L]
\

PETRI NET APPROACH TO DESIGN AND
DEVELOPMENT OF MODERN
COMPUTER SYSTEMS

A THESIS

submitted in fulfilment of the requirements
for the award of the degree
of
DOCTOR OF PHILOSOPHY
in
ELECTRONICS & COMMUNICATION ENGINEERING

By

ALl ATHAR KHAN

: //-‘q”‘
PTG ‘?

7

roonszs. ot

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247672 (INDIA)

September, 1981



Candidate’s Declaration

| hereby certify that the work which is being presented in the
thesis entitled PETRI NET APPROACH TO DESIGN AND DEVELOPMENT
OF MODERN COMPUTER SYSTEMS in fulfilment of the requirement for the
award of the Degree of Doctor of Philosophy, submitted in the Department of
Electronics & Communication Engineering of the University is an authentic
record of my own work carried out during a period from August 1978 to
July 1981 under the supervision of Dr. Harpreet Singh, Professor
Electronics & Communication Engineering, University of Roorkee.

The matter embodied in the thesis has not been submitted by
me for the award of any other dgggeei oorkes

) W \,“ ‘
Onivers'™ ot ! ;

A& -
fhat el 1
(_,crU{“""' - et of

C
c
besd =20 ™ af
ation Hes g S EA
Dﬁ'&s“ “i. Des € WL Leer rnaf %\J
| it

1 —
awa.[d 3 1 15t el 0

4 .1'.-,4""*“ (Ali Athar Khan)

,r the

This is to certify{its above statement made by the candidate
IS correct to the best of

(Harpfeet Singh)
C‘ Al Professor of Electronics &
S 4 Communication Engineering

University of Roorkee
Roorkee (India)



(i)

ABSTRACT

Petri nets (PN) have aroused considerable interest
during the recent years as a model , primarily to represent
and study concurrent systems. This thesis deals with the PN
approach to design and development of modern computer systems.
In particular several aspects of the development of PN theory,
its applications to some problems of computer systems and to
the problem of optimization in microprogrammed computers have

been proposed.

Much of the available work on PN is scattered over
various reports, dissertations and journals. The review chapter
brings together the existing 1iterature in a coherent manner

So as to aid a reader in subsequent chap ters.

The design and development of a system demand that a
knowledge about the model be known.For this reason, the
resachability tree technique and state equation for Petri nets
have been proposed by earlier researchers. However, there are
many unsolved problems in PN theory. For example, analysis of
large PN is generally cumbersome or even impracticable. It is
possible to build complex nets with desired properties from
Smaller nets, the analysis of which can easily be managed.
This involves interconnection of nets. It is shown in this
thesis how smaller nets could be connected in cascade or in
parallel to preserve same properties. A4 sState equatioh approach

has been exploited for this purposes.



(iv)

Another well-known problem conéerning the analysis of
PN is the lack of information of firing sequences and existence
of spurious solutions of corresponding state equations. This
problem is studied and an algorithm is proposed to find minimal
legal firing sequences to transform a given marking into another

given marking.

It is a well established fact that PN can not model, as
such, systems in which interruption or priorities are involved.
Many extensions have earlier been proposed but they are either too
specific or provide inadequate analysis technique. In this thesis
such limitations in modeling capabilities of PN are overcoms by
propesSing an inventor transition in which the token at output
place is the complement of the token at input place. A1l the
logic operations have been modeled by PN with additional invertor
transitions. To analyse these, a generalized state equation is
developed. It is also shown that state oqu@tion of PN proposed

earlier by Murata is a special case of generalized state equation.

The state equations of Petri net appear to be Very powers-
ful. Many problems of computer science, for example, the enume-
ration of simple paths between two modes of graph, the terminal
reliability of a computer network and program complexity
evaluation are formulated in the framework of state equa tions

and solutions for them proposed.

Of significant importance in the design of microprogrammed
computers are microprogram optimizations. They are called for

to reduce the cost of the system and to increase the efficiency.



(v)

In this thesis, only bit optimization in control memory andg
data path optimization are taken up because of their practical
utility. In the bit optimization all the meximal compatible
classes of microcommands are generated using the PN state
equation. From these)mininal bit solutions are obtained. The
possibility of further redﬁction in bits, is also looked into

by employing bit steering through extended PN concepts

Two approaches are proposed in this thesis to solve the
problem of data path optimization. In the first approach the
concept of invariance in PN is employed and solutions which
include all the minimal cost solutions, are obtained. In the
second approach the problem is reformulated in PN domain. The
places of PN are then merged according to defined rules and

minimal cost solution obtained.

Finally, the results arc summarigzed and some suggestions

(0 5 e

alongwith eritical discussions for further work are given.



' (vi)

ACKNOWLEDGMEN T

The author wishes to express his sincere gratitude
to his advisor, Prof. Harpreet Singh for his excellent
guidance and encouragement without which it would have been

rather impossible to carry out this research.

Special acknowledgment is due to Dr. N.K. Nanda for
his keen interest and fruitful technical discussions.

Thanks are also due to Aligarh Muslim University,
Aligarh for sponsoring the author under Quality Improvement
Programme to persue this research and the Government of

India , Ministry of Education for financial supporte.

The author is very much grateful to his parents, wife
and children who have been a constant source of inspitation

and encouragemen t.

Finally, the author is thankful to his frionds and
Colloagues for extending their help dircctly or indirectly,

during this worke.

Thanks are also due to Mr. Darshan Lal Jaggi for
his efficicnt typing of the thesis.



Chapter

i1

TABLE OF CONTENTS

LIST OF SYMBOLS

INTRODUCTI ON

1+1 Introduction
1.2 Advantages of Petri Nets
1.3 Limitations of Petri Nets
1.4 Extension of Petri Nets
l.5 Statement of the Problem
1.6 Organization of the Thesis
CRITICAL REVIEW AND CGENERAL CONSIDERATION
OF PETRI NETS
2«1 Introduction
2.2 Historical Review
2¢3 What are Petri Nets ¢
2.4 Modeling with Petri Nets
2.4.1 Modeling of Hardware
2.4.2 Modeling of Software
2¢4.3 Speed Independent Circuits
25 Subclasses of Petri Nets
2+5.1 Marked Graph
2¢5.2 State Machines
2¢5+3 Free-choice Petri Nets
2.5¢4 Pure or Restricted Petri Nets
2:5.5 Simple Petri Nets

2.6 Analysis of Petri Nets
2¢6¢1 The Reachability Tree

2 6ulol Limi tationS of
Reachability Tree

(vii)

Page

ol O R SR

13
13
14
16
2L
25
26

B8 88Y

7
30
30
32
32

37



Chap ter

LT

Iv

CRITICAL REVIEW AND GENERAL
CONSIDERATION OF M ICROPROGRAM
OPTIMI ZATI (N
3«1 Introduction
3»2 Basic Concepts of Microprogramming
3.3 Strategies of Optimigzation
3.3.1 Bit Optimi zation
3.3.1.1 Schwartz’s Algoritim

3¢3.1.3 Grasselli and Montanari’s
41 gorithm

3¢3.1.3 Linear Programming Methods
3¢3¢1.4 CM Cover Table Method
3+.3¢1.5 Branch and Bound Method
3e3ele6 Montangero’s Algorithm
3+3.1.7 Bit Steering in Bit
Reduc tion
3¢4 Data Path Optimization
3«41 Interconnection Buses
3+42 Dynamic Programming Approach
3¢43 Switching Theoretic Approach
3¢5 Conclusion

ON THE DEVELOPMENT OF PRTRI NET THEORY

4e1 Introduction

4.2 Interconnection ang Decomposition of
Petri Nets

4.2.1 Interconnection Properties
4. 2.2 Decomposition of Petri Nets
%3 Minimal Legal Firing Sequences in
Petri Nets
4.3.1 Theory Involved
4e3.2 Determination of Minimal Legal
Firing Sequence

b4 State Equation Representation of
Logic Operations Through Petri Nets

(viii)

Page

2
92

oL



Chap ter

VI

LeW.1 Generaligzed State Equation
44.1.1 NOT Opecation
4.4.1.2 NAND Operation
4+ 4.1.3 NOR Operation
4ehelelk EX<OR Operation

4 5 Conclusion

ON THE APPLICATION OF PETRI NETS TO
COMPUTER HARDWARE 4ND SOFTWARE
5.1 Introduction

5.2 Enumeration of Simple Paths Between
Two Nodes of a Graph

5.2.1 Formulation
5¢2:2 Solution
5¢2.3 Maximum Iterations Needed

5¢3 Terminal Reliability of a Computer

Network

5¢3<1 Probabilistic Graph and Determ-
~ination of Bpolean Function

5+3.2 Determination of Disjoint Terms
in F and Probabili ty

5«4 Program Complexity Evaluation
5¢4e1 Complexity Metrics
542 Execution Time

5+5 Coneclusion

PETRI NET APPROACH TO DEVELOPMEN T OF
M ICROPROGRAMMED\.COMPUTER

6.1 Introduction’
6.2 Bit Optimization

6.2.1 Enumeration of Maximal Compatible

Classes of Microcommands
6.2.1.1 Formulation
6¢2+1s 2 Enumeration Procedure

6¢2¢2 Procedure

(ix)

Page

100
101
101
103
103

106

109
109

110
11L
112
115

116

117

120
126
127
137

137

140

140
140

142
142
143

146



Chap ter

VII

6.2.2.1 Discussion
6.2.3 Bit Steering and Extended PN

6.3 Data Path Optimization
6.3.1 l-Invariant approach
6.3.2-PN-Approach

6.4 Conclusion

SUMMARY AND CONCLUSIONS

7.1 Introduction

7+2 Summary of the Results

7.3 Some Problems for Further
Investigation

BIBLI OGRAPHY

(x)

Page

153
156
16k
165
169
180

180
180
180
187
191



W oW e

2

b=

M
O
M
n
M(p)
Me

Ne

|P|
P

| T|

= <

(xi)

LIST OF SYMBOLS

Incidence matrix

Number of bits

Fundamental circuit matrix
Control field {

Number of edges

An invariant of a PN

Initial marking of a PN
Marking after nth Firing in a PN
Number of tokens in a place p
Number of microinstructions
Number of microcommands

Set of Places

Number of places

Petri Net

Set of transitions

Number of transitions

Number of vertices

A weighted vector

Number of irrendundant words in a ROM
Element of incidence matrix A
i th microinstruction

A place

Input transitions to place p

Output transitions to place p

Set of transitions connected to place P



A transition

Set of places'connected to transition t

Input places to transition t

Output places of transition t
Weight of token in place p
Forward incidence function
Backward incidence function
Union of sets

Intersection of sets

For all

A very large quantity

(xii)



CHAPTER I

INTRCDUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

Modern computer systems comprise of multiple communicating
components each of which may itself be a system. Although the
interactions between them are well defined, yet they are very
complex and the concepts relating to asynchrony and concurrency
need close examination. The direct Consequence of this is both
logical and topological distribution of data, processing and
control, which makes representation and performance evaluation
resul ts more and more difficult to obtain. Fur ther, the difficulty
of representation and analysis of combination of hardware and
software systems has increased with the level of sophistication.
Hence in order to design a secure and analysable system, the
metnodology must be able to depict in a formal way the system
specification and must help designer to prove their correctness.
In search of a formal model to do so, one finds that the tools
used for modeling sequential Systems are completely inadequate.
For instance, block diagrams do represent the interconnec tions
that may exist between them, but give no information about where
or when these interconnections are used. A computer system can
also be described by comprehensive set of logical diagrams,
pertaining to the hardware, and complete listing of the code and

microcode necessary to provide system operation. But obviously,



~2—

it is too much. The conventional flow diagram becomes excessively
clumsy to represent concurrent systems when tried on mul ti-
programming and mul tiprocessing. Another disadvantage with flow
diagram is the difficulty to Tepresent combination of hardware
and operating system, as one looses sight of parallel actions

and their potential interactions. Finite State machines could be
used for representation of such systems but will lead to un-
manageably large single states. These difficulties have led to
an extensive research to find a suitable model for modern
computer systems. Among various models proposed [122], Petri nets
and its subclasses [5], [97], [120], [121 ] have emerged as
convenient and powerful tool. They can serve as an intermediate
tool between program statemesnt (cki. diagram) - too complex to
analyse and block diagrams- too simple to predict behaviour of a
system. This is the prime justification for studying the appli-
cation of Petri nets to design and development undertaken in this
thesis. Another significant achievement is that the knowledge
about many models used for manipulating the systems in parallel
enviromment is directly obtained from the study of PN. This is
mainly because several models such as computation graphs, flow
graph schemata, UCLA graph, vector addition system, vector
replacement System, etc. are either included into or are equi-

valent to PN [122].

1.2 ADVANTAGES OF PETRI NETS

Petri nets find their basis in a few simple rules yet they

are very powerful and possess many advantages in modeling a system.



Some of them are:

i. Petri nets often make easier to understand overall system

ii.

331,

o

Ve

which they represent because of their graphical and
precise nature of presentation.

Petri nets are equally suited for representation of
hardware and software systems.

Petri nets possess inherent concurrency and parallelism.
Asynchronous nature of Petri nets makes them sui table
for representing real systems. In real life, events take
variable amount of time. Petri net model reflectes this
variability by not depending upon a notation of time but
Contains all the necessary information to define thes

possible sesquences of events of a modeled system.

Petri net execution is nondeterministic. The choice as

to which transition fires is made randomly i.e. non-
deterministically. This feature makes Petri nets to
represent real time situation where several events are
occuring concurrently and the order of occurences of
cvents is not unique.

Petri nets can be used as heirachical model. This is
because they can be used at all levels including networks,
register-transfer, functional, and gate etec. Interpre-
tation can be varied to suit all the particular require-
ments. An entire net can be replaced by a single place or
transi tion for modeling at more abstract level or places
and transitions may be replaced by subnets to provide more

detailed modeling.



=l

vii. The behaviour of any system can be analysed using Petri
net theory. It can, thus, make use of high Speed computers
as computational tool for modeling and analysing larger

and more complex systems than ever before.

viii. Petri nets can be synthesized using both bottom=-up and
top-down approaches. Methodical design of systems with

known or easily verifiable behaviour can be done [6].

ixe Petri nets are a compromise between Modeling Power

(ability to correct and fai thful representation of the

modeled system) and Decision Power (ability to analyse

and determine properties of the modeled systems).
Generally, in a model, decision and modeling powers are
conflicting. For example, finite-state model possessesvery
high decision as almost all questions about the model are
answered, but has very low modeling power. On the other
hand, Turing machines have good modeling power but poor

decision power.

1.3 LIMITATIONS OF PETRI NETS

It has been found that Petri nets are too simple and
limited to easily model real systems. In PN representation of the
CDC 6400 operating system [105],Noe has experienced many short.
comings. Normally, a Petri net transition fires when all of its
inputs satisfy AND logic. On firing a transi tion, each output
place gets one token. The transi tions wi th such simple firing
rules were inadequate to represent the above. As an example,

let us consider the execution of a program ISI in operating



B

System of CDC 6400. This program advances a job from staging
queue to input queue if the following is satisfiedas
"Job in staging queue AND only one of the conditions
(i) 'No tape required-job advances', and (ii) '"tape-
Job queued until tape available! is satisfieq .
Obviously this cannot be represented by AND logic only. Noe,
introduced an Exclusive-OR transition to represent this.

Figure 1.1 shows the Petri net representation of the ISI program.

@

No tape required (O
Job advances

Job in staging Job in input
queue O O queue

Tape-job queued O~
until tape
available

Fig. 1.1 PN Representation of Advancing a Job in

St®ging Queue of CIC 6400 Operating
Systems,

such deviations from conventional transitions made i

imposSsible to make use of analysis techniques developed for PN,

Another point which was observed is that the tokens
represented only conditions but did not carry any attribute. No
data structure was associated with the location of nets. This
seriously hampered the transfer of data in the systenm. Fur ther,
no time duration was associated with transition firing. This
Created another obstacle to deal with quanti tative measures such

as throughput and turn-around time.



b

Baer [15] faced similar difficulties in modeling a compiler
with Petri nets. He extended the PN model by the addition of OR

logic, switches and token absorbers.

Patil [115] has created a Synchronization problem called
Cigarette Smokers Problem. He has shown that this Synchroni zation
problem cannot be represented by P and V operations on Semaphores
described by Dijkstra [38] or by Petri nets. Following Patil’s
work, it was shown formally by Kosaraju [81] that Petri nets
cannot represent systems where Priority constraints has also to
be satisfied. He described a coordination problem of two producer/
consumer with shared channel with one producer /consumer having a
priority over other. This problem has been shown to fall outside
the domain of Petri nets. A similar limitation had becn earlier
discovered [70]. The difficulties in PIl modeling of some relatively

reasonable systems have been further demonstrated [3], [7].

It was felt that the limitation on Petri net modeling is
due to failure of a transition to react to absence of tokens
rather than only to their presence. This inability to test 10F a

zero marking in a place, is known as zero Testing [70]. Petri nets

cannot test an unbounded place for gzero. If the place is bounded,
Zero can be tested. For a bounded place p with bounded k, a
complement place p' can be created such that M(p) + M(p') = k for
all reachable markings. This allows to zero test M(p) by testing
if M(p') is k.



=7

1.4 EXTENSIONS OF PETRI NETS

To overcome some of the problems encountered in the Petri

net modeling of CDC 6400 operating system, Evaluation Nets

(E-nets) have been proposed [107 ], [110], [111]. E-nets are

ex tended, interpreted model for parallel computation for per-
formance evaluation and similation. These represent an approach
towards timing information to a Petri net. However, the five
primitives proposed in E-nets proved to be too restrictive and it
was difficult to model structures with more than two inputs and
outputs for transitions. Some larger structures were developed
[109] but were still inflexible for general use. A modification
on £-nets resul ted in Pro-nets (106 ). The name Pro- was sugge-
sted because of the use of nets for Processors or processes,

Pro-nets were allowed with mul tiple arcs.

Many other extensions to Petri nets like addition of
inhibitor arcs [81], constraints [115], exclusive =OR transi tion
[105], Switches [15] etc. have been suggested. Invariably all of
them introduced in one way or the other, the reaction of
transitions on absence of tokens as well. But they were intro-
duced, basically to solve particular problems rather than wi th
intention to increase the modeling capacity of Petri nets. An
extensive study on the completeness of different models with
extended Petri nets have been made by Agerwala et al. [1], [2]),
(7]-[9]: It has been observed that adding gzero testing
&llous a Petri net to simulate a Turing machine. Thus a

PN with zero testing produces a modeling scheme which can model



=5,

any system. However, many analysis questions of Petri nets become
undecidable, since they are undecidable for Turing machines.
This may perhaps be one of the reasons that analysis technique

is not, generally, available for generalized extension of Petri
nets.

In Chapter IV an invertor transition is defined which
describes a NOT operation. This facilitates the representation
of all logic operations with Petri nets alongwith invertor
transitions. To analyse, such a Petri net, a generalized state
equation is proposed. This overcomes many shortcomings in loe’s

model [105] and makes the analysis of the systems possible.

1.5 STATEMENT OF THE PROBLEM

This thesis attributes itself to the problem of Petri net
approacn to the design and development of modern Computer systems.
Specifically, the problems considered in this thesis can be
stated as follows:

i« To evolve efficient and reliable techniques for solving
some of the unsolved and outstanding problems in PN
theory with a view to develop a basis for PN approach to
Several challenging aspects of modern Computer design.

ii. To utilize the modeling of PN (particularly, state
equation representation), with a view to provide automated
tools, for formulating and solving various problems of

computer hardware and software.

iii. To exploit the use of Petri nets in design and development

of microprogrammed computers.



_9..

Though some aspects of the above mentioned problems have
been studied by a few investigators, however, not much resul ts
have been obtained. For example, asS regards the first problem a
decomposition technique [137] for analysing large Petri nets
does exist, but it is quite involved. Fur thermore, only the
necessary condition for reachability [97] has been obtainsd. So
far as the second problem is concerned, surprisingly no work of
similar nature has appeared in the literature. For the design
of microprogrammed computers, only the conventional methods

based upon classical approaches are available.

1.6 ORGANIZATION OF THE THRSIS

Petri nets are béhming increasingly popular for the
representation and analysis of system in general and computer
Systems in particular. Before it can be applied effectively some
bottlenecks which appear in the theory need be removed. An
attempt has been made in this thesis, to first identify those,

and then to propose techniques for removing them.

Many problems in computer hardware and software can be
represented by PN and can be solved by similar set of equations.
such investigation is another type of work reported in this
Thesis.

Invariably every modern day computer utiligzes the concept
of microprogramming. This has called for the need of op timi zation
in order to have a Compromise between flexibility and cost. Pstri
nets appear to be a natural Tepresentation for such computer

Systems and can provide optimization techniques in a more



=10~

systematic and easy-to-beimplemented ways This is another aspect
which has been taken up here. It may be noted that almost no work
except from one author [136] apart from the candidate’s work on

the optimi zation consideration of Petri net is available.

For the sake of better understanding the following arrange-

ment has been adopted in the organization of this thesis.

The review of the existing literature related to Petri net
approach in computer systems has been included in the second
chapter. This chapter also contains basic concepts, impor tant
properties and applications of Petri nets Scattered over many
journals, reports and dissertations. Comments regarding the
analysis problems of Petri nets have also been given as and when
required.

Chapter III discusses the basic concepts of micro
programming, the different optimizations required therein, and
the outline of the exi stng techni ques for them. The Justi fi-
cation for the importance of optimizations for control bit memory
and interconnections of modules alongwi th the comments regarding
the computational complexity of the available techniques has also
been made.

Chapter IV addresses to the solutions of some important
problems in PN theory. First of all an investigation for ths
interconnection and decomposition properties of Petri nets has
been carried out and useful results obtained. A new and compu ta-
tionally better technique for decomposition is also proposed.
Another important aspect involved in the theory is that of

reachabili ty because many properties of PN are directly dependent



-t

upon its. Therefore, it is imperative that an efficient algorithm
for solving reachability problem be devised. In this direction a
technique has been formulated through the determination of minimal
legal firing sequences which transforms one marking into another.
Fur thermore, to increase modeling capabilities of a PN, an
invertor transition has been proposed., This takes care of
negation operation often encountered in Systems. The analysis
technique of PNs having such transitions has also been presented
in this chapter. This technique not only allows the representation
of all the logic operations by Petri net, but makes possible the
analysis of many computer Systems incorporating those operations.

Many examples are taken up for explanation purposes.

Chapter V identifies some of the claSses of state equation
for Petri nets, which can solve many problems in computer hardware
and software by the same technique. The proposed classes take
care of the problems of enumeration of simple paths between two
nodes of a graph, terminal reliability of a computer ne twork ,
program complexity evaluation, and determination of maximal
compatible classes (MCCs) of microcommands in control memory bit
optimization. A novel technique for the solution of state equation
of different classes is proposed and its superiority established

by using examples considered by earlier researchers.

In Chapter VI, the application of PN to the design and
devel opment of microprogrammed Computers is explored. Parti-
cularly, the optimizations involved therein have been studi ed.
This is entirely a new approach. The control memory bit optimi

zation is obtained first by enumerating all MCCs via PN



=R

application and then putting the corresponding microcommands in
di fferent blocks so as to yield optimal solutions. From these
solutions the number of bits are further reduced by exploiting
the concept of bit Steering [10] through extended Petri net.
Advantages of the proposed technique over the existing methods
have been highlighted. . An example considered by many investi.
gators, has been reconsidered to show the utility of the proposed
techniques Another problem i.e. optimigation of data path has
been solved by first representing the data transfers among
modules of the system by a Petri net ang then by defining and
applying the concept of merging-in of places. The broposed method
is simple and Tequires less Computational efforts. A comparison
of this is made with the existing methods by way of a numesrical

examples considered earlier {R5 %=

A summary of the work done has been given in Chapter VII,

A brief outline for further work has been included in this Chapter.



CHAPTER II

CRITICLL REVIEW AND GENERAL CONSIDERATIONS OF PETRI NET

2.1 INTRODUCTION

Petri nets have emerged in the last decade into a very
powerful and suitable model to represent, analyse and synthesise
& very large and interesting class of systems exhibiting con-
currency. This is because Petri nets can provide with a minimal
amount of effort, a simple, natural and easy-to-understand
representation. Research on Petri nets have focussed on the
representation of computer hardware [5], [34], [62], [100], [108],
[120], [121], computer software [51-[7]1, [15], [16], [20], [28],
[831, [105], [120], [121], [136], speed independent circuits
[951, [112], [113], [118], production schemata [60], communi-
cation protocols [90]-[92], [100], [126], [127], asynchronous
arrays [68 ], [117], [131], performation evaluation of computer
systems [109], [111], formal language theory [191, [2], [55],
[119], legal systems [89 ], mathematical knowledge [42], [L49],
propositional calculus [44], [142] ete. Analysis and synthesis
of Petri nets and their subclasses with a motivation to provide
Some properties of the modeled system, is another area which
has received a larger attention from researchers t81s 173 FEL),
[21], [26], [27], [43], [48], [W9 ], [60], [67], (681, [83],y [97]-
(1037, [13 €], [147], [14B8). Research has alsé been carried out
to increase the modeling capability of Petri nets 1) t23 71



-

[81, To i, 115D, (817, [105], [115]« There is an ever-increasing
interest in Petri nets as is evidenced by the abundanca of recent
work reported in most of the major conferences in the area of
computers and information processing. A critical survey of the

work done in this field is embodied in this chapter.

2+2 HISTORICAL REVIEW

The theory of Petri nets was originated in C.A. Petri’s
dissertation 'Kummunication mit Automaten' [1273] in Germany. In
his thesis, starting with the concept that many events of
communication such as asynchronous and concurrent operations can
be represented by purely combinatorial - topological means, Petri
proposed a new model of information flow in systems. In 1965, the
ideas of Petri received the attention of a group of researchers
led by A. Holt at Applied Data Research, Inc., U.S.4. The group
working on the Information System Theory Project [61] was
concerned with finding a proper descriptive means for modeling,
evaluating, and implementing systems. Here, it was shown how
Petri nets could be applied to concurrent systems and the concept
of Petri nets was refined ang developed to such a state that it
is applicable to many areas. In fact the actual defini tion of

Petri nets, as used today, is due to Holt et al.[60].

The research on Petri net, at about same time, was also
carried out under Project MAC 8 MIT, Te8.86 2 large contribution
was made particularly by the Computation Structure Group under

the direction of Prof. J.B. Dennis. Examples of the use of Petri



w5

nets for the description of control mechanisms of complex
computers were given with a goal to develop automatic mechanisms
for implementing the Petri net as 3 digital system [34]. Several
PheD., theses, M.S, dissertations, numerous reports and papers on
Petri net were produced [18], [19], [34], [351, (M1, [4917, [51)-
[531, [56], [113]-[116], [118], [130]. The Computation Struecture
Group also organised the Project MAC Conference on Concurrent
Systems and Parallel Computation in 1970 at Woods Hole [34] and
the Conference on Petri Nets and Related Methods in 1975 &t M.I. 5

The outcome of investigations at Applied Data Research and
MIT, and the two conferences triggered the research activity in
nature and the applications of Petri net. However, there was a
similar independent research going on in Europe, particularly at
the Institute fur Informationssystmnforschung of the Gesellschaft
fur Mathematik und Detneverarbei tung in Bonn. The institute is

now involved in finding a more general and abstract theory.

Much of the work on Petri nets is in the form of theses,
dissertations, reports and memos. These are neither widely
circulated nor readily available. The first readily available
work was by Baer [1%]. However, this was mainly a survey of some
of the theory developed for parallel computation. Several models
including Petri nets were presented. But, there was hardly any
baper in a journal of international repute, which could communi.-
cate, in a coherent manner, the work done in the field of Petri
nets. In 1977, Peterson published an excellent paper [120] which

is both a survey and tutorial on Petri nets. Another excellent



iy -

paper by Murata [98] came up the same year. This is a tutorial in
nature but aims mainly to introduce Petri nets to those who are
working in circuits and systems. These two were followed by
another paper [5] which brings together a large body of work on

useful applications of Petri nets.

It appears that interest in Petri nets is ever increasing.
A workshop was held in Paris in 1977+ Petri is atill continuing
his work and has extended the concepts in a form of general
system theory called General Net Theory [12%4]. An advanced course
on General Net Theory was held in Hamburg in 1979. A special
interest group on Petri nets has also been formed in Germany.
Research in and application of Petri nets has become widely

popular.

Having given a brief historical reviews the concept of Petri
nets, their properties required for studying the systems modeled
and recent work in the analysis of Petri nets are discussed

further in the following sections.

2+3 WHAT ARE PETRI NETS?

Petri nets are an abstract and formal model of information
flow. The concepts, properties and techniques of Petri nets are
outcome of research by a number of people working at different
times in different places with different backgrounds and moti-
vations. This has resulted in many class of Petri nets and many
concepts defined in different ways [27], [56], [60], L6x], [r13l

[123]. However, there seems to be no Substantial difference between



w1 T

between them. Each of them is a restriction, in one way or the
other, on general Petri nets. Here the most general and widely

used concepts are presented.

The representation of Petri nets is done both graphically
and mathematically. While the graphical representation of Petri
net structure is useful in illustrating the concepts, mathematical
representation is required for analysis. Both these representations

are given side by side.

A Petri Net Graph is a Directed Bipar tite graph with two

types of Nodes called Places and Transitions. A Circle represents

a place and a Bar represents a transition. Directed Arcs connect

the transitions and places. Only single arc between a transition

and a place is allowed in Ordinary Petri Nets or hereafter called

Petri nets. A place p is called an Input (Output) place of a
transi tion ti if there exists a directed arc from (to) place j to
(from) transition ti. ¥ig- 2.1 18 an example that represents a

Petri net graph.

These concepts are defined mathematically as follows:

Definition 2.1 : A Petri net is a quadruple N = (P, T, q, B)

where:
P is a set of places, P # ¢
T  is a set of transitions, T# @, P [| T = g
a forward incidence function
B backward incidence function
a4y are binary relations with a, fe= P x 7,

field (a,B) =P [J T



- .

Definition 2.2 & Let N = (P, T, a, P) be a PN. We call %t (%3

set of input (output) places of t and by analogy, op (p°) set of

input (output) transitions of p where:

By b Ty {p € Pla(p,t) # O} and ¢° {p e Plp(p,t) # O

For pe P, %p = I E Tglpeth & 0} and B {t e Tla(p,t) # 0}

The set of places (transitions) connected to a transition t
(place p) is denoted by °t° (opo).
These notations are extended to subsets of T and P, for example,

. PR =
1 P, P then, Pl = pkepl Py

The structure of Petri nets can also be described by their

Incidence Matrix [83], [97].

Definition 2.3 : Let N = (P, T, a, g) be a PN, the incidence

matrix A of the PN is defined as
= g with
P RITIPNEY
(1, if i th transition has an outgoing arc
to place j

= < =1, if i th transition has an incoming arc
from place j

aij

_ O, otherwise

The Petri net can also be defined as N = (Ay —)e

The graphs as of Fig.2.1 will Tepresent only static (time-
independent) behaviour of the Petri net. In order to simulate the
dynamic behaviour, each place in a Petri net is Marked (assigned)
with & non-negative number of Tokens. The tokens are represented

by Dots in circles representing places. The token distribution in



— s e

3 Ps

FIG. 2.1 _ A PN GRAPH

(a) A MARKED PN (b) A MARKING SHOWING

CONCURRENCY

t, and t;fire
concurrently

(d) A MARKING SHOWING (c) MARKING SHOWING CQNFLlCT
DEADLOCK (Either t, or ts Can fire)

FIG.- 2.2_ PN SHOWING MARKING, CONCURRENCY , CONFLICT,
DEADLOCK AND REACHABILITY



& Petri net is called Marking or State Space or PN.

