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Abstract 

Grid systems differ from traditional distributed systems in terms of their large scale, 

heterogeneity and dynamism. These factors contributes towards higher number of fault 

occurrences as large scale causes lower values of Mean Time To Failure (MTTF), heterogeneity 

results in interaction faults (protocol incompatibilities) between communicating disparate nodes 

and dynamism implies dynamically varying resource availability due to resources autonomously 

entering and leaving the grid and thus effecting the jobs running on them. Another factor that 

increases probability of failure of applications is that applications running on grid are long 

running computations taking days to finish. Traditional approaches for tolerating faults in 

distributed systems include checkpointing and replication. Incorporating fault tolerance in 

scheduling algorithms is one of the approaches for handling faults in grid environment. Genetic 

Algorithms and Ant Colony Optimization are a popular class of meta-heuristic algorithms used 

for grid scheduling. This work designs heuristics for adaptive checkpointing based on fault 

information about resources. These heuristics have been incorporated in GA and ACO. Other 

adaptive checkpointing techniques developed focuses on online adaption of checkpoint interval 

based on MTBF, last failure time and fault indexes of resources. Performance comparison of 

adaptive checkpointing with periodic checkpointing techniques have been performed using 

simulated Grid environment for wide range of scenarios such as temporally and spatially 

correlated failures, real failure traces and real workload traces. Adaptive checkpointing 

techniques are found to give superior performance compared to periodic checkpointing. 
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Chapter 1 

Introduction and Problem Statement 

1.1 Introduction 

In past few decades computer network technology has taken a big leap with channel capacity no 

longer being a barrier to distributed computing. This same period saw the emergence of highly 

compute and data intensive applications with resource requirements hard to be fulfilled by a 

single computer, cluster or even a supercomputer. All these factors lead to the inception of a new 

paradigm called high performance distributed computing (HPC). Grid computing is one such 

distributed HPC environment. 

The vision of Grid computing is a computing environment as pervasive as electric Grid where 

desired resources as electric power in electric grids would be available on-demand and in the 

desired amount making computational Grid a utility similar to electric Grid. The Grid as it exists 

today collaborate distributed computing resources with resource owners contributing their idle 

CPU cycles. These idle cycles are used for running tasks of massively parallel scientific 

applications. Thus today's Grid can be seen as an ensemble of resources from multiple domains 

on a large scale to make a distributed supercomputer (with capabilities larger than a 

supercomputer). Grid is a popular platform for running scientific applications such as weather 

forecasting, drug design, multimedia applications, physics particle accelerator experiments etc. 

However maintaining such a massive infrastructure while it continues to provide non trivial 

qualities of service [4] is not that easy. Several issues such as security, job scheduling, load 

balancing, failover techniques etc have to be dealt with. This dissertation report focuses on one 

of the most important issues — fault tolerance in Grid environment, so that QoS can be 

maintained despite resources failing during execution of jobs on them. 

1.2 Motivation 

Grid systems differ from other distributed systems (cluster, peer to peer) in terms of their large 

scale, heterogeneity and dynamism. Scale of grid infrastructure, consisting of thousands of 

computational nodes, storage devices, affects its reliability. Since the reliability of a system is a 

product of the reliabilities of its components, as the complexity (scale) of the system increases its 
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reliability and its Mean Time to Failure (MTTF) decreases. Computing resources in grid are 

highly heterogeneous with varying hardware and software architectures. Heterogeneity increases 

chances of interaction faults occurring between disparate Grid nodes. Dynamicity — resources 

may enter and leave at any time, dynamically varying resource load - causes loss and delay of 

executing jobs. Grid resources are managed in different administrative domains each with its 

own access, security policies. So following properties hold for Grid resources [1]. 

1. There may be no guarantee that a resource is non-malicious. 

2. There may be no guarantee that a resource is reliable (reliability of resources' hardware and 

software). 

3. There may be no guarantee of processing power (we may have no control over resource's 

scheduling policy and its load). 

Another factor which further increases chances of job failure in grid environment is that majority 

of the applications running on grid are compute-intensive requiring several days of computation 

and large number of resources. Consider a Grid application requiring 50 computational resources 

each with MTTF of 100 days and requires a week for computation. If the failure mode of 

resources is exponentially distributed then the composed application has MTTF of 2 days. So in 

the absence of any fault tolerance the application would rarely finish. 

All the above factors necessitate the application of fault tolerant techniques for grid computing. 

1.3 Problem Statement 

Problem statement: "Design and performance study of adaptive checkpointing based fault 

tolerance techniques in Grid environment" 

The work done in this dissertation can be subdivided into two major tasks: 

• Extending the metaheuristic algorithms such as Genetic Algorithm and Ant Colony 

Optimization which are commonly used for job scheduling in Grid environment with 

support for fault tolerance techniques such as checkpointing 

• .Inventing adaptive approaches for fault tolerance in computational grids by suitable 

modifying traditional approaches such as checkpointing to take into account various 
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characteristics of the grid environment. These adaptive approaches would be responsive 

to the present conditions such as frequency of resource failures, remaining time of 

completion of jobs. 

1.4 Thesis Organization 

This thesis is organized into six chapters including this one which gives introduction, 

motivation and problem statement. 

Chapter two gives background of available fault tolerance techniques in Grid environment. 

Chapter three describes the proposed work. 

Chapter four gives description of simulation environment and implementation details. 

Chapter five gives performance comparison of proposed technique with available techniques 

and also experimental results are presented. 

Chapter six concludes the dissertation and gives directions for future work. 
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Chapter 2 

Background and Literature Review 

2.1 Grid Computing 

In [2] Grid computing is defined as "A computational grid is a hardware and software 

infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-

end computational capabilities." Grid thrives to achieve pervasiveness of electric Grid where 

desired resources like electric power in electric grids would be available on-demand and in the 

desired amount. Another definition of Grid computing [3] defines it as "coordinated resource 

sharing and problem solving in dynamic, multi-institutional virtual organization." Resources 

shared comprise not only the computing power but memory, secondary storage, data, special 

equipments, etc. This sharing of resources occurs in a highly controlled and coordinated 

environment where consumers (resource users) and resource providers clearly define the sharing 

rules of what is shared, who is allowed to share and conditions under which this sharing takes 

place. These individuals/organizations/institutions bounded by sharing rules together constitute a 

virtual organization (VO). Example of a VO can be a set of physicists working on high energy 

physics (particle accelerators) experiment or some astronomical experiments such as study of 

galaxy formation. These individuals collaborate together to form a coordinated resource sharing 

environment. Ian Foster gives a three point checklist [4] for deciding whether a particular 

infrastructure is a Grid. To be classified as a Grid an infrastructure should have three important 

features: 

1) Coordination, collaboration of heterogeneous resources under Distributed control 

A Grid is a decentralized environment where different organizations collaborate to provide a 

coordinated access to their resources. Organizations participating in a Grid are autonomous and 

have exclusive control over management of their resources. Resources owned by organizations 

can be highly heterogeneous ranging desktops, workstations, clusters, supercomputers etc .Grid 

deals with various issues arising in this "distributed control" environment such as security, 

membership management, pricing policy, fault tolerance, scheduling, load balancing, SLA 

management and synchronization. 

2) Standard, open and general purpose protocols 
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Services provided by Grid needs to be standard and open for interoperability in a 

heterogeneous environment. 

3) Non trivial qualities of service 

From feasibility aspect a Grid should deliver non trivial qualities of service. The QoS 

requirement may be related to response time, turnaround time, system utilization, waiting time 

etc. 

2.2 Fault Tolerance in Grid Environment 

Some general basic definitions as given in [5] are: 

Error: A deviation of the internal or external state of the system from correct state. For ex. 

Memory faults may cause the state of memory cells to change from 0 tol or vice versa. 

Fault: The adjudged or hypothesized cause of error. 

Failure: The event that occurs when delivered service deviates from correct service. 

In [6] six classes of faults that may be present in Grid environment are discussed: Hardware 

faults (CPU, memory, storage faults, components used beyond specification), Application and 

operating system faults (memory leaks, resource unavailable), Network faults (packet loss, 

packet corruption, network congestion), Software faults (unhandled exception, unexpected 

input), Response faults (Byzantine error), Timeout faults. 

Other fault types are [1]: life-cycle faults (versioning faults), interaction faults (protocol 

incompatibilities). According to [1] interaction, timing, and omission faults (the resource omits 

the response) are more prevalent in Grid environment. In [7] taxonomy of Grid faults is 

presented. One categorization based on duration is: 

a) Transient faults: Transient faults cause applications, resources to malfunction for some 

period and then disappear. Example: failed job due to insufficient disk space, machine reboot. 

b) Permanent faults: Permanent faults cause failure of a component/resource for an undefined 

period. Resource remains unavailable for the duration of job and thus cannot be used for 

execution of job. 
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c) Intermittent faults: These faults fluctuate between active (causing malfunction) and inactive 

(normal functioning). For example load of a resource can change dynamically and this may 

affect the execution of jobs on that resource. 

Faults have a tendency to cause loss of information [8]. Recovery from faults is based on 

redundancy. Redundancy can be of three types — spatial, temporal and information redundancy. 

In spatial redundancy multiple copies of jobs are executed on different nodes. Temporal 

redundancy involves multiple executions of job on same resource with different executions 

skewed in time. Information redundancy involves storing additional information during 

execution of job and this information is used during recovery. 

As given in [9] the function of fault tolerance is "...to preserve the delivery of expected services 

despite the presence of fault-caused errors within the system itself. Errors are detected and 

corrected, and permanent faults are located and removed while the system continues to deliver 

acceptable service." Fault tolerance increases the dependability of the system. Dependability is 

defined as: "The ability to avoid service failures that are more severe that it is acceptable to the 

users" [5]. Dependability encompasses a set of attributes: Availability, Reliability, Robustness, 

Safety, Integrity and Maintainability. Availability is the probability that the system is in correct 

state at a given time. Reliability is the probability of failure in a given interval of time. Other 

terms related to reliability are mean time to failure (MTTF), Mean Time between Failures 

(MTBF) and Mean time to repair (MTTR). 

In [10] it has been studied that time between failures (MTBF) is best modeled by Weibull 

distribution with decreasing hazard rate (Weibull shape parameter 0.7-0.8) i.e. frequency of 

failures decreases with time. Mean repair time (MTTR) is well modeled by lognormal 

distribution. Failures tend to cluster in time and are caused by relative small set of computational 

nodes i.e. failures are temporally and spatially correlated. 

2.2.1 Fault detection and handling techniques 

2.2.1.1 Fault Detection 

• Implementation of failure detectors is based on the concept of notifications and timeouts. There 

are two models for interaction between the failure detector and monitored components: pull 
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model, push model. In push model the monitored component periodically sends heartbeat 

messages to failure detector. If message is not received within a certain time interval T the 

component is suspected as failed. In pull model the monitor periodically sends liveness messages 

("Are you alive?" messages) to monitored components and suspects crash if no response arrives 

within a certain time interval. In [11] are presented problems that should be considered while 

implementing failure detectors for grid system. Some of the problems are message explosion 

(overloading of network with failure detection related messages), scalability, message loss, 

flexibility (adapting to different types of applications). 

2.2.1.2 Fault handling techniques 

Fault tolerance techniques in grid can be divided into pro-active and post-active approaches. In 

pro-active approach failure consideration is made before scheduling of the job and the job is 

dispatched with the hope that job does not fail. In [6] an agent oriented pro-active failure 

handling framework is presented where agents deal with individual faults proactively. Agents 

monitor various properties of jobs and resources such as memory consumption of jobs, MTBF of 

resources. Other examples of pro-active approaches are replication, fault tolerant scheduling. 

Post-active approaches handle failures after they have occurred. Checkpointing is one of the 

post-active approaches. In a complex dynamic environment such as Grid, where resource 

conditions changes dynamically and unpredictably (unpredictable fluctuations in load), post-

active approaches have greater significance. Both pro-active and post-active approaches are 

complementary and can be used in conjunction with each other. 

2.2.1.3 Checkpointing and recovery 

Checkpointing is a process of periodically saving the state of a running process to stable storage. 

Checkpointing allows a failed process to be restarted from its last checkpoint, bounding the 

amount of lost work to be recomputed. It is commonly used to ensure the progress of long 

running applications. In [12] are described three checkpointing strategies for concurrent, inter 

communicating processes: coordinated checkpointing, uncoordinated checkpointing, and 

communication-induced checkpointing. 

In coordinated checkpointing, processes synchronize their checkpoints to form a consistent 

global state (consistent system state is one in which if a process's state reflects a message receipt, 
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then the state of the corresponding sender reflects sending that message). Each process stores 

only one checkpoint on stable storage (the latest checkpoint) and the recovery is simplified as it 

only involves restart of each process from its last saved checkpoint. However, coordinated 

checkpointing has a disadvantage that each checkpointing operation incurs a large overhead. 

Since the number of checkpointing operations performed are much larger than the number of 

failures this overhead can be considerably high. Coordinated checkpointing can be either 

blocking or non-blocking. 

In uncoordinated checkpointing each process takes checkpoints independent of other processes. 

Consistent global state is determined during recovery procedure. This strategy has several 

disadvantages. First, there is a possibility of domino effect which causes the system to rollback 

to the beginning of the computation. Second, each process needs to maintain multiple 

checkpoints and thus this strategy imposes greater storage requirements. Third, a process may 

take useless checkpoint that will never be part of a consistent global state. 

In communication-induced checkpointing in addition to independent checkpoints each process 

takes some additional forced checkpoints to ensure the progress of global recovery line and thus 

avoiding domino effect. Information regarding forced checkpoints is piggybacked on application 

messages. 

Uncoordinated checkpointing may be combined with message logging to avoid domino effect. 

Message logging protocols [13] are based on the Piece Wise Deterministic (PWD) assumption 

which means that a process's execution can be modeled as a sequence of deterministic state 

intervals, each interval initiated by a non-deterministic event. The non-deterministic event can be 

receipt of a message. In logging, information about received messages (determinant) is stored on 

stable media and later replayed to recover a lost state. Message logging protocols need to ensure 

that once a crashed process recovers its state is consistent with the state of other processes. This 

consistency requirement can be expressed as avoiding orphan processes, which are surviving 

processes whose state is inconsistent with the state of recovered process [13]. Message logging 

protocols can be categorized as pessimistic, optimistic, or causal. 

In pessimistic protocol no process ever sends a message until all the messages delivered before 

sending it have been logged. Pessimistic protocols never create orphans and reconstructing the 
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state of the crashed process just involves replaying the logged messages. However pessimistic 

protocols block the process for each received message, even when no process ever crashes. 

In optimistic protocols processes logs determinants asynchronously into stable storage. They are 

based on the assumption that logging will complete before failure occurs. Optimistic protocol 

doesn't require the process to block waiting for logging to complete but may create orphan 

processes, which complicates the recovery. 

Causal logging protocols ensures that the determinant of each nondeterministic event that 

causally precedes the state of a process is either stored in stable storage or is available locally to 

that process. This ensures that no orphans are created. As in optimistic logging each process 

takes asynchronous checkpoints. The causality information is piggybacked with each message. 

