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ABSTRACT 

With tremendously increased use of the personal transporter vehicle in comparison of 

(public transporters), the problems like damage caused by carbon dioxide and other 

greenhouse gas emissions, and environmental and political forces have de-stabilized the 

global petroleum supply and fuel price hike are growing day by day. So the personal 

transporter like SegwayTM  is an effective solution, the Segway PT can drastically reduce 

dependence on foreign oil, pollution, greenhouse gas emissions and substantially increase 

energy efficiency by replacing short-distance single-occupancy car journeys. Its compact yet 

robust design makes it suitable for a variety of everyday uses and commercial applications, 

allowing riders to cover distances which would have previously required the use of a 

traditional vehicle for the purpose of travelling some miles. Such Self-balancing Two-

Wheeled Transporters (SBTWT) which are less expensive in comparison to Segway PT can 

be built using low-tech, off-the-shelf inexpensive components so that such type of vehicle can 

be easily used like traditional bicycle or scooter to serve the purpose of human transportation. 

The controlling of these low cost vehicles in such a way so that they offer sturdy capability in 

rugged off-sidewalk terrains such as trails, bike paths or beachfronts is an open research 

problem. 

This work contributes to design the controller for self-balancing two-wheeled 

transporter so that rider can experience the comfortable standing posture and the motion 

control in riding. In this work firstly a tracking and controlling of the SBTWT using feedback 

linearization technique is discussed to achieve the self-balancing and the yaw motion control 

of the vehicle and the performance is examined with system uncertainty, parameter variation 

and for different riders and comparative study with existing control techniques. Since the 

self-balancing two-wheeled transporter is an application of the inverted pendulum, an 

Adaptive Neuro-Fuzzy Inference Structure (ANFIS) controller is designed for Rotary 

Inverted Pendulum (RIP). The controller and the inverted pendulum are simulated in the 

Matlab Simulink environment with the help of ANFIS editor GUI and the performance of this 

controller is shown in comparison to conventional PID and fuzzy logic controller. The 

problem with the existing controllers is that the control signal is dependent upon the 

mathematical modeling of the vehicle. An indirect adaptive controller is designed for 

SBTWT. Since the control signal is not depend upon the mathematical dynamic equation of 



the system, the performance of the proposed controller is not affected from environment 

changes, system parameters changes, uncertainty and disturbances. 
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CHAPTER -1 

INTRODUCTION 

Now days, self-balancing two-wheeled transporters (SBTWT) have become popular 

for the purpose of personal transportation. SegwayTM  [1] has already launched such type of 

vehicles in the market for local transportation. These kinds of transporters can be constructed 

by synthesis of mechatronics, control techniques and software. The Segway's scooter is made 

up of quite high-tech and high-quality dedicated components, such brushless servomotor with 

neodymium magnets, precision gearbox, nickel metal hydride (NiMH) batteries, silica-based 

wheels, a digital signal processor as a main controller, motor drivers, six gyroscopes, and 

several safety accessories. Many researchers [2]-[5] have constructed self-balancing 

transporter which are less expensive in comparison to Segways's scooter. In order to reduce 

the cost of vehicle, researchers use low-tech, off-the-shelf inexpensive components. Now the 

main focus of researchers is to obtain a personal transporter with more reduced cost and 

sufficient safety guards, so that such type of vehicle can be easily used like traditional bicycle 

or scooter to serve the purpose of human transportation 

This vehicle is application of mobile inverted pendulum like nBOT (a two-wheeled 

balancing robot) [5] and JOE built by Grasser et al. [2], a scaled-down prototype of a digital-

signal-processor (DSP) controlled two-wheeled vehicle based on the inverted pendulum with 

weights attached to it. Such type of systems, inherently non-linear and unstable, can be used 

as a platform or benchmark to investigate the performance of any linear and nonlinear control 

methods. However, the inverted pendulum system can neither be used to provide more 

interesting and versatile applications, nor be adopted to examine the performance of any 

control systems with multiple inputs and outputs. These shortcomings can be avoided if the 

low-tech self-balancing two-wheeled transporter is used. Once the system structure and 

mathematical model of the SBTWT are described and established, the overall system model 

will be divided into two subsystems, the yaw control subsystem and the inverted pendulum 

subsystem, thus leading to the design of two kinds of controllers for yaw control and self-

balancing. 

2 



• _ 	10111101)  
oppo  

(a) 
	

(b) 

Fig.l. 1 (a) Laboratory built personal two wheeled scooter. (b) Segway i2 from Segway Inc. 

1.1 Importance 

Such type of systems can serve for the individual, business purpose, patrolling, roaming. 

These vehicles can help reduce dependence on foreign oil, use the existing energy supply 

more efficiently, and reduce pollution. They provide stress-free commute, free from public 

transportations schedule, singular door-to-door transportation solution. This can take you 

places that a car or bicycle can't, including inside many stores, office buildings, businesses, 

airports, elevators, and trains. 

1.2 System architecture 

Fig. 1.2 illustrates the block diagram of the overall SBTWT system along with controller. 

The DSP based controller, along with built-in A/D converters, is responsible for executing 

the control algorithms for both self-balancing and yaw control. The feedback signals from the 

gyroscope and the tilt sensor are used by the controller to maintain the human body on the 

footplate without falling. The operating principle of the self-balancing control is simply 

interpreted as; if the rider leans forward, then the vehicle will move forward in order to 

maintain the rider without falling, and vice versa. The signal taken from the potentiometer is 
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used in the controller to rotate the yaw axis of the transporter to the desired angle i.e. to rotate 

the vehicle left or right or any angle that rider intended to achieve. 

The signals coming from the sensors are passed through the two first order low-pass 

filters. These filters process the measured pitch angle rate co p  from the gyroscope and the 

measured pitch angle Op from one tilt sensor via the first-order low pass filters, thus 

removing unwanted signals. The potentiometer is adopted to measure the shaft angle of the 

handlebar and the angular signal is directly measured by the DSP controller with necessary 

signal processing. Two high torque DC motors were specially chosen not only for their 

ability to support the load of human riders of various weights, but also for their ability to 

provide enough power to carry out high-performance driving. The motor driver is used to 

simultaneously drive both two dc motors by using its PWM input signals. 

Tilt sensor and 
Gyroscope 

(442 	Op 
Y 

Left motor DSP based 
controller 

Motor driver 
circuitry (oR 

Right motor 

By 

A 
SBTWT 

Potentiometer 

Fig.l. 2 Block diagram of SBTWT control system 

1.3 Objective 

The problem of controlling and steering the Self-Balancing two-wheel transporter (SBTWT) 

is a very interesting problem with mass variations and system uncertainties unknown and 

unmodelled parameters. The objective of controlling the vehicle includes the self-balancing 

to achieve standing posture maintenance, yaw motion control to steer. Since the overall 

system model will be divided into two subsystems, the yaw control subsystem and the 

inverted pendulum subsystem, 

This leads to the design of two controllers by different technique. 

(a) Yaw controller 
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Tilt sensor Self-balancing 
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Potentiometer 
Yaw motion 
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0.5 

op 
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SBTWT 

Gyroscope 

► 
 ► 

(b) Self-balancing controller 

Since the potentiometer is employed to measure the angle difference between the 
equilibrium point and the yaw angle 03, the rider intended to achieve, the yaw motion control 

problem is reduced to a regulation problem. The objective of self-balancing controller is to 
control the pitch angle O and pitch angle rate cop to reach the command signal 
Opc and cops  without any error. In the below figure Fig. 1.3 illustrate the overall system of 
SBTWT with the controller and sensors part. 

Opc = 0 	 = 0 yc 
(L)Pc = 0 

Fig. 1 . 3 Block diagram of the SBTWT controller 

1.4 Literature review 

Grasser et al. [2] built a scaled-down prototype of a digital-signal-processor (DSP) controlled 

two-wheeled mobile inverted pendulum and weights attached to the system; hOwever they are 

test prototypes, aiming at providing several theoretical design and analytical approaches. Tsai 

et al. [3] built a similar two-wheeled transport vehicle in lab and used linearized model to 

build Proportional plus derivative (PD) controller and design the compensators for the 

vehicle. In [4] Tsai presents the adaptive neural network controller for linearized two-

wheeled transporter estimating the viscous force and the static friction between the wheels 

and the motion surface using two RBFNNs: however, the method in [4] has not yet 

considered the fully nonlinear modeling and control problem for this kind of transporter. 

