SYNTHESIS AND CATALYTIC APPLICATIONS OF METALLOPORPHYRINS

A DISSERTATION

Submitted in partial fulfillment of the requirements for the award of the degree of

MASTER OF TECHNOLOGY

ín

ADVANCED CHEMICAL ANALYSIS

By

DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) JUNE, 2012

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE CANDITATE'S DECLARATION

I hereby certify that the progress report presented in the dissertation in the entitled "Synthesis and catalytic applications of metalloporphyrins" for the award of the degree of Master of technology submitted to the Indian institute of technology roorkee is an authentic record of my won work carried out by me during the period from July 2011 to June 2012 under the supervision of Dr. M Sankar, Assistant Professor, Department of chemistry, Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of any other digree of this or any other institute.

Richa yadau

(RICHA YADAV)

Place: Roorkee Date:15th June 2012

This is to certify that the above statement made by the candidate is correct to the best our knowledge.

Date: 15th June 2012

M.Satar

Dr. M. Sankar Assistant Professor Department of Chemistry IIT Roorkee

ABSTRACT

Porphyrins are having wide applications such as in catalysis, molecular sensors, photodynamic therapy and dye-sensitized solar cells (DSSC). Due to abovemetioned applications, the porphyrin syntheses and their functionalization are quite important. Herein we have synthesized meso-tetraphenylporphyrinato oxovanadium [VO(IV)TPP] and meso-tetraphenylporphyrinato manganese(III) chloride [Mn(III)TPPCI]. Also we have utilised these porphyrins as catalyst for the oxidation of cyclohexene. We have done a systematic studies by varying reaction parameters (e.g. amount of oxidant, catalyst and solvent of the reaction mixture). We observed that cyclohexene requires least amount of vanadyl porphyrin catalyst for the reaction. Further we noticed that the increasing amount of H₂O₂ favoured the oxidation of cyclohexene. On the other hand, Mn(III)Cl porphyrin was found to be less effective for same reaction. These results suggest that vanadyl porphyrin as an efficient robust catalyst than that of Mn(III)Cl porphyrin for the oxidation of cyclohexene.

Acknowledgement

As I reflect upon the years gone by, I deeply feel the need to acknowledgement my gratitude to many wonderful people who have me reach this day.

In the first place, I would like to express my deep and sincere gratitude to my supervisors, Dr. M SANKAR advice and guidance from the very early stage of this research as well as giving me extraordinary throughout the work. Above all and the most needed, they provided me unflinching encouragement and support in various ways. Their scientific intuitions have made them as a constant oasis of ideas and passions in science, which inspired and enriched my growth as a student, a researcher and to become a scientist. I am indebted them to their valuable guidance.

I would like to express my heartiest thankful to Dr.V. K. Gupta, Professor and head, Department of chemistry, Indian Institute of technology, Roorkee for extending various facilities during the couse of this work.

I am especially indebted Dr. Raj Kumar Dutta (M.Tech programme coordinator), Assistant professor, all the faculty members and staff of Department of chemistry, IIT Roorkee, for their support during the entire the period of M. Tech programme.

My special thanks to Prof. M. R. Maurya for providing facilities to perform catalytic reactions using metalloporphyrins.

I wish to express my thanks to the staff of Institute Instrumentation Centre, Central Library and Computer Centre, who are the part to the completion of my work.

iii

I am especially indebted to colleagues Ms. Nikita Chaudhary, Ms. Rupa and Mr. Ravi Kumar for giving wise advice and help with various applications during my dissertation work.

Where would I be without family? My family deserves special mention for their unflagging love and support throughout my life; this work is simply impossible without them. I am indebted to my father, Shri Jagpal Singh yadav, for his care and love. I cannot ask for more from my mother, Smt. Veervati, as is simply perfect. I have no suitable word that can fully describe her everlasting love to me and I remember, most of all for her delicious dishes. Last but not least, thanks to God for granting me the faith and will to obtain this academic achievement that has culminated in this thesis.

(RICHA YADAV)

Date: 15th June 2012 Place: Roorkee

CONTENTS

	Page No.
Candidate's Declaration	i
Abstract	. ii
Acknowledgement	iii
Contents	v
Chapter 1. Introduction	1
1. A. Tetrapyrrole Pigments in Nature	2
1. B. Synthetic analogues and their applications	4
1. C. Porphyrin as biomimitic model compounds	5
1. D. Metalloporphyrins as catalyst	6
1. E. Aim and Scope of the present work	8
1. E. References	9
Chapter 2. Synthesis and Characterization Metalloporphyrins	11
2. A. Chemicals and Instruments used	12
2. B. Synthesis of 5,10,15-20-tetraphenylporphyrins	12
2. C Synthesis of 5,10,15-20-tetraphenylporphyrinato VO(IV)	13
2. D Synthesis of 5,10,15-20-tetraphenylporphyrinato Mn(III)	CI 14
2. E Result and Discussion	15
2. F References	17

v

Chapter 3. Catalytic Applications using Metalloporphyrins	18
3. A. Introduction	19
3. B. Procedure for catalytic reaction using metalloporphyrins	20
3. C. Oxidation of cyclohexene using metalloporphyrin catalyst	20
3. D. Catalyst amount variation for VO(TPP)	21
3. E. Effect of dilution for VO(TPP)	22
3. F. Variation of cyclohexene/H ₂ O ₂ ratio for VO(TPP)	23
3. G. Catalyst amount variation for Mn(TPP)Cl	24
3. H. Solvent amount variation for Mn(TPP)Cl	25
3. I. Variation of cyclohexene/H ₂ O ₂ ratio for Mn(TPP)Cl	25
Chapter 4. Conclusions	28

.

CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

1. A. TETRAPYRROLE PIGMENTS IN NATURE:

Porphyrinoids are the class of tetrapyrrole pigments widely occur in nature. They are highly π -conjugated and in some cases, conjugation is broken at one or more positions resulting in interesting structures with varying degree of nonplanarity of the macrocycle. The four-pyrrole groups are joined together by four methine carbons to give cyclic tetrapyrrole ring system.

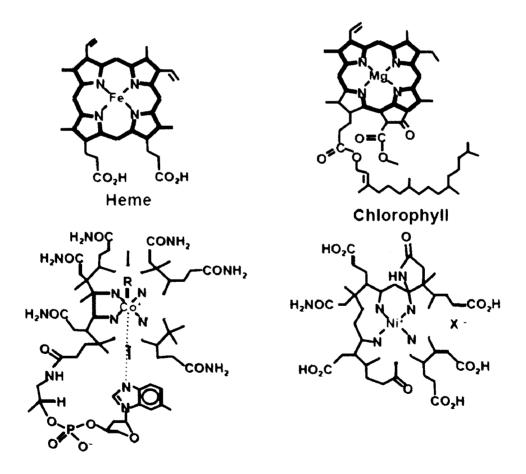


Fig. 1. Chemical structures of various tetrapyrrole pigments found in nature. Heavy lines denote π -bonds/cojucated π -bonds.

The interior pyrrole nitrogens are positioned at the four corners of the square and are ideal for coordination to metal ions. A few macrocycles (porphyrin, chlorin, corrin, methanocorphin) found in biological system are shown in figure 1. In nature, porphyrinoids with appropriate metal ion and suitable protein matrix brings about variety of biological processes.

Among the various porphyrinoids available in biological systems, the highly conjugated porphyrinoid macrocycle known as protoporphyrin IX, in association with iron is found in various functional proteins (for example: hemoglobin, myoglobin, cytochromes etc.).¹ Chlorin in chlorophyll has one reduced β -pyrrole double bond and a fused cyclopentanone ring appended to the adjacent pyrrole group with core magnesium ion. In photosynthesis, chlorophylls play a vital role in the conversion of light energy into chemical energy.² In case of corrin ring of vitamin B₁₂, the conjugation is further broken and it has a missing *meso*-carbon. The cobalt metal ion in association with the corrin brings about various redox reactions.³ Further, the highly reduced ring system of methanocorphin with nickel is found in coenzyme F₄₃₀ and it involves in the production of methane in methanogenic bacteria.⁴ The specific choice of the metal ion, tetrapyrrole and the protein backbone often dictates selective functions in nature.