Grid environment with its scalability, heterogeneity and dynamism presents certain issues 

regarding application of checkpointing. As applications typically running on Grid consist of a 

large number of interacting tasks, the overhead of synchronization required in checkpointing 

protocols will be large. Storage overhead is also magnified. Techniques such as incremental 

checkpointing, which only saves the memory pages modified since last checkpoint, and 

probabilistic checkpointing [14] , in which unit of checkpointing is a memory block which is 

smaller than a memory page, poses less storage and bandwidth overhead. Application level 

checkpointing [15] with portable checkpoint files is more suitable in a heterogeneous 

environment such as Grid compared to system level checkpointing. 

2.2.1.3.1 Adaptive Checkpointing 

Effectiveness of checkpointing techniques strongly depends on the length of checkpointing 

interval. Inappropriate checkpoint intervals can have serious performance implications [16]. If 

checkpointing interval is very high a large amount of work is lost on each failure. On the other 

hand a very low checkpoint interval incurs a high overhead as each checkpointing operation 

takes some time (checkpoint overhead). Also with larger overall checkpoint overhead the 

effective running time of application increases which increases chances of failure of the 

application [16]. Determining the optimum checkpoint interval is a major issue involved in 

deciding the usability of checkpointing technique. Plank [17] studied the applicability of 

theoretical equations for optimum checkpoint interval using data sets of three workstation 
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monitoring projects for simulation. The theoretical equations assume failures to be exponentially 

distributed whereas the actual failures in these data sets did not follow exponential distribution. 

There are several factors affecting the optimum checkpoint interval such as application 

characteristics, failure conditions of resources. The problem worsens in a highly dynamic Grid 

environment where failure conditions of resources may change dynamically. Recent studies on 

checkpointing have considered dynamic adaption of checkpoint interval. These studies have 

leveraged the dynamic information about resource conditions and application execution times in 

designing heuristics for online modification of checkpoint interval. One such technique is 

cooperative checkpointing [18, 19, and 20]. In cooperative checkpointing technique the 

application programmer, compiler and runtime system cooperatively decide when checkpoint 

operations are to be performed. This technique dynamically skips checkpoints if the expected 

cost of taking a checkpoint is greater than the expected cost if checkpoint is not taken. FT-Pro 

[21] includes an adaption manager which after periodic interval (adaption points) chose one of 

the three actions — skip checkpoint, take checkpoint, proactively migrate. The action chosen 

depends on the failure prediction results and the failure impact during next interval. In [22] are 

presented adaptive checkpointing strategies that dynamically adapt the checkpointing frequency 

depending on changing system properties (resource failure frequency, remaining execution time 

of jobs). It presents two adaptive checkpointing techniques — last failure dependent 

checkpointing and mean failure dependent checkpointing. The last failure dependent 

checkpointing technique leverage information about last failure time of resources and temporal 

correlation of faults (if a resource has not failed for a long time then there is less probability that 

it will fail in the near future) in skipping checkpoints. The mean failure dependent checkpointing 

technique adapts the checkpoint interval online depending on remaining execution time of job 

and mean failure time of resources. Mean failure dependent checkpointing technique is shown to 

give performance comparable to the optimal checkpoint interval for the simulation environment 

for all checkpoint intervals. In [23] is presented adaptive checkpointing technique for economy 

based Grids. The presented technique maintains fault indexes of resources to adaptively decide 

the checkpoint interval during job submission. Fault index is an indicator of vulnerability of 

resource towards failures. When a job misses deadline (or job fails due to resource failure) fault 

index of resource is incremented by one and when job completes successfully fault index is 

decremented by one. 
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2.2.1.4 Replication (Over provisioning) 

Replication [24] involves running different replicas of the same task on different Grid resources 

simultaneously with the hope that at least one of them will complete execution successfully. 

Replication technique can be classified into two categories: Active replication and Passive 

replication. In active replication replicas service requests in parallel and their states are closely 

synchronized. In passive replication a primary replica services requests while other replicas are 

passive and can take over when primary fails. Efficiency of replication depends on determining 

the optimal number of replicas and can pose high overhead in highly loaded systems if the 

number is not optimal. In [22] is presented an adaptive load dependent replication technique 

which postpones replication when system load is high. In [25] is presented overloading of 

backups of primaries of independent and dependent tasks for efficient scheduling of backups. 

2.2.1.5 Task-level, workflow-level and hybrid fault tolerance techniques [26] 

Workflow applications are structured in directed acyclic graph form where each node represents 

a task and edges represent inter-task dependencies. In [26] two-level fault tolerance techniques 

are incorporated into the workflow structure — task-level and workflow-level. Task-level fault 

tolerance techniques deal with task crash failures. Retry, replication and checkpointing are three 

task-level fault tolerance techniques. Workflow level failure handling techniques modify the 

execution flow to deal with faults. These techniques enable handling of task-specific failures. It 

includes three techniques: alternate task, workflow-level redundancy and user-defined exception 

handling. hi alternate task technique if one implementation of a task fails it is replaced with an 

alternate implementation with different execution characteristics. For example on memory full 

exception a fast implementation, with high memory consumption, is replaced with a slow 

implementation, with low memory consumption. Redundancy requires different implementations 

of a task to run in parallel. User-defined exception handling technique allows defining of a 

special treatment for different task-specific failures. 

The above mentioned techniques can be combined to create hybrid techniques. For ex. 

Replication with checkpointing, alternate task with checkpointing, etc. The fault handling 

framework proposed in [26] is flexible in that different failure handling techniques can be 

specified depending on application and resource characteristics such as execution time of job, 
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MTTF of resource, downtime of resource. This is particularly beneficial for Grid due to its 

heterogeneity. Conclusions derived from experimental assessment in [26] reveal that 

checkpointing is more beneficial compared to retrying and replication for resources with low 

MTTF. Also replication performs better compared to retrying and checkpointing for resources 

with large downtimes. For low values of MTTF checkpointing and replication with 

checkpointing have superior performance. If resources are reasonably reliable replication 

performs best. For large downtimes replication and replication with checkpointing performs 

better than other techniques. However MTTF has greater effect than downtime and for low 

MTTF checkpoint performs better than replication. In case information about downtimes and 

MTTF is not available replication with checkpointing is the best technique. 

2.2.1.6 Other related works 

2.2.1.6.1 Mobile agent based fault tolerance 

Mobile agents are suited for the development of grid infrastructure [27] due to their properties of 

cooperation (mobile agents can interact and cooperate with each other), autonomy (autonomous 

entities with little intervention from client), heterogeneity (several mobile agent platforms can be 

executed in heterogeneous environments), reactivity (can react to external events such as 

resource availability variation) and mobility. In [27] fault tolerance components are developed as 

mobile agents to handle node and application crashes. 

2.2.1.6.2 Fault tolerance by scheduling 

2.2.1.6.2.1 Fault tolerance scheduling of scientific workflows 

[28] [29] presents combined fault tolerance and scheduling techniques for workflow applications. 

In [29] two scheduling algorithms for heterogeneous systems, HEFT and DSH, are combined 

with checkpointing and replication, with checkpointing being used during workflow execution 

and over-provisioning used during scheduling and planning phase. Lightweight Checkpointing is 

done after completion of each task. If task fails to finish due to resource unavailability, it is 

migrated to most reliable resource. If some resources on which parent tasks were running are 

also not available, then those parent tasks are restarted on some available resource. 

2.2.1.6.2.2 Volunteer Availability based fault tolerant scheduling 
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Desktop grid computing environment consists of clients, volunteers and volunteer servers [30]. A 

client submits jobs for execution. A volunteer donates its computing resources. A volunteer 

server manages jobs and volunteers. Volunteers can freely join and leave in the middle of 

executions. Also, volunteers are not completely dedicated for grid use. So public executions i.e. 

grid jobs get temporarily suspended by a private execution at the volunteer. These situations are 

termed as volunteer autonomy failures. The proposed scheduling algorithm in [30] handles 

volunteer autonomy failures by selecting an appropriate volunteer for task scheduling based on 

volunteer availability and volunteering time information maintained at it. 

2.2.1.6.2.3 Fault tolerant Genetic algorithms 

Genetic Algorithm is a global search technique used for solving optimization problems. Genetic 

algorithm use a population of search nodes (chromosomes or solutions or individuals) in its 

search and uses probabilistic transition rules [31]. Genetic algorithm consists of a representation 

for nodes in the search space, genetic operators for generating new individuals, fitness function 

for evaluating each solution, a selection criteria, probability factors for application of genetic 

operators and a termination condition. It maintains a pool of potential solutions called 

chromosomes. For grid scheduling a chromosome is a mapping from job to resource. Genetic 

algorithms produces new solutions by randomly combining the good features present in existing 

solutions. A genetic algorithm consists of following steps [31]: 

a) Initialization: initial population of chromosomes is randomly generated. 

b) Evaluation of fitness function: fitness value of each chromosome is calculated. 

c) Genetic operations: new chromosomes are generated by applying genetic operators to the 

chromosomes. 

d) Steps b and c are repeated until termination criterion is reached. 

The termination criterion may be all chromosomes converging to the same fitness value or 

predefined number of iterations. Crossover and mutation are two genetic operators. Crossover 

operator randomly selects two chromosomes and chooses a random point in the first one 

(crossover point) and exchanges the sections of both chromosomes from crossover point to the 

end of each chromosome. Mutation randomly selects a chromosome and randomly selects a task 
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within the chromosome and randomly assigns a new machine to it. Application of crossover 

(mutation) operation is controlled by a crossover (mutation) probability. 

Several research efforts incorporate fault tolerance in meta-heuristics such as Genetic algorithm, 

Ant colony optimization etc. In [32] risk-resilient genetic algorithm scheduling strategies are 

proposed. It considers three scheduling modes - preemptive mode, replicated mode and delay-

tolerant mode. In [33] Resource Fault Occurrence History (RFOH) information is maintained in 

Grid Information Service (GIS) and this information along with response time is used for 

designing the fitness function of Genetic Algorithm. So chromosomes having good fitness values 

are more fault tolerant compared to the ones with lower values. In [34] is presented a genetic 

algorithm for job scheduling. It uses checkpointing technique to tolerate faults but doesn't give 

experimental results. In [35] a reliability aware genetic algorithm based scheduling is presented. 

It designs a fitness function combining makespan, flowtime, average time to release and 

reliability (modeled using exponential distribution) of the chromosome (schedule). In [36] 

Genetic Algorithm based scheduling strategies supporting different fault tolerance techniques 

such as retry, migration, replication and checkpointing are proposed. Experiment results 

presented shows that checkpointing based strategy has best performance considering the 

performance metrics — makespan, average turnaround time and job failure rate. A portion of our 

work that uses checkpointing differs from work in [36] in using adaptive checkpointing 

techniques and also their work focuses on permanent failures of resources and job migration on 

failures (availability of spare nodes) whereas our work only considers transient failures [7] of 

resources and the restart of jobs on the same resource when the resource recovers from failure. 

2.2.1.6.2.3 Ant Colony Optimization (ACO) 

Ant Colony Optimization [37] is one of the popular nature-inspired algorithms for solving 

optimization problems. In ACO a groups of cooperating agents cooperate to find optimal 

solutions to the problem. These ants indirectly communicate with each other using pheromone 

which is a form of distributed memory. Figure 2.1 shows how real ants find optimal paths to 

food source. At decision point two paths exist. Each ant randomly chooses one of the paths. As 

ants move along a path it deposits pheromone on the path followed. Now assuming that half of 

the ants follow one path and the other half second path, in a given period of time more ants will 

visit the lower path compared to the upper as lower path is shorter. After a short period of time 
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the difference between amounts of pheromone on the two paths will be sufficiently larger that 

next ants will, in probability favor the lower path compared to upper which with a positive 

feedback further increases the number of ants following the lower path. This cooperative 

behavior of ants inspired the development of ant system, which further leads to the development 

of more efficient system called ACO. 

Alti:114,1tO!' 	 *11?li 4,0; 

Figure 2.1 Illustration of how real ants find shortest path to food source [371 

Ant colony optimization algorithm is shown in figure 2.2. 

Initialize all parameters 

Loop /* outer loop represents each iteration of ACO */ 

Each ant chooses a random sequence of tasks 

Loop /* inner loop represents a step 

Each ant incrementally builds a solution by applying state transition rule and a local 
pheromone updating rule 

Until all ants have completed building a solution 

Apply global pheromone updating rule 

Until terminate condition 

Figure 2.2 The ACO algorithm 
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In ACO each ant incrementally builds a solution in parallel with other ants. ACO consists of 

three main features — i) pseudo-random-proportional state transition rule, ii) global pheromone 

updating of only the solution of best ant and, iii) local pheromone updating rule as each ant 

builds a solution. The stochastic greedy state transition rule balances exploration of new 

solutions and exploitation of priori and accumulated knowledge about the problem. Global 

pheromone updating rule strengthens the task to resource mappings of best solution for selection 

by later iterations as mappings with higher pheromone values are more desirable. Local updating 

rule reduces the pheromone value for mapping found during a step so that this mapping is less 

favorable to be chosen by other ants during this iteration. This helps in moving out of local 

optimum. Other important information associated with ACO is heuristic information for each 

mapping. Heuristic information for each task to resource mapping can be execution time of that 

task on the resource. Both heuristic information and pheromone values are used for guiding 

selection. 

In [38] presented ant algorithm based task scheduling in Grid environment. Scalability of ant 

algorithm is tested by adding more nodes to an existing network and testing the performance of 

new extended network. The routing information of solution for a network is used for finding 

solution for the extended network. Ant algorithm that uses previous information performs better 

than the one that does not use it. Pheromone value is associated with path between schedule 

center and resource. Initial pheromone value for each path depends on MIPS of resource, number 

of processing elements in that resource and transfer time (bandwidth) between that resource and 

schedule center. Pheromone value for a resource is updated when task is submitted, when task 

fails, and when task is completed successfully. In [39] is presented an improved ant algorithm for 

job scheduling. A load balancing factor is introduced to update pheromone. This helps in load 

balancing. In [42] ACO based dynamic job scheduling is used with the objective of minimizing 

total tardiness time of jobs. Heuristic information is based on completion times of jobs. 

Completion time of a job on a resource is sum of arrival time, release time and processing time. 

In [43] ACO is used for Grid task scheduling with multiple QoS dimensions with the objective of 

maximizing total utility. Five QoS dimensions are considered — time, reliability, version, security 

and priority. In [44] a balanced ACO for Grid job scheduling is proposed. Each ant represents a 

resource and pheromone value is associated between a job and a resource. Pheromone indicator 

of each resource for each job is based on CPU execution time and transfer time of job. For each 
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job pheromone indicator is used for selecting the resource for its execution. Local pheromone 

update is done after each job assignment. Global pheromone update is done after each job 

completion. Most influential work on ACO based job scheduling in Grid is [45] and it is the one 

our work on ACO is inspired from. This work will be discussed in chapter 3. 

