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ABSTRACT

With tremendously'increased use of the personal transporter vehicle in comparison of
(public transporters), the problems like damage caused by carbon dioxide and other
greenhouse gas emissions, and environmental and political forces have de-stabilized the
global petroleum supply and fuel price hike are growing day by day. So the personal
transporter like Segway™ is an effective solution, the Segway PT can drastically reduce
dependence on foreign oil, pdllution, greenhouse gas emissions and substantially increase
energy efficiency by replacing short-distance single-occupancy car journeys. Its compact yet
robust design makes it suitable for a variety of everyday uses and commercial applications,
allowing riders to cover distances which would have previously required the use of a
traditional vehicle for the purpose of travelling some miles. Such Self-balancing Two-
Wheeled Transporters (SBTWT) which are less expensive in comparison to Segway PT can
be built using low-tech, off-the-shelf inexpensive components so that such type of vehicle can
be easily used like traditional bicycle or scooter to serve the purpose of human transportation.
The controlling of these low cost vehicles in such a way so that they c;ffer sturdy capability in
rugged off-sidewalk terrains such as trails, bike paths or beachfronts is an open research
problem.

This work contributes to design the controller for self-balancing two-wheeled
transporter so that rider can experience the comfortable standing posture and the motion
control in riding. In this work firstly a tracking and controlling of the SBTWT using feedback
linearization technique is discussed to achieve the self-balancing and the yaw motion control
of the vehicle and the performance is examined with system uncertainty, parameter variation
and for different riders and comparative study with existing control techniques. Since the
self-balancing two-wheeled transporter is an application of the inverted pendulum, an
Adaptive Neuro-Fuzzy Inference Structure (ANFIS) controller is designed for Rotary
Inverted Pendulum (RIP). The controller and the inverted pendulum are simulated in the
Matlab Simulink environment with the help of ANFIS editor GUI and the performance of this
controller is shown in comparison to conventional PID and fuzzy logic controller. The
problem with the existing controllers is that the control signal is dependent upon the
mathematical modeling of the vehicle. An indirect adaptive controller is designed for

SBTWT. Since the control signal is not depend upon the mathematical dynamic equation of



the system, the performance of the proposed controller is not affected from environment

changes, system parameters changes, uncertainty and disturbances.
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CHAPTER -1

INTRODUCTION

Now days, self-balancing two-wheeled transporters (SBTWT) have become popular
for the purpose of personal transportation. Segway '™ [1] has already launched such type of
vehicles in the market for local transportation. These kinds of transporters can be constructed
by synthesis of mechatronics, control techniques and software. The Segway’s scooter is made
up of quite high-tech and high-quality dedicated components, such brushless servomotor with
neodymium magnets, precision gearbox, nickel metal hydride (NiMH) batteries, silica-based
wheels, a digital signal processor as a main controller, motor drivers, six gyroscopes, and
several safety accessories. Many researchers [2]-[5] have constructed self-balancing
transporter which are less expensive in comparison to Segways’s scooter. In order to reduce
the cost of vehicle, researchers use low-tech, off-the-shelf inexpensive components. Now the
main focus of researchers is to obtain a personal transporter with more reduced cost and
sufficient safety guards, so that such type of vehicle can be easily used like traditional bicycle
or scooter to serve the purpose of human transportation

This vehicle is application of mobile .inverted pendulum like nBOT (a two-wheeled
balancing robot) [5] and JOE built by Grasser et al. [21, a scaled-down prototype of a digital-
signal-processor (DSP) controlled two-wheeled vehicle based on the inverted pendulum with
weights attached to it. Such type of systems, inherently non-linear and unstable, can be used
as a platform or benchmark to investigate the performance of any linear and nonlinear control
methods. However, the inverted pendulum system can neither be used to provide more
interesting and versatile applications, nor be adopted to examine the performance of any
control systems with multiple inputs and outputs. These shortcomings can be avoided if the
low-tech self-balancing two-wheeled transporter is used. Once the system structure and
mathematical model of the SBTWT are described and established, the overall system model
will be divided into two subsystems, the yaw control subsystem and the inverted pendulum
subsystem, thus leading to the design of two kinds of controllers for yaw control and self-

balancing.



(@ (b)
Fig.1. 1 (a) Laboratory built personal two wheeled scooter. (b) Segway i2 from Segway Inc.

1.1 Importance

Such type of systems can serve for the individual, business purpose, patrolling, roaming.
These vehicles can help reduce dependence on foreign oil, use the existing energy supply
more efficiently, and reduce pollution. They provide stress-free commute, free from public
transportations schedule, singular door-to-door transportation solution. This can take you
places that a car or bicycle can't, including inside many stores, office buildings, businesses,

airports, elevators, and trains.
1.2 System architecture

Fig. 1.2 illustrates the block diagram of the overall SBTWT system along with controller.
The DSP based controller, along with built-in A/D converters, is responsible for executing
the control algorithms for both self-balancing and yaw control. The feedback signals from the
gyroscope and the tilt sensor are used by the controller to maintain the human body on the
footplate without falling. The operating principle of the self-balancing control is simply
interpreted as; if the rider leans forward, then the vehicle will move forward in order to
maintain the rider without falling, and vice versa. The signal taken from the potentiometer is




used in the controller to rotate the yaw axis of the transporter to the desired angle i.e. to rotate
the vehicle left or right or any angle that rider intended to achieve.

The signals coming from the sensors are passed through the two first order low-pass
filters. These filters process 'the measured pitch angle rate wp from the gyroscope and the
measured pitch angle 8p from one tilt sensor via the first-order low pass filters, thus
removing unwanted signals. The potentiometer is adopted to measure the shaft angle of the
handlebar and the angular signal is directly measured by the DSP controller with necessary
signal processing. Two high torque DC motors were specially chosen not only for their
ability to support the load of human riders of various weights, but also for their ability to
provide enough power to carry out high-performance driving. The motor driver is used to

simultaneously drive both two de motors by using its PWM input signals.
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Fig.1. 2 Block diagram of SBTWT control system

1.3 Objective

The problem of controlling and steering the Self-Balancing two-wheel transporter (SBTWT)
is a very interesting problem with mass variations and system uncertainties unknown and
unmodelled parameters. The objective of controlling the vehicle includes the self-baiancing
to achieve standing posture maintenance, yaw motion control to steer. Since the overall
system model will be divided into two sﬁbsystems, the yaw control subsystem and the
inverted pendulum subsystem,

This leads to the design of two controllers by different technique.

(a) Yaw controller



(b) Self-balancing controller

Since the potentiometer is employed to measure the angle difference between the
equilibrium point and the yaw angle 6, the rider‘intended to achieve, the yaw motion control
problem is reduced to a regulation problem. The objective of self-balancing controller is to
control the pitch angle 6pand pitch angle rate wpto reach the command signal
Opc and wp¢ without any error. In the below figure Fig. 1.3 illustrate the overall system of

SBTWT with the controller and sensors part.
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Fig.1. 3 Block diagram of the SBTWT controller

1.4 Literature review

_ Grasser ef al. [2] built a scaled-down prototype of a digital-signal-processor (DSP) controlled
two-wheeled mobile inverted pendulum and weights attached to the system; however they are
test prototypes, aiming at providing several theoretical design and énalytical approaches. Tsai
et al. [3] built a similar two-wheeled transport vehicle in lab and used linearized model to
build -Proportional plus derivative (PD) controller and design the compensators for the
vehicle. In [4] Tsai presents the adaptive neural network controller for linearized two-
wheeled transporter estimating the viscous force and the static friction between the wheels
and the motion surface using two RBFNNs: however, the method in [4] has not yet
considered the fully nonlinear modeling and control problem for this kind of transporter.

