
GENETIC DIVERSITY STUDY AND MOLECULAR MARKER DEVELOPMENT IN CYAMOPSIS TETRAGONOLOBA

A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY in

BIOTECHNOLOGY

DEPARTMENT OF BIOTECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247 667 (INDIA) DECEMBER, 2011

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled GENETIC DIVERSITY STUDY AND MOLECULAR MARKER DEVELOPMENT IN *CYAMOPSIS TETRAGONOLOBA* in partial fulfilment of the /requirements for the award of the Degree of Doctor of Philosophy and submitted in the Department of Biotechnology of the Indian Institute of Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period from January 2009 to December 2011under the supervision of Prof. G. S. Randhawa, Department of Biotechnology and, Prof. S. K. Tripathi, Department of Water Resources Development and Management , Indian Institute of Technology Roorkee, Roorkee, India.

The matter presented in the thesis has not been submitted by me for the award of any other degree of this or any other Institute.

K.A. Norgesh. (NAGESH K. A.)

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

(S. K. Tripathi) Supervisor

23:12-2011 Date:

(G.S. Randhawa) Supervisor

The Ph. D. Viva-Voce Examination of Mr. Nagesh K. A. Research Scholar, has been held on 25...96...2.0.12.

Supervisor

Signature of Chairman SRC

Signature of External Examiner

Head of the Depa Chairman ODC

ABSTRACT

Cluster bean (*Cyamopsis tetragonoloba* [L.] Taub.), commonly known as guar, is used as fodder, vegetable and green manure. In recent times it has become a major industrial crop due to the need of the guar galactomannan/gum present in the endosperm of its seeds. Guar gum is useful in various industries like paper, textile, petroleum, drilling, pharmaceutics, food, cosmaceutics, explosives, etc. Guar is a drought resistant, hardy, deep rooted annual legume. In India the crop is mainly grown in the dry habitats of Rajasthan, Haryana, Gujarat, Punjab and to a limited extent in Uttar Pradesh and Madhya Pradesh. Outside India, guar is grown in Pakistan, South Àfrica, Brazil, Australia and Oklohoma planes of North Texas in USA. Guar is a cultivated crop not found in wild conditions and hence its available landraces are the main source of genetic variability.

Guar is strictly a self-pollinated diploid legume with chromosome number (2n) equal to 14 and genome size approximately 2.45 Giga Bases/C. Cross pollination is prevented due to the cleistogamous nature of flowers. Thus, the heterosis available is reduced, which makes commercial hybrid seed production difficult and non-economical. This limiting factor of yield gap can be overcome by production of improved varieties of guar through molecular marker based selection and breeding programs. The DNA based molecular markers reveal natural variation at the DNA sequence level; these markers are used in plant genotyping, diversity studies, genetic linkage studies, quantitative trait mapping and marker-assisted selection during plant breeding. Hence, an overview of the genetic diversity and the development of molecular markers are very important for breeding and crop improvement in guar.

In the present study genetic diversity in 19 commercial varieties and 29 landraces of cluster bean belonging to Gujarat, Rajasthan, Haryana and Delhi regions of India were analyzed using 13 RAPD (Randomly Amplified Polymorphic DNA) and 7 ISSR (Inter Simple Sequence Repeat) markers.

The amplification using RAPD primers produced a total of 118 bands, out of which 103 were polymorphic and 15 monomorphic. Out of the 13 primers used OPQ-09 produced the highest number of bands (12); the average percentage polymorphism for RAPD markers was 87.63. UPGMA tree was constructed using Jaccard's similarity. The accessions of cluster bean distinguished into two major clusters at 75% similarity and a third cluster at lower similarity. The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's

information index for landraces and commercial varieties using 13 RAPD markers were found to be 1.872 ± 0.335 , 1.589 ± 0.351 , 0.333 ± 0.170 , and 0.490 ± 0.230 , respectively. The value of total genotypic diversity among population (Ht) was 0.333 ± 0.029 , whereas diversity within population (Hs) was found to be 0.283 ± 0.026 . Mean coefficient of gene differentiation (Gst) value was 0.148 which indicated that 86.2% of genetic diversity was present within the population. AMOVA was used to analyze molecular variance among and within the population. Percentage of molecular variance was found to be 27% among populations and 73% variance was attributed to variance within the population.

Seven ISSR markers used in the study produced 64 bands out of which 50 were polymorphic. Among the ISSR primers used UBC-868 produced highest number of bands (13); the average percentage polymorphism for ISSR markers was 77.82. The dendrogram from ISSR data showed one major cluster at 75% similarity and five minor clusters at lower level of similarity. The major cluster possesses six sub-clusters. The dendrogram did not differentiate between landraces and commercial varieties. The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's information index for landraces and commercial varieties using 7 ISSR markers were found to be 1.7812 ± 0.4167 , 1.4627 ± 0.3844 , 0.267 ± 0.1939 , and 0.3988 ± 0.2681 , respectively. The value of total genotypic diversity among population (Ht) was 0.2639 ± 0.0378 whereas diversity within population (Hs) was found to be 0.253 ± 0.035 . Mean coefficient of gene differentiation (Gst) value was 0.041 and the estimated gene flow in the population was 11.549. AMOVA was used to analyze variation among and within the population, respectively.

Pooled RAPD+ISSR data of cluster bean distinguished into two major clusters at 75% similarity and 3 minor clusters at lower similarity in the dendrogram constructed. The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's information index for landraces and commercial varieties using 13 RAPD and 7 ISSR markers were found to be 1.8407 ± 0.367 , 1.5446 ± 0.3671 , 0.3130 ± 0.1817 , and 0.4584 ± 0.2478 , respectively. The value of total genotypic diversity among population (Ht) was 0.3089 ± 0.0333 whereas diversity within population (Hs) was found to be 0.272 ± 0.029 . Mean coefficient of gene differentiation (Gst) value was 0.116 and the estimated gene flow in the populations. Molecular variance among populations was found to be 21% and that within the population was 79% indicating higher variation within the population.

The Mantle test revealed a significant correlation between the molecular data and the geographic data. The correlation value (R) for RAPD, ISSR, RAPD+ISSR data with geographic data were 0.5252, 0.3144, 0.5303, respectively. This indicates that molecular variation corresponds to differences in geographic distribution of landraces.

A recombinant inbred population is essential for various purposes in plant genetics. Hence a cross was made between guar cultivars M-83 X RGC-1066. The parental lines used were unbranched type with 0-3 branches. M-83 is a vegetable variety with low gum content, glabrous leaves and white flowe. While, RGC-1066 is a gum producing variety with high gum content, hairy leaves and purple flowers. The leaf pubescence is associated with uneasiness in handling the plants, yet no information on the morphology of trichomes in guar is available. Scanning Electron Microscopy (SEM) was done to observe the fine structure of leaf pubescence. The SEM pictures showed long, slender, porous hair like structures in the hairy plant. The F1 hybrid plants showed hairy leaf, purple flowers and 0-3 branches. The F2 population segregated in Mendelian ratio showing ~3:1 ratio of hairy and glabrous plants. No observable difference in the density of the pubescence was observed in hairy plants. Similar ratio was observed for purple and white flowered phenotypes, showing single locus control for these two phenotypes. But, the branching behavior showed transgressive segregation leading to very high branching in some F2 plants. In the population majority of the plants showed less than 10 branches per plant.

Expressed Sequence Tags (EST) are considered as a quick and inexpensive source for obtaining Simple Sequence Repeat (SSR) markers. Available *C. tetragonoloba* EST (16,476) were downloaded from dbEST of NCBI. The EST sequences were trimmed using EST trimmer. The sequences so obtained (16,108) were assembled into contigs using CAP3. The candidate SSR containing sequences in the EST sequences (16,108), assembled contigs (1755) and singlet sequences (4320) were mined using the PERL script MISA. The program showed a total of 1568 microsatellite repeats in the complete EST sequences; among them 91 were in compound formation and remaining were perfect microsatellites. The contigs showed 327 microsatellite repeats in 506 sequences of which 28 were in compound formation. Singlets had 580 microsatellite repeats in 506 sequences of which 41 were in compound formation. Mononucleotide repeats (435) were the most abundant among the SSR types in *C. tetragonoloba* ESTs, followed by di-nucleotide repeats (189). Only one hexa-nucleotide repeat and seven penta-nucleotide repeats were found. A/T repeats were the most abundant form of nucleotide repeats. The sum of the microsatellite repeats from the contigs and singlets (907)

Ш

were used for designing primers. Primers flanking the SSR regions were designed using Primer3.

To test the EST based SSRs, 226 primers were synthesized and tested on 3 accessions of *C. tetragonoloba*, viz., M-83, RGC-1002, RGC-1066 and one accession each of *C. serrata* and *C. senegalensis*. The amplification, transferability and polymorphism of these markers were analyzed. Out of the 226 primers used 190 amplified to produce the product in the expected range. The polymorphism between the *C. tetragonoloba* accessions was very low; only 5 of the markers were polymorphic, showing very high homogeneity in the cultivated genotypes. Euclidean similarity coefficient was used to generate a dendrogram using the SSR data. The dendrogram showed that *C. senegalensis* was very diverse from the other accessions. The accession of *C. serrata* was very close to the cultivated guar cultivars.

DNA from the F2 population was extracted and used to study the inheritance of the markers developed. Bulk segregant analysis was also done to check the linkage of leaf pubescence and flower color traits with the polymorphic markers derived. The amplification in bulks showed both the marker alleles of parents. This shows that the traits are independent of the markers tested.

This research work showed significant variation between the landraces and commercially grown cultivars. In the landraces the diversity correlates with the geographic distribution. The work also showed very high variation in the genomes of the wild *Cyamopsis* species in comparison to guar. In this work a total of 362 primers flanking the SSR regions in guar were designed; this would be a useful resource for genetic studies and breeding in guar.

IV

ACKNOWLEDGEMENTS

It is the contribution of one or more persons towards the task, which makes it successful. It gives me immense pleasure in acknowledging all the help that I have received during the period of research.

First and foremost I express my deep sense of gratitude to my supervisor **Prof. G. S. Randhawa**, Department of Biotechnology, Indian Institute of Technology, Roorkee, who is not only a teacher and guide to me, but my mentor and well wisher too. His persistent encouragement, perpetual motivation, everlasting patience, constructive criticism and valuable technical inputs in research have benefitted me to an extent which is beyond expression. He has not only trained me in science but in all aspects of life. I would like to take this opportunity to also thank **Dr. Mrs. Surinder Randhawa** who has been supportive in all the efforts during my research.

I would also like to thank **Prof. S. K. Tripathi,** Department of Water Resource Development and Management, Indian Institute of Technology, Roorkee, for his constant support and guidance throughout the period of research.

I wish to acknowledge my deep sense of gratitude for **Prof. Ritu Barthwal**, HOD, Department of Biotechnology, Indian Institute of Technology, Roorkee, for providing all the necessary resources and lab facility. I also express my gratitude to **all the faculty members** of Department of Biotechnology and Institute Instrumentation Facility, IIT Roorkee for their support, guidance and timely help for my research.

I would like to give warm compression of thanks to Dr. Kanwarpal S. Dhugga, and Dr. Rajeev Gupta, Scientists, Crop Genetics and Research and Development, Pioneer Hi-Bred International, Johnston, USA for their valuable help and guidance. Without their contribution the completion of this thesis would have been impossible. I express my deep sense of gratitude to them for sparing

V

time from their busy schedule. I would also like to thank Pioneer Hi-Bred International Company for the materials provided for my research work.

It gives me immense pleasure to acknowledge my heartiest thanks to Dr. Kulvinder S. Gill, Professor & Vogel Endowed Chair in Wheat Breeding and Genetics, Washington State University, Pullman for his valuable guidance and constant support. I would like to thank him for sparing time from his busy schedule.

I would also like to thank **Dr. Anupam Dixit** for providing his lab facilities and guidance for the completion of my work. I gratefully acknowledge his help and support.

I would like to thank Dr. D. Kumar, CAZRI, Jodhpur, Dr. Sukhpal Singh Choudary, Jaipur, Head, Forage section, CCS HAU, Hisar and NBPGR, New Delhi for providing guar accessions. I also express my gratitude for the support by Dr. Rakesh pathak, CAZRI, Jodhpur, Dr. Surender Pahuja and Dr. Anshul Bajaj, CCS HAU, Hissar.

I would like to take this opportunity to extend my gratitude to my seniors Dr. Durga Prasad Panigrahi, Dr. Vijay Tiwari, Dr. Megha Agrawal, Dr. Nidhi Rawat, Dr. Kumari Neelam, Ms. Naincy Girdharwal and Ms. Pranita Bhatele Tiwari for their timely advices, encouragement, guidance and goodwill which enabled me to start and successfully complete my work.

I express my thanks to my friends Shailender Kumar Verma, Satish Khatkar, Anjali Chaturvedi, Priyanka Paul, Rajbala Yadav, Satya Tapas, Pradeep Kumar T. P., Prashant A.S., Govardhan and Keshv for supporting me at every stage of my work.

I would like to express profound thanks and make a special mention of all my lab mates Umesh Kumar Tanwar, Manisha Choudhary, Swati Verma, Shilpi Kumari, Shalini Pareek, Pallavi Gahlot, Navneet Kaur Sekhon and Deepa Dewan for assisting me at every stage of work and maintaining a friendly environment in the lab. I express my thanks to Rakesh Kumar Gowswami, Yashodhara, Manjari, Vibhor Goyal, Gurdeep, Reema, Anita, Aakriti Tayal who were the project students in lab for the scientific discussions and friendly interaction during their project period.

I express my gratitude to **Sanjay, Praveen, Pradeep and Mohsin** who have assisted in travel, material collection and growing of plants at IIT Roorkee.

I also express my gratitude to **Shashi Prabha**, **Saini**, **Jain** and **Sandeep**, the non teaching staff at the department, for helping me in processing all the documents and also for their supportive nature.

I express my gratitude to my previous teachers Prof. N. Satyamurthy, Dr. Geetha Samak, Prof. M. R. N. Murthy, Ms. Rashimi, Ms. Pallavi, Prof. K. R. Sridhar, Prof. Krishnamurthy, Mr. Asif, Ms. Rochell, Dr. Anu Appaya, Mrs. Vanajakshi who inspired me to be in the field of science and research.

I express my gratitude to **Department of Biotechnology** (**DBT**), Government of India for the financial support in the form of JRF and SRF during the period of this research.

I express my unbound gratitude to **my parents Mr. K. Aswathnarayana and Mrs. K. Sumitra** for their blessings and dedicated efforts to educate me to this level. I also express my gratitude to all my family members for their constant support and encouragement.

Finally I thank the Almighty for leading me all the way towards successful completion of this work.

K.A. Nageest

(Nagesh K. A.)

Date: 23 - 12 - 2011

	Abstract	I
	Acknowledgements	v
	List of Abbreviations	VIII
	List of Tables	
	List of Figures	XIII-XIV
1.	. Introduction	1
2.	. Review of Literature	6
	2.1 History of guar	7
	2.2 Germplasm	7
	2.3 Breeding and Genetics	9
	2.4 Galactomannans	10
	2.4.1 Structure	10
	2.4.2 Galactomannan biosynthesis in plants	12
	2.4.3 Genes in galactomannan biosynthesis	13
	2.4.4 Genes for biodegradative hydrolysis of galactomannans in guar	14
	2.5 EST sequences in guar	15
	2.6 Efforts for obtaining optimal M/G ratio in galactomannans	15
	2.7 Process of guar gum production	16
	2.8 Modifications	17
	2.9 Applications of guar gum.	
	2.10 Market	21
	2.11 Major areas of interest in guar	
	2.11.1 Productivity of guar	
	2.11.2 Susceptibility to diseases	
	2.11.3 Adaptable varieties for all season and regions	21
	2.12 Molecular Markers	
	2.12.1 Restriction fragment length polymorphism (RFLP)	
	2.12.2 Amplified fragment length polymorphism (AFLP)	
	2.12.3 Random amplified polymorphic DNA (RAPD) markers	
	2.12.4 DNA amplification fingerprinting	
	2.12.5 Sequence characterized amplified regions (SCAR)	
	2.12.6 Cleaved amplified polymorphic sequences (CAPS)	
	2.12.7 Single strand conformation polymorphism (SSCP)	
	2.12.8 Single nucleotide polymorphism (SNP)	

Table of Contents

2.12.9 Microsatellite or simple sequence repeats (SSR) markers	. 27
2.12.10 Inter simple sequence repeat (ISSR) markers	. 28
2.13 Development of SSR markers	. 30
2.13.1 Development of SSR through library construction	. 30
2.13.2 SSR mining from sequence databases	. 33
3. Studying genetic variability in cluster bean accessions through application of RAPD and ISSR markers	. 34
3.1 Materials and methods	. 34
3.1.1 Plant material	
3.1.2 DNA extraction buffer	
3.1.3 TE/T ₁₀ E ₁ buffer	. 36
3.1.4 RNaseA solution	. 36
3.1.5 TBE buffer	. 36
3.1.6 DNA gel loading buffer	. 37
3.1.7 DNA extraction and purification	. 37
3.1.8 Quantification and dilution of DNA	. 37
3.1.9 DNA amplification conditions for RAPD and ISSR markers	. 37
3.1.10 Gel electrophoresis and recording	. 39
3.1.11 Analysis of RAPD and ISSR markers data	. 39
3.1.12 Polymorphic information content (PIC)	. 40
3.1.13 Resolving power (Rp)	. 40
3.2 Results	. 41
3.2.1 Genetic diversity study using RAPD and ISSR markers	. 41
3.2.2 RAPD analysis	. 41
3.2.3 ISSR Analysis	. 46
3.2.4 RAPD and ISSR combined analysis	. 51
3.2.5 Correlation between molecular, geographical and morphological data in landraces	54
3.3 Discussion	. 54
4. Mining of EST-SSR markers for amplification and polymorphism among guar accessions	56
4.1 Materials and methods	. 56
4.1.1 Preparation of EST sequences for analysis	. 56
4.1.2 Plant material and DNA extraction	. 56
4.1.4 Polyacrylamide gel electrophoresis of DNA	. 57
4.1.5 Silver staining	. 58
4.1.6 DNA amplification conditions for SSR markers	. 59

4.1.7 Gel electrophoresis and recording	
4.1.8 Data analysis of SSR markers	60
4.2 Results	
4.2.1 Data mining for simple sequence repeats	
4.2.2 Primer designing	
4.2.3 Analysis of the synthesized primers	
4.3 Discussion	
5. Crossing of guar genotypes for developing population to study the inheritation to study the inheritation to study the inheritation and their linkage with markers	
5.1 Material and methods	
5.1.1 Plant material	
5.1.2 Crossing of guar plants	
5.1.3 Population development	
5.2 Scanning electron microscopy to observe the morphology of trichome parents of population	
5.2.1 Preparation of fixative solution	
5.2.2 Sample preparation scanning electron microscopy	
5.3 Bulk segregant analysis	
5.3.1 Preparation of bulk	
5.3.2 Analysis	
5.4 Results	
5.4.1 Phenotypes of the plants in F_2 generation	
5.4.2 Segregation pattern of phenotypes	
5.4.3 Variation of leaf pubescence in parental plants	
5.4.4 Bulk segregant analysis	
5.5 Discussion	
6. Conclusions	
7. Future Scope	
8. References	
Appendix	i - x
List of Publications	

.. .

.

LIST OF ABBREVIATIONS USED

cDegree configureµlMicrometerAFLPAmplified fragment length polymorphismAgNOSSilver nitrateamAnte meridiemAMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentboxymethyl-O-hydroxypropyl guar gumCMHPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaFTDiversity array technologydbESTDatasae ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MPGDP-mannes pyrophosphorylaseGMGTGalactosmanna galactosyltransferaseGMGTGalactomannan galactosyltransferaseGMGTGalactoman	°C ·	Degree centigrade
µmMicrometerAFLPAmplified fragment length polymorphismAgNO3Silver nitrateamAnte meridiemAMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dpendent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase <td></td> <td>• •</td>		• •
AFLPAmplified fragment length polymorphismAgNO3Silver nitrateamAnte meridiemAMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactorseGBP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase	•	
AgNO3Silver nitrateamAnte meridiemAMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxynibose nucleic aciddNTPsDeoxynibose nucleic aciddNTPsDowninant parentEC no.European Commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLBuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		
amAnte meridiemAMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean dolecular Biology LabESTPElactronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		
AMOVAAnalysis of Molecular VarianceBaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentroneterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxynibose nucleic aciddNTPsDeoxyn ucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/CalGalactoseGBP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGMCTGalactomannan galactosyltransferase	-	· · · ·
BaBariumbpBase pairCAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCSICellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		
bpBase pairCAPSCleaved amplified polymorphic sequencesCAPSCleaved amplified polymorphic sequencesCARICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		•
CAPSCleaved amplified polymorphic sequencesCAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCsiCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		
CAZRICentral Arid Zone Research InstituteCCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediamineteracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTEstESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase	-	
CCSHAUChaudhary Charan Singh Haryana Agriculture UniversitycDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferase		
cDNAComplementary DNAcmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
cmCentimeterCMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxynibose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESTEstrESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
CMHPGO-carboxymethyl-O-hydroxypropyl guar gumCMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset aliaet aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
CMHTPGO-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guarCslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset aliaF1F1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
CslCellulose synthase likeCuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGmGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
CuCopperDAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
DAFDays after floweringDaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
DaRTDiversity array technologydbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	DAF	••
dbESTDatabase ESTDNADeoxyribose nucleic aciddNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGuGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	DaRT	• •
dNTPsDeoxy nucleotide tri phosphatesDPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
DPDominant parentEC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGuGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	DNA	Deoxyribose nucleic acid
EC no.European commission numberEDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	dNTPs	•
EDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	DP	Dominant parent
EDTAEthylenediaminetetracetic acideg.For exampleEMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	EC no.	European commission number
EMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	EDTA	-
EMBLEuropean Molecular Biology LabESNPElectronic SNPESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGuGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	eg.	For example
ESTExpressed sequence tagset al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	-	European Molecular Biology Lab
et al.et aliaF1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	ESNP	Electronic SNP
F1Filial 1FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	EST	Expressed sequence tags
FruFructosegGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	et al.	et alia
gGramG/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	F1	Filial 1
G/GalGalactoseGBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	Fru	Fructose
GBGiga basesGDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	g	Gram
GDP-MPGDP-mannose pyrophosphorylaseGDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	G/Gal	Galactose
GDP-MSGDP mannan dependent-mannosyl transferaseGenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation	GB	-
GenALExGenetic AnaLysis in ExcelGluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
GluGlucoseGMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		· · · · · · · · · · · · · · · · · · ·
GMGTGalactomannan galactosyltransferaseGSTMean coefficient of gene differentiation		
GST Mean coefficient of gene differentiation		
•		
GT Glycosyl transferase		•
	GL	Glycosyl transferase

GT- UDP	UDP galactose dependent-galactosyl transferase
GUS	β-glucuronidase
HTPG	O-2-hydroxy-3-(trimethylammonio) propyl guar gum
	Hexokinase
HXK	
IARI	Indian Agricultural Research Institute
IITR	Indian Institute of Technology Roorkee
ISSR	Inter simple sequence repeats
KB	Kilo bases
kDa	Kilo Daltons
L.	Linnaeus
m	Meter
M/G ratio	Mannose/Galactose ratio
M/Man	Mannose
ManS	Mannan synthase
mg	Milligram
MgCl ₂	Magnesium chloride
min	Minute
MISA	MIcroSAtellite
ml	Millilitre
mm	Milli meter
mM	Millimolar
mRNA	messenger RNA
MS	Mannan synthase
NBPGR	National Bureau of Plant Genetic Resources
	•
NCBI	National Center for Biotechnology Information
ng	Nanogram
nm	Nanometer
PAST	PAleontological STatistics
PCR	Polymerase chain reaction
PHGG	Partially hydrolysed guar gum
PIC	Polymorphic information content
pm	Post meridiem
pМ	Picomolar
PMI	Phosphomanno isomerase
PMM	Phosphomanno mutase
POPGENE	POPulation GENEtic analysis
p-value	Probability value
R	puRine
R value	Coefficient of correlation
RAPD	Random amplified polymorphic DNA
RB	Recessive bulk
RNA	Ribose nucleic acid
RNaseA	RibonucleaseA
Rp	Resolving power
RP	
	Recessive parent
rpm	Revolutions per minute
Rs	Rupees

IX

.

SCAR	Sequence characterized amplified regions
sec	Second
SNP	Single nucleotide polymorphism
SS	Sucrose synthase
SSCP	Single stranded conformational polymorphism
SSR	Simple sequence repeats
SSRIT	Simple Sequence Repeat Identification Tool
Taq	Thermus aquaticus
TBE	Tris borate EDTA
$TE/T_{10}E_1$	Tris EDTA
TRA	Tandem repeats analyser
TROLL	Tandem Repeat Occurrence Locator
U	Unit
UDP-GE	UDP- galactose 4-epimerase
UPGMA	Unweighted Pair-Group Average
USA	United States of America
UV	Ultraviolet
V	Volt
w/v	Weight/volume
Y	pYrimidine

.

.

.

· · ·

.

LIST OF TABLES

Table No.	Title	Page No
2.1	Applications of guar gum and its modified forms in various industries	18-21
2.2	Characteristics of the molecular markers used in the study	29
3.1	Details of cluster bean genotypes used for studying genetic diversity	35
3.2	Composition of the DNA extraction buffer	36
3.3	Composition of 1X TBE buffer	36
3.4	Details of the RAPD and ISSR primers used in the present study	38
3.5	Properties of 13 RAPD primers used and their percentage polymorphism, polymorphic information content and resolving power	41
3.6	A comparative list of genetic variability factors across the accessions using RAPD primers	46
3.7	Details of Analysis of Molecular Variance (AMOVA) based on RAPD marker data within and among landraces and commercial varieties (level of significance based on 999 iteration steps)	46
3.8	Properties of 7 ISSR primers used and their percentage polymorphism, polymorphic information content and resolving power	47
3.9	A comparative list of genetic variability factors across the accessions using ISSR primers	47
3.10	Analysis of Molecular Variance (AMOVA) based on ISSR marker data within and among landraces and commercial varieties (level of significance based on 999 iteration steps)	47
3.11	A comparative list of genetic variability factors across the accessions using RAPD+ISSR primers	54
3.12	Analysis of Molecular Variance (AMOVA) based on RAPD+ISSR marker data within and among landraces and commercial varities (level of significance based on 999 iteration steps)	54
4.1	Composition of 10X TBE buffer	57

4.2	Composition of 8% PAGE gel	58
4,3	Composition of fixative solution	58
4.4	Composition of staining solution	58
4.5	Composition of developing solution	59
4.6	Frequency of different kinds of simple sequence repeats in cluster bean ESTs	61
4.7	Name and sequence of primers synthesized	62-68
5.1	Composition of fixative solution	75
5.2	Phenotypic characteristics of F ₂ plants	76-78
5.3	The dominance pattern and genetic ratios of characteristics for cross in cluster bean	79

Figure No.	Title	Page No.
2.1	a) Guar plants grown in field at IIT Roorkee, b) Green pods of guar, c) Dried pods of guar, d) Seeds of guar	8
2.2	General structure of galactomannans	11
2.3	Arrangement of the galactosyl side chains in galactomannan	11
2.4	Schematic representation of galactomannan metabolism in guar seeds	13
2.5	Flow chart showing the process of guar gum extraction from guar seeds	17
2.6	Applications of guar gum in different industries	18
2.7	Schematic diagram describing the development and utilization of molecular marker techniques over last two decades	24
2.8	Schematic diagram showing RAPD technique	25
2.9	Schematic diagram representing selective hybridization protocols	32
3.1	Diagrammatic representation of locations of collection of landraces	34
3.2	Ethidium bromide stained agarose gel showing RAPD profile from OPM-02	42
3.3	Ethidium bromide stained agarose gel showing RAPD profile from OPQ-09	43
3.4	Dendrogram generated by UPGMA method, showing relationship between 48 accessions of cluster bean based on genetic profile from RAPD data	44
3.5	Two-dimensional plot of principle component analysis (PCA) of cluster bean landraces using RAPD analysis	45
3.6	Ethidium bromide stained agarose gel showing ISSR profile from UBC-808	48
3.7	Ethidium bromide stained agarose gel showing ISSR profile from UBC-879	49
3.8	Dendrogram generated by UPGMA method, showing relationship among 48 accessions of cluster bean based on genetic profile from ISSR data	50
3.9	Two-dimensional plot of principal component analysis (PCA) of cluster bean landraces using ISSR and analysis	51

LIST OF FIGURES

3.10	Dendrogram generated by UPGMA method, showing relationship among 48 accessions of cluster bean based on genetic profile from RAPD+ISSR data	52	
3.11	Two-dimensional plot of principal component analysis (PCA) of cluster bean landraces using RAPD+ISSR analysis	53	
4.1	Schematic work flow followed for screening microsatellites	57	
4.2	Graph showing the abundance of different kinds of repeat types in cluster bean EST's, contigs and singlets	62	
4.3	Banding patterns from amplification of SSR markers tested	70	
4.4	Dendrogram generated by UPGMA method showing relationship between 5 accessions of Cyamopsis based on genetic profile from SSR data	69	
5.1	Schematic diagram showing the method followed for developing population	74	
5.2	Graph showing the number of plants with various levels of branching	79	
5.3	Scanning electron microscopic images of upper and lower leaf surface of RGC 1066 and M 83 showing contrast in pubescence	81	
5.4	Scanning electron microscopic images of guar trichome	82	
5.5	Banding patterns from amplification of polymorphic markers	83	

Chapter I

Introduction

1. Introduction

Cluster bean (*Cyamopsis tetragonoloba* [L.] Taub.), commonly known as guar, is being grown in India since ancient times. It has been useful as fodder, vegetable and green manure in the past; in the recent times guar has become a major industrial crop due to the need of the guar gum contained in the endosperm of its seeds [36]. Guar is a drought hardy, deep rooted, annual legume grown in Kharif season. The crop is mainly grown in the dry habitats of Rajasthan, Haryana, Gujarat, and Punjab and to a limited extent in Uttar Pradesh and Madhya Pradesh. In addition to India, guar is also grown in Pakistan and as a cash crop to a limited extent in other parts of the world like South Africa, Brazil, Australia and Oklahoma planes of North Texas in USA. Guar is generally 50-100 cm tall and bears 4-10 branches (branched types); however, unbranched type varieties having main stem only are also available [77]. The flowers are borne in axillary raceme on long pedicels. The flowers are small, typically papilionaceaous. The pods are oblong, 5-12 cm in length, normally contain 5-12 oval or cube shaped seeds. The crop matures in 90-150 days depending on the genotype. It prefers warm climates and can also be grown in subtropical areas during summer. Guar is known for its exceptionally high adaptation towards poor rainfall conditions, low inputs and less care, soil enrichment properties and multiple uses in cropping systems.

Guar seed consists of seed coat (14-17%), endosperm (35-42%) and germ (43-47%). The endosperm contains about 80% galactomannan, 12% water, 5% protein, 2% acid insoluble ash, 0.7% ash and 0.7% fat [107]. Galactomannan is a water soluble polysaccharide made up of linear chains of a β -1,4-mannan as backbone to which galactosyl residues are attached through an α -1,6 linkage [130]. Guar gum is used as a binder, disintegrant, suspending agent, thickening agent and stabilizing agent. It is soluble in cold water, hydrating quickly to produce viscous pseudo plastic solutions that generally have greater low-shear viscosity than other hydrocolloids [107]. These properties have made guar gum useful in various industries like paper, textile, petroleum, drilling, pharmaceutics, food, cosmaceutics and explosives [140].

Guar gum is used as an edible thickening agent and has cholesterol lowering effect. The cholesterol and glucose lowering effects are most often associated with gelling, mucilaginous, viscous and fibers properties of guar gum. The demand for guar galactomannan is growing rapidly because, in addition to its indispensable role in lowering serum cholesterol and glucose levels, it is also considered helpful in weight loss [20]. Dietary intake of high viscosity of guar gum decreases the protein efficacy [105]. Guar gum also decreases lipid utilization by interfering with digestion and absorption of nutrients when it is dissolved in water. This results

in a slower gastric emptying [156]. Partially hydrolyzed guar gum (PHGG) is a water-soluble, non-gelling fiber that has therapeutic benefits. It is used in the treatment of irritable bowel syndrome [47].

Guar gum is a very important foreign exchange earner for India. For instance, guar gum export reached 183.57 thousand tons providing foreign exchange worth Rs. 10384 million during the year 2004-05. In 2005-06, 189.11 thousand ton guar gum costing Rs. 11249 million was exported to western countries. Thus the demand for guar gum is rising in the global market and is becoming an opportunity for the farmers and the industrialists as well [76].

Guar gum is synthesized in the endosperm part of the developing seeds. In the recent years many efforts towards the understanding of molecular mechanism of galactomannan synthesis have shown that galactomannans are synthesized in Golgi lumen by the combined action of two enzymes: mannan synthase (ManS), which makes β -1,4-linked mannan backbone, and α -galactosyltransferase, which adds galactosyl residues to the mannan backbone [32]. Several genes from cellulose synthase like (Csl) gene family have been found to be involved in synthesis of galactomannan [130]. The stored galactomannans are utilized for plant development by galactomannan degrading enzymes such as α -galactosidase which hydrolyses the galactose side chain from mannose backbone and β -mannanase which cleaves the mannose polymer to oligo mannans and β -mannosidase which hydrolyses the oligomannans. The enzymes are synthesized during the seed development to nourish the developing seedling [95].

Apart from guar many other leguminous plants also produce galactomannans in their seeds. Naturally in legume seeds galactomannans perform energy storage, water-retaining and defense function [132]. The degree of galactose (G) addition to the mannan (M) backbone differ depending upon the source of the gum which is represented by M/G ratio; like M/G ratio for guar gum is 1.3-2 and for locust bean gum is 3.75-4. The change in M/G ratio changes the structure of the gum thereby changing the various properties and applications of the galactomannans [140]. Higher viscosity of the gum is essential for use in oil drilling and other industries. The locust bean gum is better in terms of its viscosity characteristics but it is difficult to obtain since carob tree flowers only after 10 years of vegetative growth. Moreover these trees are grown in Mediterranean climates. The cost of locust bean gums are high in comparison to guar gum because of the long maturation period of the plant, labour-intensive harvesting of fruits and competition from other cash crops [19]. Many other legumes have galactomannans in their seeds, but the extraction of gum from them is not economical because

of the low yield in comparison to guar and locust bean. To improve the characteristics of guar gum various chemical modifications are employed like O-carboxymethyl-O-hydroxypropyl guar gum (CMHPG), with anionic character, O-2-hydroxy-3-(trimethylammonio) propyl guar gum (HTPG). with cationic character. and O-carboxymethyl-O-2-hydroxy-3-(trimethylammonio) propyl guar (CMHTPG), with amphoteric character [160], polyacrylamide grafted guar gum [139] and sulfated guar gum [151]. These modifications require higher input and lead to higher cost of the modified guar gum. Even then modified guar gum has found various uses in capsule preparation for controlled release of drugs and oil drilling. Biotechnological approaches to produce guar gum with wide range of M/G ratio has been reported through application of α -galactosidase in the preprocessing steps to remove excess of galactose [19]. An effort on improving the M/G ratio of galactomannan through transformation and expression of α -galactosidase gene of senna in developing guar seed has shown slight increase in M/G ratio [64]. Yet there are no reports on any commercial operations based on these processes. Hence, improving the yield and M/G ratio of guar gum could be highly to the guar growers and the industries which use these galactomannans.

Even though guar gum synthesis is understood to a certain extent, guar is still considered a neglected crop due to the limitation of the genomic resources and lack of the understanding of its genomics. Cluster bean belongs to the genus Cyamopsis which has three sub species C. tetragonoloba, C. serrata, C. senegalensis. Among the species C. tetragonoloba being a cultivated crop, is not found in wild conditions [58], which makes the available landraces as the main source of genetic variability. Apart from variability, landraces are also known for adaptations to the selective environments in the region of cultivation [23]. Conventionally guar accessions have been characterized on the basis of their phenotypes [91]. In India, National Bureau of Plant Genetic Resources (NBPGR), New Delhi is working on the collection, maintenance and characterization of the guar landraces. A total of 4901 accessions are available with NBPGR which have been characterized for various phenotypic traits like pubescence, days to 50% flowering, days to 50% maturity, plant height, number of branches, number of clusters per plant, seed yield per plant, gum content, etc. [30]. But the limitation of this approach lies with the phenotype being influenced by the environmental factors during the developing stage of plant. This available genetic resource is yet to be utilized to transfer useful traits to elite cultivars of guar. Hence, there is a need to study these landraces for genetic diversity based on the geographic origin and phenotype. Only few studies towards studying the diversity of commercially grown varieties using RAPD have been carried out [100, 109]. An

overview of the genetic diversity is essential for any crop improvement programme. Hence the study of the genetic diversity available in the landraces of guar is very essential for selecting the source of genetic variation which could be applied for production of cultivars with various beneficial traits.

Guar is a self-pollinated diploid legume with chromosome number (2n) equal to14. The genome size of guar is estimated to be 2.45 Giga Bases/C [101]. Guar due to the cleistogamous nature is strictly self pollinated, but outcrossing, to the extent of 0.5% to 9% has been reported [48]. Thus, lesser heterosis is available. The optimal time for pollinating the buds is between 8:00 a.m-9:00 a.m. [26]. Generally the pods formed after hybridization are relatively smaller having 2-3 seeds. This makes commercial hybrid seed production non economical in guar. This limiting factor of yield gap can be overcome by production of improved varieties of guar through modern breeding programme; this requires the application of modern genomic approaches to increase the speed and efficiency.

The DNA-based molecular markers reveal natural variation at the DNA sequence level; these markers are used in plant genotyping, diversity studies, genetic linkage studies, quantitative trait mapping and marker-assisted selection during plant breeding [69]. DNAbased molecular markers offer numerous advantages over conventional phenotype based alternatives because they are stable and can be detected in all tissues regardless of growth, differentiation, development, or defense status of the plant. They are not confounded by the environment, pleiotropic and epistatic effects [1]. Molecular markers do not have any biological effect; they are identifiable DNA sequences, found at specific locations of the genome and are transmitted by the standard laws of inheritance from one generation to the next. They can be considered as constant landmarks in the genome. The existence of various molecular techniques and differences in their principles and methodologies require careful consideration in choosing one or more of such marker types. The diversity and implications of the markers have increased in the recent times with the discovery of various PCR based marker types like RAPD, ISSR, SSR, SCAR, SSCP, AFLP, SNP, DaRT, etc. These marker techniques differ from each other with respect to important features such as genomic abundance, level of polymorphism detected, locus specificity, reproducibility, technical requirements and cost. One of the widely used co-dominant marker for studying genetic linkage and marker-assisted selection is Simple Sequence Repeat (SSR) marker. SSRs have been developed and successfully applied for various applications in crop plants. This marker system has not been applied to guar. Very less attention has been paid to development of molecular markers in guar.

With the above information in view, the current research work on application of the molecular markers to understand the genetic diversity in guar landraces and utilization of the available DNA sequence resources to develop markers for application in guar was undertaken

The objectives of this work were as follows:-

- to study the genetic variability in cluster bean accessions through application of RAPD and ISSR markers,
- 2. to screen publically available Expressed Sequence Tags of guar for Simple Sequence Repeat (SSR) regions and design primers flanking SSR regions,
- 3. to synthesize and test EST-SSR markers for amplification and polymorphism studies among guar accessions,
- 4. to cross guar genotypes for developing a population to study the inheritance of phenotypic traits and genetic linkage,
- 5. to conduct bulk segregant analysis for phenotypic traits and study the linkage of the markers with specific traits.

Chapter II

Review of Literature

2. Review of Literature

Guar, also known as cluster bean (*Cyamopsis tetragonoloba* (L.) Taub.), is being grown in India since ancient times. Earlier, it was used mainly as a forage, green manure and vegetable crop, but now it is an important industrial crop due to galactomannan gum contained in the endosperm of its seeds [36]. Cluster bean is mainly grown in semi-arid regions of Rajasthan, Haryana, Gujarat, Punjab, Madhya Pradesh and Uttar Pradesh in India. It is also cultivated to some extent in Pakistan and has been introduced as a cash crop in Oklahoma and Texas states of USA. It is also cultivated to a limited extent in Italy, Morocco, Spain, France, Greece, and Germany [109].

The name guar comes from the Sanskrit word 'gau ahaar' which means the fodder of cow. Guar is also known as gawaar in Hindi and Marathi, goruchikkudu kaya /orgokarakaya in Telugu, gorikayie/javalikayie in Kannada, and kotthavarai in Tamil [58]. Guar belongs to the family Fabaceae. Earlier Cyamopsis tetragonoloba was known as Dolichos *fabaeformis* or C. psoralioides. Guar is a self-pollinated diploid (2n = 14) plant. It is generally 50-100 cm tall and bears 4-10 branches (branched types); however, unbranched type varieties are also available. Guar plant may produce around 30-90 pods per plant. The leaves are alternate trifoliate, which are born on long petioles. The stem is slender and tall [77]. The flowers are purple, pink to white in colour, typically papilionaceous and form axillary raceme inflorescence. The calyx has five unequal linear teeth type sepals. The corolla has orbicular standard wing petals, which are oblong, while the keel petals are long and broad as the wings. All the ten stamens are fertile and the filaments form a tube while the anthers are apiculate. The pollen grains are circular and 40-43 µm in diameter. The stigma expands into a head-shape while the style is short and slender [91]. The pods are oblong, 5-12 cm in length and normally contain 5-12 oval or cube shaped seeds of variable shape [104] as shown in Fig 2.1.

Cluster bean prefers warm climates and can also be grown in semi-arid conditions in subtropical areas. It is known for its exceptionally high adaptation towards poor rains, low inputs and less care, soil enrichment properties and multiple uses in cropping systems. Guar has high transpiring ability leading to the cooling of canopy and increasing the soil moisture extraction from deep layers [77].

Green pods of guar are a very good source of vitamin A, calcium, iron, phosphorous and ascorbic acid. It is a rich source of protein (3.2%), fiber (3.2%) and carbohydrate (10.8%).

Guar pods are also used in traditional medicine for controlling constipation, anorexia, diabetes, arthritis, colic pain, hair fall and body pain [49].

2.1 History of guar

Cluster bean is considered to be originated by domestication of the African wild species, *C. senegalensis* which appear to be the ancestor of the *C. tetragonoloba*. The domestication process could have been taken place in the dry areas of the northwestern region of the Indo-Pakistan Subcontinent [58]. It was cultivated as a minor crop in India during ancient times as a vegetable and feed for cattle.

Guar was introduced in USA in 1903 for experimentation in the southwest region, where the climate is hot and have long growing seasons to suit its adaptation [59]. The objective was to use guar as a soil improving legume and forage for cattle. Before world war II the carob (locust bean) seed (*Ceratonia siliqua*) from Mediterranean was used to extract carob gum for extensive use in paper industry. During World War II the supply of imported carob seed from the Mediterranean region was cut off, as a result search for domestic source of galactomannan gum was initiated in USA by Institute of Paper Chemistry. This study revealed guar as a alternative source for galactomannan [5]. Further studies were done on milling the guar seeds for gum production and application in the manufacturing of paper revealed the beneficial effects of guar gum on paper processing. This information helped in the adoption of guar gum in the different manufacturing process.

2.2 Germplasm

Germplasm is a basic tool for crop any improvement programme. Natural variation represents a huge and largely untapped resource, which has been subjected to selection over millions of years of evolution, with both basic and practical value, as well as the potential to break yield barriers of agricultural plants [66, 143, 157] The variation available in the germplasm is utilized as a source of useful genes to improve the cultivars. As the importance of guar was realized in 1950's germplasm collection was initiated. The collection initially began from Maharashtra for vegetable varieties. Later the Pant Introduction Division of the Indian Agricultural Research Institute (IARI), New Delhi continued the collection and maintenance work. There are about 4,901 accessions in National Bureau of Plant Genetic Resources (NBPGR), New Delhi. These accessions have been catalogued based on the accession numbers

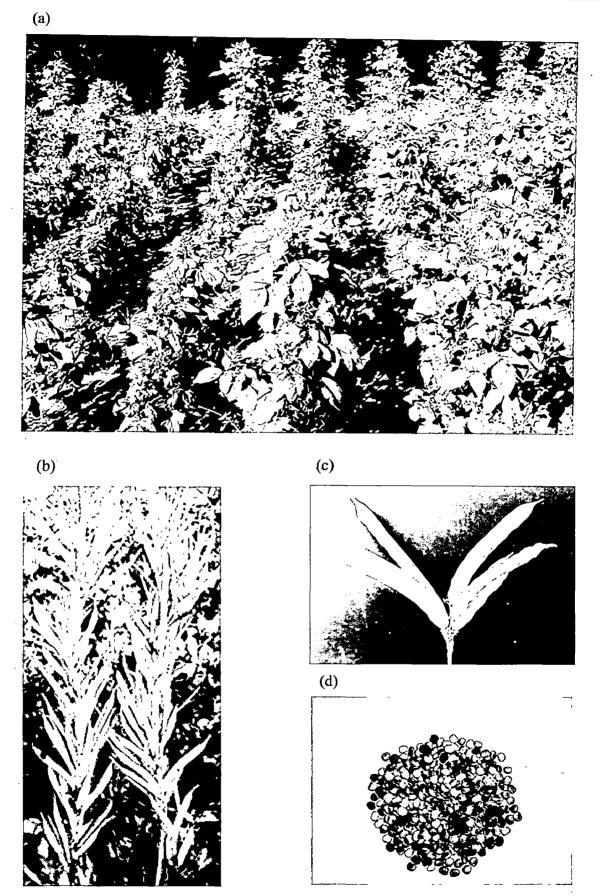


Fig. 2.1. a) Guar plants grown in a field at IIT Roorkee, b) Green pods of guar c) Dried pods of guar, d) Seeds of guar

and characterized for phenotypic traits like pubescence, days to 50% flowering, days to 50% maturity, plant height, branch number, total number of pods per plant, number of seeds per pod, seed yield per plant, seed color, gum content and disease resistance under field conditions [30]. These studies have identified the accessions that can be donors to traits like dwarfing, branching/unbranched, pod length, pods per plant, seed size, days to maturity, gum content and disease resistance. Classical approaches using the donor cultivars as sources have lead to the development of certain elite cultivars for cultivation in the previous decade. The development of elite cultivars and their widespread use in breeding programmes have reduced the utilization of available genetic resources. It has been estimated that for most crop species, less than 5% of the biodiversity known to exist has been utilized in agriculture, particularly in the case of self-pollinated crops [143]. Much of the diversity present in living systems is probably adaptive [66].