Blackwell [5] constructed a low-tech, low-cost self-balancing off-the-shelf inexpensive 

5 



scooter. Tsai et al. in [6] presents the non-linear dynamics of the two-wheeled self-balancing 

transporter and proposed an adaptive controller using fuzzy basis function and in [7] gives the 

adaptive controller for the motion control of SBTWT. Pathak et al. [8] gives the position and 

velocity control of mobile inverted pendulum while in [9] Ha et al .presents the trajectory 

tracking of the inverse pendulum mobile robot. Furthermore, several researchers in [10]-[13] 

have proposed useful control and implementation techniques for four-wheeled vehicles, 

two-wheeled vehicles with differential driving, and electric scooter. However, these methods 

cannot be directly applied to the self-balancing and the yaw motion control of the self-

balancing two-wheeled transporter. 

13 Dissertation organization 

The rest of the thesis is outlined as follows. In Chapter 2 the nonlinear mathematical 

modeling of the SBTWT incorporating the friction between the wheels and the motion 

surface is discussed and the basic controller using feedback linearization is designed for the 

self-balancing two-wheeled transporter and the performance and the merits of the proposed 

controller is examined by conducting several simulations. Since the SBTWT is the 

application of Inverted pendulum, so first in Chapter 3 the adaptive neuro-fuzzy structure 

based controller is designed for the rotary inverted pendulum system and simulations are 

conducted to compare the performance in comparison to the conventional PID and fuzzy 

logic controller. In chapter 4 the indirect adaptive controller is proposed for the SBTWT 

which is not depends upon dynamic model and architecture of the system and simulation 

results are discuss the performance of the proposed controller. Chapter-5 concludes the report 

and gives future research suggestion. 
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CHAPTER-2 

NONLINEAR MATHEMATICAL MODELING OF SBTWT 

AND CONTROL 

In this Chapter firstly the nonlinear mathematical modeling of the SBTWT is derived 

by incorporating the frictions between the wheels and the motion surface, and modeling error. 

Such a nonlinear model is constructed based on the Newtonian Mechanics and the force 

diagram. The linear state model is also presented for SBTWT. In last feedback linearization 

technique is used for trajectory tracking and controlling of SBTWT in which a nonlinear 

control law is designed which makes the overall system linear. The performance and merits 

of this controller is evaluated by conducting various simulations. This is established by 

changing the system uncertainty terms, and varying the mass on the vehicle and comparison 

to the state-feedback controller in [2] 

2.1 Nonlinear mathematical modeling 

The nonlinear mathematical model of the SBTWT is developed in more detailed. Similar to 

the literature [4], the model can be decomposed into two independent subsystems: inverted 

pendulum and yaw motion subsystems. In what follows describes the procedure to establish 

the mathematical model of the SBTWT. In Fig. 2.1 the free body diagram of the right wheel 

and the free body diagram of human transporter. As shown in Fig. 2.1(a), the static friction 

force depends on speed and opposites to the moving direction. In order to simplify the 

derivation of the nonlinear model of the vehicle, one assumes that the wheels of the SBTWT 

do not slip and Table 2.1 lists all the used symbols and their definitions. By using the 

Newtonian mechanism, one develops the following set of motion equations to describe the 

vehicle. 

The second Newton's law is used to derive the motion equation of the right wheel 

MRR5RR r fdRR + HTR HR b±RR 
	 (2.1) 

MRRYRR = VTR — MRR9 VR 
	 (2.2) 
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I YTh  

D12 
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RL 

\ 

HR  

YRR 

-C zahl 

(a) 
	

(b) 

Fig.2. 1 (a) free body diagram of right wheel, (b) Free body diagram of the human 
transporters [6]. 

By inertia moment formula as 

RReRR = CR HTR R 

Similarly the motion equation of the left wheels as 

MRR4L = fdRL + HTL HL b±RL 

MRLYRL VTL MRL9 VL 

RLeRL = CL HTLR 

Since YRR  = 0 , from (2.2) we have VTR  = MR pg VR .Because xRR  = RORR  , from it follows 

that 

MRRR 9RR = fdRR + HTR HR b±RR 	 (2.7)  

And from (2.3) gives 

0RR = ( CR — HTRR)/IRR 	 (2.8) 

Substituting (2.8) into (2.7) gives 

MRRRCR 
\ I RR

(HTRR)  
= fdRR dRR + HTR HR b±RR 	 (2.9) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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MRRR MRRR  3 
y 	CR  fdRR HR 1) ,%.RR = 	

IRR 
	1- ) HTR RR 	 RR 

HTR  — [(M RRRCRIJ RR) - fdRR HR  biRR]1[(MRRR 2  RR 
+ 1)] 

Because both wheels are identical, we have 

(2.10) 

(2.11) 

HTL  = [( MRLRCLIAL) fdRL + HL  + b±RL]1[(MRLR 2  812L + 1)] 
	

(2.12) 

For the chassis, the force in the free body diagram of the chassis in the horizontal direction is 

described by 

MP2P = fdP HL HR 	 (2.13) 

Similarly, in the vertical direction, one obtains: 

MI412 = + VR Mpg 	 (2.14) 

By the moment formula, we have 

IPBeP = 	+ VR )L sin Op — (HL  + HR )L cos Op — (CL + CR) 
	

(2.15) 

IPSey = (11,L — HOD /2 — b6 co y 	 (2.16) 

If yp = 0 , then VR  VL = Mpg. since x p  = L sin Op , Xp = Lop COS O p  LN sin Op , 

substituting, zp into (2.13) and (2.15) we obtain 

6 p = (fap + HR + HL  + MpL01, sin Op)/MpL coS Op 	 (2.17) 

Substituting (2.17) into (2.15) yields 

[UPe/MpL cos p) L cos op] (HR  

= —(j po/M p L COS O p )f dp  —jPo op, tan O p 	(2.18) 

+ MpgL sin O p  — 	+ CR) 

And 

(HR  HL ) = fli[(J pe iM p L cos O p ) 

(L COS OP)])[—JP0fdP/MpgL  cos Op 

iPeOli tan O p  + Mpg', sin o p  — (CR + CL )] 

By the definitions in Fig. 2.1 (b), the following equation of motion can be obtained: 

= R(ORL  0RR)/2  XRM (XRL XRR)/2 

VRM = 	 + 612012  

(2.19) 

(2.20) 

(2.21) 
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From (2.3) and (2.6), it yields °RR = (CR-HTRR)/IRR I °RL = (CL HTLB)/IRL. Thus one 

obtains 

(2.22) VRM — (R/2 )([(CL HTLR)/IRL] + (CR — HTR)/IRR) 

Assuming (2.11) and (2.12) into (2.21), and then equating the result to (2.21) yield 

VRM = A22VRM + A23  sin 0-1, + B2  (CL  + CR) + B23fdRL 

B24fdRR + B25fdP 

where A 22  = —R 2b/aJR  , B2(R/2JR )[(1/a) + (R/af3)] , 

A23  = —(B2) 	(e3/ COS  Op)) RJR af3, 

B23 = B24 = R 2/2/Ra 5 

a = ( MR R 2  /JR ) + 1, 

B25  = (R 2  /2JR af3)(Jpe/MpL COS p), 

p = 1 + (D 2 . (JR  + MRR 2 )/2Jp0112 ) 

= (Jpe/MpL cos 9 p ) L cos 0 p  , 

y = LMpg. 

