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ABSTRACT

The research work which lead to the preparation of

this thesis was undertaken with the objective of defining

some new transforms which could he used for signal (message,

picture or data) processing and to study the permutation

properties of the proposed signal processing transforms.

The work contained in this thesis includes generation of

higher order orthonormal transform kernels from lower order
orthonormal transform kernels, proposing new two-dimensional

transforms and studying their permutation properties,

modification of some of the existing transforms for pattern

recognition to transforms which could be used for trans

mission of message, picture and data, and defining a new

class of systems which is invariant to some prescribed

permutation.

It has been observed that the discrete finite system

matrices for the proposed class of permutation invariant

system are not necessarily matrices with ranks equal to
their orders. Conditions have been stipulated under which

the resulting system matrices would have ranks equal to

their orders. But this, however, needs further investi

gation,

Two-dimensional transforms could be frequently

thought of as two one-dimensional transforms. By taking
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various combinations of two one-dimensional orthonormal

transform kernels one can define a class of two-dimensional

transform kernels. The permutation properties of such

transform can be deduced from the permutation properties

of the component orthonormal transforms.

It is known that Kronecker product of two lower order

orthonormal matrices results in an orthonormal matrix of

higher order. The algebra for Kronecker product is well

developed. But it does not commutative. A new matrix

product, Chinese product, has been proposed. This product

is defined only when the respective dimensions of the two-

component matrices are coprimes. The matrix resulting

from this product has all the properties of the matrix

resulting from Kronecker product of the same component mat

rices. In addition this matrix product commutes. In fact

the former is a rowwise and columnwise permuted version

of the latter. Expressions have been derived for permu

tation matrices which can help in getting one from another.

The notions of these matrix products and partitioning of

matrices have buen exploited to obtain higher ordur ortho-

normal transform kernels from lower order orthonormal

transform kernels.

Many of the known transforms which find application

in pattern recognition are nonlinear in nature. If these

transforms could be inverted by some modification then the
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modified transforms could bo useful for message, picture

and data signals. It has been proposed that the additional

knowledge about the labels at each functional block in the

transmitter could lead to the recovery at receiver of the

input signal samples at the transmitter. The class of

thus modified transforms has been named as labelled sym

metric function transform.

The thesis ends, as is customary, with references

to some problems which could be taken up in future as an

extension of this work.



iv

ACKNOWLEDGEMENTS

It has indeed "been a pleasure to work under the

supervision and guidance of Dr, P.S.Moharir and

Dr. N.C.Jain. This work could not have been completed

but for their valuable advice, sincere guidance and

friendly behaviour. The gratitude to them cannot be

expressed in words but only felt.

It is a pleasure to remember the help, academic

and otherwise, rendered by friends and well wishers.

Thanks are due to Shri U.K.Mishra, for cutting

the stencils, Shri R.C.Vaish for making the diagrams

and Shri Hari Ram for running the stencils.

This acknowledgement would be incomplete without

a mention of gratitude to the members of the author's

family, especially his wife and children, who had to

bear his neglect of household during the period of

this work.



TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

NOMENCLATURE

CHAPTER-1 INTRODUC TION

• • • •*-

... vii

... viii

1

CHAPTER-2 SYSTEMS WITH PRESCRIBED
PERMUTATION PROPERTIES

• * •

2.1 Permutation-Invariant Systems

2.2 Some New Results on P-I Systems ...

2.3 Reciprocal-Permutation Systems ...

2.4 Synchronous Translation
Invariant Transforms

CHAPTER-3 PERMUTATION PROPERTIES OF SOME
TRANSFORMS

3.1 Modular Permutation

3.2 Bit-Plane Permutation ♦••

3.3 Fourier-Twiddled Kronecker
Products

3.41 Fourier-Twiddled H-DF Transform ...

3.42 Modular Permutation of Columns

3.43 Bit-Plane Permutation of Rows

3.44 Modular Permutation of Columns
and Bit-Plane Permutation of
Rows

10

10

17

29

38

44

44

47

53

59

68

72

78



vi

CHAPTER-4 INTERRELATIONS AMONG VARIOUS 37
TRANSFORMS

4.1 Special Matrix Products 88

4.2 Relation Between Chinese and gg
Kronecker Products

4.3 Relation Between Chinese-Kronecker 104
and Kronecker-Chinese Products

4.4 Permutation Properties of Chinese
and Kronecker Products of ... H3
DFT kernels

CHAPTER-5 SYNTHESIS OF TRANSFORM KERNELS ... 123

5.1 Hadamard Arrays ••• 12^

5.2 Partitioned Matrix Kronecker ^ 125
Product Method

5.3 Partitioned Matrix Chinese ^ -j^g
Product Method

CHAPTBR-6 TRANSLATION INVARIANT SYSTEMS ... HI

6.1 Translation Invariant Transforms.. 141

6.2 Character Recognition ... 151

6.3 Labelled SFT ••• I60

CHAPTER-7 CONCLUSIONS ••• 172
7.1 Summary and Conclusions ••• 172

7.2 Scope for Future Work ... 181

APPENDIX-A HADAMARD ARRAYS ••• i85

REFERENCES CITED <<|# I99
(ALPHABETICALLY)



Vll

LIST OF TABLES

TABLE TITLE PA&E

- x Selective bit-complementation
permutation

3.2 Bit-plane permutation

3.3 Computation of i1>p and

I1,P



Vlll

LIST OF FIGURES

FIG. TITLE PAGE

3.1 Tree-graph for DFT of 2-D array ,.. 58

3.2 Flow-chart of transform with
columns permuted

3.3 Flow chart of transform with
rows permuted

73

79

3.4 Flow chart of transform with rows Qg
and columns permuted ***

4.1 Equivalence among systems with -j_-j_g
smaller and longer inputs

4.2 Linear system with DFT and Chinese 11fi
product

4.3 Chinese product of sequence transformed
by kernel obtained by Chinese ... 118
product of DFT kernels

4.4 Some equivalent schemes with -^x
Kronecker products

4.5 Some equivalent schemes with Chinese 12X
products

6.1 Tree-graph of 1-D OR-AND transform 155
(8 inputs)

6.2 Character A in pattern domain ... 155

6.3 Character A transformed by -^36
OR-AND transform ""

6.4 Character A transformed by -^y
EOR-AND transform

6.5 Tree-graph of 1-D monogenic -j^
function transform (16 inputs)

6.6 Character A transformed by -j_g2
monogenic function transform

6.7 Tree-graph of RT (8 inputs) ... 165



FIG.

68 Ith functional block in rth column
of (a) transmitter (b) receiver in ... Xbr
labelled RT

6 9 Tree-graph for labelled RT (8 inputs)### l68
(a) transmitter (b) receiver

6.10 Functional block of MT ••• 167

IX

TITLE PAGE



NOMENC LATURE

a(i) Sequence of input samples

a.(i) a(i) after linear translation of
samples

a (i) a(i) written as two-dimensional array,
r read row by row, after rowwise permutation

a (i) a(i) written as two-dimensional array, read
c row by row, after columnwise permutation

a (i) a(i) written as two-dimensional array , read
rc row by row, after rowwise and columnwise

permutation

a(i,j) elements of matrix A

A,B,C Matrices

A(i-i*3i) Submatrices of dimension mxn

B(i?,j?) Submatrices of dimension nxp

G(i*j) Submatrices of dimension mxp

C Matrix obtained by Chinese product of
0 component matrices

0k Matrix obtained by Kronecker product of
component matrices

C Matrix obtained by Chinese-Kronecker product
0 of component matrices

Cv Matrix obtained by Kronecker-Chinese
fcc product of component matrices

A(l) Transform samples of a(i)

At(l) Transform samples of a^(i)

A (I) Transform samples of ay(i)

A (I) Transform samples of ac(i)

Ay (I) Transform samples of arc(i)



xi

G Transitive abelian permutation group of
order N and degree N

P permutation/Permutation matrix

p' Reciprocal of P with respect to a
particular transform

p""l Inverse of P

p/m) selective-bit complementation permutation
operator

P(p,IjtP(q,N) Modular permutation operator pair
P(a b.,.k) Bit-plane permutation operator
RN N'-dimensional vector space of N-tup: es

j Transformation kernel

3 Finite discrete system matrix

a Chinese product
c

a Kronecker product
k

a Chinese-Kronecker product
*ck
a Kronecker-Chinese product
kc

((x))„ x modulo N

5 Kronecker delta

g Congruent to

£ equivalent

H Hadamard transform operator

h(Il) . Element at the if1 row and if column
12 0f the matrix obtained by columnwise

HT of a(i)

H(Il) h(Il) after multiplication with twiddle factor
i2 X2

s( , ) elements of matrix S
p(j) Permutation matrix PjL of transitive abelian
1 permutation group Or.



C HA, PTER -1

INTRODUCTION

In recent years there has been a growing interest

regarding study of orthogonal transforms in the area of

digital signal processing* This is primarily due to the

impact of high speed digital computers and the rapid

advances in digital technology and consequent develop

ment of special purpose digital processors. The appli

cations of such transforms include image processing,

speech processing, pattern recognition, spectroscopy etc.

In signal processing and, in particular, speech and

picture processing a wide class of transforms including

Fourier, Walsh, Hadamard, Haar, slant and discrete cosine

has come to be widely used in recent years.

Linear transforms can be used to obtain alternative

descriptions of signals. These alternative descriptions

can have many uses and most of the applications are

based on the exploitation of the fact that linear trans

formation is a way of changing statistical and spectral

characteristics of the signals. Thus it is advantageous

to have a wide class of linear transforms from which a

particular choice oould be made for specific application.

Many transform kernels have a large amount of

structural redundancy. In many cases the structural



redundancy of the transform kernel is such that certain

lower-order transform kernels are embedded in the higher-

order transform kernels, provided certain elementary re

lations hold between these orders.

Non linear or even noninvertible transforms can

be useful for applications such as classification and

pattern recognition. These transforms exploit the fact

that they could suppress certain aspects of the input

signals which are irrelevant and focus attention on re

levant parameters, relevance being defined in the context

of a particular application. Efficient computational

algorithms are known for a number of linear transforms.

An efficient computational algorithm would be a desir

able characteristic of nonlinear and noninvertible

transforms also.

The work carried out for the preparation of this

thesis relates to generation of higher order orthonormal

kernels starting with lower order orthonormal kernelsf

definition of some new transform kernels, study of per

mutation properties of the kernels and inversion of some

nonlinear transforms using additional labels. The

thesis has b^en written in an unconventional way in the

sense that instead of devoting a couple of chapters in

the beginning for review of the existing literature the

review and background necessary for understanding the



text have been incorporated in each chapter. Thus each

chapter in this thesis is mostly self contained in the

sense that for its understanding one does not have to

refer to other chapters.

The results in Chapter-2 are regarding possible

exploitation of groups known as transitive abelian per

mutation group. Siddiqui [57] and Rao [52] have studied

such groups to define a class of systems which is in

variant under some prescribed permutation. The class of

systems given by then has been named as permutation-

invariant (P.I.) systems. It has been mentioned by these

workers that such groups can be found out using results

from finite group theory. But the search of Uterature

on finite group theory which would enable one to write

all possible transitive abelian permutation groups of

order N and degree N which can be formed from a per

mutation group of order Nl resulted in the negative.

This problem is twofold : first to find out the exact

number of such groups and second to write all the ele

ments of all such groups. The second part of the problem

in fact boils down to the task of finding any one pri

mitive element of the group as all the elements in any

group are the powers of the primitive element in the

group. The work in this direction started with the

listing of all suoh groups of lower degree so as to get

some clue regarding any possible algorithm to solve



the problem of writing the complete groups. All such

groups have been listed for degree four ani five. The

complexity increases many times as one tries groups of

higher degree. With these available results and the

P.I,systems defined by earlier worker a new system which

is invariant to some other permutation has been defined.

Some inferences have been reported regarding conditions

under which such systems would exist but they are in

adequate in the sense that they are based on the results

of examples worked out in respect of transitive etbelian

permutation groups of order and degree four and five only.

In Chapter 3 the known permutation properties of

discrete Fourier transform and Hadamard transform have

been exploited to study the permutation properties of a

new transform namely Fourier twiddled H-DF transform.

The idea of defining such a transform oame from the

results known for finding out the DFT of a sequence

by writing it as a two-dimensional array read row by

row„ The DFT of the sequence is equal to the column

wise DFT followed by twiddling and then rowwise

DFT, It was thought that if the columnwise DFT

is replaced by columnwise H T and the twiddling factor

modified then the resulting transform should exhibit cer

tain permutation properties. When it was tried some

nice permutation properties resulted. The permutation



on the input sequence, written as two-dimensional array
and read row by row, was effected by treating each row

(column) as an element. The permutation properties for
DFT and H T are well known for one-dimensional

sequence and these were applied and transform taken.

The permutation properties of the transform samples were

found to depend upon permutation operator pairs, as

expected. The technique developed in this chapter could

be used to define a family of new transforms by choosing

various pairs of orthonormal transforms in place of H T

and DFT. The permutation properties of such trans

forms, if any, would depend upon the reciprocal permuta

tion operator pairs for component transforms and the

twiddling scheme. P, p' are said to be reciprocal per
mutation operator pairs with respect to some transform

T if TPa(i) = p'Ta(i) where a(i), i = 0,1,2,...,N-1
is the input signal sample sequence of length N.

It is well known that the matrix resulting from

the Kronecher product of two orthonormal matrices is

again an orthonormal matrix. In Chapter 4 three more

matrix products viz. Chinese product, Chinese-Kronecker

product and Kronecher-Chinese product have been introduced.

These are basically some modifications over the known

Kronecker product of matrices. In all cases the dimension

of the resulting matrix is the product of the corresponding



dimensions of the component matrices. Unlike Kronecker

product of matrices which is defined for all dimensions

of the component matrices the matrix products introduced

are defined only when the corresponding dimensions of

the component matrices bear some relationships. The

Chinese product is defined when the dimension of the rows

(columns) of the component matrices are coprimes, i.e.,

they have no factor in common. The Chinese-Kronecker

and Kronecker-Chinese products are defined only when the

dimensions of the rows and columns respectively of the

two component matrices are coprimes. It has been shown

that the matrices obtained by taking these matrix products

are orthonormal if the component matrices are orthonormal.

In fact the matrices obtained in these cases are the row

wise or/and columnwise permuted versions of the matrix

obtained by the Kronecker product of the same component

matrices. This being the case it was hoped that one

should be obtainable from the other by premultiplication

and postmultiplication by suitable permutation matrices.

Relationships have been deduced to obtain Chinese product

matrix from Kronecker product matrix and vice-versa , and

Chinese-Kronecker product matrix from Kronecker-Chinese

product matrix and vice-versa provided both the products

are defined. Thus by defining some more matrix products

a method has been suggested for generating higher order

orthonormal transform kernels starting with lower order



orthonornal transform kernels.

The notions of Kronecker product and Chinese pro

duct of matrices have been made use of in Chapter 5 to

define two new matrix products namely partitioned matrix

Kronecker product and partitioned matrix Chienese product.

In both of them the two component matrices are partitioned

into submatrices so that the submatrices of one are con

formable for ordinary matrix multiplication to submatrices

of the other. The resulting submatrices are indexed as

elements. Matrices are then obtained by taking Kronecker

(Chinese) products of these component matrices wherein

submatrices are treated as elements. The ordinary product

of elements in Kronecker product of matricias is replaced

by ordinary matrix product of submatrices. The matrices

resulting from such multiplications are orthonormal if

the component matrices are orthonormal.

Another method of getting higher order orthonormal

matrices starting with lower order submatrices is exploit

ing the results available for construction of Hadamard

arrays. In particular if the submatrices are real, sym

metric and circulant then higher order orthonormal mat

rices of various orders can be obtained using Williamson

design, Baumert-Hall design and Br.urnert-Hall-Welch design.
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One important area of application of transforms

is character recognition. Many transforms are known which

have been successfully applied for such purposes. Most

of these transforms are nonlinear and noninvertible.

Since the location of the character in the pattern domain

is of little interest, some of the transforms finding

application in character recognition are translation in

variant, Wagh [65] has given a class of such transforms,

namely symmetric function transforms ( S F T), and studied

their usefulness in pattern recognition. The permutation

properties of some of the transforms which are translation

invariant in the sense that if the input is cyclically

shifted the transform samples do not change have been

studied in Chapter 6. Some new transforms have been pro

posed which could find application for such purposes.

Some of them are superior in the sense that hardware-

needed is simpler and that many of the transform samples

are zeroes in which case the average energy required for

transmission would be less assuming that transmission of

zeroes needs no energy. In this chapter an effort has

been made to invert the nonlinear transforms. The

additional information required for achieving this

objective is labels at various functional blocks of the

scheme which effects transformation. These labels would

be different in different transformation schemes. Thus

the known nonlinear transformations alongwith the knowledge



of the labels at various functional blocks could be used

for unique recovery of input samples from a knowledge of

the transform samples and labels. The transformations basi

cally developed for pattern recognition purposes can

now be successfully employed for message or picture

signals.

Though the results obtained in this thesis have

been illustrated with examples of lower orders they

can also be used with higher orders. As a matter of

fact, as the order increases there is more flexibility

in selecting the parameters like permutation operator,

order of the submatrices etc.



CHAPTER-2

SYSTEMS WITH PRESCRIBED PERMUTATION PROPERTIES

This chapter gives a critical review of the earlier

work in the areas of one-dimensional and two-dimensional

permutation invariant systems. Some modifications to the

notions of permutation invariance have been suggested.

With the modified notions the resulting system matrices

may have lesser rank than order leading to degenerate cases,

It may be interesting to find out the conditions under

which degenerate cases do not arise.

2.1 PERMUTATION-INVARIANT SYSTEMS

A method for high speed computation of correlation

and convolution of finite discrete signals has been given

by Stcckham [59]. Cyclic or circular convolution is the

name assigned to such convolutions. Finite discrete

linear systems defined by cyclic convolutional relation

ship between the input and output sequences are termed

as cyclic convolution systems [22] and they have charac

teristics similar to linear time-invariant systems. The

cyclic convolution systems have been widely used Indirectly

in many areas involving fast Fourier transform (F F T) im

plementations of ordinary convolution and correlation of

finite discrete signals [1,4,5,21,23,51,59]. The notion

of convolution was extended when Walsh functions [19,45,68]
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were applied for signal processing. Gibbs introduced

the concept of logical convolution, which is presently

known as dyadic convolution [16,17,22,26,47], of finite

discrete signals of length equal to an integer power of

two. The linear systems characterized by dyadic convo

lutions, termed as dyadic-invariant systems by Pichler[46],

have features similar to linear time-invariant systems.

Rosenbloom [54] applied theory of groups [13,14,

20,25,27,28,29,31,56,69] to dyadic systems. He has pointed

out that character vectors and regular representations of

finite abelian groups play respectively the roles that

complex exponential functions and time translations have

in the theory of linear time-invariant systems. His

discussion, however, was limited to dyadic systems cor

responding to dyadic groups. Gethoffer [22] observed

that cyclic, dyadic as well as ordinary discrete convo

lutions have similar structures. He investigated mutual

mappings amongst these systems with particular emphasis

on cyclic and dyadic systems.

Definitions of some of the terms from group theory

which find frequent references in the chapter are:

ORDER - If G is a finite group then the number of

elements in G is known as the order of the

group.
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DEGREE - If JT represents a finite set of objects

and then objects of ]T are denoted by the

integers 1,2,,.,,N then a map of JT onto

itself is called a permutation of degree N,

PERMUTATION- There are Ni arrangements which map a set
GROUP

of objects denoted by the integers 1,2,..,N

onto itself. The set containing all such

arrangements is known as a permutation group.

Thus a permutation group of degree N is

of order NJ

TRANSITIVE - A group of permutations is said to be trans-
GROUP

itive if, given any pair of letters a,b

(which need not be distinct), there exists

at least one permutation in the group which

transforms a into b. Othwrwise the group

is intransitive.

ABELIAN - A group which has the additional property that
GROUP

for every two of its elements a* b = b * a

is called an Abelian (or commutative) group.

TRANSITIVE ABELIAN PERMUTATION GROUP OF ORDER N
AND DEGREE N -

This is a subgroup of order N formed out

of a permutation group of order N.1 and

degree N such that for any pair of elements

Pi , Pj | i , j = 0,1,2,.., N-l
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i) there exists only one permutation in

the subgroup which transforms P± into

ii) P± * Pj = Pj * P±

CALEY TABLE - For a finite set S, a binary operation

* on the set can be defined by means of a

table. Caley table or multiplication

table is one such table wherein

(itn entry on the left)*(jth entry on the
top) m(entry in the ith row and jth
column of the table)

It is obvious from the definition of transitive

abelian permutation group of order N and degree N

that a variety of such groups can be constructed for any

given N. There would always be a cyclic group for all

values of N and a dyadic group if N is equal to an

integer power of two.

By a finite discrete system S is meant a mapping

from RN to RN and written

y = S x

where x e RN and y e RN are the system input and system
output respectively. RN is the N-dimensional vector
space of N-~ttt>l*s. If the system is linear it has the

following matrix representation with respect to the



standard basis E:

s(0,0)

8(1,0)

s(N-l,0)

s(0,l) .... s(0,N-l)

s(l»l) s(l,N-l)
: »j •• • •« •

s(N-l,l) ..., s(N-l,N-l)

14

.(2.1)

The input and output signals x and y have N x 1

matrix representations [x(0) x(l) .... x(N-l)]T and
[y(0) y(l) .... u(N-l)]T respectively.

If G be a transitive abelian permutation group

of order N and degree N and P± some element in G,
Pi e G, then a finite discrete system S is said to be

permutation - invariant (P-I) relative to G if, for any
signal x in RN,

P± (S x) = S (P± x) P± e G ,.(2.2)

The set of all such systems, relative to a given G,

is termed as a class of P.I. system of dimension N,

where N is the length of the signal. The number of

various classes of P.I. systems of a given dimension is

equal to the number of G's defined.

Siddiqui [57] has obtained a general formula which

generates pertinent permuted signals belonging to various

classes of p-i systems. This has been accomplished by
suitably ordering the group elements in accordance with



15

the notion of representing numbers with respect to mixed

radices [60]. It has been shown that systems in each

class are fully characterized by their unit sample res

ponse. P-I systems are represented by matrices known

as P-I matrices. Some of the important properties of

P-I matrices are:

1) P-I matrices representing any particular class of

P-I systems constitute a vector space of dimension

equal to the dimension of the signal space on which

the P-I systems of the class operate , the set of

permutation matrices representing the permutations

of the transitive abelian permutation group with

respect to which the class of P-I systems is defined

serves as a basis of this vector space.

2) The eigen vectors of P-I matrices, and hence the

eigen signals of the P-I systems, are the discrete

versions of Levy's generalized Walsh functions [30],

The corresponding nodal matrices belong to the

family of generalized Hadamard matrices. The eigen

"values of P-I matrices are the components of gene

ralized Walsh-Hadamard transform of their generating
vector (zeroth column).

3) P-I matrices are closed under inversion and multi

plication which is commutative.
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Siddiqui [57] has applied his results on P-I systems

for spectral shaping (filtering) of finite discrete signals

to develope a theory of P-I filters wherein the role of

the complex exponential signals in classical filter theory

is taken over by the eigen signals of the particular class

of P-I systems. He has, in particular, discussed the

filtering of finite discrete signals with the help of

dyadic P-I systems and cyclic P-I systems.

In case of many seperable systems, the extension of

concepts to multi-dimensional situation is trivial and

for dyadic systems, many one-dimensional results are

obtained by taking recourse to the fact that one-dimensional

dyadic system is equivalent to multi-dimensional dyadic

systems through Kronecker products [36]. Of the various

classes of 1-D P-I systems, only the cyclic and dyadic

classes have so far been found to have a significant role

in the processing of finite discrete data. It has been

shown by Rao [52] that many of those I-D P-I systems which

belong neither to the cyclic nor to the dyadic class are,

in fact, the 1-D equivalents of 2-D or multi-dimensional

cyclic or dyadic P-I systems. Such 1-D P-I systems are

thus of indirect practical use in the processing of 2-D

and multi-dimensional finite discrete data, Rao [52]

has shown that when the data to be processed are finite,

exact 1-D realization of 2-D filters can be obtained using
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the P-I system approach. The results reported by Rao [52]

are essentially an extension of Siddiqui's [57] work. He

has reported certain generalizations of P-I linear systems.

The generalizations reported by him pertain to the fol

lowing three new categories of p-i systems :

1) 2-£ P-I systems which have finite 2-D arrays of

reals as their input signals.

2) P-I systems on finite fields, i.e., those 1-D P-I

systems whose finite length input sequences have

their entries drawn from finite fields.

3) PKt systems on rings, i.e., those 1-D P-I systems

whose finite length input sequences have their

entries from rings of residue class integers.