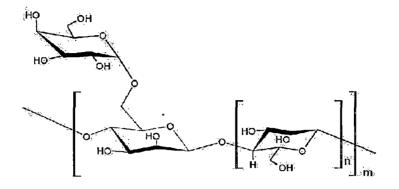
2.3 Breeding and Genetics

Crossing leads to the hybridization of DNA from two plants with different genetic makeups but belonging to the same genus. It is difficult with small flowers or less consistent pollen production. As in guar the flower is only 8 mm long and requires magnifying lens to emasculate the flowers [48]. Once the anthesis begins ten anthers can be seen encircling the stigma. The pollen is viable from two hours before to eleven hours after anthesis [141]. The flower morphology leads to self pollination and hence considered cleistogamous and only exhibit outcrossing to an extent of 9% [48]. Chaudhary et al. in 1974 developed a new crossing technique which had a success rate of 7%. The method was based on manual emasculation of anthers and pollination by bringing the mature anthers in contact of the stigma. The optimal time for pollinating the buds is between 8:00 a.m. 9:00 a.m. [26]. Generally the pods formed after hybridization are relatively smaller with 2-3 seeds in each of the pod. To ease the problem of manual breeding, male sterile lines of guar are necessary. There are some reports on nuclear sterility and partial male sterile system [142]. Recently other methods like caging have been applied in guar to speed up the process of hybrid production [48]. However, very little success has been achieved in improving efficiency in making crosses in guar.

Mutation breeding is considered as a useful tool to enrich the variation in crops where useful genetic variability is meager [6]. Many mutants with useful traits like early flowering, increased yields and gum content have been produced by this approach [137].

Through these procedures of hybridization plant breeders can manipulate the alleles to obtain recombination for various genetic traits. Hybridization allows conducting genetic studies on control of phenotypes and their inheritance pattern. The resulting population allows prediction of quantitative traits, epistasis and transgressive control of phenotypes.

The inheritance of five characteristics namely branching behavior, clustering pattern, growth habit, leaf size and hairiness have been studied in cluster bean. The results of the study showed that all the traits were controlled by single pair of genes except branching behavior which exhibited digenic inheritance. The study also showed that the alleles governing branching, discontinuous clustering, indeterminate growth habit, small leaf size and hairiness were dominant over the alleles controlling non-branching, continuous clustering, determinate growth habit, broad leaf and glabrous leaf and stem [25].


2.4 Galactomannans

Galactomannans are heterogeneous polysaccharides widely distributed in nature. These belong to the hemicellulosic cell wall component of the plant cell. These galactomannans assume the role of storage polysaccharides in seeds of some plants, which is analogous to that of starch in cereal grains [32]. Galactomannans also perform water-retaining and defense functions in plants [132]. Apart from plants galactomannans are also found in microbial sources such as yeast and fungi [35, 82]. Galactomannan is accumulated in the form of secondary wall thickenings in the endosperm of guar (*C. tetragonoloba*) and locust bean/carob (*Ceratonia siliqua*) which are used for commercial production of galactomannan gum. Other plants like tera (*Caesalpinia spinosa*) [148], fenugreek (*Trigonella foenum-graecum*) [17], mesquite (*Prosopis pallida*) [15, 16] and coconut palm (*Cocus nucifera*) also contain galactomannan in their seeds.

2.4.1 Structure

Galactomannans are natural nonionic high molecular weight (100–1000 kDa) polymers. Galactomannan is made of linear chains of a β -1,4-mannan as backbone to which galactosyl residues are attached through α -1,6 linkages [151]. The degree of galactose (G) substitution to the mannan (M) backbone differs depending upon the source of the gum which is represented by M/G ratio; like M/G ratio for guar gum is 1.3-2 and for locust bean gum is 3.75-4. The change in M/G ratio changes the structure of the gum thereby determining various properties

and applications of the galactomannans [140]. The Fig 2.2 shows the general structure of galactomannans.

Fig. 2.2. General structure of galactomannans [148], n indicates the number of unsubstituted mannose, m indicates the degree of polymerization

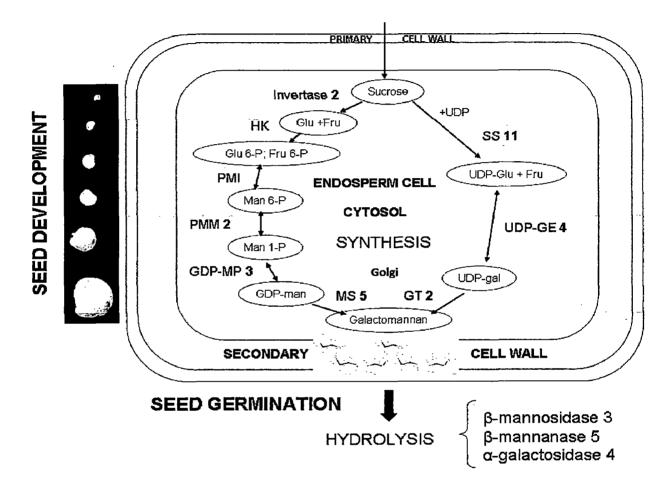
Homo-polymer made of long chains of mannose is insoluble in cold water and the increase in galactosylation leads to an increase in solubility [18]. Locust bean gum with M/G ratio of 4 is considered superior in its viscosity characteristics in comparison to guar gum. Even though superior in quality it is difficult to produce [19]. Individual galactomannans differ from each other in distribution pattern of the galactose residues along the main chain. It is found that in guar galactomannan the distribution is blockwise whereas locust bean gum may contain random, blockwise, and ordered distributions [103]. Fig 2.3 shows different kinds of distribution of galactose residues in galactomannans. In a recent study the degree of substitution and the degree of polymerization of galactomannan was studied. Unmodified guar galactomannan was found to contain aggregates, but partial removal of galactose side units significantly decreased this tendency. The chain length seemed to dictate the solubility of the molecules together with the degree of substitution.

Regular M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M| | | | | G G G G G G G G Random M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M| G | G G G G Blockwise M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-Mļ G G G G G G G

Fig. 2.3. Arrangement of the galactosyl side chains in galactomannan [148]

The sample with a relatively low degree of polymerization and low degree of substitution formed large assemblies but stayed in solution while the solubility of the samples with longer chain length was reduced [103].

2.4.2 Galactomannan biosynthesis in plants


Galactomannans are synthesized in endosperm cells by the combined action of two enzymes, mannan synthase (ManS) which makes β -1, 4-linked mannan backbone, and α galactosyltransferase, which adds galactosyl residues to the mannan backbone [32, 39, 116]. Mannan synthase, the enzyme that forms the β -1,4-linked backbone of galactomannan, assayed *in vitro* using membrane particles derived from developing endosperm, shows independent activity leading to mannose polymer [38]. It has a high affinity for the substrate, GDPmannose, and requires divalent cations for activity [130]. But galactosyltransferase has been found to be dependent on mannan synthase for activity; it shows no activity in presence of the substrate UDP-galctose alone.

In vitro studies have shown that preformed long mannan chains cannot be galactosylated by the enzyme. However the combined action of both mannan synthase and galactosyl transferase has produced polymers similar to galactomannan [38]. They have proposed a model for the interaction of GDP mannose mannosyltransferase and UDP-galactose galactosyltransferase in galactomannan biosynthesis [38]. The study on galactosyltransferase from fenugreek has shown that the enzyme acts on D-manno-oligosaccharides of length greater than or equal to 5 acts as acceptor. But the D-manno-oligosaccharides longer than 9 monomers require heating for dissolving [41].

The degree of galactosylation of natural galactomannans is also believed to be determined by two methods. One in which the control is at biosynthesis level i.e. in guar. Second kind of regulation involves the alteration of galactomannan formed by the action of α -galactosidase later in seed development [39] like that in locust bean gum. However both the mechanisms of mannose:galactose ratio control in plants are genetic [115]. The pathway for biosynthesis of guar galactomannans is shown in Fig 2.4.

The direct precursors for galactomannan biosynthesis, GDP-D-mannose and UDP-D-galactose, are formed by the actions of GDP mannose phosphorylase (EC 2.7.7.22) and UDP-galactose 4-epimerase (EC 5.1.3.2). *In vitro* experiments have shown that the relative concentrations of these precursors also effect the M:G ratio of the galactomannan [39].

The biodegradative hydrolysis of galactomannans during seed development requires the presence of three enzymes α -galactosidase, β -mannanase and β -mannosidase. α -galactosidase hydrolyses the galactose side chain from mannose backbone, β -mannanase cleaves the mannose polymer to oligo mannose and β -mannosidase hydrolyses the oligomannanas. These enzymes are synthesized during the seed development to nourish the developing seedling [95].

Fig. 2.4. Schematic representation of galactomannan metabolism in guar seeds [95]

Abbreviations: Glu, glucose; Fru, fructose; Man, mannose; Gal, galactose; HXK, hexokinase; PMI, phosphomanno-isomerase; PMM, phosphomanno-mutase; GDP-MP, GDP-mannose pyrophosphorylase; MS, GDPman- dependent mannosyl-transferase; GT, UDP-gal-dependent galactosyl transferase; SS, sucrose synthase; UDP-GE, UDPgalactose 4-epimerase.

2.4.3 Genes in galactomannan biosynthesis

Identification of genes involved in the biosynthetic pathway of cell wall polysaccharides has been considered difficult till recent times because of various reasons. Plant cell wall synthesizing enzymes are integral membrane proteins with one or few transmembrane domains. They are quite challenging for biochemical studies as they tend to be labile, are present in multimeric complexes and are encoded by large gene families whose members may have overlapping function [32].

UDP-galactose epimerase catalyzes the reversible conversion of UDP-D-glucose to UDP-D-galactose. This compound is a precursor for the biosynthesis of various cell wall polymers, including galactomannan[65]. Two cDNA clones encoding two different UDPG epimerases were isolated. Using functional complementation of a UDP-galactose epimerase deficient *E. coli* mutant by a cDNA expression library from immature guar seeds, galactose metabolising colonies with UDPG epimerase activities comparable to wild type level were obtained [65].

Success in identifying cDNA encoding mannan synthase (ManS) was achieved through the identification of a candidate gene via transcriptional profiling followed by functional expression in a heterologous system such as soybean somatic embryos. Further analysis showed the gene belongs to cellulose synthase like (*Csl*) gene family [32, 130]. The cellulose synthase-like (*Csl*) genes were first identified in the model plant Arabidopsis [119] and rice [56] which are grouped under the family based on certain sequence homology [29].

The enzyme responsible for the transfer of galactose (Gal) residues to a mannose (Man) on the mannan backbone is a member of the glycosyl transferase (GT) family of proteins called galactomannan galactosyltransferase (GMGT). The putative cDNA encoding galactosyl transferase from fenugreek seed was cloned and expressed in yeast *Pichia pastoris*. The expressed galactosyl transferase showed transfer of galactose to D-manno-oligosaccarides with chain length 5 or more [41]. The mRNA sequence for galactosyl transferase form guar is available in NCBI database with sequence id AJ938067.1 (gmgt1 gene).

The mannan synthase (ManS) and galactomannan galactosyl transferase (GMGT) enzymes are localized in the membrane of Golgi vesicles and are believed to work together very closely to determine the statistical distribution of galactosyl residues along the mannan chain [40].

2.4.4 Genes for biodegradative hydrolysis of galactomannans in guar

The gene encoding α -galactosidase, an enzyme that hydrolyses the galactose side chain from mannose backbone, was identified using oligo-nucleotide mixed probes based on the terminal amino acid sequence and the sequence of an internal peptide. The nucleotide sequence of the cDNA clone showed that the enzyme is synthesized in the form of a precursor with a 47 amino acid NH_2 terminal extension. This pre-sequence mainly functions to target the protein outside the aleurone cells into the endosperm [99].

2.5 EST sequences in guar

A database of 16,476 guar seed ESTs was constructed from two cDNA libraries consisting of 8,163 and 8,313 ESTs sequences. A library constructed from seeds at an early developmental stage (15–25 days after flowering, DAF) formed the first set of sequences, and a library from seeds at 30–40 DAF formed the second set. Approximately 27% of the clones were not similar to known sequences, suggesting that these ESTs represent novel genes or may represent non-coding RNA. Further analyses have shown that the high input of energy into carbohydrate and storage protein synthesis in guar seeds was reflected by a high representation of genes annotated as involved in signal transduction, carbohydrate metabolism, chaperone and proteolytic processes, and translation and ribosome structure. Among the seed storage proteins, the most abundant contig represented a conglutin accounting for 3.7% of the total ESTs from both libraries [95].

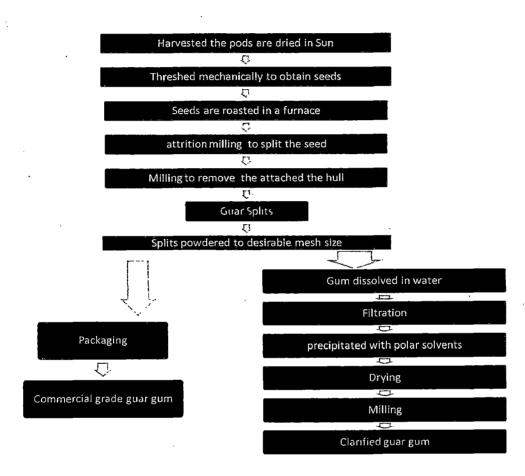
2.6 Efforts for obtaining optimal M/G ratio in galactomannans

There is high importance, application and commercial benefit to obtaining galactomannans with good viscosity characteristics. This has lead to various biotechnological applications to improve M/G ratio of galactomannans both *in vivo* and *in vitro*. Initial studies were carried out with the use of α -galactosidase for enzymatic removal of side-chain galactose residues from guar gum to yield galactomannans similar in chemical composition and functional properties to locust bean gum. Galactomannans with varying galactose content were prepared by manipulating reaction time, temperature and enzyme/guar gum ratio. Enzymatically modified guar galactomannans with 22-24% galactose contents were found to reproduce the rheological and stabilization properties of locust bean gum [19].

Later the available information on genes involved in synthesis and biodegradation of galacotmannans lead to transformation studies. Fenugreek seed galactomannan is almost fully substituted by galactose, whereas galactomannan in tobacco seed (*Nicotiana tabaccum*) contains very low level of galactose substitution. Fenugreek galactoamannan galactosyl transferase (GMGT) was expressed under a strong constitutive promoter in tobacco to modify galactomannan. The results showed production of galactomannans with significantly increased level of galactose substitution in transformed tobacco similar to fenugreek galactomannan

[117]. This study also showed that the exogenously introduced fenugreek GMGT dominated over the endogenous tobacco GMGT and can operate mutually with the endogenous mannan synthase in tobacco [117]. In another approach, the GMGT gene in Lotus japonicus was downregulated by sense and antisense expression of GMGT. The Lotus japonicus plant has native galactomannan with high galactose substitution (Man/Gal ratio of 1.2-1.3). The transformation of galactomannan galactosyltranferase constructs, resulted in the modification of its galactomannan to one with a lower galactose content at a Man/Gal ratio of 6 [40]. This study clearly showed the potential of modifying low value galactomannan to a more valuable galactomannan producing plants through genetic engineering methods [40]. An obvious target of such engineering would be guar which is already used for production of galactomannan. In addition guar is transformable and is an annual crop, to evaluate the potential role of α galactosidase for the control of the final galactose content. An α-galactosidase gene expressed in immature senna seeds was cloned and transformed into guar using a wheat high-molecularweight glutenin promoter by Agrobacterium tumefaciens-mediated gene transfer. About 30% of the guar transformants produced endosperm with galactomannans where the galactose content was significantly reduced [64].

Development of suitable endosperm- specific promoters for use in guar is desirable for metabolic engineering of the seed gum. A ~1.6 kb guar mannan synthase (MS) promoter region has been cloned and characterized by studying the quantitative expression of β -glucuronidase (GUS) directed by MS promoter. GUS expressed specifically in endosperm of transgenic alfalfa [94]. Thus, the guar MS promoter could prove useful for directing endosperm-specific expression of transgenes in legume species. This promoter can be used for driving high expression of foreign genes in transgenic guar endosperm as well as in other species [94].


2.7 Process of guar gum production

Guar gum is obtained by grinding the seed endosperms and is sold as whitish flour. Fig 2.5 shows the manufacturing process of guar gum from seeds. Depending on the degree of purification, various amounts of other seed tissues, such as residues of germ, seed coat and endosperm cell walls may be present in the above obtained guar gum.

After harvesting the pods are dried in sun and then threshed mechanically so that the seeds are freed from the pods. The endosperm contains most of the pure galactomannan, and so it must be separated from the seed coat [148]. On commercial scale, seeds are roasted in a

177

furnace to loosen the seed coat, after heat treatment the hull is easy to separate by attrition milling or various other types of impact milling [72]. The separated endosperm usually sticks with the hull and has to be resubjected to milling process. Then, the endosperm is powdered by means of pulverisers to desirable mesh size. The pulverization step is carried out in humid condition and special care is taken to avoid degradation of high molecular weight polymers. The gum so obtained is called crude gum or commercial grade gum [148].

Fig. 2.5. Flow chart showing the process of guar gum extraction from guar seeds [72]

Crude gum obtained by milling process contains proteins, fibers, etc, as impurities. To determine physico-chemical properties the gum is dissolved in water and partially precipitated with polar solvents. Gum can also be purified by complexation with Cu^{2+} and Ba^{2+} salts or by dialysis for advanced studies [140].

2.8 Modifications

As galactomannans produce relatively high viscosity, they may not be suitable for certain applications; hence, depolymerized gum can be used to reduce the viscosity [156]. Some modifications make the gum less susceptible to microbial degradation [148] while certain

modifications increase the viscosity of the galactomannan [77]. Table 2.1 shows the applications of modified guar gum in various industries [77].

2.9 Applications of guar gum.

Guar gum has numerous applications. Fig 2.6 shows the applications of guar gum in different industries.

Fig. 2.6. Applications of guar gum in different industries [31]

Table 2.1. Applications of guar gum and its modified forms in various industries [77]	Table 2.1.	Applications of g	uar gum and its modified	l forms in various industries	[77]
---	-------------------	-------------------	--------------------------	-------------------------------	------

Sr.	Form of gum	Functions		
No				
1	Explosives Industry			
	Crosslinked guar gum	Water remover		
·	Guar gum	Plasticity improver		
	Hydratable guar gum and self complexing guar gum	Gelling agent		
	Nitrate ester of guar gum	Thickening agent		
	Guar gum	Increases viscosity		
	Cyanoethyl ether of guar gum	Thickening agent		
	Guar gum with inorganic oxidizer salts	Thickening agent		
	Guar gum with transition metal ions	Increases viscosity		
2	Petroleum Industry			
	Sulfonated guar gum and Me ₃ N ⁺ guar gum	Thickener		
	Alkali refined guar gum crosslinked with borax	Gelling agent		
	Hydroxy propyl guar gum	Thickening agent		
	Guar gum and hydroxy ethyl cellulose	Gelling agent		
	Cationic guar gum	Viscosity and thermally stable		
	Guar gum with boric acid and magnesium-oxide	Provides viscosity stability		
	Hydroxyl alkyl ether derivatives of guar gum	Reduces friction and increases permeability		
	Guar gum with mineral salts and PEG	Improve water loss		
	Hydroxy alkyl guar gum	Good fluid loss properties		

	Channe and the standard and have	Indicator of fluid life	
	Guar gum with methylene blue	For reduction of fluid loss	
	Guar gum with laminar silicate starch and swelling clay		
	Borate cross linked guar gum	Stable super-elastic liquid with lessened	
		temperature sensitivity for control of lost	
		circulation in oil field drilling operation	
		For plugging leaks and stabilization of	
	Guar gum xanthomonas campestris mixture	likages	
3	Textiles Industry		
	Guar gum	Thickener	
	Guar gum and xanthomonas gum	Printing paste thickener	
	Guar gum derivatives (polyacrylic acid, polyacrylamide,	Thickener	
	carboxy methyl guar gum & guar gum mixture grafted with	1	
	acrylic acid or acrylonitrite or acrylamide)		
	Guar gum PEG lauryl ether	Foam composition	
	Sulfonated guar gum derivatives	Pigment retention aid	
	Guar gum with acrylamide	Stabilizer	
4	Paper Industry		
	Guar gum	Increase fines retention	
	Quaternary ammonium guar gum	Imparts dry strength	
	Derivatives of guar gum (mey proid, SFA, mey pro bend	Enhance surface and sizing	
	PA109, meyprofilm PA 116)	Improves retention for filter barrier	
	Cationic guar gum	Retention & drainage providing agent	
	Guar gum formate	Flocculent and sizing agent	
	Sodium salt carboxy methylated guar gum	Dry strength	
5			
	Amino ethyl gum	In settling fine particles colloidal	
	Guar gum	Flocculent	
	Guar gum with polyacrylamide	Less mechanical work	
	Guar gum and its derivatives	Binder	
6	Coal mining Industry		
	Esterified guar gum	Stabilizer	
	Guar gum	Dispersant	
	Guar gum with boric acid/borax	For shock impregnation of coal seams	
7	Tobacco Industry		
	Guar gum	Adhesive	
	Guar gum	Reduces irritation & strengthening agent	
8	Electricals and telephone		
	Guar gum	Lubricant for installation of electric and	
		telephone cable	
	Guar gum with isobutylene and Carboxy methyl cellulose	Electrical insulator	
9	Fire fighting Industry		
	Carboxy methylated guar gum	Provides storing stability	
-	Guar gum with glycerol and ethylene glycol	Dispersions	
	Guar gum with decyl sulphate & ammonium phosphate	Provide viscosity and stability	
	solution		
10	Building and construction Industry	· · · · · · · · · · · · · · · · · · ·	
	Guar gum	Gelling agent, foam stabilizer and thickening	
	-	agent	
	Guar gum	Water proofing	
11	Pollution Control/water purifier Industry	· · · · · · · · · · · · · · · · · · ·	
	Trimethyl ammonio, triethyl ammonio, diethyl amino and	Adsorbent	
	sulfo derivatives of guar gum		
		l	

	· · · · · · · · · · · · · · · · · · ·			
	Cationic guar gum derivatives	Flocculating and exchanging agent		
12	Analytical Industry			
	Guar gum derivatives (Glycin hydroxamate in guaran,	Separation of metal ions		
	acetic acid hydroxamate in guaran, imino diacetic acid			
	dihydroxamate in guaran)	Support for immobilization of ligands		
	Modified guar gum	Purification of lectins		
	Guar gum	Chromatographic separation and selective		
	Crosslinked guar gum	resin for boron		
13	Photography			
	Hydrolysed guar gum	Binder		
14	Food Industry			
	Guar gum	Thickener, Binder,		
	Guar gum	Stabilizer and gelling agent		
	Guar gum with carragenan and	Modify visco-elastic behavior of wheat flour		
	O-carboxy methyl cellulose	Stable thixotropic stabilizer, emulsifier		
		system		
	Guar gum with carboxymethyl cellulose and tamarind seed	Thickening and improver		
	gum			
	Glydyl trimethyl ammonium denatured guar gum	Improves sedimentation		
	Guar gum with xanthan and carob gum	Thickening agent and stabilizer		
	Guar gum	Freeze thaw and heat stabilizer		
	Guar gum with whipable albumin and edible fat	To create pudding & cream dressing of cakes		
15	Dairy			
		Thickener and calcium binder		
16				
10		Stabilizer, Suspending agent,		
	Guar gum	Binder/disintegrant		
	Codines contractivel over	Binds medicine		
	Sodium carboxymethyl guar			
	Guar gum	Drug targeting to colon		
	Modified guar gum	Sustained release of diltiazem-hydrochloride		
		Insulinogenic & blood glucose lowering		
	Guar gum	agent		
	Guar gum	Cholesterol lowering agent		
	Guar gum	Decreases transit time of colon		
	Partially hydrolysed guar gum	Blood glucose and blood lipid lowering agent		
	Guar gum	Malnutrition treatment		
	Guar gum	High resorptivity		
	Guar gum	Synergistic activity with bismuth salt		
17	Agriculture			
	Guar gum or guar gum + polyvinyl alcohol + borax	Increased water retention capacity of soil		
	Guar gum derivatives	Improves water holding capacity		
	Guar gum	Anticrusting agent and adhesive of		
		azotobacter		
	Guar gum polyacrylamide	Water retaining agent		
	Guar gum	Decreasing cholesterol level, decreases		
	· · · · ·	nitrogen retention, fat absorption and		
	Guar gum with fatty acid derivatives and kaolin	metabolizable energy		
	J	Prevention of granules		
18	Cosmetics			
10	Guar gum with hydroxyethyl-cellulose and Zn pyrithione	Suspending agent		
	etc	Thickener		
	Guar gum/urea an sulphite			

.

19	Soap Industry	
	Hydroxy-G-6 alkyl ether derivatives of guar gum	Thickener
ļ	Guar gum	Removes soil but retains lipid
	Guar gum or hydroxy propyl guar gum	Thickener

2.10 Market

Guar gum is a very important foreign exchange earner for India. For instance, guar gum export reached 183.57 thousand tons providing foreign exchange worth Rs. 10384 million during the year 2004-05. In 2005-06, 189.11thousand tons guar gum costing Rs. 11249 million was exported to western countries. Thus the demand for guar gum is rising in the global market and is becoming an opportunity for the farmers and the industrialists as well [76].

2.11 Major areas of interest in guar

Guar is a versatile crop used in various ways and is essential for various industries. However, the crop is facing number of challenges affecting its productivity and market potential. There is a need to overcome various technical bottlenecks to solve these problems.

2.11.1 Productivity of guar

The productivity of guar is fluctuating over the years and also among different growing regions. In India Rajasthan has the highest area under guar cultivation yet the productivity is lowest. Thus sustained productivity has to be achieved through the production of improved cultivars and the use of better agronomic practices [77].

2.11.2 Susceptibility to diseases

The crop suffers from various diseases like Alternaria leaf spot, bacterial blight, Anthracnose, root rot and wilts. There is an urgent need to identify resistance genes for these diseases and transfer them to commercially grown cultivars [77].

2.11.3 Adaptable varieties for all season and regions

With constant increasing demand for guar gum, the cultivation area under the crop has to be increased. This is possible by producing cultivars that are suited for off-season cultivation and growth in irrigated regions where it is not commonly cultivated [77].

The major challenges faced by the crop can be overcome by application of molecular approaches to understand the genetics and by producing better cultivars through molecular breeding.

2.12 Molecular Markers

The concept of genetic markers is not a new one. Since long, plant scientists have employed a diverse array of molecules in an effort to resolve relationships among plant species [28] and study genetic inheritance. Gregor Mendel used phenotype-based genetic markers to study the inheritance of traits in the nineteenth century [1]. Phenotype based genetic markers for *Drosophila* led to the establishment of the theory of genetic linkage. In 1960s and 1970s the use of secondary chemical compounds, such as flavonoids and terpenoids, played a major role in efforts to resolve plant relationships at many taxonomic levels [28, 138]. Isozymes were also used as markers in various studies. But, the limitations of phenotypic and biochemical markers led to the development of more general and useful direct DNA based markers that became known as molecular markers.

The DNA based molecular markers reveal natural variation at the DNA sequence level. These markers are used in plant genotyping, diversity studies, genetic linkage studies, quantitative trait mapping and marker-assisted selection during plant breeding [69]. DNAbased molecular markers offer numerous advantages over conventional phenotype based alternatives because they are stable and can be detected in all tissues regardless of growth, differentiation, development, or defense status of the plant. They are not confounded by the environment, pleiotropic and epistatic effects [1]. Molecular markers do not have any biological effect; they are identifiable DNA sequences found at specific locations of the genome, and transmitted by the standard laws of inheritance from one generation to the next. They can be considered as constant landmarks in the genome. Since the markers and the genes they mark are close together on the same chromosome, they tend to stay together in each generation of plants produced. As scientists learn where markers occur on a chromosome, and how close they are to specific genes, they can create a genetic linkage map [134]. The first theory about the construction of genetic linkage map in man using Restriction Fragment Length Polymorphism (RFLP) was given in 1980 [12]. Today the existence of various molecular techniques and differences in their principles and methodologies require careful consideration in choosing one or more of such marker types.

Molecular markers are considered ideal if, they have the following characteristics [1]:

- 1. Polymorphic and evenly distributed throughout the genome
- 2. Provide adequate resolution of genetic differences
- 3. Generate multiple, independent and reliable markers
- 4. Simple, quick and inexpensive
- 5. Need small amounts of tissue and DNA samples
- 6. Have linkage to distinct phenotypes
- 7. Require no prior information about the genome of an organism

Unfortunately none of the molecular marker techniques is ideal for every situation. Techniques differ from one another with respect to important features such as genomic abundance, level of polymorphism detected, locus specificity, reproducibility, technical requirements and cost. Depending on the need, modifications in the molecular markers have been made, leading to their advanced versions. Fig 2.7 shows the development of various molecular markers in the previous two decades [1].

2.12.1 Restriction fragment length polymorphism (RFLP)

In RFLP, DNA polymorphism is detected by hybridizing a chemically labeled DNA probe to a Southern blot of DNA digested by restriction endonucleases, resulting in differential DNA fragment profile [1]. The RFLP markers are highly polymorphic, co-dominantly inherited and highly reproducible. RFLPs are present throughout the genome, heritable and locus specific. The method can also be used to simultaneously screen numerous samples. The DNA blots can be analyzed repeatedly by stripping and re-probing (usually eight to ten times) with different RFLP probes [1]. RFLP was used widely in early 1980's for a wide range of plant species [106]. This technique is not very widely used now because it is time consuming, involves expensive and radioactive/toxic reagents [111] and requires large quantity of high quality genomic DNA. The requirement of prior sequence information for probe generation increases the complexity of the methodology. These limitations led to the conceptualization of a new set of less technically complex techniques known as PCR-based techniques [1].

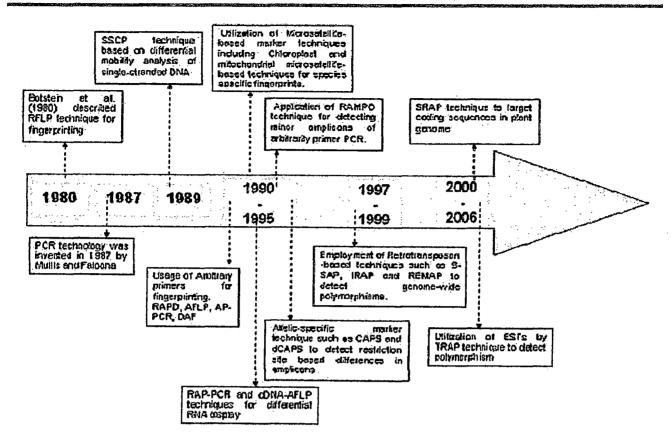
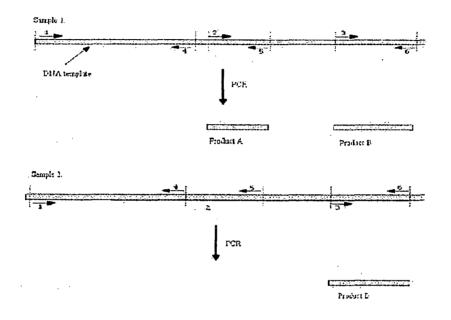


Fig. 2.7. Schematic diagram describing the development and utilization of molecular marker techniques over last two decades [1]

The invention of polymerase chain reaction (PCR) technology [92, 126, 127] has lead to the development of various marker systems for the study of genetic diversity. Following are the various PCR-based marker techniques mainly used in plants.


2.12.2 Amplified fragment length polymorphism (AFLP)

AFLPs are generated by complete restriction endonuclease digestion of total genomic DNA, followed by selective PCR amplification and electrophoresis of a subset of the fragments. This results in a unique, reproducible fingerprint/profile for each individual. The fingerprint allows an assessment of genome-wide variation. These anonymous markers consist largely of non-coding DNA [89].

AFLP is useful in a wide range of applications including linkage mapping [128, 147, 155], measuring genetic diversity [2, 44], identifying hybrids [136] and cultivars [45], population genetics [83], population assignment and developing single-locus sequence-characterized amplified region (SCAR) markers [70, 96].

2.12.3 Random amplified polymorphic DNA (RAPD) markers

Randomly amplified polymorphic DNA markers technique was introduced in the year 1990 [154]. It is an effective and powerful technique for determining genetic variation and has the capacity to generate markers that span the genome without prior knowledge of the sequence [9, 61].

Fig. 2.8. Schematic diagram showing RAPD technique

The RAPD protocol usually uses a single 10 bp arbitrary primer at a constant low annealing temperature. Although the sequences of RAPD primers are arbitrarily chosen, two basic criteria must be met: a minimum of 40% GC content (50 - 80% GC content is generally used) and the absence of palindromic sequence (a base sequence that reads exactly the same from right to left as from left to right) [154]. The basis of RAPD technique is differential PCR amplification of genomic DNA. It deduces DNA polymorphisms produced by rearrangements or deletions at or between oligonucleotide primer binding sites in the genome [1]. Fig 2.8 shows schematic diagram of RAPD reaction with polymorphism.

RAPD has been applied for various purposes in many plant species. It has been used to construct genetic maps [74, 75, 97]. It has also been used for genome fingerprinting and characterization [114, 131, 153]. Markers linked to important plant genes like *Pseudomonas* resistance gene in tomato [84], *Uromyces appendiculatus* (Pers.) resistance in common bean [52], etc. have been developed using random primers. Sequence characterized amplified

regions (SCARs) markers can also be developed from RAPD [33, 87]. There are few reports of RAPD analysis in commercial varieties of cluster bean [81, 100, 109].

2.12.4 DNA amplification fingerprinting

A modification of the RAPD technique called DNA amplification fingerprinting (DAF) was introduced in 1993 where one or more very short (less than or equal to 5 nt) arbitrary oligonucleotides are used to direct the enzymatic amplification of DNA. Polyacrylamide gel electrophoresis and silver staining is used to resolve the complex patterns. It is suitable for DNA fingerprinting [21]. DAF is used for studying relationships among closely related species and cultivars in plants [24] and bacteria [7].

2.12.5 Sequence characterized amplified regions (SCAR)

The arbitrary marker techniques are sensitive to changes in the reaction conditions and are not very easy to use for various studies. In SCAR, pairs of 20-25 bp oligonucleotide primers specific to the sequence of polymorphic bands are used to amplify the characterized regions from genomic DNA under stringent conditions, which makes these markers more specific and dependable as compared to RAPD markers [33].

In order to bridge the gap between the ability to obtain linked markers to a gene of interest in a short time and the use of these markers for map-based cloning approaches or for routine screening procedures, SCAR marker technique was developed and applied [1, 3]. The difficulty of developing SCARs varies according to the technique used to produce the original profile. Conversion to SCAR is considered easy in comparison to AFLP and ISSR [3]. The derived SCAR markers can be applied for marker assisted selection [63], map-based cloning, linkage mapping [155], etc.

2.12.6 Cleaved amplified polymorphic sequences (CAPS)

CAPS are also known as PCR-RFLP markers. The CAPS deciphers the restriction fragment length polymorphisms caused by single base changes like SNPs, insertions/deletions, which modify restriction endonuclease recognition sites in PCR amplicons [1]. The results are highly reproducible with different DNA extraction methods. The stability and simplicity of CAPS analysis makes it a good tool for the identification of cultivars [78].

CAPS markers can be developed by comparing the sequence difference between two known regions and designing a combination of primers and restriction enzymes for assay [78]. These markers can also be generated form arbitrary marker techniques [150].

2.12.7 Single strand conformation polymorphism (SSCP)

Single strand conformation polymorphism is the mobility shift analysis of singlestranded DNA sequences on neutral polyacrylamide gel electrophoresis. These are used to detect polymorphisms produced by differential folding of single-stranded DNA due to subtle differences in sequence (often a single base pair) [1, 98].

2.12.8 Single nucleotide polymorphism (SNP)

Single nucleotide polymorphisms and insertions/deletions, which are the basis of most differences between alleles, have been simplified by many developments in sequencing technology. SNP discovery in many crop species, such as corn and soybean, is relatively straight forward because of the presence of high level of intraspecific nucleotide diversity, and the availability of many gene and expressed sequence tag (EST) sequences [110]. Several different strategies for the discovery of SNPs may be used. These include the re-sequencing of PCR amplicons with or without pre-screening, electronic SNP (eSNP) discovery in shotgun genomic libraries, and eSNP discovery in expressed sequence tag (EST) libraries [110].

2.12.9 Microsatellite or simple sequence repeats (SSR) markers

Microsatellite or short tandem repeats or simple sequences repeats are repetitions of very short (1-5) nucleotide motifs, which occur as interspersed repetitive elements in all eukaryotic genomes [144]. The variation in the number of repeated units is mainly due to strand slippage during DNA replication where the repeats allow matching via excision or addition of repeats [133]. As slippage in replication is more than a point mutation, microsatellite loci tend to be hypervariable. Microsatellite shows extensive length polymorphisms among individuals during PCR analysis of unique loci using specific primer sets. SSRs are actually considered the most efficient markers but their use is still limited because of the time consuming and laborious steps to develop them [113].

Microsatellites are popular genetic markers because of their co-dominant inheritance, high abundance, enormous extent of allelic diversity, and the ease of assessing SSR size variation by PCR with pairs of flanking primers [1]. Their potential for automation is an additional advantage when compared with other types of molecular markers. SSRs are highly polymorphic, genome specific, abundant and co-dominant, and have recently become important genetic markers [60]. These are used in studying genetic diversity [4, 90], parentage analysis of clones [73], linkage mapping [50, 67], identifying hybrids [22] and marker assisted selection [118].

2.12.10 Inter simple sequence repeat (ISSR) markers

Microsatellites are usually more or less proportionally dispersed in the genome. However, regions with a greater abundance of these sequences have been found and are named as "SSR hot spots" [10, 11, 161]. Such regions can serve as a source of ISSR markers.

The ISSR technology is based on the amplification of regions (100-3000 bp) between inversely oriented closely spaced microsatellites. Single primer (16-18 bp) consisting of several simple sequence repeats is used for amplification of these regions. Primers can be based on any SRR motif along with 5' or 3' anchored bases usually 2-4 bases which are arbitrary selective nucleotides. However, nonanchored primers have also been used [11].

SI. No	Feature	RAPD	ISSR	SSR	
1	Abundance	High High		High	
2	Locus specificity	No	No	Yes	
3	Nature of polymorphism	Base changes (insertions, deletions)Base changes (insertions, deletions) variation in SSR 		Variation in repeat length/ number of motifs	
4	Level of Polymorphism	High	High/medium	High/very high	
5	Inheritance mode	Dominant	Dominant /codominant	Codominant	
6	Reproducibility	Low/Medium	High/Medium	High	
7	Sequence information	Not required	Not required	Required	
8	Technical demands	Technical demands Low/Medium Low/Medium		Medium/Low(For use) High(For development)	
9	Cost	Low	Low	Medium	
10	Labor	Low Low		Medium (For use) High (For development)	
11	Time	Low .	Low	High	
12	Principle	Uses single random 10-mer primers	Uses single primer with sequence repeat motifs with anchors	Uses primers designed from sequences flanking SSR motif.	
13	Applications	DNA fingerprinting of cultivars Genetic correspondence of plant material from nursery Detection of intra- cultivar variability Construction of linkage map Cultivar traceability Phylogenetic studies	Phylogenetic studies Detection of intra- cultivar variability Cultivar traceability	DNA fingerprinting of cultivars Construction of linkage map Paternity analysis Cultivar traceability in Phylogenetic studies Gene tagging,	
14	Advantages	Simple, No prior sequence information needed, Multiple loci analysis from single primer, Requires very less DNA, Less expensive	Simple, Reproducible, Multiple loci analysis from single primer, Requires very less DNA, Less expensive	Simple, Reliable, Highly reproducible, Transferable between population, Co- dominant, Highly polymorphic.	
15	Disadvantages	Dominant mode of transfer, Reproducibility of banding pattern	Dominance of alleles, May not be homologous in case of small fragments.	relatively time consuming and labor-intensive, high complexity of amplification profiles may occur	

Table 2.2. Characteristics of the molecular markers used in the study [14, 27, 113, 134]

2.13 Development of SSR markers

SSRs are considered as the most efficient markers because of their co-dominant inheritance, high abundance, enormous extent of allelic diversity, and the ease of assessing SSR size variation by PCR with pairs of flanking primers [113]. However, high development cost is the major impediment for the routine application of SSRs for genetic studies [55, 123]. The major drawback of microsatellites is that they need to be isolated *de novo* from species that are examined for the first time [158]. Various approaches have been devised to ease the detection and development of SSRs. The two approaches that are commonly used for developing SSR markers are

- 1. Through library construction
- 2. SSR mining from sequence databases

2.13.1 Development of SSR through library construction

Construction of genomic libraries followed by screening for SSR containing sequences is the method of choice for new species of interest. The method varies depending upon the type of library construction. Depending on the fragmentation method, DNA fragments are ligated into a common plasmid vector either directly or after ligation to specific adaptors[158].

2.13.1.1 Non-enriched libraries

The following steps are commonly followed for generating SSR markers from a library. The DNA is isolated and digested with appropriate restriction enzymes. Fragments between 300 and 1000 bp are selected by electrophoresis and ligated to a vector.

Transformation of bacterial cells with ligation vector generally results in thousands of recombinant clones which can be subsequently screened for the presence of microsatellite sequences. Screening for positive clones is generally carried out by Southern hybridization using repeat-containing probes, after blotting bacterial colonies onto nylon membranes. Colony transfer can be carried out either by classical replica plating or by picking single colonies and ordering them in new arrayed plates [158]. The positive clones are sequenced and primers complementary to both flanking regions of SSR are designed [124].

Although this approach has been applied in many cases, a number of disadvantages exist. It is difficult to construct large libraries for species with large genomes. Other problems

such as low effectiveness and specificity of hybridisation as well as the presence of one-side flanks in sequenced fragments exist. To improve this method pre-screening for insert length, repeat position and orientation by anchor PCR technique was described [112].

2.13.1.2 Enriched libraries

Several approaches have been developed to increase the SSR containing sequences in the libraries. Recently several kits for enriched protocols have been developed [158]. The easiest method of enriched library construction is selective hybridization of DNA fragments using streptavidin-coated magnetic beads or nylon membranes [53, 71]. The procedure of the construction of enriched libraries using streptavidin-coated magnetic beads or nylon membranes magnetic beads or nylon membranes [53, 71].

- DNA digestion followed by ligation of the resulting fragments to double-stranded adaptors
- DNA hybridization to biotinylated microsatellite probes, followed by binding to streptavidin-coated magnetic beads
- Elution of the DNA fragments from the beads, and PCR amplification with primers complementary to the adaptor sequence
- Cloning of the amplified products into the vector
- Transformation of *E.coli*
- Sequencing of the positive clones

The method used for generating enriched libraries containing SSRs is described in Fig 2.9 This method is widely applied in plants [68, 88, 121, 159]. The efficiencies of obtaining SSR containing sequences from enriched libraries were higher in all cases than in the traditional method. It ranged from 55% [25] up to 100% of the clones containing microsatellites suitable for primer designation [53, 113]. In spite of the sufficient progress in the efficiency of positive clone isolation, the procedure employing magnetic beads allows enrichment in a single or, in few SSR motifs only [113]. This problem can be solved by using nylon membranes with many bound microsatellite oligonucleotides [37].

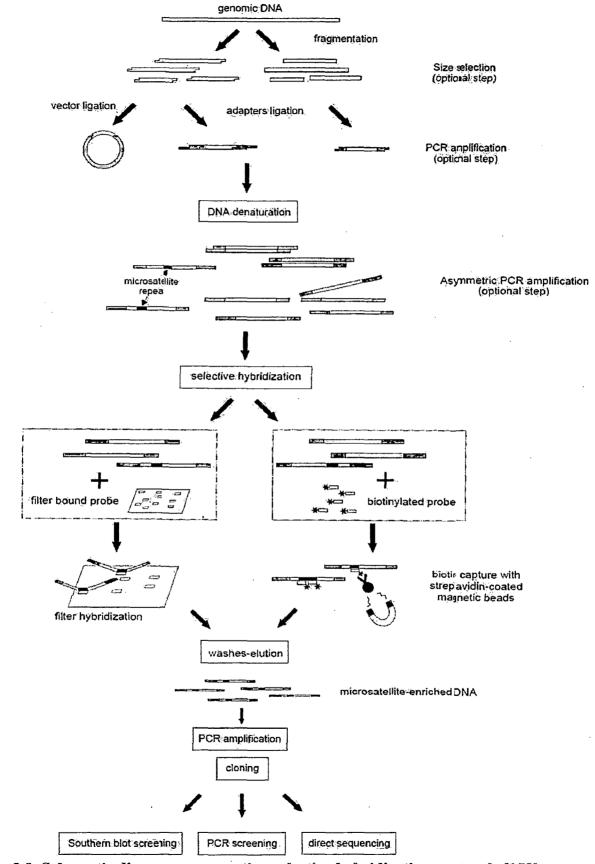


Fig. 2.9. Schematic diagram representing selective hybridization protocols [158]

32

2.13.2 SSR mining from sequence databases

Recently, expressed sequences tags (ESTs) have been shown to be good sources of SSR markers [42]. ESTs are parts of expressed genes, and the EST-derived SSRs can be considered as type I markers and used to map genes of known functions [152]. This strategy of developing SSR markers is based on bioinformatic screening for sequences containing microsatellites deposited in the data bases (EMBL, GenBank). This method is cost-effective, simple and relatively quick. However, it has some limitations. When exploring data from expressed sequences, a considerable amount of potential polymorphism can be lost as microsatellites are broadly present in the non-coding regions of genomes. Additionally, this strategy is limited to plants with high economical or scientific interest which are well represented in the databases [113].

Different tools available on public domain can be used for this purpose. The commonly used tools are <u>MIcroSA</u>tellite identification tool (MISA) [146], Tandem Repeats Analyzer (TRA)[8], TROLL [85], SSRIT [145] and SSR Primer [122]. Among these 5 tools MISA program has given maximum coverage of SSRs in both oil palm ESTs and Contigs [120]. However it has the advantage of detecting the mono to decamer repeats and also compound repeats but has the disadvantage of inability to detect above decanucleotide repeats.