Blackwell [5] constructed a low-tech, low-cost self-balancing off-the-shelf inexpensive



scooter. Tsai ef al. in [6] presents the non-linear dynamics of the two-wheeled self-balancing
transporter and proposed an adaptive controller using fuzzy basis function and in [7] gives the
adaptive controller for the motion control of SBTWT. Pathak e al. [8] gives the position and
velocity control of mobile inverted pendulum while in [9] Ha et al .presents the trajectory
tracking of the inverse pendulum mobile robot. Furthermore, several researchers in [101-[13]
have proposed useful controland implementation techniques for four-wheeled vehicles,
two-wheeled vehicles with differential driving, and electric scooter. However, these methods
cannot be directly applied to the self-balancing and the yaw motion control of the self-

balancing two-wheeled transporter.
1.5 Dissertation organization

The rest of the thesis is outlined as follows. In Chapter 2 the nonlinear mathematical
modeling of the SBTWT incorporating the friction between the wheels and the motion
surface is discussed and the basic controller using feedback linearization is designed for the
self-balancing two-wheeled transporter and the performance and the merits of the proposed
controller is examined by conducting several simulations. Since the SBTWT is the
applicatibn of Inverted pendulum, so first in Chapter 3 the adaptive neuro-fuzzy structure
based controller is designed for the rotary inverted pendulum system and simulations are
conducted to compare the performance in comparison to the conventional PID and fuzzy
logic controller., In chapter 4 the indirect adaptive controller is proposed for the SBTWT
which is not depends dpon dynamic model and architecture of the system and simulation
results are discuss the performance of the proposed controller. Chapter-5 concludes the report

and gives future research suggestion.



CHAPTER-2

NONLINEAR MATHEMATICAL MODELING OF SBTWT
AND CONTROL

In this Chapter firstly the nonlinear mathematical modeling of the SBTWT is derived
by incorporating the frictions between the wheels and the motion surface, and modeling error.
Such a nonlinear model is constructed based on the Newtonian Mechanics and the force
diagram. The linear state model is also presented for SBTWT. In last feedback linearization
technique is used for trajectory tracking and controlling of SBTWT in which a nonlinear
control law is designed which makes the overall system linear. The performance and merits
of this controller is evaluated by conducting vérious simulations. This is established by
changing the system uncertainty terms, and varying the mass on the vehicle and comparison

to the state-feedback controller in [2]
2.1 Nonlinear mathematical modeling

The nonlinear mathematical model of the SBTWT is developed in more detailed. Similar to
the literature [4], the model can be decomposed into two independent subsystems: inverted
pendulum and yaw motion subsystems. In what follows describes the procedure to establish
the mathematical model of the SBTWT. In Fig. 2.1 the free body diagram of the right wheel
and the free body diagram of human transporter. As shown in Fig. 2.1(a), the static friction
force depends on speed and opposites to the moving direction. In order to simplify the
derivation of the nonlinear model of the vehicle, one assumes that the wheels of the SBTWT
do not slip and Table 2.1 lists all the used symbols and their definitions. By using the
Newtonian mechanism, one develops the following set of motion equations to describe the

vehicle.

The second Newton’s law is used to derive the motion equation of the right wheel
Mgpr¥rr = farr + Hrp — Hp — bXgg 2.1)

. 2.2
Mpr¥rr = Vrr — Mrrg — Vr (2.2)



(a) (b)
Fig.2. 1 (a) free body diagram of right wheel, (b) Free body diagram of the human
transporters [6].'
By inertia moment formula as
]RRéRR = Cr — HrgR (2.3)

Similarly the motion equation of the left wheels as

MprXpL = fary + Hrp — Hy — by, (2.4)
Mg Vg = Vr, — MpLg =V}, | (2.5)
]RLém, = C, —Hy R | (2-6)

Since Jrr = 0, from (2.2) we have Vpp = Mprg + Vi.Because xzg = ROgzg , from it follows

that
MgzR Orr = farg + Hyp — Hg — bigg (2.7)
And from (2.3) giyes
‘ Orr = (Cr — HrgrR)/Jrr : (2-8)
Substituting (2.8) into (2.7) gives
MgrRCy — (IjiiR) = farr + Hrg — Hg — bigg (2.9



Mo o — fang + Hy + bxgg = (MRRR3 + 1) Hrg (2.10)
Jrr . Jrr
Hrg = [(MrrRCr/Jrr) - farr + Hg + bigg]/[(MggrR?/]rr @.11)
| +1)]
Because both wheels are identical, we have
Hyy, = [(MroRCL/JRL) = fare + HL._'*‘ bip, ]/ [(MpR? /] + 1)] (2.12)

For the chassis, the force in the free body diagram of the chassis in the horizontal direction is
described by

Mpip = fdp + HL +HR (2.13)

Similarly, in the vertical direction, one obtains:

Mpyp = VL +VR - Mpg : . (2.14)

By the moment formula, we have
Jeobp = (Vi + V)L sin 8p — (Hy + Hg)L cos 8p — (Cp, + Cg) (2.15)
JpsBy = (H, — Hx)D/2 — bsw, (2.16)

If =0, then Vg4V, =Mpg. since xp=Lsinbp ,¥%p = LbpcosBp —LOZsinbp,
substituting, #p into (2.13) and (2.15) we obtain | |
6p = (fap + Hg + H, + MpL83 sin 6p) /MpL cos 8p (2.17)
Substituting (2.17) into (2.15) yields
[Jpg/MpL cosBp) + L cos8p](Hg + Hy,)
= —(Jpo/MpL c0s 0p)fap — Jpg 63 tan 6p (2.18)
+ MpglL sin8p — (C;, + Cg) |
And |
(Hg + Hp) = {1/[(Upo/MpL cos 6p)
+ (L cos 8p)1}[—Jpofap/MpgL cos Op (2.19)
— JpgO2tan 6p + MpglLsin 6p — (Cg + C,)] |
By the definitions in Fig. 2.1 (b), the following equation of motion can be obtained:

Xrm = (Xge + %Xrr)/2 = R(Ory + Orr)/2 (2.20)

Vrm = ¥ry = R(Opy + Orr)/2 (2.21)



From (2.3) and (2.6), it yields 8gg = (Cr_H7rR)/Jrr, Ory = (C, — HryR)/Jr- Thus one

obtains

vem = (R/2){{(CL — Hry R)/Jri] + (Cr — Hrr) /Irr}

Assuming (2.11) and (2.12) into (2.21), and then equating the result to (2.21) yield
Vrm = Az2Vrm + A2z sin0p + By (€, + Cg) + Ba3farL

| + Baafarr t+ Basfap o

where A;; = —R?b/ajg , B2(R/2]p)[(1/a) + (R/epf)] ,

Ay = —(R?)(y — (63/ cos 6p)) /2Jratp,

Bys = Byy = R?/2pa,

o= (MgR*/Jp) + 1,

Bys = (R*/2Jraf)Upa/MpL cos 6p),

p =1+ (D% (g + MrR?)/2JpgR?),

B = (Jpg/MpL cos8p) + LcosBp ,

y=LMpg.

Next, derive the dynamics of the pitch angle. Because 8p = wp from (2.15) gives

wp = 0p = {[(Lsin8p Mpg — L cos8p)Jpgl/BH—Ure
/MPL COS GP)fdP —]PQQ}% tal‘l 9P + YSln QP

— (Cr+ C)} — (C, + Cr)/Jpe

which, consequently, becomes

@p = Asz SinBp + B4(Cy, + Cr) + Basfap

where Ag; = (7/Je6) — L0y = Jro03)/Jro- B);
Bys = 1/BMp , By = [(L cos 8p /B) — 1]/ Jpg. Furthermore, from (2.16), it follows

éy = d’y = [D(H, — Hg)/2]ps] — [bdwy/jPa]

W, = (Vre — Vrr)/D
Subtracting (2.4) from (2.1), one obtains
Hry, — Hpg = [(MgR/JR)(Cy, — CR) + (farr — farr) + (Ho

— Hg) + b(%g, — %rr)l/a
And rearranging (2.26) give

Hy, — Hg = (farr "de_L) + (CL — Cr)/R — bDw, — [(Jr
+ MgR?)/R*]Da,
Therefore, solving (2.25) for H, — Hp and substituting it into (2.27), we have

10

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

2.27)

(2.28)