Definition 2.4 ¢ A marking M of a FNy N =(P, T, a4y B), 15 a

mapping of P into IN (the Set of natural integers : 0,1,2,... )3
P M o 1. The number of tokens in a place p is denoted by M(p).
A marking M can also be represented as a |P| x 1 column vector of
non~negative integers, the J th entry of which denotes the number

of tokens in place Je

The dynamic behaviour of a PN is obtained by the position
and Movement of tokens i.e. Change in marking. Marking of a PN
Changes as a result of Firing of a transition. Not all transitions
can fire. Only those transitions which are Enabled can fire.
However, an enabled transition will fire only if it is asked to
do so. The firing of an enabled transition is called a Legal
Firing. The firing rules of a transition are as follows:

1. A transition is 'enabled' or 'firable' if each of its

input places contains at least one token.

2+ An enabled transition will fire on application of a

control signal,

3+ On firing an enabled transition, one token from each

of its input places will be removed and one token will

be added to each of its output places.

Definition 2.5 & A PNy N = (P, T, a, P) with a marking M is a

Marked Petri Net ¢ = iRy By = P, M) or ¢ = (A,M).

Definition 2.6 : A transition t is enabled to fire if

Vpe % :Myp) >0



-

Firing of t in M yields a new marking M' where :

(M(p) =1 ifpe %, pg t°
MWp)= { M(p) +1 i1fpe t° p ¢ %t
M(p) otherwise
In Fig.2.2a, as an example, only transition tl is enabled
to fire. When %, fires, the marking changes. The ney marking is
Shown in Fig.2.2b. The transitions t2 and t3 now become firable.

Since there is no common place input to both t2 and t3,‘the two

enabled transitions do not affect one another in any way. Thus

t2 and t3 can fire Concurrently. After the firing of t2 and t3
is complete, the places p5 and Pg will have one token each
(Fige2.2¢) enabling the transitions t,+ and t5. However, firing of
one will Disable the other. This is called a Conflict. In such a
case the decision as to which transition fires is arbitrary, This

ability to represent both concurrency and conflict makes Petri

nets a very powerful modeling device.

The marking of Fig.2.2b is obtained from the marking of
Fige2.2a by firing only one transition tl. The marking of Fig.2.2b
is called Immediately Reachable from the marking of Fig.2.2a, The

marking of Fige2.2d is obtained by firing the transitions in
Sequence §1t2t3t4 or t1t3t2t4 « The marking of Fig. 2.2d is said
to be Reachable from the marking of Fig.2.2a. Thus,

Definition 2,7 ¢ A marking M' is immediately reachable from M

if the firing of some t in M yields M!,



-2 -

Definition 2.8 : A marking M' is reachable from M it

there exists a legal firing sequence which transforms M to M'.

Defini tion 2.9 : The Reachability Set RN(M) of a marked PN,
N=(P, Ty a, B, M) 15 the set of all markings reachable from M.

Whenever there is no ambiguity R(M) will be used instead of RN(M).

Definition 2.10 ¢ The Reachability Problem is defined as:

Given M' , is M'e R(M) 9

Other concepts of Petri nets can also be explained with the
Balp of Plp.2.2. It is#ébserved here that the token in any place
and in any marking is atmost one. Such a PN is called Safe or

l~bounded

Definition 2.11 : A place in PNy N = (P, T, a, B, M) is k-bounded

1f and only if there exists a fixed k such that V¥ M'e R(M)
M'(p) £ ke A place is safe if it is l-bounded. A marked PN is
bounded if each place is k-bounded for some k. 4 marked PN is safe

&
if each place is safe.

For a Petri net which is to model a real hardwars device,
one of the important properties is boundedness and in Special case
safeness. If a place is safe, then the number of tokens in the
place is either O or 1. Thus the place can be implemented by a
single flip-flop. In an ordinary PN, if a place p is not safe,
then p can be forced to be safe by Supplementing it by another
place p' [121] in the following manner:

Ifpe°tand p ¢ t°, then add p' to t°

Ifpe t° and p ¢ °t, then add p!' to %t



-23=

However, if a place is not safe bk bounded, it can be
implemented by a counter. Thus a bounded PN could be realized in
hardware while a PN with unbounded place can not in general be

implemented.

Another important property of a PN is the representation of
Deadlock which has been the subjecf of a number of studies in
Computer Science [59]. A deadlock in a PN is a transition ( or a
Set of transitions) which can not fire. Consider Fige2+2de None
of the transitions can fire and PN is said to be deadlocked. A

transition is Live if it is not deadlocked.

Definition 2.12 ¢ A transition t in a marked PN, N = (P, T, a,p,M)

is 1live if for each M'e R(M) there exists a marking reachable
from M' in which t can be fired. A marked PN is live if each

transition is live.

Definition 2.13 ¢ A marked PN, N = (P, T, ay, B, M) is free from

deadlock if for ¥ M'e R(M); some t € T can fire in M'.

So far the discussion has been limited to PNs as an abstract
model. When it represents a real System, a meaning or Interpre-
tation is assigned to various entities namely, transitions,
places and tokens. Thus a transition in a PN may represent an
event, instruction or a program. A place can represent a condition
Or a type of resource etc. whereas tokens will represent holding

of a condition or number of resources etc.

An important property in Petri nets is Conservation of

tokens. If toknes are used to represent resources, then the tokens

must be conserved because the resources can neither be created



-2l

nor destroyed, One way to do this is to maintain total number of

tokens in the net,constant for every marking.

Definition 2.1% : A marked Petri net, N = (FT 5 @y By M) 4a

Strictly Conservative if ¥ M!'eg R(M) § & M(p) = Z M(p)
peP peP

This implies that each transition in a conservative net must have
equal number of input and output places i.e. %%k = [t If 1t
were not soy, firing transition t will change the number of tokens
in the Petri net. More generally, weights can be defined for each
place as long as weighted sum is constant [84]. This still allows
the conservation of resources because thers is no one-to-one
mapping between takens and resources. Some tokens may représent
program counters etc., and a token may Tepresent several resources.
This token is later used to create one token for one resource by

firing a transition. Hence a generalized conservation is defined.

Definition 2.15 : A marked Petri Bety 8= (Py T, a5y B4 M) 18

conservative with respect to a welighting vector W = [w l 1 With
Wy + 0, L

TMeR(Mzs: 5 w.M(p)= 5 w M(p)
pep P pep P
2¢4  MODELING WITH PETRI NETS

Petri net has found its way in modeling a variety of
systems. Holt, et al. [60] have shown that Petri nets can model

two aspects of the systems y Events and Condi tions. In their view,

a token may be thought of as representing the presence of same

condition associated with its place. The firing of a transition is



25

thought of as corresponding to the occurence of anc event which
may take place if all the necessary conditions are satisfied. The
occurence of an event will cause some of previous conditions to
cease holding, and causing other conditions to begin to hold. This
is represented by a new marking. Many systems can be covered into

events and conditions and, thus, can be represented by a PN (21 %

2.4.1 MODELING OF HARDWARE

One of the important features of Petri nets is their ability
to model computer hardware at different levels. At the lowest
level i.e. simple memory devices and gates, computer systems can
be described by state machines and hence by Petri net {121 }.
Though the PN discription is a bit complicated compared to state
machine description, it has certain advantages in combination of
machines. The combination in staté machine is complex and requires
a composite state with components of many submachines - g Cross-
Product machine. For Petri nets, the composition is simply the
Cascade comection (i.e. the overlapping of the output places of
one net with input places of another and so on), or Parallel
Comection ( i.e. duplicating the input tokens which represent
input symbols). It appears such interconnections of Petri nets

have not been studied so far and have been taken up in Chapter IV.

An example for modeling computer hardware at the level of
registers as fundamental Ccomponents of the system is the re-
presentation of n-stage pipelined operation through Petri nets

[5], [100], [120], [221] It is interesting to note that two



w2

successive stages could be modeled in more detail by 2 PB, 1f one
is interested to ensure that each palr of successive processors

communicates through‘ready’and°acknowledgement’signals.

Another approach to build very fast large computer systems,
is to provide multiple functional units to perform computations on
multiple registers with maximum possible parallelism. Computers
such as the CDC 6600 [143] and the IBM 360491 [12] are based on
this conceptes These can be modeled by Petri nets though they will
require very complicated and large nets [121]. Dennis [34] has
modeled through Petri nets a functional unit computer which
resembles CDC 6600. Petri nets have also been used to model tﬁe
interconnection of hardware modules [62], a modular micro-
brogrammable computer [108 ] and I/0 devices of a niniscomputer

[1507.

2¢4.2 MODELING OF SOFTWARE

The efforts in modeling computer software havs resulted in
different concepts and techniques in analysis, specification and
description of programs. A program has two aspects = computation
and control. Petri net can represent in a straightforward mamer
the control aspects (i.e. the sequencing of instructions and flow
of information and computation) but not the actual information
values. The flowchart representation of a sequential program can
easily be converted into a Petri net. The transitions are asso-
ciated with the actions of the program, i.e. the computations and
decisions. 4 token residing in a place means that the program

counter is positioned ready to execute the next Instruc tion.



Parallelism in a program has also been represented by PN
[5] but can be exploited usefully only when the Component

Processes Coordinate. Such a coordination requires sharing of

information. Many synchronization problems arising in coordinating
processes, for example mutual exclusion problem [37], producer/
consumer problem [38], the dining philosphers problem [38], and
the readers/writers problem [8B ] have been proposed. Petri nets
can clearly and explicitly represent these [51-[7], [28], [831],
[120], [121]. Also available is the anhalysis for system verifi-

cation [5]-[7], [83].

Petri nets have been applied to Compiler modeling to
determine whether existing compilation algoritims are sul table
for parallel processing [15], [16]. The Fortran programs for
CDC 6600 computers have been converted into PN showing precedence
constraints between operations [136]. This net is then merged with
a PN representing the CPU. Timing information is associated with
transitions, and an exhaustive search is used to determine the
Sequence of operations to minimize execution time. The S0LO
operating system and the Scope operating system of CDC 6400
computers have also been modeled by Petri nets [20), (1057,
However, the latter has used some extensions such as addition of

Exclusive-OR to Petri Nets.

2.4.3 SPEED-INDEPENDENT CIRCUITS

In a speed independent circuit the presence of arbitrary
delays in elements and connections have no effect upon circuit

operations. Synthesis of music through a processor [95] is one of



w8 -

many examples. Petri net has a potential for describing such
circuits [118]. Places, tokens and transitions could répresent
wires, signals and actions. In addition to modeling, implemen
tation of Petri nets has also been Studied [95], [112], (2157,
[118 ], and shown to be inherently fail-secure [112]. However,
there are many unsolved problems, like fault detection and
isolation. This is mainly because these problems require the use

of timing information.

2¢5 SUBCLASSES OF PETRI NETS

Generalized Petri nets and for that matter Petri nets, are
too powerful to analyse. Many researchers have defined, by
restrictions on the structure of Petri nets, many subclasses with
intentions mainly to improve their analysing capability. These
subclasses do model Several systems in different environments but,
obviously, their modeling power is limited. The impor tant sub-

classes are discussed as follows:

251 MARKED GRAPH

Marked graph is a subclass of Petri nets in which each place
has exactly one outgoing and one incoming arc. These arcs are
combined into one to represent the place. Purthe: 4y a vertex re-
presents a transition. The signals or data passing through each
arc come from a predetermined source (the initial node), and are
sent to predetermined destination (the terminal node). Thus,
marked graphs can represent concurrency but not conflict. This

limits its modeling power. However, computer systems such as



«20.

communication protocols in distributed computing [91], [128],
n-stage pipelined operations used in high performance computer
systems, parallel activities between central processing and disc‘
or I/0 jobs [111], and the changing operations in GRAY -1 computer
[128] are but a few examples that can be modeled by marked graph
[100]. Marked graph, on the other hand, has been shown to have
very high decision power [26], [27], (431, [60], [64], (671, [981],
[99], [101]-[103]« There are algorithms available for liveness,

safeness and for solving reachability problem.

2:5.2 STATE MACHINES

State machines [60], [120] are restricted Petri nets so
that each transition has exactly one input and one output place.
These are in the class of finite-state machines, hence are very
powerful as far as decision problems are éoncerned. The modeling

power is, however, limited.
2¢5:3 FREE~-CHCICE PETRI NETS

A free-choice Petri net is one wherein every place p is

el ther the only input place of a transition or there is atmost
one transition which has p as one of the input places. This means
that either the token will remain in that place until its unique
output transition fires or if there are multiple outputs for the
place, then there is a free-choice of firing a transition. Hence,
either all of these conflicting transitions are simul taneously
enabled, or none of them are. It has been shown [26], [49] that
liveness and safeness are decidable for free choice Petri nets.

Although these nets are very helpful in modeling systems similar



w30k

to that of assembly-line, no work is available regarding other
pProperties like reachabili ty, equivalence, contsinment, and

languages g €6c,

2:5.4% PyURE OR RESTRICTED PETRI NETS

A pure Petri net is one in wnich no place is both input and
output of the same transition. It has good modeling power and has
been shown to represent [83] a Semaphore by Di jkstra [38 ], bounded
buffer problem [48 ] and five dining philosphers problem [38]. 4s
Pure Petri nets are equivalent to PN and each can be transformed
into another as far as reachability is concerned ,these have the
same decision power as that of Petri net. Fur thermore, structural
properties have been studied (831, [137] to decide many problems
like liveness, broundedness in terms of invariance and consistency

of pure nets.
2¢5.5 SIMPLE PETRI NETS

In simple Petri nets [49 ] each transition has atmost one
input place which is shared with another transition and so also
serve to restrict the manner in wnich conflict can agonur. Ne
investigations have been made about the properties of this sub .

class of Petri nets,

A simple chart showing some of the Subclasses of Petri nets
with allowed and not allowed configuration is given in Figa2sy It
can be easily found by inspection as to why the configuration on

the right hand of Fige2.3 are not allowed.



..31...

'SUBCLASS ALLOWED NOT ALLOWED

STATE
MACHINES

v
o/

O—

FREE CHOICH
PETRINETS

e @—_‘@
6RAPH

H§ g

Oe—r

PURE
PETRINETS

PETRINETS

FIG-2.3_ ALLOWED AND NOT ALLOWED STRUCTURAL CONFIGURATION
OF VARIOUS SUBCLASSES OF PETRINETS



=N

2¢6 ANALYSIS OF PETRI NETS

To study the systems through Petri nets there are two
approaches available in 1iterature. One approach is aimed at
deriving properties of Petri nets, and the properties
of the system modeled. In the other approach [96] the design
process 1s carried out directly in terms of Petri nets and the
resul tant PN is implemented straightway [L0], [113], [116]. Both
these approaches require that the knowledge about the Petri net
itself be available. This has led to an éxtensive research in the
theory of Petri nets [6], [7], (211, [271, (%1, [60], [82]-[8%],
[97], [100], [102], [120], [137], [147], [148].

The objective of the analysis of PN is to determine certain
properties. Some of these such as reachability, safeness, bounded-
ness, conservation etc. have been discussed in Section 23+ There
are other important properties as well and those will be intro-
duced as and when needed.»ObViouSly the analysis technique must
be such that it is easily implemented on computer to allow
automatic analysis of modeled Systems., With this view, two major

available analysis techniques are discussed as follows:
2.6+1 THE REACHABILITY TREE

The reachability tree of a Petri net is a tree the nodes
and arcs of which represent the reachable marking and the possible
changes in state resulting from the firings of transitions [69],
[70], respectively. As the reachabllity tree is finite (121}, 1t

is possible to have a finite representation of infinite



_33'—.

reachability set often encountered in Petri nets. If it is found
that a transition adds a token at a place every time it fires,
then the number of tokens in that place is represented by w
which is 'too large' such that w * X =w, x <w for any integer
X. With these concepts, the reachability tree of PN, N = (P, T,

ay Py MO) wher e MO is initial marking is constructed as followss

Let the initial marking be the root node and tag 1t 'new!

WHILE new markings exist DO

Select a new marking M.
If M is identical to another node in the tree which is
not new, then tag M to be 0ld and stop processing M.

If no transition is enabled in M tag M to be ! terminal’.

For every transition t enabled in M
(1) Obtain the marking M' which results from joinint t in M
(2) If there exists a path from the root to M containing a
marking M " such that M'>M", then replace M'(p) by w
when M'(p) > Id"(p).
(3) Introduce M as a new node, draw an arc from M to M !

labeled t, and tag M' to be 'new'.

As an example, the reachability tree of g2 marked Petri net

(Fige 2.4) is shown in Fig.2.5.

The reachability tree can be used as a useful analysis tool
to determine some of the properties of Petri nets and thus can
Solve several problems. The following propertiss are decided

using the reachability tree.



-34 -

FIG.2.4 . A MARKED PN

(1,w,1,0)

FIG. 2.5 _ THE REACHABILITY TREE OF PN

FIG. 2.4



=35~

l. Safeness and Boundedness:

If a PN is k bounded, then by definition no more than k
tokens are present in any of the places. Each place can have any
mmber of tokens given by an element of the set {09152500004,k}
i.es each place can have (k+l) possible tokens. Hence the number
of possible reachable markings equal (k+1)™ which is a findte
reachable state-space. In order to determine the bound k on a
particular place, the reachability tree is first generated. If
w appears in the reachability tree, the net is unbounded because
w 1s 'too large!' and there exists a sequence of transition
firings which can be repeated arbitrarily many times to increase
the number of tokens to an arbitrarily unbounded number. If w
does not appear, then the reachability tree is scanned for the
largest value of the components of the markings corresponding to

that place. If bound for all place is 1, then the net is safe.

2. Conservation:

If a PN is strictly conservative, then the number of tokens
in each marking remains constant. Say, this number is k. Since
there are finite number of ways to partition k tokens among n
places, we have a finite reachability set. Thus strict conser-
vation of tokens can be tested by computing sum of tokens in
each marking. If sums are same then the net is strictly conser-
vative. However, if w appears in the reachability tree, then the
Petri net is not strictly conservative because w, though ‘too

large', is different for any two markings.

o i S TR



%6

The generalized conservation is generally given with
respect to a defined weighting vector or undefined welghting
vector. In the first case ths weights of each place is known. If
W appears in reachability tree for a place, say p and the weight
of p is nongero positive, then the weighted sum of the tokens for
two markings will be different in their w componant. Thus the net
will not be‘conservative. On the other hand if the weights of all
the places for which w appears are zeros, then the net is con-
servatives For the case when there is no defined weighting
vector, a Petri net is conservative if it is conservative with

respect to some weithting vector W, with L > 0.
3« Coverability:

An important problem in Petri nets is coverability of
markings which is useful in determining the occursnce of varia-
tion in mutual exclusion in a System and in testing transitions for

liveness and deadlock. This is defined as followss

Definition 2.16 ¢ Given a PN, N = (Py Ty gy P, M) and a marking

M'e R(M). The existence of another marking M" e R(M) such that
M">M is called a coverability problem.

This problem can be solved by inspecting reachability tree [54],
[69] and searching for a node x with marking MX 2. M'. If no node
is found, the marking M' is not covered by any reachabe marking.
If such a node is found, this gives a reachable marking which
covers M'. Karp and Miller [69 Jhave proposed an algoritim to
determine the minimal mmber of transition firings to cover

a given marking.



3 -

2+6+1el LIMITATIONS OF REACHABILITY TREE

The reachability tree can not solve the reachability or
liveness problem. Also this can not determine which firing
Sequences are possible. To solve these problems it is Tequired
to know the exact mumber of tokens on places in different
markings. This information is lost in the symbol w. However, in
some particular cases reachability or liveness may be solved.

For example, a Petri net whose reachability tree has terminal
node (one with no successors), is not live. 3imilarly a marking
M' may appear in the reachability tree then M' is reachable from
M. Also, if a marking is not covered by some node, then it is not

reachable.
2¢642 STATE EQUATION OF PETRI NETS

Another approach to the analysis of Petri nets 1s based on
state .equation [97] which is quite different from that of normal
dynamic systems in that the behaviour of Petri nets is essenti-
ally characterized by the control vector of non-negative
integers. Even then the state variable technique of system
theory can be useful in studying Petri nets. Without loss of
generality (as equivalence of generaliged Petri nets and single-

arc nets exists [50], Petri not is considered.

Since the marking changes as a result of firing, instead
ol M (defimition 2.4 & |P|x1l column vector of nonnegative
integers Mk is defined. The jth entry of Mk denotes the number
of tokens on place j immediately after kth firing, Specifically

MO denotes the initial state. Out of many enabled transitions,



-38-

which transition fires is defined by a control veetor Vk

|T|x1 column vector containing exactly one nonzero entry 1 in

as a

the i thposition if i th transition is fired at k th firing. The
concurrent firing of more than one transitions is allowed and

can be expressed as the sum of correspondin control vectors.
Xp p g

From the definition of firing, it is found that the state
Mk resulting from another state Mk-l by k th firing Vk can be given

in terms of following Murata’s state equation:

" T &
IV’LK: = ]\4}{-1 + A Vk, k = 19270000 (2'1)

where AT is transpose of transi tion-to-place incidence matrix
(definition 2.3). It is noted that the i th row of A represents
the token changes in |P| places when i th transition fires once.

For marked graphs, 4 reduces to the incidence matrix of a diagraph.

Since M is a vector of nonnegative integers, U must
g S 9 k

satisfy

: T
Mk-l # BT T

e 2 0 for each k (2.2)

Let there exists a firing sequenc e {Vi, Vé,....,Vh} that
transforms an initial marking Mo to Mn of a Petri net. Then the
solution is given by addition of the n equations of (2.1) for

k = 1,2,....,1’1.

n
&
Me=8 % 4% & v
n 0 k=1 X
which can be written as
T
AT 3 = AM (2.3)
A ®
where =¥ -M and T = ¥ ¥ 193 |T|x1 column vector of
. k=1 K



=35

nonnegative integers called by Firing Count Vector. The i th entry

of £ represents the number of times the transition i would fire

in a firing sequence leading from MO to Mn.

Based upon the above concept, the following have been

obtained:

l. A necessary condition [97] that a Petri net is completely
reachable i.e. any initial marking can reach any other
marking is

Rank A = |P| (2.4)

2. Given two markings Mo and Mrl for a connected marked graph G,
there exists a non-negative integral solution £ for

AT Z = AM

if and only if
Bf AM: = 0
where AM = M:1 - MO and Bf is a fundamental circuit matrix

[102].

In most of the practical applications of Patri nets, the
condition (2.4) is rarcly satisfied. The rank of 4 is generally
less than the number of places in a Petri net. In such cases, the
PN is uncontrollable or not completely reachable. Let the rank

of A be r. Then, A can always be partitioned in the following

Fal

form s
|P|-r r
. T TE———
All A12 fr
A= (2e5)

oy 430 IlTl‘r



) Iy R

We can always find (|P|-r) x |P| matrix B3

= [I: a4 (AT (2.6)

Be 11 (475

where I is the identity matrix of order (|P]=r), such that

P
A Bf =0

It may be noted that Bf corresponds to fundamental circuit

matrix in case of marked graph.
Thus, eqe (2.2) is consistent if and only if
B, AM = 0 (2.7)

If there exists a firing sequence which transforms MO to Mn’
then the corresponding firing count vector £ must exist and

(2.7) must hold. Therefore,

3 A condition (2.7) is necessary for the existence of a firing
Sequence which transforms an initial marking MO to another

marking Mn in a Petri net [97 ].

4+ In a Petri net, a state N, cannot reach another state M o
1f their difference is a linear combination of the rows of

Bp [97]) 1eev, if

where V  is a nongzero (|P|-r) x 1 column vector.



il -

Commenta™ To test if a given initial state can not
reach another given state, one has to calculats Bf.
For this,first A is determined for PN. Then largest
nonsingular submatrix A12 of A is obtained in the form
a8 in (2.5). To find Bf, (Afl)'l is determined. This
is quite involved process. Thus calculation of Bf Te-
quires a lot of computation. It has been Shown in the
Chapter IV that the nonreachability condition can be

obtained in terms of A and AM. As Bf is not calculated,

the testing of nonreachability becomes very Simple.®

The state squation approach deals basically the reachability
problem. It has great promise and can Solve many problems of Petri
nets. It rust also be noted that a similar matrix approach has
been taken in independent research in Europe [21], [29], (W3],
[83], [137]. The liveness problem and indirectly, the reachability
problem which is reducible to liveness [56] has been tackled in
[2], [43], [B1) WHile the reference [29] uses the concept of
formal languages as main vehicle, some structural properties of
Petri nets have been found in [137 ]. Some Concepts not covered in
state equation and proposed by these researches in matrix approach
and by others, for example 50 (72 ) [100], etc. are given beloy.
As the inclusion of these concepts does not change the mature of

state equation, the combined approach will be called as the state

equation approach.

** Denotes specirfic comments by the author.

© End of specific comments.



A

Of special interest for determining propertics of Petri

nets is the concept of Invariance. It is defined as unders

Definition 2.17 2 A Petri net, N = (P, T, a, B) = (4,—) is

said to be invariant if there exists a |P|xlvector I with all
its components positive such that
AI=0 (2.8)
Using eq.(2.3) and (2.8), the following is obtained
(aM)"I = VI(AI) = 0
or

i =
I\J_K_lI—MK I (2.9)

Due to the invariant property expressed in (2.9), I is called
an invariant of Petri net. However, a widely used concept [83]

is that of a Simple Invariant.

Definition 2.18 » A simple Invariant is a set of places, I, such

that X

pel’ M(p) is a constant for each reachable marking M, and I

does not have any proper subsets that are simple invariants.

From the definition, it is evident that the simple invari-
ants are disjoint sets. From the sst of simple invariants, some
properties about the dynamic behaviour of the Petri net can be
deduced [7], [83]. For example, the following properties are

obtained:
l. Boundedness and safeness:

If each place is in some simple invariant and the Petri net
has initially a bounded marking, the net is bounded. Same is true

for safe nets. This is, obviously, so because the number of tokens



a3

in a simple invariant is constant and all the places are covered

by simple invariants.
2. Conservativenesss

If the set of places can be partitioned with disjoint sub-
Sets each of which is a simple invariant, the net is conservative

and the total number of tokens in the net remains constant.
3« Mutual Exclusions

If an ioput or output place of a transition t is contained
in a simple invariant I, tis said to be a transition of I. If
two transitions correspond to same simple invariant and the
initial marking is such that the sum of tokens in the places of
the invariant is 1, then the transitions are mutually exclusive

and cannot fire Simul taneously.
Yo Livenesss

Under certain presuppositions, the simple invariants may be

interpreted as Complete System of Circuits. When analysing

liveness,so-called Variants are of interest, and these may be

interpreted as incomplete systems of circuits [83].

In order to reduce the complexity in deciding the proper-
ties of Petri nets, the notions of boundedness and liveness have
been defined so as to be independent of a given marking [139]

but dependent only upon the structure of PN.

Definition 2.19 s A PN is Struc turally Bounded if it is bounded

for every marking and is Structurally Live if there exists a

marking for which it is 1ive.



The structural boundedness and liveness have been studied
[137] with a view that it is generally easier to decide if a
Petri net is bounded (respectively not live) for esvery marking
than it is bounded (respectively not live) for a given marking.
A concept which has been used apart from the net invariance is

Consi stency.

Definition 2.20 ¢+ A PN, N = (A,—) is Consistent if there exists a

|T|x1 vector X with all its components positive such that

ATx = o (2.10)

From the study of incidence matrix of pure Petri nets, the

following properties have been obtained [137].

i« If a Petri net is bounded and live then it is consistent.
The converse is also true.
ii. If a Petri net is invariant, it is bounded.

iii. If a PN is bounded and consistent, then it is invariant
and for every marked PN (A,M) the reachability set R(M)
is constituted of pairwise incomparable vectors. This
permits to calculate an upper bound of the cardinality
of its marking classes. For example, if (A,M) is safe
[49 ], then R(M) < (ﬁ) where k = % if n is even and
k=2l irnis oaa.

iv..(a) If a PN is consistent and invariant, it is bounded
and live.
(b) If a PN is invariant and nonconsistent then it is

not live.



ol
—t

(¢) If a PN is noninvariant and nonconsistent, then it
9

1S neither bounded nor live.

Definition 2.21 & Givena PN, N = (P, T, q, ), a Subnet of N is

a8 P, Nl = (Pl’ Tl’ Gq 9 pl) such that Pf::_P, if:::T and a9 Bl
are the restrictions of a, § on P, X Tl' The Union of two subnets
M. = = 1

Ny (Pl, T, Gy Bl) and N, (P29 Tos Gos 32) is a subnet

I = 3 = =

1_13 (P3, T3, Uy @3) with P3 Py U P, and T3 T, U T,
Being given a PN, N and a set S of subhets N it is said that N

is Covered by S or that S is a Decomposition of N if the union of

elements of S is equal to N.

Definition 2.22 s Let N = (P, T, a, B) = (A,=) a P, For X e,
the Support of X, denoted by S(X ) is the subnet of N,
S(X) = (Py, Tys 0y By) with T 3 = {tj £ Xoj 7 0} and

=& 0 PR , : e :
3 5 le*J I+ Also for I, e I, the Support of I ot I ) 1s

subnet of N, B(L ) = (Pyy T, Gny o) with P, {p eP | i .70

0]
and T, UP.

V. Every consistent (invariant) PN, N = (A,~—) is decomposable
into a set of elementary consistent (invariant) components.

Let Xb, AIXb = 0 such that S(Xb) = No If N is not an elementary
consistent component then there exists a consistent component N

o
59 47X = 0, such Uﬁts(%)

1

contained in N and X K

= Nl.

A = min ——i and P s X - AX ., then X! > 0 and 1t is
xlj#O{ 1.]} < 1 % £

possible to find a vector Xé = pXé, X, » 0, having integer



L6

components. Furthermore, S(Xé) = S(Xi) LJ b(Xé). This method can
be applied iteratively in order to decompose a consistent or

invariant PN with elementary consistent or invariant components.

Comments: To decomposSe a consistent and invariant PN,
EIEaT X% is to be obtained from ATXb = 0 and then
iterative method as discussed above is used. This has

two drawbackss (i) it is quite cumbersome to calculate
integer-valued solutions of systems of linear equations,
and (ii) it is not known 'apriori' how many elementary
components can be obtained. These limitations have been
removed and a technique has been proposed in Chapter IV,
to find 'apriori' the number of elementary components and

to decompose the net into elementary nets.e

The proofs of the above properties are scattered over [82]-[8L],
[137 ] and are not given herzs as they are not necessary for

maintaining the readability of this thesis.

It has been seen here that state equation approach is very
helpful in deciding many properties of Petri nets, but there are

limitations of this approach as well.
2.6.2.1 LIMITATIONS OF STATE EQUATION APPROACH

i. The self-loops (i.e. transitions which havs both inputs
and outputs from the same place) cannot be represented in
matrix A. This is a loss of information about the structure
of Patri hets,

ii. A serious problem is that although a solution to eq.(2.3)

is necessary for reachability, it is not sufficient. Thus,



iii.

