
V

81

PETRI NET APPROACH TO DESIGN AND

DEVELOPMENT OF MODERN

COMPUTER SYSTEMS

A THESIS

submitted in fulfilment of the requirements

for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

ELECTRONICS & COMMUNICATION ENGINEERING

By

ALI ATHAR KHAN

*• \\

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

UNIVERSITY OF ROORKEE

ROORKEE-247672 (INDIA)

September, 1981

*

Candidate's Declaration

I hereby certify that the work which is being presented in the
thesis entitled PETRI NET APPROACH TO DESIGN AND DEVELOPMENT
OF MODERN COMPUTER SYSTEMS in fulfilment of the requirement for the
award of the Degree of Doctor of Philosophy, submitted in the Department of
Electronics & Communication Engineering of the University is an authentic
record of my own work carried out during a period from August 1978 to
July 1981 under the supervision of Dr. Harpreet Singh, Professor
Electronics & Communication Engineering, University of Roorkee.

The matter embodied in the thesis has not been submitted by
me for the award of any other dagree.fcotKSs8

Ho. Eil

This is to certif

is correct to the best of

Date: £*f*-l2* t9ff

,'.\b^6

e above statement made by the candidate
nowledge.

\S,xeJ»-

(AM Athar Khan)

T^f
(Harpreet Singh)
Professor of Electronics &

Communication Engineering
University of Roorkee
Roorkee (India)

m

ABSTRACT

Petri nets (PN) have aroused considerable interest

during the recent years as a model, primarily to represent
and study concurrent systems. This thesis deals with the PN

approach to design and development of modern computer systems.

In particular several aspects of the development of PN theory,
its applications to some problems of computer systems and to

the problem of optimization in microprogrammed computers have
been proposed.

Much of the available work on PN is scattered over

various reports, dissertations and journals. The review chapter
brings together the existing literature in a coherent manner

so as to aid a reader in subsequent chapters.

The design and development of a system demand that a

knowledge about' bhe model be known .For this reason, the
reachability tree technique and state equation for Petri nets

have been proposed by earlier researchers. However, there are
many unsolved problems in PN theory. For example, analysis of

large PN i s generally cumbersome or even impracticable. It is

possible to build complex nets with desired properties from
smaller nets, the analysis of which can easily be managed.
This involves interconnection of nets. It is shown in this

thesis how smaller nets could be connected in cascade or in

parallel to preserve same properties. 4 state equation approach
has been exploited for this purpose.

(iv)

Another well-known problem concerning the analysis of

PN is the lack of information of firing sequences and existence

of spurious solutions of corresponding state equations. This

problem is studied and an algorithm is proposed to find minimal

legal firing sequenc.es to transform a given marking into another

given marking.

It is a well established fact that PN can not model, as

such, systems in which interruption or priorities are involved.

Many extensions have earlier been proposed but they are either too

specific or provide inadequate analysis technique. In this thesis

such limitations in modeling capabilities of PN are overcome by

proposing an inventor transition in which the token at output

place is the complement of the token at input place. All the

logic operations have been modeled by PN with additional invertor

transitions. To analyse these, a generalized state equation is

developed. It is also shown that state equation of PN proposed

earlier by Murata is a special case of generalized state equation.

The state equations of Petri net appear to be very power

ful. Many problems of computer science, for example, the enume

ration of simple paths between two modes of graph, the terminal

reliability of a computer network and program complexity

evaluation are formulated in the framework of state equations

and solutions for them proposed.

Of significant importance in the design of microprogrammed

computers are microprogram optimizations. They are called for

to reduce the cost of the system and to increase the efficiency.

(v)

In this thesis, only bit optimization in control memory and

data path optimization are taken up because of their practical

utility. In the bit optimization all the maximal compatible

classes of microcommands are generated using the PN state

equation. From the se^ minimal bit solutions are obtained. The

possibility of further reduction in bits, is also looked into

by employing bit steering through extended PN concept.

Two approaches are proposed in this thesis to solve the

problem of data path optimization. In the first approach the

concept of invariance in PN is employed and solutions which

include all the minimal cost solutions, are obtained. In the

second approach the problem is reformulated in PN domain. The

places of PN are then merged according to defined rules and

minimal cost solution obtained.

Finally, the results are summarized and some suggestions
alongwitii critical discussions for further work are given.

(vi)

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude

to his advisor, Prof. Harpreet Singh for his excellent

guidance and fincouragement without which it would have been

rather impossible to carry out this research.

Special acknowledgment is due to Dr. N.K. Nanda for

his keen interest and fruitful technical discussions.

Thanks are also due to Aligarh Muslim University,

Aligarh for sponsoring the author under Quality Improvement

Programme to persue this research and the Government of

India , Ministry of Education for financial support.

The author is very much grateful to Ms parents, wife
and children who have been a constant source of inspitation
and encouragement.

Finally, the author is thankful to his friends and

colleagues for extending their help directly or indirectly,
during this work.

Thanks are also due to Mr. Darshan Lai Jaggi for

his efficient typing of the thesis.

Chapter

II

(vii)

TABLE OF CONTENTS

Page

LIST OF SYMBOLS
xi

INTRODUCTION .

1.1 Introduction -,

1.2 Advantages of Petri Nets 2
1.3 Limitations of Petri Nets ^
l.lf Extension of Petri Nets n

1*5 Statement of the Problem 3
1.6 Organization of the Thesis 9

CRITICAL REVIEW AND GENERAL CONSIDERATION
OF PETRI NETS 13

2.1 Introduction -jo
2.2 Historical Review ^
2.3 What are Petri Nets ?]_g
2.^ Modeling with Petri Nets 2h

2.^.1 Modeling of Hardware 25
2. ^-.2 Modeling of Software 26
2.^.3 Speed Independent Circuits 27

2.5 Subclasses of Petri Nets

2.5.1 Marked Graph
2.5.2 State Machines

2.5.3 Free-choice Petri Nets

2.5."If Pure or Restricted Petri Nets
2.5.5 Simple Petri Nets 30

2.6 Analysis of Petri Nets 32
2.6.1 The Reachability Tree 32

2.6.1.1 Limitations of
Reachability Tree 37

28

23

29

29

30

(viii)

Chapter Page

III CRITICAL REVIEW AND GENERAL
CONSIDERATION OF MICROPROGRAM
OPTIMIZATION l^n

3-1 Introduction l^n
3.2 Basic Concepts of Microprogramming 50
3.3 Strategies of Optimization 5^

3»3»1 Bit Optimization ^
3.3.I.I Schwartz s Algorithm 57
3.3»1»3 Grasselli and Montanari's

Al gori thm 57
3.3.I.3 Linear Programming Methods 58
3.3.1.if CM Cover Table Method 59
3.3.I.5 Branch and Bound Method 59
3»3» 1.6 Montangero's Algorithm 60
3.3'1.7 Bit Steering in Bit

Reduction 61+

3.if Data Path Optimization 66
3•^l Interconnection Buses 67
3.^.2 Dynamic Programming Approach 68
3»^«3 Switching Theoretic Approach 70

3.5 Conclusion 03

IV ON THE DEVELOPMENT OF PETRI NET THEORY ->^
if.l Introduction nc

if. 2 Interconnection and Decomposition of
Petri Nets ?6
if. 2.1 Interconnection Properties 78
if. 2. 2 Decomposition of Petri Nets 85

if.3 Minimal Legal Firing Sequences inPetri Nets H 9]_
if.3.1 Theory Involved 92
if.3.2 Determination of Minimal Legal

Firing Sequence 9^

if.if State Equation Representation of
Logic Operations Through Petri Nets 98

Chapter

(ix)

Page

if.if.l Generalized State Equation 100
if.if.1.1 NOT Operation 101
if. if. 1.2 NAND Operation 101
if.if.1.3 NOR Operation 103
if.if.l.if EX-OR Operation 103

if. 5 Conclusion -[_06

ON THE APPLICATION OF PETRI NETS TO
COMPUTER HARDWARE MD SOFTWARE 109
5.1 Introduction 2.0Q
5.2 Enumeration of Simple Paths Between

Two Nodes of a Graph no
5*2.1 Formulation ^.n
5.2.2 Solution 112
5.2.3 Maximum Iterations Needed 115

5.3 Terminal Reliability of a Computer
Network -j.16
5-3.1 Probabilistic Graph and Determ-

-ination of Boolean Function 117
5»3-2 Determination of Disjoint Terms

in F and Probability 120
5*h Program Complexity Evaluation i26

5«if.l Complexity Metrics]_27
5*^.2 Execution Time 307

5*5 Conclusion

VI PETRI NET APPROACH TO DEVELOPMENT OF
MICROPROGRnMMEIkCOMPUTER

137

lifO

6.1 Introduction 1i 0
6.2 Bit Optimization llf0

6.2.1 Enumeration of Maximal Compatible
Classes of Microcommands 1^2
6.2.1.1 Formulation m.2
6.2.1. 2 Enumeration Procedure 11+3

6.2.2 Procedure 11+6

^

(x)

Chap ter
Page

6.2.2.1 Discussion 253
6.2.3 Bit Steering and Extended PN 156

6.3 Data Path Optimization i6if
6.3.1 1-Invariant .ipproach X65
6.3.2 pit Approach jgo

6. if Conclusion -jqq

VII SUMMARY AND CONCLUSIONS iqq
7.1 Introduction iqq
7»2 Summary of the Results iqq
7*3 Some Problems for Further

Investigation 3_gy

BIBLIOGRAPHY lgl

LIST OF SYMBOLS

A Incidence matrix

B Number of bits

Bf Fundamental circuit matrix

0± Control field i

I Number of edges

I An invariant of a PN

Initial marking of a PN

Marking after n th Firing in a PN

M(p) Number of tokens in a place p

Mc Number of microinstructions

Nc Number of microcommands

P Set of Places

|P| Nunber of places

PN Petri Net

T Set of transitions

|T| Number of transitions

V Number of vertices

W A weighted vector

Wx Number of irrendundant words in a ROM

ai;. Element of incidence matrix A

m± i th mic roi ns truc ti on

P A place

P Input transitions to place p
^o

M
o

M
n

Output transitions to place p
o o

P Set of transitions connected to place p

(xl)

t A transition

t Set of places'cooneoted to transition t

ot Input places to transition t

t Output places of transition t

W Weight of token in place p

a Forward incidence function

£ Backward incidence function

Union of sets

Intersection of sets

V For all

w A very large quantity

Cadi)

CHAPTER I

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 INTRODUCTION

Modem computer systems comprise of multiple communicating
components each of which may itself be a system. Although the
interactions between them are well defined, yet they are very
complex and the concepts relating to asynchrony and concurrency
need close examination. The direct consequence of this is both

logical and topological distribution of data, processing and
control, which makes representation and performance evaluation
results more and more difficult to obtain. Further, the difficulty
of representation and analysis of combination of hardware and
software systems has increased with the level of sophistication.
Hence in order to design a secure and analysable system, the
methodology must be able to depict in a formal way the system
specification and must help designer to prove their correctness.
In search of a formal model to do so, one finds that the tools
used for modeling sequential systems are completely inadequate.
For instance, block diagrams do represent the interconnections
that may exist between them, but give no information about where
or when these interconnections are used. Acomputer system can
also be described by comprehensive set of logical diagrams,
pertaining to the hardware, and complete listing of the code and
microcode necessary to provide system operation. But obviously,

-2-

it is too much. The conventional flow diagram becomes excessively
clumsy to represent concurrent systems when tried on multi

programming and multiprocessing. Another disadvantage with flow

diagram is the difficulty to represent combination of hardware

and operating system, as one looses sight of parallel actions

and their potential interactions. Finite state machines could be
used for representation of such systems but will lead to un

manageably large single states. These difficulties have led to

an extensive research to find a suitable model for modern

computer systems. Among various models proposed [122], Petri nets
and its subclasses [5], [97], [120], [121] have emerged as

convenient and powerful tool. They can serve as an intermediate
tool between program statement (ckt. diagram) , too complex to
analyse and block diagrams- too simple to predict behaviour of a
system. This is the prime justification for studying the appli
cation of Petri nets to design and development undertaken in this
thesis. Another significant achievement is that the knowledge
about many models used for manipulating the systems in parallel
environment is directly obtained from the study of PN. This is

mainly because several models such as computation graphs, flow
graph schemata, UCLA graph, vector addition system, vector
replacement system, etc. are either included into or are equi
valent to PN [122].

1.2 ADVANTAGES OF PETRI NETS

Petri nets find their basis in a few simple rules yet they
are very powerful and possess many advantages in modeling a system.

-3-

Some of them are?

i. Petri nets often make easier to understand overall system
which they represent because of their graphical and

precise nature of presentation.

ii. Petri nets are equally suited for representation of
hardware and software systems,

iii. Petri nets possess inherent concurrency and parallelism,

iv. Asynchronous nature of Petri nets makes them suitable

for representing real systems. In real life, events take

variable amount of time. Petri net model reflects this

variability by not depending upon a notation of time but

contains all the necessary information to define the

possible sequences of events of a modeled system.

v. Petri net execution is nondeterministic. The choice as

to which transition fires is made randomly i.e. non-

deterministically. This feature makes Petri nets to

represent real time situation where several events are

occuring concurrently and the order of occurences of
events is not unique,

vi. Petri nets can be used as heirachical model. This is

because they can be used at all levels Including networks,
register-transfer, functional, and gate etc. Interpre
tation can be varied to suit all the particular require
ments. An entire net can be replaced by a single place or
transition for modeling at more abstract level or places
and transitions may be replaced by subnets to provide more
detailed modeling.

-if-

vii. The behaviour of any system can be analysed using Petri
net theory. It can, thus, make use of high speed computers
as computational tool for modeling and analysing larger
and more complex systems than ever before,

viii. Petri nets can be synthesized using both bottom-up and
top-down approaches. Methodical design of systems with

known or easily verifiable behaviour can be done [6].

ix. Petri nets are a compromise between Modeling Power

(ability to correct and faithful representation of the

modeled system) and Decision Power (ability to analyse
and determine properties of the modeled systems).

Generally, in a model, decision and modeling powers are

conflicting. For example, finite-state model possesses very
high decision as almost all questions about the model are

answered, but has very low modeling power. On the other

hand, Turing machines have good modeling power but poor
decision power.

1.3 LIMITATIONS OF PETRI NETS

It has been found that Petri nets are too simple and
limited to easily model real systems. In PN representation of the
CDC 6if00 operating system [105],Noe has experienced many short
comings. Normally, a Petri net transition fires when all of it:
inputs satisfy AND logic. On firing a transition, each output
place gets one token. The transitions with such simple firing
rules were inadequate to represent the above. As an example,
let us consider the execution of a program ISI in operating

:s

-5-

sys^tem of CDC 6if00. This program advances a job from staging
queue to input queue if the following is satisfied*

"Job in staging queue AND only one of the conditions
(i) 'No tape required-job advances', and (ii) 'tape-
job queued until tape available' is satisfied".

Obviously this cannot be represented by AND logic only. Noe,
introduced an Exclusive-OR transition to represent this.

Figure 1.1 shows the Petri net representation of the ISI program.

No tape required Q.
job advances

Job in staging q_
queue

Tape-job queued
until tape
available

©

©

-H

_^q Job in input
^"""^ queue

Fig. 1.1 PN Representation of Advancing a Job in
Staging Queue of CDC 6if00 Operating
Systems. v " b

Such deviations from conventional transitions made it

impossible to make use of analysis techniques developed for PN.

Another point which was observed is that the tokens

represented only conditions but did not carry any attribute. No
data structure was associated with the location of nets. This
seriously hampered the transfer of data in the system. Further,
no time duration was associated with transition firing. This
created another obstacle to deal with quantitative measures such
as throughput and turn-around time.

-6-

Baer [15] faced similar difficulties in modeling a compiler
with Petri nets. He extended the PN model by the addition of OR
logic, switches and token absorbers.

Patil [115] has created a synchronization problem called
Cigarette Smokers Problem. He has shown that this synchronization
problem cannot be represented by P and Voperations on Semaphores
described by Dijkstra [38] or by Petri nets. Following Patil's
work, it was shown formally by Kosaraju [81] that Petri nets
cannot represent systems where Priori^ constraints has also to
be satisfied. He described a coordination problem of two producer/
consumer with shared channel with one producer /consumer having a
priority over other. This problem has been shown to fall outside
the domain of Petri nets. Asimilar limitation had been earlier
discovered [70]. The difficulties in PN modeling of some relatively
reasonable systems have been further demonstrated [3], [7].

It was felt that the limitation on Petri net modeling is
due to failure of a transition to react to absence of tokens
rather than only to their presence. This inability to test for a
zero marking in a place, is known as Zero Testing [70]. Petri nets
cannot test an unbounded place for zero. If the place is bounded,
zero can be tested. For a bounded place p with bounded k, a
complement place p' can be created such that M(p) +M(p') » k foP
all reachable markings. This allows to zero test M(p) by testing
if M(p') is k.

-7-

l.if EXTENSIONS OF PETRI NETS

To overcome some of the problems encountered in the Petri
net modeling of CDC 6if00 operating system, Evaluation Nets
(E-nets) have been proposed [107], [110], [ill], E-nets are
extended, interpreted model for parallel computation for per
formance evaluation and simulation. These represent an approach
towards timing information to a Petri net. However, the five
primitives proposed in E-nets proved to be too restrictive and it
was difficult to model structures with more than two inputs and
outputs for transitions. Some larger structures were developed
[109] but were still inflexible for general use. Amodification
on E-nets resulted in Pro-nets [106]. The name Pro- was sugge
sted because of the use of nets for Processors or processes.
Pro-nets were allowed with multiple arcs.

Many other extensions to Petri nets like addition of
inhibitor arcs [81], constraints [115], exclusive -OR transition
[105], Switches [15] etc. have been suggested. Invariably all of
them introduced in one way or the other, the reaction of
transitions on absence of tokens as well. But they were intro
duced, basically to solve particular problems rather than with
intention to increase the modeling capacity of Petri nets. An
extensive study on the completeness of different models with
extended Petri nets have been made by Agerwala et al. [1], [2],
[7]-[9]. It has been observed that adding 2er0 testing
allows a Petri net to simulate a Turing machine. Thus a

PN with zero testing produces a modeling scheme which can model

-8-

any system. However, many analysis questions of Petri nets become

undecidable, since they are undecidable for Turing machines.

This may perhaps be one of the reasons that analysis technique
is not, generally, available for generalized extension of Petri
nets.

In Chapter IV an invertor transition is defined which

describes a NOT operation. This facilitates the representation

of all logic operations with Petri nets alongwith invertor

transitions. To analyse, such a Petri net, a generalized state

equation is proposed. This overcomes many shortcomings in Noe's

model [105] and makes the analysis of the systems possible.

1*5 STATEMENT OF THE PROBLEM

This thesis attributes itself to the problem of Petri net

approach to the design and development of modern computer systems.

Specifically, the problems considered in this thesis can be

stated as follows•

i. To evolve efficient and reliable techniques for solving

some of the unsolved and outstanding problems in PN

theory with a view to develop a basis for PN approach to

several challenging aspects of modern computer design,

ii. To utilize the modeling of PN (particularly, state

equation representation), with a view to provide automated

tools, for formulating and solving various problems of

computer hardware and software.

iii. To exploit the use of Petri nets in design and development
of microprogrammed computers.

-9-

Though some aspects of the abo/e mentioned problems have

been studied by a few investigators, however, not much results
have been obtained. For example, as regards the first problem a
decomposition technique [I37] for analysing large Petri nets

does exist, but it is quite involved. Furthermore, only the
necessary condition for reachability [97] has been obtained. So

far as the second problem is concerned, surprisingly no work of
similar nature has appeared in the literature. For the design
of microprogrammed computers, only the conventional methods

based upon classical approaches are available.

1.6 ORGANIZATION OF THE THESIS

Petri nets are becoming increasingly popular for the
representation and analysis of system in general and computer

systems in particular. Before it can be applied effectively some
bottlenecks which appear in the theory need be removed. An

attempt has been made in this thesis, to first identify those,
and then to propose techniques for removing them.

Many problems in computer hardware and software can be

represented by PN and can be solved by similar set of equations.
Such investigation is another type of work reported in this
the si s.

Invariably every modern day computer utilizes the concept
of microprogramming. This has called for the need of optimization
in order to have a compromise between flexibility and cost. Petri
nets appear to be a natural representation for such computer
systems and can provide optimization techniques in a more

-10-

systematic and easy-to-beimplemented way. This is another aspect
which has been taken up here. It may be noted that almost no work
except from one author [136] apart from the candidate's work on
the optimization consideration of Petri net is available.

For the sake of better understanding the following arrange
ment has been adopted in the organization of this thesis.

The review of the existing literature related to Petri net
approach in computer systems has been included in the second

chapter. This chapter also contains basic concepts, important
properties and applications of Petri nets scattered over many
journals, reports and dissertations. Comments regarding the
analysis problems of Petri nets have also been given as and when
required.

Chapter III discusses the basic concepts of micro

programming, the different optimizations required therein, and
the outline of the existing techniques for them. The justifi
cation for the importance of optimizations for control bit memory
and interconnections of modules alongwith the comments regarding
the computational complexity of the available techniques has also
been made.

Chapter IV addresses to the solutions of some important
problems in PN theory. First of all an investigation for the
interconnection and decomposition properties of Petri nets has
been carried out and useful results obtained. Anew and computa
tionally better technique for decomposition is also proposed.
Another important aspect involved in the theory is that of
reachability because many properties of PN are directly dependent

-11-

upon it. Therefore, it is imperative that an efficient algorithm
for solving reachability problem be devised. In this direction a
technique has been formulated through the determination of minimal
legal firing sequences which transforms one marking into another.
Furthermore, to increase modeling capabilities of a PN, an
invertor transition has been proposed. This takes care of

negation operation often encountered in systems. The analysis
technique of PNs having such transitions has also been presented
in this chapter. This technique not only allows the representation
of all the logic operations by Petri net, but makes possible the
analysis of many computer systems incorporating those operations.
Many examples are taken up for explanation purposes.

Chapter Videntifies some of the classes of state equation
for Petri nets, which can solve many problems in computer hardware
and software by the same technique. The proposed classes take
care of the problems of enumeration of simple paths between two
nodes of a graph, terminal reliability of a computer network,
program complexity evaluation, and determination of maximal

compatible classes (MCCs) of microcommands in control memory bit
optimization. Anovel technique for the solution of state equation
of different classes is proposed and its superiority established
by using examples considered by earlier researchers.

In Chapter VI, the application of PN to the design and
development of microprogrammed computers is explored. Parti
cularly, the optimizations involved therein have been studied.
This is entirely a new approach. The control memory bit optimi
zation is obtained first by enumerating all MCCs via PN

-12.

application and then putting the corresponding „ierocommands m
different blocks so as to yield optimal solutions, from these
solutions the number of bits are further reduced by exploiting
the concept of bit steering [10] through extended Petri net.
Advantages of the proposed technique over the existing methods
have been highlighted. An example considered by many investi
gators, has been reconsidered to show the utility of the proposed
technique. Another problem i.e. optimization of data path has
been solved by first representing the data transfers among
modules of the system by a Petri net and then by defining and
applying the concept of merglng-in of places. The proposed method
is simple and requires less computational efforts. Acomparison
of this is made with the existing methods by way of a numerical
examples considered earlier [85].

Asummary of the work done has been given in Chapter VII.
Abrief outline for further work has been included in this chapter,

CHAPTER II

CRITICAL REVIEW AND GENERA! CONSIDERATIONS OF PETRI NET

2.1 INTRODUCTION

Petri nets have emerged in the last decade into a very

powerful and suitable model to represent, analyse and synthesise

a very large and interesting class of systems exhibiting con

currency. This is because Petri nets can provide with a minimal

amount of effort, a simple, natural and easy-to-understand

representation. Research on Petri nets have focusged on the

representation of computer hardware [5], [3!+], [62], [100], [103]

[120], [121], computer software [51-1.7], [15], [16], [20], [28],
[83], [105], [120], [121], [I36], speed independent circuits

[95], [112], [113], [118], production schemata [60], communi
cation protocols [90]-[92], [100], [126], [127], asynchronous

arrays [63], [117], [131]? performation evaluation of computer
systems [IO9], [ill], formal language theory [19], [29], [^],
[119], legal systems [89], mathematical knowledge [if2], [1*9],
propositional calculus [Mf], [Ik2] etc. Analysis and synthesis

of Petri nets and their subclasses with a motivation to provide

some properties of the modeled system, is another area which

has received a larger attention from researchers [6], [7], [11]
[21], [26], [27], [>33, W], [W9l, [60], [67], [68], [83], [97]-
[1°3], [13 6], [lHf], [1^8]. Research has also been carried out
to increase the modeling capability of Petri nets [1], [2], [7],

-14-

C8], [9], [15], [81], [105], [115]. There is an ever-increasing
interest in Petri nets as is evidenced by the abundance of recent
work reported in most of the major conferences in the area of
computers and information processing. Acritical survey of the
work done in this field is embodied in this chapter.

2-2 HISTORICAL REVIEW

The theory of Petri nets was originated in C.A. Petri's
dissertation ' Kummunication mit Automated [12'3] in Germany. In
his thesis, starting with the concept that many events of
communication such as asynchronous and concurrent operations can
be represented by purely combinatorial - topological means, Petri
proposed a new model of information flow in systems. In I965, the
ideas of Petri received the attention of a group of researchers
led by A. Holt at Applied Data Research, Inc., U.S.A. The group
working on the Information System Theory Project [61] was
concerned with finding a proper descriptive means for modeling,
evaluating, and implementing systems. Here, it was shown how
Petri nets could be applied to concurrent systems and the concept
of Petri nets was refined and developed to such a state that it
is applicable to many areas, m fact the actual definition of
Petri nets, as used today, is due to Holt et al.[60].

The research on Petri net, at about same time, was also
carried out under Project MAC at MIT, U.S.A. Alarge contribution
was made particularly by the Computation Structure Group under
the direction of Prof. J.B. Dennis. Examples of the use of Petri

-15-

nets for the description of control mechanisms of complex
computers were given with a goal to develop automatic mechanisms
for implementing the Petri net as a digital system [31+]. Several
Ph.D. theses, M.S. dissertations, numerous reports and papers on
Petri net were produced [18], [19], [>], [35], [ifl], [l|9]f [51].
[53], [56], [113]-[116], [118], [130]. The Computation Structure
Group also organised the Project MAC Conference on Concurrent
Systems and Parallel Computation in 1970 at Woods Hole [3!*] and
the Conference on Petri Nets and Related Methods in 1975 at M.I.T.

The outcome of investigations at Applied Data Research and
MIT, and the two conferences triggered the research activity in
nature and the applications of Petri net. However, there was a
similar independent research going on in Europe, particularly at
the Institute fur Informa tions systemfor sc hung of the Gesellschaft
fur Mathematik und Detneverarbeitung in Bonn. The institute is
now involved in finding a more general and abstract theory.

Much of the work on Petri nets Is in the form of theses,
dissertations, reports and memos. These are neither widely
circulated nor readily available. The first readily available
work was by Baer [!>,]. However, this was mainly a survey of some
of the theory developed for parallel computation. Several models
including Petri nets were presented. But, there was hardly any
paper in a journal of international repute, which could communi
cate, in a coherent manner, the work done in the field of Petri
nets, m 1977 , Peterson published an excellent paper [120] which
is both a survey and tutorial on Petri nets. Another excellent

-16-

paper by Murata [98] came up the same year. This is a tutorial in

nature but aims mainly to introduce Petri nets to those who are

working in circuits and systems. These two were followed by
another paper [5] which brings together a large body of work on
useful applications of Petri nets.

It appears that interest in Petri nets is ever increasing.
Aworkshop was held in Paris in 1977. Petri is still continuing
his work and has extended the concepts in a form of general
system theory called General Net Theory [12V]. An advanced course
on General Net Theory was held in Hamburg in I979. Aspecial
interest group on Petri nets has also been formed in Germany.
Research in and application of Petri nets has become widely
popular.

Having given a brief historical review,- the concept of Petri
nets, their properties required for studying the systems modeled
and recent work in the analysis of Petri nets are discussed
further in the following sections.

2.3 WHAT ARE PETRI NETS?

Petri nets are an abstract and formal model of information
flow. The concepts, properties and techniques of Petri nets are
outcome of research by a number of people working at different
times in different places with different backgrounds and moti
vations. This has resulted in many class of Petri nets and many
concepts defined in different ways [27], [56], [60], [61], [113],
[123]. However, there seems to be no substantial difference between

-17-

between them. Each of them is a restriction, in one way or the

other, on general Petri nets. Here the most general and widely
used concepts are presented.

The representation of Petri nets is done both graphically
and mathematically. While the graphical representation of Petri

net structure is useful in illustrating the concepts, mathematical

representation is required for analysis. Both these representations
are given side by side.

A Petri Net Graph is a Directed Bipartite graph with two

types of Nodes called Places and Transitions. ACircle represents
a place and a Bar represents a transition. Directed Arcs connect

the transitions and places. Only single arc between a transition

and a place is allowed in Ordinary Petri Nets or hereafter called
Petri nets. A place p is called an Input (Output) place of a

transition t± if there exists a directed arc from (to) place j to
(from) transition t.. Fig. 2.1 is an example that represents a
Petri net graph.

These concepts are defined mathematically as follows;

Definition 2.1 ; APetri net is a quadruple N= (p, T, a, B)
wher e;

P is a set of places, P / 0

T is a set of transitions, T 4 0, P fl T = 0
a forward incidence function

P backward incidence function

a,p are binary relations with a, Bc=: P x T

field (a,S) = P (J T

-18-

Mflnition^^ ; Let N= (p, T, a, S) be a PN. We call °t (t°)
set of input (output) places of t and by analogy, °p (p°) set of
input (output) transitions of p where;

For t e T, °t ={p e P|a(p,t) * 0} and t° ={p e P|B(p,t) / 0}
For pe P, °p =(t e T|B(p,t) / 0} and p° ={t e T|a(p,t) ft 0}
The set of places (transitions) connected to a transition t

(place p) is denoted by °t° (°p°).

These notations are extended to subsets of Tand P, for example,
_ uif P..CZ: P then, °P1 = U „

1 ' 1 p, EP
k"l

o
P'k

The structure of Petri nets can also be described by their

Incidence Matrix [83], [97].

Definition 2.3 ; Let N = (P, T, a, p) be a PN, the incidence

matrix A of the PN is defined as

A= [aij]|P|*|T| **«*

1, if i th transition has an outgoing arc
to place j

aij = j -1* if ±th transition has an incoming arc
from place j

0, otherwise

The Petri net can also be defined as N = (A,).

