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ABSTRACT 

In this dissertation work, we study the rupture dynamics of interconnecting bonds between two flexible 

polymers under the action of external force. The modified geometry that resembles most type of adhesion 

clusters coupled to cytoskeleton that have to function under mechanical load; is taken as our model 

system so that the problem remains one dimensional and tractable. Extensive stochastic simulations of the 

model system are performed. The model system exhibits rich rupture dynamics which is essentially 

sequential. A mean field analytical formulation of the dynamics of the model system is also carried out. 

But the inherent coupling between the bond and transducer dynamics restrains an exact treatment. An 

alternate route to solve the coupled mean field equations has been suggested. 
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1. INTRODUCTION AND 
LITERATURE REVIEW 

Rupture dynamics in model systems has been thoroughly investigated to understand microscopic 

origin of various physical phenomena involving relative motion of surfaces, which arise mainly 

due to transduction or propagation of applied external load through the systems investigated. 

Wide range of phenomena including frictional forces due to relative motion of shearing surfaces 

[1-8], earthquake models for fault dynamics [2, 3], bio-composites having hierarchical structures 

exhibiting relative motion at each level of hierarchy[4-7], adhesive bonds between biological 

receptors and ligands [8]. Specifically we classify the huge literature pertaining to the present 

work as follows: 

1.1 Rupture Dynamics and Friction 

We discuss here mainly the frictional forces arising due to relative motion of shearing surfaces 

[9-12].One of the important areas of investigations that has been somewhat overlooked is that of 

strongly irreversible tribological processes, which include cold welding, material mixing, and 

tribochemical and triboelectrical effects. But only a few experimental investigations [13-15] and 

molecular dynamics simulations [16-19] have been performed to study these strongly 

irreversible phenomena at a microscopic scale. Experimental studies of dynamics of cold welds 

[13] and adhesive boundary. lubrication [14] have suggested that macroscopic friction might 

originate from the formation and rupture of microscopic bonds (junctions) that form between 

surfaces in close vicinity. 



Theoretically, Schallamach, in 1963 attributed rubber friction to molecular bonds between 

rubber and the track, both formation and breaking of bonds being thermally activated rate 

process [20]. Theory on this basis agreed semi-quantitively with the experimental results by 

Grosch [21]. This pioneering work by Schallamach stimulated numerous studies by theorists 

with different variations of the toy rupture models to understand the microscopic origin of the 

underlying mechanism. Notable among them, is the more recent work by Filippov and coworkers 

[1], where they propose a microscopic model that establishes a relationship between the 

dynamics of formation and rupture of individual bonds and macroscopic frictional phenomena. 

They suggest mechanisms of sliding and stick-slip motions that have been observed in 

tribological experiments with adhesive boundary lubricated surfaces [14] and cold welding [13]. 

Here they go beyond the elastic response of the embedded system to include strongly nonlinear 

rupture effects that contribute essentially to energy dissipation. Their model includes two rigid 

plates connected by bonds (junctions) that spontaneously break and then reform upon a contact. 

The model system we study in this thesis is very similar to that of Filippov et. -al. with the 

generalization that the transducer (plate) is flexible and modeled as a bead spring polymer, which 

is discussed in Chapter 2. 

Closely related models exist using the pioneering Burridge Knopoff spring-and-box 

model and its successor as in Ref [3] of earthquake dynamics, which consists of a one 

dimensional array of blocks coupled by horizontal springs (very similar to a bead spring 

polymer) sliding on a frictional surface. This particular one dimensional set up is connected by 

other set of springs (similar to interconnecting bonds) to a parallel rigid driving bar moving 

horizontally at a constant velocity. 	Using these models for understanding block substrate 

friction at the microscopic level; calculations were done by Perrson et. al., [22, 23] but the 
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detailed microscopy, its relationship to the macroscopic plate motion, and, in particular, the 

conclusions are all different. 