I

b7

the existence of spurious sclutions (i.e. the solutions
which do not correspond to possible transition sequence)
is necessary to be detected.
Another problem is the lack of sequencing information in
the firing vector. Consider equation (2.3) which is as
followss

AT hH = AN
Here the solution 3 merely gives which transition should
fire and how many times in order that a marking MO is
reachable to another marking Mn but does not say in which
Sequence the transition must fire. The problem becomes
even more complicated when the rank of 4 is not (|T|-1)
which is, generally, the case. Let r be the rank of i,
then eqe.(2.3) is a set of (|T|-r) independent equations in
|?| unknowns. This will, obvicusly, lead to a set of
solutions rather than a unique one. Hencs not one but many
Sequences may exist. State equation approach does not
provide any technique to find such firing sequences of
transi tion.
The Non-negative integer solution of (2.3) and for that
matter, the determination of invariants and consistency,
is quite involved process for larger Petri net. The
invariants have been systematically obtained by following
certain rules during the synthesis of Petri nets f2])s
However, there is no alternative for the solution of

eq-(2o3).

An attempt has been made to find the firing sequence of



L8

PNs in Chapter IV and thus the limitations (ii) and (i1i) have

been removed to a fairly great extent.

2«7 CONCLUSION

The recent literature available on the use of Petri nets
in design, analysis and synthesis of systems is an evidence of
growing interest in this field. Many different aspects of various
systems can be studied through PN. This is, because, it can
easily exhibit parallelism and represent Systems at different
levels of abstraction. These concepts and capabilities of PN have
been reviewed in this chapter to form a background for ths

investigation taken up in Subsequent chapters.

A very limited research on the optimization consideration
through Petri nets is available [63], [136]. If a Petri net
exhibits a certain behaviour, as indicated by transition firing
Sequences and its reachability set, the question is : can a Petri
net be optimized (changed) without affecting its behaviour o
This may involve deleting dead transitions or dead places or
perhaps the redefinition of some transition and place. However,
one has to be careful in defining the problem. This is, because,
1f equivalences are defined as equal reachability sets, then
number of places cannot change and on the other hand if eguality
of sets of transition firing sequences is required, then transi-
tions can not change.

In Chapter VI such considerations are dealt with reference
to the important optimization problems in the design of micro-

programmed computers.



CHAPTER III

CRITICLL REVIEW AND GENERLL CCHSIDERATION OF MICROPROGRLM
OPTIMIZLTION

2.1 INEROIUCTION

Recent decades have seen with growing interest the
development of microprogrammed computers. This is becausSe
microprogramming provides a systematic way of designing the
control unit, increases the flexibility of a computer and makes
it possible to execute directly the programs written in machine

languages of a different computer - a process called emulation.

Microprogramming was conceived by Wilkes [151 ]<f153] as
a technique for the implementation of control function in digital
computers. Since then it is finding wide applications in modern
day computers. One development has been the use of microprogra-
mning in the ecoromical implementation of control circuits of
very larger computers like Illiac IV and Control Data STAR 100,
Direct interpretation of high-level or intermediate languages
and microprogramming of operating system functions are other
possibilities. Addi tionally the development of dynamically user
programmable computer has been made possible because of advances
in hardware technology. This allows the replacement of operating
System and language translators with inexpensive hardware, whose
functions can be modi fied readily by microprogramming. In all

these applications one way to increase efficiency is via



-50-

microprogram optimization.

3+2 BASIC CONCEPTS OF MICROPROGRAMMIN G

The concepts and terms involved in defining microprogramming
are well established but are given here to avoid ambiguity and
for the sake of completeness and continuity. A computing machine,
exclusive of control, consists largely of registeres and combi-
national execution resources (adders, shifters etc.). The former
comprises the local store and the latter, the functional units.
The hardware interconnections between the functional units and

storage resources are called Data Paths. The cycle time of a

Computer is the time required to change the information in a set
of register via such data paths. A control logic is required to
exercise an overall control of the various resources of a computer.
Conventionally the control information has been permanently built
into system by means of combinatorial and sequential logic network
in an adhoc manner. This type of control is highly complex,
because a need for the slightest modification to the instruction

set could call for a major change in the entire control structure.

In microprogrammed computers Microinstructions coatrol the

operation of various resources and ars defined as the basic
machine functions sanctioned by the manufacturers. These are
stored as words in a high-speed nondestructive read only control
Store generally called Read Only Memory (ROM) which is usually
(but not always) separate from main memory. Through the ROM

address and data registers, the computer hardware provides the

e 1T 2FS 67"
JENTRAL LIZARY BNIVERSITY ¢ LLL T fd



facility for systematically exccuting sequences of micro.

instrue tionss

A Microoperation is a unit of microprogram activity which

performs a particular function (e.g. opening or closing gate,
shift, increment, etc.). The subcommand to exccute a micro-

operation is called Microcommand. A microinstruction is a

specification of microoperations to take place in one cycle. A
Sequence of such microinstructions constitutes a machine

instruc tion.

Two aspects of microinstructions i.e. design and imple-
mentation, need examination with reference to hardware charac ter-
istics. Design of microinstruction determines the information
required to control hardware resources and its arrangement in a
microinstruction word. OFf Primary interest is the number of
resources controlled by each microinstruction. For this reason,
microinstructions are commonly classified as vertical or hori-

zontal. Vertical microinstruction refers tc one type of operation

and are characterized by short formats, limited ability to
express parallel microoperations and consigerable encoding of

control information. Horigontal microinstructions, on the other

hand,control many resources which operate in parallel. These have
the attributes of long formats, ability to express a high degree

of parallelism and 1little encoding of the control information.

The degree of encoding in a microinstruction word affects
its length, and is often a parameter for the vertical and hori-

zontal characteristics. In simplest design no encoding of bits



in microinstruction word is done. Each bit controls one resource
or operation. This is shown in Fig.3.l1(a). In single level
encoding, one bit controls many resources and depending upon thé
parallelism, microcommands are grouped in differsnt control fields
(Figs 341(b)). Another type of encoding which plays an important
role in the bit optimization is two level encoding or bit steering
[10]. Here, as shown in Fig.3.1(c), Some bits ars shared by
different fields. The uncoded format has the advantage that the
control signals may be derived directly from the microinstructicn.
When encoded fields are used, each control field must be connected

to a decoder from which the control signals ars derived.

The microinstruction implementation is important for
execution time. In serial implementation, fetching of next micro-.
instruction does not begin till the control terminates. This
results in simplicity of realization because the hardware need
not control execution and fetch simul tancously, and no problem
arises in execution conditional branch instruction. On the other
hand in the parallel implementation, fetch of next micro-
instruction is to be executed in parallel with the execution of
microiﬁstruction. Hence, therz is saving in time. 4 combined
serial-parallel implementation is generally adopted to have the

simplicity of realigzation and some saving in time.

4 control store is characterized by its word and bit

dimensions. The Word Dimension Wd of the control store is the

number of words of control Storage required for a certain

application. The Bit Dimension B represents the number of bits




RERET

tal NO ENCODING

- GR - (TH f
- e e
FIELD A FIELD B
2 BITS 3 BVS

DECODING

1 OF f-——— NET A

Y

DECODING
NET B

PGE=E =]

{b) SINGLE LEVEL ENCODING

5 BITS DECODING SELEET

FIELD
Y - /___./'\—_
FIELD A FIELD B FIELE €
2 BITS 3BITS 2 BITS

———p "__"_—\"f-._ ST S _\l_ =i

DECODING
NET C

i

OB 0 [JEN(i:DngG

(c) TWO LEVEL ENCODING OR BIT STEERING

G e BTN TN TRAL  FORMATLS



-5l

per word of control store. Microprogram Optimigzation is performead
to reduce/minimize the size of control memory (Wd x B) and/or
reduce the execution time. The next paragraphs are devoted to

strategies and techniques involved in such optimizations.

3:3 STRATEGIES OF OPTIMI ZATI (N

The various strategies of microprogram optimization are
classified [4] in four broad categories, namely, Word dimension
reduc tion, bit dimension reduction, state reduction and heuristiec

Teduc tions

Word optimization [13], [25], [33], [36], (651, [781, (881,
(1297, [139], (1311, [1uk], [146], [154] is performed in miecro-
instruction generation phase or ceompilation. Herc the deletion
of non-essential microoperations, the identification of parallel
microoperations and resourcs allocations are considersd. However,
even after spending substantial time in such optimization, there
is no guarantee of significant savings in microcode Space and

execution time.

In bit optimization [17], (311, [32], [¥7], [57], (6615 [991,

[135], for given ROM Specification or the instruction set
Specification, the microinstruction length is reducegd by parti<
tioning the microcommands into appropriate groups and encoding
them.

In state optimization [%5], [46] the microprogrammed
Computer is analysed in terms of two interacting finite state

machines hamely a control part and a functional parts State



“55a

reduction techniques [22], [81] can be applied to reduce the
control part. However, this optimization is impractical for any

modern computer with innumerable states.

Heuristic optimization methods [93], [94], [140] employ
adhoc techniques to minimigze the control part of the composite
automata. This, however, does not guarantee a minimal control

part because of its adhocism.

O0f the four categories of optimization, bit optimization
has practical advantages particularly for the design of spacial
purpose microcomputers dedicated to single applications. It is

this aspect that has been dealt in detail in this thesis.
3.3.1 BIT OPTIMIZATICN

To minimize bit dimension, there ars two type of approa-

ches. One type of approach starts with the given ROM specification

and the other with the given instruction set desoription.

Schwartz [135] has described a model for ROM as a rect-
angular array of binary storage elements consisting of Mec micro-
instructions of B bits each. Each microinstruction Specifies one
OT more subcommands to perform ¢lementary operations. Table 3.1

is a hypothetical ROM described by Schwartz.

Microinstruc tion Microoperations
3 ayb4Cyedye,f
2 Cygyh,d
3 Asbyhyd,j
L d,h,k
5 L.k

TABLE - 3.1



~56m

All the microcommands contained in a microinstruction are per-
formed in parallel while microinstructions are executed
sequentially. Since the sequencing of ROM words is not of any
concern for the minimization, address fields are not considered.
The problem of bit optimization for the given ROM specification,
thus, addresses to the ervcoo(ing of Nc microcommands in Mc
instructions of the control memory. There are two ways of encoding

the microcommandss

l. Every microcommand is encoded by one bit each. The advantage
is maximum flexibility. Since no combinational circuit is
required at the output of the ROM the contents of ROM can be
arbitrarily changed. However, this method is inefficient
because of the large number of bits needed due To usually
large microoperations.

2+ All the microcommands are encoded by a minimum [[logNe | *
bits. In this case a complicated decoding network is a must.
All advantages of microprogramming are lost because even a

slight modification is difficult to attain.

In bit optimization, a compromise between the maxi mum
flexibility and bit mininality is made. A minimum number of
encoding bits is obtained such that the parallelism in micro
commands 1s not lost. Following are given the different bt

optimization techniques.

*Throughout this thesis, logarithm is to base 2 and |"x is

Smallest integer greater than or equal to X



57

3¢3elel SCHWARTZ s ALGORT THM

Schwartz [135] took a midway position and proposed par ti-
tioning of the microinstruction format into disjoint groups,
the only constraint being that no two microoperations from the
same microinstruction could be assigned to the same group. A
solution is, thus, a collection of sets § = {Sl, Spgeees ,Sp} )
where

Condition 1

&

Every ny (3 = 1,25004,Nc) is contained in a

(unique) set Sn.

Condition 2 ¢ No pair Ri19 Byp(JL = 15250000,
J2=1,25e00.4Nc 3 J1 # J2) belonging to the
Same microinstruction.mi can be in the same set Sk'
Condition 3 3

The rumber of sets Sp is minimal
9
3e3ele2 GRASSELLI AND MONTANARI '8 ALGORI THM

Grasselli and Montanari [47] pointed out that a minimum
group solution does not imply a minimum B soluticn. The minimum
group Solution of Schwartz for the ROM in Table 3.1 is (a), (byg),
(¢ydsk)y (ds1), (e,h), (£f)e The mmber of groups is 6 and B = 10.
In the solution (a), (b), (c), (dygyd), (o), (fyi4k), (h),
Suggested by Grasselli and Montanari , al though number of groups
is 7, the number of bits required to encode is reduced to 9.

Thus, to obtain minimal B, the problem was reformulated by

changing condition 3 tos

Condition 3' s The quantity

D
B = k"z‘l log lﬁ(lsik|+l)‘|



-8

is minimal, where Isikl denotes the cardinality of 8i1.5» and 1
is added to the cardinality of each set to include the no-

microoperation_Nop.

Two microcommands njl and nj2 are defined to be Compatible

1f condition 2 is satisfied. A Compatible Class Cj of micro-

operations is a class whose members are pair-wise com atible. A
p

Maximal Compatible Class (MCC) is one to which no microoperation

can be added without violating pairwise compatibility. Then a
minimal solution is a set of compatibility classes s (Csq9 Cipyes
h .
«++5C;y) such that B = z rlog(|cik| +1) ] and
LhJ Cijic 1S set of microoperation in ROM. Grasselli and Montanari
k=1
show that the only classes that need be considered for a minimal

Ssolution are Prime Compatible Classes as defined belows

1. C; is nomaximal and |C;| = 2%1 (b= 1,2,...)5 and

20 C; 15 maximal and |¢;| # 2% (k=1,2,.....)

The minimal cover is then obtained by solving a cOvering
table of the prime implicant type.
3+3+1.3 LINEAR PROGRAMMING METHOD

Jayasri and Basu [66] applied linear programming technique
to solve this problem by minimizing the following cost functions

C =32 [‘log(i+l)'"|ai
i

where a; is the mumber of mutually exclusive classes containing
i microcommands. The value of i ranges upto a maximm, which is

the number of microcommands in the largest MCC. The algoritim



~59 <

also takes advantage of some Special features of cover table.
3.3.1.% CM COVER TABLE METHOD

Das et al.[31] start with the same basic formulation as
Grasselli and Montanari. However, they start directly with the
maximal compatible classes whose number is Usually small, The
basic procedure is as follows s From a CM cover table with rows
and columns Tepresenting MCCs and microoperations respectivelyJ
the irredundant Solutions are obtained, For each of which a |
solution CM table similar to CM cover table is construc ted.

This indicates which gre locally essential McCs and which micro-
Commands are to be Covered by them. The different covers for
remaining microcommands are obtained through the construction of
a reduced solution table. Going through all such possible

coverings, the minimum Solution is obtained.
3-3¢1e5 BRANCH AND BOUND ME THOD

Recently branch and bound method has been applied by Baer
and Koyama [17] to solve the problem of bit optimization., They
modeled the problem in graphical terms. Starting from root node
with as many Singleton Sets as the nmumber of microcommands in
largest microinstruction, a partial solution Tepresented by a
node is Continually extended until a solution satisfying a cost
constraint is reachedq. Their algoritmm c¢an best be deseribed in

terms of pseudo Pascal notation as follows:
Step 1 [Initialize] B =N, I 0

Step 2 3 [Obtain ini tial solution, then back up and proceed a

new, if necessary ]



il

While I 2 0 do

It (LBI 2 B) op if all possible placements have
already been atbempted
Ihen I + I.1
(1.e. back up since no better solution can be
obtained for this subtree).

Else repeat
I ¥ I+#1l 3 Select new microoperations to be e
encodea;

Place in same Sj 3 Compute LBI

Until (I =0Ne -m) or (LB; 2 B)

p
e I =Ne-m then B + 3 rloglsjl+17
S 7L

Bemin (B, B )3 I + Ne-m-l
3+3.1.6 MONTANGERO S ALGORT THM

As suggested by Grasselli and Montanari, a better and/or
flexible solution for bit optimization could be obtained from
the specification of the instruction sets rather than from ROM,
The problem is then to encode the instruction set by finding
amongst all possible ROM descriptions, the appropriate ROM having
minimu value of B x Wd. This is the approach adapted by
Montangero [96]. He describes the instruction set by a forest ¥
of directed acyclic graph. A graph Gi Tepresents an instruction
i+ The nodes of Gi represent the microoperations and an arc
represents a temporal precedence relation between the micro-

operation. A level assignment to a graph G is a partition of the



=]

nodes of G into different levels such that if there is an arc
(myn), then the level of m is less than the level of n. A level
assignment to each graph of a forest F constitute a level
assigment of F. All possible level assigmments of F can be
obtained. The scheme of Gresselli and Montanari can be applied
to each assignment to select the one with minimal B x Wd. But
Montangero prefers a heuristic procedure to avoid an exhaustive
Search by considering only a subset F consisting of prime graphs.
The algorithm first finds actual costs with minimum estimates.,
Then all assigmments whose optimistic estimate is not lower than
the actual cost, are eliminated. It is repeated until all

assigments have been considered.

Comments s It is observed that the methods referenced
yields optimal solution after tedious and time expensive
procedures. Schwartz s algorithm is basically one of the
ekhaustive evaluation and does not necessarily result in
-minimal bit solution. The technique of Gresselli and
Montanari is an improvement over Schwartz9s algori thm.
But it suffers from the drawback that the cover table
has usually very large number of rows and the Covering is
¢yclic in nature. To find a minmimal solution is, there-

fore, a difficult task.

The linecar programming method requires judicious
Selection of mutually exclusive groups of microcommands
in order to have less processes of trial and error.
Although this provides a good starting point, the CompU-

tations involved are large.



“Bo-

The essential approach in Das et al, is to solve
a number of small cover tables rather than a big one.
It is, however, not apparent if the overall effort is
less than that required in Grasselli and Montanari,

The technique of Baer and Koyama appears more
effective because it leads quickly to near optimal
solution. However, it is time expensive if all minimal

solutions are needed.

One of the major problems in Montangero [96] is
that no method is given to detect prime graphs for a
general case. Further, a solution is provided if every
microcoperation oceurs atmost once in any graph of
original forest. But this drawback can be removed by
renaming microoperations appearing more than once So
that they are considerecd to be different in beginning.

This results in addi tional computaticnal efforts.

Itie ot Surprising in the light of recent work
[132] that a11 these methods require Computations which
are exponential in mature. Here, Roberston has shown
that the problem of bit optimization is a NP-compl eto
and hencé "one should not attempt to solve for general

Case but concentrate on heuristics for r'easonable

subcases ". o

Barring Schwartz’s technique, almost a11 the methods require
the generation of MCCs. These generations are usually done with

the help of compatibility chart ang graph the construction ol



-63

which prevents its adaptability on computers. A method employing
State equation of Petri nets to generate all MGC’s 1s given in
Chapter VI. A method of bit optimization which requires fewer

enumerations for a 'reasonable subcases' is also presented.

An lwportant aspect of bit optimization is a good
'engineering reduction' [%]. If ROMs are available in 4 bit
configurations, then the efforts required to reduce the bi ts
from 12 to 9 is a sheer wastage and the bit reduction is not a
'good reduction ' s It is hecause the mmber of chips needed
will be 3 for 12 as well as for 9 bits. If however, one more bit
is reduced, the number of chips needed will be 2 and there will
be considerable saving in the control memory and hence coste To
do this the concept of two level encoding or bit steerabili ty
[10] discussed in Section 3¢2 is used. Bit steerability reduces

the number of optimigzed bits.

We can inspect control fields with mul tiple bits, whether
a part of 'the field can be shared by two or more such control
ields, If 34 43 possible,; the further reduction in bit dimensions
can be made. The shared bits are called steering bits and the
remaining bits of control fields are steered fields. If shared
field consists of more than one bit, then a decoder (Fig.3.lc)
is neededs It is obvious that the maximum number of bits in
Steering field is one less the number of bits in the smallest

amongst original fields considered for steering.



-6l

3.3.1.7 BIT STEERING IN BIT REDUCTIN

The only work available in 1iterature on the bit reduction
through bit steering is by Mathialagan and Biswas [86]s Given
the ROM specification and all the optimal bit solutions, their
algorithm for detection of bit steering in two fields and

encoding them involves the following steps.

l. Setting up a concurrency matrix. The columns and rows of
concurrency matrix correspond to microcommands (including
(Nop) in the two fields, respectively. The eatry 'X' at
the intersection of a row i and column J is present only

when microcommands i and j are present together in every

microinstruction.

2 Grouping of entries in rows and columns if there is an

entry at the intersection of rows and columns.

3. Testing the following conditions:
(a) all entries in the concurrenc matrix are accommodated
g
in 24 or less groups when q is number of steering bits

and 1.£ ¢ g;fmin(nl,nz)—l], where n, and n, are the

2
number of bits needed to encode the two fields
respectively.

(nl-l) (n2-l)
(b) each group includes not more than 2 and 2

microcommands.
When these two conditions are Satisfied only then bit
steering is possible.
4+ Encoding the steerable sets by assigning the same steering

code to microcommands of a group, considering groups one



-69-

after another and then assigning umised code combination

to microcommands not covered.

The detection of n set steerability is done on the Same
lines. But as the construction of n dimensional concurrency
matrix is not possible, the following condi tions must be satis-
fied for the sets of microcommands G, (1 =1,2,0usyn) for n> 3
to be steerable.

1. The sets must be pairwise steerable
2. The disjoint sets with distinet steering code of each
set Ci are the same when the set Ci is steered with each

of the remaining (n-l) sets.

Comments = Al though the algorithm for bit optimization
through bit steerability is very elegant, it suffers
from two major drawbacks. Firstly, the formation of
groups in concurrency matrix is done by the inter -
section of row and columns sets such that the group
contains maximum number of entries. This type of forma-
tion of a group is not easily adapted on computers.,
Secondly, the method becomes too cumbersome  for detec ting
steerabili ty among 3 or more control fields. This re-
quires the testing of pairwise steerability. When n
control fields are considered for steerability, the
nmumber of concurrency matrix needed is Qi%fll. There-
.
fore, total emmerations required is EKJ%?LZ times the
enumeration in one concurrency matrix. But as pairwise

Steerability is a hecesSary and not sufficient condi tion,



O

even after such large enumerations it requires a part
of encoding procedure and detection of disjoint sets

of all the fields appearing in different concurrency
matrices. The disjoint subset of a field Ci with dis-
tinct steering code are, then, to be tested for no
conflict. These are quite involved processes. To over-
Come these difficulties, an extended Petri net approach

is presented in Chapter VI. e

3e4 DATA PATH OPTIMI ZATION

The number of control signals required for the control
store design is partially decided by the data path assigmments,
as the control signals are applied to the resources through the
respective interfaces. Therefore, minimal control signals will
be needed only when data path assigmment is made with minimal
interfaces __ an optimal data path assigmment. Thus, optimal
data path assigment is a very important aspect and a prerequisite
for obtaining minimal control stbre through bit optimization

techniques.

With the advent of integrated circuits, the digital sy stem
design is now required to solve the problem of selecting the
appropriate modules and their interconnections. These modules
constitute a relatively fixed fraction of the total chip area,
while interconnec tions occupy a dominant share. Further, the
number of bits in control memory is decided by the Paralleli sm

in microoperations which is essential to increase the execution



i

speed of a microprogrammed processor (Section 3+3). These two
factors are, therefore, very important as far as cost of the
System is concerned. This calls for the data path optimization
and control bit optimization of a system involving micro -

programming.
3eltel INTERCONNECTION BUSES

The modules, as a rule, are connected to a bus (a set of
interconnec tors) through same interfacing circuitry. The output
of a module is placed on a bus by a driver circuit and the input
of a module receives data through a receiver circuite There
are two ways of interconnecting the modules. When modules are
connected through dedicated bus, all possible data transfers
among fhe modules are allowed. However, in general, all possible
data paths between modules are not necded. Therefore, to save
wiring it is a commoﬁ practice to 'hang' several modules on a
group of wire called shared bus or for simplicity, bus. Obviously,
this will require lesser number of inter faces compared to dedi-
cated bus. If each transfer of data takes place at distinctively
different times, then the input and output ports of all the
modules can be connected to a single bus. But parallelism in data
transfers is an essential requirement to increase the speed of
operation. Hence, a single bus cannot be used for more than one
data transfer concurrently except when the source is the same in
all cases. Also, there cannot be concurrent data transfers to
the same sink from different sources unless the sink has more

than one input port. Such concurrent transfers, cannot take



place through the same bus. Thus, a compromise should be struck
between the costly dedicated bus scheme with faster speed of
operation and the cheaper single bus scheme with slow operation
Speeds This is obtained by interconnecting modules to buses that
allow concurrent data transfers with minimal interfaces called
a data path optimization problem. Available in 1iterature are
only two algoritims for solving this problem. These are as

followsze
3+442 DYNAMIC PROGRAMMING APPROACH

Torng and Wilhelm have solved the data path optimization
problem using dynamic programming approach [145]. PFollowing are

the steps needed in their techniques

le Setting up the transfer matrix to represent data transfers,
determining the column and row scts (i.e« the set of
Connection variables appearing in rows and columns
Tespectively) and constraint scts (isce the set of data
transfer with different sources which cannot take place
through the same bus).

2+ Constructing the comection graph by connecting any two
nodes by an edge if they appear in the same row or column
Set.

3. Generating the solution table starting from a minimum
group of row/column set (i.e. the set containing fewest

number of connection variables).

4. Extracting the minimum cost solutions, and

2+ Repeating steps 3, and Y% with increased number of buses



-69=

to ex@nine the possibility of further minimization.

Torng and Wilhelm claimed that the number of enumerations

required for the generation of solution table is additive and,

thus
|Gy | |Gy | G |
= J
i O Ny + N teeees + N k
where,
NB = the number of buses
,Gil = the mmber of comnection variables contained
in a minimum group Gi
|G |

5

\DQ-
=
fan
|

A L' = the maximum mumber of cnumerations for cach

minimum group Gi'

During the solution table generation, the cost is calculated
aceunulatively. The enuuerations, thus, become multiplicative
between two consecutive minimum groyps. If Gl i1s the first
minimum group and Qk 1s the last minimun group, then the
enumerations required to generate solution table is not one given

above but as

|G, | |G, | |G, | |G, |
1+NGlxN 2 2

wiaas T NBIGK"ll ) NBleI

The worst case (when all the entries in Gk have the same
cost) enumerations for the extraction of minimal cost solutions

and for all minimal solutions, are given by



+ k
B o & o 9 o XJ-QIB

Of course, many of them will be abandoned before completion due

to constraint or contradiction with the initialigzed cost.

Further, all the constraints are not considered in the
process of solution table generation, an obtained minimm cost
may or may not be feasible. In case the minimum cost is not
feasible, none of the solution of the particular enumerations
NExt gives the initialized minimum cost. The assigned cost is,
then, incremented by 1 and the entire enumeration is carried
out again. Thus, the algorithm becomes much more laborious. Some

of these defects were removed in the following approachs.
3¢+4e3 SWITCHING THEORETIC APPROACH

Mathialagar and Biswas [85] recast the data path optimi-
zation problem into a minimal covering problem following a
switching theoretic approach. They solved the problem in the

following stepss

le Setting up transfer matrix with rows and columns as the
intercomecting modules, and entries by variables
Tepresenting data transfers.

2e Obtaining a reduced transfer matrix, if possible, by first
deleting isolated transfer variables and then removing any
concurrency identifier (an integer attributed to gimul -

taneous data transfers) appearing only once.



3.

Determining -

(a) Incompatible simul taneous transfer set (ISTs) - the set
of all concurrent transfers with different sources at
the same time.

(b) Bus compatibles (BCs) -~ the set of data transfers with
the same source or sink.

(¢) Concurrent compatibles (CCs) - the largest subset of
BCs containing only concurrent data transfer variables.

(d) Nonconcurrent compatibles (NCs) « largest subsets of

BCs without concurrent data transfer variables,

and (e) NB .

e

Ge

and
7o

min

Obtaining minimal covers, if possible, with as few CC'S as
NBmin'

Determining maximal concurrent compatible sets (MCCs) i.e.
the set of maximum number of concurrent data transfer

variables which can take place on a bus, and finding minimal

\ i
cover with as few uCC S ‘g8 NBrln

Extractlng the solutions from minimal covers by including

NC S and isolated elements.

Minimizing the cost of the solutions by increasing the

number of buses, if possible

Comments ¢ Mathialgan and Biswas have shown that their

algorithm is better than that of Torng and W1lhelm in

the sense that lesser enumerations are required. This is

because first feasibility is considered and then minimal



7 B

cost solution is obtained. This also provides all the
solutions simul taneously. The comments regarding its
enumeration are as follows:

The steps 1 and 2 are easily executed. The deter-
mination of minimal covers will require@twymmber of

N

M .
enumerations in step 3 and qu ) number of enumerations
n

Bmi
in step I when N, and Ny are the mumber of ¢¢’s and Mee’s
respectivaly.

The determination of MCC's (step L) is done first
by constructing a compatability chart which Tequires
QLEELL Comparisons where n is the number of concurrent
transfers. Then Ccompatability graph is construc ted to
find complete polygon corresponding to each of (n-1)
concurrent transfers and from these compatible classes
not included in other Compatable classes are obtained

nc(nc-lj
= NEMHET JoE enumera tions

as MCC’S. This requires
where n, is the number of compatable classes. Generally
n, is much larger than n. Apart from a large and heavily
data dependent number of enumerations, the coanstruction
of compatability chart and grdph is a must. This is not
easily adaptable on digital computers.

The extraction of the solution from minimal covers
will require atmost (#h,) Néﬁgg)‘ number of enume-
rations where/ﬁxnc and,é’NC9s are the number of minimal
covers and number of sets of NG’ s respectively. The
ac tual number of iterations will be lesser than this

? ?
because of constraints in IST’s and CC s, However, this



will still be large.

It has, thus, been observed that the major draw-
backs in the algoritim are (i) the construction of compa-
tibility chart and the graph which is not easily amenable
on computers and (ii) the generation of all feasible
solutions. Some of the feasible solutions will not at all
contribute to minimal solution. This is because the mini-
mal cover does not, necessarily, contain cc’s but may
cover a subset of them. In Chapter VI, these drawbacks
are shown to be removed by reformulating the problem of
data path optimization in the domain of Petri nets. This
has been motivated by the natural representation of con-

currency by a PN and its elegance.o

345 CONCLUSI ON

It is concluded that the control memory bit and data path
optimizations are two important aspects of microprogrammed
computers. The latter is a prerequisite of the former. The
suggestions of Schwartz and the formulation of Grasselli and
Montanari with modified compatibility relation are the building
blocks for the development of techni ques available in the control
memory bit optimization. Recently Roberston came to a conclusion
that emphasis should only be made on heuristics. The bit steering
technique is found to be useful in further reduction in the
number of bits. As far as data path optimization is concerned,

the method suggested by Mathialagan and Biswas is better than



-7k~

that of Torng and Wilhelm in that it is easier ang requires
lesser computations. However, this too s‘uf.fers from some
limitations. These tuo optimizations have been again taken up
in Chapter VI with a view to propose casier and efficient

algorithms for them, using Petri net.