(2.29)



wy, = Agewy + Bgy €, + BeaCr + Bz fars, + Boafarr (2.30)
where Agg = —(bD? + 2b)/2p)ps,

Bg = Bgz = —Bgs = —D [2p]ps,
Bg1 = —Bgy = D/2pJpsR. Define the following six state variables

= [Xrm Vem O, wp 6y, wy]T (2.31)

The nonlinear system model of the human transporter is then described in the following state-

space form
Gl v 7 po0 09 0
v{\’M AzzvRM + A23 sSin 9p BZ BZ E
Op wp 0 o0l[c 0
d’y - A43 Sln 9}; + B4 B4 CR} + f_4 (2-32)
6, Wy 0 0 0
_d)y‘J | A66wy2 R -_BG Bﬁ' _f6_

where f, = Bysfag, + Baafarr + Basfups fs = Beafars + Besfarr » fo = Basfap-
From (2.30), assuming f; = 0 for i = 2, 4, 6, and if the human transporter has reached steady-

state inclination 8, and 8, = 0, then it will generate a steady-state linear speed Vg
A VrMgs = (3214_43 — Aa3B¢) sinp /A2236)|9P=0
In order to move the human transporter without falling down, transforming C,, and Cy into
the wheel torques C;and Cy yields
€, =0.5Cp + 0.5C, ,Cgr = 0.5C9 — 0.5C,,
Thus (2.32) can be decomposed into two independent subsystems: One is concerned with

mobile inverted pendulum subsystem describing the yaw motion about the z axis i.e.

-%RM Vrm 0 _
Uram| | Az2Vgpy + Azz sinfp B,(Co+12)| = f; i
0 |~ w |* 0 =%
P P — B’ (2.33)
@y Agz sinOp B4 (Co + f2)
=24
And other is yaw motion control subsystem modeling the rotation about the y-axis, i.e.
6 0 1177[6y = fs
y
[ ] o aclla]*[z)l6+RLA= (234)

From (2.5) and (2.6), it is clear that two controllers for Cy and C), can be synthesized

independently from each other and combine together to achieve the control goal.

Table2. 1 Symbols definition
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Symbol and

" PARAMETER AND VARIABLE NAME Value
uni
Xrm (M) :
o Position and speed _
Vrm[m]
0p[rad]
Pitch angle and pitch rate
wp([rad/sec] -
6,[rad]
Yaw angle and yaw rate _
wy[rad/sec]
C,[N.m] Applied torque on left wheel
Cr[N.m] Applied torque on right wheel -
Jrr[Kg.m?] Moment of inertia of the rotation mass )
. . 0.1Kg.m
Jru[Kg.m?] with respect to the Z axis
MgrlKg] * Mass of the rotation mass connected to
Mg, [Kg] the left and right wheel -
- Moment of inertia of the chassis with 5
Jro[Kg.m?] 27.6 Kg.m

respect to the Z axis

Moment of ‘inertia of the chassis with )
Jes[Kg.m?] , 3.478 Kg.m
respect to the Y axis

Force applied to the center of the left

fars, arn) . (right) wheels B
fap Force applied to the center of gravity _
Mp[Kg] Mass of the chassis 135
R[m] Radius of the wheels 0.2m

Lateral distance between the contact
D [m] 0.6m
patches of the wheels

Distance between the Z axis and the CG
L [m] lm
of the chassis

b Friction coefficient 0.01~0.05

2.2 Linearized State model

Assume that 0p be small, i.e., yp = L cosOp = L,jjp = 0. Using the linearization procedure,

one obtains the linearized system model of the SBTWT in the following state-space form:
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FJ..CRM 0 1 0 0 0 O jr¥em [ 0 01
VrM| |0 A,, Ay 0 0 0 ||vrM B, B,
Qp_0001009p+0 ocL]
@y [T]0 0 Aym 0 0 0 || wp B, B,||Cx
6, 0 0 0 0 0 1J o, 0 0
. 0 0 0 0 0 Agllwyl [-B, B
-wa 66 Y 6 6 (2.35)

0

f2

4|0

fa

0

fe

2.3 Tracking and control using Feedback linearization

Feedback linearization is the technique in which the closed loop dynamics of the non-linear
system made the linear throﬁgh suitable control law. In fact, there exists a class of non-linear
system for which feedback linearization is possible.

Considering a class of single input affine non-linear system defined as

X1 X2
d' xZ x3
dt Xp—1 Xy (2.36)
Xn fx)+gxu :
Yy =X

Assume that g(x) # 0. if the control law is chosen

1
=——|-fx)+kyr + 2™V 4+ 2, 1@ 4.
g(x)[ f( ) v 1 n—~1 (2.37) .

+ xnd]

u

wheree = y? —y is the output tracking error and r = e® D + 1,e®D 4 ..t A, e
(power denotes respective derivatives).

The closed loop error dynamics becomes 7 = —k,r which is linear as well as stable.
where k,, and As are positive design parameters.

The system is decomposed into two subsystem i.e. mobile inverted pendulum
subsystem and yaw motion control subsystem. This leads to driving the independent control
law for both the two subsystem by using the law (2.37), so this made the overall closed loop
dynamics of the two subsystems linear. This results two controller: self-balancing controller

. and yaw motion controller

13



2.3.1 Feedback Iaw for mobile inverted pendulum subsystem

The inverted pendulum subsystem described in (2.33) can be written as

[Z};] - [A43c:iPn BP] + [134(0904. ﬁ)} Ja =£—: (2.38)

The control objective is to control the pitch angle and pitch rate of the mobile inverted
pendulum subsystem in order to follow the command signal Opc = 0, w,. = 0 without any
| error from Fig. 1.3. Therefore SBTWT will remain stable at vertical upright position and
rider can stand on the footplate of the vehicle without falling. For deriving the control law for
this mobile subsystem the nonlinear term f, in (2.38) is assumed to be zero and the control
law is derived from (2.37). . |
From (2.38) and (2.36) the x; = 8p, X, = wp, f(x) = Ay3 sin 8, and g(x) = B,and
for the control law.
y?=6,,=0ande=—y =—6pand x,q = y"¢ =0
r=e®4 e (2.39)
Substitution of (2.39) into the control law (2.37) which yields the control law is to be

©

1 .
¢ =g —Au3sin Op + k1 + A,eD] (2.40)

Applying the control law (2.40) to the subsystem (2.38) the error dynamics
becomes = —k,,r. While k,, and As are the positive constants, selection of the appropriate
values of these tuning parameter ensures the convergence of 8p, wp and error dynamics as

well. This can make the overall subsystem stable and follow the command signal.
2.3.2 Feedback control law for yaw motion control subsystem

The control law for yaw motion control of the subsystem (2.34). Since the potentiometer is
employed to measure the angle difference between the equilibrium point and yaw angle the
rider intended to achieve, the yaw motion control is designed such that the yaw angle of the
vehicle is to follow command signal given by the rider. Similarly this control law is derived
from the feedback linearization technique (2.37) so that the closed loop dynamics of the
system becomes linear, while deriving the control law the nonlinear term f; is assumed to be

zero in (2.34).

14



From (2.34) and (2.36) the x; = 0,,x, = w,, f(x) = Agew,, and g(x) = Bg and for
the control law
yt=0y.=0ande=-y=—6,andx,y = y™ =0
r=eM + e (2.41)

Substitution of (2.41) into the control law (2.37) which yields the control law is to be

1
cy = B, [—Asswy + kyr + 2,eD] (2.42)

This control signal (12) is applied to the subsystem (6), substitution of this control law
in (6) gives the closed loop linear dynamics inr. ie.7 = k,r, where k,and As are the
positive constants, these parameters can be calculated from pole placement and this ensures

the convergence of the r, 8,,. As a result of this the yaw angle is follow the riders command

yaw angle 6,,.