1.2 Hierarchical systems 

Biomaterials like wood and bone are hierarchical composite structures of minerals and proteins 

[4-7]. Wood has a complex hierarchical structure, where the constituent tube shaped wood-cells 

are embedded in the matrix of hemicelluloses and lignin. These wood-cells contain semi-

crystalline cellulose microfibrils wound in the form of a Z-helix around the lumen. In a typical 

experiment by Keckes et al. [5] tensile tests were performed both on individual wood cells and 

on wood foils to study distinct deformation mechanisms inside the cell wall and those mediated 

by cell-cell interactions. Mechanical properties of both the individual cells and the -intact tissue 

are found to be quite similar, they reveal a "stick-slip" mechanism during tensile loading. The 

authors explained their results using a phenomenological model of the irreversible deformation 

process, where a soft elastic matrix transmits shear stresses between cellulose fibrils. When the 

critical shear stress is exceeded, the matrix deforms easily and as the stress is released the bonds 

reform at a new position, similar to a "Velcro" fastener. 

Similar to wood also bone possesses a hierarchical structure. Bone is a nanocomposite of 

hydroxyapatite crystals and an organic matrix that contains mainly collagen (a protein). 

Thompson et al. attempted to explore the molecular basis of bones toughness experimentally [7] 

using atomic force microscopy. They stretched single collagen fibers supported on glass cover 

slips as well as on bone and performed bone indentation tests. They reported that bone contains 

polymers with "sacrificial bonds" that both protect the polymer backbone and dissipate energy. 

They found that the time required for these bonds to reform after stretching correlates with the 

bone recovery time in the indentation tests. This led them to suggest that these sacrificial bonds 
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may be partially responsible for the toughness of the bone. Bonelike biocomposites can be 

modeled by a tension-shear chain model, where the mineral platelets that carry tensile load are 

embedded in a protein matrix that transfers loads between the platelets via shear [24]. This is 

again a phenomenological model and a microscopic understanding of the mechanism involved in 

these systems under shear still remains a challenge. 

On the theoretical side, there are models in the literature where macroscopic friction is 

modeled by the rupture of microscopic bonds that form between rigid planar surfaces in close 

vicinity [1]. The macroscopic frictional properties are related to microscopic formation and 

rupture of bonds. These bonds between the plates can spontaneously break and reform upon a 

contact. The bond rupture is treated as an activated process, where the activation energy is 

lowered by the external force, while the bond formation depends on the contact time. The idea to 

interpret friction as a thermally activated process goes back to work on the friction of rubber by 

Schallamach [20]. The simulation results of Ref. [1] show three different regimes of motion 

characterized by different rates of rupture and formation relative to the driving velocity. Low and 

high velocity regimes correspond to sliding regimes, characterized by thermal bond dissociation 

and no bond formation processes, respectively, while the intermediate regime corresponds to 

stick-slip behavior, where processes of spontaneous and shear-induced bond dissociation 

compete. 

1.3 Adhesion Phenomena 

Another closely related subject is the theoretical description of the stochastic dynamics of 

cooperative molecular bonds under load, which plays an important role for force spectroscopy of 

ligand-receptor bonds [25, 26], cell adhesion [27], and the cooperative transport by molecular 
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motors [28]. The first two subjects, namely ligand-receptor bonds and cell adhesion are more 

relevant to the work in this thesis. 

Adhesion of biological cells is based on clusters containing a large number of adhesion 

receptors which mediate contact to specific ligands either carried by other cells or attached to the 

extra cellular matrix. Adhesion clusters are two-dimensional assemblies of transmembrane 

adhesion proteins which are held in the plasma membrane of the cell by hydrophobic interaction. 

On the cytoplasmic side (the inside of the cell) the receptors can be linked to the cytoskeleton. In 

many cases, an assembly of different accessory proteins ('cytoplasmic plaque') strengthens and 

regulates these links. A binding pocket on the extracellular side allows specific interaction with 

appropriate ligands. In general, the function of cell adhesion is twofold. The physical contact 

enables cells to resist and transmit mechanical forces and to maintain the integrity of tissues and 

the whole organism. Moreover, cells use adhesion sites like fingers which allow them to feel 

their environment and collect information about physical properties, such as the presence of 

binding sites and the presence of other cells, elasticity of substrates and strength of forces acting 

on the cells. In general, many processes such as embryonic development, cell migration or the 

immune response depend crucially on the specific adhesion of cells. 

