "Message logging: pessimistic, optimistic, causal, and

optimal," IEEE Transactions on Software Engineering, 24(2), 149-159.

[14] H-C Nam, J. Kim, SJ. Hong and S.- Lee. "Probabilistic checkpointing," In Proceedings of

the Twenty Seventh International Symposium on Fault-Tolerant Computing (FTCS-27), pp.48—

57, June 1997.

[15] Gabriel Rodriguez, Xoan C. Pardo, Maria J. Martin, Patricia Gonzalez, Performance

evaluation of an application-level checkpointing solution on grids, Future Generation Computer

Systems, Volume 26, Issue 7, July 2010, Pages 1012-1023, ISSN 0167-739X,

10.1016/j .future.2010.04.016.

[16] Oliner, A.J.; Sahoo, R.K.; Moreira, J.E.; Gupta, M.; , "Performance implications of periodic

checkpointing on large-scale cluster systems," Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International , vol., no., pp. 8 pp., 4-8 April 2005

[17] Plank, J.S.; Elwasif, W.R.; , "Experimental assessment of workstation failures and their

impact on checkpointing systems," Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-

Eighth Annual International Symposium on , vol., no., pp.48-57, 23-25 Jun 1998.

[18] Adam J. Oliner, Larry Rudolph, and Ramendra K. Sahoo. 2006. Cooperative checkpointing:

a robust approach to large-scale systems reliability. In Proceedings of the 20th annual
international conference on Supercomputing (ICS '06). ACM, New York, NY, USA, 14-23.

122 1Page

[19] Oliner, A.; Sahoo, R.; , "Evaluating cooperative checkpointing for supercomputing

systems," Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th

International , vol., no., pp.8 pp., 25-29 April 2006.

[20] Oliner, A.; Rudolph, L.; Sahoo, R.; , "Cooperative checkpointing theory," Parallel and

Distributed Processing Symposium, 2006. IPDPS 2006. 20th International , vol., no., pp.10 pp.,

25-29 April 2006.

[21] Zhiling Lan; Yawei Li; , "Adaptive Fault Management of Parallel Applications for High-

Performance Computing," Computers, IEEE Transactions on , vol.57, no.12, pp.1647-1660,

Dec. 2008.

[22] Chtepen M., F. H. A. Claeys, et al. (2009). "Adaptive Task Checkpointing and Replication:

Toward Efficient Fault-Tolerant Grids," IEEE Transactions on Parallel and Distributed Systems,

vol.20, no.2, pp.180-190, Feb. 2009.

[23] Nazir B., K. Qureshi, et al. (2009). "Adaptive checkpointing strategy to tolerate faults

in economy based grid," The Journal of Supercomputing, 50(1), 1-18, 2009.

[24] Antonios Litke, Konstantinos Tserpes, Konstantinos Dolkas, and Theodora Varvarigou.

2005. A task replication and fair resource management scheme for fault tolerant grids.

In Proceedings of the 2005 European conference on Advances in Grid Computing (EGC'05),

Peter A. Sloot, Alfons G. Hoekstra, Thierry Priol, Alexander Reinefeld, and Marian Bubak

(Eds.). Springer-Verlag, Berlin, Heidelberg, 1022-1031.

[25] Qin Z., B. Veeravalli, et al. (2009). "On the Design of Fault-Tolerant Scheduling Strategies

Using Primary-Backup Approach for Computational Grids with Low Replication Costs," IEEE

Transactions on Computers, vol. 58, no.3, pp.380-393, March 2009.

[26] Hwang S., and Kesselman C., "A flexible framework for fault tolerance in the grid,"

Journal of Grid Computing, vol. 1, no. 3, pp. 251-272, 2003.

[27] Lopes R. F. and F. J. da Silva e Silva (2006). "Fault tolerance in a mobile agent based

computational grid," Sixth IEEE. International Symposium on Cluster Computing and the Grid

Workshops, 2006, vol. 2, 16-19 May 2006.

123 'Page

[28] Kandaswamy G., A. Mandal, et al. (2008). "Fault Tolerance and Recovery of Scientific

Workflows on Computational Grids," 8th IEEE International Symposium on Cluster Computing
and the Grid, 2008. CCGRID '08, pp.777-782, 19-22 May 2008.

[29] Yang Z., A. Mandal, et al. (2009). "Combined Fault Tolerance and Scheduling Techniques

for Workflow Applications on Computational Grids," 9th IEEE/ACM International Symposium.
on Cluster Computing and the Grid. CCGRID '09, pp.244-251, 18-21 May 2009.

[30] SungJin C., B. MaengSoon, et al. (2004). "Volunteer availability based fault tolerant

scheduling mechanism in desktop grid computing environment," Proceedings of the third IEEE

International Symposium on Network Computing and Applications, 2004, (NCA 2004), pp. 366-

371, 30 Aug.-1 Sept. 2004.

[31] Hou E. S. H., N. Ansari, et al. (1994). "A genetic algorithm for multiprocessor scheduling,"

IEEE transactions on Parallel and Distributed Systems, vol.5, no.2, pp.113-120, Feb 1994.

[32] Song, S., Hwang, K., and Kwok, K. 2006. Risk-resilient heuristics and genetic algorithms

for security-assured grid job scheduling. IEEE Transactions on Computers 55, 6 (June 2006),

703-719.

[33] Khanli, L. M., Far, M. E., and Rahmani, A. M. 2010. RFOH: A New Fault Tolerant Job

Scheduler in Grid Computing. In Proceedings of the Second International Conference on

Computer Engineering and Applications (Bali Island, Indonesia, March 19 — 21, 2010),ICCEA

'10. IEEE Computer Society, Washington, DC, USA, 422-425.