2.3.3 Control results and discussion

In this section two sets of experiments for each subsystem (self-balancing and yaw motion
control subsystems) are conducted to show the effectiveness and performances of the
proposed controller using feedback linearization technique. Table I lists the all parameters
used for the simulation, two uncertain terms f; and f; are taken to be nonzero quantity but
the viscous friction depends upon the vehicle speed and slip of the wheels are neglected. In
the first set the uncertainty terms is assumed to be fixed quantity f, = fg = 0.5 N while in

second set of simulation the uncertain terms f; and f, are increase to 10 N.
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Fig.2. 2 Comparison of simulation results of the pitch angle control

The first simulation of first set is performed to verify the performance of the proposed
feedback linearization controller for self-balancing controller. Fig. 2.2 shows the comparative
simulation results of the pitch angle tracking for the state-feedback controller [2] and the
feedback linearization control. As the Fig. 2.2 shows the feedback linearization control has an
excellent convergent speed than that of the state feedback controller when the uncertain
term f; is taken to be 0.5N. The second simulation of first set is conducted to examine the
effectiveness of the proposed controller using feedback linearization for yaw motion control
subsystem. Fig 2.3 shows the yaw angle tracking performance for the state-feedback
controller and proposed yaw controller using feedback linearization. The results in Fig. 2.2
and 2.3 shows that the proposed feedback linearization controller has far better performance
compare to the conventional state-feedback controller. In contrast Fig 2.2 and 2.3 have shown

that the proposed controller outperforms the state-feedback controller.
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Fig.2. 3 Comparison of simulation results of the Yaw angle control

In the second set of experiment, the simulation of feedback linearization controller
and state-feedback controller are designed with the same tuning parameters while the
uncertain term fyand f; is increase to 10N for both the self balancing and yaw motion control
subsystem. Fig. 2.4 shows the performance of both feedback linearization and state-feedback
controller for self-balancing subsystem. From the Fig. 2.4 it can be stated that feedback
linearization controller works fine with hegligible steady state error 0.02 rad (1.15°) on
other side state-feedback controller gives the large steady state error 0.07 rad (4°). In case of
yaw motion control subsystem Fig. 2.5 shows the responses of bdth feedback linearization
and state-feedback controller. From Fig. 2.5 shows that performance of feedback lineérization
controller is in limit and gives the steady state error of 0.02 rad (1.15°) while the state-
feedback controller totally fails and gives the steady state error of 0.27 rad(15.4°). In a
result Fig. 2.4 and 2.5 have shown that the proposed controller totally outperformance the

state-feedback controller when the uncertainty terms are changed to 10N.
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Fig.2. 5 Comparison of simulation results of the Yaw angle control when f6=10N

Now the performance of the controller is evaluated in system parameter variation. The mass

of the vehicle is changed for the different rider from 135 kg. to 435 kg. Since the dynamics of

the inverted mobile pendulum is dependent on the mass of the vehicle Mp so the performance

18

get affected. While yaw motion subsystem is independent to the vehicle mass, the

performance of it remains unchanged so overall the performance of controller is get affected.



The response of the self-balancing controller is shown in Fig. 2.6 with mass variation. From

figure it is clear that the settling time is increased to 0.7 sec and overshoot is 0.06.
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Fig.2. 6 Self-balancing control using feedback linearization when mass of the vehicle is
changed to 435kg. '

2.3.4 Trajectory tracking result and discussion

For tracking of desired trajectory, the control is again derived from the (2.37). The desired
trajectory is chosen for the self-balancing controller is sin 1.5t. The response of the moBile
inverted pendulum subsystem is shown in the Fig. 2.7. The Fig. 2.7 (a) is shown the self-
balancing angle i.e. pitch angle response and the desired trajectory and Fig. 2.7 (b) is shown
the pitch rate response of the subsystem and the desired pitch rate trajectory. Form the figure
it is clear that the subsystem is starts tracking the desired trajectory in short time and then
exactly track it. Similarly for the yaw motion subsystemJ, for tracking the desired trajectory -
the control law is again calculated from (2.37) and applied to the subsystem (2.34).
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Fig.2. 7 Pitch angle tracking of self-balancing Controller (a) Desired and plat pitch angle (b)
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The desired trajectory is selected for this subsystem is sin 1.5¢. The response of the yaw
subsystem is shown in Fig. 2.8. In Fig. 2.8 (a) the yaw angle response and desired yaw angle
trajectory is shown and in Fig. 2.8 (b) the yaw rate response and desired yaw rate signal is
shown. From the figure it is clear that the subsystem is starts tracking the desired trajectory in

short time and then exactly track it.

1.5 : :’ r f 2 S
g o AT I S
=2 5 B i
g OfF """"" 1 3 2 1
z ; / g 3
> 05 : 2
. H >..
.4 [ H
1 : :
Plantyaw angle -5 Plan't yaw rate
........... Desired yaw angle . I?esnred ya'w angle
) 1 2 3 4 5 ~o 1 2 3 4 5
Time (Sec) Time (Sec)
(@) (b)

Fig.2. 8 Yaw angle tracking of yaw Controller (a) Desired and plat yaw angle (b) Desired and

plant yaw rate

In Table 2.2 the performance comparison between feedback linearization and state-feedback
controller is shown. From the table it can be concluded the feedback linearization controller

totally outperformance the state-feedback controller
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Table2. 2 Performance comparisons specification-wise

State-feedback contrbller ' Feedback linearization
Yaw motion Self- Yaw motion Self-
Controller : Controller balancing Controller balancing
controller controller
Specification
- Settling time
(se0) 0.8 0.8 0.25 0.2
Steady-state error (rad)
When f, = fs = 0.5N o . 0 0 0
Steady-state error (rad) v
When f, = f; = 10N 028 0.07 0.024 0.024

In this chapter of the report the nonlinear mathematical equation of the self-balancing |
two-wheeled transportér is derived by incorporating the frictions between the wheels and the
motion surface, and modeling error. Tracking and control of this vehicle is effectively
achieved through the feedback linearization control and the performance of this controller is
far better in comparison to state-feedback controller [2] and adaptive controller [3]. Since
SBTWT is an application to Inverted Pendulum (IP), in next Chapter an adaptive neuro-fuzzy

inference structure based controller is designed for the rotary inverted pendulum.
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CHAPTER -3

ADAPTIVE NEURO-FUZZY INFERENCE STRUCTURE
CONTROLLER FOR RIP

SBTWT can be seen as an applidation of the inverted pendulum. In linear-motion of
the vehicle the rider can be assumed as a pendulum at its uprights position and wheels with .
the footplate can be assumed as the cart to this inverted pendulum while in rotation of vehicle
the system is assumed to be a rotary inverted pendulum. So in this Chapter an adaptive neuro
fuzzy inference (ANFIS) controller is present for the Rotary inverted pendulum to balance it
at it’s the up-right position. The steps for implementation of four input controller is presented
and shown that designing of this controller is very simple and at the same time it reduces the
time and space complexity of the controller. The controller and the inverted pendulum are
simulated in the Matlab Simulink environment with the help of ANFIS editor GUI
Simulation result shows that ANFIS controller is much better in comparison to conventionél

PID and Fuzzy logic controller in terms of settling time, overshoot and parameter variation.

- 3.1 Introduction

A mechanical system which has greater number of joints than the number of actuator present
in the system such system is called the underactuated system [34]. Because of this, the
strategies developed for fully actuated system may not be directly applied to underactuated
system. The .control study of underactuated system has drawn a great interest in last few
decades as most of the physical systems have underactuated dynamics as those in robotics,
aerospace engineering and marine engineering including the example of flexible-link robots,
walking robots acrobatic robots, helicopter, satellite, space robot, spacecratft etc.

The Rotary Inverted Pendulum is a widely investigated nonlinear system due to its
property of unstable, higher order, multi-variable and highly coupled which can be treated as
highly non-linear control system. Rotary system provides an excellent experimental platform
for examining specific control theories or typical solution and thus promoting the
development of new theories. This system can be taken as the problem of balancing the
pendulum at up-right position which is the most lcommon issue in robotics. This explains the

fact that many investigations have been carried out on the rotary inverted pendulum problem
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[34]-[37].