Advancements in single molecule force spectroscopy has made it possible to measure the 

binding strength of a pair of receptor-ligand molecules using vesicles [29], atomic force 

apparatus [30-32], or optical tweezers [33] as transducers. Specifically over the last years, the 

AFM has become a standard tool to investigate adhesion strength of specific receptor-ligand 

bonds, both for single molecules and for multiple bonds in the context of single cells [34-36]. 

Thus, the essential constituents mediating biological adhesion have become accessible to 

quantitative physical experiments [37]. This experimental progress has lead to theoretical studies 
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of the rupture of such pairs under loading. Thermal activation being a main contributing factor, 

Kramers-like descriptions of the rupture process with time-dependent potentials show that the 

rupture strength of such bonds depends on the loading rate [38-40]. Such behavior has been 

found experimentally indeed [41, 42]. 

Adhesive contact and the rupture thereof often involve not just one but several molecular 

pairs of the same or different species [43], like clusters of adhesion molecules in cell-matrix 

adhesions. The role of force at adhesion clusters is also of interest to biological community, since 

it has been shown that force at cell-matrix adhesions correlate with contact size and intracellular 

signaling [44]. Hence in order to make contact with situations of biological interest, the 

quantitative effort has to be extended to clusters of adhesion bonds. For instance, micropipette 

techniques have been used to study cluster dissociation under a linear ramp of force [45], in good 

agreement with a theoretical analysis by Seifert [25, 26]. However, physiological loading of 

adhesion clusters is usually more or less constant on the time scale of cluster lifetime. The 

stability of adhesion clusters under constant force has been first modeled by Bell [43], but his 

treatment was based on a simplifying deterministic equation for the mean number of bonds. 

1.4 Theoretical Models 

The problems discussed so far in this thesis are all complex many body problems with rupture 

occurring in real three dimensions. This complexity makes the systems analytically and 

computationally intractable without any further approximation. To draw meaningful insights into 

the basic mechanisms like scaling behavior of physical quantities even at the microscopic level 

may not need such structural complexity and that is what statistical mechanics is all about. 
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The common feature in friction between shearing surfaces, mechanical behavior of the 

hierarchical systems and cell adhesion discussed so far is rupture or failure mechanism, 

specifically caused by relative motion between two surfaces under the action of applied external 

load. To model these systems and extract important physical behavior one normally uses one 

dimensional rupture models [1, 25-27]. The model systems generally considered in these 

problems consist of two parallel transducers with interconnecting bonds which can both rupture 

and bind stochastically. Dynamics including either of the bonds or the transducer in short 

dynamics of the system depending on the model specification are studied under the action of 

load. The quantities of interest for friction phenomena are time series of spring force, which 

exhibit the characteristic stick-slip phenomena [1]; force-extension profiles characteristic of the 

hierarchical systems, includes mechanical response similar to metal [47], and dynamics of 

loading and rupture probabilities for adhesion clusters [25-27, 48]. If the transducer is flexible as 

it is in the thesis, one generally models the transducer as a flexible or semiflexible polymer 

depending on the dynamical properties one is interested on. This opens up another very closely 

related field of investigation and that is polymer degradation, polymer scission under the 

influence of tensile stress [49]. Recent models on adhesion employs formulation tailor made to 

describe specific real biological environments, though insightful but are very problem specific 

and hence have very limited scope [50]. 

1.5 Aim of the project 

The main purpose of the project is to explore the rupture dynamics of the parallel bonds between 

two flexible transducers under the action of a fixed load. It will be interesting to see how the load 

is shared among the interconnecting bonds. This analysis is very generic, and is applicable to any 
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of the cases mentioned above, results of which will give more insights into the essential 

constituents mediating the underlying microscopic mechanism. 