2.2 SOME NEW RESULTS ON P-I SYSTEMS

All possible arrangements of (xQ x-j^ X2",XN-1^ forn
a group of order Ni and degree N under permutation

multiplication. Many transitive abelian permutation

groups of order N and degree N can be formed out of

this group. Any permutation can be equivalently represented

as a promultiplication by a permutation matrix. Unless

otherwise stated the same symbol P would be used for

permutation as well as permutation matrix. When N = 4

there are four possible transitive abelian permutation

groups of order four and degree four, say G , g, , G
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and G~. Various elements of each such group alongwith

their Caley table are listed below:

1. Group GQ Permutation PQ xQ x^^ Xp x,

xo xl x2 x3

Permutation P-^ x x, Xp x~

x3 Xo xl x2

Permutation Pp xQ x, Xp x~

x2 x3 xo xl

Permutation P^ x„ xn x0 x,
3 o 1 2 3

xl x2 x3 Xo

Caley Table ** Po Pl P2 P3

Po Po pl p2 P3

Pl Pl P2 P3 Po
P2 P2 P^ PQ ?]_

P3 P3 Po Pl P2

where * is permutation multiplication and

PQ is the identity element.

2. Group Gt Permutation P„ x„ xn x0 x,
1 ool23

x,xo xl x2

Permutation P, x^
1 o

xl xo x3 x2



3. Group G2

Permutation P, x. Xl X2

•**"*Z "»*5 X_ X-j
3 2 o 1

Permutation P^ x^ x,
3 o 1

O 'BE l o

Caley Table ** 1Po Pl P2 P3

Po Po Pl P2 P3

Pl Pl Po P3 P2

P2 P2 P3 Pl Po

P3 P3 P2 Po Pl

Permutation P„ xn xn x0 x,
00123

x xl x2 x3

Permutation P-j_ x x-^ Xp x.

x2 xQ x^ xx

Permutation P0 x„ x-.
2 o 1

x2 x^

xl x3 xo x2

Permutation P~ x x-^ Xp x,

3 2 1 o

Caley Table ** Po Pl P2 P3
"•'"'., ' "

Po Po Pl P2 P3

pl pl p3 Po P2

P2 P2 Po P3 Pl

P3 P3 P2 Pl Pl

19



4. Group G, Permutation PQ xQ x, Xp X-

xo *1 x2 x3

Permutation Pn x„
1 o

X-j Xp X™

xl xo x3 x2

Permutation P0 x„ xn x0 x,
2ol23

A>A X--r X_ Xn
2 3 o 1

Permutation P- x x-^ Xp x~

x3 x2 xl xo

Caley Table ** po pl P2 P3

po po pl P2 P3

pl pl PD P3 P2

P2 P2 P3 Po Pl

P3 P3 p2 Pl Po
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Group GQ is cyclic and group G, is dyadic-all its

elements being their own inverses. Such a group exists

only when the order of the group N is an integer power

of two.

If S be a finite discrete linear system represented

by Eq, (2.1) then this is said to be permutation-invariant

with respect to some group G if matrix S commutes with

the permutation matrices corresponding to all the elements

of the group G, i.e.



SPo -
SPn =

SP,

SP.

PoS

P1S

p2s

P,S
3

P± e G 1=0,1,2,3
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Since P is identity matrix so effectively only three

conditions are to be satisfied. The system matrices re

presenting P.I. systems with respect to the groups defined

earlier are listed below:

1. Group G, s, sil

Sn s^

S =
S, s. s.

L*3
s
o*.

This has cyclic structure as would be expected.

2. Group G1 S:

s.

S =
s, s- S, Sn

s-1=3

3. Group Gp s. Si

s. s, s.

S =

s.

s.
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4, Group G, Si s.

*S1 s. Sr

S =
s, s. sn

Ls3 s, S-, s.

This has dyadic structure as would be expected. When

1^N^;3 there is only one P-I system and that has cyclic

structure. In case of N = 4 it has been shown that

there are four possible P-I systems : one cyclic, one

dyadic and the rest having no special names. The transi

tive abelian permutation groups and the resulting P-I system

matrices are listed below for N = 5.

1. Group G Permutation P^ xrt x, x„ x, x„
o 0 0 12 3 4

xo xl x2 x3 x4
Permutation P, x x-. x_ x„ x

Permutation P,

Permutation P,

Permutation P. x^
4 o

x.

Xn

L4

X-j^ Xp x~

X/» X™ x A x_
2 3 4o
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Caley Table ** 1 po pl P2 P3

Po po pl P2 P3

pl pl P2 P3 P4

P2 P2 P3 P4 PQ

P3 P3 P4 po pl

P4 P4 Po pl P2

s =

s, Sn

This has cyclic structure as would be expected.

2, Group Q1 Permutation P^ xrt xn x~ x, x.
•*• o o i c. j 4

o
X-i Xrt x., X a
12 3 4

Permutation P1 xQ xx Xp x, x.

Xp xQ x^ x^ x1

Permutation Pp xQ x1 Zp x, x.

xl x4 xo x2 x3

Permutation P- xn x-, x0 x, x,
3o 12 34

x4 X3 *1 Xo x2

Permutation P. xQ x]_ Xp x, x.

x3 x2 x4 Xl Xo



Caley Table

s

ermutation3. Group Gp P
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* po pl P2 P3 P4

po po pl P2 P3 P4

pl pl P4 Po P2 P3

P2 P2 Po P3 P4 pl

P3 P3 P2 P4 pl Po

P4 P4 P3 Pl Po P2

3a

s. s,

s. s. s.

s, s,

S-:

Po xo xl x2 x3 X4
Xp Xj x,

Permutation P- xo xl x2 x3 x4

Permutation

Permutation P.

Permutation P,

x2 xo x4 xl x3

xo *1 x2 x3 x4

xl x3 xo x4 x2

xo xl x2 x3 x4

X4 x2 x3 xo xl

xo xl *2 x3 4

x3 x4 xl x2 xo
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Caley Table

M

S =

•4

°1

S2

4

o

Sn

0

S,

Permutation Po xo xl Xp
x3 x4

X
0 xl X2 x3 x4

Permutation pl xo xl *2 x3 x4

X3 xo xl x4 x2

Permutation

Permutation

Permutation

o
Xp x^ x^

Xp x4 xo x3

xQ x1 Xp
3 4

X4 x3 xo x2 xl

xQ xx x2 x^ x4

x2 x4 x3 x± xQ



Caley Table * Po pl

Po po pl

pl pl P3

P2 fP2 Po

P3 P3 P4

P4 P4 P2

s. Sr

S =

a4

Sr

5. Group G, Permutation P x
4 oo xl x2

26

0

•°J

4

x.Q -^"Z

Permutation P xo

X4

Permutation P0 x
2 o

Permutation P- x
3 o

Permutation P. x

x-, X, x,

x3

Xp X~ X,

x.

x.

x4 xl

x2 xo

x3 x4

x4 xl

x. x.

x. x.



Caley Table *- Po pl

Po P
0 Pl

pl Pl P4
P2 P2 Po

P3 P3 P2

P4 P4 P3

8/

S =

B.

4

27

o

p.

s^

s.

s.

Obtaining results on permutation properties of linear

systems does not per $e need listing of permutation groups.

The results should be obtainable from the properties of the

group. But in actual practice it is common that the nature

of the permutation properties is studied from results

obtained by actual listing. The pattern of results so

obtained gives an idea about the theorem and which subse

quently is derived from analytical considerations. In

this case because of enormous amount of computation needed

it was not possible to have results which could suggest

substantially consistant permutation properties. It was

at this stage that detailed investigations had to be

given up.
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When an attempt was made to write all transitive

abelian permutation groups for N = 6 it turned out that

this number would be fairly large and almost beyond manual

computation. The existing literature on finite group

theory was reviewed to find some fast algorithms for list

ing such groups so that efficient computer programme could

be prepared. A computer programme based on the definition

of the transitive abedian permutation group would be highly

complex in nature and would have enormous time and memory

requirements even for relatively small values of N. The

available literature on finite group theory has Sylow

theorems which could be of some help. But this in our

case would give the number of subgroups of order N and

degree N provided Ni = Nm where N is a prime and does

not divide m. The number of subgroups of order N and

degree N would be congruent to 1 (modulo N) and divides

NI. It is important to note that all such subgroups would

not be transitive abelian permutation groups of order N

and degree N. Identification of such groups from possible

number of subgroups is not easy. Once this identification

has somehow been achieved the actual problem is to list

all the groups. Though all the elements of the transitive

abelian permutation group can be written even if one of

its primitive elements were known, no theorem was available

which could help isolate such elements and consequently

the groups. Thus the Sylow theorems have tWo limitations



29

from our standpoint.

1) They have application only when NJ can be written

in a particular form,

2) The maximum number of subgroups possible is very

large and hence direct enumeration is not practicable.

It might be of interest in future to develope fast

algorithms for the listing of transitive abelian permutation

groups for any given N.

2.3 RECIPROCAL-PERMUTATION SYSTEMS

The same permutation matrix P. appears on either

sides of equation (2.2) which defines a P-I system relative

to some transitive abelian permutation group of order N

and degree N. A natural question is what would happen if

different permutation matrices, but both belonging to the

same group G, appear on two sides in the equation. This

scheme was worked out to see if there is any regular pattern

in the resulting finite discrete system S under prescribed

permutation properties relative to some group G. The P-I

system S resulting from the definition given in equa

tion (2.2) would satisfy the following conditions when N=4

SP1 - pls *X. *2» P3 e G ••• (2-5)
sp2 = p2s

sp3 - p3s
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Let us define a finite discrete system S under the

following permutation properties :

spl " V u'v'w -.1»2»3 ••• (2.4)
SP, • V
SP, = PS

3 w

The set of such system matrices S would be termed

as a class of reciprocal-permutation system (R-P system)

and PX,PU; Pp, Pv ; and P^, Pw are called reciprocal-
permutation pairs with respect to S. When u = 1, v = 2

and w m 3 the R-P system becomes P-I system. The finite

discrete system matrices S for R-P system were obtained

for groups GQ, Q± and G^ when N= 4. The conditions under
which realizable S were obtained are listed below along

with the corresponding R-P system matrices S. The

system matrices S corresponding to P-I system have not

been given here as they have already been listed in the

earlier section.

SPX = P^S P1,P2,P3 e Gc
SP, P2S

sp5 - pxs S •

S is a back circulant matrix

2, SPX mPXS

sp2 « p3s

sp5 = P2S

Pl,P2'P3 e ^1

s

s.

s.

s«

S,

Si

s.

Sr

8,

s,

S-,

s3

s^

s„

S-,

s,



3(a) SPX - PXS P^PgfPj e G3
SP2 = P3S

SP3 = p2s
s
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so sl s3 s2

sl so s2 S3

s2 s3 sl so

s3 s2 so sl

This has dyadic structure rowwise in the sense

that all subsequent rows can be derived from the

leading row by dyadic shifts.

(b) spx - p2s

sp2 * pxs

SP^ = PS

Pq_»P2#P3 e G-

This has dyadic structure.

(c) SP1 = P2J P-^,P2,P3 e G-

sp2 = P3S

SP, P1S
S

This has dyadic structure.

(d) SPX = P3£
SP2 = P1S

sp5 * p2s

*±**2f 3 e 3

This has dyadic structure.

S0 Sg S± S3

sl s3 so s2
S2 SQ S3 sx

53 1 S' s.

so s2 s3 sl

sl s3 s2 so

s2 so ^ s3

__s3 *1 so s2

SQ S3 sx s2

sl s2 so s3

2 ^ s3 so
•x S„

s.

s,



(e) SP-L = P3S PlfP2,P3 e G3

SPp = p2s

SP3 = pxs
S •
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so s3 s2 sl

sl s2 s3 so

Sp sl so S3

s3 so sl s2

This has dyadic structure.

The following inferences can be drawn from the

above results:

1) The finite discrete system matrix S would have

rank equal to its order if the suffixes of P's on

the left hand side and the right hand side of at

least one of the conditions is the same and that

this permutation forms a subgroup of order two with

the identity element P , The product of P's on

the L H S and R H S of the remaining conditions

must be equal to either the identity element P or

a permutation which is its own inverse. Thus in

case of group Gp the finite discrete system

matrix S would be of rank four when

SP- PpS

SPp = pxs

SP3 = P3S

This can be easily verified.
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2) The set of system matrices which satisfy equation

(2.4) constitute a class of systems with reciprocal-

permutation property. This may be termed as 1-D

R-P system. The resulting realizable system matrices

are matrices which are columnwise permuted version

of each other with zeroth column remaining fixed.

In such permuted matrices the 1st, 2nd and 3rd

columns are the u,v and w columns of the system

matrix corresponding to the P-I system.

The inferences enumerated above are based on studies

on transitive abelian permutation groups of order four

and degree four only. It may be of interest to investi

gate cases corresponding to groups of higher order and

enumerate more comprehensive results.

The class of 1-D R-P system can be enlarged by

generalizing the definition of 1-D R-P system as given

by Eq, (2.4) as

SPllJ • Pu^S u,v,w =1,2,3 ... (2.5)
SP2i) - P^S i,j =0,1,2,3
sp(iJ = p/r^s

3 w

where Py5*' is the permutation matrix P^ of group G^,

An attempt was made to find out whether finite

discrete system matrices S, having rank equal to its
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order, would exist under this prescribed permutation pro

perty. If so, under what conditions? The scheme was

worked out for several pairs of groups and the conditions

under which realizable S were obtained are listed below

alongwith the corresponding generalized R-P system

matrices S,

W sp^) = p(2)S

SP^ = p|2>s

spW • P<2>S

(b) spP •i P<2>S

spP = p<2>s

SP*1' • p(2>s

(o) sp[2> •f #h
SP<2> = pp's
sp<2> = p^'s

(a) SPp) •1 tfh
SP^2)

= 4^-h
sp!2) m p<x>s

s

s =

s =

s =

s.

8/

Sn

Br

sl

s2

S3

s0

s3

s2

sl

so

s.

o

sl

s2

s3

St

S2

S0

S3

al

Sl

S3

S0

So

S-:

s.

s.

s
o

Sn

s^

s3

sl

s,

Sl

so

s3

So
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It may be pointed out that Pj^ ' and p£ are their
own inverses, and the groups &-, Gp are neither

dyadic nor cyclic. Further, P^^P^1^ =pl1'*^1'-^1'
and p[2^*p£2) =p|2^ * P^2^ =~B^2K Also conditions
(c) and (d) are obtained by commuting S and P in(a)

and

(02(a) SP[

SP
(o

sp<°

(o(b) SPJ_

SP
(o
2

(0
SP

(c) SPp-
SP (1

sp*1

(d) SPp-
,(1sp:

sp(i

b) respectively.

pt^s

pp's

P<°>8

P<°>S

P<°>3

P<0>3

P<°>3

P<°>S

S =

3 =

s •

w «

so S3 sl Sp

Sl s2 so S3

s2 so S3 sl

^ sl s2 V
r* —

so s2 sl S3

sl s3 so s2

s2 sl s3 V

so s2 sl_

s.

Si

s-

s
o

sl

s2

s,

a2 so

S3 sx

s3

so

sl

So

Sr

Si

s.

•m

sl S3

s2 so

S3 sl

so s2
m
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It may be pointed out that P£0' and Pi ' are
their own inverses and the group G is cyclic. Further

p£0)*p£0)=p!0)*p(°)=p£0) . Also conditions (c) and (d)
are obtained by commuting S and P in (a) and (b)

respectively. Similar results may be expected with groups

G0 and G2.

When groups GQ and G3, i.e. cyclic and dyadic, were

taken and investigated it was found that a system matrix S

having -fink four could not be obtained under any condition.

Since cyclic group GQ gives some system matrices S of

rank four with groups which are not dyadic it may be said

that a dyadic group G3 when considered alongwith any

other group would not yield any system matrix S of rank

four.

Thus it has been shown that it is possible to enlarge

the class of 1-D R-P system if it be defined according to

Eq. (2,5), It may be of interest to find out the condi

tions under which degenerate cases would not arise,

A two-dimensional discrete signal x e V is an

array with M rows and N columns. Let T be a 2-D finite

discrete linear system on V and G., G^ be transitive

abelian permutation groups of order M and N respectively.

Then T is said to be a 2-D P-I system relative to G±

and Gj if for every x e V, every P^. e Gif k e Z» and

every Px £ 6., 1 e Z^,
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T(Pi x) = P^ (Ix) ... (2.6)

and

T(x p|) = (T x) P^ ... (2.7)

where Pk is the M x M matrix that results from permut

ing by P^ the rows of the identity matrix of size M ,

and P^ is the N X N matrix that results from permuting

by P, the columns of the identity matrix of size N.

The set of all such systems which satisfy Eq. (2.6)

and (2.7) constitute a class of 2-D P-I system relative

to groups Gj and G-. The two conditions can also be
* J

written as

T (P^ xpj) = ^(T x) p£ .,. (2.8)

or T(PM xp![) = Pk yP* ,,. (2.9)

where Tx = y

This relation expresses the fact that the effect of

permuting the rows of the input signal to a 2-D P-I system

by members of group G. and its columns by members of

group G. is to permute the rows and columns of the out-
J

put signoil exactly in the same manner.

If the defining Eqs. (2,6) and (2.7) be modified in

accordance with Eq, (2,4) as

Tx (%*) = ^(TXX) Pjc , P^ e G± ... (2.10)

(x p|) T2 = (x T^P-J1 , Plt p£ e G. ... (2.U)
and
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Then the set of all such systems T-^ and Tp which

satisfy Eqs, (2.10) and (2.11) constitute as class of two-

dimensional system having some prescribed permutation pro

perties. Such systems may be termed as two-dimensional

reciprocal-permutation system (2-D R-P system) relative

to groups G. and G.. As has already been pointed out
J. J

in case of 1-D R-P systems not all combinations of P^,, B£

e (j± and P., P^ e G. would yield T-j_ and Tp of ranks

equal to their orders. The 2-D R-P system would result in

2-D P-I system when P^ = pj and P1 = P^. It may be of

interest to find out the conditions under which T-, and

Tp would have ranks equal to their orders.

A wider class of 2-D R-P system, say generalized

2-D R-P system, could be obtained by modifying Eqs. (2.6)

and (2»7) in accordance with Eq. (2,5), In most of the

cases the resulting system matrices T-j_ and/or Tp would

not have ranks equal to their orders. It may be interest

ing to derive the conditions under which degenerate cases

would not arise.

2.4 SYNCHRONOUS TRANSLATION INVARIANT TRANSFORMS

In this section some more systems are derived which

are permutation-invariant to a class of permutations. If

circulant matrices B with the property that

B BT = I modulo 2 ... (2.12)
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are obtainable they could be used as transform kernels to

transform binary signals with 0 and 1 as possible values

with the understanding that matrix algebra is defined over

G F (2) . In other words the sum is replaced by BOR and

multiplication by AND in the definition of a transform by

matrix multiplication.

A (v,k,A ) cyclic difference set [10,55] is normally

characterized by its incidence matrix A and that A is

a square matrix of order v with 0 and 1 as entries and

satisfies the relations [10]

A AT = AT A = (k -A) I + j ... (2.13)

AJ=JA=kJ ... (2.14)

where J is a matrix of all ones.

If ^ B 0 modulo 2 and K. = 1 modulo 2, A can be

used as matrix B of Eq. (2.12). That is, orthonormal

circulants of Eq. (2.12) can be obtained from some (v,k X)

cyclic difference sets directly. If k = 0 modulo 2 and

^ m 1 modulo 2, the desired matrix B can be obtained from

A as

r

I ° 3B = T
r a

, j = (1,1, ..., 1) ..,(2.15)

That is, orthonormal circulants of Eq. (2.12) can be obtained

from some (v, K, ^) cyclic difference sets by a minor

modification.
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A (v, p. , p, ) cyclic difference set is an arrange

ment of v elements x , x,, ... , xy_1 into v sets

S , St, ..., SL i such that S. contains k. elements
O l7 V—1 1 1

and S. , EL have a . . elements in common such that [44]

a .. = p^ modulo 2 1,3=0,1,2...,v-l .,.(2.16)
v

k- = p. modulo 2

If A is an incidence matrix of the (v.p^, V\ )

cyclic difference set analagous to Eqs. (2.13) and (2.14)

then

AAT = AT A= ((Pk~P^ )I + P^J) modulo 2 ...(2.17)

AJ = JA = pk J modulo 2 ...(2,18)

Two important cases arise.

Case I

If p, • 1 and p, = 0 ...(2.19)
k a

then Eq. (2.17) becomes

A AT = AT A = I modulo 2 ...(2.20)

so that the incidence matrix A can be used as matrix B

of Eq. (2.12).

Case II

If pk m0 and p = 1 ...(2.21)

then Eq. (2,17) becomes



A AT = AT A = (I+J) modulo 2

Then

B =
0 j

T
r a
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... (2.22)

, j = (1,1,...,1) ... (2.23)

where j is a row vector of all 1's satisfies Eq. (2.12)

provided v 5 1 modulo 2. The (v,p^, p ) cyclic dif

ference sets can be used to generate similar sets of higher

order.

A (v, p., pj, ) difference set is said to be of

type I if

v 8 0 modulo 2, Pj_ « 1, p 0 ... (2.24)

and of type II if

v - 1 modulo 2, p^ = 0, Pa = 1 ... (2.25)

If A-j_ and Ap are incidence matrices of (v-,,

Pk , p^ ) and (Vp, p, , p^ ) cyclic difference sets res

pectively then [44]

X =

Ll

-T
... (2.26)

2

would be an incidence matrix of a (v^ + v , p, , p, )

cyclic difference set of type I if (vn , p, , p, ) and
1 K-i A*

(v , Pjj. , p^ ) cyclic difference sets belong to the

same type and X would be an incidence matrix of a

(v^ + v , p^, p ) cyclic difference set of type II if
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(vl* pk ' Pa ' and ^V2' Pk ' *%^oydio difference sets
belong to different types.

If X is an incidence matrix of a (v-^Vp, Pjj.»p_j,)

cyclic difference set of type I then X can be used as

matrix B of Eq. (2.12)* Similarly if X is an incidence

matrix of a (v, + v?, p^., p^ ) cyclic difference set of

type II then

0

y =
,T

3

X

... (2.27)

can be used as matrix B of Eq. (2.12). Eq. (2,27) can

be taken as a general method of obtaining a (v+1, p^, p^ )

cyclic difference set of type I from a (v., pfc, ji ) cyclic

difference set of type II. If

v ~ 0 modulo 2

k =. 1 modulo 2 ... (2.28)

X = 0 modulo 2

then a (v, k,X) cyclic difference set qualifies to be a

(v, p^, p. ) cyclic difference set of type I and if

= 1 modulo 2

s 0 modulo 2 ... (2.29)

X =1 modulo 2
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then a (v, k, X) cyclic difference set qualifies to be a

(v, p., p. ) cyclic difference set of type II. A list of

known cyclic difference sets is available [10],

If [S-j^, Sp]T be an input vector of langth (v-j^ +Vp)
and matrix X given by Eq. (2,26) be used as a transform

kernel of order (v1 + v ) then the output vector [R-^Rp]

will also be of length (v, + Vp), where S., R. are se

quences of lengths v. at input and output respectively.

It can be infered from the structure of the kernel used

that the sequence R. is decided by A. alone. Thus if

the input sequences S-, and Sp are cyclically shifted

within themselves then the resulting output sequences R-,

and Rp would also Undergo identical cyclic shifts within

themselves. Similar permutation properties can be derived

when other orthonormal B matrices derived from (v, p, ,

p,) sets (which in turn are derived from (v, k, a) sets)
A

are used as transform kernels.

It can be noted for completeness that circulant

matrices B of Eq. (2.12) are useful in defining self-

dual codes [44],



CHAPTER-3

PERMUTATION PROPERTIES OF SOME TRANSFORMS

This chapter begins with a review of some of the

permutation properties of discrete Fourier transform

(DFT) and Hadamard transform (H T). The relation between

DFT of one-dimensional sequence written as a two-dimen

sional array is well known. It envolves columnwise DFT,

twiddling and rowwise D F T, A new transform has been

defined where the first operation of columnwise DFT is

replaced by columnwise H T and twiddling factors are

suitably chosen. Since the transform has H T and DFT

as component transforms it can be said that this transform

would exhibit permutation properties which could be derived

from a knowledge of the permutation properties of H T and

DFT. It is known that DFT exhibits modular permuta

tion property and H T exhibits bit-plane permutation-

property among others.

3.1 MODULAR PERMUTATION

The 'discrete Fourier transform', abbreviated as

D F'T, A(l) of a sequence of N samples a(i), i = 0,1,2,

.., N-l is

N-l ,T
A(I) = Y. a(i)wix 1=0,1,2,...,N-l ... (3,1)

i=0

N-l 2 rti I
m ST a(l) exp (- j -^ )

i=0
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2TC. ,rwhere W^ = exp (- 3 -g-) , j = V-l

There exists an inverse DFT (I D F T), which is

1 N-1 -i Ta(i) - •} JL AdJWj1 1=0,1,2,...,N-l ... (3.2)

The I D F T of A(l) can also be written as D F T by

making the substitution k = N-I and writing

* 1=0 k=0

= | 51 A(N-k) w/k ... (3.3)

This relation can be interpreted to mean that the

I D F T of a sequence is - times the DFT of the

reverse of the sequence.