For control the balancing act of the rotary penduluni, a control system is needed. As
known the ANFIS can ‘be used as controller as it can model the human decision making based
on the IF-THEN rules and become a very popular tool for the approximation and inexpensive
tool to implement and shows the adaptive and robust behavior in comparison to more
commonly used conventional controller like PID and compensator like lead-lag and fuzzy
controller. As known the conventional controller completely relies on the mathematical
mode] of underlying system while efficient fuzzy controller, designed with the help of LQR
parameters can be easily implemented to linear and nonlinear systems [36].

In ANFIS, fuzzy inference system is blended with the neural networks and uses the
human intelligence to design the controller. The rotary inverted pendulum and controller is
model before putting them into the simulation and controller is train, validate and check the
performance with the no ise and varying parameter. Then the controller and system model is
implemented in Simulink environment of MATLAB and the performance of the controller is
measured and run in real-time workshop. This is followed by the implementation and

comparison of the PID and fuzzy controller with ANFIS controllers through simulations.

3.2 Rotary inverted pendulum model

The Rotary system, as shown in Fig. 3.1, consists of a vertical pendulum, a horizontal arm, a
gear chain, and a servomotor which drives the pendulum through the gear transmission
system. The rotating arm is mounted on the output gear of the éear chain. An encoder is
attached to the arm shaft to measure the rotating angle of the arm. At the end of the rotating
arm there is a hinge instrumented with an encoder. The pendulum is attached to the hinge.
The inverted pendulum (mechanical part only) is sketched in Fig 3.2, a and & are
employed as the generalized coordinates to describe the inverted pendulum system. The
pendulum is displaced with a given o while the arm rotates an angle of 6. We assume the
pendulum to be a lump mass at point B which is located at the geometric center of the

pendulum. The X, y, z frame is fixed to the arm at point 4.
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Fig.3. 1 Rotary Inverted Pendulum System Fig.3. 2 Simplified model of the rotary

inverted pendulum system

Non-linear dynamic equation _
ad — b cos(a) & + bsin(a) a2 + ed = fV, (.1
—bcos(a) 6 + cét — d sin(a) = 0 (3.2)

Where a = J,, + mr? +nyK2J, b =mlr,c = gmlz, d = mgl,

_ ﬂmﬂgKtngm NmNgKeKg
e = Beq + R ‘f = " A
m

Jeq is moment of inertia of pendulum and arm about
the axis of € and 7,, and 1, are the motor and gear efficiency respectively. K, K, K; are the
servo system gear ratio, back-emf constant and motor torque constant respectively.
Linearzing (3.1, 3.2) under the assumption that ¢ ~ 0 anda =~ 0, we get- the
linearized model as follows:
ab — bi + el = fV, (3.3)
—bb +ci —da=0 3.9
The overall block diagram of a rotary pendulum system with a feedback ANFIS
control block is shown in Fig. 3.3. The output of the plant (6,8, a, &) is fed back to the
controller to produce subsequent amount of voltage to balance the pendulum to its up-right
position and at the same time maintaining the arm at the initial position.

The model of the inverted pendulum and the controller is created using Simulink. As

a whole the algorithm for the controller to balance the pendulum at up-right position is to
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calculate the voltage which needs to give to the servomotor. Fig. 3.4 shows how the voltage
is calculated from the pendulum angle, pendulum angle acceleration, arm angle, arm angle
acceleration measured from their respected sensor. The Fig. 3.4 shows that motor shaft
encoder gives the arm angle while another shaft encoder placed at the end of the arm gives

- the pendulum angle and then the angle accelerations are derived from arm and pendulum

angle.
_ >
Plant (Rotary » d/dt >
Vref > pendulum) ' .
o d/dt >
ANFIS Controller f

Fig.3. 3 Block Diagram of Inverted Pendulum System with feedback ANFIS controller

The four circles (Fig. 3.4) K1, K2, K3, k4 are four “knobs™ used to provide the gain to
the four feedback signals. They are summed together and feed-back to the system as to give
' the voltage to the motor to rotate the arm. This can be expressed as
V=_(K1%0)+(K2*0)+ (K3 *a)+ (Ké=*d) (3.5)
The controller input gains K1, K2, K3 and K4 are determined using the Linear- .-
Quadratic Regulator (LQR) method described by Friedland [34]. This method finds the
optimal K based on the state feedback law and the state-space equation derived earlier. For
finding out the closed loop stability analysis of inverted pendulum we find out the root locus

analysis, frequency analysis and many techniques.
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Fig.3. 4 Plant and controller block diagram.

3.3 ANFIS Controller

ANFIS adaptive Neuro-Fuzzy system was first introduced by J. Jang in 1993 [40]. ANFIS
constructs a fuzzy inference system (FIS) whose membership function paraméters are tuned
| (adjusted) uéing either a backpropagation algorithm alone or in combination with a least
- squares type of method. This uses a network-type structure similar to that of a neural
network, which maps inputs through input membership functions and associated parameters,
and then through output membership functions and associated parameters to outputs, can be
used to interpret the input/output map. The parameters associated with the membership
functions changes through the learning process. The computation of theée parameters (or
their adjustment) is facilitated by a gradient vector. This gradient vector provides a measure
of how well the fuzzy inference system is modeling the input/output data for a given set of
parameters. When the gradient vector is obtained, any of the learning algorithms is applied in
order to adjust the parameters to reduce the error (squared difference between actual and
desired outputs). 4'

The structure of the fuzzy inference system (FIS) is taken as Takagi-Sugeno type and
four input variables arm angle, arm angular velocity, pendulum angle and pendulum angular
velocity are considered and all input variables are having two membership functions. The
parameter values of these membership functions are trained by ANFIS to provide the
appropriate value of the voltage applied to motor which achieves the goal of balancing the

pendulum. Fig. 3.5 shows the structure of the ANFIS controller
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For generating the FIS structure ANFIS editor GUI, already available in MATLAB is
used. In editor grid portion type structure is selected and hybrid learning is chosen. Training
data is available frofn the above mentioned. LQR method which is randomly divided into
training, testing and checking data. After training checking and testing of the ANFIS

controller, above shown (Fig.3.5) structure is obtained. This structure is considered as five

| layer feed-forward neural network
- A. The first layer- This layer is a basic input Fuzzification layer where the crisp inputs are
allocated relative fuzzy values.

B. The second layer- This layer of the nodes labels defines the specified membership
functions for each input created in the layer one. Gaussian shaped fuzzy memberships are
utilized here.

C. The third layer-. The nodes in this layer represent the rules generated for different
combinations and instances of inputs. This layer will give the information regarding
which rules are to be fired for different possibilities of inputs. |

D. The fourth layer- This layer produces the defuzzified Takagi-Sugeno-type output for »
each previous i output. Here a particular defuzziﬁed value is getting generated for each
and every rule fired.

E. The fifth layer- The single node in this layer computes the overall outputs as the
summation of all incoming signals. That gives the overall output that is generated frqm
all the rules fired for particular set of input values. |

Therefore the output of the ANFIS is clearly is a linear function of all the inputs. This can be
seen as the Rule-Base of this controller is given by ‘

Rule Base: If 0 is A1 and 6 is B1 and a is C1 and & is D1 then V,, = (K1 x 0) +
(K2 % ) + (K3 * «) + (K4 * &) + K5
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Fig.3. 5 structure of ANFIS controller

3.3.1 Simulation Results and Discussion

The rotary inverted pendulum and controller are implemented in Matlab Simulink
environment. For the controller firstly FIS file is generated from the ANFIS editor GUI and
used in a fuzzy logic controller block in the Simulink. The non-linear model of rotary
pendulum is designed in the Matlab Simulink. The experiment is tested in real-time also

Table3. 1 Values used in the simulation

Parameter | Values Parameter | Values
B, 0.004 K, 0.00767
Jeq 0.0035842 K, 0.00767
Jm | 3.87e7 L 0.1675
K, 70 T 0.215
R,, . 2.6 Ng 0.9
M 0.69 g 9.8
m 0.125

The Simulink model is simulated with ode5 solver and 0.001s sampling time. In Fig.
3.6 the falling angle () of the pendulufn and voltage applied to the servomotor is shown.
The applied voltage is calculated by the ANFIS controller which has a maximum and

minimum limit of 4+ 6V In figure it can be seen that the pendulum is get stable in 1.3s.
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Fig.3. 7 Desired arm position and arm response of ANFIS controller.