Earlier unspecific theoretical models [25-27], with direct relevance to the proposed project 

address generic features of the adhesion clusters. For example of generic property Ref. [25] 

addresses the following question: How does the time and force necessary to break an adhesive 

contact under dynamic loading depend on the number of bonds initially present? Within a simple 

model they studied the rupture of multiple bonds of same type under dynamical loading, where 

the load is distributed almost uniformly among several .bonds-  such that these bonds act in 

parallel. The resulting- simple type of cooperativity leads to different scaling regimes for the 

rupture time and rupture force. In their model the transducer is Hookean. An extension will be to 

consider realistic cases where the transducer is an elastic membrane. Also in their model the 

receptor is confined to a substrate, while the ligand is connected by a polymer. 

In Ref. 26, authors incorporate further two generalizations of explicitly including rebinding 

events for bonds, and self-consistent calculation of rates using full potential gives- a better 

agreement with experiments on adhesive strength of living cells. Ref. [27] addresses another 

general feature of the adhesion cluster. It presents new formulas for cluster lifetimes as a 

function of cluster size, rebinding rate and force. Their model too consists of a cluster with 

constant number of parallel bonds, of which the closed bonds share the constant force equally. 

They include rebinding as well, and do a detailed theoretical analysis of the stochastic dynamics 

of the bonds. In all of the above [25-27] the force is transmitted or transduced to the bonds by a 

rigid transducer and hence the load is distributed equally among all the bonds and moreover in 

Ref. [27] the transducers are fixed. 



In the present thesis we propose a generalization by allowing the transducer to be a flexible 

polymer chain. (bead spring model), where the load is not distributed equally among the closed 

bonds but instead the loading is determined by interplay between the polymer elasticity, and the 

strength of the interconnecting bonds. This we believe will capture the more realistic picture of 

the adhesion clusters. 

0 



2. THEORETICAL APPROACH 
As we reasoned earlier, our theoretical approach is very generic and is applicable to any of the 

phenomena discussed in the previous chapter. Since all of the phenomena have a very distinct 

underlying rupture mechanism, single polymer rupture model turns out to be very generic 

theoretical tool to understand microscopic origin of the characteristic mechanical response of the 

systems involving essentially relative motion between two entities. Within the generic 

formulation, we adopt a model geometry that resembles most type of adhesion clusters coupled 

to cytoskeleton that have to function under mechanical load. 

2.1 Model system 

We consider a flexible transducer, which is built from an elastic material., to be very specific a 

straight one-dimensional polymer which is oriented parallel to a rigid planar substrate and 

connected by N molecular bonds to this substrate. The distance d between the polymer and 

substrate is small and will be neglected in the following. The polymer is oriented in the x-

direction. The planar substrate is rigid and fixed, and we apply a force in a direction 

perpendicular to the transducer (polymer), which is therefore transducing force onto the bonds 

and called the "transducer". Our model then resembles an adhesion cluster [25], but also makes 

the problem two-dimensional. For tractability reasons we confine our problem to one-dimension, 

by taking the direction of applied at n = N12 to be parallel to the orientation of the polymer, as 

shown by the solid arrow in Fig 1. Hence under the applied force, the rod starts sliding in x-

direction, i.e., parallel to its orientation. The onset of a sliding motion requires the rupture of all 

N molecular bonds with the substrate, which is a stochastic process. 
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Force 
n 

N 

Schematic representation of the model system used. Dashed arrow represents the direction of force as applied 

in models for adhesion clusters. Solid arrow represents the direction of force in our model. Squiggles denotes 

the section of polymer (beads and springs) not shown. 

The polymer is modeled as a collection of beads connected by elastic springs of stiffness kT and 

equilibrium length a (bead spring polymer [51]). For an elastic transducer the spatial 

arrangement of bonds will matter because a certain tension profile will be induced in the 

transducer upon shearing, which depends on the spatial arrangement of the bonds. We make the 

simplest choice and consider equidistant bonds. We choose the discretization of the elastic 

material such that at each bead one bond is attached and the length a is also the bond distance. 

Then we denote the displacements of beads out of their equilibrium positions x,,,o  by x„(t) with n 

= 0, ...,N — I using the same index n as for the bonds. The external force FT will act onto the 

middle bead n = N!2 with the largest x-coordinate. The equilibrium position of the last bead n = 0 

is xo,o(0) = 0 such that the equilibrium positions are x,,,o  = na. 