The above literature review shows that guar is an important industrial corp. Guar gum is essential for various industries like paper, textile, petroleum, oil drilling, pharmaceutics, food, cosmaceutics, explosives, etc. The enzymes and the pathway of the galactomannan biosynthesis have been studied and the genes responsible for galactomannan production have been cloned and characterized. However, still the crop is facing various challenges like disease and low productivity. The genetic diversity in the landraces of the crop is not well understood. There are no reports of development of any co-dominant markers like SSR which are very useful in molecular breeding and crop improvement programmes. There is a need to develop molecular markers and understand the natural variation available in the landraces for quick and easy execution of crop improvement programs.

33

Chapter III

Studying genetic variability in cluster bean accessions through application of RAPD and ISSR markers

3. Studying genetic variability in cluster bean accessions through application of RAPD and ISSR markers

3.1 Materials and methods

3.1.1 Plant material

Accessions of guar landraces were kindly provided by National Bureau of Plant Genetic Resources (NBPGR), New Delhi. Among 89 accessions provided 29 accessions were selected based on their place of origin according to Dwivedi et al. (1995)[36]. The regions of origin of selected accessions are diagrammatically represented in Fig 3.1. Seeds of 19 elite varieties of *C. tetragonoloba*, which are commonly grown in Gujarat, Rajasthan and Haryana or being tested for release were obtained from Central Arid Zone Research Institute (CAZRI), Jodhpur, Rajasthan. The details of the accessions are given in Table 3.1. Plants were grown in field conditions in Indian Institute of Technology Roorkee, India. Leaves were collected from 3 weeks old plants for DNA extraction.

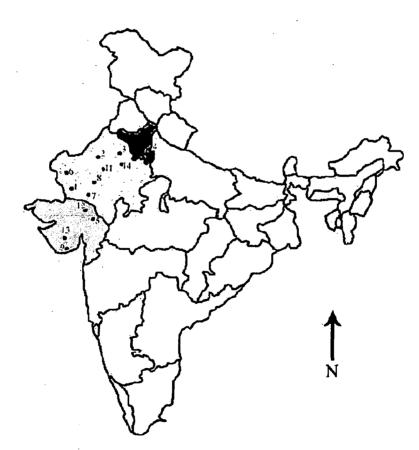


Fig. 3.1. Diagrammatic representation of locations of collection of landraces as stated by Dwivedi et al. (1995) [36]: 1.Barmer, 2.Bikaner, 3.Churu, 4.Delhi, 5.Himmatnagar, 6.Jaisalmer, 7.Jalore, 8.Jodhpur, 9.Kachchh, 10.Mahendragarh, 11.Nagaur, 12.Palanpur, 13.Rajkot, 14.Sikar

Sl.no	Accession Number	Location of collection
11	IC 8783	Delhi
2	IC 11388	Jalore
3	IC 103304	Kachchh
.4	IC 103323	Himmat nagar
5	IC 116522	Jodhpur
6	IC 116527	Jodhpur
7	IC 116546	Jodhpur
8	IC 116547	Jodhpur
9	IC 116565	Barmer
10	IC 116568	Barmer
11	IC 116569	Barmer
12	IC 116570	Jaisalmer
13	IC 116577	Jaisalmer
14	IC 116583	Churu
15	IC 116595	Jodhpur
16	IC 116601	Bikaner
17	IC 116609	Churu
18	IC 116659	Churu
19	IC 116682	Sikar
20	IC 116751	Nagaur
21	IC116752	Nagaur
22	IC 116767	Nagaur
23	IC 116835	Mahendra garh
24	IC 116836	Mahendra garh
25	IC 116890	Rajkot
26	IC 116926	Palanpur
27	IC 116953	-
28	IC 116958	-
29	IC 116960	-
30	M 83	
31	RGC 197	
	RGC 936	
33	RGC 986	
	RGC 1002	
35	RGC 1003	
36	RGC 1017	
37	RGC 1031	- · ·
38	RGC 1038	
39	RGC 1055	Commercially grown
40	RGC 1066	genotypes of cluster bean
41	RGC 1076	_
42	RGC 1088	
43	RGR 9	
44	HG 563	1 ·
45	HG 04-876	7
46	SRG 1058	1
47	GAUG 501	-1
48	NSG369	

Table 3.1. Details of cluster bean genotypes used for studying genetic diversity [36]

3.1.2 DNA extraction buffer

Table 3.2. Composition of the DNA extraction buffer			
S.No.	Name of the reagent	Concentration	
1	Tris.HCl (pH 8.0)	100mM	
2	EDTA (pH 8.0)	20mM	
3	NaCl	1.4M	
4	CTAB	5%	
5	β -mercaptoethanol	0.01%	

The composition of DNA extraction buffer is given in Table 3.2.

All the chemicals used were purchased from HiMedia (Molecular biology grade).

3.1.3 TE/ $T_{10}E_1$ buffer

TE buffer was prepared by mixing 1ml of 1M Tris.HCl (pH 8) and 200 μ L of 0.5M EDTA. The volume was made up to 100ml with milliQ water [129].

3.1.4 RNase solution

RNase solution was prepared by dissolving 10mg of RNase (Genei, Bangalore) in 1ml of autoclaved milliQ water. The solution was incubated in water bath at 70°C for 20 min [129].

3.1.5 TBE buffer

The composition of TBE buffer is given in Table 3.3.

S.No.	Name of the reagent	Composition
1	Tris	10.9g
2	Boric acid	5.56g
3	EDTA	0.98g
4	Distilled water	1L

Table 3.3. Composition of 1X TBE buffer [129]

1.42

3.1.6 DNA gel loading buffer

The loading dye was prepared with 0.25% bromophenol blue, 0.25% xylene cyanol dissolved in 50% glycerol made in TE buffer.

3.1.7 DNA extraction and purification

DNA was extracted from leaves collected from field grown plants using CTAB method as described by Doyle and Doyle (1990) with slight modifications [34]. Approximately 0.5g leaves were ground to fine powder in liquid nitrogen using sterile, pre-chilled pestle and mortar. The pulverized leaf powder was transferred to a 2ml micro-centrifuge tube containing 1ml of pre-warmed DNA extraction buffer. The contents were mixed well followed by incubation at 65°C for 1 hour. The tubes were then kept at room temperature for 10 min. Equal volume of chloroform: isoamyl alcohol (24:1) mixture was added and mixed gently. The tubes were centrifuged at 8000rpm for 10 min at room temperature for phase separation. The upper aqueous layer was pipetted out carefully into a fresh tube. The DNA was precipitated by adding equal volume of ice cold iso-propanol and kept at 4°C for 2 hours. The precipitated DNA was pelletted by centrifugation at 8000rpm for 10 min. The pellet was washed with 70% ethanol, air dried and dissolved in TE buffer. RNA was removed by treatment with 2µl of RNase (10mg/ml) and incubation at 37°C in a water bath for 1 hour followed by treatment of chloroform: isoamyl alcohol (24:1). The tubes were centrifuged and supernatant was transferred to another tube. DNA was precipitated using 100% ethanol. The tubes were centrifuged at 8000 rpm for 10 min to pellet DNA. The supernatant was discarded and the pellet was air dried. Finally DNA was dissolved in TE buffer.

3.1.8 Quantification and dilution of DNA

The quality of the extracted DNA was checked by gel electrophoresis on 0.8% agarose [129]. The quantity of DNA was estimated by measuring absorbance at 260nm in a spectrophotometer (Varian) and diluted to approximately $100ng/\mu$ l. The diluted DNA samples were stored at -20°C until use.

3.1.9 DNA amplification conditions for RAPD and ISSR markers

All accessions, along with a negative control without DNA, were used for RAPD and ISSR analysis. Out of the 30 RAPD primers initially screened 13 decamer primers (Table 3.4) were selected on the basis of polymorphism and reproducibility. Polymerase chain reaction

(PCR) was performed in 20µl reaction volume containing 1U Taq DNA polymerase (Biotools), 2.5mM MgCl₂ (Biotools), 5mM dNTPs, 1µL primer and 50ng of template DNA. Amplification was carried out in a Mastercycler gradient programmable thermal cycler (Eppendorf). The annealing temperature for each primer was determined by gradient PCR. The PCR was programmed with initial denaturation step at 94°C for 4 min, followed by 35 cycles of 1 min at 94°C, 1 min at annealing temperature (Table 3.4) and 1 min at 72°C. A final extension was carried out at 72°C for 10 min and a hold temperature of 4°C at the end [109, 129].

Marker	Sequence (5'-3')	Annealing temperature Tm(°C)
RAPD		
OPA 1	CAGGCCCTTC	40
OPD 12	CACCGTATCC	40
OPM 2	ACAACGCCTC	38.4
OPM 12	GGGACGTTGG	40
OPM 15	GACCTACCAC	38.4
OPN 1	CTCACGTTGG	37.9
OPN 2	ACCAGGGGCA	• 38.4
OPN 3	GGTACTCCCC	38.4
OPN 4	GACCGACCCA	39
OPN 5	ACTGAACGCC	38.4
OPQ-09	GGCTAACCGA	40
OPU 15	ACGGGCCAGT	39
OPX 12	TCGCCAGCCA	39
ISSR		
UBC808	AGAGAGAGAGAGAGAGAG	55
UBC818	CACACACACACACACAG	56
UBC820	GTGTGTGTGTGTGTGTGTC	57
UBC854	TCTCTCTCTCTCTCTCRG	49
UBC856	ACACACACACACACACYA	57
UBC868	GAAGAAGAAGAAGAAGAA	44.5
UBC879	CTTCACTTCACTTCA	47

Y = pYrimidine (C, T)R = puRine (A, G)

ISSR primers were custom synthesized by Ocimum Biosciences, Hyderabad according to University of British Columbia catalogue and used for screening polymorphism. Out of 16 primers initially screened, 7 primers which produced clear and unambiguous bands (Table 3.4) were used for diversity study. PCR was performed in 20µl reaction volume containing 1U Taq DNA polymerase (Biotools, Spain), 2.5mM MgCl₂, 5mM dNTPs, 1µL of 20pM primer and 50ng of template DNA. Amplification was performed in Mastercycler gradient programmable thermal cycler (Eppendorf). The annealing temperature for each primer was determined by gradient PCR. The PCR was programmed with initial denaturation step at 94°C for 4 min, followed by 30 cycles of 1 min at 94°C, 1 min at annealing temperature (Table 3.4) and 1 min at 72°C. A final extension was carried out at 72°C for 10 min and hold temperature of 4°C at the end.

3.1.10 Gel electrophoresis and recording

PCR amplified products were electrophoresed on 1.5% (w/v) agarose gels containing 0.02μ g/ml ethidium bromide in 1X TBE buffer. The gel was run at 5V/cm for 2.5 to 3 hours. A 100 bp DNA ladder (Genei, Bangalore) was used as a molecular marker to determine the approximate size of the fragments. The gel was visualized under UV light and documented in gel documentation system (Bio-Rad).

3.1.11 Analysis of RAPD and ISSR markers data

The RAPD and ISSR bands were scored according to their positions. The binary data were recorded using '1' for presence of band and '0' for absence of band at a particular position. A similarity matrix was computed for RAPD, ISSR and RAPD+ISSR combined data using Jaccard's coefficient by the software package PAST [54]. A dendrogram was obtained by Unweighted Pair-Group Average (UPGMA) method using the similarity matrix by Jaccard's similarity coefficient [62] to determine the relatedness of 48 genotypes under study. Bootstrapping was done with 1000 repetitions to evaluate the clusters formed. Principle component analysis (PCA) of the landrace data was done using PAST to reveal the genetic relations among the landraces according to their geographic origin. Population genetic analysis (POPGENE Ver 1.32) software was used to determine the values of Nei's genetic diversity (Nei, 1978), Shannon's information index, total genetic diversity among populations (Ht), genetic diversity within population (Hs) and mean coefficient of gene differentiation (Gst) for two populations, i.e. landraces and commercial varieties. RAPD and ISSR data were also subjected to Analysis of Molecular Variance (AMOVA) at individual and population level, using GenALEx software [102]. Correlation was determined between molecular, geographical and morphological data [36] by performing Mantel tests between their Euclidian distance matrices using the software package PAST.

3.1.12 Polymorphic information content (PIC)

Polymorphic Information Content (PIC) for dominant marker system was calculated according to Roldan-Ruiz et al. (2000)[125] as

$$PIC_{i} = 2f_{i}(1 - f_{i})$$

Where, PIC_i is polymorphic information content of marker 'i', f_i is frequency of the amplified allele (band present), and $(1-f_i)$ is frequency of the null allele (band absent). PCI was averaged for all the fragments for each primer.

3.1.13 Resolving power (Rp)

Resolving power (Rp) for each primer was calculated according to Prevost and Wilkinson (1999) [108] as

Where, I_b is the informativeness of the bands scored which can be calculated as

$$I_b = 1 - (2*|0.5-p|)$$

Where 'p' is the proportion of 48 genotypes containing bands.

3.2 Results

3.2.1 Genetic diversity study using RAPD and ISSR markers

A set of 13 RAPD markers (Table 3.5) was used for analysis of genetic diversity among 29 landraces and 19 commercial varieties of cluster bean. The total number of bands, number of polymorphic bands, percentage of polymorphic bands, polymorphic information content (PIC) and resolving power (Rp) obtained for each primer are shown in Table 3.5. Among the RAPD primers used OPN-1 showed highest resolving power whereas OPX-12 showed lowest.

3.2.2 RAPD analysis

RAPD PCR amplification produced a total of 118 bands, out of which 103 were polymorphic and 15 were monomorphic. Out of the 13 primers used OPQ-09 produced highest number of bands (12) with 100% polymorphism, whereas the primer OPX-12 produced only 5 bands. Fig 3.2 and Fig 3.3 show the RAPD fingerprint patterns produced with OPM-02 and OPQ-09 primers, respectively; the sequence of accessions in sample lanes of the photographs are according to the serial number in Table 3.1.

Table 3.5. Properties of 13 RAPD primers used and their percentage polymorphism, polymorphic information content and resolving power

Marker	Total number of bands	Polymorphic bands	Monomorphic bands	Percentage polymorphism	Polymorphic Information Content(PIC)	Resolving power
OPA-1	7	5	2	71.42	0.143	1.208
OPD-12	6	6	0	100.00	0.419	3.625
OPM-2	9	5	4	55.55	0.141	2.000
OPM-12	8	8	0	100.00	0.199	2.000
OPM-15	11	7	4	63.64	0.189	3.083
OPN-1	11	10	1	90.90	0.363	6.333
OPN-2	10	10	0	100.00	0.252	3.500
OPN-3	10	10	0	100.00	0.371	5.417
OPN-4	10	9	1	90.00	0.199	2.542
OPN-5	10	9	1	90.00	0.186	2.500
OPQ-09	12	12	0	100.00	0.296	4.875
OPU-15	• 9	7	2	77.78	0.227	3.208
OPX-12	5	5	0	100.00	0.151	0.917

)

M 19 20 21 22 23 24 25 26 27 28 29 M B 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 I 王王王王二王二 4 6 1 1 1 1 1 111 16 ıl I 110.71 14 11 1. 41) (F 8 Ľ. HI EI EI Ľ 1 [[- 1] ļ **II-I** 11 (Here) (J Ĭ Ţ M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 12 4 1 11 12 4 1 1 12 4 1 1 12 4 1 1 11 12 4 1 11 1 1 Ŧ ł ÷ A ł (. r 1

Fig. 3.2. Ethidium bromide stained agarose gel showing RAPD profile from OPM-02. The sample numbers are as represented in Table 3.1. M represents 100 bp marker and B represents negative control

2

42

KDCL 00297362 23 03.JPG N N N-2 AS+02SA108

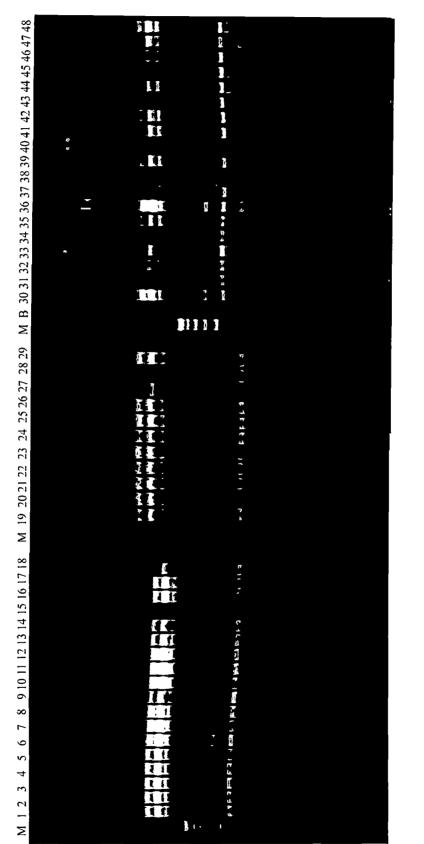


Fig. 3.3. Ethidium bromide stained agarose gel showing RAPD profile from OPQ-09. The sample numbers are as represented in Table 3.1. M represents 100 bp marker and B represents negative control

U

÷

, **,**

3

•

.

i

ł

. -

43

The accessions of cluster bean distinguished into two major clusters at 75% similarity and a third cluster at lower similarity in the dendrogram constructed using RAPD band data (Fig 3.4), the first major cluster consisted only landraces and had four sub clusters. The second and third major clusters had only commercial genotypes; the second cluster could be clearly differentiated into two sub clusters. Three landraces namely IC-116953, IC-116958 and IC-116595 did not fall into any cluster. PCA analysis (Fig 3.5) of landraces showed clustering of landraces into a single major group containing the landraces from central Rajasthan like Jodhpur, Barmer, Bhilwara and two loosely bound groups.

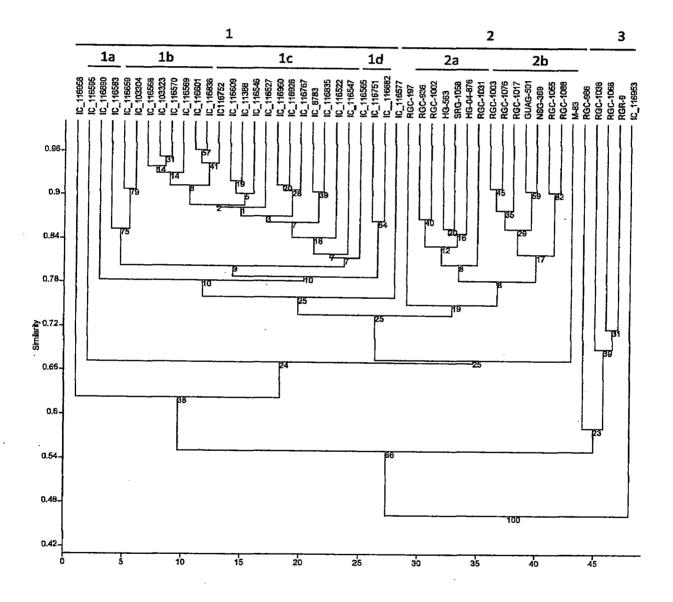
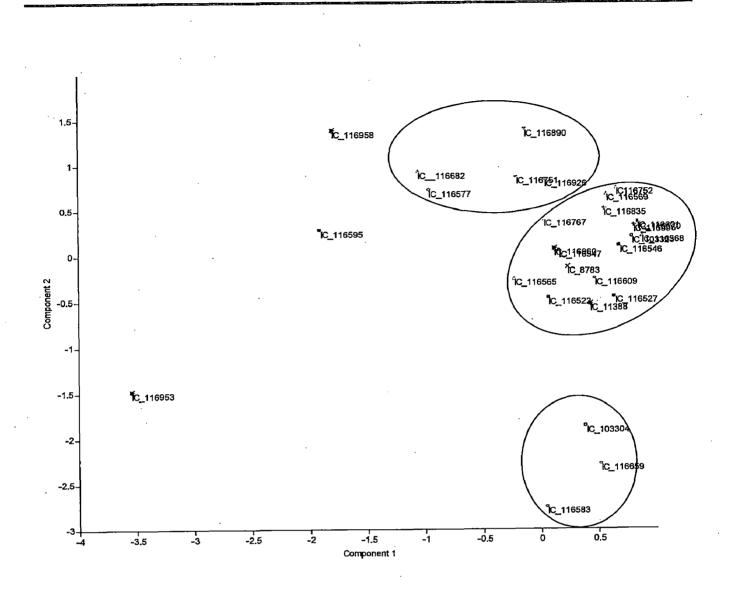



Fig. 3.4. Dendrogram generated by UPGMA method, showing relationship between 48 accessions of cluster bean based on genetic profile from RAPD data. The numbers at the forks shows the confidence limits for the grouping of those accessions in the branch, based on 1,000 cycles of bootstrap analysis

Fig. 3.5. Two-dimensional plot of principle component analysis (PCA) of cluster bean landraces using RAPD analysis. The circles indicate the group of accessions which are similar to each other in the PCA analysis

The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's information index for landraces and commercial varieties using 13 RAPD markers were found to be 1.872 ± 0.335 , 1.589 ± 0.351 , 0.333 ± 0.170 , and 0.490 ± 0.230 , respectively. The value of total genotypic diversity among population (Ht) was 0.333 ± 0.029 , whereas diversity within population (Hs) was found to be 0.283 ± 0.026 . Mean coefficient of gene differentiation (Gst) value 0.148 indicated 86.2% of genetic diversity present within the population. The estimated gene flow in the population was 2.857 (Table 3.6). AMOVA helps in understanding RAPD variation among and within the populations. Percentage of molecular variance was found to be 27% among populations and 73% variance was attributed to variance within the population. Table 3.7 shows the φ_{pt} value, estimated variance, percentage variance among and within the populations.

Table 3.6. A comparative list of genetic variability factors across the accessions using RAPD primers

		Observed number of alleles	Effective number of alleles	Nei's gene diversity	Shannon's Information index	Ht	Hs	Gst	estimate of gene flow
RAPD	Mean	1.8729	1.589	0.3339	0.4908	0.3333	0.283	0.148	2.857
	St. Dev	0.3345	0.351	0.1709	0.2309	0.0295	0.026		

Table 3.7. Details of Analysis of Molecular Variance (AMOVA) based on RAPD marker data within and among landraces and commercial varieties (level of significance based on 999 iteration steps)

Primers Source of variance		Estimated variance	Percentage (%)	φ _{pt}	P(rand >= data)
RAPD	Among Pops	4.594	27%	0.271	0.001
	Within Pops	12.355	73%	1	

3.2.3 ISSR Analysis

The primers $(AG)_8$, $(CA)_8$ and $(AC)_8$ YA produced more bands as compared to $(GT)_8C$ and $(TC)_8RG$ primers (Table 3.8). The primers $(GAA)_6$ and $(CTTCA)_3$ produced 13 and 11 bands, respectively. The primer $(GA)_8$ YC produced unclear bands; the primer $(AT)_8C$ did not produce any band. The 7 primers used produced a total of 64 bands out of which 50 were polymorphic and 14 were monomorphic. Three unique bands were observed in accession number IC116752 with 2 bands in primer UBC-856 of about 320bp and 350bp and a single band with primer UBC-868 of about 275bp. Fig 3.6 and Fig 3.7 show the ISSR fingerprint patterns produced with UBC-808 and UBC-879 primers; the sequence of accessions in the samples in lanes is according to Table 3.1.

The dendrogram (Fig 3.8) from ISSR data showed one major cluster at 75% similarity and five minor clusters at lower level of similarity. The major cluster possessed six subclusters. The dendrogram did not differentiate between landraces and commercial varieties. The PCA analysis (Fig 3.9) of the landraces formed a loose group. The accessions IC116953, IC116595 and IC116682 were distant from the group.

Marker	Total number of bands	Polymorphic bands	Monomorphic bands	Percentage polymorphism	Polymorphic Information Content(PIC)	Resolving power
UBC808	10	7	3	70.00	0.179	2.208
UBC818	12	9	3	75.00	0.258	4.500
UBC820	6	6	0	100.00	0.266	2.250
UBC854	3	2	1	66.67	0.174	0.625
UBC856	. 9	6	3	66.67	0.081	1.083
UBC868	13	11	2	84.62	0.258	4.708
UBC879	11	9	2	81.82	0.273	4.208

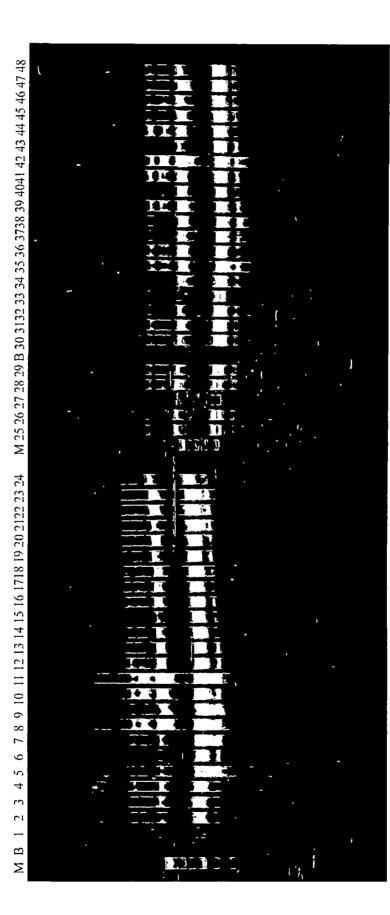
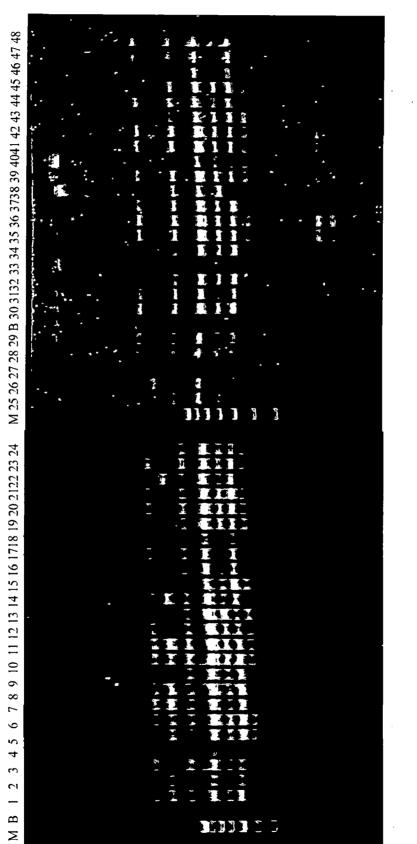
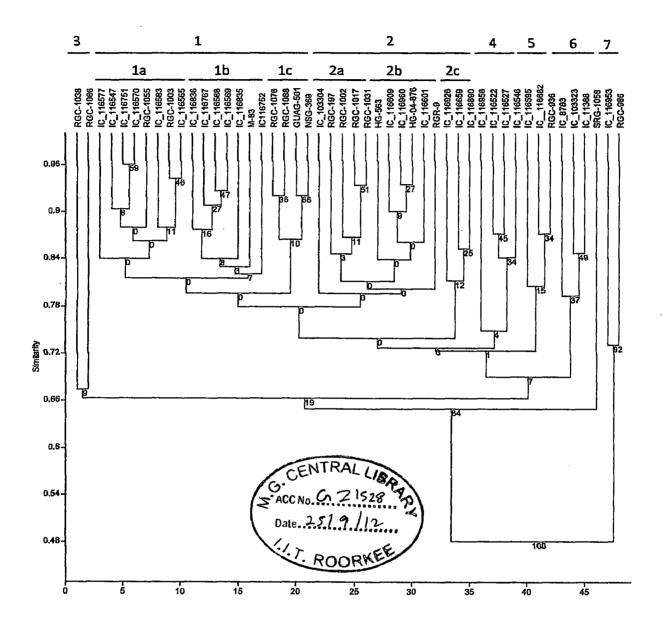
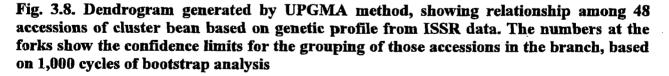

Table 3.8. Properties of 7 ISSR primers used and their percentage polymorphism, polymorphic information content and resolving power

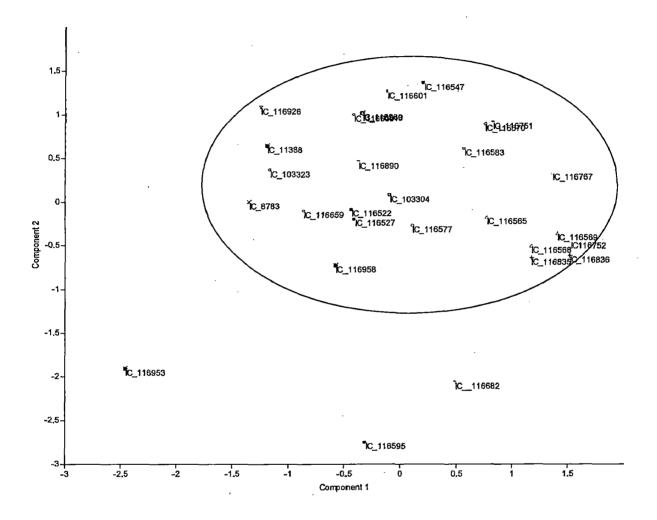
Table 3.9. A comparative list of genetic variability factors across the accessions using ISSR primers

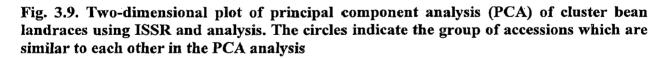
		Observed number of alleles	Effective number of alleles	Nei's gene diversity	Shannon's Information index	Ht	Hs	Gst	Estimate of gene flow
	_								
ISSR	Mean	1.7812	1.4627	0.267	0.3988	0.2639	0.253	0.041	11.549
	St. Dev	0.4167	0.3844	0.1939	0.2681	0.0378	0.035		l

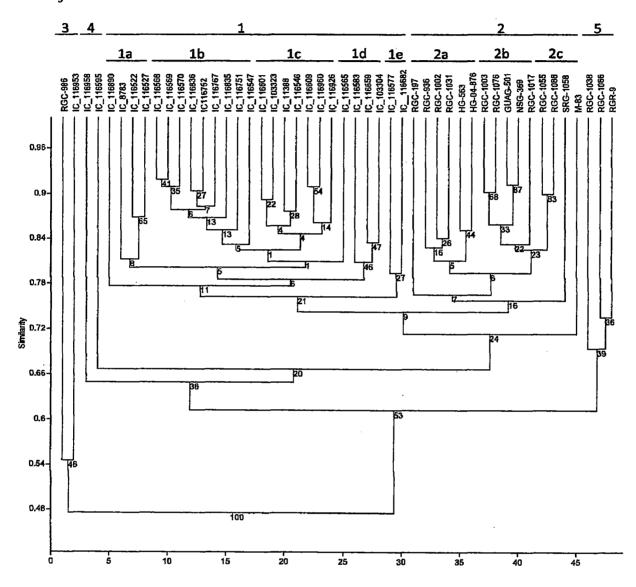
Table 3.10. Analysis of Molecular Variance (AMOVA) based on ISSR marker data within and among landraces and commercial varieties (level of significance based on 999 iteration steps)

Primers	Source of variance	Estimated variance	Percentage (%)	φ _{pt}	P(rand >= data)
ISSR	Among Pops	0.608	8%	0.082	0.001
	Within Pops	6.783	92%		


Fig. 3.7. Ethidium bromide stained agarose gel showing ISSR profile from UBC-879. The sample numbers are as represented in Table 3.1. M represents 100 bp marker and B represents negative control


49


The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's information index for landraces and commercial varieties using 7 ISSR markers were found to be 1.7812 ± 0.4167 , 1.4627 ± 0.3844 , 0.267 ± 0.1939 , and 0.3988 ± 0.2681 , respectively. The value of total genotype diversity among population (Ht) was 0.2639 ± 0.0378 whereas diversity within population (Hs) was found to be 0.253 ± 0.035 . Mean coefficient of gene differentiation (Gst) value was 0.041 and the estimated gene flow in the population was 11.549 (Table 3.9). AMOVA was used to analyze variation among and within the populations. Molecular variances were 8% and 92% among and within the population, respectively (Table 3.10).

3.2.4 RAPD and ISSR combined analysis

The accessions of cluster bean distinguished into two major clusters at 75% similarity and 3 minor clusters with lower similarity in the dendrogram constructed using the combined data of RAPD and ISSR (Fig 3.10); the 1st major cluster had only landraces and consisted of 5 subclusters. The second major cluster had only commercial genotypes and it consisted of 3 subclusters. PCA analysis (Fig 3.11) of landraces showed clustering of landraces into a two major groups. A tightly linked group contained the landraces from Jodhpur, Jalore, Churu, Palanpur and one loosely bound group with accessions from Barmer, Mahendragarh, Nagaur, Bikaner and Rajkot.

Fig. 3.10. Dendrogram generated by UPGMA method, showing relationship among 48 accessions of cluster bean based on genetic profile from RAPD+ISSR data. The numbers at the forks show the confidence limits for the grouping of those accessions in the branch, based on 1,000 cycles of bootstrap analysis

The observed number of alleles, effective number of alleles, Nei's genetic diversity, Shannon's information index for landraces and commercial varieties using 13 RAPD and 7 ISSR markers were found to be 1.8407 ± 0.367 , 1.5446 ± 0.3671 , 0.3130 ± 0.1817 , and 0.4584 ± 0.2478 , respectively. The value of total genotypic diversity among population (Ht) was 0.3089 ± 0.0333 whereas diversity within population (Hs) was found to be 0.272 ± 0.029 . Mean

coefficient of gene differentiation (Gst) value was 0.116 and the estimated gene flow in the population was found to be 3.787 (Table 3.11). AMOVA was used to analyze variation among and within the populations. Molecular variance among populations was found to be 21% and that within the population was 79% indicating higher variation within the population (Table 3.12).

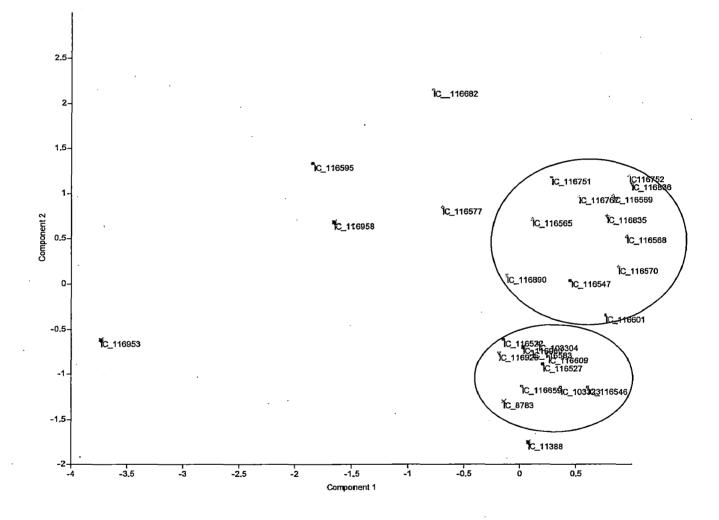


Fig. 3.11. Two-dimensional plot of principal component analysis (PCA) of cluster bean landraces using RAPD+ISSR analysis. The circles indicate the group of accessions which are similar to each other in the PCA analysis

Table 3.11. A comparative list of genetic variability factors across the accessions using RAPD+ISSR primers

		Observed number of alleles	Effective number of alleles	Nei's gene diversity	Shannon's Information index	Ht	Hs	Gst	Estimate of gene flow
RAPD	Mean	1.8407	1.5446	0.3103	0.4584	0.3089	0.272	0.116	3.787
+ ISSR	St. Dev	0.367	0.3671	0.1817	0.2478	0.0333	0.029	1	i i

Table 3.12. Analysis of Molecular Variance (AMOVA) based on RAPD+ISSR marker data within and among landraces and commercial varities (level of significance based on 999 iteration steps)

Primers	Source of variance	Estimated variance	Percentage (%)	φ _{pt}	P(rand >= data)
RAPD + ISSR	Among Pops	5.202	21%	0.214	0.001
	Within Pops	19.138	79%		-

3.2.5 Correlation between molecular, geographical and morphological data in landraces

The Mantle test revealed a significant correlation between the molecular data and the geographic data. For RAPD data the correlation values were R=0.5252, P=0.0066, for ISSR and the geographic data the values were R=0.3144, P= 0.0266 while the RAPD+ISSR data showed R=0.5303, P= 0.0076. This indicated that molecular variation corresponds to differences in geographic distribution of landraces.

There was no significant correlation between the molecular data and the morphological data. For RAPD data the values were R=0.1021, P= 0.188, ISSR data gave the correlation R=0.04437, P=0.2934. The RAPD+ISSR data with morphological data gave R=0.08897, P=0.1598.

3.3 Discussion

PCR using 13 RAPD primers produced a total of 118 bands whereas 7 ISSR primers produced 64 bands. Both the markers revealed genetic variability among the accessions studied. The average level of polymorphism revealed by RAPD was 87.63 which is higher than 77.82 for ISSR. Similarly, higher polymorphism for RAPD primers as compared to ISSR primers was reported by Muthusamy et al. (2008) while assessing genetic variation in rice bean [93]. PIC and Rp values of markers revealed the discriminating power of markers. PIC values ranged between 0.141 (OPM-02) to 0.419 (OPD-12) for RAPD and 0.081 (UBC-856) to 0.273(UBC-879) for ISSR markers. Rp of a marker gives a moderate idea about the number of genotypes that could be resolved by that marker [108]. The values of resolving powers for

RAPD markers were between 0.917 (OPX-12) and 6.333 (OPN-1) while that of ISSR markers ranged between 0.625 (UBC-854) and 4.708 (UBC-868); indicating better resolving capability of RAPD over ISSR. However, in cowpea (*Vigna unguiculata* (L.) Walp.) landraces more polymorphic loci were detected with ISSR than with RAPD fingerprinting [46].

Shannon's Information Index is a commonly used index to characterize gene diversity in a population. The values of the Shannon's information index were similar for RAPD and RAPD+ISSR data but were low for ISSR data. The values of total genetic diversity among population (Ht) also showed similar pattern as that of Shannon's information index. Nei's measure of the average gene diversity per locus within population (Hs) was similar for RAPD (0.283 ± 0.026), ISSR (0.253 ± 0.035) and RAPD+ISSR (0.275 ± 0.029) data showing that both the markers revealed similar level of genetic difference within the genotypes.

AMOVA analysis showed higher polymorphism within the population (73% for RAPD, 92% for ISSR and 79% for RAPD+ISSR combined data). AMOVA results also showed that RAPD was more efficient in detecting the variation between populations.

Cluster analysis was done on RAPD, ISSR and RAPD+ISSR data. The results based on RAPD and RAPD+ISSR data grouped landraces and commercial varieties separately showing the presence of distinguishable genetic difference existing between them. The accession IC116958 formed an out-group singlet with RAPD data. Similar results with singlet out-group in dendrogram were reported by Punia et al. (2009) [109]. ISSR data produced a cluster with commercial varieties along with the landraces. The difference in the clustering pattern can be partially attributed to the number of amplified loci analyzed (118 for RAPD and 64 for ISSR). Similar difference in clustering pattern between RAPD and ISSR markers was observed in genotypes of *Jatropha curcas* because RAPD and ISSR detected polymorphic DNA by amplifying different regions of genome [51].

Principle component analysis (PCA) of the landraces showed that the accessions belonging to central Rajasthan grouped together indicating genetic similarity. The Mantle test between the molecular data and the geographic data of the landraces showed significant correlation. This indicated that the molecular variation corresponded to geographic distribution of landraces.

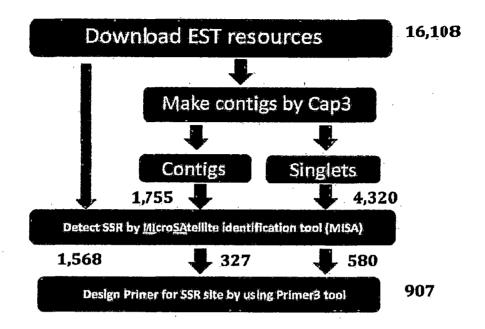
Chapter IV

Mining of EST-SSR markers for amplification and polymorphism among guar accessions

4. Mining of EST-SSR markers for amplification and polymorphism among guar accessions

4.1 Materials and methods

4.1.1 Preparation of EST sequences for analysis


The EST accession numbers EC616385.1 to EG991296.1 were downloaded from dbEST (http://www.ncbi.nlm.nih.gov/dbEST/) of NCBI. All the EST's were from developing guar embryos. Available *C. tetragonoloba* EST (16,476) were trimmed using EST trimmer. The filtered sequences (16108) were assembled into contigs using CAP3 [57] to remove redundancy in the sequences.

4.1.2 Plant material and DNA extraction

The accessions of *C. serrata* and *C. senegalensis* were kindly provided by Chaudhary Charan Singh Haryana Agriculture University (CCSHAU), Hisar. The cultivars of *C. tetragonoloba* were obtained from Central Arid Zone Research Institute (CAZRI), Jodhpur, Rajasthan. DNA was extracted from the field grown plants as described in section 3.1.7.

4.1.3 Mining simple sequence repeats and primer designing

The sequences so obtained (16,108) were assembled into contigs using CAP3. The candidate SSR containing sequences in the ESTs, assembled contigs and singlet sequences were mined using the PERL script <u>MIcroSA</u>tellite analyzer (MISA). The following default definements were set for microsatellites (unit size / minimum number of repeats) : (1/10) (2/6) (3/5) (4/5) (5/5) (6/5) in MISA. Maximal number of bases interrupting 2 SSRs in a compound microsatellite were set to 100. Fig 4.1 shows the work flow followed for screening microsatellites. The sum of the microsatellite repeats from the contigs and singlets were used for designing primers. Primers flanking the SSR regions were designed using Primer3.

Fig. 4.1. Schematic work flow followed for screening microsatellites

4.1.4 Polyacrylamide gel electrophoresis of DNA

4.1.4.1 Preparation of 40% Acrylamide-bis acrylamide solution

Acrylamide (38g) and bis acrylamide (2g) were weighed and dissolved in 50ml of double distilled water. The volume was made up to 100 ml by double distilled water.

4.1.4.2 Preparation of 10X TBE

The composition of TBE buffer is given in Table 4.1.

S.No.	Name of the reagent	Composition
1	Tris	10.9g
2	Boric acid	5.56g
3	EDTA	0.98g
4	Distilled water	10 0ml

Table 4.1. Composition of 10X TBE buffer [129]

4.1.4.3 Procedure

The composition of PAGE gel is given in Table 4.2.

S.No.	Name of the reagent	Composition for 150 ml
1	40% acrylamide-bis acrylamide solution	30ml
2	10X TBE	7.5ml
3	Ammonium persulphate	0.105g
4	TEMED	125µL
5	Double distilled water	92.38ml

Table 4.2. Composition of 8% PAGE gel

All the constituents as mentioned in Tabel 4.2 were taken. Ammonium persulphate and TEMED were added just before pouring. After pouring the comb was fixed in gel and allowed to solidify for about 1 hour [129].

4.1.5 Silver staining

4.1.5.1 Preparation of Solution 1 (Fixative solution)

The composition of fixative solution is given in Table 4.3.

Table 4.3. Composition of fixative solution

S.No.	Name of the reagent	Composition
1	Methanol	20ml
2	Glacial acetic acid	1ml
3	Distilled water	179ml

4.1.5.2 Preparation of Solution 2 (Staining solution)

The composition of staining solution is given in Table 4.4.

Table 4.4. Composition of staining solution

S.No.	Name of the reagent	Composition
1	Methanol	20ml
2	Glacial acetic acid	1ml
3	AgNO ₃	0.2g
4	Distilled water	1 79 ml

4.1.5.3 Preparation of Solution 3 (Developing solution)

The composition of developing solution is given in Table 4.5.

S.No.	Name of the reagent	Composition
1	NaOH	5.1g
2	Formaldehyde	600µL
3	Distilled water	199.4ml

Table 4.5. Composition of developing solution

4.1.5.4 Procedure for silver staining

After gel electrophoresis, PAGE plates were disassembled. The gel was carefully placed in the staining tray. The gel was treated with fixative solution for 5 min with gentle rocking. After fixing the DNA the fixing solution was decanted. Similarly the gel was incubated in staining solution for 5 min. The staining solution was decanted and the gel was washed gently with distilled water to remove excess silver nitrate on the gel and tray. The gel was then treated with developing solution for visualizing the bands. After the visualization of bands the developing solution was replaced by fixative solution for increasing the depth and sharpness of bands.

4.1.6 DNA amplification conditions for SSR markers

Five accessions viz., M-83, RGC-1066, RGC-1002, C. serrata and C. senegalensis were used for SSR analysis. Polymerase chain reaction (PCR) was performed in 5µl reaction volume containing 0.5U Taq DNA polymerase (Biotools), 2.5mM MgCl₂ (Biotools), 5mM dNTPs, 0.5μ L of 20pM primer each and 50ng of template DNA. Amplification was carried out in a Mastercycler gradient programmable thermal cycler (Eppendorf). The PCR was programmed with initial denaturation step at 94°C for 4 min, followed by 30 cycles of 30 sec at 94°C, 30 sec at 55°C and 30 sec at 72°C. A final extension was carried out at 72°C for 5 min and a hold temperature of 4°C at the end [129].

4.1.7 Gel electrophoresis and recording

PCR amplified products were electrophoresed on 8% PAGE gels and silver stained. The gel was run at 5V/cm for 5 to 6 hours. A 100 bp DNA ladder was used as a molecular marker to

determine the approximate size of the fragments. The gel was visualized under white light and documented in gel documentation unit (Bio-Rad).

4.1.8 Data analysis of SSR markers

The SSR bands were scored according to their allele size. The binary data were recorded using '0' for absence of band at expected product size and '1', '2' or '3' for different alleles. A similarity matrix was computed for the data using Euclidean coefficient by the software package PAST [54]. A dendrogram was obtained by Unweighted Pair-Group Average (UPGMA) method using the similarity matrix by Euclidean similarity coefficient [62] to determine the relatedness of 5 accessions under study. Bootstrapping was done with 1000 repetitions to evaluate the clusters formed.