2.2.1.6.3 Application model specific fault tolerance 

2.2.1.6.3.1 Malleability support for divide and conquer applications [46] 

Due to dynamic resource availability of grid the grid applications need to be fault tolerant and 

malleable (ability to cope with the increasing and decreasing number of processors). Divide and 

conquer applications work by dividing each problem recursively into sub problems until the sub 

problems become trivial. Then the solutions of sub problems are recursively combined until final 

solution is achieved. Divide and conquer applications can be run efficiently by running different 

sub problems on different machines. Each processor acquires work by work stealing: when a 

processor is idle it steals work from other processor's work queue. In [46] malleability 

mechanism is based on recomputing jobs lost by failed processors but the amount of lost work is 

minimized by restructuring the computation tree to reuse as many already computed partial 

results as possible. This mechanism salvages orphan jobs (jobs stolen from crashed processors) 

and partial results computed by crashed processors if they leave gracefully. Each processor 

maintains a list of jobs stolen from it and the identity of the thief If a processor crashes, each of 

the live processors searches for jobs stolen by crashed processor and put the stolen jobs back into 

the work queue. Each job inserted into work queue is marked as restarted. Children of restarted 

jobs are marked as restarted when they are spawned. To reuse results of orphan jobs, for each 

finished orphan job a message containing joblD and processorID is broadcasted by the processor 

computing the orphan job. Each processor on receiving this information keeps it in a local 

orphan table. When recomputing jobs marked as restarted the orphan table is looked up. If the 

jobID matches any of the stored entry the corresponding processor is requested for result and job 

is not put in the work queue. For reusing partial results computed by leaving processors each 

leaving processor sends the already computed results of finished jobs to any other processor. 

These received jobs are treated as orphan jobs: processor receiving the finished job treats it as 

orphan and broadcasts jobID and its processorID and the mechanism followed is as described 

above. 
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2.3 Research Gaps 

Following research gaps have been identified in present fault tolerant techniques in Grid 

environment: 

• Checkpointing is one of the most commonly used approach for tolerating faults in grid 

environment. But in order to be effective support for checkpointing should be provided 

while scheduling jobs (checkpointing will not be beneficial on a resource with high 

probability of failure as even in the presence of checkpointing technique the job will miss 

its deadline in real time scenarios). Genetic Algorithms are an important class of 

algorithms for grid resource scheduling. Present researches provide support for fault 

tolerance in these algorithms using heuristics for checkpointing and replication. These 

heuristics have been used for building the fitness functions. However another issue with 

checkpointing is the size of the checkpointing interval. If the size of checkpointing 

interval is small the overhead of checkpointing (capturing the snapshot of the process i.e. 

its state, migrating and saving state on the checkpoint server) can be very high to make 

checkpointing ineffective. On the other hand if size of checkpointing interval is high 

large amount of work will be lost in case of failure. Approaches exist for online adaptive 

checkpointing which modify the checkpoint interval based on the frequency of resource 

failures and the remaining execution time of jobs. But no scheduling support for these 

adaptive checkpointing approaches exists in the present researches. 

• Grid by its definition is a collection of autonomous resources. A Grid respects the 

autonomous nature of the administrative domains of which it comprises. This 

autonomous nature leads to inception of new kinds of failures called volunteer autonomy 

failures [30]. No heuristics exist for genetic algorithms which take into consideration this 

nature of Grid environment. 

• Mean Time to Repair (MTTR) of a resource is an important factor while scheduling if 

checkpointing is used without support for migration. This may be the case when all 

resources are heavily loaded. In this case jobs that were running on the failed resource are 

restarted from the latest checkpoint on the same resource when that resource recovers 

from failure. So consideration of MTTR of a resource is important when building fitness 
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functions for Genetic algorithms supporting checkpointing techniques. No present 

research focuses on this issue. 

• Ant Colony Optimization is another subclass of meta-heuristic algorithms which have 

been found effective for Grid resource scheduling. None of the available research works 

focuses on incorporating support for fault tolerance techniques such as checkpointing in 

these scheduling algorithms. 

• A majority of study pertaining to fault tolerance are based on the assumption of failures 

of resources being independent and MTTF and MTTR following exponential distribution. 

In [101 it has been studied that time between failures is best modeled by Weibull 

distribution with decreasing hazard rate (Weibull shape parameter 0.7-0.8) and mean 

repair time is well modeled by lognormal distribution. Failures also tend to cluster in time 

and are caused by relative small set of computational nodes i.e. failures are temporally 

and spatially correlated. 

• A majority of works in adaptive fault tolerance approaches exists in high performance 

computing environment. The applicability of these approaches in Grid environment is an 

area where avenues for study exist. 
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Chapter 3 

Proposed Work 

3.1 Batch Mode Scheduling and Fault Model 

In this work a batch-mode scheduler is assumed. This scheduler is a centralized scheduler 

accepting job requests from grid users. The scheduling time is divided into scheduling intervals 

and all job requests which have arrived in a scheduling interval form one batch of jobs to be 

scheduled. Figure 3.1 shows the batch scheduling model. In this figure PE is a resource and each 

job is assumed to require only one resource for its execution. A job/task executing in a resource 

on failure of that node/resource is resubmitted to the same resource. 

PE1 

PE2 

PE3 	 
time 

Scheduling interval Scheduling interval 

 

Successful execution ---1  Failed execution 	Job re-submitted 

 

Figure 3.1 Batch mode scheduling • 

In this work only transient faults are considered. Job failure is any condition in hardware (node 

failure, network failure, memory failure) or software (exceptions, buffer overflow) [6] which 

causes the job to stop execution (fail-stop model). Failed nodes are assumed to eventually 

recover from failures and the failures of nodes are independent of each other ( in actual large 

scale systems failures are found to be temporally and spatially correlated [10] ). In addition, we 

assume that the batch scheduler is running on a highly stable (or highly replicated) machine and 
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does not fail. Failure of a resource is assumed to be immediately detected and recovery time in 

most cases is assumed to be negligible . Weibull distribution is used for modeling resource 

availability [10]. Other failure assumptions are mentioned in the sections where they apply. 

3.2 Fault Tolerance Support in Metaheuristics 

3.2.1 Genetic Algorithm Based Fault Tolerance Techniques in Grid Environment 

Genetic Algorithm used in this work is the one used in Global Optimization toolbox of 

MATLAB R2010a [53]. The algorithm is follows: 

Genetic Algorithm 

Generate initial population; 

Evaluate initial population using fitness function; 

Loop (termination criteria) 

a) Selection 

Select chromosomes from current population on which crossover and mutation 

operators will be applied to produce new population. 

b) Apply genetic operators on current population 

Crossover and mutation operators are applied on chromosomes selected using 

selection 	function. 

c) Create new population 

The new population has the same size as the current population consisting of: 

i) Elite Count 

ii) Crossover kids = Crossover fraction * (size of current population — Elite Count) 

iii) Mutation kids = size of current population — Elite Count - Crossover kids 

d) Evaluate new population 

End Loop 

Figure 3.2 Genetic algorithm 
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A) Chromosome Representation 

A chromosome is represented as a one dimensional array indexed by job id. Each entry in the 

array is the id of the node to which the corresponding job is allocated. For example in Figure 3.3 

job J1 is allocated to node N1 job J2 to node N8. 

J1 
	

J2 
	

J3 
	

Jn 

N1 I 	N8 	I 	N5 	I 	... 	I 	N4  
Figure 3.3 Representation of Chromosome 

B) Initial Population 

Initial population is represented as a matrix with number of rows equal to the population size and 

number of columns equal to the number of jobs. Each row represents a chromosome. 

C) Selection Function 

Selection function selects the chromosomes from the current population which are used for 

reproduction of new chromosomes using operations of crossover and mutation. Roulette wheel 

based selection and stochastic universal sampling are commonly employed techniques for 

selection. 

1) Roulette Wheel Selection 

In this technique chromosomes are one-to-one mapped to contiguous intervals which has a range 

[0, Total], where Total is the sum of the fitness values of the chromosomes in the current 

population. Each chromosome occupies a contiguous interval equal to its fitness value. Then a 

random number in the range [0, Total] is generated and the chromosome in whose interval that 

number lies is selected for reproduction. Clearly a chromosome with higher fitness value has 

greater probability of being selected. 

2) Stochastic Universal Sampling 

This technique selects a random number between 0 and Total/n (n is the size of current 

population) as initial pointer. Then n equally spaced pointers starting at the initial pointer and 

with the interval size equal to Total/n are used for selecting the chromosomes. The chromosome 

in whose interval the pointer lies is selected for that pointer. 
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N5 I N3 r 

J2 
NI 	I 

J3 J4 J5 
N2 NI I N4 

J3 J4 J5 
N5 I N4 I N2 

J1 
I 	N3 

	

A 
	

D 
	

E 

	

uE(O,Total/n) 	 Total/n 

Figure 3.4 Stochastic Universal Sampling 

D) Crossover Operator 

Crossover operator is a global search technique that produces new chromosomes by combining 

features of the parent chromosomes. The simplest form of crossover operator is single-point 

crossover. It randomly selects a number in the range (1, num_taslcs) where num_tasks is the 

number of tasks. This point is known as crossover point. The portions of the two parent 

chromosomes after the crossover point are swapped to create two new chromosomes. Figure 3.5 

shows application of crossover operator. 

Parent chromosomes 

CrossoveT point 
Offspring chromosomes 

JI 
	

J2 	J3 
	

J4 
	

J5 

JI 

N5 I N3 I N2 I N4 j N2 

J2 	J3 J4 
	

J5 
N3 I NI I N5 I Ni I N4 

Figure 3.5 Single-point crossover operation 

E) Mutation Operator 
Mutation operator randomly selects a job and replaces the value in its entry in the parent 

chromosome with some randomly chosen valid resource id. The role of mutation is of 

guaranteeing that no possible solution in the solution space has zero probability of being 

searched. This helps in moving out of local optimum. 

F) Fitness function 

Fitness function is used to evaluate the quality of chromosomes and it is the measure that we 

want to optimize. Fitness function used in this section is a composition of two objective 
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functions — makespan and flowtime. This function is similar to the one used in [35]. Our 

objective is to minimize the values of makespan and flowtime of the schedule. Fitness function 

is given by the following equation: 

Fitness = Makespan * Flowtime 	 (1) 
Makespan = max {Cr) 	 (2) 
Flowtime = ET" j 

	
(3) 

Above notations for makespan and flowtime are similar to those used in [35]. Cr  is the 

completion time of jobs allocated to resource r. So, makespan is maximum of the completion 

times of Grid resources and flowtime is sum of the completion times of resources (where in 

equation (3) m is the total number of resources in Grid). In this paper completion time of 

resource r is taken as sum of execution times of jobs allocated to r i.e. 

= Zy EX,j. 	 (4) 
EX) is execution time of job j on resource r to which it is allocated. In this work execution time 

of a job is taken as the CPU time for running that job on the resource to which it is allocated. The 

waiting time and transmission time of a job are ignored. Below are presented some heuristics for 

execution time of jobs that takes into account the failure conditions of resources. 

1) MTBF and LF based Adaptive Checkpointing based fitness functions 

Following are fitness functions that take into account the failure characteristics of resources such 

as Mean Failure Time (Mean time between failures), Last Failure Time to modify the 

checkpointing interval to reduce the cost of checkpointing. These adaptive checkpointing 

approaches derives the basic idea from [22] where online adaptive checkpciinting is presented. 

a) Mean Failure Time Based Checkpointing 

This approach modifies the checkpointing interval based on Mean Failure Time of resources. 

Mean Failure Time of each resource is maintained in GIS (Grid Information Service) based on 

historical failure patterns of that resource. The basic idea is that the resource with larger Mean 

Failure Time (which is more reliable) will incur less checkpointing overhead and thus the 

execution time on it will be low compared to other resources with comparable resource speed but 

lower MTBF. If value of makespan is used as fitness function this leads to selection of former 

resource for job execution against latter resources, which also results in reliable execution (less 

work lost due to failures). 
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If (C1 — LFn  + EXn (i) < MF„) 

Checkpt -interval = k * Checkpt interval (7 ) 

= 
	TaskMj  

resourcem ps 

MF" 	* Checkptcost 
( 	* checkptcost 	1.2*checkptintervai En(i) = EXn(i) 	LCkeckPtinterval 

EXn(i) is CPU time required for execution of job i on node n. TaskMI  is task size in Million 

Instructions, resourceMips  is resource speed in Millions of Instructions per Second, En  (i) is 

execution time of job i on node n, MFn  is mean failure time of node n, Checkptcnst  is the 
. 

overhead of individual checkpoints and Checkpt- -interval is the size of checkpointing interval. 

Equations 5 and 6 are based on the assumption that on failure a resource is down only for the 

period required for its restart and this period is assumed to be negligible. Size of checkpointing 

interval is doubled if the remaining execution time of job on that resource is less than mean 

failure time of resource. Also the entire computing capability of a resource is assumed to be 

available for Grid job execution and there is no local load on a resource. 

b) Last Failure Time Based Checkpointing 

This approach is represented by following equation 

Where Cl is current system time, LFn  is last failure time of node n and k is an integer > 2. 

Equation for execution time can be derived as in previous approach. If multiple jobs in a batch 

are assigned to the same resource then for each successively scheduled job i, LFn is set using the 

formula: 

LP", = Cn (i — 2) + EX„(i — 1)/2 
	

(8) 

In equation 8 it is assumed that last job would have failed in the middle of its execution. 

Figure 3.6 shows the operation of Last Failure Time Based Checkpointing approach. Since 

— LF„ 	EXn(i) < MFn  checkpoint interval is increased by multiplying it by an integer k >2. 

The logic behind incrementing checkpointing interval is that the node is less likely to fail during 
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LFn 	Cl 
•	  

MFn 

Figure 3.6 Last Failure Time based checkpointin 
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the execution of this job on it. So overhead of checkpointing can be reduced by taking a higher 

checkpoint interval. 

EXn(i) 
4 

c) Checkpointing with Downtimes r. ROOV&s- 
This approach takes into account the downtime (Mean Time to Repair) of resources while 

scheduling jobs on them. Resources with high downtimes are less favorable during resource 

allocation. 

Following is presented the derivation of the heuristic for representing the execution time of a job 

on a resource in presence of resource failures. 

i) CPU time - The time spent in actual execution on the CPU on a resource is given by the 

formula - 

TaskMI  is task size in Million Instructions, resourcemips  is resource speed in Millions of 

Instructions per Second. 

ii) Total checkpoint overhead - During its execution a job periodically performs checkpoint 

after Check pt interval  seconds. Each checkpointing operation takes some time and this time is 

equal to Checkptcost  seconds. So total time spend/wasted in checkpointing operation is the 

product of total number of checkpoints performed during execution 

(ICPUn(i) / Checkpt - interval]) and time taken in performing each operation. 

iii) Failure free execution time (EXn(i)) - Failure free execution time is the sum of CPU time 

and total checkpoint overhead i.e. 

EX „( i) = CPU„(i 	 cost ) 
1Checklitinterval CPUn(i) 	 j* Check (9) 
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iv) Total time with faults (FTime) — Expected number of failures during the execution of job is 

obtained by dividing total time for which a job executes on a resource by the Mean Time 

Between Failures (MTBF) of the resource. 