It is well known that DFT exhibits permutation

propertiesj i,e*, if the sequence of signal samples a(i),

i=0?l,2,„,., N-l is permuted according to modular (defined

presently) permutation operator and DFT taken then the

resulting sequence would be as if the sequence of transform

samples A(l), I = 0,1,2,..,N-l are permuted according to

some other modular permutation operator. The modular per

mutation operator P(p,N) is defined as [33]

P(p,N) a(i) = a [ pi modulo N] i=0,1,2,..,N-1

... (3.4)
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where p is an integer such that it has no factors in

common with N. Modular permutation is a sUmpsimus for

what otherwise is called decimation [23].

If P(q,N) be the inverse modular permutation

operator then

P(q,N) P(p,N) a(i) = a(i) i=0,1,2,..,N-1 ... (3.5)

Now,

P(q,N) P(p,N) a(i) = a[q(p i modulo N) modulo N}
... (3.6)

= a [p q i modulo N]

From Eqs. (3.5) and (3.6) one gets

p q modulo H = 1

It is clear that for any value of p, q is an unique

integer on the range O^q^ N-l. If the DFT operator

is represented by F then

Jl[ P(p^) a(i)] = P(q,N) A(l) , A(l) = Fa(i)

i,I = 0,1,2,,.,N-1

tVj - A((q I))N

where ((x))„ is x modulo N

or

F [a((pi))w] = A((q l))„ ... (3.7)

A particular case of modular permutation is that

when p = q. The resulting modular permutation operator

is called self-inverting permutation operator and gives

F[a((p'i))N] =A ((p'l))N p=q= p' ... (3.8)
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Some typical self-inverting permutation operators are

P(l,16), P(7,16), P(9,16) and P(N-1, N).

3.2 BIT-PLANE PERMUTATION

It is well known that Hadamard matrices of order

M = 2n | n being a nonzero positive integer, always exist.

A normalized Hadamard matrix of order M can be written in

'natural form' or 'ordered form'. In the natural form it

is written as

n-l + ^
X * I modulo 2
t=0

H(X,Y) * (-1) ... (3.9)

where Xdecijnal = (Xn-1 Xn~ ...X ...X X°)binary

binary— Wimal^-1^-2"'^".*1*0)
In ordered form it is written as

SZ1 + t
gx (X) Y modulo 2

f=0
H(X, Y) = (-1)

where g°(X) =
xn-l

gx(x) =

xn-l + xn-2

g2(x) m xn~2 * Xn~5
•

g* (X) = Xn~* + Xn~ *~1

gn~X(X) = X1 + x°

... (3.10)
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Iri this form the number of sign changes in any row is

more than that in the preceeding rows. Hadamard trans

form of order M = 2n is also known as Walsh-Fourier

transform. In what follows a review would be made of

known permutation operators P and reciprocal (with

respect to HT) permutation operators P such that

H[P a(i)] = pr[H a(i)] i,I=0,1,2,...,M-1 ... (3.11)

~ Pr A(I)

where H is the Hadamard transform operator in natural

form so that

H a(i) = A(I) i,I=0,l,2,...,M-l ... (3.12)

i.e., A(I), 1=0,1,2,...,M-1 arc the HT samples of the

signal sequence a(i), i=0 ,1,2,...,M-1. An inverse permu

tation operator, P , can be defined as

P*"1 P a(i)=a(i) i=0,1,2,... ,M-1 ... (3.13)

A permutation operator is termed as self-inverting permu

tation operator if it satisfies P =P, Moharir [36] has

defined two permutation operators, namely, selective bit-

complementation permutation operator and bit-plane permu

tation operator.

Let a(i), i=0,l,2, ..., 2n-l be the sequence of

signal samples and P(m), m = 0,1,2,,...,2 -1 be the

selective bit-complementation permutation operator. If

the indices i and m are represented in n-digit binary

notation, the operator P(m), m = 0,1,2,...,2-1 prescribes

complementation in those locations in binary representation

of i in which the binary representation of P(m) has
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l's. It is evident that P(m) is self-inverting. This per

mutation has been illustrated for n=3 by Moharir [36] and

is reproduced in Table 3.1, If a(i), i=0,1,2,...,2n-l be

the sequence of input signal samples and A(l), 1=0,1,2,

.,.,2 -1 its H T samples in 'natural order' then it has

been shown by Moharir [36] that permuting a(i) according

to the above permutation operator before H T has the

effect of changing the signs of some of the H T samples

A(I) but leaving the sequence unpermuted. In other words

A(l) is invariant to this permutation operator. In fact

H T samples A(I) get multiplied by (-l)*^1) where

n-l

T
t=0

f(m,I) = X m* I* .- (3.14)

and mdecimal = fa*"1 •*"* — m± ••• ml ra°binary

I - (I11""1 In~2 I* T1 T°)^decimal " V* * ...1...11 ;binary

Another permutation property exhibited by H T is

bit-plane permutation. The bit-plane permutation operator

P(a b ,.. k) permutes a(in""1 in~2 ... i1 i°)bin r into
a(ia i .,# i )binary where a, b,...,k =0,1,2,...,n-l
and a ^ b... ^ k. It has been shown [36] that bit-plane

permutation operator is self-reciprocal w.r.t. H.T. of

order 2n. Then

H P(a b ... k) a (i) = P(a b ... k) H a (i) ... (3.15)

= P(a b ... k) A (I)

i,I = 0,1,2,...,2n-l



P(m)

tc1 '•'•*>

3 Nf

dec

a(O)

a(D

a(2)

a(3)

a(4)

on a(5)

l^a(6)
! a(7)
M

bin*

a(OOO)

a(001)

a(010)

a(Oll)

a(100)

a(101)

a(110)

a(lll)

TABLE-3.1 : Selective Bit Complementation Permutation

P(0) P(l) P(2) P(3) P(4) P(5) P(6) P(7)
P(000) P(OOl) P(010) P(Oll) P(IOO) P(10l) P(llO) P(lll)

a(OOO)

a(OOl)

a(010)

a(Oll)

a(100)

a(101)

a(110)

a(lll)

a(OOl)

a(OOO)

a(Oll)

a(OlO)

a(101)

a(lOO)

a(lll)

a(110)

a(010)

a(Oll)

a(OOO)

a(OOl)

a(110)

a(lll)

a(100)

a(101)

a(Oll)

a(010)

a(OOl)

a(OOO)

a(lll)

a(110)

a(101)

a(100)

a(100)

a(101)

a(110)

a(lll)

a(OOO)

a(001)

a(010)

a(Oll)

a(101)

a(lOO)

a(lll)

a(110)

a(001)

a(OOO)

a(011)

a(OlO)

a(110)

a(lll)

a(100)

a(101)

a(010)

a(011)

a(OOO)

a(OOl)

a(lll)

a(110)

a(lOl)

a(100)

a(011)

a(010)

a(001)

a(OOO)

O
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where H is the Hadamard transform operator in natural

form. The above equation can be written as

HP(a b ... k)a(in"1iia^ ... i°)L

Tn-1 Tn-2 T0<
'binary

binary

= P(a b ... k) Ad11"1 In~2...I°)h.

Tj „/-;a .b .kN A/Ta Tb TkxH a(i i ...i )Mnary = A(I I ... I )binaxy
... (3.16)

Thus permuting the signal sample sequence a(i),

i=0,l,2,..,2 -1 by bit-plane permutation operator and then

taking H T of this permuted sequence is equivalent to

subjecting H T samples A(l) of unpermuted sequence a(i)

to identical bit-plane permutation operator. It is known

that bit-plane permutation operators are not necessarily

self-inverting , but the inverse of any bit-plane permuta

tion operator is some bit-plane permutation operator.

This permutation has been illustrated for n=3 by Moharir

[36] and is reproduced in Table-3.2.

The simple relationship between the permutation

operator and the reciprocal permutation operator, when the

length of the signal sample sequence a(i) is 2n, n being

an integer, opens the possibility of permuting a(i) before

H T at the 'sending end' of a communication system, and

doing the reciprocal permutation on received transform

samples followed by inverse Hadamard transformation at the

receiving end*of the communication system . If the length



P(ab...k;

a(^binary

a(OOO)

a(OOl)

a (010)

a(Oll)

a(lOO)

a(lOl)

a(UO)

a(lll)
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TABLE-3.2 : Bit-Plane Permutation

P(210) P(201) P(120) P(102) P(02l) P(012)

a (000) a(OOO)

a(001) a(OlO)

a (010) a(001)

a(011) a(Oll)

a(100) a(100)

a (101) a(110)

a(110) a(101)

a (111) a(lll)

a(OOO) a(OOO) a(OOO) a(OOO)

a(001) a (010) a(100) a(100)

a(100) a(lOO) a(OOl) a(OlO)

a(101) a(110) a(101) a(110)

a(010) a(001) a(010) a(001)

a(011) a(Oll) a(HO) a(101)

a(110) a(101) a(Oll) a(Oll)

a(lll) a(Ul) a(lil) a(lll)
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of the signal sample sequence a(i) is M = 2 there

are nl possible bit plane permutation operators-of

course one of these would leave the sequence unpermuted.

Instead of transmitting the H T samples of a(i) one can

think of transmitting the H T samples of permuted a(i).

The information regarding the bit-plane permutation

operator used for permuting a(i) could be made known

to the authorized receiver with the help of a synchro

nous shift-register sequence generator.

The selective-bit complementation permutation is

not suitable from application point of view as the

modulus of H T samples is invariant to this permuta

tion on input signal sample sequence.

3.3 FOURIER-TWIDDLED KRONECKER PRODUCTS

If a transform kernel could be expressed as matrix

product of component transform kernels with many zero

entries then it is known that computationally efficient

algorithms exist for the transform [6,8,15]. Computa

tionally efficient algorithms for D F T of composite

order are based on this fact. Alternatively, if the

transform kernel could be expressed as a Kronocker pro

duct of the component transform kernels then also compu

tationally efficient algorithms for the transform are

known to exist [7,37,39]. Computationally efficient
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algorithms are based on this Kronecker decomposition are

known for many discrete transforms.

Let a(i), i = 0,1,2,.... ,MN-1 be a discrete signal

sample sequence of length MN and A(l), I = 0,1,2,...,MN-1

its D F T, then [43]

MN-1 ,,
A(D = Z a(i) w*1 ... (3.17)

i=0 UJN

where Wffl = exp (-j ~ )

Writing i, I as

i = in N + i0 i I = 0,1,2,...,M-1
1211 ... (3.18)

I = Ix + IpM ip, Ip = 0,1,2,...,N-1

where i-j_ and Ip are integeral parts of (i/N) and (I/M)

respectively so that

±± = [i/N] , i2 = i - N[i/N]
... (3.19)

I2 = [I/M] , Ix = I - M[I/M]

where [x/y] is the integral part of (x/y).

Eq. (3.17) can be rewritten as

MN-1 (IoM+I. )i
A(I2 M+ Ix) « r a(i) WMN Z

fcl Izl (lpM+I1)(i:|N+ip)
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= E 1

i2=0 MN
[WjJ E a(i1N+ip)W]

i^O MN "MN

1-1 igi0 U, M3L 1,1,
E V 2 [WjJ X E a(i1N+ip)WM-L XJ
i o=0 i, =0

2 -1 ... (3.20)
ipl,

DFT WFiJ x x[DFT [ a(i1N+ip) ]]

N points

mapping

i2 -» Ip

M points

mapping

h. "• *1

... (3.21)

Let a(i), i = 0,1,2,...,MN-1 be considered to

have been chopped into several sequences and written

into an array of M rows of N terms each. Further let

A'(l), I = 0,1,2,..., MN-1 be also chopped into several

sequences and written into an array of N columns of

M terms each. Then i, and I, can be considered as

indices along columns , and i? and I« as indices along

rows. The inner summation over i, in Eq. (3.20) can

be thought of as columnwise M term DFT of the

array of a (i) with ip held constant. This would give

an 'intermediate array' of dimension M X N. The element

th thin the I, row and i9 column is multiplied by
i2I, X i2lj

W^j. . The factors WM^ have been called 'twiddle

factors'. This operation can also be represented in

terms of the Hadamard product of matrices. The Hadamard

product C = [c(i,j)] of matrices A = [a(i,j)] and
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B = [b(i,j)] is defined by the relation c(i,j) = a(i,j)

b(i,j). Obviously the matrices A,B and C have the

same dimensions [52]. The outer summation over ip in

Eq„ (3„20) can be thought of as rowwise N terms DFT

of the 'intermediate array' obtained after columnwise

M term DFT of a (i), holding i9 as constant, and
i2Iltwiddling by factors ILjg „ The Fourier coefficients

are obtained by reading the final array column by column,

If the input signal sample sequence a(i), i = 0,1,2,...,

MN-1, can be written as a two-dimensional array of M

rows and N columns read row by row as

a(0)

a(N)

a(2N)

a(l)

a(N+l)

a(2N+l)

a(2)

a(N+2)

a(2N+2)

a(M-2N) a(M-2N+l) a(M-2N+2)

aOyRLN) a(M^lN+l) a(M^lN+2)

a(N-l)

a(2N-l)

a(3N-l)

a(M-lN-l)

a (MN-1)

The Fourier transform samples A(l) = DFT a(i),

I = 0,1,2,...,MN-1 are obtained as a two-dimensional

array of M rows and N columns read column by column as
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A(0) A(M) A(2M) A(N-1M)

A(l) A(M+1) A(2M+1) A(N=1M+1)

A(2) A(M+2) A(2M+2) A(N^M+2)

A(M-2)

A(M-1)

A(2M-2;

A(2M-1)

A(3M-2)

A(3M-1)

A(MN-2)

A(MN-1)

The process of obtaining FT samples A(l),

I = 0,1,2,...,MN-1 of input signal sample sequence a(i),

i - 0,1,2,...,MN-1 as given by Eq. (3.21) is illustrated

Vi
MNin Fig. 3.1 [23]. If the twiddle factors W are

ignored, then Eq. (3.21) can be interpreted as column

wise M-term DFT followed by rowwise N-term DFT.

It has been shown by Moharir [42] that this can be thought

of as a transformation based on a kernel which is a

Kronecker product of two component kernels : kernel of

M-term DFT and kernel of N-term DFT. In addition

the transform samples would now be read row by row as

against column by column when twiddle factors are taken

into consideration. Except for this difference MN-term

DFT can be obtained by Fourier-twiddling the Kronecker

product of M-term DFT and N-term DFT.

This result has very far reaching consequences
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*A(0)
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*A<1)
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•
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-•A(2M-1)

•*A{3M-1)

^A(ior-i)
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and in fact can be exploited to define a wide class of

orthonormal transforms. If the M-term DFT and N-term

DFT are replaced by any other M-term and N-term discrete

orthonormal transforms having kernels 0^ (I-j^i-^ ^^

Qjj (I2'±2^ rQsPec*ive:Ly» Further if W^.2 X, x not
necessarily equal to MN, be the twiddling faotors instead

Mlof \i* then one can get [43]

B(I2M+I1)= E (feCW tWx2 1 £ «(i3M2) |̂(Z1.l1)]
ip=0 11=

... (3.22)

It has been reported by Moharier [43] that a wide

class of complete orthonormal transforms can be obtained

by Fourier-twiddling the Kronecker product of orthonormal

kernels as in Eq. (3,22).

3.41 FOURIER-TWIDDLED H-DF TRANSFORM

In section 3.3 a method for fast computation of

FT samples of a sequence of length MN has been given.

The method consists of writing the one-dimensional array

of length MN as a two-dimensional array of M rows and

N columns read row by row. The first step is to write

M-term columnwise DFT. The elements of the resulting

two-dimensional array are then multiplied by twiddling

factors which depend upon M,N and the row and column in

which the particular element is contained, or, in other
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words the Hadamard product of the resulting array and

the array of twiddle factors is taken. The array so

obtained is then subjected to N-term rowwise D F T to

get FT samples as a two-dimensional array of Mrows and

N columns read column by column. It has also been pointed

out that this method of obtaining the FT samples can be

used to compute other transform samples by replacing the

two D F T operations with suitable orthonormal transforms.

In this section a new transform would be defined by do

ing M-term columnwise transformation with Hadamard trans

formation instead of D F T. The N-term rowwise trans

formation would remain DFT,

Let a(i), i * 0,1,2,..., MN-1 be signal sample

sequence, Mm2*. This is written as a two-dimensional
array of M rows and N columns as

0

1

2

^EaCi^Ji •
+U)3 *.

M-2

M

o

a(0)

a(N)

a(2N)

1

a(l)

a(N+l)

a(2N+l)

2

a(2)

a(N+2)

a(2N+2)

N-l

a(N-l)

a(2N-l)

a(3N-l)

a(M-2N) a(M-2N+l) a(M-2N+2) ... a(M^lN-l)

-1 a(M^lN) a(MKLN+l) a(JMJI+2) ... a(MN-l)
L ... (3.23)

where i^ip are defined by Eq. (3.19),
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The normalized Hadamard matrix in the 'natural

form' as given in Eq. (3.9) can be rewritten as

s-1

H(i ,1 )=(-!)

5Z ii It modulo 2
t=0 X X

i1I1«0,lr2#.,.4!-l
... (3.24)

This would be a square two-dimensional array of order M.

This would be used as transformation kernel to achieve

M-term columnwise Hadamard transformation. The resulting

two-dimensional 'intermediate array' [h. * ] would be
x2

of dimension MXN and can be written as

^2 0 1 2 ... N-l
h<°> h<°> hf) . . . h(0)

x2

*!•:
0

1

2

M-2

M-l

h
(2) h[2)

h(M-2) h(M-2)

l2

,(2)
...

a2

h(M-l) h(M-l) h(M-l)
. . .

AN-1

nN-l

h(2)
nN-l

h(M-2)
nN-l

h(M-l)
nN-l

... (3.25)

Mathematically any element of the above intermediate

array can be expressed as



[H± 1 ]
2

(I-,) M-l
h± - H a(iiN+i2^-l)i2 il=0 x ^ \ x)

s-1
62

/ i-il-i modulo 2
t=0

... (3.26)

The next step is to multiply each element of this 'inter-
i2I1

mediate array' by twiddling factors W™ to get a two-

dimensional array, [H- ] of dimension MXN.
X2

(I,) (I-,) ipl,
nip aip WMN

3-1

... (3.27)

t ti-, I-, modulo 2(I-, ) i0I-, M-l ir~nH± X = WM2 1 J^ a(i N+i )(-i) *=0
2 ix=0

I.
4>

0

0 W°ii<0)""N^o'MN

1 W° h^X WMNno

2 W° h<2>d Wo

M-2 W° h(M"2)« * wMNno

„ , u0 v,(M-l)

w° h(°)WMNhl

W1 hi1)WMNU1

W2 h<2>WMNal

... (3.28)

N-l

TT0 v,0
W^-l

¥(N-Dh(D
WMN N-l

2(N-1).(2)
WMN UN-1

w(M-2L (M-2) (M-2) (N-l)h(M-2)
WMN nl •*• WMN nN-l

(M-l)h(M-l) (M-l) (N-l)h (M-l)
WMN nl "• WMN nN-l

... (3.29)
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(0)

H
(0)

H (1)
H (1)

H
(2)

H
(2)

...

...

63

N-l

(0)
N-l

(1)
N-l

(2)
N-l

H

H

H

H(M-2) H(M-2) (M-2)
o al a2 * • • HN-1

H
(M-l) „(M-1)

h;

W°WN

W1WN

w
N

W°WN

'N

¥N

' • • HN-1

...(3.30)-1
The final step in the calculation of transform

samples A(l) involves the N-term rowwise DFT. This

DFT kernel Q(l2,ip) would be a square matrix of order N.

. . . N-l

W°
••• • TI

(N-l)
N

W

W2(N-1). . . wN

N.-2 W°WN
w(N-2)
WN

w2(N-2)
WN

¥(N-l)(N-2)
WN

N-l W°WN
W(N-1)
WN

¥2(N-1)
WN

W(N-1)(N-1)
* " WN

... (3.31)
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2%,where WN = exp (—3 "Tr"> and powers of Ww are tak

modulo N

jj — oA.f \~j ^/ «*«* jfwwtu.B ox w are xaKen

The transform samples A(I) can be written as

(I) = A(IJYI+I ) = r wN 2 2H, X
ip=0 12

Nzl i I i I M-l
=f 0WN ¥MN Z a(i1N+i2)(-l)

i-l

=0

i1I1 modulo 2

... (3.32)

The transform samples A(I) can be written as a two-

dimensional array of M rows and N columns read column

by column.

4,-» I,

*1
0

1

2

A(0)

A(l)

A(2)

1 2 ... N-l

A(M) A(2M) , . . A(N^1M)

A^M+1) A(2M+1) . . , A(N=1M+1)

A(M+2) A(2M+2) . . , A(N^lM+2)
A(I)

A(I2M+I1)]= •

A(M-2) A(2M-2) A(3M-2) . , . A(MN-2)

M-l A(M-l) A(2M-1) A(3M-1) . . . A(MN-l)

... (3.33)

Example Let M=4, N=5 and a(i), i=0,lf2, ,19 be given

as
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[1001001000101010100 1]

[a(i15+i2)]=

[H(lx^J-

X2

x2

2

+30

2

+00

0

+30

0

+oo

10 0 10

0 10 0 0

10 10 1

0 10 0 1

1

1

1

1

2

2

0

0

1

-1

1

-1

2

-2

0

0

2

+30

1

1

-1

-1

1

1

-1

-1

1

-1

-1

1

1

1

1

1

+30

2

0

-2

0

1

+oo
2

+J0

-1.9022 0.809 0.5878 0
+00,618 -00.5878 -30.809 +30

0 -0.309 -0.309 1.618
+30 +30.9511 -30.9511 +31.1756

0 0.309 -0.9511 0
+30 +30.9511 -30.309 +30



A(I)
=[A(I24 =
+ii)3
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8

+30
1.618 -0.618
+30 +30

0.618
+30

1.618
+30

1.4946
-30.7788

1 4.1234
+33.0001 +30.3969

3.8176
-32,2601

-0.4356
-30.3582

1

+31.1756
1 -4

+31.9021 +30
1

-31.9021
1

-31.1756

-0.6421
+30.6421

1.2601 -1.3969
-31.2601 +31.3969

1

-31
-0.2212
+30.2212

—

... (3.34)

where the DFT kernel of order five is

A

w°W5

W°W5

W°W5

W

w

w

w

A
w

w

w

w

W°W5

W?

W2

w°W5

w

w

w

w

1

+30

1

+30

1

+30

1

+30

1

+30

1

+30

0.3090
-30.9511

-0.809
-30.5878

-0.809
+30.5878

0.309
+30.9511

1

+30

-0.8090
-30.5878

0.309
+30.9511

0.309
-30.9511

-0.809
+30.5878

1

+30

-0.8090
+30.5878

0.309
-30.9511

0.309
+30,9511

-0.809
-30.5878

1

+30

0.309
+30.9511

-0.809
+30.5878

-0.809
-30.5878

0.309
-30.9511
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In the later sections of this chapter investigations

have been reported regarding the permuted locations of

transform samples in the two-dimensional array when the

rows or columns or both of input signal sample sequence

a(i), written as a two-dimensional array, have been sub-

3ected to some prescribed permutations. It has been

observed that prescribing permutations is not possible

Instead if twiddling
Miwith twiddling faotors WM1/

Mlfaotors are taken as W^ the permutation properties

exhibited.by this transform are quite interesting. In

that case Eq. (3.32) would become

W W^2Xl|:_oa(i1N+i2)(-l)A(l)aA(l2M+I!>=.£!i?=0

iol
W

N

i«I

LHlimod 2
t=0 x

[H±
_ 2

2

+30

2

+30

0

+30

o

+30

(3.35)

This would give the two-dimensional arrays

»ii
] and [A(I)] for the example as

2

+30

-0,618
+31.9022

0
+30

0

+30 .

1

+30

-0,809
-30.5878

-0.309
-30.9511

-0.309
+30.9511

1
+30

-0,809
+30,5878

0.309
-30.9511

0.309
+30.9511

2

+30

0

+30

1.618
-31.1756

0

+30
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8

+30
1.618
+30

-0.618
+30

-0.618
+30

1.618

+30

Ml)
[A(I24
c1)3 =

-0,236
+3L9022

1.618
-33.0778

4.2362
+3L1756

1.618

+33.0778

4.2362
-31.1756

-0.618

+30.7266

-0.236
-31.9022

-2

+30

2

+30

-0.618
-30.7266

0

+3L9022
0

-31.1756
0

+30
0

+31,1756
0

-31.9022

... (3.36)

The two-dimensional array representing A(I) has a pecu

liar pattern. The elements along any row appear in con-

3ugate pairs, In case N is odd one of the elements in

each row would be real. In the zeroth row transform

samples (1.618+30) and (O.6I8+30) occur twice. It is

because of the particlar a(i) chosen. This is also the

reason for all the elements in the zeroth row to be real

except A(0) which would be always real.