1. B. SYNTHETIC ANALOGUES AND THEIR APPLICATIONS

In biosynthesis, the modification of the tetrapyrrole pigments and metal insertion proceeds through enzymatic process with high degree of perfection. Generally, the naturally occurring pigments bear substituents at the pyrrole positions and the *meso*-positions are devoid of any substitution. The diverse functions of tetrapyrrole pigments in nature prompted the laboratory synthesis of diverse porphyrins.⁵ The synthetic porphyrins such as 2,3,7,8,12,13,17,18-octaethylporphyrin, H₂OEP, tetrabenzoporphyrin, H₂TBP and 5,10,15,20-tetraphenylporphyrin, H₂TPP have been employed as model compounds of biological functions of porphyrinoids. Of the known synthetic analogues, 5,10,15,20-tetraphenylporphyrin and its derivatives have been studied extensively owing to their ease of synthesis and versatile functionalisation (Figure 2).

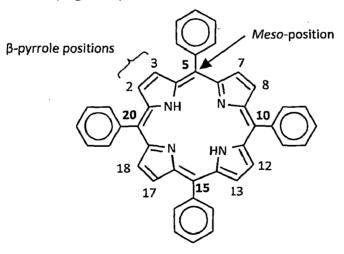


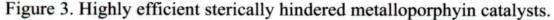
Fig. 2 Molecular Structure and Numbering Scheme for H₂TPP.

Rothemund reported the first synthesis of H_2 TPP by direct condensation of pyrrole with benzaldehyde in pyridine medium in a sealed tube at 422 K.⁶ The yield of the porphyrin was very low (2-5%) and it was associated with chlorin impurities. Adler and coworkers discovered an elegant method for the synthesis of simple *meso*-tetraphenylporphyrins.⁷ Dolphin has edited a series of volumes entitled "The Porphyrins" on the synthesis, mechanism and properties of porphyrins and metalloporphyrins. In these volumes, the individual aspects of tetrapyrrole pigments are described in detail.

Synthetic porphyrins are useful biomimetic model compounds and also they exhibit interesting physical and chemical properties. The synthetic utility and availability of many positions of TPP have been exploited for their use in molecular recognition,⁸ catalysis,⁹ non-linear optics,¹⁰ supramolecular network solids and others.¹¹ Synthetic porphyrin analogues are potentially attractive because of their interesting physico-chemical properties and are modulated by appending appropriate substituents at the peripheral positions. Kadish and coworkers have edited a series of volumes entitled "The Porphyrin Handbook", wherein they have updated literature¹² on various properties of synthetic analogues.

1. C. PORPHYRINS AS BIOMIMETIC MODEL COMPOUNDS

The introduction of bulky substituents at the *o*-phenyl positions of TPP were used as model compounds of biological significance. Interestingly, the


presence of mono bulky substituent at one of the *o*-phenyl positions of the TPP can form atropisomers by orientation of the groups either above or below the faces of the porphyrin plane. Collman and coworkers were able to develop the first *o*-substituted TPP known as 'picket-fence porphyrin' wherein pivalamido groups were used to sterically protect one face of the porphyrin.¹³ Several other sterically protected systems, such as capped, basket handle, strapped, pocket, pocket-tailed porphyrins and others have been reported by various groups. Their Fe(II) complexes have been employed as models for hemoglobin or myoglobin. The strategy is to protect the open face of the porphyrin by using an axial ligand and the sterically protected pocket is exploited for binding dioxygen molecule to iron centre. Appending bulky organic groups at both the *o*-phenyl positions of the TPP can protect open faces sterically as in bispocket porphyrin, double picket fence porphyrin, dendrimer porphyrins and silyloxyalkyl porphyrins.

1. D. METALLOPORPHYRINS AS CATALYSTS

The active center of the cytochromes is the *heme* group. It consists of porphyrin ring chelated to the iron atom. Cyctochrome P-450 enzyme catalyses the oxidation of harmful organic substrates into water-soluble products. These water-soluble products will be excreted through urine. Superoxide dismutase, catalyase and peroxidase are enzymes those are involved in H_2O_2 metabolism. They are also involved in detoxification of

harmful reactive species into water-soluble products. By inspiring from the nature, researchers have synthesised several metalloporphyrin derivatives as efficient catalyst for oxidation reactions.¹⁴⁻¹⁵ Ultimately these porphyrins have shown very high turn over numbers (TON) with excellent yields.⁹ It is proven that these metalloporphyrins will form high valent metaloxo species which will be the active intermediate those will react with organic substrates and transfers oxygen to substrates. Also the sterically hindered electron deficient porphyrins are found to be highly efficient catalysts.¹⁴

1.E. Aim and Scope of the present work

In nature, heme enzymes (e.g. peroxidase, catalase and cytochrome-450) play a crucial role in detoxification processes. In humans, cytochrome-450 involved in hydroxylation of drugs, steriods, pectisides and other foregin organic substances. The hydroxylated compounds are more water-soluble favouring excretion in urine. Researchers have synthesised various metalloporphyrins as catalysts for the oxidation of organic substrates.^{14,15} They found that high-valent metal oxo species are the active intermediates in the catalytic cycle. The catalytic studies using Fe(III)Cl and Mn(III)Clporphyrin derivatives are widely known¹⁴ whereas the studies on vanadyl porphyrin catalyst is scarely reported due to their synthetic difficulties.^{16,17} tetraphenylporphyrinato So made effort to synthesise we an oxovanadium(IV) (VOTPP) and to use as a catalyst for the oxidation of organic substrates and have the compared the catalytic activities with Mn(III)Cl-porphyrin.

1.F. REFERENCES:

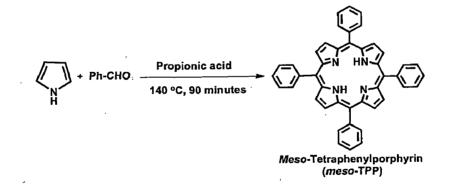
- 1. G. L Eichhorn, Inorganic Biochemistry, Elsevier, Amsterdam, 1973.
- 2. J. J. Katz, L.L. Shipman, and J.R. Norris *Chlorophyll organization and* energy transfer in photosynthesis, Ciba Foundation Symposium, 1979.
- 3. D. Dolphin, B_{12} John Wiley, New York, 1982.
- 4. W. Kaim and B. Schwederski, *Bioinorg. Chemistry: Inorganic Elements in the Chemistry of Life. An Introduction and Guide.* John Wiley & Sons, 1987.
- J.-H. Fuhrhop, and K.M. Smith, Laboratory methods. pp. 757-870. In K.M. Smith, (ed.) Porphyrins and Metalloporphyrins. Elsevier, Amsterdam, 1975.
- 6. P. Rothemund, J. Am. Chem. Soc., 1936, 58, 625-626.
- A.D. Adler, , F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, J. Org. Chem., 1967, 32, 476-479.
- 8. H.Ogoshi, and T. Mizutani, Acc. Chem. Res., 1998 31, 81-89 and references therein.
- K.S. Suslick, Shape-selective oxidation by metalloporphyrins. pp. 41-63. In: K.M. Kadish, K.M. Smith, R. Guilard (eds.) The porphyrin handbook. Academic Press, New York, 2000.
- 10. Chou, J.-H., M.E. Kosal, H.S. Nalwa, N.A. Rakow, and K.S. Suslick *Applications of porphyrins and metalloporphyrins to materials chemistry*. pp 43-131.

