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4 B BTRLAC T

The research work which lead to the preparation of
this thesis was undertcken with the objective of defining
gome new troansforms which could be used for signal (message,
picturc or data) procecssing and to study the permutation
propertics of the proposed signal processing transforms.

The work contained in this thesis includes generation of
highecr order orthonormal transform kernels from lower order
orthonormal trangform kernels, proposing new two-dimensgional
trangforms and studying their permutation properties,
modificotion of some of the existing transforms for pattern
recognition to transforms which could be used for trans-
nigsion of message, picture and data, and defining a new
claogs of gystcms which 1s invariont to some prescribed

pernutation,

It has becn observed that the discrete finite systen
natrices for the proposed class of pernutation invariant
systen are not necessarily natrices with ranks equal to
their orders. Conditions have been stipulated under which
the resulting systen matrices would have ronks equel to
their orders. But this, however, needs further investi-

go.tion,

Two-dimensional tronsforms could be frequently

thought of as two one-dimensional transforms. By taking
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various combinations of two one-dimensional orthonormal
transform kernels one can define a class of two~dimensional
transform kernels. The permutation properties of such
transform can be deduced from the permutation properties

of the componcnt orthoncrmal transforms.

It is known that Kroneckoer product of two lowcr order
orthonormal matrices results in an orthonormal matrix of
highor order. The algebra for Kronecker product is well
developed, But it does not commutative. A new matrix
product, Chinese product, has been proposed. This product
ig defined only when the respective dimensions of the two-
component matrices are coprimes, The metrix resulting
from this product has all the properties of the matrix
resulting from Kronecker product of the some componcnt mat=
rices, In addition thisg matrix product commutes. In fact
the former is o rowwige and columnwise permuted version
of the latter. Expressions have been derived for permu-
tation motrices which can help in getting onc from another.
The notions of these matrix products and pertitioning of
matrices have been exploited to obtain higher order ortho-
normal tronsform kernels from lower order orthonormal

transform kernels.,

Many of the known tronsforms which find application
in pottern recognition ars nonlinear in nature., If these

transforms could be inverted by someé modification then the
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modified transforms could be useful for message, picture
and datc signels. It has been proposed that the additional
knowledge about the labels at each functional block in the
tronsmitter could lcad to the recovery at recelver of the
input signal samples at the transmitter. The class of
thus modified transforms has becen nomed as labolled sym=

metric function transform,

The thesis cnds, as is customary, with refercnces
to somec problems which could be taken up in futurc as an

extension of this work,



iy

ACENOWLEDGEMENTS

It has indeed been a pleasure to work under the
supervision and guidance of Dr. P.S.Moharir and
Dr. N.C.Jain., This work could not have been completed
but for their valuable advice, sincere guidance and
friendly behaviour. The gratitude to them cannot be

expressed in words but only felt.

It is a pleasure to remember the help, academic

and othorwise, rendered by friends and well wishers.

Thankg are due to Shri U.K.,Mishra, for cutting
the stoneils, Shri R.C,Vaish for moking the diagrams

and Shri Hari Ram for running the stencils.,

This acknowledgement would be incomplete without
a mention of gratitude to the members of the author'sa
family, especially his wife and children, who had to
bear his neglect of household during the period of

this work.,



CHAPTER~-1

CHAPTER~2

2.1

CHAPTER-3

TABLE OF CONTENTS

ABSTRACT
ACKNOWLED GEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENC LATURE

INTRODUC TION

SYSTEMS WITH PRESCRIBED
PERMUTATION PROPERTIES

Permutation-Invariant Systems
5.2 Some New Results on P-I Systems
2,3 Reciprocal-Permutation Systems

2.4 Synchronous Translation

Invariant Transforms

PERMUTATION PROPERTIES OF SOME
TRANSFORMS

3.1 Modular Permutation
3.2 Bit~Plane Permutation

3,3 Fourier-Twiddled Kronecker
Products

Be 4l Fourier-Twiddled H~DF Trangform

3.42 Modular Permutation of Columns

3,43 Bit-Planec Permutation of Rows

3.44 Modular Permutation of Columns
and Bit-Plane Permutation of
Rows

vii

viii

10

10
17
29

38

44

44
AT

&3

59
68
e

8



CHAPTER~4

4.1
4,2

4.3

4.4

CHAPTER~
Yed
542

543

CHAPTER~6
6.1
6.2
6.3

CHAPTER~T
Tel
T.2

APPENDIX~A

INTERRELATIONS AMONG VARIOUS
TRANSFORMS L

Special Matrix Products e

Relation Between Chinese and
Kronecker Products ces

Relation Between Chincse—Kronecker
and Kronccker-Chinese Products *°°

Permutation Properties of Chinese

and Kronecker Products of i
DFT kernels

SYNTHESIS OF TRANSFORM KERNELS ...

Hadamard Arrays -

Partitioned Matrix Kronecker
Product Method e

Partitioned Matrix Chinese
Product Method e

TRANSLATION INVARIANT SYSTEMS oo

Tranglation Invariant Transforms..

Character Recognition oo
Labelled SFT .k
CONCLUSIONS eve
Summary and Conclusions cee
Scope for Future Work sy
HADAMARD ARRAYS .

REFERENCES CITED
(ALPHABETICALLY) e

vi

87
88

96

104

13

123
123

125

139

141
141
151
160

172
172
150

185

199



TABLE

5.2

5.3

LIST OF TABLES

TITLE

Selective bit-complementation

pernutation
Bit-plane permutation

Computation of il,P and

Ii,p

R

PAGE
o e 9 50
. ee 52
A 80



viii

LIST . OF TPIGUEES

FIG. PITLE PAGE

b o Tree—-graph for DFT of 2-D array boe 58

o P Flow=chart of transform with 73
columng permuted Py

Hed Flow chart of transform with 79
rowg permuted bt

3.4 Flow chart of transform with rows 86
and columng pernmuted i

4.1 Bquivalence among systems with 116
smaller and longer inputs s,

4.2 Linear system with DFT and Chinese 118
product i

4.3 Chinese product of sequence transformed
by kernel obtained by Chinese swa 118
product of DPFT kernelsg

4.4 Some equivalent schemes with 121
Kronecker products e

4.5 Some equivalent schemes with Chinese 101
products i

Bed Trec~graph of 1-D OR-AND transform 153
(8 inputs) o i

6.2 Character A in pattern domain PR 155

6.5 Character A transformed by 156
OR~-AND transform e

6.4 Oharacter A transformed by 157
EOR-AND transform e -

6.5 Tree—graph of 1-D monogenic 161
function transform (16 inputs) ol

6.6 Character A transformed by 162

monogenic function transform

6.7 Tree~graph of RT (8 inputs) o 165



FIG.

6.8

6.9

6.10

TITLE

Ith functional block in rth colunn
of (a) transmitter (b) receiver D aas
labelled RT

Tree—graph for labelled RT (8 inputs)
(a) tronsmitter (b) ruceiver i

Functional block of MT sl

ix

PAGE

167

168

1677



ck

ke

A(I)
A (T)
A.(I)
A ()

Arc(I)

NONENCLATURE

Sequence of input samples

a(i) after linear translation of
samples

a(i) written as two-dimensional array,
read row by row, after rowwise permutation

a(i) written as two~dimensional array, read
row by row, after colunnwise permutation

a(i) written as two-dimensional array , read
row by row, after rowwise and colunnwise
pernutation

elements of matrix A

Matrices

Submatrices of dimension mxn

Submatrices of dimension nxp

Submatrices of dimengion mXp

Matrix obtained by Chinese product of
component matrices

Matrix obtained by Kronecker product of
component matrices

Matrix obtained by Chinese-Kronecker product
of component matrices

Matrix obtained by Kronecker-Chinese
product of component matrices

Transform samples of a(i)

Transform samples of at(i)
Trensform samples of a (i)
Trangfornm samples of ac(i)

Transformn semplcs of qrc(i)



P(m)

P(p.ﬂ)&P(q_,N)

P(a D...k)

RN

xi

Mransitive abelian permutation group of
order N and degrece N

Pernutation/Permutation matrix

Reciprocal of P with respect to a
particular transform

Inverse of P

Selective=bit complementation permutation
operator

Modular permutation operator pair
Bit-plane permutation operator
N~dimensional vector space of N-=tup: es
Pransformation kernel

Finite discrete system matrix
Chinese product

Kronecker product
Chinese-Kronecker product
Kronacker-Chinese product

x modulo N

Kronecker delta

Congruent %o

equivalent

Hadeamerd transform operator

Element at the Ifh row and igh

of the mayrix obtained by columnwise
HT of a(i)
(1) .
hi after multiplication with twiddle factor

2
elements of matrix S

column

Permutotion matrix Pi of tronsitive abelian
permutation group Gj



CHAPTER -1

INTRODUCTION

In recent years there has been a growing interest
regarding study of orthogonal transforms in the area of
digital signal processing. This is primarily due to the
impact of high speed digital computers and the rapid
advances in digital technology and consequent develop—
ment of special purpose digital processors. The appli-~
cations of such transforms include image processing,
gpeech processing, pattern fecognition, gpectroscopy etc.
In signal processing end, in particular, specch and
picturc processing a wide class of transforms including
Fourier, Walsh, Hadamard, Hoor, slant and discrete cosine

has come %0 be widely used in recent years.

Linear transforms can be used to obtain alternative
descriptions of signals. These alternative descriptions
can have many uses and most of the applications are
based on the exploitation of the fact that linear trans—
formation is a wey of changing stotistical and spectral
characteristics of the signals. Thus it is advantageous
to have a wide clags of linear transforms from which a

particular choice could be made for spccific applicetion.

Many transform kernels have a largs amount of

gtructural redundancy. In many cases the structural



redundancy of the transform kernel is such that certain
lower-order transform kernéls are embedded in the higher-—
order transform kernels, provided certain elementary re-

lations hold between these orders.,

Non linear or even noninvertible trangforms can
be useful for applications such as classification aﬁd
pattern recognition. These transforms exploit the fact
that they could supprcss certain aspecta of the input
signals which are irrelevant and focus attention on re~
levant parameters, relevance being defined in the context
of a particular application., Efficient computational
algorithms are known for a number of linear transforms,
An efficient computational algorithm would be & degir-~
able characterigtic of nonlincar and noninvertible

trongforms also.

The work carried out for the preparatien of this
thesies relates to gencration of higher order orthonormal
kernels starting with lower order orthonormal kernels,
definition of some new tronsform kernels, study of per-
mutation propertiecs of the kerncls and inversion of some
nonlincar transforms using additional labols, The
thegis hag been written in an unconventional way in the
gsense that ingtead of devoting a couple of chapters in
the beoginning for review of the existing literature the

review and background neccssary for understonding the



text have been incorporated in each chapter. Thus each
chapter in this thesis is mostly self contained in the
sense that for its understending one does not have to

refer to other chapters.

The results in Chapter-2 are regarding possible
exploitation of groups known as transitive abelian per-—
nutation group. Siddigui [57] and Rao [52] have studied
such groups to define o class of systems which is in-
variant under sone prescribed pernutation. The clags of
gystens given by then has been naned as pernutation-
invariont (P.I.) systems, It has been nentioned by these
workers that such groups can be found out using results
fron finite group theory. But the search of literature
on finite group theory which would enable one %o write
all possible transitive abelian pernutotion groups of
order N and degree N which ocan be fornmed from & per=
nutation group of order N} resulted in the negative,
This problem is twofold : first to find out the exact
nunber of such groups and second to write all the ele~-
nents of all such groups. The second part of the problen
in fact boils down to the task of finding any one rl=
nitive clenent of the group as all the elenents in any
group are the powers of the prinitive element in the
group. The work in thig direction gtarted with the
1listing of all such groups of lower degree s0 28 to get

some clue regarding any possible algorithm to solve



the problem of writing the complete groups. All such
groups have been listed for degree four armd five. The
complexity increases many times as one tries groups of
higher degree. With these available results and the
P.I.gystems defined by earlier worker a new system which
is invariant to some other permutation has been defined,
Some inferences have been reported regarding conditions
under which such systems would exist but they are in-~
adequate in the¢ sense that they are based on the results
of examples worked out in respect of transitive &belian

permutation groups of order and degree four and five only.

Iﬁ Chapter 3 +the known permutation properties of
discretc Fourier transform and Hadamard transform have
been exploited to study the permutation properties of a
new transform namely Fourier twiddled H-DF transforn,
The idea of defining such a transform ocame from the
results known for finding out the D F T of a sequence
by writing it as a two~dimensional array read row by
row, The D FT of the sequence is equal to the column=
wigse D F T followed by twiddling and then rowwise
DFT . It was thought that if the columnwise D F T
is replaced by colunnwise H T and the twiddling factor
nodified then the resulting transform should exhibit cer-
tain pernutation propcrties. When it was tried sone

nice pernutation properties resulted. The pernutation



on the input sequence, written as two-dimensional array
and read row by row, was effected by treating each row
(colunn) ag an element. The rerautation propertiecs for
DFT and HT are well known for one-dinensional
gsequence and these were applied and transforn taken,

The pernutation properties of the transforn sanples were
found to depend upon permutation operator pairs, as
expected. The technique developed in this chapter could
be used to define a family of new transforms by choosing
various pairs of orthonormal trangforns in pPlace of H T
and D F T. The pernutation properties of such trans—
forns, if any, would depend upon the reciprocal pernuta-—
tion operator pairs for component transforns and the
twiddling scheme. P, P' are said to be reciprocal per—
nutation operator pairs with regpeet to some transforn

T if T Pa(i) = P'Ta(i) whore a(i), 4 = 0,1,2,...,N-1
is the input gignal sanple sequence of length N.

It is well known that the nmatrix resulting fron
the Kronecher product of two orthonormal natrices is
again an orthonornal natrix., In Chapter 4  three nore
natrix products viz. Chinese product, Chinese-Kronecker
product and Kronecker~Chinese product have been introduced.
These are basically sone modifications over the known
Kronecker product of matrices., In all cases the dinension

of the resulting matrix is the product of the corresponding



dinensions of the conmponent matrices. Unlike Kronecker
product of natrices which is defined for all dinensions
of the conponent matrices the natrix products introduced
are dofined only when the corresponding dimensions of

the conponent natrices bear sone reclationsghips. The
Chinese product is defined when the dinension of the rows
(columns) of the component natrices are coprines, i,e.,
they have no factor in common. The Chinese-Kronecker

and Kronecker-Chinese products are defined only when the
dinmensions of the rows and colunns respectively of the
two conponent matrices are coprimes. It has been shown
that the natrices obtained by taking these natrix products
are orthonormal if the component nmatrices are orthonornal.
In fact the natrices obtained in these cases are the row—
wise or/and colunnwise pernuted versions of the natrix
obtained by the EKronecker product of the same conponent
natrices, This being the case it was hoped that one
should be obtainable from the other by prenultiplication
and_postmultiplication by suitcble pernutation nmatrices,
Relationships have been deduced to obtain Chinese product
natrix from Kronecker product natrix and vice-versa , and
Chinesc=Kronecker product nmotrix from Kronecker-Chinese
pfoduct natrix and vice-versa provided both the products
are defined. Thus by defining sone nore matrix products
a nethod has been suggested for generating higher order

orthonornal transforn Kernels starting with lower order



orthonornal transform kernels.

The notions of Kronecker product and Chinese pro-
duct of matrices have been made use of in Chapter 5 to
define two new matrix products namely partitioned matrix
Kronecker product and partitioned matrix Chienese product.
In both of them the two component matrices are partitioned
into submatrices so that the submatrices of one are con-
formable for ordinary matrix multiplication to submatrices
of the other. The resulting submatrices are indexed as
elemcnts. Matrices are then obtained by taking Kronecker
(Chinese) products of thesc component matrices wherein
submatrices are treated as elements. The ordinary product
of clements in Kronecker product o% matricies is replaced
by ordinary matrix product of submatrices, The ﬁatrices
resulting from such multiplications arec orthonormdl if

the compon¢nt matrices are orthonormal.

Another method of getting higher order orthonormal
metrices starting with lower order submatrices is exploit-~
ing the results availeble for consgtruction of Hadamard
arrays., In particular if the submatrices are real, sym-
metric and circulant then higher order orthonormal mat-
riccs of various orders can be obtained using Williomson

design, Baumert-Hall design and Boumert-Hall-Welch design.



On¢ important arca of application of transforns
ig charactur recognition. Many transforms are known which
have becen successfully applied for such purposes., Most
of these transforms are nonlineor and noninvertible.
Since the location of the charactur in the pattern domain
is of little intercst, some of the transforms finding
application in character recognition are translation in-
variant, Wagh [65] has given a class of such transforns,
nanely symnmetric function transforms ( S F T), and studied
their usefulness in pattern recognition., The permutation
properties of some of the transforms which are translation
invariant in the sense that if the input is cyclically
shifted the transforn sanples do not change have been
studied in Chapter 6. Some new transforns have been pro-~
posed which could find application for such purposes.
Sone of then are superior in the stnse that hardware:
needed ig sinpler and that nmany of the tronsforn samples
are zeroes in which case the average energy required for
trangnission would be less asswing that transmigsion of
zeroes needg no energy. In this chapter an effort has
been nade to invert the nonlinecar transforms. The
additional information required for achieving this
objective is labels at various functional blocks of the
schene which effects transfornation. These labels would
be different in different transformnation schemes. Thus

the known nonlinear transformnations alongwith the knowledge



of the labels at various functional blocks could be used

for unique recovery of input sanples from a knowledge of

the tronsforn samples and labols., The transfornations bagi-~
cally developed for pattern recognition purposes can

now be successfully employed for negsage or picture

signals.

Though the results obtained in this thesis have
been illustrated with exanples of lower orders. they
can also be used with higher orders. As a natter of
fact, as the order increases there ig more flexibility
in seleccting the paraneters like pernutation operator,

order of the subnatrices etc,



CHAPTER ~2

SYSTEMS WITH PRESCRIBED PERMUTATION PROPERTIES

This chapter gives a critical review of the earlier
work in the areas of one-dimensional and two-dimensional
permutation invariant systems. Some modifications to the
notions of permutation invariance have been suggested.

With the modified notions the resulting system matrices
may have lesser rank than order leading to degenerate cases.
It may be intercsting to find out the. conditions under

which degenerate cases do not arise,

2.1 PERMUTATION~INVARIANT SYSTEMS

A method for high speed computation of correlation
and convolution of finite discretc signals has been given
by Stockham [59]. Cyclic or circular convolution is the
name gssigned to such convolutions. Finite discrete
linear systems defined by cyclic convolutional relation=-
ship between the input and output sequences are termed
as cyclic convolution gystems [22] and they hoave charac—
teristics similar to linear time-inveriant systems, The
cyclic convolution systems have been widely usad indirectly
in meny arcas involving fast Fourier transforn (FFT) in-
pPlementations of ordinary convolution and correlation of
finite discrete signals [1,4,5,21,23,51,59]. The notion

of convolution was extended when Walsh functions [19,45,68]
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were applied for signal Processing. Gibbs introduced

the concept of logical convolution, which is presently
known as dyadic convolution [16,17,22,26,47], of finite
discrete signals of length equal to an integer power of
two, The linear systems characterized by dyadic convo-
lutions, termed as dyadic~invariant systems by Pichler([46],

have features similar to linear time-invariant systens.

Rosenbloon [54] applied theory of groups [19,14,
20,25,27,28,29,31,56,69] to dyadic systems. He has pointed
out that character vectors and regular repregentations of
finite abelian groups play respectively the roles that
conplex exponential functions and time tranglations have
in the theory of linear time-invoriant systems. His
discusgsion, however, was limitcd to dyadic systcng cor~
responding to dyadic groups. Gethoffer [22] observed
that cyclic, dyadic os well as ordinary discrete convo-
lutions have sinilar structures, He investigoted nutual
nappings anongst these systens with particular enphasis

on cyclic and dyadic systens,

Definitions of some of the terms from group theory

which find frequent references in the chapter are:

ORDER =~ If G is a finite group then the number of
elenents in G is known as the order of the

group.
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DEGRES - If ;. represents a finite set of objects
and then objects of _ are denoted by the
integers 1,2,...,N then a map of 2 _ onto

itself is called a pernmutation of degree N,

PERMUTATION- There are N! arrangenents which map a set

S of objects denoted by the integers 1,2,..,N
onto itgelf, The set containing all such
arrangenents is known as a pernutation group.
Thus a pernutation group of degrece N is

of order NI

TRANSITIVE - A group of pernutations is said to be trans-

o itive if, given any pair of letters a,db
(which need not be distinct), there exists
at least one pernutation in the group which
transforns o into b, Othwrwise the group

is intransitive,

ABELIAN ~ A group which has the additional property that
GROUP
for every two of its elenents ax b =b x o

is called an Abelian (or comnutative) group,

TRANSITIVE ABELIAN PERMUTATION GROUP OF ORDER N

AND DEGREE N -
This is a subgroup of order N forned out
of a permutation group of order N! and
degree N such that tfor any pair of elenents

Pi s Pj y i ’ j = 0’1’2’0.0.. N—l
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i) therc exists only one pernutation in

the subgroup which transforns F1 in%o

CALEY TABLE -~ For a finite get 3, a binary operation

* on the set can be defined by neans of a
table., Caley table or multiplication
table is one such table wherein

(1%h entry on the left)*(jth entry on the
top) = (entry in the 1% yoy and jth
colunn of the table)

It is obvious fron the definition of transitive
abelian pernutation group of order N and degree N
that a variety of such groups can be congtructed for any
given N, There would always be a cyclic group for all
values of N and a dyadic group if N is eqwl to an

integer power of two,

By a finite discrete gysten 8 is neant a napping

fron RN t0 RN and written
¥y = B x

where x e RN and y ¢ RN are the systen input and systen

output respectively, RN is the N-dinengional vector
space of N~tuples. If the systen is linear it has the

following matrix representation with regpect to the
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standard basis BE:

Ps(o,o) s(0,1) sand  wlE ML)
s(1,0) sl ,1) PRI = ) v o G
L?(ﬁ-l,O) s(N:l,l) :::: s(N:i,N—l)

The input and output signals x and Y have N x 1
natrix representations [x(0) x(1) .... x(N-l)]T and

(0T (L], wone U(N-l)]T respectively,

If G be a transitive abelian pernutation group
of order N and degree N and Pi gone element in G,
Pi € G, then a finite discrete systen § ig said to be
pernutation = invariant (P-I) rclative to @ if, for any

signal x in RY,

P; (8x) =28 (p; x) P, € G eee(2.2)

The set of all such systens, rclative to a glven G,
is terned as a class of P.I. systen of dimengion N,
where N ig the length of the signal, The nunber of
various classes of P.I, systens of a given dinension is

equal to the nunber of G's defined.

Siddiqui [57] has obtained a general fornula which
generates pertinent pernuted signals belonging to various
classes of P-I systens. This has been acconplished by

suitably ordering the &roup elements in accordance with
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the notion of representing numbers with respecet to mixed
radices [60]. It has been shown that systens in each
class are fully characterizad by their unit sanple reg-
ponse, P~I systemns are represcnted by natrices known
as P-I natrices. Some of the inportant properties of

P=-I natrices are:

1) P-I nmatrices representing any particular class of
P~1 systeng constitute a vector space of dimension
equal to the dimension of the signal space on which
the P~I systems of the class operate , the get of
pernutation natrices representing the pernutations
of the transitive abelian pernutation group with
respect to which the class of P-I systens is defined

8eYvVes as a basis of this vector space,

2) The eigen vectors of P-~I matrices, and hence the
eigen signals of the P-T systens, are the discrete
versions of Levy's generalized Walsh functions 801,
The corresponding nodal natricesg belong to the
fonily of generalized Hadanard natrices. The eigen
values of P~I nmatrices are the conponents of genc-
ralized Walsh-Hadanard transform of their generating

vector (zeroth colunn),

3) P-I matrices are cloged under inversion and nulti~

plication which is comnutative,
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Siddiqui [57] has applied his results on P~I gystens
for spcctral shaping (filtering) of finite discrete signals
to develope a theory of P-I filters wherein the role of
the conplex exponential signals in classical filter theory
ig taken over by the eigen signals of the particular clogs
of P~I systens., He has, in particular, discussed the
filtering of finite discrete signals with the help of
dyadic P~I systens and cyclic P~I systens.

In cagse of nany seperable systens, the extension of
concepts to nulti-dinmensional situation is trivial and
for dyadic systems, many one-dinensional results are
obtained by taking recourse to the fact that one-dimensional
dyadic gysten is equivalent to nulti-dimensional dyadic
systens through Kronecker products [36]. Of the verious
clagoses of 1-D P-I gystens, only the cyclic and dyadic
classes have so far been found to have a gignificant role
in the processing of finite discrete data, It has been
shown by Rao [52] that many of those I-D P-I systems which
bc¢long neither té the cyclic nor to the dyadic class are,
in fact, the 1-D equivalents of 2-D or nulti-dimensional
cyclic or dyadic P-I systens., Such 1-D P-I gystems are
thus of indirect practical use in the processing of 2-D
and nulti=-dinensional finite discrete data. Rao [52]
has shown that when the data to be processed are finite,

exact 1-D realization of 2-D filters can be obtained using
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the P-I systen approach, The results reported by Rao [52]
are essentially an extension of Siddiqui's [57] work., He
has rcported certain generalizations of P-I linear systens,
The generalizations reported by hinm pertain to the fol-

lowing three new categories of P~I systens :

1) 2~ P-I systens which have finite 2-D arrays of

reals as their input signals,

2) P-I systems on finite fields, i.e., those 1=D P-I
systens whose finite length input sequenceg have

their entries drawn fron finite fields.