CHAPTER IV

ON THE DEVELOPMENT OF PETRI NET THEORY

4.1 INTRODUCTION

With a view to provide for efficient design procedure and
improved performance of systems, considerable work has been
carried out in theoretical aspects of Petri nets. A reference
about this has already been glven in Section 2.6. Many unsolved
outstanding problems in PN theory were also pointed out. This
chapter investigates some of those problems and suggests

sduﬁonfm'ﬂmm

One of the problems often encountered is urmanageabili ty
of large Petri nets. It is not the di sadvantage of Petri nets
as such because it reflects the complexity of system being
modeled. However, it poses some difficulties in analysis. Small
Petri nets can easily be analysed. With this view, a large net
is decomposed into smaller nets and is studied through inter-
Connection properties of such nets. This is taken up in Section
Le2. A subsidiary motivation of this study is because of the
advantages of PN representation in combination of state machines.
As pointed out in Section 2+hs1, while the combination of state
machines is complex, the PN representation is simply the cascade

Oor parallel connection.

Another problem is that of reachability. It is important

because many properties of PN can be derived in terms of



-7 6

reachability. Although it is decidable, the solution is 4ifficult
to obtain due to lack of a sufficient condition. In Section 4.3

a solution to this is proposed by finding a legal firing Sequernce.

Petri nets as such have limited modeling capabili ty
(Section 1.3). To improve this a concept of negation has been
introduced. This makes the available analysis techniques in-
@dequate. This problem is solved in Section Y.ls 4 new type of
transition to perform NOT operation is defined. These transitions
alongwith conventional transitions and places of PNs can model
any system. For the analysis, a generalized state equation is
proposed. The prime justification for the state equation approach

is due to its elegance and well developed concepts.

4.2 INTERCONNECTION AND DECOMPOSITION OF PETRI NETS

It is a well-established fact that PN model allows a
formal specification of many concurrent systems [5}, [120]. I
is not only a mathematical tool for the analysis of systems but
can also be used to prove the 'correctness' of the concurrent
process system through discrete state equation or linear algebra
[83], [97]. Although the procedure is very elegent and powerful ,
it is quite involved to calculate integer-valued solutions of
systems of linear equations for larger Petri nets particularly
those with multiple-arc connections. Therefore, procedures for
analysis and proving 'correctness' become s 1n general, cumber-
some and even impractical for deciding many properties. However,
it is possible to split PNs into Smaller nets each of which can

be analysed and correctness verified easilys From the



=TT

interconnec tion properties of such nets, the analysis and
verification of larger nets can be made. Tt is this study of
decomposition and interconnections of nets which has been taken
Up in this section. Two properties of PNs, namely, invariance
and consistency have been considered. This is because invariance
and consistency together can verify many properties like bounded-
ness, liveness, deadlock etec. Their relationships have been
discussed in detail in Section 2¢6¢2. Further, the study in this
section considers pure PN (defined in 2¢5:4% as a PN where ng
place is both input and output to a transition). Before the
interconnection and decomposition of PNs are considered, a few

defini tions given below are necessary.

Definmition 4.1 : The elements aij of the incidence matrix &k of

a multiple-arc PN is given by

aij = a;j - agj
where a;j(agj) 1s the number of output (input) arcs from (to)
transition i to (from) place j. For single arc PNs, a;j(agj) 18 O
oF 1.

Let there be two PNs, Nl = (Pl, Tl’ oy 51) = (Al,__g and

N2 = (PQ, T29 a2, 52) = (AZ,_—). Then,

Definition 4.2 s Ni and N, are said to be in cascade through
a set of places P12 (a set of transitions le) it

(a) Py, = 1 mPQ (L, = T ﬂ T,)

(b) P s (Ilg) is set of places (transi tions) input to one of
Nl and N2 and output of the other,



_’79-

where pl = Pyq L_J P12 and P, = P22 L,J Py 5

AT

(¢) N is an invariant if and only if Ny and N2 are invariant.

Proef-: Let Pllc:: Pl and P22c::P2 be set of places contained

ey a5

only in Nl and N2, respectively. Then Al and A2 can be written

as 3

i B

A =0l Ay 4, ) amd s, =1 Aoy Ay ]

P P

12 22

(a) Suppose Ni is consistent. Then (from definition 2.20) there

exists a ITilxl column vec tor % with all positive integers

such that
4 X =g
.
or All Xl"' 0 (Lf'ol)
I =
a.nd, A12 Xl"' 0 (Lf'o 2)

Equation (4.2) will satisfy if and only if A1, has both

positive and negative elements. This means Pl2 will have some
input places and some output places. This contradicts condition (b)
of cascading through places (definition 4.2), Hemce N, can not be

Consistent if it is cascadable. similarly it can be shown for N2.

(b) A is a direct result of definitions (4.1) and {1ye 2)
(¢) Let, Pll P12 P22
i b i)
I= [Ill 15 I22] with all positive elements.
N is invariant (defini tion 2edP )} AE AT s B

ey by Iyt 4, I, =0 (1%3)



B0

and, A Lo *dy I,,=0 (4o ly)

21
As (%¢3) and (4.4) are the conditions of invariance of Ni

and N,, respectively, hence the proposition L4.1(e).

Proposition 4.2 s Let N be the resulting net on cascading N, and

' N, through a set of transitions T, 5+ Then

(a) A necessary condition that Nl and N2 are cascaded is

that both Ni and N2 are not idvariant.

(b) The incidence matrix A of resulting net N is given by

1 2
= [4
53 r ,'__O__j
§o= N e |
E 45
Too b O |

(¢) N is consistent if ang only if Ni and N2 are consistent.

Remark s Proposition l.la (ke 2a) suggests that even if Ni and
N, are not consistent (invariant) the resulting net can be made,
in some cases, consistent (invariant) by merging a set of places
(transitions). As an example, N, (Fig.lh.la) and Ny, (Figel4alb) are
not consistent but a resulting net N (Fig.4%.1lc) obtained by

merging-in of places p3 and Py, is consistent.

Proposition 4.3 3 Let N be a resulting net when Nl and N2 are in

parallel through a set of places Pc- Then

(a) A Necessary condi tion that Nl and Né are connectasd in



_81_

p2
(a) A NONCONSISTENT PN,N,

(b) A NONCONSISTENT PN, Ny

Py OF R

(c) A CONSISTENT PN OBTAINED BY MERGING-IN OF
PLACES py AND p, OF Ny AND N, RESPECTIVELY

FIG-4.1_. FORMATION OF A CONSISTENT PN FROM

MKAOMCAMNCICTECRMT OANLo



-8 2

parallel is that both are not consistent.

(b) The resulting net N has

Pc P11 P22
T | A1 &7 O
A_:
To § &4 0 A4y
£ Hia Po Py
where A = Ii[ Acl A q ] and A, = T2[ Acz A22]

(¢) N is invariant if and only if Ni and N2 are invariante

Proposition 4.4 s When N1 and Né are in parallel through a set

of transition I,y then

(a) The necessary condition that Nl and N2 are connec ted in

parallel is that both are not invariant.

(b) The resulting net N has

P Py
= 5
Tp| 4 O
RS W T Y
Tpp | © by |
P Py
T T A
dhere 4= WFMIT o o . TT 4
1 7 i N A
C Cl e 02 y

(¢) The resulting net N is consistent if and only if Ni and

N2 are consistent.



B

The proofs of propositions 4.2, 4.3 and 4.4 are similar to that

of proposition 4.1.

Let there be n subnets Nl’ N2,..., Nn' Every pair Ni and
Nj is comnected through a set of transitions Tij and a set of
places Pij to form a resultant N. Let in addition to conditions

of definition 4.4 of connectivity the following also hold good

0,0 gl -, "
Pxk rw'%j"%J (") e =@ fori,j Ak
1.e. a set of transitions (places) common to Ni and Nj are not

connected to set of places (transitions) contained only in a

subnet Nk' Then Nl, N2,.... ’Nn are Decomposition of N.

Proposition 4.5 & The resulting net N is consistent (invariant)

if and only if each of the subnests is consistent (invariant).
Proof : Let the incidence matrix Ai of a subnet Ni be given as:

I')- P eoooaoooP P

il 18 i(n=1) e
By LN L i D]
e 31 A et A é%%’l) A
Ai = : :
o] Al Al B ek A
Tin ¥ ( ) A%) AI(I%I)’I-]_) Ar(n:'El)

Since the transitions of T, 13 are not connected to places of P i3

(def.L4.Lh), the submatrix 43 =0for i # j in A;» Hence number

of nonzero submatrices corresponding to row TLjs or column P n

1i~



-84~

and number of nonzero submatrices for row Tij or column Pij=(n-l)

for i ?‘Ijo

It can be shown that Ni is consistent if

n -
Ny -
n (1)T . e
and, k % Xyp = for j i, J = 1,2yc004,n (4.6)

yhere, X.. i a8 I x 1 column vector of positive integer
%k ik P g

elements. Similarly Ai is invariant if

n g
(1) L
O T T (%7)
S i)
and, kEl Ajk LT B BT SR R (4.8)

when, I, is |Pikl X1 column vector of positive integer elements.

From the definition 4.1 and the conditions of connecting n
subnets, the incidence matrix A of resul tant net N can be obtalned.

Now it can be shown from the definition that N is consi stent i

.[’l

k (l)T Xik - for i = 1,2,...,1’1 (’+'9)
n n .
(1)T (l)T
e 08 TR i B Rt H

for § ¥ 3, 199,810 (4.10)

Equatlon (4%.9) satisfies when equation (4.5) is satisfied for
all i’s. Bquation (4.10) is sum of equation (4%.6) for i th and
J th subnets. If equation (L4.6) is satisfied then equation (4.10)

will also be satisfied. Therefore, N is consistent if each



-3 5=
Ni, NQ""°9Nn is consistent. A similar treatment can prove for

invariance.
4e2.2 DECOMPOSITION OF PETRI NETS

In this section a mumber of basic propositions involving
decomposition of Petri nets are obtained and their use demonstrated.
Consider a net N = (A,—). Let there be some transitions tkl’th"
"""?ks which are connected to same places. These can be
combined into one subset ?k = {Fkl’ tkz,....,tks}. A1l such
Subsets of net A can be obtained, call these Il’ TZ""' Now if
there are places which are connected to same subsets Tl, T2,....,
then these places are combined in a subset of places. All such
Ssubsets of places Pl’ P2,.... can be identified. The columns and
rows of A can be interchanged and combined into Submatrices such
that the columns and rows of new matrix A' correspond to Pi's
and Ti'S, respectively. The matrix A can easily be obtained.

As an illustration let us consider a PN with given 4 in Figehe?2

el ¥ <2 o

6, § <1° 3 B
Ex % 05 Rt

3

h & & 23 %

.

=1 1 1 -lJ

U

Figshe2. Incidence Matrix of a Given PN

. G0 (0] 0]
We find that %t = {p1op3} 3 8 = ty = SPON N

Oty = {pyop} 3 otg = {pl,pg,p3 ’D),}



all e

Hence, I, = {tl} 3 Iy = {tg,t3} 3 T3 i {tz‘_} 5 TLF : {t5}

n

NOWOPO {TaT}?opoziTaTaT}§opo=>{T29T9T}9'
1 1y 2 1 R 5 3 Ly 75

Opﬁ = {T49T5}.

since none of p's are connected to same subset of transitions,

Pl - {pl}i P2_= {pQ}; P3 ~ {p3}; Pq " {pu}

Thus,
{p1} {pod {p3} {py}
iy 63 T Gl fat ]
. Co9 [ RT3

{t,3 oy [o) [<1] 1]
{ts} 03 2} Ry =)

= 4

Fige L.3- New Incidence Matrix

Proposition 4.6 & A given consistent (invariant) PN can be

decomposed into n subnets each of which is consistent (invariant).
The number n is obtained by selecting a minimum value which

satisfies:

Max (number of nonzero submatrices in a row, column of 4')
S 2(n=1)
Proof : First part directly follows from proposition 4%.5. For
the second part it can easily be shown that the maximum number
of nonzero submatrices in the incidence matrix‘of resul ting net
N if all subnets Nl,N_'z,,...,Nn are pairwise connected

(proposi tion 4.5) equals 2(n-1). Hence, the proof.



87-

Proposition 47 : For a given Pi to be decomposable into an
subnets; the following must hold good for i # j 31,3 = 1,854

seaatl
- Q=@ 2] O0m0 _
1) TPy M ey =Ry M Wy =8

F 0.0 r L < N 5 e
ISRty = g Py

and for n 2 3, fori#j#k;i,j,kzl,z,.”“,n
shgr BB -
iii) Py m Tij =" hi m Pij

ook 0,0 Ont  G.0 0,0 Bab
v °1f [ TR R A Piy P31 Pie = ¢

@

Proof : (i) and (iii) are the basic conditions for inter
connection (definition Yek4 and that of decomposi tion)

(ii) Since Tjj is the set of transitions exclusively
in Ny, no transition of T,5 will be included in °PP; 1.e. the
set of transitions connected to places exclusively in Ni’

hence

0,0 e
(1, =0

Similarly it can be shown that
om0 .
(iv) From definition 2.2,

°Ti°i = (P, U By s U ...... U P, , U)

(F

il, Pi2’IIol’Pij,ooa')

(because each place p 1s included in one
and only one set)



38~

Therefore,

T M OTJ?J. ﬂ OT}SR =P ﬂ OT}?k = ¢ (from iii)
. o L
"R M Py M P = @

Similarly

GEDu
Remark : Propositions %5, 4.6 and he7 give a method to
decompose a consistent (invariant) PN into smaller consistent
(invariant) nets. It may be noted that each net is different and
cannot be decomposed further. The above mentionsd method is
illustrated with the help of an example of Fig.4.2. The ney
matrix A' has been obtained in Figeie3. The maximum number of
nonzero submatrices in any row or column is 4. Hence the number
of subnets to which it can be decomposed into is given by
(proposition 4.6).

L < 2(n-1)
g B = 3

Thererore, the net N will be decomposed into 3 subnets. Let these

be Ny N, and N.. The problem is now to fingd all Pii's, Lo '8

2 3 14
{ fE = z . L
Pij S and iij'b fok £ # } p 1.3 = 1243,
From A' 3

o{tl}o e {pl,p2} 3 o{t29t3}o 'y {p2,p3} 5 O{tu}o - {p3,p4};

O{ t5}o = {pl 7p29p3ap)+}

O{pl}o {?1’t5} 3 o{pg}o - {t195t27t3}9t5} 3

o{p3}0 ¥ {{t27t3}9t4’t5} 5 o{ph}o = {t49t5}



-89~

Applying 4.7a(i), it is found that
O{tl}o ﬂ O{t2’t3}o (—w O{t)_i_}o - ﬁ

Hence, arbitrarily Ty = {tl} § Ty = {t2,t3} 3 T33 = {t4}° It
must be recalled that Tii is the set of transitions exclusively
o

70,

00
1 |

contained in subnet Ni' Using i3 = Pige it is found

0
that P, = %2 [ ] 15, = {pysps} [ {roop3} = {p,}
Similarly P13 =@ and Pyy = {p3}

0O
Fur ther, °17) = {P11s Pyos P14}

Hence Pll= {pl}
Similarly Prp = {4} and P33 = {pb}
Remaining transition set {t5} is to be assigned. Obviously,

Tij = {t5}. Only 1 and j are to be identified. For this (1) 4w

used. ie@s

Hence, Tij = Tl3 = {t5}

The complete decomposition is shown in Figehe 5

Hence
’ Py Dy Py Py
Al:tl[l -1]; A=t2]:-1 1:’
2
t5 -1 1 t3 1 -1
and
t =1 L
s o 1



..90..

A

FIG-4.4 _ PN WITH MATRIX A IN FIGURE 4.3

=

1, {r}

FIG. 4.5 _ DECOMPOSITION OF PN SHOWING
IN FIG. 4.4



Bl

It can be seen that each of Nl’ r-$2 and N3 is consistent ang
invariant which it should be according to proposition 4.5 and

L.l'l6'

4.3 MINIMAL LEGAL FIRING SEQUENCES IN PETRI NETS

The reachability problem is one of the most important
problemsof Petri nets. In Section 2¢64, it has been elaborated
that while it cannot be solved by the reachability tree analysis
techni que, state equation method provides only a necessary
condition for transforming an initial marking MO to another Mn
of a PN. Hence, to solve this problem it becomes necessary to
find atleast one legal firing sequence (LFS) which can transform
MO to Mn' It is this determination of LFS which is studied here.
In order to do so, Murata s state equations given in section 2.6.2
are produced below for easy references:

B T 4
M =M g *AT V2 O (242)

S pe g (2.3)

It was also shown in the same section that the existencs of
solution I of equation (2.3) is a necessary condition for
reachabili ty. Further, solution ¥ is not generally unique but a
seét of solutions. Thus, it is required to show that one or more
of these solutions are legal (i.e. a LFS exists). Obviously
trying all solutions is quite difficult task. To reduce this
complexity it is shown in subseQuent paragraph that only minimal
firing count vector is sufficient to be considered. This will

correspond to minimal legal firing sequences.



4.3.1 THEORY INVOLVED

Before the technique is given, following two theorems are
postulated.

Theorem 4.1 : In a PN, a marking M, can not reach another marking

My if

AAM =0 {5:311)
£roof s It has been shown [97] that M, can not reach M, if we
can obtain a nonzero column vec tor Vh such that

e
AM = Bf Vh

where B is (|P|-r) x |P| unimodular matrix orthogonal to 4
( r is the rank of A4).

Hence, AAM= A B:

an=O

Theorem 4.2 s Let 2, be a minimm firing count vector., Then in

a PN,
(&) X ZO is not executable, ¥ is not executable

b)) If 2, is executable, then s is also executabls and

the legal firing Sequences to execute ZO are minimal.

Proof ¢ Any non-negative integral firing vector £ can be
expressed as 3 = Zo . Zl, when Zl is another non.negative
integral vector. Since Z, 1s also a solution of (2+3),

AT Z; = 0.

Thus, (a) If 2, 1s not executable (i.e. no LFS exists with ),

the LFS to execute Zl even if it exists will not change the

marking Mo to Mn and hence, £ is not executable.

() Iz 21 1s not executable, then LFS for L is same as

that of Zo' if Zl is executable, then LFS for Zl can be included



=93~

at any marking Mj which is encountered in changing the marking

Mo to Mn. This is because LFS for 47 will not change Mj’ Hence,

if LFS for Zo exi sts then there exists a LFS for % and miniml

LFS for & equals the LFS of Zo.

QOEOD

To solve equation (2.3) for 249 let the rank of 4 be r.

Then A can be partitioned as:z:

Then equa ti

|P|-ff FA

rl A

|P |~z r

R e

A’ll Al2 1 i where Al2 18 8 PN Aok
Singular matrix.

on (2.3) can be written as

T N ]

11 4y (|3 Jr 1 ]'PI'I'

T T IT)-r » (4.12)
12 Kp |2, 1 B Jl

s a set of (|T|-r) linear independent equdtions in

|T| unknown and 5 = [Zl 22]T can be obtained as

. =

Therefore,

-(A 2) A2222 + (Alg) AM

2 | o

(4e13)

-
!
|
|
|
t
i
|

; |

;—
|
|

2 can always be expressed in terms of (|T|-r) unknowns.

Now the vec tor 22 can be selected such that (i) the entries of X

are nonnegative, and (ii) £ contains maximum number of zeros.

This Z is called as minimal firing vector ZO.



)+03 .

-94~

2 DETERMINATION OF MINIMAL LEGAL FIRING SEQUENCE

The proposed technique for determination of minimal LFS

is.given in the form of following steps.

1.

6o

8.
G

For the given PN, Mo and M_, find 4 from definition (2.3),

n?
and AM = Mn - MO' |
If & OM = O, M, can not reach Me Go to step 13.
If no solution % of equation (2.3) exists, Mo will never
reach Mn' Go to step 13.
Find £ and then ZO = [d:OiJITIXl from (%.13). (The element
Ooi represents the number of times i th transition will fire
in a minimal sequence to change marking Mo to Mn)'
Find total number of firings n from

oy S R
(Construction of reachability tree starts)

ot . $iwik, and Mo,l = M, (initial node)

Find a set of transitions T such that
9 0i FO1e T
for i € Tand all J, find

L e T

where, M (i) is a marking resulting from Mk-l,j on firing
transition i. Mk-l,;j is jth node of reachability tree
before k th firing.

IfY i e T, M (1)L 0, no LFS exists. Go to step 13.
Identify all the markings Mk(i) which have not appeared
previously, and which satisfy M (1) 2 0. Call these markings



-9 5

“k 13 Mk 2,.....Mk S""°’Mk <) nodes. Connect a node Mk
to a node Mk 1,] by 8n a7 1 37 Mks results from M]_l,J by

firing i th transition. Do it for every s and every j.

10« Put ovoi =@ =% for 1 e Tamd Mk(i) 3 0
11 For k = 1 , n; repeat steps 6, 7; 8, 9 and 20
(Reachability tree is complete).
12. Determine all the paths from node MO to Mn in terms of arcs.
Bach path gives a minimum LFS
13« Btop.
The procedure is illustrated with thelp of following
eXample.

Example 4.1 : Consider the PN of Figeh.6a. The minimal LFS to

transform MO = [lOOOO]11 to M, = [OOOOl]T are to be determined.

Using the proposed technique, we proceed as

Step 1l
t R R T T S
pl r "'l 3
t, &€ & 0 9 o
. 0
£ W . X8 B
IYE- yand AM=  p 0
t), (I G T T d
pq 0
t5 8 I 0 0 -3 :
£ 0 0 Byl il 4
6 . "'l -l l =

Step 23 AAM=[1ooo-11]T7! 0

Step 3,4z Solving eq.(2.3) we get  =['1 ¢

T
2 9%6-1 9 %.1 %)

and Zo 1s obtained by .putting G, =0, Op &, Heroo

=[1001 017"



(@) A GIVEN PN

Q Mo= [10000]

4

M,,1 = [ouoo]T

t

” o
(b My, 1= [00110]

te

/
8) Mj , 1 :rvu:[ooooﬂT

(b) REACHABILITY TREE FOR MINIMAL LFS

FIG. 4.6 _ A PN AND ITS REACHABILITY TREE FOR
MINIMAL LFS



- .

- - e
Steps 6,7,8,9 and 10 give for k=1, j=1, My = [011 007 =M,

T = {tl, tL&’ t6}

M, (t;) =[1ooo]T+ -1 0 0 0 © o""lj=[01loo]T
L B o8 36 0
i 8% ¢ &2 0
T O S T | 0
b o e st mebiomd

Similarly,
—— T X1 rr T
Ml(th) =f1 201 O] , and Ml(t6) = [1 0 =<1 19]
Since Ml(th) anhd Ml(t6) both are < O, t# and t6 ¢an not
fire at MO. Hence the only node available at k = Xy 13
Ml - 21011 4¢ O]T. In reachability tree it is connected
’--
to Mo by an arc tl.

Step 10: Gotl = 0 and csotLF = Got6 Ly I

Step 11: Similarly repeating steps 6, 7, 8y 9, 10 and 11 for
k= 253, we find the reachability tree as
shwon in Fig. 4. é6b.

Step 12: There is only one path from Mo to Mn and hence minimal

LFS is tl t)_‘_t6.



=58 =

el STATE EQUATION REPRESENTATION OF LOGIC OPZRATI ONS
THROUGH PETRI NETs [75])

It is observeqd that Petri nets cannot model systems in
which logic operations other than AND and ORis involvad. 4
detailed discussion about this has already been made in Section
Lle3e THis modeling limitation is overcome by defining g NOT
transition. iow g logical question that arises is how to analyse
Such Petri nets. The state equation by Murata [97] cannot be
direc tly employed for this purpose because it takes care of AND
and OR logic only. In the following baragraphs it is shown how
this problem can be solved by obtaining a generali zed state
equation for logic operations such as NOT, NAND, NOR ang EX~0R.
The transition executing these operations are Tepressnted by
di fferent symbols (Figs. 4.7, 4+8a, 4.9, 4.10). Once a PN with
generalized state equation is obtained, it becomes a versatile
tool that can be useq in a variety of applications in analysing
the behaviour of computer systems. As a prelude to the discussion,
consider Fig.h.1l which is g part of CDC 6400 PN Tepresentation
at first level of abstraction [105]. Fig. 411 is a slightly
expanded form of Figel.1l of Section 1.3. 4 part of the Section

is given here again for maintaining the rcadabili ty.

It represents the Cconditions and events for advancing g
Job from Staging queue to input queue. The event Corresponding
to program IST (F1g.bell) might be executed provided the condi-

tions given beloy are met.



FIG.4.8a _ NAND OPERATION

-99 -

C ()

FIG- 4.7. NOT OPERATION

A()—
B( —

FIG. 4.9_NOR OPERATION

NO TAPE-REQUIRED -1
JOB ARRIVES

P

TAPE - JOB QUEUED
UNTIL

AVALABLE O__..

res &

t

JOB IN STAGING

QUEUE :
¥

P

FIG. 4.11 _ EXPANDED FORM OF FIG. 1.1

A y—-

B ()—=

t

i

C

-

t

"

Z

e D e

FIG.4.8b _ EXPANDED FORM

OF FIG. 2

FIG-4.10 _ EX- OR OPERATION

__..O JOB IN INPUT QUEUE



~100- -

"Job in staging queue AND (logic only one of the

conditions (i) 'No tape required-job advances' and

(ii) 'tape-job queued until tape available' is

satisfied "
sSuch a system cannot easily be representsd by only logie
operations. It is represented partly by logic operations (such
as BX=-OR and AND) and partly by operations repreSenting the
execution of the program ISI. The second type of operations is
represented by PN because of advantages discussed in Sectionl.2.
If logic operations are represented by any other method, the
analysis becomes unwiel@y if not impossible because of the
interaction of two different types of model. Hence, it is of
significant importance to represent both types of operations by
a single model and to express all the logic operations through

state equations of PN.

It is interesting to note that the state equations given
by Murata are a special case of the generalized state equations

proposed here.
4ele1l GENERALISED STATE EQUATIQN

The convention adopted here is to represent the presence
of an uncomplemented (complemented) variable by the pressnce
(absence) of a token. Thus a place can have atmost one token.

As a result of some matrix operations a token with negative sign
may appear on a place. Physically this means the removal of a
token from the corresponding place. However, a token cannot be
removed from a place containing no token. Hence besides obeying

binary addition rules on the token, following three rules are



~-L01~

additionally observed throughout the text.

0

1) 0 + {41)

i3) ) o+ (=l) 0

P2 = e (s)) = =)
Leltelel NOT OPERATION

Consider Fig.4.7. There are only two possible states i.e.
either C or Z contains a token and vice-versa. In the former,
if an uncomplemented variable arrives at C, the transition should
not fire in ordér to have the next state same as earlier one.
However, if a complemented variable arrives, the transition should
fire such that the state changes. Similarly in the latter,
transition will fire only when there is a change in input token.
These can be combined into one state equation

. 7
Mk+l =M+ A7 D Vi (Le1k)

where, MK+19 MK, AT and VK have usual meaning as defined
(Section 2.6.2) and Dy = [Amink]|T[xlT| with element oy o
given by
Amy e = (Token at k th firing minus token prior to k th
firing)at a place input to transition i

The transition will fire only when there is a change in the tokens

at the input place.
Yoltele2 NAND OPERATION

Consider Fige4.8b which is an expanded form of Fig.4.ga.
Since t' represents AND operation, it will fire when all its

inputs contain tokens. The transition t" executes NOT operation



-102~

and will fire only when there is a change in token at place C.
The state equations representing NAND operation to give the next

ul A o vl e i e
state IlK+l from the previous state IJk, can be written as

" * 1 =
MK+1 =M, + A Dy Vg (4.15)

where, MK is column vector whoss element My gives the number of

tokens on place j prior to k th firing.

*
£ Fu transpose of 2|T| x |P| modified transition-to-

place incident matrix such that

AT=ral an]
i TiidP| x ot

* /
The elements of A 5 are given by a'ji
i}
53
to transition i = 0, otherwise. D is 2|T| x 2|T| diagonal matrix,

= -1, if place j is an input
to transition i = 0, otherwise; a, = 1, if place j is an output

called characteristic matrix, whose element d;y 1s given by
£

where Amoik is change in the number of tokens at output place of
iulmamiﬁonpﬁortokthﬁrhgemd,vKisthxlcohmn

vector whose element vector Vi is given by

_ : x .5
Ve 7L Y5, vy ]

The firing of a transition ti is infact, a sequence of
firing of two transitions t, and t;". When t;'(t£3 is made to
fire v, (v;) is '1' , otherwise '0' . The transitions t,"and ti"

are enabled to fire iff



-103~

- ®T i
Vi
Mp + 4 Ve 20 (4e16)
e .A. *T B f "’d f__ ! 1 ] T
where, = [a31] and v = [Vlk Vopt oo \TK]
3\
1-4m g0 #Z 0 (4e17)

R b3
Por Fig.l8b the order of ¥, 4*T, p_and Veare 3 x 1, 3 x 2,

2 x 2y and 2 x 1, respactively and Amoik equals (l-m,_ + m

cx ¥ Mgyl
The number of equations in (4.15) can be reduced by eliminating
the terms corresponding to place C. Hence for NAND (Fig.L4e.8a).
Bqne.(4.15) still holds with the value of Amoik given by

Amoik =n

olk ~ TE ik

where mog1 (mlik) is the number of tokens on output place(l th
input place) to ith transition, and TT is binary nultiplication.
4%e4.1.3 NOR OPERATION

Based upon similar reasoning, it can be shown that (4e15)
represents the state equation for NOR operation (Fig.u.9 ).
. Xl . LY O
However, in this case Amoik equals Bk +\§_mlik where V is a
binary addition. The transition ti'is enabled to fires if for
any place j, condition (4.16) is satisfied and ti”is enabled if

(4¢17) is satisfied.
4.4.i.4 EX-OR OPERATION

Similarly, the state equation (4.15) can be shown to be
representing £X-OR operation (4%.10). Dy for this case is obtained
by making Amoik equal to l+moik “\:{niik + Tl'l"mlik « The

transi tion ti' is enabled to fire if for exactly one place j)



-104~

condition (4.16) is satisfied and enabling condition for ti” 16

given by (4.17).

It is evident from the above that equation (4.15) can
represent all the logic operations. Depending upon the type of
logic operation a transition ti performs, DK can be obtained.

It is also possible to represent NOT by equation (4.15) by making

r'l 0
DK=

| o . |

However, Amoik and firing rules will be different for different

operations. These are summarized in Table 4.1

Firing rules

Logic Al

operations oik t fires if 416 t is fired if
is satisfied 4,17 is
satisfied
NAND R 1 T for all input ~do=
R Botk ¥ . Pqak for any input s
1 place j
EX~OR l+moik-\/ mlik for exactly one ~do-
1 input place j
4 -'J Mik
AND(OR) 0 for ail iogput -
places

TABLE L.1



~105-

It is interesting to note that if

_[1 ojl’

D =
o 0 i
(4.15) reduces to Murata s state equation [97].

The above concepts are 1llustrated with the help of an
example (Fig.L4.11).
Example 2

For Figeltell, it is desired to find (1) all the markings
(token distribution) and (ii) the time required by the job to

reach the input queue from staging queue.