- 11. Y. Diskin-Posner, S. Dahal, and I. Goldberg, Angew. Chem., Int. Ed. Engl., 2000, 39, 1288-1289 and references therein.
- 12. K. M. Kadish, K. M. Smith, and R. Guilard (eds.) *The porphyrin handbook.* Academic Press, New York, vol. 1-10, 2000.
- J.P. Collman, R.R. Gagne, C.A. Reed, T.R. Halbert, G. Lang, and W.T. Robinson, J. Am. Chem. Soc., 1975, 97, 1427-1439.
- D. Dolphin, T.G. Traylor, and L.Y. Xie, Acc. Chem. Res., 1997, 30, 251-259.
- 15. K. H. Hopmann and A. Ghosh, ACS Catalysis, 2011, 1, 597-600.
- 16. A. K. Rahiman, K. S. Bharathi, S. Sreedaran, K. Rajesh, and V. Narayanan, *Inorg. Chimica Acta*, 2009, *362*, 1810-1818.
- 17. W. Chen, T. Suenobu, and S. Fukuzumi, *Chem. Asian J.*, 2011, 6, 1416-1422.

CHAPTER 2

SYNTHESIS AND CHARACTERIZATION OF METALLOPORPHYRINS

CHAPTER 2

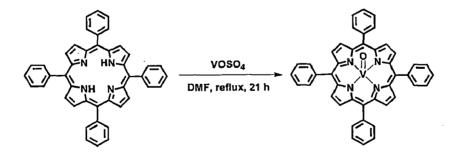

SYNTHESIS AND CHARACTERISATION OF METALLOPORPHYRINS

2. A. Chemicals and Instruments used:

Column Chromatography was performed on silica gel (Rankem laboratory, 100-200 mesh). TLC was performed on aluminium-baked silica plates (contain-13% $CaSO_4 \cdot \frac{1}{2} H_2O$, Silicagel-G/UV-254), which were visualized by nacked eye. UV-Visilbe spectra were recorded using Shimadzu UV-visible spectrometer (UV-3600). Mass spectra were recorded using ESI-mass spectrometer (Bruker Daltanics-micro TOF). Gas chromatogram was obtained using Perkin Elmer Instruments unit (Horiba-Jobin).

All chemicals such as pyrrole, benzalehyde, methanol, chloroform, hexane, con. HCl, maganese acetate, vanadyl sulphate, sodium sulphate, cyclohexene, H_2O_2 , CH_3CN and *n*-Heptane were purchased from Aldrich, Rankem, SRL and Hi-media laborataries.

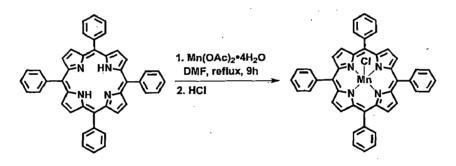
2. B. Synthesis of 5,10,15,20-Tetraphenylporphyrin:



Scheme 1. Synthetic Scheme for free base 5,10,15,20-Tetraphenylporphyrin.

Propanoic acid (300 mL) was taken in round bottom flask (500 mL). It was heated to 100 °C . To this, benzaldehyde (7.32 mL) followed by pyrrole (5 mL) were added. The reaction mixture was refluxed for 90 min then cooled to room temperature and filtered. The residue thus obtained was washed with methanol (4 x15 mL) to remove polypyrrole impurities. Then the crude porphyrin was chromatographed on silica column using CHCl₃ as eluent. The first fraction was collected and chloroform was removed using rotary evaporator resulted purple powder. It was recrystallised from CHCl₃ and methanol mixture (1:5, v/v) resulted pure 5,10,15,20 tetraphenylporphyrin (Yield: 2.2 g (20%)).

UV-visible data (CHCl₃): λ_{max} in nm = 417, 515, 550, 591, 647. ¹H NMR (CDCl₃): δ 8.80 (s, 8H, β -pyrrolic), 8.2 (d, 8H, J = 8 Hz, *o*-Hs of meso-Ph), 7.60-7.80 (m, 12H, *m* and *p*-Hs of meso-Ph, -2.80 (s, 2H, imino).


2. C. Synthesis of 5,10,15,20-Tetraphenylporphyrinato vanadyl (IV):

Tetraphenylporphyrin (0.10 g, 0.162 mmol) was dissolved in DMF (50 mL). To this vanadyl sulphate (1 g, 3.95 mmol) was added and the resulting solution was refluxed for 21 h. The reaction mixture was then cooled to room temperature. To this distilled water (150 mL) was added. Purple coloured precipitate was obtained and filtered using suction. The residue thus obtained was washed with distilled water to remove any soluble impurities. Then the crude product was chromatographed on silica column using chloroform as eluent. The yield of product was found to be (0.08 g, 72 %). It has shown a single spot on TLC using 3:1 (CHCl₃/hexanes, v/v) mixture.

UV-visible data (CHCl₃): λ_{max} in nm] = 424, 547, 581 (sh). MS (ESI): m/z = 1381.32 (Calcd. for $(C_{44}H_{28}N_4VO)_2 \cdot Na [2M \cdot Na]^+$: 1381.33), 2061.5 (Calcd. for $(C_{44}H_{28}N_4VO)_3 \cdot Na [3M \cdot Na]^+$: 2061.50), 2741.65 (Calcd. for $(C_{44}H_{28}N_4VO)_4 \cdot Na [4M \cdot Na]^+$: 2741.68).

Tetraphenylporphyrin (0.20 g, 0.325 mmol) was dissolved in 50ml of DMF. To this, magnese acetate (0.798 g, 3.25mmol) and CH₃COONa (0.267 g, 3.25 mmol) were added. The resulting solution was refluxed for 9 h. The reaction mixture was then cooled to room temperature. To this, distilled water (150 mL) was added. The greenish black coloured precipitate was obtained. Then the precipitate was filtered and washed with distilled water to remove any soluble impurities. Then 4N HCl was added, filtered and washed with 4N HCl. The crude porphyrin was recrystallised from CHCl₃/hexanes (1:5, v/v). The green product was dried under vacuum for few hours. The yield of product was found to be (0.15 g, 63 %).

Characterization data: UV-vis (CHCl₃): λ_{max} in nm = 345, 376, 402, 479, 530, 582, 618. MS (ESI): m/z = 1369.30 (Calcd. for $(C_{44}H_{28}N_4Mn)_2Cl$ $[2M-Cl]^+:1369.31$), 2073.43 (Calcd. for $(C_{44}H_{28}N_4Mn)_3Cl_2$ [3M-Cl]⁺: 2073.45).

2. E. RESULTS AND DISCUSSION:

We have synthesied and characterised *meso*-tetraphenylporphyrin (H_2TPP) according to the literature method.¹

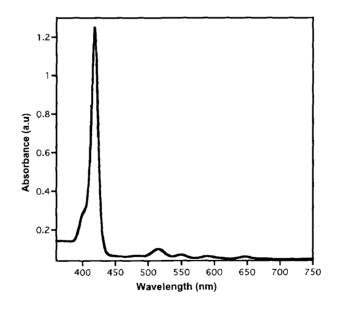


Fig. 1. UV-visible spectrum of 5, 10, 15, 20-tetraphenylporphyrin.

Herein we have developed a simplified method for vanadyl porphyrin synthesis. H_2TPP was metallated using VOSO₄ by refluxing in DMF.

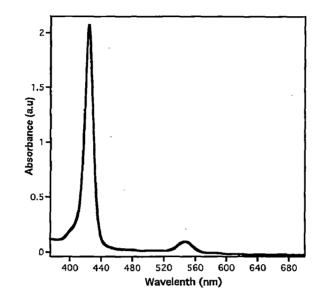


Fig. 2. UV-visible spectrum of *meso*-tetraphenylporphyrinato vanadyl(IV). The crude product was purified on silica column chromatography using CHCl₃ as an eluent. Further it was charaterised by UV-visible and mass spectroscopic techniques.