We consider N identical flexible bonds with a stiffness kb, connecting the transducer to the 

substrate and can undergo stochastic rupture events. These bonds can also rebind but we will 
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start with the simplest case of pure rupture without rebinding. The state of each bond n = 0, ...,N 

— 1 is characterized by a discrete variable q,,, that can take only two values 0 and 1 representing 

an open and closed bond respectively [1]. We assume that initially all the bonds are closed, i.e. at 

t = 0. As time progresses, transducer slides along the direction of applied force FT, a force f„ = 

kex„ develops on each intact bond, in a direction opposite to that of F. No force develops on a 

ruptured bond. Hence the overdamped equations of motion for each bead, which interacts with 

both neighbors and one bond can be written [51]. The force onto bead n from the right neighbor 

in positive x-direction is kT (xe_i — x„), the force from the left neighbor in negative x-direction is 

—kT (x„ — x„+,). This leads to n equations of motion for each bead (monomer) 

719txn  = /cT(xn+1 — 2xn  + xn-1) — gnkbxn + 6n,N/2FT + ( (t) 	(2.1) 

where we use the same friction constant y for each bead and a thermal noise with () = 0 

following white noise statistics as ( (t) , s(tr )) = 2k .T f ; t3(t — t`). The force from the bond 

n is given by f, = —kbx. Only the bead n = N/2 couples to the external force FT, which leads to 

the (5-term. The boundary conditions to eq. 1 needs to be specified. At the the end n = 0, the first 

term on the rhs of (2.1) becomes —kT  (xo — xi) (from the left neighbor only). We can use the 

same equation (2.1) also for bead n = 0 if we introduce a bead x-1  with xi — xo = 0. Such a 

boundary condition is equivalent to a free (relaxed) end. Likewise, we have to impose some 

boundary condition at the end n = N — 1 which can be either fixed with xN- I = 0 or free (relaxed), 

which can be implemented by introducing a bead n = N with xN-1—xN = 0. To look at a 

delamination process the latter free boundary condition seems more physical. 

Bond rupture is modeled as thermally activated escape over a transition state barrier 

(Kramers theory) [43]. This gives rise to a n-dependent bond dissociation rate (i.e., the transition 

probability per time from state q = 1 to state q = 0). 
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k_,n = koe f"I = koekbx,L /.fb 	 (2.2) 
where ko is the bond dissociation rate in the absence of force and fb = kBT/xb is a force scale of the 

bond set by the distance xb from the bound state to the transitions state and the thermal energy 

kBT. We start with the simplest case of pure rupture without rebinding, such that k+ = 0. The 

equation of motion as in Eq. (2.1) together with the rate for bond dissociation as given by Eq. 

(2.2) completely define the stochastic model and can be simulated numerically, the results of 

which are discussed more succinctly in the next chapter. 

In the limit of a rigid transducer with large kT  all displacements become equal, x = x,,, one 

arrives at the single equation of motion for rigid transducer (by indentifying the friction 

coefficient of a rigid transducer made from N beads is N times as large as for a single bead and 

similarly the noise as the sum over the noise exerted on each constituent beads), very similar to 

the rupture dynamics of multiple bonds as described in Refs. [25, 27] as all intact bonds are 

sharing the force. The difference is the dynamics of the transducer, which represents a second 

stochastic process. The transducer dynamics enters the rupture dynamics via the bond force f„ = 
kyc„ in the bell equation [Eq. (2)], and the rupture . dynamics feed back into the transducer 

dynamics via the interconnecting bond force term -q,1j as in Eq. (1). This generates a certain 

time delay between rupture and subsequent loading of the remaining bonds. 