3,42 MODULAR PERMUTATION OF COLUMNS

It is known that DFT exhibits modular permutation

property. In the transform defined in Section (3.41)

N-term rowwise DFT is taken. Let the N columns of a(i),

i • 0,1,2,...,MN-1 written as a two-dimensional array of

M rows and N columns and read row by row be sub3ected to

modular permutation operator P(p,N) treating each of the

N columns as an element. Then the resulting transform

samples, Ac(l), would be given by
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AC(I) = A(I2M+I£)

•* M2 VllbL g^ modulo 2
=F-0** WN iiEba(i1N+((ipp))N)(-i) ... (3#37)

I = 0,1,2,...,MN-1

where Ij and I£ are the new values of indices I, and I
respectively,

and the permuted input signal sample seqnence, a (i),
would be given by

a0(t)=a(i1H+((pl ))„) , 1-0,1,2,..,.#4 ... (3.38)

A0(I) = A(I£M+I£)

- i_=ow„ wN h((a2))H

„«i2ii)),-<(W)>
WN 2

* Ii1 wl(i2l2))N+((i2Il))N-((llPi2))NH^Il)
iSb N ((pi2))N

. |=1 w((I2Pip))N (I»)
E » 2 Hfco H((Pi ))N • say ••' (%39)

2 2

Then

(d2Pi ))N « ((i2i2))N +Uiji!)), - ((ilPi ))N
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If P(q,N) be the inverse modular permutation operator
so that

(IP q))H =* i
then

((l2Pi2))r((P<l))N((i2I2))N+((pq))N((i2I1))N-((I1pi2))N
*((PqM2))N+((p(lMl))N""((3ClPi >>H

Hi ((^ifi^jfPijDjj
that is

Ig «=((q(I1+I2)-I1))N ... (3.40)

Also from Eq. (3.39) it is obvious that

H - h

So if the columns of a(i) ma (i;LN+i2) are permuted so
that the input signal sample sequence is given by

ac(i) = a(i;jN+((pi ) )N) then the transform samples
A(I) mA(I2M+I1) are given by

AC(I) * A(M<(q(l1+I2) - Ij.))^!)

This result is very interesting and shows that a

columnwise modular permutation on a(i) = afi^JT+JU) first

and then taking transform according to Eq. (3.35) is ana

logous to rearranging the elements of A(I)=A(I2M+I1).

This rearrangement changes the value of index I2 to II

where Ig is a function of I1, I2 and the parameter q of

the inverse modular permutation operator P(q,N). Thus
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a permutation of index ip in a^N+ip) to ((pi ))N results

in the permutation of index Ip in AflpM+I^J to ((q(l1+Ip)

-I1))N . This has been illustrated in flow chart form

in Fig* 3.2. The permutation law derived above has been

verified with M = 4, N = 5 and M = 8, N = 3 and the results

are listed below. The results tally with the permutation

law derived theoretically.

MNp . a(i1N+((pi2))N) q A(M(( ^Ip)-^))^^)
a(0) (al) a(2) a(3) a(4) A(o) A{<\) A8) A(12) A(16)

a(5) a(6) *ff) a(0) a(9) A(l) A(5) A(9) A(l3) A(17)
4 5 2 1

a(10)a(ll) a(l2) a(13) a(14) A(2) A(6) A(10)A(14) A(18)

a(15)a(16) a(17) a(18) a(19) A(3) A(7) A(ll)A(15) A(19)

a(0) a(2) a(4) a(l) a(3) A(0) A(12) A(4) A(16) A(8)

4 5 2 a(5) a(7) a(9) a(6) a(8) ?A(9) A(l) A(13)A(5) A(17)
a(10)a(12) a(14) a(ll) a(13) A(18) A(10) A(2) A(14) A(6)

a(15)a(17) a(19) a(16) a(18) A(7) A(19) A(U)A(3) A(15)

a(0) a(3) a(l) a(4) a(2) A(0) A(8) A(16)A(4) A(12)

4 5 3 a(5) a(8) a(6) a(9) a(7) 2A(5) A(13) A(l) A(9) A(17)
a(10)a(13) a(ll) a(H) a(12) A(10) A(18) A(6) A(14) A(2)

a(15)a(18) a(16) a(19) a(17) A(15) A(3) A(11)A(19) A(7)

a(0) a(4) a(3) a(2) a(l) A(0) A(16) A(12)A(8) A(4).

a(5) a(9) a(8) a(7) a(6) A(13) A(9) A(5) A(l) A(17)
4 5 4 4

a(10)a(14) a(13) a(12) a(ll) A(6) A(2) A(18)A(14) A(10)

a(15)a(19) a(18) a(17) a(16) A(19) A(15) A(U)A(7) A(5)
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a(0) a(D a(2) A(0) A(8) A(16)

a(3) a(4) a(5) A(l) A(9) A(17)

a(6) a(7) a(8) A(2) A(10) A(1S)

a(9) a(10) a (11)
-

A(3) A(H) A(19)

a(12) a(13) a(14) A(4) A(12) A(20)

a(15) a(16) a(17) A(5) A(13) A(21)

a(18) a(19) a(20) A(6) A(14) A(22)

a(2l) a(22) a(23) A(7) A(15) A(23)

a(0) a(2) a(l) A(0) A(16) A(8)

a(3) a(5) a(4) A(9) A(l) A(17)

a(6) a(8) a(7) A(1B) A(10) A(2)

a(9) a(ll) a(10) A(3) A(19) A(U)

a(12) a(H) a(13) A(12) A(4) A(20)

a(15) a(17) a(16) A(21) A(13) A(5)

a(lB) a(20) a<,19) A(6) A(22) A(14)

a(21) a(23) a(22) A(15) A(7) A(23)

3.43 BIT-PLANE PERMUTATION OF ROWS

ft

It is known that Hadamard transform of order M=2 ,

s being an integer, exhibits bit-plane permutation pro

perty. In the transform defined in section (3.41) M-term

columnwise H T is taken. Let the M rows of a(i),

i=0,l,2,.,.,MN-1 written as a two-dimensional array of

M rows and N columns and read row by row be sub3ected to

bit-plane permutation operator P(a b ... k) treating each
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N

ROWWISE DFT

» »A0(I) * A(I^lx)

PIG: 3.2 ; FLOW CHART OF TRANSFORM WITH
COLUMNS PERMUTED

J
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of the M rows as an element. Let

(^decimal " (il xl *" *1 •" *1 11 binary

and _ _ w

P(a b ...k)(i1 ix ... ix ... ix ^binary
. _ ,b -k\ /j \

• V1! il •••* *1'binary v 1,P'decimal, say

Then the resulting transform samples, A-(I), would

be given by

A(I) . MlJW{) s-1
* j-O1!,**! aodul° 2

- If1 */Z*\*X £f a^PN+i^-l) ... (3.41)
*t* 1l,fF° 1=0,1,2,...,MN-1

where _J» and 1^' are the new values of indices Ix and I2

respectively.

and the permuted input signal sample sequence,

a_(i) would be given by
r% '

0^,(1) - a(i1 pN+i2) , i =0,1,2',..., MN-1 ... (3.42)

A_(I) *= A(I2'M+I£« )

i7_0 N N ii=0
-1|ioi\l^- -odulo 2

(-1)
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whers (Il.P,«,oi__"P<a b-k)(ir1 ir2-li-4 Il>b__ry

==(I1 xl ••• Il)binary •*• (3*43)

and (Il)decimal=(Il II" "*h ••• xl ^binary

Ar(l) mA(I2'M+I£' )

i«=0 N N *2

_, P w<(i2I2))N ((i2Il-i2Il,p))N t^V^

i>oWn \
N_;l ((i2I2« ))N (!{')

* ZwN w% , say ... (3.44)
i20 " 12

>t •«This would give expressions for I^1 and I2 as

H ~ Ii,p

and i2= tdi +12 - i1>p))H

So if the rows of a(i) = a(i]LN+i2) are permuted so that

the input signal sample sequence is given by a_,(i) m

a(i^ pN+i2) then the transform oamples A(I)=A(I2M+I1) are
given by Ar(I)_A(M((I1+I2-I1>p))N+I1#p)

This result shows that a rowwise bit-plane
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permutation on a(i) » a(i-LN+ip) first and then taking

transform according to Eq. (3,35) is analogous to re

arranging the elements of A(l) mA(IpM+I1), This re

arrangement changes the values of indices I-|_ and I« to

1 '̂ and l" respectively. While 1^ depends upon 1-^ and
bit-plane permutation operator p(a b ,,. k) the other

new index I2 is a function of I,f I2 and bit-plane per

mutation operator P(a b.,.k) which is known to be self-

reciprocal. Thus a permutation of index i-j_ in a(i-,N+i2)

to i, results in the permutation of both the indices

I<L and I2 in A(I2M+I1). This has been illustrated in

flow ohart form in Fig. 3-3, The permutation law derived

above has been verified with M m 4, N • 5 and M = 8, Ns=3

and the results are listed below. These results tally

with the permutation law derived theoretically. It may

be pointed out that the elements in such rows of A(I)

for which 1^ • 1^ p are unchanged in position,

MNP(ab..k) a(i1>pN+i2) A(M((I1+I2-I1>p))N+IlfP)

a(0) a(l) a(2) a(3) a(4) A(0) A(4) A(8) A(12)A(16)

a(10) a(ll) a(12) a(13) a(14) A(18) A(2) A(6) A(10)A(14)
4 5 P(0 1)

a(5) a(6) a(7) a(8) a(9) A(5) A(9) A(13)A(17)A(1)

a(15) a(16) a(17) a(18) a(19) A(3) A(7) A(11)A(V5)A(19)



a(0) a(l) a(2) A(0)

a(6) a(7) a(8) A(18)

a (3) a(4) a(5) A(9)

8 3 P(2 0 1)
a(9)

a(12)

a(10)

a(l3)

a(H)

a(14)

A(3)

A(4)

a (18) a(19) a(20) A(22)

a(15) a(16) a(17) A(13)

a(21) a(22) a(23) A(7)

a(0) a(l) a(2) A(0*

a(3) a(4) a(5) A(l)

a(12) a(13) a(14) A(12)

8 3 P(l 2 0) a(15) a(16) a(17) A(13)

a(6) a(7) a(8) A(18)

a(9) a(10) a(ll) A(19)

a(18) a(19) a(20) A(6)

a(21) a(22) a(23) A(7)

a(0) a(D a(2) A(0)

a(6) a(7) a (8) A(3B)

a(12) a(13) a(14) A(12)

8 3 P(l 0 2)
a(18)

a(3)

a(19)

a(4)

a(20)

a(5)

A(6)

A(l)

a(9) a(10) a (11) A(19)

a(15) a(16) a(17) A(13)

a(21) a(22) a(23) A(7)
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A(8) A(16)

A(2) A(10)

A(17) A(l)

A(H) A(19)

A(12) A(20)

A(6) A(14)

A(21) A(5)

A(15) A(23)

A(8) A(16)

A(9) A(17)

A(20) A(4)

A(21) A(5)

A(2) A(10)

A(3) A(ll)

A(14) A(22)

A(15) A(23)

A(8) A(16)

A(2) A(10)

A(20) A(4)

A(14) A(22)

A(9) A(17)

A(3) A(U)

A$21) A(5)

A(15) A(23)
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a(0) a(l) a(2) A(0) A(8) A(16)

a(12) a(13) a(14) A(4) A(12) A(20)

a(3) a(4) a(5) A(9) A(17) A(l)

a(15) a(16) a(17) A(15) A(21) A(5)
a(6) a(7) a(8) A(lfi) A(2) A(10)

a(18) a(19) a(20) A(22) A(6) A(14)

a(9) a(10) a(ll) A(3) A(ll) A(19)

a(21) a(22) a(23) A(7) A(15) A(23)

The values of ^ p and Xj. j for given ix, Ix and

bit-plane permutation operators P(a b ., k) are listed

in Table 3.3 for M = 4 and M = 8.

3,44 MODULAR PERMUTATION OF COLUMNS AND BIT- PLANE
PERMUTATION OF ROWS

In section (3.42) and (3.43) the effect of modular

permutation on columns and bit-permutation on rows of

a(i) written as a two-dimensional array of Mrows and

N columns and read row by row have been investigated.

Let the N columns of a(i) be sub3ected to modular permu

tation operator P(p,N) treating each of the N columns as

an element , and M rows be sub3ected to bit-plane permu

tation operator Jf(a **••• k) treating each of the M rows

as an element. Then the resulting transform samples,

Arc(l), would be given by
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PERMUTATION OF

R0W3BTP(a b...k/ M*)"**1! ***2 )
n it

COLUMNWISE HT

TWIDDLING FACTOR

ROWWISE DFT

l2Il
COLUMNWISE HT

igl^
n

TWIDDLIHG FACTOR

ROWWISE DFT

I

A(I) « Afc^M-X^)
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ROWS PERMUTED

A(I) - A(l" M+I-T
r



Table-3.3 : Computation of i, and I, B
J-, Jr x ,iJ

M=4 il,P=P(& b •••k) *! and Xl p=P(a 13...k)^
^P(a b...kj

dec. binary

P(10)
X1,P ' X1,P
binary dec, •

P(0 1)

*•_,? » I1,P
binary dec.

0
1

2

3

0

0

1

1

0

1

0

1

0

0
1

1

0 0
1 1

0 2

1 3

0 0

1 0
0 1
1 1

0

2

1

3

M=8 x1f$x=P(a b. ..k) i-^ and I, ,P=P< a b...k ) *1
3(a b. ..k) p (2 1 0 T P(2 0 1) P(l 2 0) P(l 0 2) P(0 2 1) P(6 1 2)

*1
dec.

>*1>\
binary binary dec.

il,P'
bin.

xl,p
dec. bin.

I,P
dec

ilfP,I
bin.

:1,P
dec. bin.

1,P
dec.

*1.P#:
bin.

Ei,P
dec.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 i 0 10 2 0 0 1 1 0 10 2 10 0 4 10 0 4

2 0 1 0 0 1 0 2 0 0 1 1 10 0 4 10 0 4 0 0 1 1 0 10 2

3 0 1 JL 0 1 1 3 Oil 3 10 1 5 110 6 10 1 5 110 6

4 1 0 0 1 0 0 4 10 0 4 0 10 2 0 0 1 1 0 10 2 0 0 1 1

5 1 0 1 1 0 1 5 110 6 Oil 3 Oil 3 110 6 10 1 5

6 1 1 0 1 1 0 6 10 1 5 110 6 10 1 5 Oil 3 Oil 3

7 1 1 1 1 1 1 7 111 7 111 7 111 7 111 7 111 7

oo
o



Aro(l) - A(I2"M+ If)

=£X//2 V^1 fl1 a(i1>pN+((EL ))N)
12=0 i1>p 2
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pI? modulo 2FA.
(-D

...(3.45)

I = 0,1,2,..,,MN-1

where I41' and I2 are the new values of indices

I, and I2 respectively.

and the permuted input signal sample sequence

arc(i) would be given by

arc(i)=:a(il,PN+((pi )}n) ' i=0,l,2,...,MN-l ... (3.46)

Arc(l) = A(I^M+i1,n)

H=i «i2i2))H ((y^Nl:1 fi _, ,, „ ,
•LA WN .Hna(ilN+((^p))N)ig^O 1^0 2

i-i1 + tT" i^K B modulo 2
("if"0

¥*((i2I2)>N ((i2Il))N hdl.p)
•§_?» W* h((P^))N

m u((v2))N ((yi))N -<(pyi,p»N
((pi2i1(P))H fe.
N h((? )N

N N

w^Vi,p))fi iIi.p>,



Ifcl ir((i2I2))N+((i2I1))N-((Pi2IifP))N n«*l,p)

2=
=i^¥n h((pi2))n
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in . . lit

ti ((I, pi2))„ (i, )
^H H((Pi2))N ' SW - (5'47)

III Ml

So I-, = L p and for obtaining expressions for Ip use

((I2' Pi2))H = ((i2I2))N+((i2I1))N~((Pi2 IifP))H
to get

I*" = ((q(I1+I2) - Ilfp))N

So if rows and columns of a(i) « a(i1N+ip) are permuted

so that the input signal sample sequence is given by

arc(i) = a(i1 pN+((pip))N) then the transform samples

A(I) = A(I2M+I1) are given by Arc(l) - A(M((q(I1+Ip)

-IljP))N + IifpK

This result shows that rowwise bit-plane permuta

tion and columnwise modular permutation on a(i^a^N+ip)

first and then taking transform according to Eq. (3.35)

is equivalent to rearranging the elements of A(l) =

A(MI +1-^). This rearrangement changes the values of in

dices Ij and I2 to 1 '̂ and I2" respectively, While

I, depends upon 1-^ and bit-plane permutation operator
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in

P(a b.-.,k) the other new index Ip is a function of 1-^,

Ip, bit-plane permutation operator P(a b.,.k) and inverse

modular permutation operator P(q,N), This has been illus

trated in flow chart form in Fig, 3-4, The permutation

law derived above has been verified with M=4, N=5 and

M=8, N=3 and the results are listed below. These results

tally with the permutation lav derived theoretically,

MNp P(a b..k) a(i1^pN+((pi2))jJ) q A(M( W^x^)"1!^^1!^
a(0) a(2) a(4) a(l) a(3) A(0) A(12) A(4) A(U) A(8)

a(10)a(12)a(14)a(ll)a(13) A(6) A(18) A(10)A(2) A(14)
3

a(5) a(7) a(9) a(6) a(8) A(l) A(13) A(5) A(17)A(9)

a(15)a(17)a(19)a(16)a(18) A(7) A(19) A(11)A(3) A(15)

4 5 2 P(0 1)

4 5 3 P(0 1)

4 5 4 F(«0 1)

a(0) a(3) a(l) a(4) a(2) A(0) A(8) A(16)A(4) A(12)

a(10)a(13)a(ll)a(U)a(12) A(2) A(10) A(1S)A(6) A(14)

a(5) a(8) a(6) a(9) a(7) A(13)A(1) A(9) A(17)A(5)

a(15)a(18)a(16)a(19)a(17) A(15)A(3) A(11)A(19)A(7)

a(0) a(4) a(3) a(2) a(l) A(0) A(16) A(12)A(8) A(4)

a(10)a(14)a(13)a(12)a(ll) A(10)A(6) A(2) A(1B)A(14)

a(5) a(9) a(8) a(7) a(6) A(9) A(5) A(l) A(17)A(13)

a(15)a(19)a(18)a(17)a(16) A(19)A(15) A(11)A(7) A(3)



8 3 2 P(2 0 1)

8 3 2 P(l 2 0)

8 3 2 P(l 0 2)
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a(0) a(2) a(D A(0) A(16) A(8)

a(6) a(8) a(7) A(2) A(1B) A(10)

a(3) a(5) a(4) A(l) A(17) A(9)

a(9) a(ll) a(10)
2

a(13)

A(3) A(19) A(H)

a(12) a(l4) A(12) A(4) A(20)

a(18) a (20) a(19) A(14) A(6) A(22)

a(15) a(17) a(16) A(13) Af5) A(21)

a(21) a(23) a(22) A(15) A(7) A(23)

a(0) a(2) a(D A(0) A(16) A(8)

a(3* a(5) a(4) A(9) A(l) A(17)

a(l2) a(U) a(13) A(4) A(20) A(12)

a(15) a(17) a(16)
2

A(13) A(5) A(21)

a(6) a(8) a(7) A(2) A(18) A(L0)

a(9) a(H) a(lO) A(H) A(3) A(19)

a(18) a(20) a(19) A(6) A(22) A(14)

a(21) a(23) a(22) A(15) A(7) A(23)

a(0) a(2) a(l) A(0) A(16) A(8)

a(6) a(8) a(7) A(2) A(18) A(10)

a(12) a(14) a(13) A(4) A(20) A(12)

a(18) a(20) a(19)
2

A(6) A(22) A(14)

a(3) a(5) a(4) A(9) A(l) A(17)

4(9) a (11) a(10) A(H) A(3) A(19)

a(15) a(17) a(16) A(13) A(5) A(21)

a(21) a(23) a(22) A(15) A(7) A(23)



8 3 2 P(0 2 1)

8 3 2 P(0 1 2)

a(0) a(2) a(l)

a(12) a(14) a(13)

a(3) a(5) a(4)

a(15) a(17) a(16)

a(6) a(8) a(7)

a(18) a(20) a(19)

a(9) a(ll) a(10)

a(21) a(23) a(22)

a(0) a(2) a(l)

a(12) a(l4) a(l3)

a(6) a(8) a(7)

a(18) a(20) a(19)

a(3) a(5) a(4)

a(15) a(17) a(16)

a(9) a(ll) a(10)

a(21) a(23) a(22)
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A(0) A(16) A(8)

A(12) A(4) A(20)

A(l) A(17) A(9)

A(13) A(5) A(21)

A(2) A(18) A(10)

A(14) A(6) A(22)

A(3) A(19) A(ll)

A(15) A(7) A(23)

A(0) A(16) A(8)

A(12) A(4) A(20)

A(18) A(10) A(2)

A(6) A(22) A(14)

A(9) A(l) A(17)

A(21) A(13) A(5)

A(3) A(19) A(U)

A(15) A(7) A(23)

The technique developed in this chapter can be used

to obtain a class of transforms with prescribed permutation
properties by choosing suitable transforms kernels in place
of HT and DFT. The twiddling factors in each such result
ing transform would have to be defined keeping in view the
properties of the component transform,? used.
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p. s.uwijV")
afij-atlji+ig)

AND COLUMNS BY P(p,N)

COLUMNWISE HT

TWIDDLING FACTOR W

ROWWISE DFT

'2*1
N

A(I) • k(l£L+xx)

__t

COLUMNWISE HT

TWIDDLING FACTOR !

ROWWISE DFT

T

tfl
N

HI Ml,Vt(« -a(I2K+li")

FIG. 3.4 * FLOW CHART OF TRANSFORM WITH ROWS
AND COLUMNS PERMUTED



CHAPTER-4

INTER RELATIONS AMONG VARIOUS TRANSFORMS

The ordinary multiplication of two matrices is

defined only when the two component matrices are confor

mable for multiplication. This matrix multiplication

commutes only under special conditions. It is well known

that Kronecker product of two matrices A and B is always

defined irrespective of the dimensions of the component

matrices. It is also known that Kronecker product of

A and B can be obtained from Kronecker product of B and

A by pre and post multiplication by sparse permutation

matrices of suitable dimensions and vice-versa. Another

matrix product known as Chinese product can be defined

when the numbers of rows (columns) of the two component

matrices are coprimes. This matrix product always com

mutes. Analytical expressions have been developed for

obtaining Chinese product from Kronecker product and vice-

versa, A combination of Kronecker product and Chinese

product concepts has been proposed to define Chinese-

Kronecker product and Kronecker-Chinese product. Analy

tical expressions have also been developed to obtain on©

from another by pre and post multiplication with suitable

sparse permutation matrices. The concept of the special

matrix products has been applied to linear systems. The

advantage of the work reported is that the output

annua imjaT vmxsm m wtssp
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correaponding to any particular input can be deduced from

outputs to simpler inputs in terms of which that parti

cular input can be synthesized.

4.1 SPECIAL MATRIX PRODUCTS

If A and B are matrices of dimensions M^_ x H% and

M2 x N2 given as

a(0,0) a(0,l) a(0,2)

a(l,0) a(l,l) a(l,2)

a(2,0) a(2,l) a(2,2)

a(0,N1-2) atO^-l)

a(l,N1-2) a(l,N1-l)

a(2,Nx-2) a(2,Nx-l)

a(Mx-2,0) a(Mx-2,l) a(Mx-2,2) ... a(M1~2,N1-2) a(M1~2,N1-l)

a^-l^O) a^-l+l) a(Mx-l,2) ... a(Mx-1,^-2) a(M1-l,N1-l)

... (4.1)

Alternatively

i- = 0,1,2,...^-!
A«[aCi^^)] j _, 0,1,2,...,^-! ... (4.2)

b(0,N2-l)

b(l,N2-l)

b(2,N2-l)

b(0,0) b(0,l) b(0,2)

b(l,0) b(l,l) b(l,2)

b(2,0) b(2,l) b(2,2)

b(M2-2,0) b(M2-2,l) b(M2-2,2)

b(M2-l,0) b(M2-l,l) b(M2-l,2)

b(0,N2-2)

b(l,N2-2)

b(2,N2-2)

b(M2-2^N2-2) b(Mp-2,Np-l)

b(M2-l, N2-2)b(M2-l,N2-l)

... (4.3)



=A»kB=

Alternatively

B = [b(i2,j )]
i2 * 0,1,2, M2-l
jp = 0,1,2, Np-1
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... (4.4)

Then Ck the Kronecker product or direct product of

matrioos A and B, denoted by A ft B is a matrix of di

mension M-jM2 x N-jNg and is given as

a(0,0)B a(0,l)B a(0,2)B

a(l,0)B a(l,l)B a(l,2)B

a(2,0)B a(2,l)B a(2,2)B

a(0,^-2)8 afQ^-l^

a(l,N1-2)B a(l,N1-l)B

a(2,Nx-2)B a(2,N-L-l)B

^^-2,0^^-2,1)6 a(M1-2,2)B ... a(M1-2,N;r2)Ba(MI'_^N1-l) B
^a(M1-l,0)Ba(M1-l,l)B a(Mx-l,2)B ... a(M1-l,N1-2)Ba(M1-l,N5-l)B;

... (4.5)
where C =[ck(i^j)] 1*0.1,2,... jy^-l _(4#6)

3*o,i,2#...,iyr2-i
ek(l,d)=a(i1,j1)b(i2f32)

and

i «= i2 + M2 i-

j = 02 + N2 z±
... (4.7)

Some of the important properties of Kronecker product

of are :

1) (A »k B) »k C mA »k (B »k C)

2) (A dk B)T - AT *k BT

-1 - A~\ B-13) (A ^ B)

... (4.8)
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4) (A+C) »k (B+D) =A@k B+A ^D+C &k B+C (^ D
5) (A ©k B) (C Q^. D) = AC Qj_ BD

6) a AQjj. pB = a p (A ^ B)

7) (A0 ^ A^ ... ^ AN_l)(Bo &k Bl ©k ... ®k k)

" AoBo \ h*l ®k ... ®k A^ ^

Let e^ be a q-dimensional vector which is one in the

fe and zero elsewhere. This is termed as unit vector.
Also let

E <pxg.) L e eT
ik - ei ek , v

(P) (q) •- (4'9)

be termed as some elementary matrix of dimension pxq
with one in the location (i,k) and zero elsewhere.