The graphs as of Fig. 2.1 will represent only static (time-

independent) behaviour of the Petri net. In order to simulate the

dynamic behaviour, each place in a Petri net is Marked (assigned)
with a non-negative number of Tokens. The tokens are represented
by Dots in circles representing places. The token distribution in

19-

FI6- 2.1 _ A PN GRAPH

MARKED PN

(d) A MARKING SHOWING
DEADLOCK

(b) A MARKING SHOWING
CONCURRENCY

t2 and t3 fire
1 concurrently

(c) MARKING SHOWING CONFLICT
(Either {^ or t5 Can tire)

FIG- 2.2. PN SHOWING MARKING, CONCURRENCY CONFLICT
DEADLOCK AND REACHABILITY

-20-

a Petri net is called Marking or State Space or PN.

Definition ?.h r Amarking Mof a PN, N= (p, t, a, B), is a
mapping of P into IN (the set of natural integers .012...)t
D MP *. in. The number of tokens in a place pis denoted by M(p).
Amarking Mcan also be represented as a |P| x i column veotor of
non-negative integers, the j th entry of whioh denotes the number
of tokens in place j.

The dynamic behaviour of a PN is obtained by the position
and Movement of tokens i.e. change in marking. Marking of a PN
changes as a result of Firing 0f a transition. Not all transitions
can fire. Only those transitions which are Enabled can fire.
However, an enabled transition will fire only if it is asked to
do so. The firing of an enabled transition is called a Legal
nring,. The firing rules of a transition are as follows;

1. A transition is 'enabled' or 'firable' if each of its
input places contains at least one token.

2. An enabled transition will fire on application of a
control signal.

3- On firing an enabled transition, one token from each
of its input places will be removed and one token will
be added to each of its output places.

Definition?.^ , APH, N= (p, T, a, B) with a marking Mis a '
^rked_Pe^i_Net C= (P, T, a, S, M) or 0 = (A,M).

definition 2.6 : A transition t is enabled to fire if

v P e °t j M(p) > o

-21-

Firing of t in Hyields a new marking MT where t

fX{p) - 1 if p e °t, p * t°

M'(P)= <^ M(p) +l if p e t°, p t °t

^M(p) otherwise

In Fig.2.2a, as an example, only transition tj_ is enabled
to fire. When tj_ fires, the marking changes. The new marking is
shown in Flg.2.2b. The transitions t2 and tj now become firable.
Since there is no common place input to both ti, and t the two
enabled transitions do not affect one another in any way. Thus
t2 and t3 can fire Concurrently. After the firing of t2 and t
is complete, the places p? and pg will have one token each
(Flg.2.2c) enabling the transitions t^ and ty However, firing of
one mil Disable the other. This is called a Conflict. In such a
case the decision as to which transition fires is arbitrary. This
ability to represent both concurrency and conflict makes Petri
nets a very powerful modeling device.

The marking of Fig.2.2b is obtained from the marking of
Flg.2.2a by firing only one transition t^ The marking of Flg.2.2b
is called Immediately Reachable from the marking of Fig.2.2a. The
marking of Flg.2.2d is obtained by firing the transitions in
sequence t^t^ or t^t^ . The marking of Fig. 2.2d is said
to be Reachable from the marking of Fig. 2.2a. Thus,

Definition 2.y j Amarking M» is immediately reachable from M
if the firing of some t in Myields M».

-22-

i

Definition 2.8 : Amarking M' is reachable from Mif
there exists a legal firing Sequence which transforms Mto M».

Sag**0* 2'Q • ^e Reachability Set %(M) of a marked PN,
N= CP, T, a, B, M) is the set of all markings reachable from M.
Whenever there is no ambiguity R(M) will be used instead of RN(M).
^imMon^lO : The Reachability Problem is defined as:
Given M' , is M'e R(M) ?

Other concepts of Petri nets can also be explained with the
help of Flg.2.2. It is&bserved here that the token in any place
and in any marking is ateiost one. Such a PN is called Safe or
1-bounded

Definition 2.11 , Aplace in PN, . = (p, T, a> B, M) U k-bounded
if and only if there exists a fixed k such that ? M» e R(M) ,
M* (p) < k. Aplace is safe if it is 1-bounded. Amarked PN is
bounded if each place is k-bounded for some k. Amarked PN is safe
if each place is safe.

For a Petri net which is to model a real hardware device,
one of the important properties is boundedness and in special case
safeness. If a piaCe is safe? then ^ ^^ ^ ^^ ^ ^

Place is either 0or 1. Thus the place can be implemented by a
single flip-fl0p. In an ordinary PN, if a piaCe pis not Safe>
then p can be forced to be safe by supplementing It by another
place pt [121] in the following manner,

If p e °t and p i t°, then add pf to t°

If P e t° and p 4 °t, then add p' to °t

-23-

However, if a place is not safe but bounded, it can be
implemented by a counter. Thus a bounded PN could be realized in
hardware while a PN with unbounded place can not in general be
implemented.

Another important property of a PN is the representation of

Deadlock which has been the subject of a number of studies in

Computer Science [59]. Adeadlock in a PN is a transition (or a
set of transitions) which can not fire. Consider Fig. 2.2d. None
of the transitions can fire and PN is said to be deadlocked. A
transition is Live if it is not deadlocked.

Dejinitiqn_^il2 : Atransition t in a marked PN, N= (p? T, a,B ,M)
is live if for each M'e R(M) there exists a marking reachable
from Mf in which t can be fired. Amarked PN is live if each
transition is live.

Definition 2.I3 t Amarked PN, N= (p, T, a, B, M) is free from
deadlock if for V M'e R(M) ,. some t e T can fire in M'.

So far the discussion has been limited to PNs as an abstract

model. When it represents a real system, a meaning or Interpre
tation is assigned to various entities - namely, transitions,
places and tokens. Thus a transition in a PN may represent an

event, instruction or a program. Aplace can represent a condition
or a type of resource etc. whereas tokens will represent holding
of a condition or number of resources etc.

An important property in Petri nets is Conservation of

tokens. If toknes are used to represent resources, then the tokens
must be conserved because the resources can neither be created

-2U-

nor destroyed. One way to do this is to maintain total number of
tokens in the neticonstant for every marking.

Definition ?.lk * a marked Petri net, N= (P, T , a, B, M) is
Strictly Conservative if VM'eR(M) j 2 M'(p) = 2 M(p)

peP peP

This implies that each transition in a conservative net must have
equal number of input and output places i.e. |°t| = 11° |. If it
were not so, firing transition t will change the number of tokens

in the Petri net. More generally, weights can be defined for each

place as long as weighted sum is constant [8*fJ. This still allows
the conservation of resources because there is no one-to-one

mapping between takens and resources. Some tokens may represent
program counters etc., and a token may represent several resources.

This token is later used to create one token for one resource by
firing a transition. Hence a generalized conservation is defined.

Definition 2.If : Amarked Petri net, N= (p, T, a, B, M) is
conservative with respect to a weighting vector W= [w] with
wp >0, if . P*^

f M'e R(M)j 2 w.M«(p) = 2 w,M(p)
peP P peP P

2. if MODELING WITH PETRI NETS

Petri net has found its way in modeling a variety of
systems. Holt, et al. [60] have shown that Petri nets can model
two aspects of the systems , Events and Conditions. In their view,
a token may be thought of as representing the presence of some
condition associated with its place. The firing of a transition is

-25-

thought of as corresponding to the occurence of anc event which
may take place if all the necessary conditions are satisfied. The
occurence of an event will cause some of previous conditions to

cease holding, and causing other conditions to begin to hold. This
is represented by a new marking. Many systems can be covered into
events and conditions and, thus, can be represented by a PN [121].

2.1+.1 MODELING OF HARDWARE

One of the important features of Petri nets is their ability
to model computer hardware at different levels. At the lowest

level i.e. simple memory devices and gates, computer systems can
be described by state machines and hence by Petri net [121].
Though the PN discription is a bit complicated compared to state

machine description, it has certain advantages in combination of

machines. The combination in state machine is complex and requires
a composite state with components of many submachines - a Cross-

product machine. For Petri nets, the composition is simply the
Cascade connection (i.e. the overlapping of the output places of
one net with input places of another and so on), or Parallel

Connection (i.e. duplicating the input tokens which represent
input symbols). It appears such interconnections of Petri nets

have not been studied so far and have been taken up in Chapter IV.

An example for modeling computer hardware at the level of

registers as fundamental components of the system is the re

presentation of n-stage pipelined operation through Petri nets
[5], [100], [120], fl21]. It is interesting to note that two

-26-

successive stages could be modeled in more detail by a PN, if one
is interested to ensure that each pair of successive processors
communicates through'ready5 and 'acknowledgement'signals.

Another approach to build very fast large computer systems,
is to provide multiple functional units to perform computations on
multiple registers with maximum possible parallelism. Computers
such as the CDC 6600 [Hf3] and the IBM 36O/9I [12] are based on

this concept. These can be modeled by Petri nets though they will
require very complicated and large nets [121]. Dennis [3!+] has
modeled through Petri nets a functional unit computer which

resembles CDC 6600. Petri nets have also been used to model the

interconnection of hardware modules [62], a modular micro-

programmable computer [103] and 1/0 devices of a nini*computer
[15-0].

2.1+.2 MODELING OF SOFTWARE

The efforts in modeling computer software have resulted in
different concepts and techniques in analysis, specification and
description of programs. Aprogram has two aspects - computation
and control. Petri net can represent in a straightforward manner
the control aspects (i.e. the sequencing of instructions and flow
of information and computation) but not the actual information
values. The flowchart representation of a sequential program can
easily be converted into a Petri net. The transitions are asso
ciated with the actions of the program, i.e. the computations and
decisions. Atoken residing in a place means that the program
counter is positioned ready to execute the next instruction.

-27-

Parallelism in a program has also been represented by PN
[53 but can be exploited usefully only when the Component
ProCesSe? Coordinate. Such a coordination requires sharing of
information. Many synchronization problems arising in coordinating
processes, for example mutual exclusion problem [37], producer/
consumer problem [38], the dining pliilosphers problem [38], and
the readers/writers problem [23] have been proposed. Petri nets
can clearly and explicitly represent these [5]-[7], [28], [83]
[120], [121]. Also available is the analysis for system verifi
cation [51-l7h [83].

Petri nets have been applied to compiler modeling to

determine whether existing compilation algorithms are suitable
for parallel processing [15], [16], The Fortran programs for
CDC 6600 computers have been converted into PN showing precedence
constraints between operations [136]. This net is then merged with
a PN representing the CPU. Timing information is associated with
transitions, and an exhaustive search is used to determine the

sequence of operations to minimize execution time. The SOLO

operating system and the Scope operating system of CDC 6^00

computers have also been modeled by Petri nets [20], [105].
However, the latter has used some extensions such as addition of
Exclusive-OR to Petri Nets.

2.^.3 SPEED-INDEPENDENT CIRCUITS

In a speed independent circuit the presence of arbitrary
delays in elements and connections have no effect upon circuit
operations. Synthesis of music through a processor [95] is 0ne of

.23-

many examples. Petri net has a potential for describing such
circuits [118]. Places, tokens and transitions could represent
wires, signals and actions. In addition to modeling, implemen
tation of Petri nets has also been studied [95], [112], [113]
[128], and shown to be inherently fail-secure [112]. However,
there are many unsolved problems, like fault detection and
isolation. This is mainly because these problems require the use
of timing information.

2.5 SUBCLASSES OF PETRI NETS

Generalized Petri nets and for that matter Petri nets, are
too powerful to analyse. Many researchers have defined, by
restrictions on the structure of Petri nets, many subclasses with
intentions mainly to improve their analysing capability. These
subclasses do model several systems in different environments but,
obviously, their modeling power is limited. The important sub
classes are discussed as follows:

2.5.1 MARKED GRAPH

Marked graph is a subclass of Petri nets in which each place
has exactly one outgoing and one incoming arc. These arcs are
combined into one to represent the place. Further , a vertex re
presents a transition. The signals or data passing through each
arc come from a predetermined source (the initial node), and are
sent to predetermined destination (the terminal node). Thus,
marked graphs can represent concurrency but not conflict. This
limits its modeling power. However, computer systems such as

-29-

communication protocols in distributed computing [91], [12B],
n-stage pipelined operations used in high performance computer
systems, parallel activities between central processing and disc
or I/O jobs [Hi], and the changing operations in GRAY-1 computer
[128] are but a few examples that can be modeled by marked graph
[100]. Marked graph, on the other hand, has been shown to have
very high decision power [26], [27], [lf3], [60], [6VJ, [67], [98],
[99], [101]-[103]. There are algorithms available for liveness,
safeness and for solving reachability problem.

2.5*2 STATE MACHINES

State machines [60], [120] are restricted Petri nets so

that each transition has exactly one input and one output place.
These are in the class of finite-state machines, hence are very
powerful as far as decision problems are concerned. The modeling
power is, however, limited.

2.5»3 FREE-CHOICE PETRI NETS

A free-choice Petri net is one wherein every place p is

either the only input place of a transition or there is almost

one transition which has p as one of the input places. This means

that either the token will remain in that place until its unique
output transition fires or if there are multiple outputs for the
place, then there is a free-choice of firing a transition. Hence,
either all of these conflicting transitions are simultaneously
enabled, or none of them are. It has been shown [26], [l+Q] that
liveness and safeness are decidable for free choice Petri nets.

Although these nets are very helpful in modeling systems similar

-30-

tc that of asse.bly.Une, no work is available regarding other
properties like reachability, equivalence, containment, and
languages , etc.

2-5^ PURE OR RESTRICTED PETRI IffilS

Apure Petri net is one in which no place is both input and
output of the same transition. It has good modeling power and has
been shown to represent [83] a S^aphore by Mjkstra [,,, bounded
buffer problem [«] and five dining philosphers problem [38]. As
Pure Petri nets are equivalent to PN and each can be transformed
into another as far as reachability is concerned .these have the
sane decision power as that of Petri net. tothermore, structural
properties have been studied [83], [13 7] to decide many problms
like liveness, handedness in terms of invariance and consistency
of pure nets.

2-5-5 SIMPLE PETRI NETS

In simple Petri nets [I,] each transition has ablest one
input place which is shared with another transition and so also
serve to restrict the manner in which conflict can occur. No
investigations have been made about the properties of this sub .
class of Petri nets.

Asimple chart showing some of the subclasses of Petri nets
«th allowed and not allowed configuration is given in Flg.2.3. It
can be easily found by inspection as to why the configuration on
the right hand of ag.2.3 are „,„ ^^

SUBCLASS

MARKED

GRAPH

STATE

MACHINES

FREE CHOICE

PETRINETS

PURE

PETRINETS

SIMPLE

PETRINETS

-31-

ALLOWED NOT ALLOWED

FIG.2.3_ ALLOWED AND NOT ALLOWED STRUCTURAL CONFIGURATION

OF VARIOUS SUBCLASSES OF PETRINETS

-32-

2.6 ANALYSIS OF PETRI NETS

To study the systems through Petri nets there are two

approaches available in literature. One approach is aimed at

deriving properties of Petri nets, and the: properties

of the system modeled. In the other approach [96] the design
process is carried out directly in terms of Petri nets and the

resultant PN is implemented straightway [1*0], [H3], [116]. Both
these approaches require that the knowledge about the Petri net

itself be available. This has led to an extensive research in the

theory of Petri nets [6], [7], [21], [27], [^], [60], [82]-[8>f],
[97], [100], [102], [120], [137], [lk7], [ltf8].

The objective of the analysis of PN is to determine certain

properties. Some of these such as reachability, safeness, bounded-
ness, conservation etc. have been discussed in Section 2.3. There
are other important properties as well and those will be intro
duced as and when needed. Obviously the analysis technique must
be such that it is easily implemented on computer to allow
automatic analysis of modeled systems. With this view, two major
available analysis techniques are discussed as follows;

2.6.1 THE REACHABILITY TREE

The reachability tree of a Petri net is a tree the nodes
and arcs of which represent the reachable marking and the possible
changes in state resulting from the firings of transitions [69],
[70], respectively. As the reachability tree is finite [121], it
is possible to have a finite representation of infinite

•33'

reachability set often encountered In Petri nets. If it is found

that a transition adds a token at a place every time it fires,
then the number of tokens in that place is represented by w
which is 'too large1 such that w+x =w, x <wfor any integer
x. With these concepts, the reachability tree of PN, N= (P, T
a, p, Mq) where Mq is initial marking is constructed as follows?

Let the initial marking be the root node and tag it 'new'
WHILE new markings exist DO

Select a new marking M.

If Mis identical to another node in the tree which is

not new, then tag Mto be old and stop processing M.
If no transition is enabled in M,tag Mto be • terminal'.

For every transition t enabled in M

(1) Obtain the marking M» which results from joinint t in M
(2) If there exists a path from the root to M containing a

marking M" such that M! >M", then replace M'(p) by w
when M'(p) > m"(p).

(3) Introduce Mas a new node, draw an arc from Mto M'
labeled t, and tag M* to be 'new'.

As an example, the reachability tree of a marked Petri net
(Fig. 2.>f) is shown in Fig.2.5.

The reachability tree can be used as a useful analysis tool
to determine some of the properties of Petri nets and thus can
solve several problems. The following properties are decided
using the reachability tree.

-34-

FIG- 2.4 _ A MARKED PN

(1,0,1,0)

tj

1,0,0,1)

(1,w,1,0)

(1,w,0,0)

(1,w ,1 ,0)

FIG- 2 5_ THE REACHABILITY TREE OF PN IN
FIG- 2.4

-35-

1. Safeness and Boundedness;

If a PN is k bounded, then by definition no more than k

tokens are present in any of the places. Each place can have any

number of tokens given by an element of the set {0,1,2,..... ,k]

i.e. each place can have (k+1) possible tokens. Hence the number

of possible reachable markings equal (k+l)n which is a finite

reachable state-space. In order to determine the bound k on a

particular place, the reachability tree is first generated. If

w appears in the reachability tree, the net is unbounded because

w is 'too large' and there exists a sequence of transition '

firings which can be repeated arbitrarily many times to increase

the number of tokens to an arbitrarily unbounded number. If w

does not appear, then the reachability tree is scanned for the

largest value of the components of the markings corresponding to

that place. If bound for all place is 1, then the net is safe.

2. Conservations

If a PN is strictly conservative, then the number of tokens

in each marking remains constant. Say, this number is k. Since

there are finite number of ways to partition k tokens among n

places, we have a finite reachability set. Thus strict conser

vation of tokens can be tested by computing sum of tokens in

each marking. If sums are same then the net is strictly conser

vative. However, if w appears in the reachability tree, then the

Petri net is not strictly conservative because w, though 'too

large', is different for any two markings.

-36-

The generalized conservation is generally given with

respect to a defined weighting vector or undefined weighting

vector. In the first case the weights of each place is known. If

appears in reachability tree for a place, say p and the weight
of p is nonzero positive, then the weighted sum of the tokens for

two markings will be different in their w component. Thus the net

will not be conservative. On the other hand if the weights of all
the places for which wappears are zeros, then the net is con
servative. For the case when there is no defined weighting
vector, a Petri net is conservative if it is conservative with
respect to some weithting vector W, with w > 0.

3. Coverability j .

An important problem in Petri nets is coverability of

markings which is useful in determining the occurence of varia

tion in mutual exclusion in a system and in testing transitions for
liveness and deadlock. This is defined as follows;

Definition 2.16 : Given a PN, N= (P, T, a, p, M) and a marking
Me R(M). The existence of another marking M" e R(M) such that
M > M is called a coverability problem.

This problem can be solved by inspecting reachability tree [5^,
[69] and Searching for a node x with marking M > M'. If no node
is found, the marking M' is not covered by any reachabe marking.
If such a node is found, this gives a reachable marking which
covers M'. Karp and Miller [69]have proposed an algorithm to
determine the minimal number of transition firings to cover
a given marking.

w

-37-

2.6.1.1 LIMITATIONS OF REACHABILITY TREE

The reachability tree can not solve the reachability or

liveness problem. Also this can not determine which firing

sequences are possible. To solve these problems it is required

to know the exact number of tokens on places in different

markings. This information is lost in the symbol w. However, in
some particular cases reachability or liveness may be solved.

For example, a Petri net whose reachability tree has terminal

node (one with no successors), is not live. Similarly a marking
M1 may appear in the reachability tree then M' is reachable from
M. Also, if a marking is not covered by some node, then it is not
reachable.

2.6.2 STATE EQUATION OF PETRI NETS

Another approach to the analysis of Petri nets is based on

state -equation [97] which is quite different from that of normal

dynamic systems in that the behaviour of Petri nets is essenti

ally characterized by the control vector of non-negative
integers. Even then the state variable technique of system
theory can be useful in studying Petri nets. Without loss of

generality (as equivalence of generalised Petri nets and single-
arc nets exists [50], Petri net is considered.

Since the marking changes as a result of firing, instead
of M(definition 2. if) a |p|xl column vector of nonnegative
integers ^ is defined. The j th entry of ^ denotes the number
of tokens on place j immediately after kth firing. Specifically
MQ denotes the initial state. Out of many enabled transitions,

•38-

which transition fires is defined by a control vector V as a
|T|xl column vector containing exactly one nonzero entry 1 in
the i th position if i th transition is fired at kth firing. The
concurrent firing of more than one transitions is allowed and
can be expressed as the sum of corresponding control vectors.

From the definition of firing, it is found that the state
\ resulting from another state M^ by kth firing Vfc can be given
in terms of following Murata's state equations

Mk=Mk-l+A\» k=l,2,.... (2#x)
where AT is transpose of transition-to-place incidence matrix
(definition 2.3). It is noted that the i th row of Arepresents
the token changes in |P| places when i th transition fires once.
For marked graphs, Areduces to the incidence matrix of a diagraph.

I

Since ^ is a vector of nonnegative integers, Vk must
satisfy

\„! *ATVk > 0 for each k (2.2)
Let there exists a firing sequence {V^ V2,....,v } that

transforms an initial marking Mq to Mr of a Petri net. Then the
solution is given by addition of the n equations of (2.1) for
» — J.,2,...., n.

n

Mn =M +AT[2 V•]
k=l K

which can be written as

AT Z = AM
(2.3)

Where AM = M - M anrl v - v ir • i min ho and 2 - ^ vk la a |T|xl Column veQtov Qf

-39-

nonnegative integers called by Firing Count Vector. The i th entry

of I represents the number of times the transition i would fire

in a firing sequence leading from M to M .
to o n

Based upon the above concept, the following have been

obtained;

1. A necessary condition [97] that a Petri net is completely

reachable i.e. any initial marking can reach any other

marking is

Rank A = |P| (2.1+)

2= Given two markings Mq and M^ for a connected marked graph G,

there exists a non-negative integral solution 2 for

AT 2 = AM

if and only if

B . AM = 0

where AM = Mn - Mq and Bf is a fundamental circuit matrix
[102].

In most of the practical applications of Petri nets, the

condition (2.If) is rarely satisfied. The rank of A is generally

less than the number of places in a Petri net. In such cases, the
PN is uncontrollable or not completely reachable. Let the rank

of A be r. Then, A can always be partitioned in the following
forms

A

|P|-r r
- - 1

A.
11 h: !:

A21 A22 ||T|.r (2.5)

-l>0~

We can always find (|P|-r) x |p| matrix B $

Bf =
I N-l= [i : a^ (A^r1] (2.6)

where I is the identity matrix of order (|P|-r), such that

TabJ =o

It may be noted that Bf corresponds to fundamental circuit
matrix in case of marked graph.

Thus, eq. (2.2) is consistent if and only if

Bf AM = 0 (2#?)

If there exists a firing sequence which transforms M to M
o n>

then the corresponding firing count vector 2 must exist and
(2.7) must hold. Therefore,

3. Acondition (2-7) is necessary for the existence of a firing
sequence which transforms an initial marking M to another

marking Mn in a Petri net [97].

If. In a Petri net, a state N cannot reach another state M.
if their difference is a linear combination of the rows of
Bf [97] i.e., if

AM = M - M = b1 V
no f n

where Vn is a nonzero (jPj-r) x 1 column vector.

-kl-

Comments : To test if a given initial state can not

reach another given state, one has to calculate B^.

For this, first A is determined for PN. Then largest

nonsingular submatrix k±2 of Ais obtained in the form

as in (2.5). To find Bf, U^)'1 is determined. This
is quite involved process. Thus calculation of B re

quires a lot of computation. It has been shown in the

Chapter IV that the nonreachabili ty condition can be

obtained in terms of Aand AM. As Bf is not calculated,
the testing of nonreachabili ty becomes very simple.*

The state equation approach deals basically the reachability
problem. It has great promise and can solve many problems of Petri
nets. It must also be noted that a similar matrix approach has
been taken in independent research in Europe [21], [29], [1+3]
[83], [137]. The liveness problem and indirectly, the reachability
problem which is reducible to liveness [56] has been tackled in
[21], [*f3], [81]. While the reference [29] uses the concept of
formal languages as main vehicle, some structural properties of
Petri nets have been found in [137]. Some concepts not covered in
state equation and proposed by these researches in matrix approach
and by others, for example [5], [7], [100], etc. are given below.
As the inclusion of these concepts does not change the nature of
state equation, the combined approach will be called as the state
equation approach.

** Denotes specific comments by the author.
O End of specific comments.

•te-

Of special interest for determining properties of Petri

nets is the concept of Invariance. It is defined as under;

Definition 2.17 s A Petri net, N = (P, T, a, p) = (A,) is

said to be invariant if there exists a |P|xlvector I with all

its components positive such that

AI= 0 (2.8)

Using eq.(2.3) and (2.8), the following is obtained

or

(AM)TI = Vj£(AI) =0

4-11 =MK J (2-9)
Due to the invariant property expressed in (2.9), I is called

an invariant of Petri net. However, a widely used concept [83]

is that of a Simple Invariant.

Definition 2.18 s A simple Invariant is a set of places, I, such

that 2 u/' v jper (p) 1S a constant for each reachable marking M, and I
does not have any proper subsets that are simple invariants.

From the definition,'it is evident that the simple invari

ants are disjoint sets. From the set of simple invariants, some

properties about the dynamic behaviour of the Petri net can be

deduced [7], [83]. For example, the following properties are
obtained?

1. Boundedness and safeness:

If each place is in some simple Invariant and the Petri net

has initially a bounded marking, the net is bounded. Same is true

for safe nets. This is, obviously, so because the number of tokens

-Jfc-

in a simple invariant is constant and all the places are covered
by simple invariants.

2. Conservativeness;

If the set of places can be partitioned with disjoint sub
sets each of which is a simple invariant, the net is conservati
and the total number of tokens in the net remains constant.

3» Mutual Exclusion;

If an input or output place of a transition t is contained
in a simple invariant I, t is said to be a transition of I. If
two transitions correspond to same simple invariant and the
initial marking is such that the sum of tokens in the places of
the invariant is 1, then the transitions are mutually exclusive
and cannot fire simultaneously.

h» Liveness;

Under certain presuppositions, the simple invariants may be
interpreted as Complete System of Circuits. When analysing
liveness,so-called Variants are of interest, and these may be
interpreted as incomplete systems of circuits [83].

In order to reduce the complexity in deciding the proper
ties of Petri nets, the notions of boundedness and liveness have
been defined so as to be independent of a given marking [137]
but dependent only upon the structure of PN.

Definitional^ s APN is Structurally Bounded if it is bounded
for every marking and is S^u^Jurall^ Live if there exists a
marking for which it is live.

ve

-Uif-

The structural boundedness and liveness have been studied

[137] with a view that it is generally easier to decide if a

Petri net is bounded (respectively not live) for every marking

than it is bounded (respectively not live) for a given marking.

A concept which has been used apart from the net invariance is

Consistency.

Definition 2.20 g A PN, N = (A,—) is Consistent if there exists a

|T|xl vector Xwith all its components positive such that

ATX= 0 (2.10)
From the study of incidence matrix of pure Petri nets, the

following properties have been obtained [137].

i. If a Petri net is bounded and live then it is consistent.

The converse is also true.

ii. If a Petri net is invariant, it is bounded.

iii. If a PN is bounded and consistent, then it is invariant

and for every marked PN (A,M) the reachability set R(M)

is constituted of pairwise incomparable vectors. This

permits to calculate an upper bound of the cardinality

of its marking classes. For example, if (A,M) is safe

[1+93, then R(M)< (£) where k=| ifnis even and
k = -** if n is odd.

iv. (a) If a PN is consistent and invariant, it is bounded

and live.

(b) If a PN is invariant and nonconslstent then it is

not live.

r-t+^T

(c) If a PN is noninvariant and nonconsistent, then it

is neither bounded nor live.

Definition 2.21 | Given a PN, N = (P , T, a, B) , a Subnet of N is

a PN, Nx = (P1, T1? a1? ^) such that PjCZP, TjZZ Tand o^, ^
are the restrictions of cc, Bon P-^ 3^. The Union of two subnets

Nl = (P1> Tl» ai» h} and N2 = (P25 T2> a2> ^2} iS a subnet
N3 =(P3' T3' a3' ^3} ^th P3 =pl U P2 ana T3 =Tl U T2*
Being given a PN, N and a set S of subnets N it is said that N

is Covered by S or that S is a Decomposition of N if the union of

elements of S is equal to N.

Definition 2.22 | Let N = (P, T, a, 6) = (A,«-) a PN. For X elN111,

the Support of XQ denoted by S(XQ) is the subnet of N,

S(Xo) = (P1, T1? a1? Bx) with T± = {t. e T | X. J 0} and

Pl =°TlU Tl' Also for Io Emm » the SuPP°rt of IQ, S(I) is
subnet of N, S(Iq) = (P2, Tg, a2, Bg) with P2 = (p. E P | ± / 0}
and T2 =°P2 (J pO.

v. Every consistent (invariant) PN, N = (A,—) is decomposable

into a set of elementary consistent (invariant) components.

Let XQ, A Xo = 0 such that S(XQ) = N. If Nis not an elementary
consistent component then there exists a consistent component 3

contained in Nand X,_, A ^ = 0, such that S(X.) = N . If
x .

^ =x ^/o ' V ' aUd *2 =Xo " XXL"> then *2 >° and " is

possible to find a vector ^ = uX^, ^ > 0, having integer

-1+6-

components. Furthermore, S(X) = S(X,) I J S(XJ. This method can

be applied iteratively in order to decompose a consistent or

invariant PN with elementary consistent or invariant components.

Comments ; To decompose a consistent and invariant PN,
T

first X is to be obtained from A X = 0 and then
o o

iterative method as discussed above is used. This has

two drawbacks; (i) it is quite cumbersome to calculate

integer-valued solutions of systems of linear equations,

and (ii) it is not known 'apriori' how many elementary

components can be obtained. These limitations have been

removed and a technique has been proposed in Chapter IV,

to find 'apriori' the number of elementary components and

to decompose the net into elementary nets.*

The proofs of the above properties are scattered over [82]-[8*+],

[137] and are not given here as they are not necessary for

maintaining the readability of this thesis.