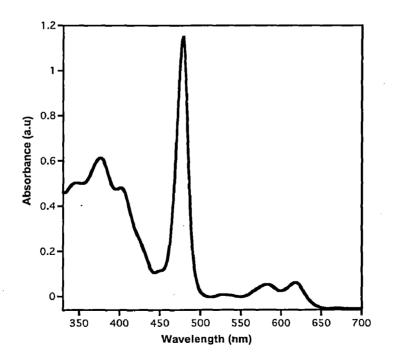


Fig. 3. UV-visible spectrum of meso-tetraphenylporphyrinato Mn(III)Cl

Free base tetraphenylporphyrin was metallated using maganese(II) acetate by refluxing in DMF with sodium acetate for 9 hrs.² Then the addition of excess distilled water leads to the precipitation of the porphyrin. The ppt was filltered and dried. The counter ion exchange from acetate to chloride was done using HCl. The crude porphyrin was recrystallised from CHCl₃/hexanes mixture. Mn(III)Cl porphyrin was characterized by UVvisible and mass spectroscopic methods.

Vanadyl porphyrin has shown typical metalloporphyrin UV-vis spectrum. While Mn(III)Cl porphyrin showed enormous red-shft in comparison to vanadyl porphyrin. This is due to the alteration of electonic energy levels (HOMO and LUMO) of metalloporphyrins. The higher oxidation states of metal were stabilised by electron-rich anionic porphyrin ligands.

REFERENCES:

1. A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, J. Org. Chem., 1967, 32, 476.

2. A.D. Adler, F.R. Longo, F. Kampas, and J. Kim, J. Inorg. Nucl. Chem., 1970, 32, 2443-2445.

CHAPTER 3 CATALYTIC APPLICATIONS USING METALLOPORPHYRINS

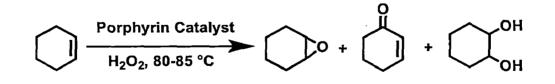
CHAPTER 3

CATALYTIC APPLICATIONS USING METALLOPORPHYRINS

3. A. Introduction:

In Nature, many enzymes are present which are capable of catalyzing oxidation reactions.¹ In a number of these reactions manganese or iron containing enzymes are involved. These enzymes are frequently studied by using model complexes which provide information on the nature and reactivity of the active site and about possible reaction mechanisms.¹ Based on these manganese or iron containing enzymes and on the related model complexes various oxidation catalysts have been evaluated.²

The role of vanadate in biological systems is to convert a compound into a form that is recognized by the enzyme so that chemical reactions can occur. Manganese can frequently be found in the catalytic redox centre of several enzymes like superoxide dismutase (SOD), catalase and the oxygen evolving complex photosystem II. By inspiring from the nature, we have synthesized oxovanadium(IV) and Mn(III)Cl porphyrin complexes as catalyst for the oxidation of organic substrates.


The oxidation of organic compounds with high selectivity is of the extreme importance in synthetic chemistry. Important oxidation reactions include the trasformations of alcohols to either the corresponding carbonyl compounds or carboxylic acids, the oxidation of sulfides to sulfoxides and **alkenes to epoxides and diols**.

3. B. General procedure for catalytic reaction using metalloporphyrins:

Cyclohexene and H_2O_2 were taken in 50 mL two-necked RB flask. To this, solvent (CH₃CN or heptane) and metalloporphyrin were added. The reaction mixture was heated to 80-85 °C with stirring for 6 h on oil bath. We have monitored the reaction progress for every 2 h. At the end, the reaction mixture was filtered by using Whatmann filter paper or celite. The organic layer was seperated and injected into GC column and monitored the product formation.

3. C. Oxidation of Cyclohexene using metalloporphyrin catalyst:

The oxidation of cyclohexene was studied using porphyrin catalyst. The reaction gave mainly four different products, *i.e.* cyclohexane epoxide, 2-cyclohexen-1-ol, 2-cyclohexen-1-ol, cyclohexane-1,2-diol as shown in scheme 1. The formation of allylic oxidation products 2-cyclohexen-1-one and 2-cyclohexen-1-ol reflects the preferential attack of the activated C-H bond over the C=C bond.

Scheme 1. Reaction scheme for catalysis

The different parameters (*e.g.* amount of oxidant, catalyst and solvent of the reaction mixture) were optimized for the maximum oxidation of cyclohexene. We will discuss one by one as follows.

Vanadyl porphyrin as a catalyst

3. D. Catalyst amount variation:

Herein we kept the constant amount of cyclohexene, H_2O_2 and solvent and varied the amount of catalyst (*e.g.* 2 mg, 5 mg and 7 mg).

S. No.	Catalyst	Time	Conv.	Product Selectivity (%)			
	(g)	(hrs)	(%)	1,2-diol	Ketone	Epoxide	Others
1	0.002	2	54.0	44.8	30.0	18.9	6.2
2	0.002	4	83.0	50.5	40.1	6.6	2.3
3	0.002	6	90.8	50.1	40.0	7.4	2.6
4	0.005	2	60.0	46.8	37.0	10.1	6.1
5	0.005	4	81.7	51.3	38.5	6.6	3.6
6	0.005	6	94.3	55.6	35.9	4.8	3.7
7	0.007	2	67.2	36.7	36.6	16.6	9.8
8	0.007	6	95.0	43.1	41.0	9.2	6.6

Table 1. The variation in amounts of VOTPP

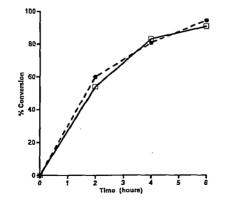
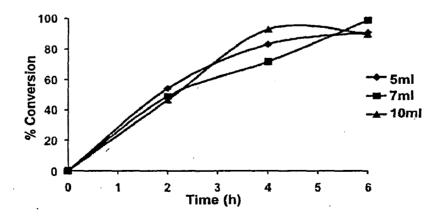
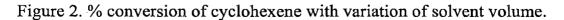


Figure 1. The percentage conversion of cyclohexene with catalyst amount variation (2 mg and 5 mg are shown in solid and dotted lines respectively).


It is found that least amount of catalyst (2 mg) is more efficient for the oxidation of cyclohexane.


3. E. Solvent amount variation:

We have kept catalyst amount, cyclohexane/ H_2O_2 ratio constant and varied the solvent volume (5-10 mL).

Table 2. Percent conversion of cyclohexene with solvent volume variation

S. No.	CH ₃ CN	Time	Conv.	Product Selectivity (%)			
	(ml)	(hrs)	(%)	1,2-diol	Ketone	Epoxide	Others
1	5	2	54.0	44.8	30.0	18.9	6.2
2	5	4	83.0	50.5	40.5	6.6	2.3
3	5	6	90.8	50.1	40.0	7.4	2.6
4	7	2	48.8	50.1	28.6	11.1	9.2
5	7	4	71.5	63.5	25.3	6.2	4.8
6	7	6.	98.7	63.2	24.3	24.3	5.6
7	10	-2	46.5	47.8	22.4	15.6	14.0
8	10	4	92.8	61.7	24.4	7.6	6.1
9	10	6	89.7	57.2	25.3	9.1	8.8

The optimum condition of solvent volume is 7 mL.

3. F. Variation of cyclohexene/ H_2O_2 ratio: We kept constant the catalyst and solvent amount and varied the ratio of cyclohexene and H_2O_2 .

S. No.	Cyclohex/	Time	Conv.	Product Selectivity (%)			
	H_2O_2	(hrs)	(%)	1,2-diol	Ketone	Epoxide	Others
1	1:1	2	5.0	41.6	27.0	19.8	12.1
2	1:1	4	12.5	43.7	40.0	11.7	4.4
3	1:1	6	43.7	46.0	37.0	9.1	7.9
4	1:2	2	41.4	43.8	34.5	15.1	6.4
5	1:2	4	70.3	44.9	41.7	8.2	5.1
6	1:2	6	52.4	48.3	40.8	6.8	3.9
7	1:3	2	54.0	44.8	30.0	18.9	6.2
8	1:3	4	83.0	51.0	40.5	6.6	2.3
9	1:3	6	90.8	50.1	39.9	7.4	2.5

Table 3. Variation in cyclohexene and H_2O_2 ratio.