The response of the arm angle versus desired angle is plotted in the Fig. 3.7. This
shows that the desired arm angle which is 30 degree in this case is achieved in the nominal
time about 1sec
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- 3.3.2 Comparison of ANFIS and conventional PID and fuzzy control

The conventional PID controller and fuzzy controller are designed for the same rotary
inverted pendulum problem to compare the result with the proposed ANFIS controller. For
the same plant parameter a PID controller is designed with proportional gain Kp, derivative
gain Kbp, integral gain K 5, 11, and 0.02 respectively and efficient fuzzy controller [36] based
on LQR. The falling angle of the pendulum in case of ANFIS, PID and efficient fuzzy is
plotted m Matlab shown in Fig. 3.8. The graph shows that the settling time and overshoot of
the ANFIS controller are much less than PID and efficient fuzzy controller.

Ih another set of experiment the robustness of the two ANFIS and PID has been
checked by changing the mass of the Pendulum is changed from 0.125 to 0.85 kg without
changing the parameters of the controllers. Fig. 3.9 shows that the conventional controller |
gives the un-damped oscillation and unable to stabilize the pendulum anymore while the
ANFIS gives the reasonable response however poor than the previous one when no mass has
been changed and stabilizé the pendulum in 1.7 sec. This proves that proposed ANFIS
controller ié more robust and does not rely on mathematical description of the plant.

In another set of experiment the robustness of the two ANFIS and PID has been
checked by changing the mass of the Pendulum is changed from 0.125 to 0.85 kg without
changing the parameters of the controllers. Fig. 3.9 shows that the conventional controller
gives the un-damped oscillation and unable to stabilize the pendulum anymore while the
ANFIS gives the reasonable response however poor than the previous one when no mass has
been changed and stabilize the pendulum in 1.7 sec. This proves that‘proposed ANFIS

controller is more robust and does not rely on mathematical description of the plant.
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. Response of PID controller (when m=0.9 Kqg)
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Fig.3..9 Falling pendulum angle response of (a) PID controller (b) ANFIS controller when

mass is changed to 0.85 Kg.

In this Chapter, ANFIS controller is designed for rotary inverted pendulum in Matlab
Simulink with the help of ANFIS editor GUIL. The designing of-this controller has the
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advantages of both the intelligent technique Fuzzy and Neural networks together. In
comparison of the modern control design technique, ANFIS is simpler to implement as it
eliminate the éomplicated mathematical process and use the soft computing techniques. In the
simulation result it is shown that ANFIS controller is more robust to system parameter
variation in compaﬁson to conventional PID and fuzzy controller. In the next Chapter an
indirect adaptive controller is presented for the self-balancing two-wheeled transporter which
ﬁrstly explicitly identified the system using neural network and then controller is designed

through the inversion of trained neural network.
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CHAPTER - 4

INDIRECT ADAPTIVE CONTROLLER FOR SBTWT

The problem of steering the Self-Balancing Two-Wheel Transporter (SBTWT) in the
presence of uncertainty is a very interesting problem. The SBTWT is a mechatronic system
which is decomposed into two subsystems: yaw motion and mobile inverted pendulum.
Steering of the vehicle can be achieve by controlling of the both subsystem i.e. yaw motion
control for the first subsystem and self-balancing of the second subsystem in the presence of
uncertainties, unknown and unmodeled parameters and changing envirohment condition. In
this Chapter indirect adaptive controller using network inversion technique is proposed for
the two subsystems to achieve self-balancing of the vehicle and yaw motion control to steer
the vehicle respectively. Simulation results indicate the identification of the two subsystems
using radial-basis function neural network (RBFNN) and the performance of the proposed
controller. Simulations also show that the proposed controller is capable of steering the
vehicle in desired manner. _

For the noniinear modeling and control, the radial-basis function neural networks
(RBFNNSs) is more preferred over the multi-layered network (MLN), as RBFNN has a.
simpler structure and better capability of functional representation [14]. Since its fesponse is
linear to weights, learning in RBFNN is expected to be faster. Thus neural networks (which
are shown to be uﬁiversal function approximators [15, 16] have used to explicit model the
dynamics of the SBTWT system. Within the framework of indirect adaptive control, in [17]
Narendra presents four possible neural network model of the plant to design the indirect
adaptive control. In the area of indirect adaptive control design, the forward-inverse-
modeling approach [18], feedback error-learning scheme [19], tuning of the controller
parameters using back—prbpagation [20] are some notable contribution. Many researchers
present indirect adaptive control design using network inversion [21-27] as well.

Here the indirect adaptive controller for the self-balancing two-wheeled transporter is
designed. Since the system is decomposed into two subsystems mobile inverted pendulum
and yaw motion subsystem so like JOE [2] by grasser et al. and in [3] Tasi et al., two indirect
adaptive controllers i.e. indirect adaptive self-balancing and indirect adaptive yaw motion

controller are designed using network inversion technique. For designing the controller firstly
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two subsystems are explicitly identified through the two RBFNNs and then from these
identified neural network emulators the controllers are designed through network inversion
technique. In comparison to state-feedback controller presented by Grasser er al. [2] and
adaptive controller using RBFNNSs given by Tasi ef al. [3] the designing of proposed indirect
adaptive controllers are not dependent on the dynamical model of the subsystems, unknown
plant parameters, unknown frictions, uncertainty and linearization error because the control
signals are derived from the identiﬁed neural network emulators which take inputs directly
'ﬁrom the SBTWT through sensors. So the proposed controller is capable of steering the
vehicle for different riders and maintaining its standing posture under the unknown model

parameter, uncertainty and frictions.
4.1 Subsystems identification using RBFNNs

As shown in the Fig. 4.1, 4.2 RBFNN .is selected for modeling the two subsystems of the
-SBTWT, as the RBFNN pérforms the excellent approximation for the curve fitting problems
and the response of the network is linear in terms of its weights. This helps us to extend linear
adaptive control methods to develop non parametric non-linear adaptive system. [14].
Consider the non-linear discrete time dynamics of the each subsystem of SBTWT is

described by the equation

x(k + 1) = f(x(k),u(k)) @4.1)

where x(k) € R™ and u(k) € RP represent respectively states and input vector of
the system at the Ath sampling instant. The states of the systems are assumed to be accessible
and nonlinear function f(x) is assumed to be unknown.

The ith output of such a network can be expressed as

! .
2= i) = ) 6y¢(lv - gD (42)

=1
where v € R™ is the network input vector; [[.|| denotes the Euclidean norm; ¢; €

R™,1<j<1, are the RBF centers; ¢(.)is the jth activation function of hidden layer;
0;; 1 <j £ 1,1 < i < n are the connection weights from hidden layer to output layer; and / is

the number of hidden units in the first layer. Gaussian radial function has been used as the
activation function because it has good modeling capability. Of course the RBFN is a general

function approximator, and its performance does not depend critically on the choice of

¢(.)[16].
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4.1.1 Mobile inverted pendulum subsystem identification

The mobile inverted pendulum subsystem is approximated using the RBFNN model as shown
in Fig. 4.1, taking v = [0p wp Cp)7 and &; = [ép &)‘,,]Tand output of the network is given as
%= filv) = 6,67
= [0y ... Oullgy ... 11"

 where 6;; are the connection weights from hidden layer to output layer; ¢(.)is the jth

“3)

activation function of hidden layer and given as
;= exp[—{(6p — c1)? + (wp — Czjz + (Cp — 03)2}/0j] 4.4)
where c;,i = 1,2,3 are the centers of the receptive field and oj,j = 1,2..1 is the

inverse of the width of Gaussian function.