It has been seen here that state equation approach is very

helpful in deciding many properties of Petri nets, but there are

limitations of this approach as well.

2.6.2.1 LIMITATIONS OF STATE EQUATION APPROACH

i. The self-loops (i.e. transitions which have both inputs

and outputs from the same place) cannot be represented in

matrix A. This is a loss of information about the structure

of Petri nets,

ii. A serious problem is that although a solution to eq. (2.3)

is necessary for reachability, it is not sufficient. Thus,

-1+7-

the existence of spurious solutions (i.e. the solutions

which do not correspond to possible transition sequence)

is necessary to be detected,

iii. Another problem is the lack of sequencing information in

the firing vector. Consider equation (2.3) which is as

follows:

AT 2 = AM

Here the solution 2 merely gives which transition should

fire and how many times in order that a marking M is

reachable to another marking Mn but does not say in which

sequence the transition must fire. The problem becomes

even more complicated when the rank of A is not (|T|-l)

which is, generally, the case. Let r be the rank of A,

then eq.(2.3) is a set of (|T|-r) independent equations in

|T| unknowns. This will, obviously, lead to a set of

solutions rather than a unique one. Hence not one but many

sequences may exist. State equation approach does not

provide any technique to find such firing sequences of

transition,

iv. The Non-negative integer solution of (2.3) and for that

matter, the determination of invariants and consistency,

is quite involved process for larger Petri net. The

invariants have been systematically obtained by following

certain rules during the synthesis of Petri nets [2].

However, there is no alternative for the solution of
eq.(2.3).

An attempt has been made to find the firing sequence of

-1+8-

PNs in Chapter IV and thus the limitations (ii) and (iii) have

been removed to a fairly great extent.

2.7 CONCLUSION

The recent literature available on the use of Petri nets

in design, analysis and synthesis of systems is an evidence of

growing interest in this field. Many different aspects of various

systems can be studied through PN. This is, because, it can

easily exhibit parallelism and represent systems at different

levels of abstraction. These concepts and capabilities of PN have

been reviewed in this chapter to form a background for the

investigation taken up in subsequent chapters.

A very limited research on the optimization consideration

through Petri nets is available [63], [136]. If a Petri net

exhibits a certain behaviour, as indicated by transition firing

sequences and its reachability set, the question is ; can a Petri

net be optimized (changed) without affecting its behaviour ?

This may involve deleting dead transitions or dead places or

perhaps the redefinition of some transition and place. However,
one has to be careful in defining the problem. This is, because,
if equivalences are defined as equal reachability sets, then
number of places cannot change and on the other hand if equality

of sets of transition firing sequences is required, then transi
tions can not change.

In Chapter VI such considerations are dealt with reference

to the important optimization problems in the design of micro
programmed computers.

CHAPTER III

CRITICAL REVIEW AND GENERA! CONSIDERATION OF MICROPROGRAM

OPTIMIZATION

3.1 INTRODUCTION

Recent decades have seen with growing interest the

development of microprogrammed computers. This is because

microprogramming provides a systematic way of designing the

control unit, increases the flexibility of a computer and makes

it possible to execute directly the programs written in machine

languages of a different computer - a process called emulation.

Microprogramming was conceived by Wilkes [151]-[153] as

a technique for the implementation of control function in digital
computers. Since then it is finding wide applications in modern

day computers. One development has been the use of microprogra
mming in the economical implementation of control circuits of

very larger computers like Illiac IV and Control Data STAR 100.

Direct interpretation of high-level 0r intermediate languages
and microprogramming of operating system functions are other

possibilities. Additionally the development of dynamically user
programmable computer has been made possible because of advances

in hardware technology. This allows the replacement of operating
system and language translators with inexpensive hardware, whose
functions can be modified readily by microprogramming. In all
these applications one way to increase efficiency is via

-50-

microprogram optimization.

3.2 BASIC CONCEPTS OF MICROPROGRAMMING

The concepts and terms involved in defining microprogramming

are well established but are given here to avoid ambiguity and

for the sake of completeness and continuity. A computing machine,

exclusive of control, consists largely of registeres and combi

national execution resources (adders, shifters etc.). The former

comprises the local store and the latter, the functional units.

The hardware interconnections between the functional units and

storage resources are called Data Paths. The cycle time of a

computer is the time required to change the information in a set

of register via such data paths. A control logic Is required to

exercise an overall control of the various resources of a computer.

Conventionally the control information has been permanently built

into system by means of combinatorial and sequential logic network

in an adhoc manner. This type of control is highly complex,

because a need for the slightest modification to the instruction

set could call for a major change in the entire control structure.

In microprogrammed computers Microinstructions control the

operation of various resources and are defined as the basic

machine functions sanctioned by the manufacturers. These are

stored as words in a high-speed nondestructive read only control

store generally called Read Only Memory (ROM) which is usually

(but not always) separate from main memory. Through the ROM

address and data registers, the computer hardware provides the

111373
«r nriFisn
UMlM

ffimi muv mmsm *„«r« |*

-51-

facility for systematically executing sequences of micro..

i ns true ti ons.

A Microoperajion is a unit of microprogram activity which

performs a particular function (e.g. opening or closing gate,

shift, increment, etc.). The subcommand to execute a micro-

operation is called Microcommand. A microinstruction is a

specification of microoperations to take place in one cycle. A

sequence of such microinstructions constitutes a machine

instruction.

Two aspects of microinstructions i.e. design and imple

mentation, need examination with reference to hardware character

istics. Design of microinstruction determines the information

required to control hardware resources and its arrangement in a

microinstruction word. Of primary interest is the number of

resources controlled by each microinstruction. For this reason,

microinstructions are commonly classified as vertical or hori

zontal. Vertical microinstruction refers to one type of operation
and are characterized by short formats, limited ability to

express parallel microoperations and considerable encoding of

control information. Horizontal microinstructions, on the other

hand,control many resources which operate in parallel. These have

the attributes of long formats, ability to express a high degree
of parallelism and little encoding of the control information.

The degree of encoding in a microinstruction word affects

its length, and is often a parameter for the vertical and hori

zontal characteristics. In simplest design no encoding of bits

-52-

in microinstruction word is done. Each bit controls one resource

or operation. Tits is shown in Fig.3.1(a). In single level

encoding, one bit controls many resources and depending upon the

parallelism, microcommands are grouped in different control fields

(Fig. 3.1(b)). Another type of encoding which plays an important

role in the bit optimization is two level encoding or bit steering

[10]. Here, as shown in Fig.3.1(c) , some bits are shared by

different fields. The uncoded format has the advantage that the

control signals may be derived directly from the microinstruction.

When encoded fields are used, each control field must be connected

to a decoder from which the control signals are derived.

The microinstruction implementation is important for

execution time. In serial implementation, fetching of next micro

instruction does not begin till the control terminates. This

results in simplicity of realization because the hardware need

not control execution and fetch simultaneously, and no problem

arises in execution conditional branch instruction. On the other

hand in the parallel implementation, fetch of next micro

instruction is to be executed in parallel with the execution of

microinstruction. Hence, there is saving in time. A combined

serial-parallel implementation is generally adopted to have the

simplicity of realization and some saving in time.

A control store is characterized by its word and bit

dimensions. The Word Dimension Wd of the control store is the

number of words of control storage required for a certain

application. The Bit Dimension B represents the number of bits

1 OF 4-

-53-

f

5 BITS

\

\ \ i i ' ' '

(a) NO ENCODING

5 BITS

FIELD A

2 BITS

FIELD B

3 BITS

DECODING

NET A

1 OF 8 -*-

->/—r

DECODINS

NET B

(b) SINGLE LEVEL ENCODING

1 OF16

5 BITS
DECODING SELEET

FIELD

FIELD A

2 BITS

FIELD B

3 BITS

FIELD C

2 BITS

1

1

1

•v
—<• \. •/ v_

1
>

DECODING

NET C

1

i
DECODING

NET A

I '

? —
DECODING

NE T B

(c) TWO LEVEL ENCODING OR BIT STEERING

FI6- 3-1- FIELD CONTROL FORMATS

-51+-

per word of control store. Microprogram Optimization is performed
to reduce/minimize the size of control memory (Wd x B) and/or
reduce the execution time. The next paragraphs are devoted to
strategies and techniques involved in such optimizations.

3-3 STRATEGIES OF OPTIMIZATION

The various strategies of microprogram optimization are
classified [If] in four broad categories, namely, Word dimension
reduction, bit dimension reduction, state reduction and heuristic
reduction.

Word optimization [13], [25]) [333, [36]> ^^ W](^
[129], [139], DAI], [IMf], [11*], U5>0 is performed in micro
instruction generation phase or compilation. Hero the deletion
of non-essential microoperations, the identification of parallel
microoperations and resource allocations are considered. Ibwever,
even after spending substantial time in such optimization, there'
is no guarantee of significant savings in microcode space and
execution time.

In bit optimization [17], [31], [32]; [lf?]) ^ ^ ^
[135], for given ROM specification or the instruction set
specification, the microinstruction length is reduced by parti
tioning the microcommands into appropriate groups and encoding
them.

In state optimization [Itf], [H6] the mlcr0programm8a '
computer is analysed in terms of two interacting finite state
machines namely a control part and a functional part, state

-55-

reduction techniques [22], [81] can be applied to reduce the
control part. However, this optimization is impractical for any
modern computer with innumerable states.

Heuristic optimization methods [93], [9!+.], [l^o] employ
adhoc techniques to minimize the control part of the composite
automata. This, however, does not guarantee a minimal control
part because of its adhocism.

Of the four categories of optimization, bit optimization
has practical advantages particularly for the design of spacial
purpose microcomputers dedicated to single applications. It is
this aspect that has been dealt in detail in this thesis.

3.3-1 BIT OPTIMIZATION

To minimize bit dimension, there are two type of approa
ches. One type of approach starts with the given ROM specification
and the other with the given instruction set description.

Schwartz [13 5] has described a model for ROM as a rect
angular array 0f binary storage elements consisting of Mc micro
instructions of Bbits each. Each microinstruction specifies one
or more subcommands to perform elementary operations. Table 3.1
is a hypothetical ROM described by Schwartz.

Microinstruction Microoperations

1 a,b,c,d,e,f
2

c>g>h,i

3 a>b,h,i,j
k d,h,k

i :4l

TABLE - 3.1

-56-

All the microcommands contained in a microinstruction are per

formed in parallel while microinstructions are executed

sequentially. Since the sequencing of ROM words is not of any

concern for the minimization, address fields are not considered.

The problem of bit optimization for the given ROM specification,
thus, addresses to the erco^ing of Nc microcommands in Mc

instructions of the control memory. There are two ways of encoding
the microcommands;

1. Every microcommand is encoded by one bit each. The advantage
is maximum flexibility. Since no combinational circuit is

required at the output of the ROM the contents of ROM can be

arbitrarily changed. However, this method is inefficient

because of the large number of bits needed due to usually
large microoperations.

2. All the microcommands are encoded by a minimum ["logic"] *
bits. In this case a complicated decoding network is a must.

All advantages of microprogramming am lost because even a

slight modification is difficult to attain.

In bit optimization, a compromise between tho maxtatm

flexibility and bit minimality is made. A minimum number of

encoding bits is obtained such that the parallelism in micro

commands is not lost. Following are given the different bit

optimization techniques.

'Throughout this thesis, logarithm is to base 2 and fxl ii
smallest integer greater than or equal to X.

-57-

3»3«i»i Schwartz's algorithm

Schwartz [135] took a midway position and proposed parti

tioning of the microinstruction format into disjoint groups,

the only constraint being that no two microoperations from the

same microinstruction could be assigned to the same group. A

solution is, thus, a collection of sets S = f S-, , S„ S 1 .
^ 1 2 ' pJ'

where,

Condition 1 8 Every n. (j * l,2,...,Nc) is contained in a

(unique) set S .

Condition 2 : No pair n^, nj2(j 1 =1,2 ,.... ,Nc ,
J2 = 1,2,.... ,Nc ? Ji J J2) belonging to the

same microinstruction mi can be in the same set a .
Condition 3 • The number of sets S is minimal

3.3.1.2 GRASSELLI AND MONTANARI's ALGORITHM

Grasselli and Montanari [h?] pointed out that a minimum

group solution does not imply a minimum B solution. The minimum
group solution of Schwartz for the ROM in Table 3.1 is (a), (b,g),
(c,j,k), (d,i), (e,h), (f). The number of groups is 6 and B: 10.
In the solution (a), (b), (c), (d,g,j), (e), (f,i,k), (h),
suggested by Grasselli and Montanari, although number of groups
is 7, the number of bits required to encode is reduced to 9.
Thus, to obtain minimal B, the problem was reformulated by
changing condition 3 tos

Condition 3' 8 The quantity

. »•- j^iog nislki+in

-58-

is minimal, where |slk| denotes the cardinality of S., , and 1

is added to the cardinality of each set to include the no-

microoperation-N .
r op

Two microcommands n« and n-2 are defined to be Compatible

if condition 2 is satisfied. A Compatible Class Q± of micro-

operations is a class whose members are pair-wise compatible. A

Maximal Compatible Class (MCC) is one to which no microoperation

can be added without violating pairwise compatibility. Then a

minimal solution is a set of compatibility classes * (c.,, C. ...
h il i2 °

...,Ch) such that B= 2 riog(|C.. | + 1) "] and
h k=l lk

U Gik is set of niccooperation in ROM. Grasselli and Montanari
k=l

show that the only classes that need be considered for a minimal

solution are Prime Compatible Classes as defined below:

1. Ci is nonmaximal and |C1| = 2h-l (h= 1,2,...) j and

2. Ci is maximal and |C± | ^2k(k=l,2,)

The minimal cover is then obtained by solving a covering
table of the prime implicant type.

3.3.1.3 LINEAR PROGRAMMING METHOD

Jayasri and Basu [66] applied linear programming technique
to solve this problem by minimizing the following cost functions

C = 2 riog(i+l)>,
i 1

where a± is the number of mutually exclusive classes containing

i microcommands. The value of i ranges upto a maximum, which is

the number of microcommands in the largest MCC. The algorithm

-59-

also takes advantage of some special features of cover table.
3«3«1.^ CM COVEH TABLE METHOD

Das et ai.[3l] stert with the same basic formulation as
Grasselli and Montanari. However, they start directly with the
mammal compatible classes whose n^ber is usually small. The
basic procedure is as follows , From a CM cover table with rows
and columns representing MCCs and microoperations respectively
the irredundant solutions are obtained. For each of which a '
solution CM table similar to CM cover table is constructed.
Inns indicates which are locally essential MCCs and which micro
commands are to he covered by them. The different covers for
remaining microcommands are obtained through the construction of
a reduced solution table. Going through all such possible
coverings, the minimum solution is obtained.

3-3-1.5 BHAHCH AHD BOOTJD METHOD

Recently branch and bound method has been applied by Baer
and Kbyama [17] to solve the problem of bit optimism. They
-deled the problem in graphical terms, starting from root node
with as many singleton sets as the nu.ber „f microcorneas i„
largest microinstruction, apartial solution represented by a
»de is continually extended until a solution satisfying a cost
constraint is reached. Their algorithm can best he described in
terms of pseudo Pascal notation as follows,
Stepl , [Initialize] B *. *,, I «. „

Step 8 , [Obtain initial solution, then back up and proceed a
new, if necessary]

-60-

while I > 0 do

If (LB-j. > B) or if all possible placements have

already been attampted

Then I «- I-1

(i.e. back up since no better solution can be

obtained for this subtree).

Else repeat

I "I + I | Select new microoperations to be e

encoded^

Place in same S. ,» Compute LBT

Until (I = Nc -m) or (LB- > b)

p

If I = Nc-m then B +- 2 riog|S,|+l~|
3=1 d

B *-min (B, B),« I +- Nc-m-1

3.3.1.6 MONTANGERo's ALGORITHM

As suggested by Grasselli and Montanari, a better and/or

flexible solution for bit optimization could be obtained from

the specification of the instruction sets rather than from ROM.
The problem is then to encode the instruction set by finding
amongst all possible ROM descriptions, the appropriate ROM having
minimum value of Bx Wd. This is the approach adapted by
Montangero [96]. He describes the instruction set by a forest F
of directed acyclic graph. A graph G. represents an instruction
i. The nodes of G. represent the microoperations and an arc
represents a temporal precedence relation between the micro-

operation. Alevel assignment to a graph Gis a partition of the

-61-

nodes of G into different levels such that if there is an arc

(m,n), then the level of mis less than the level of n. A level

assignment to each graph of a forest F constitute a level

assignment of F. All possible level assignments of F can be

obtained. The scheme of Gresselli and Montanari can be applied
to each assignment to select the one with minimal B x Wd. But

Montangero prefers a heuristic procedure to avoid an exhaustive
search by considering only a subset F consisting of prime graphs.
The algorithm first finds actual costs with minimum estimates.
Then all assignments whose optimistic estimate is not lower than
the actual cost, are eliminated. It is repeated until all
assignments have been considered-

Gomment:s • It ls observed that the methods referenced
yields optimal solution after tedious and time expensive
procedures. Schwartz's algorithm is basically one of the
exhaustive evaluation and does not necessarily result in

. minimal bit solution. The technique of Gresselli and
Montanari is an improvement over Schwartz's algorithm.
But it suffers from the drawback that the cover table
has usually very large number of rows and the covering is
cyclic in nature. To find a minimal solution is, there
fore, a difficult task.

The linear programming method requires judicious
selection of mutually exclusive groups of microcommands
in order to have less processes of trial and error.
Although this provides a good starting point, the compu
tations involved are large.

-62-

The essential approach in Bas et al. is to solve
a number of small cover tables rather than a big one.
It is, however, not apparent if the overall effort is
less than that required in Grasselli and Montanari.

The technique of Baer and Koyama appears more
effective because it leads quickly to near optimal
solution. However, it is time expensive if all minimal
solutions are needed.

One of the major problems in Montangero [96] is
that no method is given to detect prime graphs for a
general case, farther, a solution is provided if every
microcopcration occurs almost once in any graph of
original forest. But this drawback can be removed by
renaming microoperations appearing more than „me so
that they are considered to bo different in beginning.
This results in additional computational efforts.

It is not surprising in the light of recent work
[132] that all these methods repuire computations which
are exponential lB mtare. Hep0) Hoberston ^ ^
that the problem of bit optimization is a SP-completc
and hence "one should not attempt to solve for general
ease but concentrate on heuristics for reasonable
subcases ". o

Barring Schwartz's technique, almost all the methods roquire
the generation of MOCs. These gyrations are usually done with
the help of compatibly chart and graph the construction of

-63-

which prevents its adaptability on computers. Amethod employing
state equation of Petri nets to generate all MCc's is given in

Chapter VI. Amethod of bit optimization which requires fewer
enumerations for a 'reasonable subcases' is also presented.

An important aspect of bit optimization is a good

'engineering reduction' [if]. If ROMs are available in If bit
configurations, then the efforts required to reduce the bits

from 12 to 9 is a sheer wastage and the bit reduction is not a

'good reduction' . It is because the number of chips needed
Will be 3 for 12 as well as for 9 bits. If however, one more bit
is reduced, the number of chips needed will be 2 and there will
be considerable saving in the control memory and hence cost. To
do this the concept of two level encoding or bit steerability
[10] discussed in Section 3.2 is used. Bit steerability reduces
the number of optimized bits.

we can inspect control fields with multiple bits, whether

a part of the field can be shared by two or more such control

fields. If it is possible, the further reduction in bit dimensions
can be made. The shared bits are called steering bits and the

remaining bits of control fields are steered fields. If shared
field consists of more than one bit, then a decoder (Elg.3.1c)
is needed. It is obvious that the maximum number of bits in
steering field is one less the number of bits in the smallest
amongst original fields considered for steering.

-6V

3.3.I.7 BIT STEERING IN BIT REDUCTION

The only work available in literature on the bit reduction

through bit steering is by Mathialagan and Biswas [86]. Given

the ROM specification and all the optimal bit solutions, their

algorithm for detection of bit steering in two fields and

encoding them involves the following steps.

1. Setting up a concurrency matrix. The columns and rows of

concurrency matrix correspond to microcommands (including

(Nop) in the two fields, respectively. The entry 'x' at

the intersection of a row i and column j is present only

when microcommands i and j are present together in every

m ic roi ns true ti on.

2. Grouping of entries in rows and columns if there is an

entry at the intersection of rows and columns.

3. Testing the following conditions:

(a) all entries in the concurrency matrix are accommodated

in 2 or less groups when q is number of steering bits

and 1! q iDnindi-^n^-l], where n± and ng are the
number of bits needed to encode the two fields

respectively.

,v, , . (11.-I) (n -1)
(b) each group includes not more than 2 l and 2 2

mi c r oc ommand s.

When these two conditions are satisfied only then bit

steering is possible.

h. Encoding the steerable sets by assigning the same steering
code to microcommands of a group, considering groups one

-65-

after another and then assigning unused code combination
to microcommands not covered.

The detection of n set steerability is done on the same
lines. But as the construction of n dimensional concurrency
matrix is not possible, the following conditions must be satis
fied for the sets of microcommands C.(i =1,2,...,n) for n > 3
to be steerable.

1. The sets must be pairwise steerable

2. The disjoint sets with distinct steering code of each
set Ci are the same when the set O. is steered with each
of the remaining (n-1) sets.

Comments , Although the algorithm for bit optimization
through bit steerability is very elegant, it suffers
from two major drawbacks. Firstly, the formation of
groups in concurrency matrix is done by the inter

section of row and columns sets such that the group
contains maximum number of entries. This type of forma
tion of a group is not easily adapted on computers.
Secondly, the method becomes too cumbersome for detecting
steerability among 3 or more control fields. This re
quires the testing of pairwise steerability. When n
control fields are considered for steerability, the
number of concurrency matrix needed is n(-**-!). There
fore, total enumerations required is -n.(n-l.) times the
enumeration in one concurrency matrix. But as pairwise •
steerability is a necessary and not sufficient condition,

-66-

even after such large enumerations it requires a part

of encoding procedure and detection of disjoint sets

of all the fields appearing in different concurrency

matrices. The disjoint subset of a field C. with dis

tinct steering code are, then, to be tested for no

conflict. These are quite involved processes. To over

come these difficulties, an extended Petri net approach
is presented in Chapter VI. •

3.^ DATA PATH OPTIMIZATION

The number of control signals required for the control

store design is partially decided by the data path assignments,
as the control signals are applied to the resources through the
respective interfaces. Therefore, minimal control signals will

be needed only when data path assignment is made with minimal

interfaces _ an optimal data path assignment. Thus, optimal
data path assignment is a very important aspect and a prerequisite
for obtaining minimal control store through bit optimization
techniques.

With the advent of integrated circuits, the digital system
design is now required to solve the problem of Selecting the
appropriate modules and their interconnections. These modules

constitute a relatively fixed fraction of the total chip area,
while interconnections occupy a dominant share. Further, the
number of bits in control memory is decided by the Parallelism
in microoperations which is essential to increase the execution

-67-

speed of a microprogrammed processor (Section 3.3). These two

factors are, therefore, very important as far as cost of the

system is concerned. This calls for the data path optimization
and control bit optimization of a system involving micro
programming.

3.^.1 INTERCONNECTION BUSES

The modules, as a rule, are connected to a bus (a set of

interconnectors) through same interfacing circuitry. The output

of a module is placed on a bus by a driver circuit and the input

of a module receives data through a receiver circuit. There

are two ways of interconnecting the modules. When modules are

connected through dedicated bus, all possible data transfers

among the modules are allowed. However, in general, all possible

data paths between modules are not needed. Therefore, to save

wiring it is a common practice to 'hang' several modules on a

group of wire called shared bus or for simplicity, bus. Obviously,
this will require lesser number of interfaces compared to dedi

cated bus. If each transfer of data takes place at distinctively
different times, then the input and output ports of all the

modules can be connected to a single bus. But parallelism in data

transfers is an essential requirement to increase the speed of
operation. Hence, a single bus cannot be used for more than one

data transfer concurrently except when the source is the same in

all cases. Also, there cannot be concurrent data transfers to

the same sink from different sources unless the sink has more

than one input port. Such concurrent transfers, cannot take

-63-

place through the same bus. Thus, a compromise should be struck

between the costly dedicated bus scheme with faster speed of

operation and the cheaper single bus scheme with slow operation

speed. This is obtained by interconnecting modules to buses that

allow concurrent data transfers with minimal interfaces called

a data path optimization problem. Available in literature are

only two algorithms for solving this problem. These are as

follows:

3*^.2 DYNAMIC PROGRAMMING APPROACH

Torng and Wilhelm have solved the data path optimization

problem using dynamic programming approach [1^5]. Following are
the steps needed in their techniques

1. Setting up the transfer matrix to represent data transfers,
determining the column and row sets (i.e. the set of

connection variables appearing in rows and columns

respectively) and constraint sets (i.e. the set of data

transfer with different sources which cannot take place
through the same bus).

2. Constructing the connection graph by connecting any two
nodes by an edge if they appear in the same row or column
set.

3. Generating the solution table starting from a minimum

group of row/column set (i.e. the set containing fewest
number of connection variables).

h* Extracting the minimum cost solutions, and

5. Repeating steps 3, and 1+ with increased number of buses

^69-

to examine the possibility of further minimization.

Torng and Wilhelm claimed that the number of enumerations
required for the generation of solution table is additive and,
thus

N°en " C'+»B'G2l+ ♦ N,'̂
where,

Ng = the number of buses

|Gi| = the number of connection variables contained
in a minimum group G.

|G. |
and, NB i - the maximum number of enumerations for each

minimum group G..

During the solution table generation, the cost is calculated
accumulatively. The enumerations, thus, become multiplicative
between two consecutive minimum groups. If q is the first
minimum group and ^ is the last minimum group, then the
enumerations required to generate solution table is not one given
above but as

WNb1^^1*^1*^1^'
|Gk-i' K♦ NB «• x nb Tc

The worst case (when all the entries in (^ have the same
cost) enumerations for the extraction of minimal cost solutions
and for all minimal solutions, are given by

-70-

Of course, many of them will be abandoned before completion due
to constraint or contradiction with the initialized cost.

Further, all the constraints are not considered in the

process of solution table generation, an obtained minimum cost

may or may not be feasible. In case the minimum cost is not

feasible, none of the solution of the particular enumerations

NExt gives the initialized minimum cost. The assigned cost is,
then, incremented by 1 and the entire enumeration is carried

out again. Thus, the algorithm becomes much more laborious. Some

of these defects were removed in the following approach.

3.^.3 SWITCHING THEORETIC APPROACH

Mathialagan and Biswas [85] recast the data path optimi
zation problem into a minimal covering problem following a
switching theoretic approach. They solved the problem in the
following steps5

1. Setting up transfer matrix with rows and columns as the

interconnecting modules, and entries by variables

representing data transfers.

2. Obtaining a reduced transfer matrix, if possible, by first
deleting isolated transfer variables and then removing any
concurrency identifier (an integer attributed to simul

taneous data transfers) appearing only once.

-71-

3* Determining -

(a) Incompatible simultaneous transfer set (ISTs) - the set
of all concurrent transfers with different sources at
the same time.

(b) Bus compatibles (BCs) - the set of data transfers with
the same source or sink.

(c) Concurrent compatibles (CCs) - the largest subset of

BCs containing only concurrent data transfer variables.

(d) Nonconcurrent compatibles (NCs) - largest subsets of
BCs without concurrent data transfer variables,

and (e) NB . .
mi n

k* Obtaining minimal covers, if possible, with as few Cc's as
NB . .

mm

5. Determining maximal concurrent compatible sets (MCCs) i.e.
the set of maximum number of concurrent data transfer
variables which can take place on a bus, and finding minimal
cover with as few MCc's as N

Bmin

6. Extracting the solutions from minimal covers by including
NC s and isolated elements.

and

7. Minimizing the cost of the solutions by increasing the
number of buses, if possible

•pgDUnents : Mathialgan and Biswas have shown that their
algorithm is better than that of Torng and Wilhelm in
the sense that lesser enumerations are required. This is
because first feasibility is considered and then minimal

-72-

cost solutionis obtained. This also provides all the
solutions simultaneously. The comments regarding its
enumeration are as follows..

The steps 1 and 2 are easily executed. The deter
mination of minimal covers will required lumber of
enumerations in sten •> *nA I •« i ,n Step 3 and U number of enumerations

\ Bmn/

in step if when Nc and NB are the number of CC5s and Mcc's
respectively.

The determination of MCc's (step If) is done first
by constructing a compatibility chart which requires
11 2 ComParisons where nis the number of concurrent
transfers. Then compatability graph is constructed to
find complete polygon corresponding to each of (n-1)
concurrent transfers and from these compatible classes
not included in other computable classes are obtained
as MCc's. This requires ^L^di mber Qf enumerations
where aQ is the number of compatable classes. Generally
nc is much larger than n. Apart from a large and heavily
data dependent number of enumerations, the construction
of compatabili ty chart and graph is a must. This is not
easily adaptable on digital computers.

The extraction of the solution from minimal covers
will require atoost (Ma) n^c) *.«.u^c; wBmin number of enume

rations where ^mc and^Nc's are the number of minimal
covers and number of sets of Nc's respectively. The
actual number of iterations will be lesser than this
because of constraints in ISl's and Cc's. However, this

-73-

will still be large.

It has, thus, been observed that the major draw

backs in the algorithm are (i) the construction of compa

tibility chart and the graph which is not easily amenable

on computers and (ii) the generation of all feasible

solutions. Some of the feasible solutions will not at all

contribute to minimal solution. This is because the mini

mal cover does not, necessarily, contain cc's but may

cover a subset of them. In Chapter VI, these drawbacks

are shown to be removed by reformulating the problem of

data path optimization in the domain of Petri nets. This

has been motivated by the natural representation of con

currency by a PN and its elegance.o

3.5 CONCLUSION

It is concluded that the control memory bit and data path
optimizations are two important aspects of microprogrammed

computers. The latter is a prerequisite of the former. The

suggestions of Schwartz and the formulation of Grasselli and

Montanari with modified compatibility relation are the building
blocks for the development of techniques available in the control
memory bit optimization. Recently Roberston came to a conclusion

that emphasis should only be made on heuristics. The bit steering
technique is found to be useful in further reduction in the

number of bits. As far as data path optimization is concerned,
the method suggested by Mathialagan and Biswas is better than

-7 k-

that of Torng and Wilhelm in that it is easier and requires
lesser computations. However, this too suffers from some
limitations. These two optimizations have been again taken up
in Chapter VI with a view to propose easier and efficient
algorithms for them, using Petri net.