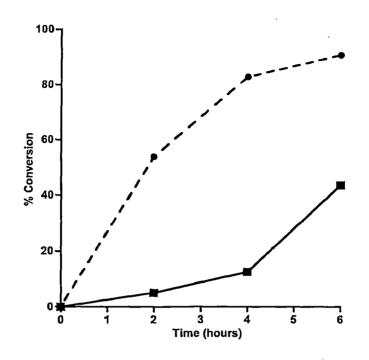
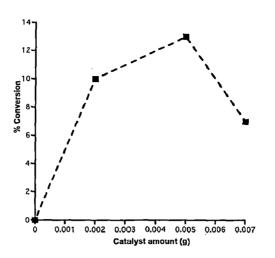
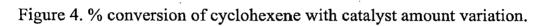


Figure 3. Percent conversion of cyclohexene with variation of cyclohexene/ H_2O_2 ratio (1:1 (solid line) and 1:3 (dotted line)).


The optimized condition is 1:3 cyclohexene/ H_2O_2 ratio.


Manganese porphyrin as a catalyst

3. G. Catalyst amount variation:

Herein we kept the constant amount of cyclohexene, H_2O_2 and heptane and varied the amount of catalyst (*e.g.* 2 mg, 5 mg and 7 mg)

S. No.	Catalyst	Time	Conv.	Product Selectivity (%)			
	(g)	(hrs)	(%)	1,2-diol	Ketone	Epoxide	Others
1	0.002	6	10.0	29.7	26.7	24.5	19.3
2	0.005	6	13.0	56.5	29.1	8.7	5.6
3	0.007	6	7.0	39.2	29.1	22.8	8.8

S. No.	CH ₃ CN	Time	Conv.	Product Selectivity (%)			
{	(ml)	(hrs)	(%)	1,2-diol	Ketone	Epoxide	Others
1	5	6	10.0	29.7	26.5	24.5	19.2
2	7	6	56.0	31.4	28.8	22.2	17.5
3	10	6	29.0	40.2	30.5	20.2	9.1

3. H. Solvent amount variation:

3. I. Variation of cyclohexene/ H_2O_2 ratio:

S. No.	Cyclohexene	H_2O_2	C_7H_{14}	Catalyst	% conversion
	(g)	(g)	(m l)	(g)	6h
1	0.829	0.829	5	0.002	NA
2	0.829	1.658	5	0.002	2.3
3	0.829	2.487	- 5	0.002	10

We have performed the catalytic reactions varying with different parameters (*e.g.* amount of oxidant, catalyst and solvent of the reaction mixture) are optimized.

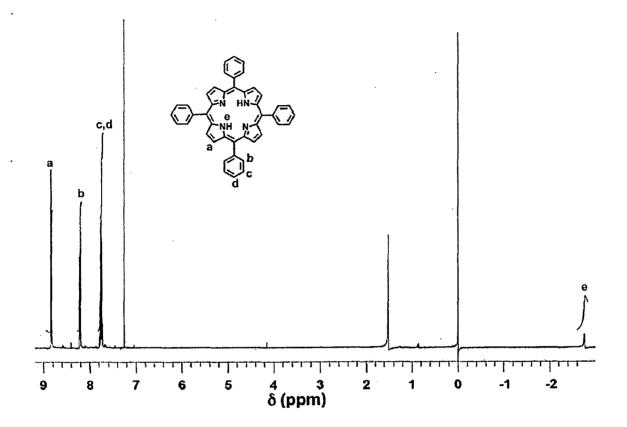
Vanadyl Porphyrins: We found that the increment of catalyst amount has no effect on the percentage conversion of cyclohexene. The best-optimized condition was with 2 mg of catalyst for 0.83 g of cyclohexene. When we increase the ratio of cyclohexene: H_2O_2 (1:1 to 1:3), the yield is dramatically improved. So the enhancement H_2O_2 concentration may help for effective oxidation of cyclohexene. The optimum condition of solvent volume is 7 mL for 0.83 g of cyclohexene with 2 mg of the catalyst. M. E. K. Mansour et al have reported¹ the photochemical oxidation of cyclohexene using vanadylporphyrin as a catalyst and H_2O_2 as an oxygen donor in benzene by irradiating for 180 h. We have done the same reaction by refluxing in acetonitrile for 6 h. The total yield of oxidized products is almost quantitative. Hence our conditions are milder than photocatalytic oxidation.¹ We have developed a simplest method with highest possible yield for the oxidation of cyclohexene in comparison to reported methods.^{3,4} Recently S. Fukuzumi *et al* have reported² the synthesis of vanadyl porphyrin by mixing VCl₃ and tetramethoxyporphyrin in ethanol and then autoclaved the mixture at 453 K for 4 days with the yield of 20%. But we have used an elegant method by reacting H_2 TPP and VOSO₄ in refluxing DMF with 72% yield.

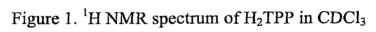
Mn(III)Cl Porphyrin: We found that the increment of catalyst amount has an effect on the percent conversion of cyclohexene. Initially increases till 5 mg of catalyst then decreases for 7 mg (figure 4). With solvent variation the same trend was observed as mentioned above. While increasing the amount H_2O_2 the percentage yield was increasing as mentioned for vanadyl porphyrin.⁴

Among two porphyrins, vanadyl porphyrin found to an efficient catalyst than that of Mn(III)Cl porphyrin for the oxidation of cyclohexene. Vanadyl porphyrin found to the robust in nature² than manganese(III)Cl porphyrin. The Mn(III)Cl porphyrin might undergo axial ligand exchange with H_2O_2 could alter the electronics of the porphyrin that might lead to degradation of the catal/st in presence of H_2O_2 during the catalytic cycle.⁵

/**References:**/

- 1. E. M. K. Mansour, P. Maillard, P. Krauz, S. Gaspard, and C. Giannotti, J. Mol. Catalysis, 1987, 41, 361-366.
- 2. A. K. Rahiman, K. S. Bharathi, S. Sreedaran, K. Rajesh, and V. Narayanan, *Inorg. Chimica Acta*, 2009, *362*, 1810-1818.
- 3. W. Chen, T. Suenobu, and S. Fukuzumi, *Chem. Asian J.*, 2011, 6, 1416-/ 1422.
- 4. M. R. Maurya, P. Saini, A. Kumar, and J. C. Pessoa, Eur. J. Inorg. Chem., 2011, 4846-4861.
- 5. S. Zakavi, and L. Ebrahimi, Polyhedron, 2011, 30, 1732-1738.


CHAPTER 4


CONCLUSIONS

Porphyrins are having applications ranging from materials chemistry to medicinal chemistry. We have successfully synthesised and characterized two different metalloporphyrins namely 5, 10, 15, 20-tetraphenylporphyrinato oxovanadium(IV) and 5, 10, 15, 20-tetraphenylcporphyrinato Mn(III)Cl.

Further we have utilised these porphyrins as a catalyst for the oxidation of cyclohexene using H_2O_2 as an oxidant. We observed that cyclohexene requires least amount of vanadyl porphyrin. Further we noticed that on increasing amount of H_2O_2 favoured the oxidation of cyclohexene. On the other hand, Mn(III)Cl porphyrin was found to be less effective for this reaction. This porphyrin might undergo axial ligand exchange with H_2O_2 could alter the electronics of the porphyrin that might lead to degradation of the catalyst in presence of H_2O_2 during the catalytic cycle. The yield may be improved up on providing axially ligating base. Based on our results, vanadyl porphyrin found to an efficient catalyst than that of Mn(III)Cl porphyrin for the oxidation of cyclohexene.