Fig.4. 1 Structure of RBFNN model of inverted pendulum subsystem

4.1.2 Yaw motion subsystem identification

The yaw motion subsystem is approximated using the RBFNN model as shown in Fig. 4.2,
taking v = [, w, Cy]T and £; = [0, &)“y]Tand output of the network is given as
% = fi(v) = 6;;9" |
= [6i1 - Oullpy .. P17

4.5)
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where 0;; are the connection weights from hidden layer to output layer; ¢(.)is the jth
activation function of hidden layer and given as |
2 2 2
5 = exp[—{(6y — )" + (wy = c2)" + (€, — €3) }/q] (4.6)
where c;,i = 1,2,3 are the centers of the receptive field and a;,j = 1,2..1 is the

inverse of the width of Gaussian function.

Fig.4. 2 Structure of RBFNN model of yaw motion subsystem

4.2 Learning algorithm

The centers and weights of an RBFN can be tuned using ideas from nonlinear system
identification theory such as parallel recursive prediction error (PRPE) algorithm [28] or
extended Kalman filtering (EKF) algorithm [25, 29]. The simplest approach is to update the
centers using gradient descent algorithm and the weights can be updated using simple LMS
[30] algorithm. Although computatioﬁal requirement increases by adjusting centers, the
number of radial centers can be substantially reduced by this approach [31]. The
generalization performance of such a network is much better as compared to hybrid learning
scheme where centers are fixed or learned unsupervised and the weights are updated using
recursive least squares algorithm. In this fixed number of radial centers are taken to be of

uniform random distribution over the input space.
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Fig.4. 3 Subsystem identification using feed-forward network

The learning procedure is shown in the Fig. 4.3, the inputs to the network are current
states of the subsystem and the control signal X(k),u(k) and the output is the next states
X(k + 1) of the system. X(k + 1) is the states of the plant so the network weights are
updates such fhat the error signal e(k + 1) get minimized. The training data set should be
dimensionally sufficient to obtain a valid neural model of the subsystems. Since the two
subsystems are open loop unstable the training data samples are obtained using a PD
controller with additive dither signal. RLS [32] algorithm is selected to learn the subsystems
dynamics. '

The ith output of the RBFN described earlier, can be written as
% = fi(v) = 697 (4.7)

The weight update equations as per RLS algorithm [32], are described as
0i(k) = 6;(k — 1) + P(k)p(k — 1)[x;(k) — p(k — 1)78; (k

(4.8)
—1)]
P(k) =Pk —1)
| — Pk — 1)k
) | 4.9)
— DA+ ¢tk —1TP(k—1)) ¢k —1TPk
-1)

where P(k) € R™! and it is taken as 507 for both the two subsystems.

4.3 Indirect adaptive controller design using network inversion

Inverse mapping of the RBFNNs will generate the ihput pattern for a desired output pattern

[21]-[27]. Though inversion process it is possible to obtain the required control input for the
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desired output trajectory of the system.

The RBFNN models given by (4.3) and (4.5) represent a non-linear mapping from a
3-dimensional input space (6p, wp, Cq in case of mobile inverted pendulum subsystem) to a 2-
dimensional output space (8p, @p). The objective of inverse operation on these models is to
predict only one input (Cy) out of three inputs. The remaining two inputs are known a priory

(present subsystem states). The predicted input can be mathematically expressed as
u(k) = g(x(k), x(k + 1),c,W) (4.10)

The inversion algorithm predicts the control signal by updating input ag:tivation (k)
iteratively till the desired output activation is achieved or the number of iteration reaches a
maximum &y, This upper bound is decided by the sampling interval and corhputation time
required per iteration. The initial guess of the input activation function #(k) during each
sampling interval is taken as the input activation u(k — 1) predicted in the previous sémpling
instant. For the case first sampling interval, the initial guess is selected arbitrary from the

input space.
4.3.1 Indirect adaptive self-balancing controller design using network inversion

In this Section the indirect adaptive self-balancing controller is designed using network
inversion. The block diagram of the proposed controller is shown in Fig. 4.4.Since the mobile
inverted pendulum subsystem is explicitly identified through RBFNN, the control law is
derived from this neural network emulator. The inverse mapping is achieved by Lyapunov
based approach. This approach is presented by Lee [33] for pattern recognition problem;
same concept is used [24] to deriving the control law in following way. The advantage of this
approach is that the convergence is guaranteed since the algorithm is derived using Lyapunov
stability concept.

The Lyapuhov function candidate V(x(t),t) is chosen to be quadratic error function

in the desired trajectory of subsystem (2.38)
1
V= E(J?Tz”c) where ¥ = x; — % 4.11)

where Jgd = (Op¢, wpc) = 01is the desired trajectory of subsystem and % is the actual
output of the RBFNN model (4.3). The time derivative of the Lyapunov function V is given
by
oz .

]
V=23l (4.12)
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Fig.4. 4 Indirect adaptive self-balancing controller

Theoreml: if an arbitrary input activation Cy(0) is updated by

t |
Co(t)) = Co(0) + f Codf - (@.14)
0
Where
- 1%]12
Cp=—t Ty (4.15)
o =1raE’

Then ¥ converges to zero under the condition that C, exists along the convergence trajectory.
~ Proof: Substitution of Cy in V field (4.12).
V=—l%l*><0
where V < 0 for all ¥ # 0andV = 0if and only if # = 0 thus update law is stable

and X converges to zero in time. The iterative input action is update rule can be given by
Co(t) = Co(t' — 1) +pCy(t' — 1) (4.16)

where u is a small constant representing the update rate and t’represents the iteration
index. ‘
The positive numerical instability associated with the weight update law can be avoided by
adding a small positive constant € in the denominator. In this case g becomes
|12

L — | 4.17
“ =R e ¥ @D
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From this (4.12) V becomes

V=l e |
/Tx12 + € (4.18)
-

where 0 < a < 1,since @ is positive, V is negative semi-definite. Thus V will
decrease with the updafe of Cy, so as the tracking error . Once the update of Cy is over, input
Co(k) at the kth instant is assigned to the update value Co(t") and applied to the actual

subsystem.
4.3.2 Indirect adaptive Yaw motion controller using network inversion

This Section is devoted to design the indirect adaptive yaw motion controller using network
inversion technique, since the potentiometer is used to measure difference between
| equilibrium point and the yaw angle that rider infended to achieve, the indirect adaptive yaw
control problem is reducéd to an indirect adaptive regulation problem of the SBTWT. In Fig.
4.5 the controller structure is shown. Therefore similar to previous section, the Lyapunov
based approach is used for inversion of the RBFN model of subsystem (2.34). The yaw
motion subsystem is identified using RBFNN (4.5) and this is used to deriving the control
law for achieving the yaw motion of the SBTWT. The inverse mapping is achieved by
Lyapunov based approach because the advantage of this approach is that the convergence is
guaranteed since the algorithm is derived using Lyapunov stability concept. The Lyapunov
function candidate V (x(t), t) is chosen to be quadratic error function in the desired trajectory

of subsystem (2.34)
A ) | |
V= 3 (XTX¥) where ¥ = x4 — % (4.19)

where x¢ = (8y¢, wyc) = 0 is the desired trajectory of subsystem and £ is the actual

output of the RBFNN model (4.5). The time derivative of the Lyapunov function V is given
by '

V=22 |
ac, ¥ (4.20)
= —“T]C"y
0x
where J=—=— Je€R*™ “.21)
ac,
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Fig.4. 5 Indirect adaptive yaw motion controller

Theorem 2: if an arbitrary input activation C,,(0) is updated by

t

C,(t") =C,(0) + f C"yAdt (4.22)
’ 0
Where
- | K1
= 4.23
&= rEr ) * (423)

Then X converges to zero under the condition that (fy exists along the convergence trajectory.
Proof: Substitution of C,, in V field (4.20).
V=—lzl"<0
where V < 0 for all % # 0 and V = 0 if and only if ¥ = 0 thus update law is stable

and X converges to zero in time. The iterative input action is update rule can be given by
C,(t) = C,(t' — 1) + puC,y(t' — 1) (4.24)

where pu is a small constant representing the update rate and ¢'represents the iteration
index.
The positive numerical instability associated with the weight update law can be avoided by

adding a small positive constant € in the denominator. In this case C'y becomes

o El
=T 4.25
SR Te @29
From this Eq. (4.20) V becomes
R T
V= —IE rE e
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= —al|x|?