CHAPTER IV

ON THE DEVELOPMENT OF PETRI NET THEORY

4.1 INTRODUCTION

With a view to provide for efficient design procedure and

improved performance of systems, considerable work has been

carried out in theoretical aspects of Petri nets. A reference

about this has already been given in Section 2.6. Many unsolved
outstanding problems in PN theory were also pointed out. This

chapter investigates some of those problems and suggests
solution for them.

One of the problems often encountered is unmanageability
of large Petri nets. It is not the disadvantage of Petri nets

as such because it reflects the complexity of system being
modeled. However, it poses some difficulties in analysis. Small
Petri nets can easily be analysed. With this view, a large net
is decomposed into smaller nets and is studied through inter
connection properties of such nets. This is taken up in Section
h.2. Asubsidiary motivation of this study is because of the
advantages of PN representation in combination of state machines,
As pointed out in Section 2.lf.l, while the combination of state
machines is complex, the PN representation is simply the cascade
or parallel connection.

Another problem is that of reachability. It is important
because many properties of PN can be derived in terms of

-76-

reachability. Although it is decidable, the solution is difficult

to obtain due to lack of a sufficient condition. In Section lf.3

a solution to this is proposed by finding a legal firing sequence.

Petri nets as such have limited modeling capability

(Section 1.3). To improve this a concept of negation has been

introduced. This makes the available analysis techniques in

adequate. This problem is solved in Section lf.l* A new type of
transition to perform NOT operation is defined. These transitions

alongwith conventional transitions and places of PNs can model

any system. For the analysis, a generalized state equation is

proposed. The prime justification for the state equation approach
is due to its elegance and well developed concepts.

h.2 INTERCONNECTION AND DECOMPOSITION OF PETRI NETS

It is a well-established fact that PN model allows a

formal specification of many concurrent systems [5], [120]. It
is not only a mathematical tool for the analysis of systems but
can also be used to prove the 'correctness' of the concurrent

process system through discrete state equation or linear algebra
[83], [97]. Although the procedure is very elegent and powerful,
it is quite involved to calculate integer-valued solutions of
systems of linear equations for larger Petri nets particularly
those with multiple-arc connections. Therefore, procedures for
analysis and proving 'correctness' become , in general, cumber
some and even impractical for deciding many properties. However,
it is possible to split PNs into smaller nets each of which can
be analysed and correctness verified easily* From the

-77-

interconnection properties of such nets, the analysis and
verification of larger nets can be made. It is this study of
decomposition and interconnections of nets which has been taken
up in this section. Two properties of PNs, namely, invariance
and consistency have been considered. This is because invariance
and consistency together can verify many properties like bounded-
ness, liveness, deadlock etc. Their relationships have been
discussed in detail in Section 2.6.2. Further, the study in this
section considers pure PN (defined in 2.5.* as a PN where no
place is both input and output to a transition). Before the
interconnection and decomposition of PNs are considered, a few
definitions given below are necessary.

Definition l+.l . The elempnt-c: a n+ +u2Si m elements a.±. of the incidence matrix A of
a multiple-arc PN is given by

aio - ah - i,
where •1j(«Jj) is the number of output (input) arcs from (to)
transition i to (from) place j. For single arc PNs, rf«<»-) is 0
or 1. 1J *r

Let there be two PNs, w = fp T _ B >> _ f.' 1 irl» xi? \% ?!' = (A1,—) and

N2 = (P2> T2» a2' M = Ujf-^>• Then,

Pennlti0n ** ' Nl and N2 « -id to be in cascade through
a set of places P12 (a set of transitions J^) if

(a)pi2 =pi Hp2 (t12 =Ti Oy
(b) P12 (Tl2) is set of places (transitions) input to one of

Nx and N2 and output of the other,

-79-

where ^ =P±± y p^ and ^ =p^ (J p^

(c) Nis an invariant if and only if ^ and Ng are invariant.
Proof « Let Pucz: Px and P22 C= P2 be set of places contained
only in ^ and N2, respectively. Then A± and A2 can be written
as

Pn, P,„ v
V12 r22Pll P12 P10 P,

Al =Tl[*11 A12 3 and A2 =T2 [A21 A22]

(a) Suppose ^ is consistent. Then (from definition P.20) there
exists a lljxl column vector ^ with all positive integers
such that

Al *L = °

or A?, x= 0 „ x
11 1 (lf.1)

and' A12V° (lf,2)

Equation (1*2) will satisfy if and only if ^ has both
positive and negative elements. This means P^ ^11 have some
input places and some output places. This contradicts condition (b)
of cascading through places (definition 1*2). Hence ^ can not be
consistent if it is cascadable. Similarly it can be shown for N0.

(b) Ais a direct result of definitions (1*1) and (1*2)
(c) Let, P P p

' 11 *12 P22
1 = Clln I

"2'

.1
11 I12 I22^ with aH positive elements.

Nis invariant (definition 2.17) if AI = 0
-e., AU I11+Ai2 Ii2=0 (^

-8 0-

and, A2L I12 ♦ A22 I22 = 0 (lf-lf)

As (1*3) and (if.lf) are the conditions of invariance of E,
and N2, respectively, hence the proposition lf.l(c).

Prop,osition 1*2 , Let Nbe the resulting net on cascading ^ and
N2 through a set of transitions T . Then

(a) Anecessary condition that ^ and N2 are cascaded is
that both Nx and Ng are not invariant.

(b) The incidence matrix Aof resulting net Nis given
by

Lll 0

A = 12

A,

22 \- J
(c) Nis consistent if and only if N± and ^ are consistent.

Remark , Proposition l*la (l*2a) suggests that even if ^ and
N2 are not consistent (invariant) the resulting net can be made,
in some cases, consistent (invariant) by merging a set of places
(transitions). As an example, ^ (Fig.^.la) and ^ (Fig.Lf.lb) are
not consistent but a resulting net N(Fig.lf.ic) obtained by
merging-in of places ^ and Plf is consistent.

^P^lti^n,^ , Let Nbe aresulting net when ^ and ^ are in
parallel through a set of places P . Then

(a) Anecessary condition that N and N. are connected in

-81-

(a) A NONCONSISTENT pn,n1

(b) A NONCONSISTENT PN , N2

p or p

(c) A CONSISTENT PN OBTAINED BY MER6ING-IN OF
PLACES p3 AND p^ OF N} AND N2,RESPECTIVELY

FIG 41 _ FORMATION OF A CONSISTENT PN FROM
NONCONSISTENT PNs

-82-

parallel is that both are not consistent.

(b) The resulting net N has

A =

P P Pc rH r22

Acl All 0

Ac2 ° A22

where jL « L[,

11 c r22

Au] and A2 = l£ A^ AOD]

11

A =

L22

tfhere A, =

fll

A
cl

0

Lll

0

A
02

A,
22

K
L C14

, and A =
T_ r A_n

22 22

K
U c2.

a xx cl d- v2 22-

(c) Nis invariant if and only if H, and Ng are invariant.

Proposition if.if *When R^ and N£ are in parallel through a set
of transition T , then

c'

(a) The necessary condition that K^ and N2 are connected in
parallel is that both are not invariant.

(b) The resulting net N has

(c) The resulting net Nis consistent if and only if N and
N2 are consistent.

-83-

The proofs of propositions If.2, 1*3 and if.If are similar to that

of proposition 1*1.

Let there be n subnets 1^, N2,..., KQ. Every pair N. and
N.. is connected through a set of transitions T. . and a set of

places P^ to form a resultant N. Let in addition to conditions

of definition If.If of connectivity the following also hold good

o pkk n^ =pi3 n x =« for i,3 ^k
i.e. a set of transitions (places) common to N. and N. are not

i J
connected to set of places (transitions) contained only in a
subnet 1^. Then N^ N2,....,Nn are Decomposition of N.

Proposition l* ? « The resulting net Nis consistent (invariant)
if and only if each of the subnets is consistent (invariant).

Proof : Let the incidence matrix k± of a subnet N. be given as;

11

T

Ai =
12

Li(n-1)

X
in

Ail

(i)
11

(i)
21

Pi2 • O • Q 9 o 4 0 Pl(n-1)

A(i)

(i)
22 *

A a v o o o

. A

• A

(i)
Kn-1)

(i)
2(n-l)

A(n-l)l A(n-1)2"" A(n-l)(n-l)

u nl A
(i)
n2

(i)
n(n-l)

.. A

Pm

(I)
In

(i)
2n

4

A

A(i)
A(n-l)n

A
(i)
nn J

Since the transitions of I are not connected to places of P. .
13

(def.l*lfb), the submatrix An = 0 for 1 d \ -> n a k*~»^lj u ioi i 5= j in A.. Hence number

of nonzero submatrices corresponding to row T13 or column P = n

-81*.

and number of nonzero submatrices for row T. . or column P. .=(n-l)
for i ^ j.

It can be shown that N. is consistent if

kl± \i \k = ° (If. 5)

anft»ki^l>T%k*° for ***. J=l,2,....,n (1*6)
where, X.k is a |T±k | x1 column vector of positive integer
elements. Similarly k± is invariant if

n * .

kli Aik Jik =° (1*7)
n /. v

and?k=lA^ Jik =° for J **i J =l,2,...,n (1*8)
when, Iik is |Pik|xl column vector of positive integer elements.

From the definition 1*1 and the conditions of connecting n
subnets, the incidence matrix Aof resultant net Ncan be obtained.
Now it can be shown from the definition that Nis consistent if

n

2
(i)T

k =! \i *ik = ° for 1 =1,2,... ,n (lf.,9)

and, I 4VT^k+ * A^)TX. =0,k=1 Tcj Ik k=1 ki \j u»

for j *%t j •= i?2,...,n (1*10)

Equation (1*9) satisfies when equation (1*5) is satisfied for
all i's. Equation (1*10) is sum of equation (1*6) for i th and
jth subnets. If equation (1*6) is satisfied then equation (1*10)
vail also be satisfied. Therefore, Nis consistent if each

-85-

Nx, N2,....,Nn is consistent. Asimilar treatment can prove for
invariance.

If. 2. 2 DECOMPOSITION OF PETRI NETS

In this section a number of basic propositions involving
decomposition of Petri nets are obtained and their use demonstrated.
Consider anet Nm(A,-). Let there be some transitions t^,^..

jtks whlch are connected to same places. These can be
combined into one subset ^ ={^, t^,....,^,. All such
subsets of net Acan be obtained, call these T^ T2,.... Now if
there are places which are connected to same subsets T, T,....,
then these places are combined in asubset of places. All slh
subsets of places P^ P2,.... can be identified. The Qolmm ^
rows of Acan be interchanged and combined into submatrices such
that the columns and rows of new matrix A' correspond to P•s
and T^s, respectively. The matrix A can easily be obtained.
As an illustration let us consider a PN with given Ain Fig.l*2

to

A =

%

°5 L

1 -1

o -i

o 1

o o

-l i

^3

0

1

-1

-1

1

0

0

0

1

-1
J

ag.lf.2- Incidence Matrix of a Given PN

We find that °t° =*L »{Pi,P3} 9 °t|= °t° ={p2,p3] ,

If ={p3'Plf-} r °t|= {p1,P2,P3,plf}°t,° =

-86-

Henoe, ^.(y ,^.(y^J H3 - {\) , \ ={t$)
o_oNow h ={Tl,T5} , opo ={Ti? ^ y . 0po m̂ ^ ^ ^

°p£ -cvv-
Since none of p's are connected to same subset of transitions,

Pl ={Pl}?P2 ={P2K* P3 -{P3}r \MPlfl
Thus,

{Pil {P2} {P3} {Plf}

[1] [-1] [0] [0]

A1 = ivy
0 -1 1 0
0 1 -1 0

Coj [o] [-1] [i]

(V |_[-i] [1] [1^ t-i] ;
Fig. If.3, New Incidence Matri x

Proposition lf.6 * Agiven consistent (invariant) PN can be
decomposed into n subnets each of which is consistent (invariant)
The number n is obtained by selecting a minimum value which
sati sfi es:

Max (number of nonzero submatrices in a row, column of A')
< 2(n-l)

EE2af t First part directly follows from proposition 1*5. For
the second part it can easily be shown that the maximum number
of nonzero submatrices in the incidence matrix of resulting net
Nif all subnets ^ ,N 2>.... ,Nn are pairwise connected
(proposition If.5) equals 2(n-l). Hence, the proof.

-87-

Proposition 1*7 , For a given PN to be decomposable into an
subnets,- the following must hold good for i j£ j . i j = i 2
... ,n

and for n> 3, for i * j 4 k . ijj?k . X,2i..... .n

iv) xn •$ n x =«*• n ^ n \°k . *
P£opf_? (i) and (iii) are the basic conditions for inter
connection (definition l*Lf and that of decomposition)

(ii) Since I., is the set of transitions exclusively
in N., no transition of T. . will be included in °P?± i.e„ the
set of transitions connected to places exclusively in N. ,

0pi°i n T, . - 0
Similarly it can be shown that

°ti nfjjM
(iv) From definition 2.2

omo

Tii =(pn Upi2 U»——yp^ y....)
^Pil' Pi2'**°''pij9)
(because each place p is included in one
and only one set)

-88-

Therefore,

Similarly

°p.°. n °p°. n °p° -«
Q.S.D.

Remark r Propositions l*5| l*6 and l*7 give a method to

decompose a consistent (invariant) PN into smaller consistent
(invariant) nets. It may be noted that each net is different and
cannot be decomposed further. The above mentioned method is

illustrated with the help of an example of Fig.l*2. The new
matrix A« has been obtained in Pig.if.3. The maximum number of
nonzero submatrices in any row or column is If. Hence the number

of subnets to which it can be decomposed into is given by
(proposition if.6).

*f £ 2(n-l)

or n = 3

Therefore, the net Nwill be decomposed into 3 subnets. Let these
be Np N2 and Uy The problem is now to find all P *s, T. . 's,
Pij'S and Vs ^r i ^ j . i?j =lf2>3.
From A' :

°tV° =tpx,p2) , °{t2)t3]° . {P2)P3l , o{vo ={p^h

°tv°= {pi>p2»p3»p^

-89-

Applying l*7a(i), it is found that

°{%}° n°[t2)t3}° n °(v° =«
Henoe, arbitrarily ^ ={y , ^ =(^ f ^ , {^}< Jt
must be recalled that T.. is the set of transitions exclusively
contained in subnet N.. Using °T^ | | °1*. =PjJ, it is found

that p12 =»£ n °i°22. {Pl,p2} n {p2>p3} . {p2]
Similarly p = 0 and P2 = {p j

Further, °1* ={PU, p^, p ,
Hence Dll= bll

Similarly P22 ={0} and P33 ={Pl+}

Remaining transition set {t^ is to be assigned. Obviously,
Tij = (V* 0nly * and * are to be identified. For this (i) is
used. i.e.

Opio n *m =*
Ie> T^ = Tl3 ={t5}ij

The complete decomposition is shown in Fig.If.5
Hence,

h

and

\ r 1 -r
t^ -1 1

5L

p3 pi,

-1 1

1 -1

A2 =

3 L

^2 P3
-1 1"

1 -1

90

ti

FIG.£.4_PN WITH MATRIX A IN FIGURE Z, 3

FIG- 4- 5 _ DECOMPOSITION OF PN SHOWING
IN FIG- UU

-91-

It can be seen that each of N±, Ng and ^ is consistent and
invariant which it should be according to proposition If. 5 and
1*6.

If.3 MINIMAL LEGAL FIRING SEQUENCES IN PETRI NETS

The reachability problem is one of the most important
problems of Petri nets. In Section 2.6, it has been elaborated
that while it cannot be solved by the reachability tree analysis
technique, state equation method provides only a necessary
condition for transforming an initial marking M to another M

o n

of a PN. Hence, to solve this problem it becomes necessary to
find atleast one legal firing sequence (LFS) which can transform
MQ to Mn. It is this determination of LFS which is studied here.
In order to do so, Murata's state equations given in section 2.6.2
are produced below for easy reference 1

^k^k-i +^\>~ 0 , (2.2)

atz = m (2#3)
It was also shown in the same section that the existence of
solutions of equation (2.3) is a necessary condition for
reachability. Further, solutions is not generally unique but a
set of solutions. Thus, it is required to show that one or more
of these solutions are legal (i.e. a LFS exists). Obviously
trying all solutions is quite difficult task. To reduce this
complexity it is shown in subsequent paragraph that only minimal
firing count vector is sufficient to be considered. This will
correspond to minimal legal firing sequences.

-92-

h-3.1 THEORY INVOLVED

Before the technique is given folln«in« *.«* -n«.H^_ j.o givoj, loiiowing two theorems are

postulated.

aaSBEaaJbi I m a PN, a marklrl2 ^ can M reaoh another ^

(*f.ll)

Proof , It has been shown [97] that MQ can not reach Mn if we
can obtain a nonzero column vector V such that

M , if
n'

A AM = 0

AM =B^ V

where Bf is (|p|_r) x |P| unimodular matrix orthogonal to A
(r is the rank of A).

Hence, AAM= a bI V =0
f n

"The°rem !^ : Let 2o be a miniD^ firing count vector. Then in
a PN,

(a) If ZQ is not executable, Z is not executable
(b) If 2o is executable, then 2 is also executable and

the legal firing sequences to execute ZQ are minimal.
ProoiL*. Any non-negative Integral firing vector 2 can be

expressed as Z = Eq +^ when ^ -s another ^^^

integral vector. Since 2Q is also a solution of (2.3),
TA 2X = 0.

Thus, (a) If zo is not executable (i.e. no LFS exists with2),
the LFS to execute ^ even if it exists will not change the " '
marking Mq to Mn and hence, 2 is not executable.

(b) If 2X is not executable, then LFS for 2 is same as
that of 2o. If h is executable, then LFS for ^ can be included

-93-

at any marking M. which is encountered in changing the marking
M0 to Mn. This is because LFS for Z± will not change M.. Hence,
if LFS for 2o exists then there exists a LFS for 2 and minimi
LFS for 2 equals the LFS of 2 .

o

Q.E.D

To solve equation (2.3) for 2Q, let the rank of Abe r.
Then A can be partitioned as?

Pl-r

hi

A,

A
12

|T|-r

where A is a rxr non-

singular matrix.

_ A21 22

Then equation (2.3) can be written as

T
P -r All

AT
Lj-2

A AM.T~
'21 2i

•

T

22_

i

Z2A. |T|-r
AM,

|P|-r

(1*12)
Jt

Eq.(lf.l2) is a set of (|T|-r) linear independent equations in
|T| unknown and 2 = ^ 22JT can be obtained as

2 =

,1 v-l T

l22^2-Ci^) * A2222 ♦ (A^2)T ,-1
AM,

C^.13)

Therefore, 2 can always be expressed in terms of (|T|-r) unknowns.
Now the vector 22 can be selected such that (i) the entries of 2
are nonnegative, and (ii) 2 contains maximum number of zeros.
This 2 is called as minimal firing vector 2 .

-94-

1*3•2 DETERMINATION OF MINIMAL LEGAL FIRING SEQUENCE

The proposed technique for determination of minimal LFS

is given in the form of following steps.

1. For the given PN, Mq and Mn, find A from definition (2.3),
and AM = M - M .

n o

2. If A AM = 0, Mq can not reach M. Go to step 13.

3. If no solution 2 of equation (2.3) exists, M will never

reach M . Go to step 13.

k. Find 2 and then 2Q = [*oi]|T|xl from (4.13). (The element
aoi rePreserlts the number of times i th transition will fire

in a minimal sequence to change marking M to M).

5. Find total number of firings n from

|T|
n = 2 a «i = 1 oi

6. (Construction of reachability tree starts)

Put . j =1, and MQ 1 = Mq (initial node)

7* Find a set of transitions T such that

aoi ?0 i e T

for i e T and all j, find

where, M^i) is a marking resulting from R . . on firing
transition i. M^ is j th node of reachability tree
before k th firing.

8. If Vi e T, 1^(1)/ 0, no LFS exists. Go to step 13.
9. Identify all the markings M^i) which have not appeared

previously, and which satisfy jyi) > 0. Call these markings

-95-

\,1> \,2> \,s» »\,i nodes. Connect a node M
to a node _x^ by an arc i if Mfeg results from M. , . by

A —X , J

firing i th transition. Do it for every s and every j.

10. Put aQl = c0i-i for i e Tand M(i) g o
11. For k = 1 , nf repeat steps 6, 7, 8, 9 and 10

(Reachability tree is complete).

12. Determine all the paths from node Mq to Mn in terms of arcs.
Each.path gives a minimum LFS

13* Stop.

The procedure is illustrated with thelp of follow!
example.

ne

SSEBleJiil • Consider the PN of Pig. if. 6a. The minimal LFS to
transform M = riOOOOl1, to M - rnnnm tt «• j. %.o L-luuuuj zo Mn - [00001 j are to be determined.

Using the proposed technique, we proceed as
Step 1

pl p2 p3 Pif p5

*l " -1 1 1 0 0 "

H 0 0 0 0 0 Pl ~ -1

A
0

0

0

-1

1

0

0

1

0

0
, and AM =

P2

P3

0

0

s 0 1 0 0 -1 P^f 0

v.. 0 0 -1 -1 l P5 J 1

Step 2: A AM= [1 0 0 0 -1 1]T 4 0

J

Step 3,If, solving eq.(2.3) we get Z =['1 - - - ,T
2 6-1 u6 u6-l a6J

and ZQ is obtained by.putting a mQ
= [10 010 1]'

'» a6 = x- Henci

(a) A GIVEN PN

O Mo= [10 000JT

6 MiJ • [01100]T

6 M2>1= [0 0110] T

6 M3j =M4 =[0 00 01JT

(b) REACHABILITY TREE FOR MINIMAL LFS

FIG''-6- M,N,PMNALANLDFSTS REACH*BIL<™ TREE FOR

-97-

Step 5* n = 3

Steps 6,7,8,9 and 10 give for k=l, 3=1, M
"o,l [0110 0] =M0

T\(\) =[10 0 0] + -10 0 0 0 0

10 0-110

1 0 1 0 0-1

0 0 0 1 0-1

0 0 0 0 -1 1_

1"

0

0

0

0.

=[0 110 o]J

Similarly,

M1(tLf) =[1 .10 1 0]T, and M^tg) =[1 0 -1-11 0]T
Since Mx(tlf) and M^) both are <0, t^ and tg can not
fire at MQ. Hence the only node available at k =1, is
\j = [0 1 1 0 0] . In reachability tree it is connected
to Mq by an arc t-,.

Step 10:

Step lis

o . =0 and a , = ao t>i o fy o t(= 1.

Similarly repeating steps 6, 7, 8 , 9, 10 and 11 for

k =2,3, we find the reachability tree as

shwon in Pig. if. 6b.

Step I2t There is only one path from Mq to Mr and hence minimal
LFS is Wt6.

-98-

h.k Ittfe g,ano» HEPRESEHIAH03 OP LOGIC 0KH4H0SS
IHHOUOH PETRI HE 13 [75J

It is observed that Petri nets canaot model system in
wtach l0gi0 operations other than ML and 0Rls Involve. A
detailed discussion about this has already been made In Section
1.3. At. modeling notation Is overcome by definin, a HOI
transition. fc. . logiaal question ^ ^ ^ ^ ^
such Petri nets. The state equation by Hurata [97] cannot be
erectly employed for this purpose because It taxes care of ATO
a* OH logic only. I„ ths folWng ^^ ^ ^ ^ ^
^ Pr°blem °an be SOl™d b^ staining . generalized state

equation for logic operations such as «0I, Mm, NOR and EX_0R
ine transition executing these operations are represented by
different symbols (Figs. L 7 h q^ t n ,^igs. if. 7, if.8a, if.9, if.10). Once a PN wi th
generalized state equation is obtained it woubainea, it becomes a versatile
tool that can be used in a variety of aDDliea« „ ,
„ •* °x aPPLications m analysing
the behaviour of computer system. As aprelude to «. discussion
confer ^ whlCn is a part of COC 5,00 „ representation
at first level of abstraction [105]. n,. ,.n l3 ,
expanded form of ELt.1.1 «> g-.ung.l.l of Sectzon 1.3. Apart of the section
to given here again for maintaining the readability.

It represents the conditions and events for advancing a •
:ob from staging qUeue „ lnput queue. The ^
to program I SI (Fis.L.-m m* «.*+ *.

b U) might be e^cuted provided the condi
tions given below are met.

-99-

a o

FIG- Z».7_ NOT OPERATIO N

Y

aQ

B a
)—-b

*o

B a
o

t t

z

o

FIG. 4.8a _ NAND OPERATION
FIG. 4-8 b _ EXPANDED FORM

OF FIG- 2

B

a

a
>

z

o
o

«a
2>—o

FIG. 4.9. NOR OPERATION ' FIG-4.10 _EX- OR OPERATION

NO TAPE-REQUIRED'
JOB ARRIVES

TAPE-JOB QUEUED
UNTIL

AVALABLE .a

JOB IN STAGING
QUEUE

t2
(ISI)

/"^ JOB IN INPUT QUEUE

FIG. 4.11 _ EXPANDED FORM OF FIG. M

•100-

Job in staging queue AND (logic only one of the

conditions (i) 'No tape required-job advances' and
(ii) 'tape-job queued until tape available' is
satisfied "

Such a system cannot easily be represented by only logic

operations. It is represented partly by logic operations (such

as EX-OR and AND) and partly by operations representing the

execution of the program ISI. The second type of operations is

represented by PN because of advantages discussed in Section 1.2

If logic operations are represented by any other method, the

analysis becomes unwieldy if not impossible because of the

interaction of two different types of model. Hence, it is of

significant importance to represent both types of operations by

a single model and to express all the logic operations through

state equations of PN.

It is interesting to note that the state equations given

by Murata are a special case of the generalized state equations

proposed here.

lf.!+.l GENERALISED STA1E EQUATION

The convention adopted here is to represent the presence

of an uncomplemented (complemented) variable by the presence

(absence) of a token. Thus a place can have atmost one token.

As a result of some matrix operations a token with negative sign

may appear on a place. Physically this means the removal of a

token from the corresponding place. However, a token cannot be

removed from a place containing no token. Hence besides obeying

binary addition rules on the token, following three rules are

-101-

additionally observed throughout the text.

i) 0 + (-1) = 0

ii) 1 + (-1) = 0

iii) (-1) + (-1) = -1

^.^.1.1 NOT OPERATION

Consider Pig.if.7. There are only two possible states i.e.

either G or 2 contains a token and vice-versa. In the former

if an uncomplemented variable arrives at C, the transition should

not fire in order to have the next state same as earlier one.

However, if a complemented variable arrives, the transition should

fire such that the state changes. Similarly in the latter,

transition will fire only when there is a change in input token.

These can be Combined into one state equation

Mk+i =\ +aT dk vk i^W
Twhere, MKfl, MR, A and VK have usual meaning as defined

(Section 2.6.2) and DR =f>ink] |T| x| T| with element ZR.^
given by

Amink = (Token at k th firing minus token prior to k th

firing)at a place input to transition i

The transition will fire only when there is a change in the tokens
at the input place.

^f.lf.1.2 NAND OPERATION

Consider Fig.If.8b which is an expanded form of Plg.if.ga.
Since t' represents AND operation, it will fire when all its

inputs contain tokens. The transition t" executes NOT operation

-102-

and will fire only when there is a change in token at place G.

The state equations representing NAND operation to give the next

state MK+1 from the previous state M. , can be written as

MK+1 =MK +A*TdK \ (h.15)

where, ^ is column vector whose element m., gives the number of

tokens on place j prior to k th firing.

A is a transpose of 2|T| x |P| modified transition-to-

place incident matrix such that

* T ,
. A " [aji aji:i|P| x |2T|

The elements of ATare given by a'„ =-1, if place j is an input
to transition i = 0, otherwise* a" =1, if place j is an output

to transition i = 0, otherwise. DK is 2JT| x 2|T| diagonal matrix,
called characteristic matrix, whose element d., is givsn by

dik =
! 1-Ah m
1 oik

where ^0±k is change in the number of tokens at output place of

i th transition prior to k th firing and, VR is 2|T| xl column
vector whose element vector v., is given by

Tik" t -k *£]T
The firing of a transition tL is infact, a sequence of

firing of two transitions t' and t. ". When t.r (t,") is made to

fire y.^ (T±J[) is V , otherwise V . The transitions t '̂and tk
are enabled to fire iff

-103-

MK +I VK 1° (U.16)

Twhere, A -[•JjJm. V 1*1 T^.....^

1 - Am ., ¥ 0oik * u CH.17)

For Pig.If.8b the order of M^, A*T, Dg and VL are 3 x1, 3 x 2,
2 x 2, and 2 x 1, respectively and Am ., equals (1-m^ + mA1 .nu.),

oik ok Ak Bk

The number of equations in (lf.15) can be reduced by eliminating

the terms corresponding to place G. Hence for NAND (Pig.if.8a).

Eqn. (lf.15) still holds with the value of Am ,, given by
oik

Am ., = m ., - IT m
01k 01k U LIiik

where mQll (rnlik) is the number of tokens on output placed th

input place) to i th transition, and J\ is binary multiplication.

If. If.1.3 NOR OPERATION

Based upon similar reasoning, it can be shown that (lf.15)
represents the state equation for NOR operation (Pig.lf.9-).

However, in this case Amolk equals m^ ♦Vtaj^ where Vis a
binary addition. The transition t^is enabled to fire if for
any place j, condition (If.16) is satisfied and t."is enabled if

(lf.17) is satisfied.

If. If. 1.If EX-OR OPERATION

Similarly, the state equation (lf.15) can be shown to be

representing EX-OR operation (If.lQ). DR for this case is obtained

by making m^ equal to 1+m^ -Vm^ ♦ TT*lik ' Ths
transition t..' is enabled to fire if for exactly one place j

-10lf-

condition (if,16) is satisfied and enabling condition for t. " is

given by (lf.17).

It is evident from the above that equation (lf.15) can

represent all the logic operations. Depending upon the type of

logic operation a transition t^ performs, D» can be obtained.
It is also possible to represent NOT by equation (lf.15) by making

DK =

1

0 Am
ok_.

However, MQ±k and firing rules will be different for different
operations. These are summarized in Table If.l

Logic
operations

Am
oik

NAND

NOR

EX-OR

AND(OR)

moik * ~N mlik

rn ., + m, .,
oik lik

1+m .. - V a
oik lik

+ TTm
lik

Plring rules

t fires if If.16 t is fired if
is satisfied lf.17 is

satisfied

for all input
places

for any input
place j

for exactly one
input place j

for all input
places

-do-

-do-

-do-

TABLE If.l

-105-

It is interesting to note that if

DK =
1

0

0

1

(lf.15) reduces to Murata's state equation [97].

The above concepts are illustrated with the help of an
example (Pig.If. 11).

Example s

Pbr Flg.lf.U, it is desired to find (i) all the markings
(token distribution) and (ii) the time required by the job to
reach the input queue from staging queue.