Brewer [12] has defined a nermutation matrix U as
pxq

V.= |o |oEiPXq) ^4fP) ... (4.10)
and which is of dimension pq x pq with precisely a single
one in each row and each column, rest of the elements
being zero. He has defined another matrix as

V* Efi.^^ %.*&*> .- MOD
and which is of dimension p2xq2 with precisely a single
one in each row and each column, rest of the elements

being zero. Some of the relationships which hold for
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these permutation matrices are given by Brewer [12] and
are listed below:

T

1. e± ek = 6ik where 6±k is the Kronecker Delta
(P) (P)

1 fa307) - ;
Jkm ^in"

2) E^)^-) _ 6kmE(P-)

3) A- jP j? a E(pxq) u i_>\
fe) feo ik ik ••• (4'12)

*> E1^XP) Ae^*-) . Akm ^C-r)

5) <W* • Vp

6) u1xq - Vp
7) (B^PXq.))* _, ^qxp)

8) U - = U-, =1pxl ulXp xp

9) U„__, « UT = U""1
nxn nxn nxn

10) U_ __ tf = jj
nxn nxn nxn

The concepts of these permutation matrices can be

used to obtain relationship between A «, B and B 9. A,
•IX JJ,

Based on Chinese remainder theorem [11] one can

define multiplications of one-dimensional and two-dimen

sional arrays provided the corresponding dimensions of the

arrays are coprimes. Moharir [40] has defined Chinese
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product of sequences.

If Aand Bare one-dtaensional sequences of length
«1 end M2 respectively, % and M2 being ooprines, and
given as

A=[*(0) a(l) a(2) . . . a(Ml_2) »0t!-l)j...(4aj)
»d B-[b(0)b(l)b(2) . . .b(H2-2) fc^Dj
then the sequence

o-wo) c(D c(2). . . 0(M.2) 0(M_1} ]f<_ (4>14)
is deittned aa the Chinese product of sequences Aand Bif

M=M1M* ...(4.15)
and .(t)-.(%) b(i2) _ (4<l6)
where

i £ i^ modulo M,

••• <4*17)5 i2 modulo M2

i.e., i i8 congruent to ±x modulo Mx and also congruent
to i, modulo M2. For any given i, 1% and i, can be
uniquely determined and vice-versa. If Aand Bbe two-
dimensional arrays of Eqs. (4.2) and (4.4) and where M^
M2 are coprimes and Nx, N2 are coprimes then the two-
dimensional array

*« * C*e (i,3)] *= 0,1,2,..., M-l
0 = 0,1,2,..., N-l ". (4.18)
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is defined as the Chinese product of matrices A and B,

CQ - A ©c B, if

M - Mx M2

N m Nx N2 .. (4.19)

and

oc(i,j) = a(i1,j1) b(i2,j2) ... (4.20)

i 5 i^ modulo M-,

2 i2 modulo M2

3 £ ^ modulo Nj^

2 32 modulo N2

... (4.21)

Thus the dimension of the matrix resulting from Ohienese

product, if defined, of two matrices is the same as of

one obtained by Kronecker product of the same matrices.

It is clear from the definitions of Chinese product

and Kronecker product that the array obtained is case of

former is a rowwise and columnwise permutation of the array

obtained in case of latter. If A and B are orthonormal

matrices then Ck = A »k B is known to be an orthonormal

matrix* Further rowwise and/or columnwise permutation of

an orthonormal matrix results in an orthonormal matrix.

Hence the matrix obtained by Chinese product of orthonormal

matrices, Cc = A 9Q B, would be an orthonormal matrix.

The concepts of Kronecker product and Chinese product
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can be exploited to define two more matrix products, viz.
Kronecker-Chinese product and Chinese-Kronecker product
of matricea.

If Aand Bbe two-dimensional arrays of Eqs. (4.2)
and (4.4) and where x±, N2 are coprimes then the two-
dimensional array

Ckc- £°kc Ci*i)3 j=0,l,2,...,N-l - (4.22)
is defined as the Kronecker-Chinese product of matrices
A and B, Ck(J « A»kc B, if

M = MXM2

N = NXN2
and

•ko^^J- •<*_.•*!> b(i2'32) ". (4.24)
where

i = i2 + M2 ix

.» (4.23)

3 s jx modulo nx ... (4-25y
2 d2 modulo N2

If Aand B be two-dimensional arrays of Eqs. (4.2)
and (4.4) and where N^ M2 and coprimes then the two-
dimensional array

0U m [c . (1,1)1 i = 0,1,2,...,M-l ,. .--.ck t ck \±,3)} 3 = o,l,2,.,.,N-1 ..-(4.26)

is defined as the Chinese-Kronecker product of matrices
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A and B, Cck = A ®ck B, if

M = M-l M2

N = Nx N2 ••• (4.27)
and

cck(i,j) « ad^^) b(i2,J2) _ (4#28)

where

i S ^ modulo M-,

= i2 modulo M2 ••* (4.29)
1 - d2 + N2 3-

The matrix obtained by Kronecker-Chinese product
of two matrices A and B can be thought of as a column

wise permuted version of the matrix obtained by Kronecker

product of the matrices A and B. Similarly the matrix

Obtained by Chinese-Kronecker product of two matrices A

and B can be thought of as a rowwise permuted version of

the matrix obtained by Kronecker product of the matrices
A and B. It is known that if the two laatxiees A and B

are orthonormal then the matrix obtained by Kronecker pro

duct of these orthonormal matrices is itself an orthonormal

matrix. Since matrices obtained by Kronecker-Chinese and

Chinese-Kronecker product of component matrices are the
columnwise and rowwise permuted versions of the matrix

obtained by Kronecker product of the same component mat

rices and that rowwise and/or columnwise permutations on

an orthonormal matrix do not change its orthonormality
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hence the matrices obtained by Kronecker-Chinese product
and Chinese-Kronecker product of orthonormal matrices A
and B would always be orthonormal matrices.

4.2 RELATION BETWEEN CHINESE AND KRONECKER PRODUCTS

Let Cc and Cfe be the matrices obtained by Chinese
product and Kronecker product respectively of two mat
rices Aand Bof dimensions M]L xHx and M2 x N2 , Mx ,
M2 being coprimes and Nx, N2 being coprimes. It has been
stated that the matrices Cc and Ck are rowwise and
columnwise permuted version of each other, m what follows
expressions would be derived for permutation matrices P„

1

and P2 of suitable dimensions which are defined by

°o * PlCkP2 ... (4.30)

°k = pl cc P2 ... (4.31)

Since the matrices Px and P2 are to effect
rowwise and columnwise permutation respectively these
matrices would have only a single one in each row and

each column, rest of the elements being zero. Further,
Px and P2 would be square matrices of orders Mx M2 and
% N2 respectively. A change in dummy variables in
Eqs. (4.6) and (4.7) would give

ek(l,^ =a(i^, i[) b(i2, j') _ (



and

1 " i2 +M2 H

3 = d2 + N2 Ji

From Eqs (4.21) one can write

h - i - % [i/Ml]

i2 - i - M2 [i/M2]

$1 * 4 - »x [j/Nx]

32 • 3 - N2 [j/N2]

Similarly from Eq. (4.33)

H - Ci/M2]

i2 - i- M[i/M2]

3l «* [3/fo23

02 - 3 " N2 [j/N2]

where [x/y] stands for integer part of (x/y). From
Eqs. (4.34) and (4.35) it is clear that

i2 • i2 for all i

32 • 20 for all j'2 ^

and hence

97

... (4.33)

.. (4.34)

... (4.35)

... (4.36)

b(i2,j2) • b(i2 ,j*) for all i,j ... (4#3T)
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This would imply that b(i2,J2) paxt of o (lf;J)
is element by element equal to b(i2,j2) part ofek(i,j).
But the corresponding a(ipjl) ofcc(i,d) is not neces
sarily equal to the corresponding a(i-J^j') of«k(i,j).
So the permutation matrices P1 and P2 should be such
that they permute the elements of the matrix C,=A 9. B

in such a way that the resulting permuted matrix is equal
to the matrix Cc = A 9Q B. In Eq. (4.30) the matrix
Gk is to be premultiplied with the matrix Vj^ and post-
multiplied with the matrix P2, it is known that premulti-
plication of a matrix with a matrix having a single ele

ment one in each row and each column, rest of the elements

being zero, results in rowwise permutation of the former

matrix. Similarly a columnwise permuted version of a

matrix can be obtained by post-multiplying it with a matrix

having a single element one in each row and each column.

rest of the elements being zero. So in Eq. (4.30) row

wise permutation on the matrix Ck is effected by the
matrix ^ and columnwise permutation by the matrix P?.
The effect of the premultiplication and postmultiplication
of the matrix Cfc is that its element can be shifted from

any location in the two-dimensional array to any desired

location by suitable choice of matrices Px and P .

It is evident from the definition of Ck that in
its i row the b(i2,j2) part of the elementc k(i,3) =
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a(il';5l) b(i2»i52) would repeat itself at all j • j' moduloHL
Similarly in jJSlumn of Ck the b(i2,J2) part would repeat
itself at all i 5 i2 modulo M2.

Let the permutation matrix P2 of order Nj_ Np be

such that it permutes the(j + 3* ) modulo N-, N0tn
S J. 2

column of the matrix Ck to jth column. This would mean

that in the i column of the matrix P2 there should be

a one in the (j+js) modulo Nx N2tn row. Further let the
permutation matrix Pi of order Mx M2 be such that it per

mutes the resulting columnwise permuted matrix in such

away that its (i+is) modulo Mx M2 th row goes to its
i row. This would mean that in the i h row of the

matrix Px there should be a one in the (i+is) modulo M^M**1
column. These could be summarised as

1) The permutation matrix P2 which is a square matrix

of order N-jN,, with precisely one element a one in

each row and each column, rest of the elements

being zero, should have ones at locations ((j+3 )

modulo NjNj ,j).

2) The permutation matrix P-l which is a square matrix

of order MjM2 with precisely one element a one

in each row and each column, rest of the elements

being zero, should have ones at locations,

(i, (i+is) modulo Mx M2).
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3) The permutation matrices V% and P2 are completely
defined if expressions for iQ and Jfl are obtained
in terms of known parameters.

The combined effect of premultiplication by the
matrix Px and post multiplication by the matrix P2 is to
obtain the condition

aCi-t^) - a(i^ ,3^) for all i,j. ... (4.3s)

while maintaining the condition given by Eq. (4.37).

Since the matrix P2 is to effect columnwise permutation
on the matrix C^,hence it should result in

h • ^
or 3-% [3/Nx] m[3/N2] ... (4.39)

This can be achieved by taking

ia <* th - 3i)

= 3-Ni [j/%] - [j/N2] - ... (4.40)

Since jx repeats itself with a period of Nx hence

Js should be taken modulo N^. This gives

3S a (d-^tj/Nj - [j/N2]) modulo Nx ... (4.41)

This equation alongwith Eq. (4.37) suggests that the

proportionality constant should be N2 and hence
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3S = N2(j- [3/N2])modulo Nx ... (4.42)

The locations of one's in the permutation matrix Pp
are (( j+N2(j-[j/N2])inodmo Njmodulo Nx N ,;)) ... (4.43)

Since the matrix P-j_ is to effect rowwise permuta

tion hence it should result in

H = h

or i "% [i/Mj = [i4f2] ... (4.44)

This can be achieved by taking

is « (iX - ii)

= i- M^i/Mj - [i/M2] ... (4.45)

Since i-, repeats itself with a period of Mn hence i
* is

should be taken modulo M-,. This gives

_s a (i-Mi [i/Mj-ti/Mg]) modulo Mx ... (4.46)

This equation alongwith Eq. (4.37) suggests that the

proportionality constant should be M2 and hence

_s «• M2 (i-[i/M2]) modulo K± ... (4.47)

The location of ones in the permutation matrix Px are

(i,(i+M2(i-[i/M2]) modulo n±) modulo Mx M2)

... (4.48)
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Thus the permutation matrices P1 and P2 are com

pletely defined with the help of Eqs. (4.48) and (4.43)

respectively. The two matrices p]_ and P2 would be equal
if A and B are square matrices.

Example Let A and B be two square matrices of orders

two and three respectively and given as

A =

B =

Then

a(0,0) a(0,l)
a(l,0) a(l,l)

b(0,0) b(0,l) b(0,2)
b(l,0) b(l,l) b(l,2)
^(2,0) b(2,l) b(2,2)

a(0,0)b(0,0) a(0,0)b(0,l) a(0,0

a(0,l

a(0,0

a(0,l

a(0,0

a(0,l

a(l,0

a(l,l

a(l,l

a(l,l

a(l,0

a(l,l

b(0,2

b(0,l

b(l,2

b(l,l

b(2,2

13(2,1

b(0,2

b(0,l

b(l,2

b(l,l

^(2,2

b(2,l

a(0,l)b(0,0

a(0,l)b(0,2

a(0,l)b(l,0

a(0,l)b(l,2

a(0,l)b(2,0

a(0,l)b(2,2

a(l,l)b(0,0

a(l,l)b(0,2

a(l,l)b(l,0

a(l,l)b(l,2

a(l,l)b(2,0

a(l,l)b(2,2

a(0,0)b(l,0) a(0,0)b(l,l)

a(0,0)b(2,0) a(0,0)b(2,l)

a(l,0)b(0,0) a(l,0)b(0,l)

a(l,0)b(l,0) a(l,0)b<l,l)

a(l,0)b(2,0) a(l,0)b(2,l)

J
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a(0,0)b(0,0) a(0,l)b(0,l) a
a

a(l,0)b(l,0) a(l,l)b(l,l) a
a

a(0,0)b(2,0) a(0,l)b(2,l) a
a

a(l,0)b(0,0) a(l,l)b(0,l) a
a

a(0,0)b(l,0) a(0,l)b(l,l) a
a

a(l,0)b(2,0) a(l,l)b(2,l) a
a

(0,0)b(0,2
(0,0)b(0,l

(l,0)b(l,2
(l,0)b(l,l

(0,0)b(2,2

(0,0)b(2,l

(l,0)b(0,2
(l,0)b(0,l

(0,0)b(l,2
(0,0)b(l,l

(l,0)b(2,2

(l,0)b(2,l
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a(0,l)b(0,0
a(0,l)b(0,2

a(l,l)b(l,0

a(l,l)b(l,2
a(0,l)b(2,0

a(0,l)b(2,2

a(l,l)b(0,0

a(l,l)b<0,2
a(0,l)b(l,0

a(0,l)b(l,2

a(l,l)b(2,0

a(l,l)b(2,2

The locations of ones in the permutation matrix Pi of

order six are listed below:

Row of matrix p,

0
1

2

3
4
5

0

3
0

0

3
0

Column of matrix P,

0

4
2

3
1

5

i.e., the locations (0,0), (1,4), (2,2), (3,3), (4,1) and

(5,5) in matrix Vj_ would have entries l's and rest of

the locations would have entries O's.

Similarly the locations of ones in the permutation

"matrix P2 of order six are listed below:

Column of matrix P,

0

1

2

3
4
5

3s

0

3
0

0

3
0

row of matrix P,

0

4
2

3
1

5
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i.e., the locations (0,0), (1,4), (2,2), (3,3), (4,1)
and (5,5) in matrix P2 would have entries i's and rest
of the locations would have entries 0's. Thus

P-L=P2 =

1

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

It can be easily verified that

C = P,
c xl ;k P2

-1Ck =^ cc

0

0

0

0

0

1

4.3 RELATION BETWEEN CHINESE-KRONECKER AND
KRONECKER-CHINESE PRODUCTS

It has been stated in section (4.1) that matrices

resulting from Kronecker-Chinese product and Chinese-

Kronecker product of two matrices, if defined, are the

permuted versions of the matrix obtained by Kronecker

product of the same two matrices. It implies that the

matrices obtained by Kronecker-Chinese product and

Chinese-Kronecker product of two matrices, if defined,

are the rowwise and columnwise permuted versions of each

other. It should thus be possible to obtain one from the

other by premultiplication and postmultiplication with

suitable permutation matrices P-j_ and Pp. In what follows
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expressions would be derived for permutation matrices

P-L and P2 of suitable dimensions which are defined by

Ckc " pl °ck P2 ... (4.49)

ck rl °kc p2 ... (4.50)

Since the matrices Px and P2 are to effect rowwise
and columnwise permutation respectively these matrices

would have only a single one in each row and each column,
rest of the elements being zero. Further, Px and P?
would be square matrices of order Mx M2 and Nx N2 res
pectively. A change in dummy variables in Eqs. (4.28)
and (4.29) would give

and

cck(i,3) = a(i1,31)b(i2 ,j2) ... (4.5i)

i - ii modulo M,

l2- i2 nodul° M2 .'. (4.52)
4 - •' _- •'3 - 32 + N2 31

Prom Eq. (4.25) one can write

i2 = i- M2 [i/H2]

h m 3- % [3/%]

02 * 3- N2 [3/N2]

... (4.53)



Similarly from Eq. (4.52)

h - i- % [i/py

i2 - i- M2 [i/M2]

h - [3/N2]

4 • 3- N2 [j/N2]

where [x/y] stands for integer part of (x/y). From
Eqs. (4.53) and (4.54) it is clear that

i? • ±0 for all i•2 " x2

1

32 = 32 for all 3

and hence

b(i2,j2) . p(i*# j') for an i^ ^ (^56)

This would imply that b(i2,J2) part of <5kc(i,3)
is element by element equal to b^ ,^) part of
cck(i»3). But the corresponding a(i1,j1) of a. (1,3)
is not necessarily equal to the corresponding a(i^,j.[)
of Cok^i^). So tne Permutation matrices P, and P
should be such that they permute the elements of the

matrix Cck =A 9Qk Bin such a way that the resulting
permuted matrix is equal to the matrix C, = A 9 B

kc kc

The permutation matrix P2 which is a square matrix
of order N^,, with precisely one element a one in each

row and each column, rest of the elements being zero,

106

.. (4.54)

... (4.55)
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should have ones at locations «W-) moAulo ^ #̂

The permutation matrix Pl which is a square matrix
of order M-^ with precisely one element aone in each
row and each column, rest of the elements being zero,
should have ones at locations

(i, (i+ig) modulo K± M2).

The permutation matrices Px and ?2 are completely
defined if expressions for ifl and jg are obtained in
terms of known parameters.

Proceeding as in Section (4.2) one gets

ig = M2 (U/Mp] -i) modulo Mx ... (4.57)
and

3"a = »2 (J- [3/N2]) modulo ^ ... (4.58)

The locations of ones in the permutation matrix P1 are

(i, (i+M2([i/M2] -i) modulo M1)modulo Mx M2)

... (4.59)

The locations of ones in the permutation matrix p,

((3+N2(3-[j/N2]) modulo N-^ modulo N^, 3)

... (4.60)

Thus the permutation matrices Px and P2 are comp
letely defined with the help of Eqs. (4.59) and (4.60)

2 are
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respectively.

Example Let A and B be two matrices of dimensions

3 x 5 and 4 x 2 respectively and given as

A m

B

a(0,0) a(0,l) a(0,2) a(0,3) a(0,4)
a(l,0) a(l,l) a(l,2) a(l,3) a(l,4)
a(2,0) a(2,l) a(2,2) a(2,3) a(2,4)

V-

b(0,0)

*(l#0)

*(2,0)

M3,0)

M0,1)

b(l,l)

b(2,l)

*(3,1) J

'J

Then

The locations of ones in the permutation matrix

Px of order 12 are listed below:

Row of matrix p.
s

0 0

1 8

2 4

3 0

4 0

5 8

6 4

7 0

8 0

9 8

10 4

11 0

Column of matrix P,

0

9

6

3

4

1

10

7

8

5

2

11
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ck
B

a(0,0)b(0,0 ) a(0,0)b(0,l) a(O,l)b(O,0

a(0,3)b(0,0

) a(0,l)b(0,l)

) a(0,3)b(0,l)
a(0,2)b(0,0)

a(0,4)b(0,0)

a(0,2)b(0,l) "
a(0,4)b(o,l)

a(l,0)b(l,0 ) a(l,0)b(l,l) a(l,l)b(l,0

a(l,3)b(l,0

) a(l,l)b(l,l)

) a(l,3)b(l,l)
a(l,2)b(l,0)

a(l,4)b(l,0)
a(l,2)b(l,l)

a(l,4)b(l,l)

a(2,0)b(2,0 ) a(2,0)b(2,l) a(2,l)b(2,0

a(2,3)b(2,0
) a(2,l)b(2,l)

) a(2,3)b(2,l)

a(2,2)b(2,0)

a(2,4)b(2,0)
a(2,2)b(2,l)

a(2,4)b(2,l)

a(0,0)b(3,0 ) a(0,0)b(3,l) a(0,l)b(3,0

a(0,3)b(3,0

) a(0,l)b(3,l)

) a(0,3)b(3,l)

a(0,2)b(3,0)

a(0,4)b(3,0)
a(0,2)b(3,l)

a(0,4)b(3,l)

a(l,0)b(0,0 ) a(l,0)b(0,l) a(l,l)b(0,0

a(l,3)b(0,0]

) a(l,l)b(0,l)

> a(l,3)b(0,l)
a(l,2)b(0,0)

a(l,4)b(Q,0)

a(l,2)b(0,l)

a(l,4)b(0,l)

a(2,0)b(l,0]) a(2,0)b(l,l) a(2,l)b(l,o;

a(2,3)b(l,o;

1 a(2,l)b(l,l)

a(2,3)b(l,l)
a(2,2)b(l,0)

a(2,4)b(l,0)
a(2,2)b(l,l)

a(2,4)b(l,l)

a(0,0)b(2,0;1 a(0,0)b(2,l) a(0,l)b(2,0]

a(0,3)b(2,0]

a(0,l)b(2,l)

a(6,3)b(2,l)
a(0,2)b(2,0)

a(0,4)b(2,0)
a(0,2)b(2,l)

a(0,4)b(2,l)

a(l,0)b(3,o;1 a(l,0)b(3,l) a(l,l)b(3,o;

a(l,3)b(3,o;

a(l,l)b(3,l)

a(l,3)b(3,l)

a(l,2)b(3,0)

a(l,4)b(3,0)
a(l,2)b(3,l)

a(l,4)b(3,l)

a(2,o)b(0,0) a(2,0)b(0,l) a(2,l)b(0,0)

a(2,3)b(0,0)

a(2,l)b(0,l)

a(2,3)b(0,l)
a(2,2)b(0,0)

a(2?4)b(0,o)
a(2,2)b(0,l)

a(2,4)b(0,l)

a(0,0)b(l,0) a(0,0)b(l,l) a(0,l)b(l,0)

a(0,3)b(l,0)

a(0,l)b(l,l)

a(0,3)b(l,l)
a(0,2)b(l,0)

a(0,4)b(l,0)
a(0,2)b(l,l)
a(0,4)b(l,l)

a(l,0)b(2,0)

a(2,0)b(3,0)

a(l,0)b(2,l)

a(2,0)b(3,l)

a(l,l)b(2,0)

a(l,3)b(2,0)

a(2,l)b(3,0)
a(2,3)b(3,0)

a(l,l)b(2,l)

a(l,3)b(2,l)

a(2,l)b(3,l)
a(2,3)b(3,D

a(l,2)b(2,0)

a(l,4)b(2,0)

a(2,2)b(3,0)
a(2,4)b(3,0)

a(l,2)b(2,l)

a(l,4)b(2,l)

a(2,2)b(3,l)
a(2,4)b(3,l)„

H
O
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a(0,0)b(0,0) a(0,l)b(0,l)

a(0,0)b(l,0) a(0,l)b(l,l)

a(0,0)b(2,0) a(0,l)b(2,l)

a(0,0)b(3,0) a(0,l)b(3,l)

a(l,0)b(0,0) a(l,l)b(0,l)

a(l,0)b(l,0) a(l,l)b(l,l)

a(l,0)b(2,0) a(l,l)b(2,l)

a(l,0)b(3,0) a(l,l)b(3,0)

a(2,0)b(0,0) a(2,l)b(0,l)

a(2,0)b(l,0) a(2,l)b(l,l)

a(2,0)b(2,0) a(2,l)b(2,l)

a(2,0)b(3,0) a(2,l)b(3,l)

a(0,2)b(0,0
a(0,l)b(0,0

a(0,2)b(l,0

a(0,l)b(l,0

a(0,2)b(2,0

a(0,l)b(2,0

a(0,2)b(3,0

a(0,l)b(3,0

a(l,2)b(0,0

a(l,l)b(0,0

a(l,2)b(l,0

a(l,l)b(l,0

a(l,2)b(2,0

a(l,l)b(2,0

a(l,2)b(3,0
a(l,l)b(3,0

a(2,2)b(0,0

a(2,l)b(0,0

a(2,2)b(l,0

a(2,l)b(l,0

a(2,2)b(2,0

a(2,l)b(2,0

a(2,2)b(3,0

a(2,l)b(3,0

a(0,3)b(0,l)

a(0,2)b(0,l)

a(0,3)b(l,l)

a(0,2)b(l,l)

a(0,3)b(2,l)

a(0,2)b(2,l)

a(0,3)b(3,l)

a(0,2)b(3,l)

a(l,3)b(0,l)
a(l,2)b(0,l)

a(l,3)b(l,l)

a(l,2)b(l,l)

a(l,3)b(2,l)

a(l,2)b(2,l)

a(l,3)b(3,l)

a(l,2)b(3,l)

a(2,3)b(0,l)

a(2,2)b(0,l)

a(2,3)b(l,l)

a(2,2)b(l,l)

a(2,3)b(2,l)

a(2,2)b(2,l)

a(2,3)b(3,l)
a(2,2)b(3,l)

a(0,4)b(0,0)

a(0,3)b(0,0)

a(0,4)b(l,0)

a(0,3)b(l,0)

a(0,4)b(2,0)
a(0,3)b(2,0)

a(0,4)b(3,0)

a(0,3)b(3,0)

a(l,4)b(0,0)
a(l,3)b(0,C)

a(l,4)b(l,0)

a(l,3)b(l,0)

a(l,4)b(2,0)

a(l,3)b(2,0)

a(l,4)b(3,0)

a(l,3)b(3,0)

a(2,4)b(0,0)

a(2,3)b(0,0)

a(2,4)b(l,0)

a(2,3)b(l,0)

a(2,4)b(2,0)

a(2,3)b(2,0)

a(2,4)b(3,0)

a(2,3)b(3,0)

a(0,0)b(0,l)
a(0,4)b(0,l)

a(0,0)b(l,l)
a(0,4)b(l,l)

a(0,0)b(2,l)

a(0,4)b(2,l)

a(0,0)b(3,l)
a(0,4)b(3,l)

a(l,C)b(0,l)

a(l,4)b(0,l)

a(l,0)b(l,l)
a(l,4)b(l,l)

a(l,0)b(2,l)
a(l,4)b(2,l)

a(l,0)b(3,l)
a(l,4)b(3,l)

a(2,0)b(0,l)

a(2,4)b(0,l)

a(2,0)b(l,l)
a(2,4)b(l,l)

a(2,0)b(2,l)
a(2,4)b(2,l)

a(2,0)b(3,l)
a(2,4)b(3,l)

-I
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i.e., the locations (0,0), (1,9), (2,6), (3,3), (4,4),
(5,1), (6,10), (7,7), (8,8), (9,5), (10,2) and (11,11)
in matrix Px WOuld have entries li and rest of the loca
tions would have entries Op.