Now for each failure event the resource goes down for MTTR seconds. So for each failure event 

an extra MTTR seconds is added to the failure free execution time (HMO). So total time 

required for execution in addition to the failure free execution time (EX,,(0) is the product of 

expected number of failures during execution of job i.e.' EXn(il and MTTR of the resource and LMTBF 
hence the total time with faults is 

FTime = EMI) + 1.74÷21* MTTR 
	

(10) 

Above formula assumes that no work is lost during failure as the fault arrives just after the 

successful completion of checkpointing operation. If the work lost due to failures is taken into 

account then the equation for FTime becomes 

FTime = EX,i(i) +
EXn(i)1* (MTTR + Checkpi-  interval 	P ., 	CheCktcost) 	(11) MTBF 

Above equation is pessimistic in that the failure is assumed to occur just before the completion of 

a checkpoint. 

v) Total execution time (En(i)) — Total time spend in execution for a job i on resource n is the 

total time with faults (FTime) i.e. 

En(i) = FTimen(i) 
	

(12) 

d) Resource Provider Autonomy Based Scheduling 

In [30] is presented volunteer autonomy failures in desktop Grids. These failures results from 

resource providers freely entering and leaving the grid at any time and also due to preference of 

private execution (local load of a resource) over public execution (Grid jobs). Our approach 

maintains the time of resource (a volunteer) registration in Grid Information Service. Also the 

mean time for which a resource remains in the grid. (stay time) is maintained. If sum of current 

system time and execution time on a resource is greater than sum of present registration start 

time (LRn) and mean stay time (MSn) then a penalty is added to execution time on that resource. 
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(FOHT[i][0] / FOHT[i][1])* (CheCkptinterval[i] CheckPtcost) 

(13) 

Task MI  

This is due to the possibility of resource provider disconnecting from the Grid before job 

completion. 

2) Fault index and Fault ratio based Adaptive Checkpointing based fitness function 

The work discussed in this subsection maintains history of fault indexes of resources in a Fault 

Occurrence History Table (FOHT) as is done in [33]. FOHT maintains two entries for each 

resource. First entry contains the number of fault occurrences and second entry contains number 

of jobs submitted to that resource. The FOHT is shown below 

Figure 3.7 Fault occurrence history table 

Initially all entries are set to 0. Entries for each resource is updated according to following rules 

a) If a job is submitted to a resource second column is incremented by 1. 

b) If a resource fails to complete job within deadline (due to resource failure) first column for 

that resource is incremented by 1. 

A) Fault ratio based adaptive Checkpointing 

The heuristic for representing execution times of jobs is represented by following equations 
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In equation 13 C represents the initial checkpointing  interval for the experiment and 

Checkpt -interval [i] represents the adaptive checkpointing interval for jobs submitted to resource i 

set depending on FOHT values. a limits the increase in checkpointing interval and limits the 

decrease in checkpointing  interval. 

B) Fault index based adaptive Checkpointing 

-interval Checkpt 	fil = C * (min(max((FOHT[i J[1] — FOHT[i][0]) ,13),a)) 

EXn(i) 	
Task," 

resourceMips 
(14) 

( EXn(i))  
En (i) = EXn(i) + L 

	

	 * Checkptcost 
Ckeckpttnterval[1 ] 

(FOHT[i] [0] / FOHT[i][1])* (Checkptintervca[i] Checkptcost)  
In equation 14 a limits the increase in checkpointing interval. 

3.2.2 Ant Colony Optimization Based Fault Tolerant Scheduling in Grid 

Various phases of ACO are explained below. This work on ACO based job scheduling  is similar 

to that in [45]. 

1) Initialization: 

Parameters of ACO are set in this phase. p which controls local pheromone update and global 

pheromone update is set to .1. (3 which determines weight age of heuristic value is set to 1.2. q0 

which controls application of exploration vs exploitation is set to .9. 

2) Pseudorandom state transition rule: 

An ant chooses a resource r for a job j using the following rule 

  

arg maxuER  {[pheromone(u, j)]. (u,  j)] R), 
if q < q0 (exploitation) 

S (biased exploration), otherwise 

  

 

r= (15) 
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R is the set of available resources. Pheromone(uj) is pheromone value of resource u for job j. ri 

is the heuristic value of resource u for job j. (3 is a parameter greater than 1 which determines 

relative importance of heuristic vs pheromone. q0 is a parameter and q is a random variable 

uniformly distributed between 0 and 1. S is the resource selected using stochastic universal 

sampling. 

3) Local pheromone update rule: 

Local pheromone update is performed by each ant after each step. Phermone value of resource r 

selected for a job j is updated using the following rule: 

Pheromone(r,j) = (1-p).pheromone(r,j) + p. initial_pheromon 	 (16) 

Local pheromone updating rule is pheromone value of resource r for job j. So this selection will 

be less for other ants. This helps is exploring the entire solution space and moving out of local 

optimum. 

4) Global pheromone update rule: 

Global pheromone update rule is performed after each iteration for the best ant found in that 

iteration. Pheromone value of job to task mappings in the best ant is updated using the formula: 

Pheromone(r,j) = (1-p).pheromone(r,j) + p. score 	 (17) 

score for the best ant is calculated as 

score = 1 + minimum_makespan/makespan 	 (18) 

minimum makespan is the minimum makespan found in all preceding iterations and current 

iteration, whereas makespan is makespan of the best ant of this iteration for which score is being 

calculated. 

3.3 Adaptive Checkpointing based Fault Tolerance Techniques 

3.3.1 Fault Index Based Adaptive Skip 

Periodic skip [191 based checkpointing technique periodically skips Checkpoints for a job. For 

example if a "skip parameter" d is equal to 1 then alternate checkpoints are skipped. Higher 

value of d higher will be the number of checkpoints skipped. Fault index based periodic skip 
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uses fault indexes [23] of resources to determine the intensity of skipping checkpoints (skipping 

parameter). For each resource fault index is maintained. Fault index is a measure of vulnerability 

of the resource towards failures. It is incremented on each job failure and decremented on each 

successful job completion. Pseudo code for fault index based periodic skip is given below 

FI(i): Fault Index of resource i 

FIl, FI2, FI3.....FIN fault index values such that FIl < FI2 < FI3 < ..... <FIN 

D1, D2, D3,....,DN skip parameter to determine intensity of skip such that D1 < D2 <D3 

...DN 

If(FI(i) > Fin) then 

Perform all checkpoints 

If( FIN >FI(i)>FIN-1 

Use D1 has skip parameter 

If(FIl >FI(i)) 

Use DN has skip parameter 

Exit 

Resources with higher fault indexes are more prone to failures. So fewer checkpoints are 

skipped (or no checkpoints are skipped). On the other hand, since resources with less fault index 

value are less vulnerable to failures more checkpoints are skipped for these resources. This helps 

in adapting the checkpoint interval depending on failure conditions of resources. As a 

consequence lesser checkpoint overhead is incurred and lesser work is lost due to failures. 

Finally this would result in less execution time for resources. 

In addition to adaptive fault index based periodic skip fault index based exponential backoff skip 

can also be done. This technique a cooperative checkpointing technique [19] increases the 

amount of saved work for each completed checkpoint. For example 1st, 2nd, 4th,  8th, 16th, etc 

checkpoints are performed in each availability interval for "exponential parameter" equal to 2. 

Modifying this exponential parameter depending on fault indexes of resources can be highly 

useful in reducing the amount of work lost due to failures. 
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Other that using fault index for determining "skip parameter" or "exponential parameter" fault 

ratio as discussed in 3.2.1 can be used for the same purpose. 

3.3.2 MTBF and Last Failure Based Adaptive Checkpointing for Temporally Correlated 

Failures 

As found in [10] failures in production HPC systems are temporally correlated. This observation 

can be harnessed in online adaption of checkpoint interval for each resource. Heuristics based on 

last failure and MTBF for adapting the checkpoint interval have been presented in [22]. These 

heuristics are dependent on execution times, of resources which can be highly unpredictable in a 

highly dynamic environment such as Grid where load on resources changes dynamically and 

unpredictably. To eliminate this shortcoming following heuristic is proposed 

If ((C1-Lf) > a * MTBF) 

AI = AI + I for each checkpoint request in interval (a * MTBF, J3 * MTBF) where p > a and 

a >1 
	

(19) 

If (((C1-Lf) < y * MTBF) 

AI = AI - I for each checkpoint request in interval (y * MTBF, n * MTBF) where rl > y and 

y < 1 

where I is an initial periodic checkpoint interval and AI is adapted checkpoint interval. C 1 is 

current time and Lf is last failure time of resource. The logic behind above equations is based on 

two properties of temporal correlation between failures. a, (3, 7, and ri are parameters of the 

technique. 

i) If a node has not failed for a long time then there is less probability that it will fail in the near 

future. 

ii) If a node has failed recently then there is high probability that it will fail in the near future. 

Concentrating on first if condition in equation 19 and point i. If difference between current time 

Cl and last failure time Lf is greater than some multiple of MTBF (a * MTBF where a > 1) then 

increase checkpoint interval by I for each request during interval (a * MTBF, (3* MTBF). 
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Similarly concentrating on second if condition in equation 19 and point ii. If difference between 

current time C1 and last failure time Lf is less than some fraction of MTBF (y * MTBF where y 

< 1) then decrease checkpoint interval by I for each request during interval (y * MTBF, ri * 

MTBF). 
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Chapter 4 

Simulation Environment and Implementation Details 

Grid environment is a very complex system with resource and network conditions changing 

rapidly and unpredictably. Also Grid is a decentralized environment with resources managed in 

multiple autonomous administrative domains. Performance testing of developed techniques for 

various aspects such as job scheduling, fault tolerance etc. in a repeatable and controllable 

manner becomes very difficult in such environment. Simulation is the best tool for performance 

testing in repeatable and controllable manner and we stick to this choice for evaluating our 

techniques. 

GridSim toolkit [47][48] is one of the most popular event driven simulator which is used for 

simulating Grid environment. GridSim implements core entities that simulate resource, 

information service, statistics, and shutdown services. These services are used to simulate a user 

with application, a broker for scheduling, etc. Interaction between these entities takes place 

through events. Events are used for service request and service delivery. Events can be internal 

(generated by the entity which receives it) or external (generated by some other entity). 

Figure 4.1 shows the components of the Grid environment simulated using GridSim. These 

components are described below. 

a) Grid user 

Submits the jobs to the broker for execution using a Grid portal and receives the results back on 

successful execution. Grid user may also specify certain constraints such as budget, deadline etc. 

Each job has a job id, user id, length (MI) associated with it. 

b) Resource broker 

Resource broker is responsible for receiving jobs from the users. Its functionality is broken down 

into following modules 

i) Metascheduler 

Meta scheduler is a batch scheduler as discussed in Section III. It is used for scheduling of 

j obs. 
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ii) Job Dispatcher 

It is responsible for submitting jobs to resources either from the beginning or from the most 

recent checkpoint. 
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Job Receiver 

It is responsible for receiving jobs with status either marked as success, in which case result is 

returned to user, or marked as failed. In case of failed status a get:_checkpoint request is 

send to checkpoint server. This request contains the job id and user id. 

iv) Gateway 

The gateway [12] is responsible for deciding whether to take or skip a checkpoint and also to 

modify the checkpoint interval. 

c) Grid Resource 

It is a cluster of computing nodes and is used for executing Grid jobs. Each resource in our 

simulation implements a space shared policy [47]. 

d) Grid Information Service (GIS) 

This .module maintains resource ids and other characteristics of resources such as number of 

CPUs, computing power, available memory, MTBF, etc. The broker module requests 

information about resources from GIS. 

e) Checkpoint Server 

It is responsible for maintain a table containing job id, corresponding user id and remaining 

length (MI) of jobs. Only the most recent checkpoint is maintained for each job. 

Figure 4.2 shows interaction between various entities and various events generated during 

execution of a gridlet/job. These sequences of steps are described below. 

a) At the start of simulation all Grid resource entities register themselves in GIS. 

b) Grid user submits job to Grid resource broker. In GridSim a job is represented by gridlet class. 

This class encapsulates all properties of a job such as its length (MI), size (PEs required), user id 

(user to which this gridlet belongs), gridlet id, i/p file size, and o/p file size. This class can also 

be used to encapsulate other properties such as deadline and budget constraints. 
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d) Resource broker submits the job to appropriate resource i.e. resource which meets all 

requirements such as number of free PEs, size of available memory etc. In case multiple jobs 

have arrived at broker, it uses appropriate scheduling algorithm (GA, ACO, etc.) to find a 

schedule for jobs. Submission of a job in GridSim is modeled as a send event with 

GRIDLET SUBMIT tag (Note: each event in GridSim has an integer tag associated with it that 

uniquely identifies that event). 

e) On receiving a job Grid resource entity allocates resources (PEs) to it according to its local 

scheduling policy (time shared or space shared). Also if execution time of job is greater than 

checkpoint interval an internal event with tag set as CHECKPOINT is sent to arrive after 

checkpoint interval seconds. 

f) On receiving an event with CHECKPOINT tag the remaining lengths of all jobs in execution 

list of this resource is updated and an event (with tag CHECKPOINT_REQUEST) is sent to 

gateway module of broker. The gateway module of broker decides whether to take or skip 

checkpoint. If the request is granted a TAKE CHECKPOINT event is send back to the 

resource. On receiving a TAKE_CHECKPOINT event the resource sends a 

STORE CHECKPOINT to checkpoint server. This event contains Gridlet id, user id, and 

remaining Gridlet id as its data field. Also the resource checks whether the remaining execution 

time of Gridlet with which the checkpoint event was associated is less than or greater than 

checkpoint interval seconds. If it is less than checkpoint interval seconds then a 

GRIDLET FINISH event is send after remaining time plus checkpoint overhead seconds (to 

account for overhead of checkpoint) otherwise a CHECKPOINT event is sent after the same 

interval. 

g) During the course of simulation GIS may send RESOURCE FAILURE events to resources. 

Actually these events are sent to each resource after its MTBF interval. On receiving this event 

the resource sends all executing and waiting jobs on it to their respective users. A 

GRIDLET RETURN event with Gridlet status set as FAILED_ RESOURCE_ NOT 

AVAILABLE is sent for each Gridlet. 

h) On receiving a GRIDLET_RETURN event with Gridlet status marked as FAILED_ 
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RESOURCE NOT AVAILABLE broker sends INCREMENT_FAULTINDEX event to 

fault index manager to update failure information about the failed resource. A 

GET CHECKPOINT event is sent to the checkpoint server to get any saved checkpoint for the 

failed Gridlet. After receiving the checkpoint Gridlet is resubmitted to the same resource from its 

checkpoint rather than from the start. 

i) On receiving the Gridlet submission event the resource again allocates resource to Gridlet and 

checks whether its execution time is less than checkpoint interval seconds. If it is less a 

GRIDLET FINISH internal event is send with a delay equal to the execution time of Gridlet. 

j) On receiving a GRIDLET FINISH event the Gridlet is returned to the broker with status 

marked as GRIDLET SUCESS. On receiving the successfully executed Gridlet broker returns 

the results/output to the user. 

To simulate our techniques extensive modifications were made in the classes available in 

GridSim Toolkit and also a few new classes were developed. All these classes with 

modifications made are described below: 

1) GridScheduler.java 

This class represents centralized broker and a batch scheduler. Following functionalities were 

added to this class: 

a) GA and Ant colony based centralized batch scheduler for job scheduling. 

b) Interaction with FTManager for incrementing and decrementing failure information of 

resources. 

c) Interaction with CheckpointServer for getting the latest successively saved checkpoint on 

gridlet failure. 

d) Gateway module for skipping and granting checkpoint requests. 

e) Gridlet creation, submission, reception. 