where 0 < a < 1, since « is positive, Vis negative semi-definite. Thus V will decrease with

the update of C,, so as the tracking error X. Once the update of C,, is over, input C, (k) at the

kth instant is assigned to the update value C,,(t") and applied to the actual subsystem.
4.4 Simulation results -

In this section two sets of simulation are conducted to show the performance and
effectiveness of the proposed indirect adaptive controllers using the network inversion
technique. Table 2.1 shows the all parameter used for the simulation and the online input-
output data is generated for the two radial-basis function neural network (RBFNN) model
(4.3) and (4.5) to learn the dynamics of the two subsystems (2.38) and (2.34). In the first set
of simulation result the identification of the two subsystems ﬁsing RNFNN are discussed and
in the second set of simulation the performance of the two indirect adaptive controllers is

shown.
4.4.1 Online data generation

The Euler representation of the two subsystems (2.38) and (2.34) with the sampling time
T = 0.01 sec. is used for generation of the training data. Since the two subsystems are open
loop unstable, the training data samples for the neural network model of two subsystems are
‘generated using the PD controller to self-balance and yaw motion of the vehicle. While
tracking the traje_ctory at each sampling instant various dither signal as in the form of white
noise, impulses, step functions, ramp and parabolic type of functions are added to PD
- controller outpﬁt to improve generalization capabilities of RBFN model. In this way the 3000

input-output data samples are collected taking the sampling interval to be 10ms.
4.4.2 Mobile inverted pendulum subsystem identification

In Fig. 4.6 the identification of mobile inverted pendulum subsystem using redial-basis
function network is shown. The number of hidden layer neurons for the RBFNN is taken as
100. The basis-function is assumed to be Gaussian for which the centers are fixed and
randomly within its input range. The input-output data are normalized. The training of the
neural network is done through recursive least-square (RLS) using (4.8) and (4.9). In Fig. 4.6
(a) shows the pitch angle (self-balancing angle) 6, of subsystem (2.38) and the identified
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state (pitch angle 8p) of neural network (4.3). While In Fig. 4.6 (b) the pitch angle rate wp of
subsystem and the identified state (pitch angle rate @p) of neural network is shown. The RMS
errors for the training of the self-balancing subsystem are found to be 10.54 and 14.43.
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1 .
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Time (Sec)

(b)
Fig.4. 6 Mobile inverted pendulum: identification (a) the state 8p and (b) the state wp




4.4.3 Yaw motion subsystem identification

In Fig. 4.7 the identification of yaw motion subsystem using redial-basis function network is
shown. Similar to mobile inverted pendulum subsystem, the number of hidden layer neurons
for the RBFNN is taken as 100. The basis-function is assumed to be Gaussian for which the
centers are fixed and randomly within its input range. The input-output data are normalized.
The training of the neural network is done through recursive least-square (RLS) using (4.8)
and (4.9). In Fig. 4.7 (a) shows the yaw angle 6, of yaw motion subsystem and the identified
state (yaw angle 5,) of neural network (4.5). While In Fig. 4.7 (b) the yaw angle rate w, of
subsystem (2.34) and the identified state (yaw angle rate &, ) of neural network is shown. The
RMS errors for the training of the yaw motion subsystem are found to be 5.74 and 8.54.
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Fig.4. 7 Yaw motion subsystem: identification (a) the state 8, and (b) the state w,,

4.4.4 Indirect adaptive self-balancing controller

In this set of simulation the performance of the proposed indirect adaptive self-balancing
controller is shown in Fig. 4.8. The indirect adaptive controller is designed through identified
neural network model using network inversion technique discussed before and the control
signal is calculated using (4.14), (4.15) and (4.16). The value of t,,,, is taken to 30 and the
update rate u is taken 0.05. In Fig 4.8 (a) the pitch angle 8, of the mobile inverted subsystem
and the pitch angle 8, of the RBFNN model is shown and in Fig 4.8 (b) the pitch rate wp of
the subsystem (2.37) and pitch rate @p of the neural network model is shown. The pitch angle
and pitch angle rate both converges to zero in around 4 sec. This shows that the rider can
stand properly on the vehicle without falling and the proposed indirect adaptive controller
works fine.
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Fig.4. 8 Pitch angle tracking for the indirect adaptive self-balancing controller using network
inversion technique (a) the state @p and (b) the state wp
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Fig.4. 9 Yaw angle tracking for the indirect adaptive Yaw motion controller using Network
inversion technique (a) the state 8,, and (b) the state w,

4.4.5 Indirect adaptive yaw motion controller

The aim of the yaw motion controller is to achieve the yaw angle tracking that rider intended
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to achieve. This is why it becomes the indirect adaptive regulation problem of SBTWT. The
performance of the proposed indirect adaptive yaw controller is shown in Fig. 4.9. The
indirect adaptive controller is designed by inversion of identified neural network model and
the control signal is calculated using (4.22), (4.23) and (4.24). The value of t,,q, is taken tol
30 and the update rate u is taken 0.05. In Fig 4.9 (a) the yaw angle 6, of the yaw motion
subsystem and the yaw angle §y of the RBFNN model is shown and in Fig 4.9 (b) the yaw
rate w, of the subsystem (2.34) and yaw rate &, of the neural network model is shown. The
pitch angle and pitch angle rate both converges to zero in around 4 and 2 sec respectively.
This shows that the rider can stand properly on the vehicle without falling and the proposed
indirect adaptive controller works fine »

In this way an indirect adaptive controller has been proposed for the self-balancing
two-wheeled transporter. The system has been explicitly, identified using two radial-basis
funcfion neural networks. The current states of the subsystem and the control signal to the
subsystem have taken as the inputs while the next states of the subsystem have taken as
output for the identification of these subsystems. The input-output data sets for the training of
these two neural network.emul'ators have generated using PD yaw motion controller and PD
self-balancing controller, The training of two neural network emulators has been done
through recursive least square (RLS) method. For designing the indirect adaptive self-
balancing and indirect yaw motion controller the network inversion algorithm has used. The
control law for the both the adaptive controllers is derived from inversion of trained neural
network emulators. Two indirect adaptive controllers have been synthesized respectively to
achieve the self-balancing and yaw motion control so that the efficient steering of the vehicle
is achieved. Through the simulation the identification of the two subsystems using RBFNN is
shown and the performance of the proposed indirect adaptive controller is also shown. Since
controller is independent ofv the vehicle’s mathematical dynamic model, the presence of
uncertainty and plant unknown and unmodelled parameters and friction do not affect the |

performance of the proposed controller.
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CHAPTER -5

CONCLUSION AND FUTURE SCOPE

In this dissertation report, the mathematical modeling of the self-balancing two-
wheeled transporter is derived. With the decomposition of SBTWT into two subsystems: yaw
motion and mobile inverted pendulum subsystem, the overall controller is synthesized with
the two controller: yaw motion controller and self-balancing controller. The feedback
linearization technique is used for trajectory tracking and control of this -vehicle and its
performance is evaluated in the variation of system parameters and for different weight riders
and comparison with the existing state-feedback controller. This technique shows much
improved response on grounds of settling time, overshoot and steady state error in
comparison to state-feedback controller.

Another controller is also presented using inversion of trained neural network
emulator of the system. This is an indirect adaptive'con,troller which is not depends upon
dynamic model of system rather depends upon identified model of the system that badapts
environment changes, system parameter changes and urllcertainty as well.

As future research suggestion to design indirect adaptive controller different inversion
algorithms of neural network emulator can be applied to further reduce settling time of the
system. Any adaptive control schemes can be used to design the controller for SBTWT which
steer the vehicle properly in different terrains such as trails, bike paths or beachfronts. With
the advent of modern technology, such transporters with sophisticated safety features can be
cost down so that they, like traditional bicycles, have high potential to become prevalent two- .

wheeled scooters, satisfying human transportation requirements.
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