(1)  Assuming that a job in staging queue does not require a

tape, A*T and MK are obtained as
1 n ! L
L R S
Py ( -1 0 0 0
Py -1 0) 0 0
2 5 Py 0 1 -1 0
P, 0 0 =l 0
p5 . 0 0 0 i o
B [ &7
by 0
- 0
Mp = P3
p)+ 1
. =




~106-

From Table L4.1

< [ -
dlk ; ] 0 J
and
bl o
d2k = :
o 1]
When pl fires, Vik =[110 O]T and next marking is obtained

from (L4.15) as MKtl =[0011 O]T. Similarly when t2 fires

- T : T ; :
\Ek =[001 11 and Mk+2 =[00001]. In this case Mk+2 is
the final marking.

(i1) For the job in staging queue to be transferred to input
queue both the transitions tl and t2 have to fire‘(obtained from
(1))+ Hence, total time (T) required by the job to reach input
queue is given by T = Tl + I&SI’ where Tl is the time at which
the job is available in staging queue, and IﬁSI is the time
required for the execution of the program represented by t2.
(Time required by the logic operations is assumed to be negligible).

45 CONCLUST QN

In this chapter the problems of interconnection and
decomposition of Petri nets, reachability, and analysis of PN
with additional transitions exhibi ting NOT operations have been
studied. The interconnections have been dealt with reference to
invariance and consistency. Many propositions have been postulated
and their utility shown. It has also been demonstrated how

invariant and consistent PN can be decomposed into smaller nets



SLE

with the desired properties. Unlike the existing technique [137]
(Section 2.6.2), the proposed method of decomposition of a PN

does not require the solution of state equation. The derivation

of positive integer-valued solution of a state equdtion is a
complex taske. In this sense, the proposed method is better. Another
unique feature of the approach adopted here is that it is

possible to know 'apriori!' the rnumber of subnets into which the

PN decomposes.

The reachability problem has been Solved by finding minimal
legal firing sequence. The proposed technique COmbines To
advantage both the analysis methods namely, reachability tree
and state equation approach. It has been established that if a
LFS exi sts for minimal firing count vector ZO, then there exists
& LFS for Z. This avoids an exhaustive search of atleast one of
the many solutions of £ which may correspond to a LFS. The deter-
mination of an expression for X is needed in both the cases. To
determine Zo from ¥ does not involve large additiomal efforts.

On the other hand, the proposed method requiresless computations
to find LFS which turns out to be minimale. Further, the verifi-
Cation of reachability is easier because of lesser length of

minimgl LFS.

A generaligzed state equation for PN model of logic opera-
tions has been obtained. This overcomes the limitation of Murata’s
Trepresentation, as NOT and logic NAND gates could not be given
PN representation with earlier formulation. The analysis of a

computer system using this proposed technique is shown with the



=) 5 -

help of an example. It is simple and adaptable on Computer. It
appears that the detection and isolation of fault in the system

¢an also be done by extending Murata’s method in which KVL has

besn applied to marked graph.



CHLPTER V

ON THE APPLICLTION OF PETRI NETS T0 COMPUTER HARDWLRE
AND SOFTWLRE

5.1 INTRODUCTION [73]

This chapter investigates PN as a tool that can be applied
in number of instances. The basis of study is state equation of
Petri nets which is given again for the purpose of ¢larity as
followse

ATZ = AM (2.3)

It is shown here that eq.(2.3) is very powerful and applicable
to a wider class of problems in computer hardware and software.
This results in solving many problems by obtaining a solution
Z of (2.3)+ The problems only differ in the class of the above
equation in which AM can have different type of column vec tor.
Some of the problems are identified in the following specific

classess

Class 1 & Any two entries of AM have unit values, one having
-1 and other +1, Tespectively while remaining entries are 0's.
This class is useful in finding all the simple paths between

two nodes of a graphe.

Class 2 2 A1l the entries of AM are 1,5. This class is used
in determining all the maximal compatable class in control

memory bit optimization of microprogrammed computers. The



-110~

detailed discussion of this is deferred until the next chapter.

Class 3 3 All the entries of AM are 0'S. This is useful for
code optimization of assembly language programs generated in
the process of compilation [63]. Instructions, locations and
datas of assembly language code (generated after the parsing
and code generation in compiler) is represented by transitions,

places and tokens of PN, respectively.

In this chapter only the problems which are covered by
class 1 are taken up. The subsequent sections find the emume-
ration of simple paths between two nodes of a graph. Furthermore,
the importance of simple paths in the problems of terminal
reliabili ty of computer network snd program complexity evalugtion
is investigated and the solutions of these problems through

Petri nets are proposed.

5+2 ENUMERATION OF SIMPLE PATHS BETWEEN TWO NODES OF A
GRAPH [71]

Often all simple paths between two specified nodes are
needed. The computation of reliabili ty between two Stations of
a computer nstwork is just one of the many examples.s This
section tackles precisely this problem. In literature, are
available many methods for this purpose. The adjacency matriy
technique [30] is one of them. The adjacency matrix X = [Xij]
of a directed graph with V vertices is Vx V matrix, where
Xij = 1y 1f there is an edge directed from vertices v; and v,

J’
and 0 otherwise. The L th power of the adjacency matrix X; is



-111~

the number of simple directed paths of length L- edges between
each pair of vertices vy and Vj' It has been shown that the
successive power technique [30], [128 ] requires Vh matrix
operations. Rubin [133] has applied Warshall ordering technique
[149] to find all simple paths, resulting in v matrix operations.
In this section the concept of PN is applied. Here no multi-

plication is involved, only vector additions are needed.
5¢2.1 FORMULATI ON

Let G = (V,E) be a finite directed graph without multiple
edges or self-loops. V(1,2500.0,V) is the 1list of vertices and
E = (el, €oyeeeey€n) 1S the list of edges of G. The graph G can
be represented by a Petri net by replacing the nodes by places
and arcs by transitions. The transi tions are assumed to fire in
the direction of the arc. Hence to find all simple paths from
a node r to a node k of G, it is sufficient to determine which
of the transitions of the corresponding Petri net would fire in
order that a marking which has the only token at place k is
reachable from a marking which has the only token at place r.
This is achieved by using the state equation (2.3). In this case
eg.(2.3) reduces to

A4 T = AM (5.1)

WORs Wy RSt o v b Lond geiss matrix of the graph G

whose element aij is given by



-112-

r-l 1f jthare is oriented away from node i
l
aij = j 1 if jtharc is oriented towards the node i

L 0 otherwise

= i eC e ¥ m. i
AM Dﬁi]Vkl 1s a column vector whose slement 4 i3
given by
wi fopr i sy
By = 1" fer 4 =

0 otherwise

and, & = [ej]Exl is a column vector whose element e; is 0,

when jth arc is not included in the path.
As the paths are simple, ej can atmost be l.

Equation (5.1) contains V-1 independent equations in E umknowns.
Each feasible solutions of (5.1) will correspond to one simple

path.
5¢2¢2 SOLUTICN

A path of length L in G is a Non-empty sequence of L edges.
The path is simple if all edges agre distinct. Thus, the solutions
of (5¢1) can be obtained by column operations of Aye Any L colunn
vectors of A can be added and if the addition equals AM, then a
simple path of length L is given by the branches whose indjices
correspond to these L columns. All such L combinations of columns

will give all possible Simple paths of length L. The number of

V-1
iterations atmost will be equal to - 4 % ) because the
i=1

minimum number of branches in a simple path will be V-l. However,

it is possible to reduce the number of operations Considerably



«l} 3

by considering the properties of matrix A. There may be certain
nodes to which are connected either outgoint or incoming branches.
Two or more columns which contain -1’s (or 1’s) for any row can
not be added because the addition can never be equal to AM the
element of which corresponding to a row is -1 or O. such sets

of columns can be identified from Al. Hence only those L (L > 2)
columns are considered out of which any two columns do not

belong to the set as obtained above, Based upon the above
discussion following are the steps to find all simple paths

between two specified nodes.

l. Find Al and AM from (5.1)

2« From Al find all the sets Si for 1= i £ N of columns
corresponding to each row which contains -1 s (or l’s)only.

3+ Compare all the columns of Ay with AM. If any column
equals AM, the branch with index which corresponds to the
particular columns is the path of length l.
Put L = 2.

4o If any two columns of L belong to a single S; obtained
in step 2, GO TO step 8.

5¢ Add L columns. If the addition equals AM, the indices
corresponding to these L columns are attached to the
branches to give simple path of length L.

6. Repeat step Ik and 5 for all possible L combinations.

7+ Make L =L + 1 until L = V-1 GO TO step k.

8. Stop.

The proposed procedure is illustrated with the help of an

example.



-11kh~

Example 3 Let the graph [133] G = (V,E) contain V = (1,2,3,4,5),

and edges

ey (1,2); @y = (1,3)3 93 = (1,43 e (2,4) ¢ 95 = (2,53

All simple paths between node 1 and 5 are to be obtained.

Using the proposed technique we get the followings

§§99—l el e2 33 eh e5 e6
I« =1 =t @& ¢ .07 A
Bk R R Al E 2 0
b= 3 @ 1 & 0 0 8 §,a) M= 3 0
L g & 3 A8 <3 L 0
5 - S L T - B K 5 L
L _ e P

Step 2§ = {1,2,3} and 85 = {5,6}
Step 3 It is found that none of the columns equal AM, hence
there is no path of length 1.

Step L4,5,6 L=2

It is found that columns 1 and 5 can be added and
simple path of length 2 is (el,e5). Another simple

path of length 2 is (e3,e6).

Step 7 Similarly it is obtained that the simple paths of
length 3 is (61’64’66)°

There is nmo other simple path.



=k

9¢2+3 MAXIMUM ITERATIONS NEEDED

In the preceeding section, a method to reduce the number
of operations on Al has been given. This section finds what is
the maximum number of iterations required in the proposed
technique to determine simple paths between two nodes of a graph.
Those columns of Al which equal AM can first be deleted. This
is because they will never contribute to other simple paths.

This will require M iterations. Now the remaining matrix can
always be arranged and partitioned by interchanging the columns

such that the resul ting matrix.

where Ain is VyEl matrix with all the entries in the Tow of
initial node as -1’s, A, is VxE, matrix with all the entries in
the row of terminal node as +1°’s. Ab is the VxE,remaining

ma trix. Obviously El + E2 + E3 = E. Now the path of length L can
be obtained by adding one column of A; py (L=2) columns of A, and
one column of A « No two or more columns of A or A could be

added to equwal AM. Thus, the max1mum number of iterations to find

path of length L(L> 2) = BB, (15 ).

Therefore, maximum number of iteration to find all Simple paths

V=1 ( E2 )
E+ 3 ER

V-3 L
=B + By Eq Cad+ Z ( J2))
1=F L
2 -
Obviously, this will be much less than 4 E e

L=1



-116-~

Having discussed the enumeration of simple paths through
PN, the following sections are devoted to the application of

such a concept to two important problems of computer science.

5.3 TERM INAL RELIABILITY OF A COMPUTER NETWORK [72]

One of the problems that arises in a computer network is
to compute, in an efficient and systematic manner, the terminal
reliability between a given pair of stations. It is the proba=~
bility that there exists atleast one path between these two
nodes. The solution for such a problem exists in 1iterature
(23], [391, [581, [771, [104]. An alternative procedure exploiting
the reachability concept of PN is proposed here. In the proposed
technique the computer network is represented as in [39] by
probabilistic oriented graphs with weighted arcs and unweighted
hodes, the nodes assigned to be reliable stations and the arcs
represent the unreliable connections having a weight equal to
its probability of existence. Further, it is assumed that there
is no co-relation between failures of different links and relia-
bilities are time invariants. Graphs having parallel arcs ars

excluded and assumed to be combined into one arc.

In order to find the terminal reliability of a probabilistic
graph, & Boolean function F (sum-of-product form) is constructsd
such that each term of F corresponds to one simple path the
enumeration of which has been discussed in the preceeding section.
Obviously, the terms of F are not disjoint. Therefore, it is

not possible to replace each term by corresponding term of



-117-

probabilities. Hence disjoint terms of F are obtained by making

use of firing rules of PN.

5¢3+1 PROBABILISTIC GRAPH AND DETRRM NATION OF BOOLEAN
FUNCTI ON

A probabilistic graph consists of unweighted nodes and
weighted arcs. The nodes represent reliable stations and the
arcs represent unreliable connections having weight equal to
its probability of existence. The arcs are, in general, oriented
but for some arcs no orientation is given. For such an arc the

probability of existence is same in both the directions.

A probability graph can be drawn where the probability of
existence Pij of arc (i,j) is given by defining a stochastic
variable X 3 having 0,1 as definition domain, and stochastic

determination of y“ij g5 3

P(xl,] =0) =1 “‘pij - qj_j’

i) = p

"
~~
* o
e
1

-

In order to find the terminal reliability, first all the
Simple paths between terminal nodes are obtained as terms in
Boolean sum-of-products function (SOP)F . Secondly the disjoint
terms are obtained and the desired Boolean function F is deter
mined. The terminal reliability P is then straight forwardly
computed by means of the following correspondence.

%5 = FE g

4 Y3




~118-~

Boolean sum —_— . Arithmatic sum

Boolean product Arithmatic product

Simple paths of the probabilistic graph can be obtained
by the technique described in Section 5.2. However, some arcs
in the graph may not have any orientation. These arcs can be
represented by transitions which can fire in both the direction.

Hence, Al = [aij] of eqg.(5.1) is modified with elements aij as

~l, if arc j is orienteqd away from node i
l, if arc j is oriented towards node i

aij= r 1, if arc j is not oriented but is incident
at i th node

O, otherwise
Fur ther, the extra addition rules of the columns are imposed

as (1) +(xl) = 03 =1 +(+1) = 0 3 1 +(+1) = 0.
For illustration, consider the following example.

Example 5.1 For the graph G of Fig.5.1 [ 39] all the simple

paths between terminals 1 and % are to be obtained.

Using the technique of Section 5¢2+2 vith modified Al

and extra addition rules we proceed as follows:

Step 1
12 "3 Xy X 3L
Y S | 0 0 0 ™
e % 0 & 3 0
g

0 -1

£ W p
=
f—a
+
—

0 0 0 1 A

i -




-119-

45

Jere Y

LN

FIG.5.1_ A PROBABILISTIC GRAPH

X| O'__—’ X; O_—"
O—-——
. S A
m VARIABLES . m VARIABLES,
Y
-— ti
T e i g SRS
O m VARIABLES
m VARIABLES :
ik 2 o2
(Chao .
: k VARIABLES '
k VARIABLES ;
Sl O—*mt
y

FIG-5.2 _ PN PRESENTATION OF SIMPLE PATHS WITH CONCURRENCY
AND CONFLICT IN TRANSITIONS



~120-

and

1
2
3 0
4 1

Step 2 s 8 = (xlz,x13); 8, = (X24’X3h)

Step 3 ¢+ Itis found that none of the columns equdls AM, hence
there is no path of length 1.

Step 4,5,6 ¢+ L =2. It is found that addition of column

corresponding to X5 and X51, equals AM giving thereby
a path of length 2 as (x12x2h). Other simple path of
length 2 is Xl3 X3)+.

Step 7 ¢ Simlarly simple paths of length 3 are <¥12X23X34)

and (X13X23X3h)' There is no other simple path.

Hence, simple paths are X 5%5), 9 Xl3x3h’ X12X23X3h and

xl3x23x2h. The Boolean function (80P form) f is thus given by

FmX %oy + 3%y, * X p¥Xa¥y, X 3%03 %)

5¢3¢2 DETERMINATION OF DISJOINT TERMS OF F AND PROBABILITY

Each term of F can be represented by a transition whose
inputs are the logic variables of that term. The number of
transi tions will be equal to the number of terms in F. For the
two terms tﬁ and tj, the PN representation of P is shown on the

right hand side of Fig.5.2.

{EETRAL LIZRARY UNIVERSITY OF R@ARYE:
ROOREME



-121~

The m(m > 1)variables are common to both the transitions.
The variables Xy is the input only to ti and k variables (not
ineluding xi) are input only to tj- Okrviously, ti and tj are
not disjoint because both the transitions can fire simul taneously.
It can be seen easily that as far as the availability of output
is concerned, left hand side and right hand side of Fig.5.2 are
equivalent. But t, and tg can not fire simultaneously making

the transition disjoint.

It may be noted that one of the transi tions corresponding
to a term in function f is to Dbe considered as a basis to find
the disjoint transitions. In order to reduce the number of
computations the transition in which input containsminimum
number of variables is seclected as the basis. Let such a tran-
sition be ?i and one of the inputs to it be Xj- Any ftransition
which has ons of the inputs Xj will be disjoint with ti. Consider
another transition t, (k #1). Three possibilities can exist for

the inputs to ¢,
i) variable is present as Xj
ii) variable is present as §j’ and
iii) variable X is absent.

For case (i) obviously tk is not disjoint to ti. However,
because the simple paths are different, there will be atleast
one variable which is input to ti, and not to tk and tk is made
disjoint to Fi by adding complement input of that particular
variable to tk'



-122~

Since the function F contains only uncomplemented terms,

case (ii) will not be present in the beginning but in subsequent

computations this situation may arise. In this case, tk is

disjoint to ti.

For case (iii) an input §j is added to tk’

Hence, for every input variable to transition ti all the

transitions disjoint to ti are obtained. Ignoring ti’ consider

the remaining transitions. Obviously they may not be disjoint

to each other. The above process is then repeated.

A procedure based on above discussion to obtain all dis-

joint terms from simple paths is as under:

gtep 3 3

Represent all simple paths in tabular form where a row
corresponds to a path and a column to a variable. If
& variable j is present in a path i, then the entry for
(1,)) in table is 1. Otherwise the entry is * (where
* denotes the absence of the variable in the path)
Select a row in the table for which maximum mmber of
#gappear. Call 1t g basis row. If any row does not
contain any * , then it does not take part in further
computation but corresponds to one of the terms in
disjoint function.
For the basis row, select a coloumn J of no « entry.
Determine the complement of the entry, say Cj' Obtain
a new table whose entries in columns other than J th
column for the remaining rows are same as in the table

obtained in Step 1. The entry for jth column and ith



w123~

Tow is determined by multiplying the entry e L

the preceeding table by Cj according to following

rule,
0.0 =0
Lk = 1
le x=1
0. x= 0

However, for any row i and column Jy 1f the multiplicant
is complement of Cj, the i throw is not entered in the
new table.

Repeat the step 3 for all No. * entries of the basis

Tow and add rows to the new table. Note that the new

table does not contain the basis row.

Step 4 ¢+ Go to step 2 and repeat till there is only one row in
the new table.
Step 5 * Find conjunctive functions for each basis row (including

that of final table) and the rows without any =* by
putting the uncomplemented variables for *1! ang
Complemented variables for '0'!in corresponding columns.
The function of all disjoint terms is, thus, the disjun-
c¢tionof all conjunctive functions.

The above procedure is illustrated with the help of example
of Figo5.lo



-124-

Step 1 Table 5.1 is obtained as
Variables Xl2 X2)+ Xl3 X31+ x23
rows d (X 1 * *  Basis row
2 - ) * 1 5
3 * * b 3 *
4 . ¥ § 1 w : |

Tabl e 5- l

Step 2,3 : Arbitrarily row 1 is selected as basis row(another

Choice is row3)and C1, = 0, C2)+ = O.
Considering first C1p = 0 and then C,), = 0, table 5.2
1s obtained as
Variables X5 X5, Xl3 X3)+ x23
rows 0 » 1 i "
v 0 1 E
* 0 1 1 » Basis row
Table 5.2

Step L.5sThe table 5.2 does not contain only one row and hence

repeating step 2, the row 4 of table 2 is the basis

Tow and C2)+= l’ Cl3

obtained.

= 0, C3,+ =1, new table 5.3 is



0%

Variables x12 X2h Xl3 x34 x23
rows e 0 0 ik 1 One of the
: solution
0 1 i 1 P
0 1 1 * L Basis row
Table 503

Proceeding in a similar way the following final table
consisting of the three basis rows and the fully

assigned rows gives the required solution.

Variables P X5), Xi3 X3h X23
TOwWS 3 i) ¥ 3 g
* 0 1 % .
X 0 0 1 1
0 1 1 1 0

Table 5.L4

Therefore, the function P is given by
T X%y * XpuX aXy, 12724 ¥13%3 %03 * X X5, % 3%,
T X 2%o1% 3%3), %04
From the correspondence of the variables with probabili ty,
the total probability P is given by

F =0y, + B2uP13P3y * P1o%)% 3P Pog + 412P2uP7 3P o3

¥ 912Po)P13P 3904
It can be seen that the result is not the Same as obtained

in [39 ]« The difference is because of the selection of the basis



~126=

rows. However, the solution obtained by the proposed techni que
will be more nearer to the optimal solution because the basis
Tows are selected such that minimum number of ne « entries are

in the row.

5¢% PROGRAM COMPLEXITY E VALUATI QW

Testability and maintainability are two important aspects
of software systems. A technique for program modularization such
that the resulting modules are testable and maintainable, has
already been adopted [87]. This is based on program complexity -
a quantitative index of the structural properties of programs.
Durlng the creation of software modules, the COmplexlty is
calculated. Lesser it is, easier is the program debugging. This
puts a restriction on program complexity by setting an upper
limit. When this limit exceeds, eilther subfunctions are recognized
and modularized or the software is redesigned. Another signi-
ficant application of complexity is its use for developing test

strategies and selecting test datas.

The measures of program Complexity can be divided into
two groups:

1. The complexity of program control. Here basic paths,
cyclomatic mmber, path lengths and number of paths have been
defined as complexity metrics 71, [23ikl.

2+ Number of basic operations or execution time to compute

the program result [79 ].



~127-

5.4.1 COMPIBRXITY METRICS

Complexi ty metrices can be thought of as a measure of
'psychological ' complexity in the sense that the lower value of
this gives a confidence in testabili ty and miintainmability of
software systems. On the other hand the execution time is a

measure of performance complexi ty.

The complexity metrics in program control is defined with
reference to a directed graph which is associated with the given
program. Bach node in the graph corresponds to a block of code
i1n the program when the flow is sequéntial and the arcs corres
pond to branches taken in the program. The graph has unigue
entry and exit nodes. In the foll owing paragraphs different

complexity measures and their importance are discussed.

Cyclanatic number, in a strongly connected graph G is the
maximm number of linearly independent circuits [87 ]« This
Corresponds to the number of program constructs which are the

basic umnits to be tested.

Basic paths are those when taken in combination will
generate every possible path in the program. As any program with
& backward branch potentially has an infinite number of paths
[87], testing of all possible paths is 1mpract1cal. Therefore,
for correct execution of the program only basic paths are

considered for testing.

Number of paths and path lengths are important for debug-
ging and maintainance. 1f g large number of paths exists, then

the program will be difficult to debug and maintain, and should



~128-

be divided into smaller modules. Further, shorter is the path

length, lesser is the difficulty encountered in testing.

There exists in literature an algorithm for the evaluation
of complexity metrics [134]. This involves the following auto-
mated steps s (a) drawing a directed graph as the Program is
written, (b) identifying the graph tree and determining funda-
mental circuits by adding at a time a link to the tree,

(c) generating the ringsum from the rows of fundamental circuit
matrix and determining paths of interest with the help of this
and adjacency matrix and its powers, and (d) identifying or

computing complexity matrics from (a) and (b).

In this section a new complexity metric namely simple
paths between entry and exit nodes and independent direcfed
circults is defined. It is shown that these two can evaluate all .
the complexi ty measures defined in the preceeding paragraph.

Fur ther, a PN approach is applied to evaluate these.

A simple path is an open path in which an edge appears
only once and no node is traversed more than once. Each simple path
between the entry and exit nodes of the graph will form a
fundamental circuit 1f these two nodes are connected for the
purpose of making the graph strongly connected. For illustration
purpose consider Fig.5.3 where node 1 and 5 are entry and
exit nodes, respectively. The dotted line between nodes 5 and 1
is to make the graph strongly connected i.ec. there exists a path
Joining any pair of arpitrary distinct vertices. The simple

path are 1245, 135 and 1635. Corresponding to simple paths the



FIG. 5.3 _ A PROGRAM GRAPH

FIG.5.4_ THE GRAPH FOR ALGOL PROGRAM IN FIG. 5.5



<130

fundamental circuits are 12451, 1351, and 16351. Obviously

there will be some directed circuits not included in any of
these. In the example,242 is such a circuit. Hence, it is clear
that the total number of fundamental circuits will equdl the
number of simple paths between the termimnal nodes added with the
number of directed circuits in the graph without providing any
feedback path. In the example under consideration, directed
circuits are 242, and 363. Hence, the cyclomatic number is

3 % 28 &,

It can easily be shown further that all the paths can be
obtained by a linear combination of simple paths and directeg
circui tss For the example, the set B is a basis of program paths
as set of simple paths and dicircuits given above will generate
path 13635 as 13635 = 135 + 363. Obviously the basic units to
be tested are simple paths and dicircuits. The length and number
of the simple paths will play an important role in testing.
Smaller the length and fewer the number, easier it is for debug-

ging and maintainability. Same is true for dicireui ts.

Having given the importance of the new complexity measure,
the next question is how to evaluate it. Generation of simple
paths have been discussed in 5¢2. The same algorithm can be
applied to program graph without feedback loop. The enumeration
of dicircuits in the graph is implicitely included in the
algorithm. The incidence matrix of a graph is its structural
property and will not change for the two enumera tions. However
AM will be different in the two cases. Consider a directed

circuit and transform it into a PN as in Section 5.2. If the



~131~

token put on any place p moves around many places after successive
single firing of transitions and finally arrives at py then it
has travelled & directed circuit. Here the Change in marking
AM is Zero. Therefore, a directed circuit is obtained by solving
for Zthe equqtion (5al) T«a,

A; T = AM (5«1)
where AM = 0. In the algorithm of single paths (Section S5:+2),
if AM in steps 3 and 5 is O, then the solution % is a dicirecuit .
The other iterations are same in both the cases. AS an illust-
ration let us consider the same ALGOL procedure and corresponding
program graph in [134] reproduced in Fige5.5 and'Fig.5.4,
respectively. The nodes and the edges of the graph correspond to

the circled number and statements between them respectively.
From the definition of incidence matrix Al, it is obtained os

i B¢ & & € g h Y 3 E I

1{_-1000000_00000_}
gl . s M 3 76 ¢ 0 o6 o 'b
3 @ XD 6.0 680 0 B
Bl @ 6O L4 P O C T & O
eIt S TS e S A g R
Sl R A ST 0 0 0
20 2 ¥ 00 8 0.3 11 o a.a
i @9 ¢ 8 608 080 oo
§F ¥ 009 008 0 1y 0
10_0000000000114




-132-

PROCEDURE TEST CONDITIONS;

COMMENT TEST ALL CONDITIONS FOR MEMBER IDENTIFTED
BY CURRENT MODE;

COMMENT IF ALL CONDITIONS HOLD ADD MEMBER TO
LINKED TEST;

BEGIN
INTEGER A,I;

LOGICAL FAIR;
FAIR : = TRUE;

I 2=1
WHILE ((REQUEST(I) = "Q") AND (FAIR = TRUE) DO
BEGIN

FAIR : = MATCHING(I);
I 2 =1 +1;
END
IF FAIR = TRUE THEN
BEGIN
4 3 = ALLOCATE;
IF LIST POINTER = NIL THEN LIST POINTER: = A
BELSE SETCDR 1 (LAST, A4);
LAST: = Aj
SETCDRL (LAST, NIL);
SETCARL (LAST, CDR2 (CURRENT_MODE+1)) 3
END
END TEST_CONDITIONS

BLg» He5 - 4n ATGOL Procedure



-133~

For simple paths, AM=[-1 000000 0 011"

and, for dicircuits, A= 00 0O0DGO OO O]T
Using the technique of Section 5¢2

Simple paths are obtained as

1. adl of length 3
2« adefgik of length 5
3+ adefhjk of length 5

and only one dicircuit be obtained.

Hence, the cyclomatic number is 3 +1=L4%which tallies with

the result given in [134]-

542 EXECUTION TIME [138]

Kodres [79] defined a new measure of complexity, execution
time of a program and proposed a method to evaluate it. In his
algorithm wunlike traditional representation of program flow
charts by directed graphs, the concept of flow graph is used.

The sequence of funectional statements are represented by arcs

and control points in program as vertices. Kodres after showi ng
similarities between problem arising in programming, discrete
System analysis in engineering and network flow problem arising in
operation research, applied the relationship between tree branches

and links to find an execution time expression.

The object of this section is to highlight the application
of Petri nets to evaluate execution time of a programe. Since each
block of a program flow chart represents either some operation

or some condition, it can be represented either by a transition



=134~

or a place. The complete flow chart which is made up of several
blocks can, therefore, be represented by a Pii. 4 detail dis-
cussion of such a transformation has already been discussed in

Section 2.4 on software modeling.

In conventional Petri nets, it is aésumed that the output
of a transition after firing is immediate and that the firing
does not fake any time. Deviating from this conventional approach
we shall introduce a concept of time to firing of each transition.
Let us assume that a transition t, requires ii time to execute
the operation which it represents. This means that the output of
the transition ti will appear after a time I& of starting of
firing of tiy Hence in order to find the total execution time
for a program we must determine how many times each of the tran-
sition has to fire. The total exscution-time is, thus, given by

17
Total execution-time = 3 g. T. (5s2)
i= *+ 3

where, O 1s the number of times the transition ti fires in the
execution of the program. Wote that o is an element of the
firing count vector. Therefore, the computation of total exe-
cution time can be obtained by solving for 5 the state eq.(2.3)
(also given in the preceeding section) and then using eqs(5+2)
Since the initial and final conditions of flow chart are known,
AM can be obtained and (2.3) can be solved for positive integer-

valued solution.

As an example, consider the flow chart of [79] shown in

Fig. 5.6 and represented by PN in Fig. 5.7.



1 START '

SUM=0
I 21

-135~

SUM=SUM +1 % %3

I=1+1

FIG-5.6_ A FLOW CHART

w

V
FROM PLACE (

FIG.5.7_PN REPRESENTATION OF
FLOW CHART IN FIG- 5.6

T0O PLACE
£

‘\

FIG. 5.8_ A REPRESENTATION OF t5 AT LOWER

I ~—~ysrr— ~ - B P U P A e e F N R L



~17% 6=

The transitions Corresponding to the sequences of

operations are as follows:

tl o~ BIERT

6y ~ SUM =0, I=1
ty ~ SUM = SUM + I
th ~ PRINT SUM

[ NI=I+1

]

The tokens at places correspond to various conditions.
The token at place 'a!' means a request for start is made. The
program 'starts' means that Hrivg ot tl will take place only
when a request for start is made and the printer is available.
A token at te: represents that the printing is over and the
printer is free. The place 'g!' contions four tokens to Tepresent
I < 5. A token at 'f! represents, the condition I < 5 False.
This token will arrive at f only after the transition t5 has
stopped firing. The arrival of token at f can be obtained by
Petri net shown in Fig.5.8. However, this net is represented in
Fige5.7 in a modifieqd way by a single transition t5' The advantage
of PN to represent different levels of abstraction my be noted
here. By having a Single transition t5 with input place g

complexity of net is reduced. Then,

a. B o@

a
[S2. T 05 -plad
0

N

g
0
0-1 1 O 0 o
A = t3 G Q84 1 & D 0
t4 2 0 Ol Wl I g
t5 & ¢ @1 a& 9 B ]



~137=

M, = a r' 1 7 s and M, = 82T @ 7
|
b 0 b 0
vy 0 - 0
d 0 d 0
e i e &
f % f n
BL %0 gL o
Hence AN = Mn - MO S e
0
0
0
0
-1
=
Solving eq.(2.3) for 2,
5 [ 2]
%, 1
L= t3 1
t4 1
t5_l+_J
Hence, total execution time = Tl + T2 + 5T3 + T)+ + 4T5

The result tallies with that of [791.