4.2 Results

4.2.1 Data mining for simple sequence repeats

A total of 16,108 sequences were analyzed for SSRs. The contig making program CAP3 produced 1,755 contigs and 4,320 singlets. The contigs showed 327 microsatellite repeats from 276 sequences of which 28 of them were in compound formation. Singlets had 580 microsatellite repeats in 506 sequences of which 41 were in compound formation. The sum of the microsatellite repeats from the contigs and singlets (907) from 3.7 million base pairs. The results suggest that there is about one SSR in every 4.1 kb of expressed sequences in cluster bean. The 782 sequences that contained the SSRs were used for designing primers.

The abundance of different repeat types were also analyzed. Mononucleotide repeats (435) were the most abundant among the SSR types in *C. tetragonoloba* ESTs, followed by dinucleotide repeats (189). Fig 4.2 shows the abundance of different kind of repeat types in cluster bean EST's, contigs and singlests. Table 4.6 shows the frequency of different kinds of repeats in cluster bean ESTs.

	Total EST	Contigs	Singlets
A/T	821	167	262
C/G	7	2	4
AC/GT	17	3	13
AG/CT	157	39	83
AT/AT	100	17	34
AAC/GTT	_ 23	9	5
AAG/CTT	108	29	60
AAT/ATT	172	24	39
ACC/GGT	24	6	12
ACG/CGT	1		1
ACT/AGT	10	1	8
AGC/CTG	23	6	12
AGG/CCT	12	3	8
ATC/ATG	44	12	14
CCG/CGG	• 4	2	
AAAC/GTTT	2	1	
AAAG/CTTT	9	<u> </u>	4
AAAT/ATTT	8	1	6
AAGC/CTTG	1		1
AAGG/CCTT	1		1
AATC/ATTG	• 1		1
AATT/AATT	6	1	1
ACAT/ATGT	3		3
AGAT/ATCT	1		1
AGCC/CTGG	2	1	
AGCT/AGCT	1		1
AAAAT/ATTTT	2	1	
AAAGG/CCTTT	1	······································	1
AAGAG/CTCTT	2		2
AATCG/ATTCG	1		1
AATTC/AATTG	. 2	1	
ACAGC/CTGTG	1		1
AGCCTG/AGGCTC	1		1

Table 4.6. Frequency of different kinds of simple sequence repeats in cluster bean ESTs

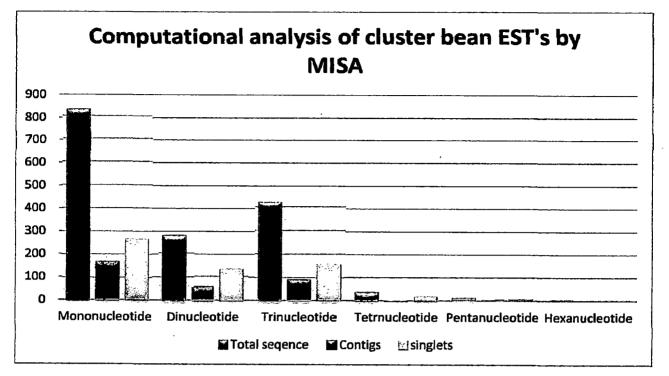


Fig. 4.2. Graph showing the abundance of different kinds of repeat types in cluster bean EST's, contigs and singlets

4.2.2 Primer designing

Flanking primers were designed for SSR containing sequences (except mononucleotide repeats) using the online tool Primer3. The details of the sequence, motif type, SSR length and primer sequences are given in Appendix I. A total of 362 primers were designed out of which 226 were synthesized. Table 4.7 shows the names and sequences of the primers synthesized.

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
IITR N1F	CGAGGCAACAATATCATCTTCA	IITR NIR	TTTGGGATCGATCAAAGTGA
IITR N2F	CTTTCCCTTCCTTGCTTCCT	IITR N2R	TGAACCCAAAACACCAAACC
IITR N3F	CCACCACTTAGGTCGTGCTT	IITR N3R	CAAAAGCAAGGGAAAGGTCA
IITR N4F	CTCCCCTTCCACTTTCCTTC	IITR N4R	AAGAACAAGATGTTGGGCATTT
IITR N5F	TGCAAGTGACAACAGATTTGC	IITR N5R	ACGGCATTATCCGCTACAAA
IITR N6F	AAGGAAATTGCTCAGGCTCA	IITR N6R	CCCAAAGGCCAACATAATTG
IITR N7F	AGGAGAAGGCTTGGGATGAC	IITR N7R	TTCCACCATGTGAAAAAGCA
IITR N8F	CGGAAATCAACATCAACGAA	IITR N8R	TGTGACTTGGAAGCCCTTTT
IITR N9F	TCAGCCACAATGACACCAGT	IITR N9R	CTTCGTCGTCCGACACTACA
IITR N10F	ACTATGAATGCCGTGGAAGC	IITR N10R	AAAACAAACGCACCACACAA
IITR N11F	AGGAGAAGATGCTCCCAACA	IITR NI IR	TGAGCATCCATGAAAGCAAG

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
IITR N12F	TACCGTGTTGGTGACCTTGA	IITR N12R	ATGTCCAAACCCATCTCCAA
IITR N13F	CACGAGGATTTCACTCACACA	IITR N13R	AGGAGGGAGTTCAGGTTGGT
IITR N14F	AAAGAAGAAAGATCCTTGTTTGGA	IITR N14R	AAACAAAAATAACCGCTTGATGA
IITR N15F	CTTTGCTTCAAAGGGTTTCG	IITR N15R	GCTCTGTCATTGTGGGAAAAA
IITR N16F	TCGAATTGAAGGCAAAGAGC	IITR N16R	GTAGCTGAGTGCCCTGGAAG
IITR N17F	CAACCAGAAACATGAAGCACA	IITR N17R	CCTGTTATGCCTGCTGAGTG
IITR N18F	CGAGGGAAAGAGTTAAGAGAAAA	IITR N18R	CCATAGCCAAAAACCCAGAA
IITR N19F	CTGCCTCAACAACCTCAACA	IITR N19R	CGAGCAAACCAAGGAAGAAG
IITR N20F	CCAAAGATCAACAACAACCAGA	IITR N20R	CCAACAGTGGCTTGCTTGTA
IITR N21F	TCACCGAGTTATGTGGGTTTC	IITR N21R	CCCACAACCAAATACCCAAC
IITR N22F	GCCGGAGTATCCATCAAAAC	IITR N22R	AATCTTGTCAACCCCCTGTG
IITR N23F	CATGATTGCGTCAAAACTCG	IITR N23R	CCCAGGGGAGGGTTACTAGA
IITR N24F	TACCACCCTAGGCCCTAACC	IITR N24R	GGCCCCATTTTTATTTTGTTT
IITR N25F	TAAGTGCAATTGTGCGAAGC	IITR N25R	AAGCACTTAGAGTGTGCTTTGTTG
IITR N26F	TAATCCATGTGCCAACAAGC	IITR N26R	TCTCCTTGCTCACCCAAAAT

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT001F	CTGACCAAAGCCTTTTCCTG	CT001R	TGATGACGATGGAGATGGAA
CT002F	ACTGAAATGGTGGCAGAAGG	CT002R	TGTGAAAGCGAAGAAAGGTG
CT003F	TCCCTGGCTCTTCAATCACT	CT003R	TTTGGGGACGACCTATTTGA
CT004F	CACGAGGTTCACACTTTCCTT	CT004R	TGATCCGAGAAATCCTCCAC
CT005F	CCAGAGGAGTGAATTAAGAAACAAA	CT005R	GGGTTCATTCCAGATTGCAT
CT006F	GGTTCCCTCTGTTCAAGCAA	CT006R	TGGTCACAGAGCTTGTCAGG
CT007F	CACGAGGCAGAGACTTCACTC	CT007R	GTCAAGGGGCATTTGTCAGT
CT008F	GAGGCATAAAGTCCCTTCCA	CT008R	CTGCCCTTCACACTTTCGAT
CT009F	TGAGAATTCAAAGGAGCAAGTG	CT009R	TGCTGCTTCTTGTTCTGCTC
CT010F	AATGCAGAAGCAACGGAAAT	CT010R	CCTCTCGCCTTCTGTTCTGT
CT011F	CCCCACACTCACTCACACAC	CT011R	GTTCGGTCAAACCTTCATGG
CT012F	ACAAGGAGCCACTCGTTCAG	CT012R	CACGCACGCATGATACATAG
CT013F	CACGAGGCAGGAACAGAACT	CT013R	TCTCGCTTGGACATTCTTCA
CT014F	TTCCGATCCTGTTTGTTTCC	CT014R	CGTGTCTGTTACCGGATGTG
CT015F	TGGCAGAAATGGAAAATTGA	CT015R	TGAGGTTCATTCTCCACCAA
CT016F	СААААСААААСААААСАА	CT016R	TACCGCTTGAAGACCAAACC
CT017F	CACCACCACAAGCACAGATT	CT017R	TTCCAGTCCGAAAATTCCAC
CT018F	TTGCTGTTGCTGTTGAGACC	CT018R	AGCAAAGCCAGCATCAGC
CT019F	TGATGGAGGCACCTTCAGAT	CT019R	CCAAGCCGAGTCTTTCTTGA
CT020F	CCACCTTCCATGAACCTTGT	CT020R	CACCAACAATGATGCTTCCA
CT021F	GAGAAGACGATCCGTTACGC	CT021R	CACATGCATGATTCAGACCA
CT022F	CTCAGCCTCAGCCACTCACT	CT022R	TCAAGGTCACCAACACGGTA
CT023F	GCCATCAAGGACATCTCCAG	CT023R	GATCACACACACAAATAACTAAGATTT
CT024F	TTTCCGAGATGGTGAGAAGG	CT024R	CCTCCCGTTTGTTTTCTTCA
CT025F	GAAGAGTGCCCTTGCTATGC	CT025R	CACCACAAAATGTGGAGATACA

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT026F	GATTGGGACCCACAATTCAC	CT026R	CATGAACAAGGCTCGTGAGA
CT027F	TCGATCATCCAAGAGGGACT	CT027R	TCCAATACCACCAACCCTTG
CT028F	ATAAGGGGTCCCCATCATCA	CT028R	GCCAAACAAGAAGTGACAAACA
CT029F	AGCAACTGCTGATGATGGTG	CT029R	AGGCAGATGAACTTGCCATC
CT030F	TTCCAGCTCTTGTTGTCCTCT	CT030R	TGGCTGGATGGATTGTCTTA
CT031F	GCCCTGCACTTTTGTGTTTT	CT031R	ATTTATGCTCTTCCCGCAAA
CT032F	TCGCGACATGAACTTGTTTC	CT032R	TCGCCTTGAGACAACCTACC
CT033F	AGATCATGGCAAGGCTTTTG	CT033R	CCGCTATAATGGGCATCTGT
CT034F	CACCAACACCAAGACTGCTT	CT034R	CGCGCAGTTTAATTTCATCA
CT035F	GCACCATTTGGGCTTAATTATC	CT035R	CCTGATTATTTCCTCACACCCTA
CT036F	CCCATGTGCCTTTGTTTTGT	CT036R	CAGGGCTCCCTCTTTTCTCT
CT037F	CACTGCCAGAATGGAATGAA	CT037R	CCATTCATTTTCGAATTCACC
CT038F	CATCATGTTTGAGCCACGAC	CT038R	GCAATGGACCCTATCCTCCT
CT039F	AGTTGCATTGCACAGGTTTG	CT039R	TGGCCAAATTACAAGTAGAACAA
CT040F	TTTTATCCGCATCCCAACAT	CT040R	GAGAGGATGGAAGGTTGAAGC
CT041F	TTCCTTTGGAATCCACATCC	CT041R	ACCCAAATCACATCCACACA
CT042F	GGCTCTGATGCTTTCCAACT	CT042R	AGGAAATGGATGACGACGAC
CT043F	CTTTTACCCATTCGGCCATT	CT043R	GTCATTGGGTCCATGGAAGT
CT044F	TCCCACCCTCATCTTCTTTC	CT044R	TCACTTCCTCGTCGGTTCTC
CT045F	CACGAGGCTTCTTCTTCATCA	CT045R	GCTTTGGTGAGTGGTTGGTT
CT046F	CCCTGGTGCTAGAAGAGTGG	CT046R	TAGGTAGGGGGCTGGACTTT
CT047F	CCGTGGCCAATAGAAAGAGA	CT047R	GCTGTTCCATTCACCTCCTC
CT048F	GCCGAGAGCAGAGAAGAAGA	CT048R	TCCCTGGAAGTGATGGTAGG
CT049F	CTGGTGACAGTCGTTGCATT	CT049R	AGGCAACTTAACCCATGTCG
CT050F	AGGGGTCAAGGGTGAAGACT	CT050R	GTTCCCATCCAATCCAACAC
CT051F	TTTTCTACACAAATGAAGATATTAGCA	CT051R	GCTCCTGCTAGTCTGTCAATCA
CT052F	GCTCTTCCCTCCCTCAATTC	CT052R	GGGTGACAGCGAAGAGTAGG
CT053F	ATGGAATTCACTTGGCTTGC	CT053R	GCCAAAGTTGCGCAATAAAG
CT054F	GTCATGGCTTGTTGGGATCT	CT054R	GTGGGAACAAGAGGACCAAA
ĊT055F	TTCCCTCAGGCTGACAAAGT	CT055R	CCCCATGTCCTCATCAGACT
CT056F	GATGCCATGAGTGGGAAAGT	CT056R	CACGAGGCTCTGTTTCTGTG
CT057F	TCGCTCTACTGGCAGACCTT	CT057R	TAGAGGCAGTCAAGCCGAAT
CT058F	TCCCGCTAATTTAACCTCCA	CT058R	CGCGATCAGAATAACAAGCA
CT059F	AAAGCAATTTGCCCTTGCTA	CT059R	AGGAGCCCATAAACACAAGG
CT060F	GCACTTCGAGGGGATTCA	CT060R	GGCTTATGGCTGTTGTGGTT
CT061F	CGAGGCTTCTAAGTTCATGG	CT061R	AAAGAGCCATACCCACATGC
CT062F	ACCGTCTTGAGCCAACTGTC	CT062R	CAAAGGATCCAATGCCAAGT
CT063F	CCCTCTCTTTCGAGGGTTTT	CT063R	AACCTCTGTGGCTGCATCTT
CT064F	ATGCCTAATGGAGGGTCCTT	CT064R	TTTACCCTCCTCCTCCCCTA
CT065F	ACCCTACTGCTTCCCCATTT	CT065R	CCCTTATGGCTCTTGCTACG
CT066F	CCCCATTTAAGATATGAAAGAACTC	CT066R	TCAACATGGAGCCAGCAGTA
CT067F	CCTTTGTGGAGGCAGAACAT	CT067R	GAAGGGTATGGTGTCCCAGA

• • . • • •

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT068F	CTGGCTCCATGTTGATGATG	CT068R	CAGCCTTGAGGCACTTCTCT
CT069F	TGGCTGAAAAGCTGGTTCTT	CT069R	CAGGATGCTTTTACATTGTCCA
CT070F	TGTTTGGGCAATAACAAGGA	CT070R	TGGGAAATATCCGAAGCAAG
CT071F	TTCTGATTTTCTTTTGGCTCAAG	CT071R	TGCTGTGAACTTGGGTGAAG
CT072F	TTTGACATTGGACTCGCTCA	CT072R	TGAAAAACAGGGTGGCATCT
CT073F	GCTGCTGCAACCAACAAGTA	CT073R	CAGCAACGTTTTCACTTCCA
CT074F	TCCAAACATTGGCAAAACAA	CT074R	TCAAGCATGAAGCTCTTGGA
CT075F	GGAAAGGCAGCACCATTG	CT075R	GAGAGTGGACTTCCCGTGAT
CT076F	GCGAGCGATCTCACTCTTCT	CT076R	AGTTCGAAGCTCCGATAGCA
CT077F	ATGTTGCAGTTTCCCCACTC	CT077R	CAGCCAATGGAGTGAGATGTT
CT078F	TTCACAATTCACCTCCGTTCT	CT078R	TCATTCAAACCAGCTGTGGA
CT079F	CGCGTGGAAACAAAACTGAT	CT079R	AGAAGCTTCGTCAGCTCTGC
CT080F	TTCACTCAGATCCACCACCA	CT080R	TGGATCAGGGACCAGAGAAG
CT081F	CCGCCGGTAGTACCATCAC	CT081R	CAGCTTCAACGTGTCAATCG
CT082F	TCAAGACCACACTGCACTCC	CT082R	TGCAAATGCTGGTTCTTTTC
CT083F	TTGCTTCAATGCTTTCCTGA	CT083R	TGCCCAAAAGTCATTCACAG
CT084F	AGCATTGCATAGCAGCCTCT	CT084R	TTTGGGAATTGGTTTGGAAG
CT085F	CTTCCAAACCAATTCCCAAA	CT085R	CTTGAACTCAACGTGCCTGA
CT086F	CACGAGGATTCTCTCTCTCTTTC	CT086R	GTATGTGTGGTGGTGGTGGA
CT087F	TGTTGTTGGTGGGAAATTGA	CT087R	TAATGAGCAGGCTTCCCTTC
CT088F	AGAAAACGTCCATGGCTGAC	CT088R	TCCCCCAACATAAGGAATGA
CT089F	GATGGCTCTTCCCTCTCGA	CT089R	GGCTTCTCTGTTGGCTTCAC
CT090F	CACAAGGGAAAGGCAATGTT	CT090R	TCTGAACCTCCAATCACAGG
CT091F	TCAGCAGCTCTTACCAAGCA	CT091R	TTTCGCTTCTTCCTGCACTT
CT092F	CCAGGTTCTGTGGATTGGAT	CT092R	TCTCGAAGCAGTTGTAAATAGAAAA
CT093F	TCTGGAGTTGCAAGGTGTTG	CT093R	GGGATCCAGAGAGAATGCAG
CT094F	TCTTTCATGGTGGTTTTGATTG	CT094R	ACCTTGTGGATGGGTCAGAA
CT095F	ACGAGGTTGAAGCCTCTGAA	CT095R	ACATCTGAGGGGACAACAGG
CT096F	CAATTTGCTTTGTGCCCTTT	CT096R	GGTCACAGAAGACGCTACCC
CT097F	CCCTAGCCTTCTCGTTCCTT	CT097R	CTTCATTAGCGCCCTTTTTG
CT098F	CAGACGCTAGCAAGGAAACC	CT098R	TAATTGGATCGATCGGAAGC
CT099F	CACGAGGAAGCCATGTTAAT	CT099R	TGCAACCCAAATTTGTGAAA
CT100F	CCCGTGTGTGTGAGAGAAAG	CT100R	TCGACAATGCTGAGCAAAAC
CT101F	TTCATTAGCAACACCCACGA	CT101R	CATCATCAACCATCCAACCA
CT102F	CATCTCCATAGCCACGGTCT	CT102R	ACTGTTAACGAGGCGCAGTC
CT103F	CAGGGTAGGGACCAGTGAAG	CT103R	CAGGGTAGGGACCAGTGAAG
CT104F	TGGTTCACCAACTCCAATCA	CT104R	AAGCCAGAGCCATTTCTTCA
CT105F	CCTGCAGATAAGGTGCATGA	CT105R	GCGTGCAATTGGAAATTCTT
CT106F	CACGAGGAATTGGTTACATTCTT	CT106R	TGGCTGCATGCATCATAAAC
CT107F	ACTTTTTGTCCCGCAGCTAA	CT107R	GGTGAAGAATATGGCGGAAA
CT108F	TGGAAACCATGAGAACAGGA	CT108R	TCATTTCCGGATTTTGTTTTG
CT109F	TGGTGGTAACAGCAACAGGA	CT109R	GCTTTCATCACCCAAGATGG

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT110F	GCACTGATCCATACCCACAA	CT110R	CATCTCCTGTGTCAGCCTCA
CT111F	CGGGAATTTTCCATCATCAC	CTIIIR	GCCATTTGGAATTCAAGCTC
CT112F	GCAGCTGAAGATGTTGGACA	CT112R	CGAGGGTTGACTAGCTGACG
CT113F	GGTGAAGGTGATTGCTTGGT	CT113R	CGAGGGTTGCATTTCTCAAT
CT114F	TCGGGCTAGCTAAGTTCCTG	CT114R	TCCTGATGTGTTCCCCTCTC
CT115F	ATCAATTTGGTGGGTTCCAA	CT115R	TTGGGCAATACAGTCAGCAA
CT116F	ACTCAAGAAGCGGTGCTGAT	CT116R	TTCACTGAGAGGCTATACATAAATGA
CT117F	TTGGGGAAAACTGATGAACC	CT117R	TGAGCAGGGCTATATATATGTGTGA
CT118F	AAGCGAAGCTCAAACACATT	CT118R	TGGCAAACTACAACTGTGTGG
CT119F	ATCCAAACATGAGGCCAGAA	CT119R	TGTGCCCATCAATCAACTTC
CT120F	TTGCAATTAGGATCATTTTGTGA	CT120R	TGGTGCCTTTTCTGATCTCC
CT121F	AACATAGCAAAGGAGGTTGACA	CT121R	TTGTTGAATTATCATTTGGGTTTG
CT122F	TTCAACTCTCAGAAGGAACCTG	CT122R	TTGTTGTTACGATGATGAAGCTA
CT123F	CCGTTGTGCAAATTGATGAG	CT123R	TCAAGTGCATTTTGCTAGGC
CT124F	CGAGGCTGAGGAGAGAATGT	CT124R	ATTGGGCAGCGCTTATACTG
CT125F	CGCTTCTTCACTGCCTCTTC	CT125R	AAAAGCTTCAGTTGCGGAAA
CT126F	TTGATGTGTTTGCACTTGAGAA	CT126R	TGATGATAGAAGTCTACAAATTAGGG
CT127F	CTTTTCTCCCCATCCCTCTC	CT127R	CCGGCAACCTCCACTAATAA
CT128F	TGGAAGCTCTCAGCTTTGGT	CT128R	TTGTTCCAGCAGACCATTGA
CT129F	ACGAGGGTCATTGTTCCCTA	CT129R	GCCACCCTCCTCTGTTCT
CT130F	TCTTCTCGTAAACCACACATACAAA	CT130R	AAGTTCTTCCTCCGGCATCT
CT131F	GCCCTGCACTTTTGTGTTTT	CT131R	ATTTATGCTCTTCCCGCAAA
CT132F	TGTGGGTTTGGAACAGAACA	CT132R	ATCTGCTGAAGCGTCGTTTT
CT133F	AATTTGGACTTGGTGCAAGG	CT133R	GCAAAGGCAAGGATTGTAGG
CT134F	TGGATTGCTCCTTCTCATCC	CT134R	CATCCAAAGCCCTAGCTATTTTT
CT135F	TTTGTGTCATGGGAGACAGC	CT135R	CTCTTGCAACCAGCATCAAA
CT136F	TGAATGGGAGGCTGTAGAGG	CT136R	AAATCTCAAATTTGCAACCTATTT
CT137F	TGCAGAAGAGTAGCCATCCAT	CT137R	GCCCCATCTTAATTGGTTAGC
CT138F	TCATAACAAATAACCATTGTTTGAGAA	CT138R	ATGCAGCACGTTTCTGATTG
CT139F	ATCAGAAACGTGCTGCATGA	CT139R	TTCAGCCTAACCAAGGTACGA
CT140F	GTAGCCTCGAATTGGACGAG	CT140R	TGCATTAGATCTGGAATTGAAGC
CT141F	TTCACAGGGCACCATACAAA	CT141R	TTACCATGCAAGGTGACAGC
CT142F	CGTCGGATTATCCAAGGTGA	CT142R	TTTCCGAAAAAGAAAATTGC
CT143F	GAGGGGGGGGGGGCTTCTGTTTCT	CT143R	GGCTTCTTTTGGTTGGTGAA
CT144F	GTAGCCGGAGAAATGGGTCT	CT144R	AAGGGTATATTATCCAACCAACCA
CT145F	AGGTCACTGCCAGAATGGAA	CT145R	GAATGAAAAAGAAAAAGGTATTCATGT
CT146F	CCACTGCCATTGAAGTTCCT	CT146R	AAAATGAAACAGGTCAAATCATACA
CT147F	CGTCCATAAATCAAGTCTTAGCA	CT147R	ATGGAAGCTGCAAGATCGTC
CT148F	GCAGAACAGAGAGTGCGAAA	CT148R	CCTCTAAGGCAGCATTCACC
CT149F	CCCCTTTTGACATACCATCC	CT149R	CCCCTTTTGACATACCATCC
CT150F	TCTAGATCATTCATAACAAGTTGCTG	CT150R	ATTGGATCCCGAGTCAAACA
CT151F	GCTGCCTTGTCTACTTTTCCA	CT151R	CCAACAAAACTTGGGTGCAT

er fra e

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT152F	AAAATTTCAGAGAGAGAAACACTCA	CT152R	GTCGATTTCCCATCAACACC
CT153F	GCACACTCACAAATCCTCCA	CT153R	TTTGCAGAAAGCAAACTAAACTACA
CT154F	CACGAGGGGAAGAGTTATCAA	CT154R	TGTACATGGCATTGGTAGATTTG
CT155F	AAGGCAAGAGTCAGCCTTGA	CT155R	AATGAAAGATGATTATGACTAAAGCA
CT156F	TTGATTTTAATGGAAGGGATGG	CT156R	AACCGGATTTTGTAGGAAGTGA
CT157F	CAACCTTCCTCTCCCGAACT	CT157R	CAACCTTCCTCTCCCGAACT
CT158F	CCTGCAGCAATATGTGCCTA	CT158R	AGAGGGAGTGCCTTGGAATG
CT159F	AGGGTAAAAGGCTTGGAGGA	CT159R	TCGGTTCATTTTCCAATAGGTC
CT160F	AGATGGATTCGGTTGGAATG	CT160R	GTCCTCCCTTCCATGTTCCT
CT161F	TCTGAACCTCCAATCACAGG	CT161R	CACAAGGGAAAGGCAATGTT
CT162F	CACGAGGGCCTAATAAACATACA	CT162R	TCACCTTCATTCAGCCATCA
CT163F	CCCGTCTCAATGAAGCATTT	CT163R	TCAACGCCCACACACATAAT
CT164F	GGGTTTCGCAGATAGCTTCA	CT164R	GGATTTTGCAGAAAGCAAGC
CT165F	TGAAGGGTTAGCTGCTGTCA	CT165R	GCTCGGCAAAATTCTTTTCA
CT166F	TGGATCGATCTTCCTGGTTC	CT166R	AGCTCCACAGTTGATTGATTGA
CT167F	TCAATGCAAAGATCGGTCAA	CT167R	ACCCCAACGGAGCTAATCTT
CT168F	TTTCTCTGGGATCCATCCTG	CT168R	CCAAGCTAACCCTCCAACAA
CT169F	ATTCCCAAATGGCAAGACAC	CT169R	ACCACATGTGATGGTGCAAA
CT170F	CAAAAACGACGACAACATCG	CT170R	GCCTTACACGCAGCTCTTCT
CT171F	CACGAGGTCTCTTTCTACTCTGC	CT171R	GTGGTGACCGAGAACAAGGT
CT172F	CAGTCACGGTCATCTTCAGG	CT172R	AAACAAGCATCGGAAACAGC
CT173F	CGGTGAGGGAAGATGTTAGG	CT173R	CCTATTTTGCAAGACCCATAAA
CT174F	GAGGGTTTCGTTGTCCAGAA	CT174R	GCCAGGAAAAGCACGAGATA
CT175F	GTGGATTTGGAGCAAGGAAA	CT175R	CCCTCCCAGAAACAGAATCA
CT176F	CTTTCCTCCTACCATCAACCA	CT176R	GGAACATTCTGAAGATAATCGAG
CT177F	GAGGAACCATTCCACGTCAC	CT177R	TCATGGCGGTGGTTACACTA
CT178F	TTTTCTTCACCCGTTTCAGC	CT178R	TGATCGATGGTGGGGATACT
CT179F	AACCACCGTCTCGTTCTCTG	CT179R	TCCTTAAACGATCCCGACAC
CT180F	TTTCTCCCTCCAACTCGAAA	CT180R	TGAAGCACCCCAACTAGGAC
CT181F	ATGGGTGATGGATTTGTGCT	CT181R	GCAGCAGATGAAGGAGGAAC
CT182F	GCCACTGCGGAAAATATCTC	CT182R	CCGTACGATTGGAGAAACGA
CT183F	TCTGTAAAAATTCAGACTTTGACTCAC	CT183R	CATGTCAACGCAGGAAGAAA
CT184F	ATGGCTTCCATGATGAGACC	CT184R	TCCCATACTGCAGCTCCTCT
CT185F	TGGATCATGAAATAATGGATGG	CT185R	TGATGATGGGTGTCAAATCG
CT186F	CGAGGCATCTGTTTCTCTCA	CT186R	ATGGTTCTGCTGGAACAGGT
CT187F	AATGGGTAAGGCCTCAAGGT	CT187R	AGCGTTAGAAAGGGGATGGT
CT188F	CCACCACCACATTCCTCTT	CT188R	TACTGGGAAGACCCATTTGC
CT189F	ACTGACGCGAAAAGCAGATT	CT189R	ACAACCAATCTTGCACCTGA
CT190F	GATTCTGAGCGAAGCCAAAC	CT190R	TGGAGGCGAAAGAGAGAAGA
CT191F	CAACTCATCATCCTTGAATGAAA	CT191R	GGTCACTGCCAGAATGGAAT
CT192F	CGAGGTTCTTCTTCAATTCCA	CT192R	GTTCCGATCCCGTAAACCTT
CT193F	ACCACCAACCAGATCCAAAA	CT193R	CGTAAGGGAAGGCGACATTA

Name	Primer sequence 5'-3'	Name	Primer sequence 5'-3'
CT194F	CCACCCCTTGATCCCTTTAT	CT194R	TCCGATGTGAATCTATTGGTCT
CT195F	ACTCCTCCGTCTGGAATCCT	CT195R	GGTTCTTGCTCTTCGTCGTC
CT196F	ACTTTGGCCCCTAAGGTGAT	CT196R	TCCTGGAGCAGTTAAATCAGG
CT197F	TGTGTAATGCTGGGGTCAGA	CT197R	CTCATCCTCATCATCTTCAATTT
CT198F	TGCAAAGCGTTGACAGTTTC	CT198R	GGCAGCCTTTCCAAACTTAT
CT199F	GAGGGGTCCCTCTCTCAGTC	CT199R	ACCCTTTGGGATTTGGATTC
CT200F	CACGAGGCAAAGCTGAAGA	CT200R	GCGAAATTCTTCGCAATCTC

4.2.3 Analysis of the synthesized primers

The primers were tested for amplification, transferability and polymorphism among five accessions of *Cyamopsis*. Out of the 226 primers tested 190 primers showed amplification. Forty four markers were monomorphic and 67 of the markers were polymorphic only in *C. senegalensis*; 63 were non transferable in *C. senegalensis*. Only 5 were polymorphic in commercial cultivars tested. Fig 4.3 shows the amplification, transferability, monomorphic and polymorphic markers among five accessions of *Cyamopsis*. The binary data from the amplification of SSRs were used for generating a dendrogram based on Euclidean similarity coefficient for SSRs. Fig 4.4 shows the dendrogram based on SSR data.

÷.

- <u>A</u>rea , 17

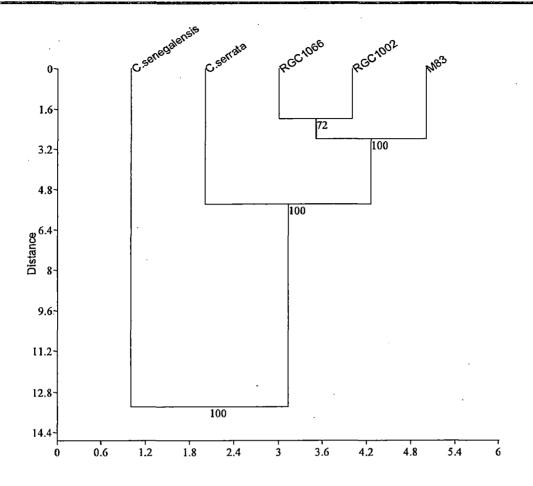


Fig. 4.4. Dendrogram generated by UPGMA method showing relationship between 5 accessions of *Cyamopsis* based on genetic profile from SSR data. The numbers at the forks show the confidence limits for the grouping of those accessions in the branch, based on 1,000 cycles of bootstrap analysis

Mining EST-SSR markers

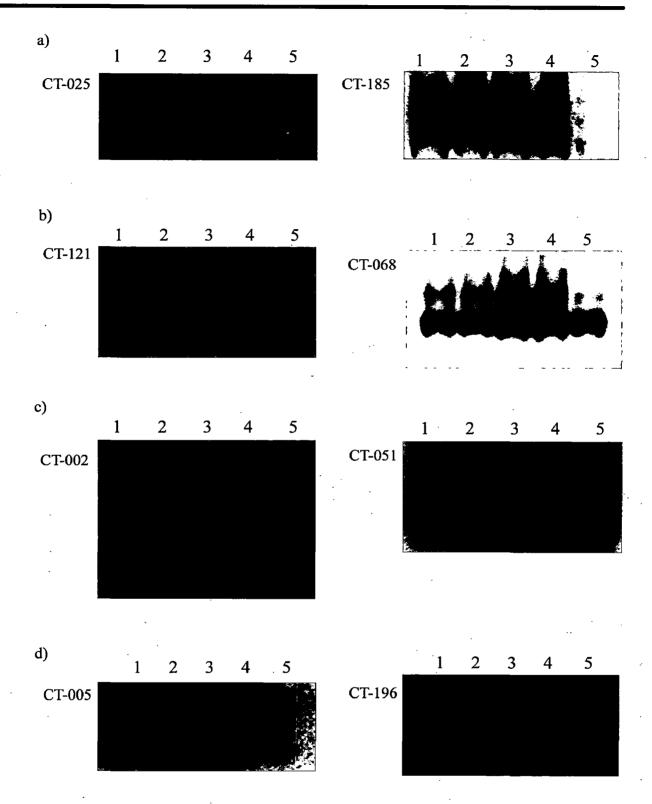


Fig. 4.3. Banding patterns from amplification of SSR markers tested 1. M83, 2. RGC 1066, 3. RGC 1002, 4. *C. serrata* and 5. *C. senegalensis*

- a) Non transferable to C. senegalensis, b) Monomorphic,
- c) Polymorphic in C. senegalensis, d) Polymorphic in accessions of C. tetragonoloba

KDCL 00297362 55 07.JPG N N N N AS+02SA108 ,

1

.1

.

The dendrogram shows that RGC-1066 and RGC-1002 are in close relation; these cultivars are used for gum production. While the accession M-83 is a vegetable variety which shows very high similarity to other accessions of *C. tetragonoloba*. The wild plant *C. senegalensis* seems to be very distant from *C. tetragonoloba* and *C. serrata* and is in the middle showing relatedness to both *C. tetragonoloba* and *C. senegalensis*.

4.3 Discussion

The present study was designed to develop SSR markers from the available ESTs of cluster bean in databases. All the EST sequences available in NCBI were downloaded and assembled using Cap3 to produce 1,755 contigs and 4,320 singlets. The formation of contigs reduces the redundancy in the sequences. MISA was used for mining the SSR containing sequences. MISA is considered as a good program as it detects compound SSRs and have shown maximum coverage [120]. In some studies lowering the threshold has resulted in additional SSR containing sequences than with default assignments [152]. However, in the present study the default definements for microsatellites (unit size / minimum number of repeats) : (1/10) (2/6) (3/5) (4/5) (5/5) (6/5) were used in MISA for obtaining optimal results.

The results suggest that there is approximately one SSR in every 4.1 kb of expressed sequences in cluster bean. This is comparable to that of barley which has one SSR in every 6.3 kb [146] and very high when compared to rice which has one SSR in every 157 kb [86].

Out of 362 markers designed 226 SSR markers were synthesized and tested. These markers can be a good resource for a variety of purposes including pedigree analysis, study of marker-trait associations and comparative mapping. To the best of our knowledge, this is the first set of SSR markers developed for cluster bean. In this study, 84% of the primer pairs were successfully amplified which is very high in comparison to genomic SSRs [80, 121] and EST-SSRs in other species [41]. As the EST-SSR markers are derived from expressed genes these markers could be useful for studying functional diversity in cluster bean. A study in six diverse barley genotypes has shown that the gene-derived markers are a good resource for sampling the functional diversity in natural germplasm collection or breeding material [149].

The wild genotypes showed more polymorphism than cultivated or elite genotypes. This may be due to the presence of unique alleles in wild genotypes, which have been lost during the adoption process in case of cultivated genotypes. These results are similar to earlier studies in other plants [149]. The loss of alleles may also be due to a smaller genome size of elite genotypes in comparison to the wild [101]. These results demonstrate the diversity of wild

germplasm with respect to cultivated genotypes. However, the utility of wild germplasm for crop improvement programmes is not possible because of incompatibility of *C. tetragonoloba* with the wild species. The incompatibility is mainly due to the failure of pollen germination on the foreign stigma [77].

Chapter \mathcal{V}

Crossing of guar genotypes for developing population to study the inheritance of phenotypic traits and their linkage with markers

5. Crossing of guar genotypes for developing population to study the inheritance of phenotypic traits and their linkage with markers

5.1 Material and methods

5.1.1 Plant material

Plants of the parents i.e., RGC 1066 and M 83 were grown in field condition in the campus of Indian Institute of Technology Roorkee during the summer of 2010. The plants were grown in rows; the space between two rows was 0.5Meter. The plant to plant distance was maintained at 0.2Meter within a row.

5.1.2 Crossing of guar plants

The crosses were made during summer of year 2010, according to the method described by Chaudhary et al. (1974) [26]. The cultivar M83 was used as female. The buds which were likely to open in one or two days were selected in the afternoon between 4:00 p.m to 6:00 p.m. The flowers below the selected bud were removed; thus the lowest bud was automatically the one used for emasculation. However, the buds above the selected buds were left intact to avoid any damage to the inflorescence. The front sepals were removed through the help of forceps by gently pulling. Petals were also removed by pulling in forward direction by forceps and necessary support to the bud was provided by fingers in such a way that only petals along with almost all the stamens were removed together. Care was taken to avoid any damage to stigma or style. The whole inflorescence was bagged using light butter paper bag to avoid any chance of cross pollination.

The buds were pollinated in the next morning between 8:00 a.m. to 9:00 a.m. The mature anthers (from RGC 1066) were directly brought into contact with the stigma. Care was taken to avoid any damage to stigma. After pollination the bud was labeled properly and bagged again.

The pollinated flowers were checked after 2-5 days for pod formation. The pods formed following pollination were properly tagged and recorded. Fig. 5.1 shows the method followed for developing the inbred population.

5.1.3 Population development

The seeds formed after cross pollination were grown to produce F_1 plants in rainy season of year 2010. The phenotype was observed to confirm the cross. The seeds of F_1 plants were harvested. The seeds from a single F_1 plant were grown in a separate plot to produce F_2 population in the summer of year 2011. The phenotypes of the F2 plants were observed and a leaf was taken from each plant for DNA extraction. DNA was extracted by using the method described in 3.1.7. The quality and quantity of DNA was measured according to the method described in 3.1.8

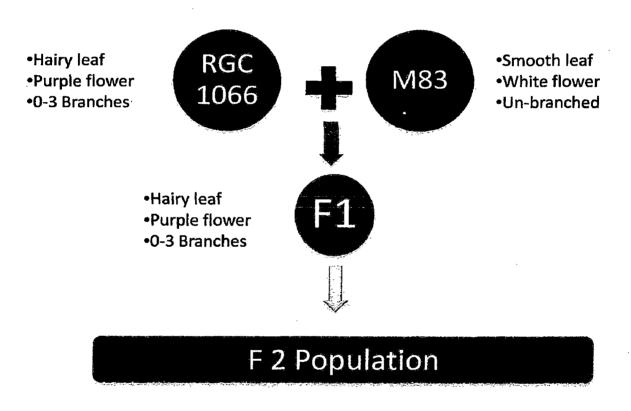


Fig 5.1 Schematic diagram showing the method followed for developing population.

5.2 Scanning electron microscopy to observe the morphology of trichome and its variation in parents of population

5.2.1 Preparation of fixative solution

. The composition of fixative solution is given in Table 5.1.

S.No.	Name of the reagent	Composition
1	95% Ethanol	60ml
2	Glacial acetic acid	5ml
3	20% Formaldehyde	20ml
4	Distilled water	15ml

Table 5.1. Composition of fixative solution

5.2.2 Sample preparation scanning electron microscopy

Leaf samples were prepared by following the protocol described by Feeney et al. (2003), with slight modification [43]. The leaf samples from field grown plants were collected in fixative solution and incubated for 24 hours at room temperature. The samples were transferred to 2.5% glutaraldehyde for 2 hours and incubated for 5 minutes in 50% glutaraldehyde. These were then treated with 70% glutaraldehyde for 30 minutes followed by incubation in 90% glutaraldehyde twice. Finally the samples were kept in absolute ethanol for 30 minutes.

The prepared leaf sample was cut to a suitable size using a sharp blade and fixed on metal disc for microscopy. The samples were bombarded with gold metal [135] in sputter coater (BAL-TEC SCD005) for 60 sec at 30mA current for depositing 5-7nm thick gold coating and observed in scanning electron microscope (FEI Quanta 200F).

5.3 Bulk segregant analysis

5.3.1 Preparation of bulk

The quantity of DNA from all the F_2 plants were estimated and diluted to $100ng/\mu L$ concentration as described in 3.1.8. Two bulks were prepared for each trait. For leaf pubescence 10 plants each containing hairy leaf and smooth leaf were selected. Equal amount of DNA from each plant was taken to prepare the bulk DNA. Similarly for flower color, 10

plants, each with purple and white colored flower, were selected and the bulk DNA was prepared.

5.3.2 Analysis

DNA from the parents and the bulks were amplified according the method described in 4.1.6. The products were separated by polyacraylamide gel electrophoresis and silver stained as described in 4.1.7.

5.4 Results

5.4.1 Phenotypes of the plants in F₂ generation

The phenotypes of the plants in F_2 were observed and recorded. The details of the phenotypic data collected are given in Table 5.2.

Plant no	Leaf	Flower Color	No. of Branches	Plant height
	Pubescence			
P1	Hairy	Purple	13	180
P2	Smooth	White	0	75
P3	Hairy	Purple	8	220
P4	Smooth	Purple	0	160
P5	Hairy	-	2	58
P6	Smooth	Purple	3	210
P7	Hairy	-	2	250
P8	Hairy	Purple	-	-
P9	Smooth	White	9	155
P10	Hairy	Purple	2	290
P11	Hairy	Purple	4	144
P12	Smooth	White	2	220
P13	Smooth	Purple	. 0	190
P14	Hairy	White	3	95
P15	Hairy	Purple	14	195
P16	Hairy	Purple	1	200
P17	Hairy	-	2	170
P18	Hairy	-	3	210
P19	Smooth	Purple	14	200
P20	Hairy	Purple	0	290
P21	Hairy	Purple	· -	-
P22	Smooth	Purple	2	170
P23	Smooth	Purple	3	165
P24	Hairy	Purple	5	170

.

Plant no	Leaf Pubescence	Flower Color	No. of Branches	Plant height
P25	Hairy		1	230
P26	Smooth	Purple	4	190
P27	Smooth	Purple	4	170
P28	Hairy		-	
P29	Hairy	White	0	150
P30	Hairy	White	1	270
P31	Smooth	Purple	2	60
P32	Hairy	Purple	2	210
P33	Smooth	White	2	70
P34	Hairy	Purple	3	235
P35	Hairy	Purple	0	100
P36	Hairy	White	3	200
P37	Smooth	White	4	220
P38	Hairy	Purple	14	220
P39	Hairy	Purple	0	170
P40	Hairy	White	8	180
P41	Hairy	Purple	10	175
P42	Hairy	-	0	130
P43	Hairy	Purple	3	210
·P44	Hairy	Purple	1	260
P45	Hairy	Purple	1	270
P46	Hairy	Purple	1	60
P47	Smooth	White	3	171
P48	Hairy	Purple	6	155
P49	Hairy	Purple	0	200
P50	Hairy	White	0	120
P51	Hairy	White	4	250
P52	Hairy	-	18	170
P53	Hairy	White	0	210
P54	Smooth	Purple	0	100
P55	Hairy	Purple	-	
P56	Hairy	Purple	0	178
P57	Hairy	Purple	4	150
P58	Hairy	-	5	220
P59	Smooth	Purple	0	80
P60	Smooth	Purple	4	185
P61	Hairy	Purple	0	125
P62	Hairy		0	160
P63	Hairy		0	160
P64	Hairy	-	5	230
P65	Hairy	Purple	9	90
P66	Smooth	Purple	4	150
P67	Hairy	Purple	3	80

77

2

÷

Plant no	Leaf Pubescence	Flower Color	No. of Branches	Plant height
P68	Smooth	Purple	12	220
P69	Hairy	White	12	130
P70	Hairy	White	5	110
P71	Hairy	Purple	6	210
P72	Smooth	Purple	0	160
P73	Smooth	Purple	7	215
P74	Hairy	Purple	5	240
P75	Hairy	White	. 2	220
P76	Hairy	White	5	110
P77	Smooth	White	0	240
P78	Hairy	Purple	0	120
P79	Hairy	-	14	210
P80	Hairy	-	-	-
P81	Hairy	Purple	0	110
P82	Smooth	Purple	0	150
P83	Hairy	-	12	200
P84	Smooth	White	2	160
P85	Hairy	Purple	3	140
P86	Hairy	-	3	130
P87	Smooth		-	-
P88	Smooth	White	3	250
P89	Smooth	-	0	. 140
P90	Hairy	White .	2	220
P91	Hairy	-	2	215
P92	Hairy	-	3	40
P93	Hairy	Purple	3	110
P94	Smooth	White	0	170
P95	Hairy	Purple	10	170
P96	Hairy	White	7	170
P97	Hairy	Purple	0	147
P98	Hairy	Purple	· 0	80
P99	Hairy	Purple	17	210
P100	Hairy	Purple	0	70
P101	Smooth		2	140
P102	Smooth	White	0	75

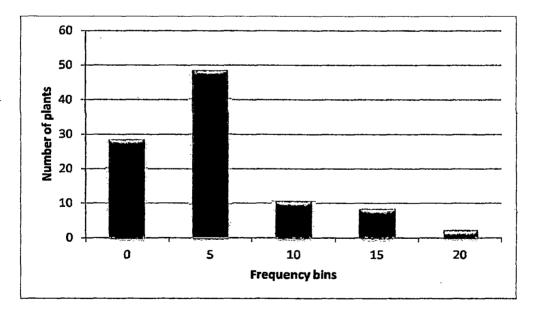
5.4.2 Segregation pattern of phenotypes

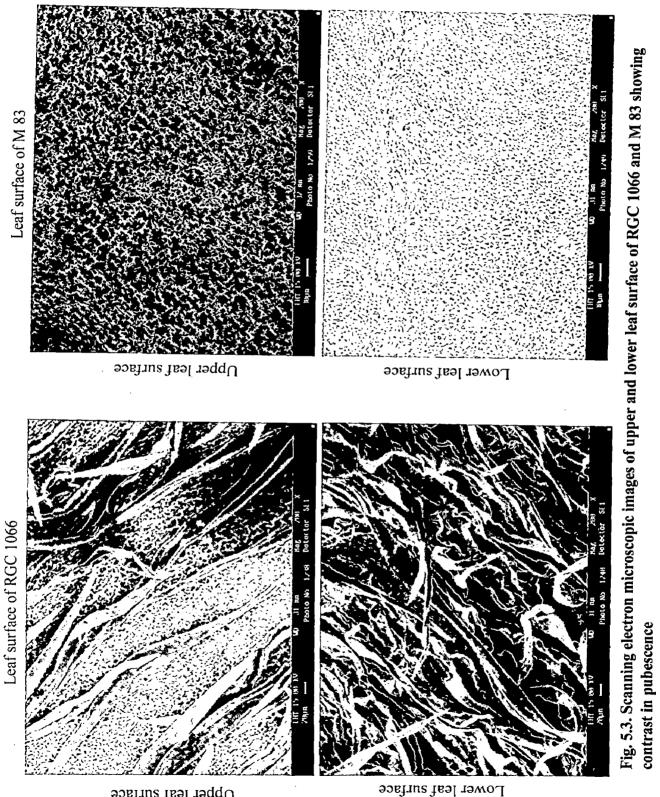
The segregation of leaf pubescence, flower color and branching trait was calculated. The dominance pattern and genetic ratios of leaf pubescence and flower color characteristics for cross in cluster bean is given in Table 5.3.