[34] Priya, S.B., Prakash, M., Dhawan, K.K. 2007. Fault Tolerance-Genetic Algorithm for Grid

Task Scheduling using Checkpoint In Proceedings of the Sixth International Conference on Grid

and Cooperative Computing (Los Alamitos, CA, Aug. 16 — 18, 2007). GCC '07. 676-680.

[35] Abdulal, W., and Ramachandram, S 2011. Reliability-Aware Genetic Scheduling Algorithm

in Grid Environment. In Proceedings of the International Conference on Communication

Systems and Network Technologies (Katra, Jamniu India , June 03 — 05). 673-677.

[36] Wu, C., Lai K., and Sun R. 2008. GA-Based Job Scheduling Strategies for Fault Tolerant

Grid Systems. In Proceedings of the Asia-Pacific Conference on Services Computing (Dec. 09—

124 'Page

12, 2008). IEEE, 27-32.

[37] Dorigo, M.; Gambardella, L.M.; "Ant colony system: a cooperative learning approach to the

traveling salesman problem," Evolutionary Computation, IEEE Transactions on , vol.1, no.1,

pp.53-66, Apr 1997

[38] Zhihong Xu; Xiangdan Hou; Jizhou Sun; , "Ant algorithm-based task scheduling in grid

computing," Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian

Conference on , vol.2, no., pp. 1107- 1110 vol.2, 4-7 May 2003.

[39] Hui Yan; Xue-Qin Shen; Xing Li; Ming-Hui Wu; , "An improved ant algorithm for job

scheduling in grid computing," Machine Learning and Cybernetics, 2005. Proceedings of 2005

International Conference on , vol.5, no., pp.2957-2961 Vol. 5, 18-21 Aug. 2005.

[40] Yanyong Zhang, Mark S. Squillante, Anand Sivasubramaniam, and Ramendra K. Sahoo.

2004. Performance implications of failures in large-scale cluster scheduling. In Proceedings of

the 10th international conference on Job Scheduling Strategies for Parallel

Processing (JSSPP'04), Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn (Eds.).

Springer-Verlag, Berlin, Heidelberg, 233-252.

[41] Dalibor Klusdeek and Hana Rudova. 2010. Alea 2: job scheduling simulator. In Proceedings

of the 3rd International ICST Conference on Simulation Tools and Techniques (SIMUTools '10).

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), ICST, Brussels, Belgium, Belgium.

[42] S. Lorpunmanae , Mohd Sap , A.H.Abdullah and C. C. Inwai , "An Ant Colony

Optimization for Dynamic Job Scheduling in GridEnvironment" , International Journal of

Computer and Information Science and Engineering , 2007.

[43] Jing Hu, Mingchu Li, Weifeng Sun, Yuanfang Chen, "An Ant Colony Optimization for Grid

Task Scheduling with Multiple QoS Dimensions," Grid and Cloud Computing, International

Conference on, pp. 415-419, 2009 Eighth International Conference on Grid and Cooperative

Computing, 2009

125 !Page

[44] Ruay-Shiung Chang, Jih-Sheng Chang, Po-Sheng Lin, An ant algorithm for balanced job

scheduling in grids, Future Generation Computer Systems, Volume 25, Issue 1, January 2009,

Pages 20-27, ISSN 0167-739X, 10.1016/j.future.2008.06.004.

[45] Wei-Neng Chen; Jun Zhang; , "An Ant Colony Optimization Approach to a Grid Workflow

Scheduling Problem With Various QoS Requirements," Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on , vol.39, no.1, pp.29-43, Jan. 2009

[46] Gosia Wrzesinska, Rob V. van Nieuwpoort, Jason Maassen, Henri E. Bal (2005). "Fault-

Tolerance, Malleability and Migration for Divide-and-Conquer Applications on the Grid,"

Proceedings of the 196 IEEE International Symposium on Parallel and Distributed Processing,

2005, pp. 13a, 04-08 April 2005.

[47] Buyya R, Murshed M (2002) GridSim: a toolkit for the modeling and simulation of

distributed re-source management and scheduling for grid computing. Concurr Comput Pract

Exp (CCPE) 14(13-1175-1220.

[48] Caminero, A.; Sulistio, A.; Caminero, B.; Carrion, C.; Buyya, R.; , "Extending GridSim

with an architecture for failure detection," International Conference on Parallel and Distributed

Systems, 2007, vol.2, no., pp.1-8, 5-7 Dec. 2007 doi: 10.1109/ICPADS.2007.4447756.

[49] "Failure Trace Archive" [Online]. "http://fta.inria.friapache2-defaultipmwiki/index.php".

[50] Derrick Kondo, Bahman Javadi, Alexandru Iosup, and Dick Epema. 2010. The Failure

Trace Archive: Enabling Comparative Analysis of Failures in Diverse Distributed Systems.

InProceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and

Grid Computing (CCGRID '10). IEEE Computer Society, Washington, DC, USA, 398-407.

[51] "Parallel Workload Archive" [Online]. "http://www.cs.huji.acil/labs/parallel/workload/".

[52] "Grid Workload Archive" [Online]. "http://gwa.ewi.tudelft.nl/pmwiki/".

[53] "MATLAB R2010a" [Online]. "http://www.mathworks.in/help/techdoc/m/br 03s1.html"

126 I Page

List of Publications

[1] Upadhyay, N., and Misra, M. 2011. Incorporating fault tolerance in GA-based Scheduling in

Grid environment. In Proceedings of World Congress on Information and Communication

Technologies (Mumbai India , Dec 11 — 14). WICT 2011. IEEE. 776 — 781.

127 IPage

	ECDG21994.pdf
	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusions
	References