5.5 CONCLUSION

In this chapter, the application of Petri nets to some of

the problems of computer systems has been described. It has been



~138=-

shown by demonstrating that many computer hardware and software
problems could be represented by different classes of Murata’s
state equation of PN the solution techniques of which are

essentially the same. The state equation, thus, forms the nucleus.

A technique for solving the state equa tion has been given
in the procedure to enumerate all Simple paths between two nodes
of a graph. Neverthless the same technique could be used, as
demonstrated, for the problems where AM is di fferent than for
Simple paths. The technique is novel in the sense that only a
single matrix is needed. Also, it is easily adoptable on computars
Moreover, only vector additions are required and no matrix mul ti-
plication is involveds. This considerably reduces the computational
time. The complexity of the computation has also been calculated

in terms of maximum iterations needed.

The problem of computation of the terminal reliability of
a computer network has been solved by finding, first a Boolean
function in terms of sinple paths whose enumeration is through
the state equation, and then its disjoint terms. Obviously the
advantages of the proposed technique over the existing ones are
the same as given in the above Paragraph. Since the basis rows
in finding the disjoint terms are selected with minimm number
of literals, the solution obtained will require lesser terms
and, therefore, will be more nearer to the optimal solution

compared to other techniques.

In the problem of program complexity evaluation)presented

are simple paths and dicircuits as a measure of 'psycholorical!



ST

complexity and execution time as a measure of performance
complexi ty. The advantages of simple paths and dicircuits as
Complexi ty measure have been highlightened. Their enumeration
has been achieved by the technique of solution of stats equation
of PN. Unlike the existing techniques [134], no tree, no gene-
ration of ring-sums over the rows of fundamental circuit matrix
and no adjancency matrix alongwith its powers arc needed. The
incidence matrix Al of the graph which is used in the state
equation contains all the necessary information. The degree of
vertex as anindicator of program complexity is g direct evaluation
eerrn

b
from the matrix Al' The other complexity measures kEVeKshown To

be directly obtained from the state equé tion.



CHAPTER VI

ETRT NET APPROACH TO DEVEPLOMENT OF MICROPROGRAMMED
COMPUTER

6.1 INTRODUCTION

Microprogramming is one of the important aspects of modern
day computerse. Apart from increasing the flexibility it has made
possible the process of emulation. Microprogram optimization
1s, however, necessary to be employed to increase the efficiency
for the applications of microprogramming. Of various optimization
Strategies adapted, only bit optimization in the design of
control memory and data path optimization in the modular inter-
connection of systems have practical advantages. These have been
reviewed in Chapter III. This Chapt-ér investigates the role of
Petri nets in the development of systems empl oying micro-
programming particularly with referencs to the above twe optd -
mizations. The algorithms to solve thessz two optimizations are

also proposed.

6.2 BIT OPTIMI ZATTIOW

The problem of bit optimization in the control memory of a
microprogrammed computer is essentially the grouping of micros
commands such that a minimum number of encoding bits is required
without loosing the parallelism in microcommands. The existing
techniques and the related concepts were presented in Section

3+3+1¢ An important conclusion of the research in this field is



~147 -

that the problem is NP-complete. Therefore, instead of finding a
general solution, the attempt should bz nfade in solving

reasonable subcases. It is in this regard that a technique for
bit optimization is proposed here. Given a ROM specification, the
strategy involved is first to enumerate all the maximal compatible
classes (MCCs) of microcommands and then to place microcommands

in blocks such that

i) each block is a subset of an MCC

ii) no microcommand can be added to any block without
increasing the bit required to encode the block iece
each block contains exactly (2ni -1) microcommands (one
place is fixed for No operation N, where n, = 1,2,..
""nmax° The value of nmax is decided by the number
of microcommands in the largest MCC

1ii) there are maximum possible number of blocks with

max

(2 «1) microcommands, maximum possible number of

ma x-1
blocks, with (2 -1) of the remaining microcommands

and so one

Obviously, such an arrangement, not necessarily, yields an
optimal bit solutiom. Hence, a condition for bit reduction is
obtained. A procedure is given and illustrated with the help of

an example.

6.2.1 ENUMERATION OF MAXIMAL COMPATIBLE CLASSES OF
MICROCOMMANDS [7Y4]

As pointed out in Section 3+3el, the enumeration of

maximal compatible classes (MCCs) of nmicrocommands has been



-1h2-

obtained using methods suggested in minimi gzation of Sequential
machines [22], [80]. However, since these methods require the
construction of compatibility charts and graphs,they are not
easily implemented on digital computers. This provided a moti-
vation for an alternative technique which is presented in this
Section. In this technique MCCs are obtained by recasting the
given description of ROM into PN representation and then solving

the state equation of the PN. A refersnce of this was made in 5.1.
6+2.1,1 FORMULATI ON

Bach word of a ROM can be thought of as represented by
interconnections of transitions and a place of a PN« The micro-
commands are represented by transitions, and the word by an input
place. As two microcommands appearing together in any word are
incompatible, no two sorresponding transitions can fire simulw
taneously. This is obtained by putting a token on the place. A
transition fires if its input place contains exactly one token and
on firing, it removes the tokens from input places. Obviously, the
complete ROM can be reprssented by such interconnection of places
and transitions obeying the above firing rule. An MCC of length
L is a set of L microcommands no two of which belong to one single
word and to which no microcammands can be added without violating
this constraint. Hence, to enumerate all the MCCs it is sufficient
to determine L transitions of the corresponding Petri net which
nmust fire in order that the tokens from the input places are
Temoved. This is achieved by SOIVing for ¥ the following Murata's

State equdtion described in Section 2.6 for a PN



~Th3 _

2T s = aM f3:5)

Since, the transitions are fired to remove the tokens
from the places, the change in marking AM in this case is given
by A== U wyhere U 1B Wix 1l unit vectors, Eq.(2.3) is,

therefore, modified to

Al = U (6.1)

where A = [aij]leNC is the input connection matrix of ROM
having W, trredundant words and Nc microcommands. The elements

aij are given by

&, .
1

1 if jthnicrocommand is contained in 1 th word

0 otherwise

and £ is a Nex 1l column vector whose element is 1ifF Jth mioro-

Command is included in an MCC, 0 otherwisec.
6¢2.142 ENUMERATICN PROCEDURE

Eq.(6.1) contains W, independent equations in Ne¢ unknowns
and each feasible solution ¥ will correspond to one MCC. The
Ssolution technique of Chapter V can be directly applied to solve
the equation. Instead, another technique which requires fewer
enumerations is proposed here. This takes advantage of the
property that the elements of Al in this case, are either 1’s
or 0's. No two columns having 1’s in one row can be added to
equate unit vector. Let the matrix Al be rearranged in columns
such that first kl columns correspond to the microcommands of

the largest instruction, the next k, columns correspond to the

remaining mierocommands of the largest remaining instruction and



o, 1O

and so on. Now Al can be partitioned as

Al = [All : Al2 : @ 00 g o L] AlS]

where Ali is wlxkl matrixe Obviously there is atleast one row in
Ali which contains all 1's. Therefore, solumng of Ali cannot be

added to give the solution. For solving (6.1) the columns of Ay

and 4; . for j # i are to be added. To find the maximum iterations,

J
let us consider that colums of All are added to columns of Al2'

l°k2 additions. However, for comparing with

U only those added columns which donot have any entry more than

This will require k

1 are considered. For three submatrices RE Al2 and Al3 the
number of such iterations will be (klk2 +ky o+ k2)k3. Proceeding
in the same fashion, the maximum number of addi tions required to
solve (6.1) will be

T __(_( m e ok (klk2+kl+k2)k3+k3)kﬁkh_) L
(s=2 brackets)

s-l)ks°

Based upon the above discussion the following steps will

find all MCCs.

l. Given a ROM description, delete the words with micro-~
comrands which are contained in other words.
2« Determine Ay = [aij] such that fyy 7 1 only if Jth
microcommand is present in i th word, 0 otherwise
3. Partition A, by rearranging the columns as
A = [ A4 . Ao o .n.aE Als] such that

ky 2k, 2 eees >k, whero k, is the number of 1’s

which all the columns of Alj have for atleast one rowe



~145-

ey TRE L & 2

5« Add L columns, taking 1 column each from All’ Al2’°°°"Als
such that no two of them belong to any one of deleted words.
If addition equals unit vector, then the set of microcow
mmands corresponding to these columns gives MCC of length L.

6. Repeat step 4 for all possible combinations of L

7+ Repeat step 5 and 6 for L = L + 1 untll L = s,

8. Stop.
The above procedure is illustrated with the help of an

example.

Example 6.1 ¢ Let the description of ROM [135] and given in

Table 3.1 be again considered. All the MCCs are to be obtained 2

x

Word Microcommands

e e -

a4byCyedye,f
Cygoh,d
aybyhyl,]
d,h,k

AV, B R O N O

f,h

Table 3.1
Using the proposed technique, the steps are giwen below.
Step 1 ¢ The microcommands of word 5 are contained in the other

words. Hence the word 5 will not be considered and,



146

Step 2,3 s
2 b ¢ 4 e A J k
1r111111 0 0 © o_o—
Lo - R S TR < ol i M S TR
1 3 I &8 & & 0 03 & 1 3
4 Ty eY L E G %

Step L4y5,6 ¢+ Two columns taking one from each portion only can
be added but columns h and f can not be added because
they belong to one deleted word 5. We get MCCs of length
248 (d 1) and (e h).

Step 7 : It results that MCCs of length 3 are (a g k), (b g k),
(c J k), €d g J), (e 1 j) and that of L are td-x. ) ks
(T 2,

Having given a method to enumerate all MCCs, the procedure
for bit optimization is given in the following section.

6.2.2 PROCEDURE

Let Ney m and L, be the number of microcommands in the ROM

specification, the largest microinstruction and the largest MCC,

respectively.
We can always select a largest number Da, Such that the
following inequality is satisfied
: 2
(28x ) ¢ Loy e gy (642)
Let _ Pmax
Nmax At -5

The inequality (6.2) can be written as



-147-

- < ‘-IL.- "
Nmax - Lmax < 2“max (6.3)

As the largest microinstruction contains m microcommands
which are incompatible, we require atleast m blocks to accomodate
all the microcommands. These blocks are called ;essential blocks!,
Now it is required to have maximum number of disjoint blocks
edch with Nmax microcommands. Since each essential blocks has
one microcommand, (Nc -m) microcommands are to be accomodated
in blocks each of which can have addi tional (Nmax -1) micro-

Commands. Hence, assuming that compatability permi ts, maximum

number of Nmax-element-blocks (gl) is given by

Nam
g =l . L R ( 60 )+)
1 qumax- lJ

where |x| is the largest integer < x

The remaining Ne-m-.g. (N -1) microcommands are to be
= = max nm e
adjusted in maximum number of bl ocks g, of (2 X -1) micro-

Commands. Since,

N :
Jmaxt Thax * 1) -1
2
e —omia gl(Nmax ~1)
S N + 1
2

Next maximum blocks of (2%6‘}‘-2 k¥, (2" max™3 --1),.,...(2%"’”‘-1{_1),
«+e.. elements are selected ang microcommands are allocated until
no microcommand is left. On the termination of this brocess we
shall have 819853+ %+ 18y blocks of (2nmax =i 3 (znmax-l . £, S

Opa x~k

ssoey (2 ~1) microcommands respectively. The number of



~148~

bits (B) needed to encode these are, then, given by

k -i+1
Be g .4 3 g riog(anaX i |
il Pl
i=1
or :-
B = g1 * % gi(nmax -1 +1) (6.5)
1:
where 811 is the number of blocks having one microcommand sachs.
kal N _ +1
ax
Heawe % fp { Eie ot
g 0 e
= (6+6)
Bk N +1
= Sl
s oK=1 &,
Nmax +1
The process will terminate when either —’-—-RMJ-_-—- — 2 =0 (ieeo
k=

n 1 F
k = max) or all the microcommands have been allocated. Hence

the maxi mm number of iteration equals Do

When we actually allocate the microcommands according to
the method described, MCCs may be such that we may not have 91185,

s ia T ~k
eeee 5 disjoint blocks of maX 5 omax .1,....,2nmax

-1
microcommands, respectively. But the actual minimal possible
number of such a blocki magybe less than 8; for one or many i’s.
In general, g; ... < g, for 1 € i £ ke In such a case equation
(6.5) serves as a lower bound for the number of bits and no

ma tter what we do, the number of bits can never be further

reduced. This will also give to what extent the bit optimization

Should be tried for good engineering reduction.

The allocation obtained in preceeding section is not

necessarily a minimal bit solution. Therefors, the following



~1ho-

Theorem is postulated.

Theorem 6.1 2 If all the microcommands are allocated to

nmax

maximum possible number of (2 ~-1) microcommands blocks,

nmax'l

followed by maximal possible numbers of (2 <1l) micro=-
commands and so on, then the number of bits can be reduced if
and only if microcommands are shifted in accordance with compa ta=-
bility, from any block j to any block i such that
Ni ZNJ.
and, (L; - N) > %(Nj * 1Y
where Li’ Ni and Nj are number of microcommands in MCC associated

with 1 th block, number of microcommands allocated to i th and jth

block, respectively.

Proof s Let us consider two blocks i and j containing Ni and Nj
microcommands respectively. Let Li and Lj be the number of micro-
commands in the MCCs associated with i and block, respectively.

Let N, > N._
1 J

(a) Let microcommands be shifted (assuming compatibility permits)
for i th block to jth The maximm number of shift could bz

(Lj-Nj) because no more than Lj microcommands can be accomodated
in Jjth block. Hence the number of microcommands in i th block

foer sl £t 18 N, (L .=i.),
afte is N, ~( 3 J)

meimmmhﬁy(&3%nmﬁmm(%r%)=NjamMMMNm(erﬂzm
- e < - =
Hence, (1;-Nj) < Ny-(L,-N.) ¢ N

N. 5 A
or (211 & 2n3) < Ny -(Lyly) < (znl-l)

Since ni> nj (because Ni > Nj)



Therefore,

s 7 j
(2n1 ~1)< Ni-(Lj-Nj) < (2n1 -1)
The minimum number of bits to encode Ni..(Lj-.\Ij) microcommands,

ni—l
thus, equals r'log2(2

~1+1) | or (n;=1). In other words the
maximum reduction in bits for encoding i th block microcommand
.- 2 SR

Now the increase in number of bits to encode jth block

m ic rocommand

s
l—logz(Lj+1T | - ]—log2(2 J ~1+1) 7]

l

s nj+
g+l -ng =1 because (2 ¥ -1) £ Ly < (27 1)

1]

Therefore, shifting microcommands from blocks with more micro-
commands to block with lesser number of microcommands will never

reduce the bitse

(b) Let the microcommands be shifted to i th block. The maximum
number of microcommands which could be accomodated in i th block
is Li. The inecrease in i thblock is 1. These (Li'Ni) microe o=~

mmands may come from either one block or more blocks.

i) Suppose these come from jth block. Then the reduction
in 2 bits for jth block is possible if

N.+1

3(N.+1)
b (4)
H
ii) Suppose these come from two blocks each having Nj micro-

commands, then the reduction in 2 bits are from each block



-151-

is poseibtle iF

N+
\Ragwlly 2722 il < -4;“— —-l):] = (1, +1) (B)

in both the cases (i) and (ii) the net Teduction in bit is

1, but condition (A) gives a lower bound. Hence, 1f

then

(L -N;) > ¢ (N +1)

there is possibility of reducing the bits.
QIE'DI

It may be noted that the essential blocks which contain

only one microcommand must not be considered in the process of

bit reduction.

Based upon the above discussion, given Necy m and all

MCCs, following are the steps for bit optimization:

1.

2e

)+o

Find Li (the number of microcommand in i th MCG) for all
i. Determine also the number of microcommand (Lmax) in the
largest MCC.

ﬁmi%mewﬂ1Umt

- +l
(2%3-}( —l) S i—-‘max<> ( Z%ax _l)

. o WSy
Put Nmax = .2 =14

Determine maximum number of (2nmax-l) element blocks (gl);
Ona x=1
(2 = -1) element blocks (g2) ete. from
Ne - m
&y = L s and
1  Npay=l 1 °
k-1l N __+1
Ne-m- . g( —-n“—i—’ii-— < 2
1=] 2
g =
K ( Nmax+l _2)
21{-1 !
- acd




Ge

10.

11.

12.

)52

Tdentify all the MCCs having microcommands > Neas

Identify the pairs Ci9 cj of MCCs obtained in step 5
covering the number of microcommands > 2Nmax' If no such
pair exists, form a block of microcommands of an MCC.
Consider each disjoint MCC separately and go to step 8.
From the pairs of step 6, determine g 1disjoint blocks of
Nmax microcommands. If it is not possible, find the maximal
possible blocks (gf) from different set of blocks.

Delete the microcommands contained in the blocks from all

the MCCs. Call these reduced MCCs. Delete all the reduced

MCCs which are subsets of other reduced MCCs.

] i
Put N = _.-I;.n_a.'_X_.-l-_}. -1 and
max 2k ?
&1 T &4k
Repeat steps 5,6,7,8,9 for k = 1,2,0¢.. until Nmax = 0 or
k= nmax which is earlier.

The remaining microcommands are to be allocated to blocks
of single microcommands.

Select a block j having microcommands (N 4 ? 3) for essential
blocks and (Nj 2 1) for nonessential blocks. For each of the
block i (#j) containing microcommands N, > Nj, test the
condition (L;-N;) » ¢ (Ns+1). If for every i and j the
condition is not satisfied go to step 13, otherwise shift
(Li-Ni) microcommands from jth block to i th block if

compatibility permits. Without considering the blocks which

have taken part in shifting operation, repeat for another



-153~

3’s until no shifting is possible.

13. Determine number of bits (B) for the blocks obtained earlier

c
I Tog,(|%; |4) ]

where ICiI is the number of microcommands in i th block and
b 1s the number of blocks.

l)+o S’fop-
6.2¢2¢1 DISCUSSIN

Steps 1,2,3,5,8,9,10,11 and 13 are simple. Step 4 requires
atmost Do x iterations which is much smaller than Ne and hence
computations are fewer. The number of computations in the first
iteration of step 6 will be %:—l—l where u is the number of MCCs.
In subsequent iterations, the number of MCCs will reduce and ,
thus, computations will be decreasing. Step 7 is nothing but the
determination of the nodes of the largest complete polygon
obtained from MCCs of step 6 and then finding the disjoint blocks

of Nmax microcommandsSes

In fact step 12 requires maximum computation and it is this
step which is exponential in nature. However if (Li-Ni) is small
for many 1 then the number of computations are not too many. In

other words the procedure proposed here will be very effective if

Y -
(Li-Ni) 1s small for all or many 1’s Y

Example 6.2 For illustration purpose, let us consider the same

running example 6.1. The optimal bit solution is to be obtained.

MCCs obtained in 6.2.1 are



154

1
1

€, =(egjk)lsC,=(fgik);C (f1k)y G =(a gkl

3
05=(bgk),~ G = (¢ J k) 07 (dgj);c8

1l
1l
I

(e i k)

(e h)

C9 =(d i); ClO
Using the procedure, we proceed as follows:
Ne=1 3§ m=6

Steps 1,2,3 and 4 give

L1=L2:Lma}{=h"’

3 50 Y

L9=Llo—2

max = 2% Tpax = 3
_| 116

g1 jgreg = 2§
i.e. we shall have 2 blocks of 3 elements and 5 blocks of 1

element each.

Therefore Bo =2 ﬁog2(3+l) T+5=4+5=09

Step 5,6 give pairs (Cl,C3); (02,08); (03907); (0,7,08)

Step 7 Since g = 29 no largest complete polygon is needed.
The disjoint blocks corresponding to cach pair will
give allocation of 6 microcommands to 2 blocks each
having 3 microcommands. The disjoint blocks are obtained
aszs
is Ye-g 3y (T3 k)

2 (£ g3, (62 &)
35 (2 g Jis (21 )
b (4 g2.3), (& 1 k)



Step

Step

Table 69 e

~155-

9,10,11 zive the following allocation of microcommands s

1» (e g 3)y (£ 1K), (&), (B), (), (2), (R}
2¢ (T g 3y (@2 k)y (8), (B); (0}, (4), (H)
3- (d g ), (£1k), (a), (B), (c), (e), (h)
Hiliog 30y (el (&)Y (b)Y, (a), (1), LD

12: Consider allocation 1. Put j = 1, then Nj = 3, Only

2nd block (i = 2) contains 3 and L2, N2 corresponding to
second block are L, = L4 and N, = 3. Hence (Li_Ni) = 4.3 =1.

I 3- el } ST e o = 3- | thers 4§
But A(Nj+l) 3. Therefore, as (Li N 2 4(Nj+l)9 there is
no possible reduction in bits. For j = 2, i = 1 again this
condi tion is not satisfied.

Similarly we find that the condition for bit reduction is
not satisfied for each of the above allotment. But in
allocation 3, ¢ and h can be combinzd without changing the
number of bits and a solution (dgj),(fik),(a),(b),(c),(eh)is
obtained.

13. No. of bits needed to chncode in sach case equals 9.

The results obtained tally these in f47 7

The 1ist of all minimal bit solutions obtained are Shown in

1w Es Lk (8), (6), (=), {d), (R
2. 1(f gJly (el k), (a), (b); (ec), (d), (h)
3o (8@ 3 (T2 38, (8), {8} (e)y {a)y (h)
Yo 164 B 3dy e 1k), (a)y (B), ()i (£ (B
g (LR I (0-2:Kk)y (a)y (b)) (c), (=)

H | R S

(8]
(A
~—
~
o
'_b
-

[

e

o

Table 6.2 - Minimum Bi% Solutions for
Sample Microprogram of
Table 6.1



=156~

The previous section prescnted a method for bit optimi-
zation and obtained control ficlds as minimal bit solutions.
These bits can further be reduced in number by employing the
technique of bit steering [86]. This method has been outlined in
Section 3.3.1.7. In the ensuing section an extendecd Petri net
approach [9] for detection of bit stecring is adap ted. The
strategy involved is to represent control fislds by extended
PN. The tokon distributions in places corresponding to micro-
commands are, then obtained so as to satisfy some properties

ahd results interpreted.
6.2.3 BIT STEERING AND EXTENDED PN

To test for bit steering let C17 02,....,Cn represent n
control fields. Exactly onc microcommand of sach control fisld

Ci i1s excited at a time to execute a microinstruction. The

execution of all instructions of a ROM is,'thus, a collection

of such executions. Since we are intofestad oty in bit optl-
mization, the order of exscution is not important. This activity
can be very conveniently represented by an oxtended Petri note.
To understand this let us consider Fig.6.1 which is a slightly
modified version of extended PN [9]. The transition t is enabled
to fire if thers exists an il,l i il jgml with tokens in aiil’

/-é’alil = 1 AND there exists an 1., 1 £ __<_m2 with # a =1

2 2i,
Lm with#anmn = Y

When tl fires all the tokens are removed from input places and

AND.....AND there exists an - ] 5
one token is put to output place Z. From the above firing rule
of transition t, it 18 clear that t is enabled to fire if any

of 4119 a12,...-,alnl AND any of a2l, a22,...,a2n2 ANDe..oAND



-157 -

Ay, ai2 TQimi 02m2 n1 an2 Qnmn

SRR

Z

FIG- 6.1 AN EXTENDED PN

FIG-6.2a _ REPRESENTATION OF CONTROL FIELDS USING
EXTENDED PN

FIG.-6.2b_DECOMPOSITION Of— TRANSITION t IN
FIG.- 6.2



-158-

any of anl’ an2""°’anm containsa token. This is exac tly the

n
mechani sm of the execution of a ROM word. Therefore, places

ail’ aiz"°°"’aiw- can he thought of as microcommands of a field

a¥

Ci and each firing.

With a veiw to detect bit steoering, only those control
fields which need be considered, arc represented by extended Pil.
AS an example, consider solution 1 (Table 6.2) obtained for
sample microprogramming of Table 6.71. As the maximm number of
bits in steering field is one less the number of bits in the
smallest amongst original fields, only two ficlds C, = (f1k)
and C, = (e g j) are considered for bit steering and their re-
presentation by extended PN is shown in Figs.6.2a. Two places
cach corresponding to Nop operation are also shown becguse they
are included in control fields in the determination of minim]
bits. It may be noted that the total number of possible combi-
nations of tokens in input places to enable t to fire is 16 pbut
actual available combination is 5 1.2. as many as the number of
words in ROM. This is simply due to missing combinations which
are not forming any microinstructions. For example f and g do -
not occur in any microinstruction. Thereforc tokens in f and g

will not simulteneously appear.

Let t be decomposed in tl and t2 as shown in Fig.6.2b. It
is noted that Fl and t2 will not fire concurrcecntly because only
one of f, k, e and Nop can have a token. Fur ther, no execution
of any microinstruction is missing because k does not have
any token at the same time g or j hasjand.i does not have token

at the time e or Nop has (Table 6.1). Therefore, by decomposing



~159-

the net the token combinations are reduced to 8+ The place 3 1
obviously corresponds to steering fields and is introduced in
order to use the same token distribution of fy & Tor 1 and Nop,
and that of e, Nop for g,j. The encoding bits to generate

tokens for f,k and e, Nop are 1 each. One bit is also needed to
generate token for 4+ This makes total number of bits required oS
3 rather than L for Fig.6.2a. It is important that % be present,
otherwi se same token distribution used for the elements of same
field Ci appearing as input places to different transi tions will
not result in distinet excitation of microcommands. Obviously,
the token distribution for maximum input places of Ci to any of
the transitions must be considered. However, a point worth noting
is that such a decomposition may not be possible in some cases.
Hence, the above concepts are generalized and a theorem is

postulated to test if suggested possibility exists,

Let ny and Ny be the number of bits needed to encode field
Ci and maximum Steering bits respectively. Let Ny be the number
of transitions into which the extended PN representing control
fields considered for bit steering, is decomposed such that

i) each transition has places with minimum token distribution,

and ii) the places p ¢ C;, and p'e Cj{ do not appear together in
any ROM microinstruction for k # { where Cii 18 the subset

of places of Ci appearing as input to k th transition.

Theorem 6.2 : The decomposition of extended PN Terresenting fields

Cl’ 02,.....,Cn will result in lesser number of encoding bits if

and only if



-160-

g
(a) 1< n, £ 2

(b) <o
and b v j_ 8 1 2 © 0 o o n , p' i 2
{ 153 » 11} Imax where Pimax
is the maximum number of places of Ci appearing in

any of the transitions.

Proof : (a) When ny =1, obviously no decomposition is possible.
The number of bits required to ensure conflict
amongst n, transitions, is [ logt™] but the number

therefore,

of bits available for steering is Ng s

n
S
l< nt<2

(b) The number of bits required for generation of tokens
fOr Pjyg, Places is [Tlog pimaX"T. This will be
maximum number of bits required for places of Ci
appearing in any of the transitions. As the aval-
lable bits are (ni-ns), the reduction in bit is
possible if

(n;-n) > [ log Pipax |
L {1 =B
Q.E.D
Based upon the above theorem, the technique to test for
bit steering and to encode steered sets, is given in the form of
following steps:
1. Determine n, = [~logilcil+l)“1 ¥ ie{l,2,...,n}
2« Determine By = min(nl, n2,....,nn) - i
3. Find the token distribution matrix D, as

= [dkijlplxi‘-'il



-161-

[oN
H

i 1l if kthmicrocommang is included in i th
A
microinstruction of the RQOM
= 0O otherwise
4. Interchange the rows of D and partition the matrix such

that first |Pl| Tows corresspond to microcommands of Ci s

followed by IPQI rows of microcommands of 02,.,.a°,|Pn|

Tows of microcommands of Cn'

B Pt =)

6+ (Decomposi tion and determination of minimum token distribution)
Find a new matrix by OR ing the columns of D for which

m.; = 1+ Retain the other remaining colunn.

7+Repeat step 6 for k = k+1, |P|
8.(Testing of bit steering using Theorem 6.2)
Find the number of columns of new matrix, ng.
e ng = I gr Ml’ steering is not possible. Go to step 12.
9. If n_ > 2nS, no reduction in bits is possible. Go to
step 12.
10. Find the maximum number of 1s (pimax) appearing in any
of the columns of i th partition.
(n; ~ny)

e pimax > 2 for any i, no bit reduction is possible.

Go to step 12.
11l. (Encoding)
(a) All the microcommands having 1 in same column of M
Should be assigned same steering codes,
(b) Microcommands having 1 in the same partition and
ist column must be encoded. Then encoding for 2nd column

microcommand and so on is done.



-162-

(c) If there is any microcommand which has 0 in every
coloumn, the encoding of such microcommand is done by
assigning unused code combination.

120 Stopo

The number of iterations for ORing in step 6 will require
|P| times the number of search for 1°s in a row. Hence, it is
of the order of O(|P|log Ml). For step 7 the complexity of

enumeration is, obviously, O(ny log|P|).
The procedure is illustrated with the help of an example.

Example 6.3 ¢ Let us consider solution 1 (Table 6.2) of the

running example 6.1 for detection of bit steering. Following
are the steps to do so.

l. For fields C; = (f1ik) and Cr = (e g 3)

e |

no
L ]
o)
i
=]
)
=
N
o
~2
no
S
I
—




<Fh3a

596+ For k = 1, the new matrix is as follows:

[’ ke 2 3 % 7
| 0 0 0
0 i 1 0
0 0 0 1
0 0 0 0
1 0 & 8
0 1 0 0
0 0 Ny 0
L. 1 g & 1 4

75 Repeating step 6 for k = 293 49¢+4,8, the new matrix is

-

o = o -

H oo -5 =
& ' H 5

g
849 ng =2 and n_ > 2

10 B . 4 =-0g
» Plmax ™ Popay = 2 and pimax> 2

11. Let C be the common bit and Bl 3 B2 are bits for elements

of Cl and C2. Then



~16k4~

Step 11(a) Btep 11(b,e)

C=l (=0 s T
A R T o, T 0
i gLy i 0 1 | B=
k 1 0 B,=0 k- | 1 0
o 9.-_‘-9 Nop o__ __E) B, =0
e 1 0 B2:l e X 0
g e 1 S -
J 0 i) J 0 1 B,=
Hop | 1 0 ; Bt W 1 0 |

The result tallies with that of [86]. The applicability of
the proposed technique to 3 or more control fields is self evident.
Only the number of partitions of D matrix will increase and the

procedure remains essentially the same.