2.2 Mean field approach 

The equation of motions (Eq. 1) and rupture dynamics (Eq. 2) are functions of both distribution 

of bead positions and bond variables represented as {x„} and {q„} respectively. The {q j,} 

distribution (p({q„} ,t) is governed by master equation [52] as 

— E(En  — 1 )rnp + ( E' — 1)9p 	(2.3) 
P. 	 n 
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where E„ is the step operator specific for each bead index n, and defined as EJ(n) f(n+l), 

'fin) =J(n-1). r„ =r(qn) is the transition rate (transition probability per unit time) of the variable qn 

rupture rate as given by Eq. 2.2. For the case of no rebinding the transition rates are given as 

rrz = r(qn) = WgrL-+q,,-1 = gnkoek1,x.fb 

9n = g(q) = 2c~q, ~ q+ t = 0 	 (2.4) 

In order to incorporate the stochastic dynamics of the transducer, i.e. x,,, we have to consider the 

joint probability P({q„}, {x„}, t) of finding {q„} distribution of the bonds and {x„} distribution of 

the bead positions at time t. The evolution of this joint probability is given by the Fokker-Planck 

equation as 

9tP({qn}, {xn}, t) = E(E' n — 1)rp + E(IE.n 1 — 1)9np 
n 	 n 

 {C~txnp} — D3p] 
n 

_ 	7L — 1)gnkoekt'tin/.fb p — 	[c n {at xnp} — DDD~np] 

(2.5) 

where D = kBT/y is the diffusion constant. In the absence of thermal noise D=0 .Substituting the 

equation of motion as in Eq. 2.1 in Eq. 2.5, we have the complete Fokker Planck equation, 

solution of which represent the full solution of stochastic dynamics. 

In the mean field approach, instead of solving the full problem one obtains deterministic 

differential equations for the mean values as 

(x~,.) (t) = 	d{xn }xP({qn }, {x}, t) 

(qrr,) (t) _ 	d{qrr,}q 1P({qn}, {xn }, t) 	 (2.6) 

Hence the mean field equations for the stochastic dynamics in our model system are given as 

14 



_ ' 	((a;,,+ t) — 2 (a,,) + (a~,, t)) — 1~t~ (q,, x,,) + b,, N/2 FT 	(2.7) 

U (q) = - k0 (q, ',1/fr, 

In the mean-field approach we neglect all correlations of the variables on the right hand sides of 

Eqs. 2.7 and 2.8 and write them as 

~C7t(a,,) _ kT ((rc+1) — 2 (r,,) + (L„-1)) — 1, (q11 ) (an) + &1.N/2FT 

= AT02 (r',,) — h 1, (q,,) (x,,.) + S(n, — N/2)FT 	 (2.9) 

Ot(q ,z) = (T'n) = —k0 (q) ('ht,(:c„)/ft 
	

(2.10) 

by applying a continuum approximation in the equation for (x,). The free end boundary 

conditions in the continuum limit becomes 

U,,. (a,,) ii =O = 0 and 0,, (,,,) -H = N = 0 
	

(2.11) 

Eqs. 2.9 and 2.10 form two coupled partial differential equations with Neumann boundary 

conditions for t.x,.) as in Eq. 2.11. The coupled partial differential equations do not allow an 

exact solution. To gain meaningful insights is hence a challenge. 

One way to proceed would be to look at appropriate stationary solutions and do a stability 

analysis. This will pave the way to a moving boundary solution [53] of the problem as is 

indicated by the full stochastic simulation results 
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3. RESULTS AND DISCUSSION 
Equations 2.1 and 2.2 are simulated using the method of Filippov et. al [I]. All the calculations 

were done on a 64-bit Dell workstation in the institute computer center. Bell equation as in Eq. 

2.2 was implemented exactly as detailed in Ref [1] for modeling the off rate. We use a random 

number generator for modeling the stochastic rupture event. 