2) FTGridResource.java 
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Figure 4.3 Modules hierarchy used for experimentation of proposed techniques 
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b) Periodic checkpointing of gridlets with checkpointing overhead factored into the execution 

time of gridlet. Each checkpoint request involves interaction with gateway. 

3) FTolerantGIS.java 

This class represents Grid Information Service (GIS). It maintains information about available 

resources in Grid. Other added functionalities include 

a) Sending failure events to resources with successive events separated by Weibull distribution 

generated interval. 

b) Maintaining information about last failure and MTBF of resources. 

4) CheckpointServer.java 

This module represents a centralized checkpoint server. It has following functionalities: 

a) Storing checkpoints for gridlets. A table is maintained with each entry having three fields -

gridlet id, user (owner) id, and remaining gridlet length. As coordinated checkpointing is 

assumed only latest checkpoint is stored for each gridlet. 

b) Returning latest checkpoint for gridlet on request from scheduler. 

5) FTManager.java 

This module maintains Fault Occurrence History Table (FOHT) as discussed in chapter 3. 

6) FailureFileReader.java, ResourceFileReader.java 

These files are used for reading real failure traces, node information available in FTA Archive []. 

Failed trace reading has been modified to ignore downtimes of resources. 

7) Scheduler.java 

This class is modification of a class (with the same name) available in Alea Grid simulator [41]. 

8) GAandAntBasedScheduling.java 

This class represents a scheduling policy for job scheduling. It has following functionalities: 
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a) Implementation of Genetic Algorithm for scheduling of gridlets from real workload traces 

(with gridlets having different arrival times and different PE requirements) on multiple PE 

resources. 

b) Implementation of Ant Colony Optimization for scheduling of gridlets from real workload 

traces (with gridlets having different arrival times and different PE requirements) on multiple PE 

resources. 

9) GWFLoader.java 

This class is used for reading gridlets from .gwf files. 
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Chapter 5 

Performance Evaluation and Experimental Results 

5.1 Performance Metrics 

Following metrics are used for comparing various checkpointing techniques. 

a) Makespan: It is the maximum completion time for any resource and is basically the time when all 

jobs finish execution. Completion time for a resource is the point of time when all jobs allocated to that 

resource completes execution. 

b) Flowtime: It is the sum of the completion time for all the resources. 

c) Average bounded slowdown: It is the average slowdown of a job. It is the difference between time 

taken to execute a job and the CPU time ( Taskmi  
resourcemips

) averaged over all jobs. Sizes of jobs are taken to 

be comparable to each other. 

d) Work lost due to failures: It is the unsaved work which is lost due to failure of jobs. 

e) Utilization: Utilization is the fraction of time of the resources which is used in executing jobs i.e. in 

doing useful work. This work does not include the time spent in carrying out work which is lost due to 

failures. 

1) Number of Checkpoints: It is the total number of checkpoints performed during the entire 

simulation run for a batch of job. 

g) Average turnaround time: It is the average of completion times of jobs. Completion time of job is 

the finish time of a job minus the submission time. 

Makespan and flowtime are parameters which are affected by scheduling decisions. Makespan and 

flowtime are also affected by arrival time of jobs. In this case these may not be useful parameter for 

performance comparison. Flowtime may be better performance parameter when job results are returned 

as soon as it completes execution. Average bounded slowdown is affected by two parameters — number 

of checkpoints taken (checkpoint overhead) and work lost due to failures. It is an important parameter as 

it shows the balance between work lost due to failures and time wasted in checkpoints. Utilization is 

dependent on makespan and is inversely related to it. Turnaround time decides average response times 

of jobs and is an important parameter for performance comparison. Work lost due to failures depends on 

two factors — checkpoint interval and scheduling decision. Scheduling decisions that allocate more jobs 
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to stable resources compared to unstable ones have less work lost due to failures. Work lost due to 

failures is directly proportional to checkpoint interval. Higher checkpoint interval causes more work loss 

due to failures. Much lesser checkpoint interval may also lead to more work lost due to failures. This is 

due to more time required for execution of jobs (due to greater overall checkpoint overhead) which can 

increase the probability of failure of job. Other than these waiting time, response time and tardiness time 

of a job are also considered in 5.13 and 5.14. Waiting time is submission time minus arrival time of a 

job. Response time is the turnaround time as discussed above. Tardiness time is completion time minus 

due date. 

5.2 Simulation Parameters 

Simulation parameters for GA-based and ACO-based fault tolerance techniques comparison are given in 

table 1. 
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5.3 GA-based Adaptive Fault Tolerance Using MTBF of Resources 

The simulated Grid environment consists of 5 resources (clusters). Each resource has 64 processing 

elements. Each job requires around 2 days of computation on 64 processing elements. A total of 200 

jobs are submitted in a batch. After every checkpointing interval all processes of a job coordinates to 

take a global checkpoint (coordinated checkpointing [14]). Each checkpoint incurs an overhead of 720 

seconds. Processes of a job are assumed to be heavily depended on each other. So even if one of them 

fails all have to be restarted from latest saved checkpoint. It is assumed that an entire resource is 

allocated for execution of a job. MTBF of a resource follow Weibull distribution with resources having 

shape parameters .7, .7, 1, 1, 1.5. Mean Time between failures of resources ranges from 5 hours to 18 

hours. Scale parameter of Weibull distribution is calculated using the formulae 

= aro+ 

Where ri is scale parameter, X. is failure rate and 13 is shape parameter. Failure rate (X) is inverse of 

MTBF. Only transient faults are considered with recovery requiring only a restart of the failed machine 

(this restart time is assumed to be negligible). On failure user jobs are returned with status marked as 

FAILED RES LTNAVAIL. Resource failures are assumed to be immediately detected by polling _ _ 
mechanism employed by both broker and GIS. Failed job is restarted on the same resource from last 

saved checkpoint available at the checkpoint server. 

Figures 5.1 to 5.7 shows results of experiments performed. The checkpointing interval is varied from 

1000 

Figure 5.1 Makespan comparison between checkpointing techniques 
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seconds to 10000 seconds. 5.1 shows comparison against makespan parameter. Adaptive checkpointing 

performs better than periodic checkpointing for every checkpointing interval. Periodic skip has lesser 

makespan for initial intervals due to its checkpointing interval (period after which checkpoint is actually 

taken) being closer to the optimal checkpoint interval for the experiment. However its performance 

deteriorates at higher checkpointing intervals due to the reason which is clear from figure 5.2 i.e. work 

lost due to failures becomes very high at higher checkpointing intervals. 

Figure 5.2 Comparison for work lost due to failures 

Similar reasons explain the results for exponential backoff skip. As seen from Figure 5.2 work lost due 

to failures of adaptive checkpointing is higher than that of periodic checkpointing. This is due to 

adaptive increase in checkpoint interval which also increases amount of work lost due to failures. 

Periodic skip and exponential backoff skip have very high values for work lost due to higher interval for 

taking checkpoints. Figure 5.3 show results for flowtime of execution. 

Figure 5.3 Comparison for flowtime parameter 

Results for flowtime are similar to those for makespan. Adaptiiie checkpointing takes lesser number of 

checkpoints compared to periodic checkpointing due to adaptive increase of checkpointing interval. 
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Periodic skip and exponential skip take very few checkpoints which is also the reason for high values for 

lost work. 

Figure 5.4 Comparison for number of checkpoints taken parameter 

Adaptive checkpointing technique shows significant improvements in average bounded slowdown 

which can be seen in figure 5.5. Results for average bounded slowdown are similar to those for 

makespan and flowtime. 

Figure 5.5 Comparison for average bounded slowdown parameter 

Figure 5.6 gives results for utilization. Again adaptive checkpointing technique performs better than 

other approaches and has higher utilization. Results for utilization are just inverse of results for average 

bounded slowdown (makespan, and flowtime). For initial checkpointing intervals adaptive 

checkpointing has higher average bounded slowdown (makespan, flowtime) compared to periodic skip 

and exponential backoff skip. Whereas as checkpointing interval increases adaptive checkpointing 

performs better. On the other hand utilization is low for adaptive checkpointing at lower checkpointing 

intervals but utilization becomes higher for adaptive checkpointing with increase in checkpointing 

intervals. 
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Figure 5.6 Comparison for utilization parameter 

Figure 5.7 shows comparison between four techniques for makespan parameter for total number of jobs 

varying from 200 to 600. Clearly adaptive checkpointing technique has very low values for makespan 

compared to other techniques. 

Figure 5.7 Comparison for makespan parameter for varying number of jobs 

Figure 5.8 shows comparison between four techniques for work lost due to failures paraineter for total 

number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low values 

for total work lost due to failures compared to other techniques. This is due to scheduling support for 

fault tolerance. Figure 5.9 shows comparison between four techniques for flowtime parameter for total 

number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low values 

for flowtime compared to other techniques. Figure 5.10 compares four techniques for total number of 

checkpoints taken parameter. 
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Figure 5.8 Comparison for work lost due to failures for varying number of jobs 

Figure 5.9 Comparison for flowtime for varying number of jobs 

Figure 5.10 Comparison for number of checkpoints taken for varying number of jobs 
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Figure 5.11 shows comparison between four techniques for average bounded slowdown parameter for 

total number of jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very low 

values for total average bounded slowdown compared to other techniques. 

Figure 5.11 Comparison for average bounded slowdown parameter for varying number of jobs 

Figure 5.12 shows comparison between four techniques for utilization parameter for total number of 

jobs varying from 200 to 600. Clearly adaptive checkpointing technique has very high values for 

utilization compared to other techniques. 

Figure 5.12 Comparison for utilization parameter for varying number of jobs 

Figure 5.13 gives a radar plot for mean values for both adaptive checkpointing and periodic 

checkpointing. Values for adaptive checkpointing relative to periodic checkpointing are -22% for 

makespan, -4.84 for flowtime, -12.19% for average bounded slowdown, +22% for utilization, -15% 

work lost due to failures, -2.4% for number of checkpoints taken. Negative percentages represent the 

percent by which the value is smaller and positive percentages represent the percent by which the value 

is greater compared to the corresponding value for periodic checkpointing. 
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Figure 5.13 Overall comparison between periodic eheckpointing and MTBF based adaptive checkpointing technique 

5.4 GA-based Adaptive Fault Tolerance Using Fault Ratios of Resources 

In this subsection 100 jobs are submitted to 10 clusters each with 64 processing elements. Shape 

parameters are .7, .7, .7, .7, 1, 1, 1, 1.5, 1.5, 1.5, respectively for 10 clusters. The checkpoint overhead is 

taken as 360 seconds. Others assumptions and parameters are same as subsection 5.3. 

Figure 5.14 gives makespan comparison between adaptive checkpointing, periodic checkpointing, 

periodic skip and exponential backoff skip. 

Figure 5.14 Comparison for makespan parameter 

Adaptive checkpointing technique performs better than periodic checkpointing for almost all 

checkpointing intervals. Only for interval equal to 5000sec performance is slightly worse. This is due to 

5000sec being the optimal checkpoint interval for the parameters used for simulation. Behavior of 

periodic skip and exponential backoff skip is similar to as in subsection 4.1. 

Figure 5.15 gives the work lost due to failures for the four techniques. Adaptive checkpointing technique 

loses less work due to failures compared to periodic checkpointing technique due to adaptive change in 
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checkpoint interval depending on the failure conditions of resources. Periodic skip and exponential 

backoff skip techniques have very high values for work lost which is the prime reason for their poor 

performance. 

Figure 5.15 Comparison for flowtime parameter 

Figures 5.16, 5.17, 5.18, 5.19 give results respectively for flowtime, number of checkpoints taken, 

average bounded slowdown and utilization. All these graphs shows superior performance of adaptive 

checkpointing technique compared to other three techniques. 

Figure 5.16 Comparison for flow•time parameter 

52IPage 



Ch
ec

kp
oi

nt
s  T

ak
en

  
18000 
16000 
14000 
12000 
10000 
8000 
6000 
4000 
2000 

0 

• Adaptive_Checkpointig (Proposed) 

EmPeriodic_Checkpointing 

• Periodic_Skip 

• Random_Backoff Skip 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Checkpoint Interval (seconds) 

70000 

60000 

50000 

1:5  

▪ 

/3  40000 cu c 
13 0 
C 
• 30000 o 
cu 	20000 

10000 
0 

Adaptive_Checkpointig (Proposed) 

Periodic_Checkpointing 

Periodic_Skip 

Exponential_Backoff Skip 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

Checkpoint Interval (seconds) 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Checkpoint Interval (seconds) 

al Adaptive_Checkpointig 

Periodic_Checkpointing 

M Periodic Skip 

m Exponential_Backoff Skip 

0.9 

0.8 

0.7 -

0.6 
0.5 
0.4 
0.3 
0.2 
0.1 - 

0 

0 

to 

7 

Figure 5.17 Comparison for number of checkpoints taken parameter 

Figure 5.18 Comparison for average bounded slowdown parameter 

Figure 5.19 Comparison for utilization parameter 

Figure 5.20 gives a radar plot for mean values for both adaptive checkpointing and periodic 

checkpointing. Values for adaptive checkpointing relative to periodic checkpointing are -3.13% for 

makespan, -13.43 for flowtime, -13.41% for average bounded slowdown, +2.65% for utilization, -

22.51% for work lost due to failures, -7.21% for number of checkpoints taken. 
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Figure 5.20 Overall comparison between fault ratio based adaptive checkpointing and periodic checkpointing 

5.5 Ant Colony Based Adaptive Checkpointing Using MTBF of Resources 

This section compares ant colony based adaptive checkpointing with ant colony based periodic 

checkpointing technique. Figure 5.21 shows values for makespan parameter. MTBF based 

checkpointing has lesser makespan compared to periodic checkpointing. Figure 5.16 gives results for 

work lost due to failures. 

As shown in figures 5.23, 5.24, 5.25, 5.26 MTBF based ant colony techniques have lesser flowtime, 

average bounded slowdown, number of checkpoints taken and higher utilization compared to periodic 

checkpointing technique. 

Figure 5.21 Comparison for makespan parameter for adaptive checkpointing, scheduling assisted fault tolerant periodic and 
periodic checkpointing 
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Figure 5.23 Comparison for flowtime parameter 
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Figure 5.24 Comparison for number of checkpoints taken parameter 
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Figure 5.26 Comparison for utilization parameter 

Figure 5.27 gives a holistic view of comparison for all parameters using a radar plot. Values for adaptive 

checkpointing relative to periodic checkpointing are -8.7% for makespan, -4.22 for flowtime, -7.8% for 

average bounded slowdown, +6.569% for utilization, -3.24% for work lost due to failures, -10% for 

number of checkpoints taken. 
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Figure 5.27 Overall comparison between M'J'BF based adaptive checkpointing and periodic checkpointing 
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5.6 Ant Colony Based Adaptive Checkpointing Using Fault Ratios of Resources 

The simulated Grid environment consists of 5 clusters with 64 PEs in each cluster. MTBF of resources is 

varied from 3 to 28 hours. The overhead associated with individual checkpoints is 360 seconds. Other 

parameters and assumptions are same as in subsection 5.3. As shows in figures 5.28, 5.29, 5.30, 5.31, 

5.32 the adaptive checkpointing technique has poor performance for makespan, flowtime, average 

bounded slowdown for initial four checkpointing intervals. This is due to excessive checkpointing 

performed which is clear from figure 5.31. For rest of the checkpointing intervals adaptive 

checkpointing has superior performance compared to periodic checkpointing technique. 