Table 5.3. The dominance pattern and genetic ratios of characteristics for cross in cluster bean

Character	F1 Phenotype	F2 Segregation		Total	Ratio
Leaf		Hairy	Smooth		
pubiscence	Hairy	71	31	102	2.29:1
Flower color		Purple	White		
	Purple	56	25	81	2.24:1

The branching trait was not present in both the parents but in F_2 many plants showed very high branching. The frequency distribution of various levels of branching is shown in Fig 5.2.



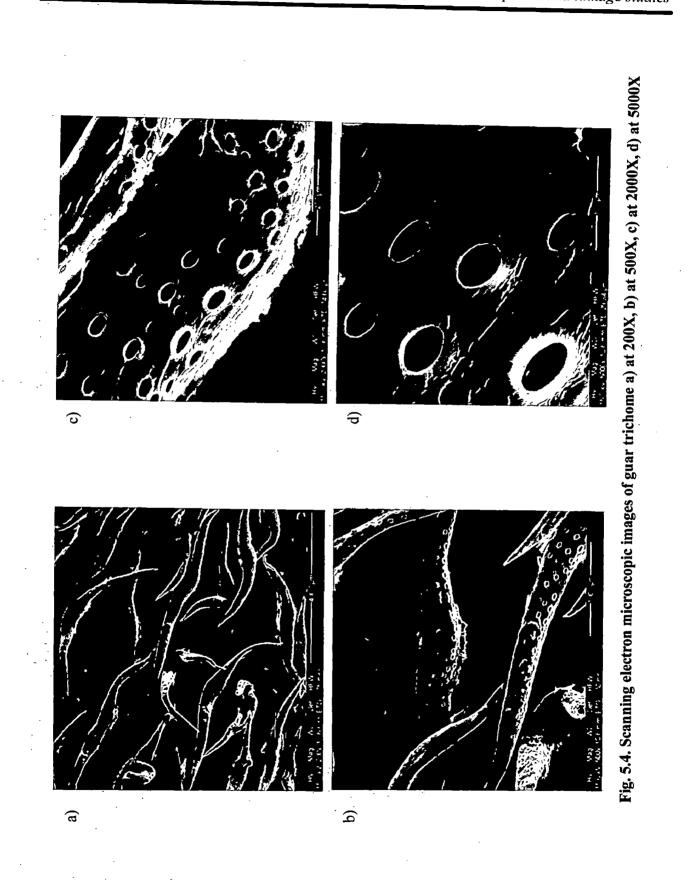

Fig. 5.2. Graph showing the number of plants with various levels of branching

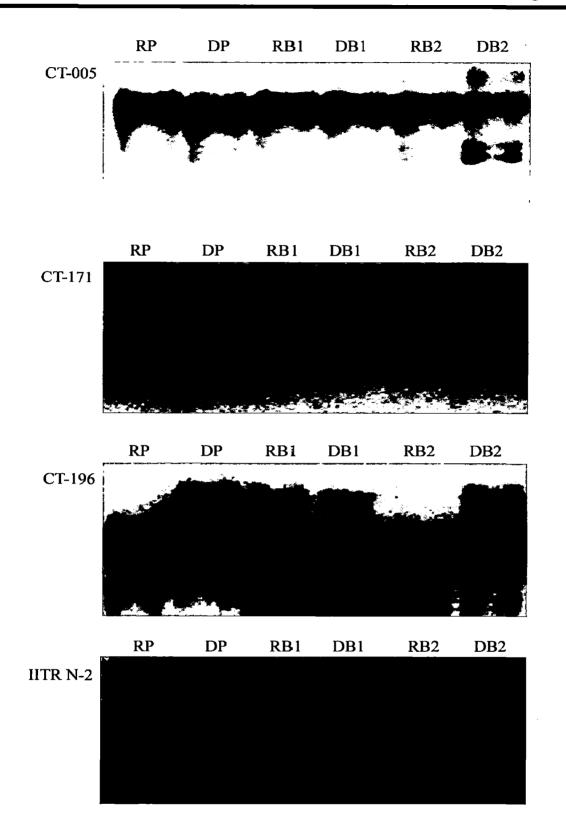
5.4.3 Variation of leaf pubescence in parental plants

The variation in the pubescence in leaf and the ultrastructure of the trichome in guar were studied by scanning electron microscopy. The SEM pictures showed long, slender, porous hair like structures in the hairy plant. While there was complete absence of such structures on the leaves of glabrous plants. Fig 5.3 and Fig 5.4 show the difference in leaf hairiness of parent plants and the ultrastructure of the trichomes. The Figure 5.3 also shows higher hairiness in lower leaf surface of RGC 1066.

5.4.4 Bulk segregant analysis

The DNA from parents and the bulks were amplified to study the pattern of inheritance of the SSR markers and to find out if any linkage to any of the traits exists. Fig 5.5 shows the banding pattern of the PCR products from parents and the bulks for leaf pubescence and flower color.


بجريهم


Upper leaf surface

(DCL 00297362 63 38.JPS N N N N AS+02SA108

.

.

:

Population development and linkage studies

Fig. 5.5. Banding pattern from ampification of polymorphic markers. RP-Recessive parent, DP-Dominant parent, RB1-Recessive bulk for leaf pubescence, DB1-Dominant bulk for leaf pubescence, RB2-Recessive bulk for flower color, DB2- Dominant bulk for flower color

(DCL 00297362 79 10.JPG N N N N AS+028A108

.

· ,

5.5 Discussion

Leaf pubescence is a quantitative trait in some species and has a potential for insect pest management [79] but its absence in vegetable varieties of guar is an advantage. The population which is segregating for pubescence trait can be used to find markers linked to leaf pubescence. Leaf pubescence inherited in Mendelian ratio in the F₂ population of guar. This was similar to the previous report in guar [25] and shows that the trait is qualitative and controlled by single locus. Even though guar is known to have pubescence, its structure and function is not well understood. It is previously known that trichomes occur on the surfaces of many plants and can make a contribution to plant resistance against herbivores. Glandular trichomes have heads containing various sticky and/or toxic exudates that may be secreted onto the plant surface or may rupture on contact with herbivores, causing irritation [13]. Non-glandular trichomes do not have heads and affect herbivores by mechanically obstructing their movement across the plant surface [13]. The observation of guar trichomes by scanning electron microscopy showed that the guar trichomes are non-glandular in nature. Trichomes were long, slender, porous hair like structures. The structure of trichome in guar suggests that it might be helpful for the plant to maintain a cool area surrounding the leaf. This shows the adaptation of the plant towards dry environments where it is cultivated commonly.

Inheritance of flower color also showed Mendelian ratio. The purple color of flower was found to be dominant over the white colored flower. Flower color is not an economically important trait. However it can be used as a phenotypic marker for testing the crosses made for genetic studies.

Both parents of the population were nonbranching. However, few of the F_2 plants were branched type. This may be due to the control of the trait by multiple loci as reported previously [25].

As expected, all polymorphic SSR markers tested here segregated and also showed recombinant alleles. The SSR markers that were polymorphic between the parental accessions of the population developed were applied on the bulks. Two bulks that differ in leaf pubescence and flower color were used in the study. The amplification in bulks showed both the marker alleles of parents. This shows that the traits are independent of the markers tested. Further studies with large number of markers are required to find the markers linked to these phenotypes.

Chapter VI

Conclusions

6. Conclusions

The study of genetic diversity in guar through RAPD and ISSR markers showed that the overall genetic variability in the germplasm collection is limited. However landraces show significant variation and is different from commercially grown cultivars. Correlation between the molecular data from marker genotyping and the geographic coordinates for the region of landrace collection showed that the molecular data was consistent with the geographic distribution pattern of the landraces. The study also showed that RAPD is a better technique to study genetic variation in guar as the resolving powers of RAPD markers were higher the ISSR markers.

Guar EST sequences available in NCBI were downloaded and mined for SSRs. Analysis of the SSR containing sequences showed very high number of mononucleotide repeats while, negligible number of penta and hexanucleotide repeats were present. A total of 362 primer pairs were designed and 226 primer pairs were tested. Eighty four percent of the tested EST-SSR markers showed amplification in guar. The study showed high polymorphism between *C. tetragonoloba and C. senegalensis*. This shows *C. senegalensis* is a more distant relative to *C. tetragonoloba* and *C. serrata*.

Cross between M83 X RGC 1066 was made successfully to produce an F2 population. The observation showed that leaf public ence and flower color are single locus controlled phenotypes and segregate with Mendelian ratio in the population. The phenotype of branching showed transgressive behavior in the population. It shows that, the trait is controlled by more than one loci. The SSR markers that were polymorphic between the parental accessions of the population developed were applied on the bulk DNA to study the linkage of markers to leaf public end flower color. The amplification in bulks showed both the marker alleles of parents. This shows that the traits are independent of the markers tested.

Chapter VII

Future scope

7. Future Scope

- SCAR markers can be developed using the polymorphic data from RAPD and ISSR
- Linkage analysis of the polymorphic markers could be studied in other populations for commercially important traits
- Genetic linkage map can be developed in the population by generation of large number of sequences from NGS technology for SNP mining
- Metabolomic studies to understand various differences between parents of the population can be carried out

8. References

- 1. Agarwal, M., Shrivastava, N. and Padh, H. Advances in molecular marker techniques and their applications in plant sciences. *Plant Cell Reports* 27(4):617-631 (2008).
- 2. Ajmone Marsan, P., Castiglioni, P., Fusari, F., Kuiper, M. and Motto, M. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. *TAG Theoretical and Applied Genetics* 96(2):219-227 (1998).
- 3. Albani, M. C., Battey, N. H. and Wilkinson, M. J. The development of ISSR-derived SCAR markers around the Seasonal Flowering Locus (SFL) in *Fragaria vesca*. *TAG Theoretical and Applied Genetics* 109(3):571-579 (2004).
- Ali, M. L., Rajewski, J. F., Baenziger, P. S., Gill, K. S., Eskridge, K. M. and Dweikat, I. Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. *Molecular Breeding* 21(4):497-509 (2008).
- 5. Anderson, E. Endosperm mucilages of legumes. *Industrial & Engineering Chemistry* 41(12):2887-2890 (1949).
- 6. Arora, R. N. and Pahuja, S. K. Mutagenesis in Guar [*Cyamopsis tetragonoloba* (L.) Taub.]. *Plant Mutation Reports* 2(1):7-9 (2008).
- 7. Bassam, B. J., Caetano-Anolles, G. and Gresshoff, P. M. DNA amplification fingerprinting of bacteria. *Applied Microbiology and Biotechnology* 38(1):70-76 (1992).
- Bilgen, M., Karaca, M., Onus, A. N. and Ince, A. G. A software program combining sequence motif searches with keywords for finding repeats containing DNA sequences. *Bioinformatics* 20(18):3379-3386 (2004).
- 9. Bocianowski, J. and Seidler-Lozykowska, K. The relationship between RAPD markers and quantitative traits of caraway (*Carum carvi* L.). *Industrial Crops and Products* 36(1):135-139 (2011).

- 10. Bornet, B., Goraguer, F., Joly, G. and Branchard, M. Genetic diversity in European and Argentinian cultivated potatoes (*Solanum tuberosum* subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). *Genome* 45(3):481-484 (2002).
- 11. Bornet, B., Muller, C., Paulus, F. and Branchard, M. Highly informative nature of inter simple sequence repeat (ISSR) sequences amplified using tri-and tetra-nucleotide primers from DNA of cauliflower (*Brassica oleracea* var. botrytis L.). *Genome* 45(5):890-896 (2002).
- 12. Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *American Journal of Human Genetics* 32(3):314 (1980).
- Boughton, A. J., Hoover, K. and Felton, G. W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, *Lycopersicon esculentum*. *Journal* of Chemical Ecology 31(9):2211-2216 (2005).
- Bracci, T., Busconi, M., Fogher, C. and Sebastiani, L. Molecular studies in olive (*Olea europaea* L.): overview on DNA markers applications and recent advances in genome analysis. *Plant Cell Reports* 30(4):449-426 (2011).
- 15. Bravo, L., Grados, N. and Saura-Calixto, F. Characterization of syrups and dietary fiber obtained from mesquite pods (*Prosopis pallida* L). *Journal of Agricultural and Food Chemistry* 46(5):1727-1733 (1998).
- 16. Bravo, L. and Saura-Calixto, F. Composition and potential uses of mesquite pods (*Prosopis pallida* L): comparison with carob pods (*Ceratonia siliqua* L). *Journal of the Science of Food and Agriculture* 65(3):303-306 (1994).
- 17. Brummer, Y., Cui, W. and Wang, Q. Extraction, purification and physicochemical characterization of fenugreek gum. *Food Hydrocolloids* 17(3):229-236 (2003).
- Buckeridge, M. S., Pessoa dos Santos, H. and Tiné, M. A. S. Mobilisation of storage cell wall polysaccharides in seeds. *Plant Physiology and Biochemistry* 38(1-2):141-156 (2000).

- Bulpin, P. V., Gidley, M. J., Jeffcoat, R. and Underwood, D. R. Development of a biotechnological process for the modification of galactomannan polymers with plant αgalactosidase. *Carbohydrate Polymers* 12:155-168 (1990).
- 20. Butt, M. S., Shahzadi, N., Sharif, M. K. and Nasir, M. Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. *Critical Reviews in Food Science and Nutrition* 47(4):389-396 (2007).
- Caetano-Anolles, G. and Bassam, B. J. DNA amplification fingerprinting using arbitrary oligonucleotide primers. *Applied Biochemistry and Biotechnology* 42(2):189-200 (1993).
- 22. Carlos de Oliveira, A., Novac Garcia, A., Cristofani, M. and Machado, M. A. Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. *Euphytica* 128(3):397-403 (2002).
- 23. Ceccarelli, S. Specific adaptation and breeding for marginal conditions. *Euphytica* 77(3):205-219 (1994).
- 24. Cerny, T. A., Caetano-Anolles, G., Trigiano, R. N. and Starman, T. W. Molecular phylogeny and DNA amplification fingerprinting of *Petunia* taxa. *TAG Theoretical and Applied Genetics* 92(8):1009-1016 (1996).
- 25. Chaudhary, B. S. and Lodhi, G. P. Studies on the inheritance of five qualitative characteristics in clusterbean (*Cyamopsis tetragonoloba* (L.) Taub). *Euphytica* 30(1):161-165 (1981).
- Chaudhary, B. S., Paroda, R. S. and Solanki, K. R. A new crossing technique in cluster bean (*Cyamopsis tetragonoloba* [L.] Taub.). *Current Science* 43 (1974).
- 27. Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. and Pang, E. C. K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. *Euphytica* 142(1):169-196 (2005).
- 28. Crawford, D. J. Plant molecular systematics: macromolecular approaches. New York: John Wiley & Sons (1990).

- 29. Cutler, S. Cellulose synthesis: cloning in silico. *Current Biology* 7(2):R108-R111 (1997).
- 30. Dabas, B. S., Mandal, S., Phogat, B. S., Bisht, I. S. and Agrawal, R. C. Guar (*Cyamopsis tetragonoloba*)- A resume of research at NBPGR. New Delhi: National Bureau of Plant Genetic Resources (2001).
- 31. Dhugga, K. S. Food additives. Gums the word. *Asia Pacific Food Industry*:57-58 (2005).
- 32. Dhugga, K. S., Barreiro, R., Whitten, B., Stecca, K., Hazebroek, J., Randhawa, G. S., Dolan, M., Kinney, A. J., Tomes, D., Nichols, S. and Anderson, P. Guar seed betamannan synthase is a member of the cellulose synthase super gene family. *Science* 303(5656):363-366 (2004).
- 33. Dnyaneshwar, W., Preeti, C., Kalpana, J. and Bhushan, P. Development and application of RAPD-SCAR marker for identification of *Phyllanthus emblica* LINN. *Biological & Pharmaceutical Bulletin* 29(11):2313-2316 (2006).
- 34. Doyle, J. J. Isolation of plant DNA from fresh tissue. Focus 12:13-15 (1990).
- 35. Duncan, C. J. G., Pugh, N., Pasco, D. S. and Ross, S. A. Isolation of a galactomannan that enhances macrophage activation from the edible fungus *Morchella esculenta*. *Journal of Agricultural and Food Chemistry* 50(20):5683-5685 (2002).
- 36. Dwivedi, N. K., Bhandari, D. C., Dubas, B. S., Agrawal, R. C., Mandal, S. and Rana, R. S. Catalogue on cluster bean (*Cyamopsis tetragonoloba* (L.) Taub) germplasm part III. New Delhi: NBPGR (1995).
- 37. Edwards, K. J., Barker, J. H., Daly, A., Jones, C. and Karp, A. Microsatellite libraries enriched for several microsatellite sequences in plants. *BioTechniques* 20(5):758 (1996).
- 38. Edwards, M., Bulpin, P. V., Dea, I. C. M. and Reid, J. S. G. Biosynthesis of legumeseed galactomannans *in vitro*. *Planta* 178(1):41-51 (1989).

- Edwards, M., Scott, C., Gidley, M. J. and Reid, J. S. G. Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. *Planta* 187(1):67-74 (1992).
- 40. Edwards, M. E., Choo, T. S., Dickson, C. A., Scott, C., Gidley, M. J. and Reid, J. S. G. The seeds of *Lotus japonicus* lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. *Plant Physiology* 134(3):1153-1162 (2004).
- Edwards, M. E., Dickson, C. A., Chengappa, S., Sidebottom, C., Gidley, M. J. and Reid, J. S. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. *The Plant Journal* 19(6):691-697 (1999).
- 42. Eujayl, I., Sorrells, M., Baum, M., Wolters, P. and Powell, W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. *Euphytica* 119(1):39-43 (2001).
- 43. Feeney, K. A., Heard, P. J., Zhao, F. J. and Shewry, P. R. Determination of the distribution of sulphur in wheat starchy endosperm cells using secondary ion mass spectroscopy (SIMS) combined with isotope enhancement. *Journal of Cereal Science* 37(3):311-318 (2003).
- 44. Ferriol, M., Pico, B. and Nuez, F. Genetic diversity of a germplasm collection of *Cucurbita pepo* using SRAP and AFLP markers. *TAG Theoretical and Applied Genetics* 107(2):271-282 (2003).
- 45. Geuna, F., Toschi, M. and Bassi, D. The use of AFLP markers for cultivar identification in apricot. *Plant Breeding* 122(6):526-531 (2003).
- 46. Ghalmi, N., Malice, M., Jacquemin, J. M., Ounane, S. M., Mekliche, L. and Baudoin, J. P. Morphological and molecular diversity within Algerian cowpea (*Vigna unguiculata* (L.) Walp.) landraces. *Genetic Resources and Crop Evolution* 57(3):371-386 (2010).
- 47. Giannini, E. G., Mansi, C., Dulbecco, P. and Savarino, V. Role of partially hydrolyzed guar gum in the treatment of irritable bowel syndrome. *Nutrition* 22(3):334-342 (2006).

- 48. Gill, S. L. Evaluation of reciprocal hybrid crosses in guar. Texas, USA: Texas Tech University; (2009).
- 49. Goyal, M. and Sharma, S. K. Traditional wisdom and value addition prospects of arid foods of desert region of North West India. *Indian Journal of Traditonal Knowledge* 8:581-585 (2009).
- 50. Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Roder, M., Gautier, M. F., Joudrier, P., Schlatter, A. and Dubcovsky, J. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. *TAG Theoretical and Applied Genetics* 105(2):413-422 (2002).
- 51. Gupta, S., Srivastava, M., Mishra, G. P., Naik, P. K., Chauhan, R. S., Tiwari, S. K., Kumar, M. and Singh, R. Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different *Jatropha curcas* genotypes. *African Journal of Biotechnology* 7(23):4230-4243 (2010).
- 52. Haley, S. D., Miklas, P. N., Stavely, J. R., Byrum, J. and Kelly, J. D. Identification of RAPD markers linked to a major rust resistance gene block in common bean. *TAG Theoretical and Applied Genetics* 86(4):505-512 (1993).
- 53. Hamilton, M. B., Pincus, E. L., Di Fiore, A. and Fleischer, R. C. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. *BioTechniques* 27(3):500-507 (1999).
- 54. Hammer, O., Harper, D. A. T. and Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica* 4(1):1-9 (2001).
- 55. Hayden, M. J. and Sharp, P. J. Targeted development of informative microsatellite (SSR) markers. *Nucleic Acids Research* 29(8):e44 (2001).
- 56. Hazen, S. P., Scott-Craig, J. S. and Walton, J. D. Cellulose synthase-like genes of rice. *Plant Physiology* 128(2):336-340 (2002).

- 57. Huang, X. and Madan, A. CAP3: A DNA sequence assembly program. *Genome Research* 9(9):868-877 (1999).
- 58. Hymowitz, T. The trans-domestication concept as applied to guar. *Economic Botany* 26(1):49-60 (1972).
- 59. Hymowitz, T. and Matlock, R. S. Guar in the United States. Oklahoma Agricultural Experiment Station Technical Bulletin 611:1-34 (1963).
- 60. Ijaz, S. Microsatellite markers: An important fingerprinting tool for characterization of crop plants. *African Journal of Biotechnology* 10(40):7723-7726 (2011).
- 61. Irzykowska, L. and Bocianowski, J. Genetic variation, pathogenicity and mycelial growth rate differentiation between *Gaeumannomyces graminis* var. tritici isolates derived from winter and spring wheat. *Annals of Applied Biology* 152(3):369-375 (2008).
- 62. Jaccard, P. Nouvelles recherché sur la distribution florale. 44 (1908).
- 63. Jiang, C. and Sink, K. C. RAPD and SCAR markers linked to the sex expression locus M in asparagus. *Euphytica* 94(3):329-333 (1997).
- 64. Joersbo, M., Marcussen, J. and Brunstedt, J. *In vivo* modification of the cell wall polysaccharide galactomannan of guar transformed with α -galactosidase gene cloned from senna. *Molecular Breeding* 7(3):211-219 (2001).
- 65. Joersbo, M., Pedersen, S. G., Nielsen, J. E., Marcussen, J. and Brunstedt, J. Isolation and expression of two cDNA clones encoding UDP-galactose epimerase expressed in developing seeds of the endospermous legume guar. *Plant Science* 149:147–154 (1999).
- 66. Johal, G. S., Balint-Kurti, P. and Weil, C. F. Mining and Harnessing Natural Variation: A Little MAGIC. *Crop Science* 49:2066-2073 (2008).
- 67. Jones, E., Dupal, M., Dumsday, J., Hughes, L. and Forster, J. An SSR-based genetic linkage map for perennial ryegrass (*Lolium perenne L.*). *TAG Theoretical and Applied Genetics* 105(4):577-584 (2002).

- 68. Jones, E. S., Dupal, M. P., Kolliker, R., Drayton, M. C. and Forster, J. W. Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (*Lolium perenne L.*). *TAG Theoretical and Applied Genetics* 102(2):405-415 (2001).
- 69. Jones, N., Ougham, H., Thomas, H. and Pasakinskiene, I. Markers and mapping revisited: finding your gene. *New Phytologist* 183(4):935-966 (2009).
- 70. Julio, E., Verrier, J. L. and Dorlhac de Borne, F. Development of SCAR markers linked to three disease resistances based on AFLP within *Nicotiana tabacum* L. *TAG Theoretical and Applied Genetics* 112(2):335-346 (2006).
- 71. Karagyozov, L., Kalcheva, I. D. and Chapman, V. M. Construction of random smallinsert genomic libraries highly enriched for simple sequence repeats. *Nucleic Acids Research* 21(16):3911-3912 (1993).
- 72. Kawamura, Y. GUAR GUM Chemical and Technical Assessment. www.fao.org/ag/agn/agns/jecfa/cta/69/Guar_gum_CTA_69.pdf
- 73. Khasa, D. P., Nadeem, S., Thomas, B., Robertson, A. and Bousquet, J. Application of SSR markers for parentage analysis of Populus clones. *Forest Genetics* 10(4):273-282 (2003).
- 74. Kiss, G. B., Csanadi, G., Kalman, K., Kaló, P. and Ökrész, L. Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. *Molecular and General Genetics MGG* 238(1):129-137 (1993).
 - 75. Kubisiak, T. L., Nelson, C. D., Nance, W. L. and Stine, M. RAPD linkage mapping in a longleaf pine x slash pine F 1 family. *TAG Theoretical and Applied Genetics* 90(7):1119-1127 (1995).
 - 76. Kumar, D. Silver jubilee workshop annual progress report 2008-09. Jodhpur, Rajasthan: Central Arid Zone Research Institute (2009).
 - 77. Kumar, D. and Singh, N. B. Guar in India. Jodhpur: Scientific Publishers (2002).

- 78. Kunihisa, M., Fukino, N. and Matsumoto, S. Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. *Euphytica* 134(2):209-215 (2003).
- 79. Lacape, J. M. and Nguyen, T. B. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. *Journal of Heredity* 96(4):441-444 (2005).
- 80. Li, G., Hubert, S., Bucklin, K., Ribes, V. and Hedgecock, D. Characterization of 79 microsatellite DNA markers in the Pacific oyster *Crassostrea gigas*. *Molecular Ecology Notes* 3(2):228-232 (2003).
- 81. Liu, W. X. and Hou, A. F. Genetic relationship of guar commercial cultivars. *Chinese Agricultural Science Bulletin* 25(2):133-138 (2009).
- 82. Lloyd, K. O. Isolation, characterization, and partial structure of peptido galactomannans from the yeast form of *Cladosporium werneckii*. *Biochemistry* 9(17):3446-3453 (1970).
- 83. Maheswaran, M., Subudhi, P. K., Nandi, S., Xu, J. C., Parco, A., Yang, D. C. and Huang, N. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. *TAG Theoretical and Applied Genetics* 94(1):39-45 (1997).
- 84. Martin, G. B., Williams, J. G. and Tanksley, S. D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and nearisogenic lines. *Proceedings of the National Academy of Sciences* 88(6):2336 (1991).
- 85. Martins, W., De Sousa, D., Proite, K., Guimaraes, P., Moretzsohn, M. and Bertioli, D. New softwares for automated microsatellite marker development. *Nucleic Acids Research* 34(4):e31 (2006).
- 86. McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z. and Xing, Y. Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). *DNA Research* 9(6):199-207 (2002).
- 87. Melotto, M., Afanador, L. and Kelly, J. D. Development of a SCAR marker linked to the I gene in common bean. *Genome* 39(6):1216-1219 (1996).

- 88. Metais, I., Hamon, B., Jalouzot, R. and Peltier, D. Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. *TAG Theoretical and Applied Genetics* 104(8):1346-1352 (2002).
- 89. Meudt, H. M. and Clarke, A. C. Almost forgotten or latest practice? AFLP applications, analyses and advances. *Trends in Plant Science* 12(3):106-117 (2007).
- 90. Mir, R. R., Rustgi, S., Sharma, S., Singh, R., Goyal, A., Kumar, J., Gaur, A., Tyagi, A. K., Khan, H. and Sinha, M. K. A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. *Euphytica* 161(3):413-427 (2008).
- 91. Morris, J. B. Morphological and reproductive characterization of guar (*Cyamopsis tetragonoloba*) genetic resources regenerated in Georgia, USA. *Genetic Resources and Crop Evolution* 57(7):985-993 (2010).
- 92. Mullis, K. B. and Faloona, F. A. [21] Specific synthesis of DNA *in vitro* via a polymerase-catalyzed chain reaction. *Methods in Enzymology* 155:335-350 (1987).
- 93. Muthusamy, S., Kanagarajan, S. and Ponnusamy, S. Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (*Vigna umbellata*) landraces. *Electronic Journal of Biotechnology* 11(3):32-41 (2008).
- 94. Naoumkina, M. and Dixon, R. A. Characterization of the mannan synthase promoter from guar (*Cyamopsis tetragonoloba*). *Plant Cell Reports* 30(6):997-1006 (2011).
- 95. Naoumkina, M., Torres-Jerez, I., Allen, S., He, J., Zhao, P. X., Dixon, R. A. and May, G. D. Analysis of cDNA libraries from developing seeds of guar (*Cyamopsis tetragonoloba* (L.) Taub). *BMC Plant Biology* 7:62 (2007).
- 96. Negi, M. S., Devic, M., Delseny, M. and Lakshmikumaran, M. Identification of AFLP fragments linked to seed coat colour in *Brassica juncea* and conversion to a SCAR marker for rapid selection. *TAG Theoretical and Applied Genetics* 101(1):146-152 (2000).

96

- 97. Oh, T. J., Gorman, M. and Cullis, C. A. RFLP and RAPD mapping in flax (*Linum usitatissimum*). *TAG Theoretical and Applied Genetics* 101(4):590-593 (2000).
- 98. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. *Proceedings of the National Academy of Sciences* 86(8):2766 (1989).
- 99. Overbeeke, N., Fellinger, A. J., Toonen, M. Y., Wassenaar, D. and Verrips, C. T. Cloning and nucleotide sequence of the α-galactosidase cDNA from *Cyamopsis* tetragonoloba (guar). Plant Molecular Biology 13:541-550 (1989).
- 100. Pathak, R., Singh, S. K., Singh, M. and Henry, A. Molecular assessment of genetic diversity in cluster bean (*Cyamopsis tetragonoloba*) genotypes. *Journal of Genetics* 89(2):243-246 (2010).
- 101. Patil, C. G. Nuclear DNA amount variation in *Cyamopsis* DC (Fabaceae). *Cytologia* 69(1):59-62 (2004).
- Peakall, R. and Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6(1):288-295 (2006).
- 103. Pitkänen, L., Tuomainen, P., Mikkonen, K. S. and Tenkanen, M. The effect of galactose side units and mannan chain length on the macromolecular characteristics of galactomannans. *Carbohydrate Polymers* 86:1230–1235 (2011).
- 104. Poats, F. J. Guar, a summer row crop for the Southwest. *Economic Botany* 14(3):241-246 (1958).
- 105. Poksay, K. S. and Schneeman, B. O. Pancreatic and intestinal response to dietary guar gum in rats. *The Journal of Nutrition* 113(8):1544-1549 (1983).
- 106. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. *Molecular Breeding* 2(3):225-238 (1996).

- 107. Prabaharan, M. Prospective of guar gum and its derivatives as controlled drug delivery systems. *International Journal of Biological Macromolecules* 49(2):117-124 (2011).
- 108. Prevost, A. and Wilkinson, M. J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. *TAG Theoretical and Applied Genetics* 98(1):107-112 (1999).
- 109. Punia, A., Arora, P., Yadav, R. and Chaudhury, A. Optimization and inference of PCR conditions for genetic variability studies of commercially important cluster bean varieties by RAPD analysis. *Asia Pacific Journal of Molecular Biology and Biotechnology* 17:33-38 (2009).
- 110. Rafalski, A. Applications of single nucleotide polymorphisms in crop genetics. *Current Opinion in Plant Biology* 5(2):94-100 (2002).
- 111. Rafalski, J. A. and Tingey, S. V. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. *Trends in Genetics* 9(8):275-280 (1993).
- 112. Rafalski, J. A., Vogel, J. M., Morgante, M., Powell, W., Andre, C. and Tingey, S. V. Generating and using DNA markers in plants. San Diego, USA: Academic Press Inc. (1996).
- 113. Rakoczy-Trojanowska, M. and Bolibok, H. Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. *Cellular and Molecular Biology Letters* 9(2):221-238 (2004).
- 114. Ranade, S. A., Verma, A., Gupta, M. and Kumar, N. RAPD profile analysis of betel vine cultivars. *Biologia Plantarum* 45(4):523-527 (2002).
- 115. Reid, J. S., Edwards, M. and Dea, I. Biosynthesis of galactomannan in the endosperms of developing fenugreek (*Trigonella foenum-graecum* L.) and guar (*Cyamopsis tetragonoloba*[L.] Taub.) seeds. *Food Hydrocolloids* 1(5):381-385 (1987).

- 116. Reid, J. S. G., Edwards, M., Gidley, M. J. and Clark, A. H. Enzyme specificity in galactomannan biosynthesis. *Planta* 195(4):489-495 (1995).
- 117. Reid, J. S. G., Edwards, M. E., Dickson, C. A., Scott, C. and Gidley, M. J. Tobacco transgenic lines that express fenugreek galactomannan galactosyltransferase constitutively have structurally altered galactomannans in their seed endosperm cell walls. *Plant Physiology* 131(3):1487-1495 (2003).
- 118. Ribaut, J. M., Hu, X., Hoisington, D. and González-de-León, D. Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection-backcross scheme. *Plant Molecular Biology Reporter* 15(2):154-162 (1997).
- 119. Richmond, T. A. and Somerville, C. R. The cellulose synthase superfamily. *Plant Physiology* 124(2):495-498 (2000).
- 120. Riju, A. and Arunachalam, V. Data mining for simple sequence repeats in oil palm expressed sequence tags. http://hdl.handle.net/10101/npre.2009.3581.1 (2009).
- 121. Ritschel, P., Lins, T., Tristan, R., Buso, G., Buso, J. and Ferreira, M. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (*Cucumis melo* L.). *BMC Plant Biology* 4(1):9 (2004).
- 122. Robinson, A. J., Love, C. G., Batley, J., Barker, G. and Edwards, D. Simple sequence repeat marker loci discovery using SSR primer. *Bioinformatics* 20(9):1475-1476 (2004).
- 123. Roder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. and Ganal, M. W. A microsatellite map of wheat. *Genetics* 149(4):2007-2023 (1998).
- 124. Roder, M. S., Plaschke, J., Konig, S. U., Borner, A., Sorrells, M. E., Tanksley, S. D. and Ganal, M. W. Abundance, variability and chromosomal location of microsatellites in wheat. *Molecular and General Genetics MGG* 246(3):327-333 (1995).

- 125. Roldan-Ruiz, I., Calsyn, E., Gilliland, T. J., Coll, R., Van Eijk, M. J. T. and De Loose, M. Estimating genetic conformity between related ryegrass (Lolium) varieties. 2. AFLP characterization. *Molecular Breeding* 6(6):593-602 (2000).
 - 126. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239(4839):487-491 (1988).
 - 127. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science* 230(4732):1350-1354 (1985).
 - 128. Saliba-Colombani, V., Causse, M., Gervais, L. and Philouze, J. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. *Genome* 43(1):29-40 (2000).
 - 129. Sambrook, J. and Russell, D. W. Molecular cloning: a laboratory manual. Cold Spring Hrbor, New York: CSHL press (2001).
 - 130. Sandhu, A. P. S., Randhawa, G. S. and Dhugga, K. S. Plant cell wall matrix polysaccharide biosynthesis. *Molecular Plant* 2(5):840-850 (2009).
 - 131. Sangwan, R. S., Sangwan, N. S., Jain, D. C., Kumar, S. and Ranade, S. A. RAPD profile based genetic characterization of chemotypic variants of *Artemisia annua* L. *Biochmistry and Molecular Biology International* 47(6):935-944 (1999).
 - 132. Scherbukhin, V. D. and Anulov, O. V. Legume seed galactomannans. *Applied Biochemistry and Microbiology* 35(3):229-244 (1999).
 - 133. Schlötterer, C. and Tautz, D. Slippage synthesis of simple sequence DNA. *Nucleic Acids Research* 20(2):211-215 (1992).
 - 134. Semagn, K., Bjornstad, Ã. and Ndjiondjop, M. N. An overview of molecular marker methods for plants. *African Journal of Biotechnology* 5(25):2540-2568 (2006).

- 135. Seopsi, L., Larsson, L. I., Bastholm, L. and Nielsen, M. H. Silver-enhanced colloidal gold probes as markers for scanning electron microscopy. *Histochemistry and Cell Biology* 86(1):35-41 (1986).
- 136. Shasany, A. K., Darokar, M. P., Dhawan, S., Gupta, A. K., Gupta, S., Shukla, A. K., Patra, N. K. and Khanuja, S. P. S. Use of RAPD and AFLP markers to identify interand intraspecific hybrids of Mentha. *Journal of Heredity* 96(5):542-549 (2005).
- 137. Singh, V. P. Induced high yielding mutants in clusterbean. Indian Journal of Agricultural Sciences 56:695-700 (1986).
- 138. Soltis, D. E., Moore, M. J., Burleigh, G. and Soltis, P. S. Molecular markers and concepts of plant evolutionary relationships: progress, promise, and future prospects. *Critical Reviews in Plant Sciences* 28(1-2):1-15 (2009).
- 139. Soppimath, K. S., Kulkarni, A. R. and Aminabhavi, T. M. Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. *Journal of Controlled Release* 75(3):331-345 (2001).
- 140. Srivastava, M. and Kapoor, V. P. Seed galactomannans: An overview. Chemistry & Biodiversity 2(3):295-317 (2005).
- 141. Stafford, R. E. Yield stability of guar breeding lines and cultivars. *Crop Science* 2(5):1009-1011 (1982).
- 142. Stafford, R. E. Inheritance of partial male-sterility in guar. *Plant Breeding* 103(1):43-46 (1989).
- 143. Tanksley, S. D. and McCouch, S. R. Seed banks and molecular maps: unlocking genetic potential from the wild. *Science* 277(5329):1063-1066 (1997).
- 144. Tautz, D. and Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. *Nucleic Acids Research* 12(10):4127-4138 (1984).
- 145. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and McCouch, S. Computational and experimental analysis of microsatellites in rice

(*Oryza sativa* L.): frequency, length variation, transposon associations, and genetic marker potential. *Genome Research* 11(8):1441-1452 (2001).

- 146. Thiel, T., Michalek, W., Varshney, R. and Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare L.*). *TAG Theoretical and Applied Genetics* 106(3):411-422 (2003).
- 147. van der Voort, J. R., Van Zandvoort, P., Van Eck, H. J., Folkertsma, R. T., Hutten, R. C. B., Draaistra, J., Gommers, F. J., Jacobsen, E., Helder, J. and Bakker, J. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. *Molecular and General Genetics MGG* 255(4):438-447 (1997).
- 148. Vandamme, E. J., De Baets, S. and Steinbuchel, A. Biopolymers, Vol. 6: polysaccharides II, polysaccharides from Eukaryotes: Wiley-VCH Weinheim, Germany (2002).
- 149. Varshney, R. K., Chabane, K., Hendre, P. S., Aggarwal, R. K. and Graner, A. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. *Plant Science* 173(6):638-649 (2007).
- 150. Wang, C. and Roberts, P. A. Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton. *Euphytica* 152(2):185-196 (2006).
- 151. Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J. and Wang, Y. Structure-antioxidant relationships of sulfated galactomannan from guar gum. *International Journal of Biological Macromolecules* 46(1):59-66 (2009).
- 152. Wang, Y., Shi, Y. and Guo, X. Identification and characterization of 66 EST-SSR markers in the eastern oyster *Crassostrea virginica* (Gmelin). *Journal of Shellfish Research* 28(2):227-234 (2009).
- 153. Welsh, J., Chada, K., Dalal, S. S., Cheng, R., Relph, D. and McClelland, M. Arbitrarily primed PCR fingerprinting of RNA. *Nucleic Acids Research* 20(19):4965-4970 (1992).

- 154. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic Acids Research* 18(22):6531-6535 (1990).
- 155. Yan, Z., Denneboom, C., Hattendorf, A., Dolstra, O., Debener, T., Stam, P. and Visser, P. B. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. *TAG Theoretical and Applied Genetics* 110(4):766-777 (2005).
- 156. Yoon, S. J., Chu, D. C. and Juneja, L. R. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber. *Journal of Clinical Biochemistry and Nutrition* 42(1):1-7 (2008).
- 157. Zamir, D. Improving plant breeding with exotic genetic libraries. *Nature Reviews Genetics* 2(12):983-989 (2001).
- 158. Zane, L., Bargelloni, L. and Patarnello, T. Strategies for microsatellite isolation: a review. *Molecular Ecology* 11(1):1-16 (2002).
- 159. Zavodna, M., Arens, P., Van Dijk, P. J. and Vosman, B. Development and characterization of microsatellite markers for two dioecious *Ficus* species. *Molecular Ecology Notes* 5(2):355-357 (2005).
- 160. Zhang, L. M., Zhou, J. F. and Hui, P. S. A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups. *Journal of the Science of Food and Agriculture* 85(15):2638-2644 (2005).
- 161. Zietkiewicz, E., Rafalski, A. and Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. *Genomics* 20(2):176-183 (1994).