S. No.	Title Name	Page No
Figure 1	¹ H NMR spectrum of H ₂ TPP in CDCl ₃	31
Figure 2	ESI-Mass spectrum of VOTPP in CHCl ₃	32
Figure 3	ESI-Mass spectrum of MnClTPP in CH ₃ CN	33
Figure 4a-4h	Gas Chromatogram of catalyst amount variation	n 34-41
Figure 5a-5c	Gas Chromatogram of solvent volume variation	42-44
Figure 6a-6f	Gas Chromatogram of Cyclohex/H ₂ O ₂ variation	45-50

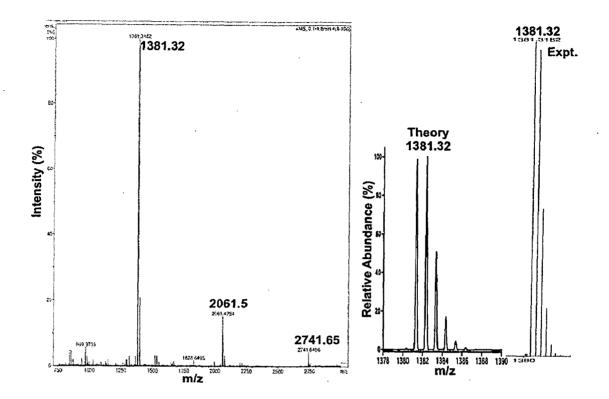


Figure 2. ESI-Mass spectrum of VOTPP in CHCl₃

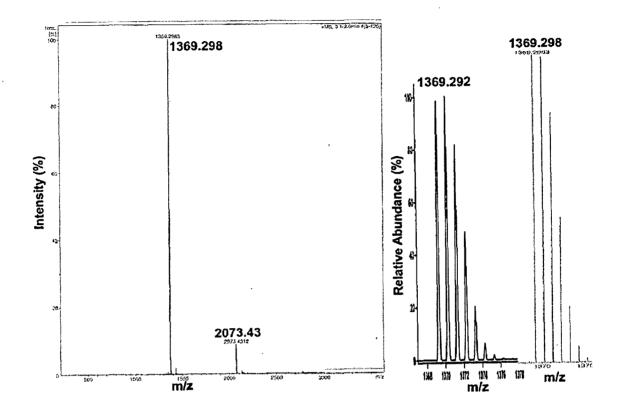
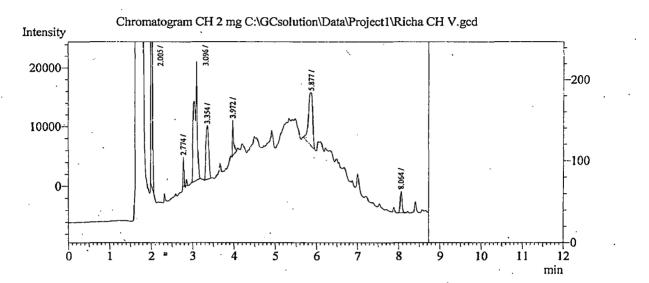



Figure 3. ESI-Mass spectrum of MnClTPP in CH₃CN

	Sample Information
Analysis Date & Time	: 4/23/2012 6:15:00 PM
User Name	: Admin
Vial#	:1 ····································
Sample Name	: CH 2 mg
Sample ID	: ch ox V

I Guil I GOIG CHUIMER I	Peak	Table -	Channel	1
-------------------------	------	---------	---------	---

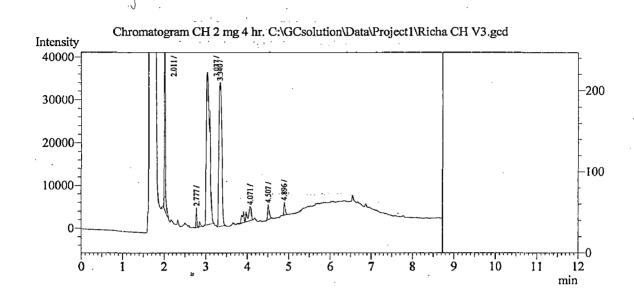
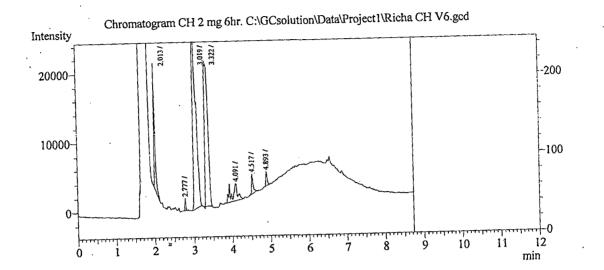

Peak#	Ret.Time	Area	Height	Area%
1	2.005	200992	133811	46.0716
2	2.774	8197	4806	1.8789
3	3.096	96681	19921	22.1613
4	3.354	40854	8993	9.3647
5	3.972	13377	5882	3.0664
6	15.877	> 64834	9025	14.8614
· 7	8.064	11324	· 3573	2.5958
Total		436259	186011	100.0000

Figure 4a. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time: 2h, 1:3 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

21

: 4/23/2012 6:51:23 PM : Admin : 1 : CH 2 mg 4 hr.
: ch ox V

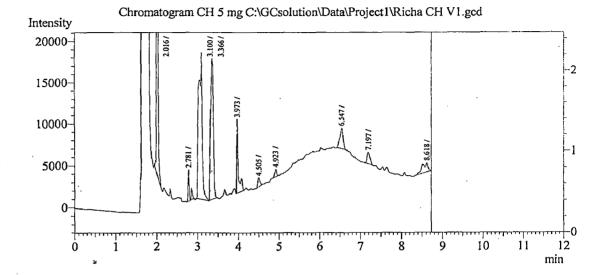

D I -	T_{-1}	 Channe 	1 1
Pear	Ignie	_ I nanne	
I Can	I ADIC	$- $ \cup $name$	1 1

Peak#	Ret.Time	Area	Height	Area%
1	2.011	84687	58507	16.9976
2	2.777	9286	4428	1.8637
3	3.037	· 200973	35580	40.3374
4	3.340	>160941	33575	32.3026
5	4.071	26336	3281	5.2859
6	4.507	8957	3506	1.7977
7	4.896	7050	2913	1.4151
Total		498230	141790	100.0000

Figure 4b. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time: 4h, 1:3 C_6H_{12}/H_2O_2 , CH₃CN Volume: 5 mL

Analysis Date & Time	: 4/23/2012 7:26:48 PM
User Name	: Admin
Vial#	: 1
Sample Name	: CH 2 mg 6hr.
Sample ID	: ch ox V


Peak Table - Channel	1	

Peak#	Ret.Time	Area	Height	Area%
1	2.013	32992	17855	9.2253
2	2.777	2647	1690	0.7401
3	3.019	158717	31231	44.3806
4	3.322	>126655	20988	35.4153
5	4.091	23367	2446	6.5338
6	4.517	8178	2838	2.2869
7	4.893	5071	2060	1.4179
Total		357627	79108	100.0000

Figure 4c. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 6h, 1:3 C_6H_{12}/H_2O_2 , CH₃CN Volume: 5 mL

Sample Information Analysis Date & Time : 4/23/2012 6:26:29 PM User Name : Admin Vial# : 1 Sample Name : CH 5 mg Sample ID : ch ox V

Peak Table - Channel 1

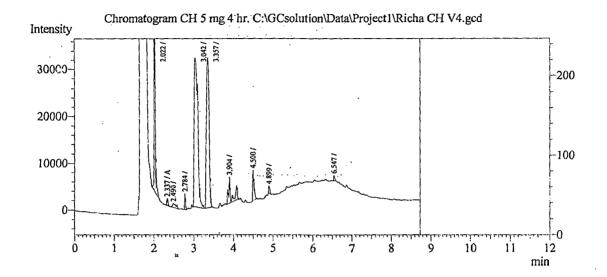

			I ball It		
Peak#	Ret.Time	Area	Height	Area%	
· 1	2.016	175796	112252	40.3221	
2	2.781	9152	3690	2.0992	Ι.
3	3.100	105911	17457	24.2926	
4	3.366	83811	16909	19.2236]
5	3.973	> 22930	8671	5.2594	
6	4.505	4047	1102	0.9282	
7	4.923	2851	891	0.6538].
.8	6.547	13751	2489	3.1540	
9	7.197	6742	1378	1.5464	
10	8.618	10990	1086	2.5207	
Total		435981	165925	100.0000]

Figure 4d. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 5 mg, Time 2h, 1:3 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