Next, derive the dynamics of the pitch angle. Because O p  = Cup from (2.15) gives 

cop  = Op = {[(L sin Op Mpg L cos 0 	fill—Upo 

/MpL cos Op) fdp 	01, tan 9p y sin O p  

— (CR  + CL)) (CL + CR)IIPO 

which, consequently, becomes 

CUp = A43  sin Op + B4(CL  + CR) + B45fdP 

where A43  = (y11/30) — 	— 1podq)apo• 
B45  = 1/ f3Mp , B4  = [(L cos O p  /13) — 1]/ Jpe. Furthermore, from (2.16), it follows 

oy = thy = [D(14 1-10121p8] .-.  [136W y  /f ps ] 

= (VRL VRR)ID 

Subtracting (2.4) from (2.1), one obtains 

HTL  — HTR  [(MR R/JR )(CL  — CR ) + (fdRR fdRL) + (HL 

HR ) b(iRt 

And rearranging (2.26) give 

HL  —HR  = (fdRR fdRL) (CL — CR ) 	bD(D y  

+ MR R 2)/R2 P:kby  

Therefore, solving (2.25) for Hi, — HR  and substituting it into (2.27), we have 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

10 



thy = A66 thy + B61 	B62C R + B63fdRL + B64fdRR 

	 (2.30) 

where A66  = —(bD 2  2b)/2pJp8 , 

B6 = B63 = —B64 = —D/213//389 

B61_= —B62 = D/2pJp8R. Define the following six state variables 

X = [X RM  VRM 0p COR  Oy thy 	 (2.31) 

The nonlinear system model of the human transporter is then described in the following state-

space form 

'SRM "  

V RM 

Op 
by 

Oy 
thy  

VRM 

A22VRm + A23  sin Op 
Cop 

A43  sin Op 

A66(0y 2  

	

0 	0 	- 

	

B2 	B2 

	

0 	0 

	

B4 	B4 

	

0 	0 
—B6 	B6- 

[cd 

- 0 - 
T2 
0 
f4 
0 

-f6- 

(2.32) 

where f2  = B23fdRL + B24fdRR + B25fdP, f6 = B63fdRL + B64fdRR 1.4 = B45fdP •  

From (2.30), assuming h = 0 for i = 2, 4, 6, and if the human transporter has reached steady- 

state inclination Op and Op = 0, then it will generate a steady-state linear speed vRmss  

vRmss  = (B2A43  — A 23B6) sin Op /A22B6) I O p  =0  

In order to move the human transporter without falling down, transforming Cy and Co  into 

the wheel torques CLand CR yields 

CL  = 0.5 CB  0.5C y  CR = 0.5 Ce  — 0.5 Cy 

Thus (2.32) can be decomposed into two independent subsystems: One is concerned with 

mobile inverted pendulum subsystem describing the yaw motion about the z axis i.e. 

	

[RM 	 VRM 	 0 

	

VRM 	A22 VRM + A23  sin Op 	Bz(Co f2) 	fi 
Op 	 0 	)11 = 

	

thy 	 A43  sin Op 	B4(CO 

= 2,4 

And other is yaw motion control subsystem modeling the rotation about the y-axis, i.e. 

(2.33) 

[O.y1 
371 	LU A1661 rryi 4-  [X] [CY  + f61 if6  = 6 

(2.34) 

From (2.5) and (2.6), it is clear that two controllers for Co  and Cy  can be synthesized 

independently from each other and combine together to achieve the control goal. 

Table2. 1 Symbols definition 
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Symbol and 

unit 
PARAMETER AND VARIABLE NAME Value 

xr„, [m] 

vrm [m] 
Position and speed _ 

Op [rad] 

cop[rad/sec] 
Pitch angle and pitch rate _ 

Oy[rad] 

coy[rad/sec] 
Yaw angle and yaw rate _ 

CL  [N. m] 

CR  [N. m] 

Applied torque on left wheel 

Applied torque on right wheel 
_ 

IRR [Kg. m2] 

AL [Kg. m2] 

Moment of inertia of the rotation mass 

with respect to the Z axis 
0.1Kg.m2  

MRR [Kg] 

AIRL [Kg] 

Mass of the rotation mass connected to 

the left and right wheel _ 

/iv [Kg. m2] 
Moment of inertia of the chassis with 

respect to the Z axis 
27.6 Kg.m2  

jp6[Kg.m2 ] 
Moment of inertia of the chassis with 

respect to the Y axis 
3.478 Kg.m2  

fdRL (fd RR) 
Force applied to the center of the left 

(right) wheels  

fdp Force applied to the center of gravity 

Mp[Kg] Mass of the chassis 135 

R [m] Radius of the wheels 0.2m 

D [m] 
Lateral distance between the contact 

patches of the wheels 
0.6m 

L [m] 
Distance between the Z axis and the CG 

of the chassis 
lm 

b Friction coefficient 0.01-0.05 

2.2 Linearized State model 

Assume that Op be small, i.e., yp = L cos Op L, yp = 0. Using the linearization procedure, 

one obtains the linearized system model of the SBTWT in the following state-space form: 
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0 0 0 0- X RM - 0 0 -  
A23  0 0 0 VRM B2 B2 
0 1 0 0 Op 0 0 

A43  0 0 0 Wp B4 B4 [CCRL1 
0 0 0 1 ey 0 0 
0 0 0 A66 _ Y - --B6 B6_ 

(2.35) 
/ 0 \ 
f2 

o 
\f6/ 

2.3 Tracking and control using Feedback linearization 

Feedback linearization is the technique in which the closed loop dynamics of the non-linear 

system made the linear through suitable control law. In fact, there exists a class of non-linear 

system for which feedback linearization is possible. 

Considering a class of single input 
x1  - 

d . [ x2  
dt

xn-1 

xn 

Assume that g (x) # 0. if the control law 
1  

(x) 	kvr 

affme 

y 

+ 

is chosen 

non-linear system defined as 
x2 

X3 

• • • 

Xn 

f (x) + g (x)u 

= x1  

Ale (71-1) 	+ An-le (1)  + 

error and r = e  (n-1) + 	e  (n-2) 

(2.36) 

(2.37) 

+ An-1 e 

= 	
r 

 
U 	 f 	+ g (x) 

+ xndl 

where e = y d  - y is the output tracking 

(power denotes respective derivatives). 

The closed loop error dynamics becomes t = —kvr which is linear as well as stable. 

where k„ and As are positive design parameters. 

The system is decomposed into two subsystem i.e. mobile inverted pendulum 

subsystem and yaw motion control subsystem. This leads to driving the independent control 

law for both the two subsystem by using the law (2.37), so this made the overall closed loop 

dynamics of the two subsystems linear. This results two controller: self-balancing controller 

and yaw motion controller 

XRM 

1)12M 

6p 
th y 

6y 

th y _ 

-o 
0 
0 

0 

_o 

1 
A22  

0 
0 

0 
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2.3.1 Feedback law for mobile inverted pendulum subsystem 

The inverted pendulum subsystem described in (2.33) can be written as 

6P  = 

r  (Op 1 [ 	0 	 _ f4 
{ cb pl [A43 sin Op] [B4(CO + 	'f (2.38) 

The control objective is to control the pitch angle and pitch rate of the mobile inverted 

pendulum subsystem in order to follow the command signal O p, = 0, Lops  = 0 without any 

error from Fig. 1.3. Therefore SBTWT will remain stable at vertical upright position and 

rider can stand on the footplate of the vehicle without falling. For deriving the control law for 

this mobile subsystem the nonlinear term /4  in (2.38) is assumed to be zero and the control 

law is derived from (2.37). 

From (2.38) and (2.36) the x1  = Op, x2  = cop, f (x) = A43  sin Op and g(x) = B4and 
for the control law. 

yd = Op, = 0 and e = —y = —Op and xnd ynd = 0  

r = e(1)  + Al e 	 (2.39) 

Substitution of (2.39) into the control law (2.37) which yields the control law is to be 
1 

co  = 1:7; [—A43  sin Op + kvr + e(1)] 	 (2.40) 

Applying  the control law (2.40) to the subsystem (2.38) the error dynamics 

becomes r = —kyr. While k, and As are the positive constants, selection of the appropriate 

values of these tuning  parameter ensures the convergence of Op, cop and error dynamics as 

well. This can make the overall subsystem stable and follow the command signal. 

2.3.2 Feedback control law for yaw motion control subsystem 

The control law for yaw motion control of the subsystem (2.34). Since the potentiometer is 

employed to measure the angle difference between the equilibrium point and yaw angle the 

rider intended to achieve, the yaw motion control is designed such that the yaw angle of the 

vehicle is to follow command signal given by the rider. Similarly this control law is derived 

from the feedback linearization technique (2.37) so that the closed loop dynamics of the 

system becomes linear, while deriving  the control law the nonlinear term t6  is assumed to be 

zero in (2.34). 
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From (2.34) and (2.36) the xi.  = 9y, x2  = cr y , f (x) = A66coy  and g(x) = B6 and for 

the control law 

yd  = Oyc  = 0 and e = —y = —0y  and xnd = ynd = 0 

r = e(1)  + Ale 	 (2.41) 

Substitution of (2.41) into the control law (2.37) which yields the control law is to be 
1 

C
y 

= —B [ — A66Wy + kyr + A ie(i)] 
6 

 (2.42) 

0 1-RAL Li&6.  