3) P-I systems on rings, i.c., those 1-D P-T systens
whose finite length input sequences have their

ontries from rings of residue class integers.,

2.2 OSOME NEW RESULTS ON P~I SYSTEMS

All possible arrangenents of (%, % X2...XN_1) forn
a group of order N! and degree N under pernutation
nultiplication. Many transitive abelian pernutation
groups of order N and degree N can be formed out of
this group. Any pernutation can be equivalently represented
as a prenultiplication by a pernutation matrix, Unless
otherwise gtated the same symbol P would be used for
pernutotion as well as permutation matrix., When N = 4
there are four possible trangsitive abelian pernutation

groups of order four and degrece four, say GO, 19 G2
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and G3. Various elements of each such group alongwith

their Caley table are listed below:

l. Group G0 Permutation PO X

X, Xy X, x3

Permutation Pl X, el X, x3
x3 . Xy X5

Permutation P2 Xo Xl x2 X3
x

Permutation P

Caley Table =« P Pl P2 F

o 3
PO Po Pl -P2 P3
Pl Pl P2 P3 PO
P2 P2 P3 Po Pl
P3 P3 Po Pl P2

where » is permutation multiplication and

Po is the identity element.

2« Group Gl Permutation Po X, X X2 x3
X, Xq X, X3
Permutation Pl X, Xy X5 x3



3

Group G2

Permutation

Permutation

Caley Table

Permutation

Permutation

Permutation

Permutation

Caley Table

P2 Xo Xl x2 x3

o I A~
P3 Xo Xl x2 x3

X5 x3 Xq X,
I Po Pl P2 P3
Po PO Pl P2 P3
Pl Pl Po P3 P2
P2 P2 P3 Pl Po
P3 P3 P2 Po Pl
PO Xq Xy x2 x3

o ¥ B 3
Pl X, Xq X5 x3

x2 X, x3 Xy
P2 Xo Xl x2 x3

xl x3 X X5
P3 Xo Xy x2 x3

x3 x2 X X,
Po Po Pl P2 P3
Eq Pl P3 Po P2
P2 P2 Po P3 Pl
By | B35 Fp K o

19
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4. Group G3 Permutation k. % Xy : -

Permutation Pl Xo X4 x2 X3
Xy X, X3 X,

Permutation P2 X, X4 X2 x3
X

Permutation P3 X X X, x3

Caley Table « P Py P2 P3

T PD P3 P2
P2 P2 rid Po By
P3 ?3 P2 Py Po

Group Go is cyclic and group G3 igs dyadic-all its
elements being their own inverses. Such a group exists
only when the order of the group N 1is an integer power

(Dl 7

If S be a finite discrete linear system represented
by Eq. (2.1) then this is said to be permutation-invariant
with respect to some group G if matrix S commutes with
the permutation matrices corresponding to all the elements

of the group G, i.e.
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S, = B8 Bi ¥ 6 3040:2,5
8Py = P8
SP, = P8
8B5 = Bg8

Since PO is identity matrix so effectively only three
conditions are to be satisfied, The system matrices re-
presenting P.I. systems with respect to the groups defined

earlier are listed below:

1. Group G, s =

This has cyclic structure as would be expected.

2. Group Gy ™8 8 85 8]

3. Group G 'S 3
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4. Group G

9]
]
9]
W
os]
H oW

1
2 83 So S
83

P

This has dyadic structure as would be expected. When
lgN§3 there is only one P-I system and that has cyclic
structure, In case of N = 4 it has been shown that

there are four possible P-I systems : one cyclic, one
dyadic and the rest having no special names, The transi-
tive abelian permutation groups and the resulting P~I system

matrices are ligted below for N = B,

1, Grgup Gb Permutation Po Xy X4 x2 x3 x4
X, X X, Xz Xy

Permutation Pl X, X X, X3 Xy

X, X, X X, X3

Permutation P2 X, Xy X5 X5 X,

Xz X, X, X X,

Permutation P3 X, Xq X, Xz X,

X, Xz X, X X

Permutation P4 X, - Xp X, x3 x4
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Caley Table

|

This has cyclic structure as would

Group Gl

Permutation

Permutation

Permutation

Permutation

Permutation

* PO Pl P2 P3 P4
Po Po Pl P2 P3 P4
Pl Pl P2 P3 P4 Po
P2 P2 P3 P4 PO Pl
P3 | By By B By By
P4 P4 Po Pl P2 P3
”so 84 Sz 8 sl‘ﬁ
81 8, 8, 83 8,
I S, s 8, 8, Sz
g 8 S5 8 H, 84
8, 8z 8, 8] 8y |




3e

Group

Gy

Caley Table

Permutation

Permutation

Permutation

Permutation

Permutation

24

o) 1 2 3 4

PO Po Pl P2 P3 P4
Pl Pl P4 Po P2 P3
P2 P2 Po P3 P4 Pl
P3 P3 P2 P4 Pl PO
P4 P4 P3 Pl PO P2
Sy 8 Sy s4 33

sl so s4 s3 32

s2 s3 S, 89 s4

33 s4 s2 So 89

s4 Sq s3 S5 S,

P = X X X v:d
o) o | 2 o 4
XO Xq x2 x3 X4
Pl X, X X, X3 X4
X5 Xo X4 Xq X3

B X pi¢ X X 2
2 0 1 2 Y 4
Xl x3 Xo x4 X2

P X 5.0 X X X
2 o) A 2 %5 4
x4 X5 x3 X, Xy

P4 Xo Xl x2 X3 x4
x3 x4 Xq X2 XO
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Caley Table

Group G3 Permutation

Permutation

Permutsation

Permutation

Permutation

25

* Po P P, Py P
PO Po Pl P2 P3 P4
L < R R L
P2 P2 Po P4 Pl P3
et By By SR
P4 P4 P2 P3 PO Pl
rso 85 81 8y 53

8¢ S, 83 8, 84
: S, 34 5, 83 Sq
83 8y Sy 8, S5

] o S B A

Po Xo Xl x2 x3 x4
X, Xq X, X5 X,

Py X, X X, x3 X4
x3 X, Xy Xy %,

P2 xo Xy x2 x3 x4
Xy X, X, X, Xz

P3 X, Xy Xy Xz X,
% By B g &

P X X X b2 b
4 o) 1 2 3 4
X, X, x3 %y X,
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Group

Gy

Caley Table

Permutation

Permutation

Permutation

Permutation

Permutation

26

* PO Pl P2 P3 P4
Po PO Pl P2 P3 P4
Pl Pl P3‘ PO P4 P2
P2 P2 PO P4 Pl P3
P3 P3 P4 Pl P2 PO
P4 P4 P2 P3 PO Pl
Sy s3 s4 S1 s2

sl &, s3 s2 84

- s2 8 Sq s4 33
s3 s4 s2 8, 81

X4 S, 81 s3 S

Po XO Xl x2 x3 X4
Xo Xy x2 x3 X4

Pl XO X x2 X X4
X4 XO X3 Xl X2

P2 Xo Xi x2 x3 X4
X x3 x4 x2 Xo

P3 Xy Xq X, x3 x4
x3 X, X, x4 Xq

P4 XO xl x2 x3 x4
x2 x4 X X, x3




Caley Table « By By P, P3 P4
B B B OB BB
iR Fp B, By Py
B ry B, B B omy
i B OB OnH, B
Pad T T B R B

.rso % B 5 N j
{1 o W2 oy ¥y
a4 B P fe Wy W
* 85 & 8 8, 8,
S

Obtaining results on permutation properties of linear
systems does not per 8e need listing of permutation groups.
The results should be obtainable from the propertieg of the
group. But in actual practice it is common that the nature
of the permutation properties is studied from results
obtained by actual listing. The pattern of results so
obtained gives an idea about the theorem and which subse-
quently is derived from analytical considerations. In
this case because of enormous amount of computation needed
it was not possible to have results which could suggest
substantially consistant permutation properties. It was
at this stage that detailed investigations had to be

given up,
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When an attempt was made to write all transitive
abelian permutation groups for N = 6 it turned out that
this number would be fairly large and almost beyond manual
computation. The existing literature on finite group
theory was reviewed to find some fast algorithms for 1ist—
ing such groups so that efficient computer programme could
be prepared. A computer programme based on the definition
of the transitive abedian permutation group would be highly
complex in nature and would have enormous time and memory
reqguirements even for relatively small values of N. The
available literature on finite group theory has Sylow
theorems which could be of some help. But this in our
case would give the number of subgroups of order N and
degree N provided N! = Nm where N is a pbrime and does
not divide m. The number of subgroups of order N and
degrre N would be congruent to 1 (modulo N) and divides
Ni. It is important to note that all such subgroups would
not be transitive abelian permutation groups of order N
and degree N. Identification of such groups from possible
number of subgroups is not easy. Once this identification
has somchow been achieved the actual problem is to list
all the groups. Though all the elements of the transitive
abelian permutation group can be written even if one of
its primitive elements were known, no theorem was available
which could help isolate such elements and consequently

the groups. Thus the Sylow theorems have tyo limitationsg
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from our standpoint,

1) They have application only when N! can be written

in a particular form,

2) The maximum number of subgroups possible is very

large and hence direct enumeration is not practicable.

It might be of interest in future to develope fast
algorithms for the listing of transitive abelian permutation

groups for any given N.

2,3 RECIPROCAL-PERMUTATION SYSTEMS

The same permutation matrix Pi appears on either
sides of equation (2.2) which defines a P-I system relative
to some transitive abelian permutation group of order N
and degree N. A natural question is what would happen if
different permutation mairices, but both belonging to the
same group G, appear on two sides in the equation. This
scheme was worked out to see if there is any regular pattern
in the resulting finite discrete system § under prescribed
permutation properties relative to some group G. The P-I
system S resulting from the definition given in equa-

tion (2.2) would satisfy the following conditions when N=4

SPy = P48 Py, P, P3 g 0 exe LEoSd
98, = P8
SP3 = PgS
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Let us define a finite discrete system S under the

following permutation properties

SP; = B8 v, = 1,2,3 ces (244)
8P, = B8
SP3 = PWS

The set of such system matrices S would be termed
ag a clasgs of regiprocal-permutation gystem (R-P system)
and Pl,Pu; sz P, 3 and P3, Pw are called reciprocal=-
permutation pairs with respect to S. When u = L; ¥ a2
and w = 3 the R-P system becomes P~I system. The finite
discrete system matrices § for R~P system were obtained
for groups Go' Gl and G3 When N = 4. The conditions under
which realizable }S were obtained are listed below along-
with the corresponding R~P gystem matrices S. The
system matrices S corresponding to P~I system have not
been given here as they have already been listed in the

earlier section.

2 SPl = P3S Pl’PZ’PB € Gb ”éo Sy Sy 33.-
SP2 = PZS 2 81 So Sz 8,
SP3 = PlS S5 83 ¥y 81

1_?3 8¢ 91 82_:

S 1is a back circulant matrix

- LEA SPl = Pls Pl,Pz;P3 € Gl 8, Sy 85 S8 |
SP2 = P3S 8, 8, 83 8,
SP5 = PpS gl S 85 8 8,
| 83 B, 8, 8




3(e)

(b)

(c)

(d)

SPy
SP2
SP3

=P3S

This hag dyadic structure rowwise in the sense

that all subsequent rows can be derived from the

leading row by dyadic shifts.

SPl
SP

SP3

2

= Py

P3S

This has dyadic structure.

5Py
SP2

SP3

5Py
SP
SP3

= PZS Pl'P2’P3 e G
= P3S

3

This has dyadic structure.

3 3

P48

PZS

This has dyadic structure.,

[0} 0]
W N

0]
(o]

e

LSRN

w0

o] (0]
N W

2]




(e)

1)

72

SP2 = st S & Sl 82 53 So
SP3 = P48 {8, 8 8 83

This has dyadic structure.

The following inferences can be drawn from the

above results:

The finite discrete system matrix 8 would have
rank equal to its order if the suffixes of P's on
the left hand side and the right hand side of at
least one of the conditiong is the same and that
this permutation forms a subgroup of order two with
the identity element Po. The product of P's on
the LHS and R H S of the remaining conditions
must be equal to either the identity element Po or
a permutation which is its own inverse., Thus in
case of group G2 the finite discrete system

matrix S would be of rank four when

SP2 = P48
SP3 = PBS

This can be easily verified,
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2) The set of system matrices which satisfy equation
(2.4) constitute a class of systems with reciprocal-
permutation property. This may be termed as 1-D
R~P gystem, The resulting rcalizable system matrices
are matrices which are columnwise permuted version
of each other with zeroth column remaining fixed,

In such permuted matrices the lst, 2nd and 3rd
columns are the u,v and w columnsg of the system

matrix corresponding to the P-~I system.

The inferences enumerated above arc based on studies
on transitive abelian permutation groups of order four
and degree four only. It may be of interest to investi=
gate cases corresponding to groups of higher order and

enumerate more comprchensive resultss.

The class of 1~D R-P gystcm can be enlarged by
generalizing the definition of 1-D R-P gsystem as given

by Eq. (2.4) as

spgi) " ng)s W,v,W = 1,2,3 v (255)
spgi) - Péj)s 4% a0 aaE

% TR J 5
SPg = »lls

wherc PSFO is the permutation matrix Pl of group Gk.

An attempt was made to find owt whether finite

discrete system matrices S, having rank eqwml to its
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order, would exist under this prescribed permutation pro=
perty. If so, under what conditions? The scheme was
worked out for geveral pairs of groups and the conditions
under which realizable S were obtained are listed below
alongwith the corresponding generalized R-P system

matrices S,

1(a) SP&l) = sz)s *éo S5 S5 S
SPél) = P%Z)S 81 8o S 83
S =
{3y - 2)
SP3 = Pg S 85 81 S3 8,
— -y
(v) SPil) = sz)s S S5 8 9
SPél) = Péz)s ' 81 82 83 S,
g = ]
SP%l) = P](_Z)S 82 Sl so 53
83 So Sz Sl
(c) SP§2) = Pgl)s 8, 85 By Hy
SPéz) — Pgl)s 81 So 83 8,
S =
SP%Z) = Pgl)s 8o I 8¢ 83
gy 8y ®, 8
(d) SP§2) = P%l)S } s, So S3 81
SPéz) = Pgl)S 81 53 S5 8,
g = I
SP%Z) = Pil)s 85 Sy Sq 33
S3 So Sl 32




2(a)

(b)

(a)

59

It may be pointed out that Pil) and Péz) are their
own inversges, and the groups Gl, G2 are neither

dyadic nor cyclic. Further, Pgl)*Pél) & Pgl)ﬁPél)=P{l)

and P£2)*P£2) = sz) 3 sz) = P%z)o Also conditions
(c) and (d) are obtained by commuting S and P in(a)

and (b) respectively.

SP{O) - Pgl)S ."so Sz 89 32‘T
SPgo) = Pgl)S Sy ) So 8%
SP%O) = Pgl)s e 85 8, Sz 8y
L,S3 o So;
se{®) = p{Ms T T .
s2{0) = 2{}s 81 85 & 8
SP%O) = Pél)s R 85 8 83 8,
{ 83 8, 8 8
sp{t) = {0 rso 5, 85 5 |
SPél) = Pio)S h 59 8 So S
se§t) = {0)s . [ 52 % = 5
- ¥ M B %
se{) - 2{0s p 5% & & s%w
SPgl) 4 P%O)S ! &, 85 8 8
SPgl) = Pio)s 8, 9% S3 Sy
L sz 8 8 sz“J
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It may be pointed out that Péo) and P{l) are
their own inverses and the group Go is cyclic, Further
P](_O)*P§_0)=P§O)*P§O)=P§O) . Also conditions (c) and (d)
are obtained by commuting S and P in (a) and (b)
respectively. Similar results may be expected with groups

G and G

o] il

When groups Go and G3, i.,e. cyclic and dyadic, were
taken and investigated it was found that a system matrix S
having vank four could not be obtained under any condition.
Since cyclic group Go gives gome system matrices S of
rank four with groups which are not dyadic it may be said
that a dyadie group G3 when considered alongwith any

other group would not yield any system matrix § of rank

four.

Thus it has been shown that it is possible to enlarge
the class of 1-D R-P gystem if it be defined according to
Eq. (2.5). It may be of interest to find out the condi-

tions under which degenerate cases would not arise,

A two-dimensional discrete signal x e V is an
array with M rows and N columns. Let T be a 2-D finite

discrete linear system on V and Gi’ Gj be transitive

abelian permutation groups of order M and N respectively.

Then T is said to be a 2-D P-I system relative to Gi
and Gj if for every x e V, every Pk € Gi’ kK e ZM and
every Pl £ Guy L 8 5%

J N’



37

T(Py x) = P (Tx) ses (PsB)

and
T(x P3)

(T x) By sue (270

where Pk is the M x M matrix that results from permut-
ing by Bk the rows of the identity matrix of size M ,
and Pl igs the N X N matrix that results from permuting
by Py ‘the columns of the identity matrix of size N.

The get of all such systems which satisfy Eq. (2.6)
and (2.7) constitute a class of 2-D P-I system relative

Yo groups Gi and G.. The two conditions can also be

]
witten as
P (B, x PY) = B (T x) PY (2.8)
k 1 i k l [ X ] L J
- ?(B, x PY) = pT (2.9)
k- l . & y l a9 O L 3

where T =%

This relation expresses the fact that the effect of
permuting the rows of the input signal to a 2-D P-I system
by members of group Gi and its columns by members of
group G,

J
put signal exactly in the same manner.

is to permute the rows and columns of the out-

If the defining Egs. (2.6) and (2.7) be modified in

accordance with Eq. (2.4) as

T, (B X) = Be(Ty X) Pe » Bg €6 eos (2410)
and

T -~ 1 T '
(x Py) Ty = (x T)By~ , Pys Py € Gy R - M



38

Then the set of all such systems T, and T2 which
satisfy Bqse. (2.10) and (2.11) constitute as class of two~
dimensiqnal system having some prescribed permutation pro-
perties. Such systems may be termed as two-dimensional
reciprocal~permutation system (2=D R~P system) relative
to groups Gi and Gj’ As has already been pointed out
in case of 1-D R-P systems not all combinations of P, Bl
€ @ and By, Py € Gy would yield 1) and T, of ranks
egual to their orders. The 2=D R~P system would result in
2-D P~I system when P, = P} and P; = P;. It may be of
interest to find out the conditions under which T, and

T2 would have ranks equal to their orders.

A wider class of 2-D R~P system, say generalized
2=D R~P gystem, could be obtained by modifying Egs. (2.6)
and (2,7) in accordance with Eq. (2.5), In most of the
cases the Tresulting system matrices Ty and /or T, would
not have ranks equal to their orders. It may be interest-
ing to derive tpe conditions under which degenerate cases

would not arise,

2.4 SYNCHRONOUS TRANSLATION INVARIANT TRANSFORMS

In this section some more systems are derived which
are permutation-invariant to a class of permutations, If

circulant matrices B with the property that

BB = I modulo 2 I oY
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are obtainable they could be used as transform kernelg to
transform binary signals with O and 1 as possible values
with the understonding that matrix algebra ig defined over
G F (2) . In other words the sum ig replaced by EOR and
multiplication by AND in the definition of a transform by

matrix multiplication,

A (v,k,A ) cyclic difference set [10,55] is normally
characterized by its incidence matrix A and that A 1is
a square matrix of order v with O and 1 as entries and

satisfies the relations [10]

A AT = AT

(£ =2} 1+ J R ¢ =

Ad = JA

I aea LO4AS)
where J ‘is . a matrix of a@ll ones.

IfA = 0 moduwlo 2 and k £ 1 modulo 2, A coan be
used as matrix B of Eq. (2.12). That is, orthonormal
circulants of Eq. (2.12) can be obtained from some (v,k A)
¢yclic difference sets dirsetly. If k = O modulo 2 and
A = 1 moduwlo 2, the desired matrix B can be obtained from

A as

J
B = P s T {3k wreg A sestoingd

That is, orthonormal circulants of Eq. (2.12) can be obtained
from some (v, K, A) cyclic differencc sets by 2 minor

modification.
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A (v, pk - pk ) cyclic difference set is an arrange-
ment of v elcments oo Xqs eee 3 Xy g into v sets

SO, Sl, e Sv-l such that Si contains ki elements

and 8;, 83 have A s eglements in common such that [44]

)8 i 3 Z p, modulo 2 I T 0 - TP, IR

k Py modulo 2

i -

If A is an incidence matrix of the (v,pk, Pa )
cyclic difference get analagous to Egs. (2.13) and (2.14)
then

T

AA" =4 A= ({p-Dy )I + py J) modulo 2 seal skt

AJ

JA = p, J modulo 2 vankid 8]

Two important cases arise,

Caoge I
=l i = PR ol
If p, and p, =0 (2.19)
then Eq. (2.17) becomes
T i v
4 & = A" A = I modulo 2 s anl Evatt)

so that the incidence matrix A can be used as matrix B
ot B (2.02 )«
Case II

If p. =0 and By, = 1 _fﬁ'(272l)

then Eq. (2,17) becomes
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£ AT = AV R = (1aF) modnlo 2 s ()
-
Then 0 j :
B = T 0 J = (l,l’...,l) s e e (2023)
] A

where J is a row vector of all 1's satisfies Eq. (2.12)
povided v = 1 moduleo 2. The (v,pk, px ) eyelic dif-
ference sets can be used to generate similar sets of higher

order.

A (v, Py P3 ) difference set is said to be of

type I if

and of type II if
v = 1 modulo 2, B =0, Py =1 ois (24 9%)

If Ay and A2 are incidence matrices of (vl,
P py ) and (v,, p P, ) cyclic difference sets res-
ky* Py 2 Py Pa
pectively then [44]

> R g f ves 12.58)

would be an incidence matrix of a (vl + Vos Pys Py )
cyclic difference set of type I if (vl, P » P; ) and
TS
¥as P+ B ) cyclic difference sets belong to the
£S5y T
same type and X would be an incidence matrix of a

(v1 + Vo Py Py ) cyclic difference set of type II if
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(Vl’ pkl, pl1) and (v2, pka, p}z) cyclic difference sets

belong to different +ypes.

If X is an incidence matrix of a (vl+v2, pk’PA)
cyclic difference set of type I then X can be used as
matrix B of Bg. (2.12). Similarly if X is an incidence
natrix of a (vl + Vo Pes Py ) cyclic difference set of

type I1I then

¥ 15 g T

can be wged as matrix B of Eq. (2.12). Eg. {2,27) can
be taken as a general method of obtaining a (v+l, Ps Pa )
cyclic difference set of type I from a (v, Py 9% } ayedic
difference set of type 1T, If

Y = O m=mpiule. .2

k = 1 modulo 2 pice R

1 2 0 melks 2

then a (v, k, A) cyclic difference set gualifies to be a

(v Py s PA ) cyclic difference set of type I and if

v = 1 nmnmoduleo 2

W
M

0 modulo 2 an LY

1}

1 modulo 2
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then a (v, k, X ) cyelic difference set gualifies to be @&
s I Py Py ) cyclic difference set of type IL. A list of

known cyclic difference sets is available [10].

W » [Sl, SZ]T be an input vector of lsngth (vy + v2)
and matrix X given by Eq. (2.26) be used as a transform
kernel of order (vy + v2) then the output vector [Rl,Rz]T
will also be of length (vl + v2), where Si’ Ri are se=-
quences of lengths vy at input and output respectively.
It can be infered from the structure of the kernel used
that the sequence R, 1is decided by Ai alone, Thus if

H 2

the input sequences Sl and 82 are cyclically shifted

within themselves then the resulting output sequences R,

and R2 would also Wndergo identical cyclic shifts within
themselves, Similar permutation properties can be derived
when other orthonormal B matrices derived from (v, Py s
pk) gsets (which in turn are derived from (v, k, A) sets)

are used as transform kerncls.

It can be noted for completeness that circulant
matrices B of Egq. (2.12) are useful in defining self-

dual codes [44].
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 PERMUTATION PROPERTIES OF SOME TRANSFORMS

Thig chapter begins with a review of gome of the
permutation properties of discrete Fourier transform
(D F T) and Hadamard transform (H T)e The relation between
DFT of one-dimensional sequence written as a two-dimen-—
sional array is well known. It envolves columnwise D F T,
twiddling and rowwise'D F T. A new transform has been
defined where the first operation of columnwise D F T is
replaced by columnwise H T and twiddling factors are
suitably chosen. Since the transform has H T and D F T
as component transforms it can be said that this transform
would exhibit permutation properties which could be derived
from a knowledge of the permutation properties of H T and
DF T, It is known that D F T exhibits modular permuta-
tion property and H T exhibits bit-plane permutation-

property among others.

3.1 MODULAR PERMUTATION

The 'discrete Fourier transform!, abbreviated as

D F*T, A(I) of a sequence of N samples a(i), i = 0,1,2,

LA N-l iS
N-1 .
A(T) = _}:O a (i)Wt 0, O JUEN, . R o
L=
N-1 2 I

= Y a(i) exp (- ] % )

i=0
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. 2B .
where Wy = exp (= 3 TF) i 3= V-1
There exists an inverse D FT (I D F T), which is
a(i) = j:-{]-: z A(I)WN i=0,l,2,clo’N—l soe (3.2)
=0

The I DFT of A(I) can also be written as D F T by

making the substitution k = N-I and writing

=

-]

l .I l N-l . N"’k
¥ IS=O AW = F k§=o A(N-k)wi;( )
== i'\].-' kE— .A.(N"k) WN seo (3-3)

Thig relation can be interpreted to mean that the
IDPFT of a sequence is % times the D F T of the

reverse of the sequence,

It is well known that D F T exhibits permutation
properties, i,e., if the sequence of signal samples a(i),
i=0.1,2,420, N=1 1is permuted according to modular (defined
presently) permutation operator and D F T t$aken then the
resulting sequence would be as if the sequence of transform
samples A(I), I = 0,1,2,..,N~1 are permuted according to
some other modular permutation operator. The modular per=

mutation operator P(p,N) is defined as [33]

ces (3.4)
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where p is an integer such that it has no factors in
common with N. Modular permutation is a sUmpsimus for

what otherwise is called decimation [23].