Figure 5.28 Comparison for makespan parameter between adaptive checkpointing, periodic checkpointing and skipping 
checkpointing techniques 

Figure 5.29 Comparison for work lost due to failuies parameter 
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Figure 5.30 Comparison for flowtime parameter 
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Figure 5.31 Comparison for number of checkpoints taken parameter, 

Figure 5.32 Comparison for average bounded slowdown parameter 
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Figure 5.33 Comparison for utilization parameter 

Figure 5.34 gives a holistic view of the comparison between adaptive checkpointing and periodic 

checkpointing for all the parameters considered using a radar plot. Values for adaptive checkpointing 

relative to periodic checkpointing are -6.95% for makespan, -1.55 for flowtime, -7.7% for average 

bounded slowdown, +7.17% for utilization, -28.2% for work lost due to failures, +30% for number of 

checkpoints taken. 
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Figure 5.28 Overall comparison between IVITBF based adaptive checkpointing and periodic checkpointing 

5.7 GA-based Adaptive Fault Tolerance Using Fault Ratios of Resources for spatially and 

temporally Correlated Failures 

Spatial correlation means that failures are localized in space i.e. in a given time frame nodes in one 

cluster may be more prone to failures compared to nodes in other clusters. Temporal correlation can be 

of following two types 

i) If a node has not failed for a long time then there is less probability that it will fail in the near future. 

ii) If a node has failed recently then there is high probability that it will fail in the near future. 
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To simulate above characteristics of failures a unique experiment has been developed. The simulated 

Grid environment consists of two clusters each with 64 processing elements. First failures are generated 

from Weibull distribution. Then for one resource first half of the failures generated is sorted in 

ascending order and the second half in descending order. For the other resource first half is sorted in 

descending order and second half in ascending order. The sorting of failures for two resources in 

different order means that in a time frame nodes in one cluster are more prone to failures compared to 

others (spatial correlation). Also sorting two halves of failures for a resource in alternate order helps 

achieve the above properties of temporal correlation. This technique is similar to [40]. 

A total of 32 batches of 100 jobs each requiring 6 hours of computation are submitted one after the 

completion of previous. Each job is composed of 64 processes and an entire cluster is assumed to be 

allocated to a job for its execution. Coordinated checkpointing is used for performing checkpoints and it 

is assumed that even if one of the processes of a job fails, all processes of that job are restarted from the 

latest successively saved checkpoint. Size of checkpoint interval is 3000 seconds and each checkpoint 

has an overhead of 180 seconds. 

Figures 5.35 to 5.40 compares adaptive checkpointing with periodic checicpointing respectively for 

makespan, work lost due to failures, flowtime, number of checkpoints taken, average bounded 

slowdown, and utilization. Peaks in curves for makespan, flowtime, average bounded slowdown, and dip 

for utilization are where one resource has higher rate of failures compared to others (spatial correlation) 

as is clear from figure 5.41.. Adaptive checkpointing is able to take advantage of this correlation and 

gives superior performance compared to periodic checkpointing. Rising above the peak is where 

temporal correlation is achieved. Adaptive checkpointing gives better performance for this situation. 

Falling down a peak is where anti-temporal correlation is simulated and adaptive checkpointing gives a 

little poorer performance compared to periodic checkpointing for this case. 

Figure 5.42 gives resource allocations for each batch of jobs for both techniques compared. Figure 5.43 

gives completion time of resources for each batch of jobs for both the techniques. 

Figure 5.44 gives a holistic view of comparison between the two techniques for all parameters using a 

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -3.5% for makespan, 

-3.1 for flowtime, -17.84% for average bounded slowdown, +1.395% for utilization, -24.84% for work 

lost due to failures, -5.76% for number of checkpoints taken. 
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Figure 5.36 Comparison for work lost due to failures 

Figure 5.37 Comparison for flowtime parameter 
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Figure 5.39 Comparison for average bounded slowdown parameter 

Figure 5.40 Comparison for utilization parameter 
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Figure 5.41 Number of fault occurrences for each resource 

Figure 5.42 Number of jobs scheduled on each resource 

C
om

p
le

ti
o

n
  t
im

e  
(s

ec
on

ds
)  3000000 

2500000 

2000000 

1500000 

1000000 

500000 

0 

—0-- GA based adaptive checkpointing 
(Resource 1) 

GA based adaptive checkpointing 
(Resource 2) 

—a—GA based periodic Checkpointing 
(Resource 1) 

—x—GA based periodic Checkpointing 
(Resource 2) 

 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

Iteration 

Figure 5A3 Completion times of each resource 
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Figure 5.44 Overall comparison of periodic and adaptive checkpointing 

5.8 Ant Colony-based Adaptive Fault Tolerance Using Fault Ratios of Resources for spatially and 

temporally Correlated Failures 

This subsection compares ant colony based adaptive checkpointing with ant colony based periodic 

checkpointing for spatially and temporally correlate failures. Parameters and underlying assumptions are 

same as in subsection 5.7. 

Figures 5.45 to 5.50 compares the two techniques respectively for makespan, work lost due to failures, 

flowtime, number of checkpoints taken, average bounded slowdown, and utilization for each batch of 

jobs. Peaks for makespan, work lost, flowtime, average bounded slowdown, and dip for utilization is 

where spatial correlation is simulated. Rising up a peak simulates temporal correlation and falling down 

a peak simulates anti-temporal correlation. Other interpretations are same as in subsection 4.5. 

Figures 5.51, 5.52, 5.53 respectively shows number of fault occurrences of each resource, job allocations 

of each resource, and completion time of each resource for both techniques for each batch of jobs. 

Figure 5.54 gives a holistic view of comparison between the two techniques for all parameters using a 

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -2.3% for makespan, 

-3.8 for flowtime, -20.5% for average bounded slowdown, +.97% for utilization, -25.3% for work lost 

due to failures, -7.52% for number of checkpoints taken. 
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Figure 5.45 Makespan comparison for periodic and adaptive checkpointing 

Figure 5.46 Comparison for work lost due to failures parameter 
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Figure 5.47 Comparison for flowtime parameter 
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Figure 5.48 Comparison for number of checkpoints parameter 

Figure 5.49 Comparison for number of average bounded slowdown parameter 

Figure 5.50 Comparison for utilization parameter 
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Figure 5.51 Number of fault occurrences for each resource 

Figure 5.52 Number of jobs scheduled on each resource 

Figure 5.53 Completion times of each resource 
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Figure 5.54 Overall comparison of periodic and adaptive checkpointing 

5.9 Fault Index based periodic Skip 

5.9.1 Comparison between periodic skip and fault index based periodic skip 

This subsection compares periodic skip with fault index based periodic skip. A total of 200 jobs each 

requiring around 1 hour of computation on a single processor were submitted. Checkpointing interval 

was varied from 150 seconds to 400 seconds with each checkpointing operation having a cost of 30 

seconds. A total of 30 resources each with a single processor are available for execution of jobs. MTBF 

of resources is varied from 15 minutes to 5 hour. Figures 5.55 to 5.59 compares the two techniques 

respectively for makespan, work lost due to failures, flowtime, number of checkpoints, and average 

bounded slowdown. Adaptive checkpointing performs better as it is able to adapt the skipping behavior 

depending on the failure conditions of resources i.e. don't skip checkpoints if failure rate is high and 

skip more checkpoints if failure rate is very low. 

Figure 5.55 Makespan comparison for periodic skip and adaptive periodic skip 

68IPage 



eriodic Skip 

daptive Periodic Skip (proposed) 

150 	200 	250 	300 	350 	400 

Checkpoint Interval (seconds) 

160000 
• 140000 g 120000 

oo o o 
80000 

o 60000 
if 40000 
g 20000 

0 

17; 1290000 -0 • 1280000 
8 1270000 

1260000 
1250000 - 

E 	1240000 - 
1230000 
1220000 

2 	1210000 - 
1200000 
1190000 

1  

, 
Pe iodic Skip 

'Adaptive Periodic Skip (proposed) 

   

150 	200 	250 	300 	350 
	

400 

Checkpoint Interval (seconds) 

Checkpoint Interval (seconds) 

N
u

m
b

e
r  

of
 c

h
ec

k
po

in
ts

  

• Periodic Skip 

Adaptive Periodic Skip (proposed) 

5000 
4500 
4000 
3500 
3000 
2500 
2000 
1500 
1000 
500 
0 

150 	200 	250 	300 	350 
	

400 

Figure 5.56 Comparison for work lost due to failures parameter • 

Figure 5.57 Comparison for flowtime parameter 

Figure 5.58 Comparison for number of checkpoints taken parameter 
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Figure 5.59 Comparison average bounded slowdown parameter 

5.9.2 Comparison for temporally and spatially correlated failures 

Parameters and underlying assumptions are same as in subsection 5.7. Figures 5.60 to 5.65 respectively 

compares adaptive periodic skip and periodic skip for makespan, work lost due to failures, flowtime, 

number of checkpoints taken, average bounded slowdown, and utilization for each batch of jobs. 

Figures 5.66 and 5.67 respectively show plots for number of faults on each resource, completion time 

for each resource for both techniques after execution of each batch of jobs. 

Figure 5.68 gives a holistic view of comparison between the two techniques for all parameters using a 

radar plot. Values for adaptive checkpointing relative to periodic checkpointing are -6.42% for 

makespan, -2.25 for flowtime, -10.1% for average bounded slowdown, +5.36% for utilization, -11.425% 

for work lost due to failures, -.79% for number of checkpoints taken. 

Figure 5.60 iNiakespan comparison for periodic and adaptive checkpointing 
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Figure 5.62 Comparison for flowtime parameter 
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Figure 5.65 Comparison for utilization parameter 

Figure 5.66 Number of fault occurrences for each resource 
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Figure 5.68 Overall comparison between periodic skip and adaptive periodic skip 

5.10 Adaptive Checkpointing using MTBF and Last failure times of resources 

This subsection compares adaptive checkpointing using MTBF of resources with periodic checkpointing 

for spatially and temporally correlated failures. For generating temporally and spatially correlating 

failures in addition to the previously mentioned method (subsection 5.7) of sorting two halves of 

generated failures into ascending and descending order (referred to as w = 2 in this subsection), another 

method which divides the generated failures into four parts and sorts parts alternatively in ascending and 

descending order (referred to as w =4) is used. 

Figures 5.69 to 5.74 respectively compares the two techniques for makespan, work lost due to failures, 

flowtime, number of checkpoints taken, average bounded slowdown, and utilization for 4 batches of 

jobs. It is to be observed that adaptive checkpointing gives slightly poorer value for makespan. This is 

acceptable as average completion time of a resource (flowtime) is significantly better for adaptive 

checkpointing technique. Also the adaptive checkpointing technique has significantly better values for 

average bounded slowdown as shown in figure 5.73. 
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Figures 5.75 and 5.76 respectively give completion times of resources and number of faults on each 

resource for both techniques for each batch of jobs. 

Figure 5.69 Makespan comparison between periodic and adaptive checkpointing 

Figure 5.70 Comparison for work lost due to failures parameter 

Figure 5.71 Comparison for flowtime parameter 
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Figure 5.72 Comparison for number of checkpoints taken parameter 

Figure 5.73 Comparison for average bounded slowdown parameter 

Figure 5.74 Comparison for utilization parameter 
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Figure 5.75 Completion times of resources 

Figure 5.76 Fault occurrences on resources 
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5.11 Performance Comparison of GA based checkpointing techniques using failure traces 

This section compares GA based adaptive checkpointing based on fault ratios of resources with GA 

based periodic checkpointing. Five failure traces overnet, skype, ucb, Notre and glow from failure trace 

archive [49, 50] were used for comparing the two techniques. Following configuration is used for each 

trace. 

• Ovemet trace consisted of 100 nodes with each node having 1 processing element. 12 batches of 

150 jobs were submitted with each job requiring 3 hours of computation on 1 processing 

element. MTTR of each resource was ignored and taken to be 0. 

• Skype trace consisted of 100 nodes with each node having single PE. 12 batches of 150 jobs 

were submitted with each job requiring around 12 hours of computation. 

• Ucb trace consisted of 80 nodes with single PE on each node. 12 batches of 120 jobs were 

submitted with each job requiring around 7 to 8 minutes of computing time. 

• Notre trace consisted of 25 nodes with single PE on each resource. 12 batches of 300 jobs were 

submitted with each job requiring around 6 hours of computation. 

• Glow trace consisted of 87 nodes with single PE on each resource. 12 batches of 150 jobs were 

submitted with each requiring around 48 hours of computation. 

Figure 5.77 gives comparison between adaptive checkpointing and periodic checkpointing for makespan 

parameter for all failure traces. 12 iterations refer to 12 batches of jobs submitted for each trace. As is 

clear from the figure adaptive checkpointing has better performance compared to periodic checkpointing 

for all failure traces. 

Figure 5.77 Comparison between adaptive checkpointing and periodic checkpointing for makespan parameter 
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Figure 5.78 compares adaptive checkpointing and periodic checkpointing for work lost due to failures 

Adaptive checkpointing technique tends to lose more work due to adaptive increase in checkpoint 

interval which also results in more work lost for each failure. 

Figure 5.78 Comparison for work lost due to failures parameter 

Figure 5.79 compares GA based adaptive checkpointing with GA based periodic checkpointing for 

flowtime parameter for all failure traces. Adaptive checkpointing technique has superior performance 

for this parameter for all failure traces. 
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Figure 5.79 Comparison for flowtime parameter 

Figure 5.80 compares the two techniques for number of checkpoints taken. Adaptive checkpointing 

technique takes fewer checkpoints compared to periodic checkpointing for all failure traces. The reason 

for fewer checkpoints is adaptive increase in checkpoint interval due to less failure rate of resources. 
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Figure 5.80 Comparison for number of checkpoints taken parameter 

Figure 5.81 compares the two techniques for average bounded slowdown parameter. Adaptive 

checkpointing performs better for this parameter with lesser average bounded slowdown for each job. 
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Figure 5.81 Comparison for average bounded slowdown parameter 

Figure 5.82 compares the two techniques for utilization parameter. Adaptive checkpointing has slightly 

higher utilization of resources compared to periodic checkpointing. 

Figure 5.82 Comparison for utilization parameter 
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Figure 5.83 compares the two techniques for turnaround time parameter. Adaptive checkpointing has 

lesser turnaround time compared to periodic checkpointing. 

Figure 5.83 Comparison for turnaround time parameter 

Figure 5.84 and 5.85 respectively gives overall comparison between GA based adaptive checkpointing 

and 

Figure 5.84 Overall comparison between GA based adaptive and periodic checkpointing (Overnet trace) 

Figure 5.85 Overall comparison between GA based adaptive and periodic checkpointing (Skype trace) 
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GA based periodic checkpointing for trace 1 and trace 2. Values for adaptive checkpointing relative to 

periodic checkpointing for trace 1 are -1% for makespan, -5% for flowtime, -26.7% for average bounded 

slowdown, +.96% for utilization, +58.8% for work lost due to failures, -37.5% for number of 

checkpoints taken and -5% for average turnaround time. Values for adaptive checkpointing relative to 

periodic checkpointing for trace 2 are -2.6% for makespan, -2.7% for flowtime, -29.8% for average 

bounded slowdown, +2.4% for utilization, +36% for work lost due to failures, -32% for number of 

checkpoints taken and -3.88% for average turnaround time. 