Similarly the locations of ones in the permutation
matrix P2 of order 10 are listed below:

Column of matrix P,
t

0

1

2

3

4

5

6

7

8

9

3

0

2

2

4

4

6

6

8

8

0

s row of matrix P,
i

0

3

4

7

8

1

2

5

6

9

i.e., the locations (0,0), (1,5), (2,6), (3,1), (4,2)
(5,7), (6,8), (7,3), (8,4) and (9,9) would have entries
l'S and rest of the locations would have entries 0* .
The permutation matrices J>± and P2 can now be written
as



Pl =

and

P2 =

L

r 100000000000
000000000100

ooooooiooooo

oooioooooooo j
ooooiooooooo

oioooooooooo

000000000010

oooooooioooo

OOOOOOOOIOOO

000001000000

ooiooooooooo

000000000001

1000000000

oooooioooo

0000001000

0100000000

0010000000

0000000100

0000000010

0001000000

ooooiooooo

0000000001

It can be easily verified that

°kc = ?! 0ck P2

112

1



and C , = p_1 p t>"~1
ck *1 Ckc P2
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4.4 PERMUTATION PROPERTIES OP CHINESE AND
KRONECKER PRODUCTS OP DPT KERNELS

It has been pointed out in earlier sections that

the matrices obtained by Kronecker product and Chinese
product of two component matrices of proper dimensions

can be obtained from each other by premultiplication and

post-miltiplication with suitable permutation matrices.

Moharir [41] has reported relation between the DPT of

Chinese product of two one-dimensional sequences and the

DPTs of the two individual one-dimensional arrays. In

this section some more results would be obtained wherein

the transform samples of higher order system would be

related to transform samples of component lower order

systems.

Let x-l and x2 be given as

xx = x1(m1) , mx = 0,1,2,...^-! ... (4.a)

x2 = x2(m2) , m2 == 0,1,2,...,M2-1 ... (4.62)

be any two one-dimensional input signal sample sequences
and that Mx, M2 are coprimes. Further let y,, y be

M-j-term and M-term DPTs of discrete sequences xx and x2
respectively where
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yl = yi(nl) » nl = 0,1,2,...^-! ... (4.63)

y2 = y2(n2) , n2 = 0,1,2,...,M2-1 ... (4.64)

Moharir [41] has reported that

1) The M1 M2-term DFT of a sequence which is obtained

by Chinese product of the sequences Xi and x2 is

equivalent to the sequence which results from the

Chinese product of yi modularly permuted by operator

P(§^4j) and y2 modularly permuted by operator P(a,M2),
where a and p are related to Mn, M2 as

a Mi + p M2 = 1 ... (4.65)

It has been shown that a and p would be coprimes.

2) The output obtained in the above scheme is also

equivalent to the sequence obtained by Chinese pro

duct of y.j_ and y2 and modularly permuting this sequ

ence by operator P(y, M^Mg), where y is given as

y 5 P modulo M1
... (4.66)

• a modulo M2

4) The sequence obtained by Chinese product of xi

modularly permuted by operator P(a,M,) and x2

modularly permuted by operator P(e, M2) is equiva

lent the sequence obtained by Chinese product of

x-j_ and x2 and modularly permuting this sequence by
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operator J(y, M^), where y is given as

Y 5 a modulo M-j_
... (4.67)

5 e modulo M2

4) The M1M2-term DFT of the sequence obtained in (3)
above is equivalent to the sequence obtained by

Chinese product of y± and y2 and modularly permut
ing this sequence by operator P(tj,M1.M2), where
r) is given as

where

and

n. • AY ... (4.68)

A = b modulo M-,
*1

d modulo Mn

... (4.69)

ab • 1 modulo M-l ... (4.70)

e d • 1 modulo M2 ... (4.71)

It has been reported that a, M2 and p, M-, would
also be coprimes. The results summarized above have been

illustrated in Fig. 4.1. in what follows some of the

results of Moharir [41] would be extended to get some

new results.

Since yx, y2 are M-term and M2~term DFTs of x1
and x2 respectively hence
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* MjMg-TERM DFT

*2 » M2-TERM DFT MODULAR
PERMUTATION BY p

M, -TERM DFT

MODULAR

PERMUTATION BY a

MODULAR

PERMUTATION BY e

• .

(a)

9.

MODULAR
PERMUTATION BY p

(b)

•>—•

MODULAR

PERMUTATION BYY

MjMg-TERM DFT

MODULAR
PERMUTATION BY T)

PIG. 4.1 r EQUIVALENCE AMONG SYSTEMS WITH SMALLER
AND LONGER INPUTS
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-JL j2itm, n,
yl(ai) =J^x^m^axp ( g*-*) m1,n1 =0,1,2,..^-1

... (4.72)
and

Mo-1' _£. 32rm?n9y2(n2) =I-=ox2(m2)exp (-y^) m2,n2 =0,1,2,.. ,M2~1

... (4.73)

Consider the scheme given in Fig. 4.2. If y(n) be the

Chinese product of sequences y^n-^ and y2(n2) then

y(n)= yi(ni) y2(n2) n = oa^m.mM^-i

... (4.74)
where

n 2 n-^ modulo M-,

2 n2 modulo M2
... (4.75)

Substituting for y1(n1) and y2(n2) in Eq. (4.74) gives

M-,-1 . „ M„-l. , 1 , . 327im1n1 "2 x D2imuruy(n) = H x1(B1)exp ( g +) E x (m )exp ( 2 2)
m-^0 A ul m2=0 * * H2

M, -1 M„-l

=2-. A- xi(mi)x2 (m2)exp [3"27i (-M +-if-2-)]
ml=0 m2=0 al M2

MjM^-1
\'" m, n-, m9n9

g > x(m)exp [j2*(«f-* + "fl-*}3 ...(4.76)
m=0 x z
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V (n)

af(n,»)

FIO. 4.7 a CHMBSB PRODUCT OF SEQUENCE TRANSFORMED
BY XERHBL OBTAINED BY CHINESE PRODUCT
OF DFT KBRWns?
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m 5 m-^ modulo M-,
... (4.77)

2 m2 modulo M2

m = 8 n^Mg + a m^ ... (4.78)

Next consider the scheme given in Fig. 4.3. If Bi and

S2 are the M-term and M2~term DFT kernels given as

j2Xn1m151 = [S1(n1,m1)] =[exp ( M^ X)]
^,1^=0,1,2,...,M-j-1 ... (4.79)

and
327tn0m052 = [S2(n2,m2)] » [exp( g 2 2)]

n2,m2=0,l,2,...,M2-l ... (4.80)

Then the Chinese product of Si and S2 is given by

S " Sl ®c S2 = Cs(n'm)] ••• (4.81)

or, S(n,m) m S1(n1,m]L) S2 (n2,m2) ... (4.82)

where

n g nj modulo M-^

" n2 modulo M2
and

a Z m-^ modulo M-,

2 m2 modulo M2

Substituting S-L(n1,m1) and S2(n2,m2) in Eq. (4.82) gives
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S(n,m) «exp [J2m (-2U: +-^)] ... (4.83)
The two-dimensional array given by Eq. (4.81) represents

MXM2-term kernel. If x(m), a sequence resulting from

Chinese product of sequences Xj^ and x2, be subjected to
this M^-term kernel then the output y'(n), n = 0,1,2,...,
MiM2 would be

M1MC-1
t . . i 2 n.,m, n0m0

y (») - J. x<m>exP C3"2* ("F^ +-f-2)] ... (4.84)
at=0 x 2

= y(n)

It can thus be stated that the sequence obtained by Chinese

product of M-j^-term DFT of xx and M2~term DFT of x2 is
equivalent to the output of a system the input to which

is the sequence resulting from the Chinese product of x-,

and x-> , and the MiM2-term transformation kernel is the

two-dimensional array resulting from the Chinese product

of M-term DFT kernel and M2~term DFT kernel. In a similar

way one can prove the following :

1) The sequence resulting from Kront-cker product of

M-term DFT of x± and M2-term HT of Xg is equivalent

to the output of a system the input to which is the

sequence resulting from the Kronecker product of

xi and X2 , and the M-jM^tcrn transformation kernel

is the two-dimensional array resulting from the

Kronecker prodict of M-term DFT and M2-term HT.

This has been illustrated in Fig.4.4.
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x^) M-TERM DFT

*2(m2) * M2-TERM HT

ei(nl>ml)
^2^n2'm2^

Xl (»»1)—J

x2(-2)"

*VVml>
S2(n2,«2)

• Sk(n,«)

FIG. 4.4 j SOMI BQUlVAtfiNT SCHBMBB WITH KRONECKER PRODUCTS

Mj-TERM DPT

M2-TBHM HT

3e(«,»)

FIG.4.5 : BOMB EQUIVAMWT SCHEMES WITH CH1WBSE W0DVCT2
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2) The sequence resulting from the Chinese product
of M1-term DFT of x± and Mg-term HT of x2 is
equivalent to the output of a system the input

to which is the sequence resulting from the

Chinese product of xi and x2 , and the M^-term
transformation kernel is the two-dimensional array

resulting from the Chinese product of Mx-term DFT
and M2-term HT. This has been illustrated in

Pig. 4.5,



CHAPTER - 5

SYNTHESIS OF TRANSFORM KERNELS

5.1 HADAMARD ARRAYS

A square matrix is an orthogonal matrix if its

transpose and inverse are equal except for a constant

factor. In an orthogonal matrix:

a) The sum of the sequares of all the elements of any
of its rows is equal to unity, i.e., the normaliza

tion is done to unity. The normalization can be

done to any other number.

b) the sum of the products of the corresponding elements
of any two distinct rows is zero.

c) the value of its determinant is equal to + 1.

A matrix that is inverse to an orthogonal matrix

will itself be orthogonal. The product of orthogonal

matrices is an orthogonal matrix.

A Hadamard matrix is a matrix with entries + 1

and whose row vectors are orthogonal.

Hadamard matrix of rank 1 is H-, = [1]

Hadamard matrix of rank 2 is H? = 1 1

For all practical purposes H2 is considered as
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the basic Hadamard matrix. Hadamard matrices of ranks

equal to integer powers of two can be obtained by

Kronecker products of Hadamard matrices of proper lower

ranks. The name Hadamard matrix comes from the fact that

its determinant satisfies Hadamard's determinant theorem

with equality. This theorem states that if

X = ^-xii^ is a na-trix of order N then3

3

dot X R a
2

If H is a Hadamard matrix of order h and normalized

to h then

\ Ta) H H = h Ih where Ih is identity matrix of
ord er h.

b) det H = hh/2

c) H HT = HT H

d) it may be changed into other Hadamard matrices by

rowwise permutation, columnwise permutation and

multiplication of rows and columns by -1. The

matrices thus obtained are termed as H-equivalents.

It is known that not all the matrices of the same

order are H-equivalemts.

Every Hadamard matrix is H-equivalent to a Hadamard

matrix which has all the elements of its first row and
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firs*, column as 1. Matrices of the latter form are

called 'normalized', if an Hadamard matrix exists,

its order must be 1,2 or 4 N. But Hadamard matrices

of order 4N are not known for all values of N. That

an Hadamard matrix of order 4N must exist for every N

is neither proved nor disproved yet. If H is a nor

malized Hadamard matrix of order 4N then its every row

Column) except the first has 2N -l's and 2Nl«s. Further
N -l's in any row (column) overlap with N -l's in each

other row (column). A good amount of literature deal

ing with construction of Hadamard matrices from Hadamard

arrays ±s available. A brief review of such literature

is conducted in Appendix A.

Hadamard matrices derived from Hadamard arrays

can have good application in Hadamard spectrometry [34].

5.2 PARTITIONED MATRIX KRONECKER PRODUCT METHOD

Let A be a matrix of dimension M-jm x N^n. This

is partitioned rowwise and columnwise to give M-.N-. sub-

matrices, Ad^) ±1 „0,1,2,...^-! and ^ =0,1,2,.,.,
N-^-l of dimension m x n each.

A = [A(i1,31)] x 1
3X = 0,1,2,...,^-!

... (5.1)
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A(0,0) A(0,1) A(0, 3i) ... 4(0 'Nl--1)

A(1,0) A(l,l) A(l,>3*x) ... 4(1.*1'-1)

»

•

m

A(iir0) A(i1,l) A(ii,3x) A^,^-!)

A(MX-1,0) A(M1-1,1)
t •. ^(M-l-I,^) ... A(M1-1,N1-1)

... (5.2)

A(il»3i) represents a submatrix of dimension mx n at
the ^ partition along the row and j^h partition along
the column.

AfcjfJjJ = [Afmij+x, nj1+l)] x = 0,1,2,.

1 = 0,1,2,.

. ,m-l

.,n-l

. (5.3)

Let B be amatrix of dimension nM2 x pN2. This is
partitioned rowwise and columnwis

matrices of dimension n x p each.

B = [B(i2,d2)]

partitioned rowwise and columnwise to give M N

32 = 0,1,2,...,N0-1
i2 = 0,1,2,...,M2-1

2

.. (5.4)
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B(0,0)

B(1,0)
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B(0,1) ... B(0,j2) ... B(0,N2-1)

B(l,l) ... B(l,j2) ... B(1,N2-1)

B(i2,0) B(i2,l) ... B(i2,j2) ... B(i, N0-l)

B(M2-1,0) B(M2-1,1) ... B(M2-l,3-?) ... B(M5-1,N01)
l2 *'"2"

... (5.5)

B(i2#J2) represents the submatrix of dimension n x p at
i2 partition along row and ;j2h partition along the
column.

B(i2,j2) = [b(ni2+l, pj +y)] * = 0,1,2,...,n-l
y = 0,1,2,...,p-l

... (5.6)

If Kronecker products is taken of matrices A and

B treating the submatrices A(i1,j1) of dimension mxn and

submatrices B(i2,j2) of dimension nxp as elements and

the resulting matrie C is written

o-iod.,)] *-°t* 5M3 = 0,1,2,..,,^^-!

... (5.7)
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then C(i,j) would be submatrices of dimensi
given as

cnsion mxp and

o(i,d) = li^ij) B(i ,j ) .-. (5.8)

wher*

1 = i2 + M2 ix

Do + NQ j
... (5.9)

2 dl

The resulting matrix C can be written a

0(0,0)

0(1.0)

0(0,1)

0(1,1)

0(0,j)

0(1,3)

.. 0(0,^^-1)

.. Cfl^Ng-l)

0(1,0) C(i,l) ... c(i,D-) ... C(i,N^N2-l)

C(E1M2-1,0)C(M1M2-1,1)...C(M1M2-Ifo)... C(M^-l^-l)

... (5.10)

The dimension of the matrix C would be mM^M x pN. N
In what follows it would be shown that if A and B are

orthonormal matrices then the matrix C would also be

orthonormal. Thus a procedure has been proposed to

obtain an orthonormal kernel of higher order starting

with orthonormal kernels of lower orders.
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C(i,;j) - A(i1,j1) B(i2,j2)

= [a(mi1+x,nj1+l)] [b(ni2+i,pj2+y)]
n-l

=Sb a(mil+x'n3l+*) b(ni2+i,pj2+y)] ,
x = 0,1,2,...,m-l

„ r, -, •»• (5.H)y = 0,1,2,...,p-l

If the matrix A is orthonormal it satisfies

N^n-1

^> a(mi1+^t) a^mi-J+x'^)
t=0

• bmi^Xtml^x'

«0 if i^i^x^x'

=1if ^jw

... (5,12)

Similarly if the matrix Bis orthonormal it satisfies

N2P-1
V~b(ni +l)v) b*(ni'+l,v) * 6 . • .
v=0~ ni2+l ,ni2+l

= 0 if i2^i2ll'^i

* 1 if i2=i2,3r,=i

... (5.13)

The matrix C can be also be written as
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C= [c(l,j)] X= V'1'2 =«iM2-l
J = 0,1,2,...,pNxN2-l

... (5.14)

The indices I and J can alternatively be expressed as

I • i-jm M2+i2m+x
... (5.15)

J = o"iP #2+3*2P+y

The matrix C would be orthonormal if it satisfies

pNnN2-l

J=0

c(l,j) c*(l, j) = 6T _•

' . ' » il-j_ mM2+i2r

Now

where I = in mM„+i0m

PN,N2-1
c(I,J) c*(l, J)

J=0

• 0 if I^l'

= 1 if 1=1'

... (5.16)

P^l n-l n«i
= «-Z! C21 a(mi1+x,±)b(nip+i,y)] [ £ a^mi'+x',!)

y=0 1=0 - 1=0

b*(ni2+l,y)]

a(min +x,3
y=o ±=o

fl n-l

[ JT a(mi1+x,l)b(ni9+i,p+y)]
iT—r\ =••—n -1- c •. . -

n-l

CH a*(mi1+x ,±)b*(ni'+t,p+y)]
±=0 «'•;•.
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Ezl n-l
[ JZ a(mi1+x,±)b(ni +±,(N2-l)p+y)]-2--r\«2

y=0 ±=0
n-l

[ Jr a*(mi1+x ,±)b*(ni'+±,(N -l)p+y)] ]
1=0 - ' '2~"-2

[ II a(mi,+x,n+±)b(ni +l,yj ]
y=0 1=0 x 2

n-l , , t
C J~ a*(mi,+x,n+l)b*(ni0+l,y)]

i=0 *

2ZL ^Z1
+ L [ Z. a(mi1+x,n+±)b(ni?+i,p+y)]

y=0 1=0 x z

+ ,

n-l

C 21 a*(mi,+x,n+x)b*(ni0+l,p+y)]
1=0 Z J

1 n-l

EXI a(mi-,+x,n+±)b(ni9+±,(N0-l)p+y)]
y=0 5=0 x d 2

[£1[a*(mi^+x;n+l)b*(ni2+3:,(N2-l)p+y)]]]
1- o

♦ £

+

fl n-l

[ Z a(mi1+x,(N1-l)n+l)b(ni +±,y)]
y=0 1=0 * *

n-l , , ,
[ II a*(mi1+x,(N1-l)n+i)b*(ni9+x,y) ]

1=0 • £ J

EZ1 $-1
+ Z [I a(mi1+x,(N1-l)n+l)b(ni +l,p+y)]

y=0 1=0 x d

n-l
,» i• miii ii w if ' \r a

[ y_ a (mi1+x,(N1-l)n+i:)bi;ni2+lr,p+y)]
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£l n-l

y=

L-l

Hz
£=0 "2

... (5.17)

CKL n-l

+y=0 [£0a(mil+x'(Nl"1)n+i)b(ni2+i^N2~1)p+y)3

Ĉ a*(mii+xi(N1-l)n+±)b*(ni2+l,(N -l)p+y)]]

[s0+s1+...sN -xMsjj +.-.+S2JJ _!]+...+[&

+SN

+ i

NXN2-N2

1N2-«++i+-*»'*^1jr2-.i] ••• (5-18)

The right hand side consists of N^N terms and
each terms represents the sum of products of p corres

ponding elements of rows I and i' of the matrix C. "

[s0+s1+...+sN2_1]

= [a(mi1+x,0)a*(mi;[+x>Q)[b(ni2+o,0)b*(ni2-K),0)
+b(ni2+0,l)b*(ni2+0,l)+..,+b(ni2-K),N2p-l)

b*(ni2+0,N2p-l)]

+a(mi1+x,O)a*(mi-j_+xU)[b(ni2-HD,O)b*(ni2+l,0)tb^t2+O,l)
b*(ni2+l,l)+...+b(ni240,N2p-l)b*(ni2+l,N2p-l)]

+a(mi1+x,0)a*(mi1+x,n-l)[b(ni2+0,0)b*(ni2+n-l,0)+b(ni2+0,l)
b*(ni2+n-l,l)+...+b(ni2+0,N2p-l)b*(ni2+n-l,

H2P-1)]
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+Ea(mi1+x,l)a*(mi][+x,| 0)[b(ni2+l,o)b*(ni2+o,o)+b(ni2+l,i)
b*(ni240,l)+...+b(ni2+l,N2p-l)b*(ni2+0,N2p-l)]

+a(mi1+x,l)a*(mi^+x;i)[b(ni2+l,o)b*(ni2+l,o)+b(ni2+l,l)
b*(ni2+l,l)+...+b(ni2+l,N2p-l)b*(ni2+l,N2p-l)]

+
i
i
t
i

+a(mi1+x,l)a*(mi;[+xln-l)[b(ni2+l,o)b*(ni2+n-l,o)+b(ni +1,1)
b*(ni2+n-l,l)+...+b(ni2+l,N2p-l)b*(ni2+n-l,

N9p-1)]

+
i
t

+U(mi1+x,n-l)a*(mi:J_+x,,0)[b(ni2+n-l,0)b*(ni2+0,0)
+b(ni2+n-l,l)b*(ni2+0,l)+...+b(ni2+n-l,N2p-l)

b*(ni2+0,N2p-l)]

+a(mi1+x,n-l)a*(mi-[+x,l)[b(ni2+n-l,0)b*(ni2+l,0)+b(ni2+n-l^L)
b*(ni2+l,l)+...+b(ni2+n-l,N2p-l)b*(ni2+l,

N2p-1)]

+a(mi1+x,n-l)a*(mi;[+x',n-l)[b(ni2+n-l,0)b*(ni2+n-l,0)
+b(ni2+n-l,l)b*(ni2+n-l,l)+...+b(ni2+n-3,N2p-l)

b*(ni2+n-l,N2p-l)]
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=a(mi1+x,0)[a*(mi1+x;o)6ni2,ni2+a*(mi][Wc^6ni2,ni»+i+##

..+a*(nda+x,n-l)6ni2,ni2+n-l]
r i

+a(mi1+x,l)[a*(mi1+x,0)6ni2+l,ni^+a*(mi:[+x;i)6ni +l,ni:+l+..