D	SSR	SSR	SSR	size	start	end	Forward	Forward primer	Reverse	Reverse primer	Produc
	ц.	type					Primer		Primer		t size
Contig1001	1	p2	(AC)6	12	167	178	CT001F	CTGACCAAAGCCTTTTTCCTG	CT001R	TGATGACGATGGAGATGGAA	238
Contig1004	2	p3	(ATA)5	15	266	280	CT002F	ACTGAAATGGTGGCAGAAGG	CT002R	TGTGAAAGCGAAGAAAGGTG	232
Contig1006	1	p2	(TC)6	12	351	362	CT003F	TCCCTGGCTCTTCAATCACT	CT003R	TITGGGGGCGACCTATTTGA	250
Contig1012	1	p3	(CTT)5	15	46	60	CT004F	CACGAGGTTCACACTTTCCTT	CT004R	TGATCCGAGAAATCCTCCAC	180
Contig1019		с J	(TAA)5tggcatctgg(ATC)7	46	106	151	CT005F	CCAGAGGAGTGAATTAAGAAAC AAA	CT005R	GGGTTCATTCCAGATTGCAT	195
Contig1029		p3	(CTT)6	18	55	72	CT006F	GGTTCCCTCTGTTCAAGCAA	CT006R	TGGTCACAGAGCTTGTCAGG	155
Contig1068	1	p3	(TTC)5	15	132	146	CT007F	CACGAGGCAGAGACTTCACTC	CT007R	GTCAAGGGGCATTTGTCAGT	239
Contig1074	1	p3	(ATT)5	15	151	165	CT008F	GAGGCATAAAGTCCCTTCCA	CT008R	CTGCCCTTCACACTTTCGAT	248
Contig1112	1	p3	(AAT)6	18	67	84	CT009F	TGAGAATTCAAAGGAGCAAGTG	CT009R	TGCTGCTTCTTGTTCTGCTC	184
Contig1125		p3	(GCA)5	15	785	799	CT010F	AATGCAGAAGCAACGGAAAT	CT010R	CCTCTCGCCTTCTGTTCTGT	215
Contig114	1	p3	(ATA)6	18	267	284	CT011F	CCCACACTCACTCACACAC	CT011R	GTTCGGTCAAACCTTCATGG	229
Contig1167	1	p2	(AT)8	16	365	380	CT012F	ACAAGGAGCCACTCGTTCAG	CT012R	CACGCACGCATGATACATAG	232
Contig1182	1	p3	(CAA)5	15	104	118	CT013F	CACGAGGCAGGAACAGAACT	CT013R	TCTCGCTTGGACATTCTTCA	200
Contig1190		c	(T)15caagtgtattttgttta(ATT)7	54	253	306	CT014F	TICCGATCCTGTTTGTTTCC	CT014R	CGTGTCTGTTACCGGATGTG	225
Contig1195		. p3	(ATG)5	15	145	159	CT015F	TGGCAGAAATGGAAAATTGA	CT015R	TGAGGTTCATTCTCCACCAA	169
Contig1197	-	p2	(TA)7	14	118	131	CT016F	CAAAACAAAACAAAACAAGAA ACAA	CT016R	TACCGCTTGAAGACCAAACC	159
Contig120		p3	(CAA)5	15	108	122	CT017F	CACCACCACAAGCACAGATT	CT017R	TTCCAGTCCGAAAATTCCAC	220
Contig1242	1	p3	(GCT)6	18	370	387	CT018F	TTGCTGTTGCTGTTGAGACC	CT018R	AGCAAAGCCAGCATCAGC	218
Contig1248	-	v	(ATA)5tttttctatttacaactgcttcga gacttaaatataatgttatatataataataa	116	594	604	CT019F	TGATGGAGGCACCTTCAGAT	CT019R	CCAAGCCGAGTCTTTCTTGA	232
Contig1260	7	p3	(TTG)6	18	679	966	CT020F	CCACCTTCCATGAACCTTGT	CT020R	CACCAACAATGATGCTTCCA	153
Contig1286		p2	(TA)6	12	400	411	CT021F	GAGAAGACGATCCGTTACGC	CT021R	CACATGCATGATTCAGACCA	241
Contig129	1	p2	(CT)11	22	52	73	CT022F	CTCAGCCTCAGCCACTCACT	CT022R	TCAAGGTCACCAACACGGTA	160
Contig131		p2	(TA)6	12	1168	6411	CT023F	GCCATCAAGGACATCTCCAG	CT023R	GATCACACACACACAAATAACTAAG ATTT	250
Contig1320	1	p3	(GAA)5	15	441	455	CT024F	TITICCGAGATGGTGAGAGG	CT024R	CCTCCCGTTTGTTTCTTCA	233
Contig146		p3	(TAA)6	18	408	425	CT025F	GAAGAGTGCCCTTGCTATGC	CT025R	CACCACAAAATGTGGGGGGGATACA	182
Contig1495	-	<u>о</u>	(A)14cacacgaaaaatacaagaaata	49	105	153	CT026F	GATTGGGACCCACAATTCAC	CT026R	CATGAACAAGGCTCGTGAGA	193

led
lesign
0
the sequences of the primers designed
he
fth
of
es
Ĩ
e
ոհ
Se
ē
臣
p
an
3
Ē
SR motifs and
SR
SSR
60
Εĥ
Ŧ
0
i.
st
Ë.
Ť
- S
a
5
ppendix II : Characteristics of the SS
X
pendi
en
dd
-

122222

GCCAAACAAGAAGTGACAAACA AGGCAGATGAACTTGCCATC

TGGCTGGATGGATTGTCTTA ATTTATGCTCTTCCCGCAAA TCGCCTTGAGACAACCTACC CCGCTATAATGGGCATCTGT

CT028R CT029R CT030R CT031R

ATAAGGGGTCCCCATCATCA AGCAACTGCTGATGATGGTG TICCAGCTCTTGTTGTCCTCT GCCCTGCACTITTGTGTGTTTT

CT028F CT029F

823 942 255 537

CT027F

812 925 308

g(A)12

(TA)6

ପ୍ଯ Б Ы ଅମ୍ମ പ

3

Contig1524 Contig1537

Contig1524

Contig1597

Contig1602

15 13

(AAG)6 (TTC)5 (ATC)6 (TAA)6

CT030F CT031F

238 520

<u>∞|∞</u>

TCGATCATCCAAGAGGGACT

CT032R CT033R

TCGCGACATGAACTTG1TTC AGATCATGGCAAGGCTTTTG

CT032F CT033F

<u>228</u> 599

214 522

3 15

(GAT)5 (T)13attitgttattttaccgatgtgtatt gtgtaatataaaacttattctgtatc(A)1

ы

Contig1610 Contig1632

TCCAATACCACCAACCCTTG

CT027R

230

62

CGCGCAGTTTAATTTCATCA

CT034R

CACCAACACCAAGACTGCTT

CT034F

781

735

47

(ATC)5ataagtattcattagta(AC T)5

o

_

Contig1636

Forward primer Reverse primer Forward primer Primer CCGATTATTATC CACCATTTGGGCTFAATTATC Primer CCGATTATTCCCAACCT CACCATTTGGGCTGAA CT035R CCGGGACCACCT CCCATGGCGACGAC CT035R CCGGGACCCAACCT CATCATTTGGCCAGCAC CT035R CCATGGCATTCCCAACCT AGTTGGATTGGCCAGCAC CT038R CCATGGCACCAACC AGTTGGATTGCACCCAACCT CT038R CCATGGCACCAACC AGTTGGATTCCCAACCT CT038R CCATGGCACCAACC AGTTGGATTCCCAACCT CT038R GCATTGGACACCAACC AGTGGATTCCAACCT CT038R GCATGGACACCAACC AGTGGATCCCAACCT CT038R GCATGGACACAACC AGTGGATCCAACCT CT038R GCAACTAACCAACAAC AGTGGACAACAACCAACC CT038R GCAACTAACAACAACAACAACAACAACAACAACAACAACAA	Produc t size	5		~			2							<u>,</u>		4	6	6				1	8	6	2	9	2	2	4	5		6	2	4		6	S	<u>س</u>	2
R SR size start and Forward Forward Pinner Pinner (A)511 (A)511 22 170 19 C1035F CACCATTTGGGCTTAATTATC T0035R (A)511 12 10 10 C1035F CACCATTTGGGATTGGATTGGATTGGATTGGATTGGATT	Pro t si	356	205	208			227	15(15(22.	231	16:	16(23	249	212	22	23(17	18(22	16	21(21:	20(24:	22:	12	21:	18:	21	17.	50	23	24	21:	233	242
R SR size start end Forward Formard Forward Forward Formard	Reverse primer	CCTGATTATTTCCTCACCCTA	CAGGGCTCCCTCTTTTCTCT	CCATTCATTITCGAATTCACC	GCAATGGACCCTATCCTCCT	TGGCCAAATTACAAGTAGAACAA	GAGAGGATGGAAGGTTGAAGC	ACCCAAATCACATCCACACA	AGGAAATGGATGACGACGAC	GTCATTGGGTCCATGGAAGT	TCACTTCCTCGTCGGTTCTC	GCTTTGGTGAGTGGTTGGTT	TAGGTAGGGGGGCTGGACTTT	GCTGTTCCATTCACCTCCTC	TCCCTGGAAGTGATGGTAGG	AGGCAACTTAACCCATGTCG	GTTCCCATCCAATCCAACAC	GCTCCTGCTAGTCTGTCAATCA		GGGTGACAGCGAAGAGTAGG	GCCAAAGTTGCGCAATAAAG	GTGGGAACAAGAGGACCAAA	CCCCATGTCCTCATCAGACT	CACGAGGCTCTGTTTTCTGTG	TAGAGGCAGTCAAGCCGAAT	CGCGATCAGAATAACAAGCA	AGGAGCCCATAAACACAAGG	GGCTTATGGCTGTTGTGGTT	AAAGAGCCATACCCACATGC	CAAAGGATCCAATGCCAAGT	AACCTCTGTGGCTGCATCTT	TTTACCCTCCTCCTCCCCTA	CCCTTATGGCTCTTGCTACG	TCAACATGGAGCCAGCAGTA	GAAGGGTATGGTGTCCCAGA	CAGCCTTGAGGCACTTCTCT	CAGGATGCTTTTACATTGTCCA	TGGGAAATATCCGAAGCAAG	TGCTGTGAACTTGGGTGAAG
R SSR isize start end Forward e (A)51iam(A)14 5 9 766 71035F 0 (A)51iam(A)14 22 170 19 10 17035F 1 (A)51iam(A)14 22 106 12 451 452 C1035F 1 (A)16 12 12 1067 107 107 107 1035 1 (AT)6 12 12 1667 107 107 1045F 1 (AT)5 15 513 321 CT041F 1	Reverse Primer	CT035R	CT036R	CT037R	CT038R	CT039R	CT040R	CT041R	CT042R	CT043R	CT044R	CT045R	CT046R	CT047R	CT048R	CT049R	CT050R	CT051R		CT052R	ÇT053R	CT054R	CT055R	CT056R	CT057R	CT058R	CT059R	CT060R	CT061R	CT062R	CT063R	CT064R	CT065R	CT066R	CT067R	CT068R	CT069R	CT070R	CT071R
R SSR size start end e (A)5 Inant(A)14 69 698 766 (A)6 (A)6 12 451 462 (A)6 12 451 462 (A)6 12 451 462 (A)6 12 451 462 (A)76 12 451 462 (A)705 15 513 527 (A)706 12 45 463 (A)705 15 513 527 (A)713 25 31 45 (A)713 25 31 45 (A)713 25 327 28 (A)713 25 321 49 (A)713 25 42 49 (A)713 25 449 49 (A)713 26 15 49 (A)713 26 34 49 (A)713 405 49 (Forward primer	GCACCATTTGGGGCTTAATTATC	CCCATGTGCCTTTGTTTTGT	CACTGCCAGAATGGAATGAA	CATCATGTTTGAGCCACGAC	AGTTGCATTGCACAGGTTTG	TTTTATCCGCATCCCAACAT	TTCCTTTGGAATCCACATCC	GGCTCTGATGCTTTCCCAACT	CTTTTACCCATTCGGCCATT	TCCCACCCTCATCTTCTTTC	CACGAGGCTTCTTCTTCATCA	CCCTGGTGCTAGAAGAGTGG	CCGTGGCCAATAGAAAGAGA	GCCGAGAGCAGAGAAGAAGA	CTGGTGACAGTCGTTGCATT	AGGGGTCAAGGGTGAAGACT	TITICTACACAAATGAAGATATT	AGCA	GCTCTTCCCTCCTCAATTC	ATGGAATTCACTTGGCTTGC	GTCATGGCTTGTTGGGGATCT	TTCCCTCAGGCTGACAAGT	GATGCCATGAGTGGGAAAGT	TCGCTCTACTGGCAGACCTT	TCCCGCTAATITAACCTCCA	AAAGCAATTTGCCCTTGCTA	GCACTTCGAGGGGGATTCA	CGAGGCTTCTAAGTTCATGG	ACCGTCTTGAGCCAACTGTC	CCCTCTTTTCGAGGGTTTT	ATGCCTAATGGAGGGTCCTT	ACCCTACTGCTTCCCCCATTT	CCCCATTTAAGATATGAAAGAA CTC	CCTTTGTGGAGGCAGAACAT	CTGGCTCCATGTTGATGATG	TGGCTGAAAGCTGGTTCTT	TGTTTGGGCAATAACAAGGA	TTCTGATTTTCTTTTTGGCTCAAG
R SSR size start e (A)S1nant(A)14 52 170 (AG)11 22 170 69 69 69 (AT)6 12 451 22 170 (AT)6 12 22 170 (AT)6 12 451 24 (AT)5 12 363 24 (TA)6 12 21 363 (ATC)5 12 24 24 (TCT)5 12 24 24 (TCT)5 12 35 31 (TCT)5 12 25 31 (TCT)5 12 35 31 (TCT)5 12 35 31 (TCT)5 12 25 31 (AT)3 25 33 34 (TCT)9 25 34 34 (TCT)9 25 35 34 (TCT)9 35 34 34	Forward Primer	CT035F	CT036F	CT037F	CT038F	CT039F	CT040F	CT041F	CT042F	CT043F	CT044F	CT045F	CT046F	CT047F	CT048F	CT049F	CT050F	CT051F		CT052F	CT053F	CT054F	CT055F	CT056F	CT057F	CT058F	- CT059F	CT060F	CT061F	CT062F	CT063F	CT064F	CT065F	CT066F	CT067F	CT068F	CT069F	CT070F	CT071F
R SSR size e (A)51nant(A)14 69 (AG)11 22 (AG)11 22 (AT)6 12 (AT)6 12 (AT)5 12 (AT)6 12 (AT)5 12 (ATC)6 18 (TC)5 15 (ATC)6 18 (ATC)6 18 (ATC)6 18 (ATC)6 18 (ATC)5 15 (ATC)9 26 (ATT)3 15 (ATT)3 15 (ATT)3 26 (AG)8 16 (ATT)9 26 (AG)8 15 (AG)8 15 (AG)8 15 (AG)8 15 (AG)8 15 (CT)10 28 (CT)10 28 (CT)10 14 (CT)5 15 (CT)5 15 <td>end</td> <td>766</td> <td>161</td> <td>462</td> <td>610</td> <td>1078</td> <td>383</td> <td>527</td> <td>281</td> <td>103</td> <td>45</td> <td>54</td> <td>376</td> <td>1293</td> <td>693</td> <td>82</td> <td>49</td> <td>380</td> <td></td> <td>116</td> <td>497</td> <td>434</td> <td>448</td> <td>742</td> <td>366</td> <td>95</td> <td>444</td> <td>38</td> <td>70</td> <td>244</td> <td>107</td> <td>59</td> <td>929</td> <td>92</td> <td>548</td> <td>425</td> <td>520 .</td> <td>153</td> <td>84</td>	end	766	161	462	610	1078	383	527	281	103	45	54	376	1293	693	82	49	380		116	497	434	448	742	366	95	444	38	70	244	107	59	929	92	548	425	520 .	153	84
R SSR e (A)51inant(A)14 (AG)11 (AG)11 (AT)6 (AT)6 (AT)6 (CAT)7 (ATA)5 (ATA)5 (TC)6 (CAT)7 (ATA)5 (ATA)5 (ATA)5 (ATA)5 (ATC)6 (CT)6 (TC)79 (AT)13 (AT)3 (AT)3 (AG)5 (AG)5 (CT)6 (TC)6 (TC)5 (TC)5 (CT)6 (TC)6 (TC)3 (CT)3	start	698	170	451	593	1067	363	513	264	92	31	28	351	1279	619	68	34	273		97	449	420	434	725	355	78	430	25	56	230	80	48	915	75	534	408	507	139	20
	size	69	22	12	18	12	21	15	18	12	15	27	26	15	15	15	16	108		20	49	15	15	18	12	18	15	14	15	15	28	12	15	18	15	18	14	15	5
SSR Vype P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	SSR	(A)51nant(A)14	(AG)11	(AT)6	(CAC)6	(TA)6	(CAT)7	(ATA)5	(ATC)6	(CT)6	(TCT)5	(TCT)9	(AT)13	(ATT)5	(AAG)5	(GAG)5	(AG)8	(T)11acaaggaaattagcaatctatac	 atgaaaaattagcctttcaggaatgagta accaaaatgaagggaaaaaaacctta ttcctgca(T)10 	(CT)10	(T)10gggtttaggccttgcttttgttcc caac(A)11	(AGC)5	(GCT)5	(AAG)6	(CT)6	(TCT)6	(TCA)5	(CT)7	(CTT)5	(GTG)5	(T)10ccttttcg(T)10	(TC)6	(AGA)5	(ATT)6	(ATG)5	(ATT)6	(AG)7	(ATA)5	(GAT)S
	SSR	0	p2	p2	p3	p2	p3	p3	p3	22	p3	p3	p2	P3	p3	p3	p2	0		22	υ	p3	р3	p3	p2	p3	p3	p2	p3	p3	J	p2	p3	p3	p3	p3	p2	p3	54
SSR II I I I I I I I I I I I I	SSR FI		-	-	-	2	1	1	1	-	1	1	1	1	1	1		_			-	1		2	1	1	-	1	1	1	1	1	1	-	3	2			-

	SSR nr.	SSR type	SSR	size	start	end	Forward Primer	Forward primer	Reverse Primer	Reverse primer	Produc t size
Contig676	1	p2	(AG)9	18	124	141	CT073F	GCTGCTGCAACCAACAAGTA	CT073R	CAGCAACGTITTCACTTCCA	169
Contig68	1	p3	(GAA)7	21	264	284	CT074F	TCCAAACATTGGCAAAACAA	CT074R	TCAAGCATGAAGCTCTTGGA	202
Contig702	1	p2	(CT)6	12	35	46	CT075F	GGAAAGGCAGCACCATTG	CT075R	GAGAGTGGACTTCCCGTGAT	215
Contig705	1	p2	(GA)6	12	125	136	CT076F	GCGAGCGATCTCACTCTTCT	CT076R	AGTTCGAAGCTCCGATAGCA	202
Contig717	1	p3	(ATA)7	21	206	226	CT077F	ATGTTGCAGTTTCCCCCACTC	CT077R	CAGCCAATGGAGTGAGATGTT	187
Contig743	1	p2	(AG)7	14	127	140	CT078F	TTCACAATTCACCTCCGTTCT	CT078R	TCATTCAAACCAGCTGTGGA	178
Contig750	1	p2	(AT)7	14	62	75	CT079F	CGCGTGGAAACAAAACTGAT	CT079R	AGAAGCTTCGTCAGCTCTGC	155
Contig756	1	c	(T)11c(T)12	24	442	465	CT080F	TTCACTCAGATCCACCACCA	CT080R	TGGATCAGGGACCAGAGAAG	242
Contig761	1	p3	(CCG)S	15	573	587	CT081F	CCGCCGGTAGTACCATCAC	CT081R	CAGCTTCAACGTGTCAATCG	159
Contig794		p2	(TA)7	14	875	888	CT082F	TCAAGACCACACTGCACTCC	CT082R	TGCAAATGCTGGTTCTTTTC	226
Contig806	1	p3	(TGG)5	15	223	237	CT083F	TTGCTTCAATGCTTTCCTGA	CT083R	TGCCCAAAAGTCATTCACAG	250
	1	p2	(AT)8	16	141	156	CT084F	AGCATTGCATAGCAGCCTCT	CT084R	TTTGGGAATTGGTTTGGAAG	1 <i>5</i> 7
	2	p3	(TTG)5	15	284	298	CT085F	CTTCCAAACCAATTCCCAAA	CT085R	CTTGAACTCAACGTGCCTGA	186
Contig814	1	3	(CT)14cctctgtctctggcacttctgt cacccaccgctctttaatttctttctccatg aaaccgttgaacgttttcaactctcactg ccttccagt(TCA)5	136	27	162	CT086F	CACGAGGATTCTCTCTCTCTTTC	CT086R	GTATGTGGTGGTGGTGGA	201
Contig823		p3	(GAA)5	15	245	259	CT087F	TGTTGTTGGTGGGGAAATTGA	CT087R	TAATGAGCAGGCTTCCCTTC	225
Contig85	1	p3	(ATG)S	15	429	443	CT088F	AGAAACGTCCATGGCTGAC	CT088R	TCCCCCAACATAAGGAATGA	245
Contig884	1	p3	(CCT)5	15	190	204	CT089F	GATGGCTCTTCCCTCTGA	CT089R	GGCTTCTCTGTTGGCTTCAC	231
Contig886	1	р3	(TGG)5	15	480	494	CT090F	CACAAGGGAAAGGCAATGTT	CT090R	TCTGAACCTCCAATCACAGG	209
Contig889	1	p2	(CT)6	12	544	555	CT091F	TCAGCAGCTCTTACCAAGCA	CT091R	TTTCGCTTCTTCCTGCACTT	169
Contig90	1	p3	(ATA)5	15	776	790	CT092F	CCAGGTTCTGTGGATTGGAT	CT092R	TCTCGAAGCAGTTGTAAATAGAA AA	200
Contig904	1	p2	(TG)7	14	255	268	CT093F	TCTGGAGTTGCAAGGTGTTG	CT093R	GGGATCCAGAGAGAAATGCAG	225
Contig905	1	p3	(AAT)5	15	110	124	CT094F	TCTITCATGGTGGTTTTGATTG	CT094R	ACCTTGTGGATGGGTCAGAA	217
Contig909	1	p2	(TC)7	14	38	51	CT095F	ACGAGGTTGAAGCCTCTGAA	CT095R	ACATCTGAGGGGGGCAACAGG	197
Contig912	1	P3.	(CTT)5	15	54	68	CT096F	CAATTTGCTTTGTGCCCTTT	CT096R	GGTCACAGAAGACGCTACCC	198
Contig913	1	p3	(CAA)5	15	26	40	CT097F	CCTAGCCTTCTCGTTCCTT	CT097R	CITCATTAGCGCCCTTTTTG	158
Contig917	1	p2	(AG)6	12	122	133	CT098F	CAGACGCTAGCAAGGAAACC	CT098R	TAATTGGATCGATCGGAAGC	184
Contig924	1	p2	(CT)8	16	60	75	CT099F	CACGAGGAAGCCATGTTAAT	CT099R	TGCAACCCAAATTTGTGAAA	186
Contig95	1	p3	(GAA)7	21	60	80	CT100F	CCCGTGTGTGTGAGAGAAAG	CT100R	TCGACAATGCTGAGCAAAAC	155
Contig950	1	u	(A)11gaaaaggaaaaggag(A)1 0tatgaaaattgrgtattattgaattttottt cttottotgtgtatgtttttatoatta(TCT)5	110	394	503	CT101F	TTCATTAGCAACACCCCACGA	CTI0IR	CATCATCAACCATCCAACCA	237
Contig952	1	p3	(CCG)5	15	400	414	CT102F	CATCTCCATAGCCACGGTCT	CT102R	ACTGTTAACGAGGCGCAGTC	232
Contig964	1	p2	(TC)6	12	79	90	CT103F	CAGGGTAGGGACCAGTGAAG	CT103R	CAGGGTAGGGACCAGTGAAG	154
Contig965	1	p2	(AG)6	12	570	581	CT104F	TGGTTCACCAACTCCAATCA	CT104R	AGCCAGAGCCATTTCTTCA	243
Contig973	1	p3	(TGC)5	15	337	351	CT105F	CCTGCAGATAAGGTGCATGA	CT105R	GCGTGCAATTGGAAATTCTT	219
EG974822.1	1	p2	(AC)6	12	87	86	CT106F	CACGAGGAATTGGTTACATTCT T	CT106R	TGGCTGCATGCATCATAAAC	212
EG974867.1	1	p3	(TTC)5	15	192	206	CT107F	ACTITITIGTCCCCCCCGCAGCTAA	CT107R	GGTGAAGAATATGGCGGGAAA	219
4899.1	1	p3	(AAT)5	15	199	213	CT108F	TGGAAACCATGAGAACAGGA	CT108R	TCATTICCGGATTTTGTTTTG	224

.

c 0.4030/gatameterationary (CTI00F 101 378 497 CTI00F CGGGGGTAACACCACACAGGAA CTI00F GCTTLCALCACCACAGAACGGA P3 0.4030/gatameterationary (CTI03 1 3 13 51 5 7111F GCACTGAACCACACAGGAA CT108F GCACTTGAACCCUCAACGAACGAACGAACGAACGAACGAACGAACG		SSR nr.	SSR type	SSR	size	start	end	Forward Primer	Forward primer	Reverse Primer	Reverse primer	Produc t size
1 1			с	(AGG)6agatcatcatcagctgaatg ccatacaagcatcattagctg(CTT)5 ctgcttcgcgtaatttcttca(ATC)5	110	378	487	CT109F	TGGTGGTAACAGCAACAGGA	CT109R	GCTTTCATCACCCAAGATGG	243
1 p3 (M10)6 118 245 CTU118 GGAOMATTICATION CTU118 COAGMATTICATION 1 p3 (M10)6 13 CULUB COAGMATTICATION CULUB COAGMATTICATION 1 p3 (M10)6 13 CULUB COAGMATTICATION CULUB COAGMATTICATION 1 p3 (M10) 12 446 477 CULUB COAGMATTICATION 1 p3 (M10) 12 446 477 CULUB COAGMATACIMATICATION 1 p3 (M10) 12 446 477 CULUB COAGMATACIMATICATION 1 p3 (M10) 12 446 457 CULUB COAGMATACIMATACIMATICATION 1 p3 (M10) 12 446 457 CULUB COAGMATACIMATACIMATACIMATICATION 1 p3 (M10) 12 44 457 CULUB COAGMATACI			p3	(CAG)7	21	95	115	CT110F	GCACTGATCCATACCCACAA	CT110R	CATCTCCTGTGTCAGCCTCA	168
1 c (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)		1	p3	(ATG)6	18	251	268	CT111F	CGGGAATTTTCCATCATCAC	CT111R	GCCATTTGGAATTCAAGCTC	174
1 p2 (ATD5) 13 240 347 Terribis	1	1	IJ	(AAT)19gataatgac(AAT)16	114	346	459	CT1 12F	GCAGCTGAAGATGTTGGACA	CT112R	CGAGGGTTGACTAGCTGACG	246
1 1 1 2 3 51 C1145 TCT-0ATOTICTOCCTOC CTIL TCT-0ATOTICTOCCTOC 1 1 2 (A)5 2 3 C1145 ATCAATTICTOFGACTOC CTIL TCT-0ATOTICTOCCTOC 1 1 2 (A)5 C1157 ATCAATTICTOFGACTOC CTIL TCTOAATOTACTOCATOC 1 2 (A)5 C1157 ATCAATTICTOFGACTOC CTIL TCTOAATOAATO 1 2 (A)5 C1157 ATCCAAACAGATOCATOC CTIL TCTOAATOAATO 1 2 (A)5 C1157 ATCCAAACAGATOCATOCATOC CTIL TCTOAATOAATOATOATOCATOCATOCATOCATOCATOCA		1	p3	(TAC)6	18	400	417	CT113F	GGTGAAGGTGATTGCTTGGT	CT113R	CGAGGGTTGCATTTICTCAAT	240
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	p3	(ATT)5	15	221	235	CT114F	TCGGGCTAGCTAAGTTCCTG	CT114R	TCCTGATGTGTTCCCCTCTC	183
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			p2	(AT)6	12	446	457	CT115F	ATCAATTTGGTGGGTTCCAA	CT115R	TTGGGCAATACAGTCAGCAA	237
1 2 (A1)6 12 614 623 CT117F TG0.6CAAGGGCTATATATATATATATATATATATATATATATAT			p2	(TA)II	22	479	500	CT1 16F	ACTCAAGAAGCGGTGCTGAT	CT116R	TTCACTGAGAGGCTATACATAAAT GA	168
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	_	p2	(AT)6	12		625	CT117F	TTGGGGAAAACTGATGAACC	CT117R	TGAGCAGGGCTATATATATGTGTG A	237
			p3	(TTA)7	21	41	61	CT118F	AAGCGAAGCTCAAACACATT	CT118R	TGGCAAACTACAACTGTGGG	195
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.7		J	(TA)7(GA)6	26	253	278	CT1 19F	ATCCAAACATGAGGCCAGAA	CT119R	TGTGCCCATCAATCAACTTC	209
1 Pai (AATD)s 15 61 75 CT121F TACATAGGGAAAGGGAAAATTGGACAAATTGGAAATTGGAATTGGAATTGGAATTGGAATTGGAATTGGAAGGAAATTGGAAATTGGAAATTGGAAGGAAAATTGGAAGGAAAATTGGAAGGAAAATTGGAAGGAAGGAAAATTGGAAGGAAGGAAAATTGGAAGGAAGGAAAATTGGAAGGAAGGAAAATTGGAAGGAGG	8.1		P2	(TA)6	12	278	289	CT120F	TTGCAATTAGGATCATTTTGTGA	CT120R	TGGTGCCITTICTGATCTCC	234
I PH (TAUU)5 20 38 1/1 C1124F LICAMANCIANACULU C1124R LICAMANCIANACULU 1 P3 (TCU)5 15 46 60 C1124F CONGECTO/GGAATTORTOGAAT			<u>г</u> а,	(AAT)5	15	19	75	CT121F	AACATAGCAAAGGAGGTTGACA	CT121R	TTGTTGAATTATCATTTGGGTTTG	223
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				(AAIC)5	707	80	210	C1122F	11CAACICICAGAAGGAACCIG	CT122R	11G11G11ACGA1GA1GAAGCTA	100
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u></u>		70	198	117	C1123F	CCGI IGIGCAAAIIGAIGAG	CT123R	ICAAGIGCALITIGCIAGGC	243
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	215		6 °2		c1 21	40	8	CT125F	CORONCI LANGAGAGAAA I VI	C1124K	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	777
	8.1		22	(TA)6	12	634	645	CT126F	TTGATGTGTTTGCACTTGAGAA	CT126R	TGATGATAGAAGTCTACAAATTA	233
1 p3 (TUC)5 15 122 136 CT127F CT1127F CGGGGAACCTCGGCAACCTCGGGAACTCGG 1 p2 (CA)9 18 37 54 CT138F FGGGGGGTGTTGGT CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG											GGG	
1 p2 (TA)9 18 320 337 CT128F TGGAAGCTCTGGCT CT128R TTGTTCCCGGGAGCCATCT 1 p3 (CAT)6 12 43 54 CT139F ACGAGGGTCATTGTTCCCCGGCAGACTCT 1 p3 (TC)6 12 43 54 CT130F ACGAGGGTCATTGTTCCCCGGCAGACTCTCCCCCTCTCCCCCCCC	7.1		p3	(TTC)5	15	122	136	CT127F	CITTICTCCCCATCCCTCTC	CT127R	CCGGCAACCTCCACTAATAA	206
1 p3 (CAT)6 18 37 54 CT120F ACGMOGGTCATTCCTCA CT120R ACCACCTCTCTCGGCAACT 1 p3 (TO/6 12 43 54 CT130F ACCACCTCTCTCGGCAACT CT130R ACTTCTCCGGCAACT 1 p3 (GA)7 21 405 213 47 ACTTCTCCGGCAACT CT130R ACTTCTCCGGCAACT 1 p3 (GA)7 21 405 457 TGGGTGGCAAGG CT133R ATTATGCTCTCCGGCAAA 1 p3 (GA)7 21 205 458 457 TGGGATGGGAAGG CT133R ACTGGCTGCTCTCCGGCAAA 1 p3 (ACT)6 18 333 CT134F TGGATGGGAAGG CT133R ACTGGCAGCGCATCAA 1 p2 (TU6)6 18 328 345 CT134F TGGGAGGCATCAAC CT134R AATTCTCCGGCAAA 1 p2 (TU6)6 18 766 CT134R ATTGCGCTCCTTCCCGGCAACG CT134R ATTGCGGCACTTAACTTCTCCGGCAACG CT134R ATTGCG			ß	(TA)9	18	320	337	CT128F	TGGAAGCTCTCAGCTTTGGT	CT128R	TTGTTCCAGCAGACCATTGA	248
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	p3	(CAT)6	18	37	54	CT129F	ACGAGGGTCATTGTTCCCTA	CT129R	GCCACCCTCCTCTCTGTTCT	224
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.1		p2	(TC)6	12	43	54	CT130F	TCTTCTCGTAAACCACACATAC AAA	CT130R	AAGTTCTTCCTCCGGCATCT	155
1 p3 (GAA)7 21 405 425 CT132F TGGGGTTGGAACGACA CT132R ATCTGCTGAAGGCTGGAAGGATCA 1 p3 (AATT)5 15 212 226 CT133F AATTTGGACGAGGACA CT132R ATCTGCTGAAGGCTGGAAGGCATCAAA 1 p3 (ACT)6 15 212 226 CT133F TGGATTGCTCTCTCTCTCC CT133R GCAAGGCAAGGCATCAAA 1 p3 (ACT)6 12 465 476 TGGATTGGGAGGGAGGC CT133R GCAAGGCAACCAGCATCAAA 1 p3 (TG)6 12 465 476 TGGAAGGGAGGAGGC CT133R GCCCATCTGCAACTGAAA 1 p2 (AGT)6 12 465 476 TGAAGGAGTGAAG CT133R GCCCATCTGCAACGAGGACGAACGAACTAAA 1 p2 (AD)14 23 311 413 CT137F TGCAGGAGGAGGACGAACGAACTAAATTGCAACTTAATTGCAACGATCTAAA 1 p2 (AD)14 CT136R CT136R GCCCATTAATTGCAACGAACTAACTAATTACAATTAACCATTGAACTAATTAACAATTAACAATTAACAATTAACAACTAATTAACAAATTAACAATTAACAATTAACAATTAACAATTAACAATTAATTAACAATTAATTAAA		_	<u>г</u>	(TAA)6	18	376	393	CT131F	GCCTGCACTTITGTGTTTT	CT131R	ATTTATGCTCTTCCCGCAAA	175
1 1 p3 (AGC)5 15 212 226 CT133F AATTTGGACTGGAGGG CT133R GCAAAGGCCAAGGGATTGTTT 1 1 p3 (TOF)6 12 487 CT134F TGGATTGCACCTCTCTCTCACTCC CT134R CATCCAAAGCCCTAGGCATCAAA 1 1 p2 (TOF)6 12 487 CT135F TGGATTGCTCCTCTCTCACTCC CT134R CATCCAAAGCCCTAAAATTGGCATCAAATTGGCATCAAATTGGCATCAACTCAAATTGGCATCAAATTGGCATCAAATTGGCATCAAATTGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAGGCATCAAATTGGCAACCAAC			p3	(GAA)7	21	405	425	CT132F	TGTGGGTTTGGAACAGAACA	CT132R	ATCTGCTGAAGCGTCGTTTT	227
1 p4 (AATT)5 20 488 487 CT134F TGGATTGCTCCTTCOATCC CT134R CATCCAAGCCTAGCTATTTT 1 1 p2 (TG)6 18 334 CT135F TTGTGTCATGGGGGGGGGGGGGGGC CT134R CATCCAAGGCCTAGCTAATTTT 1 1 p2 (TG)6 18 334 CT135F TGGATGGGGGGGGGGGCGGC CT134R CATCCAAGCCCTAGCTAATTTGCAACCATCAATTGTT 1 1 p2 (TG)5gaagttgcttgctt 103 311 413 CT137F TGCAGAGGGTGGGG CT137R CATCCAAGCCATCAACTAATTGGAAGCATCAATTGTT 1 p2 (AD)14 28 63 76 CT137F TGCAGAAGCCATGCAT CT137R AATGCCAAGGGATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCATGGAAGCAAGC			р 3	(AGC)5	15	212	226	CT133F	AATTTGGACTTGGTGCAAGG	CT133R	GCAAAGGCAAGGATTGTAGG	210
1 p3 (ACT)6 18 328 345 CT135F TTGGTCATGAGGAGACAGC CT135R CTCTTGCAACCAGGATCAAA 1 1 p2 (TG)6 12 465 476 CT135F TGGATGGGAGGCTGTAGGGGGGCCTGTAGGGGGCCTGTAATTGGTAATTGGTAGCACCAGCATTATTGGTAGC 1 1 p2 (ACT)6 12 465 476 CT137F TGGAGGGGGCCTGTAGGGG CT135R AATCTCAAATTGGTAGC 1 1 p2 (ATT)3 213 413 CT137F TGCAGAATAACCATTGTT CT137R GCCCATCTTAATTGGTAGC 1 1 p2 (ATT)4 28 63 90 CT138F TCATAACAAATAACCATTGTT CT137R GCCCATCTTAATTGGTAGC 1 p2 (ATT)4 28 63 90 CT138F TCATAACAAATAACCATTGTT CT137R ATGCGGGCACGGTAGGGAGGCAGGCAGGGAGGGCAGGCAG	3.1		p 4	(AATT)5	20	468	487	CT134F	TGGATTGCTCCTTCTCATCC	CT134R	CATCCAAAGCCCTAGCTATTTTT	181
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.1	_	p3	(ACT)6	8	328	345	CT135F	TTTGTGTCATGGGAGACAGC	CT135R	CTCTTGCAACCAGCATCAAA	225
1 1 c (AGC)5agaagtgettgeattgect 103 311 413 CT137F TGCAGAAGAGTAGCCATCCAT CT137R GCCCCATCTTAATTGGTTAGC 1 1 p2 (ATT1)5 28 63 90 CT138F TCATAACAAATAACCATTGTT CT137R GCCCATCTTAATTGGTTAGC 1 1 p2 (ATT1)5 28 63 90 CT138F TCATAACAAATAACCATTGTT CT137R GCCCCATCTAATTGGTTGGC 1 1 p2 (ATT1)5 28 63 90 CT138F TCATAACAAATAACCATTGTT CT138R ATGCAGCACGTTGATTGGATGGC 1 1 p2 (ATT1)5 20 280 299 CT139F ATCAGGAAGGGGCATGCATGA CT138R ATGCAGCATAGCAAGGTGAGC 1 1 p3 (TTC)5 387 401 CT140F GTAGGGGGGCACCATACAAA CT141R TTCAGCCTAACCAAGGTGAGG 1 1 p2 (ATT)3 28 61 CT142F CGTGGGATATTGGAGGGG CT141R TTAGCATGGCAGGAGGGGGGGGGGGGGGGGGGGGGGGGG	9.1		p2	(TG)6	12	465	476	CT136F	TGAATGGGAGGCTGTAGAGG	CT136R	AAATCTCAAATTTGCAACCTATTT	221
$ \begin{bmatrix} 1 & 1 & p_2 & (AT) 14 & 28 & 63 & 90 & CT138F & TCATAACAATAACCATTGTTT & CT138R & ATGCAGCACGTTTCGATTG $		••	<u>ა</u>	(AGC)5agaagttgcttgcattgtcct gtactccgaggaagaggggttgatccctc gtgccgaattcggcacgaggg(T)18	103	311	413	CT137F	TGCAGAAGAGTAGCCATCCAT	CT137R	GCCCCATCTTAATTGGTTAGC	235
1 2 p4 (ATTI)5 20 280 299 CT139F ATCAGAAACGTGCTGCATGA CT139R TTCAGCCTAACCAAGGTACGA 1 1 p3 (TTC)5 15 387 401 CT140F GTAGCCTCGAATTGGACGAG CT140R TGCATTAGCTAACCAAGGTACGA 1 1 p2 (ATT)3 26 57 82 CT141F TTCACAGGGCACCATACAAA CT141R TTACCATGCAAGGTGACGC 1 1 p2 (ATT)9 27 314 340 CT142F CGTCGGGATTATCCAAGGTGA CT141R TTACCATGCAAGGACAGC 1 1 p3 (ATT)9 27 314 340 CT142F CGTCGGGATTATCCAAGGTGA CT142R TTACCATGCAAGGAAAAGGAAAAGGAAAATTGC 1 1 c (A)11((A)12 24 61 84 CT143F GAGGGGGGGCTTCTGTTTCT CT143R AGGGTTCTTTGGCTGAAGAGCAACTAGCAACCAACCAACC	-		p2	(AT)14	28	63	96	CT138F	TCATAACAAATAACCATTGTTT GAGAA	CT138R	ATGCAGCACGTTTCTGATTG	210
1 p3 (TTC)5 15 387 401 CT140F GTAGCCTCGAATTGGAGGG CT140R TGCATTAGATCTGGAATTGAAGC 1 1 p2 (AT)13 26 57 82 CT141F TTCACAGGGCACCATACAAA CT141R TTACCATGCAAGGTGACAGC 1 1 p3 (ATT)9 27 314 340 CT142F CGTCGGAAGGGGGCACCAACAAAA CT141R TTACCATGCAAAAGGAAAAGGAAAAGGAAAAGGAAAAGGAAAATGCCAGCAAAAGGAAAAGGAAAAGGAAAAGGAAAAGGAAAATGCCAACAAGGTGA 1 1 e (A)11u(A)12 24 61 84 CT143F GAGGGGGGGCTTCTGTTTCT CT143R GGCTTCTTTGGTTGGTGAA 1 p3 (TAT)5 15 326 340 CT144F GTAGCGGAGGAAATGGGTTC CT143R AGGCTTCTGTTTCT		2	p4	(ATTT)5	20	280	299	CT139F	ATCAGAAACGTGCTGCATGA	CT139R	TTCAGCCTAACCAAGGTACGA	239
1 p2 (AT)13 26 57 82 CT141F TTCACAGGGCACCATAAAA CT141R TTACCATGCAAGGTGACAGC 1 1 p3 (ATT)9 27 314 340 CT142F CGTCGGATTATCCAAGGTGA CT142R TTACCATGCAAAGGAAAAGAAAATTGC 1 1 c (A)114(A)12 24 61 84 CT143F GAGGGGGGGGGGGGCTTCTGTTTCT CT143R GGCTTCTTTTGGTTGGTGAA 1 1 c (A)114(A)12 24 61 84 CT143F GAGGGGGGGGGGGGGTTTCT CT143R GGCTTCTTTTGGTTGGTGAA 1 p3 (TAT)5 15 326 340 CT144F GTAGCCGGAGAAATGGGTCT CT143R AGGGTTGTTTTGGTTGGTGAA	8.1	1	p3	(TTC)S	15	387	401	CT140F	GTAGCCTCGAATTGGACGAG	CT140R	TGCATTAGATCTGGAATTGAAGC	181
I p_3 (ATT)927314340CT142FCGTCGGATATCCAAGGTGACT142RTTTCCGAAAAGGAAAATTGCIIc(A)11((A)12246184CT143FGAGGGGGGGGGGGGGGGGGCTTCTGTTCTCT143RGGCTTCTTTGGCTGGTGAAIIp3(TAT)5I5326340CT144FGTAGCCGGAGAAATGGGTCTCT144RAAGGGTATATTATCCAACCAACCAACC	1.1	1	p2	(AT)13	26	57	82	CT141F	TTCACAGGGCACCATACAAA	CT141R	TTACCATGCAAGGTGACAGC	174
11 ϵ (A)11k(A)12246184CT143FGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	8.1	1	p3	(ATT)9	27	314	340	CT142F	CGTCGGATTATCCAAGGTGA	CT142R	TITCCGAAAAGGAAAATTGC	207
1 p3 (TAT)5 15 326 340 CT144F GTAGCCGGAGAAATGGGTCT CT144R AAGGGTATATTATCCAACCAACC	3.1	1	ა	(A)11t(A)12	24	61	84	CT143F	GAGGGGGGGGCTTCTGTTTCT	CT143R	GGCTTCTTTTGGTTGGTGAA	188
	9.1		b3	(TAT)5	15	326	340	CT144F	GTAGCCGGAGAAATGGGTCT	CT144R	AAGGGTATATTATCCAACCAACC	208

Primer		Forv	Forward primer	Reverse Primer	Reverse primer	Produc t size
CT145F		AGG	AGGTCACTGCCAGAATGGAA	CT145R	GAATGAAAAGGAAAAGGTATTC ATGT	150
278 CT146F CCA		CCA	CCACTGCCATTGAAGTTCCT	CT146R	AAAATGAAACAGGTCAAATCATA CA	237
90 CT147F CGT		CGT(CGTCCATAAATCAAGTCTTAGC A	CT147R	ATGGAAGCTGCAAGATCGTC	205
CT148F		GCA	GCAGAACAGAGAGAGTGCGAAA	CT148R	CCTCTAAGGCAGCATTCACC	221
CT149F		2000	CCCCTTTTGACATACCATCC	CT149R	CCCCTTTTGACATACCATCC	245
447 CT150F TCTAC GCTG		GCTG	JATCATTCATAACAAGTT	CT150R	ATTGGATCCCGAGTCAAACA	248
I CTISIF	$\left[\right]$	GCTGC	GCTGCCTTGTCTACTTTTCCA	CTISIR	CCAACAAAACTTGGGTGCAT	184
		AAAA' TCA	AAAATTTCAGAGAGAGAAACAC TCA	CT152R	GTCGATTTCCCATCAACACC	183
451 CT153F GCAC		GCAC/	GCACACTCACAAATCCTCCA	CT153R	TITGCAGAAAGCAAACTAAACTA CA	196
60 CT154F CACG/		CACG/	CACGAGGGGAAGAGTTATCAA	CT154R	TGTACATGGCATTGGTAGATTTG	243
		AAGG	AAGGCAAGAGTCAGCCTTGA	CT155R	AATGAAAGATGATTATGACTAAA GCA	157
CT156F	╏─┤	TTGAT	TTGATTITTAATGGAAGGGATGG	CT156R	AACCGGATTTTGTAGGAAGTGA	211
CT157F		CAAC	CAACCTTCCTCTCCCGGAACT	CT157R	CAACCTTCCTCCCCGAACT	235
CT158F		CCTGC	CCTGCAGCAATATGTGCCTA	CT158R	AGAGGGAGTGCCTTGGAATG	168
CT159F		AGGG	AGGGI AAAAGGCI I GGAGGA	C1159R	TCGGTICATITICCAATAGGTC	226
CT160F	┝┼	AGAT	AGATGGATTCGGTTGGAATG	CT160R	GTCCTCCCTTCCATGTTCCT	215
188 C1161F IC1G/ 43 CT162F CACG		A CACG	ICTGRACCTCCAATCACGGG CACGAGGGCCTAATAAACATAC A	CT161R CT162R	LAUAUGGAAGGCAAAGGCATCA TCACCTTCATTCAGCCATCA	237
		CCCG	CCCGTCTCAATGAAGCATTT	CT163R	TCAACGCCCACACACATAAT	243
CT164F		GGGT	GGGTTTCGCAGATAGCTTCA	CT164R	GGATTTTGCAGAAAGCAAGC	211
103 C1165F 1GAA		TCCA	TCCATCCATCCATCCATCCATCCATCCATCCATCCATCC	CIION	GUICGUCAAAAIIUIIIUA	194
CT167F	+	TCAA'	TCAATGCAAAGATCGGTCAA	CT167R	ACCCCAACGGGGGGGGCTAATCTT	174
CT168F		TTTC	TTTCTCTGGGATCCATCCTG	CT168R	CCAAGCTAACCCTCCAACAA	176
CT169F		ATTC	ATTCCCAAATGGCAAGACAC	CT169R	ACCACATGTGATGGTGCAAA	201
╉	┥	CAAA	CAAAACGACGACAACATCG	CT170R	GCCTTACACGCAGCTCTTCT	121
C11/1F		CACG	CAUGAGGICICITICIACICIGC	CT171K	GIGGIGACCGAGAACAGGI	162
CT172E				CT1720	COTATITICALOUCHANCAUC	117
+-	+-	USAGO AGO AGO AGO AGO AGO AGO AGO AGO AGO	GAGGGTTTCGTTGTCCAGAA	CT174R	GCCAGGAAAGCACGAGATA	186
CT175F	1	GTGG	GTGGATITGGGGGCAAGGAAA	CT175R	CCCTCCCAGAACAGAATCA	211
CT176F	╎	CTTT	CCTCCTACCATCAACCA	CT176R	GGAACATTCTGAGATAATCGAG	250
CT177F	1-	GAG	GAGGAACCATTCCACGTCAC	CT177R	TCATGGCGGTGGTTACACTA	199
	ł			0L170D	TGATOGATOGATAGT	157

CT180F CT181F CT182F CT182F CT183F CT184F
┼┼┼┼┼
╏╎╵┟┧
┝──┤─┤
┢┤
Ļ
485 504
65
160
128
162 175
102
191 208 CT193F
522
209 CT195F
278 301
653
612 640
104 118 CT199F
╉
128 148
66 000
╈
┢
-+
183 · 200
-+
122
38
┥
2 98
133 153
120
107 CT219F