(i) Assuming that a job in staging queue does not require a
*Ttape, A and MK are obtained as

*T

Pl

P2

• P3

pif

p5

M = *3

pif

P

-l

-l

0

0

0

" 1

0

0

1

0
5 t-

V
0

0

1

0

0

2

0

0

-1

-1

0

IT

2

0

0

0

0

1

Prom Table If.l

Ik

and

2k

-106-

1 0

_ 0 0

" 1 0

0 1

When tx fires, Y±k -[110 0]T and next marking is obtained
from (1+. 1 %) sa M ^ fn r, n n «-iT „.. .,from (lf.15) as M^ =[0011 0]T. Similarly when %fires
2k =[001 lf and \+2 =[0000 1]T. mthis case ^ isV.

the final marking.

(ii) For the job in staging queue to be transferred to input
queue both the transitions t]_ and ^ have to fire (obtained from
CD). Hence, total time (T) required by the job to reach input
queue is given by T= T± + T^, where T± is the time at which
the job is available in staging queue, and 3^ ia the time
required for the execution of the program represented by t .
(Time required by the logic operations is assumed to be negligible),

If. 5 CONCLUSION

In this chapter the problems of interconnection and
decomposition of Petri nets, reachability, and analysis of PN
with additional transitions exhibiting NOT operations have been
studied. The interconnections have been dealt with reference to
invariance and consistency. Many propositions have been postulated
and their utility shown. It has also been demonstrated how
invariant and consistent PN can be decomposed into smaller nets

-107-

with the desired properties. Unlike the existing technique [137]
(Section 2.6.2), the proposed method of decomposition of a PN
does not require the solution of state equation. The derivation

of positive integer-valued solution of a state equation is a

complex task. In this sense, the proposed method is better. Another
unique feature of the approach adopted here is that it is

possible to know 'apriori' the number of subnets into which the
PN decomposes.

The reachability problem has been solved by finding minimal
legal firing sequence. The proposed technique combines to

advantage both the analysis methods namely, reachability tree
and state equation approach. It has been established that if a

LFS exists for minimal firing count vector Zq , then there exists
a LFS for Z. This avoids an exhaustive search of atleast one of
the many solutions of Z which may correspond to a LFS. The deter
mination of an expression for Z is needed in both the cases. To
determine ZQ from z does not involve large additional efforts.

On the other hand, the proposed method requiresless computations
to find LFS which turns out to be minimal. Further, the verifi,
cation of reachability is easier because of lesser length of
minimal LFS.

Ageneralized state equation for PN model of logic opera
tions has been obtained. This overcomes the limitation of Murata's
representation, as NOT and logic NAND gates could not be given
PN representation with earlier formulation. The analysis of a
computer system using this proposed technique is shown with the

r

-103-

help of an example. It is simple and adaptable on computer. It
appears that the detection and isolation of fault in the system
can also be done by extsnding Murata's method in which KVL has
been applied to marked graph.

CHAPTER V

ON THE APPLICATION OF PETRI NETS TO COMPUTER HARDWARE

AND SOFTWARE

5.1 INTRODUCTION [73]

This chapter investigates PN as a tool that can be applied
in number of instances. The basis of study is state equation of
Petri nets which is given again for the purpose of clarity as
foil OWS J

ATZ =AM '•• • (2<3)
It is shown here that eq.(2.3) is very powerful and applicable
to a wider class of problems in computer hardware and software.
This results in solving many problems by obtaining a solution
2 of (2.3). The problems only differ in the class of the above
equation in which AM can have different type of column vector.
Some of the problems are identified in the following specific
classes*

Class 1 , Any two entries of AM have unit values, one having
-1 and other +1, respectively while remaining entries are o's.
This class is useful in finding all the simple paths between
two nodes of a graph.

Class 2 ; All the entries of AM are 1's. This class is used
in determining, all the maximal compatable class m control
memory bit optimization of microprogrammed computers. The

-110-

detailed discussion of this is deferred until the next chapter.

Glass 3 i All the entries of AM are o's. This is useful for

code optimization of assembly language programs generated in

the process of compilation [63]. Instructions, locations and

datas of assembly language code (generated after the parsing
and code generation in compiler) is represented by transitions,
places and tokens of PN, respectively.

In this chapter only the problems which are covered by
class 1 are taken up. The subsequent sections find the enume

ration of simple paths between two nodes of a graph. .Furthermore,
the importance of simple paths in the problems of terminal

reliability of computer network and program complexity evaluation
is investigated and the solutions of these problems through
Petri nets are proposed.

5.2 ENUMERATION OF SIMPLE PATHS BETWEEN TWO NODES OF A
GRAPH [71]

Often all simple paths between two specified nodes are

needed. The computation of reliability between two stations of
a computer network is just one of the many examples. This
section tackles precisely this problem. In literature, are
available many methods for this purpose. The adjacency matrix
technique [30] is one of them. The adjacency matrix X=[x. J
of a directed graph with Vvertices is Vx Vmatrix, where
X.J. =1, if there is an edge directed from vertices v. and v.,
and 0 otherwise. The Lth power of the adjacency matrix £ is

-111-

the number of simple directed paths of length L- edges between
each pair of vertices v± and v.. It has been shown that the

successive power technique [30], [128] requires V* matrix

operations. Rubin [133] has applied Warshall ordering technique
[llf9] to find all simple paths, resulting in V"3 matrix operations.
In this section the concept of PN is applied. Here no multi

plication is involved, only vector additions are needed.

5.2.1 FORMULATION

Let G= (v,E) be a finite directed graph without multiple
edges or self-loops. V(l ,2,.... ,y) is the list of vertices and

B< (ei» e2 »^) is the list of edges of G. The graph Gcan
be represented by a Petri net by replacing the nodes by places
and arcs by transitions. The transitions are assumed to fire in
the direction of the arc. Hence to find all simple paths from
a node r to a node k of G, it is sufficient to determine which
of the transitions of the corresponding Petri net would fire in
order that a marking which has the only token at place k is
reachable from a marking which has the oznly token at place r.
This is achieved by using the state equation (2.3). In this case
eq.(2.3) reduces to

Al Z = AM (5-1)
where, A-, = [a. .]

J- 13 VxS is the incidence matrix of the graph G
whose element a . is given by

a. =
U

-112-

-1 if jtharc is oriented away from node i

1 if jtharc is oriented towards the node i

0 otherwise

AM- frtjjy^ is a column vector whose element BU is
given by

-1 for i ^ r

1 for i .= k

0 otherwise

mi =

and, Z - [e^Jg^ is a column vector whose element e. is 0,
when j th arc is not included in the path.

As the paths are simple, e. can atmost be 1.

Equation (5.1) contains V-l independent equations in E unknowns.
Each feasible solutions of (5-1) will correspond to one simple
path.

5.2.2 SOLUTION

Apath of length L in Gis a non-empty sequence of L edges.
The path is simple if all edges are distinct. Thus, the solutions
of (5.1) can be obtained by column operations of 4,* Any Lcolumn
vectors of Acan be added and if the addition equals AM, then a
simple path of length L is given by the branches whose indices
correspond to these L columns. All such L combinations of columns
will give all possible simple paths of length L. The number of
iterations atmost will be equal to " (•) because the

L=l L
minimum number of branches in a simple path mil be V-l. However,
it is possible to reduce the number of operations considerably

-113-

by considering the properties of matrix A. There may be certain

nodes to which are connected either outgoint or incoming branches.

Two or more columns which contain -1's (or l's) for any row can

not be added because the addition can never be equal to AM the

element of which corresponding to a row is -1 or 0. Such sets

of columns can be identified from A,. Hence only those L (L > 2)

columns are considered out of which any two columns do not

belong to the set as obtained above. Based upon the above

discussion following are the steps to find all simple paths
between two specified nodes,

1. Find Ax and AM from (5.1)

2. From ^ find all the sets S^^ for UUH 0f columns
corresponding to each row which contains -l's (or l's)only.

3. Compare all the columns of A± with AM. If any column
equals AM, the branch with index which corresponds to the

particular columns is the path of length 1.

Put L = 2.

if. If any two columns of L belong to a single S. obtained
in step 2, GO TO step 8.

5. Add L columns. If the addition equals AM, the indices

corresponding to these L columns are attached to the

branches to give simple path of length L.

6. Repeat step If and 5 for all possible L combinations.

7. Make L = L + 1 until L = V-l GO TO step If.
8. Stop.

The proposed procedure is illustrated with the help of an
example.

-11 If-

Eyample s Let the graph [133] G= (V,E) contain V= (1,2,3 ,if,5) ,
and edges

e1 = (1,2),- e2 = (1,3) ? e3 = (l,lf),. e^ = (2,If), er * (2,5) |

e6 = fttfll-
All simple paths between node 1 and 5 are to be obtained.

Using the proposed technique we get the following;

Step 1

Al =

1

2

3

if

5

el e2 e3 % e5 e6

-1-1-1 0 0 0

1 0 0-1-1 0

01 0000

00110-1

000011

and AM =

1

2

3

if

5

-1

0

0

0

l

Step 2 ^ = {1,2,3} and S? = {5,6}

Sjep 3 It is found that none of the columns equal AM, hence

there is no path of length 1.

Step If.5.6 L = 2

It is found that columns 1 and 5 can be added and

simple path of length 2 is (e^ej. Another simple
path of length 2 is (e.,ej.

3 0

fftep 7 Similarly it is obtained that the simple paths of

length 3 is (e^e^eg).

There is no other simple path.

-115-

5.2.3 MAXIMUM ITERATIONS NEEDED

In the preceeding section, a method to reduce the number

of operations on A]_ has been given. This section finds what is
the maximum number of iterations required in the proposed
technique to determine simple paths between two nodes of a graph.
Those columns of J^ which equal AM can first be deleted. This
is because they will never contribute to other simple paths.

This will require Miterations. Now the remaining matrix can
always be arranged and partitioned by interchanging the columns
such that the resulting matrix.

Ai*= thn !Ab :V

where A.n is V^ matrix with all the entries in the row of

initial node as -l's, AQ is VxE3 matrix with all the entries in
the row of terminal node as +l's. Afc is the VxE2 remaining
matrix. Obviously E.fl^y E. Now the path of length Lcan
be obtained by adding one column of A.n, (L-2) columns of Afe and
one column of Aq. No two or more columns of A.n or AQ could be
added to equal AM. Thus, the maximum number of iterations to find
path of length L(L>; 2) =E]_E (|).

Therefore, maximum number of iteration to find all simple paths

" E+ L% W L-22)

= E + E E (1 + z (E2))
5 1=1 i

Obviously, this will be much less than z" (E).
L=l L

-116-

Having discussed the enumeration of simple paths through
PN, the following sections are devoted to the application of

such a concept to two important problems of computer science.

5.3 TERMINAL RELIABILITY OF A COMPUTER N3TW0RK [72]

One of the problems that arises in a computer network is

to compute, in an efficient and systematic manner, the terminal
reliability between a given pair of stations. It is the proba
bility that there exists atleast one path between these two

nodes. The solution for such a problem exists in literature

[23]? [39]? [58], [77]i [10lf]. An alternative procedure exploiting
the reachability concept of PN is proposed here. In the proposed
technique the computer network is represented as in [39] by
probabilistic oriented graphs with weighted arcs and unweighted
nodes, the nodes assigned to be reliable stations and the arcs

represent the unreliable connections having a weight equal to
its probability of existence. Further, it is assumed that there

is no co-relation between failures of different links and relia

bilities are time invariants. Graphs having parallel arcs are
excluded and assumed to be combined into one arc.

In order to find the terminal reliability of a probabilistic
graph, a Boolean function F(sum-of-product form) is constructed
such that each term of F corresponds to one simple path the
enumeration of which has been discussed in the preceeding section.
Obviously, the terms of F are not disjoint. Therefore, it is
not possible to replace each term by corresponding term of

-Im

probabilities. Hence disjoint terms of F are obtained by making
use of firing rules of PN.

5.3.1 PROBABILISTIC GRAPH AND DETRRM JNATION OF BOOLEAN

FUNCTION

A probabilistic graph consists of unweighted nodes and

weighted arcs. The nodes represent reliable stations and the

arcs represent unreliable connections having weight equal to

its probability of existence. The arcs are, in general, oriented

but for some arcs no orientation is given. For such an arc the

probability of existence is same in both the directions.

A probability graph can be drawn where the probability of

existence p^ of arc (i,j) is given by defining a stochastic

variable x^ having 0,1 as definition domain, and stochastic
determination of r.. as ;

?{hi = 0) =! . tli = %J,

In order to find the terminal reliability, first all the

simple paths between terminal nodes are obtained as terms in

Boolean sum-of-products function (SOP)F . Secondly the disjoint
terms are obtained and the desired Boolean function P is deter

mined. The terminal reliability p is then straight forwardly
computed by means of the following correspondence.

*U . hy

Boolean sum

Boolean product

-118-

Arithmatic sum

Arithmatic product

Simple paths of the probabilistic graph can be obtained
by the technique described in Section 5-2. However, some arcs
in the graph may not have any orientation. These arcs can be

represented by transitions which can fire in both the direction.
Hence, A± = [a.±.] of eq.(5.1) is modified with elements a. . as

/ -1, if arc j is oriented away from node i

1, if arc j is oriented towards node i

± 1, if arc j is not oriented but is incident
at i th node

0, otherwise

Further, the extra addition rules of the columns are imposed
as (±1) -f(±i) = o,. -1 +(±i) = 0 | 1 +(±l) = o.

For illustration, consider the following example.

Sample ^ For the graph Gof Pig.5.1 [39] all the simple
paths between terminals 1 and if are to be obtained.

Using the technique of Section 5.2.2 with modified A]_
and extra addition rules we proceed as follows:
Step 1

a. =
ij

X12 xl3 ^3 x2lf x3i+
1 " -1 -1 0 0 0 ~

Al =
2 1 0 +1 -1 0

3 0 1 ±1 0 -1

if 0 0 0 1 1
J

FIG- 5.1_ A PROBABILISTIC GRAPH

XjO

m VARIABLES

x.O

m VARIABLES

k VARIABLES

FIG. 5-2 _ PN PRESENTATION OF SIMPLE PATHS WITH CONCURRENCY
AND CONFLICT IN TRANSITIONS

and

AM =

1 ~ -1

2 0

3 0

if 1

-120-

Ste£_2 , S1= (x12,xl3),. Slf= Cx^,*^)

Step__^ .. It is found that none of the columns equals AM, henc^
there is no path of length 1.

Step if,5,6 : L = 2. It is found that addition of column

corresponding to x12 and xglf equals AM giving thereby

a path of length 2 as (x^x^). Other simple path of
length 2 is Xj-x.^.

Step_2 s Similarly simple paths of length 3 are (x12x2 x-)
and (x^Xg^x^). Tnere is no other simple path.

Hence, simple paths are x^x^, x^x^, x^^ and
X13X23x2lf* The Boolean function (SOP form) f is thus given by

F =x12x2lf ♦ x13x3Lf * x12x23x3lf -f x13x23x2Lf.

5-3*2 DETERMINATION OF DISJOINT TERMS OF F AND PROBABILITY

Each term of .f can be represented by a transition whose

inputs are the logic variables of that term. The number of

transitions will be equal to the number of terms in F, For the

two terms t. and t., the PN representation of p is shown on the
right hand side of Fig. 5,2.

fHTUL IKUIT OMITfKITT IF MWIB

-121-

The m(m >1) variables are common to both the transitions.
The variables x. is the input only to t. and k variables (not
including xi) are input only to t . Obviously, t. and t. are

J 1 j

not disjoint because both the transitions can fire simultaneously.
It can be seen easily that as far as the availability of output
is concerned, left hand side and right hand side of Pig.5.2 are
equivalent. But t± and t'. can not fire simultaneously making
the transition disjoint.

It may be noted that one of the transitions corresponding
to a term in function f is to be considered as a basis to find
the disjoint transitions. In order to reduce the number of

computations the transition in which input contains minimum

number of variables is selected as the basis. Let such a tran

sition be t. and one of the inputs to it be x,. Any transition

which has one of the inputs x. will be disjoint with t.. Consider

another transition t, (k 4l). Three possibilities can exist for
the inputs to t ,

i) variable is present as x.

ii) variable is present as x., and
J

iii) variable x. is absent.

For case (i) obviously t^ is not disjoint to t... However,
because the simple paths are different, there will be atleast
one variable which is input to t. , and not to t^ and i^ is made
disjoint to t± by adding complement input of that particular
variable to t .

-122-

Since the function p contains only uncomplemented terms,

case (ii) will not be present in the beginning but in subsequent

computations this situation may arise. In this case, t, is

disjoint to t..

For case (iii) an input x. is added to t ,

Hence, for every input variable to transition t. all the

transitions disjoint to t^ are obtained. Ignoring t. , consider
the remaining transitions. Obviously they may not be disjoint

to each other. The above process is then repeated.

A procedure based on above discussion to obtain all dis

joint terms from simple paths is as under t

Step__l. Represent all simple paths in tabular form where a row

corresponds to a path and a column to a variable. If

a variable j is present in a path i, then the entry for

(i,j) in table is 1. Otherwise the entry is * (where

* denotes the absence of the variable in the path)

Step 2 ? Select a row in the table for which maximum number of

*tsappear. Call it a basis row. If any row does not

contain any * , then it does not take part in further

computation but corresponds to one of the terms in

disjoint function.

-steP 3 « For the basis row, select a coloumn j of no * entry.

Determine the complement of the entry, say C. Obtain
J

a new table whose entries in columns other than j th

column for the remaining rows are same as in the table

obtained in Step 1. The entry for j th column and 1 th

-123-

row is determined by multiplying the entry (i,j) 0f
the preceeding table by C. according to following
rule, .

0.0 • 0

1.1 = 1

1. *= 1

0. *= 0

However, for any row 1 and column j, if the multiplicant
is complement of C., the i throw is not entered in the
new table.

Repeat the step 3 for all no. * entries of the basis
row and add rows to the new table. Note that the new
table does not contain the basis row.

StfiEjf : Go to step 2 and repeat till there is only one row in
the new table.

Stffi^ , Hnd conjunctive functions for each basis row (Including
that of final table) and the rows without any * by
putting the uncomplemented variables for '1' and
complemented variables for '0 ' in corresponding columns.
The function of all disjoint terms Is, thus, the disjun-
ction0f all conjunctive functions.

The above procedure is illustrated with the help 0f example
of fig.5.1.

-12lf-

Step_l • Table 5.1 is obtained as

Variables
X12 X2lf x13 x3^ x23

rows 1 1 1 * * *
Basis row

2 1 * * 1 1

3 * * 1 1 *

if *
1 1 * 1

Table 5.1

•SteP &*3 " Arbitrarily row 1 is selected as basis row(another
choice is row3)and Cl2 = 0, C. a 0.

Considering first 0^ = 0 and then C^ = 0, table 5.2
is obtained as

Step

Variables
\2 X2»f x13

^ x23

rows 0 * 1 1 *

1 0 *
1 1

* 0

Table 5. 2

1 1 ** Basis row

_lbi?The table 5.2 does not contain only one row and hence
repeating step 2, the row If of table 2 is the basis

row and O^m l, c^ = 0, C^ =1, new table 5.3 is
obtained.

Variables

rows

rows

-125-

x12 x2lf x13 x3lf x23

1

0

0

1

0

0

1

1

1

0

0

1

0

1

1

*

1

0

1

Table 5.If

1 1 One of the
solution

1 *

* 1 Basis row

Table 5.3

Proceeding in a similar way the following final table
consisting of the three basis rows and the fully
assigned rows gives the required solution.

Variables jr - ,
T.2 x2lf ^3 x3lf

1

1

1

*23

1

Therefore, the function? is given by

=x12x2lf ♦ x2lfx13x3lf ♦ x12x2lfxl3x3lfx23 ♦ x12x2lfx13x23
♦ x12x2lfxl3x3lfx23

From the correspondence of the variables with probability,
the total probability Pis given by

=Pi2p2lf ♦ q2ifp13P3if ♦ p12q2Lfq13P3ifP23 * q12P2i4p13P23
+ q12P2!fP13p3ifq23-

It can be seen that the result is not the same as obtained
in [39 J. The difference is because of the selection of the basis

-126-

rows. However, the solution obtained by the proposed technique
will be more nearer to the optimal solution because the basis
rows are selected such that minimum number of no * entries are
in the row.

5'kr PROGRAM COMPLEXITY EVALUATION

Testability and maintainability are two important aspects
of software systems. A technique for program modularization such
that the resulting modules are testable and maintainable, has
already been adopted [87]. This is based on program complexity -
a quantitative index of the structural properties of programs.
During the creation of software modules, the complexity is

calculated. Lesser it is, easier is the program debugging. This
puts a restriction on program complexity by setting an upper

limit. When this limit exceeds, either subfunctions are recognized
and modularized or the software is redesigned. Another signU
ficant application of complexity is its use for developing test
strategies and selecting test datas.

The measures of program complexity can be divided into
two groups;

1. The complexity of program control. Here basic paths,
cyclcmatic number, path lengths and number of paths have been

defined as complexity metrics [87], [I3lf].

2. Number of basic operations or execution time to compute
the program result [79].

>

V

-127-

5.^.1 COMPLEX!TY METRICS

Complexity metrices can be thought of as a measure of

'psychological'complexity in the sense that the lower value of
this gives a confidence in testability and maintainability of
software systems. On the other hand the execution time is a

measure of performance complexity.

The complexity metrics in program control is defined with
reference to a directed graph which is associated with the given
program. Each node in the graph corresponds to a block of code

in the program when the flow is sequential and the arcs corres,
pond to branches taken in the program. The graph has unique
entry and exit nodes. In the following paragraphs different
complexity measures and their importance are discussed.

Cyclonatic number, in a strongly connected graph Gis the
maximum number of linearly independent circuits [87]. This
corresponds to the number of program constructs which are the

basic units to be tested.

Basic paths are those when taken in combination will

generate every possible path in the program. As any program with
a backward branch potentially has an infinite number of paths
[87], testing of all possible paths is impractical. Therefore,
for correct execution of the program only basic paths are
considered for testing.

Number of paths and path lengths are important for debug
ging and maintainance. If a large number of paths exists, then
the program will be difficult to debug and maintain, and should

-128-

be divided into smaller modules. Further, shorter is the path

length, lesser is the difficulty encountered in testing.

There exists in literature an algorithm for the evaluation

of complexity metrics [I3*f]« This involves the following auto

mated steps s (a) drawing a directed graph as the program is

written, (b) identifying the graph tree and determining funda

mental circuits by adding at a time a link to the tree,

(c) generating the ringsum from the rows of fundamental circuit

matrix and determining paths of interest with the help of this

and adjacency matrix and its powers, and (d) identifying or

computing complexity matrics from (a) and (b).

In this section a new complexity metric namely simple

paths between entry and exit nodes and independent directed

circuits is defined. It is shown that these two can evaluate all

the complexity measures defined in the preceeding paragraph.

Further, a PN approach is applied to evaluate these.

A simple path is an open path in which an edge appears

only once and no node is traversed more than once. Each simple path

between the entry and exit nodes of the graph will form a

fundamental circuit if these two nodes are connected for the

purpose of making the graph strongly connected. For illustration

purpose consider Fig. 5*3 where node 1 and 5 are entry and

exit nodes, respectively. The dotted line between nodes 5 and 1

is to make the graph strongly connected i.e. there exists a path

joining any pair of arbitrary distinct vertices. The simple

path are I2lf5, 135 and 1635- Corresponding to simple paths the

-129-

FIG. 5-3 _ A PROGRAM GRAPH

FIG- 5. U- THE GRAPH FOR ALGOL PROGRAM IN FIG. 5.5

-130-

fundamental circuits are 12lf51, 1351, and I635I. Obviously

there will be some directed circuits not included in any of

these. In the example, 2lf2 is such a circuit. Hence, it is clear

that the total number of fundamental circuits will equal the

number of simple paths between the terminal nodes added with the

number of directed circuits in the graph without providing any

feedback path. In the example under consideration, directed

circuits are 2lf2, and 363. Hence, the cyclomatic number is

3 + 2=5.

It can easily be shown further that all the paths can be

obtained by a linear combination of simple paths and directed

circuits. For the example, the set B is a basis of program paths

as set of simple paths and dicircuits given above will generate

path I3635 as I3635 = 135 + 363. Obviously the basic units to

be tested are simple paths and dicircuits. The length and number

of the simple paths will play an important role in testing.

Smaller the length and fewer the number, easier it is for debug

ging and maintainability. Same is true for dicircuits.

Having given the importance of the new complexity measure,
the next question is how to evaluate it. Generation of simple
paths have been discussed in 5.2. The same algorithm can be

applied to program graph without feedback loop. The enumeration

of dicircuits in the graph is implicitely included in the

algorithm. The incidence matrix of a graph is its structural

property and will not change for the two enumerations. However

AM will be different in the two cases. Consider a directed

circuit and transform it into a PN as in section 5.2. If the

-431-

token put on any place p moves around many places after successive
single firing of transitions and finally arrives at p, then it
has travelled a directed circuit. Here the change in marking
AM is Zero. Therefore, a directed circuit is obtained by solving
for Z the equqtion (5.1) i.e.

A± Z a AM
(5-1)

where AM = 0. In the algorithm of single paths (Section 5.2),
if AM in steps 3 and 5 is 0, then the solution Z is a dicircuit .
The other iterations are same in both the cases. As an illust
ration let us consider the same ALGOL procedure and corresponding
program graph in [I3lf] reproduced in Fig.5.5 and Fig.5.if,
respectively. The nodes and the edges of the graph correspond to
the circled number and statements between them respectively.

From the definition of incidence matrix A1? it is obtained as

A =

1

2

3

if

5

6

7

8

9

10

abcdefghijkl

-100000000000

1-11-10000 0000

01-1000000000

0 0

0 0

0 0

0 0

0 0

0 0

0 0

01-1000000-1

001-1000000

0001-1-10000

000011-1 000

0000000-100

0000001-1-10

0000000011
J

-132-

PROCEDURE TEST CONDITIONS,-

C^OMMENT^TES^ALL CONDITIONS FOR MEMBER IDENTIFIED

COMMENT IF ALL CONDI HOTS HOLD ADD MEMBER TO
LINKED TEST?

BEGIN

INTEGER A,I 5

LOGICAL FAIR?

FAIR j = TRUE|

I t a 11

® WHILE ((REQUEST(I) = "q») AND (FAIR = TRUE) DO
BEGIN

FAIR | = MATCHTNG(I)?

I « = I +lf

® END

© IF FAIR = TRUE THEN

© BEGIN

A | ~ ALLOCATE? _
rtCN ®<&) IF LIST POINTER =NIL THEN LIST.POINTER: = A

® ELSE SETCDR 1 (LAST, A) |
LAST: = A?

SETCDR1 (UST, NIL) j

SETCARl (LAST, CDR2 (CURRENT_MODE+l)) ;
® END

© END TEST_CONDITIONS«

Fig. 5«5 - An ALGOL Procedure

-133-

For simple paths, AM = [-1 0 0 0 0 0 0 0 0 l]T

and, for dicircuits, AM =[000000000 0]T
Using the technique of Section 5.2

Simple paths are obtained as

!• a^l of length 3

2. adefgik of length 5

3- adefhjk of length 5

and only one dicircuit be obtained.

Hence, the cyclomatic number is 3 + 1 = if which tallies with,
the result given in [13lf]*

5*K2 EXECUTION TIME [I38]

Kbdres [79] defined a new measure of complexity, execution
time of a program and proposed a method to evaluate it. In Ms
algorithm unlike traditional representation of program flow
charts by directed graphs, the concept of flow graph is used.
The sequence of functional statements are represented by arcs
and control points in program as vertices. Kodres after showing
similarities between problem arising in programming, discrete
system analysis in engineering and network flow problem arising in
operation research, applied the relationship between tree branches
and links to find an execution time expression.

The object of this section is to highlight the application
of Petri nets to evaluate execution time of a program. Since each
block of a program flow chart represents either some operation
or some condition, it can be represented either by a transition

-13if-

or a place. The complete flow chart which is made up of several

blocks can, therefore, be represented by a PN. a detail dis

cussion of such a transformation has already been discussed in

Section 2.If on software modeling.

In conventional Petri nets, it is assumed that the output

of a transition after firing is immediate and that the firing

does not take any time. Deviating from this conventional approach

we shall introduce a concept of time to firing of each transition.

Let us assume that a transition t± requires T. time to execute
the operation which it represents. This means that the output of

the transition t^ will appear after a time T. of starting of

firing of t^* Hence in order to find the total execution time

for a program we must determine how many times each of the tran

sition has to fire. The total execution-time is, thus, given by

t
Total execution-time a Z o . T. (1.2)

1=1 x 2 ? ;
where, a± is the number of times the transition t. fires in the

execution of the program. Note that a± is an element of the
firing count vector. Therefore, the computation of total exe

cution time can be obtained by solving for z the state eq.(2.3)
(also given in the preceeding section) and then using eq.(5.2).
Since the initial and final conditions of flow chart are known,
AM can be obtained and (2.3) can be solved for positive integer-
valued solution.

As an example, consider the flow chart of [79 J shown

Fig. 5«6 and. represented by PN in Pig. 5.7.
in

135-

C START)

SUM sO

I = 1

•

SUM=SUM + I #*3 IsI+1

/uX TRUE

i

FALSE

PRINT SUM

f END ^

FIG- 5-6_ A FLOW CHART
F(G.5-7_PN REPRESENTATION OF

FLOW CHART IN FIG- 5.6

•p> TO PLACE
C

-o<

FROM PLACE (j FTG. 5.8_ A REPRESENTATION OF t5 AT LOWER
LEVEL OF ABSTRACTfON

-13 6.

The transitions corresponding to the sequences of
operations are as follows:

tj_ ^ START

t2 _ SUM = 0, I = 1

t^ ^j SUM = SUM + I * *3

t^ r^ PRINT SUM

t? ^I»I+l

The tokens at places correspond to various conditions.
The token at place -a' means a request for start is made. The
program 'starts' means that firing of ^ will take place only
when a request for start is made and the printer is available.
A token at «e, represents that the printing is over and the
printer is free. The place lg , contions four tokens to represent
I <5- Atoken at «f • represents, the condition I <5 False.
This token will arrive at f only after the transition t has
stopped firing. The arrival of token at f can be obtained by
Petri net shown in Pig.5.8. However, this net is represented in
Fig.5-7 in amodified way by a single transition ty The advantage
of PN to represent different levels of abstraction nay be noted
here. By having a single transition t,- with input place g,
complexity of net is reduced. Then,

*i

A =

'5 L

a b c d e f g

-110 0 0-10

0-110000

0 0-11000

OOO-1-lio

0 0 1-1 0 0-1

-137-

M a 1

b 0

c 0

d 0

e 1

f 1

g-L k

and

nence AIM = M - M
n o

- -1

0

0

0

0

-1

Solving eq.(2-3) for Z,

\ 1

*2 1

Z = s 5

\ 1

tc If

Hence, total execution time = T.