The results from full scale stochastic simulation are shown in Figures [1-11]. Fig I and 2 

shows that the mean complete rupture time is an increasing function of polymer size N, which is 

the hallmark of a sequential (rupture) mechanism. We find that the results are more sensitive to 

few parameters like friction coefficient y, polymer size N, applied force FT. FT  decreases the 

mean rupture time of all the bonds, while larger friction coefficient of the surroundings increases 

the rupture time as shown in Figure 1. We obtain the characteristic stick-slip phenomena of 

shearing surfaces as shown in Figs (3-5). More distinct stick slip phenomena are obtained for 

high friction (from bath variables) coefficient values as can be seen in Figs. 3. Figs. 4 shows 

stick-slip phenomena for different values of kb, the strength of interconnecting bonds, where the 

trace for each kb  are off by some phase, the fact of which needs to be further investigated. Fig. 5 

shows stick-slip phenomena for different values of loading force F. Stick-slip phenomena is 

more pronounced for large values of FT and this may be due to the fact.that force free rupture is 

more pronounced at low loading force, which needs to be verified. Continuous (x„) trails are 

obtained in Figs 6 and 7. Similar trails for q) are obtained in Figures 8 and 9. Average number 

of intact bonds is plotted as a function of time during simulation in Figs. 10 and 11. Approximate 

solutions of the mean field equations may reproduce these continuous profiles for bead position 

and bond variables and may give further insights into the underlying mechanism. 
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4. CONCLUSION 
The results from full scale stochastic simulation show a sequential rupture mechanism. This 

again consolidates the suggested stability analysis of the mean field approach, which argues that 

the dynamics shifts from one stationary steady state solution to another as time progresses until 

complete rupture is attained. The stick-slip phenomena obtained is another interesting result' at 

the level of theory applied and needs to further investigated. 

We indeed see rich dynamics of the system that gives insights into the loading mechanism 

and the ensuing rupture mechanism. The correlation of the parameters among themselves is 

clearly exhibited in the results. 
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Figures 
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Figure 1: Complete mean rupture time (T,.) vs polymer size (number of monomers/beads) N 
at different values of friction coefficient 'y The other fixed parameters are as shown in the inset. 
Complete rupture time was averaged over 100 runs. 
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Figure 2: Complete mean rupture time (Tr ) vs polymer size (number of monomers/beads) N at 
different values of FT . The other fixed parameters are as shown in the inset. Complete rupture 
time is averaged over 100 runs. 
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Figure 3: Average bond force vs time t at different values of friction coefficient - for polymer 
size N = 100. The other fixed parameters are as shown in the inset. Total bond force of all the 
intact bonds is averaged over 1000 runs. 
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Figure 4: Average bond force vs time t at different values of strength of interconnecting bonds 
kb for polymer size N = 100. The other fixed parameters are as shown in the inset. Total bond 
force of all the intact bonds is averaged over 1000 runs. 
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Figure 5: Average bond force vs time t at different values of loading force FT  for polymer size 
N = 100. The other fixed parameters are as shown in the inset. Total bond force of all the 
intact bonds is averaged over 1000 runs. 
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Figure 6: Average position of the 10th bead vs time t at different values of friction coefficient ry 

for polymer size N = 100. The other fixed parameters are as shown in the inset. x is averaged 
over 100 runs. The parameters are chosen such that maximum sequential rupture is observed 
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Figure 7: Average position of the 10th bead vs time t at different values of applied force FT  for 
polymer size N = 100. The other fixed parameters are as shown in the inset. x. is averaged 
over 100 runs. The parameters are chosen such that maximum sequential rupture is observed 
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Figure 8: Average bond variable of the 10th bead vs time t at different values of friction 
coefficient -y  for polymer size N = 100. The other fixed parameters are as shown in the inset. 
q is averaged over 1000 runs. The parameters are chosen such that maximum sequential 
rupture is observed 
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Figure 9: Average bond variable of the 10th bead vs time t at different values of applied force 
FT  for polymer size N = 100. The other fixed parameters are as shown in the inset. q is 
averaged over 1000 runs. The parameters are chosen such that maximum sequential rupture is 
observed 
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Figure 10: Total average number of closed bonds vs time t at different values of friction coeffi-
cient 'y for polymer size N = 100. The other fixed parameters are as shown in the inset. This 
quantity is averaged over 100 runs. The parameters are chosen such that maximum sequential 
rupture is observed 
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Figure 11: Total average number of closed bonds vs time t at different values of applied force 
FT  for polymer size N = 100. The other fixed parameters are as shown in the inset. This 
quantity is averaged over 100 runs. The parameters are chosen such that maximum sequential 
rupture is observed 
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