6«3 DATA PATH OPTIMI ZATICN [76]

In the design of microprogrammed computers, a designer will
often work out an overall hardware layout including registeres,
logic units and allowed data paths, before writing the control
program. It provides an opportunity in the very beginning to
minimize the hardware by using same data paths. The number of data
path also affects the flexibility in case of microprogramming a
machine. The provision of several data paths results in nigh
flexibility but prohibitively complex ang costly implementation.
On the other hand a single bus cannot be used if concurrent data
fransfers are taking place. Thus, a compromise is made between

the two in data path optimization. These concepts have been



~165-

elaborated in Chapter III. The techniques for data path opti-
mizationshave also been described. In this section the concept
of Petri nets is exploited to solve this problem. Two approaches

have been taken up here. These are as follows:
6¢3.1 1- INVARIANT PN APPROACH

Given data transfers in the form of transfer matrix, this
approach solves the problem of data path optimization only
partially. It simply finds feasible solutions which are defined
as solutions allowing concurrent data transfers with mininum
number of buses regardless of the cost. From these, the generation
of complete solutions is direct and can be obtained as in [85]

the outline of which has been given in Section 3.4e3.

To find the feasible solution, the proposed approach starts
with incompatible simul teneous scts of data transfers (ISTs).
As defined in 3.4.3, an IST is a set of data transfer variables ,
no two of which can take place on the same bus. There appears to
be & one to one correspondance of ISTS with l-invariant Pis
(Definition 2.18). A l-invariant PN (1-IPN) is one in which
the total number of tokens in any marking is 1. Thercfore, the
places of a 1-IPN can be thought of representing the data
transfer variables of an IST. The number of transitions in 1-IPN
is n-1 when n is the number of elements in the corresponding IST.
for example, the ISTs {xl,g§ : {xg,x5} and { Xy, 9% Jof the
transfer matrix of a typical system (Fig. 6.3) [85] are shown
in Fig«.6+-4a,



-166-

t} tz t3

X3 (5 X5 Xg

(a) PN REPRESENTATION OF |- INVARIANTS
CORRESPONDING TO |S Ts (FIG.6.3)

t1 or tz}{ hort;—g

(b) MERGING-IN OF TRANSITIONS t1 AND t,

SRR AT i
Jé\) b ‘harih, A

(c) MERGING - IN OF TRANSITIONS

1.12.t5

FIG.6.4 _ PN REPRESENTATION OF |- INVARIANTS AND
MERGING-IN OF TRANSITIONS



A B @ D
i . :22 ) J! “l
i H o |
T 2 . .
= X3 3 X)_,. ’
2 SRR SRR -
c X5 ‘(6 ,{7
D L 3
SO N | 5

Fig. 6.3 TRANFER Matrix

To find feasible solutions, the transitions of different
1-IPNs are merged-in step by step. This is shown in Fige.6el4be
The transition tl and t2 are merged in two possible ways. Now
to the transition of each PN obtained, the transition t3 can be
merged as shown in Fig.6.4c in all possible ways to yield feasible
solutions. It is notsd that each set of places in a PN obtained

is a feasible solution. The same solttion have been

obtained in [85] for ISTs under consideration.

The above concept of merging-in of transitions form the
basis of the proposed technique which is given in the form of
following steps

l. Find the number of places, D x in the largest 1-IPN
2. Find the number of places, n, in the i th1-IPW.
Find all ni9s,
Fat 1l 5 1.
3. Find the number of places, Ng; common to the largest and

i th 1-IPN.



-168 -

Y4e Generate all (ni-nci) out of (nmaX - nci) possible
combinations of the uncommon places of the largest
1-IPN

5« Generate all the sequences for (ni-nci) uncommon places
of i th1-IPN.

With places of one combination of step 4, join places
of a sequence at corresponding positions. Repeat it for
all sequences.

6. Repeat step 5 for all combinations of step Y.

Include common places as separate elements of the sets
obtained.

7+ Repeat step 3 to 6 until all the places or all i’s are
exhausted.

8« If there are some 1-IPNsnot considered, then test if
there is a contradiction of this in resul ts obtained.
If so then delete those scts.

Each of the remaining set will give a feasible solution.

9n Stopo
It should be noted that the number of maximm generations
in step 4 and 5 will be \ ) and I (n; = ng )l
By = nci 3 1 - S

i
respectively. In step 79 Maximum iterations are

-\— lA (nmax‘nci).]

isl = (pay -0y + 1)) B
These are the worst case iterations and many will be abandoned
in subsequent literations. No compatability chart, graph or

mimimum covering is needed as‘in [85].



~169-

6.3.2 PN APPROAGH

In the second approach the problem of data path optimization
is reformulated in the domain of PN. It is found that PN offers
a natural, logical and convenient tool to represcnt the data
transfer among the modules of a digital system. A4s there are
event taking place in the modules, they can easily be represented
by transitions of a PN. The events of a module start only after
receiving data from other modules. This can be represented by a
place or set of places connected between modules. The presence
of a data is represented by a token in an appropriate place.
Thus, a direct analogy between the PN ang the data transfers
between various modules of a system can be established by

following rule (R1L)

i) Represent each module i by a transition i
ii) Connect two transitions ti and tj through a place if
and only if there exists a data transfer between the
Ccorresponding i th and jthmodule. The arc between the
transi tion ti and the place is orienteqd away (towards)
the transition if t; is sending (receiving) data. Label
the places.

iii) A simultencous data transfer is identified by a conh-
currency identifier k = le24eaa etc. as Superscript
placed on the label of blaces. All transfer with Same k
will be performed concurrently. In PN representation, the
places having same k cannot have tokens at the same time.
4 data transfer OCCUrTing at the same time is representeq

without any identifier.



-170-

As an illustration, Fig.6.5 is a PN representation of
data transfer of a digital system adopted from [85] and shown

in Fig- 6-3-

The transfer of data from a module takes place by firing
the corresponding transition. & transition is enabled if there
exists atleast one input place with a token. A transition without
input place is also assumed fireable. This corresponds to a
transmitting module. The transition on firing removes the tokens
from input places and puts one token to each of the output places.
It must be noted that each Place contains exactly one input and
one output arc. Bach arc represents one interface. The problen
of optimal interconnection of modules is, thus, the merging of
places in the corresponding PN such as to minimige total number
of arcs connected while abiding by the constraint of concurrent
transfers.

The strategy adapted here is to merge-in places according
to following rules:

i) As the data sent on the firing of a transition is same,
all the output places can be merged into ons place
irrespective of whether or not the places are Tepresenting
current data transfers. This will reduce the number of
arcs by (mot 1) where ot is the number of output places
connected to transition t. This is shown in Fig.6.62,

ii) Let there be m concurrent places input to a transition
t as shown iﬁ Fig.6.6b. If concurrency identfiers
kl’kz"'°°’km are same, then places cannot bhe merged

because the transition has to fire distinctly m times.



=171=

FIG.6.5. A PN REPRESENTATION OF DATA TRANSFER
Py

PLACES OF DIFFERENT
CONCURRENCY

IDENTIFIER
A

mot

M2it
/-'
P PLACESOFSAME CONCURRENCY
m IDENTIFIER
(a) MERGING-IN OF OUTPUT PLACES
OF A TRANSITION

(b) MERGING- IN OF INPUT PLACES
OF A TRANSITION

_.O_-.I_.-O.+ ! ___..O_.l
X : — Ber I——{D—v
k'D.‘ t kJp. ki # ki ] LB t, t k;p_
J ) )
if
s t
ki’“‘j
(¢c) MERGING=-IN OF INPUT AND OUTPUT ts
FLACES OF A TRANSITION

)
(d) MERGING - IN OF UNCONNECTED
PLACES

FIG- 6.6. - RULES FOR MERGING-IN PLACES
PATH OPTIMIZATION

IN PN FOR DATA



«172-

However, if some identifiers, say I ¢ are different they
will have token at the same time and can be combined
as shown in 6.6bfigure. The number of arcs and hence,
the interfaces are reduced by (quj;l).

1ii) Input and output placesof a transitions can be merged
il their concurrency identifiers are different. This will,
however, not reduce the number of interfaces but will
require lesser number of buses. This is shown in Fige6s6Ca

iv) Unconnected places can be combined intc one provided their

concurrency identifiers are different (Fig.6.6d).

The above rules in conjunction with each other can solve
the problem of data path optimization. Before giving the technique
it is, however, worthwhile to introduce sorme more concepts and

recall a few which havebeen discussed in Chapters II and III

Definition 6.1 : The set of all places representing concurrent

transfers and which are output of different transitions are
called Nonmergable Simulteneous Set of Places (WSP).
For the PN of PFig.6.5, NSPs are {pl,p3}, {pz,ph}, and

{p3 9p6} °
It has been defined in Chapter II (Definition 2.2) that

°t (t°) are set of input (output) places of transition t.

Definition 6.2 : (a) The largest subset of ot(to) with con

current places as input (output) is calloed concurrent compatible

sct pf places Otc(tg).
(b) The subset of °t(t°) places without

concurrency is called as input (output) nonconcurrent compatible

o) & - b o
set th Ne



wl 73
For example, in Fig.6.5
% = {py25) = b 0 %hy =
Based upon the above considerations the proposed technique
to solve data path optimization problem is given in the form of
following steps:
l. Find the PN representation of the digital system and data

transfers among them from Rl.

O

R 0 0 o ) LA
2a The'% F;nd ty, t7, tas s Yios By from definitions

2.2 and 6.2.
3. Find NSPs from definition 6.1

Find NBmin = number of elements in the largest NSP.

4o If as many as N sets of Otc and t; cover all the

B in
concurrent places, identify them and go to step 13.

5. (a) Put a label %51 =1,2,00.]TJto each transition.
{(b) Put i =1
(Starting with merged output places of each transi tion,
here it is found, how many input places of comected
transitions are mnerged)

Select one tg from step 2. For each p ¢ tg find p°
c ¢
(p® will contain only one transition).
(c) Select a po, Say it is tj. Find Otjc from Step 2.

(d) Delete those places of °t. which are in any of NSPs

Je
with the element of tgc. Call the new set °t. as °t. .

Je Je
= O =y (®) (AR ]
Find t7, = LUJ tjc .

. ¥ o 0
(e) Repeat (¢c), (d) for all j and find all ticl’ tic2"°
loot,etc.



10.

11.
12

13.

~17h~

Put i = i+l, |T| where |T| is number of transitions, and
repeat step 5(b), (c), (d) and (e).

Find minimum number, say NB mutually exclusive sets of 6 to
cover all concurrent places. If NB does not exist go to
step 10.

18 NB - NBmin

If yes go to step 13

Combine NB sets obtained in step 7 to N sets such that

Bmin
no two elements of any of NSP are in combined set. If this
Combination is possible, go to stepl3.

(For each of the merged places obtained in the proceeding
steps, here it is found how many output places of connected
transitions can be merged)

Yor sach p-& tgc obtained from step 7, there is a unique
transition t; such that p° = {t;}. Find t5, and delete

those elements which are in any of NSPs with those of t&’c.

7
The set with remaining elements is called tgc. Find

(0] —* O e
t:'Lc: 7 tic U tjc *
Repeat it for all p’s and all e .

Repeat step 7 48 and 9 for all i’s.
If there is no place without concurrency identifier, go to
step 17.

(This is for inclusion of nonconcurrent places)

(a) Put i = 1

(b) Select a tJy, from step 2. For each p e t0

iNe

; i . 0
{c) Find tj euch that p” = {tj}. Find thC and thC.

find po.



=175=

(d) Find
(0} - 0] O e
Yne = Wne U twe U Fiwe

(e) Repeat (b), (c) and (d) for all j
14 Puti =1 + 1, |T| and repeat (b), (c), (d), (e) of Step 13.

" 0 ' o i R -9
15. Select a tiNc’ For each element p ¢ tiNc’ find t© "s and

°t ’s which contain p. Find union of t°’sand that of Ot S
such that in a set no two elements belongs to NSPs. Out of

these two find which will reduce number of connections.
step
to the set obtained inkll to satisfy above

Join .
condi tion.
Repeat it for mll 1.

16. Find the minimal interfaces by counting the number of arcs
in 2% and °t’s obtainud from step 15.

17+ Stop.

The technique is illustrated with the help of example of

Figebe5e
St g5 Ok = ;3 %4, = ' N = Ry =
Stepl,2: 4, = {pysp5}3 Ay = {p3,p6}; Ay = Ay, = 4

Bé e {p3,ph}; OBc T {pl,p5}; Bﬁc =OBNC .

- 0 o = 0
G {p59p6}5" e F {p29pl,.}9 Cﬁc = {p7};Cl\TC =2
Dg . {pS}; ODO i {p9}; Dﬁc = 23 ODNC - {p7}
o
Eg T {p9}; by = {p8}9 E§c = P OENc ok .

Step 3 : NSPs are {plsp:))}, {p2,p5}, {p)_i_apé}

Spmin T 2



~176-=

Step 4 ¢ No .two sets of tgandotc cover all the concurrent places
Pq through P Hence we go to step 5.

dtep 5 : Put tl = A, t2 = B. t3 = G, tLF = D, t5

B e 8 =P a {psp,}. We find that

- T B
p; = Bi.e.{t,} and Py = {t3}

X, -

c) Select pi :{t2}; Ot2C = OBC = {pl’p6}
d) pg is not in NSPs with either p; or p,.
fence 1 = (51059p¢]
e) repeating it for pg = {t3}f we find 0t3c = {p2sp4}
Hence, t§c2 =ot302 = {plepgﬁph}
Step 6 sRepeating it for i = 2,5 we find
toe1 = {P3aP1sPs} = Oty oy

O e e
tea = (PpP3spL} = Tty

o o _ B
t3cl . {p37p57p6} = thl

O e =

Wez = {91995’p63 = oo
g o

%C —{pﬁ = e
tﬁc ® {pg} g Otgc

Steo 7 2The mutually exlusive sets to cover all the concurrent

places, are obtained as
1) {pl’p2’ph}’ {P3,P5sp6}7 {p8}9 {p9}
2) {pl,p29p6}, {p3,p4,p5}, {PS}a {p9}

33 {P27p39ph}7 {plsp59p6}9 {ps}e {p9}



~177-

Step 8

Ng =L, Hence
lJB £ NBmi n
Step 9 : Those obtained from step 7 can be combined in 2 sets,

as the concurrency constraint is not violated. Hence,

the sels are
1) {PysPo9PyPg} 3 {PysP5sPg Do}
oT {P1Pp9P)1Pg} 3 {P3sP 59D 5pg}
2) {p19P,sPgPg} 5 {P3sP),sP5 50}
OF {P19PpsPg P} 5 {P3yPy,sP5sRg)
3) {pyspqsP),50} 5 {P1 9P59Dg PG}

or {pz,p3 ,pu,p9}§ {pl’p5’p6’p8}

Now we go to step 13.

Step 13.14.15 3 We have only Cﬁc = {p7} = ODNC $ Since

- T .

c” = {p59p6,p7} and "D = {p,pg]

We can combine these gas {ps,pé,p,?pg}

Minimum conncctions are nesded if p7 and p9 appear
together and in p5p6p7p9 also they appear together.

Hence in step 9, the minimal solutions are
1) {p1PoPuPg}s {P3PsPeP,Pg}
2) {pypopepgls {P3pyPspop ) oT

{P1PoPgPGPY 5 {PypypsPg}
3) {popyp1PgYs {P1P5PEPg}

Steo 16 : Consider only (1) of step 15



-178 -

O

No. of comections for A° =1, %4 = 1
B was B arp
i £33, % =3
il TR
BY =1, % =1

Hence total mumber/of connections to places

= .6 %€ = 182
Hence number of interfaces needed is 12 which is
same as in [85].

Similarly for sets (2) and (3) obtained in step 15

interfaces required are 1.2.

6.4 CONCLUSION

Problems in the area of microprogrammed computer design
such as (i) blt optimization in control memory and (ii) data
path optimization have been tackled in this chapter by the
application of Petri nets. To solve the former, all maximal
compatible classes of microcommands are obtained by state
equation of Petri nete Tt has been shown that the method is
simple and can be easily used on computerss, Walike existing
techniques, no graph or chart is needed. Only vector additions
are required-.from these MCCs, the minimal bit solutions are
obtained in terms of control fields by placing the microcommands
in blocks with certain conditions. The technique requires lesser
computations compared to other methods if employed to a certain

class of problem. The class has also been identified.



-179<~

The bits have further been reduced by applying bit steering
through extended PN concepts. The approach is novel and can
take care of more than two control fields which was hi therto too
difficult. The complexity analysis of the only existing techni que
has been given in Chapter III (comnents of Section JudiliPle o0
comparison, the proposed technique appears computationally better
because only vector additions are neesded. Purther the order a¥

complexi ty has shown to be lower in proposed technique.

As far as data path optimization is concerned two approaches
using Petri net have been employed. In first only feasible sgolu-
tions are obtained. The complexi ty analysis shows that in worst
case, it is quite large but then the number of feasible solutions
are also large in that case. PFurther no chart or graph is needed.
The second approach is one of very fow attempts in the optini zation
consideration of PNs. Here, the data transfers have been re.
presented by a PN and concepts of optinization have been devised
in terms of PN. Complexity analysis of this method, however, has
not been given because the approach is heavily data dependent.

But the technique appears to be simple and involves (hopefully)
lesser amount of computations. It is due to the fact that the
proposed method avoids from the very beginning, bscause of the
inherent property, the generation of redundant solutions which
are to be discarded after some amount of computation in the
existing techniques. For example, a Sclution {pl’ph’p5}’{p2’p3’p6}
in [85] does not yield minimal solution and is di scarded after
Computing cost associated with it and comparing it with other
costs. Such redundant solutions are not st all generated in the

proposed technique.



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 INTRODUCTION

The application of Petri nets to design and analysis of
computer systems is a significant development. The primary
reason for this is that PN can easily show parallelism involved
in the system. Furthermore, it can represent systems at different
levels ranging from a more abstract level to that of more detailed
modelinge Another significant propert)' is that it provides topo=-
logical as well as tho dymdmic bohavioTs The advent of fast
computers has provided a further impetus to research in Pil. Now
it can make use of high speed computers as computational tool for
modeling and analysinglarger and more complex systems. More
efficient design and analysis techniques are however needed.
It is with this motivation that the present research has been
carried out. Original contributions made in this thesis have
been identified. Suggestions for further work have also been

incorporated.

7.2 SUMMARY OF THE RESULTS

A critical review presenting the various phases of the
Petri nets and their uses has been given first. Concepts and
various significant results scattered over various reports,

dissertations, conferences and journals have been collec ted wl th



~-181-

a view to acquaint the reader with the importance of this power-
ful tool. The role of Petri nets and their applications to
modern conputer systems has been examined. Their limitations and

the techniques to overcome them are also discussed.

Of significant importance in the design of microprogrammed
computers are microprogram optimizations. These have been
discussed next. The reasons for various optimizations and the
justification for the study of only the control memory bit
optimization and data path optimization have been given. The
techniques for these two have been critically reviewed. This review
removes any ambiguity that might arise in the mind of a reader
and also acts as a prelude before an attenpt is made to apply
Petri nets to such optimizations. 4 comparison among various
control memory bit optimization techniques has been made. The
comments and complexity analysis of the only available work (86]
on bit steering have been given in Section 3+3.1.7 to facilitate
a comparison of the technique proposed in Chapter VI. The second
endébour, in order to compare the technique proposed for data path
optimization (Chapter VI), resulted in the complexity analysis
(Section 3.4.3) for switching theoretic approach deseribed in
(851

The analysis of Petri nets is required to study the problems
involved in the design and development of systens. However, it
suffers from some drawbacks and an attempt has been made to
overcome them. Following the viewpoint that many properties of a

PN can be decided from its topology [137], a decomposition



~182~

technique for a large PN into smaller nets have been proposed

in Section k.2. This feature becomes of particular importance
because the properties of a large PN are derived using the
proposed propositions of interconnections of such nets. This
removes the problem of ummanageability of a large PN. & State
equation approach has been adapted because of its inherent
possession of tecpclogical information in the corresponding
incidence matrix. The decomposition technique proposed is a
relatively improved procedure in the sSense that it gives
”aprioril the number of elementary nets to which a PN with certain
properties can be decomposed. Further, it dces not require as
in [137], the determination of integer-valued solution of linear
equations -a computationally time consuming procedure, and
subsequent iterations. Oniy union and intersection of the sets

are needed.

Given a PN with two markings, it has always been a problen
to decide if one marking is reachable from another. A necessary
condition for reachability [97] is available but in the absence
of a sufficient condition it is difficult to solve this problemn.
The primry contribution in this regard is that a novel technique
to solve reachability is proposed in Section 4.3. A nonreachabili ty
condition which is computationally simpler than that given by
Murata [97], has also been obtained. In the absence of “Bhe il
filment of the above condition, the prcposed technique first
finds the firing count vector by solving the state equation of
the PN. Mininum firing count vector is then obtained from which

a reachability tree is constructed to find legal firing sequences.



383 -

A significant achievement has been made here in that the
technique not only decides the reachability but also provides
the information about the legal firing sequences of minimum
length required to transform one narking into another. Because
of this minimm length, the testing for the correctness of a

PN becomes easier.

Another problem which is qui te common in the theory of PN
is the lack of proper analysis technique when an extension to
overcorie the limitation of modeling power of PN is incorporated,
This has been solved by proposing a transition to execute a NOT
operation and then finding a state equation representation for
this. This transition alongwi th the conventional PN can represent
the system involving/%ﬁeéfggic operations. A generalized state
equation for such representation has been obtained. This makes
possible the analysis of computer systems that was hiZher-to not
possible. As an illustration, a part of the control of CDC 6400
[105] has been analysed by the generalized state equation. Tt
has been further shown that Murata’s state equation [97] is a

Special class of the proposed generalized equation.

The state equations appear to be a very powerful tool in
the hands of computer designer. It has been shown in Section 5.1
that many problens, hamely, enumeration of simple paths between
two nodes of a graph, terminal reliability of a computer network,
program complexity evaluation and enumeration of maximal compa=
tible classes (MCCs) of microcommands in control memory bit
optimization lie in one class or the other of the state equation.

A solution technique for enumerating simple paths between two



-18 4=

nodes of a graph by solving the state ¢quation has been proposed.
It is novel, simple and easily implemented on computer. Unlilkes
other techniques, it does not require matrix multiplication.
Only vector additions are nceded. A complexity analysis has also
been presented. In Section 53, terminal reliability has been
obtained first by finding simple paths through the above mentioned
technique and then giving PN interpretation of its disjoint terms.
The simplicity of the techni que and determination of near optimal
solution have been justified (Section 5¢5). As far as progranm
complexity evalugtion is concerned, two complexity metrics . namely,
simple paths and directed circuits have been defined. These
(Section 5.4%) in conjuncticn with each other can find all other
complexity metrics defined in[134].. Fur thermore, the deter-
. mination of these metrics is simple becauss the technique for
determining simple paths can be Judiciously used for determining

directed circuits as well.

In the design of control memory of a microprogrammed computer,
the optimal bit solutions have been obtained in terms of control
fields. First MCCs are enumersted through the state equation of
PN and then the microcommands of subset of MCCs are allocated
to different blocks so as to have desired properties. (Section
6.2.2)s The method to enumerate MCCs is simple. The number of
iterations required has been calculated and is shown to be highly
data dependent. The proposed method does not require any con-
structlon of compatibility chart and graph. This make=z 1t easily
adaptable on computer and saves additional computational efforts.

The technique to allocate microcommands of MCCs into blocks



-18 5~

according to defined properties is simple. A theorem has bszen
postulated to test and to shift the microcommands from one
block to another if the allocation does not yield a minimal
optimal solution. It is this shift which makes the proposed
method laborious as is in the existing techniques. However,

it has been established in this section that the number of
shifts will be very few, if the number of microcommands
allocated in each block is not much different from the length
of MCCs from which the microcommands have been allocated. Thus,
the method is especially suited for a class of ROM specifica-
tion. An effort has, then, been made in this section to test
the existence of a possibility of further reducing the number
of bits in order to have a good engineering solution. This is
done by detecting bit steering among control fields by repre-
senting them through extended PN. Token distributions of places
corresponding to microcommands are obtained from control fields
and the ROM specifications so as to fire the transition a
minimum number of times. From these token distribution detection
of bit steering and encoding of contrcl fields are done. The
proposed technique is better than the existing one [86] in the
sense that no concurrency matrix and no grouping of eatries

are required. This needs only one Boolean matrix and column
operations upon it. Further, this$ can solve with same case,

the bit steering among threc or more control fieldS which has
been computationally very difficult in the earlier method.

The complexity analysis of the proposed technique has also

been made. This shows the superiority of the technique.



=18 6=

In the design of modular interconnections, two approaches
have been adopted for data path optimization. Both the appro=-
aches utilise the concept of PN. In the first approach, only
the feasible solutions as defined in [85] are obtained by
representing each incompatible simul taneous transfer set (IBT)
by l-invariant PN. With the transitions of largest l-invariant
PN, the transitions of other l-invariant PNs are merged such
that either all the places or all the invariants, whichever is
earlier have been considered. Each PN obtained by such merging-
in of transitions provides a set of feasible solution. The
generation of feasible solutions by the proposed technique is
better computationally because (i) it does not require const-
ruction of compability chart and graph, and (ii) no procedure
for obtaining minimal cover is needed. The details have already
been discussed in Chapter VI. The complexity analysis further
establishes the superiority of the technique. In the other
broposed approach, the data transfers among the modulcs have
been represented by a Pl. The data path optimization problenm
has, thus, been reframed as merging-in of places such that the
transitions fire minimum number of times while abiding by the
constraints of concurrency. A technique for this has been
proposed and illustrated with the help of an example. As the
technique is highly data dependent, no computational analysis
for the technique has been carried out. The proposed technique,
however, appears hopefully better than that of Mathialagan
and Biswas in the sense that ;because of its inherent property,

(i) it does not require construction of compatibility chart



~187=

and graph and (ii) it does nct generate at all a solution which
might be abondened after comparing the cost of other solution
obtained after a large number of iterations. It is the latter
advantage which makes the second approach better than the first

one.

7.3 SOME PROBLEMS FOR FURTHER INVESTIGATICN

The PN concept has been reviewed and applied to some of
the problems in the design and development of modern compu ter
systems. However, there are still a number of problems in which

fur ther research is desirable.

i)« Simple PN have been shown to ropresent a large variety
of systems [49]. The corresponding incidence matrix
possesses some unique properties which can be utilized
in investigating some of the important problems like
reachability, liveness, boundedness, safeness etc. A
state equation approach seems to be effective. Further ,
investigation properties will lead to easy analysis of
large simple nets.

ii)s Both the analysis techniques, namely the reachability
tree and the state equation approach lack the information
of the sequence in which transitions should be fired
to change one marking of PN into another marking (Section
2+6)« An attempt has been made in this thesis to solve
this problem by first solving the state equation and from
that finding the minimal fﬁring sequences (Section L4e3).

It is worthwhile investigating if the change in marking



iii).

iv)e

s

-188~

can be expressed as a linear function of firing sequence
rather than as a function of number of times the trans-
tions fire. PFurther, it will be interesting to find

how the other firing sequences which produce the same
change in marking, are related. This will facilitate to
solve reachgbility problem directly.

Detection and isolation of faults in systems are essen
tial features. Any system can be represented by extended
PN and thus generaligzed state equations proposed in
Section Ll can be applied for fault detection and
isolation. Since,

e T
AM = ”k+1 - Mk = 4 Dk Vk (%38 )

if there is a fault then AM-A”ZI Dk Vk Z 0. To isclate
the fault then becomes an easy task. It requires only
comparison of two vectors. A thorough investigation is
needed in this respect. .

Minimal cut-sets and spanning trees play important roles
in computer network. Their enumeration can be done by
applying state equdtion technique and finding the class
to which they belong (Section 5.1). However, reséarch is
needed in this direction to find effective algorithms.
The properties of corresponding Al matrix and AM need be
Studiede.

Two program complexity metrices and their determination
have been discussed in Section 5.4. It was shown that
the evaluation of such metrices is easy. Further work in

this regard can be taken to use these for the development.



vi)e

vii)s

viii).

<189

and testing of software. Investigation for the generation
of test and program verification is required.

The cost of Read/Write store is fast approaching the
cost of ROM,; it will replace ROM for the bulk of control
memorys. In this regard investigation must be done for
the optimization of control memory to determine how many
routines should reside permancntly in control memory and
how many should be brought in on a dynamic basis. A cost/
performance trade off will be required.

One approach using bit steering in control memory design
has been discussed in Section 6.2.3 to further reduce
the number of optimized bits. Another approach could be
to determine directly from ROM description which of the
microcommands will not be used in the bit steering, no
matter in what MCCs they belong to. This will limit the
search for bit sharing. Further a study is needed to
determine the lower bound on number of bits when bit
steering is also used. This will afford a knowledge
whether to attempt for bit optimization in order to have
a good engineering solution.

To use PN for performance evaluation of a system, a
concept of time has to be introduced. One way is to
attach time unit to each of the transitions, as is the
case in Section 5.4.2. Another approach could be to
introduce time as another variable on a place of the PN.
Hence, the variables on a place will be number of tokens

and the time at which they appcar. For the safe marking,



-190-

there will be only time associated with the place after
each firing of a transition. In such a case, the PN

then can be reprosented by two dimension state equations.
It is worthwhile to study which of the established pro=-
perties of two dimension state space theory in network

could be applied to PNs to decide many problems.

To conclude it can be said that Petri nets can offer a
significant contribution in the design of modern computers
espocially with their increased use in parallel processing
enviromment. In this thesis, the stress has been given to formu-
late various algoritims suited in the design and development of
system without going into details of programmer% Job of imple-
menting them. prever, the effectiveness of the algorithms
developed has been shown through mathematical analysis of the
complexities involved. This appears to be better approach in
comparison to the exhaustive method of statistical evidence
through programming. However, should it require to collect
statistical data it would not be difficult because the algzorithms

developed can readily be implemented.

It is hoped that this research will open certain new
vistas to Several challenging problems in the for thcoming

areas of computer science.



BIBLIOGRAPHY

Agerwala, T. 'An Analysis of Controlling Agents for Asynchronous
Processes', Hopkins Computer Research Report No.35, Computer
Science Program, John Hopkins Univ,, Baltimore, Maryland, 85
pages, Aug. 1974,

Agerwala, T, 'Towards a Theory for the Analysis and Synthesis
of Systems Exhibiting Concurrency', Ph.D, Dissertation, Dept.
of Electrical Engineering, John Hopkins Univ., Baltimore,

April 1975.

Agerwala, T, 'Timing and Priority Considerations in Concurrent
Computer Systems', Proc. of the 1976 Conf. on Information
Science and System, pp. 307-312, 1976,

Agerwala, T, 'Microprogram Optimization : 4 Survey', IEEE Trans.
Comput.,, Vol,C-25, pp.962-973, Oct. 1976,

Agerwala, T, 'Putting Petri Nets to Work', Computer, pp.85-94,
Dec. 1979.

Agerwala, T, and Choed-Amphai, Y.C. 'A Synthesis Rule for
Concurrent Systems', Proc. of the 15th Design Automation Conf.,
Las Vegas, June 1978.

Agerwala, T, and Flynn., M, 'Comments on Capabilities, Limita-
tions and 'Correctness' of Petri Nets', Proc. of the First
Annu. Symp, on Computer irchitecture; New York, ALCM, pp 81-86,
1975,

Agerwala, T, and Flynn. M. 'On the Completeness of Represen-
tation Schemes for Concurrent Systems', Conf., on Petri Nets and

Related Methods, MIT, 16 pages, July 1975.



10.

L

i kR

13.

14,

15.

16,

170

155

Agerwala, T, and Flynn. M., 'Modeling with Extended Petri Nets',
Unpublished, 18 pages, 1976.