£	SSR nr.	SSR type	SSR	size	start	end	Forward Primer	Forward primer	Reverse Primer	Reverse primer	Produc t size
EG986153.1	-	p3	(AGA)5	15	470	484	CT220F	GAAGAATTCCTCGGTGACGA	CT220R	GTCGGAAAGTCGCTGTCAT	219
EG986181.1	-	p3	(TTC)6	18	91	108	CT221F	CTGCAGGCTGAAATTCACAA	CT221R	TTCGTAGTGGTTGCCATGAT	250
EG986243.1	1		(TCT)8	24	106	129	CT222F	CCTITACTGCGGGGAACAGAA	CT222R	GGATCGGATCGGAATCAGAAA	162
EG986259.1	1	p2	(TC)6	12	33	44	CT223F	CAAATTTTTGCAGAGGCAGA	CT223R	GGCTTTGATGAGACCAGCTC	250
EG986322.1	2	p2	(AG)7	14	599	612	CT224F	CTGCACCATTGATTGCAAGA	CT224R	CGAATCGATCAGTCACCAACC	248
EG986322.1	1	p3	(ACA)5	15	96	110	CT225F	CTCCTGGCTTCTTCATCCAC	CT225R	CACGATTCCATTTCCAAACC	186
EG986332.1	1	p3	(TCA)5	15	401	415	CT226F	AGCAGCTTGGGCACTTGTAT	CT226R	CCACCCAAAGAAGAGGGATGA	211
EG986337.1	1	p3	(AAG)7	21	250	270	CT227F	GACTTAAACGATGGGGGTCCA	CT227R	CATCAATTAGCGGCTTCTCC	215
EG986339.1		p4	(CATA)5	20	58	77	CT228F	CACGAGGGTTGTTCAATTTTC	CT228R	AAGAGCGCGATTTCACAGAG	151
EG986346.1		p2	(TC)6	12	34	45	CT229F	AGGGTCCTTTCCAACACACA	CT229R	CACTGCCATTGAAGATCAGG	162
EG986480.1		p2	(TC)6	12	143	154	CT230F	TCGTCCTTTCCTTTCCACTGC	CT230R	GCTACAGCCATGCATCTTCA	209
EG986499.1		p3	(CCA)7	21	90	110	CT231F	GTCCCAGAATGGTTCATTGG	CT231R	ATACTGCTCGAGGGGGGGCTGA	199
EG986512.1	1	p3	(TCA)6	18	433	450	CT232F	TGGAACCTCGACAGACACTG	CT232R	AATTCTAGGGCCAGGGACAC	211
EG986539.1	1	- p3	(TTA)6	18	565	582	CT233F	GTGACAAGGCAAGGCAAATG	CT233R	TCCCTCCATCTGAAAGAGGTT	241
EG986580.1	1	p3	(ACC)5	15	471	485	CT234F	ACGACGTTCCTGACCAAAAC	CT234R	CAAATCCTGGCTGCTAGCTC	215
EG986681.1	1	p2	(AG)7	14	331	344	CT235F	TGTTGGGTTGATGGAGAACA	CT235R	TGACACGGACAACACCTCAT	201
EG986800.1		p2	(CT)7	14	63	76	CT236F	CACGAGGCTGTCTCTCATCTT	CT236R	GGTCGACGGAGATCTGAAAA	242
EG986810.1		p2	(TC)7	14	53	66	CT237F	AGCTGTTTTCTGGGTTCGAG	CT237R	GCTTTTGGTTGAAAGGGTGA	170
EG986849.1		р3 .	(CAT)5	15	320	334	CT238F	TGGTGTGCATTAACGATGCT	CT238R	ATGCTGGAAATGACGAAGGT	209
EG986895.1		p3	(TGC)5	15	61	75	CT239F	CACGAGGGAGCAGTGTCAT	CT239R	GAAAATCAAGGCGTTCGAG	240
EG986974.1		P3	(AAG)6	18	40	57	CT240F	CACCGAAAACACAGTCATCG	CT240R	ATAGGGACGAAGCAGAAGCA	158
EG987120.1		p3	(TTC)5	15	230	244	CT241F	CETTCCCTTCTTCATTCCT	CT241R	GAGTACTTGCCGACGGTCAT	231
EG987140.1		p3	(AGA)5	15	194	208	CT242F	CGAACACCCTCTTCCAAAAA	CT242R	AAACGTTGGCTTCGATCTTG	216
EG987212.1		p3	(TCT)5	15	150	164	CT243F	GGCTGGAAACCCTAATTGGT	CT243R	GGCTCAAGGATTGATGAGGA	152
EG987212.1	2	p3	(AAT)6	18	507	524	CT244F	GCAAGAAAGTGCAGGGAACT	CT244R	ATGATGATCTGGTGCCACTG	211
EG987222.1		p2	(AG)9	18	42	59	CT245F	GCTGAAACTTGAAACTAGTGGT GA	CT245R	TITICAGCGAACTCCCAGTCT	172
EG987327.1		p2	(CT)6	12	24	35	CT246F	GAGGCTTCGAAACCAAATCA	CT246R	GGTCGAATCTGAGGGATTCA	160
EG987355.1	1	p2	(GA)6	12	44	55	CT247F	CCTCGCTCTTTTTCCACTC	CT247R	TGAGGTTCGGGAATCGATAG	225
EG987580.1	1	p3	(AAG)6	18	167	184	CT248F	GGAGAAGAAGATCCCCAAGG	CT248R	GACGACTCCTGAGCGAGTTT	198
EG987600.1		p3	(TTC)5	15	34	48	CT249F	CGTCCGTTTGTACTTGACGA	CT249R	TTCCCAAAAGGGGGGAATAC	227
EG987715.1		Б.	(GAA)5	15	214	228	CT250F	ACATGGCTGTCGAAAATTCC	CT250R	ACCCAATTTCACAGGACCAG	230
EG987728.1	7	27	(TA)7	14	396	409	CT251F	AACGCTTTGATGCCATGTTT	CT251R	AAAGTTATGACAATTTTGCACCA	233
EG987762.1		2	(ATT)5	15	209	223	CT252F	TTGCCAACATGATCTTCACC	CT252R	TCAGGCACTCTAACTCGAAGC	206
EG98/1/8.1	- -	ъ,	c(11A)	<u>-</u>	430	444	C1253F	TGGAATGAAAGTGGCAGTGA	CT253R	CAAACAAAATTGACACAAATGG	224
EG987794.1		2 <u>7</u>	(ACG)5	15	96	110	C1254F	GACTCGTCGTTTCGCTCTTC	CT254R	AACGAATTGATCGGGGATCTG	179
EG987876.1		- p3	(TAC)5	15	21	35	CT255F	CACGAGGCCCTTCCTTAAT	CT255R	ACGAAGAAGTGCGGTTGAGT	220
EG987882.1	_	5 <u>2</u>	(TTA)6	18	101	118	CT256F	TGAGCAAGTGAGGTGGCTAA	CT256R	GCACAATCGGCCATTITIAT	241
EG987893.1	_	0	(TC)7aatttcatctcttc(CT)6	40	26	65	CT257F	CACGAGGCACAGATTCTCTT	CT257R	CATCCTCCAGAGGGAAATCA	221
EG987921.1		P2	(TG)7	14	368	381	CT258F	CACCTTCCATCCCTAGATGA	CT258R	GCACCACAATCTCTTAACATGAA	231
EG987980.1	-	27	(TG)7	14	471	484	CT259F	TTCTTTCTGTTGGCATGCAG	CT259R	TCACACCACGAGAAGGAAGA	205
EG987980.1	2	P4	(TATG)5	20	606	625	CT260F	ATGGCATGTGTGTGTGTGTG	CT260R	AACAAGGAATCAGAAACTGCAA	202
EG988086.1		p2	(TC)6	12	39	50	CT261F	GCTTGCAAAGGTGCTCTTTC	CT261R	GAATGAAATCCCGAACCAGA	173
EG988096.1		_ p3	(GAA)6	18	172	189	CT262F	GCCACCATGTGTGTGTACAGGA	CT262R	TTCGCGAGGTTCTGTTTCTT	227

Produc t size	AGAGCA 195	CCAACA 219			CCTCA 232	100 AGT 100	-	+												VV VV	W	╶┾┼┼┼┟┼┼╶┾┽┼┼┤┈┾╴╴╋┽╴	╶╄┼┼┼┟┼┼╶┟┼┼┼┼┼┼╌╊┼┼╴	╶┾┼┼┼┼┼┼┼┼┼┼┼	╶┾┼┼┼┼┼┼┼┼┼┼┼		╅┥┽┽┟┟┼┝╶┾┽┽┽┽╬╴╊┼┼┼┊┧┈╌┼╴	╅┥┽┽┟┟┼╴┶┼┽┽┽╬╴╊┼┼┾┼┤┈┼┼╴	╅┥┽┽╋╋╌┾┾┽┽┿╬╌╊┼┼┾┼╌┼┼┾╴	╅┥┽┽┟┟┼╴┾┼┽┽╬╴╊┼┼┾┾╴┈┼┼┼┾	╅┥┽┽┟┟┼╴┾┼┽┽╬╴╊┼┼┾┾╴┈┼┼┼┾┾	╶┥┥┥┥┥┥	╶┼┼┼┼┼┼┼┼┼┼┼┼┼	╅┽┽┽┽┽┽╴┽┼┼┼┼╦╦╌┫┽┽┽╂┧╴╌┝┼┼┽┼┼┼
Reverse primer	TCTGAGCAGAGACCAGAGCA	AAAGGTAGCAACCCCAACA	GGAATGAGGGTATTGGAGCA	TCCCTTTTCCTTCACACCAC	CCCACCTTCCATAATCCTCA	ATGCTCGAACCTCTGCAAGT	TITICITGTGCTCGCTACCC	GAATCAAACGCAGGAAGGTC	ATGCCCGAACACACATACAC	TGAGCTGATTGGATGTCGAG	GTTGGAGAGGCTGTCTTGGA	CCAGCTCGAGTGAAAGAACA	CATAGGCTTCACCGTTGTCC	TGGTAAAGGTCGGTGGGATA		TGGCTTAACATCTTG	TGGCTTAACATCITGCATGG CGACGAGAGGGAATTGAAGT	TGGCTTAACATCTTG CGACGAGAGGGAAT7 CCCTGAAACTCGAGG	TGGCTTAACATCTTGCATGG CGACGAGGGGGAATTGAAGT CCCTGAAACTCGAGGAACAA TGCTAAACATGAAGGAACAA	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGAACAA TGCTAAACATGAAGGAACAA GCGATTTGTTCATCCATCCT	TGGCTTAACATCTTG CGACGAGAGGGAAT CCCTGAAACTCGAGG TGCTAAACATGAAAG GGATTTGTTCATCC/ GCCAGAACCAGGGAG	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGGAACAA TGCTAAACATGAAGGATCG GCGATTTGTTCATCCATCCT GCCAGAACCAGGGACTTGTA CACAGGAACCAGGGACTTGTA	TGGCTTAACATCTTG CGACGAGAGGGAAT CCCTGAAACTCGAGG TGCTAAACATGAAGG GGATTTGTTCATCC/ GCCAGAACCAGGGAC CACAAGGGAATACAC AGATTGTGTCGTCC/	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGGAACAA TGCTAAACATGAAGGGAACAA TGCTAAACATGAAGGGAACAA GGCATTTGTTCATCCATCCT GCCAGAACCAGGGACTTGTA CACAAGGGAATACCAGGATTCAA AGATTGTGTCGCTTCCGTCT GTCCAATACCAAGGCCTTTT	TGGCTTAACATCTTG CGACGAGAGGGAATT CCCTGAAACTCGAGG TGCTAAACATGAAGG GGATTTGTTCATCC/ GCCAGAACCAGGGAA GCCAATGGGAATACAC AGATTGTGTGTCGCTTCO GTCCAATACCAAGGC	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGGAACAA TGCTAAACATGGAGGAGCAA TGCTAAACATGGAAGGAACAA GGCAGAACCAGGGATTGTCCT GCCAGAACCAGGGATTACAGGATTCC AGATTGTGTCGGAATACCAGGATTCC AGATTGTGTCGGAATACCAGGATTCC AGATTGTGTCGGAATACCAGGATTCC TTGAAAGGGAAAGGCGAAGGCCAAGT TTGAAAGGAAAG	TGGCTTAACATCTTGCATGG CGACGAGGGGAATTGCAAG CCCTGAAACTCGAGGGAACAA TGCTAAACATGGAAGGAACAA TGCTAAACATGGAAGGAACAA GGCAGAACCAGGGAATCCATCCT GCCAGAACCGGGAATACAGGACTTGTA CACAACGGGAATACCAAGGCAAGG	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGGAACAA 1GCTAAACATGAAGGGAGGAGA GCGATTTGTTCATCCATCGT GCCAGAACCAGGGAATACCATCGT GCCAGTGGGAATACCAGGGATTCC AGATTGTGTGGGGAATACAGGATTCC AGATTGTGTGGGGAATGCAGGGATCT TTGAAAGGGAAAGGGCGAGGGT TTGAAAGGGAAAGGGCGAAGGT CCCATTGGAGGGAAAGGCGAAGGT CCCATTGGAGGGAAAGGCGAAGGT CCCATTGGAGGGAAAGCTGGA AGCTGGTGCTTGAAGCTGGA	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAGT CCCTGAAACTCGAGGGAACAA 1GCTAAACATGAAGGAGGACAA 1GCTAAACATGGAAGGAACAA GCGATTGTGTCATCCATCCA GCCAGAACCAGGGACTTGTA GCCAGTACCAGGGACTTGTA CCCATTGTGTCGCTTCCGTTCT AGATTGTGTCGCAGGGGAAGGATCC AGATTGTGTGGCGGAGGGATCC AGATTGTGTGGCAAGGGCGAAGGTCT TTGAAAGGGAAAGGCGAAGGTCT CCCATTGGAGGGAAGGCGAAGGATC GGGGGCGGGGGGGAAGGAAGGAAGGAAGGAAC GGAGGGCGGGGGGGAAGGAGGAAGGA	TGGCTTAACATCTTG CGACGAGAGGGAATT CCCTGAAACTCGAGG TGCTAAACATCGAGG GCGATTTGTTCATCCC GCGATTTGTTCATCCC GCCAGAACCCAGGGAA CCCAGAACGGAATACAC GCCAGAACGGGAATACAC TCCATTGGGGAATACAG TGCCAATACCAGGGGAA CCCATTGGGGGAAGGCC TTGAAGGGAAGG	TGGCTTAACATCTTGCATGG CGACGAGGGGGAATTGCATGG CCCTGAAACTCGAGGGAACA TGCTAAACATGAAGGAACA GCGATTTGTTCATCCATCCT GCCAGAACCAGGGAATTGT GCCAGAACGGGAATTGT GCCAGAACGGGAATCCAGGGATTG TGGAAGGAAAGGCAAGGGATTG TTGGAAGGAAAGGCGAAGGA CCCATTGGAGGAAAGGCCAAGGA CCCATTGGAGGGAAGGAAAGAA GGGGGGGGGG	TGGCTTAACATCTTGCATGG CGACGAGAGGGAATTGAAG CCCTGAAACTTCGAGGAACAA TGCTAAACATGGAAGGAACAA TGCTAAACATGGAAGGAACAA GCGATTGTTCATCAATGAAGGATCG GCCAGAACCAGGGGAATCAGGAATG GCCAGAACCAGGGGAATCCAGGAATG AGATTGTGTCGCCGCATTGTA CACCATGGAAGGAAGGAAGGAAG TTGAAGGAAAGGA	TGGCTTAACATCTTG CGACGAGAGGGAATT CCCTGAAACTCGAGG TGCTAAACATCGAGG GCGATTTGTTCATCC/ GCGATTGTTCATCC/ GCCAGAACCAGGGAA CCCAGGGAATACAC CCCAACGGGAATACAC CCCATGGGAATACAC TTGAAGGGAATACAC TTGAAGGGAATACAC TTGAAGGGAATACAC TTGAAGGGAATACAC TTCTTCGGCGAGGGAA GGAGGGGGAAGGGAA	TGGCTTAACATCTTGCATGG CGACGAGGGGAATTGCATGG CCCTGAAACTCGAGGGAACA TGCTAAACATGGAGGAACA TGCTAAACATGGAGGAACA GCGATTGTTCATCCATGCT GCCAGAACGGGAATGCAGGATTG CACAACGGAATCGGGAATG GCCAGAACGGAATCCGGATTGT AGATTGTGTCGCTACGGAATG TTGAAGGAAGGGAAG
Reverse Primer	CT263R	CT264R	CT265R	CT266R	CT267R	CT268R	CT269R	CT270R	CT271R	CT272R	CT273R	CT274R	CT275R	CT276R		CT277R	CT277R CT278R	CT277R CT278R CT279R	CT277R CT278R CT279R CT279R	CT277R CT278R CT279R CT279R CT280R CT281R	CT277R CT279R CT279R CT290R CT280R CT281R CT281R	CT277R CT279R CT279R CT280R CT280R CT281R CT281R	CT277R CT277R CT279R CT279R CT280R CT280R CT281R CT283R CT283R	CT277R CT277R CT279R CT279R CT280R CT280R CT281R CT281R CT283R CT284R CT285R	CT277R CT277R CT279R CT290R CT280R CT280R CT281R CT283R CT284R CT285R CT286R	CT277R CT279R CT279R CT280R CT280R CT281R CT283R CT284R CT285R CT285R CT285R CT285R	CT277R CT277R CT279R CT280R CT280R CT281R CT283R CT284R CT285R CT285R CT285R CT285R CT285R CT285R	CT277R CT277R CT279R CT280R CT280R CT281R CT283R CT284R CT285R CT285R CT285R CT285R CT285R CT285R CT285R	CT277R CT277R CT279R CT280R CT280R CT281R CT283R CT284R CT285R CT285R CT285R CT285R CT285R CT285R CT285R CT285R	CT277R CT277R CT279R CT280R CT280R CT281R CT283R CT284R CT284R CT284R CT286R CT286R CT288R CT286R CT286R CT289R CT280R	CT277R CT277R CT279R CT280R CT280R CT281R CT283R CT284R CT284R CT285R CT286R CT286R CT286R CT289R CT289R CT289R CT290R CT290R	CT277R CT277R CT279R CT279R CT280R CT280R CT281R CT283R CT284R CT286R CT286R CT289R CT289R CT289R CT289R CT289R CT289R CT289R CT289R CT289R	CT277R CT277R CT279R CT279R CT280R CT280R CT281R CT281R CT284R CT284R CT284R CT286R CT286R CT289R CT289R CT289R CT293R CT293R CT293R	CT277R CT277R CT279R CT279R CT280R CT280R CT281R CT281R CT281R CT285R CT
Forward primer	CGAGGGTTAATAGTAACTCATT CTTC	TCTTAGCAGCAACCCCACTT	AACTCCGCCTGTCCAAGTTA	TGGTTCCAACCCAAAAAGAC	CATCCAATTCGTGGGACTCAA	GGCAAAATTAGCCACACCAG	GGGTCGTTTTGATTCCTTCA	CGAGGCTCAGTTGGTACTCC	GGTTTCGTTTGCGTTCTGAG	CCACCATGACCATTTGATGA	GAGGATCGAAGCGAAGGAAT	CATCTTTTACGAGGCCGAAC	TGTGAACAAAGGAAGAGAAGA GAA	CCACCCTGTCAACAACACAC		CAGGGTGGTCATGATCTCAA	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCTTTCCAATTTCAATTTC	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCTTTCCAATTTCAATTTC CCGGTTGTTCAAGACGGTGA	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCTTTCCAATTTCAATTTC GCCGTTGTTCAAGACGGTGA CCAGTTGTTCAAGACGGTGA ACGAGGCTCCCTTTGACTTC	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCAATTTC GCCGTTGTTCAAGACGGTGA ACGAGGCTCCAATTGCAGACGGTGA ACGAGGCTCCCTTTGACTTC GGCTCTCCTTTAACCCACAA	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCAATTTC GCCGTTGTTCAAGAGGGTGA ACGAGGCTCCAATTCCAAGACGGTGA ACGAGGCTCCCTTTGACGGGTGA GGCTCTCCTTTAACCCACAA TCCTTGATCACATTCGCTTCT	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCAATTTC GCCGTTGTTCAAGGCGGGGA CCAGTGTTCAAGACGGGTGA ACGAGGCTTCAAGACGGTGA ACGAGGCTCCTTTAACCCACAA TCCTTGATCACATTCGCTTCT CACGAGGGCTTCATTCGCTTCT	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTCC GCCCTTTCCAATTTCCAATTTCC GCCCTTTCCAATTTCCAATTTCC CCAGTGGTTCAAGACGGTGA ACGAGGCTTCCAATTGCCACAA TCCTTGATCCCATTCGCTTCT CACGAGGGCTTCATTCGCTTCT CCGCGGGGGCTTCATCCTCTCTCTGGC	CAGGGTGGTCATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTCC GCCCTTTCCAATTTCCAATTTCC GCCCTTTCCAATTTCCAATTTCC CCAGTGGCTCCAATTTCCAATTTCC ACGAGGCTTCCAATTGCCACAA TCCTTGATCCCAATTCGCTTCT GCGTTGAATCCCAAACTGAT CTTGAGCAGAAGCAGCAATGC	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCTCAA GCCCTTTCCAATTTCAATTTC GCCCTTTCCAATTTCAATTTC CCAGTTGTTCAAGGCGGTGA ACGAGGCTCCCTTTGACGGGTGA ACGAGGCTCCCTTTAACCACAA TCCTTGATCACATTCGCTACT CACGAGGGCTTCATCGCTTCT CACGAGGGCTTCATCGCTTCT CACGAGGGCTTCATCGCTTGC GCGTTGAATCCCAAACTGAT CTTGAGCAGGAAGCAGCAATG TTTGTGCAAGGTTTTATGGAAA	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTC GCCGTTGTTCAATTTCCAATTTC CCAGTGTCAAGAGGGTGA ACGAGGCTTCAAGACGGAA TCCTTGATCCCATTCGCTAC GGCTTGAATCCCAAACTGAT CAGGAGGCTTCATCTCTCTCAGC GCGTTGAATCCCAAACTGAT CTTGAGCAGGAGCAGCAATG TTTGTGCAAGGTTTTATGGAAA TTTGTGCCAAGGTTTTATGGAAA	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTC GCCGTTGTTCAATTTCCAATTTC CCAGTGTCAAGAGGGTGA ACGAGGCTTCAAGACGGAA TCCTTGATCCCATTCGCTTCT CACGAGGGCTTCATCGCTTCT CACGAGGGCTTCATCTCTCTCAGC GCGTTGAATCCCAAACTGAT CTTGAGCAGGAGCAGCAATG TTTGTGCAAGGTTTTATGGAAA TTTGTGCAAGGTTTTATGGAAA CGAATTCTCCACCAACCCT GGAATTCTCCAACCCAAC	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTC GCCGTTGTTCAATTTCCAATTTC CCAGTGTCAAGAGGGTGA ACGAGGCTTCAAGACGGTGA ACGAGGCTTCATTCGCTACA TCCTTGATCCCATTGGCTAG CCCGAGGGCTTCATCTCTCTCAGC GCGTTGAATCCCAAACTGAT CTTGAGCAGAAGCAGCAATG TTTGTGCAAGGTTTTATGGAAA TTTGTGCAAGGTTTTATGGAAA CGAATTCTCCACCAACCATTAG GTGGAAGCCAACCCATTAG CCATCAACACCCATTTAG CCACATCACCCCAACCCT	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTC GCCGTTGTTCAATTTCCAATTTC CCAGTGTCAAGAGGGTGA ACGAGGCTTCAAGACGGTGA TCCTTGATCCCATTGGCTAC CCCGAGGGCTTCATCTCTCTCAGC GCGTTGAATCCCAAACTGAT CTTGAGCAGAAGCAACTGAT TTTGTGCAAGGTTTTATGGAAA TTTGTGCAAGGTTTTATGGAAA CCACTCAACCCAACC	CAGGGTGGTGATGATCTCAA CATCAAGCAAAGCATCCTCA GCCCTTTCCAATTTCCAATTTCC GCCGTTGTTCAATTTCCAATTTC CCAGTGTCAATTCCAATTTCC CCAGTGAGCTTCAAGAGGGTGA ACGAGGCTTCAATCGCAACTC TCCTTGATCCCAATCGCTTCT CCTGAGGGGGAAGCAACTGAT CTTGAGCAGGAAGCAACTGAT CTTGAGCAGGAGGCAATG TTTGTGCCAAGGTTTATGGAAA TTTGTGCCAAGGTTTATGGAAA CGAATTCTCCACCAACCCT GTGGAAGCCAACCCATTAGG CACATCATCACCCAACCCT CTCCTCCACCAACTCGC CCATCACCACCCATTTAGG	CAGGGTGGTCATGATCTCAA CATCAAGCAAGCATGATCTCAA GCCCTTTCCAATTTCAATTTC GCCGTTGTTCAAGGCATCCTCA CCAGTTGTTCAAGACGGTGA ACGAGGCTCCCTTTGACCTTC GGCTTCATTCATCTCTCTCACCTTC CCCGAGGGCTTCATCTCTCTCAGC GCGTTGAATCCCAATCGCTTCT CCCGAGGGCTCAACTGAT CCTGAGGCGAAGCAACTGAT CTTGGGCAAGGCAA	CAGGGTGGTCATGATCTCAA CATCAAGCAAGCATGATCTCAA GCCCTTTCCAATTTCAATTTC GCCCTTTCAATTTCAATTTC CCGGTGGCTCCAATTCCAATTTCC CCGGTGGCTCCAATGACTTC GGCTCCATTAACCCAAAA TCCTTGATCCCAATGACTTCT CACGAGGGCTCAATCGCTTCT CACGAGGGCTCAATCGCTTCT CCTGGGGGGGGTTCATCTCTCTCTCAGC GCGTTGAATCCCAAAACTGAT CTTGGGCAAGGCAA	CAGGGTGGTCATGATCTCAA CATCAAGCAAGCATCCTCA GCCCTTTCCAATTTCAATTTC GCCCTTTCAATTTCCAATTTCC CCAGTGTTCAAGCAGCGGTGA ACGAGGCTCCCTTTAACCCAAA TCCTTGATCACATTCGCTTCT CGCAGGGGCTTCATCTCTCTCTCAGC GCGTTGAATCCCAAAACTGAT CTGGAGGCTGAAGGCAATTG TTTGTGCAAGGTTTATGGAAA CGAATTCTCCACCAACACCT GTGGAAGCCAACCCCTTAGG CTCCACCAACACCCTTAGG TTTGTGCAAGGTTTATGGAAA CGAATTCTCCACCAACACCT GTGGAAGCCAACCCCT GTGGAAGCCAACCCCTCC CTTCTTCCTCTCCCCCAACACTCC CTTCTTCCTCTCCCCCCAACACTCC CTTCTTCCTCTCCCCCCCC
Forward Primer	CT263F	CT264F	CT265F	CT266F	CT267F	CT268F	CT269F	CT270F	CT271F	CT272F	CT273F	CT274F	CT275F	CT276F		CT277F	CT277F CT278F	CT277F CT278F CT279F	CT277F CT278F CT279F CT280F	CT277F CT278F CT279F CT280F CT281F	CT277F CT278F CT280F CT280F CT281F CT282F	CT277F CT278F CT279F CT280F CT281F CT281F CT282F CT283F	CT277F CT278F CT279F CT280F CT281F CT281F CT283F CT283F CT283F	CT277F CT278F CT279F CT280F CT281F CT282F CT283F CT283F CT285F	CT277F CT278F CT279F CT280F CT281F CT282F CT283F CT285F CT285F CT286F	CT2778F CT278F CT279F CT280F CT281F CT284F CT284F CT284F CT286F CT286F CT286F	CT277F CT278F CT279F CT280F CT280F CT281F CT284F CT284F CT284F CT284F CT288F CT288F	CT2778F CT278F CT279F CT280F CT280F CT284F CT284F CT284F CT288F CT288F CT288F CT288F CT288F CT288F CT288F	CT2778F CT278F CT279F CT280F CT280F CT284F CT284F CT284F CT285F CT288F CT288F CT288F CT288F CT288F CT288F CT288F	CT2778F CT278F CT279F CT280F CT281F CT284F CT284F CT284F CT284F CT288F CT288F CT288F CT288F CT288F CT288F CT288F CT288F CT288F CT288F CT288F	CT2778F CT278F CT278F CT280F CT281F CT284F CT284F CT284F CT284F CT288F	CT2778F CT278F CT278F CT280F CT280F CT284F CT284F CT284F CT284F CT284F CT288F CT288F CT286F CT288F CT288F CT289F CT290F CT290F CT293F	CT2778F CT278F CT278F CT280F CT280F CT284F CT284F CT284F CT284F CT288F CT288F CT288F CT288F CT288F CT288F CT293F CT293F CT293F CT293F	CT2778 CT278F CT278F CT280F CT280F CT288F CT285F CT285F CT286F CT286F CT286F CT286F CT286F CT286F CT286F CT290F CT290F CT295F CT295F CT295F CT295F
end	56	357	314	367	2	85	59	121	252	137.	66	94	46	248		436	436 94	436 94 82	436 94 82 534	436 94 82 534 111	436 94 82 82 534 111 112	94 94 534 511 111 112 526	436 94 82 534 111 112 112 726 526 47	436 94 82 534 111 111 111 112 112 526 526 526 181	436 94 82 534 111 111 112 112 112 112 47 47 487	436 94 534 111 111 112 111 111 111 111 111 276 276	436 94 82 534 111 111 112 111 112 111 111 111 111 11	436 94 534 111 111 112 111 112 111 111 111 111 11	436 94 82 534 111 111 112 111 112 111 112 111 111 11	436 94 82 534 111 111 112 111 112 111 111 111 236 46 46 487 236 249 165 165	436 94 111 111 112 112 111 112 111 1112 1112	436 94 94 94 94 82 82 534 111 111 111 111 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 112 181 181 181 181 181 181 74 74 74 74 74 74 169 109 527 527	436 94 94 94 94 82 82 534 111 111 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 112 181 487 487 276 276 276 249 666 165 249 165 169 109 109 82 82	436 94 94 94 94 94 111 111 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 112 111 111 111 111 111 111 111 111 112 147 114 174 115 165 116 109 82 527
start	35	343	297	347	56	71	44	107	241	118	51	75	31	223		416	416 77	416 77 65	416 77 65 519	416 77 65 519 37	416 77 65 519 37 74	416 77 65 519 37 37 74 515	416 77 65 519 37 37 74 515 32	416 77 65 519 37 37 74 515 32 32 164	416 77 519 519 37 74 515 515 515 515 515 515 473	416 77 65 519 37 74 74 74 74 74 74 74 73 202 202	416 77 77 65 519 37 74 74 74 74 73 32 33 34 35 36 37	416 77 65 519 37 74 515 515 32 32 473 473 202 202 202 226	416 77 65 519 37 74 515 32 164 473 202 202 202 202 202 202 57 57	416 77 65 65 519 37 74 73 74 74 74 74 74 215 32 37 74 74 215 215 215 215 226 57 154	$\begin{array}{c} 416\\ 77\\ 77\\ 519\\ 37\\ 37\\ 37\\ 473\\ 202\\ 202\\ 202\\ 202\\ 202\\ 154\\ 154\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95$	416 77 65 519 37 74 74 74 74 74 74 74 74 74 74 74 74 74	416 416 77 65 519 519 37 37 74 74 74 73 32 315 202 202 202 215 202 202 202 202 202 516 57 516 55 57 516 55 57 516 55 516 55 55 516 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55	416 77 65 519 517 37 37 37 37 37 37 37 37 37 37 37 32 164 164 164 164 164 164 154 95 95 50 30
size	22	15	18	21	15	15	16	15	12	20	16	20	16	26		21	21 18	21 18 18	21 18 16 16	21 18 18 75	21 18 16 75 39	21 18 16 75 39 12	21 18 16 75 39 16 12	21 18 16 75 39 12 18	21 18 16 75 39 39 12 12 18 15	21 18 18 13 18 12 15 15 15 15 15 15 15 15 15 15 15 15 15	21 18 16 16 13 13 15 15 15 15	21 18 16 16 13 13 15 15 24 24	21 18 16 16 16 16 16 16 15 75 75 75 75 18 18 18 18 18 18 18 18 18 18 18 18 18	21 18 16 18 16 18 15 75 75 75 12 12 12 12 12 12 12 12 12 12 12 12 12	21 18 16 18 16 18 15 75 75 75 75 15 12 12 12 12 12 12 12 12 12 12 12 12 12	21 18 18 16 18 15 15 15 15 15 15 12 12 12 12	21 18 16 16 18 16 15 15 15 15 15 15 15 15 15	21 18 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18
SSR	(CT)11	(TTG)5	(CTC)6	(TAA)7	(TCT)5	(AAG)5	(TC)8	(TTC)5	(AG)6	(CCTT)5	(GA)8	(TCTT)5	(AG)8	(TC)13	(((ATA)7	(ATA)7 (TC)9	(ATA)7 (TC)9 (AAT)6	(ATA)7 (TC)9 (ATT)6 (ATT)8	(ATA)7 (TC)9 (AAT)6 (AT)6 (AT)8 (AT)8 (CT)7ttataaccttcattcacctctcc tccctttcaaacac(CT)11	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (AT)8 (AT)8 (CT)7ttataaccttcattcacctctcc tecctttcaaacac(CT)11 (TCT)13	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (AT)8 (AT)8 (CT)7ttataaccttcattcacctctcc tecctttcaaacac(CT)11 (TCT)13 (TC)6	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (AT)8 (CT)7ttataaccttcattcaccttcc tccctttcaaacac(CT)11 (TC)13 (TC)8 (AC)8	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (AT)8 (CT)7ttataaccttcattcaccttcc tccctttcaaacac(CT)11 (TC)13 (TC)13 (TC)8 (AC)8 (AC)8 (CAT)6	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AAT)6 (AT)8 (AT)8 (CT)7ttataaccttcattcacctcttcc tccctttcaaacac(CT)11 (TC)13 (TC)13 (TC)13 (AC)8 (AC)8 (AC)8 (CAT)6 (CAT)6 (CAT)6 (CAT)6 (CAT)5 (CAT)6 (CAT)5 (CAT)6 (CAT)6 (CAT)7 (CAT)6 (CAT)7	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (AT)8 (AT)8 (CT)7tttataaccttcattcacctcttcc tecctiteaaacac(CT)11 (TC)13 (TC)13 (TC)13 (TC)13 (AT)6 (AT)6 (CAT)6 (CTT)5 (CTT)5 (AT)7aggtttactaagtttcaaacaac (AT)7aggtttactaagtttcaaacaac (AT)7aggtttactaagtttcaaacaac (AT)7aggtttactaagtttcaaacaacaacaacaacaacaacaacaacaacaacaa	(ATA)7 (TC)9 (AAT)6 (AAT)6 (AT)8 (CT)7ttataaccttcattcacctcttcc tecctttcaaacac(CT)11 (TC)13 (TC)13 (TC)13 (TC)13 (AC)8 (AT)7aggttactaagtttcaaacaac aaggatcattgctgcctttactag(T)1 3 (TCC)5	(ATA)7 (TC)9 (ATA)7 (TC)9 (AT)6 (AT)8 (CT)7ttataaccttcattcacctcttcc tecctttcaaacac(CT)11 (TC)13 (TC)13 (TC)13 (TC)13 (AC)8 (AT)7aggttactaagttcaaacaac aagggatcattgctgcctttactag(T)1 3 (TCC)5 (GCT)8	(ATA)7 (TC)9 (AAT)6 (ATJ)6 (AT)8 (AT)8 (CT)7ttataaccttcattcacctcttcc tecctttcaaacac(CT)11 (TC)13 (TC)13 (TC)13 (TC)13 (AC)8 (AT)7aggttactaagttcaaacaac aagggatcattgctgcctttactag(T)1 3 (TCC)5 (GCT)8 (TCC)5 (GCT)8	(ATA)7 (TC)9 (AAT)6 (AT)6 (AT)8 (AT)8 (AT)8 (CT)7 (TC)13 (TC)11 (TC)13 (TC)13 (TC)13 (TC)13 (AC)8 (AC)8 (AC)8 (AT)7 aggttactaagttacaaacaacaacaacaacaacaacaacaacaacaacaa	(ATA)7 (TC)9 (AAT)6 (AT)6 (AT)8 (CT)7ttataaccttcattcacctcttcc tecctttcaaacac(CT)11 (TC)13 (TC)13 (TC)13 (TC)13 (AC)8 (AT)7agtttactaagtttcaaacaac aaggatcattgctgcctttactag(T)1 3 (TC)5 (GCT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (GT)8 (TC)5 (TC)5 (GT)8 (TC)5 (TC	(ATA)7 (TC)9 (ATA)7 (TC)9 (AT)6 (AT)6 (AT)8 (AT)8 (CT)70 (TC)13 (TC)5	(ATA)7 (TC)9 (ATA)7 (TC)9 (AT)6 (AT)6 (AT)8 (AT)8 (CT)70 (TC)13 (TC)5	(ATA)7 (TC)9 (AAT)6 (AT)8 (CT)7tttataacttcattcacctctcc tecctttcaaacac(CT)11 (TCT)13 (TC)6 (AC)8 (AC)8 (AC)8 (AC)8 (AT)6 (AT)6 (AT)5 (CT)5 (CT)5 (GT)6 (GT)6 (GT)6 (GT)6 (CT)5 (TC)7tgccattgtfagtagtagtagtaac (TC)7tgccattgtfagtagtagtagtaac (TC)7tgccattgtfagtagtagtagtaac (TC)7tgccattgtfagtagtagtagtaac
<u>ه</u> ه		╡		╡			1	p3		p4		4		p2	╏														┼╂┼╂┼╌┽┽┼╏┼┼┽	┼┼┼┼╌┼┼╎┼╏┼┼┼	┼╂┼╂┤╌┤╌╢╴╢╶╢╴┥	┼┼┼┼┼┼┼┼		┼╂┼╂┝╌┤┥┼┨┍╄┼╴┥┩┨┼┼┼┼┼
SSR nr.		_	7						-			_	-	-	-																			
	EG988114.1	EG988232.1	EG988288.1	EG988349.1	EG988416.1	EG988418.1	EG988422.1	EG988471.1	EG988480.1	EG988495.1	EG988552.1	EG988682.1	EG988701.1	EG988745.1		3988750.1	3988750.1 3988856.1	3988750.1 5988856.1 5988902.1	3988750.1 3988856.1 3988902.1 3988915.1	<u>3988750.1</u> <u>3988556.1</u> <u>3988902.1</u> <u>3988915.1</u> <u>3988922.1</u>	3988750.1 398856.1 3988902.1 3988915.1 3988922.1 398922.1 3989006.1	3988750.1 398856.1 3988902.1 3988915.1 3989056.1 3989006.1 39891006.1	3988750.1 598856.1 3988902.1 5988915.1 3988915.1 3988922.1 3989220.1 5989229.1	3988750.1 598856.1 3988902.1 3988915.1 3988915.1 398922.1 398922.1 5989229.1 3989229.1 3989229.1	3988750.1 598856.1 3988902.1 3988915.1 398922.1 398922.1 398922.1 3989229.1 3989229.1 3989223.1	3988750.1 398856.1 3988902.1 3988915.1 398915.1 3989006.1 3989029.1 3989229.1 3989224.1 3989252.1 3989252.1 3989357.1	3988750.1 398856.1 3988902.1 3988915.1 398922.1 3989229.1 3989229.1 3989229.1 3989229.1 3989357.1 3989357.1 3989356.1	3988750.1 398856.1 3988902.1 3988915.1 398915.1 398915.1 398915.1 3989101.1 3989229.1 3989252.1 398936.1 3989386.1 3989386.1 3989386.1 3989386.1	3988750.1 398856.1 3988902.1 3988915.1 398915.1 398915.1 398915.1 398915.1 3989221.1 6989252.1 6989357.1 6989366.1 6989366.1 6989420.1 6989420.1	3988750.1 398856.1 398856.1 3988902.1 3988915.1 398915.1 398915.1 398922.1 598922.1 5989229.1 698936.1 6989357.1 6989359.1 6989359.1 6989359.1	3988750.1 398856.1 398856.1 3988902.1 3988915.1 398915.1 398915.1 398915.1 3989101.1 3989229.1 6989357.1 6989357.1 6989357.1 6989359.1 6989359.1 6989359.1 6989599.1	3988750.1 398856.1 3988902.1 3988902.1 398915.1 398922.1 3989244.1 3989244.1 3989244.1 3989244.1 3989244.1 3989242.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1 3989425.1	EG988750.1 EG98856.1 EG988902.1 EG988915.1 EG988915.1 EG989101.1 EG989244.1 EG989244.1 EG989244.1 EG989244.1 EG989244.1 EG989357.1 EG989357.1 EG989357.1 EG989357.1 EG989599.1 EG989599.1 EG989599.1 EG989599.1 EG989599.1 EG989599.1	EG988750.1 EG988956.1 EG988902.1 EG988915.1 EG988915.1 EG989906.1 EG989906.1 EG989906.1 EG989425.1 EG989425.1 EG989425.1 EG989425.1 EG989425.1 EG989599.1 EG989599.1 EG989599.1 EG989599.1 EG989599.1 EG989510.1