CY 60.19q1 	" I-p 
ACC No 	 -4 
Date  IA/2%N  

2.3.3 Control results and discussion a 
- ROOit' 

In this section two sets of experiments for each subsystem (self-balancing and yaw motion 

control subsystems) are conducted to show the effectiveness and performances of the 

proposed controller using feedback linearization technique. Table I lists the all parameters 

used for the simulation, two uncertain terms A and 16  are taken to be nonzero quantity but 

the viscous friction depends upon the vehicle speed and slip of the wheels are neglected. In 

the first set the uncertainty terms is assumed to be fixed quantity 14   = f6  = 0.5 N while in 

second set of simulation the uncertain terms f4  and 16  are increase to 10 N. 

This control signal (12) is applied to the subsystem (6), substitution of this control law 

in (6) gives the closed loop linear dynamics in r. i.e. t = Ito-, where kvand As are the 
positive constants, these parameters can be calculated from pole placement and this ensures 

the convergence of the r , Oy. As a result of this the yaw angle is follow the riders command 

yaw angle Oy. 
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Fig.2. 2 Comparison of simulation results of the pitch angle control 

The first simulation of first set is performed to verify the performance of the.proposed 

feedback linearization controller for self-balancing controller. Fig. 2.2 shows the comparative 

simulation results of the pitch angle tracking for the state-feedback controller [2] and the 

feedback linearization control. As the Fig. 2.2 shows the feedback linearization control has an 

excellent convergent speed than that of the state feedback controller when the uncertain 

term A. is taken to be 0.5N. The second simulation of first set is conducted to examine the 

effectiveness of the proposed controller using feedback linearization for yaw motion control 

subsystem. Fig 2.3 shows the yaw angle tracking performance for the state-feedback 

controller and proposed yaw controller using feedback linearization. The results in Fig. 2.2 

and 2.3 shows that the proposed feedback linearization controller has far better performance 

compare to the conventional state-feedback controller. In contrast Fig 2.2 and 2.3 have shown 

that the proposed controller outperforms the state-feedback controller. 
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Fig.2. 3 Comparison of simulation results of the Yaw angle control 

In the second set of experiment, the simulation of feedback linearization controller 

and state-feedback controller are designed with the same tuning parameters while the 

uncertain term f4and f6  is increase to 10N for both the self balancing and yaw motion control 

subsystem. Fig. 2.4 shows the performance of both feedback linearization and state-feedback 

controller for self-balancing subsystem. From the Fig. 2.4 it can be stated that feedback 

linearization controller works fine with negligible steady state error 0.02 rad (1.15°) on 

other side state-feedback controller gives the large steady state error 0.07 rad (4°). In case of 

yaw motion control subsystem Fig. 2.5 shows the responses of both feedback linearization 

and state-feedback controller. From Fig. 2.5 shows that performance of feedback linearization 

controller is in limit and gives the steady state error of 0.02 rad (1.15°) while the state-

feedback controller totally fails and gives the steady state error of 0.27 rad(15.4°). In a 

result Fig. 2.4 and 2.5 have shown that the proposed controller totally outperformance the 

state-feedback controller when the uncertainty terms are changed to 10N. 
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Fig.2. 4 Comparison of simulation results of the pitch angle control when f4=10N 

Fig.2. 5 Comparison of simulation results of the Yaw angle control when f6=10N 

Now the performance of the controller is evaluated in system parameter variation. The mass 

of the vehicle is changed for the different rider from 135 kg. to 435 kg. Since the dynamics of 

the inverted mobile pendulum is dependent on the mass of the vehicle Mp so the performance 

get affected. While yaw motion subsystem is independent to the vehicle mass, the 

performance of it remains unchanged so overall the performance of controller is get affected. 
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The response of the self-balancing controller is shown in Fig. 2.6 with mass variation. From 

figure it is clear that the settling time is increased to 0.7 sec and overshoot is 0.06. 

Fig.2. 6 Self-balancing control using feedback linearization when mass of the vehicle is 

changed to 43 5kg. 

2.3.4 Trajectory tracking result and discussion 

For tracking of desired trajectory, the control is again derived from the (2.37). The desired 

trajectory is chosen for the self-balancing controller is sin 1.5 t. The response of the mobile 

inverted pendulum subsystem is shown in the Fig. 2.7. The Fig. 2.7 (a) is shown the self-

balancing angle i.e. pitch angle response and the desired traject-ory and Fig. 2.7 (b) is shown 

the pitch rate response of the subsystem and the desired pitch rate trajectory. Form the figure 

it is clear that the subsystem is starts tracking the desired trajectory in short time and then 

exactly track it. Similarly for the yaw motion subsystem, for tracking the desired trajectory 

the control law is again calculated from (2.37) and applied to the subsystem (2.34). 
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Fig.2. 7 Pitch angle tracking of self-balancing Controller (a) Desired and plat pitch angle (b) 

Desired and plant pitch rate 

The desired trajectory is selected for this subsystem is sin 1.5t. The response of the yaw 

subsystem is shown in Fig. 2.8. In Fig. 2.8 (a) the yaw angle response and desired yaw angle 

trajectory is shown and in Fig. 2.8 (b) the yaw rate response and desired yaw rate signal is 

shown. From the figure it is clear that the subsystem is starts tracking the desired trajectory in 

short time and then exactly track it. 

Fig.2. 8 Yaw angle tracking of yaw Controller (a) Desired and plat yaw angle (b) Desired and 

plant yaw rate 

In Table 2.2 the performance comparison between feedback linearization and state-feedback 

controller is shown. From the table it can be concluded the feedback linearization controller 

totally outperformance the state-feedback controller 
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Table2. 2 Performance comparisons specification-wise 

Controller 

Specification 

State-feedback controller Feedback linearization 

Yaw motion 

Controller 

Self- 

balancing 

controller 

Yaw motion 

Controller 

Self- 

balancing 

controller 

Settling time 

(sec) 
0.8 0.8 0.25 0.2 

Steady-state error (rad) 

When f4  = f6  = 0.5N 0 0 0 0 

Steady-state error (rad) 

When A = A = 1.0N 0.28 0.07 0.024 0.024 

In this chapter of the report the nonlinear mathematical equation of the self-balancing 

two-wheeled transporter is derived by incorporating the frictions between the wheels and the 

motion surface, and modeling error. Tracking and control of this vehicle is effectively 

achieved through the feedback linearization control and the performance of this controller is 

far better in comparison to state-feedback controller [2] and adaptive controller [3]. Since 

SBTWT is an application to Inverted Pendulum (IP), in next Chapter an adaptive neuro-fuzzy 

inference structure based controller is designed for the rotary inverted pendulum. 
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CHAPTER - 3 

ADAPTIVE NEURO-FUZZY INFERENCE STRUCTURE 

CONTROLLER FOR RIP 

SBTWT can be seen as an application of the inverted pendulum. In linear motion of 

the vehicle the rider can be assumed as a pendulum at its uprights position and wheels with 

the footplate can be assumed as the cart to this inverted pendulum while in rotation of vehicle 

the system is assumed to be a rotary inverted pendulum. So in this Chapter an adaptive neuro 

fuzzy inference (ANFIS) controller is present for the Rotary inverted pendulum to balance it 

at it's the up-right position. The steps for implementation of four input controller is presented 

and shown that designing of this controller is very simple and at the same time it reduces the 

time and space complexity of the controller. The controller and the inverted pendulum are 

simulated in the Matlab Simulink environment with the help of ANFIS editor GUI. 

Simulation result shows that ANFIS controller is much better in comparison to conventional 

PID and Fuzzy logic controller in terms of settling time, overshoot and parameter variation. 

3.1 Introduction 

A mechanical system which has greater number of joints than the number of actuator present 

in the system such system is called the underactuated system [34]. Because of this, the 

strategies developed for fully actuated system may not be directly applied to underactuated 

system. The control study of underactuated system has drawn a great interest in last few 

decades as most of the physical systems have underactuated dynamics as those in robotics, 

aerospace engineering and marine engineering including the example of flexible-link robots, 

walking robots acrobatic robots, helicopter, satellite, space robot, spacecraft etc. 

The Rotary Inverted Pendulum is a widely investigated nonlinear system due to its 

property of unstable, higher order, multi-variable and highly coupled which can be treated as 

highly non-linear control system. Rotary system provides an excellent experimental platform 

for examining specific control theories or typical solution and thus promoting the 

development of new theories. This system can be taken as the problem of balancing the 

pendulum at up-right position which is the most common issue in robotics. This explains the 

fact that many investigations have been carried out on the rotary inverted pendulum problem 
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[34] -[37] . 