If P(q,N) be the inverse modular permutation

operator then

P(q,N) P(PyN) a(i) a(i) i=0,1,240.,N-1 ... (3-5)

Now,

P(q,N) P(p,N) a(i) = a[g(p i modulo N) modulo N} o
= a [p q i modulo N] L

From Egs. (3.5) and (3.6) one gets
P q modulo ¥ =1
It is clear that for any value of p, g is an unique

integer on the range Oquqg N=l1, If the D F T operator

is represented by F then

PL P(pN) a(i)] = P(q,N) A(T) , A(I) = Fa(i)
LT 2822 B
A((a I))y PR &

or

P [a((pd))y]
where ((x))N is x modulo N

A particular case of modular permutation is that
when p = g. The resulting modular permutation operator

ig called self~inverting permutation operator and gives

Fla((p'1))gl = 4 ((»'I))y P=gq=0p oy (B8]
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Some typical self-inverting permutation operators are

P(1,16), P(7,16), P(9,16) and P(N-1, N).

3.2 BIT~PLANE PERMUTATION

It is well known that Hadamard matrices of order
M= P s N Dbeing a nonzero positive integer, always exist,
A normelized Hadamard matrix of order M can be written in
'natural form' or !ordered form'!. In the natural form it

is written as

n-~1 +
X# X modulo 2
, +£=0
H(X!Y) ~ (‘l) e (3-9)
_ pyf=l n=2 t 1 0
vhere X, oo = (X X veo X0 ars B X )pgnane
_ goh=l -2 t
and Yiecimal = (Y b Py Bl T vt YO)binary

In ordered form it is written as

n-1
g: gt (X) Yt‘modulo 2
. =O seoe (3010)
H(X: Y) = ('l)
(o] a1
where g(L) = X
gt (x) = PV g e
g2 (X) gl Xn-Z & Xn—3
¥ 5] « T G

gn~12X)= X + %0
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In this form the number of sign changes in any row is
more than that in the preceeding rows. Hadamard trans—
form of order M = 2" is also known as Walsh-Fourier
transform, In what follows a review would be made of
known permutation operators P and reciprocal (with

respect to HT) permutation operators P’  such that

ElP sl = v all)] 2.3=0,520 =L ise (5110

= pr A(T)

where H is the Hadamard transform operator in natural

form so that

E e{i} = A1) = s - DEPRNE T R: £ 9.

i,e., A(T), I=0,1,2,...,M~1 arc the HT samples of the
signel sequence a(i), i=0,1,2,...,M~1l. An inverse permu—
tation operator, P_l, can be defined as

P P a(i)=a(i) 1] 2ovae i e D i
A permutation operator is termed as self—inverting permu~
tation operstor if it satisfics P 1=P, Moherir [36] has
defined two permutation operators, namely, selective bit-
complementation permutation operator and bit-planc permu-

tation operator.

ot a{ld; i=0,21:25 saia 221 Dbe the sequence of
signal samples and P(m), m = O,l,2,,...,2n-l be the
selective bit-complementotion permutation operator. If
the indices i and m are represented in n-digit binary
notaetion, the operator P(m), m = 0,1,2,00..,221 prescribes
complomentation in those locations in binary ropresentation

of i in which the binary repres.ntation of P(m) has
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s, It is evident that P(m) is self-inverting, This per=-
mutation has been illustrated for n=3 by Moharir [36] and
is reproduced in Table 3,1, If a(i), i=0,1,2,.4.,2"-1 be
the sequence of input signal samples and A(I), I=0,1,2,
ce.s2™1 its H T samples in 'matural order' then it has
been shown by Moharir [36] that permuting a(i) according
to the above permutation operator before H T has the
effect of changing the signs of some of the H T samples
A(I) but leaving the sequence unpermuted. In other words
A(T) is invariant to this permutation operator. In fact
HT samples A(I) get multiplied by (=1)T(®sI1) 4 ore

~1

s

2im TJ = X m® It cew (BT4)
t=0
n~l n-2 t i . 0O
- P3ecimal (m m e R )binary
n=1 _.n=2 t B0

Another permutation property exhibited by H T is

bit-plane permutation. The bit-plane permutation operator

P(a b ... k) permutes a(in-l 182

5. P ) i
a ib

a(i vk ik)binary where @, bye.s,k = 0,1,2,.0.,0-1
and a # be.. # k. It has been shown [36] that bit-plane
permutation operator is self-reciprocal w.,r.t. H.T. of

order 2n. Then

H Pla b suelE) 5 [1)

]

Bla b a.o ' B)EE (L) oSl
Fea b . E) 4 B
i)I = 011,2,0..,211—1



TABLE=3.1 :

Selective Bit Complementation Permutation

I
P

P(0)4 e -P(0) 1) P(2) P(3) P(4) P(5) P(6) BLT)
P(m)éin P(000) P(001) P(010) P(0ll) P(100) ©P(101) ©P(110) P(11l1)

a(i)dec a(:")bln
a(0) a(000) 2{000) =af{o0l) a(0l0) 'afoll} afl00) a{l0l) a(ilo) afill)
a{l) afool) a(001) a(000) a(011) a(010) a(l01) a(l00) a(111) a(110)
% a(2) a(010) a{010) afoll) a(oo0) af001) a(130) wf1ll) afloo) afiol)
.E; a(3) a(01ll) a(011) a(0l0) a(001) a(000) a{i3l) =a(3l18} eaflol) a(100)
. ‘i _ a(4) a(100) afl00) ef{101) a(120) eof11l) aloo0) a(00l) a{0l0) =a(0X1)
’i:.: a(5) a(l01)  a(101) a(100) a(l1l) a(110) a(001l) a(000) a(0ll) a(010)
- QY a(6)  a(120) a(110) a(111) a(100) a(l01) a(010) a(0ll) =a(000) a(001)
: a{7) w={izy) a(111) a(l10) a(l01) a(l00) a(0ll) a(0l0) a(00l) a(000)

04
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where H is the Hadamard transform operator in natural

form, The above equation can be written as
B P S =es k)a (i 122 ... i
a PlED cou k) AT S B

0
ool )binary

i - k

ves LD

Thus permuting the signal sample sequence af(i),
i=O,l,2,..,2n—l by bit-plane permutation operator and then
taking H T of this permuted sequence is equivalent to
subjecting H T samples A(I) of unpermuted sequence a(i)
to identical bit-plane permutation operator. It is known
that bit-plane permutation operators are not necessarily
self-inverting , but the inverse of any bit-plane permuta-
tion operator is some bit-plane permutation operator.

This permutation has been illustrated for n=% by Moharir

[36] and is reproduced in Table-3.2.

The simple relationship between the permutation
operator and the reciprocal permutation operator, when the
length of the signal sample sequence a(i) is 2%, n being
an integer, opens the possibility of permuting a{i) beforc
H T at the 'sending end!' of a communication system, and
doing the reciprocal permutation on received transform
samples followed by inverse Hadamard transformation at the

’receiving end’of the communication system . If the length
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TABLE-3.2 : Bit-Plane Permutation
\f‘xfsz"'k) P(210) P(201) ©P(120) P(102) ©P(021) P(012)
2(1)pinary
a(000) a(000) a(000) a(000) a(000) a(000) a(000)
a(001) a(001) 2(010) a(00l) a(010) a(l00) a(100)
a(010) a(010) a(00l) =2(100) a(l00) a(00l) a(0l0)
a(01l) a(oll) afoli) a{101) a(ll0) a(101) &a(10)
a(100) a(100) a(l00) a(0l0) a(00l) a(0l0) a(00l1)
a(101) a(101) a(l10) a(0ll) a(0ll) a(l10) a(101)
a(110) a{110) a(l01) 2(110) a{l0l} a(0ll) a(02i)
a(11l) a(i1l) =af(131) a{lkll) {121} af{31) a1}
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of the signal sample sequence a(i) is M = 2 there

are n} possible bit plane permutation operators-—of
coursc onc of these would leave the sequence unpermuted.
Instead of tronsmitting the H T samples of a(i) one can
think of transmitting the H T somples of permuted a(i).
The information regarding the bit-plane permutation
operator used for pernuting a(i) could be made known

to the authorized rcceiver wifh the hélp of a gynchro-

nous shift-register sequence generator,

The gelective~bit complementation permutation is
not suitable from application point of view as the
nodulus of H T sanples is invariant to this permuta~

tion on input signal sanple sequence,

3.3 FOURIER~TWIDDLED KRONECKER PRODUCTS

If o transform kernel could be expressed as natrix
product of conponent transfornm kernels with nany zero
entries then it is known that conputationally efficient
algorithns exist for the transforn [6,8,15]. Conmputa=-
tionnlly efficient algorithms for D F T of conpoglte
order arc based on this fact. Alternatively, if the
transforn kernel could be expressed as a Kronocker pro-
duct of the conponent transforn kernels then also conpu-
tationally efficient algorithms for the transforn are

known to exist [7,37,39]. Conputationally efficient
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algorithns arec based on this Kronecker decomposition are

known for many discrete transforms.

Let a(i), 1 = 0,1,25¢4+,MN=1 Dbe a discrete signal

sample sequence of length MN and A(I), I = 0,1,2,...,MN=1

ite D'F® D, then [45)

My ~1
AT) = 2 a(i) Wy
e v

o B
where Wy, = exp (=] i )

Writing i, I as

i=ilN +j.2 il’ Il=o,1'2,¢co’M-l

ees (3.17)

ey o (FABY

I =Il+12M i2’ I2 =O,l,2,on.,N'—1 ®

where i, and I, are integeral parts of (i/N) and (I/M)

respectively so that

iy = [i/8) , 1, = 1 = N[i/N]

oo (3.19)
I2 = [I/M] ’ Il =L - MEI/M]
where [x/y] is the integral part of (x/y).
Eq. (3.17) can be rewritten as
MN-1 (TM+I4)i
. i
A(I, M +14) = 2 a(i) Wy
1=l
s M-l N-1 - _ (I M+T4)(1,N+i,)
= ST (39 N+, ) Wy
il=0 12=O
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2 L
= E: Vo [ MN 2: a(i,N+i, )1 ]'WMN =1
H-1 Xt + S M-l - W -
272 i B " ’ - k. |
= 2 Wy Tl T 2. aliyNe, )iy T
12=O 1l=0
o2 e @ (3.20)
i1y g _
= DFT Wy — x[DFT [ a(i;N+i,) 1] exs (NeBE)
N points M points
mapping mapping
12 -> I2 il - Il

Let a(i), i = 0,1,2,...,MN~1 be congidered to
have been chopped into several sequences and written
into an array of M rows of N terms each., Further let
A(1)y, I =0,1,2,..., MN-1 be also chopped into several
sequences and written into an array of N columns of
M terms each. Then il and Il can bc considered as
indices along columns , and 12 and 12 as indiccs along
rows. The inner summation over i, in Eq. (3.20) can
be thovght of as columnwise M term D F T of the
array of a (1) with i, held constent. This would give

an 'intermcdiate array! of dimension M X N. The element

in the Ifﬂl row and :i;h column is multiplied by
i4 107
WMN e The factors WMN have becn cglled 'twiddle

factorg!., This operation can also be represented in
termg of the Hadamard product of matrices. The Hadamard

product ¢ = [e(i,j)] of matrices A = [a(i,j)] and
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B = [b(i,j)] is defined “y the relation c(i,j) = a(i,j)
b(i.j). Obviously the matrices A,B amd € have the
same dimgnsions [52]. The outer summation over i, in
Eqg. (3.20) can bc thought of as rowwise N termg D F T
of the¢ "intermediate array! obtained after columnwise

M %etm B PR of a (i), holdimg i, as constant, and
twiddling by factors W&ﬁIl o
are obtained by recding the final array column by column,

The Fourier coefficients

If the input signal sample sequence a(i), i = 0,1,2,...
MN~Ll, can be written as a two~dimensional array of M

rows and N columns read row by row as

a(0) a(l) a(2) a(N=-1)
a(N) a(N+1) a(N+2) a(2N~-1)
a(2N) a(2N+1) a(2N+2) ey a(3N~1)

a - [ *
[ L] o L4

o o o L

a(M-2N) a(l-2N+1) a(M=2N+2) ... a(M-1N-1)

a(M-1N) a(M-IN+1l) a(f=1v+2) ... a(MN-1)
L 4

The Fourier transform samples A(I) = DFT a(i),
I =0,1,2,...,MN~1 are obtained as a two—-dimensional

array of M rows and N columns read column by column as



ot

A(0) A(M) A(2m) ceo  A(F=IM)
A(1) A(M+1) A(aM+1) ... A(FFIM4)
A(2) A(M+2) A(2M+2) o A(N=1M+2)
A(M~2) A(2M~2) A(3M~2) g A(MN=-2)
A(M-1) A(2M-1) A(3M~1) i A(MN~1)

R o

The process of obtaining FD samples A(I),
I =0,1,2,ee.,MN=1 of input signal sample sequence a(i),
i=0,1,2,00.,MN~1 a8 given by Eq. (3.21) is illustrated
in Fig. 3.1 [23]. If the twiddle factors w&ﬁ 1 are
ignored, then Eq. (3.21) can be interpreted as column~
wige M~term D F T followed by rowwise N-term D F T.
It has becn shown by Moharir [42] thet this can be thought
of as a transformation baged on a kernel which is a
Kronegker product of two component kernels : kernel of
M-term D P T and kernel of N~term D F T. In addition
the transform samples would now be read row by row as
againgt column by column when twiddle factors are téken
into consideration. Except for this difference MN-térm
DFT can be obtained by Fourier~twiddling the Kromecker
product of M=term D F T and N-term D F T.

Thig result has very far‘reaching congequences
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a(N-1)
a(N)

a(N+l)

——> A(0)

—> (M)

» A(2M)

> A(F-14)

a(N+2)

—> A(1)
> A(M+1)

"'"'"A(Zl!-t-l)

sl A(Flﬁd)

'“‘f"A(z)

" A(M42)
' A(2M+2)

|
— A(N=1M42)

& (M=13+2 )—
]

a(MN~1)

T A(M-1)
>4 (2-1)

—>A(RM-1)

N DPFT ORDER M
FIG.3+1 TREE-GRAPHE FOR DFT OF 2-D ARRAY

—> A(MN~1)

M DFT ORDERR R
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and in fact can be exploited to define o wide class of
orthonormal transforms, If the M=term D F T and N-term
D F T are replaced by any other M-term and N~term discrete

orthonormal transforms having kernels Qy (Il,il) and

514

Qq (12,12) respectively, Further if W_ . % Dol

necessarily equal to MN, be the twiddling factors instead
i I
of wMg 1 then one can got [43]
%El 1211 M-1
- B(I M+I,)= Q(I,01y) [w, P T b(1,N4i,)Qy(I1s14)]
12=0 1l=0
ess {Fudl)
It has been reported by Moharier [43] that a wide
clagss of complete orthonormal transforms can be obtained

by Fourier-twiddling the Kronecker product of orthonormal
kernels as in Eq. (3.22).

3.4l FOURIER-TWIDDLED H-DF TRANSFORM

In section 3.3 o method for fast computation of
FT semples of a sequence of length MN has been given,
The method consists of writing the one-dimensional array
of length MN as a two-dimensional array of M rows and
N columns read row by row. The first step is to write
M=term columnwigse D F T« The clements of the resulting
two~dimensional array are then multiplied by twiddling
factors which depend upon M,N and the row and column in

which the particular element is contained, or, in other
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words the Hadamard product of the resulting array and

the array of twiddle factors is taken. The array so
obtained is then subjected to N~term rowwise D F T to

get FT gsamples as a two-dimensional erray of M rows and

N colunng read column by colunn, It has also been pointed
out that this method of obtaining the FT samples can be
used to compute other transform samples by replacing the
two D F T operations with suitcble orthonormal transforns,
In thig section & new transforn would be defined by do~-
ing M~tern colunnwise transfornation with Hadanard trang-~
fornation instead of D P T, The N-tern rowwise transg-

formation would renain D F e

Ilet a(i)' i= O’l’Z,no., MN"'l be Sign.al S{]Jﬂple
sequence, M = 23. This is written as a two-dimensional

array of M rows and N colunns ag

¢1;?ﬁ? 0 1 2 oo N-1 =

0 a(0) a(l) a(2) ses A1)
1 a(N) a(N+1) a(N+2) ee. a(2N-1)
2 a(2N) a(2N+l) a(2N+2) veo a(3N-1)
i)
,E?a('(iiﬂ' ° . o . .
+H,)] =, ' . : .

M-2| a(M=2N) a(M-2N+1) a(M-2N+2) ... a(f=1N-1)

M-1{ a(M-lV) a(M-1N+1) a(H=1N+2) ... a(MN-1)
s SIS

where 11,12 are defined by Eq. (3.19),

L
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The normalized Hadamard matrix in the 'natural

form' as given in Eq. (3.9) can be rewritten as

8~1
¥ 1% 1% moaulo 2
t=o

Hih T Juifel)

ilIl=0 ,1,2’0 o ,M"l

vis CHpER)

This would be a square two-dimensional array of order M.

This would be used as transformation kernel to achieve

M~term columnwise Hadamard transformation.

The resulting

(1)
two-dimensional 'intermediate array! [higl ] would ve
of dimension MXN and can be written as

0 (0) (0) (0) (0)
ho hl ' h2 * . L] hN—l
1 (1) (1) (1) (1)
hs hg Rl e an gy
2] ,(2) (2) (2) (2)
b by hj « oo hpSy
(Il) e e o ] L
[hi2 ]= @ . - » °
= (M~2) (M=2) (M-2) (M=2)
M~2| h} hy hy hy 1
M-1 (M=1) (M=1) (M~1) (M=1)
hso By h2 voaox Bpy
ol
L I ] (3.25)

Mathematically any element of the above intermediste

array can be expressed as



E: iili modulo 2

(Il) M-1 . ] =0
hi2 = EE;O a(11N+12)(_1) pite L oAEE)

The next step is to multiply each element of thig 'inter-

. pa
mediate array' by twiddling factors WM§ 5 to get a two-
£X
dimensional array, [H, - ] of dimension MXN.
(I;) (L) 4T
g s
Hy = h, Wy v u e LR
2 2
g=1
5
(Il) 1 X E:bll Iy modulo 2
Hi2 = MN }: a(iN+i,)(~1)
IR -1 3
%y B 1 N-1
I
J(/) 0 1, (0) 3 n(0) WO 1O
o MN 1 *o° "MNTN-1
0 (1) (1) (N~1), (1)
L Wyyto ) RIS ]
(2) (2) 2(N-1),(2)
2 wMNh : JMNh cee Wy hyZy
(I ) L] L} . L4
[Hl l ] 2 . L) L] L2
2
5 (M=2) (M~2),, (M~ 2) (M 2) (N~ 1) (M=-2)
M=2 wMNho Wy Bq ee iy hye
. (M-1) (M~1), (M-1) (M~1)(N-1), (M~1)
M-l Vs Wy BT e iy Byop i

v o LR
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4il 20 1 2 « e o N1 _
o| {0 By EEE T u{0)
1 mid LI L .
=1 =t LU RS u{2)
M=-2 Hgm-z) H{M-Z) Hém-z) J13 Hégiz)_
M~1 Hém-l) Hgm-l) HéM—l) . H&gil)
E ee.(3.30T

The final step in the calculation of transform
somples A(I) involves the N-term rowwise D F T. Thig

D F T kernel Q(Iz,ia) would be a square matrix of order N.

¥3i,
I2 S 0 l 2 @ e N—l —=
0 0 0
O WN WN WN » - a« w%
1 0 2 (N-1)
WN W§ WN * [ ] L ] WN
2 0 2 4 2(N=-1)
Wy Wy Wy . oo Wy
Q(Iz,i2)= 4 e ° a | o
_ 0 (N=2) _2(N~-2) (N-1)(N-2)
F-21 Wy Wy Wy LY
N-1 wg wéN-l) wI%(N-l) | w1&1\1—1)(1\7—1)
| "
e

RO . i
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where WN = exp (~] %%) end powers of WN are taken

nodulo N,

The transform samples A(I) can be written as

: -1 < T R
A(T) = A(IM4T,) = :]:Z_o TR Hizl
=

Bel AT, 4.1 Bed %
8 Al W2 T S a(iN4i,)(-1) =0

2 Wy MN 1N+,

12=O 1l=0

MO . PL -

The tronsform samples A(I) can be written as o two-

dimensionsl array of M rows and N columns reed column

by column.
v = I,
Il--—(O 1 2 PRI, | ST
o| A(0) A(M) A(2Mm) v o » A(N=1M)
1| A(1) AM+1) A(2M+1l) . . . A(N-1M+1)
21 &R A(M+2)  A(2M+2) . . . A(N-IM42)
A(T)
=EA(12M+I]_)]= d ’ ’ ' .
M-2 | A(M-2) A(2M=2) A(BM-2) ., . A(MN-2)
M-lj A(M-1) A(aM~-1) A(BM-1l) . . . A(MN-1)
b =%
wie KDa Do)

Exomple Let M=4, N=5 and a(i), i=0,1,2,....,19 be given

as

g=1
> i{Ilt modulo 2
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[10010010001010101001]

10010
) 1
[a(115+12)]-_- 01000
10101
0.5 00 %
$~5 4 5
; 3 X
[B(1;,1,)]= X
G S T
A T N
g F 1 3 )
Eh(Il)] g A T W S
i
e 0 0 -1 1 =2
& .8 = 3 o
S <l
p— 5
¥ 2 1 1 2
+30 +30 +j0 +3j0 +30
2 ~1.9022 0.809 0.5878 0
H =
i, 0 0 -0.709  -0.309  1.618
+30 +30 +3Q0.9511 ~j0.9511 +j1.1756
0 0 0.309  =~0.9511 ©
+jo +JO +JO¢9511 ";]00309 +j0




T =
8 1.618 -0.618 0.618 1,618
+30 +30 +j0 +30 +30
1.4946 1 4.12%4 3,8176 -0.4356
A(I) ~30.7788 +33.0001 +3j0.3969 ~=j2,2601 ~jO.3582
=[A(I4=] 4 1 =4 1 1
+1;)] | +31.1756 +j1.9021 +jO -j1,9021 =-j1.1756
ijo'6421 -j1.2601 +j1.3969 ~jl +j0.2212
sen (TSl
where the D F T kernel of order five is
0
W% W% “% W g
1 2 3 4
"’% W5 Vs LE Vg
2 4 3
W3 Wg Wg Wé Wg
0 > 1 4 2
W Wg | Wy We L
0 4 3 2 1
LE w5 w5 L W
= -
1 1 1 1 X
+30 +j0 +30 +30 +30
1 0,309 ~0 8090 ~0,8090 0.309
+30 -j0.9511 =-j0,5878 +j0.5878  +3j0.9511
1 -0.809 0,309 0.309 -0,809
+30 ~-j0.5878  +j0.9511 =j0.9511 +j0.5878
1 ~0,809 0.309 0,309 -0.809
+JO +j0.5878 -j009511 +JOQ9511 -30-5878
1 0.309 -0.809 ~0.809 0.309
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In the later sections of thig chapter investigationsg

have been reported regarding the permuted locations of

transform samples in the two-dimensional array when the

rows or columns or both of input signal sample sequence

a(i), written as a two-dimensional array, have bsen sub=-

jeoted to some prescribed permutations.

It has be

en

observed that presoribing permutations is not possible

with twiddling faotors

YMN

1,19

factors are taken ag WN

i1,

o Instead if twiddling

the permutation properties

exhibited. by this transform are quite interesting.

that case Eq. (3.32) would beoome

AI)=h(1M4T )= - A

o

N-1

2
+30

~0,618
+j1.9022

0
+3jO

0
+30

g

=0

i.1
21
Wy

1
+j0

-0.809
~j0.5878

~0,309
=j0,9511

-0.309
+j0 9511

1 M-

1
+j0

-0 .809
+J0. 5878

0.309
-jo e 9511

0.309
+j0, 9511

r

)
* ] and [A(I)] for the example asg

i

This would give the two-dimensional arrays

+j0

+30
1.618
-Jj1.1756

+j0

In

5ol 4

lI nod 2

h1 2: a(1, N+l )( =1}
17=0

(3.35)

k=
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T =
8 1.618 ~0.618 ~0,618 1.618
+30 +30 +30 +30 +30
~0.236 4,23%62 4,2362 ~0.236 2
=[A(I,4 |, 618 1618 ~0.618 -2 -0.618
I;)] ={-33.0778 +j3.0778 +3j0.7266 +j0 ~ ~j0.7266
0 0 0 0 0
+31,9022 ~-jl1.1756 +3j0 +j1.1756 ~-jl,9022
by el
wiia K% TR

The two-dimensional array representing A(I) has.a pecu~
liar pattern. The elements along any row appear in con-
jugate pairs, In case N is odd one of the elements in
each row would be real, In the zéroth row transform
samples (1,618+j0) and (0.618+j0) occur twice. It is
because of the particlar a(i) chosen. This is also the

reagon for all the elements in the zeroth row to be raal

except A(0) which would be always real,

5«42 MODULAR PERMUTATION OF CQLUMNS

It is known that DFT exhibits modular permutation
property. In the transform defined in Section (3.41)
N-term rowwise DFT is taken. Let the N columns of a(i),
i=0,1,2,...,MN~1 writtcn as a two-dimensgional array of
M rows and N columns and read row by row be subjected to
modular permutation operator P(p,N) treating each of the
N columns as an element. Then the resulting transform

samples, A (1), would be given by
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A(I) = A(IéM+Ii) s=1 .

i{Il modulo 2
-1 l I 211. M-l =0
=2 wg® 2wy Z:%a(ilN+((12p))N)(-l) vee (3.37)

P R e,

where Ii and I

5 are¢ the new values of indices I1 and I

2
respectively.

and the permuted input signal semple segnence, ac(i),

would be given by

ac(i)=a(ilN+((p12))N) » 1 =0,1,2,,..,MN-1 ,., (3.38)

AC(I) = A(IéM+Ii)
N-1 ((1212))N ((iZIl))N (Il)
- izfown iy “((e )y
T A My
A i;éo Wy ("
((Iip1 ))
N-1 2 N (I )
= W 2 1
5_2=o N ((pi )) ¢ SQY ove (3039)
Then

(T30 )y = ((,T,))y + ((107))y - (1ym8 )y
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If P(q,N) be the inverse modular permutation operator
so thet

((p )y =1
then
((Iz'piz)>N=((pq))N(<1212))N+((pq>>N< (150 )y~ ((T321 )y

=((pq1212))N+((pq1211))N-((Ilpiz))N
=0 ((alp+aly~I;))y Pi,))y

that is

Also from Eq. (3.39) it is obvious that

So if the columng of a(i) = a (ilN+12) are permuted so

that the input signal sample sequence is given by

8,(1) = a(i;8+((ps ))N) then the transform samples
2

AlI) = A(12M+Il) are given by

A (1) = A(M((q(1;+I,) - I3))g+;)

This result is very intcresting and shows that e
columnwise modular permutation on a(i) = a(ilN+iz) first
and then taking transform according to Eq. (3.35) is ana-
logous to rearranging the clements of A(I)=A(12M+Il).
This rearrangcment changes the value of index I, to Ié
wherc Ié is a function of Il, I2 and the parameter q of

the inverse modular permutation operator P(q,N). Thus



Tk

a permutotion of index i, in a(ilN+12) to ((pj_z))N resulte
in the permutation of index I, in A(12M+Il) to ((q(11+12)
-Il))N . This has becn illustrated in flow chart form

in Pig. %.2. The permutation law derived gbove has been
verified with M = 4, N = 5and M = 8, N = 3 and the results
are listed below, The results tally with the permutation

law derived theoretically.