37

		Sample Information
Analysis Date & Time	: 4/23/2012 7:03:04 PM	•
User Name	: Admin	•
Vial#	: 1	
Sample Name	: CH 5 mg 4 hr.	
Sample ID	: ch ox V	

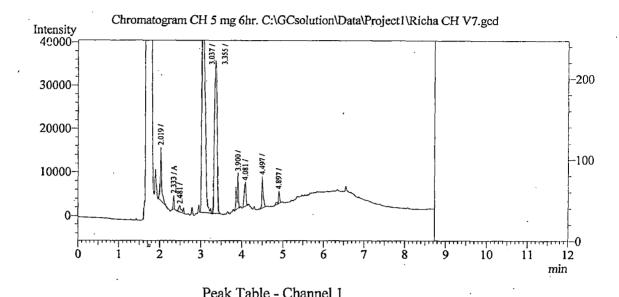
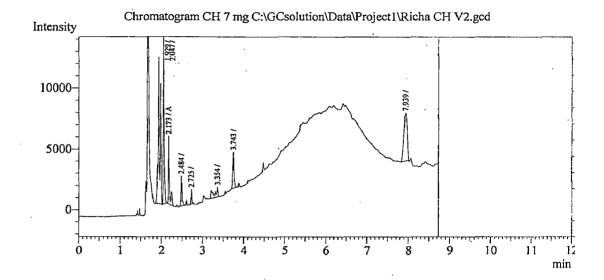

Peak Table - Channel					
Peak#	Ret.Time	Area	Height	Area%	
1	2.022	94509	61391	18.3162	•
2	2.337	2528	1413	0.4900	
3	2.490	4900	784	0.9496	-
4	2.784	5346	3350	1.0360	
5	3.042	206875	31720	40.0931	
6	. 3.357	> 155287	31959	30.0951	
. 7	3.904	26499	5565	5.1356	
8	4.500	14687	6490	2.8464	
9	4.899	3052	1515	0.5915	
10	6.547	2304	1111	0.4466	
Total		515987	145298	100.0000	

Figure 4e. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 5 mg, Time 4h, 1:3 C_6H_{12}/H_2O_2 , CH₃CN Volume: 5 mL

20

		Sample Information
Analysis Date & Time	: 4/23/2012 7:38:14 PM	- ·
User Name	: Admin	
Vial#	:1	•
Sample Name	: CH 5 mg 6hr.	
Sample ID	: ch ox V	

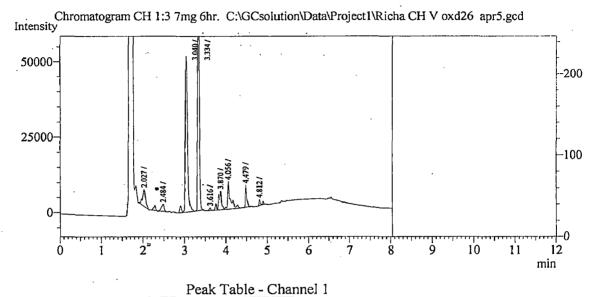


Peak Table - Channel					el 1
Peak#	Ret.Time	Area	Height	Area%	
1	2.019	29180	12171	5.6142	
2	2.333	5207	3119	1.0018	
3	2.481	7310	1418	1.4064	
4	3.037	252890	44787	48.6560	
5	3.355	> 163176	35102	31.3950	
6	3.900	21817	8065	4.1976	
7	4.081	15884	5496	3.0560	
8	4.497	16970	7200	3.2650	
9	4.897	7318	2785	1.4080	
Total		519752	120143	100.0000	

Figure 4f. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 5 mg, Time 6h, 1:3 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

	Sample Information	
Analysis Date & Time	: 4/23/2012 6:40:00 PM	
User Name	: Admin	
Vial#	:1	
Sample Name	: CH 7 mg	
Sample ID	: ch ox V	
•		•

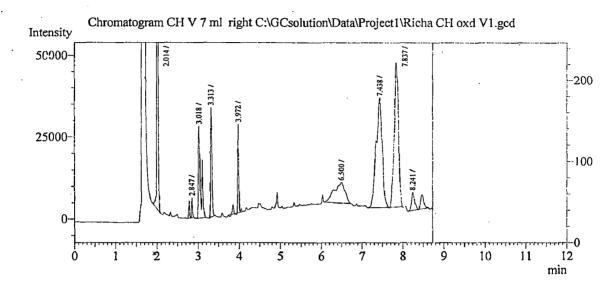

			reak la	tole - Chan
Peak#	Ret.Time	Area	Height	Area%
1	1.929	34359	11714	32.7948
2	2.047	22226	14351	21.2142
3	2.173	9982	5487	9.5277
. 4	2.484	4140	· 2413	3.9518
5	2.725	1641	1184	1.5659
6	3.354	4513	804	4.3074
7	3.743	5918	2904	5.6484
8	7.939	> 21991	3934	20.9898
Total		104770	42791	100.0000

P	eak	Tab	le -	Channel	1
---	-----	-----	------	---------	---

Figure 4g. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

Catalyst Wt.: 7 mg, Time 2h, 1:3 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

Analysis Date & Time User Name Vial# Sample Name Sample ID	: 4/26/2012 8:40:32 PM : Admin : 1 : CH 1:3 7mg 6hr. : ch ox V	Sample Information


eak Table	- Channel 1
-----------	-------------

Peak#	Ret.Time	Area	Height	Area%
1	2.027	28224	5605	5.0728
2	2.484	15369	2342	2.7625
3	3.040	200301	51638	36.0018
4	3.334	210675	72636	37.8664
5	3.616	2540	939	0.4566
6	3.870	32102	6145	5.7700
7	4.056	45405	9033	8.1611
8	4.479	16051	7194	2.8849
9	4.812	5697	1866	1.0240
Total		556364	157398	100.0000

Figure 4h. Gas Chromatogram of catalyst amount variation. The reaction conditions are given below.

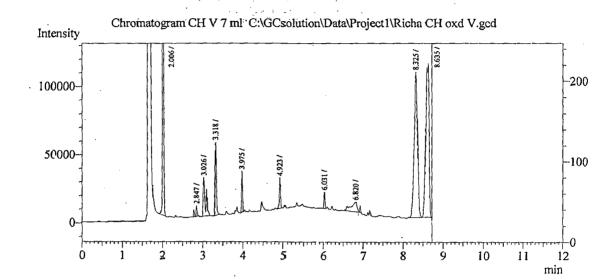
Catalyst Wt.: 7 mg, Time 6h, 1:3 C_6H_{12}/H_2O_2 , CH_3CN Volume: 5 mL

	Sample Information	
Analysis Date & Time	: 4/30/2012 7:38:34 PM	
User Name	: Admin	
Vial#	:1	
Sample Name	: CH V 7 ml right	
Sample ID	: CH V 7 ml right : Richa CH V	,

Peak Table - Channel	I	
----------------------	---	--

Peak#	Ret.Time	Area	Height	Area%
1	2.014	407167	240500	26.9662
2	2.847	18666	5988	1.2362
3	3.018	112953	28037	7.4808 [.]
4	3.313	79812	33244	5.2858
5	3.972	52762	26433	3.4943
6	6.500	117436	6312	7.7776
7	7.438	342324	33307	22.6717
8	7.837	325771	44057	21.5755
9	8.241	53024	5511	3.5117
Total		1509915	423389	100.0000

1


Figure 5b. Gas Chromatogram of solvent volume variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 6h, 1:3 C_6H_{12}/H_2O_2 , CH_3CN Volume: 7 mL

ار این این میکند. بین هده این میکند و با در محمد این میکند. این از این این میکند و این آن این میکند و با این میکند میکند. این این این میکند و میکند و میکند میکن میکن این این این میکند و میکند.