The result tallies with that of [79],

M.
n

a ~ 0 ~

b 0

c 0

d 0

e 1

f 1

g 0

+ T2 + *T3 * \ * hT5

5*5 CONCLUSION

In this chapter, the application of Petri nets to some of

the problems of computer systems has been described. It has been

-138-

shown by demonstrating that many computer hardware and software

problems could be represented by different classes of Murata's

state equation of PN the solution techniques of which are

essentially the same. The state equation, thus, forms the nucleus.

A technique for solving the state equation has been given
in the procedure to enumerate all simple paths between two nodes

of a graph. Neverthless the same technique could be used, as
demonstrated, for the problems where AM is different than for

simple paths. The technique is novel in the sense that only a

single matrix is needed. Also, it is easily adoptable on computer.
Moreover, only vector additions are required and no matrix multi

plication is involved. This considerably reduces the com-putational

time. The complexity of the computation has also been calculated
in terms of maximum iterations needed.

The problem of computation of the terminal reliability of
a computer network has been solved by finding, first a Boolean

function in terms of simple paths whose enumeration is through
the state equation, and then its disjoint terms. Obviously the
advantages of the proposed technique over the existing ones are
the same as given in the above paragraph. Since the basis rows

in finding the disjoint terms are selected with minimum number

of literals, the solution obtained will require lesser terms

and, therefore, will be more nearer to the optimal solution
compared to other techniques.

In the problem of program complexity evaluation^presented
are simple paths and dicircuits as a measure of 'psychological'

-139-

complexity and execution time as a measure of performance

complexity. The advantages of simple paths and dicircuits as

complexity measure have been highlightened. Their enumeration

has been achieved by the technique of solution of state equation
of PN. Unlike the existing techniques [l3lf], no tree, no gene
ration of ring-sums over the rows of fundamental circuit matrix

and no adjancency matrix alongwith its powers are needed. The

incidence matrix A± of the graph which is used in the state

equation contains all the necessary information. The degree of

vertex as ^indicator of program complexity is a direct evaluation

from the matrix Ar The other complexity measures terejsffivn to
be directly obtained from the state equation.

CHAPTER VI

PETRI NET APPROACH TO DEVEPLOMENT OF MICROPROGRAMMED

COMPUTER

6.1 INTRODUCTION

Microprogramming is one of the important aspects of modern

day computers. Apart from increasing the flexibility it has made

possible tta. process of emulation. Microprogram optimization
is, however, necessary to be employed to increase the efficiency
for the applications of microprogramming. Of various optimization

strategies adapted, only bit optimization in the design of

control memory and data path optimization in the modular inter

connection of systems have practical advantages. These have been

reviewed in Chapter III. This chapter investigates the role of

Petri nets in the development of systems employing micro

programming particularly with reference to the above two opti

mizations. The algorithms to solve these two optimizations are

also proposed.

6.2 BIT OPTIMISATION

The problem of bit optimization in the control memory of a
microprogrammed computer is essentially the grouping of micro-

commands such that a minimum number of encoding bits is required

without loosing the parallelism in microcommands. The existing
techniques and the related concepts were presented in Section

3»3»1« An important conclusion of the research in this field is

-llfl.

that the problem is NP-complete. Therefore, instead of finding a

general solution, the attempt should b3 made in solving

reasonable subcases. It is in this regard that a technique for

bit optimization is proposed here. Given a ROM specification, the
strategy involved is first to enumerate all the maximal compatible
classes (MCCs) of microcommands and then to place microcommands

in blocks such that

i) each block is a subset of an MCC

ii) no microcommand can be added to any block without

increasing the bit required to encode the block i.e.

each block contains exactly (2^ -1) microcommands (one
place is fixed for No operation N„ where n. = 1.2...

up *5 w • w

"•'nmax* The value of "max is de°ided by the number
of microcommands in the largest MCC

iii) there are maximum possible number of blocks with
/0max , >.
(4 -1) microcommands, maximum possible number of
v, , . max-1
blocks, with (2 -l) of the remaining microcommands
and so on.

Obviously, such an arrangement, not necessarily, yields an
optimal bit solutiom. Hence, a condition for bit reduction is

obtained. Aprocedure is given and illustrated with the help of
an example.

6.2.1 ENUMERATION OF MAXIMAL COMPATIBLE CLASSES OF

MICROCOMMANDS [7*f]

As pointed out in Section 3.3.I, the enumeration of

maximal compatible classes (MCCs) of microcommands has been

-Ilf2-

obtained using methods suggested in minimization of sequential
machines [22], [80]. However, since these methods require the
construction of compatibility charts and graphs,they are not
easily Implemented on digital computers. This provided a moti

vation for an alternative technique which is presented in this

section. In this technique MCCs are obtained by recasting the
given description of ROM into PN representation and then solving
the state equation of the PN. Areference of this was made in 5.1.
6. 2.1.1 FORMULA Tl ON

Each word of a ROM can be thought of as represented by
interconnections of transitions and a place of a PN. The micro-
commands are represented by transitions, and the word by an input
place. As two microcommands appearing together in any word are
incompatible, no two corresponding transitions can fire simul
taneously. This is obtained by putting a token on the place. A
transition fires if its input place contains exactly one token and
on firing, it removes the tokens from input places. Obviously, the
complete ROM can be represented by such interconnection of places
and transitions obeying the above firing rule. An Mcc of length
Lis a set of Lmicrocommands no two of which belong to one single
word and to which no microcammands can be added without violating
this constraint. Hence, to enumerate all the MCCs it is sufficient
to determine L transitions of the corresponding Petri net which
must fire in order that the tokens from the input places are
removed. This is achieved by solving for Z the following Murata's
state equation described in Section 2.6 for a PN

-1^3-

ATZ = AM .(2#3)

Since, the transitions are fired to remove the tokens

from the places, the change in marking AM in this case is given

by AM = - tj where tj is t^jfl unit vector. Bq.(2.3) is,
therefore, modified to

Al 2 = U (6.1)

where A1 = [a^^ xNc is the input connection matrix of ROM
having \}± irredundant words and Nc microcommands. The elements

aj_ j ar e gi ven by

aij = 1 if j th microcommand is contained in i th word
= 0 otherwise

and Z is a Nc x 1 column vector whose element is lif j th micro-

command is included in an MCC, 0 otherwise.

6.2.1.2 ENUMERATION PROCEDURE

Eq.(6.1) contains \l± independent equations in Nc unknowns

and each feasible solution 2 will correspond to one MCC. The

solution technique of Chapter Vcan be directly applied to solve

the equation. Instead, another technique which requires fewer

enumerations is proposed here. This takes advantage of the

property that the elements of A± in this case, are either l?s
or 0 s. No two columns having Ism one row can be added to

equate unit vector. Let the matrix A± be rearranged in columns
such that first kx columns correspond to the microcommands of

the largest instruction, the next kg columns correspond to the
remaining microcommands of the largest remaining instruction and

-l¥f-

and so on. Now JL can be partitioned as

Ai = [An ; Ai2 : ""- : Alsl
where A^ is W1xk1 matrix. Obviously there is atleast one row in

a

Au which contains all 1 s. Therefore, columns of A^ cannot be
added to give the solution. For solving (6.1) the columns of A

and A. . for j 4 i are to be added. To find the maximum iterations,
let us consider that columns of A-^ are added to column's of A .
This will require k^.kg additions. However, for comparing with
U only those added columns which donot have any entry more than

1 are considered. For three submatrices A--, 4-2 and A, the
number of such iterations will be (k^ +k± +kg)k . Proceeding
in the same fashion, the maximum number of additions required to
solve (6.1) will be

(....(((... .. (k1k2+k1+k2)k3+k3)klf+kLf) +ks_1)kc
(s-2 brackets)

Based upon the above discussion the following steps will
find all MCCs.

1. Given a ROM description, delete the words with micro-

commands which are contained in other words.

2. Determine Ax = [a^.] such that a^. = 1 only if j th
microcommand is present in ithword, 0 otherwise

3« Partition A± by rearranging the columns as

Al = "* All I A12 i •*•" i AlsJ such that

kl lk2> •••• 2. ks where k is the number of 1's
J

which all the columns of A.^ have for atleast one row.

-lh5-

lf. Put L = 2

5. Add Lcolumns, taking 1 column each from An, A, 2,....,A,,
such that no two of them belong to any one of deleted words.

If addition equals unit vector, then the set of microco

mmands corresponding to these columns gives MCC of length L.

6. Repeat step If for all possible combinations of L

7. Repeat step 5 and 6 for L = L + 1 until L = s.

8- Stop.

The above procedure is illustrated with the help of an

example.

Example 6.1 1 Let the description of ROM [135] and given in

Table 3.1 be again considered. All the MCCs are to be obtained 1

"Word Mi c r oc ommands

1 a,b,c ,d,e,f

2 c,g,h,i

3 a,b,h,i,j

if d ,h,k

5 f,h

.s

Table 3.1

Using the proposed technique, the steps are given below.

steP I * The microcommancfs of word 5 are contained in the other

words. Hence the word 5 will not be considered and,

Step 2.3

h

-l^-

a b c d e f g h i j k

1 1 1 1 1 1 1 0 0 0 0 0

2 0 0 1 0 0 0 1 1 1 0 0

3 1 1 0 0 0 0 0 1 1 1 0

if 0 0 0 1 0 0 0 1 0 0 1

Step if,5,6 i Two columns taking one from each portion only can

be added but columns h and f can not be added because

they belong to one deleted word 5. We get MCCs of length
2 as (d i) and (eh).

Step 7 * It results that MCCs of length 3 are (a g k), (b g k),
(c j k), (d g j), (o i j) and that of If are (e g j k),
(f g j k).

Having given a method to enumerate all MCCs, the procedure

for bit optimization is given in the following section.

6.2.2 PROCEDURE

Let Nc, m and Lm be the number of microcommands in the ROM

specification, the largest microinstruction and the largest MCC,
respectively.

We can always select a largest number ja such that the
Hid X

following inequality is satisfied

(2
— ma v v fc x *max

Let N = 2nmax 1
ma x "x

The inequality (6.2) can be written as

(6.2)

-Iif7-

N „ < L < 2N
max - max - max (6.3)

As the largest microinstruction contains mmicrocommands
which are incompatible, we require atleast mblocks to accomodate
all the microcommands. These blocks are called 'essential blocks'.
Now it is required to have maximum number of disjoint blocks
each with Nmax microcommands. Since each essential blocks has
one microcommand, (Nc -m) microcommands are to be accomodated
in blocks each of which can have additional (Nma -1) micro-
commands. Hence, assuming that compatabili ty pemits, maximum
number of N^,element-blocks (g]_) is given by

g1 = n-m

N~ n
max

where [XJ is the largest integer < x

(6. if)

The remaining Nc-m-g;L (N^ -1) microcommands are to be
"max"1 t v

-1) micre
adjusted in maximum number of blocks g of (2
commands. Since,

-1 =

go =

(IW ♦«
- 1

Nc - m - g_ (N -l)
&1 max '

Next maximum blocks of (2 ™ax"" 1) fo^x"3 ,, ,Aax"k
'• v -*•) »• • • • (2 -1) ?

elsments are selected and microcommands are allocated until
no microcommand is left. On the termination of this process we

" LX-D, (2^^1-l),...shall have g ,g ,...,g blocks of (2

••, (2 -1) microcommands respectively. The number of

-Iif8-

bits (B) needed to encode these are, then, given by

or

k n_ -i+1
B = g + Z g. Tlog(2Tuax11 i=1 1

B= gll \Zsl Si^max-1 +1)

n

(6.5)

where g is the number of blocks having one microcommand each.

ak

k-1 N +1
Nc-m- Z [g.(-^f-j _ 2)]

1=1 1 21"1

N Q +1
(JSS^ 2)gk-]

(6.6)

N B +1
maxThe process will terminate when either -•-' , -j 2 = 0 (i.e.

n
k = max) or all the microcommands have been allocated. Hence

the maximum number of iteration equals n
max

When we actually allocate the microcommands according to

the method described, MCCs may be such that we may not have £h»gp.
Aiax , Aax1, Aax"k.... ,gk disjoint blocks of 2-1,2 x -1,.. .. ,2

microcommands, respectively. But the actual minimal possible

number of such a block! maybe less than g. for one or many is.

In general, glact< q for 1 < i < k. In such a case equation

(6-5) serves as a lower bound for the number of bits and no

matter what we do, the number of bits can never be further

reduced. This will also give to what extent the bit optimization

should be tried for good engineering reduction.

The allocation obtained in preceeding section is not

necessarily a minimal bit solution. Therefore, the following

-1

-Ilf9-

theorem is postulated.

Theorem 6.1 « If all the microcommands are allocated to

maximum possible number of (2 x ~1) microcommands blocks,

followed by maximal possible numbers of (2 ax -1) micro-

commands and so on, then the number of bits can be reduced if

and only if microcommands are shifted in accordance with Coffipata-

bility, from any block j to any block i such that

and

N. > N .
1 - D

, (L. - N.) > 3<N, + 1).
5 v l i - V j '

where L , N and N are number of microcommands in MCC associated
* -L J

with ith block, number of microcommands allocated to i th and j th

block, respectively.

Proof ; Let us consider two blocks i and j containing N. and N.

microcommands respectively. Let L. and L. be the number of micro-

commands in the MCCs associated wi th i and j block, respectively.

Let N. > N .

(a) Let microcommands be shifted (assuming compatibility permits)

for i th block to j th. The maximum number of shift could be

(Lj-N-j) because no more than L. microcommands can be accomodated
in j th block. Hence the number of microcommands in i th block

after shift is N.-(L.-N.).
i j y

Prom inequality (6.3), maximum (L.-N) =N and minimum (L.-N.)=o.
J J J 3 J

Hence, (N -N) <N.-(L.-N.) < N.
-'•J — j j 1

or

n, n. n,(2 x - 2 J) <^-(L^-W^) < (2 ^-1)

Since n. > n. (because N. > N.)
1 .1 1 * n'0 1 ' j

-15b-

n. n, n.-i

2 x - 2 3 > (2^ -1)

Therefore,

(2^" -1) <C Ni-(L;j-N.) <i^1 -1)
The minimum number of bits to encode N. -(L.-N.) microcommands,

— —1 3 3
thus, equals flog2(2^ -1+1)7 or (^-1). In other words the
maximum reduction in bits for encoding i th block microcommand

is 1 .

Now the increase in number of bits to encode j th block

microcommand

= Plog^L.+lT | - ri°g2(2nj .1+1)-]
ni n1+l

= n.+l -n. = 1 because (2 -1) < L. < (2 J -1)
J J J

Therefore, shifting microcommands from blocks with more micro-

commands to block with lesser number of microcommands will never

reduce the bits.

(b) Let the microcommands be shifted to i th block. The maximum

number of microcommands which could be accomodated in i th block

is L±. The increase in i th block is 1. These (L.-N.) microco

mmands may come from either one block or more blocks.

i) Suppose these come from j th block. Then the reduction

in 2 bits for j th block is possible if

N.+l

3(N,+1)
> —*— (A)

ii) Suppose these come from two blocks each having N. micro-

commands, then the reduction in 2 bits are from each block

-151-

is possible if

N.+l^ n+1 1 ^(L.-N.)^ 2[N. - (-i— ~i)J > (N +1)
3 ' 2 -J ~ -J

in both the cases (i) and (ii) the net reduction in bit is

1, but condition (A) gives a lower bound. Hence, if

(L.-N.)>^ (N. +i)

then there is possibility of reducing the bits.
Q.E.D.

It may be noted that the essential blocks which contain

only one microcommand must not be considered in the process of

bit reduction.

Based upon the above discussion, given Nc, m and all

MCCs, following are the steps for bit optimization;

1. Find Li (the number of microcommand in i th MCC) for all

i. Determine also the number of microcommand (L) in th°
max

largest MCC.

2. Find n such that
max

(2nmax-l)<:,._<(2^ax+1-1)
"'max

3- Put NQ = ^z* j.
max

(B)

If. Determine maximum number of (2 Wx-1) element blocks (g)$
%a x"1

(2 -1) element blocks (g) etc. from

gl 3

Sk =

Nc -_m

7s-
k-l

•- ^W1
, and

N a +1
Nc-m- Z g. (ma* - 2)

1=1 1 21"1

N 7+1

-152-

5. Identify all the MCCs having microcommands > N
- max

6. Identify the pairs o±, c. of MCCs obtained in step 5

covering the number of microcommands > 2N .If no such
— max

pair exists, form a block of microcommands of an MCC.

Consider each disjoint MCC separately and go to step 8.

7. From the pairs of step 6, determine g disjoint blocks of

Wmax microcommands. If it is not possible, find the maximal

possible blocks (g,1) from different set of blocks.

8. Delete the microcommands contained in the blocks from all

the MCCs. Call these reduced MCCs. Delete all the reduced

MCCs which are subsets of other reduced MCCs.

9. Put N „ +1
w max , „ ,
Nmax "k— "Ii and

gl " gl+k

10. Repeat steps 5?6,7,8,9 for k = 1,2,.... until N = 0 or

k = nffiax which is earlier.

11. The remaining microcommands are to be allocated to blocks

of single microcommands.

12. Select a block j having microcommands (N . > 3) for essential

blocks and (N.. > 1) for nonessential blocks. For each of the

block i {4%) containing microcommands N. > N., test the

condition (I^-N^ ^ j* (N.+l). If for every i and j the
condition is not satisfied go to step 13, otherwise shift

(I^-Nj) microcommands from j th block to i th block if

compatibility permits. Without considering the blocks which

have taken part in shifting operation, repeat for another

-153-

j s until no shifting is possible.

13. Determine number of bits (B) for the blocks obtained earlier

from

B= Z riog?(|C. |+1)7
1*1 d x

where |C | is the number of microcommands in i th block and

b is the number of blocks.

Ik. Stop.

6.2.2.1 DISCUSSION

Steps 1,2,3,5,8,9,10,11 and 13 are simple. Step If requires

atmost nmax iterations which is much smaller than Nc and hence

computations are fewer. The number, of computations in the first

iteration of step 6 will be n^n~ ' where u is the number of MCCs,

In subsequent iterations, the number of MCCs will reduce and,

thus, computations will be decreasing. Step 7 is nothing but the

determination of the nodes of the largest complete polygon

obtained from MCCs of step 6 and then finding the disjoint blocks

of Nmax microcommands.

In fact step 12 requires maximum computation and it is this

step which is exponential in nature. However if (L.-N.) is small

for many i then the number of computations are not too many. In
other words the procedure proposed here will be very effective if

(Li-Ni) is small for all or many i 's '.

Exannple_6^2 For illustration purpose, let us consider the same

running example 6.1. The optimal bit solution is to be obtained.
MCCs obtained in 6.2.1 are

-15U-

Cx = (e g j k),- C2 = (f g j k),- C3 = (f 1 k)| C^ - (a g k)f

C5 = (b g k)| C6 = (c j k)| C? = (d g j)f Cg = (e 1 k),«

C9 = (d i)| C10 = (e h)
Using the procedure, we proceed as follows?

Nc = 11 f m = 6

Steps 1,2,3 and If give

L, = L0 = L . = ki
i 2 max »

L3 = \=L5 = L6 = L7=h=l

L9 = Lio = 2

n „ = 21 No =3
max ? max J

- H-6

gl L 2.
i.e. we shall have 2 blocks of 3 elements and 5 blocks of 1

element each.

Therefore Bq = 2 flog2(3+l) 1 + 5 = If + 5 = 9

Step 5,6 give pairs (C^C^i (C2,(^)} (C3,C-)$ (CL,^)

Step 7 Since g. = 2, no largest complete polygon is needed.

The disjoint blocks corresponding to each pair will

give allocation of 6 microcommands to 2 blocks each

having 3 microcommands. The disjoint blocks are obtained

ass

1. (e g j), (f i k)

2. (f g j), (e i k)

3- (d g j), (f i k)

k-. (d g j), (e i k)

-155-

Step 9,10,11 give the following allocation of microcommands:

1. (e g j), (f 1 k), (a), (b), (c), (d), (h)

2. (f g j), (a i k), (a), (b), (c), (d), (h)

3- (d g j), (f 1 k), (a), (b), (c), (e), (h)

*+• (d g j), (e i k), (a), (b), (c), (f), (h)

Step 12. Consider allocation 1. Put j a l, then N. a 3. Only

2nd block (i = 2) contains 3 and L2, N corresponding to

second block are L2 = if and Ng = 3. Hence (L.-N.) = lf-3 =1.

But ^(Nj+1) =3. Therefore, as (L.-N..) > J(N.+1), there is
no possible reduction in bits. For j = 2, i = 1 again this

condition is not satisfied.

Similarly we find that the condition for bit reduction is

not satisfied for each of the above allotment. But in

allocation 3, e and h can be combined without changing the

number of bits and a solution (dgj) , (fik), (a) , (b) , (c) ,(eh)is
obtained.

Step 13. No. of bits needed to encode in each case equals 9.

The results obtained tally those in [1*7>

The list of all minimal bit solutions obtained are shown in

Table 6.2.

1.

2.

3*

if.

5.

(e g j), (f i k), (a), (b), (c)

(f g j), (e i k), (a), (b), (c)

(d g j), (f i k), (a), (b), (c)

(d g j), (e i k), (a), (b), (c)

(d g j), (f i k), (a), (b), (c)

(d), (h)

(d), (h)

(e), (h)

(f), (h)

(e h)

Table 6.2 - Minimum Bit Solutions for

Sample Microprogram of

Table 6.1

-156-

The previous section presented a method for bit optimi

zation and obtained control fields as minimal bit solutions.

These bits can further be reduced in number by employing the

technique of bit steering [86]. This method has been outlined in

Section 3.3.1.7. In the ensuing section an extended Petri net

approach [9] for detection of bit steering is adapted. The

strategy involved i s to represent control fields by extended

PN. The tafcen distributions in places corresponding to micro-

commands are, then obtained so as to satisfy some properties

and results interpreted.

6.2.3 BIT STEERING AND EXTENDED PN

To test for bit steering let G^, C2,....,Cn represent n

control fields. Exactly one microcommand of each control field

Ci is excited at a time to execute a microinstruction. The

execution of all instructions of a ROM is, thus, a collection

of such executions. Since we are interested only in bit opti

mization, the order of execution is not important. This activity

can be very conveniently represented by an extended Petri net.

To understand this let us consider Pig.6.1 which is a slightly

modified version of extended PN [9]. The transition t is enabled

to fire if there exists an j^ ?1 < i1 <m± with tokens in a. ,
3-1±1 =1 AND there exists an i2, 1 ii2Jm2 with^a^ =1
AID.AND there exists an 1, 1 v i <m with tf a =1.

n' — n — n nm

When t^ fires all the tokens are removed from input places and

one token is put to output place 2. From the above firing rule

of transition t, it is clear that t is enabled to fire if any

of axl, a12, ,aln_^ AND any of a^, a22?«-Ma2n AND.,...AND

-157

an Q12 a1m1 a2i a22 a

0 • o
2m2

+ <• * 4+1 + 1 -*

FIG. 6 1_ AN EXTENDED PN

f

Q O

n r

Nop

o

~^-

e g

0 0 0

Qn1 an2 Onmn

o

Nop

o

'-f I -+- f + " * -+ f + r -f II

FIG-6.2a -REPRESENTATION OF CONTROL FIELDS USING
- EXTENDED PN

f k e Nop

0 0 0 0
II I I

I

*- • ,-h „

Nop

o
-*•

FIG-6.2 b_DECOMPOSITION OF TRANSITION t IN
FIG- 6-2 a

-158-

any 0f anl' an2> >anm c°ntainsa token. This is exactly the
mechanism of the execution of a ROM word. Therefore, places
ail' ai2'"*"5aimi can he thought of as microcommands of a field
Ci and each firing.

With a veiw to detect bit steering, only those control

fields which need be considered, are represented by extended PN.
As an example, consider solution 1 (Table 6.2) obtained for

sample microprogramming of Table 6.1. As the maximum number of
bits in steering field is one less the number of bits in the
smallest amongst original fields, only two fields 0, = (f i k)
and C2 = (e g j) are considered for bit steering and their re
presentation hy extended PN is shown in Fig.6.2a. Two places
each corresponding to Nop operation arc also shown because they
are included in control fields in the determination of minimal
bits. It may be noted that the total number of possible combi
nations of tokens in input places to enable t to fire is 16 but
actual available combination is 5 i.e. as many as the number of
words in ROM. This is simply due to missing combinations which
are not forming any microinstructions. For example f and g do .-.
not occur in any microinstruction. Therefore tokens in f and g
will not simulteneously appear.

Let t be decomposed in t^ and tg as shown in Pig.6.2b. It
is noted that ^ and t2 will not fire concurrently because only
one of f, k, e and NQp can have a token. Further, no execution
of any microinstruction is missing because k does not have
any token at the same time g or j has^and.i does not have token
at the time e or Nop has (Table 6.1). Therefore, by decomposing

-159-

the net the token combinations are reduced to 8. The place 2
obviously corresponds to steering fields and is introduced in
order to use the same token distribution of f, k for i and N
and that of e, Nop for g,j. The encoding bits to generate
tokens for f,k and e, N^ are 1 each. One bit is also needed to
generate token for 2a.This makes total number of bits required <xs
3 rather than If for Fig.6.2a. It is important that 2L be present,
otherwise same token distribution used for the elements of same
field G. appearing as input places to different transitions will
not result in distinct excitation of microcommands. Obviously,
the token distribution for maximum input places of C. to any of
the transitions must be considered. However, a point worth noting
is that such a decomposition may not be possible in some cases.
Hence, the above concepts are generalized and a theorem is

postulated to test if suggested possibility exists.

Let ni and nQ be the number of bits needed to encode field
G. and maximum steering bits respectively. Let nt be the number
of transitions into which the extended PN representing control
fields considered for bit steering, is decomposed such that

i) each transition has places with minimum token distribution,
and ii) the places p« C±k and p's C.^ do not appear together in

any ROM microinstruction for k f I where C±k is the subset
of places of G± appearing as input to k th transition.

Theorem 6.2 , The decomposition of extended PN representing fields
°1' G2> >Gn y111 ^sult in lesser number of encoding bits if
and only if

-160-

ns
(a) 1 < n < 2

(n.-n)and (b) Ti e {i,2,....,n}, p. <2 * "*imax where pimax
is the maximum number of places of C. appearing in
any of the transitions.

Proof .. (a) When nt = 1, obviously no decomposition is possible.
The number of bits required to ensure conflict

amongst nt transitions, is pLogt~| but the number

of bits available for steering is n , therefore,

1 < nt < 2

(b) The number of bits required for generation of tokens

for pimax places is Tlog Pimax1. This will be
maximum number of bits required for places of C

appearing in any of the transitions. As the avai

lable bits are (^-n^ , the reduction in bit is
possible if

(n.-ns)> riogPimax1

i.e p. < 2(ni-ns>
pimax^ 2

Q.E.D

Based upon the above theorem, the technique to test for

bit steering and to encode steered sets, is given in the form of
following stepss

1. Determine ^ = flogilC. |+i) ~| T 1 e {l,2,...,n}
2. Determine ns = min(nJL, n2, ,n) - 1

3« Find the token distribution matrix D, as

-161-

where"i

dki ~ -1 if k thmlcrocommand is included in i th
microinstruction of the ROM

= 0 otherwise

If. Interchange the rows of Dand partition the matrix such
that' first |P1 | rows correspond to microcommands of C

followed by |P2| rows of microcommands of C ,.....,jp |
rows of microcommands of C .

5. Put k = 1

6. (Decomposition and determination of minimum token distribution)
Find a new matrix by OR ing the columns of D for which

mki = !• Retain the other remaining column.

7.Repeat step 6 for k = k+1, |P|

8. (Testing of bit steering using Theorem 6.2)

Find the number of columns of new matrix, n .

If nt = 1 or K , steering is not possible. Go to step 12.
ns

9- If nt > 2 , no reduction in bits is possible. Go to
step 12.

10. Find the maximum number of Is (pimax) appearing in any
of the columns of i th parti tion.

If p. >2(ni-ns)
lmax for any i, no bit reduction is possible.

Go to step 12.

11. (Encoding)

(a) All the microcommands having 1 in same column of M
should be assigned same steering code.

(b) Microcommands having 1 in the same partition and
1st column must be encoded. Then encoding for 2nd column

microcommand and so on is done.

-162.

(c) If there is any microcommand which has 0 in every

coloumn, the encoding of such nicrocommand is done by

assigning unused code combination.

12. Stop.

The number of iterations for ORIng in step 6 will require
|P| times the number of search for 1?s in a row. Hence, it is
of the order of 0(|P|log M^. For step 7 the complexity of
enumeration is, obviously, o(nt log|P |).

The procedure is illustrated with the help of an example.

Example 6.3 s Let us consider solution 1 (Table 6.2) of the

running example 6.1 for detection of bit steering. Following
are the steps to do so.

1. For fields C^ = (f i k) and C2 = (e g j)

nl " n2 = 2

2. ns = min(2,2)-l = 1

3A-
12 3^5

D =

N.

N,

f 1 0 0 0 1

i 0 1 1 0 0

k 0 0 0 1 0

op
0 0 0 0

0

e 1 0 0 0 0

g 0 1 0 0 0

j 0 0 1 0 0

on
0 0 0 1 1

L

-163-

5,6. For k - 1, the new matrix is as follows.'

-,5 2 3 If

1 0 0 0

0 1 1 0

0 0 0 1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

Repeating step 6 fork = 2,3,...,8, the new matrix is

r 1 o -r

o

i

0

1

0

0

1

1

0

0

0

1

1

0

n<:8,9- nt = 2 and n. > 2 E

10.

11.

ni-n.
Pimax " p2max = 2 and Pimax > 2

Let Cbe the common bit and F^ , B2 are bits for elements
of C2 and Cg. Then

Step 1]

f

.(a)

C=l

1

C=0

0

i 0 1

k 1 0

Nop 0 0

e 1 0

g 0 1

j 0 1

Woe 1 0

-161+-

Step ll(b,c)

B^l f

C=l

" 1
c=o

0

i 0 1 B1=l
B1 =0 k 1 0

B2=l
"op

e

0

1

0

0

B1=0

g 0 1 B2,l

j 0 1 B2*l

B2=l v 1 0

The result tallies with that of [86]. The applicability of
the proposed technique to 3 or more control fields is self evident.
Only the number of partitions of Dmatrix will increase and the
procedure remains essentially the same.