MNp . a(1yN+((pi,) )y) q AM(( a(Q+I,)=Iq) )y+I,)
a(0) (21) ea(2) =a(3) a(4) 4A(0) A(4) 48) 4(12) A(lG)I
a(5) a(6) &(T) a(8) a(9) A1) A(5) 4() 4(13) A7)
a(10)a(ll) a(l2) a(l3) a(l4) A(2) A(6) A(10)A(14) A(18)
a(l5)a(16) a(l7) a(18) a(19) A(3) A(T) A(1L1)A(15) A(19)

4 52

a(0) a(2) a(4) a(l) a(3) A(0) A(l2) A(4) A(16) A(8)
452 2(5) a(7) a(9) a(6) a(8) zA(9) A1) A(L3)A(5) A(T)

a(l0)a(12) a(14) a(ll) a(13) A(18) A(10) A(2) A(14) A(6)

a(15)a(17) a(19) a(16) a(18) A(7) A(19) A(11)A(3) A(15)

a(0) a(3) a(l) a(4) =a(2) A(0) A(B) A(L6)A(4) A(12)
453 2(5) a(@) a(6) a(9) a(7) ,A(5) A(13) A(1) A(9) A(1T)

2(10)a(13) a(ll) a(l4) a(l2) A(10) A(18) A(6) A(14) A(2)

2(15)a(18) a(16) a(19) a(17) A(15) A(3) A(11)A(L9) A(T)

a(0) a(4) a(3) a(2) a(l) A(0) A(16) A(12)A(8) A(a).
a(5) a(9) a(8) a(7) =a(6) A A(13) A(9) A(5) A(L) A(LT)
a(10)a(14) a(l3) a(l2) a(ll) A(6) A(2) A(18)A(14) A(1lO)
a(15)2(19) a(18) a(17) a(16) A(19) A(15) A(1L)A(T) A4(3)

45 4



af0) @a(x) =a2) A(0) A(8) A(16)
a(3) a(4) a(5) A(L)  A(9) A(1T7)
i) a(%) EiB) A(2) A(10) a(18)
£ dh a(9) a(10) a(ll) . atey  oatan)  alam
a(12) a(13) a(14) A(d) A(22) a(20)
a(l5) a(l6) a(l7) A(5)  A{13) A(21)
a(18) a(19) a(20) A(6) A(14) A(22)
a(2l) a(22) a(23) al7) al1s) &{29)
a(0) a(2) a(l) A{C) A(16) A(8)
a(3) a(5) a(4) A(9) A(L) A(1T)
a(6) a(8) a(T7) A(18) a(10) A(2)
832 a(9) a(ll) =2(10) : A(3)  A(19) A(11)
a(12) a(l4) a(l3) A(12) A(4) A(20)
a(15) a(17) a(l6) Aler) a{1s) &l5)
a(18) a(20) a(l9) A(6) A(22) 4A(14)
a(21) a(23) a(22) A(15) A(T) A(23)

3.43  BIT~PLANE PERMUTATION OF ROWS

It is known that Hodamerd transform of order M=2° ,
8 being an integer, exhibits bit-plane permutation pro=
perty, In the transform defined in section (3.41) M-term
columnwise H T is taken. Let the M rows of a(i),
i=0,1,2,.6. MN=-1 written as o two-dimensional array of
M rows and N columns and read row by row be subjected to

bit-plane vermutetion operator P(a b ... k) treating each
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PERMUTATIONS OF

= '1_ [
)=y hy) o P(p,N) 8g(1)=a(i N4, )

|

¥

COLUMNWISE HT COLUMNSWISE HT

1211 1211
TWIDDLING FACTOR 'u'N IWIDDLING FACTOR WN

ROWWISE DpT

ROWWISE DFT

l

A(I) = A(IéM+I£)

A(T)= A(IM+I;)

FIG: 3.2 : FPFLOW CHART OF TRANSFORM WITH
COLUMNS PERMUTED
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of the M rows as an elemcnt, Let

8-l . §-2 -t ;1 40
(1l)declmal (l | s 11 aes 11 1)binary
and 1
8-1 B2 45 19
P(a b o-ok)(il l as e l L 1 )bin&ry

B .b -
= (17 43 ..o 1l)bn.nary (ll,P)decimal, say

Then the resulting transform somples, Ar(I)’ would

be given by
A (1) = A(T'M4L7) =
:Lt ﬁxmmuoz
£~ L2l
§f} 1212 211 =
Wy a(llPN+i Mt sve (55 8L]
i.=0

l ?‘
I=O ,1,2-’0 .o ,MN-]—
where I’ and Ig'are the new valups of indices I, and I,

respectively.

and the permuted input signal somple seguence,
ar(i) would be given by

a‘r(i) = a(il'PN+i2) | ] i ! 07192‘,-0-, MN—]- e e e (3.42)
AL(I) = A(IY M4Iy')

E=l (4,1 1,1,))y M=l
w;( 2t2) ) w;( 21y > a(igN+iy)
i 2:70 i ;L=O

&ty
_ ivT modulo 2
t=o b LE

(-1)



™

-1 .g=2 .t 1.0
where (I, o) B B BT 2 )
P 1 &% 1°-°11 11/binary

g B

k
=(Il Il e a Il)bin&ry [ ) (3.43)

: _pe8~1l _8=2 t 1 0.
and (I3)gecime1=(T3 Iy =~ +eeIy ».. I3 I3 ) vinery

A1) = A(I4' M+I{")

2 ({1,500 ((oTy )y (Xy.p)
?:_OWsz Wy ety

fi

= 2

2

S (W00 (T 5,0y )y (T ) (T p)
) 12=owN " e "1,

o B (Gl 2y (1) p)

o N 1
2~0 2
B=l (4,18 )y (11" |
= .ZWN 272 N Hi 1 p SQY eca (3044)
120 2

This would give expressions for Ii' and Ié' as

and Iy= ((Ip +I,=1I) p))y

So if the rows of a(i) = a(ilN+12) are permutcd so that
the input signal sample sequence is given by a,(1) =
a(il,PN+12) then the transform eamples.1(1)=A(12M+Il) arec

given by Ar(I)=A(M((Il+Iz-Il,P))N+Il,P)

This resiit shows that a rowwise bit-plane



76

permutation on a(i) = a(ilN+12) first and then toking
transform according to Eq. (3.35) is analogous to re-~
arronging the elements of A(I) = A(IM+I,). Thig re-
arrangement changes the values of indices I, and I2 to
Ii'and Ig respectively. While I; depends upon I, and
bit-plane permutation operator P(a b ... k) the other

new index 12 is a function of I 12 and bit-plane per=~
mutation operator P(a b.,.k) which is known to be self-
reciprocal. Thus & permutation of index i, in a(ilN+12)
to il,P results in the permutation of both the indices
Iy ana I, in A(IM+I;). This has been illustrated in
flow chart form in Fig. 3.3. The permutation law derived
above has been verified with M = 4, N = 5 and M = 8, N=3
and the resulte are listed below. These results tally
with the permutation law derived theoretically, It may
be pointed out that the elements in such rows of A(I)

for which I, = Il,P are unchanged in position,
M N P(ab..k) a.(il'PN+iz) A(M((Il+Iz-Il'P))N+Il,P)
a(0) a(l) a(2) a(3) a(4) A(0) A(4) A(8) A(12)A(16)
4% l)a(lo) a(ll) a(12) a(l3) a(l4) A(18) A(2) A(6) A(10)A(1L4)
a(5) a(6) a(7) a(8) a(9) A(5) A(9) A(13)A(LT)A(L)
a(15) a(16) a(1l7) a(18) a(19) A(3) A(7) A(11)A{15)A(19)



8 3 P(20 1)

a5 ¥: 2 o)

g8 3 7L 0 2)

a(0)
a(6)
a(3)
a(9)
a(l2)
a(18)
a(15)
a(2l)

8(0)
a(3)
a(12)
a{l5)
a(6)
a(9)
a(18)
a(21)

a(0)
a(6)
a(12)
a(18)
a(3)
a(9)
a(15)
a(21)

a(l)
a(7)
a(4)
a(lo)
a(13)
a(19)
a(l6)
a(22)

a(1)
a(4)
a(13)
a(l16)
a(7)
a(10)
a(19)
a(22)

a(l)
a(7)
a(l3)
a(l9)
a(4)
a(10)
a(l6)
a(22)

a(2)
a(8)
a(5)
a(ll)
a(14)
a(20)
a(l7)
a(23)

a(2)
a(5)
a(l4)
a(17)
a(8)
a(11)
a(20)
a(23)

a(2)
a(8)
a(14)
2(20)
a(5)
a(ll)
a(17)
a(23)

A(0)
A(18)
A(9)
A(3)
A(4)
A(22)
A(13)
A(7)

A(OY
A(1)
A(12)
A(13)
A(18)
A(19)
A(6)
A(T)

A(0)
A(18)
A(212)
A(6)
A(1)
A(19)
A(13)
A(T)

A(8)
A(2)

A(17)
A(11)
A(12)
A(6)

A(21)
A(15)

A(8)
A(9)
A(20)
A(21)
A(2)
A(3)
A(14)
A(15)

A(8)
A(2)
A(20)
A(14)
A(9)
A(3)
A¢21)
A(15)

T7

A(16)
A(20)
A(l)

A(19)
A{20)
A(14)
A(5)

A(23)

A(16)
A(17)
A(4)

A(5)

A(10)
A(11)
A(22)
A(23)

A(16)
A(10)
A(4)

A(22)
A(17)
A(11)
A(5)

A(23)



a(0) a(l)
a(12) a(l3)
a(3) a(4)
8 3 (P(O 2 1) T B
a(6) a(7)
a(18) a(19)
a(9) a(l0)

a(21) a(22)

a(2)
a(l4)
a(5)
a(17)
a(8)
a(20)
a(1ll)
a(23)

A(0)
A(4)
A(9)
A(13)
A(18)
A(22)
A(3)
A(T)

A(8)
A(12)
A(1T)
A(21)
A(2)
A(6)
A(11)
A(15)

78

A(16)
A(20)
A(1)

A(5)

A(10)
A(14)
A(19)
A{23)

The values of il,P and Il,P for given il’ Il and

bit-plane permutation operators P(a b .. k) are listed

in Table 3.3 for M = 4 and M = 8.

3,44 MODULAR PERMUTATION OF COLUMNS AND BIT~— PLANE
PERMUTATION OF ROWS

In section (3.42) amd (3.43) the effect of modular

permutation on columns and bit~permutation on rows of

a(i) written as a two-dimensional array of M rows and

N columns amd read row by row have been investigated.

Let the N columns of a{i) be subjected to modular permu-
tation operator P(p,N) treating each of the N columns &s
an clement , and M rows be subjected to bit-plane permu~

tation operator BP(a ®.... k) treating each of the M rows

as an olement. Then the resulting transform samples,

A.o(I), would be given by
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PERMUTATION OF

121 11
RowS BY P(s b...k) Gr(d)=a(dy Nelp )

COLUMNWISE HT COLUMNWISE HT
P 151y
TWIDDLING PACTOR Wy ITWIDDLING FACTOR Wy
ROWWISE DFT ROWWISE DFT
A(I) = A(INMI,) A(I) = A(T) M4I,
Y
FLOW CHART OF TRANSFORM WITH

FIG. 3,3 @

ROWS PERMUTED



Table-3.3 : Computation of i and I
1,P 1,P
M=4 ll,P=P(a B sk} iy and Il,P=P(a b...k)Il
1o 1, 1,0 13,7 L7 Inp
dec, binary binery dec. binary dec.
0 0 0 0 0 0 0 0 0
1 0 1 0 1l 1 £ B 2
2 1 0 1 0 2 0 1 1
! 1 & 1. 1 5 5 | 4 & 2
M=8 11,P=P(a By..E) “il and Il,PzP(a Di v = X I,
~ Al Duvelt) Wi 2O ZEE U L) ¥R 2.0} b i D 2 1] Bl XY
il’k Lherp Inp ip,p0I1,p iq,pe%3 0 o Py p o Aguplyp Aqpelyop
dec. binary binary dec. bin, dec. bin, ded, bin. dec. bin. dec. bin. dec,
0 0O 0 O g+ 90 9 0 000 0 e ¥ 0 g9 L Q0D 0 020 0
& 0 S T [+ i R 0 10 2 3 S04 T 8 0L Z 1L 08 4 L 0 Q 4
2 r L R o X G 2 001l , : & 0Q 4 10 90 4 001 1 B LD 2
L g = =k 5 D St PR 01X - 28 Lk -3 L0 5 i I ¢ N § 5 i L0 6
4 i 0§ 0 Lt 0 0 % L 0D 4 018 2 a8'L i 0 195 2 i o 4 1
5 r Wi 7 [ » Y « SR i 4 0 6 o S § 3 e e 110 6 j A [ 4 5
6 S O = L % OB Lig X 5 i L g 6 L L B 5 I I 3 i e A | ]
T B s x B 5T X 1 7 1:F L 7 L& X P s T E T « gt g P T

08
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I)

i

A(Ié" M+ Iin)

] I I
S': 2 g lfi oty PM+((R )y

rof

it

i,p
ik
i{,Plf modulo 2
(-2) &=°
4.0(3‘45)

I = 0'1’2’--03MN"1

where If' amd I'” are the new values of indices

2
Il and 12 regpectively.

and the permuted input signal sample sequence

arc(i) would be given by

arc(i)=a(il,PN+((pi2))N) ? i=011,2100- ,lVIN—l *o e (3046)

ATC(I)==A(I§'M+I£")

-1 % I
- % w2tel (Cah )y 8 Z a1 W (BL))Dy).

e 1,=0 :
6= 1313 _ modulo 2
(=
§-_-1 (135,))y ((T))y (T3 p)
¥y B((p4 D

g gzl Ty ((510))y =((22. 3y 5))y

5 LT 2y (Ig p)

N ((e 2)N
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N=-1 ((1212))N+((1211))N"((pizll,P))N ((Il,P)
= Ly B ((piy))y

2
Bal Ul mhe))e | GENT)
WN_- 2 2’’'N H((%lz))N s S8Y vee (3-47)

So I =1 and for obtaining expressions for I"' use
1 ,P 2

(I, Pi,))y = ((1I,))y+((3,13))g=((Pi, I3 p))y

= ((a(Iy+1,) = I )y

=
N
t

So if rows and columns of a(i) = a(ilN+12) are permuted
so that the input signal sample sequence is given by
arc(i) = a(il,PN+((p12))N) then the transform eamples
A(I) = A(12M+Il) are given by A, (I) = A(M((q(Il+12)

I p)y * I3 ,p)e

This result shows that rowwise bit~-plane permuta-~
tion and columnwise modular permutation on a(i)=a(ilN+12)
first and then taking transform according to Eq. (3.35)
is equivalent to rearranging the elements of A(I) =
A(M12+Il). Thig rearrangement changes the values of in-
diees I, and I, to I, and I, vespectively. While

Ii” depends upon I, and bit-plane permutation operator



P(a b...k) the other new index 12'

83

is a function of Il'

12, bit-plane permutotion operator P(a b...k) and inverse

modular permutation operator P(q,N). Thig has been illus~

trated in flow chart form in Fig.,

3.4, The permutation

law derived above has been verified with M=4, N=5 and

M=8, N=3 and the results are ligted below., These results

tally with the permutation law derived theoretically.

M N p B(a b, k) a(iy pi+((piy))y) q A(M((q(11+12)f11,2))N+Il;)

a(0) a(2) a(4) a(1l) a(3)
a(10)a(12)a(14)a(11)a(13)
a(5) a(7) 2(9) a(6) a(8)
2(15)a(17)a(19)a(16)a(18)

4 5270 %)

a(0) a(3) a(l) a(4) a(2)
a(10)a(13)a(11)a(14)a(12)
a(5) a(8) a(6) a(9) a(7)
a(15)a(18)a(16)2(19)a(17)

4 59 FO L)

a(0) a(4) a(3) a(2) a(l)
a(lo)a(l4)a(13)a(12)a(l1)4
a(5) a(9) a(8) a(7) a(6)
a(15)a(19)a(18)a(17)a(16)

454 P 1)

4{0) £(12) A(4) A(16) A(8)

A(6) A(18) A(10)A(2) A(14)
A1) A(L3) A(5) A(AT)A(9)
A(T) A(19) A(11)A(3) A(15)

A(0) A(B) A(L6)A(4) A(12)
A(2) A(10) A(18)A(6) A(14)
A(13)A(1) A(9) A(LT)A(5)
A(15)A(3) A(11)A(19)A(7)

A(0) A(16) A(12)A(8) A(4)
A(L0)A(6) A(2) A(18)A(14)
A(9) A(5) A(1) A(17)A(13)
A(19)A(15) A(L1)A(T) A(3)
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& ¥ 2F{L 20)

8 3 2P(1L 02)

a(0)
a(6)
a(3)
a(9)
a(12)
a(18)
a(l5)
a(21)

a(2) a(l)
a(8) a(7)
a(5) a(4)
a(ll) a(10)
a(l4) a(l3)
a(20) a(19)
a(l7) a(16)
a(23) a(22)

a(0) a(2) a(l)

a(3}
a(l2)
a(15)
a(6)
a(9)
a(18)
a(21)

a(0)
a(6)
a(12)
a(18)
a(3)
4(9)
a(l5)
a(21)

a(5) a(4)

a(1l4) a(13)
a(l7) a(16)
a(8) a(7)

a(ll) a(l0)
a(20) a(19)
a(23) a(22)

a(2) a(l)
a(8) a(7)
a(l4) a(13)
a(go) a(19)
a(5) a(4)
a(ll) a(10)
a(17) =a(16)
a(23) a(22)

2

A(0)
A(2)
A1)
A(3)
A(12)
A(14)
A(13)
A(15)

A(0)
A(9)
A(4)
A(13)
A(2)
A(11)
A(6)
A{15)

A(0)
A(2)
A(4)
A(6)
A(9)
A(11)
A(13)
A(15)

A(16)
A(18)
A(17)
A(19)
A(4)
A(6)
A(5)
A7)

A(16)
A(1)
A(20)
A(5)
A(18)
A(3)
A(22)
A(T)

A(16)
A(18)
A(20)
A(22)
A(1)
A(3)
A(5)
A(T)

84

A(8)

A(10)
A(9)

A(11)
A(20)
A(22)
A(21)
A(23)

A(8)

* A0IT)

A(12)
A(21)
A(10)
A(19)
A(14)
A(23)

A(8)
A(10)
A(12)
A(14)
A(1T7)
A(19)
A(21)
A(23)
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a(0) a(2) a(1) A(0) A(16) A(8)
a(l2) a(14) a(13) A(12) A(4) A(20)
a(3) a(5) a(4) My  ATET) A0
a(15) a(l7) a(16) A(13) A(5)  A(21)
8 32P(0 21) . 2
a(6) a(8) a(7) A(2) a(18) A(10)
2(18) a(20) a(19) A(14) A(6) A(22)
a(9) a(ll) a(10) A(3) a(19) a(11)
a(21) a(23) a(22) A(15) A(T) A(23)
a(0) a(2) =a(1) A(0) A(16) A(8)
a(12) a(14) a(13) A(12) A(4)  a(20)
a(6) a(8) a(7) A(18) A(10) A(2)
a(18) a(20) a(19) A(6) A(22) A(14)
8 32P(012) 2
a(3) a(5) a(4) A(9)  A(1)  a(17)
a(15) a(17) a(16) A(21) A(13) A(5)
a(9) a(ll) a(10) A(3)  A(19) a(11)
a(21) a(23) a(22) A(15) A(T) 4(23)

The technique developed in thisg chapter can be usged
to obtain a class of transforms with Prescribed permutation
properties by choosing suitable tronsforms kernels in Place
of HT and DFT. The twiddling factors in each such regult~
ing transform would have to be defined keeping in view the

properties of the component transforme uged,
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PERMUTATION OF
ROWS BY P(a b...k)

AND COLUMNS BY P(p,N)

COLUMNWISE HT

i
TWIDDLING FACTOR W 22

ROWWISE DF?T

N
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e ey

nrc(i)-a(il N+, )

l

l

A(I) = A(IM+I,)

COLUMNWISE HT

i1y
TWIDDLING PACTOR Wy

ROWWISE DFT

L

Aro(I) nA(Iz M+I4 )

FIG. 3.4 3 FLOW CHART OF TRANSFORM WITH ROWS

AND COLUMNS PERMUTED




CHALPTER -~ 4

INTER RELATIONS AMONG VARIOQUS TRANSFORMS

The ordinary multiplication of two matrices is
defined only when the two component matrices are confor~
mable for multiplication., Thigs matrix multiplication
commutes only under special conditions. It is well known
that Kronecker product of two matrices A and B is always
defined irrespective of the dimensions of the component
motrices. It is also known that Kronecker product of
A and B con be obtained from Kronccker product of B and
A by pre and post multiplication by sparse permutation
matrices of suitable dimensions and vice-versa. Another‘
matrix product known as Chinese product can be defined
when the numbers of rows (columns) of the two component
natrices are coprimes. This matrix product always com~
mutes., Analytical expressions have becen developed for
obtaining Chinese product from Kronecker product and vice—
versa, A combination of Kronccker product and Chinese
product concepts has been propoged to define Chinege-~
Kronecker product and Kronecker-~Chinese product. Analy-
tical expressions have also been developed to obtain one
fron another by pre and post nultiplication with suitable
sparge pernutation matrices. The concept of the special
natrix products hag been applied to linear gystems. The

advantage of the work reported is that the output

R )
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corresponding to any particular input con be deduced fron

outputs to simpler inputs in termg of which that parti-

cular inpw can be synthesized.

4,1 SPECIAL MATRIX PRODUCTS

If A and B are nmatrices of

M2 X N2 given as

a{o,0) a(0,1)
a(l,0) a(l,l)
a(2,0) a(2,1)

a(M;~2,0) a(M;-2,1)
a(My=1,0) a(ll;<1,1)

Alternatively

A ; [a(il'jl)] jl

b(0,0) b(0,1)
»(1,0) b(1,1)
b(2,0) b(2,1)

L4

a{0,2)
a(l,2)
a(2,2)

a(Ml-2,2)
a(Ml-l,a)

i

]

b(0,2)
b(1,2)
b(2,2)

-
*

b(M,=2,0) b(My=2,1) b(M,~2,2)

L_b(1v12--1,0) b(M,-1,1) b(M,~1,2)

dinensions Ml X Nl and

a(O,Nl—Z)
a(l,Nl-2)
a(2,N1—2)

< &

a(l,Nl-l)

a(Ml—l,Nl—z) a(Ml-l,Nl-l)

= 0’1,2,¢-0,Ml—l

0,1,2,...,N1-l

o N e

b(O,N2-2)
b(l,N2-2)
b(2,N2-2)

e

ces LALE)

o [BgE)

b(0,N,~1)
b(1,N,-1)

b(Mz-z,Nz—z) b(M2-2,N2-l)
b(M,-1, N2-2)b(M2-1,N2—1l_

ee Dia3)
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Alternatively

B = [b(ip0d,)]

)

j2 — 0’1!2,lcio ,N -1

89

= 0,1'2’00109M -l

2 ces Clyik)

2

Then Ck the Kronecker product or direct product of

matrioces A and B, denoted by A Qk B is a matrix of di-

mension MlM2 X NlN2 and is given as

2(0,0)B a(0,1)B
a(l1,0)B a(l,1)B
a(2,0)B a(2,1)B

o *
* *

ja(M;-2,0)Ba(M,~2,1)B
~£9(M1-1,0)Ba(M1~1,1)B

where C, = (¢, (1,3)]

a(0,2)B
a(l,2)B
a(2,2)B

a(M;-2,2)B

and

i= 12 + M, il

=1, +N; Iy

g

a(1,N,-2)B a(1,N;-1)B

a(My~2,N2)Ba (M0, ) B |
a(Ml—l,Nl—2)Ba(Ml-l,NfD§§
a4 4B}

1:0,1;2,---9M1M2~1 PRTUNGE ¢ T
j=0’1,2,. o ’N1N2-l

eer (4.7)

Some of the important properties of Kronecker product

of are :
1) (A e, B) 9,
2) & 8, B)T

3) (A @ B)™

C =48 (Bo O)

T

= B P

=l
A8, B

k

T

~1

..o (4.8)



4) (A+C) @, (B+D) = A @, B+A @ DC @ B+« @ D

5) {4 8. B) (C @ D) =AC @ BD

6) «AQ BB = apf (A @ B)

7) (A, & A8 ... 9 Ay1)(B, @ By @ ... 9 B )

= AOBO @k .AlBl ®k 2 ee ®k AN"'l BN"'].