For control the balancing act of the rotary pendulum, a control system is needed. As 

known the ANFIS can be used as controller as it, can model the human decision making based 

on the IF-THEN rules and become a very popular tool for the approximation and inexpensive 

tool to implement and shows the adaptive and robust behavior in comparison to more 

commonly used conventional controller like PID and compensator like lead-lag and fuzzy 

controller. As known the conventional controller completely relies on the mathematical 

model of underlying system while efficient fuzzy controller, designed with the help of LQR 

parameters can be easily implemented to linear and nonlinear systems [36]. 

In ANFIS, fuzzy inference system is blended with the neural networks and uses the 

human intelligence to design the controller. The rotary inverted pendulum and controller is 

model before putting them into the simulation and controller is train, validate and check the 

performance with the noise and, varying parameter. Then the controller and system model is 

implemented in Simulink environment of MATLAB and the performance of the controller is 

measured and run in real-time workshop. This is followed by the implementation and 

comparison of the PID and fuzzy controller with ANFIS controllers through simulations. 

3.2 Rotary inverted pendulum model 

The Rotary system, as shown in Fig. 3.1, consists of a vertical pendulum, a horizontal arm, a 

gear chain, and a servomotor which drives the pendulum through the gear transmission 

system. The rotating arm is mounted on the output gear of the gear chain. An encoder is 

attached to the arm shaft to measure the rotating angle of the arm. At the end of the rotating 

arm there is a hinge instrumented with an encoder. The pendulum is attached to the hinge. 

The inverted pendulum (mechanical part only) is sketched in Fig 3.2, a and 0 are 

employed as the generalized coordinates to describe the inverted pendulum system. The 

pendulum is displaced with a given a while the arm rotates an angle of 0. We assume the 

pendulum to be a lump mass at point B which is located at the geometric center of the 

pendulum. The x, y, z frame is fixed to the arm at point A. 
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Fig.3. 1 Rotary Inverted Pendulum System 	Fig.3. 2 Simplified model of the rotary 

inverted pendulum system 

Non-linear dynamic equation 

ad — bcos(a)ei+bsin(a)ci2  + et) = f Vm 	 (3.1) 

—b cos(a) d + ca — d sin(a) = 0 	 (3.2) 

Where a = leg mr2  ng ic2gim, b = mLr, c = 4 
—3  m12, d = mgl, 

e = D 	11m71111CtiqgKm  F = 77mligKtKg.,  _eq  
j is moment of inertia of pendulum and arm about "eq 	R 	1-1  Rm  

the axis of 0 and rim  and rig  are the motor and gear efficiency respectively. Kg , Km, Kt  are the 

servo system gear ratio, back-emf constant and motor torque constant respectively. 

Linearzing (3.1, 3.2) under the assumption that a 0 and a ,-ze 0 , we get the 

linearized model as follows: 

ad —bei+e0 = 	 (3.3) 

—bd + cit — da = 0 
	 (3.4) 

The overall block diagram of a rotary pendulum system with a feedback ANFIS 

control block is shown in Fig. 3.3. The output of the plant (9,6,a, a) is fed back to the 

controller to produce subsequent amount of voltage to balance the pendulum to its up-right 

position and at the same time maintaining the arm at the initial position. 

The model of the inverted pendulum and the controller is created using Simulink. As 

a whole the algorithm for the controller to balance the pendulum at up-right position is to 
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calculate the voltage which needs to give to the servomotor. Fig. 3.4 shows how the voltage 

is calculated from the pendulum angle, pendulum angle acceleration, arm angle, arm angle 

acceleration measured from their respected sensor. The Fig. 3.4 shows that motor shaft 

encoder gives the arm angle while another shaft encoder placed at the end of the arm gives 

the pendulum angle and then the angle accelerations are derived from arm and pendulum 

angle. 

Plant (Rotary 
Vref 	 pendulum) 

ANFIS Controller I 	 

 

  

d/dt 

d/dt 

Fig.3. 3 Block Diagram of Inverted Pendulum System with feedback ANFIS controller 

The four circles (Fig. 3.4) Kl, K2, K3, k4 are four "knobs" used to provide the gain to 

the four feedback signals. They are summed together and feed-back to the system as to give 

the voltage to the motor to rotate the arm. This can be expressed as 

V = (K1 * + (K2 * + (K3 * a) + (K4 *a) 	 (3.5) 

The controller input gains Kl, K2, K3 and K4 are determined using the Linear-

Quadratic Regulator (LQR) method described by Friedland [34]. This method finds the 

optimal K based on the state feedback law and the state-space equation derived earlier. For 

finding out the closed loop stability analysis of inverted pendulum we find out the root locus 

analysis, frequency analysis and many techniques. 
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Fig.3. 4 Plant and controller block diagram. 

3.3 ANFIS Controller 

ANFIS adaptive Neuro-Fuzzy system was first introduced by J. Jang in 1993 [40]. ANFIS 

constructs a fuzzy inference system (FIS) whose membership function parameters are tuned 

(adjusted) using either a backpropagation algorithm alone or in combination with a least 

squares type of method. This uses a network-type structure similar to that of a neural 

network, which maps inputs through input membership functions and associated parameters, 

and then through output membership functions and associated parameters to outputs, can be 

used to interpret the input/output map. The parameters associated with the membership 

functions changes through the learning process. The computation of these parameters (or 

their adjustment) is facilitated by a gradient vector. This gradient vector provides a measure 

of how well the fuzzy inference system is modeling the input/output data for a given set of 

parameters. When the gradient vector is obtained, any of the learning algorithms is applied in 

order to adjust the parameters to reduce the error (squared difference between actual and 

desired outputs). 

The structure of the fuzzy inference system (FIS) is taken as Takagi-Sugeno type and 

four input variables arm angle, arm angular velocity, pendulum angle and pendulum angular 

velocity are considered and all input variables are having two membership functions. The 

parameter values of these membership functions are trained by ANFIS to provide the 

appropriate value of the voltage applied to motor which achieves the goal of balancing the 

pendulum. Fig. 3.5 shows the structure of the ANFIS controller 
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For generating the FIS structure ANFIS editor GUI, already available in MATLAB is 

used. In editor grid portion type structure is selected and hybrid learning is chosen. Training 

data is available from the above mentioned LQR method which is randomly divided into 

training, testing and checking data. After training checking and testing of the ANFIS 

controller, above shown (Fig.3.5) structure is obtained. This structure is considered as five 

layer feed-forward neural network 

A. The first layer- This layer is a basic input Fuzzification layer where the crisp inputs are 

allocated relative fuzzy values. 

B. The second layer- This layer of the nodes labels defines the specified membership 

functions for each input created in the layer one Gaussian shaped fuzzy memberships are 

utilized here. 

C. The third layer- The nodes in this layer represent the rules generated for different 

combinations and instances of inputs. This layer will give the information regarding 

which rules are to be fired for different possibilities of inputs. 

D. The fourth layer- This layer produces the defuzzified Takagi-Sugeno-type output for 

each previous ith  output. Here a particular defuzzified value is getting generated for each 

and every rule fired. 

E. The fifth layer- The single node in this layer computes the overall outputs as the 

summation of all incoming signals. That gives the overall output that is generated from 

all the rules fired for particular set of input values. 

Therefore the output of the ANFIS is clearly is a linear function of all the inputs. This can be 

seen as the Rule-Base of this controller is given by 

Rule Base: If 0 is Al and 0 is B1 and a is Cl and a is DI then Vin  = (K1 * 0) + 

(K2 * 6) + (K3 * a) + (K4 * oc) + K5 
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Fig.3. 5 structure of ANFIS controller 

3.3.1 Simulation Results and Discussion 

The rotary inverted pendulum and controller are implemented in Matlab Simulink 

environment. For the controller firstly FIS file is generated from the ANFIS editor GUI and 

used in a fuzzy logic controller block in the Simulink. The non-linear model of rotary 

pendulum is designed in the Matlab Simulink. The experiment is tested in real-time also 

Table3. 1 Values used in the simulation 

Parameter Values Parameter Values 

Beg  0.004 Km  0.00767 

Jeq  0.0035842 Kt  0.00767 

J77 , 3.87e-7 L 0.1675 

Kg 70 7. 0.215 

Rni  . 	2.6 rig 0.9 

ihn 0.69 g 9.8 

m 0.125 

The Simulink model is simulated with ode5 solver and 0.001s sampling time. In Fig. 

3.6 the falling angle (a) of the pendulum and voltage applied to the servomotor is shown. 

The applied voltage is calculated by the ANFIS controller which has a maximum and 

minimum limit of + 6V. In figure it can be seen that the pendulum is get stable in 1.3s. 
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Fig.3. 7 Desired arm position and arm response of ANFIS controller. 