6.3 DATA PATH OPTIMIZATION [76]

In the design of microprogrammed computers, a designer will
often work out an overall hardware layout including registeres,
logic units and allowed data paths, before writing the control
program. It provides an opportunity in the very beginning to
minimize the hardware by using same data paths. The number of data
path also affects the flexibility U case of microprogramming a
machine. The provision of several data paths results in high
flexibility but prohibitively complex and costly implementation.
On the other hand a single bus cannot be used if concurrent data
transfers are taking place. Thus, a compromise is made between
the two in data path optimization. These concepts have been

-165-

elaborated in Chapter III. The techniques for data path opti

mizations have also been described. In this section the concept

of Petri nets is exploited to solve this problem. Two approaches

have been taken up here. These are as follows*

6.3d 1- INVARIANT PN APPROACH

Given data transfers in the form of transfer matrix, this

approach solves the problem of data path optimization only

partially. It simply finds feasible solutions which are defined

as solutions allowing concurrent data transfers with minimum

number of buses regardless of the cost. From these, the generation

of complete solutions is direct and can be obtained as in [85]

the outline of which has been given in Section 3. V. 3. .

To find the feasible solution, the proposed approach starts

with incompatible simulteneous sets of data transfers (ISTs).

As defined in 3^.3, an 1ST is a set of data transfer variables ,
no two of which can take place on the same bus. There appears to

be a one to one correspondance of ISTs with 1-invariant PNs

(Definition 2.18). A l-invarian<t PN (1-IPN) is one in which

the total number of tokens in any marking is 1. Therefore, the

places of a 1-IPN can be thought of representing the data

transfer variables of an 1ST. The number of transitions in 1-IPN

is n-1 when n is the number of elements in the corresponding 1ST.

For example, the ISTs {xpX^j , {x^} and { x^,x6}of the
transfer matrix of a typical system (Fig. 6.3) [85] are shown
in Fig.6.lfa.

-166-

O o

X30 6

(a' rsffi s°fs wraANTs

(b> MERGING-IN OF TRANSITIONS UAND t-

x2p \Q tiQXsQ x,q XlQ x5n x-.

*3U x56x,U x3Ox20x60 x30 x?6
(c) MERGING-IN OF TRANSITIONS U t t

*3^ X2W X,.

FIG.6-4 PN REPRESENTATION OF I- INVARIANTS AMn
MERGING-IN OF TRANSITIONS °

A

B

C

-167-

B D

,1 2

*2

p

^ 3

s 2 X ^

s

, i

^ .

Fig. 6.3 TRANFER Matrix

To find feasible solutions, the transitions of different

1-IPNs are merged-in step by step. This is shown in Fig.6.lfb.

The transition t^ and t2 are merged in two possible ways. Now

to the transition of each PN obtained, the transition t-, can be

merged as shown in Fig.6.lfc in all possible ways to yield feasible

solutions. It is noted that each set of places in a PN obtained

is a feasible solution. The same solution have been

obtained in [8 5] for ISTs under consideration.

The above concept of merging-in of transitions form the

basis of the proposed technique which is given in the form of

following steps

1. Find the number of places, r^ in the largest 1-IPN

2. Find the number of places, n. in the ith 1-IPN.

Find all n >s
i s#

Put I = 1.

3- Find the number of places, nQ± common to the largest and
i th 1-IPN.

-168-

If. Generate all (n.-n^) out of (n^ - nc.) possible
combinations of the uncommon places of the largest
1-IPN

5- Generate all the sequences for (n^n-) uncommon places
of i th 1-IPN.

With places of one combination of step If, join places

of a sequence at corresponding positions. Repeat it for
all sequences.

6. Repeat step 5 for all combinations of step If.

Include common places as separate elements of the sets

obtained.

7« Repeat step 3 to 6 until all the places or all i 's are

exhausted.

8. If there are some 1-lPNsnot considered, then test if

there is a contradiction of this in results obtained.
If so then delete those sets.

Each of the remaining set will give a feasible solution.
9« Stop.

It should be noted that the number of maximum p-enerations
in step kana 5will bo £ (^ _ °ij and , ^ . ^ |

i

respectively. In step 7, maximum iterations are

i=i . (nmax -ni +Dl

These are the worst case iterations and many will be abandoned
in subsequent Iterations. No compatabili ty chart, graph or
minimum covering is needed as in [8 5].

-169-

6-3.2 PN APPROACH

In the second approach the problem of data path optimization
is reformulated in the domain of PN. It is found that PN offers

a natural, logical and convenient tool to represent the data

transfer among the modules of a digital system. As there are

event taking place in the modules, they can easily be represented
by transitions of a PN. The events of a module start only after
receiving data from other modules. This can be represented by a
place or set of places connected between modules. The presence
of a data is represented by a token in an appropriate place.
Thus, a direct analogy between the PN and the data transfers

between various modules of a system can be established by
following rule (Ri) .

i) Represent each module 1 by a transition i

ii) Connect two transitions t. and t. through a place if
and only if there exists a data transfer between the
corresponding i th and jthmodule. The arc between the

transition t. and the place is oriented away (towards)
the transition if t. is sending (receiving) data. Label
the places.

iii) Asimulteneous data transfer is identified by a con
currency identifier k =1,2,... etc. as superscript
Placed on the label of places. All transfer with same k
will be performed concurrently. In PN representation, the
Places having same k cannot have tokens at the same time.
A data transfer occurring at fb^ oa™« -t--,-™,. •1 fa ao Ln° same time is represented
without any identifier.

-170-

As an illustration, Fig. 6.5 is a PN representation of

data transfer of a digital system adopted from [85] and shown
in Fig.6.3.

The transfer of data from a module takes place by firing
the corresponding transition. 4 transition is enabled if there

exists atleast one input place with a token. A transition without

input place is also assumed fireable. This corresponds to a

transmitting module. The transition on firing removes the tokens

from Input places and puts one token to each of the output places.
It must be noted that each place contains exactly one input and
one output arc. Each arc represents one interface. The problem
of optimal interconnection of modules is, thus, the merging of
places in the corresponding PN such as to minimize total number

of arcs connected while abiding by the constraint of concurrent
transfers.

The strategy adapted here is to merge-in places according
to following rules:

i) As the data sent on the firing of a transition is same,
all the output places can be merged into one place

irrespective of whether or not the places are representing
current data transfers. This will reduce the number of

arcs by (mot -1) where mot is the number of output places
connected to transition t. This is shown in Fig.6.6a.

ii) Let there be mconcurrent places input to a transition
t as shown in FIg.6.6b. If concurrency identfiers
k^kg,....,!^ are same, then places cannot be merged
because the transition has to fire distinctly mtimes.

-171-

FIG.6.5_ A PN REPRESENTATION OF DATA TRANSFER

>m
ot

(Pl,P2,-Pmot

(a) MER6ING-IN OF OUTPUT PLACES
OF A TRANSITION

—a o*
if

k;
JP;

k^k.

(c) MERGING-IN OF INPUT AND OUTPUT
PLACES OF A TRANSITION

PLACES OF DIFFERENT
CONCURRENCY

DENTIFIER

PLACESOFSAME CONCURRENCY
rm IDENTIFIER

(b) MERGING- IN OF INPUT PLACES
OF A TRANSITION

'' Pi

if

k;*k
J

(d) MERGING
PLACES

IN OF UNCONNECTED

FIG- 6-6-_ RULES FOR MERGING-IN PLACES IN PN FOR DATA
PATH OPTIMIZATION

-172-

However, if some identifiers, say a. .are different they

will have token at the same time and can be combined

as shown in 6.6bfigure. The number of arcs and hence,

the interfaces are reduced by (n. -1).

iii) Input and output pla&osof a transitions can be merged

if their concurrency identifiers are different. This will,

however, not reduce the number of interfaces but will

require lesser number of buses. This is shown in Fig.6.6c.

iv) Unconnected places can be combined into one provided their

concurrency identifiers are different (Fig.6.6d).

The above rules in conjunction with each other can solve

the problem of data path optimization. Before giving the technique

it is, however, worthwhile to introduce some more concepts and

recall a few which havebeen discussed in Chapters II and III.

Definition 6.1 ; The set of all places representing concurrent

transfers and which are output of different transitions are

called Nonmergable Simulteneous Set of Places (NSP).

For the PN of Fig.6.5, NSPs are {p-^}, {p^}, and

[P3»P6}°
It has been defined in Chapter II (Definition 2.2) that

t (t°) are set of input (output) places of transition t.

Definition 6.2 t (a) The largest subset of °t(t°) with con

current places as input (output) is called concurrent compatible

set pf places °t (t°).

(b) The subset of °t(t°) places without

concurrency is called as input (output) nonconcurrent compatible

set %c (t^c)'

-173-

Fbr example, in Pig.6.5

°A = {P3>P5} =% and °ANc = 0
Based upon the above considerations the proposed technique

to solve data path optimization problem is given in the form of

following steps »

1. Find the PN representation of the digital system and data.

transfers among them from Rl.

2. Tt e T, Find °t, t°, °tc, t°, °tSQ, tgc from definitions
2.2 and 6.2.

3. Find NSPs from definition 6.1

Find NBmin = number °f elements in the largest NSP.

If. If as many as N^^ sets of °tc and t° cover all the
concurrent places, identify them and go to step 13.

5. (a) Put a label ti , i = l,2,...|T|to each transition.

(b) Put i = 1

(Starting with merged output places of each transition,

here it is found, how many input places of connected

transitions are merged)

Select one t° from step 2. For each p e t? find p°
C 1q

(p will contain only one transition).

(c) Select a p°, say it is t.. Find °t. from Step 2.
j Jc r

(d) Delete those places of °t. which are in any of NSPs

with the element of t° . Call the new set °t. as °t* ,
1C jc jc

Hnd fo • <?o U 0t3= *
(e) Repeat (o), (d) for all j ana find all t? ., t.° „,..

icx 10 2

. o .. , e tc •

-17 k-

6. Put 1=1+1, |T| where |T| is number of transitions, and
repeat step 5(b), (c) , (d) and (e).

7. Find minimum number, say Ng mutually exclusive sets of 6 to

cover all concurrent places. If N£ does not exist go to
step 10.

8. Is N„ = N„ .
B Bmi n

If yes go to step J.3

9. Combine Ng sets obtained in step 7 to NB . sets such that
no two elements of any of NSP are in combined set. If this

combination is possible, go to step 13..

10. (For each of the merged places obtained in the proceeding

steps, here it is found how many output places of connected

transitions can be merged)

For each p e t°c obtained from step 7, there is a unique
transition t, such that p° = {t.}. Find t° and delete

• J j c

those elements which are in any of NSPs with those of t° •

The set with remaining elements is called t°. . Find

s." «s. ui-
Repeat it for all p's and all t? .

1C

11. Repeat step 7 ,8 and 9 for all i's,

12. If there is no place without concurrency identifier, go to
step 17.

13. (This is for inclusion of nonconcurrent places)
(a) Put 1 = 1

(b) Select a t?Nc from step 2. For each p e t°Nc find p°.
(c) Find ^ such that p° a (tj). Find tJIe and t°NQ.

(d) Find

1-0

-175-

^Nc ~ ^Nc U 0tjNc U ^Nc

(e) Repeat (b), (c) and (d) for all j

llf. Put 1=1+1, |T| and repeat (b) , (c), (d) , (e) of Step 13
,015. Select a tiNQ. For each element p e t°Nc , find t° 's and

t 5s which contain p. Find union of t°'smd that of °t's
such that in a set no two elements belongs to NSPs. Out of

these two find which will reduce number of connections.
T • 4.0 steJ?
Join tiN(J to the set obtained in 11 to satisfy above

condi tion.

Repeat it for all i.

16. Pind the minimal interfaces by counting the number of arcs

in t° 's and °t s obtained from step 15.

17. Stop.

The technique is illustrated with the help of example of

Pig.6.5«

^c =°%c " 0

Step 3^2* A°c = {Pi»P2^ °Ac = {P3>P6}>*

#c = {P3»Plf]» °Bc *{Vp5J'
Gc° ={p5,P6}* °Gc = {P2'Plf}»
Dos{P8}* °Dc =fP9}l

• Ec Mp9)» °Ec = (P8}^
Step 3 1 NSPs are [p1,p3}1

NBmin = 2'

{P2?P5} , {p^P

^c =b7}f\c =*
^c =*9 °%c • {P7}

ENc = *9 °ENc = *

-176-

Step If : No two sets of t°and°tc cover all the concurrent places
p-^ through p.. Hence we go to step 5.

Step 5 1 put t^ = A, t2 = B. t = C, t, = D, t- = E

*>) i =1, t£c =ig = {p1,p2}. We find that
p° =Bi.e.Jt2] and p° ={t^}

c) Select pj ={t2},°t2c =°Bc ={Pl,p6}

d) p^ is not in NSPs with either p, or p..

Hence tfcl = {p1,p2,p6}

e) repeating it for p° a [t^}f we find °t3c ={p2?PIfl

Hence, t^c2 =0^^ = {Pl,p2,p^}

Stee 6 jRepeating it for i = 2,5 we find

^cl = ^3^1+^5} = %cl

t2c2 ={P2'P3'P)f} =0t3G2

<3ci = (P3'P5,P6? =0tlcl

^02 ={Pl»P5'P6l =0t2c2
t05c ={P9] -X

^ =!p8) =°t5c

Stee 7 8The mutually exlusive sets to cover all the concurrent

places, are obtained as

1) {P1»P2»Pif}» {P3,P5?P6}? {p8}, {p9}
2) {p1,P2,P6}, {p3,plf,p5}, {p8}, {p9}

3) {p2,P3,PIf}, {p15p5,p6}, {p8}, {p9}

3tee 8 l Ng = If, Henc

N« 4 N,,.
B Bmm

Ste-Q 9 i Those obtained from step 7 can be combined in 2 sets,
as the concurrency constraint is not violated. Hence,
the sets are

1) {P19P25Pif?P8},' {P35P5?P6?P9]
or {p1,P2?Plf,P9},« {p3,p5,p6,p8}

2) {P1»P2»P6>P8}| [p3,plf,P5,p9]

or {P1?P2?P6?P9},' {P3,Pif,P5,P8}
3) {P2»P3?Pif,P8},' {P15P55P6,P9}

or {P2,P3,Plf,p9}| {Pl,p5,p6,p8}
Now we go to step 13.

Step 13.1lf,l^ i We have only Cgc =[^ =0B^ , Since

C° ={p5,p6,p7} and °D ={p7?P9}
We can combine these as {p^,p6,p p }

Minimum connections are needed if p and p appear

together and in p^p^ also they appear together,
Hence in step 9, the minimal solutions are

D {PiP2PL,P8}f {P3P5P6P7P9} •

2) (p1P2P6P8}j {P3PifP5P9P?} or

{P!P2P6P9P7]$ {p3Plfp5p8} j
3) {p2p3Pl+p8},. {Pip5p6p9}

Stee 16 1 Consider only (1) of step 15

e

-177-

t

•178-

No. of connections for A = 1, °A = 1

B° = 2, °B a 2

C° =1, °C a 1

JP =1, °D = 1

E° a 1, °E = 1

Hence total number^of connections to places

= 6 + 6 a 12

Hence number of interfaces needed is 12 which is

same as in [85].

Similarly for sets (2) and (3) obtained in step 15

interfaces required are 12.

6. If CONCLUSION

Problems in the area of microprogrammed computer design

such as (i) bit optimization in control memory and (ii) data

path optimization have been tackled in this chapter by the

application of Petri nets. To solve the former, all maximal

compatible classes of microcommands are obtained by state

equation of Petri net. It has been shown that the method is

simple and can be easily used on computers > Unlike existing

techniques, no graph or chart is needed. Only vector additions

are required. Prom these MCCs, the minimal bit solutions are

obtained in terms of control fields by placing the microcommands

in blocks with certain conditions. The technique requires lesser

computations compared to other methods if employed to a certain

class of problem. The class has also been identified.

-179-

The bits have further been reduced by applying bit steering

through extended PN concepts. The approach is novel and can

take care of more than two control fields which was hitherto too

difficult. The complexity analysis of the only existing technique

has been given in Chapter III (comments of Section 3.3.1.7). On

comparison, the proposed technique appears computationally better

because only vector additions are needed. Further the order of

complexity has shown to be lower in proposed technique.

As far as data path optimization is concerned two approaches

using Petri net have been employed. In first only feasible solu

tions are obtained. The complexity analysis shows that in worst

case, it is quite large but then the number of feasible solutions

are also large in that case. Further no chart or graph is needed.

The second approach is one of very few attempts in the optimization

consideration of PNs. Here, the data transfers have been re

presented by a PN and concepts of optimization have been devised

in terms of PN. Complexity analysis of this me thou, however, has

not been given because the approach is heavily data dependent.

But the technique appears to be simple and involves (hopefully) •

lesser amount of computations. It is due to the fact that the

proposed method avoids from the very beginning, because of the

inherent property, the generation of redundant solutions which

are to be discarded after some amount of computation in the

existing techniques. For example, a Solution {p^p^} ,{p2,p3 ,p6]
in [85] does not yield minimal solution and is discarded after

computing cost associated with it and comparing it with other

costs. Such redundant solutions are not at all generated in the
proposed technique.

CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 INTRODUCTION

The application of Petri nets to design and analysis of

computer systems is a significant development. The primary

reason for this is that PN can easily show parallelism involved

in the system. Furthermore, it can represent systems at different

levels ranging from a more abstract levsl to that of more detailed

modeling. Another significant property is that it provides topo
logical as well as the dynamic bjhavior. -jhe advent of fast

computers has provided a further impetus to research in PN. Now

it can make use of high speed computers as computational tool for

modeling and analysing larger and more complex systems. More

efficient design and analysis techniques are however needed.

It is with this motivation that the present research has been

carried out. Original contributions made in this thesis have

been identified. Suggestions for further work have also been

incorporated.

7.2 SUMMARY OF THE RESULTS

A critical review presenting the various phases of the

Petri nets and their uses has been given first. Concepts and

various significant results scattered over various reports,

dissertations, conferences and journals have been collected with

-181-

a view to acquaint the reader with the importance of this power

ful tool. The role of Petri nets and their applications to

modern computer systems has been examined. Their limitations and

the techniques to overcome them are also discussed.

Of significant importance in the design of microprogrammed

computers are microprogram optimizations. These have been

discussed next. The reasons for various optimizations and the

justification for the study of only the control memory bit

optimization and data path optimization have been given. The

techniques for these two have been critically reviewed. This review

removes any ambiguity that might arise in the mind of a reader

and also acts as a prelude before an attempt is made to apply

Petri nets to such optimizations. A comparison among various

control memory bit optimization techniques has bean made. The

comments and complexity analysis of the only available work [86]
on bit steering have been given in Section 3.3.1.7 to facilitate

a comparison of the technique proposed in Chapter VI. The second

endeavour, in order to compare the technique proposed for data path
optimization (Chapter VI), resulted in the complexity analysis
(Section 3.^.3) for switching theoretic approach described in
[85>

The analysis of Petri nets is required to study the problems
involved in the design and development of systems. However, it
suffers from some drawbacks and an attempt has been made to

overcome them. Following the viewpoint that many properties of a

PN can be decided from its topology [137], a decomposition

-182-

technique for a large PN into smaller nets have been proposed

in Section If. 2. This feature becomes of particular importance

because the properties of a large PN are derived using the

proposed propositions of interconnections of such nets. This

removes the problem of unmanageability of a large PN. Jk state

equation approach has been adapted because of its inherent

possession of topological information in the corresponding

incidence matrix. The decomposition technique proposed is a

relatively improved procedure in the sense that it gives

apriori the number of elementary nets to which a PN with certain

properties can be decomposed. Further, it does not require as

in [137]? the determination of integer-valued solution of linear

equations -a computationally time consuming procedure, and

subsequent iterations. Only union and intersection of the sets

are needed.

Given a PN with two markings, it has always been a problem

to decide if one marking is reachable from another. A necessary

condition for reachability [97] is available but in the absence

of a sufficient condition it is difficult to solve this problem.

The primary contribution in this regard is that a novel technique

to solve reachability is proposed in Section lf.3. A nonreachabili ty

condition which is computationally simpler than that given by

Murata [97]5 has also been obtained. In the absence of the ful

filment of the above condition, the proposed technique first

finds the firing count vector by solving the state equation of

the PN. Minimum firing count vector is then obtained from which

a reachability tree is constructed to find legal firing sequences.

-183-

A significant achievement has been made here in that the

technique not only decides the reachability but also provides
the information about the legal firing sequences of minimum

length required to transform one marking into another. Because

of this minimum length, the testing for the correctness of a
PN becomes easier.

Another problem which is quite common in the theory of PN
is the lack of proper analysis technique when an extension to

overcome the limitation of modeling power of PN is incorporated.
This has been solved by proposing a transition to execute a NOT
operation and then finding a state equation representation for

this. This transition alongvdth the conventional PN can represent
the system involving/toe logic operations. A generalized state
equation for such representation has been obtained. This makes
possible the analysis of computer systems that was hi^her-to not
possible. As an illustration, a part of the control of CDC 6lf00
[105] has been analysed by the generalized state equation. It
has been further shown that Murata's state equation [97] is a
special class of the proposed generalized equation.

The state equations appear to be a very powerful tool in
the hands of computer designer. It has been shown in Section 5.1
that many problems, namely, enumeration of simple paths between
two nodes of a graph, terminal reliability of a computer network,
program complexity evaluation and enumeration of maximal compa
tible classes (MCCs) of microcommands in control memory bit
optimization lie in one class or the other of the state equation.
Asolution technique for enumerating simple paths between two

-18 if-

nodes of a graph by solving the state equation has been proposed.
It is novel, simple and easily implemented on computer. Unlike

other techniques, it does not require matrix multiplication.

Only vector additions are needed. Acomplexity analysis has also

been presented. In Section 5.3, terminal reliability has been

obtained first by finding simple paths through the above mentioned

technique and then giving PN interpretation of its disjoint terms.

The simplicity of the technique and determination of near optimal
solution have been justified (Section 5.5). As far as program
complexity evaluation is concerned, two complexity metrics 1namely,
simple paths and directed circuits have been defined. These

(Section 5. if) in conjunction with each other can find all other

complexity metrics defined infl^].. Furthermore, the deter

mination of these metric* is simple because the technique for
determining simple paths can be judiciously used for determining
directed circuits as well.

In the design of control memory of a microprogrammed computer
the optimal bit solutions have been obtained in terms of control
fields. First MCCs are enumerated through the state equation of
PN and then the microcommands of subset of MCCs are allocated
to different blocks so as to have desired properties. (Section
6.2.2). The method to enumerate MCCs is simple. The number of
iterations required has been calculated and is shown to be highly
data dependent. The proposed method does not require any con
struction of compatibility chart and graph. This makes it easily
adaptable on computer and saves additional computational efforts.
The technique to allocate microcommands of MCCs into blocks

9

-18 5-

according to defined properties is simple. A theorem has been

postulated to test and to shift the microcommands from one

block to another if the allocation does not yield a minimal

optimal solution. It is this shift which makes the proposed

method laborious as is in the existing techniques. However,

it has been established in this section that the number of

shifts will be very few, if the number of microcommands

allocated in each block is not much different from the length

of MCCs from which the microcommands have been allocated. Thus

the method is especially suited for a class of ROM specifica

tion. An effort has, then, been made in this section to test

the existence of a possibility of further reducing the number

of bits in order to have a good engineering solution. This is

done by detecting bit steering among control fields by repre

senting them through extended PN. Token distributions of places

corresponding to microcommands are obtained from control fields

and the ROM specifications so as to fire the transition a

minimum number of times. From these token distribution detection

of bit steering and encoding of control fields are done. The

proposed technique is better than the existing one [86] in the

sense that no concurrency matrix and no grouping of entries

are required. This needs only one Boolean matrix and column

operations upon it. Further, this can solve with same case,

the bit steering among three or more control fields which has

been computationally very difficult in the earlier method.

The complexity analysis of the proposed technique has also

been made. This shows the superiority of the technique.

5

-18 6-

In the design of modular interconnections, two approaches

have been adopted for data path optimization. Both the appro
aches utilise the concept of PN. In the first approach, only

the feasible solutions as defined in [85] are obtained by

representing each incompatible simultaneous transfer set (1ST)

by 1-invariant PN. With the transitions of largest 1-invariant

PN, the transitions of other 1-invariant PN s are merged such

that either all the places or all the invariants, whichever is

earlier have been considered. Each PN obtained by such merging-
in of transitions provides a set of feasible solution. The

generation of feasible solutions by the proposed technique is

better computationally because (i) it does not require const

ruction of compability chart and graph, and (ii) no procedure

for obtaining minimal cover is needed. The details have already
been discussed in Chapter VI. The complexity analysis further

establishes the superiority of the technique. In the other

proposed approach, the data transfers among the modules have

been represented by a PN. The data path optimization problem
has, thus, been re framed as merging-in of places such that the

transitions fire minimum number of times while abiding by the
constraints of concurrency. A technique for this has been

proposed and illustrated with the help of an example. As the

technique is highly data dependent, no computational analysis
for the technique has been carried out. The proposed technique,
however, appears hopefully better than that of Mathialagan
and Biswas in the sense that,because of its inherent property,
(i) it does not require construction of compatibility chart

-187-

and graph and (ii) it does not generate at all a solution which

might be abondened after comparing the cost of other solution

obtained after a large number of iterations, it is the latter

advantage which makes the second approach better than the first

one.

7.3 SOME PROBLEMS FOR FURTHER INVESTIGATION

The PN concept has been reviewed and applied to some of

the problems in the design and development of modern computer

systems. However, there are still a number of problems in which

further research is desirable.

i). Simple PN have been shown to represent a large variety

of systems '[I49]. The corresponding incidence matrix

possesses some unique properties which can be utilized

in investigating some of the important problems like

reachability, liveness, boundedness, safeness etc. A

state equation approach seems to be effective. Further,

investigation properties will lead to easy analysis of

large simple nets,

ii). Both the analysis techniques, namely the reachability

tree and the state equation approach lack the information

of the sequence in which transitions should be fired

to change one marking of PN into another marking (Section

2.6). An attempt has been made in this thesis to solve

this problem by first solving the state equation and from

that finding the minimal firing sequences (Section lf.3).

It is worthwhile investigating if the change in marking •

-188-

can be expressed as a linear function of firing sequence

rather than as a function of number of times the trans-

tions fire. Further, it will be interesting to find

how the other firing sequences which produce the same

change in marking, are related. This will facilitate to

solve reachability problem directly,

iii). Detection and isolation of faults in systems are essen

tial features. Any system can be represented by extended

PN and thus generalized state equations proposed in

Section k»k can be applied for fault detection and

isolation. Since,

AM =Mk+1 - ^ =A*TDk Vk (lf.18)
if there is a fault then AM - A El V. 4 0. To isolate

the fault then becomes an easy task. It requires only

comparison of two vectors. A thorough investigation is

needed in this respect,

iv). Minimal cut-sets and spanning trees play important roles

in computer network. Their enumeration can be done by

applying state equation technique and finding the class

to which they belong (Section 5-1). However, research is

needed in this direction to find effective algorithms.

The properties of corresponding Ax matrix and AM need be
s tudi e d.

v). Two program complexity me trices and their determination

have been discussed in Section 5.if. It was shown that

the evaluation of such metrices is easy. Further work in

this regard can be taken to use these for the development.

-189-

and testing of software. Investigation for the generation

of test and program verification is required.

vi). The cost of ReadA'ri te store is fast approaching the

cost of ROM, it will replace ROM for the bulk of control

memory. In this regard investigation must be done for

the optimization of control memory to determine how many

routines should reside permanently in control memory and

how many should be brought in on a dynamic basis. A cost/

performance trade off will be required,

vii). One approach using bit steering in control memory design

has been discussed in Section 6.2.3 to further reduce

the number of optimized bits. Another approach could be

to determine directly from ROM description which of the

microcommands will not be used in the bit steering, no

matter in what MCCs they belong to. This will limit the

search for bit sharing. Further a study is needed to

determine the lower bound on number of bits when bit

steering is also used. This will afford a knowledge

whether to attempt for bit optimization in order to have

a good engineering solution.

viii). To use PN for performance evaluation of a system, a

concept of time has to be introduced. One way is to

attach time unit to each of the transitions, as is the

case in Section 5.if. 2. Another approach could be to

introduce time as another variable on a place of the PN.

Hence, the variables on a place will be number of tokens

and the time at which they appoar. For the safe marking,

-1^0-

there will be only time associated with the place after

each firing of a transition. In such a case, the PN

then can be represented by two dimension state equations.

It is worthwhile to study which of the established pro

perties of two dimension state space theory in network

could be applied to PNs to decide many problems.

To conclude it can be said that Petri nets can offer a

significant contribution in the design of modern computers

especially with their increased use in parallel processing

environment. In this thesis, the stress has been given to formu

late various algorithms suited in the design and development of

system without going into details of programmer's job of imple

menting them. However, the effectiveness of the algorithms

developed has been shown through mathematical analysis of the

complexities involved. This appears to be better approach in

comparison to the exhaustive method of statistical evidence

through programming. However, should it require to collect

statistical data it would not be difficult because the algorithms

developed can readily be implemented.

It is hoped that this research will open certain new

vistas to several challenging problems in the forthcoming
areas of computer science.

BIBLIOGRAPHY

1. Agerwala, T. 'An Analysis of Controlling Agents for Asynchronous

Processes', Hopkins Computer Research Report No.35, Computer

Science Program, John Hopkins Univ., Baltimore, Maryland, 85

pages, Aug. 1974.

2. Agerwala, T. 'Towards a Theory for the Analysis and Synthesis

of Systems Exhibiting Concurrency', Ph.D. Dissertation, Dept.

of Electrical Engineering, John Hopkins Univ., Baltimore,

April 1975.

3. Agerwala, T. 'Timing and Priority Considerations in Concurrent

Computer Systems', Proc. of the 1976 Conf. on Information

Science and System, pp. 307-312, 1976.

4. Agerwala, T. 'Microprogram Optimization : A Survey', IEEE Trans.

Comput., Vol.C-25, pp.962-973, Oct. 1976.

5. Agerwala, T. 'Putting Petri Nets to Work', Computer, pp.85-94,

Dec. 1979.

6. Agerwala, T. and Choed-Amphai, Y.C. 'A Synthesis Rule for

Concurrent Systems', Proc. of the 15th Design Automation Conf.,

Las Vegas, June 1978.

7. Agerwala, T. and Flynn. M. 'Comments on Capabilities, limita

tions and 'Correctness' of Petri Nets', Proc. of the First

Annu. Symp. on Computer Architecture; New York, ACM, pp 81-86,

1973.

8. Agerwala, T. and Flynn. M. 'On the Completeness of Represen

tation Schemes for Concurrent Systems', Conf. on Petri Nets and

Related Methods, MIT, 16 pages, July 1975.