+
i
i
t
i

» i

.+a (mi1+x,n-l)6ni?+l,ni?+n-l]

» i

+a(mi1+x,n-l)[a*(mi1+x,0)6ni2+n-l,ni2+a*(mi:[+x;i)
i i

6ni2+n-l,ni2+l+-••+a*<mil+x'n~1)6ni2+n-l,
ni2+n-l]

n-l

ma(mi1+x,0) JJ a*(mi1+x,l)61=0 ni2,ni2+l

n-l
i i

+ aCmi^+x,!) T a*(mi-,+x,i)6„. .1 .»,x=0 1 ni2+l,ni2+l

+ +
1
1
1 n-l+aUi+x,n-l)roa*K+x;i)6ni2+n_1>ni^
n-l n^.1

~0
. eo«(^«,i') c|:-*K«:i)«nl9+il,nl'+i]

.—2-

... (5.19)

pNjNg-1

r=o

c(i,j) c*(i;j)

h* n-l n-l

~ 2Z [ ZI a(»l1+x,<tn+i*)[ XT a*(mi1'+xlqn+l)
q=0 l'=0 x feo x

6„,ni2+l',ni2+£] ] ... (5.20)
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i_ n-l n-1
" qS [ |r=0 a(nil+x»4n+x')[ £ a^mi^+xjqn+l) ]

... (5.21)
if B is orthonormal

i.e. i2 = i2 , 1 . ±

= 0 if Bis not orthonormal i.e. ig ^ x' or 1 ^ i

pN^-l Ni-i
2J c(I,J)c*(i;j) . J~ [ y^a(mi1+x,qn+l )

a*(mi1+x,qn+l ) ] if B is orthonormal
nBj-1

a(mi1+x,t)a*(mi;[+xit)

where t = qn+ir

= 6 . . ' imi1+x,mi1+x

~ -L if A is also orthonormal i.e.
. » t

xl • i^f* = *

= 0 if A is not orthonormal i.e.,

xl r *i or x F x

Thus

pN1N2-l

?~ C(I»J) c*(l,J) = 1 if a and B both are orthonormal

= 0 if A or B or both are not

orthonormal
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Thus it has been proved that if A and B are ortho-

normal matrices then the matrix C defined by Eqs. (5.7)
and (5.8) would also be an orthonormal matrix. This
method of obtaining higher order orthonormal matrix start

ing with lower order orthonormal matrices may be termed as
Partitioned Matrix Kronecker Product Method. This method

when used with techniques given in Appendix A could be

used to generate still other orthonormal matrices. For

some chosen values of N and t, N = 4t, the submatrices

Ax, A2, A3, A4 of dimension tx t each and which are real,
symmetric and cyclic can be written with the help of

techniques mentioned in Appendix A. These A±'s could be
used to obtain a Hadamard matrix of Williamson type of

order N = 4t. This matrix is known to be orthonormal.

Let this matrix be called A and partitioned as in case

of matrix A in this section with % =^ = 4and m=n= t.
In a similar way another orthonormal matrix B can be

obtained and partitioned with M2 = N2 - 4 and n= p= t.
Then

0 = [C(i,j)] i,3 = 0,1,2,...,15

where C(i,j) is a submatrix of dimension t x t.

C(i,3) =Adj,^) B(i2,j2) i^i^Ji,^ =0,1,2,3
where

i = i2 + 4 ix

3 = 39 + 4 3t
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All the submatrices A(i^^) and B(l2,J2) would be real,
symmetric and cyclic.

The matrix C thus obtained would be an orthonormal

matrix of order 16t. This can be used as an orthonormal

kernel for processing sample sequences of length 16t.

Let the one-dimensional signal sample sequence

X of length 16t be partitioned into 16 partitions and

each partition contains t samples. So

x = Cx0 J xl i ; x 1T• X15J

where x± is a submatrix of dimension t x 1. With

this partitioned matrix as input and the matrix C as

orthonormal transform kernel the transform samples

can be written as

•

• \ * # •

t

=

-Xl5_

0(0,0) 0(0,1) ... 0(0,15)

c(i,o)
1
1
1

0(1,1)
t
f
!

... 0(1,15)
t
•
t

0(15,0) 0(15,1) ... 0(15,15)

r i
xo

• . . . .

xl
. 4 » . .

1

1

x15

where the transform samples are also partitioned in

submatrices of dimension tzl each. The transform

samples in any partition are given as
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X3 =g0xi Od.3)

=i~=o i~=0 %+^i k<h'h) »<W

Since all A(i1,J1) and B(i2,J2) are cyclic sub-
matrices the transform kernel C would have the property
that some cyclic shift within all the partitions of the

signal sample sequence would result in similar cyclic

shifts within all the partitions of the transform samples.

With A±'s oomputed for certain N and t, N = 4t,

higher order orthonormal kernels (>4t) can be obtained
using following constructions

1) Baumert-Hall type construction, viz. H[12,4,3],
would give orthonormal matrices A and B of order

12t, This would result in orthonormal matrix C

of order 144t.

2) Baumert-Hall-Welch type construction, viz. H[20,4,5],
would give orthonormal matrices A and B of order

20t. This would result in orthonormal matrix C

of order 400t.

3) Quaternion orthonormal type constructions would

give orthonormal matrices A and B of order
P+2

"fc> P = 1,2,...,. This would result in oa

normal matrix C of order (22p+4t).
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5.3 PARTITIONED MATRIX CHINESE PRODUCT METHOD

If Aand Bare two matrices of dimension mM1xnN1
and nM2xPN2 respectively such that M;L,M2 are coprimes
and so are Nx, N2, one can define a matrix

0 " £C(i,3)] ... (5.23)

such that

6(1,3) = A(ilrh) B(i2,32) ... (5.24)
where

i - i1 modulo M-,

- i2 modulo M2

3 = 3'i modulo N-,

= 32 modulo N2

The matrix C would be of dimension mM^xpN-^.
Though this matrix C has the same dimension as the

matrix C given by Eq. (5.7) and (5.8), the submatrices

defined by Eqs. (5.8) and (5.24) are different because

the constituent submatrices A(i1,J1) and B(i2,J2) are
different in the two cases. It can be proved on similar

lines as adopted in section (5.2) that if A and B are

orthonormal matrices then the matrix C defined by

Eqs. (5.23) and (5.24) would also be an orthonormal matrix.

So this can be thought of as another method of obtaining

higher order orthonormal transform kernels from lower order
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orthonormal transform kernels. This method of getting
higher order orthonormal transform kernel starting with
lower order orthonormal transform kernels may be termed

as Partitioned Matrix Chinese Product Method. This

method, however, cannot be used when matrices A and B

are obtained by techniques given in Appendix-A as in

that case Chinese product of matrices A and B, treating
submatrices as elements, would not be defined.



CHAPTER

TRANSLATION INVARIANT SYSTEMS

6.1 TRANSLATION INVARIANT TRANSFORMS

A translation invarient transform is one which is

invariant to cyclic shifts in the input in the sense that

the transform domain samples remain unchanged when the

input samples have undergone cyclic shifts. This usage
has to be distinguished from that in Chapter-2. In pattern
recognition problems the position of the pattern being
recognised is frequently irrelevant. Human eye could be

thought of to possess the best pattern recognition ability.
If an attempt is made to achieve the pattern recognition
ability of the human eye then it is important to know

whether the proposed scheme has the redundancy reduction

ability similar to human eye. An algorithm may do well

with pattern which have undergone an unknown amount of

shift, but may not be satisfactory for, say, hand written
characters.

Let a(i), i = 0,1,2,...,N-1 be a sequence of
N samples and

A(I) = T a(i) i = 0,1,2,...,N-1...(6.1)

gives the transform samples where T is some transform

operator.
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Further, let a^(i)be the sequence a(i) after the

sequence is shifted left cyclically by t locations and

At W = *at{i) ... (6.2)

gives the transform samples corresponding to at(i).
Then A(l) is termed as the translation invariant feature
of the sequence a(i) if

A(I) = At(l) for all l^t ^N-l ... (6.3)

A translation invariant transform is defined as

an ordered set of translation invariant features of the

input sequence. The individual members of this set are

known as components of the transform. It is not necessary
that the number of components of the transform should be

equal to the number of components in the input sequence.

For a two-dimensional pattern the translation invariant

transform may be defined as the doubly indexed set of

translation invariant features of the two-dimensional

pattern. Some of the well known translation invariant

features are briefly discussed.

1. Magnitude of the Discrete Fourier Transform
Components

Let a(i), i = 0,1,2,...,N-1 be the input sample

sequence of length N and A(I), I = 0,1,2,...,N-1 the

ree-ating DFT samples. Then |a(I) 2 is invariant to
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cyclic shifts in a(i). The resulting translation inva
riant transform X(l) is defined as

X(I) = A(I) A*(l) ,I= 0,1,2,...,N-1... (6.4)

where superscript * denotes complex conjugation.

The DFT of a sequence can be computed quite fast

with the help of FFT algorithms given by Cooley and

Tukey. This transform has superiority since DFT of a

sequence of prime or composite length can also be calcu

lated [48,58], However, the DFT suffers from round-off

errors due to finite word length.

2. Power Spectrum of Hadamard Transform Components

Let a(i), i = 0,l,2,...,2n-l, n being integer, be

the input sample sequence of length 2n and A(l),

I = 0,1,2,...,2 -1 the resulting HT samples, then it has

been shown by Ahmed et al [3] that its power spectrum

X(s) is translation invariant where

X(0) = [A(0)]2 ... (6.5)
s

2-1

X(s) = JT [A(I)]2 , s = 1,2,...,n

... (6.6)

It has been shown by Arazi [9] that this HT power spectrum

is invariant to many other permutations as well which is
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not a desirable feature. Since Hadamard transform can

be computed by addition and substruction only its compu
tation is quite fast. Fast algorithms for computation
of HT and similar to FFT exist. The HT is free from

round-off errors due to finite word length if fixed point
arithmetic is implied. If the operations are performed

in the floating point mode there can still be round-off

errors. Studies on translation invariant spectra of the

complex BIFORE transform [2], modified complex BIFORE

transform [49] and complex Harr transform [50] have been
reported by Ahmed et al.

3. Rapid Transform

This transform was given by Reitboeck and Brody[53],

They have given two algorithms, namely Algorithm A and

Algorithm B, for the computation of Rapid transform (RT)

of a one-dimensional sequence. The tree graphs for these

two algorithms are identical with two (out of several

possible) tree graphs for the execution of HT [24]. The

RT is invariant under translation and reflection. The

RT and HT differ, however, in the arithmetic operations

at the nodal points and in their general properties.

The similarities in the algorithms for RT and HT have

been exploited by Ulman [61] to propose a third algorithm

for RT. In case of two-dimensional patterns one can. use

either two one dimensional transforms in succession or the

two-dimensional transform given by Heitbeeck
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and Brody. This is named as Algorithm A A and has been
derived on the basis of algorithm A for one-dimensional
case. A two-dimensional algorithm can also be obtained
on the basis of Algorithm B for one-dimensional case. The
RT has been reported [53] to have succeeded in arecogni
tion rate of 80% to 100% for letters having different

positions, distortions, inclinations, rotation upto 15°
and size variation upto 1:3 relative to a reference set

of 10 letters. When executed on a digital computer, this
transform is much faster than the FFT. Detailed studies

on RT have been reported by Wagh [62,63,64,65,66].

The RT is based on two functions - addition and

substruction without sign. It has been shown by Wagh [65]
that the translation invariant property of this transform

is not due to the specific choice of these functions but

due to their symmetry. Thus any pair of symmetric functions

can bo used to define a new translation invariant transform.

Such transforms could be computed using algorithms similar

to those for RT. A detailed study of some such transforms

has been performed by wagh [65]. The members of this class
are transforms which are translation and reflection in

variant but may differ from each other very widely with

respect to their other properties. The basic feature of

the members of the class of translation invariant trans

forms is that each member of this class is based on a pair
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of binary symmetric functions. The selection of the
appropriate pair of binary symmetric functions would
be decided by the application. Some typical binary
symmetric functions of two variables x0 and x± are

<xo+xl)' |xcTxi| . *<,*!• (x| +xf), (xQ+x1) xoxlf
tVWV' ^ax(x0,x1)f min (x^) etc.

In particular if the variables xQ and xx are lo
gical variables then other possible binary symmetric
functions are

(xQ AND Xl), (x0 OR x±), (x0 EOR x-^, (xQ NAND x±),
(xQ NOR xx) etc.

4. Max.-min. Transform

If the pair of binary symmetric functions chosen

are max(xQ,x1) and min(x0,x1) then the resulting trans
lation invariant transform is termed as Max.-min. trans
form. This transform has been studied in detail by
Wagh [65].

A fairly good volume of literature is available

which deal with techniques for computation of various

translation invariant transforms from the point of view

of hardware implementation, it has been observed that

the hardware implementation of RT is cheaper and simpler,
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It is because of the fact that the two binary symmetric

functions used are addition and substraction without

sign and identical set of operations at every stage in

the evaluation of the transform. The complexity in the

implementation of any member of the class of translation

invariant transforms is directly dependent upon the comp

lexity in the evaluation of the two binary symmetric

functions. In a given situation if only high speed is

required then one would go for RT but if there is the

consideration of restricting the transform storage memory

then the modification of RT as given by Moharir [32]

would be preferred.

5. Parseval's Transform

Orthonormal kernels which are circulants, i.e.,

in which any row is obtained by left cyclic shift of the

elements of the previous row, have a lot of structural

redundancy. There is only one such kernel if the entries

are restricted to + 1. If the entries are allowed to be

C± 1*0] or [+ 2,+ 1,0] many such kernels could be obtained

Listed below are the first rows of some of orthonormal

circulant kernels [40].
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Orditer First Row

4 1 -1 -1 -1

6 -l 0 -1 -1 0 1

6 -1 0 -1 1 0 -1

6 -1 -1 -1 -1 2 -1

6 -1 -2 -1 1 -1 1

7 0 0 -1 0 -1 -1 1

8 0 -1 0 -1 0 -1 0 1

8 0 0 -1 -1 0 0 -1 1

10 0 0 0 -1 -1 0 0 0 -1 1

10 0 0 -1 0 -1 0 0 -1 0 1

13 0 0 -1 0 -1 -1 -1 1 1 0 -* 1 -1

13 0 0 -1 0 1 -1 -1 -1 -1 0 1 -1 1

15 -1 -1 -1 -1 2 2 2 -1 2 2 -1 -1 2

-1 2

21 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 2

2 -1 -1 -1 -1 2 -1 2

28 0 0 -1 0 1 -1 1 0 0 -1 0 -1 1

1 0 0 1 0 -1 -1 -1 0 0 -1 0 -1

-1 1

\2 0 0 -1 0 2 -1 1 0 0 -1 0 -1 -1

1 0 0 2 0 -1 -1 1 0 0 -1 0 -1

-1 1 0 0 -1 0 -1 -1 -2 0 0 -1 0

-1 2 1
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78

121

149

0 0 -1 0 -1 1 1 0 0 1 0 1 -1
2 0 0 -1 0 -1 -2 1 0 0 1 0 -2

-1 -1 0 0 -1 0 -1 1 1 0 0 -2 0
1 -1 -1

0 0 -1 0 2 -1 -1 1 1 0 2 1 -1

0 0 -1 0 -1 -1 -1 I 1 0 -1 1 -1

0 0 2 0 -1 -1 -1 1 -2 0 -1 1 -1

0 0 -1 0 -1 -1 -1 -2 1 0 -1 1 -1

0 0 -1 0 -1 -1 2 1 1 0 -1 1 2

0 0 -1 0 -1 2 -1 1 1 0 -1 -2 -1

0 0 0 0 1 -1 1 -1 0 -1 -1 0 -1

-1 1 1 0 0 1 -1 -1 1 1 1 -1 -1

1 -1 0 0 1 1 1 -1 0 0 0 -1 0

0 0 1 1 -1 1 1 -1 0 1 -1 0 -1

0 -1 0 1 1 0 -1 0 0 1 0 -1 1

1 0 1 0 0 1 1 0 0 -1 1 0 0

1 0 1 -1 0 1 1 1 1 1 -1 1 -1

1 1 0 -1 -1 1 0 1 -1 -1 -1 C -1

1 .-1 0 1 o .-1 0 •-1 .-1 -1 0 1 -1
1 1 1 1

The Parseval's theorem states that
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vnere [a(i)], [A(j)] and [b(i)], [B(j>] are Fourier
transform pairs. It implies that if [a(i)] and [b(i)]
are orthonormal then [A(})] and [B(j)] would also be
orthonormal.

The product of a DFT kernel and an orthonormal

circulant can be thought of as a column by column Fourier
transform of the columns of the circulant. Because the

circulant is orthonormal the resultant kernel is also
orthonormal by Parseval'a theorem. Using orthonormal

circulant to take a transform of any column vector would

provide permutation invariance to cyclic shifts in the

sense of Chapter-2, i.e., if the column vector is cyclic

ally shifted so is its transform. If this transform is

further subjected to DFT the modulus of the resultant

transform will be invariant in the sense of this chapter.

This really means that a transform kernel which is obtained

by a product of a DFT kernel and an orthonormal circulant

has the property that the modulus of the transform is

invariant to cyclic shifts in the sense of this chapter.

Such orthonormal transforms may be termed as Parseval's
transform.

The translation invariant property of these

transforms is similar to that of DFT. Since the kernel

of this transform is obtained by post multiplying the

DFT kernel with an orthonormal circulant of the same



151

order it is hoped that this new transform would exhibit
some more properties, it might be of interest to study
these transforms in detail.

6.2 CHARACTER RECOGNITION

In the last section some transforms have been

mentioned which can be used for pattern recognition pur
poses. The RT had been shown to be superior to the then
existing transforms. Wagh [65] has defined a class of
transforms for such purposes and has shown that RT could
be thought of as a member of that class. He has discussed
in detAl a transform : max^nin transform or MT. In this
section a few more transforms would be defined and their
applicability to pattern recognition application discussed.
In what follows a pattern would be represented by a two-
dimensional array of O's and l's. An element in the array
would be represented by a 1 if half or more of it is

shaded by the pattern, otherwise by a 0. The two-dimen
sional transform of the arrays would be obtained by two
one-dimensional transforms in succession-one rowwise and
the other columnwise, m all the transforms that would
be discussed in this section the same functional block
would be used everywhere in the algorithm. This reduces
hardware requirements. The various schemes for obtaining
the transforms would make use of the concept of block-
multiplexing and strand-multiplexing [37],
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1. OR-AND Transform

The transform of a two-dimensional array, repre
senting a pattern by symbols drawn from [0,1], is obtained
by taking the rowwise transform, followed by columnwise

transform. The sequence of rowwise and columnwise trans

form could be changed, if desired. The principle of the

OR-AND transform for a one-dimensional sequence of length
N = 2 , n being integer, is illustrated in Fig. 6.1.

This transform has been found to be invariant to

translation, inversion and small rotation. The transform

was applied to characters A,E,I,0 and U individually and

in pairs of two. The observed important properties of

this transform are given below:

a) It is distinct for each character when the character

is represented as arrays of dimensions 16 x 16 and

16 x 32.

b) It is distinct for all character pairs AE, AI, AO

and AU when the character pairs are represented as

arrays of dimensions 16 x 32. The property is

invariant to commutation of characters in any pair.

c) Similar results hold when the character pairs are

represented as arrays of dimension 32 x 16, i.e.,

characters are written one below the other.
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d) Similar results are obtained when columnwise trans

form is taken first and followed by rowwise transform.

e) The number of l's in the transform domain arrays is

the same as that in the corresponding pattern domain

arrays. It is due to truth tables for OR and AND

gates.

Character A in pattern domain and transform domain is

illustrated in Fig. 6.2 and Fig. 6.3 respectively.

2. EOR-AND Transform

This transform is a minor modification of the

OR-AND transform. The tree graph for basic one-dimensional

transform used is similar to that illustrated in Fig. 6.1

with the difference that all the OR gates are now replaced

by EOR gates. The properties observed with this trans

form are the same as that for OR-AND transform with the

difference that the number of l's in the transform domain

arrays are much smaller than those in the pattern domain

arrays. It is due to the truth table for EOR gate. This

reduction in number of l's in the transform domain arrays

makes this transform superior to OR-AND transform. Charac-
cter A in transform domain is illustrated in Fig. 6.4.

3* Monogenic Function Transform

A monogenic polynomial in N variables is one in

which given the leading term the complete polynomial can
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be written. Any term can be obtained by adding unity
modulo N to the indices of variables in the proceeding
term. More explicitly amonogenic polynomial of N

variables V «L» V*—Vl can be written as [18]

*<WV*—W +f(Va2'a3""aN-l'ao>
+*(«2»a3fV*"'Vl»V°l> +

+f(aN-i>Var--^V2)

and *(VVa2*'"'°Br-l> is termed as *he gene of the
monogenic polynomial.

A transform can be defined in terms of monogenic
polynomials. If the functional block has N inputs and
I outputs then I monogenic polynomials are necessary
to define the transformation caused by the functional
block. This in turn means that I genes, each a function
of N variables-inputs, are needed to define a transform
of order N. Since an infinitely large number of genes
can be defined in terms of I variables, by properly
selecting the genes one can obtain a wide class of such
transforms. The transforms thus obtained would be termed
as Monogenic Function transforms.

If the inputs are a(i), i = 0,1,2,3, the transform
samples are A(i), i , 0,1,2,3 and the genes are a(0),
a(0). a(l),a(0).a(l).a(2) and a*0).a(l).a(2).a(3) then a
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class of monogenic function transform is defined as

A(0) = a(0) + a(l) + a(2) + a(3) ... (6.7)

A(l) = a(0). <(*) + a(l). a(2) + a(2). a(3)

+ a(3). a(0)

Jk(Z) m a(0). a(l). a(2) + a(l) a(2). a(3) + a(2)«

a(3). a(0) + a(3). a(0). a(l)

A(3) = a(0). a(l> a(2). a(3)

The various members of this class of monogenic

function transforms cam be obtained by choosing various

arithmetic, logical or other operations for. and + opera~

tions in Eq. (6.7) above.

Another class of monogenic function transform can

be obtained by choosing different genes. A typical mono

genic function transform was studied where . and + of

Eq. (6.7) t^ere chosen as logical AND and OR respectively,

and (i), i = 0,1,2,3 was binary ; 0 and 1. The resulting

transform is defined as

A(0) = a(0)0R a(l) OR a(2) OR a(3) ... (6.8)

A(l) • [a(0) AND a(l)] OR [a(l) AND a(2)] OR [a(2)

AND a(3)] QR [a(3) AND a(0)]
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A(2) = [a(0) AND a(l) AND a(2)] OR [A(l) AND a(2)

AND a(3)] OR [a(2) AND a(3) AND a(0)] OR
[a(3) AND a(0) AND a(l)]

A(3) *= a(0) AND a(l) AND a(2) AND a(3).

Using this as the basic functional block (F) a one-
dimensional monogenic function transform of a sequence
of length N= 16 has been illustrated in Fig. 6.5.
Monogenic function transform of two-dimensional arrays
are obtained by obtaining the rowwise transform followed
by columnwise transform.

When this transform was studied with inputs same
as in case of OR-AND and EOR-AND transforms, it was
observed that the results are similar to that of OR-AND
transform, m this transform also the number of l»a in
the transform domain array is the same as that in the
corresponding pattern domain array . it is due to the

definition of the monogenic function transform chosen.
Character Ain pattern domain and transform domain are
illustrated in Fig. 6.2 and Fig. 6.6 respectively.

6.3 LABELLED SFT

The Rapid transform and some other binary symmetric
function transforms have been mentioned in section 6.X.
These transforms have so far been studied from pattern
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recognition point of view where the received transform

arrays are correlated with the stored transform arrays

and decision given in favour of the character for which

the correlation between stored transform array and re

ceived transform array is maximum. Some of these trans

forms like RT are non invertible in the sense that given
the transform domain array the pattern domain array cannot
be uniquely obtained, in this section an attempt would

be made to explore the possibility that such non invertible

transforms could be inverted using additional information,
if necessary, so that the transformation could be used

for coding the digitized message and picture signals.

In case of RT if the input samples are a(i),

i - 0,1,2,...,N-l, N = 2 , n being integer, then Rapid

transform samples A(l), I = 0,1,2,...,N-1 are defined as

A(I) = Yn(l) , i m0,1,2,,...,2n-l

... (6.9)

where

I0(I) = a(i) i = i = 0,1,2,...,2n-l

... (6.1Q)

Yr(2D = Yr^(l) + V.jtt+2*-1)

Vl^^r-id+S11-1)Yr(2I+l)

r = l,2,...,n n-1
... (6.11)

I = 0,1,2,...,2 -1
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The tree graph for RT has been shown in Fig. 6.7.

In taking RT of a sequence of length 2n there are n inter

mediate columns and in each intermediate column there are

2 " substraction without sign operations and 2n"*1 addition

operations. If the input samples a(i) are bounded bet

ween 0 and 1 then the transform samples would be bouanded

between 0 and 2^ where 2U is the length of the input
samples a(i). However, not all the A(l) have the same

bounds [32]. The bounds on any A(l) is given by 2E^1^ L
where z(l) is the number of eeroes in the n bit binary
representation of I. In particular if the input is

binary,i.e., all the input samples a(i) are drawn from

[0,1] then the transform samples A(l) would be bounded

between 0 and 2nf Thus each transform sample would need

n bits and the transmission of all the transform samples

A(I"), I = 0,1,2,,.., N-l would require n N bite. If it

is desired that all the a(i), i = 0 ,1,2,... ,N-1 be re

covered from given A(l), I = 0,1,2,...,N-1 then informa-
n-1

tion about signs at all the (n2 ) substraction points

is necessary, if this is done then it would result in

a scheme in which the information about labels at all the

substraction points is transmitted alongwith the trans

form samples. This modified scheme may be termed as

'labelled Rapid transform'. Thus it has been possible

to invert a non linear transform with the help of labels.