The response of the arm angle versus desired angle is plotted in the Fig. 3.7. This 

shows that the desired arm angle which is 30 degree in this case is achieved in the nominal 

time about lsec 
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3.3.2 Comparison of ANFIS and conventional PID and fuzzy control 

The conventional PID controller and fuzzy controller are designed for the same rotary 

inverted pendulum problem to compare the result with the proposed ANFIS controller. For 

the same plant parameter a PID controller is designed with proportional gain KP, derivative 
gain KD, integral gain K1  5, 11, and 0.02 respectively and efficient fuzzy controller [36] based 

on LQR. The falling angle of the pendulum in case of ANFIS, PID and efficient fuzzy is 

plotted in Matlab shown in Fig. 3.8. The graph shows that the settling time and overshoot of 

the ANFIS controller are much less than PID and efficient fuzzy controller. 

In another set of experiment the robustness of the two ANFIS and PID has been 

checked by changing the mass of the Pendulum is changed from 0.125 to 0.85 kg without 

changing the parameters of the controllers. Fig. 3.9 shows that the conventional controller 

gives the un-damped oscillation and unable to stabilize the pendulum anymore while the 

ANFIS gives the reasonable response however poor than the previous one when no mass has 

been changed and stabilize the pendulum in 1.7 sec. This proves that proposed ANFIS 

controller is more robust and does not rely on mathematical description of the plant. 

In another set of experiment the robustness of the two ANFIS and PID has been 

checked by changing the mass of the Pendulum is changed from 0.125 to 0.85 kg without 

changing the parameters of the controllers. Fig. 3.9 shows that the conventional controller 

gives the un-damped oscillation and unable to stabilize the pendulum anymore while the 

ANFIS gives the reasonable response however poor than the previous one when no mass has 

been changed and stabilize the pendulum in 1.7 sec. This proves that proposed ANFIS 

controller is more robust and does not rely on mathematical description of the plant. 

30 



2 	2.5 
Time (s) 

0.5 	1 	1.5 3.5 	4 	4:5 

Falling angle response of conventional PID 

(a) 

0.01 

0.008 

0.006 

0.004 

0.002 

0 
0 

c 
a) -0.002 

12 -0.004 

-0.006 

-0.008 

-0.01 
0 

I 

r  r 
 

r  r 

0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 
Time (s) 

(b) 

Fig.3. 8 Falling pendulum angle of (a) PID (b) efficient fuzzy controller 
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Response of PID controller (when m=0.9 Kg) 

(a)  

Response of ANFIS controller (whrn m=0.9 Kg.) 

(b)  

Fig.3. 9 Falling pendulum angle response of (a) PID controller (b) ANFIS controller when 

mass is changed to 0.85 Kg. 

In this Chapter, ANFIS controller is designed for rotary inverted pendulum in Matlab 

Simulink with the help of ANFIS editor GUI. The designing of this controller has the 
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advantages of both the intelligent technique Fuzzy and Neural networks together. In 

comparison of the modern control design technique, ANFIS is simpler to implement as it 

eliminate the complicated mathematical process and use the soft computing techniques. In the 

simulation result it is shown that ANFIS controller is more robust to system parameter 

variation in comparison to conventional PID and fuzzy controller. In the next Chapter an 

indirect adaptive controller is presented for the self-balancing two-wheeled transporter which 

firstly explicitly identified the system using neural network and then controller is designed 

through the inversion of trained neural network. 
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CHAPTER - 4 

INDIRECT ADAPTIVE CONTROLLER FOR SBTWT 

The problem of steering the Self-Balancing Two-Wheel Transporter (SBTWT) in the 

presence of uncertainty is a very interesting problem. The SBTWT is a mechatronic system 

which is decomposed into two subsystems: yaw motion and mobile inverted pendulum. 

Steering of the vehicle can be achieve by controlling of the both subsystem i.e. yaw motion 

control for the first subsystem and self-balancing of the second subsystem in the presence of 

uncertainties, unknown and unmodeled parameters and changing environment condition. In 

this Chapter indirect adaptive controller using network inversion technique is proposed for 

the two subsystems to achieve self-balancing of the vehicle and yaw motion control to steer 

the vehicle respectively. Simulation results indicate the identification of the two subsystems 

using radial-basis function neural network (RBFNN) and the performance of the proposed 

controller. Simulations also show that the proposed controller is capable of steering the 

vehicle in desired manner. 

For the nonlinear modeling and control, the radial-basis function neural networks 

(RBFNNs) is more preferred over the multi-layered network (MLN), as RBFNN has a . 

simpler structure and better capability of functional representation [14]. Since its response is 

linear to weights, learning in RBFNN is expected to be faster. Thus neural networks (which 

are shown to be universal function approximators [15, 16] have used to explicit model the 

dynamics of the SBTWT system. Within the framework of indirect adaptive control, in [17] 

Narendra presents four possible neural network model of the plant to design the indirect 

adaptive control. In the area of indirect adaptive control design, the forward-inverse-

modeling approach [18], feedback error-learning scheme [19], tuning of the controller 

parameters using back-propagation [20] are some notable contribution. Many researchers 

present indirect adaptive control design using network inversion [21-27] as well. 

Here the indirect adaptive controller for the self-balancing two-wheeled transporter is 

designed. Since the system is decomposed into two subsystems mobile inverted pendulum 

and yaw motion subsystem so like JOE [2] by grasser et al. and in [3] Tasi et al., two indirect 

adaptive controllers i.e. indirect adaptive self-balancing and indirect adaptive yaw motion 

controller are designed using network inversion technique. For designing the controller firstly 
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two subsystems are explicitly identified through the two RBFNNs and then from these 

identified neural network emulators the controllers are designed through network inversion 

technique. In comparison to state-feedback controller presented by Grasser et al. [2] and 

adaptive controller using RBFNNs given by Tasi et al. [3] the designing of proposed indirect 

adaptive controllers are not dependent on the dynamical model of the subsystems, unknown 

plant parameters, unknown frictions, uncertainty and linearization error because the control 

signals are derived from the identified neural network emulators which take inputs directly 

from the SBTWT through sensors. So the proposed controller is capable of steering the 

vehicle for different riders and maintaining its standing posture under the unknown model 

parameter, uncertainty and frictions. 

4.1 Subsystems identification using RBFNNs 

As shown in the Fig. 4.1, 4.2 RBFNN is selected for modeling the two subsystems of the 

SBTWT, as the RBFNN performs the excellent approximation for the curve fitting problems 

and the response of the network is linear in terms of its weights. This helps us to extend linear 

adaptive control methods to develop non parametric non-linear adaptive system. [14]. 

Consider the non-linear discrete time dynamics of the each subsystem of SBTWT is 

described by the equation 

x(k + 1) = f (x(k),u(k)) 	 (4.1) 

where x(k) E 30 and u(k) E RP represent respectively states and input vector of 

the system at the kth sampling instant. The states of the systems are assumed to be accessible 

and nonlinear function f (x) is assumed to be unknown. 

The ith output of such a network can be expressed as 

2i = fi(v) =esii0;(11v — 
	 (4.2) 

i=1 
where v E gel is the network input vector; Ill  denotes the Euclidean norm; ci  E 

Rni, 1 j 1, are the RBF centers; 4) Ois the jth activation function of hidden layer; 

Eli  1 < j < 1,1 < i < n are the connection weights from hidden layer to output layer; and 1 is 

the number of hidden units in the first layer. Gaussian radial function has been used as the 

activation function because it has good modeling capability. Of course the RBFN is a general 

function approximator, and its performance does not depend critically on the choice of 

0 [16]. 
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4.1.1 Mobile inverted pendulum subsystem identification 

The mobile inverted pendulum subsystem is approximated using the RBFNN model as shown 

in Fig. 4.1, taking v = [0 pWpC OF and 2i = [op tad rand output of the network is given as 

-= [Oa 	Oa] 1[01 	OJ T 

2i — fi (v) = elf ~jT 
	

(4.3) 

where Ou are the connection weights from hidden layer to output layer; 0 (. )is the jth 

activation function of hidden layer and given as 

= exp[—((Op — c1)2 + (cup — c2)2 + (C0 — c3)2}/cril 	 (4.4) 

where ci , i = 1,2,3 are the centers of the receptive field and up/ = 1,2.. l is the 

inverse of the width of Gaussian function. 