Figure 5.86 and 5.87, 5.88 respectively gives overall comparison betv■;een GA based adaptive 

checkpointing and GA based periodic checkpointing for trace 3, trace 4 and trace 5. Values for adaptive 

checkpointing relative to periodic checkpointing for trace 3 are -5% for makespan, -7.88% for flowtime, 

-42.7% for average bounded slowdown, +5.47% for utilization, +55.43% for work lost due to failures, 

47% for number of checkpoints taken and -8.35% for average turnaround time. Values for adaptive 

checkpointing relative to periodic checkpointing for trace 4 are -4.4% for makespan, -2.7% for flowtime, 

Figure 5.86 Overall comparison between GA based adaptive and periodic checkpointing (Ucb trace) 

Figure 5,87 Overall comparison between GA based adaptive and periodic checkpointing (Notre trace) 
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23.5% for number of checkpoints taken and -3.2% for average turnaround time. Values for adaptive 

checkpointing relative to periodic checkpointing for trace 5 are -3.8% for makespan, -5.7% for flowtime, 

-33.43% for average bounded slowdown, +3.92% for utilization, +91% for work lost due to failures, -

32% for number of checkpoints taken and -6.7% for average turnaround time. 

Figure 5.88 Overall comparison between GA based adaptive and periodic checkpointing (Glow trace) 

5.12 Performance Comparison of ACO based checkpointing techniques using failure traces 

This section compares ACO based adaptive checkpointing based on fault ratios of resources with ACO 

based periodic checkpointing. Failure traces with configurations as given in section 5.11 are taken for 

experimentation. 

Figure 5.89 gives comparison between adaptive checkpointing and periodic checkpointing for makespan 

parameter for all failure traces. As is clear from the figure adaptive checkpointing has better 

performance (lesser makespan values) compared to periodic checkpointing for all failure traces. 

Figure 5.89 Comparison between ACO based adaptive checkpointing and ACO based periodic checkpointing for makespan parameter 
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Figure 5.90 compares adaptive checkpointing and periodic checkpointing for work lost due to failures 

Adaptive checkpointing technique tends to lose more work due to adaptive increase in checkpoint 

interval which also results in more work lost for each failure. 

Figure 5.90 Comparison for work lost due to failures parameter 

Figure 5.91 compares ACO based adaptive checkpointing with ACO based periodic checkpointing for 

flowtime parameter for all failure traces. Adaptive checkpointing technique has superior performance 

(lower flowtime) for this parameter for all failure traces. 

Figure 5.91 Comparison for flowtime parameter 

Figure 5.92 compares the two techniques for number of checkpoints taken. Adaptive checkpointing 

technique takes fewer checkpoints compared to periodic checkpointing for all failure traces. The reason 

for fewer checkpoints is adaptive increase in checkpoint interval due to less failure rate of resources. 
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Figure 5.92 Comparison for number of checkpoints taken parameter 

Figure 5.93 compares the two techniques for average bounded slowdown parameter. Adaptive 

checkpointing performs better for this parameter with lesser average bounded slowdown. 
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Figure 5.93 Comparison for average bounded slowdown parameter 

Figure 5.94 compares the two techniques for utilization parameter. Adaptive checkpointing has slightly 

higher utilization of resources compared to periodic checkpointing. 

Figure 5.94 Comparison for utilization parameter 
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Figure 5.95 compares the two techniques for turnaround time parameter. Adaptive checkpointing has 

lesser turnaround time compared to periodic checkpointing. 

Figure 5.95 Comparison for turnaround time parameter 

Figure 5.96 and 5.97 respectively gives overall comparison between ACO based adaptive checkpointing 

Figure 5.96 Overall comparison between ACO based adaptive and periodic checkpointing (Overact trace) 

Figure 5.97 Overall comparison between ACO based adaptive and periodic checkpointing (Skype trace) 
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and ACO based periodic checkpointing for trace 1 and trace 2. Values for adaptive checkpointing 

relative to periodic checkpointing for trace 1 are -4.8% for makespan, -3.7% for flowtime, -22.3% for 

average bounded slowdown, +5% for utilization, +182% for work lost due to failures, -23% for number 

of checkpoints taken and -4.1% for average turnaround time. Values for adaptive checkpointing relative 

to periodic checkpointing for trace 2 are -2.5% for makespan, -2% for flowtime, -15.7% for average 

bounded slowdown, +2.4% for utilization, +14% for work lost due to failures, -17.5% for number of 

checkpoints taken and -1.86% for average turnaround time. 

Figure 5.98 and 5.99, 5.100 respectively gives overall comparison between. ACO based adaptive 

checkpointing and ACO based periodic checkpointing for trace 3, trace 4 and trace 5. Values for 

adaptive checkpointing relative to periodic checkpointing for trace 3 are -2.3% for makespan, -4% for 

flowtitne, -25% for average bounded slowdown, +2.34% for utilization, +35.5% for work lost due to 

failures, -26.7% for number of checkpoints taken and -4% for average turnaround time. Values for 

adaptive checkpointing relative to periodic checkpointing for trace 4 are -2.5% for makespan, -2% for 

Figure 5.98 Overall comparison between ACO based adaptive and periodic checkpointing (Ucb trace) 

Figure 5.99 Overall comparison between ACO based adaptive and periodic checkpointing (Notre trace) 
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flowtime, -15.7% for average bounded slowdown, +2.4% for utilization, +14.13% for work lost due to 

failures, -17.5% for number of checkpoints taken and -1.8% for average turnaround time. Values for 

adaptive checkpointing relative to periodic checkpointing for trace 5 are -5.4% for makespan, -5.49% 

for flowtime, -33.14% for average bounded slowdown, +5.7% for utilization, +86.7% for work lost due 

to failures, -33.14% for number of checkpoints taken and -5.5% for average turnaround time. 

Figure 5.100 Overall comparison between ACO based adaptive and periodic checkpointing (Glow trace) 

5.13 GA-based checkpointing techniques performance comparison using workload traces 

This section compares GA-based adaptive checkpointing using fault ratios of resources with GA-based 

periodic checkpointing for workload traces from workload trace archives [51, 52]. Alea [41] simulator is 

used for simulation. 

a) Trace 1(ITPC2) 

This trace consisted of 3000 jobs with each job having different number of PE requirement ranging 

from 1 PE to 128 PEs. Four clusters each with 4 SMPs with each SMP having 16 processors were used 

for execution of jobs. Jobs are allocated processors only from one cluster. Note that there are a 

maximum of 64 processors in any cluster and job requirement can be higher than that. In that case 

resources are not allocated to job. Resources failures were simulated with first and third cluster having 

much higher failure rate compared to second and fourth. Coordinated checkpointing is used for 

performing checkpointing operation. Complete job is restarted from last successfully saved checkpoint 

even if only one PE allocated to it fails. 
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Figure 5.101 shows the average cluster usage per day for each cluster for adaptive checkpointing 

technique. As can be seen utilization of resources is very low. 
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Figure 5.101 Cluster usage per day for workload trace 1 (Adaptive checkpointing) 

Figure 5.102 shows number of requested and used CPUs per day for GA-based adaptive checkpointing 

technique. Requested CPUs are much less than the available CPUs 
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Figure 5.102 Number of requested and used CPI's per day for trace 1 (Adaptive checkpointing) 
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Figure 5.103 Average machine usage per day for trace 1 (Adaptive checkpointing) 
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Figure 5.103 gives average machine usage per day for adaptive checkpointing technique. Figure 5.10,  

gives cluster usage per day for periodic checkpointing technique. Cluster usage is very low. 
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Figure 5.104 (luster usage per day for workload trace 1 (Periodic checkpointing) 

Figure 5.105 gives number of requested and used CPUs per day for periodic checkpointing technique 

Requested CPUs is much lower than that available. 
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Figure 5.105 Number of requested and used CPUs per day for trace 1 (Periodic checkpointing) 
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Figure 5.106 Average machine usage per day for trace I (Periodic checkpointing) 
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Figure 5.106 gives average machine usage per day for GA-based periodic checkpointing. Figure 5.107 

gives average waiting time of jobs submitted to a cluster for each day for each of periodic checkpointing 

and adaptive checkpointing technique. 
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Figure 5.107 Average waiting time per cluster per day for trace 1 

Figure 5.108 gives average response time of jobs submitted to a cluster for each day for both techniques. 

Figure 5.108 Average response time per cluster per day for trace 1 

Figure 5.109 Average tardiness time per cluster per day for trace 1 
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Figure 5.109 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. Figure 5.110 gives number of checkpoints 

performed by jobs on each cluster for each day for each of periodic checkpointing and adaptive 

checkpointing technique. 
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Figure 5.110 Number of checkpoints per cluster per day for trace 1 

Figure 5.111 gives work lost due to failures on each cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.111 Work lost due to failures per cluster per day for trace 1 

Figure 5.112 gives overall comparison between GA-based adaptive checkpointing using fault ratios of 

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to 

periodic checkpointing are 	0% for makespan, 0% for flowtime, -20.5% for average bounded 

slowdown, -11.7% for work lost due to failures, -21% for number of checkpoints taken and -4.3% for 

average turnaround time 
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Figure 5.112 Overall comparison between adaptive and periodic checkpointing for workload trace 1 

b) Trace 2 (LCG) 

This trace consisted of 3000 jobs with each job having only 1PE requirement. Six clusters each 

with 2 SMPs with each SMP having 16 processors were used for execution of jobs. Jobs are allocated 

processors only from one cluster. Resources failures were simulated with first and third cluster having 

much higher failure rate. Coordinated checkpointing is used for performing checkpointing operation. 

Complete job is restarted from last successfully saved checkpoint even if only one PE allocated to it 

fails. 

Figure 5.113,shows the average machine usage per hour for adaptive checkpointing technique. 

a 
	

ID 11 12 13 14 	1G IT 10 10 20, '21 22 23 34 

Figure 5.113 Average machine usage per hour for trace 2 (Adaptive checkpointing) 
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Figure 5.114 gives cluster usage %age for each cluster for adaptive checkpointing technique. 

Figure 5.114 Cluster usage per hour for trace 2 (Adaptive checkpointing) 

Figure 5.115 shows the average machine usage per hour for periodic checkpointing technique. 

Figure 5.115 Average machine usage per hour for trace 2 (Periodic checkpointing) 

Figure 5.116 gives cluster usage %age for each cluster for periodic checkpointing technique. 

Figure 5.116 Cluster usage per hour for trace 2 (Periodic checkpointing) 
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Figure 5.117 gives overall comparison between GA-based adaptive checkpointing using fault ratios of 

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to 

periodic checkpointing are 0% for makespan, 0% for flowtime, -15% for average bounded slowdown, 

31% for work lost due to failures, -40.5% for number of checkpoints taken and -1.3% for average 

turnaround time. 

Figure 5.117 Overall comparison between adaptive and periodic checkpointing for workload trace 2 

c) Trace 3 (NASA-iPSC-1993) 

This trace consisted of 10000 jobs with each job having different number of PE requirement ranging 

from 1 PE to 128 PEs. Three clusters each with 8 SMPs with each SMP having 16 processors were used 

for execution of jobs. Jobs are allocated processors only from one cluster. Resources failures were 

simulated with first cluster having much higher failure rate compared to second and third. Coordinated 

checkpointing is used for performing checkpointing operation. Complete job is restarted from last 

successfully saved checkpoint even if only one PE allocated to it fails. 

Figure 5.118 shows the average cluster usage per day for each cluster for adaptive checkpointing 

technique. As can be seen utilization of resources is very low. 

Figure 5.119 shows number of requested and used CPUs per day for GA-based adaptive checkpointing 

technique. Requested CPUs are much less than the available CPUs. 

Figure 5.120 gives average machine usage per day for adaptive checkpointing technique. 
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Figure 5.118 Cluster usage per day for workload trace 3 (Adaptive checkpointing) 
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Figure 5.119 Number of requested and used CPUs per day for trace 3 (Adaptive checkpointing) 
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Figure 5.120 Average machine usage per day for trace 3 (Adaptive checkpointing) 

Figure 5.121 shows the average cluster usage per day for each cluster for periodic checkpointing 

technique. 

Figure 5.122 shows number of requested and used CPUs per day for GA-based periodic checkpointing 

technique. Requested CPUs are much less than the available CPUs. 
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Figure 5.121 Cluster usage per day for workload trace 3 (Periodic checkpointing) 
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Figure 5.122 Number of requested and used CPUs per day for trace 3 (Periodic checkpointing) 

Figure 5.123 gives average machine usage per day for periodic checkpointing technique. 
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Figure 5.123 AN erage machine usage per da) for trace 3 (Periodic checkpointing) 

Figure 5.124 gives average waiting time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

96IPage 



•Cluster3_periodic 

•Cluster2periodic 

•Clusterl_periodic 

•Cluster3_adaptive (proposed) 

•Cluster2_adaptive (proposed) 

•Clusterl_adaptive( proposed) 

E 

90000 
80000 
70000 
60000 
50000 
40000 
30000 
20000 
10000 

0 

  

  

 

1 3 5 7 9 11 13 15 17 19 21 23 25D2W29 31 33 35 37 39 41 43 45 47 49 51 53 

Figure 5.124 Average waiting time per cluster per day for trace 3 

Figure 5.125 gives average response time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 
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Figure 5.125 Average response time per cluster per day for trace 3 
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Figure 5.126 Average tardiness time per cluster per day for trace 3 
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Figure 5.127 Number of checkpoints per cluster per day for trace3 

Figure 5.126 gives average tardiness time of jobs submitted to a cluster for each day for each technique. 

Figure 5.127 gives number of checkpoints performed by jobs on each cluster for each day for each of 

periodic checkpointing and adaptive checkpointing technique. Figure 5.128 gives work lost due to 

failures on each cluster for each day for each of periodic checkpointing and adaptive checkpointing 

technique. 

 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

0 

   

    

   

11Cluster3periodic 

IOCluster2_periodic 

MIClusterl_pericdic 

SCluster3_adaptive (proposed) 

InCluster2_adaptive (proposed) 

•Clusterl_adaptive(proposed) 

0 

O 

 

01111111010  

  

1 3 5 7 9 11 13 15 17 19 21 23 21* 29 31 33 35 37 39 41 43 45 47 49 51 

 

Figure 5.128 Work lost due to failures per cluster per day for trace 3 

Figure 5.129 gives overall comparison between GA-based adaptive checkpointing using fault ratios of 

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to 

periodic checkpointing are 	0% for makespan, 0% for flowtime, -19.76% for average bounded 

slowdown, -13% for work lost due to failures, -29% for number of checkpoints taken and -4.85% for 

average turnaround time. 
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Figure 5.129 Overall comparison between adaptive and periodic checkpointing for workload trace 3 

d) Trace 4 (LCG-2005) 

This trace consisted of 10000 jobs with each job having requirement of 1PE only. Six clusters each 

with 4 SMPs with each SMP having 16 processors were used for execution of jobs. Jobs are allocated 

processors only from one cluster. Resources failures were simulated with first cluster having much 

higher failure rate. Coordinated checkpointing is used for performing checkpointing operation. 