Sample Information

Analysis Date & Time User Name Vial# Sample Name Sample ID	: 4/30/2012 7:26:04 PM : Admin : 1 : CH V 7 ml 10 M ⁴ : Richa CH V	4
Sample ID	: Richa CH V	

			Peak Ta	able - Chai	nnel 1
Peak#	Ret.Time	Area	Height	Area%	
1	2.006	782290	498272	31.2948	•
2	2.847	21898	7721	0.8760	
3	3.026	117138	28537	4.6860	
4	3.318	114102	52920	4.5645	
5	3.975	51743	30129	2.0699	
6	4.923	46056	22201	1.8424	
7	6.031	19490	11826	0.7797	
8	6.820	81756	7161	3.2706	
9	8.325	614495	106404	24.5823	·
10	8.635	650779	112573	26.0338	

2499747

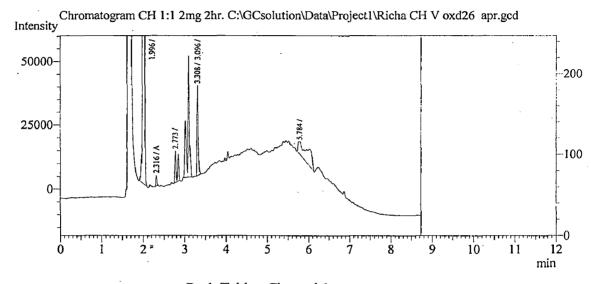

Total

Figure 5c. Gas Chromatogram of solvent volume variation. The reaction conditions are given below.

877744 100.0000

Catalyst Wt.: 2 mg, Time 6h, 1:3 C_6H_{12}/H_2O_2 , CH₃CN Volume: 10 mL

User Name	Sample Information : 4/26/2012 7:30:16 PM : Admin	
Vial# Sample Name Sample ID	: 1 : CH 1:1 2mg 2hr. : ch ox V	


•	Peal	ςΊ	abl	e -	Char	nel	I

Peak#	Ret.Time	Area	Height	Area%
1	1.996	8231954	5317306	95.5049
2	2.316	7390	4089	0.0857
- 3	2.773	45848	12069	0.5319
4	3.096	158226	47033	1.8357
5	3.308	75220	35077	0.8727
6	5.784	100767	4821	1.1691
Total		8619405	5420395	100.0000

Figure 6a. Gas Chromatogram of Cyclohexene/ H_2O_2 variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 2h, 1:1 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

Analysis Date & Time	: 4/26/2012 8:16:21 PM
User Name	: Admin
Vial#	: 1
Sample Name	: CH 1:1 2mg 4hr. blue
Sample ID	: ch ox V

'eak '	Table	- Cha	nnel	1
--------	-------	-------	------	---

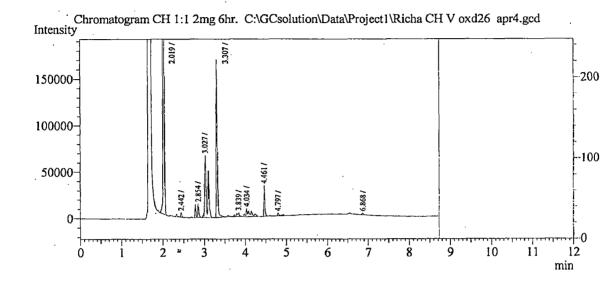

Peak#	Ret.Time	Area	Height	Area%
1	2.012	4776278	3100861	87.5944
2	2.329	16198	5090	0.2971
3	2.853	75002	17629	1.3755
4	3.105	279467	62884	5.1253
5	3.318	256270	115205	4.6998
6	3.853	4642	<u>8</u> 11	0.0851
7	4.042	28388	8986	0.5206
8	4.472	5234	2038	0.0960
9	4.801	7071	1498	0.1297
10	6.868	4171	2098	0.0765
Total		5452721	3317100	100.0000

Figure 6b. Gas Chromatogram of Cyclohexene/H₂O₂ variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 4h, 1:1 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

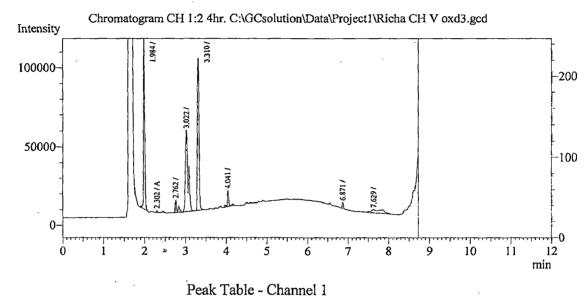
· ·	·	
••		

		 Sample Information
Analysis Date & Time	: 4/26/2012 8:28:17 PM	•
User Name	: Admin	
Vial#	:1	
Sample Name	: CH 1:1 2mg 6hr.	•
Sample ID	: ch ox V	
-		

Peak Tab	e - Channel	1
----------	-------------	---

Peak#	Ret.Time	Area	Height	Area%
1	2.019	1014642	657475	56.2934
2	2.442	15212	5043	0.8440
3	2.854	47946	14467	2.6601
4	3.027	255585	66827	14.1801
5	3.307	317702	168950	17.6264
6	3.839	18510	4415	1.0270
7	4.034	62856	8821	3.4873
8	4.461	54846	32616	3.0429
9	4.797	10882	3143	0.6037
10	6.868	4235	1900	0.2350
Total		1802416	963657	100.0000

Figure 6c. Gas Chromatogram of Cyclohexene/ H_2O_2 variation. The reaction conditions are given below.


Catalyst Wt.: 2 mg, Time 6h, 1:1 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL

i

Analysis Date & Time : 4/25/2012 8:00:08 PM User Name Vial# :1 Sample Name Sample ID

: Admin : CH 1:2 4hr. : ch ox V

	_		I Car I	aulo - Chai	III
Peak#	Ret.Time	Area	Height	Area%	
1	1.984	252770	134560	.29.6806	
2	2.302	4174	1332	0.4901	
3	2.762	27489	7888	3.2278	ļ
4	3.022	233436	51676	27.4105	
5	3.310	250672	96216	29.4343	
6	4.041	28536	10272	3.3507	}
7	6.871	8424	3763	0.9892	
8	7.629	46130	2213	5.4167	
Total		851631	307920	100.0000]

Figure 6e. Gas Chromatogram of Cyclohexene/H₂O₂ variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 4h, 1:2 C_6H_{12}/H_2O_2 , CH₃CN Volume: 5 mL

Analysis Date & Time	: 4/25/2012 8:36:53 PM
User Name	: Admin
Vial#	:1
Sample Name	: CH 1:2 6hr.
Sample ID	: ch ox V

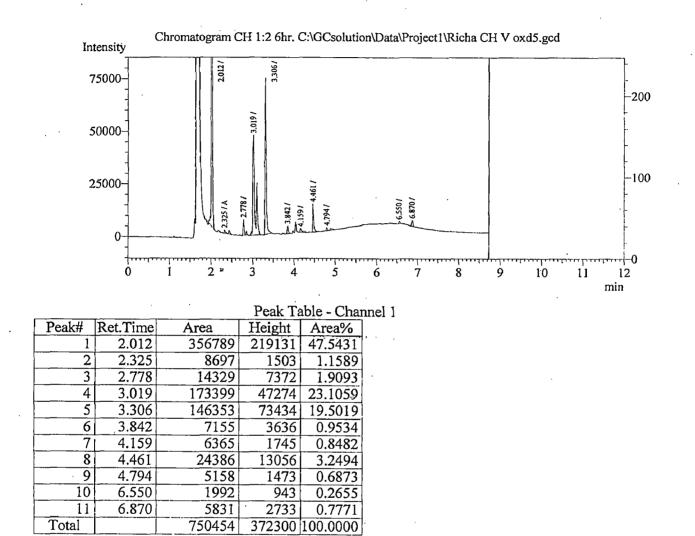


Figure 6f. Gas Chromatogram of Cyclohexene/ H_2O_2 variation. The reaction conditions are given below.

Catalyst Wt.: 2 mg, Time 6h, 1:2 C₆H₁₂/H₂O₂, CH₃CN Volume: 5 mL