Agrawala, A.X. and Rauscher, T.G, 'Microprogramming :
Perspective and Status', IEEE Trans, Comput., Vol.C-23,

pp 817-837, Aug., 1974.
Amin, A.T. and Murata, T. ‘Characterization of Live and Safe
Marking of a Directed Graph', 1976 Conf., on Information Sciences
and Systems, John Hopkins Univ,.,, Baltimore, March- April 1976,
inderson, D., Sparacio, F. and Tomasulo, R., 'The IBM System/
360 Model 91: Machine Philosophy and Instruction Handling, IBM
Jl. of Research and Development, Vol,ll, No.l, pp.8-24,
Jan. 1967.
Astopas, F.F, and Plukas, K.I, 'Methods of Minimizing Computer
Microprograms', Aut. Cont., Vol.5, pp.10-16, 197L.
Baer, J. 'A Sﬁrvey of Some Theoretical Aspects of Multi-
processing', Computing Surveys, Vol. 5, No.l, pp.31-80, March
3973 «
Baer, J. 'Modeling for Parallel Computation: A& Case Study’,
Proc. of the 197% Sagamore Conf. on Parallel Processing,
New York: IEEE, pp.l3~22, Aug. 1973.

Baer, J. and Ellis, C. 'Model, Design and Evaluation of a
Compiler for a Parallel Processing ﬁhvironment', IEEE Trans,
Software Engg., Vol. SE-3, No.6, pp.394-405, Nov. 1977,

Baer, J. and Koyama, B. 'On the Minimization of the Width of
the Control Memory of Microprogrammed Processors', IEEE Trans.

Comput., Vol. C-28, pp. 310-316, April 1979.



18.

19

20.

4 F

28y

23.

24,

25,

2t

27.

=193

Baker Jr, H., 'Petri Nets and Languages: Computation Structures
Group Memo 68, Project MAC, MIT, 6 pages, May 1972.

Baker Jr, H. 'Equivalence Problems of Petri Nets', Master's
Thesis, Dep. Elect. Engg., MIT, 53,pages, May 1973.

Best, E. 'The SOLO Operating System Described by Petri Nets',
ASM/8, Computing Laboratory, Univ, New Castle upon Tyne,
England, Aug. 1976,

Best, E. and Schmid, H. 'Systems of Open Paths in Petri Nets',
Lecture Notes in Computer Science, Vol.32, Berlin:Springer-
Verlag, pp. 186-193, Sep. 1975.

Biswas, N.N, 'Introduction to Logic and Switching Theoxy ",
Gordon and Breach, New York, 1975.

Brown, D.B. 'A Computerized Algorithm for Determining the
Reliagbility of Redundant Configurations', IEEE Trans, Rel,,
Vol.R=20, Wo.3, pp.121-124, iueg, 1971,

Chen, T. 'Overlap and Pipeline Processing', in H., Stone
(Bditor) Introduction to Computer Architecture, Chicago:
Science Research Associates, pp.375-431, 1975.

Clark, R.K, 'MIRAGER : The Best yet Approach for Horizontal
Microprogramming', Proc, ACM National Conf. Boston, Mass.,
0, 554=-5T71, Aug. 1972.

Commoner, ¥, 'Deadlocks in Petri Nets', Report CA-72 06-2311,
Massachusetts Computer Associates, Wakefield, 50 pages, June
1972,

Commoner, F,, Holt, A,, Even, S. and Pnueli, A., 'Marked
Directed Graphs', Jl. of Computer and System Sciences,

V01.5, NOuS, pp 511_523, OC't. 19710



28

29,

20,

- 1 U

225

33

34.

355

36,

=19k~

Cooprider, Lo 'Petri Nets and the Representation of Standard
Synchronization', Dep. Computer Science, Carnegie-Mellon Univ,
Pittsburgh, 30 pages, Jan., 1976.

Crespi-Reghizzi, S. and Mandrioli, D. 'Some Algebric Properties
of Petri Nets', Alta Frequenza, Vol,45, No.2, pp.130-137,

Feb., 1976,

Danielson, G.H, 'On Finding Simple Paths and Circuits in a
Graph', IEEE Trans. Circuit Theory, Vol. CT-15, pp 294-295,
Sept. 1968,

Das, S.R., Banerji, D.K, and Chattopadhya, A. 'On Control
Memory Minimization in Microprogrammed Digital Computer', IEEE
Trans, Comput., Vol. C-22, pp.845-848, Sept. 1973.

Dasgupta, S. and Tartar, J, 'On the Minimization of Control
Memories', Information Processing Letters, Vol.3, No.,3,

Pp Ti~{4, Jani. 1975,

Dasgupta, S. and Tartar, J. 'The Identification of Maximal
Parallelism in Stralght Line Migroprogram’, IEEE Trams, Compit,,
Vol,C-25, pp 986-992, Oct. 1976,

Dennis, J. (Editor), 'Record of the Project MAC Conference on
Concurrent Systems and Parallel Computation', New York: ACM,
199 pages, June 1970,

Dennis, J. and Patil, S. 'Speed Independent Asynchronous
Circuits ' Proc. Fourth Int. Conf. on System Sciences, Univ.
Hawaii, Honolulu, Hawaii, pp 55-58, Jan. 1971.

Dewitt, D.J. 'A Control Word Model for Detecting Conflicts
between Microprograms', Proc. 8th Annul. Workshop on Micro-

programming, Oct. 1975,



- i

38,

9.

40,

41.

42,

43.

44.

45.

~195-

Dijkstra, E. 'Solution of Problems in Concurrent Program
Control', Communications of the ACM, Vol.8, No.9, 569 pages,
Sept. 1965,

Dijkstra, E. 'Cooperating sequential Processes', in F, Genuys
(Editor), Programming Languages, New York: Academic Press,
pp. 45-112, 1968,

Fratta, L. and Montanari, U, 'A Boolean Algebra Method for
Computing Terminal Reliability of Communication Networks',
IEEE Trans. Circuit Theory, Vol,CT-20, pp 203-211, May 1973.
Furtek, F. 'Modular Implementation of Petri Nets', Master's
Thesis, Dep. Elec. Engg., MIT, Cambridge, 136 pages, Sept.
18971,

Furtek, F. 'A New Approach to FPetri Nets', Computation Struc-
ture Group Memo 123, Project MAC, MIT, Cambridge, 26 pages,
April 1975,

Genrich, H, 'The Petri Net Representation of Mathematical
Knowledge', Internal Report 76-5, Institut fiir Informations
System for Schung, Gesellschaft flir Mathematik und Detenver-
arbeitung, Bonn, West Germany, 50 pages, May 1976.

Genrich, H. and Lautenbach, K, 'Synchronisationsgraphen!,
Acta Informatica, Vol.2, No.2, pp 143-161, 1973,

Genrich, H, and Lautenbach, K, 'Facts in Place/Transition-
Nets', Lecture Notes in Computer Science, Vol,64, Berlin:
Springer-Verlag, pp.213-231, Sept. 1978.

Glushkov,V.M., 'Automata Theory and Formal Microprogram
Transformations', Kibernetica, Vol.l, No.5, pp 1-9,

1965.



46,

47.

48,

49.

50,

51,

52.

5%

54.

~196-

Glushkov, V,M, 'Minimization of Microprograms and Algorithm
Schemes', Kibernatica, Vol.2, No.5, pp. 1-3, 1966,

Grasselli, A. and Montanari, U. 'On the Minimization of Read
Only Memories in Microprogrammed Digital'Computers', IEEE
Trans. Comput., Vol.C-19, pp 1111-1114, Nov. 1970,

Haberman, A,N, 'Synchronization of Communicating Progesses’,
Communication ACM, Vol.15, No.3, pp 171-176, March 1972,

Hack, M, 'Analysis of Production Schemata by Petri Nets',
Master's Thesis, Dep, Elect. Engg., MIT, Cambridge, 119 pages,
Feb. 1972, Al=o Technical Report 94, Project MAC, MIT, Feb,
172

Hack, M, 'The Equivalence of Generalized (Multiple-Arc) Petri
Nets and Ordinary (Single-Arc) Petri Nets!, Computation
Structures Group Note 9, Project MAG, MIT, April 1973.

Hack, M. 'Extended State-Machine Allocatable Nets (ESMA), an
Extension of Free Choice Petri Net Results', Computation
Structures Group Memo 78-1, Project MAC, MIT, 33 pages, May
LY

Hack, M., 'A Petri Net Version of Rabin's Undecidability Proof
for Vector Addition Systems', Computation Structures Group
Memo 94, Project MAC, MIT, 12 pages, Dec., 1973.

Hack, M. 'Decision Problems for Petri Nets and Vector Addition
Systems', Computation Structures Group Memo 95-1, Project MAC,
MIT, 79 pages, Aug.1974. Also Technical Memo 59, Project MAC,
MIT, 79 pages, March 1975.

Hack, M, 'The Recursive Equivalence of the Reachability

Problem and Liveness Problem for Petri Nets and Vector



55.

56,

57

58,

25

60.

T

2l G

Addition Systems', Computation Structures Group Memo 107,
Project MAC, MIT, 9 pages, Aug., 1974. Also Proc., of the 15%h
Annu. Symp. on Switching and Automata Theory, New York: IEEE
pp 156-164, Oct. 1974.

Hack, M, 'Petri Net Languages', Computation Structures Group
Memo 124, Project MAC, MIT, 128 pages, June 1975. Also
Technical Report 159, Laboratory for Computer Science, MIT,
128 pages, March 1976,

Hack, M, 'Decidability Questions for Petri Nets?', Ph,D,
Dissertation, Dep. Elec. Engg., MIT, 194 pages, Dec. 1975.
Also Tech. Report 161, Laboratory for Computer Science, MIT,
194 pages, June 1976,

Halatsis, C. and Gaitanis, N, 'On the Minimization of Control
Store in Microprogram Computers', IEEE Trans. Comput., Vol,
C-27, pp. 1189-1192, Dec. 1978,

Hansler, E. 'A Procedure for Calculating the Reliability of s
Communication Network', IEEE Trans. Rel. Vol.R-25, pp 573-575,
Bes, 1971,

Hebalkar, P. 'Deadlock Free Shering of Resources in Asynchro-
nous oSystems', Ph,D, Dissertation, Dep. Elec. Engg,, MIT, 185
pages, Sep., 1970. Also Tech. Report 75, Pre jeoct MAG, MIT, 185
pages, Sep. 1970.

Holt, A. and Commoner, F, 'Events and Conditions', Record of
the Project MAC Conf., on Concurrent Systems and Parallel
Computation, New York: ACN, Pp.l-52, June, 1970,

Holt, A., Saint, H,, Shapiro, R, and Warshall, S, 'Final

Report of the Information System Theory Project', Tech. Report



62.

-

64,

i1

66,

670

68,

69,

~198-

RADC-TR-68-305, Rome Air Development Centre, Griffiss pir
Force Base, New York, 352 pages, Sept., 1968,

Huen, W. and Siewiorek, D. 'Intermodule Protocol for Register
Transfer Level Modules: Representation and Mnalytic Tools',
Proc. of the Second Annu, Symp. on Computer Architecture,

New York: ACM, pp 56-62, Jan. 1975,

Hura, G.S,, Khan, A.A., Grover, D., Singh, H. and Nanda, N.K.
'Optimization of Assembly Code Generation Using Petri Nets',
Int. Journal of Electroniecs, Vol.49, No.5, pp. 427-431, Nov.
1908,

Izbicki, H, 'Report on Marked Graphs', Tech. Report 25-136,
IBM Vienna Laboratories, Vienna, Lustria, 37 pages, April 1973,
Jackson, L.W, and Dasgupta, S, 'The Identification of Parallel
Microgperations', Information Processing Letters, Vol.2, pp.
180~184, April 1974.

Jayasri, T. and Basu, D, 'An Approach to Organized Micro-
instruction which Minimizes the Width of Control Store Words',
IEEE Trans. Comput., Vol,C-25, pp 514-521, May 1976.
Johnsonbaugh, R., Kao, M.C. and Murata, T, 'Additional
Transformations of Live and Safe Marked Graphs', Proc. 17th
Annu., Allerton Conf, on Commun,, Control, and Computing, pp.
387-396, Oct, 1979,

Jump, J.R. 'Asynchronous Control Lrrays', IEEE Trans. Comput.,
Vol.C-23, No.10, pp. 1020-1029, Oct. 1974.

Karp, R, and Miller, R, 'Parallel Program Schemata', J1, of
Computer and System Science, Vol.3, No.4, pp 167-195, May 1969,



10,

71.

Th &

-

T4,

75

76,

-.199-..

Keller, R, 'Vector Replacement Systems: A Formalism for
Modeling Asynchronous Systems', Tech. Report 117, Computer
Science Laboratory, Princeton Univ,, New Jersey, 57 pages,
Jan, 1974,

Khan, A.A. and Singh, H, 'Petri Net LApproach to Enumerate A1l
Simple Faths of a Graph', Electronic Letters, Vol.1l6, Ho.8,

Pp 291-292, 10th April 1980.

Khan, A.A., Hura, G.S., Nanda, N,K, and singh, H, "4 Petri Nat
Approach to Compute the Terminal Reliability of a Comnmunication
Network', Proc. Pacific Telecommunication Conf., Honolulu,
Hawaii, pp 45-13 to 45-17, 12-14 Jan. 1981.

Khan, 4.4,, Hure, &.S5., 8ingh, H, and Nanda, N.K. 'On the
Determination of the Solution of a Class of Murata's State
Equation of Petri Nets', Proc, ILEE, Vol.69, No.4, pp 466467,
April 16481,

Khan, A.A, and Singh, H. 'A Method for Pnumerating Maximal
Compatible Classes of Microcommands Using Petri Nets', Int, J,
Zlectronics, Vol.50, No.3, pp 231-234, March 1981.

Khan, A.A,, Hura, G.S., Singh, H. and Nanda, N.K., 'State
Equation Representation of Logic Operations Through a Petri

Net', Proc, IEEE, Vol, 69, No.4, pp 485-487, April 1981.

Khan, A.A. and Singh, H., 'Optimal Intercommnections in the
Design of Microprocessors and Digital Systems through Petri
Net', Accepted for Presentation in 10th IFIP Conf. on Sy stem

Modeling and Optimization, Aug. 31 to Sep. L, 1GHT



.

78,

79.

80.

81.

B2,

83.

84,

Bhe

~200~

Hm, Y.EK,, Casa, X, and Ghare, P.M. 'An Algorithm for
Computing Complex System Reliability', IEEE Trans. Rel., Vol,
B=21; Bo:4, pp-215=219, Nov. 1972,

Kleir, R.L. and Ramamoorthy, C.V, 'Optimization Strategies for
Microprogramms', IEEE Trans. Comput., Vol.C-20, pp 783-794,
July 1971,

Kodres, U.R., 'Discrete Systems and Flow Charts', IEEE Trans.
Software Engg., Vol.SE-4, pp.521-525, Nov., 1978.

Kohavi, Z, 'Switching and Finite Automata Theory', McGraw Hill,
New York, 1970.

Kosarju, S. 'Limitations of Dijkstra's Semaphore Primjtives
and Petri Nets', Operating System Review, Vol.7, No.4, pp 122-
126, Go%: 197

Lautenbach, K, 'Liveness in Petri Nets', Internal Report
ISF-75-02,1, Institut fiir Informationssystemforschung,
Gasellschaft fiir Mathematik und Datenverarbeitung, Bonn, West
Germany, 33 pages, July 1975,

Laxntenbadk, K, and Schmid, H. "Ude of Petrl Nefs for Ifoving
Correctness of Concurrent Process Systems', Proc. of the 1974
IFIP Congress on Information Processing 74, pp 187=191, Aug.
2871

Lien, Y. 'Termination Properties of Generalized Petri Nets',
SIAM J1. of Computing, Vol. 5, No.2, pp 251-265, June 1976,
Mathialagan, A, and Biswas, N.N, 'Optimal Interconnections in
the Design of Microprocessor and Digital System', IEEE Trans.
Comput., Vol.,C-29, pp 145-149, Feb., 1980,



86,

87,

88.

89.

90,

L.

92.

Py

94.

95.

-201-

Mathialagan, A. and Biswas, N,N, 'Bit Steering in the Minimi-
zation of Control Memory in Microprogrammed Digital Compu texs',
IEEE Trans. Comput., Vol.C0-30, No.2, Pp.144-147, Feb, 1981,
McCabe, T,J, 'A Complexity Measure', IEEE Trans. Software Eng.,
Vol. SE-2, pp. 308-320, Dec.,1976.

McClure, R.M, 'Parallelism in Microprogrammed Controls', Proc,
Int. -Adv, Summer Inst. Microprogramming, Herman, Paris, pp 307~
27, 1972,

Meldman, J, and Holt, A, 'Petri Nets and Legal Systems',
Jurimetics J1., Vol.l2, No.2, pp 65-75, Dec. 1971.

Merlin, P, 'A Study of the Recoverability of Computing Sy stems!,
Ph.D. Dissertation, Dep. Inf.»and Comp. Sc., Univ, California,
Irvine, California, 181 pages, 1974, Also Technical Report 58,
Dep. Inf, and Comp. Sc., Univ, California, 181 Pages, 1974,
Merling B, TA Methodology for the Design and Implementation
of Communication Protocols', IEEE Trans. Commun., Vol,COM-24,
No.6, pp 614-621, June 1976.

Merlin P, and Farber, D, 'Recoverability of Communication
Protocols - Implications of a Theoretical Study', IEEE Trans.
Commun,, Vol., COM-24, No.9, pp 1036-1043, Sep. 1976.
Mischenko, A.T., 'The Formal Synthesis of an Automaton by a
Microprogram I, Kibernetica, Vol.4, No.3, pp 24-31, 1968.
Mischenko, A.T, 'The Formal Synthesis of an Automaton by a
Microprogram II!', Kibernetica, Vol.4, No.5, pp 21-27, 1968
Misunas, D. 'Petri Nets and Speed Independent Design', Comm,

ACM, Vol, 16, No,8, pp 474-481, Aug. 1973,



96,

97.

98.

99.

100.

101.

102,

103-

104.

Montangero, C., 'An Approach to the Optimal Specification of
Read Only Memories in Microprogrammed Computers', IEEE Trans,
Comput, Vel., C=23, pp 575-389, April 1974.

Murata, T. 'State Equations, Controllability and Maximal
Matchings of Petri Nets', IEEE Trans, Aut. Cont., Vol,AC-22,
No.3, pp 412-416, June 1977.

Murata, T. 'Petri Nets, Marked Graphs, and Circuit-System
Theory', IEEE Circuits and Systems Society Newsletter , Vol.ll,
No.3, pp 2=12, June 1977.

Murata, T. 'Circuit Theoretic Analysis and Synthesis of
Marked Graphs'!, IEEE Trans, Circuits and Systems, Vol.,CAS-24,
No.7, pp 400-405, July 1977.

Murata, T, 'Relevance of Network Theory to Models of
Distributed/Parallel Processing', Proc. of the 1979 Int.
Colloquium on Circuits and Systems, Taiepei, Taiwan, 24-25
July 1979,

Murata, T, 'Synthesis of Decision~Free Concurrent Systems for
Prescribed Resources and Performance', IEEE Trans. Software
Engg., Vol,SE-6, No.6, pp 524-530, Nov. 1980.

Murata, T, and Church, R, 'Analysis of Marked Graphs and Petri
Nets' by Matrix Equations'!, Research Report MDC 1.1.8., Dept.
Inf., Engg., Univ. Illinois, Chicago, Nov. 1975.

Marata, T. and Koh, J.,Y. 'Reduction and Expansion of Live and
Safe Marked Graph', IEEE Trans, Circuits and Systems, Vol.
CAS-27, No.l, pp 68-70, Jan. 1980,

Nelson, A.C,, Batts, J.R. and Beadles, L.R. 'A Computer
Program for Approximating System Reliability, IEEE Trans. Rel,
Vol.R-19, pp 61-65, May 1970. .



=2

105. Noe, J. 'A Petri Net Model of the CDC 6400', Proc. ACM SIGOPS
Workshop on System Performance Evaluation, New York: ACM,
pp 362-378, April 1971.

106, Noe, J, 'Pro-Nets : For Modeling Processes and Prooessers’;
Technical Report 75-07-15, Dep. Comput, Sc.,; Uniw. Washington,
Seattle, July 1975.

107. Noe, J, 'Nets in Modeling and Simulation', Adv. Course on
General Net Theory of Processcs and Sy stems, Hamburg, Oct.1979,
Also Lecture Notes in Computer Science, Berlin: Springer-
Verlag, 1980,

108, Noe, J, and Kehl, T. 'L Petri Net Model of a Modular Miecro-
programmable Computer (LMZ)', Technical Report 75-09-01,
Comput. Sc. Dep., Univ, Washington, Secattle, 23 pages, Sept.
LD

109. Noe, J. and Nutt, G. 'Macro E-Nets for Representation of
Parallel Systems', IEEE Trans, Comput., Vol.C-22, No.8,

Pp T18=727, Aug,., 1973.

110, Nutt, G, 'The Formulation and Application of Bvaluation Nets!,
Ph.D. Dissertation, Comput. Se. Group, Univ. Washington,
Seattle, 181 pages, July 1972. Llso Tech. Report 72-07-02,
Comput, Sc. Group, Univ. Washington, Seattle, 170 pages,

July 1972,

111. Nutt, G, 'Evaluation Nets for Computer Systems Performance
Analysis', Proc. of the 1972 Fall Joint Comput. Coml o
Montvale, New Jersey: AFIPS Press, pp 279-286, Dec. 1972.

112, Pacas, S, 'A Design Methodology for Digital Systems Using
Petri Nets', Ph,D, Dissertation, Univ, Texas at Austin,

Austin, 1979, v



-204-

113, Patil, S. 'Coordination of Asynchronous Events', Ph.D,
Dissertation Dep. Elect. Engg,, MIT, Cambridge, 234 pages,

May 1970, ALlso Tech, Report 72, Project MLC, MIT, 234 pages,
June 1970,

114, Patil, S. 'Closure Properties of Interconnections of Deter-
minate Systems', Record of Project MAC Conf. on Concurrent
System and Parallel Computation, New York : LCM, pp 107-116,
June 1976,

115. Patil, S, 'Limitations and Capabilities of Dijkstra's Semaphore
Primitives for Coordination among Processes', Computation
Structures Group Memo 57, Project MAC, MIT, 18 pages, Feb.1971.

116. Patil, S. 'Circuit Implementation of Petri Nets', Computation
Structures Group Memo 73, Project MAC, MIT, 14 pages, Dec.1972.

117. Patil, S. 'Micro-Control for Parallel Asynchronous Computers’,
Computation Structures Group lemo 102, Project MAC, MIT,

March 1975.

118, Patil, S. and Dennis, J. 'The Description and Realization of
Digital Systems', COMPCON 72 : Sixth Annu. IEEE Computer
Society Int. Conf. Digest of Papers, New York: IEEE, pp 223~
286, Oct. 1972.

119, Peterson, J. 'Computation Sequence Sets', Jl. of Computer and
SFetem Sclence, Vol.l3, No.l, pp, 1~24, dug. 1976,

120, Peterson, J. 'Petri Nets', Computing Surveys, Vol.9, No.3,

Fhe 223=252, Sept, 1977,
121, Peterson, J. 'Petri Net Theory and Modeling of Systems',

Frentice—Hall Inec., April 1981,



~205-

122, Peterson, J. and Bredt, T. 'L Comparison of Models of Parallel
Compution', Inf, Processing 74, Proc. of the 1974 IFIP Congress,
imsterdam, North-Holland, pp 466-470, fug.l1974.

123, Petri, C. 'Kommunikation mit Lutomaten', Ph,D, Dissertation,
Univ. Bonn, West Germany, 1962, 4Also MIT Memorandum M4iC-M-212,
Project MLC, MIT, Also Clifford F, Greene, Jr. (Translator)
'Communication with Lutomata', Supplement 1 to Tech., Report
RADC-TR~-65-379, Vol.l, Rome Lir Development Centre, Griffis
Lir Force Base, New York, 89 pages, Jan., 1966,

124, Petri, C, 'Introduction to General Net Theory', Lecture Notes
in Computer Science, Berlin: Springer-Verlag, 1980.

125, Ponstein, J. 'Self-Avoiding Paths and Adjacency Matrix of a
Graph', SILM, Vol.l4, pp 600-609, 1966,

126, Postel, J. 'k Graph Model inalysis of Computer Communications
Protocols', Ph.D, Dissertation, Comput. Sc. Dep., Univ,
California, Los %ngeles, 191 pages, 1974.

127. Postel, J. and Farber, D, 'Graph Modeling of Computer
Communications Protocols', Proc, of the 5th Texas Conf. on
Computing Systems, Univ. Texas, Lustin, pp 66-77, Oct. 1976,

128, Ramamoorthy, C.V., and Ho, G.S, 'Performance Evaluation of
Concurrent AsynchronousvSystems by Petri Nets', Proc. of
COMPSLC '79, Chicago, Nov. 1979,

129. Ramamoorthy, C.V. and Tsuchiya, M., 'A High Level Language for
Horizontal Microprogramming', IEEE, Trans. Comput., Vol,C-23,

NO.8, pp 791"‘801’ .&Axug- 1974‘.



~206-

130, Ramchandani, C. 'inalysis of Lsynchronous Concurrent Sy stems
by Petri Nets', Ph.D. Dissertation, Dep. Elect. Engg., MIT,
Cambridge, 219 pages, July 1973. Also Tech. Report 120,
Project MAC, MIT, 219 pages, Feb, 1974.

131. Reddi, S,S. '4 Parallel Gomputer with Centralized Control!,
IEEE Comput. Soc. Repository, R 76-22, Feb., 1976,

132, Roberston, E.L. 'Microcode Bit Optimization is NP-Comp
IEEE Trans, Comput., Vol.C-28, pp 316-319, April 1979.

133. Rubin, F, 'Enumerating All Simple Paths in a Graph', IEEE
Trans., Circuits and Systems, Vol,CiS-25, No.8, pp 641-642,
1378,

154, Schneidewind, N,I., 'Application of Program and Complexity
inalysis to Software Development and Testing'!, IEEE Trans.
Rel. Vol,R-28, pp 192-198, lLug. 1979.

135, Schwartz, S.J, 'Ln 4slgorithm for Minimizing Read Only Memories
for Machine Control', Proc., 9th innu. Symp. Switching and
fiutomata Theory, pp. 28-33, 1968,

136, Shapiro, R. and Saint, H. 'L New Approach to Optimization of
Sequencing Decisions', innu, Review in Lutomatic Programming,
Vol. 6, Part 5, pp 257-288, 1970.

137. Sifakis, J. 'Structural Properties of Petri Nets', Lecture
Notes in Computer Science, Vol.64, Berlin : Springer-Verlag,
pp 474-483, Sept. 1978.

138, Singh, H,, Khan, AL.i., Grover, D. and Nanda, N.K. 'On Petri
Net A4Lpproach to Computer Hardware and Software', 3rd Polish-
English Seminar on Real-Time Process Control, Warsaw, Poland,

pp 300-311, 20-23 May, 1980, .



-207-

139. Sitton, W.G. and Tartar, J, 'Deletion of Non-Essential Micro-
operations', Proc. 22nd Texas Conf. on Computing Systems,
pp 16,1-16,7, Nov. 1973,

140, Stabler, E.P, 'Microprogram Transformations', IEEE Trans.
Comput., Vol.C-19, No.,10, pp 908-916, Oct. 1970.

141, Tabendeh, M, and Ramamoorthy, C,V. 'Execution Time (and Memory )
Optimization in Microprograms', Proc. 7th Annu, Workshop on
Microprogramming, Palo Atlo, CL, Sept. 30- Oct.2, 1974,

142, Thieler-Mevissen, G. 'The Petri Net Calculus of Predicate
Logic', Internal Report ISF-76-09, Institut fir Informations-—
systemfor schung, Gesellschaft fiir Mathematik und Datenverar-—
beitung, Bonn, West Germany, 60 pages, Dec. 1976.

143, Thorton, J. 'Design of a Computer : The Control Data 6600,
Scott, Foresman and Co., Glenview, Illinois, 181 pages, 1970,

144, Tokoro, M, et al. 'An Approach to Microprogram Optimigzation
Considering Resource Occupancy and Instruction Formats', Proc,
10th /innu. Workshop on Microprogramming, pp 92-108, 1977.

145, Torng, H.C. and Wilhelm, N,.C., 'The Optimal Interconnection of
Circuit lModules in Microprocessor and Digitel System Design',
IEEE Trens. Comput., Vol,C-26, No,5, pp 450-457, May 1977.

146, Tsuchiya, M, and Jacobson, T. 'in Algorithm for Control Memory
Minimization', Proc. 8th Annu. Workshop on Microprogramming,
pp 18-25, 1975.

147, Valette, R. 'knalysis of Petri Nets by Stepwise Refinement;
Jl. of Computer and System Sciences, Vol.1l8, No.l, pp 35-46,
Feb. 1979.



1480

149.

15@,

151.

152a

L33,

154,

= JI8

Valette, R, and Diaz, M. 'Top~Down Formal Specification and
Verification of Parallel Control Systems', Digital Processes,
No.4, pp 181-199, 1978,

Warshall, S, 'A Theorem on Boolean Matrices', Jl, 4CM, Vol.19,
Pp. 11-12, 1962,

White, G.,M. 'Modeling of Minicomputer I/0 Devices by Petri
Nets', Symposium on Mini and Miero Computers in Canada, 1976.
Wilkes, M,V, 'The Beet Way to Design an ALutozatic Calculating
Machines', Proc, Manchester Univ. Comput. Inaugur. Conf,.

pp 16-18, 1%1.

Wilkes, M.V. and Stringer, J,B, 'Microprogramming and the
Design of Control Circuits in an Electronic Digital Computer',
Proc. of the Cambridge Philosophical Society, 49, Part 20,

pPp 230-238, Lpril 1953,

Wilkes, M.V,, Renwick, W. and Wheeler, D, 'The Design of
Control Unit of an Electronic Digital Computer', Proc. 1EE,
Vol.105, Part B, pp 121-128, 1958,

Yau, S,8., Schawe, A.0. and Tsuchiya, M. 'On Storage Optimi-
zation of Horizontal Microprograms', Proc. 7th innu. Workshop

on Microprogramming, pp 98-106, 1974,



	PETRI NET APPROACH TO DESIGN AND DEVELOPMENT OF MODERN COMPUTER SYSTEMS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF SYMBOLS
	CHAPTER-1 INTRODUCTION AND STATEMENT OF THE PROBLEM
	CHAPTER-2 CRITICAL REVIEW AND GENERA! CONSIDERATIONS OF PETRI NET
	CHAPTER-3 CRITICAL REVIEW AND GENERA! CONSIDERATION OF MICROPROGRAM  OPTIMIZATION
	CHAPTER-4 ON THE DEVELOPMENT OF PETRI NET THEORY
	CHAPTER-5 ON THE APPLICATION OF PETRI NETS TO COMPUTER HARDWARE AND SOFTWARE
	CHAPTER-6 PETRI NET APPROACH TO DEVEPLOMENT OF MICROPROGRAMMED COMPUTER
	CHAPTER-7 SUMMARY AND CONCLUSIONS
	BIBLIOGRAPHY