Complete job is restarted from last successfully saved checkpoint even if only one PE allocated to it 

fails. 

Figure 5.130 shows the average machine usage per hour for adaptive checkpointing technique. 
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Figure 5.130 Average machine usage per hour for workload trace 4 (Adaptive checkpointing) 
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Figure 5.131 gives Cluster usage %age for each cluster for adaptive checkpointing technique. 

Figure 5.131 Average cluster usage % for workload trace 4 (Adaptive checkpointing) 

Figure 5.132 shows the average machine usage per hour for periodic checkpointing technique. 
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Figure 5.132 Average machine usage per hour for workload trace 4 (Periodic checkpointing) 

Figure 5.133 gives cluster usage %age for each cluster for periodic checkpointing technique. 

Figure 5.133 Average cluster usage % for workload trace 4 (Periodic checkpointing) 
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Figure 5.134 gives overall comparison between GA-based adaptive checkpointing using fault ratios of 
resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to 

periodic checkpointing are -2.2% for makespan, -2.1% for flowtime, -20.3% for average bounded 
slowdown, -4.5% for work lost due to failures, -20.5% for number of checkpoints taken and -4% for 

average turnaround time. 

Figure 5.134 Overall comparison between adaptive and periodic checkpointing for workload trace 4 

e) Trace 5 (LLNL-Thunder-2007) 

This trace consisted of 1000 jobs with each job having PE requirement ranging from 4 to 128 PEs. 

Four clusters each with 8 SMPs with each SMP having 16 processors were used for execution of jobs. 
Jobs are allocated processors only from one cluster. Resources failures were simulated with first cluster 

having much higher failure rate. Coordinated checkpointing is used for performing checkpointing 
operation. 

Figure 5.135 Average machine usage per hour for workload trace 5 (Adaptive checkpointing) 
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Figure 5.135 shows the average machine usage per hour for adaptive checkpointing technique. Figure 

5.136 gives cluster usage %age for each cluster for adaptive checkpointing technique. 

Figure 5.136 Average cluster usage % for workload trace 5 (Adaptive checkpointing) 

Figure 5.137 shows the average machine usage per hour for periodic checkpointing technique. 
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Figure 5.137 Average machine usage per hour for workload trace 5 (Periodic checkpointing) 

Figure 5.138 gives cluster usage %age for each cluster for periodic checkpointing technique. 
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Figure 5.138 Average cluster usage % for workload trace 5 (Periodic checkpointing) 
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Figure 5.139 gives overall comparison between GA-based adaptive checkpointing using fault ratios of 

resources and GA-based periodic checkpointing. Values of adaptive checkpointing technique relative to 

periodic checkpointing are 	0% for makespan, 0% for flowtime, -13.6% for average bounded 

slowdown, -7.2% for work lost due to failures, -26.8% for number of checkpoints taken and -1.85% for 

average turnaround time. 

Figure 5.139 Overall comparison between adaptive and periodic checkpointing for workload trace 5 

5.14 ACO-based checkpointing techniques performance comparison using workload traces 

This section compares ACO-based adaptive checkpointing using fault ratios of resources with ACO-

based periodic checkpointing for workload traces from workload trace archives. 

a) Trace 1(HPC2) 

Configuration and parameters are same as in subsection 5.13 

Figure 5.140 shows average cluster usage per day for each cluster for adaptive checkpointing technique. 
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Figure 5.140 Cluster usage per day for workload trace 1 (Adaptive checkpointing) 
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Figure 5.141 shows number of requested and used CPUs per day for adaptive checkpointing technique. 

Figure 5.141 Number of requested and used CPUs per day for trace 1 (Adaptive checkpointing) 

Figure 5.142 gives average machine usage per day for adaptive checkpointing technique. 
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Figure 5.142 Average machine usage per day for trace 1 (Adaptive checkpointing) 

Figure 5.143 gives cluster usage per day for periodic checkpointing technique. Cluster usage is very low. 
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Figure 5.143 Cluster usage per day for workload trace 1 (Periodic checkpointing) 
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Figure 5.144 shows number of requested and used CPUs per day for periodic checkpointing technique. 
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Figure 5.144 Number of requested and used CPUs per day for trace 1 (Periodic checkpointing) 

Figure 5.145 gives average machine usage per day for periodic checkpointing technique. 
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Figure 5.145 Average machine usage per day for trace 1 (Periodic checkpointing) 

Figure 5.146 gives average waiting time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.146 Average waiting time per cluster per day for trace 1 
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Figure 5.147 gives average response time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.147 Average response time per cluster per day for trace 1 

Figure 5.148 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.148 Average tardiness time per cluster per day for trace 1 

Figure 5.149 Number of checkpoints per cluster per day for trace 1 
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Figure 5.149 gives number of checkpoints taken on each cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.150 gives work lost due to failures on each cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.150 Work lost due to failures per cluster per day for trace 1 

Figure 5.151 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of 

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative 

to periodic checkpointing are 0% for makespan, 0% for flowtime, -39.6% for average bounded 

slowdown, -87% for work lost due to failures, -38% for number of checkpoints taken and -9% for 

average turnaround time. 

Figure 5.151 Overall comparison between adaptive and periodic checkpointing for workload trace 1 
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b) Trace 2 (LCG) 

Configuration and parameters are same as in subsection 4.11 

Figure 5.152 shows the average machine usage per hour for adaptive checkpointing technique. 

Figure 5.'152 Average machine usage per hour for workload trace 2 (Adaptive checkpointing) 

Figure 5.153 gives cluster usage %age for each cluster for adaptive checkpointing technique. 

Figure 5.153 Average cluster usage % for workload trace 2 (Adaptive checkpointing) 

Figure 5.154 Average machine usage per hour for workload trace 2 (Periodic checkpointing) 
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Figure 5.154 shows the average machine usage per hour for periodic checkpointing technique. Figure 

5.155 gives cluster usage %age for each cluster for periodic checkpointing technique. 

Figure 5.155 Average cluster usage % for workload trace 2 (Periodic checkpointing) 

Figure 5.156 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of 

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative 

to periodic checkpointing are 0% for makespan, -3% for flowtime, -22% for average bounded 

slowdown, +34% for work lost due to failures, -51% for number of checkpoints taken and -2% for 

average turnaround time. 

Figure 5.156 Overall comparison between adaptive and periodic chcckpointing for workload trace 2 

c) Trace 3 (NASA-iPSC-1993) 

Configuration and parameters are same as in subsection 4.11 

Figure 5.157 shows average cluster usage per day for each cluster for adaptive checkpointing technique. 

As can be seen utilization of resources is very low 

Figure 5.158 shows number of requested and used CPUs per day for adaptive checkpointing technique. 

109 1 Page 



140 

SO 

SO 

70 

03 

50 

40 

20 

10 

a 

Clusle_ 0 nom,  
Ckeslor 2 

 

Figure 5.157 Cluster usage per day for workload trace 3 (Adaptive checkpointing) 
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Figure 5.158 Number of requested and used CPUs per day for trace 3 (Adaptive checkpointing) 

Figure 5.159 gives average machine usage per day for adaptive checkpointing technique. 
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Figure 5.159 Average machine usage per day for trace 3 (Adaptive checkpointing) 

Figure 5.160 shows average cluster usage per day for each cluster for periodic checkpointing technique. 

ks can be seen utilization of resources is very low 

Figure 5.161 shows number of requested and used CPUs per day for periodic checkpointing technique. 
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Figure 5.160 Cluster usage per day for workload trace 3 (Periodic checkpointing) 
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Figure 5.161 Number of requested and used CPUs per day for trace 3 (Periodic checkpointing) 

Figure 5.162 gives average machine usage per day for periodic checkpointing technique. 
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Figure 5.162 Average machine usage per day for trace 3 (Periodic checkpointing) 

Figure 5.163 gives average waiting time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. Figure 5.164 gives average response time of jobs 

submitted to a cluster for each day for each of periodic checkpointing and adaptive checkpointing 

technique. 
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Figure 5.163 Average waiting time per cluster per day for trace 3 
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Figure 5.164 Average response time per cluster per da3, for trace 3 

Figure 5.165 gives average tardiness time of jobs submitted to a cluster for each day for each of periodic 

checkpointing and adaptive checkpointing technique. 

Figure 5.165 Average tardiness time per cluster per day for trace 3 

Figure 5.166 gives number of checkpoints on each cluster for each day for each periodic checkpointing 

and adaptive checkpointing technique. Figure 5.167 gives work lost due to failures on each cluster for 
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Figure 5.166 Number of checkpoints per cluster per day for trace 3 

Figure 5.167 Work lost due to failures per cluster per day for trace 3 

Figure 5.168 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of 

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative 

to periodic checkpointing are 0% for makespan, -1.6% for flowtime, -43.6% for average bounded 

Figure 5.168 Overall comparison between adaptive and periodic checkpointing for workload trace 3 
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slowdown, -69% for work lost due to failures, -39.1% for number of checkpoints taken and -13% for 
average turnaround time. 

d) Trace 4 (LCG-2005) 

Configuration and parameters are same as in subsection 4.11 

Figure 5.169 shows the average machine usage per hour for adaptive checkpointing technique. 

figure 5.169 Average machine usage per hour tor workload trace 4 (Adaptive checkpointing) 

Figure 5.170 gives cluster usage %age for each cluster for adaptive checkpointing technique. 

Figure 5.170 Average cluster usage "A for workload trace 4 (Adaptive checkpointing) 

Figure 5.171 shows the average machine usage per hour for periodic checkpointing technique. Figure 

5.172 gives cluster usage %age for each cluster for periodic checkpointing technique. 
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Figure 5.171 Average machine usage per hour for workload trace 4(Periodic checkpointing) 

Figure 5.172 Average cluster usage % for workload trace 4 (Periodic checkpointing) 

Figure 5.173 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of 

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative 

to periodic checkpointing are -2% for makespan, -2.3% for flowtime, -20.3% for average bounded 

slowdown, -9.56% for work lost due to failures, -24.5% for number of checkpoints taken and -3.5% for 

Figure 5.173 Overall comparison between adaptive and periodic checkpointing for workload trace 4 
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e) Trace 5 (LLNL-Thunder-2007) .  

Configuration and parameters are same as in subsection 4.11 

Figure 5.174 shows the average machine usage per hour for adaptive checkpointing technique. 

Figure 5.174 Average machine usage per hour for workload trace 5 (Adaptive checkpointing) 

Figure 5.175 gives cluster usage %age for each cluster for adaptive checkpointing technique. 
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Figure 5.175 Average cluster usage % for workload trace 5 (Adaptive checkpointing) 

Figure 5.176 shows the average machine usage per hour for periodic checkpointing technique. Figure 

5.177 gives cluster usage %age for each cluster for periodic checkpointing technique. 

Figure 5.178 gives overall comparison between ACO-based adaptive checkpointing using fault ratios of 

resources and ACO-based periodic checkpointing. Values of adaptive checkpointing technique relative 

to periodic checkpointing are 0% for makespan, +9% for flowtime, -31.5% for average bounded 
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Figure 5.176 Average machine usage per hour for workload trace 5 (Periodic checkpointing) 

Figure 5.178 Overall comparison between adaptive and periodic checkpointing for workload trace 5 
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Chapter 6 

Conclusions and Future Work 

The work done in this dissertation report can be summarized in following points: 

• Design of adaptive checkpointing based fault tolerant heuristics and their incorporation in 

Genetic Algorithm (GA). These heuristics are based on information related to reliability 

of resources such as MTBF, fault .index and fault ratios. All adaptive checkpointing 

heuristics have been compared with GA-based periodic checkpointing for a wide range of 

scenarios. 

• Incorporating heuristics designed in Ant Colony Optimization based scheduling in Grid. 

• Design of fault index based periodic skip technique and its performance comparison with 

periodic skip. 

• Design of adaptive checkpointing based on information about MTBF and last failure time 

of resources. 

• Design of experimental scenarios for testing performance of various techniques for 

temporally and spatially correlated failures. 

• Performance comparison of ACO-based and GA-based fault tolerance techniques using 

real failure traces available from Failure Trace Archive. 

• Performance comparison of ACO-based and GA- based fault tolerance techniques for 

real workload traces available from various parallel workloads archives. 

The techniques developed dynamically adapt the checkpoint interval depending on current 

resource conditions. This is particularly crucial for Grid due to being a highly dynamic 

environment. Adapting the checkpoint interval helps in reducing the time wasted due to high 

checkpoint overhead or due to work lost due to failures. This helps in delivering acceptable QoS 

such as that related to turnaround time, makespan etc to users. Another major contribution from 

this work is scheduling support for these adaptive checkpointing techniques. Scheduling support 

takes fault information of resources on account while allocating jobs to them. This helps in 

correctly deciding the number of jobs to be allocated for various resources based on their 

availability information. For this two very popular metaheuristics — Genetic Algorithm and Ant 
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Colony Optimization based Grid scheduling have been designed with fault tolerance support. 

Also the range of experimental scenarios developed is this work unique in itself with 

experiments developed for real workload traces, real failure traces, temporally and spatially 

correlated failures. 

Following conclusions can be derived from the work done. 

• Adaptive checkpointing techniques developed give significant performance improvement 

over periodic checkpointing technique in terms of makespan, flowtime, average bounded 

slowdown, and turnaround time. 

• Periodic skip, exponential skip performed better for low checkpointing intervals. This is 

due to less checkpointing overhead. 

• Incorporating of fault tolerance and adaptive checkpointing in scheduling decisions 

helped in finding appropriate schedule for a batch of jobs. This particularly helped when 

failures are assumed to be temporally and spatially correlated. 

• Makespan and flowtime parameters for some workload traces didn't give much 

performance improvement. This is due to jobs having highly varying arrival times. 

• Adaptive periodic skip performed better than periodic skip. This is due to adaptive 

adjustment of the checkpointing interval depending on failure conditions of resources. 

• Work lost due to failures was very high for adaptive checkpointing techniques for some 

experiments. This is not an issue as total work lost is a combination of work lost due to 

failures and amount of work done in checkpointing operations (total checkpointing 

overhead). The combination of these two parameters is very low for adaptive 

checkpointing techniques. 

Future work directions are based on the work left due to time constraints. These are 

• Traces — workload trace and failure traces used in this work are small portions of 

available traces. Future works will focus on using complete trace for evaluation 

• Experiments have been performed for workload and failure traces separately. Future 

works will use both workload trace and failure trace in an experiment. 

• Downtime (MTTR) of resources is ignored in this work and resource is assumed to 

recover immediately from failure. This assumption will be removed in future. 
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• Checkpointing technique used considers restart after failure on the same resource. 

Another technique can be checkpoint with migration where job is restarted on a different 

resource. This technique along with its various issues such as spare node allocation is to 

be pondered upon. 

• Heuristics developed for fault tolerance are not restricted to metaheuristics. Rather they 

can be incorporated in any scheduling algorithm. Future work will look into that. 

• This work considers only transient faults on resources. Other fault classes are not 

considered. 

• Finally future work will focus on working in an actual Grid setup rather than simulated 

one. 
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