Let ek)be a gq-dimengional vector which is one in the
(q

kt and zero eleewhere, Thig is termed as wnit vector,

Algo let

Ei}ipx@; o oo (AD)
(p) (a)

be termed as some elementary matrix of dimensgion p x q

with one in the location (i,k) and zero elsewhere,

Brewer [12] has defined a permutation ma*rix prq as
gl (pxq) (axp)
== v ® oo 01
prq g;g 556 Eik Qk Ekl (4.10)

and which is of dimension Pq X pq with precisely a single
one in each row and each colunn, rest of the elementg

‘being zero, He has defined another matrix as

=]

ok gl
0 . (pxq) (pxq) 11
Ty ¢ 2 1%_;0 E, (?%0) ¢ g | cee (4.11)

P
I

and which is of dimension pZXq2 with precisely a single

one in each row and each columh, rest of the elements

being zero. Some of the relationships which hold for
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thegse permutation matrices are given by Brewer [12] and

ere listed below:

L, & @ = 8; Where 6., is the Kronecker Delta

1
(2} ()
(rxq) ey pxT
2) By - = &y B P
-1 g-1
- 1) - ~ A, E,{Pxa) vas (8227
?;6 égg ik Bik (4.12)
(sxp) =) (exx
4) Eyy A Ehéq = Ay By )
L (prq)T . Paep
ad
6) U pxa = Ugxp
p
7) (EilgPXQ)) . Ekj(_qxp)
8) prl o lep =1
¥) Upow " ngn U;;n
10} Uppen t.-fmm Ly ﬁnxn

The concepts of these permutation matrices can be

used to obtain relationghip between A @k B and B @k A,

Based on Chinese remainder theoren [11] one can
define multiplicationg of one~dimengional and two-dimen~
slonal arrays provided the corresponding dimensions of the

arrays are coprines. Moharir [40] has defined Chinese
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product of sequences,

If A and B are one~dinensional sequences of length

Ml and M2 Tespectively, M7 and M2 being coprimes, and

&iven ag

A =[a(0) a(1) a(2) , . . a(M,~2) a(M1=1)7ev.(4.13)
and B =[b(0) b(1) RERY 4 . b (M,~2) b(M2-1)]

then the sequence

G =[e(0) e(1) o(2) . . . c(M-2) o(M~1) J,.. (4.14)

is deflined ag the Chinese product of sequences A ang B it

M = Ml M2 se e (4015)

and c(i):_a(il) b(i,) eee (4.16)

where

1 Z i, modulo M
l l * 9 (4.17)

i i2 modulo M2

Batop L dn congruent to il modulo My and algo congruent
to 12 modulo M2. For any given 1 il and 12 can be
uniquely determined ang vice-versa. If A and B be two~
dimensional arrays of Egs, (4.2) and (4.4) and where M,
M2 are coprimes and Nl’ N2 are coprimes then the two-

dimensional array

O,l,2goo., M"‘l

: ‘ 2
Co = leg (1,3)] } = 0,1,2,,.., N-1 *-+ (4.18)

e
1|
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is defined as the Chinese product of matrices A and B,
¢, =k @, B, if

M= Ml M2
rem (AoXB)
N = N,y N2
and
©ol1,3) = al(iy,d;) b(i,3,) ees (4.20)
s B il modulo Ml
= i, modulo M
; = oo (4.21)

e [ jl modulo N,
i 32 modulo Né

Thus the dimension of the matrix resulting from Chienese
product, if defined, of two matrices is the same ag of

one obtained by Kronecker product of the same matrices.

It is clear from thc definitions of Chinesge product

and Kronecker product that the array obtained is case of
former is o rowwise and columnwise permutation of the array
obtained in cage of latter, If A and B sre orthonormal
matriges then Ck = A @ B is known to be an orthonormal
natrix, Further rowwise and/or columnwise pernutation of
an orthonornmal matrix results in an orthonormal natrix,
Hence the matrix obtained by Chinese product of orthonormal

natrices, Cc,= A @, B, would bc an orthonormal matrix,

The concepts of Kronecker product and Chinese product
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can be exploited to defino two nore natrix products, viz,
Kronecker~Chinege product and Chinese-Kroneccker product

of nmatricesg,

If A and B be two=dimensional arrays of Eqs. (4.2)
and (4.4) and where Nys N, are coprimes then the two-
dinensiongl array

1 s 0p142, 0. ol

Cre = [0 (1:3)] J = 0,1,2,...,§-1 *+ (4:22)

is defined as the Kronecker-Chinese product of natricesg

A ond B, O, =4e B, i

M = My M
e ver (4.23)
and
c'_kc(i’j)S a(il,jl) b(i2’j2) o0 o (4-24)
where
i = 12 4 M2 il
J = ] modulo Ny ave (4.25)
= 32 nodulo N2

If A and B be two=~dinensional arrays of Eqs. (4.2)
and (4.,4) and where Nis» M, and coprines then the two-
dimengional array

%
J

nu

091’29~0o,M“l (4-26)

GCk - [ch (i’j)] 0,1,2’..I,N-1 i

is defined as the Chinese-Kronecker product of natrices
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= M, M,
L
£ vee (4.27)
and
cck(iij) = a(il’jl) b (12;.']2) eee (4.28)
where
i € %4 meduleo M
i $ .. (4.29)
= 12 nodulo H2
b= dp v N, 5y

The nmatrix obtained by Kronecker—Chinese product
of two nmatrices A and B can be thought of as a column-—
wige pernuted version of the natrix obtained by Kronecker
product of the matrices A and B, Sinilarly the matrix
abtained by Chinese-Kronecker product of two nmatriceg A
and B can be thought of as a rowwise permuted versgsion of
the nmatrix obtained by Kronecker product of the matricesg
A and B. It is known that if the two matriees A and B
are orthonormal then the natrix obtained by Kronecker pPro=-
duct of these orthonormal natrices is itself an orthonornal
natrix, Since natrices obtained by Kronecker~Chinese and
Chinese~Kronecker product of conponent natrices are the
colunnwise and rowwise pernuted versions of the matrix
obtained by Kronecker product of the same conponent nat~
rices and that rowwise and/or columnwise pernutations on

an orthonormal natrix do not change itsg orthonornality
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hence the matrices obtained by Kronecker-Chinesge product
and Chinege-Kronecker product of orthonornal noatriceg A

and B would always be orthonornal natrices,

4.2 RELATION BETWEEN CHINESE AND KRONECKER PRODUCTS

Let Cc and G, be the natrices obtaoined by Chinese
product and Kronecker product Tespectively of two nate
rices A and B of dinensions M, x N, and M, x N, , M, .

M2 being coprines ana Nl, N2 being coprimes. It has been
stated that the natrices Cc and Cx are rowwise and
colunnwige pernuted version of each other. 1In what follows
expressions would be derived for Pernutation natrices Pl

and P2 of suitable dinensions which are defined by

CC = Pl Ck P2 LR N (4.30)
g ) =1
Gk = Pl CC P2 oo (4031)

Since the matrices P, and P2 are to effect
rowwise and columnwise permutation respectively these
matrices would have only a single one in each row and
each column, rest of the elements being zero, Further,
P, and P2 would be square matrices of orders My M2 and
Nl N2 regpectively. A change in dummy variables in

Bgs. (4.6) and (4.7) would give

ox(1,3) = aliy, 3;) dliy, i) cee (4232)
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and
] ]
1= 31i_ + M, 4
alica > sos (TS
ey is &
From Eqs (4.21) one can write
i) =1i-M; [i/Ml]
i, =1 -M, [1/M,]
2 . 2 ave [HSDE)
jl =.J = Nl [j/Nl]
32 = ] = N2 [j/Nz]
Similarly from Eq. (4.33)
?
1y = [i/Mz]
'
i, = 1~ M[i/M,]
2 2 v EBLEGY
!
jl = [J/Nz]

iy =3 =N, [3/8,]

where [x/y] stands for integer part of (x/y). From
Eqs. (4.34) and (4.35) it is clear that

1
o AR e for all i
2 2 vee (4436)
"
i, = 32 for ®11 3
and hence

{iy0dy) = B(i, , 3,) for all 1,3 oo (4.37)
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Thig would imply that b(iz,jz) part of ¢ (i,j)
is element by element equal o b(iz',jé) part of e, (i,J3).
But the corresponding a(il,jl) of ¢ C(i,j) ig not neces~
sarily equal to the corresponding a(ii,ji) of e, (i,j),
So the permutation matrices Py and P, should be such
that they permute the elements of the matrix Ck=A Qk B
in such & way that the regulting permuted matrix ig equal
to the matrix Co =40, B. InEq. (4,30) the matrix
Gk is to be premultiplied with the matrix P, and post-
multiplied with the matriz P,, It is known that premwlti-
Plication of a matrix with a natrix having a gingle ele-~
nent one in each row and each colunn, rest of the elements
being zero, results in rowwise rernutation of the former
natrix, Sinilarly a colunnwise pernuted version of o
natrix can be obtained by post-nultiplying it with 2 matrix
having a single element one in each row and each column,
rest of the elements heing zero. So in Eq. (4.30) row~
wige pernutation on the nmatrix Ck is effected by the
natrix Py and columnwise pernutation by the nmatrix P,
The effect of the Prenultiplication and Postonultiplication
of the nmatrix Ck is that its elcment can be shifted fronm
any location in the two-dinmensional array to any degired

location by suitable choice of natriceg Py ond P2.

It is evident fron the definition of Ck that in

its i"® pow the b(i;,j;) rart of the elenentec gl{ird) =
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[] - s ] !
a(i1,31) b(iy3,) would repeat itself at all j = J, modulo K,
Sinilorly in j¥8lumn of ¢, the b(i,,3,) part would repeat
itself at all 1 = i, modulo M.

Let the pernutation nmatrix P, of order Ny N, be

2
such that it pornutes the(j + i ) modulo Ny N,B
colunn of the matrix Gy to jth colunn, This would nean
that in the §'° colunmn of the natrix P, there should be
a one in the (j+js) modulo Ny Nzth row, Further let the
permutation matrix P; of order M1 M2 be such that it per-
mutes the resulting columnwise permuted matrix in such

a way that its (i+is) modulo My M, th oo goes to its

1B pow. Thie would mean that in the i'E row of the

th

matrix Py there should be a one in the (i+is) modulo MM,

column, These could be summarised as

1) The permutation matrix P, which is a square matrix
of order N1N2 with precisely one element a one in
each row and each column, rest of the elecments
being zero, should have ones at locations ((j+js)

modulo N;N, + 1) s

2) The permutation matrix Py which is a square matrix
- of order anz with precisely one clement a one
in each row and each column, rest of the elements

being zero, should have ones at locations,

{1, (i+i,) modulo My M,).
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3) The permutation matrices Py ond P, are completely
defined if expressions for iS and js are obtained

in terms of known parameters,

The combined effect of premultiplication by the
matrix Py and post multiplication by the matrix P, is to
obtain the condition

a(il,jl) = a(ii ,ji) for Al 4:3. BOPRR € L L

while maintaining the condition given by Eq. (4:37)
Since the matrix P2 is to effect columnwise permutation

on the nmatrix ck,hence it should result in

» 0'

Jl = 31
or J =8 [i/mN] = [j/Nz] var (4239)
This can be achieved by taking

= - -'

iy #ll =)

= j"Nl [j/Nl] - [j/Ng] " ase (4.40)

Since j repeats itself with a period of Ny hence
3y should be taken modulo Ny, This gives

Jg @ (3= N [3/M] = [3/M,]) modulo Ny ... (4.41)

This equation alongwith Eq. (4.37) suggestm that the

proportionality congtant should be N2 and hence
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Jg = No(i= [3/¥,])modulo Ny eos (4.42)

The .locations of one's in the Pernutation matrix P2

are ((j+N2(j-[j/N2])modulo N,)nodulo Ny N2,j) ave (4 AF)

Since the matrix Py is to effect rowwise pernuta-

tion hence it should result in

1

il = il
or i=-M [i/My] = [1/M,] wor (ByE)
This can.be achieved by taking
i@ (1 = i)
= i- M, [i/M,] = [1/M,] ein (#:45)

Since iy repeats itself with a period of M, hence iS

ghould be taken modulo Ml‘ This gives
ig o (i3 [i/My]-[i/M,]) modulo M e or {4.46)

This equation alongwith Eq. (4.37) suggests that the

proportionality constant should bve M2 and hence
ig =M, (1-[1i/M,]) nodulo M, v2e {hAT)

The location of ones in the pernutation natrix P, are

(i,(i+M2(i-[i/M2]) nodulo M;) modulo My M2)

seo (4.48)
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Thus the permutation matrices P, and P, are com-
pletely defined with the holp of Eqs. (4.48) and (4.43)
respectively. The two matrices Pl and P2 would be equal

if A and B are squere matrices.

A, B=

Example Let A and B be two square matrices of orders
two and three rcespectively and given as
P 8(0,0) a(O,l)J
| a(1,0) a(l;1l)
-rb(0,0)_ b(0,1) b(0,2)
B= | b(1,0) B(1,1) B(L,2)
2.0} b{z,1) b(z,2)
Then i
a(0,0)b(0,0) a(0,0)b(0,1) a(0,0)b(0,2) a(0,1)b(0,0)
a(0,1)b(0,1) a(o,l)b(o,z)
a(0,0)b(1,0) a(0,0)b(1,1) a(0,0)b(1,2) a(0,1)b(1,0)
a(0,1)b(1,1) a(0,1)b(1,2)
a(0,0)b(2,0) a(0,0)b(2,1) a(0,0)b(2,2) a(0,1)b(2,0)
a{0,1)b{2,1) afo,2)l2,2)
a(1,0)b(0,0) a(1,0)b(0,1) a(1,0)b(0,2) a(1,1)b(0,0)
efl. B)6{0,1) e{l;1)Yb{0;2)
8({1,0)41:0) &(1,0)94%;3) a(1,2)06{2,2) s{l,a)0(La)
a{l,k)b{1 1) ef3,2)0{ls2)
a(1,0)b(2,0) a(1,0)b(2,1) a(1,0)b(2,2) a(l,1)b(2,0)
afl.2)ud{e;1) a«figiblz.2)




g
=A8 B=

2(0,0)b(0,0)
a(1,0)b(1,0)
a(0,0)b(2,0)
a(1,0)b(0,0)
2(0,0)b(1,0)

a(l,0)b(2,0)

2(0,1)b(0,1)
a{l,1 b 1)
2(0,1)b(2,1)
a(l,1)b(0,1)
a(0,1)b(1,1)

all,1ib(z,1)

a(0,0)6{(0,2)
a(0,0)b(0,1)
a2({l,0)b(2,2)
al{l,0)e(i, 1)
a(0,0)b(2,2)
a(0,0)b(2,1)
a(l,0)h(0,2)
a(l,0)b(0,1)
a{0,0)b(L,2)
a{0, 8. 1)
a(l,0)b(2,2)
a(l,0)e(2,1)

L05

2(0,1)b(0,0)
2(0,1)b(0,2)
6€l;1)b(1;0)
8(1,1)b(1,2)
a(0,1)b(2,0)
a(0,1)b(2,2)
a(1;1)b{0.,0)
a(1,1)b{0,2)
a(0,1)b(1,0)
a{0,1)b(1,2)
a(l,1)b(2,0)
all,1)n(2,2)

The locations of ones in the permutation matrix Py of

order six are listed below:

Row of matrix

VPN HO

B

.

OWD Dkn O

Column of matrix P

|

NHEWNDAEO

i.e., the locations (0,0), (1,4), (2,2), (3,3), (4,1) and

(5,5) in matrix Py would have entries 1's and rest of

the locations would have entrics O's.

Similarly the locations of ones in the permutation

motrix P2 of order six are listed below:

Column of matrix P2

UIAUIN HO

OVOOWO m

3 row of matrix P2

WSO

o
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1.¢., the locations (0,0), (1,4), (2,2), (3,3), (4,1)
and (5,5) in matrix P, would have entries 1's and rest

of the locations would have entries 0'g, Thus

B8 0O o & W
B = O O O O
- T - T S O
O o H.0 B O

0]
L
0
0
0
0

= B @ | e O

e —d

It can be easily verified that

-1 o

4.3 RELATION BETWEEN CHINESE-KRONECKER AND
KRONECKER-CHINESE PRODUCTS

It has been stated in section (4.1) that matrices
resulting from Kronecker~Chinese product and Chinese-
Kronecker product of two matrices, if defined, are the
permuted versions of the matrix obtained by Kronecker
product of the same two matrices., It implies that the
matrices obtained by Kronecker-Chinese product and
Chinese=Kronecker product of two matrices, if defined,
are the rowwise and columnwise permuted Versions of each
other, It should thus be possible to obtoin one from the
other by premultiplication and postmultiplicetion with

In what follows

suitable permutation matrices Py and P2.
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eéxpressiong would be derived for pernutation matrices

P, and P2 of suitable dimensions which are defined by

=3, ~1
and CCk = Pl CkC PZ ee (4050)

Jdince the matrices P, and P2 are to effect rowwise
and columnwise permutation respectively these matrices
would have only 2 single one in ecach row and each colunmn,
rest of the c¢lements being zero, Farther, P and Py
would be square matrices of order My M, and N, N2 rcs~
pectively, A change in dunny varisbles in Eqs. (4,28)

and (4.29) would give

r 3 3 l' -' -' -’
cck(lrJ) = a(llel)b(lz ? 32) °ee (4-51)
and -
£ B il_modulo Ml
L.
= i, modulo M, von (Ae52)
= !
¥ = Iy + N2 Ay

Fron Eq, (4.25) one can write

il = [i/Mg]
o I sla )
jl = = Nl [j/Nl]

]
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Sinilerly from Eq, (4.52)
i) = i-1 [1/)]
o= (3]
Jp = 3=, [3/0,)]

where [x/y] stonds for integer part of (x/y). Fronm
Eqs. (4.53) and (4.54) it is clear that

]
i, = i, for all i
2 2 s e e (4055)

]

. 5, for all j

and hence

B(i5,3,) = b(d,, ip) for all 1,j ... (4.56)

This would imply that b(i2,j2) part of ckc(i,j)
is elenent by element equal to b(ié = jé) part of
Gck(i,j). But the corresponding a(il,jl) of ch(i,j)
[ ]
l’jl)
of ¢ , (1,j). So the permutation matrices P; and P

is not necessarily equal to the corresponding a(i
2

should be such that they permute the elements of the
matrix Cck = & Qck B in such a way that the resulting

permuted matrix is equal to the matrix Ckc = A 8. . B.

The permutation matrix P, which is a square matrix
of ordeor NlN2 with prccigely one element a one in each

row and each column, rest of the elements being zero,
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should have ones at locations ((j+js) mod ulo NN, o, d).

The permutation matrix Py which is a square matrix
of order MlM2 with precisely one element a one in each
Tow and edach column, rest of the climents being zero,

should have oncs at locations
1, (i+is) modulo My M2).

The permutation matrices P, and P2 are completely
defined if expressions for iS and js are obtained in

terms of known parcmeters.,

Procesding as in Section (4.2) one gets

H

ig =M, ([i/M,] ~i) modulo My sue (4557

and

ig = N, (i~ [j/NZ]) modulo N, eve (4:58)
The locations of ones in the pernutation matrix Pl are

(4, (i+M2([i/M2] -1) nodulo M, Jmodulo My M2)

[ ) (4‘59)
The locations of ones in the pernutation natrix P2 are

((j+N2(j—[j/N2]) modulo N;)modulo NyN,, J)
ee. {(4.60)

Thus the pernutation natrices Py and P2 are conp-

letely defined with the help of Egs. (4.59) anad (4.60)
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respectively,

Exanple Let A and B be two nmatrices of dinensions

2EZ SR 4 ¢ 2 respcctively and given ag

3 .
{ 2(0,0) a(0,1) a(o0,2) a(0,3) a(0,4)
A = a(l,O) a(l,l) a(l,2) 3(1)3) 8-(l,4)
a(2,0) a(2,1) a(2,2) a(2,3) a(2,4)

b(0,0) b(0,1) [

b(1,0) b(1,1)
B =

b(2,0) b(2,1)

b(3,0) b(3,1)
Then

The locations of ones in the Pernutation natrix

Pl of order 12 are listed below:

=

Row of natrix Pl Colunn of nmatrix Pl

0 0 0
3 8 9
2 4 6
3 0 3
4 0 4
v 8 1
6 4 10
7 0 7
8 0 8
9 8 -,
10 4 2
3 0] 11



[2(0,0)1(0,0)
a(1,0)b(1,0)
a(2,0)b(2,0)
a(0,0)b(3,0)
a(1,0)b(0,0)
a(2,0)b(1,0)
a{0,0)b(2,0)
a(1,0)b(3,0)
a{2,0)b(0,0)
a{0,0)b(1,0)

a(l,0)b(2,0)

a(2,0)b(3,0)

e

a(0,0)b(0,1)

a{l,0)b(1,1)

a(2,0)b(2,1)

a(0,0)b(3,1)

a(1,0)b(0,1)

al{2,0)6{%,1)

a{0,0)p(a,1)

a(1,0)b(3,1)

a(2,0)v(0,1)

a(0,0)b(1,1)

a(1,0)b(2,1)

a(2,0)b(3,1)

a{0,1)b(0,0)
a(073)b(030)
a(l,1)b(1,0)
a(l,3)b(l,0)

a(2,1)b(2,0)
a(2,3)b(2,0)

2(0,1)b(3,0)
2(0,3)b(3,0)
a{l,1)b(0,0)
a(1,3)b(0,0)
a(2,1)b(1,0)
&(2t3)b(130)
a(0,1)b(2,0)
a(0,3)b{2,0)

al{l,1)b(%5,0)
a(l,3)b(3,0)

a{2,1)b(0,0)
&(213)b(090)

a(0,1)b(1,0)
a(0,3)b(1,0)

a(l,l)b(Z,O)
a(l,35)b(2,0)
a(2,l)b(3,0)
a(2,3)b(3,0)

a(0,1)b(0,1)
2(0,3)b(0,1)

a(l,X)b{1,1)
Bl a1

a(2,1)b(2,1)
a(2,3)b(2,1)

a{0,1)b(3,1)
a(0,3)b(3,1)
a(1,1)b(0,1)
a(1,3)b(0,1)
el 21 YBl1,1)
a(2,3)b(1,1)

of0, 168211
2(0,3)b(2,1)

a(1l,3)v(3,1)
3(1;3)b(3’l)

a{2,1¥5(0,1)
a(2,3)b(0,1)

a(0,1)b(1,1)
a(0,3)b(1,1)

a{l,1)b{2,1)
a(1l,3)b(2,1)
a(2,1)b(3,1)
a(2,3)b(3,1)

a(0,2)b(0,0)
a(0,4)b(0,0)
a{l,2)b(1,0)
a(l,4)b(1,0)
al2,2Ye(2,0)
a(2,4)b(2,0)
a{0,2)p(3,0)
2{0,4)b(3,0)
a(l,2)b(0,0)
&(lr4)b(010)
a(2,2)b(1,0)
a(2,4)b(1,0)
2(0,2)b(2,0)
2(0,4)b(2,0)
a(l,2)b(3,0)
a(1l,4)b(3,0)
a(2,2)v(0,0)
a(2,4)p(0,0)
a(0,2)b(1,0)
a(0,4)b(1,0)
a(l,2)b{2,0)
a(ls4)b(2’0)

a(2,2)b(3,0)
a(2,4)b(3,0)

a(0,2)b(0,1)
a(9f4)b(07l)
=il , b1, 1)
a(1,4)b(1,1) |
af2,2)8{2,1)
a(2,4)v(2,1)
a{0,2)b{3,1)
a(0,4)b(3,1)
a(l,2)b(0,1)
a(l,4)v(0,1)
g{2,2)0(1,1} |
a(2,4)b(1,1)
a(0,2)b(2,1)
a(0,4)b(2,1)
a(l,2)b(3,1)
a(l,4)b(3,1)
a{2,2 VEin, L)
a(2,4)b(0,1)
a(0,2)b(1,1)
a(0,4)b(1,1)
a{l,236{2.3)
2(1,4)b(2,1)

a(2,2)b(3,1)
3(2,4)b(3’l)_J

60T
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2(0,0)b(0,0)
a(0,0)b(1,0)
a(0,0)b(2,0)
2(0,0)b(3,0)
a(1,0)b(0,0)
a(1,0)b({1,0)
a(1,0)b(2,0)
a(1,0)b(3,0)
a(2,0)b(0,0)
a(2,0)b(1,0)
a(2,0)b(2,0)

a{2,0)v(3,0)

af0,1)8{0,1)

a(0,1)b(1,1)

a(0,1)b(2,1)

a(0,1)b(3,1)

a(1,1)v(0,1)

2(1,1)b(1,1)

a(1,1)b(2,1)

a(lyl)b(B,O)

a2, L)bi0,1)

a(2,1)b(1,1)

a{2,1)b{2,1)

a{2,L)b{3,1)

a(0,2)v(0,0)
a(0,1)b(0,0)
a(0,2)b(1,0)
a{0,1)5{1.8)
a{0.,2)(2,0)
a(0,1)b(2,0)
a(0,2)b(3,0)
a{0,1)b(5,0)
a(l1,2)b(0,0)
2(1,1)b(0,0)
afl,2)5{1,0)
a(l,l)b(l,O)
a(l,2)b(2,0)
a(l,1)b(2,0)
a(l,2)b(3,0)
a(l,1)b(3,0)
a(2,2)b(0,0)
af{2,1)b(0,0)
a(2,2)b(1,0)
a(2,1)b(1,0)
al2:2)8(2.0)
a{2,1)vf2,0)

a(2,2)bv(3,0)
a(2,1)b(3,0)

2(0,3)b(0,1)
af{C,2)b{0,1)
a(O,B)b(l,l)
a(O,Z)b(l,l)
a(0,3)b(2,1)
a(0,2)b(2,l)
ai{0,318{3,2)
afD,2)e{3,1)
a(1,3)b(0,1)
a(1,2)b(0,1)
afls 518,12
a(l,2)b(l,l)
a(l,3)b{2,1)
a(1,2)b(2,1)
a(l,3)b(3,1)
a{l,2)e{3,.1)
a(Z!B)b(O!l)
a(2,2)b(0,1)
a(2,3)b(1,1)
a{2,2)b(1,1)
3(2,3)b(271)
a(2,2)b(2,l)

a(2,3)b(3,1)
a(2,2)b(3,1)

a(0,4)b(0,0)
a(0,3)b(0,0)
2(0,4)b(1,0)
al{0;835{1,0)
2(0,4)b(2,0)
2(0,3)b(2,0)
a(0,4)b(3,0)
2(0,3)b(3,0)
a(1,4)b(0,0)
a(1,3)b(0,0

a(1l,4)b(1,0)
a(1,3)b(1,0)
a(l’4)b(210)
a(l,3)b(2,0)
a(l,4)b(3,0)
a(1,3)b(3,0)
a(2,4)b(0,0)
a(2,3)b(0,0)
a(2,4)b(1,0)
a(2,3)b(l,0)
a(2,4)b(2,0)
a{2;3)0(2,0)

a(2,4)b(3,0)
3(2’3)b(3y0)

a(0,0)b(0,1)
2(0,4)b(0,1)
wifo,0)nl 1)
a(0,4)b(1,1)
2(0,0)b(2,1)
a(0,4)b(2,1)
a{0,0)08(3,1)
a(0,4)b(3,1)
2(1,0)b(0,1)
a(l;4)b(0,1)
a(1,0)b(1,1)
a(1,4)b(1,1)
a(l,0)b(2,1)
a(l,4)b(2,1)
a(1,0)b(3,1)
a(l,4)b(3,1)
a(2,0)b(0,1)
a(2,4)b(0,1)
2(2,0)b(1,1)
a(2,4)b(1,1)

a{2.0)bl2,0])

3(2’4)b(2;1)‘

a{2,0)8(3,1)
a(2,4)b(3,1)

OTT
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i.e., the locations (0,0), (1,9), (2,6), {3:3)5 (4,4),
(5,1), (6,10), (7,7), (8,8), (955), (10,2) 2na (11,11)
in natrix Py would have entries 1g and recst of the loca-

tions would have entries Oé.