-192-

9. Agerwala, T. and Flynn. M. 'Modeling with Extended Petri Nets',

Unpublished, 18 pages, 1976.

10. Agrawala, A.K. and Rauscher, T.G. 'Microprogramming I

Perspective and Status', IEEE Trans. Comput., Vol.C-23,

pp 817-837, Aug. 1974.

11. Amin, A.T. and Murata, T. 'Characterization of Live and Safe

Marking of a Directed Graph', 1976 Conf. on Information Sciences

and Systems, John Hopkins Univ., Baltimore, March- April 1976.

12. Anderson, D., Sparacio, F. and Tomasulo, R., 'The IBM System/

360 Model 91: Machine Philosophy and Instruction Handling, IBM

Jl. of Research and Development, Vol.11, No.l, pp.8-24,

Jan. 1967.

13. Astopas, F.F. and Plukas, K.I. 'Methods of Minimizing Computer

Microprograms', Aut. Cont., Vol.5, pp.10-16, 1971.

14. Baer, J. 'A Survey of Some Theoretical Aspects of Multi

processing', Computing Surveys, Vol. 5, No.l, pp.31-80, March

1973.

15. Baer, J. 'Modeling for Parallel Computation: A Case Study',

Proc. of the 1973 Sagamore Conf. on Parallel Processing,

New York: IEEE, pp.13-22, Aug. 1973.

16. Baer, J. and Ellis, C. 'Model, Design and Evaluation of a

Compiler for a Parallel Processing Environment', IEEE Trans.

Software Engg., Vol. SE-3, No.6, pp.394-405, Nov. 1977.

17. Baer, J. and Koyama, B. 'On the Minimization of the Width of

the Control Memory of Microprogrammed Processors', IEEE Trans.

Comput., Vol. C-28, pp. 310-316, April 1979.

-193-

18. Baker Jr, H. 'Petri Nets and Languages: Computation Structures

Group Memo 68, Project MAC, MIT, 6 pages, May 1972.

19. Baker Jr, H. 'Equivalence Problems of Petri Nets', Master's

Thesis, Dep. Elect. Engg., MIT, 53, pages, May 1973.

20. Best, E. 'The SOLO Operating System Described by Petri Nets',

ASM/8, Computing Laboratory, Univ. New Castle upon Tyne,
England, Aug. 1976.

21. Best, E. and Schmid, H. 'Systems of Open Paths in Petri Nets',

Lecture Notes in Computer Science, Vol.32, Berlin:Springer-

Verlag, pp. 186-193, Sep. 1975.

22. Biswas, N.N. 'Introduction to Logic and Switching Theory',

Gordon and Breach, New York, 1975.

23. Brown, D.B. 'A Computerized Algorithm for Determining the

Reliability of Redundant Configurations', IEEE Trans. Rel.,

Vol.R-20, No.3, pp.121-124, Aug. 1971.

24. Chen, T. 'Overlap and Pipeline Processing', in H. Stone

(Editor) Introduction to Computer Architecture, Chicago:

Science Research Associates, pp.375-431, 1975.

25. Clark, R.K. 'MIRAGER : The Best yet Approach for Horizontal

Microprogramming', Proc. ACM National Conf. Boston, Mass.,

PP. 554-571, Aug. 1972.

26. Commoner, F. 'Deadlocks in Petri Nets', Report CA-72 06-2311,

Massachusetts Computer Associates, Wakefield, 50 pages, June

1972.

27. Commoner, F., Holt, A., Even, S. and Pnueli, A., 'Marked

Directed Graphs', Jl. of Computer and System Sciences,

Vol.5, No.5, pp 511-523, Oct. 1971.

-19if-

28. Cooprider, La 'Petri Nets and the Representation of Standard

Synchronization', Dep. Computer Science, Carnegie-Mellon Univ.,
Pittsburgh, 30 pages, Jan. 1976.

29. Crespi-Reghizzi, S. and Mandrioli, D. 'Some Algebric Properties

of Petri Nets', Alta Frequenza, Vol.45, No.2, pp.130-137,

Feb. 1976.

30. Danielson, G.H. 'On Finding Simple Paths and Circuits in a

Graph', IEEE Trans. Circuit Theory, Vol. CT-15, pp 294-295,

Sept. 1968.

31. Das, S.R., Banerji, D. K. and Chattopadhya, A. 'On Control

Memory Minimization in Microprogrammed Digital Computer', IEEE

Trans. Comput., Vol. C-22, pp.845-848, Sept. 1973.

32. Dasgupta, S. and Tartar, J. 'On the Minimization of Control

Memories', Information Processing Letters, Vol.3, No.3,

pp 71-74, Jan. 1975.

33. Dasgupta, S. and Tartar, J. 'The Identification of Maximal

Parallelism in Straight Line Microprogram', IEEE Trans. Comput.,

Vol.C-25, pp 986-992, Oct. 1976.

34. Dennis, J. (Editor), 'Record of the Project MAC Conference on

Concurrent Systems and Parallel Computation', New York: ACM,

199 pages, June 1970.

35. Dennis, J. and Patil, S. 'Speed Independent Asynchronous

Circuits ' Proc. fourth Int. Conf. on System Sciences, Univ.

Hawaii, Honolulu, Hawaii, pp 55-58, Jan. 1971.

36. Dewitt, D.J. 'A Control Word Model for Detecting Conflicts

between Microprograms', Proc. 8th Annul. Workshop on Micro

programming, Oct. 1975.

-195-

37. Dijkstra, E. 'Solution of Problems in Concurrent Program

Control', Communications of the ACM, Vol.8, No. 9, 569 pages,
Sept. 1965.

38. Dijkstra, E. 'Cooperating Sequential Processes', in F. Genuys

(Editor), Programming Languages, New York: Academic Press,
pp. 43-112, 1968.

39. Fratta, L. and Montanari, U. 'A Boolean Algebra Method for

Computing Terminal Reliability of Communication Networks',

IEEE Trans. Circuit Theory, Vol.CT-20, pp 203-211, May 1973.

40. Furtek, F. 'Modular Implementation of Petri Nets', Master's

Thesis, Dep. Elec. Engg., MIT, Cambridge, 136 pages, Sept.

1971.

41. Furtek, F. 'A New Approach to Petri Nets', Computation Struc

ture Group Memo 123, Project MAC, MIT, Cambridge, 26 pages,

April 1975.

42. Genrich, H. 'The Petri Net Representation of Mathematical

Knowledge', Internal Report 76-5, Institut fttr Informations

System for Schung, Gesellschaft fur Mathematik und Detenver-

arbeitung, Bonn, West Germany, 30 pages, May 1976.

43. Genrich, H. and Lautenbach, K. 'Synchronisationsgraphen',

Acta Informatica, Vol.2, No.2, pp 143-161, 1973.

44. Genrich, H. and Lautenbach, K. 'Facts in Place/Transition-

Nets', Lecture Notes in Computer Science, Vol.64, Berlin:

Springer-Verlag, pp.213-231, Sept. 1978.

45. Glushkov,V.M. 'Automata Theory end Formal Microprogram

Transformations', Kibernetica, Vol.1, No.5, pp 1-9,

1965.

-196-

46. Glushkov, V.M. 'Minimization of Microprograms and Algorithm

Schemes', Kibernatica, Vol.2, No.5, pp. 1-3, 1966.

47. Grasselli, A. and Montanari, U. 'On the Minimization of Read

Only Memories in Microprogrammed Digital'Computers», IEEE

Trans. Comput., Vol.C-19, pp 1111-1114, Nov. 1970.

48. Haberman, A.N. 'Synchronization of Communicating Processes',

Communication ACM, Vol.15, No.3, pp 171-176, March 1972.

49. Hack, M. 'Analysis of Production Schemata by Petri Nets',

Master's Thesis, Dep. Elect. Engg., MIT, Cambridge, 119 pages,

Feb. 1972, Alsro Technical Report 94, Project MAC, MIT, Feb.

1972.

50. Hack, M. 'The Equivalence of Generalized (Multiple-Arc) Petri

Nets and Ordinary (Single-Arc) Petri Nets', Computation

Structures Group Note 9, Project MAC, MIT, April 1973.

51. Hack, M. 'Extended State-Machine Allocatable Nets (ESMA), an

Extension of Free Choice Petri Net Results', Computation

Structures Group Memo 78-1, Project MAC, MIT, 33 pages, May

1973.

52. Hack, M. 'A Petri Net Version of Rabin's Undecidability Proof

for Vector Addition Systems', Computation Structures Group

Memo 94, Project MAC, MIT, 12 pages, Dec. 1973.

53. Hack, M. 'Decision Problems for Petri Nets and Vector Addition

Systems', Computation Structures Group Memo 95-1, Project MAC,

MIT, 79 pages, Aug.1974. Also Technical Memo 59, Project MAC,

MIT, 79 pages, March 1975.

5 4. Hack, M. 'The Recursive Equivalence of the Reachability

Problem and Liveness Problem for Petri Nets and Vector

-197-

Addition Systems', Computation Structures Group Memo 107,

Project MAC, MIT, 9 pages, Aug. 1974. Also Proc. of the 15th

Annu. Symp. on Switching and Automata Theory, New York: IEEE

pp 156-164, Oct. 1974.

55. Hack, M. 'Petri Net Languages', Computation Structures Group

Memo 124, Project MAC, MIT, 128 pages, June 1975. Also

Technical Report 159, Laboratory for Computer Science, MIT,

128 pages, March 1976.

56. Hack, M. 'Decidability Questions for Petri Nets', Ph.D.

Dissertation, Dep. Elec. Engg., MIT, 194 pages, Dec. 1975.

Also Tech. Report 161, Laboratory for Computer Science, MIT,
194 pages, June 1976.

57. Halatsis, C. and Gaitanis, N. 'On the Minimization of Control

Store in Microprogram Computers', IEEE Trans. Comput., Vol.

0-27, pp. 1189-1192, Dec. 1978.

58. Hansler, E. 'A Procedure for Calculating the Reliability of a

Communication Network', IEEE Trans. Rel. Vol.R-25, pp 573-575,

Dec. 1971.

59. Hebalkar, P. 'Deadlock Free Sharing of Resources in Asynchro

nous Systems', Ph.D. Dissertation, Dep. Elec. Engg., MIT, 185

pages, Sep. 1970. Also Tech. Report 75, Project MAC, MIT, 185

pages, Sep. 1970.

60. Holt, A. and Commoner, F. 'Events and Conditions', Record of

the Project MAC Conf. on Concurrent Systems and Parallel

Computation, New York: ACM, pp.1-52, June, 1970.

61. Holt, A., Saint, H., Shapiro, R. and Warshall, S. 'Final

Report of the Information System Theory Project", Tech. Report

-198-

RADC-TR-68-305, Rome Air Development Centre, Griffiss Air

Force Base, New York, 352 pages, Sept. 1968.

62. Huen, W. and Siewiorek, D. 'Intermodule Protocol for Register

Transfer Level Modules: Representation and Analytic Tools',

Proc. of the Second Annu. Symp. on- Computer Architecture,

New York: ACM, pp 56-62, Jan. 1975.

63. Hura, G.S., Khan, A.A., Grover, D., Singh, H. and Nanda, N.K.

'Optimization of Assembly Code Generation Using Petri Nets',

Int. Journal of Electronics, Vol.49, No.5, pp. 427-431, Nov.

1980.

64. Izbicki, H. 'Report on Marked Graphs', Tech. Report 25-136,

IBM Vienna Laboratories, Vienna, Austria, 37 pages, April 1973,

65. Jackson, L.W. and Dasgupta, S. 'The Identification of Parallel

Microoperations', Information Processing Letters, Vol.2, pp.

180-184, April 1974.

66. Jayasri, T. and Basu, D. 'An Approach to Organized Micro

instruction which Minimizes the Width of Control Store Words',

IEEE Trans. Comput., Vol.C-25, pp 514-5 21, May 1976.

67. Johnsonbaugh, R., Kao, M. C. and Murata, T. 'Additional

Transformations of Live and Safe Marked Graphs', Proc. 17th

Annu. Allerton Conf. on Commun., Control, and Computing, pp.

387-396, Oct. 1979.

68. Jump, J.R. 'Asynchronous Control Arrays', IEEE Trans. Comput.,

Vol.C-23, No.10, pp. 1020-1029, Oct. 1974.

69. Karp, R. and Miller, R. 'Parallel Program Schemata', Jl. of

Computer and System Science, Vol.3, No.4, pp 167-195, May 1969.

-199-

70. Keller, R. 'Vector Replacement Systems: A Formalism for

Modeling Asynchronous Systems', Tech. Report 117, Computer

Science Laboratory, Princeton Univ., New Jersey, 57 pages,

Jan. 1974.

71. Khan, A.A. and Singh, H. 'Petri Net Approach to Enumerate All

Simple Paths of a Graph', Electronic Letters, Vol.16, No.8,

pp 291-292, 10th April 1980.

72. Khan, A.A. Hura, G.S., Nanda, N.K. and Singh, H. 'A Petri Net

Approach to Compute the Terminal Reliability of a Communication

Network', Proc. Pacific Telecommunication Conf., Honolulu,

Hawaii, pp A5-13 to A5-17, 12-14 Jan. 1981.

73. Khan, A.A., Hura, G.S., Singh, H. and Nanda, N.K. 'On the

Determination of the Solution of a Class of Murata's State

Equation of Petri Nets', Proc. IEEE, Vol.69, No.4, pp 466-467,

April 1981.

74. Khan, A.A. and Singh, H. 'A Method for Enumerating Maximal

Compatible Classes of Microcommands Using Petri Nets', Int. J.

Electronics, Vol.50, No.3, pp 231-234, March 1981.

75. Khan, A. A., Hura, G. S., Singh, H. and Nanda, N.K., 'State

Equation Representation of Logic Operations Through a Petri

Net', Proc. IEEE, Vol. 69, No.4, pp 485-487, April 1981.

76. Khan, A.A. and Singh, H. 'Optimal Interconnections in the

Design of Microprocessors and Digital Systems through Petri

Net', Accepted for Presentation in 10th IFIP Conf. on System

Modeling and Optimization, Aug. 31 to Sep. 4, 1981.

-200-

77. Kim, Y.K., Case, K. and Ghare, P.M. 'An Algorithm for

Computing Complex System Reliability', IEEE Trans. Rel., Vol.

R-21, No.4, pp 215-219, Nov. 1972.

78. KLeir, R.L. and Ramamoorthy, C.V. 'Optimization Strategies for

Microprogramms', IEEE Trans. Comput., Vol.C-20, pp 783-794,

July 1971.

79. Kodres, U.R. 'Discrete Systems and Flow Charts', IEEE Trans.

Software Engg., Vol.SE-4, pp.521-525, Nov. 1978.

80. Kohavi, Z. 'Switching and Finite Automata Theory1, McGraw Hill,

New York, 1970.

81. Kosarju, S. 'Limitations of Dijkstra's Semaphore Primitives

and Petri Nets', Operating System Review, Vol.7, No.4, pp 122-

126, Oct. 1973.

82. Lautenbach, K. 'Liveness in Petri Nets', Internal Report

ISF-75-02.1, Institut fur Inforrnationssystemforschung,

Gasellschaft ftir Mathematik und Datenverarbeitung, Bonn, West

Germany, 33 pages, July 1975.

83. Lautenbach, K. and Schmid, H. 'Use of Petri Nets for Proving

Correctness of Concurrent Process Systems', Proc. of the 1974

IFIP Congress on Information Processing 74, pp 187-191, Aug.

1971.

84. Lien, Y. 'Termination Properties of Generalized Petri Nets',

SIAM Jl. of Computing, Vol. 5, No.2, pp 251-265, June 1976.

85. Mathialagan, A. and Biswas, N.N. 'Optimal Interconnections in

the Design of Microprocessor and Digital System', IEEE Trans.

Comput., Vol.C-29, PP 145-149, Feb. 1980.

-201-

86. Mathialagan, A. and Biswas, N.N. 'Bit Steering in the Minimi
zation of Control Memory in Microprogrammed Digital Computeis',
IEEE Trans. Comput., Vol.C-30, No.2, pp.144-147, Eeb. 1981.

87. McCabe, T.J. 'A Complexity Measure*, IEEE Trans. Software Big.,
Vol.SE-2, pp. 308-320, Dec.1976.

88. McClure, R.M. 'Parallelism in Microprogrammed Controls', Proc.
Int. Adv. Summer Inst. Microprogramming, Herman, Paris, pp 307-
327, 1972.

89. Meldman, J. and Holt, A. 'Petri Nets and Legal Systems',
Jurimetics Jl., Vol.12, No.2, pp 65-75, Dec. 1971.

90. Merlin, P. 'A Study of the Recoverability of Computing Systems',
Ph.D. Dissertation, Dep. Inf. and Comp. Sc, Univ. California,
Irvine, California, 181 pages, 1974. Also Technical Report 58,
Dep. Inf. and Comp. Sc, Univ. California, 181 pages, 1974.

91. Merlin, P. 'A Methodology for the Design and Implementation

of Communication Protocols', IEEE Trans. Commun., Vol.COM-24,
No.6, pp 614-621, June 1976.

92. Merlin P. and Farber, D. 'Recoverability of Communication

Protocols - Implications of a Theoretical Study', IEEE Trans.
Commun., Vol. COM-24, No.9, pp 1036-1043, Sep. 1976.

93. Mischenko, A. T. 'The Formal Synthesis of an Automaton by a
Microprogram I', Kibernetica, Vol.4, No.3, pp 24-31, 1968.

94. Mischenko, A.T. 'The Eormal Synthesis of an Automaton by a

Microprogram II', Kibernetica, Vol.4, No.5, pp 21-27, 1968

95. Misunas, D. 'Petri Nets and Speed Independent Design', Comm.
ACM, Vol. 16, No.8, pp 474-481, Aug. 1973.

-202-

96. Montangero, C. 'An Approach to the Optimal Specification of

Read Only Memories in Microprogrammed Computers', IEEE Trans.

Comput. Vol. 0-23, PP 375-389, April 1974.

97. Murata, T. 'State Equations, Controllability and Maximal

Matchings of Petri Nets', IEEE Trans. Aut. Cont., Vol.AC-22,

No.3, pp 412-416, June 1977.

98. Murata, T. 'Petri Nets, Marked Graphs, and Circuit-System

Theory', IEEE Circuits and Systems Society Newsletter , Vol.11,

No.3, pp 2-12, June 1977.

99. Murata, T. 'Circuit Theoretic Analysis and Synthesis of

Marked Graphs', IEEE Trans. Circuits and Systems, Vol.CAS-24,

No.7, PP 400-405, July 1977.

100. Murata, T. 'Relevance of Network Theory to Models of

Distributed/Parallel Processing', Proc. of the 1979 Int.

Colloquium on Circuits end Systems, Taiepei, Taiwan, 24-25

July 1979.

101. Murata, T. 'Synthesis of Decision-Free Concurrent Systems for

Prescribed Resources and Performance', IEEE Trans. Software

Engg., Vol.SE-6, No.6, pp 524-530, Nov. 1980.

102. Murata, T. and Church, R. 'Analysis of Marked Graphs and Petri

Nets' by Matrix Equations', Research Report MDC 1.1.8., Dept.

Inf. Engg., Univ. Illinois, Chicago, Nov. 1975.

103. Murata, T. and Koh, J.Y. 'Reduction and Expansion of Live and

Safe Marked Graph', IEEE Trans. Circuits and Systems, Vol.

CAS-27, No.l, pp 68-70, Jan. 1980.

104. Nelson, A. C., Batts, J.R. and Beadles, L.R. 'A Computer

Program for Approximating System Reliability, IEEE Trans. Rel.

Vol.R-19, pp 61-65, May 1970.

-203-

105. Noe, J. 'A Petri Net Model of the CDC 6400', Proc. ACM SIGOPS

Workshop on System Performance Evaluation, New York: ACM,

pp 362-378, April 1971.

106. Noe, J. 'Pro-Nets : For Modeling Processes and Processors',

Technical Report 75-07-15, Dep. Comput. Sc., Univ. Washington,

Seattle, July 1975.

107. Noe, J. 'Nets in Modeling and Simulation', Adv. Course on

General Net Theory of Processes and Systems, Hamburg, Oct.1979,

Also Lecture Notes in Computer Science, Berlin: Springer-

Verlag, 1980.

108. Noe, J. and Kehl, T. 'A Petri Net Model of a Modular Micro-

programmable Computer (LM2)', Technical Report 75-09-01,

Comput. Sc. Dep., Univ. Washington, Seattle, 23 pages, Sept.

1975.

109. Noe, J. and Nutt, G. 'Macro E-Nets for Representation of

Parallel Systems', IEEE Trans. Comput., Vol.C-22, No.8,

pp 718-727, Aug. 1973.

110. Nutt, G, 'The Formulation and Application of Evaluation Nets',

Ph.D. Dissertation, Comput. Sc. Group, Univ. Washington,

Seattle, 181 pages, July 1972. Also Tech. Report 72-07-02,

Comput. Sc. Group, Univ. Washington, Seattle, 170 pages,

July 1972.

111. Nutt, G. 'Evaluation Nets for Computer Systems Performance

Analysis', Proc. of the 1972 Fall Joint Comput. Conf.,

Montvale, New Jersey: AEIPS Press, pp 279-286, Dec. 1972.

112. Pacas, S. 'A Design Methodology for Digital Systems Using

Petri Nets', Ph.D. Dissertation, Univ. Texas at Austin,

Austin, 1979.

-20lf-

113. Patil, S. 'Coordination of Asynchronous Events', Ph.D.

Dissertation Dep. Elect. Engg., MIT, Cambridge, 234 pages,

May 1970. Also Tech. Report 72, Project MAC, MIT, 23 4 pages,

June 1970.

114. Patil, S. 'Closure Properties of Interconnections of Deter

minate Systems', Record of Project MAC Conf. on Concurrent

System and Parallel Computation, New York : ACM, pp 107-116,

June 1976.

115. Patil, S, 'Limitations and Capabilities of Dijkstra's Semaphore

Primitives for Coordination among Processes', Computation

Structures Group Memo 57, Project MAC, MIT, 18 pages, Feb.1971.

116. Patil, S. 'Circuit Implementation of Petri Nets', Computation

Structures Group Memo 73, Project MAC, MIT, 14 pages, Dec.1972.

117. Patil, S. 'Micro-Control for Parallel Asynchronous Computers',

Computation Structures Group Memo 102, Project MAC, MIT,

March 1975.

118. Patil, S. and Dennis, J. 'The Description and Realization of

Digital Systems', COMPCON 72 : Sixth Annu. IEEE Computer

Society Int. Conf. Digest of Papers, New York: IEEE, pp 223-

226, Oct. 1972.

119. Peterson, J. 'Computation Sequence Sets', Jl. of Computer and

System Science, Vol.13, No.l, pp. 1-24, Aug. 1976.

120. Peterson, J. 'Petri Nets', Computing Surveys, Vol.9, No.3,

pp. 223-252, Sept. 1977.

121. Peterson, J. 'Petri Net Theory and Modeling of Systems',

Prentice-Hall Inc., April 1981.

-205-

122. Peterson, J. and Bredt, T. 'A Comparison of Models of Parallel

Compution', Inf. Processing 74, Proc. of the 1974 IFIP Congress,

Amsterdam, North-Ho11and, pp 466-470, Aug.1974.

123. Petri, C. 'Kommunikation mit Automaton1, Ph.D. Dissertation,

Univ. Bonn, West Germany, 1962. Also MIT Memorandum MAC-M-212,

Project MAC, MIT. Also Clifford F. Greene, Jr. (Translator)

'Communication with Automata', Supplement 1 to Tech. Report

RiiDC-TR-65-379, Vol.1, Rome Air Development Centre, Griffis

Air Force Base, New York, 89 pages, Jan. 1966.

124. Petri, C. 'Introduction to General Net Theory', Lecture Notes

in Computer Science, Berlin: Springer-Verlag, 1980.

125. Ponstein, J. 'Self-Avoiding Paths and Adjacency Matrix of a

Graph', SIAM, Vol.14, pp 600-609, 1966.

126. Postel, J. 'A Graph Model Analysis of Computer Communications

Protocols', Ph.D. Dissertation, Comput. Sc. Dep., Univ.

California, Los Angeles, 191 pages, 1974.

127. Postel, J. and Farber, D. 'Graph Modeling of Computer

Communications Protocols', Proc. of the 5th Texas Conf. on

Computing Systems, Univ. Texas, Austin, pp 66-77, Oct. 1976.

128. Ramamoorthy, C.V. and Ho, G. S. 'Performance Evaluation of

Concurrent Asynchronous Systems by Petri Nets', Proc. of

COMPSAC '79, Chicago, Nov. 1979.

129. Ramamoorthy, C.V. and Tsuchiya, M. »A High Level Language for

Horizontal Microprogramming', IEEE, Trans. Comput., Vol.C-23,

No.8, pp 791-801, Aug. 1974.

-206-

130. Ramchandani, C. 'Analysis of Asynchronous Concurrent Systems

by Petri Nets', Ph.D. Dissertation, Dep. Elect. Engg., MIT,

Cambridge, 219 pages, July 1973. Also Tech. Report 120,

Project MAC, MIT, 219 pages, Feb. 1974.

131. Reddi, S.S. 'A Parallel Computer with Centralized Control',

IEEE Comput. Soc. Repository, R 76-22, Feb. 1976.

132. Roberston, E.L. 'Microcode Bit Optimization is NP-Comp

IEEE Trans. Comput., Vol.C-28, pp 316-319, April 1979.

133. Rubin, F, 'Enumerating All Simple Paths in a Graph', IEEE

Trans. Circuits and Systems, Vol.CAS-25, No.8, pp 641-642,

1978.

134. Schneidewind, N.I. 'Application of Program and Complexity

Analysis to Software Development and Testing', IEEE Trans.

Rel. Vol.R-28, pp 192-198, Aug. 1979.

135. Schwartz, S.J. 'An Algorithm for Minimizing Read Only Memories

for Machine Control', Proc. 9th Annu. Symp. Switching and

Automata Theory, pp. 28-33, 1968.

136. Shapiro, R. and Saint, H. 'A New Approach to Optimization of

Sequencing Decisions', Annu. Review in Automatic Programming,

Vol. 6, Part 5, pp 257-288, 1970.

137. Sifakis, J. 'Structural Properties of Petri Nets', Lecture

Notes in Computer Science, Vol.64, Berlin : Springer-Verlag,

pp 474-483, Sept. 1978.

138. Singh, H., Khan, A.A., Grover, D. and Nanda, N.K. 'On Petri

Net Approach to Computer Hardware and Software', 3rd Polish-

English Seminar on Real-Time Process Control, Warsaw, Poland,

PP 3 00-311, 20-23 May, 1980.

-207-

139. Sitton, W.G. and Tartar, J. 'Deletion of Non-Essential Micro-

operations', Proc. 22nd Texas Conf,, on Computing Systems,

pp 16.1-16.7, Nov. 1973.

140. Stabler, E.P. 'Microprogram Transformations', IEEE Trans.

Comput., Vol.C-19, No.10, pp 908-916, Oct. 1970.

141. Tabendeh, M. and Ramamoorthy, C.V. 'Execution Time (and Memory)

Optimization in Microprograms', Proc. 7th Annu. Workshop on

Microprogramming, Palo Atlo, CA, Sept. 30- Oct.2,.1974.

142. Thieler-Mevissen, G. 'The Petri Net Calculus of Predicate

Logic', Internal Report ISF-76-09. Institut fur Informations-

systemforschung, Gesellschaft fur Mathematik und Datenverar

beitung, Bonn, West Germany, 60 pages, Dec. 1976.

143. Thorton, J. 'Design of a Computer : The Control Data 6600',

Scott, Foresman and Co., Glenview, Illinois, 181 pages, 1970.

144. Tokoro, M. et al. 'An Approach to Microprogram Optimization

Considering Resource Occupancy and Instruction Formats', Proc.

10th Annu. Workshop on Microprogramming, pp 92-108, 1977.

145. Torng, B.C. and Wilhelm, N.C. 'The Optimal Interconnection of

Circuit Modules in Microprocessor and Digital System Design',

IEEE Trans. Comput., Vol.C-26, No.5, pp 450-457, May 1977.

146. Tsuchiya, M. and Jacobson, T. 'An Algorithm for Control Memory

Minimization', Proc. 8th Annu. Workshop on Microprogramming,

PP 18-25, 1975.

147. Valette, R. 'Analysis of Petri Nets by Stepwise Refinement',

Jl. of Computer and System Sciences, Vol.18, No.l, pp 35-46,

Feb. 1979.

-203-

148. Valette, R. and Diaz, M. 'Top-Down Formal Specification and

Verification of Parallel Control Systems', Digital Processes, •
No.4, pp 181-199, 1978.

149. Warshall, S. 'A Theorem on Boolean Matrices', Jl. ACM, Vol.19,
pp. 11-12, 1962.

150. White, G.M. 'Modeling of Minicomputer I/O Devices by Petri
Nets', Symposium on Mini and Micro Computers in Canada, 1976.

151. Wilkes, M.V. 'The Beet Way to Design an. Automatic Calculating

Machines', Proc. Manchester Univ. Comput. Inaugur. Conf.

pp 16-18, 1951.

152. Wilkes, M.V. and Stringer, J,B. 'Microprogramming and the

Design of Control Circuits in an Electronic Digital Computer',
Proc. of the Cambridge Philosophical Society, 49, Part 20,
PP 230-238, April 1953.

153. Wilkes, M.V., Renwick, W. and Wheeler, D. 'The Design of

Control Unit of an Electronic Digital Computer', Proc. IEE,
Vol.105, Part B, pp 121-128, 1958.

154. Yau, S.S., Schawe, A.C. and Tsuchiya, M. *0n Storage Optimi
zation of Horizontal Microprograms', Proc. 7th Annu. Workshop
on Microprogramming, pp 98-106, 1974.

	PETRI NET APPROACH TO DESIGN AND DEVELOPMENT OF MODERN COMPUTER SYSTEMS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF SYMBOLS
	CHAPTER-1 INTRODUCTION AND STATEMENT OF THE PROBLEM
	CHAPTER-2 CRITICAL REVIEW AND GENERA! CONSIDERATIONS OF PETRI NET
	CHAPTER-3 CRITICAL REVIEW AND GENERA! CONSIDERATION OF MICROPROGRAM OPTIMIZATION
	CHAPTER-4 ON THE DEVELOPMENT OF PETRI NET THEORY
	CHAPTER-5 ON THE APPLICATION OF PETRI NETS TO COMPUTER HARDWARE AND SOFTWARE
	CHAPTER-6 PETRI NET APPROACH TO DEVEPLOMENT OF MICROPROGRAMMED COMPUTER
	CHAPTER-7 SUMMARY AND CONCLUSIONS
	BIBLIOGRAPHY