Fig.4. 1 Structure of RBFNN model of inverted pendulum subsystem 

4.1.2 Yaw motion subsystem identification 

The yaw motion subsystem is approximated using the RBFNN model as shown in Fig. 4.2, 

taking v = [03, co y Cy ]T and 2i = [ey Coy ] Tand  output of the network is given as 

21 = 	= eig 	 (4.5) 
= 	..• et1][(151 	011D 
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where O are the connection weights from hidden layer to output layer; q(. )is the jth 

activation function of hidden layer and given as 

exp[—((0 — c ) + 	— c2 )2  + 	— c ) 2 
Y 	12 	( Y 	2 	Y 	3 	.1-1 (4.6) 

where ci , i = 1,2,3 are the centers of the receptive field and cri,j = 1,2..1 is the 

inverse of the width of Gaussian function. 

Fig.4. 2 Structure of RBFNN model of yaw motion subsystem 

4.2 Learning algorithm 

The centers and weights of an RBFN can be tuned using ideas from nonlinear system 

identification theory such as parallel recursive prediction error (PRPE) algorithm [28] or 

extended Kalman filtering (EKF) algorithm [25, 29]. The simplest approach is to update the 

centers using gradient descent algorithm and the weights can be updated using simple LMS 

[30] algorithm. Although computational requirement increases by adjusting centers, the 

number of radial centers can be substantially reduced by this approach [31]. The 

generalization performance of such a network is much better as compared to hybrid learning 

scheme where centers are fixed or learned unsupervised and the weights are updated using 

recursive least squares algorithm. In this fixed number of radial centers are taken to be of 

uniform random distribution over the input space. 
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X (k) 

u (k) 

Fig.4. 3 Subsystem identification using feed-forward network 

The learning procedure is shown in the Fig. 4.3, the inputs to the network are current 

states of the subsystem and the control signal X(k),u(k) and the output is the next states 

g(k + 1) of the system. X(k + 1) is the states of the plant so the network weights are 

updates such that the error signal e (k + 1) get minimized. The training data set should be 

dimensionally sufficient to obtain a valid neural model of the subsystems. Since the two 

subsystems are open loop unstable the training data samples are obtained using a PD 

controller with additive dither signal. RLS [32] algorithm is selected to learn the subsystems 
dynamics. 

The ith output of the RBFN described earlier, can be written as 

2i = f1 (v) = OuOT  

The weight update equations as per RLS algorithm [32], are described as 

(k) = 8i (k — 1) + P (k) )(k — 1) [x (k) — 4)(k — 1)T  (k 

— 1)] 

P (k) = P (k — 1) 

— P(k — 1)4)(k 

— 1) (1 + 4 )(k — 1)T P (k — 1)) - 1  )(k — 1)T P (k 

— 1) 

where P (k) E 32.1x1  and it is taken as 501 for both the two subsystems. 

4.3 Indirect adaptive controller design using network inversion 

Inverse mapping of the RBFNNs will generate the input pattern for a desired output pattern 

[21]-[27]. Though inversion process it is possible to obtain the required control input for the 

(4.7) 

(4.8) 

(4.9) 
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desired output trajectory of the system. 

The RBFNN models given by (4.3) and (4.5) represent a non-linear mapping from a 

3-dimensional input space (Or , con , Co  in case of mobile inverted pendulum subsystem) to a 2-

dimensional output space Cdp,63 p ). The objective of inverse operation on these models is to 

predict only one input (Co) out of three inputs. The remaining two inputs are known a priory 
(present subsystem states). The predicted input can be mathematically expressed as 

u(k) = g (x (k), xd  (k + 1), c, W) 	 (4.10) 

The inversion algorithm predicts the control signal by updating input activation ft(k) 

iteratively till the desired output activation is achieved or the number of iteration reaches a 

maximum tniax. This upper bound is decided by the sampling interval and computation time 

required per iteration. The initial guess of the input activation function 12(k) during each 

sampling interval is taken as the input activation u(k — 1) predicted in the previous sampling 

instant. For the case first sampling interval, the initial guess is selected arbitrary from the 

input space. 

4.3.1 Indirect adaptive self-balancing controller design using network inversion 

In this Section the indirect adaptive self-balancing controller is designed using network 

inversion. The block diagram of the proposed controller is shown in Fig. 4.4.Since the mobile 

inverted pendulum subsystem is explicitly identified through RBFNN, the control law is 

derived from this neural network emulator. The inverse mapping is achieved by Lyapunov 

based approach. This approach is presented by Lee [33] for pattern recognition problem; 

same concept is used [24] to deriving the control law in following way. The advantage of this 

approach is that the convergence is guaranteed since the algorithm is derived using Lyapunov 

stability concept. 

The Lyapunov function candidate V(x(t), t) is chosen to be quadratic error function 

in the desired trajectory of subsystem (2.38) 
1 

V = 2(2' 2) where 2 = xd  — 2 	 (4.11) 

where xd  = (0 pc, cope ) = 0 is the desired trajectory of subsystem and 2 is the actual 

output of the RBFNN model (4.3). The time derivative of the Lyapunov function V is given 
by 

a2=   RT, Ce (4.12) 
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pendulum 

(4.13) 

Fig.4. 4 Indirect adaptive self-balancing controller 

Theoreml: if an arbitrary input activation C0  (0) is updated by 

co  (to = co  (0) + eedt 	 (4.14) 

Where 

= 112_112 
11/Tx112 J

T 'l 	 (4.15) 

Then k converges to zero under the condition that Co  exists along the convergence trajectory. 

Proof: Substitution of Co  in f7 field (4.12). 

1.7  = —11g1I 2 	0 

wherecT < 0 for all 5e # 0 and 1.7  = 0 if and only if z = 0 thus update law is stable 

and -.7e converges to zero in time. The iterative input action is update rule can be given by 

Ce  (e) = Co  (t1  — 1) + meo w — 1) 	 (4.16) 

where Et is a small constant representing the update rate and t'represents the iteration 

index. 

The positive numerical instability associated with the weight update law can be avoided by 

adding a small positive constant E in the denominator. In this case e9  becomes 

Co  = 	 T 5t 	 (4.17) 
111T111 2  + E j  
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From this (4.12) 1./ becomes 

11 2  
1.1  = 	JT 5c• 112 + E  (4.18) 

= a 11 2-11 2  
where 0 < a < 1, since a is positive, V is negative semi-definite. Thus V will 

decrease with the update of Co , so as the tracking error 2. Once the update of Co  is over, input 
Ce  (k) at the kth instant is assigned to the update value Co  (t') and applied to the actual 
subsystem. 

4.3.2 Indirect adaptive Yaw motion controller using network inversion 

This Section is devoted to design the indirect adaptive yaw motion controller using network 

inversion technique, since the potentiometer is used to measure difference between 

equilibrium point and the yaw angle that rider intended to achieve, the indirect adaptive yaw 

control problem is reduced to an indirect adaptive regulation problem of the SBTWT. In Fig. 

4.5 the controller structure is shown. Therefore similar to previous section, the Lyapunov 

based approach is used for inversion of the RBFN model of subsystem (2.34). The yaw 

motion subsystem is identified using RBFNN (4.5) and this is used to deriving the control 

law for achieving the yaw motion of the SBTWT. The inverse mapping is achieved by 

Lyapunov based approach because the advantage of this approach is that the convergence is 

guaranteed since the algorithm is derived using Lyapunov stability concept. The Lyapunov 

function candidate V(x(t), t) is chosen to be quadratic error function in the desired trajectory 

of subsystem (2.34) 

1 
V = —2 (27'2) where 2 = xd  — 2 	 (4.19) 

where X d  = (03,c , W yc ) = 0 is the desired trajectory of subsystem and 2 is the actual 

output of the RBFNN model (4.5). The time derivative of the Lyapunov function V is given 
by 

a2 
V= —c 

acy 
= _5eT JCy  

where 	J =
a2 

 J E R2 x1  a Cy  

(4.20) 

(4.21) 
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Fig.4. 5 Indirect adaptive yaw motion controller 
Theorem 2: if an arbitrary input activation Cy(0) is updated by 

C y(e) = C y(0)+ J O ydt 
0 

Where 

(4.22) 

11,12  C = 	JT2 	 (4.23) 

	

Y 	ii/T2112 

Then 2 converges to zero under the condition that Cy  exists along the convergence trajectory. 

Proof: Substitution of Cy in V field (4.20). 