Sinilarly the locationg of ones in the permutation

natrix P2 of order 10 arec listed below:

Colunn of natrix P row of matrix P

S
(o]

2 2

0
3
4
i
8
1l
2
-
6
9

W @ 9 o8 v W N = O
S ® 0O v o ~N n o

i.es, the locations (0,00 (1,9); (2,6), (TR 5 R 2
(5,7), (6,8), (7,3), (8,4) ana {9,9) would have entries
1's and rest of the locations would have entries 0wy,
The pernutation nmatrices Pl and P2 can now be written

as
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2 00000000000
000000000100
000000100000
EOOXGDO0 60006
000010000000
010000000000

: ol 00000000010
000000010000
000000001000
000001000000
001000000000

000000000001 |

and

5 .
1000000000
0000010000
000000100 0
010000000 O

P,= | 0010000000
0000000100
0000000010
00010006000
0000100000
0000000001

- =

It can be easily verified that

Oge = By O, P,
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and C — S

4.4 PERMUTATION PROPERTIES OF CHINESE AND
KRONECKER PRODUCTS OF DFT KERNELS

It has been pointed out in earlier gections that
the matrices obtained by Kronecker product and Chinese
product of two component matrices of proper dimengions
can be obtained from each other by premultiplication and
Post-miltiplication with suitable permutation matrices,
Moharir [41] has reported rclation between the DFT of
Chinese product of two One~dimensional sequences and the
DFTs of the two individual one-dimensional arrays. In
this section gsome more results would be obtained wherein
the transform samples of higher order system would be

related to transform samples of component lower order

systems,

Let X1 and X, be given as
X =%(m) , n = 051,2,e0.,M7-1 ees (4.61)
X, = x2(m2) » m, = 0,1,2,...,M2—l ev. (4.62)

be any two one-dimengional input signal sample sequences
and that M, M2 are coprimes, Further let ¥y, AP be
My -term and M,-term DFTs of disecrcte sequences X] and X,

respectively where
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yl = Yl(nl) ’ nl = O,l’2yao. ,Ml"’l o s (4-63)

y2 = y2(n2) ? n2 = 09172’000’1\/.[2-1 o8 0 (4-64)

Moharir [41] has reported that

1) The M) M,-term DFT of a sequence which is obtoined

4)

by Chinese product of the sequences X, and X, is
equivalent to the sequence which results from the
Chinege product of y; modularly permuted by operator
P(B,Mz)und Yo modularly permuted by operator P(a,M2),

where o and B are related to Mis My as
chl +BM2= 1 eso (4065)

It has becn shown that o and B would be coprimes.

The output obtained in the above scheme is also
equivalent to the sequence obtained by Chinese pro-
duct of y1 @nd y, and modularly permuting this sequ-
cnce by operator P(y, Ml,Mz), where y is given as

¥ £ £ modulo M
+ ver (4.66)

=L eengdudo M2

The sequence obtained by Chinese product of X3
nodularly permuted by operator P(a,M,) and X,
nodularly permuted by operator P(e, M2) is equiva-
lent the sequence obtained by Chinese product of

xq and X, and modularly pernuting this sequence by
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op<rator P(y, M1M2), where ¢ is given ag

¥ = a nmodulo My
e 0 a (4.67)

= €@ modulo M2

4) The M1M2-term DFT of the sequence obtained in (3)
above is equivalent to the sequence obtained by
Chinese product of yl and Yo and modularly permut-
ing this sequence by operator P(n,Ml.M2), where

n 1is given as

n — AY LI ) (4-68)
where
N b modulo Ml
sus  (4=89)
-~ d modulo Ml
and ab = 1 modulo My sae {4=70)
&ad =2 1 modulo M, vew LERTE)

It has been reported that a, M2 and B, Ml would
also be coprimes., The results summarized above have been
illustrated in Fig, 4.1. In what follows some of the
results of Moharir [41] would be extended to get some

new results.

Since Vs ¥, are Ml-term and M2-term DFTs of Xy

and x2 respectively hence
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X, ——»
x; % MiM,~TERM DFT  {—»
M. ~ m __J MODULAR |
Ty 7% My ~TERM DFT PERMUTATION BY B = 8
® el
¢ ‘}
" MODULZR -
X, "Mz TERM DFT ’| PERMUTATION BY g
X; — M, ~TERM DFT )
MODULAR ¥
: ®, ""ﬂPERMUTATION By
Xy —>M,~TERM DFT | F
()
" _,' MODULAR
1 PERMUTATION BY a —
, . -
; c A
l MODULAR ——
%5 PERMUTATION BY e
MM, ~TERM DFT |
A
Ry MODULAR | ¥
x, —>) ., PERMUTATION BY p{
X, —3M,-TERM DGT 3 !
y
= MODULAR
: 9 PERMUTATION BY |
. i
Ko —»{MZ-TERM DFT

(b)

FIG.4.1 : EQUIVALENCE AMONG SYSTEMS WITH SMALLER
AND LOKNGER INPUTS
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M.=1
£ J2nm
f
yl(nl) =S X, (my ) exp ( Ninl) my,0y = 0,1,2,..,M;~1
ml_o :
® o (4.72)
and
- MZ-l j2m2n2
y2(n2) = z:LOxz(mz)exp ( W ) Dysfy = 0,1,2,..,M,~1
o=
(4.73)

Consider the scheme given in Fig. 4.2. If y(n) be the
Chinese product of seqguences ¥1(ny) and yz(nz) then

y(n)= y;(nq) y,(n,) D= 0,1,2,...,MM,-1
(4.74)
where

n=n modulo M
% % (4.75)

& n2 modulo M2

Substituting for yl(nl) and y2(n2) in Eq. (4.74) gives

Ml-l l j2m 1,
y(m) =3 x(m)exs (—————l> Z x,(m,)exp (- )
By=0
Ml-l M -1
1 ) mlnl m n2
= to goxl(ml)xg (my)exp [j2n (-]_\-4*1— + -3%-2—)]
MlM -]

it

m.n m.n '
x(m)exp [jzn(ﬁﬁzl <! —ﬁ;g)] ooe LheTE)
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¥y (ny)
x,/my) —# M, -TERN DFT l
- —— y(n)
xplmy) —n M,~TERN DFI T
i yz(ng)

F1G. 4.2 : LINEAR SYSTEM WITH DFT AND CHIRESE
PRODUCT

X ) ’
‘:ml) ., 1 8(n,m) —> y (n)
!2 llz
8 ’
) (g .my) 0 it
Sz(nz,nz)

*16. 4.7 : CHINESE PRODUCT OF SEQUENCE TRAKSFORMED
BY XERNKL OPTAINED BY CHINBSE PRODUCT
OF DFT KERNEDS
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where
m = m, modulo M
l l o 0 a (4077)
= m2 modulo M2
and
m o= BmM, +amM,; sen (4aTB)

Next consider the scheme given in Fig. 4.3. ITf S1 and

82 are the Ml-term and M2-term DFT kernels given as

j2Xn my
S, = [8(ny,my)] = [exp ( W, )]
nl,ml=051,2,ooo’Ml.l eo o (4079)
and :
j2 m
3, = [5;(n5my)] = [emp(—2-2)]

n2,m2=0,1,2,.. . ,M2-l eo e (4.80)

Then the Chinese product of 87 and 82 is given by

or, S(n,m) = 8§(n),m,) S, (nz,mz) awa C4aBR)
where
n = n, modulo Ml
= n, modulo M2
and

i

my modulo Ml

1

m2 modulo M2

Substituting $; (ny,m,) and Sz(nz,mz) in Eq. (4.82) gives
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n,m n.nm

The two=-dimengional array given by Eq. (4.8l) represents
MiM,-term kernel. If x(m), a sequence resulting from
Chinesec product of sequences Xy and X5 be subjected to
this MjM,~tern kernel then the output y (n), n = 0,1,2,...,
MM, would be

M M,-1

.V' (n) =]g x(m)exp [jon (nl\};il % nMZZQ)] cse (4:84)

= y(n)

It can thus be stated that the sequence obtained by Chinese
product of Ml-term DFT of X; and M2-term DFT of Xy is
equivalent to the output of a system the input to which

is the sequence resulting from the Chinese product of Xq
and Xy 9 and the MIMz-term transformation kernel is the
two~dimensional array resulting from the Chinese product

of Ml-term DFT kernel and M,-term DFT kernel. In a similar

way one can prove the following :

1) The sequence resulting from Kronccker product of
M, ~term DFT of Xy and My-term HT of X, is equivalent
to the output of a system the input to which is the
sequence resulting from the Kronecker product of
x1 and X, » and the MIMQ-tcrn tronsfornation kornel
is the two-dincnsionel array resulting from the
Kroneckor. prodict of Ml-term DFT and M2hterm HE.
This has been illustrated in Fig.4.4.



%y (my )= M -TERM DFT

Xp(my) —H M,-TERM HP
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7

xl(ml)
12(n2):::1~ O

_—4 Sk (ﬂ ,M)

Bl(nl,ml)
52(n2’“2) Qk

- Bk(n,n)
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FIG. 4.4 ; SOME RQUIVALENT SCHEMBS WITH KRONECKER PRODUCTS

xl(ml)-——+ M, ~TERM DFT

xz(nz)——~{;‘M2~TBRM HT

1(”1'“1)
g (nz,m

e
x ()

—
90 a—
— 8,(n,m) ——
i Sc(nvn)

F16.4.5 : BOME EQUIVALENT SCHEMES WITH CHINESE PRODUCTY
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2) Tho sequence resulting from the Chinese product
of M,~-term DFT of %) ond Mz-term HT of X, is
equivalent to the output of a system the input
to which is the sequence resulting from the
Chinese product of x1 and X5 , and the MfMZ—term
transformation kernel is the two-dimensional array
resulting from the Chinese product of Ml-term DFT
and M2-term HT. Thig has been illustrated in

Mg, 4.5,



CHALEDTERE >S5

SYNTHESIS OF TRANSFORM KERNELS

5.1 HADAMARD ARRAYS

A square matrix is an orthogonal matrix if its
transpose and inverse are equal except for a constant

'factor. In an orthogonal matrix:

a) The sum of the sequares of all the elements of any
of its rows is equal to wmity, i.¢., the normgliza-
tion is done to uwnity. The normalization can be

done to any other number,

b) the sum of the products of the corresponding elemcnts

of any two distinct rows is zoro.

c) the value of its det.rminant is cqwl to + 1.

A matrix that is inversc to an orthogonal matrix
will itself be orthogonal. The product of orthogonal

matrices is an orthogonal matrix.

A Hodomard matrix is a matrix with ontries +1

and whose row vectors are orthogonal,

Hadamard natrix of rank 1 is Hy = [1]

8]

For all practical purposes H2 is consgidercd as

it

Hadamard matrix of rank 2 ig H2
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the basic Hodamard matrix., Hadanard natrices of ranks
¢qual to integur powers of two can be obtained by
Kronccker products of Hadanmard motrices of prop¢r lowcer
ronks, The nome Hadanard natrix comes from the fact thot
its deterninant satisfies Hadanard's deterninant theorcn

with cquality, This theoren states that if
X » [xij] is a matrix of order N then
XfQ ¥ N
det X }
Lo

If H is a Hadanard natrix of order h and nornaolized

to h +then

a) HH' =h I, where I, is identity natrix of
order h,

b) det H = nB/2

a) BB = @ E

d) it may be changed into other Hadanard matrices'by
rowwlse pernutation, colunmnwise pernutation and
rmultiplication of rows and colunns by -1, The
natrices thus obtoined are‘termed as H~equivalents,
It is known that not all the matrices of the same

order are H~-equivalemts.

Every Hadamard matrix is H-equivalent to a Hadamard

matrix which has all the clements of its first row and
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fire+t column as 1., Matrices of the latter form are
called 'normglized!, If an Hadamard matrix cexists,

its order must be 1,2 or 4 N, But Hodamard matrices

of order 4N arc not known for all values of N, That

an Hadameard matrix of order 4N must exist for cvery N
ig neither proved nor disproved yet. If H is a nor-~
malized Hadomard matrix of order 4N then its every row
@olumn) except the first hag 2N =l's ang 2N1l's, Further
N =Is in any row (column) overlap with § -1's in each
other row (column). A good amount of literature deal-
ing with construction of Hadamard natrices from Hadamard
arrays is available, A brief review of such literature

is conducted in Appendix A,

Hodamard matrices derived from Hadamard arrays

can have good application in Hademard spectrometry [34].

5.2 PARTITIONED MATRIX KRONECKER PRODUCT METHOD

Let A be a matrix of dimension Mim x N,n. This
is partitioned rowwise and columnwise to give MlNl sub-~
matrices, A(il,jl) i, = 0,1,2,...,Ml~l and j; = 0,1,2,...,
Nl—l of dimension m x n each.
il - 0,1,2,...,Ml~1

A= [A(ili'jl)]
jl = 0,1,2,...,Nl—l

son (503



A(0,0) A(0,1) cee A(0,39) -+« 4(0,N;-1)
A(1,0) A(1,1) cee A(1,3) oo A(1,N;-1)
A(ilfo) A(il}l) oo A(il’jl) 600 A(il,Nl~l)
A(My~1,0) a(m~-1,1) ., A(M1-1,3,) ... A(My~1,N,-1)

enu {5,2)

A(il,jl) Tepresents a submatrix of dimension m X0 ak

= 0,1,2,0.. ,m-l
I = 0,1,2,...,11—1

R L

A(ilyjl) = [A(mil"'X: nj]_'*'i)]

Let B be a matrix of dimension n M2 e pNg. This ig
Partitioned rowwise and columnwise to give M2N2 sub=~
matrices of dimension n x P each.,

i2 = 0,1,2,0..,M2'—l

j2 = 0,1,2,...,N —l

B = [B(iQIjz)] 2

cee (5.4)
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B(0,0) B{O,%) albd B(O,jg) veo B(O,N,~1)
B(1,0) B{l,1) i B(l,jz) s+ B(1,N,-1)
B(iz,o) B(iz,l) axh B(iz,jz) e B(iz,Nz-l)
B(Mz-l,o) B(Ma-l,l) o B(Mz-l,jz) - B(M2-1,N21)
4 ol
200 (505)

B(iz'j2) represents the submatrix of dimension n x p at

izh partition along row and jgh partition along the

column,

3: = 0,1,2,-..,12"1
y = 0,1,2,...,1)-1

cee (5:6)

B(12!j2) = [b(ni2+lp Pj2+y')]

If Kronecker products is taken of matrices A and
B treating the submatrices A(il,jl) of dimension mxn and
submatrices B(i2,j2) of dimension nxp as elements and

the resulting matric C is written

L = 0,1,2,p..,M1M2“l

¢ = [C(i,3)] J = 041,2,00, NyN =1

2
* e a (507)



then C(i,j)
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would be submatrices of dimension mxp and

given ag
C(1,3) = &(i1,3;) B(i,,3,) ... (5.8)
whereg
e e (5.9)
1 = s + 8, J,
The resulting matrix C can be written as

€(0,0) C(0,1) ssa GEG 43 ces C(0,M;N,-1)
C(1,0) B{Lel) see G{L:3] cen O(L,MqN,-1)
= |C(i,0) 33 £ B e O3 eee C(i,N3N,-1)

C(MiMz-l,O)C(MlMZ—l,l)...C(MlMZ—l,j)... C(MlMZ-l,NlNz—l)

sve (510)

The dimension of the matrix ¢ would be liM2 X leNZ‘
In what follows it would be shown that if A and B are
orthonormal matrices then the matrix C would also be
orthonormal. Thus a procedure has be=n proposed %o
obtain an orthonormal kerncl of higher order starting

with orthonormal kernecls of lower orders.
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C(1,3)

A1y031) B(i,,d,)
= [a(mil+x,njl+i)] [b(ni2+i,pjz+y)]

n-1
=[%E% a(mij+x,nj;+%) b(ni2+i,pj2+y)] ,

X = O,l,2,...,m‘l
s 0 (5.11)
Y = 0,1,2,...,P-1

If the matrix A igs orthonormal it satisfies

Nln-l
1]

E a(mil+x,t) a*(mil+x',t)

t=0 , O
= 6mil+x,mil+x

0 if 1,41 ,xéx’
= )i ilzii,x=x'
eoa (5012)

Similarly if the matrix B is orthonormal it satisfies

N2p-l

b(ni,+3,v) b*(ni 43,v) = 8 -
:Z:: e - e - ni,+3 o0l 43
v=0

. -' '

= 0 if i4i,,3 #
5 ' !

@ Xk 1f 12=12,3:' =1

sve (5,13}

The matrix ¢ ean be also be written asg
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I = 0,132,0-.,mMM -'l
¢ = [o(1,7)] =
J = 0,1,2,-..’leN2~l
van (5,24}

The indices I and J can alternatively be expressed ag
I = 1y M. +i.m+x
) & B
L ) (5‘15)
J = §1P No+j,p+y

The matrix C would be orthonormal if it satisfies

N.-N.=1
et el
L ]
Jd=0 Y
e/l AN
= l if I=I‘
e o @ (5.16)
1 .l _I 1
where i == 11 mM2+12m+X
Now
leN2—l ehe g
E efI i r) o~ (T, &)
J=0

5 o TIPSR e
= i, +x,1)b(ni, +1, a” (mi X
y:o I:Oa . 1 " 2 y 1=O l

R 14
b (niy+1,y)]
=1 n=1
+ Etg [ g:s a(mil+x,l)b(ni2+1,p+y)]
y= =
n-1

l ! 1
[ %: 2™ (mi +x ,1)b*(ni2+t,p+y)]
=0
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cu], n-1
+ %: [ & a(mil+x,i)b(niz+1,(N2—l)p+y)]

p~1
[ z: a (mll+X o 2)0* (n1 +, (N,~1)p+y) ] ]
B:l n-l
sle [ X a(mil+x,n+1)b(n12+1,y) ]
n-1

[ 2: g (mll+x n4E)0" (n12+},y)]
=0

-] n-1
+ E: [ 2 a(mi.+x,n+3)b(ni, +2 P+y)]
y:o %; l 2 .
n"l * 1 1 % !
[ 2" (mi, +x,n+% )b (ni +%,p+y)]
=0 o

par ]
+ E: [ g: a(mil+x,n+i)b(ni +1, (N,-1)p+y) ]
y=0 =(

{z [a (m11+x n+1)b*(n1 +¥, (N,-1)p+y)]]]
s

— e s e e .

-],

+ [ E: [ z: a(mij+x, (N) ~1)n+F)b(ni, +%,y)]
y=0 e

~1

[ %géa*(mii+xl(Nl-l)n+i)b*(nié+1,y) ]

o

-1 n-1
+ E: o a(mil+x,(Nl-l)n+i)b(niz+i,p+y)]
y:o 3:":0

n-l * T 1 1
[%:6a (mil+x,(Nl—l)n+1)57ni2+1yp+y)]
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=1 n-1
+ 5: [ 2: a(miq+x, (N ~1)n+t)b(ni +%, (N ~1)p+y
y=0 $s0 @ t 1 Bl /]

it ! 1
[ ggga*(mil+x,(Nl—l)n+1)b*(n12+1,(Nz-l)p+y)]]

caq L IaRT

[sg+Sq+e..8, _]+[s T - - G PR .,
QL N2 1 N2 2N2 7k ' N1N2 N2

+8 + . 2tee otk sae tHelD)

The right hand side consists of N1N2 terms and
each terms represents the sum of products of p corres-

ponding elements of rowgs I and I' of the matrix C.

[SO+Sl+"'+SN2—l]
- [a(mil+x,0)a*(mii+xkﬂ[b(niz+0,0)b*(nié+0,0)
+b(ni2+0,l)b*(nié+0,l)+..,+b(ni2+O,N2p-l)
1
b*(n12+O,N2p-l)]
i 1 1
+a(mil+x,o)a*(mil+x:l)[b(n12+0,O)b*(n12+l,9)+b{n12+0,l)

1 . A
b*(n12+l,l)+...+b(n12+0,sz—l)b*(n12+l,N2p-l)]
+

]
1
+é(mil+x,o)a*(mii+xln—1)[b(n12+o,o)b*(nié+n-1,o)+b(n12+o,1)

1
b*(nié+n—l,l)+...+b(n12+0,N2p—l)b*(niz+n—l,
N,p-1)]
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- - '
+[a(mll+x,l)a*(m11+;c, O)[b(niz+l,0)b*(nié+0,o)+b(n12+l,l)
Bl 4 o i1
b (n12+0,l)+,..+b(n12+l,N2p-l)b*(n12+o,sz-l)]
= * .' 1 A * !
+a(miy+x,1)a (m11+x,l)[b(n12+l,0)b (ni2+l,0)+b(ni2+l,l)
1

- ‘ -
b*(n12+1,1)+,..+b(n12+1,N2p~1)b*(ni2+1,N2p-1)]

+
1
1
1
1

1 1
+a(mil+x,1)a*(mil+x,n-l)[b(n12+l,0)b*(nié+n-l,0)+b(n12+l,l)

t
P (nipn=1,1)+.. . +b(ni +1,N,p-1)b* (nip4n-1,

N,p-1)]

!

+
:
!
+[a(mil+x,n-l)a*(mil+x',O)[b(ni2+n-l,0)b*(niz+0,0)
+b(n12+n—1,1)b*(nié+o,l)+...+b(n12+n—l,N2p—l)
1
b*(n12+o,N2p~1)]
1 1
+a(mil+x,n-l)a*(mil+x,l)[b(ni2+n-l,0)b*(nié+l,0)+b(ni2+nrlJ)

b*(nié+1,l)+...+b(n12+n-l,sz-l)b*(ni;+1,
N,p-1)]

+
1
]
i

+a(mil+x,n-l)a*(mii+xin-l)[b(n12+n-l,o)b*(nié+n—l,0)

. * ! i
+b(n12+n-l,l)b (n12+n-l,l)+..,+b(n12+n-LN2p-l)

b*(nié+n—l,N2p~l)]
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. £all ' i L i =
=a(m11+x,0)[a*(m11+x,o)6n12,n12+a*(mll*x;05ni2,n12+l+..