viii

(TC)7 (1 37 50 CT39F TICUTCITCCTTCCTTCCTTCCTTCCTTCCTTCCTTCCTT	SSR	SSR tyne	SSR	size	start	end	Forward Primer	Forward primer	Reverse Primer	Reverse primer	Produc t size
18 105 123 CT398F CGTTOCATICCTOCCTCTTCTTC CT301R 15 578 570 CT301F ACAAGCACCACATCTTCTTC CT301R 15 578 570 CT301F ACAAGCACCACATCTTCTTC CT301R 16 533 570 CT301F ACAGCACACATTCTTCC CT301R 17 533 570 CT301F ACAGCACACATTCTTCC CT301R 17 533 570 CT301F ACAGCACACATTCTTCCC CT301R 18 533 570 CT301F ACAGCACATTCTCCCCTCTTTA CT301R 17 12 23 33 971 CT304F ACAGCACACACACACATCGCTCTCCC 17 13 39 211 CT304F ACAGCACATTCCCCCTTTTA CT304R 18 53 347 569 CT304F ACAGCACATTCCCCCCTTTTA CT304R 17 23 347 560 CT304F ACAGCACATTCCCCCCTTTTTTTCCCTTTTTTCCCCCTTTTTTT	22	+	(TC)7	14	37	50	CT297F	TTCTCTTCCTTCCTTCCTTCC	CT297R	CAAGCTTTTCATAATCAACCACA	205
15 173 187 CT309F CCCCCATTCCTTCTTC CT303R 12 578 599 CT300F AAA6GCCCAATGGTTTC3 CT303R citegeature 13 53 70 CT303F TICCAATTCTCGG CT303R citegeature 13 201 CT303F TIGGCATTTCTAGGTCACTGG CT303R citegeature 13 201 CT303F TIGGCATTTCTAGGTCACTGG CT303R citegeature 13 33 201 CT303F TIGGCATTTCTAGGTCACTGG CT303R citegeature 13 33 CT306F CCATAAAATTGGGCAACAA CT303R citegeature 13 33 CT306F CCAAAATTGGGCAACAA CT303R citegeature 23 347 560 CT304F AAAACAATGGGCATACAA CT304R augturt 15 23 347 500 CT304F CT304R augturt 15 24 CT304F CTCAAAATGGCACAAA CT304R augturt 15 213 TCAAACATTCAACAAA	6	<u>† </u>	(11C)6	18	105	122	CT298F	GAAGGAGCAGCACCTCACC	CT298R	CTGCTATCGCGATGTGTACG	208
12 578 589 CT300P CAMGGCCCAAAMGGTTTA CT300R ergegreerdeenteenteenteenteenteenteenteenteenteen	2		(CTA)5	15	173	187	CT299F	CCTCCATTCCTCCTTCTTC	CT299R	GTGAGCTTGAAAGCGGAGAG	186
18 533 570 CT301F ACGCAGAGAGGGAAAAGT CT301R Gegegtugregentgent 13 20 CT302F TICGATTCCTCGATTCG CT303R conspectitationantice 13 20 CT304F GAGGCTTTCTAGGTTCGCGATTCG CT304R conspectitationantice 13 20 CT304F GAGGCTTTCTAGGTTCGCGATTCG CT304R conspectitationantice 15 24 CT304F GAGGCTTAGGATCGCGATAGGTCGCGATAG CT304R 20 15 24 210 CT305F GCACTGAAATGCTCCCCAACAA CT304R 21 23 34 CT306F GAGGCTAAGATGCTCCCCAACAA CT304R 21 23 24 215 CT307F GCACTGAAATGCAACACCCCAACAA CT304R autic(T)16 15 24 215 CT304F GCACTCAAATTCCAACACCCCAACAA CT304R autic(T)16 15 24 215 CT304F GCACTCAAATTCCAACACCCAACAA CT304R autic(T)16 15 24 213 TCATAAATCCAACACCCAACAA CT304R a	Ы		(TG)6	12	578	589	CT300F	CAAAGGCCCACATGGTTTTA	CT300R	CGGGAACTATGGCTCCAAAT	163
(TG05) 15 233 217 CT302F TTCAATGCTTTCC CT303R (CAA)56gaggaggaggaggaggaggaggaggaggaggaggaggag	Б.	1	(AAT)6	18	553	570	CT301F	ACGCAGAGGGGGGAAAGT	CT301R	TTCAACACAGGACTGGACCTT	248
(C) (C) <td><u>В</u></td> <td></td> <td>(TGG)5</td> <td>15</td> <td>203</td> <td>217</td> <td>CT302F</td> <td>TICAATGCITTCCCGATTTC</td> <td>CT302R</td> <td>TCCITGAGGTTGTGTCTCCA</td> <td>222</td>	<u>В</u>		(TGG)5	15	203	217	CT302F	TICAATGCITTCCCGATTTC	CT302R	TCCITGAGGTTGTGTCTCCA	222
(CT)6 12 23 34 CT30F GAGGCTTTCCCCTGTTTTG CT30R (ATD) 15 33 7706F CCATAAATTGGTTCCAAA CT30R CT30R (ATD) 15 33 7710F 15 33 CT30F CCATAAATTGGTTCCAAA CT30R (ATD) 15 33 7710F CT30F CCATAAATTGGTTCCAAA CT30R (ATD) 15 34 37 CT30F CCATAAATTGGTTCCAAA CT30R (ATD) 15 34 7130F CT30F CCATAAATTGGTTCCAAA CT30R (ATD) 15 34 CT30F CACTAAATTGGACATCCGAA CT30R (ATD) 15 34 CT31F AAAACATCCAAATTGCACAA CT30R (TOD) 17 32 17 AAAACATCCAAATTGCACAA CT30R (TOD) 17 192 CT314F AAAACATCCAACCCAGA CT30R (TOD) 17 CT314F AAAAAAAAA CT301R CT312R (TOD) 11 11	ပ 		(CAA)5ctgcagtagctgcatctgcta ttcctgctgccttcgccttttattcactttcc (TCT)5tcctcccaa(TCT)7	113	68	201	CT303F	TGGCATTTCTAAGGTCACTCG	CT303R	TGAGGGTTTGGGAGATTGAG	173
(AT)10 20 82 101 CT305F CTGGAACAATTGGAATTATA CT303R (AT)15 15 33 337 CT306F CTGGAAAGAAGTGGGGTTT1GG CT303R (AT)15 15 34 338 CT306F CATAAAAAATCAAAAAATCCAAAAAACTCCAAAA CT303R (AT)15 15 34 338 CT306F CAATAAAAAATCCACACCCAGA CT303R (AT)14 13 24 569 CT310F CAATAAAAATCCACACCCCAGA CT308R (TO)15 15 33 267 TG10F TCATCAAATGTAAGAAGGTGGGTTT1GG CT3018R (TO)15 10 CT310F CAATAGAAGAGGGTAATTGGGGGTGCATC CT310R (TO)15 20 133 262 CT311F AAAAACTCCACACCCCAGA CT308R (TO)15 13 22 CT311F AACGGGGTCGTCATCTCCCAT CT310R (TO)16 14 113 126 CT314F ACCGGGGTCTCTCGCACCAGA CT310R (TO)16 14 113 126 CT314F ACCGGGGTCTCTCTCGCCC <t< td=""><td>2</td><td>_</td><td>(CT)6</td><td>12</td><td>23</td><td>34</td><td>CT304F</td><td>GAGGCTTTCCCCCTGTTTTG</td><td>CT304R</td><td>GGAGGTGGAAAAGTTGACGA</td><td>152</td></t<>	2	_	(CT)6	12	23	34	CT304F	GAGGCTTTCCCCCTGTTTTG	CT304R	GGAGGTGGAAAAGTTGACGA	152
(ATT)5 15 381 397 CT306F CCACTGCTACTAGAGTOGOTTTTCCCACA CT306R (C)66(1)1.* 23 338 CT307F GCACTAGAGAGTOGATTTTCCA CT306R (C)66(1)1.* 23 338 CT307F GCACTACATCCACACA CT306R (A)14caaaggctaana.caccaaseg 64 215 278 CT307F GCACTATCATCGACA CT307R (TG01) 15 46 60 CT310F TCCAATTGTTGCTCGCCAA CT308R (TG01) 15 46 60 CT314F AAAAACATCGACGACAA CT308R (TG01) 20 233 223 223 223 233 233 (TG01) 2 213 192 CT314F CCCGAAATAGGAGTOCT CT314R (TA)7 TCGAGGGGGTGTCTGCT CT314R CCAGGGCATTCTTCAGCA CT314R (TA)7 TCGATCATCTGGCGA CT314R CCAGGGCATTTCATCAGCA CT314R (TC)6 13 116 CT314F CCGGGGGGATTCTTCATCGCCA CT314R (TC)6 13<	В		(AT)10	20	82	101	CT305F	CTGCAACAATTGCGATGATTA	CT305R	TGAAGCCGGAGAAGAAGAAA	157
	²		(ATT)5	15	383	397	CT306F	CCACTGCTACTGTTCCCACA	CT306R	GGCAACATGATGATGAACCA	154
(CT)6(T)12* 23 547 569 CT308F TCATCAATGTAACCCCAACAA CT308R (A)14aaaggetaaaacacaaeg 64 215 278 CT309F AAAACATCCAACCCCAGA CT308R (A)14aaaggetaaaacacaaeg 64 215 278 CT309F AAAACATCCCAACAA CT308R (CD10 15 46 60 CT310F AAAACATCCCACCCCAGA CT301R (CD10 20 173 192 CT311F ACCCGAACAAATCGCCTCTTT CT311R (CD10 20 173 192 CT311F ACCCGAGGGTTGTGTTCTT CT311R (CT010 13 13 126 CT314F CAGGGGGTTCTGTCTCT CT314R (TA)1 (TO10) 23 411 CT316F CAGGGGCTCTTCTATCAA CT318R (TA)7 (TO10) 13 126 CT316F TTCAATCAAACCCCAGA CT318R (TA)13actctcategatcgagtcggat 141 CT316F TTCAATCAAACCCTCCTCAG CT318R (TA)5 13 265 CT316F CAGGGGCCTTCTAATCAG	â		(ATG)5	15	324	338	CT307F	GCACTAAGAAGTGGGTTTTTGG	CT307R	TCACTITIGITICCCTCCCATT	239
	5		(CT)6(T)12*	23	547	569	CT308F	TCATCAAATGTAACCCCAACAA	CT308R	CTGATGTATAGGTGGAGTTGAGG	246
(TGG)5 15 46 60 CT310F TCTCAATGTTGCTCGTA CT310R (TO10 23 22 CT311F ACCGGAATATAGGGGTTCGCTCT CT311R (TO10 15 28 CT311F ACCGGAATATAGGGGTTCTCTT CT311R (TO05 15 28 22 CT314F CCGGAGGATTCTTCT CT314R (TO)6 13 11 CT314F CACGGAGGGTTCTCTCTCTCTCTCT CT314R (TA)7 113 126 CT315F CAGGGGTTCTTCATCAG CT313R (TO)6 14 11 CT315F CAGGGGGTTCTCAGCTC CT314R (TO)6 13 11 CT315F CAGGGGGTTCTCAGCTC CT315R (TO)6 12 14 CT315F CCAGGGGGTCTCTCAGCTC CT315R (TO)6 12 13 14 CT315F CCATCAGCTGAGTGAT CT315R (TO)6 12 13 14 CT315F CCATCAGCTGAGTGAT CT317R (TO)6 12 13 CT317F AGCCATAAGCTGCTGCTA <td><u>ာ</u></td> <td></td> <td>(A)14caaaggctaaaacaccaaacg aaggggggaaatc(T)16</td> <td>64</td> <td>215</td> <td>278</td> <td>CT309F</td> <td>AAAACATCCACACCCCAGA</td> <td>CT309R</td> <td>TCCAGTGGAGGATTTGAAGC</td> <td>236</td>	<u>ာ</u>		(A)14caaaggctaaaacaccaaacg aaggggggaaatc(T)16	64	215	278	CT309F	AAAACATCCACACCCCAGA	CT309R	TCCAGTGGAGGATTTGAAGC	236
(CT)15 30 233 262 CT311F ACCCGAAATAGGGACGAGATC CT311R (TO)00 1 3 42 CT313F AAATGGGGGTCTCTT CT313R (TO)00 1 3 42 CT314F CACGAGGGACAGGGTCTTCTT CT313R (TO)00 1 1 126 CT314F CACGAGGGTCTTCTTCTTCTT CT313R (TO)00 (TA)7 14 113 126 CT314F CACGAGGCTTCTTCGTCT CT314R (TA)7 (TO)13 263 411 CT316F CAGGGCTTCTTCGTCG CT314R (TO)10 (TA)7 14 113 126 CT316F CAGGGCTTCTTCGTCG CT314R (TO)10 (TA)7 A A CAGGGGTCTGTCGTCG CT318R (TO)5 12 13 145 CT316F CAGGGGTCTGTCGGGGGAGGGGGGGGGGGGGGGGGGGGG	L D	6	(TGG)5	15	46	60	CT310F	TCTCAATGTTGTCCTCTGCCTA	CT310R	GAGCTGCAGTGTTTGTTCCA	159
(TC)10 20 173 192 CT312F AAATG6GGGTTCTGCTT CT312R (TOGD)5 15 28 42 CT313F CT1GC0GGGAGGGGTCTGTTCTT CT314R (TOGD)5 (TA)7 (T)56ggt0ctgattegattegattegat 13 126 CT314F CAGGGGGTCTTCTT CT314R (TA)7 (T)3acctottattegattegattegat 14 113 126 CT315F CCGGGGGGTCTTCTT CT314R (T)3acctottattegattegat 14 113 126 CT315F CCGGGGGGTCTTCATTCATTCAG CT314R (TO)66ttattagattegattegat 14 113 126 CT315F CCGGGGGCGTTGGATTCATTCATTCATTCA CT314R (TTA)5 11 CT316F TTCATCATCTTAATTTCATTCA CT314R A attottuttuttuttuttuttuttuttuttuttuttuttut	Ľ	2	(CT)15	30	233	262	CT311F	ACCCGAAATAGGGGACGAATC	CT311R	GGTGAACCTGAAACTGTTGTTG	233
	1	2	(TC)10	20	173	192	CT312F	AAATGGGGTTCTGCTCCTT	CT312R	CGAAAATACGACGGGAAAAG	159
		5	(TGC)5	15	28	42	CT313F	CTTGCGAGCAAGGTCTTCTT	CT313R	CGAAAATACGACGGGGAAAAG	220
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(TC)6tgtgtctctgatctgagtctgac cct(TTC)10	68	39	106	CT314F	CACGAGGGTCTCTTCTGCTC	CT314R	GATGACGGTGAAGGAAAGGA	216
		2	(TA)7	14	113	126	CT315F	CCAGGCCATTICTICATCAG	CT315R	CATTCCCATTTGCAACCTCT	155
(CTG)/5 15 291 305 CT317F AAGCCATAGCTGGTCTGAT CT317R (CTG)/5 12 134 145 CT318F CG6G6GTCTGGAT CT318R (TCO)/6 12 134 145 CT318F CG6G6GGTCTGGAT CT318R (TCO)/6 12 12 145 CT318F CG6G6GGTCTGGAT CT318R (TCO)/6 12 12 14 435 CT320F CACCACCACCTCTGTTT CT320R (CTO)/6 12 121 141 CT321F CACCACCACCTCATTTTT CT320R CT320R (ACD) 21 121 141 CT323F CTATTTTGATCTTT CT320R (ACD) 21 12 149 CT323F CTATTTTGGTATTTTAAGAG CT323R (AD) (AD) 5 166 CT323F CTATTTTGGTATTTTAAGAG CT323R (AD) (AD) 12 12 149 CT323F CTATTTTGGTATTTTAAGAGAG CT324R (AD) (CTO) 12 12		ى د	(T)13acctctcttttcttgatttctgtgt (TG)6cttcatcagattcacccctgat gctgctgagtaccactgaagctgagga attctttctttttcttgttaacggaaaccca	149	263	411	CT316F	TTCATCATCTTAATTTCATTCCA A	CT316R	TCCAATGACACTGCAAGAGAA	250
		03	(CTG)5	15	291	305	CT317F	AAGCCATAGCTGCGTCTGAT	CT317R	AGTTCCGTGGTTGTTGGAAG	218
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	┢	2	(CT)6	12	134	145	CT318F	CGAGGGTCCTCTGTCTCTCA	CT318R	ATTITCGGATCCACAAGCAG	217
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	┢╌	<u>ال</u>	(TTC)5	15	421	435	CT319F	CCAATTGAAAAGCACTTGGA	CT319R	CITITICTGCCCTITIGATGGA	170
(CCT)7 21 121 141 CT321F CAGAGGAGACATGGATCT CT321R (AG)6 12 138 149 CT322F CCATTCCAATTCCAACATC CT322R (A)26tcatttggttatacaatattetet 102 65 166 CT323F CCATTCCAATTCCAACATC CT322R atgttcaagaggggaagtgagtgaagtgaggtua 25 166 CT323F CCATTCCAATTTGGTATTTAAAGAG CT323R atgttcaagaggggaagtgaggtua 12 25 166 CT324F CCATTCCAACATTCC CT323R atgttcaagagggggaagtgaggtut 12 25 36 CT324F CACT CT324R (TC)6 12 12 25 36 CT325F TCCATCTTCAATCCTCTATCT CT324R (TC)6 18 225 242 CT325F TTCCATCTTCAATCCCCAAA CT325R (GTA)6 18 578 595 CT325F GTCTCCTCCGGTCGACTTG CT325R (TC)16 18 273 595 CT325F GTCTCCTCCGGTCGACAAA CT325R (TC)16 18 578		p2	(TC)6	12	32	43	CT320F	CACCACCACCTTCATCTTT	CT320R	GAAGACACCGAATCCATGCT	201
(AG)6 12 138 149 CT322F CCATTCCAATTCCCAACATC CT322R (A)26tcattlggttatacaatattetet 102 65 166 CT323F CTTATTTGGTATTTTAAGAG CT323R atgttcaagagggggaagtgaggtgaagtgaggttut 65 166 CT323F CTTATTTGGTATTTTAAGAG CT323R gaaacttttga(T)11 102 65 166 CT324F CACT CT324R (TC)6 12 25 36 CT324F CACGAGGGTGTGTTCTTATCT CT324R (CTT)6 12 25 36 CT325F TTCCATCTTCATCCCCAAA CT324R (CTT)6 18 225 242 CT325F TTCCATCTTCATCCCCAAA CT325R (CTT)6 18 578 595 CT325F GTCTCCCCGGGGACGACTG CT325R (TC)16 18 578 595 CT325F GTCTCCTCCGGTCGACCAAA CT325R (TC)16 18 578 595 CT325F GTCTCCTCCGGTCGACCAAA CT325R (TC)16 18 578 595 CT325F </td <td></td> <td>р<u>3</u></td> <td>(CCT)7</td> <td>21</td> <td>121</td> <td>141</td> <td>CT321F</td> <td>CACGAGGGAGACATGGATCT</td> <td>CT321R</td> <td>GGAAGAGGAGGGGAAGAGT</td> <td>230</td>		р <u>3</u>	(CCT)7	21	121	141	CT321F	CACGAGGGAGACATGGATCT	CT321R	GGAAGAGGAGGGGAAGAGT	230
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	p2	(AG)6	12	138	149	CT322F	CATTCCAATTCCCAACATC	CT322R	GGGCTTTAACTTCAGCAACG	192
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		S	(A)26ctcatttgtgttatacaatattctct atgttcaagaggggggaagtgaagt	102	65	166	CT323F	CTTATTTTGGTATTTTAAAGAAG CACT	CT323R	AAAAATCAAAAGTITTCAAAACCT CA	861
(CTT)6 18 225 242 CT325F TTCCATCTTCATCCCCAAA CT325R (GTA)6 18 578 595 CT326F GTCTTCCTCCGTCGACATTG CT326R (TC)14 28 65 92 CT327F CATGGTCGTCGACATGG CT326R (TC)14 28 65 92 CT327F CATGGTCCTCCACACAC CT327R (CAT)6gctgtgtcctttttccactctc 98 114 211 CT328F GAGACATGGGGAAGGAAA CT328R ttttacatatatctcragaattctacacttt 98 114 211 CT328F GAGACATGGGGAAGGAAG CT328R ctaatttatt(TC)7 ctaatttattt(TC)7 CT328R GAGACATGGGGAAGGAAGCAA CT328R		p2	(TC)6	12	25	36	CT324F	CACGAGGTGTGTTCTCTCTATCT	CT324R	GGGTCTTTCCAACAAGCAAC	199
(GTA)6 18 578 595 CT326F GTCTFCCTCGGGGACTTTG CT326R (TC)14 28 65 92 CT327F CATCGTCCTCTCACACCA CT327R (CAT)6gctgtgtcctttttccactctc 98 114 211 CT328F GAGACATGGGAAGCAA CT327R ttttacathatetctcagaattctacacttc 98 114 211 CT328F GAGACATGGGAAGCAA CT328R ctaatttattt(TC)7 ctaatttattt(TC)7 ctaatttattt(TC)7 CT328R CT328R	<u> </u>	یا م	(CTT)6	18	225	242	CT325F	TTCCATCTTCAATCCCCAAA	CT325R	GCTCCGATTACCCAAATCAA	215
(TC)14 28 65 92 CT327F CATCGTCCTCTCACACCA CT327R (CAT)6gctgrgtcctttttccactctc 98 114 211 CT328F GAGACATGGGAAGCAA CT328R ttttacatatatctcrcagaattctacacttt 98 114 211 CT328F GAGACATGGGAAGCAA CT328R ttttacatatatctcrcagaattctacacttt 98 114 211 CT328F GAGACATGGGGAAGCAA CT328R ctaarttattt(TC)7 ctaartttattt(TC)7 ctaarttattt(TC)7 CT328R CT328R CT328R		53 53	(GTA)6	18	578	595	CT326F	GTCTTCCTCCGTCGACTITG	CT326R	TGGATAAGCCGATCTCAAGAA	203
(CAT)6gctgrgcctttttccactctc 98 114 211 CT328F GAGACATGGGAAGCAA CT328R ttttacatatatctctcaggaattctacacttt ctaatttattt(TC)7 ctaatttattt(TC)7 ctaatttattt(TC)7 ctaatttattt(TC)7	<u> </u>	2	(TC)14	28	65	92	CT327F	CATCGTCCTCTCTCACACCA	CT327R	CCAATGCTCGTCTCTGTGAA	244
		5	(CAT)6gctgtgtcctttttctcactctc ttttacatatatctctcagaattctacacttt ctaetttettt(TC)7	86	114	211	CT328F	GAGACATGGGGAAGAAGCAA	CT328R	GTTGGAACAGCAAGCAACAA	246

(TAA)5 15 298 312 CTT32JF CTTATGCCCAGGCTGTIGG (TO)16 12 13 146 CT33JF FOCTTIGGTTITAGGCTGTIGG (TO)5 13 131 461 CT33JF FOCTTIGGTTIGG (TO)5 13 131 461 CT33JF FOCTTIGGTTIGG (TO)5 13 132 133 CT33JF FOCTTIGGATTIGGTTIGG (TO)5 13 132 133 CT33FF FOCTTIGGATTIGGT (TA)7 13 133 CT33FF ACGGGCAGCACAAGATTICCT (TA)7 12 133 CT33FF ACGGGCAGCACAAGGGTTICA (TA)7 12 23 133 CT33FF ACGGGCAGCACAAGGGTTICA (TA)7 17 TCAGCACTACAAGATTICCT AGGGGAGAGACAAGGGTTICA AGGGGAGAGACAAGGGTTICA (TA)7 17 TCAGCACTACAAGAATTICCT AGGGGAGACAAGAATTICCT AGGGGAGAGACAAGAATTICCT (TA)7 17 TCAGCACTACAAGAATTICCT AGGGGAGACAAGAATTICCT AGGGGAGAGACAAGAATTICCT (TA)7 17 TCAGTGC			SSR	size	start	end	Forward	Forward primer	Reverse	Reverse primer	rroauc t size
(TU) (TU) <th< td=""><td>T</td><td></td><td>(TAA)S</td><td>15</td><td>208</td><td>317</td><td>CT379F</td><td>CTAATGCCCAGGCTCTTGAC</td><td>CT329R</td><td>CGAAGTTGTAAGTTTTCAGGTGTG</td><td>201</td></th<>	T		(TAA)S	15	208	317	CT379F	CTAATGCCCAGGCTCTTGAC	CT329R	CGAAGTTGTAAGTTTTCAGGTGTG	201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ļ	22	1 (TC)6	12	158	169	CT330F	CCCATTITTACGCCTGTGAG	CT330R	GGGATTTGAAAGGGAAGCTC	229
(CTC)5 15 132 166 CT332F GGTCGTCGAATCAGAATGGT C agaatkaceaccuttattetectet 95 120 214 CT333F ACCAGACAGAATGCACAGAATGGC C agaatkaceaccuttattetectet 95 120 139 178 CT334F TCCGTCGTAATIGCTTAGG C (CTAT)5 20 139 178 CT334F TCCGTCGTAATGCAGAATGCACA	{	10	(TC)7tac(CT)7	31	431	461	CT331F	TCCTTTGGTCTCAGGTTTCG	CT331R	GCCATTCATTCTGCTCTGGT	227
		53 53	(CTC)5	15	152	166	CT332F	GGTCGTCGAATCAGAATGGT	CT332R	AACCTCGTCTTGGCAACATC	248
(AC)6 (12) 327 338 CT334F TCCGTCGTAATTGCTTAGG C (TAT)5 20 159 178 C1335F TCATTGAAAGGAAGTAGG C (TAT)7 (TCAT)5 20 159 178 C1335F TCATTGAAATAGCAGAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA	{	. U	(CA)6tctataataaataaataccatca aagaaftcaccaccctttttattttcctctc crossert/TTTAN	95	120	214	CT333F	ACCAGACAGATCCCACCAAA	CT333R	GCAATTACGGACGGAAGAAA	96
(CTAT)7 20 159 178 CT335F TCATTGAAAGCACAGAAGTGA C (TAT)7 (TAT)7 21 22 23 23 159 178 C1335F TCATTGAAAAGCACAGAAGTGA C (TAT)7 (TAT)7 21 22 23 23 102 125 117 1111 1111 1111 1111		2	(VIII)	12	277	338	CT334F	TCCGTCCGTAATTGCTTAGG	CT334R	TTCAGAGCTTCCTCCTCCTG	151
(TAT)7 21 235 245 CT336F GGGAGACAACAATATCATCTICA I RUCAGC)Steasectgagtingc 64 25 88 ITTR NIF CGAGGCAACAATATCATCTICA 11 RUCATC)5 25 102 126 ITTR NIF CGAGGCAACAATATCATCTICA 11 RUCATC)5 25 102 126 ITTR NIF CGAGGCAACAATATCATCTICA 11 RUCATC)5 25 110 134 IITR NIF CCACCACTAGGGTGGCT 1 RUATC)5 25 144 168 IITR NIF CGGAAATGACAGAGATTGCTGC 1 RUAATD5 25 144 168 IITR NIF AGGAGATGACAGAGAGATTGCT 1 RUAATD5 20 131 167 198 IITR NIF AGGAGAATGACAGAT 1 RUAATD5 20 131 167 198 IITR NIF TCACCCACTGGCTGGATGCT 1 RUAATD5 20 131 167 198 IITR NIF TCACGGATGACACAAT 1 RUAATD5 20 131 <td></td> <td>2 Z</td> <td>(CTAT)5</td> <td>20</td> <td>159</td> <td>178</td> <td>CT335F</td> <td>TCATTGAAAAGCACAGAAGTGA A</td> <td>CT335R</td> <td>GTTGATAGGGGATGCAATGG</td> <td>219</td>		2 Z	(CTAT)5	20	159	178	CT335F	TCATTGAAAAGCACAGAAGTGA A	CT335R	GTTGATAGGGGATGCAATGG	219
(TCAGGC)5tcaagetgagtgg 64 25 88 ITTR NIF CGAGGCAACAATATCATCATCTCA 11 (TCAGGC)5tcaagetgagtgg 25 110 126 ITTR N3F CTTCCCTTGCTTGCTTCC 1 (TCTC195 25 110 134 ITTR N3F CTCCCCTTGCTTGCTTCC 1 (AAAT)5 25 110 134 ITTR N3F CCCCCTTCCTTGCTTGCTTC 1 (AAAT)5 25 144 168 ITTR N3F CCCCCTTCAGTTGCTGC 1 (AAAC)5 25 144 168 ITTR N3F CCCCCCTTCAGGTTGGCTGG 1 (AAAC)5 20 341 360 ITTR N3F AGGAAATCAACAATCAACAAT 1 (AAAC)5 20 341 360 ITTR N3F AGGAAATCAACAATCAACAAAT 1 (AAAC)5 20 341 360 ITTR N3F TCACCCACACTAGACAAAT 1 (AAAC)5 20 341 360 ITTR N1F AGGAAATCAACAACAAAT 1 1 (TTC)615 20 341 100 <td< td=""><td>-</td><td>23</td><td>(TAT)</td><td>21</td><td>225</td><td>245</td><td>CT336F</td><td>GGGAGACAACAACAGGGTTT</td><td>CT336R</td><td>CAAAATCCTTGGGGGTTACCA</td><td>204</td></td<>	-	23	(TAT)	21	225	245	CT336F	GGGAGACAACAACAGGGTTT	CT336R	CAAAATCCTTGGGGGTTACCA	204
(TGCTG)5 25 102 126 ITR N3F CTTTCCTTGGTTGGTTG 1 (TCTTO)5 25 51 75 ITR N3F CCACCACTTAGGTOGTGTT 1 (AATT)5 25 140 163 ITR N4F CCACCACTTAGGTOGTGTT 1 (AATT6)5 25 141 163 ITR N4F CCACCACTTAGGTOGGTTTCCT 1 (AAGT5 25 141 163 ITR N4F CCACCACTTAGGTOGGTA 1 (AAGT5 25 143 163 ITR N4F AGGAGAATTGGTCAGGTAGGTAA 1 (AAGT5 20 341 360 ITR N1F AGGAGAATGGCTCAGGAA 1 (AACD5 20 341 162 ITR N1F AGGAGAATGGCTCAGGAA 1 (TCGG)5 20 143 162 ITR N1F TCAGCCACAATGAGGACA 1 (TCGG)5 20 143 162 ITR N1F TCAGCGACAATGAGGACA 1 (TCGG)5 20 186 ITR N12F TCAGCGACAATGAGGACA 1 1		c(p6)	+	64	25	88	IITR NIF	CGAGGCAACAATATCATCTTCA	IITR NIR	TTTGGGATCGATCAAAGTGA	204
(TCTTC)5 25 51 75 ITTR N3F CCACCACTTAGGTCGGTCTTC 1 (ATTC)5 25 110 134 ITTR N6F TGCACTTCGACTTCGACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTTCCACTCACGGTCAGGTCA 1 (ATTCA)5aggaaaggaaaggaaa 25 144 168 ITTR N6F AGGAAATTGGTCAGGTCAG 1 (ATTCA)6 23 143 166 117R N6F AGGAAATTGGTCAGGGTCA 1 (AAG)5 20 341 360 ITTR N8F CGGAAATTGGCTCAGGGTCAC 1 (AAC)5 20 341 360 ITTR N8F CGGAAATTGGCTCAGGATGAC 1 (AAC)5 20 341 360 ITTR N8F CGGAAATGCACGGGGGGGGGGG 1 (TCG)8 170 TTACGTGAAGGATGCACCACTGGGGGGGGGGGGGGGGGG	5	20	Tractais	25	102	126	IITR N2F	CITTCCCTTCCTTGCTTCCT	IITR N2R	TGAACCCAAAACACCCAAACC	500
(CCTTT)5 25 110 134 ITR NAF CTCCCCTTCCACTTTCCTTC I (AAAT)5 25 144 168 IITR N5F TGCAAGTGAACAGATTGC 1 (AAG)7 25 144 168 IITR N5F TGCAAGTGAACAGATTGC 1 (AAG)7 24 867 890 ITR N5F TGCAAGTGAACAGATTGC 1 (AAG)5 20 341 360 ITR N19F AGGGAAATTGACGATCAACGATCA 1 (AAG)5 20 143 162 ITR N19F TGCGGAAGCAGAGAACA 1 (CTGG05 20 341 360 ITR N10F AGGAGAAGCGAGGAA 1 (CTG05 20 341 162 ITR N10F ACGAGGAAGAGAACA 1 (CTG05 20 143 162 ITR N10F ACGAGGAAGCACA 1 (CTG05 20 198 ITR N10F ACGAGGAAGAGAACA 1 1 (TCA)8 aaggaggaattcttcaacagca 4 198 ITR N12F ACCGAGGAAAGAAGAAAGAAAAAAAAAAAAAAAAAAAA	1	2	(TCTTC)5	25	51	75	IITR N3F	CCACCACTTAGGTCGTGCTT	IITR N3R	CAAAGCAAGGGAAAGGTCA	169
(AAATJ)s 25 144 168 IITR NSF TGCAAGTGACAAGAATTIGC 1 (ATTGA)58ggaaaggaaa 62 969 1030 IITR N6F AA6GGAAATTGCTCAAGGCTA 1 (AAG)7 (AAG)7 24 867 890 IITR N6F AA6GGAAGGCTTCAACGGCAA 1 (AAAD5 20 341 360 IITR N1F AGGAGAAGCATCAACGGAA 1 (AAAD5 20 341 560 IITR N1F AGGAGAAGCATCAACGGAA 1 (AAAD5 20 341 560 IITR N1F AGGAGAAGCATCAACGAAA 1 (AAAD5 20 341 560 IITR N1F AGGAGAAGCATCAACGAA 1 (TCG0)5 20 341 162 IITR N1F AGGACAAGAAGAAA 1 (TCO60)5 20 341 98 IITR N12F TACGGTGGGGAGGAAGAA 1 (TCO60)5 198 IITR N13F CAGGAGAAGACCAACA 1 1 1 1 1 1 1 1 1 1 1	1	50	(ccrrns	25	110	134	IITR N4F	CTCCCCTTCCACTTTCCTTC	IITR N4R	AAGAACAAGATGTTGGGGCATTT	244
(ATIGA)5aggaaaggaaaggaaaggaaaggaaaggaaaggaaag	1	20	(AAAT)5	25	144	168	IITR N5F	TGCAAGTGACAACAGATTTGC	IITR N5R	ACGGCATTATCCGCTACAAA	186
(TTAA)6 24 867 890 ITTR NYF AGGAGAGGCTTGGGATGAC 1 (AAAC)5 20 341 360 ITTR NSF CGGAAATCAAGAGACTAGAGAA 1 (AAAC)5 20 341 360 ITTR NSF CGGAAATCAAGAGAAGCAATGAAGGAA 1 (TACA)5 20 341 360 ITTR NIFF CGGAAATGAAGGACCAATGAAGGAAGCAATGAAGGAAGCAATGAAGGAAG	1		(ATTGA)5aggaaaagaaaagaaa (AAG)7	62	696	1030	IITR N6F	AAGGAAATTGCTCAGGCTCA	IITR N6R	CCCAAGGCCAACAIAAIIG	cci
(AAC)5 20 341 360 ITR NBF CGGAAATCAACATCAACATCAACGAA (AGA)5 20 143 162 ITR N0F TCAGCCACAATGACATCAACGAF (TGG)5 20 541 560 ITR N10F ACTATGAATGCACCAGT 1 (TGC)5 20 541 560 ITR N10F ACTATGAATGCACCACAA 1 (TCOG)5 20 541 580 ITR N10F ACGAGGAAGGACCACAA 1 (TTC)6iateatgccactactaccaca 34 199 292 ITR N12F TACCGTGTGGACCCCAACAA 1 (CAC)5caccaacaacaacattgatt 55 34 88 ITR N13F CACGAGGAATCAACAA 1 (ATA)8n(TAA)8 49 962 1010 ITR N13F CACGAGGAAGGACAA 1 (ATA)8n(TAA)8 49 962 1010 ITR N15F CACGAGGAAGGACAA 1 (ATA)8n(TAA)8 49 962 1010 ITR N15F CACGAGGAGGCTAAGGACAA 1 (TTC)11 33 141 183 ITR N15F CACGAGGGAACGGGCCAAA	1	p4	(TTAA)6	24	867	890	IITR N7F	AGGAGAAGGCTTGGGGATGAC	IITR N7R	TTCCACCATGTGAAAAAGCA	209
(AGA)5 20 143 162 IITR N0F TCAGCCACAATGACACCAGT I (TACA)8 32 167 198 IITR N10F ACTATGAATGCCGTGAGAGGC 1 (TACA)8 132 167 198 IITR N11F AGGAGAAGGTGACCACACA 1 (TTC)6ateratecceat 94 199 292 IITR N12F TACCGTGGTGGAAGCC 1 (TTC)6ateratecceat 94 199 292 IITR N13F CACGGGGGAAGCCTGAA 1 (ATA)8n(TAA)8 49 962 1010 IITR N13F CACGGGGGAAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAAGAGGCAAAGAGGCAAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGCAAAGAGGGCAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAAGAGGCCAAAGAGAGCAACAA	1	4	(AAAC)5	20	341	360	IITR N8F	CGGAAATCAACATCAACGAA	IITR N8R	TGTGACTTGGAAGCCCTTTT	239
(CTGG)5 20 541 560 ITR N10F ACTATGANTGCCGTGGAAGC 1 (TTC)6ateatgccactactaccccat 32 167 198 ITR N12F TACCGTGTTGGATGCTCCAACA 1 (TTC)6ateatgccactactacccccat 94 199 292 ITR N12F TACCGTGTTGGTGGAGCCCTTGA 1 (TTC)6ateatgccactactacccccat 94 199 292 ITR N12F TACCGTGTTGGTGGACCTTGA 1 accastgregaal(TCT)5 34 88 IITR N13F CACGAGGAGAAGAACACA 1 accattrgregaal(TCT)5 34 88 IITR N13F CACGAGGAAGAAGAACATCACA 1 cattron (ATA)8n(TAA)8 49 962 1010 IITR N14F AAGGAAGAAGAACATCACA 1 cact(TC)7 33 136 188 IITR N15F CATTGCTTCAAAGGGTTTGG 1 (TTC)6iccttcgeceg(CCA)5 43 141 183 IITR N15F CATTGCTTCAAAGGGTTTGG 1 (TTC)11 30 108 137 IITR N15F CATTGCTTCAAAGGGTAAGAGGCAAAGAGGAAAGAGAGAG	<u>;</u>	4 7	(AGAA)5	20	143	162	IITR N9F	TCAGCCACAATGACACCAGT	IITR N9R	CTTCGTCGTUCGACACIACA	245
(TACA)8 32 167 198 ITTR N11F AGGAGAAGATGCTCCCAACA 1 (TTC)6atcatgccactactecccat 94 199 292 IITR N12F TACCGTGTTGGTGACCTTGA 1 (TTC)6atcatgccactactaccccat 94 199 292 IITR N12F TACCGTGTTGGTGACCTTGA 1 accastgrcgaaf(TCT)5 34 88 IITR N13F CACGAGGATTTCACTCACACA 1 (CAC)5caacaacaacaacaacaacaacaacaacaacaacaacaa	1	Z	(CTGG)5	20	541	560	IITR N10F	ACTATGAATGCCGTGGAAGC	IITR NIOR	AAACAAACGCACCACACAAA	C17
(TTC)6atcatgccactat constructure 94 199 292 IITR N12F TACCGTGTTGGTGACCTTGA 1 catgatgaggagatictictcaacagca 3 199 292 IITR N12F TACCGTGTTGGTGACCTTGA 1 catgatgaggagatictictcaacagca 49 952 1010 IITR N13F CACGAGGATTTCACTCACACA 1 cact(TC)7 (ATA)8n(TAA)8 49 952 1010 IITR N14F CACGAGGAAGGGGTTTCG 1 cact(TC)7 49 952 1010 IITR N14F CACGAGGAAGGGGTTCGC 1 (ATA)8n(TAA)8 49 952 1010 IITR N14F CACGGAGGAAGGGGTTTCG 1 (AT)18n(TAA)8 49 952 168 IITR N15F CATGGAGGGAAAGGGCAAAGGGCAAAGGGCAAAGGGCAAAGGGCAAAGGGCAAAGGGCCAACAA		54 4	(TACA)8	32	167	198	ITTR N11F	AGGAGAAGATGCTCCCAACA	IITK NI IK	TUAGCALCCALGAAAGCAAG	C77
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	<u>ی</u>	(TTC)6atcatgccactactaccccat catgatgaggagattcttctccaacagca	94	199	292	IITR N12F	TACCGTGTTGGTGACCTTGA	IITR N12R	ATGTCCAAAUUCAICIUUAA	177
current current <t< td=""><td>1</td><td>0</td><td>(CAC)5caacaacaacatcattgtatt</td><td>55</td><td>34</td><td>88</td><td>IITR N13F</td><td>CACGAGGATTTCACTCACACA</td><td>IITR NI 3R</td><td>AGGAGGGAGTTCAGGTTGGT</td><td>.192</td></t<>	1	0	(CAC)5caacaacaacatcattgtatt	55	34	88	IITR N13F	CACGAGGATTTCACTCACACA	IITR NI 3R	AGGAGGGAGTTCAGGTTGGT	.192
(TTC)filecettegeceg(CCA)5 43 141 183 ITTR NISF CTTTGCTTCAAGGGTTTCG 1 (TTC)11 33 136 168 IITR NISF CTTGAAGGGCAAAGAGG 1 (A)12(TA)9 30 108 137 IITR NISF CGAGGAAAAGAGGCAAAGAGGCAA 1 (A)12(TA)9 36 27 62 IITR NISF CGAGGGAAAGAGGCAAA 1 (GA)18 36 27 62 IITR NISF CGAGGGAAAGAGCACAAA 1 (GA)18 36 27 62 IITR NISF CGAGGGAAAGAGCACAAA 1 (GA)18 36 27 62 IITR NISF CGAGGGAAAGAGCAAAAA (GA)18 26 755 780 IITR NISF CGAGGGAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1	J	(ATA)8n(TAA)8	49	962	1010	IITR N14F	AAAGAAGAAAGATCCTTGTTTG GA	IITR N14R	AAACAAAAATAACCGCTTGATGA	165
(TTC)11 33 136 168 IITR N1/F TCGAATTGAAGGCAAAGAGC (A)12(TA)9 30 108 137 IITR N17F CAACCAGAAACATGAAGGCACA (GA)18 36 27 62 IITR N17F CAACCAGAAACATGAAGCACA (GA)18 36 27 62 IITR N18F CGAGGGAAAGAGCACA (GA)18 36 27 62 IITR N18F CGAGGGAAACATGAAGCACA (GA)18 36 780 IITR N18F CGAGGGAAACAACACACACA (GT)10 26 755 780 IITR N20F CTGCCTCAACAACACACACAACACAACACAACACAACAC		c	(TTC)6tcette@cce(CCA)5	43	141	183	IITR N15F	CTTTGCTTCAAAGGGTTTCG	IITR NI 5R	GCTCTGTCATTGTGGGGAAAAA	181
(A)12(TA)9 30 108 137 IITR N17F CAACCAGAAACATGAAGCACA (GA)18 36 27 62 IITR N18F CGAGGGAAAGAGTTAAGAGAA (GA)18 36 27 62 IITR N18F CGAGGGAAACATGAAGCACA (AT)13 26 755 780 IITR N18F CGAGGGAAACAACACCACAACA (AT)13 26 755 780 IITR N19F CTGCCTCAACAACAACCAACAA (CT)10 20 38 57 IITR N20F CCAAGGATCAACAACCAACAACCAACAA (TC)17 34 242 275 IITR N21F TCACCGAGTAATGTGTGGGGTTC (T)11(G)10 21 541 IITR N21F TCACCGGAGTAACAACAACCAACAACCAACAACCAACAACCAAC	1	5		33	136	168	IITR N16F	TCGAATTGAAGGCAAAGAGC	IITR N16R	GTAGCTGAGTGCCCTGGAAG	247
(GA)18 36 27 62 IITR N18F CGAGGGAAAGAGTTAAGAGAA (AT)13 26 755 780 IITR N19F CTGCCTCAACAACCTCAACA (AT)13 26 755 780 IITR N19F CTGCCTCAACAACCTCAACA (CT)10 20 38 57 IITR N20F CCAAGGATCAACAACCAGGA (TC)17 34 242 275 IITR N20F CCAAGGATCAACAACCAGGA (T)11(G)10 21 541 IITR N21F TCACCGGAGTTATGTGGGGTTTC (T)11(G)10 21 521 541 IITR N21F GCCGGAGTTATGGGGGTTACAAACC (D)13 13 497 509 IITR N21F TACCCACCTAGGCCTAACC (A)208(T)19 21 116 136 IITR N24F TACCACCTAGGCCCTAACC (A)134000000000000000000000000000000000000	1	20	(A)12(TA)9	30	108	137	IITR N17F	CAACCAGAAACATGAAGCACA	IITR N17R	CCTGTTATGCCTGCTGAGTG	216
(AT)13 26 755 780 ITTR N19F CTGCCTCAACAACCTCAACA (CT)10 20 38 57 IITR N20F CCAAAGATCAACAACCACAACA (TC)17 20 38 57 IITR N20F CCAAAGATCAACAACCACAACAACCAGA (TC)17 34 242 275 IITR N21F TCACCGAGATTATGTGGGGGTTATCAACAACCAACAACCAGA (T)11(G)10 21 34 242 551 IITR N21F GCCGGAGTTATGTGAAAACC (T)11(G)10 21 531 IITR N22F GCCGGAGTAACAACTAAAAC (C)13 13 497 509 IITR N23F CATGATTGGGCAAAACTGG (A)20g(T)19 21 116 136 IITR N25F TAACCACACAACAAGGGCCTAACG (A)20g(T)19 40 471 ITTR N25F TAACCACAACACAAGGC (A)12000000000000000000000000000000000000	1	p2	(GA)18	36	27	62	IITR N18F	CGAGGGAAAGAGTTAAGAGAA AA	IITR N18R	CCATAGCCAAAAACCCCAGAA	233
(CT)10 20 38 57 IITR N20F CCAA6GTCAACAACCAACCAGGA (TC)17 34 242 275 IITR N21F TCACC6AGTTATGT6G6GTT1C (T)11(G)10 21 521 541 IITR N21F TCACC6AGTTATGT6G6GTT1C (T)11(G)10 21 521 541 IITR N22F GCC6G6GGTATCCATCAAAACC (C)13 13 497 509 IITR N23F CAT6ATTGCGTCAAAACTCG (A)21 21 16 136 IITR N24F TACCACCTAGGCCTAACC (A)208(T)19 40 432 471 IITR N24F TACCACCATGGGCCTAACC (A)124000000000000000000000000000000000000	1	_{b2}	(ATD13	26	755	780	IITR N19F	CTGCCTCAACAACCTCAACA	IITR N19R	CGAGCAAACCAAGGAAGAAG	246
(TC)17 34 242 275 IITR N21F TCACCGAGTTATGTGGGGTTTC (T)11(G)10 21 521 541 IITR N22F GCCGGAGTATCCATCAAAACC (C)13 13 497 509 IITR N23F CATGATTGCGTCAAAACTCG (A)21 21 116 136 IITR N23F TACCACCATGAAAACTCG (A)20g(T)19 21 116 136 IITR N24F TACCACCATAGGCCCTAACC (A)20g(T)19 40 432 471 IITR N25F TAAGTGCGAAAGC (A)12000000000000000000000000000000000000	1	22	(CT)10	20	38	57	IITR N20F	CCAAGGATCAACAACAACCAGA	IITR N20R	CCAACAGTGGCTTGCTTGTA	207
(T)1(1(G)10 21 521 541 ITTR N22F GCCGGAGTATCCATCAAAAC (C)13 13 497 509 ITTR N23F CATGATTGGTCAAAACTCG (A)21 21 116 136 ITTR N24F TACCACCTAGGCCTAACCCG (A)208(T)19 21 116 136 ITTR N24F TACCACCCTAGGCCCTAACC (A)208(T)19 40 432 471 ITTR N25F TAAGTGCAAAGGC (A)1308(T)19 40 310 777 ITTR N26F TAATCCATGGCCAACAAGC	1	2	(TC)17	34	242	275	IITR N21F	TCACCGAGTTATGTGGGTTTC	IITR N21R	CCCACAACCAAATACCCCAAC	210
(C)13 13 497 509 IITR N23F CATGATTGCGTCAAAACTCG (A)21 21 116 136 IITR N24F TACCACCCTAGGCCTAACC (A)20g(T)19 40 432 471 ITR N25F TAAGTGCAAAGCC (A)10g(T)19 40 310 777 ITR N26F TAATTGTGCCAAAGCC	1	0	(T)11(G)10	21	521	541	IITR N22F	GCCGGAGTATCCATCAAAAC	IITR N22R	AATCITGICAACCCUUGIG	192
(A)21 21 116 136 IITR N24F TACCACCCTAGGCCCTAACC (A)20g(T)19 40 432 471 IITR N25F TAGTGCAATRGTGCGAAGC (A)100g(T)19 40 432 471 IITR N25F TAGTGCCAATRGTGCGAAGC		1d	(C)13	13	497	509	IITR N23F	CATGATTGCGTCAAAACTCG	IITR N23R	CCCAGGGGGGGGGGGGGGGIIACIAGA	
(A)20g(T)19 40 432 471 ITTR N25F TAAGTGCAATFGTGCGAAGC (A)134mananananananananananananananananananan	1	Id	(A)21	21	116	136	IITR N24F	TACCACCCTAGGCCCTAACC	IITR N24R	GGCCCCATTITITATTITIGLI	191
(AV13Hm200200Hm20H2004) 50 310 377 IITR N26F TAATCCATGTGCCAACAAGC	1	0 - 0	(A)20g(T)19	40	432	471	IITR N25F	TAAGTGCAATTGTGCGAAGC	IITR N25R	AAGCACTTAGAGIGIGULIIGUU	192
		0	(A)13ttgaagaaacttacaattaccta	59	219	277	IITR N26F	TAATCCATGTGCCAACAAGC	IITR N26R	TCTCCTTGC1CACCCAAAA1	677

x

Publications

- 1. *G S Randhawa, D P Panigrahi and K A Nagesh (2010) Understanding life: by making and breaking the cell. Indian Journal of Microbiology. 50:247-248.
- K A Nagesh, P Bhatele, S K Tripathi, K S Dhugga, K S Gill and G S Randhawa. Genetic diversity study of cluster bean (*Cyamopsis tetragonoloba* (L.) Taub) landraces with RAPD and ISSR markers (Communicated)
- 3. *P Bhatele, K A Nagesh, S D Sunita, S K Tripathi and G S Randhawa. Optimization of AFLP primers and Assessment of Genetic Diversity in *Cyamopsis* varieties (Communicated)
- 4. K A Nagesh, P Bhatele, S K Tripathi, K S Dhugga, K S Gill and G S Randhawa. Identification and characterization of EST-SSR markers in *Cyamospsis sp.* (Communicated)

Conference Abstracts

- Nagesh K A, Pranita B, S K Tripathi, Dhugga K S, Gill K S and Randhawa G S. Data mining for simple sequence repeats in expressed sequence tags of cluster bean (*Cyamopsis tetragonoloba* (L.) Taub.). World Congress on Biotechnology-2011, Hyderabad, India. 21-23 March 2011.(Page 516)
- Kuravadi A N, Bhatele P and Randhawa G S. RAPD analysis in Cluster bean (Cyamopsis tetragonoloba (L.) Taub). International Conference on Recent Development, Future Prospects and Entrepreneurial Trends in Biotechnology, IET Biotechnology Institute, Alwar, Rajasthan, India.19-21 December 2009.(Page 54)
- *Swati V, Nagesh K A, Vikas P, Dhugga K S, Gill K S and Randhawa G S. In vitro plant regeneration studies in cluster bean (Cyamopsis tetragonoloba (L.) Taub.). National Symposium on Biodiversity and Food Security – Challenges & Devising Strategies, Indian Institute of Pulse Research, Kanpur, Uttar Pradesh, India, 10-11 December 2011. (Page 100)
- *Pranita B T, Nagesh K.A, Tripathi S K, Sunita S D and Randhawa G S. Genetic analysis of *Cyamopsis tetragonoloba* (guar) genotypes: a gum producing industrial crop of India. 80th Annual Meeting of Society of Biological Chemists, Lucknow, Uttar Pradesh, India, 12-15 November 2011.

* This work is not included in thesis.