V'= — 11 211 2  0 

where V < 0 for all 2 # 0 and V = 0 if and only if 2 = 0 thus update law is stable 

and 2 converges to zero in time. The iterative input action is update rule can be given by 

Cy  (t') = Cy  (t' — 1) + ttey(t' — 1) 	 (4.24) 

where it is a small constant representing the update rate and t'represents the iteration 

index. 

The positive numerical instability associated with the weight update law can be avoided by 

adding a small positive constant E in the denominator. In this case Cy  becomes 

112112 	 

	

C - 	,T5z 	 (4.25) 
Y 	 ej 

From this Eq. (4.20) V' becomes 

= —111112 	
112-112

VT 	E 
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= —01115c112  

where 0 < a < 1, since a is positive, ff is negative semi-defmite. Thus V will decrease with 

the update of Cy, so as the tracking error 2. Once the update of Cy is over, input Cy (k) at the 

kth instant is assigned to the update value Cy(r) and applied to the actual subsystem. 

4.4 Simulation results 

In this section two sets of simulation are conducted to show the performance and 

effectiveness of the proposed indirect adaptive controllers using the network inversion 

technique. Table 2.1 shows the all parameter used for the simulation and the online input-

output data is generated for the two radial-basis function neural network (RBFNN) model 

(4.3) and (4.5) to learn the dynamics of the two subsystems (2.38) and (2.34). In the first set 

of simulation result the identification of the two subsystems using RNFNN are discussed and 

in the second set of simulation the performance of the two indirect adaptive controllers is 

shown. 

4.4.1 Online data generation 

The Euler representation of the two subsystems (2.38) and (2.34) with the sampling time 

T = 0.01 sec. is used for generation of the training data. Since the two subsystems are open 

loop unstable, the training data samples for the neural network model of two subsystems are 

generated using the PD controller to self-balance and yaw motion of the vehicle. While 

tracking the trajectory at each sampling instant various dither signal as in the form of white 

noise, impulses, step functions, ramp and parabolic type of functions are added to PD 

controller output to improve generalization capabilities of RBFN model. In this way the 3000 

input-output data samples are collected taking the sampling interval to be 10ins. 

4.4.2 Mobile inverted pendulum subsystem identification 

In Fig. 4.6 the identification of mobile inverted pendulum subsystem using redial-basis 

function network is shown. The number of hidden layer neurons for the RBFNN is taken as 

100. The basis-function is assumed to be Gaussian for which the centers are fixed and 

randomly within its input range. The input-output data are normalized. The training of the 

neural network is done through recursive least-square (RLS) using (4.8) and (4.9). In Fig. 4.6 

(a) shows the pitch angle (self-balancing angle) O of subsystem (2.38) and the identified 
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state (pitch angle Op) of neural network (4.3). While In Fig. 4.6 (b) the pitch angle rate cop of 

subsystem and the identified state (pitch angle rate Cop) of neural network is shown. The RMS 

errors for the training of the self-balancing subsystem are found to be 10.54 and 14.43. 

(b) 

Fig.4. 6 Mobile inverted pendulum: identification (a) the state Op and (b) the state cop 
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4.4.3 Yaw motion subsystem identification 

In Fig. 4.7 the identification of yaw motion subsystem using redial-basis function network is 

shown. Similar to mobile inverted pendulum subsystem, the number of hidden layer neurons 

for the RBFNN is taken as 100. The basis-function is assumed to be Gaussian for which the 

centers are fixed and randomly within its input range. The input-output data are normalized. 

The training of the neural network is done through recursive least-square (RLS) using (4.8) 

and (4.9). In Fig. 4.7 (a) shows the yaw angle Oy  of yaw motion subsystem and the identified 

state (yaw angle dy) of neural network (4.5). While In Fig. 4.7 (b) the yaw angle rate wy  of 

subsystem (2.34) and the identified state (yaw angle rate toy) of neural network is shown. The 

RMS errors for the training of the yaw motion subsystem are found to be 5.74 and 8.54. 
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Fig.4. 7 Yaw motion subsystem: identification (a) the state By  and (b) the state cry  

4.4.4 Indirect adaptive self-balancing controller 

In this set of simulation the performance of the proposed indirect adaptive self-balancing 

controller is shown in Fig. 4.8. The indirect adaptive controller is designed through identified 

neural network model using network inversion technique discussed before and the control 

signal is calculated using (4.14), (4.15) and (4.16). The value of tmax  is taken to 30 and the 

update rate 12 is taken 0.05. In Fig 4.8 (a) the pitch angle Op of the mobile inverted subsystem 

and the pitch angle 8p of the RBFNN model is shown and in Fig 4.8 (b) the pitch rate cop of 

the subsystem (2.37) and pitch rate ill p of the neural network model is shown. The pitch angle 

and pitch angle rate both converges to zero in around 4 sec. This shows that the rider can 

stand properly on the vehicle without falling and the proposed indirect adaptive controller 

works fine. 
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Fig.4. 8 Pitch angle tracking for the indirect adaptive self-balancing controller using network 

inversion technique (a) the state Op and (b) the state cop 
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Fig.4. 9 Yaw angle tracking for the indirect adaptive Yaw motion controller using Network 

inversion technique (a) the state Oy and (b) the state toy  

4.4.5 Indirect adaptive yaw motion controller 

The aim of the yaw motion controller is to achieve the yaw angle tracking that rider intended 
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to achieve. This is why it becomes the indirect adaptive regulation problem of SBTWT. The 

performance of the proposed indirect adaptive yaw controller is shown in Fig. 4.9. The 

indirect adaptive controller is designed by inversion of identified neural network model and 

the control signal is calculated using (4.22), (4.23) and (4.24). The value of to 	is taken to 
30 and the update rate i  is taken 0.05. In Fig 4.9 (a) the yaw angle By  of the yaw motion 

subsystem and the yaw angle By of the RBFNN model is shown and in Fig 4.9 (b) the yaw 

rate coy  of the subsystem (2.34) and yaw rate lay of the neural network model is shown. The 

pitch angle and pitch angle rate both converges to zero in around 4 and 2 sec respectively. 

This shows that the rider can stand properly on the vehicle without falling and the proposed 

indirect adaptive controller works fine 

In this way an indirect adaptive controller has been proposed for the self-balancing 

two-wheeled transporter. The system has been explicitly, identified using two radial-basis 

function neural networks. The current states of the subsystem and the control signal to the 

subsystem have taken as the inputs while the next states of the subsystem have taken as 

output for the identification of these subsystems. The input-output data sets for the training of 

these two neural network emulators have generated using PD yaw motion controller and PD 

self-balancing controller. The training of two neural network emulators has been done 

through recursive least square (RLS) method. For designing the indirect adaptive self-

balancing and indirect yaw motion controller the network inversion algorithm has used. The 

control law for the both the adaptive controllers is derived from inversion of trained neural 

network emulators. Two indirect adaptive controllers have been synthesized respectively to 

achieve the self-balancing and yaw motion control so that the efficient steering of the vehicle 

is achieved. Through the simulation the identification of the two subsystems using RBFNN is 

shown and the performance of the proposed indirect adaptive controller is also shown. Since 

controller is independent of the vehicle's mathematical dynamic model, the presence of 

uncertainty and plant unknown and unmodelled parameters and friction do not affect the 

performance of the proposed controller. 
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CHAPTER - 5 

CONCLUSION AND FUTURE SCOPE 

In this dissertation report, the mathematical modeling of the self-balancing two-

wheeled transporter is derived. With the decomposition of SBTWT into two subsystems: yaw 

motion and mobile inverted pendulum subsystem, the overall controller is synthesized with 

the two controller: yaw motion controller and self-balancing controller. The feedback 

linearization technique is used for trajectory tracking and control of this vehicle and its 

performance is evaluated in the variation of system parameters and for different weight riders 

and comparison with the existing state-feedback controller. This technique shows much 

improved response on grounds of settling time, overshoot and steady state error in 

comparison to state-feedback controller. 

Another controller is also presented using inversion of trained neural network 

emulator of the system. This is an indirect adaptive controller which is not depends upon 

dynamic model of system rather depends upon identified model of the system that adapts 

environment changes, system parameter changes and uncertainty as well. 

As future research suggestion to design indirect adaptive controller different inversion 

algorithms of neural network emulator can be applied to further reduce settling time of the 

system. Any adaptive control schemes can be used to design the controller for SBTWT which 

steer the vehicle properly in different terrains such as trails, bike paths or beachfronts. With 

the advent of modern technology, such transporters with sophisticated safety features can be 

cost down so that they, like traditional bicycles, have high potential to become prevalent two- . 

wheeled scooters, satisfying human transportation requirements. 
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