1

* .1 1 k -
.ota (mJ._l+x,n-l)6n12,n12

+n~1]
K il 1 : v Y t ) e ol
+a(m11+x,1)[a*(m11+x,0)6n12+l,n12+a*(m11+x,l)6n12+1,n12+1+..

sl ] F =
..+a*(m11+x,n-l)6n12+1,n12+n~1]
+
1
!
!

t
+a(mil+x,n-1)[a*(mil+x;0)6n12+n~l,nié+a*(mii+x:l)

* ] L]
6n12+n--l,nié+l+"‘+a (mil+x’n~l)6ni2+n—l,
[ §
ni,+n-1]
n-1 " 8| =3
= a(miy+x,0) X = (mig+x,¥)6, o
=0 2 2
n-l1 x . ;
+ a(niy+x,1) 3 a (miq+x,%)6, St d
=0 2 2
+ +
)
! n-1 = 8. i :
+azmil+x,n—l) E: a (mil-s-x,i)éni s
}=0 2 2
T ) I B a%(@alsaln) '
o a(mi- +x,1! %: a*(mi,+x,%)6
o - ks = | R o ni2+1',ni2f1]
e o0 (5019)
b
c(I,d) C*(I:J)
=0
Nlhl n-1 n-1 —
= 2_[ 2 a(mi ix,qnex')[ a*(miq +x,qn+t)
=0 =0 =0
o)

n12+3:',ni;+3:] I s TSRO0
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n=l : " n=-1 4 me
o 5;%; [ A a(mi;+x,qn+t )[ g:ga (mi; +x,qn+%) ]

® o 0 (5'21)
if B is orthonormal
1

r) [ '
i.e. i, = i, =

= 0 1if B is not orthonormal i.e. i, # ié or t # 3

PN-N,~1 N,=1 .
L2 . ks 1 n-1 "
¢(I,J)e™(1,J) = E [ E a(miy +x,qn+t )
J=0 q_:o 3:':0
! U
a*(mil+x;qn+1 ) 1if B is orthonormal
an-l
. * ' 1
= a(m11+x,t)a (miy +x,t)
t=
'
where t = qn4+%
= .. Th e,
mi, +x,mi, +x
= L if A is also orthonormasl i.e.
il = ii,x = X'
= 0 if A is not orthonormal 1i.e.,
t 1
i) #iy or x # x
Thusg
leNz-l

1 if A and B both are orthonormsl

E c(I,J) ¢*(1,3)
=

= 0 if A or B or both are not
orthonormal
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Thus it has been proved that if A and B are ortho~
normal matrices then the matrix C defined by Eqs. (5.7)
and (5.8) would also be an orthonormal matrix, Thisg
method of obtaining higher order orthonormal matrix start-
ing with lower order orthonormal matrices may be termed as
Partitioned Matrix Kronecker Product Method, Thig method
when used with techniques given in Appendix A could be
used to generate still other orthonormal matrices. For
some chogen values of N and t, N = 4t, the submatrices
Al, A2, A3, A4 of dimension t x t each and which are real,
symmetric and cyclic can be written with the help of
techniques mentioned in Appendix A, These Ai's could be
used to obtain a Hadamard matrix of Williamson type of
order N = 4t. This matrix is known to be orthonormal.
Let this matrix be called A angd partitioned as in case
of matrix A in this section with M = Ny =4andm=n-=t,
In a similar way another orthonormal matrix B can be
obtained and partitioned with M2 = N2 = 4 and n=p = t.
Then

O = OR T] 1] = 0132, 04s,15

where C(1i,j) is a submatrix of dimension t x %,

C(i’j) - A(i]_'jl) B(i29j2) il:i2ojl:j2 = 091:2v3
where
i= 12 + 4 il

J=j2+4al
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All the submatrices A (il,jl) and B(i2,j2) would be real,

symmetric and cyclic,

The matrix C +thus obtained would be an orthonormal
matrix of order 16%t, This can be used as an orthonormal

kernel for processing sample sequences of lcength 16t.

Let the one-dimengional signal sample sequcnce
X of length 16t be partitioned into 16 Partitiong and

each partition contains + samples, So

where X; 1is a submatrix of dimension t x 1. With
this partitioned matrix as input and the matrix C as
orthonormal transform kernel +the +transform samples

can be written as

”‘Xo i T L R e
La e Llloo
Xy PG  Tl3d)  aes GlL358) E3
oicc. Ha : : ; .A’oco
1 t 1 1 1
X5 gt15.0) QIR 2) .. 0(15,15£ X5

where the transform samples are algo partitioned in
submatrices of dimension ¥ x 1 zach. The transform

semples in any partition arc given as
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B,
Il
MG

X C(is3)

7|

4

=0

- ‘l=0 $ o X'j_2+4j_l A(ilrjl) B(i2'j2)
o=

|

Since all A(il,jl) and B(iz,jz) arc cyclie sub=-
matrices the transform kernel ¢ would have the property
that some cyclic shift within all the partitions of the
signal gample sequence would result in similar cyclic

shifts within all tho partitions of the transform samples.

With A;'s ocomputed for certain N and t, N = §t,
higher order orthonormal kernels (>4%t) can be obtained

using following congtructionsg

1) Baumert-Hall type congtruction, viz, H[12,4,3],
would give orthonormal matrices A and B of order
12%, This would result in orthonormal matrix C

of order 144%t.

2) Baumert-Hall~Welch type construction, viz. H[20,4,5],
would give orthonormal matrices A and B of order
20t. This would result in orthonormal matrix C

of order 400t.

3) Quaternion orthonormal type constructions would
give orthonormal matrices A and B of order
2p+2t, p=1,2,...,. Thig would result in ortho~-

normal matrix C of order (22p+4t).
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5.3 PARTITIONED MATRIX CHINESE FRODUCT METHOD

If A and B are two matrices of dimension lianl

and nM2xpN2 respectively such that Ml,M2 are coprimes

and so are Nl, N2, one can define a matrix

Q
i

[C(i"'])] oe e (5¢23)
such that

C(i,3)

il

A(iy,3q) B(i,,3,) vos (5e24)
where

i il modulo Ml

12 modulo M2

i £ jl modulo Ny

- j2 modulo N2

The matrix ¢ would be of dimension liszleN2.
Though this matrix C has the same dimengion as the
matrix C given by Eq. (5.7) and (5.8), the submatrices
defincd by Eqs. (5.8) and (5.24) are different bcecause
the congtituent submatrices A(il,jl) and B(i2,j2) are
different in the two cases. Tt can be proved on similar
lines as adopted in section (5.2) that if A ang B are
orthonormal matrices then the matrix C defined by
Eqs. (5.23) and (5.24) would also be an orthonormal matrix.
So this can be thought of as another method of obtaining

higher order orthonormal transform kernels from lower order
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orthonormal transfornm kernels. This method of getting
higher order orthonormal transform kernel starting with
lower order orthonormsl transform kernels may be termed
as Partitioned Matrix Chinese Product Method. This
method, however, cannot be used when matrices A and B
are obtained hy techniques given in Appendix~-A as in
that case Chinesge product of matrices A ang B, treating

submetrices as elements, would not be defined.



CHAPTER -~ 6

TRANSLATION INVARIANT SYSTEMS

6.1 TRANSLATION INVARIANT TRANSFORMS

A translation inverient transform is one which is

invariant to cyclic ghifts in the input in the sense that

the transform domain samples remain unchanged when the
input samples have tndergone cyclic shifts. This usage
has to be distinguished from that in Chapter-2, In pattern
recognition problems the position of the pattern being
Trecognised is frequently irrclevant., Human cye could be
thought of to possess the best pattern recognition ability.
If an attempt is made to achieve the pattern recognition
ability of the human eye then it is important to know
whether the proposed scheme hag the redundancy reduction
ability similar to human éye. An algorithm may do well
with pattern which have undergone an wnknown amount of
shift, but may not be satisfactory for, say, hand written

characters.

Let a(i), i = 0,1,2,...,0~1 be o sequence of

N samples and
A(I) = T a(i) I=0,1,2,0..,8-1...(6.1)

gives the transform samples where T is some transform

operator,
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FPurther, let a%(i)be the sequence a(i) after the

sequence is shifted left cyclically by ¢ locations and

gives the transform samples corresponding to at(i).
Then A(I) is termed as the translation invariant featurc

of the sequence a(i) if
E(I) = A (I) for all 1\<t\§N-—1 ¥ss (Bad)

A translation invariant transform is defined as
an ordered set of translation invariant feotures of the
input sequence. The individual members of this set are
known as componcnts of the trangform. It is not necessary
that the number of components of ths tronsform should be
equal to the number of components in the input sequence.
For a two-dimensional pattern the translation invariant
transform may be defined as the doubly indexed set of
translation invariant features of the two-dimensional
pattern., Some of the well known translation invariant

features are briefly discussed,
l. Magnitude of the Discrete Fourier Transforn
Component s

et ali), 4 = Dy1l,254:.:0=1 be the input sample
sequence of length N and A(I), I = 0,1,2,...,8=1 the

reslting DFT samples. Then

A(I),2 is invariant to
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cyclic shifts in a(i). The resulting translation inva-—

riant transform X(I) is defined as
Bl a%n) L, 13- 0,1,2,...,8~1... (6.4)
where superscript x denotes complex conjugation,

The DFT of a sequence can be conputed quite fogt
with the help of FFT algorithns given by Cooley and
Tukey, This transforn has superiority since DFT of a
sequence of prime or composite length can also bé calcu~
lated [48,58]. However, the DFT suffers from round-off

errors due to finite word length,

2. DPower Spectrun of Hadanard Transforn Conponents

Let a(i), i = 0,1,2,...,2"-1, n being integer, be
the iaput sanple gequencc of length 22 ang Bk,
I =0,1,2,...,2"~1 the resulting HT sanples, then it has
been shown by Ahmed et al [3] that its power spectrun

X(s) ig translation invariant where

X(0) = [A(0)]? o VRS
021

e o« B LA i el biicesh
=53

vee (6.6)

It has been shown by Arazi [9] that this HT power spectrun

is invariant to nany other pernutations as well which is
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not a desirable feature. Since Hademard transforn can
be conputed by addition and substraction only its compu~-
tation is quite fast. Fast algorithms for computation
of HT and similar to FFT exist., The HT is free from
round-off errors due to finite word length if fixed point
arithmetic is implied, If the operations are performed
in the floating point mode there can still be round-off
errors, Studies on translation invariant spectra of the
complex BIFORE transform [2], modified complex BIFORE
tranaform [49] and complex Harr transform [58] have been
reported by Ahmed et al,

3. Rapid Transgform

This transform was given by Reitboeck and Brody[53].
They have given two algorithms, namely Algorithm A and
Algorithm B, for the computation of Rapid transform (RT)
of a one-dimensional sequence. The trae graphs for these
two algorithms are identical with two (out of several
possible) tree graphs for the execution of HT [24]. The
RT is invariant under translation and reflection, The
RT and HT differ, however, in the arithmetic operations
at the nodal points and in their general properties,
The similarities in the algorithms for RT and HT have
been exploited by Ulman [61] to propose s third algorithn
for RT. In cage of two~dimensional retterns one can use
either two one dimensional trangforms iz successien or the

two~dimengional transform given by Reitboeck
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and Brody. This is named ag Algorithn A A znd hag been
derived on the bagig of algorithm A for one~dinmensional
case., LA two~dimensional algorithn can also be obtained
on the basis of Algorithn B for one-dinensional cage. The
RT has been reported [53] to have succeeded in a recogni~
tion rate of 80% to 100% for letters having different
posgitionsg, distortions, inclinations, rotation upto 15°
and gize variation upto 1:3 relative to a reference set
0f 10 letters, When executed on a digital conputer, this
transforn is nuch faster than the FFT. Detailed studies

on RT have been reported by Wegh [62,63,64,65,66].

The RT is based on two functiong - addition and
gubstraction without gign. It has been shown by Wagh [65]
that the tronslation invarisnt property of this transforn
is not due to the specific choice of these functiong but
due to their symnetry, Thus any pair of synnetric functions
can be used to define a new translation invarisnt trangforn.
Such transforms could be conputed using algorithns sinilor
to those for RT. A detailed study of sone such transfornms
has been perforned by Wagh [65]. The menbers of this class
are trengforns which are translation and reflection in-
variant but may differ from each other very widely with
respect to their other pProperties. The basic feature of
the nenbersg of the class of tronslation invariant trang-

forns is that each nmember of this class is based on 1 pair
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of binary symmetric functions., The selection of the
appropriate pair of binary synnotric functions would
be decided by the applicotion, Sone typical binary

synnetric functiong of two variables x5 and Xy are

(xo+xl), ’xo-xlf N (xg +x§), (xo+xl) X Xy

(xg-xo+xf~xl), max(xo,xl), nin (xo,xl) ete.

In particular if the variables X, 2nd x; are lo-
gical variables then other possible binary symnetric

functions are

(x, AND Xq), (x, OR %), (x, EOR Xy ), (x, NAND X ),

(x, NOR X;) ete,

4., Max.-min, Transform

If the pair of binary symmetric functions chosen
are max(xo,xl) and min(xo,xl) then the resulting trans-
lation invariant transform is termed as Max.-min, trang~-
form, Thig transform has been studied in detail by
Wagh [65].

A fairly good volume of literature is available
which deal with techniques for computation of various
tranglation invariant transforms from the point of view
of hardware implementation. It has been observed that

the hardware implementation of RT is cheaper and simpler,
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It is because of the fact that the two binary symmetric
functions used are addition ang substraction without

sign and identical set of operations at every stage in
the evaluation of the transform, The complexity in the
implementation of any member of the class of translation
invariant transforms is directly dependent upon the comp-
lexity in the evaluation of the two binary symmetric
functions. In a given situation if only high spe=d is
required then one would go for RT but if there is the
consideration of restricting the transform storage memory
then the modification of RT as given by Moharir [32]

would be preferrcd.

5. Parscval's Transform

Orthonormal kernels which are circulants, i.e.,
in which any row is obtained by left cyclic shift of the
c¢lements of the previous row, have a lot of structural
redundancy, There is only one such kernsl if the entrics
are rostricted to + 1, If the cntries are allowed to be
[+ 1,0] or [+ 2,+ 1,0] many such kernels could be obtained,
Listed below are the first rows of some of orthonormal

circulant kernels [40].
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First Row

Order

=1 =1 =1

k|

0 =1 -1

-]

=L =L =

-1

-2 -1

|

0 -1 -1

o

@ =1L =1

0

0 =& =1

0

10

10
13

- R R A W TR

-]

0 1 =1 =1 <« <}

=1

13
15

£ =) s

2

=1

=1 =] i

-]

e I T T S S e | 2 =} wl

=1,

21

=l -1 =1 -]

2

28

Q =L =1 =}

1

0 =1 =1

8

42

0 =] =i

2

£ =L =1 ‘=b

=3



149

42

Q =1 ~p

o 4

-1 -1

1

0 g mi =}

-}

78

0 =1 =1 <1
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0 =1 «} =i
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0 =1 ~1 ~1 -2
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0 =1 =1

-1
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1
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The Parsgeval's theorem states that

 [A(3)1[B*(3))

[a(0)1[v* (1)) = &

all i

2
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where [a(i)], [A(]j)] and [0(1)], [B(j)] are Fourier
transform pairs. It implies that if [a(i)] and [b(i)]
are orthonormal then [A(§)] and [B(j)] would also be

orthonormal,

The product of a DFT kernel snd an orthonormal
circulant can be thought of as a column by column Fourier
transform of the columng of the circulant. Because the
circulant is orthonormal the resultant kernel is alsgo
orthonormal by Parseval's theorem, Using orthonormal
circulant to take a transform of any column vector would
provide permutation invariance to cyclic shifts in the
sense of Chapter-~2, i.e., if the column vector is cyclic~-
ally shifted so is its transform., If thig transform is
further subjected to DFT the moduwlus of the resultant
transform will be invariont in the sense of this chapter,
This really means that a transform kernel which is obtained
by a product of a DFT kernecl and an orthonormal circulant
has the property that the modulus of the tronsform is
invariant to cyclic shifts in the sense of this chapter.
Such orthonormal transforms may be termed as Parseval's

transform,

The translation invariant property of these
transforms is similar to that of DFT. Since the kernel
of this transform is obtained by post multiplying the

DFT kernel with an orthonormal circulant of the same
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order it is hoped that this new transform would exhibit

Some nore properties. It night be of interecst to study

these transformsg in detail,

6.2 CHARACTER RICOGNITION

In the last section sone transforms have been
nentioned which can be used for pattern rccognition pur-~
Poses. The RT had been shown to be superior to the then
existing transforms. Wagh [65] has defined a class of
transforns for such burposes and has shown that RT could
be thought of as a member of that class. He has discussed
in det il a transform : max-min transform or MT. In thisg
section a few more transforms would be defined and their
applicability to pattern recognition application discusgsed,
In what follows a Pattern would be represented by a two-
dimensional array of 0O's and 1's. An element in the array
would be represented by a 1 if half or morc of it is
shaded by the Pattern, otherwise by a 0. The two-dimen~
sional transform of the arrays would be obtained by two
one-dimensional transforms in succesgion-one rowwise and
the other columnwise, In all the transforms that would
be discussed in this scction the s ame functional block
would be used everywhere in the algorithm. This reduces
hardware requirements, The various schemes for obtaining
the transforms would make use of the concept of block~

nultiplexing and strand-multiplexing [37].
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1. OR~AND Transform

The transform of o two-dimcensional array, repre-
senting a pattern by symbols drawn from [0,1], is obtained
by toking the rowwisec transform, followed by columnwise
transform. The sequence of rowwise ond columnwise trong-
form could be changed, if desircd. The principlc of the
OR=AND transform for a onc~dimcngional sequence of length

N = 2%, n being integer, is illustrated in Fig. 6.1.

This transform has been found to be invariant to
translation, inversion and small rotation, The transform
was applied to charccters A,E,I,0 and U individually and
in pairs of two. The observed important properties of

this transform arc given below:

a) It is distinct for each character when the character
is represented as arrays of dimensions 16 x 16 and

16z 2,

b) It is distinct for all character pairs AE, AI, AO
and AU when the charncter psirs are represented ag
arrays of dimensions 16 x 32. The property is

invariant to commutotion of characters in any pair.

c) Similar results hold when the character pairs are
represented as arraoys of dimension 32 x 16, 1:8.;

characters arec written one below the other.
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d) Similar results are obtained when columnwise trang~-

form is taken first and followed by rowwige trangform,

e) The number of 1's in the trensform domsin arrays is
the same as that in the corresponding pattern domain
arrcys, It is due to truth tables for OR and AND

gates.,

Character A in panttern domain and transform domain is

illustrated in Fig, 6.2 and Fig. 6.3 regpectively.

2. BOR-AND Tronsform

This transform is a minor modification of the

OR-AND transform. The tre¢e graph for basic one-dimensional
transform used is similar to that illustreted in g, 6:1
with the difference that all the OR gatces are now replaced
by EOR gatus. The propertics observed with this trans—
form are the same as that for OR-AND transform with the
difference that the number of 1's in the transform domain
arrays are much smaller than those in the pattern domain
arrays., 1t is due to the truth table for EOR gate. This
reduction in number of 1l's in the transform domain arrays

makes this transform superior to OR-AND transform, Charac-—
cter A in transform domain is illustrated in Fig., 6.4.

3, Monogenic Function Transgform

A monogenic polynomial in N variables is one in

which given the leading term the complete polynomial can
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be written. Any term can be obtained by adding unity
modulo N 1o the indices of variables in the preceeding
term., More explicitly o monogenic polynomigl of N

Variables ao’ al’ a2sa--’(xN_l can be written as [18]

f(ao,al,az,...,qN_l) + f(al,ag,a3,...aN_l,ao)
+ f(az’aB,a4’5-. ,aN_l,ao'al) + o adere

AL ETLILI TRPPL Wy

and f(ao,al,a2,...,aN_l) is termed as the gene of the

monogenic polynomial,

A trangform can be defined in termg of monogenic
pPolynomiels, If the functional block has N inputs and
N outputs then N monogenic polynomisls are necessary
to define the transformation caused by the functional
block, This in turn means that N genesg, each a function
of N variables-inpats, are needed to define a transform
of order N. Since an infinitely large number of genes
can be defined in terms of N variables, by properly
selecting the genes one can obfain a wide clasg of such
transforms, The tran sforms thug obtained would be termed

as Monogenic Function transforms,

If the inputs are a(i), £ = 0,1,2,5, the transform
samples are A(I), I = 0,1,2,3 and the genes are a(o),
a(0), a(l),a(o).a(l).a(2) and a(O).a(l).a(2).a(3) then a
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class of monogenic function transform is defined as

A(Q) = al8) »&4)) + al2) + al3) e U

A(1)

(1

a(0). 4f{2) + a(l). a(2) + a(2). a(3)

+ a(3). a(0)

il

A(2) = a(0). a(l). a(2) + a(l).a(2). a(3) + a(2).

a(3). a(0) + a(3). a(0). a(l)

A(3) = a(0). a(l) a(2). a(3)

The various members of this class of monogenic
function transforms cem be obtained by choosing various
arithmetic, logical or other operations for.and + opera~

tions in Eq. (6.7) above,

Another class of monogenic function transform can
be obtained by choosing different genes. A typicel mono-~
genic function transform was studied where . and + of
Eq. (6.7) were chosen ag logical AND and OR respectively,
and (i), 1+ = 0,1,2,3 was binary : 0 and 1. The resulting

transform is defined as
A(0) = a(0)OR a(l) OR a(2) OR a(3) sin §BeB)

A(1) = [a(0) AND a(1)] OR [a(l) AND a(2)] OR [a(2)

AND a(3)] ® [a(3) AND a(0)]
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A(2) = [a(0) AND a(1) AND a(2)] OR [A(1) AND a(2)
AND a(3)] OR [a(2) AND a(3) AND a(0)] OR
[a(3) AND a(0) aND a(l)]

A(3) = a(0) AND a(l) AND a(2) AND a(3)

Using this as the basic functional block (F) a one-
dimensional monogenic function transform of g sequence
of length N = 16 has been illustrated in Fig, 6.5.
Monogenic function transform of two-dimensional arrays
are obtained by obtaining the rowwise transform followed

by columnwige transform,

When this trangform wag studied with inputs same
as in case of OR-AND angd EOR--AND transforms, it was
observed that the results are similar to that of OR-AND
transform. In this transform also the number of 1w In
the transform domain array is the same as that in the
corresponding pattern domain array ., It is due to the
definition of the monogenic function transform chosen,
Character A in pattern domain and transform domain are

illustrated in Fig. 6.2 and Fig. 6.6 regpectively,

6.3 LABELLED SFT

The Rapid transform and some other binary symmetric
function transformg have been mentioned in section 8.1,

These transforms have so for been studied from pattern
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recognition point of view where the received transform
arrays arc correlatcd with the stored transform arrays
and decision given in favour of the character for which
the correlation between storcd transform array and re-
ceived trangform array is maximum, Some of these trans-~
forms like RT are¢ non invertible in the sense that given
the transform domain array the pattern domain array cannot
be uniquely obtained. In this section an attempt would

be madec to explore the Possibility that such non invertible
transforms could be inverted using additional information,
if necessary, so that the transformation could be used

for coding the digitized megsage and picture signals.

In case of RT if the input samples are eltls
1= 0,0;250esil+L, B = Zn, n  being integer, then Rapid

tronsforn samples A(I), I = 0,1,2,...,N-1 arc defined ag

A(T) = Y, (1) » I=0,1,2,,...,2%1
sxd (Bwi]
where

¥ (1) = a(i) Lo 05,0, 00 el
suy Lhaiil)

\ n-1

Tl 2T) =Y. (1) + Y. (I+2 )

n=-1

Yr(21+l) = Yr_l(I)—Yr__l(I+2 )
sas 10, XL

r :1’2,.-.’n n-1

I = 0,1’2"'.,2 -l
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The trce graph for RT has been shown in s GaTs
In toking RT of a sequence of length 22 therc are n inter=-
mediate columns and in each intermediate column there are
D =T O o without sign operations and 2°™T nddition
operctions. If the input samples a(i) are bounded bet-
ween O and 1 then the transform semples would be bounded
betwecn 0 and 2nL where 2n is the length of the input
samples a(i). However, not all the A(I) have the soame
bounds [32]. The bdunds on any A(I) is given by 2Z(I) L
where z(I) is the number of zcroes in the n bit binary
rcepregsentation of I, In particular if the input is
binary,i.e., all the input somples a(i) arc drawn from
[0,1] then the transform somples A(I) would be bounded
between 0 and 2%, Thus each transform sample would need
n bits and the transmission of all the transform samples
A(I), I=0,1,2,4.., N-1 would require n N bits. TIf it
is desired that all the a(i), i = 0,1,2,...,N-1 be re-
covered from given A(I), I = 0,1,2,...,N~1 then informa~
tion about signs at all the (ng-l) substraction points
is necessary, If this is done then it would result in
o schemc in which the information about labels at all the
substraction points is tronsmitted alongwith the trans~
form samples. This modified scheme may be termed as
'labelled Rapid transform'. Thus it has been possible
to invert a non linear transform with the help of labels,

In fact any non linear transform can be inverted G
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information regarding suitable labels is available,

The basic functional block for labelled RT has
been shown in Fig, 6.8 and complete tree graph in Fig.
6.9. It is clear that thig scheme can be used for codg-
ing digitized audio and video signals., This scheme would
require (n2® + n2n-l) or (nN +£%§) bits in contrast to

nN bits required for pattern rccognition purposes.

Moharir [32] has suggestcd modificction in RT so
that the transform samples A(I) have the same amplitude
bounds as those on the input samples a(i). Thug if a(l)
takes values zeroes and ones then A(I) would have values
between zero and one. The defining equation of the modi~

fied RT as given by Moharir arc

Y, (2I) = ,Yf_l(I) F X » 2

jC
and :
(&= [T . (I) -% (T + 2“"1)‘
» = r-1 r~1 le
= l o s o
r ’2’ ’n n-l ® o 8 (6.12)
I - 0’1,2’000,2‘-1
where
’X ’C =‘X—Xm‘ se0 (6.13)

and X is the mean of the lower and upper bounds on x.
If the input sequence ig binary Xn = 0.5 and the trans-
form samples A(I) would have values drown from [B,035:1])%

If this transform is applied to a binary sequence of
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length 2" then 2N bits would be necded for transmission
of transform samples. If inversion is desired at the
receiving end then an additionsl Fgg bits would be needed
for transmigsion of labels. Thus a total of (2N + Q%)
bits would be required as against (nN + Hg) bits in case
when RT scheme is labelled. Thus there would be a saving
of (n-2)N bits for achieving the same objective if the

modified RT proposed by Moharir is used in Place of RT.