In fact any non linear transform can be inverted if
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information regarding suitable labels is available.

The basic functional block for labelled RT has

been shown in Fig„ 6,8 and complete tree graph in Fig.
6.9. It is clear that this scheme can be used for cod

ing digitized audio and video signals. This scheme would

require (n2n +n2n~1) or (nN +-££) bits in contrast to
nN bits required for pattern recognition purposes.

Moharir [32] has suggested modification in RT so

that the transform samples A(l) have the same amplitude

bounds as those on the input samples a(i). Thus if a(i)
takes values zeroes and ones then A(l) would have values

between zero and one. The defining equation of the modi
fied RT as given by Moharir are

and

where

Yr(2I) =

Yr( 21+10=

W1) + Yr-id +2*-1)

r = 1,2,.. .,n
n-l

I = 0,1,2,...,2 -1

x = x - x_
m

.. (6.12)

... (6.13)

and x^ is the mean of the lower and upper bounds on x.

If the input sequence is binary 3^ = 0.5 and the trans

form samples A(l) would have values drawn from [0,0.5,1],
If this transform is applied to a binary sequence of
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length 2n then 2N bits would be needed for transmission
of transform samples. If inversion is desired at the

receiving end then an additional n-| bits would be needed
for transmission of labels. Thus a total of (2N +*§)
bits would be required as against (nN + S|) bits in case
when RT scheme is labelled. Thus there would be a saving

of (n-2)N bits for achieving the same objective if the

modified RT proposed by Moharir is used in place of RT.

If the basic functional block is max-min trans

form instead of RT, as illustrated in Fig. 6.10, then

both inputs x and y would appear at the output either in

the same order or in the reversed order. This order of

x and y can be labelled by one bit. The resulting scheme

may be termed as 'labelled MT'. If the inputs x and y

are from a binary alphabet [0,1] and the input sequence

a(i) is of length N(=2n) then the transform samples

A(l), I = 0,1,2,...,2 -1 would also consist of 0's and

l's. Thus N bits would be required for transmission of

N transform samples. So if it is desired that a(i),

1 = 0,1,2,..,,2 -1 be recovered from a knowledge of

A(I), I =0,l,2,...,2n-l th.en a total of (N +2|) bits
would have to be transmitted. This scheme is superior to

labelled RT with Moharir's modification in the sense that

with similar inputs and to achieve same objective of get

ting baok the input samples from transform samples this
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scheme requires N bits less.

Wagh [65] has defined a class of symmetric func

tion transforms (SFT), The scheme proposed in this

section can be successfully applied to define a class

of 'labelled SFT' by replacing the functional block of

Fig, 6,10 with the functional block of any other SFT,

and labels used to represent different parameters when

different members of the class of SFT are used as basic

functional blocks.

The purpose of transmitting labelled SFT instead

of the signal could be that (i) SFT inverted with the

help of labels is more immune to the deletarious effects

of channel noise than the signal when transmitted directly,

(ii) SFT may be amenable to severe quantization without

having intolerable bad effects on inverted version. Both

these properties may arise because of the redistribution

of channel or quantization noise that results during in

version with the help of labels. Thus, nonlinear trans

forms would have been put to use rather than linear ones,

with the hope that they may perform better for given

purposes.

There is also a good possibility of secrecy cod

ing. SFT as such is non invertible to recover the original

signal but with the help of suitable labels it is invertible.
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Thua labels serve as a key to unique inversion. If

these labels are transmitted directly, they would be

available even to unauthorized receivers. Therefore,

labels could be subjected to modification with the

help of a rule-book which is available only to autho

rized receiver, and then transmitted. The authorized

receiver can recover the labels assuming that the rules

are invertible. The rule-book can change frequently

but synchronously by prior agreement between the trans

mitter and authorized receiver. The secrecy would

further be enhanced if the SFT used is also changed

frequently but synchronously. Use of transforms in

secrecy coding has been suggested earlier [35,38],



CHAPTER-7

CONCLUSIONS

7.1 SUMMARY AND CONCLUSION

The existing literature on finite group theory

does not help one find out the number of possible trans

itive abelian permutation groups of order N and degree

N which could be constructed out of a permutation group

of degree N and order NJ If this could be known then

the second part would be to obtain all the elements of

each such group. One Important property of suoh groups

which could be of some help is that all the elements of

any group are the powers of any primitive element of the

group. If an attempt is made to work it out by exploiting

the definition of the transitive abelian permutation

group then the task becomes really difficult for N > 6,

It may be possible to write a computer programme for

this purpose but that is likely to be quite complicated

and may require enormous memory and time for higher values

of N. It may be worthwhile trying to develope some fast

algorithms for this purpose.

Siddiqui [57] has defined a class of one-dimensional

permutation invariant systems (1-D P-I systems) relative

to some transitive abelian permutation group. He has
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obtained the corresponding finite discrete system mat

rices for realizable cases and has done a comprehensive

analysis. The class of 1-D P-I system as given by

Siddiqui has been ea2ftrged by extending the notion of

permutation invariance. The resulting class of 1-D

system which is invariant to some other prescribed per

mutation has been named as one-dimension reciprocal

permutation system (1-D R-P system). It is relative to

a pair of transitive abelian permutation groups. In

case of 1-D P-I system all the possible system matrices

had ranks equal to their respective orders. But in the

proposed 1-D R-P system it has been observed t&at a

system matrix with the rank equal to its order did not

result in most of the cases. Though some conditions

have been stipulated under which the rank of the result

ing system matrix wouXa be equal to its order, these

oonditions cannot be claimed to be vejpy sound as they

are based on results obtained with transitive abelian

permutation groups of order and degree upto five only.

It may be worth to investigate it in detail and propose

theorems that would describe cases under which discrete

finite system matrices for 1-D R-P system would have

ranks equal to their respective orders*

Rao [52] has extended the work of Siddiqui [57]

and has given some good results for two-dimensional
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permutation invariant systems (2-D p-i systems). The

notion of proposed 1-D R-jp system can be extended to

define a class of 2-D R-P system. As in case of 1-D

R-P system in this case also many resulting discrete

finite system matrices would have ranks lesser than

orders. The theorems obtained for defining conditions

under which system matrices for 1-D R-P system would

have ranks equal to order can be extended to two-

dimensional cases.

The permutation property of DFT kernels with

respect to 'modular permutation' is known. Also the

permutation property of HT kernels, when the order of

the kernel is integer power of two, is known. The

equivalence between DFT of a one-dimensional sequence

and when the sequence is written as a two-dimensional

array read row by row is known. The equivalence is

established by introducing the concept of twiddling

factors. All the elements of the intermediate array

obtained as a result of columnwise DFT of the sequence,

written as two-dimensional array and read row by row

are multiplied with twiddling factors and then rowwise

DFT taken of the resulting array. The transform samples

are read column by column. Instead of taking columnwise

as well as rowwise DFT an attempt has been made to define

transform, namely 'Fourier twiddled H-DF transform' where
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columnwise transform is HT and rowwise transform is

DFT. This neoessiates a modification in the twiddling
factor if some permutation properties are to be retained.

It was proposed to study the permutation properties of

this transform. The one-dimensional input sample sequence
was written as a two-dimensional array. Each row(column)

was treated as an element for applying the known permuta

tions for HT (DFT) which are defined for one-dimensional

sequences. This resulted in rearrangement of transform

samples. The cases studied include bit-plane permutation

of rows, modular permutation of columns and both. Ex

pressions have been derived for this rearrangement of

transform samples for given permutation of two-dimensional

input array. The results obtained have been supported

with worked out examples.

The technique developed in respect of Fourier

twiddled H-D* transform could be used to obtain a class

of such transforms by choosing various pairs of ortho-

normal kernels for performing columnwise and rowwise

transformation on the sequenoe of input samples written

as a two-dimensional array. The twiddling factor would

be decided by the nature of the two component transforms

if some permutation properties have to be achieved. The

permutation properties of the resulting transform would

depend upon the permutation properties of the two component
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transforms.

The concept of Kronecker product of matrices is

well known and many theorems related to it are available

in the literature. The matrix obtained by Kronecker

product of two orthonormal matrices is known to be ortho-

normal. Thus by taking Kronecker product of two ortho-

normal matrices of lower order one can generate an or

thonormal matrix of higher order. A new matrix multi

plication, namely Chinese product, of two matrices has

been proposed. Further the matrix obtained by Chinese

product of two matrices is the rowwise and columnwise

permuted version of the matrix obtained by the Kronecker

product of the same component matrices. Since rowwise

and columnwise permutation of a matrix does not change

its orthonormality hence the matrix obtained by Chinese

product of two orthonormal matrices would itself be an

orthonormal matrix. Since the matrix obtained by

Chinese product of two matrices is a rowwise and column

wise permuted version of the matrix obtained by the

Kronecker product of the same matrices it should be

possible to obtain one from the other by premultipli-

cation and postmultiplication with suitable permutation

matrices. Expressions have been derived which define

the two permutation matrices. The results obtained have

been illustrated with examples. Now that the conversion
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of one from the other is possible the algebra available

in respect of Kronecker products can be suitably modi

fied so as to be useful in case of Chinese products.

Unlike Kronecker product which does not commute this

Chinese product commutes. But the Chinese product of

any two matrices is not always defined as is the case

with Kronecker product. For Chinese product to be de

fined the respective dimensions of the two arrays should

be coprimes i.e., they do not have any factor in common.

The notions of Kronecker product and Chinese product

have been used to define two more matrix products namely

Chinese-Kronecker product and Kronecker-Chinese product.

As one would expect, the matrices resulting from such

products of two matrices are rowwise or columnwise per

muted versions of the matrix obtained by the Kronecker

product of the same component matrices. Thus the mat-

rices obtained by Chinese-Kronecker product and Kro

necker-Chinese product of two orthonormal matrices would

still be orthonormal matrices. These matrix products

are defined only when the dimensions of the rows and

columns respectively of the two component matrices are

coprimes. Expressions have been derived for permutation

matrices which would help obtain one from the other.

The results obtained^have been illustrated with example.
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Much work has been reported regarding construction
and equivalence of Hadamard matrices. An excellent
survey of the existing literature has been compiled by
Wallis [67], There are various constructions which give
Hadamard arrays of various orders. The constructions
of interest are Williamson design, Baumert-Hall design
and Baumert-Hall-Welch design. All these Hadamard arrays
Yield Hadamard matrices which are orthonormal with the
basic components of all these constructions which are
four square submatrices known as indeterminates, suit
ably chosen, in these constructions the indeterminates
are real, symmetric and cyclic submatrices. These as

sumptions simplify the requirements for orthonormality
and hence lead to simpler-search.

Two more matrix products have been proposed which
give orthonormal matrices of higher orders if the compo
nent matrices are orthonormal matrices of lower order.

The component matrices are partitioned rowwise and column
wise into submatrices having dimensions such that the
ordinary matrix product of submatrix of one with the sub-
matrix of the other is defined. The two original mat
rices are relabelled treating the submatrices as elements.
Kronecker product is taken of the two matrices by treat
ing submatrices as elements. The resulting matrix is a
higher order matrix and the method has been named as
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'partitioned matrix Kronecker product' .It has been

shown that if the starting matrices are orthonormal

then the matrix obtained by this matrix product of the

component matrices is again an orthonormal matrix, m

a similar way another matrix product namely 'partitioned

matrix Chinese product' has been defined. In this mat

rix product Chinese product is taken of component mat

rices treating their submatrices as elements as in par

titioned matrix Kronecker product, method. Since the

matrix obtained by this method would be a rowwise and

columnwise permuted version of the matrix obtained by

partitioned matrix Kronecker product method, this matrix

would also be orthonormal.

The concept of Chinese product has been applied

to linear systems. The advantage of the work reported

is that the output of a linear system corresponding to

any particular input can be deduced from outputs to

simpler inputs in terms of which that particular input
can be synthesized.

Many transforms are known which could be used for

pattern recognition in general and character recognition

in particular. Fast computational algorithms are known

for such transforms. The received transform domain

arrays are correlated with stored transform domain arrays

for various characters and decision given in favour of
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the character for which the correlation is maximum.
Most of these transforms are nonlinear and noninvertible.
Since the location of the characters in the pattern
domain is of little consequence, many of the transforms
used are translation invariant in the sense that if the
input sequence undergoes a cyclic shift the transform

samples remain unchanged. Besides these transforms may
exhibit some more permutation properties, v/agh [65]
has proposed a class of such transforms and named them

as 'symmetric function transforms'. Various members of

this class can be obtained by defining a pair of binary
symmetric functions. Some transforms have been defined

and their performance evaluated in respect of character

recognitions. In case of some of the transforms proposed
the locations of ones and zeros make the transform do

main arrays quite distinct for various characters but

in some cases it is not. The transforms for which the
transform domain arrays are distinct for various charac

ters could be classified into two categories : first in

which the number of ones in the transform domain are

equal to number of ones in the pattern domain and the

second in which the number of ones in the transform do

main are less. The transforms falling in the latter
category are significant.
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If the non-linear transforms used for patter re

cognition could be inverted then they could be used for

message or picture transmission. An attempt has been

made to invert the nonlinear transforms and obtain the

input signal sequence from its transform samples with

the help of labels at various functional blocks in the

scheme. The resulting system has been named as 'labelled

symmetric function transform'. The notion of this trans

form has been illustrated with examples.

6,2 SCOPE FOR FUTURE WORK

1) The study of permutation invariant systems and

the reciprocal permutation system is incomplete

unless the listing of all transitive abelian per

mutation groups of order N and degree N is

possible. Formulation of fast algorithms for

finding out the total number of such groups and

listing of all the elements of each such group

is an open problem,

2) Once algorithms for writing all transitive abelian

permutation groups of order N and degree N are

known it would be worthshile to find out the

conditions under which the discrete finite system

matrices corresponding to the reciprocal permuta

tion systems would have ranks equal to their orders.
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3) A new transform namely Fourier twiddled H-DF

transform has been defined and it has been indicated

that proper selection of a pair of orthonormal

kernels with known permutation properties along

with suitable twiddling factors could be used to

define a class of such transforms. A study of

relative merits of some such transforms can be

made with respect to the complexities in the per

mutation properties of the members of the class

of transforms,

4) The concept of Chinese remainder theorem has been

used to define a matrix product known as Chinese

product. Relationship between Chinese product

and Kronecker product (when the former exists)

has been established. Since the Chinese product

is commutative its algebra would be simpler than

the algebra of Kronecker products which do not

commute,

5) The notion of Chinese products of one-dimensional

and two-dimensional arrays could be applied in

the study of linear systems. It could help in

tho analysis and design of systems with longer

inputs by its equivalent representation in terms

of systems with smaller inputs.
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6) It has been mentioned that the class of symmetric
function transforms which were proposed basically
for applications in pattern recognition can be

modified so as to be useful for transmission of

nessage, picture and discrete data signals. The

modified scheme has been termed as labelled sym

metric function transforms. The study of such

transforms from information transmission point of

view is expected to yield some good results. The

relative study of various transforms would give

an idea about superiority of one over another

with respect to computational complexies, hard

ware requirements and system performance.

7) As labelled symmetric function transforms provide

equivalent alternative descriptions of the signals,

it would be of interest to study relations between

properties of signals and those of the symmetric

function transforms. In particular, for some

channels, labelled symmetric function transforms

may provide better protection against channel

noise than the signal when used directly for trans

mission, because effects of noise will get redis

tributed during inverse transformation. Similarly,

these alternative equaivalent descriptions may be

more amenable to severe quantization, as effects
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of quantization noise also will g,t redistributed
during inverse transformation.

8) The notion of Kronecker product of matrices has
been extended to Kronecker product of signal flow
graphs by Moharir [42]. A similar extension could
be thought of for Chinese ,Kronecker-Chinese,
Chinese-Kronecker, partitioned matrix Kronecker
and partitioned matrix Chinese products. This

would lead to the definition of a class of new

non linear transforms in terms of the known non
linear transforms.
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HADAMARD ARRAYS

If Ax, A2, A5 and A4 are square submatrices of
order t then [39, 43, 67].

A,

M
-A,

-A.

An -A. A.

At -A,
«... (A.l)

-A4 -A, A2 A-,

is an orthonormal kernel of order 4t provided

MM*T = 4t I ... (A.2)

or equivalently

fe^P^ 4tI .. (A.3)

and

A_A*T A„A!T p4 q,p,q = lf2,3,4
P q q. p

.. (a.4)

where I is an identity matrix of order 4t.

The matrix M of Eq. (A.l) is given by

M = e Aj+iAp + jA-j+kA*2 -r j aj f * *4 ... (A, 5)

where e,i,j and k are square matrices of order four.



186

They have all the entries drawn from 0,1,-1 and further,
the entries 1,-1 appear in them in mutually exclusive

and collectively exhaustive locations, i.e., no two of

these matrices have entries 1,-1 in the same location

and not all of them have an entry zero in any location.

The matrices e,i,j and k are isomorphic to the quater-
ions satisfying the usual conditions and given as

e =

i =

k = ij

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

-1 0 0 0

0 0 0 -1

0 0 1 0

0 0 1 0

0 0 0 1

-1 0 0 0

0 -1 0 0

0 0 0 1

0 0 -1 0

0 1 0 0

•1 0 0 °_
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The multiplication table for e,i,j and k can be

written as

mult. e i 3 k

e e i 3 k

i i e k -3

3 3 -k e i

k k 3 -i e

Since e is a unit matrix

e2 = i2 = j2 = k2 = I

where Xa is a unit matrix of order four,

Generalized form of such arrays is an Hadamard

array H[h,k, X], It is an h x h array whose entries

are + A^f ± A2,... ,+ A^, k^ h. A-^Ag,.. .,Ak are called
indeterminates.

In any row or column of the array there are X entries

+ A]_f X entries + Ap,...,X entries + A^.

If A-,, Ap,...,Ak are treated as elements of any

commutative ring, then rows as well as columns are pair-

wise orthogonal.

Some special cases of Hadamard arrays are:
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a) Williamson type

b) Baumert-Hall type

c) Baumert-Hall-Welch type

Williamson type : This is an Hadamard array with H [h,

k, X] as H[4,4,l], i.e., each indeterminate + A. is

repeated only once in each row and each column, viz.

A- A, A, A,

M =

-A, An -A. A,

....(A.7)
-A. An -A,

-A, -A, A, An

Baumert-Hall type : This is an Hadamard array with

H[h,k,X] as H[12,4,3]. This type of Hadamard array is

also written as BH [12]. This is a generalization of

Williamson type and is given in Eq. (A.8).

Baumert-Hall-Welch type : This is an Hadamard array with

H[h,k, X] as H[20,4,5] with the condition that the

blocks are circulant. This type of Hadamard array is

also written as BHW [20] and is given in Eq. (A.9).



Ml
=H[12,4,3]
=BH[12] =

Al Al Al A2

Al "Al A2 "Al

Al ~A2 ~A1 Ai

A2 Ax -A± -Ax

A„ -A, A,

A, -A, A,

A4 -A3 A2 -A2

-A3 -A4 -A3 -A4

A4 ~A3 "A2 ~A2

-A4 -A2 A3 A3

A3 -A2 -A3 A3

-A3 -A4 -A4 A3

L

-A, A, -A, -A.

A, -A -A,

-A0 -A. A, -A,

-A9 -A. -A, -A.

-A, -A, A,

-A, -A, A, -A.

A, A
4

A,

A, ~A0 -A0 -A,

-A,

Ai

-A

*1

~Ai

A,

-A,

-An

-Al2

At -A, -A, An

A. A, A, -A.

A, An -An -A,

-A. -A„ -A,

-A, A. A, -A
4

An A- A-

A, -A,

An -An -An

-A0 -A, -A,

An -A, -A-
^4

A.

-A, -A, A, A,

A. A. -An -A-
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..(A.8)
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In particular if A1# Ag, A3 and A4 are real and
symmetric, complex conjugation and transpose could be
dropped from conditions given by Eqs. (A.3) and (A.4).
Further if they are circulant, pairwise commutativity,
i.e., Eq, (A.4) is automatically satisfied. So if A,
A2, A3 and A4 are real, symmetric and circulant sub-
matrices of order t then the condition for orthonor-
mality of Hadamard arrays given by Eqs. (A.3) and (A.4)
becomes

A2 +A2 +A2 +A2 =4t I ... (A#K))

If A1, A2, A3 and A4 have qth roots of unity as
entries then the resulting orthonormal quaternion kernel

is represented as Pq(4t), q always being even.

Some important properties of orthonormal kernels
of quaternion type are:

1) If M be an orthonormal kernel of the quatirnion
type of order I = 4t then m""1 is also an ortho-

normal kernel of the quaternion typo.

2) If M be an orthonormal kernel of the quaternion
type of order N = 4t then there exist quaternion

orthonormal kernels of order (21 N), i= 1,2,..
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3) If M be an orthonormal kernel of the quaternion
type of order | with A^ A2, A3 and A4 as sub-
matrices then m' given below would be an ortho-
normal kernel of the quaternion type of order 2N

with A1# A2, A3 and A4 as submatrices.

M =

A-

-A

-A

-A

2

1

1

t

J

A

-A.

-A

A

3

1

4

1

1

1

A,

4

»

t

-A,

where
m w

*i- Ai A2

> Al_

l—
„.„

*i- Ai -A2

-A2 Al_

—

A3 =
_A3 A4

> A'_
—1

A4 =
'A3 -A4

1*« A'_

... (A. 11)

... (A.12)
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4) If M, iff of order 8 be extended to obtain two
kernels of order 2N, they do not farm an inverse
pair.

5) If K be an orthonormal kernel of order k then
submatrices given by

Ai * E •k Ai ± = 1*2,3,4 ... (A.13)

and
i t

Ai •" Ai ®k K ± = 1*2,3,4 ... (A.14)

can also be used to form orthonormal kernels.

Hadamard matrices of the Williamson type of order

N = 4t can be constructed for many values of t with

the help of table listed by wallis [67]. For the

desired Hand t, N«4t, values of ^, ^ ^ and u4
are taken from the table. Write X^ X2, X3 and X4 as

xx =-m + u2 + u3 + ^4

X2 " ^1 " ^2 + ^3 + ^4

x3 = M-! + u2 -^ + u4

X4 = 1^ + »i2 + u3 - u4

... (A.15)

The quantities u^, ^ u^ and ^ are listed in terms
of N' roots of unity u±. Eq. (A.15) can be re
written as



where

*1 - 2 [I + JT C. W±]

X = 2 [I +TTCi co ]
i2 i

x3= 2 t1 +£ci3 "il
X
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.. (A.16)

•4 =2 [I +EC14".]

where C^, 0± , G± and C± take values from 0,1,-1.
The submatrices A±, A2, A3 and A4 are given by

A-, = I + C. S.
J- xl x

A2 = I +C^ Sl

A3 =1 +oi3 S.
A4 = I +C.4 3±

S± = Ti+Tt"i

... (A.17)

... (A.18)

and T is a square matrix of order t given ai

T =

0 1 0 0 ... 0 0

0 0 1 0 ... 0 0

0 0 0 1 ... 0 0
*

•

•

•

... (A.19)

0 0 0 0 ... 1 0

0 0 0 0 ... 0 1

1 0 0 0 ... 0 0
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Once A1, A?, A3, A4 are known one can easily write
Hadamard matrix of Williamson type of order N= 4t by
substituting them in Eq. (A.7). This procedure ensures
Ai's to be real, symmetric and circulant and hence it

is easier to verify the orthonormality the resulting
Hadamard matrix.

Example Let t » 5 so that N = 4t = 20

Prom the table [67]

Hi = 1

H2 * 1

^3 = 1-21^

H4 = l-2«2

This gives

Xl " 2(1-^-^2)

X2 a 2(l-Wl-co2)

X3 m2(1+0^-0)2)

x4 = 2(1-0^+0)2)

and hence

Ai " I-s1-s2

A2 = I-S1-S2

A3 = i+s1-s2

A4 = I-S1+S2



By**}-***

*U3.i^&rj&n

0 10 0 0

0 0 1 0 0

0 0 0.10
4-

0 0 0 0 1

10 0 0 0
t

0 0 0 0 1

10 0 0 0

0 10 0 0

0 0 1 0 0

0 0 0 10

0 0 10 0

0 0 0 10

0 0 0 0 1
+

10 0 0 0

0 10 0 0

0 0 0 10

0 0 0 0 1

10 0 0 0
•sa

0 10 0 0

0 0 10 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

—

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0

Thus A^, A2» A3 and A. can be written as

1 -1 -1 -1 -1

-1 1 -1 -1 -1

*h m -1 -1 1 -1 -1

-1 -1 -1 1 -1

-1 -1 -1 -1 1

1 1 -1 -1 1

1 1 1 -1 -1

a5 - -1 1 1 1 -1

-1 -1 1 1 1

1 -1 -1 1 1
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L

1-1 1 1-1

-11-111

1-1 1-1 l

1 1-1 l-i

-111-11
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Substituting these values of Ax, Ag, A3 and A4 in
Eq. (A.7) results in an Hadamard matrix of the

Williamson type of order 20. It cam be easily veri-
fied that

^ +A2 +A^ +A| = 201

and hence the resulting matrix of order 20 would be
an orthonormal matrix.
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