If the basic functional block is max-min trang-
form instecd of RT, as illustrated in Fig. 6,10, theén
both inputs x and y would appear at the output either in
the same order or in the reverged order. Thig order of
X and y can be labelled by one bit, The resulting scheme
may be termed as 'labelled MT', If the inputs X and y
are from a binary alphabet [0,1] and the input sequence
a(i) is of length N(=2") then the transform samples
AT} T = 0,138,035 i2°=2 wWould also consist of O's and
1's. Thus N bits would be required for transmigsion of
N transform samples, So if it is desired that ali)y
i & 0,1,2,...,2n-l be recovered from o knowledgs of
A(I), I =0,1,2,...,2"-1 them a total of (N + ZL) bits
would have to be troansmitted. This scheme is gsuperior to
labelled RT with Moharir's modification in the sense that
with similar inputs and to achieve same objective of get~-~

ting back the input samples fronm transforn samples this
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scheme requires N bits less.

Wagh [65] has defined a class of symmetric func-
tion transforms (SFT), The scheme proposed in this
section can be successfully applied to define g class
of 'labelled SFT' by rcplacing the functional block of
Fig, 6.10 with the functional block of any other SFT,
and labels uged to represent different parometers when
different members of the closs of SFT are used as basic

functional blocks.

The purpose of tronsmitting labelled SFT instead
of the signal could be that (i) SFT inverted with the
help of labels is more immune to the delsztarious effects
of channel noise than the signal when transmitted directly,
(11) SFT may be amenable to severe gquantization without
having intolerable bad effects on inverted version. Both
these properties may arise because of the redistribution
of channel or quantization noise that results during in-
version with the help of labels. Thus, nonlinear trang—
forms would have been put to use rather than linear ones,
with the hope that they may perform better for given

purposes.

There is algo a good possibility of secrecy cod-
ing. SFT as such is non invertible to rscover the original

signal but with the help of suitable labels it is invertible,
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Thus labels gerve as a key to wnique inversion, If
these labels are transmitted directly, they would be
available even to unauthorized receivers. Therefore,
labels could be subjected to modification with the
help of a rule~book which is available only to autho-
rized receiver, and then transmitted. The authorized
receiver can recover the labels agsuming that the rules
are invertible. The rule~book can change frequently
but synchronously by prior agreement between the trans-
mitter and authorized rcceiver., The secrecy would
further be enhanced if the SFT used is also changed
frequently but synchronously. Use of transforms in

secrecy coding has been suggested earlier [35,38].



CHAPTER =~ 7

-CONCLUSIONS

7.1 SUMMARY AND CONCLUSION

The existing literature on finite group theory
does not help one find out the number of possible trans-
itive abelian permutation groups of order N and degree
N which could be constructed out of a permutation group
of degree N and order N! If this could be known then
the second part would be 4o obtain all the elements of
each such group, One important property of such groups
which could be of some help is that all the elements of
any group are the powere of any primitive element of the
group, If an attempt is made to work it out by exploiting
the definition of the transitive abelian permutation
group then the task becomes really difficult for N > 6,
It may be possible to write a computer programme for
this purpose but that is likely to be quite complicated
and may require enormous memory and time for higher values
of N, It may be worthwhile trying to develope some fast

algorithms for this purpose.

Siddiqui [57] has defined a class of one-dimensional
permutation invariant systems (1-D P-I systems) relative

to some transitive abelian permutation group. He has
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obtained the corresponding finite discrete system mat-
rices for realizable cases and has done & comprchensive
analysis. The class of 1~D P-T system’as given by
Siddiqui has been enlarged by extending the notion of
permutation invariance. The resulting class of 1-D
system which is invariant to some other prescribed per-~
nutation has been named as onc—dimension reciprocal
pernutation system (1-D R-P system). It is relative to
a pair of transitive abelian pernmutation groups. In
case of 1-D P-I system all the possible systen nmatrices
had ranks equal to their respective orders. But in the
propogsed 1-D R-~P system it has been observed that a
systen natrix with the rank equal to its order did not
result in nmost of the cases. Though some conditions
have been stipulated under which the rank of the result-
ing systen natrix would be equal to its order, these
conditions cannot be claimed to be vepy sound as they
are based on results obtained with transitive abelian
pernutation groups of order and degree upto five only.
It may be worth to investigate it in detail and propose
theorens that would describe cases under which discrete
finite systen matrices for 1-D R-P systen would have

ranks equal to their respective orders.

Rao [52] has extended the work of Siddiqui 157

and has given some good results for two~dimensional
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permutation invariant systems (2-D P~I systems). The
notion of propoged 1~D R-P gysten can be extended to
define a class of 2-D R-P gysten, As in case of 1-D
R~P gysten in this case also nany resulting discrete
finite system matrices would have ranks lesser than
orders, The theorcmg obtained for defining conditions
under which system matrices for 1-D R~P systen would
have ranks equael to order can be extended to two-

dinengional cases.

The pernutation property of DFT kernels with
respect to 'modular pernmutation! is known. Also the
pernutation property of HT kernels, when the order of
the kernel is integer power of two, 18 known. The
equivalence between DFT of a one~dimensional sequence
and when the sequence is written as a two-dimensgional
array read row by row is known., The equivalence is
established by introducing the concept of twiddling
factors. All the elenents of the internediate array
obtained as a result of colunnwise DFT of the sequence,
written as two-dinensional array and read row by row
are multiplied with twiddling factors snad then rowwige
DFT taken of the resulting array, The transform samples
are read column by column, Instead of taking columnwise
a8 well as rowwige DFT an attempt has been made to define

transform, namely 'Fourier twiddled H-DF transform! where
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columnwise transform ig HT and rowwise transform is

DFT. This necessiates a modification in the twiddling
factor if some permutation propertics are to be retained,
It was proposed to study the Pernutation propertics of
this transform. The onc-dimengional input sample sequence
was written as a two-dimensional array, Each row (column)
was treated as an element for apPplying the known permuta-
tions for HT (DFT) which are defined for one-dimensionsl
sequences, This resulted in rearrangement of transform
samples. The cases studied include bit-plane permutation
of rows, modular permutation of columng and both., Ex~
Pressgions have been derived for this rearrangement of
transform samples for given permutation of two-dimensional
input array. The results obtained have been supported

with worked out examples,

The technique developed in respect of Fourier
twiddled H-DP transform could be used to obtoin a class
of such transforms by chooging vorious pairs of ortho~
normal kernels for performing columnwise and rowwise
transformation on the sequence of input samples written
as a two~dimensional array, The twiddling factor would
be decided by the nmature of the two component transforms
if gome permutation properties have to be achieved., The
pernutation properties of the resulting transform would

depend upon the permutation properties of the two conponent



176
transforms.

The concept of Kronecker product of matrices is
well known and many theorems related to it are available
in the literature., The matrix obtained by Kronecker
product of two orthonormagl matrices is known to be ortho-
normal, Thus by taking Kronecker product of two artho=-
normal matrices of lower order one can generate an or-
thonormal matrix of higher order, A new matrix multie
plication, namely Chinese product, of two matrices has
been propoged. Further the matrix obtained by Chinese
product of two matrices is the rowwise and columnwisge
permuted version of the matrix obtained by the Kronecker
product of the same component matrices, Since rowwise
and columnwise permutation of a matrix does not change
its orthonormality hence the matrix obtained by Chinesge
product of two orthonormal matrices would itself be an
orthonormal matrix, Since the matrix obtained by
Chinese product of two matrices is a rowwise and co lumn~
wise permuted version of the matrix obtained by the
Kronecker product of the same matrices it should be
possible to obtain one from the other by premultipli-
cation and postmultiplication with suitable rermuta tion
matrices, Expressions have becen derived which define
the two permutation matrices., The results obtained have

been illustrated with examples., Now that the conversion
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of one from the other is possible the algebra available
in respect of Kromecker products can be suitably modi-
fied so as to be useful in case of Chinese products.
Unlike Kronecker product which does not commute thisg
Chinese product commutes., But the Chinese product of
any two matrices is not always defined as is the case
with Kronecker product., For Chinese product to be de~
fined the respective dimensiong of the two arrays should
be coprimes i.e., they do not have any factor in common,
The notiong of Kronecker product and Chinese product
have been used to define two more matrix products namely
Chinese-Kronecker product and Kronecker~-Chinese product.
As one would expect, the matrices resulting from such
products of two matrices are rowwise or columnwise per-
nuted versions of the matrix obtained by the Kronecker
product of the same component matrices., Thus the mat-
rices obtained by Chinese<(ronccker product and Kro-
necker~Chinese product of two orthonormal matrices would
still be orthonormzl matrices. These natrix products
are defined only when the dimensions of the rows and
columns respeetively of the two component matrices are
coprimes. Expressions have been derived for pernutation
natrices which would help obtain one from the other.

The results obtainedhhaVe been illustrated with exaonple,
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Much work has been reported regarding construction
and cquivalence of Hadamard netrices, An excellent
survey of the existing literature has been conmpiled by
Wallis [67], There arc various constructions which give
Hadanard arrays of various orders, The constructions
of interest are Willismson design, Baumert-Hall design
and Bounert-Hall-Welch design., A1l these Hadanard arrays
yield Hadamard natrices which are orthonormal with the
basic conponents of all these constructions which are
four Square submatrices known as indeterninates, suit-
ably chosen., TIn these constructions the indeterninateg
are real, symmetric and cyclic submatrices. These ag=-
sumptions simplify the requirements for orthonormality

and hence lead to simpler-gearch.

Two more matrix products have been proposed which
give orthonormal matrices of higher orders if the compo=-
nent matrices are orthonormal matrices of lower order.

The component matrices arc rartitioned rowwise and column-
wise into submatrices having dimensions such that the
ordinary matrix product of submatrix of one with the sub-
matrix of the other is defined. The two original mat-
Trices are relabelled treating the submatrices asg elements.
Kronecker product is taken of the two matrices by treat-
ing submatrices ag elements, The resulting matrix is a

higher order matrix and the method has been named ag
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'partitioned matrix Krorecker product'. It has been
shown that if the starting matricecs are orthonormal
then the matrix obtained by this matrix product of the
component matrices is agoin an orthonormal matrix., In
a similar way another matrix rroduct namely 'partitioned
matrix Chinese product' has been defined. In this mat~
rix product Chinese product is taken of component mat-
rices treating their submatrices as clements as in par-
titioned matrix XKronccker product. method. Since the
matrix obtained by this method would be a rowwige and
columnwise permuted version of the matrix obtained by
partitioned matrix Kronccker product method, this matrix

would algo be orthonormal,

The concept of Chinese product has been applied
to linear systems. The advantage of the work reported
is that the output of a linenr system corresponding to
any particular input can be deduced from outputs to
simpler inputs in terms of which that particular input

can be synthegized,

Many transforms are known which could be uged for
pattern rccognition in general and character rccognition
in particular., Fast computational algorithms are known
for such transformg. The recceived trangform domain
arrays are correlated with stored transform domain arrays

for various characters and decigion given in favour of
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the character for which the correlation is maximum,

Most of these transforns are nonlinecar and noninvertible,
Since thé location of the characters in the pattern
domain is of little consequence, many of the transforms
used are translation invarisnt in the senge that if the
input sequence undergocs a cyclic shift the trensform
Samples remain unchanged. Besides these transforms may
exhibit some more permutation properties. Wagh [65]

has proposed a class of such transforms and named them
as 'symmetric function transforms!, Various membors of
this class can be obtained by defining a pair of binary
symnetric functions. Some transforms have been defined
and their performance evaluated in respect of character
recognitions, In case of some of the transfornms propoged
the locations of ones ang zeros noke the transform do~
mein arrays quite distinet for various characters but

in some cases it is not. The transforms for which the
transforn domain arrays arc¢ distinct for various charac-—
ters could be classified into two categories : first in
which the nunber of ones in the transfornm domain are
equal to number of ones in the pattern domain and the
second in which the nunber of ones in the transforn do-
nain are less., The transformgs falling in the latter

category arc significant,
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If the non~lincar transforms used for patter re-
cognition could be invertced then they could be used for
nessage or picture transnission. An attenpt has been
nade to invert the nonlinecer transforng and obtain the
input signal sequence fron its transform sanmples with
the help of labels at various functional blocks in the
schenc. The resulting system has been naned as 'labelled
synnietric function transforn'. The notion of this traong~

forn hag been illustrated with ¢xanples,

642 SCOPE FOR FUTURE WORK

1) The study of pernutation invariant systeng and
the reciprocal pernutation systen is inconplete
unless the listing of all transitive abelian per=
nutation groups of order N and degrece N 1is
possible, TFornulation of fast algorithns for
finding out the total number of such groups and
listing of all the elenents of each such group

is an open problen,

2) Once algorithms for writing all transitive abelian
pernutation groups of order N and degree N are
known it would be worthshile to find out the
conditiomunder which the discrete finite system
matrices corresponding to the reciprocal permuta-

tion gystemg would have ranks equal to their orders.
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3) A new transform namely Fourier twiddled H-DF

4)

5)

transform has been defined and it has becn indicated

that proper selection of a pair of orthonormal
Kernels with known permutation Properties along-
with suitable twiddling foctors could be used to

define a class of such transforms., A study of

- relative merits of gome such transforms can be

made with regpect to the complexities in the per-
mutation properties of the members of the class

of transformg.

The concept of Chinese remainder theorem has been
used to define a matrix product known as Chinese
product. Relationsghip between Chinese product
and Kronecker product (when the former exists)
has been established., Since the Chinese‘product
is commutative its algebra would be simpler than
the algebra of Kronecker products which do not

connute,

The notion of Chinese products of one-dimensional
and two~dimensional arrays could be applied in
the study of linear systemg. It could help in
the analysis and design of systems with longer
ihputs by its equivalent reprcsentation in terms

of systems with smaller inputs.
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6) It has been mentioned that the clagss of symmetrie

7)

function transforms which werec proposed basically
for applications in battern recognition can be
nodified so as to be useful for transmission of
nessage, picture and discrete dato signals. The
nodified scheme has been termed as labelled syn~
netric function transforms, The study of such
transforms from information transmission point of
View is expected to yield some good results, The
relative study of various transforms would give
an idea about superiority of one over another
with respect to computational complexieg, hard-

ware requirements and system performance,

Ag labelled symmetric function transforms provide
equivalent alternative descriptions of the signalg,
it would be of interest %o study relations between
propertics of gignals and those of the symmetric
function transforms, in particular, for some
channels, labelled symmetric fumction transforms
may provide better protection agningt channel
noise than the signal when used directly for trans=—
mission, because effects of noise will g8et redig~
tributed during inverse transformation. Similarly,
these alternative equaivalent descriptions may be

more amenable to severe quantization, as effects
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of quantization noise also will get redistributed

during inverse transformation.

The notion of Kronecker product of matrices hasg
been extended to Kronecker product of signal flow
graphs by Moharir [42j. A similar extension could
be thought of for Chinesc » Kronecker~Chinesc,
OhinesefKroneoker, partitioned matrix Kronecker
and partitioned matrix Chinese products. This
would lead to the definition of a class of new
non linear transforms in terms of the known non

lincar transforns,
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HADAMARD ARRAYS

If Ay A2, A3 and A4 arc¢ square submatrices of
order t then [39, 43, 67].

— AT
Al A2 A3 A4
-4 A ~A A
M s 2 l 4‘ 3 . ik (A,l)
Ay Ay 4 -4
s -

is an orthonormal kernel of order 4t provided

*T

M M = 4t X vim Llod)
or equivalently
ﬁ: Ap A¥F= 4t 1 sve B
| p=1
and
APA;T = AQA;T P # dsPeq = 1,2,3,4

eor (Rl
where I is an identity matrix of order 4%,
The matrix M of Eq. (A.1l) is given by
M=ch +14,+jAs +k A, san LRAGS)

where e,i,j and k are squarc metricus of order four.
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They have all the entrics drawn from 0,1,-1 and further,
the entries 1,-1 appear in them in mutually exclusive
and collectively oxhaustive locations, i.e.,, no two of
these matrices have cntrics 1,~1 in th¢ same location
and not all of them have an e¢ntry zero in any location,
The matrices e,i,j and k are isomorphic to the quater=

ions satisfying the usual conditions and given as

1 0 0 0
0 1 0 0
e =
0 0 ik 0
0 0 0 lJ
0 X 0 0
=1 0 0 0
i =
0 0 0 -1
0 0 1 0
— —
0 0 3 0
0 0 0 1
b SN
-1 0 0 0
0 =1 0 0
0 0 0 1
0 0 =1 0
r=di =
0 1 0 0
P -1 0 0 OJ
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The multiplication table for e,i,j and k can be

written as

mult, e i J k
e e 4 k

i 1 € k ]
- e ) 5

k k 3 -1 e

Since e 18 2 unit matrix

N b | i == i = k =

e i 3 Iy
where I4 is a vwnit matrix of order four,

Generalized form of such arrays is an Hadamard
array H[h,k,A]. It is an h x h array whose entries
aroe + Al, + A2,...,i Aky k-{.h. Al’AQ"°"Ak are called

indctcrminates.

In any row or column of the array there arc A cntries

+ A1, X entries i.A2,...,A entries + Ak.

It Al, A2,...,Ak arc trected as elcecments of any
commutotive ring, then rows as well as columns are pair-

wise orthogonal,

Some special cages of Hadamard arrays are:
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a)

Williamson type
b) Baumcrt-Hell type

¢) Boumcrt-Hall-Welch type

Williomson type : This is an Hadamard array with H [h,
k, A] as H[4,4,1], i.2., each indeterminate + A; is

repeatcd only once in each row and each column, viz,

Al A2 A5 A4
~-f\ A ~A A
oy
Moo= 2 4 g o b el
-A3 A4 Al eAg
—A4 —A3 A2 Al

Baumert-Hall type : This is an Hadamard array with
H(h,k, A] as H[12,4,3]. This type of Hadamord orrey is
algso written as BH [12]. This is & generalization of

Williamson type and is given in Eq. (A.8).

Bounert-Hell-Welch type : This is an Hadamard array with
H(h,k, A} as H[20,4,5] with the condition that the
blocks are circulant. This type of Hadamard array is

algo written as BHW [20] and is given in Eq. (4.9).
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4~A4—A1 A3 Al

Al-A4—A4—A1 A3
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-Al—A3 Al A4 A4
l—AB Al A4

A4 A4-A1-A3 Aq

N W W

W N NN
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NN

S oW oW

-AlﬂAz—Al A3ﬂA3

A3-A3-AlﬁA2eAl
~Al A3—A3—A1-A2

=Ay A2—A4 A4 A2

Ap=hy Ay=h, 4,
Ay Ay=hy Ay=h,
-h, A, A=Ay B,
Ay=A, Ay Ay=hy

Al—A2~A4 A4ﬁA2

o Ay=Ay-A, A,

Aymhy Ay=iy=h,
Ay A,=h, Ay,
Aq

-4

-A2—A4 A4—A2

-A2-A1~A3 A3-Al
-A1~A2~A1~A3 A3
AB-AlfA2~Al—A3
-A3 A3-A1—A2-Al

-Al—A3 AS—Al-AZ

06T



Ay=Ay=hy A-hy Ay Ay=h, A, A, =A,-A, Ag Ag A, As Ay =h,-A, =)
Ay A,-Ay-Ag A, Ay Ay Ay-h, A, A=A A, As A, ~hy B Ay=h A,
Ay=hy Ay=A) Ay Ay Ay Ay Ay-h, Ay Ay=h,=A, Ag ~A,~A1=hy Ay-A,
“As Ag=Ay Ay=hy A, A, A, A A, Ag Ag A=A A, Ag=h,=Ay=Ag Ay
~A=hs Az=Ay A, Ay=hy Ay By Ay =By Az Az Ay=h, Ay=A,~A,~Ay~Az  |...(A.9)
~Ay-R,=h, Au=A, Ap=hy Az=Az=Ay Ay Ay Ay A,=Ay A, Ay Mg Az=h,
~Ap=hy=Ay=h, A, =y Ay-Ay Ag—hx Ay Ag Ay A, A, ~hy=h, Ay Ag Ag
Aymho=hAy=ho=A, A=Ay Ay=Ay Ag Ay=hy Ay Ay A, Ag=Ay=A, A, Ag
b, A =hy=Ay=h, Ag=hz=hy A=Ay Ay Ay=hy Ay Ay Ag Az=h,=A, A,
~Ay=h, Ap=A,-Ay  =Ay AgmAg-hg A, Ay A, A,~hy Ag Ay Az Az=hy=A,
]

T6T
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In particular if Al, A2, A3 and A4 are real angd
symmetric, complex conjugation and transpose could be
dropped from conditiong given by Egs. (A,3) and (4.4).
Further if they are circulant, pairwige commutativity,
i.e., Bqs (A.4) is automatically satisfied., So if Ay,
A2, A3 and A4 are real, symmetric and circulant sub-
matrices of order t +then the condition for orthonor-
mality of Hadamard arrays given by Egs. (A.3) and (A.4)

becomes

A% 4+ a2 £ 42 442 441 ous (6200

2 3 4

If Ayy Ay Ag and 4, have ¢" roots of unity as
entries then the resulting orthonormal quaternion kernel

is represented as Fq(4t), 4 always being even.

Some important propertics of orthonormal kernels

of quaternion type are:

1) If M be an orthonormal kernel of the quatirnion
type of order N = 4t +then M-l is also an ortho-~

normal kernel of the quaternion type.

2) If M be an orthonormal kernel of the quaternion
typre of order N = 4%t +then there exist quaternion

orthonormal kernels of order (2% v PO S T e
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3) If M be an orthonormsl kernel of the quaternion
type of order N with Al, A2, A3 and A4 as sub-
matrices then M' given below would be an ortho=-
normal kernel of the quaternion type of order 2N

1 1 1

.
with Al, A2, A3 and A4 as submatriceg,

- ¥
L { 1 1 AI
Ay Ay ol 4
A' A’ Al A'
2 4 4 5 ene (RS
1 ! 1 !
~As A, Ay -A,
1 Al A! Al
J_-A4 s 2 l~
where
r‘ ™
v [ A A,
.A.l = o a® (Aol2)
J Ay Ay
2 =
i e
[ 4 A
b
ST
i by -,
Ly A
T 5 ]
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4) I£ M, W' of order N be extended o obtain 4yo
kernels of order 2N, they do not form an inverse

pair,

5) If X be an orthonormal kernel of order Xk then

submatrices given by

A_i — K @'k Ai i = 1,2,3’4 ®ace (AolB)

A, o= A_i Qk K i 132,3’4 s 0 (Acl4-)

can also be used to form orthonormal kernels.,

Hadamard matrices of the Williamson type of order
N = 4% can be constructed for many values of +t with
the help of table listed by wallis [67]. For the
desired N and %, N = 4t, values of Hys Hos K and By
are taken from the table. Write Xl’ X2, X3 and X4 as

Xp ==b1 + by +pg + 4,
Rt R R R ios Lhs283
X-3= H1+P2-N3+P—4

Xg= By + By + 03 -4y

The gquantities My By b and by are listed in terms

th

of N roots of unity wi. Eq. (A.15) can be re~

written asg
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T, =2 [1 +Zcil w; ]
X, =2 [I + a, aj
’ = 23 3 iy {(H06)
Xy =2 [1I +Zci3 w; ]

Xy =2 [1+Zci4wi

where Cil, Ciz, Ci3 and Ci4 take values from 0,1,-1.

The submatrices Al, A2, A3 and A4 are given by

.
&, m T 0, 8
2 ko % vin AT
A3 =l i 013 Sl
A4 e I-+0i4_Si
where
Si = Ti-l-Tt-l S (Aols)

and T 1is a square matrix of order ¢t given ag

O T S R
B L B s BB
> 0 B g d
e I 5l B o L 2 ea R
T T T S A R
R TR TR .
(1 0 0 0 w0 0
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Once Al, A2, A3, A4 are known one can easily write
Hadamard matrix of williamson typre of order N = 4% by
substituting them in Eq. (A,7). This procedure ensures
Ai's to be real, symmetric ang circulant and hence it

is easier to verify the orthonormality the resulting

Hadamard matrix.

Exemple Let + =5 so that N = 4t = 20

From the table [67]

By = 1
by =1
hg = l—2wl
by = l-2w2

This gives

X = 2(l-wy~w,)

Il

2(l—wl-w2)

2(l+wl—w2)

W
i

X, = 2(l-w1+w2)
and hence

Ay = I-8,-8,
Ay = I-8,-8,
Az = I+3,-8
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Thus Al’ A

2 @ @ @ =3
Q G B B o
O O e O O

2'

A

00
10
+ |01
Ly
f)O

-
g-0
00
+ |0
g X
g &
and A4
=] =]
1 -1
-1 1
=1 =}
-]l =1
1 =1
- -
& X
-1 L
-l L

S e e @ &
T e S e S €

H o O O o
g O B8 e

can

1 01
0 10
il S A ¢
0 00
0 | 10
0 00
1 00
- e S G
0 31
0 01
) S

be written

O =2 O =t O
H O = O O
QO H O O

HOOo O O
(2 R o B &= SRS Y
0 0 & MO

as

197



198

=] 1 1 =1 h

3 and A4 in

Eq. (A.7) results in an Hadamard matrix of the

Substituting these values of Al, A2, A

Williamson type of order 20, It cam be easily veri-

fied that

2

2 2 2
Al + A2 + A3 + A4 et gl

and hence the resulting matrix of order 20 would be

an orthonormal matrix.
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