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Abstract

Over the past few decades advances in genomic technologies have led to an explo

sive growth in the biological information generated by the scientific community.

There are over 65 billion nucleotides from more than 61 million individual se

quences in GenBank as on September 2006. With the enormous amount of

genomic and proteomic data available in the public domain, it is becoming in

creasingly important to be able to analyze the data and interpret the results to

decipher the connections between the genomic data and the biological function

ality of living cells and organisms.

Mapping the symbolic data into one or more numerical sequences opens the

possibility of applying signal processing techniques, especially digital signal pro

cessing (DSP) for solving highly relevant problems of biological sequence anal

ysis. Genomic signal processing (GSP) is a quickly evolving interdisciplinary

field that blends bioscience, medicine and signal processing. GSP offers several

robust and computationally efficient tools like discrete Fourier transform (DFT),

digital filters, discrete wavelet transform and several other tools for obtaining

solutions to biological problems. In several biological problems, application of

signal processing techniques forms the foundation of data analysis.

The goal of the current research work is to apply digital signal processing

(DSP) concepts for solving important problems related to sequence analysis.
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Abstract

The thesis combines the advantages of DSP with pattern recognition technique

for identification and classification of sequence patterns. GSP techniques have

been successful especially for identification of hidden structures but have not

made much impact in sequence identification and sequence classification prob

lems. Furthermore, there exist very few signal processing techniques for protein

sequence analysis. In this thesis a broad methodology for analysis of DNA and

protein sequences is proposed. The aim of the thesis is not to replace the ex

isting techniques but to provide complementary approaches, to explore novel

applications of signal processing in bioinformatics, to devise simple and efficient

algorithms, to provide novel biological features and to apply machine learning
algorithms for improving the analysis capability of GSP algorithms. In chapter

two of the thesis, a brief review of the existing techniques and their limitations

for the problems that were taken up for the current research work is presented.

Chapter three of the thesis presents a signal processing technique for iden

tification of exact and inexact tandem repeat patterns in DNA sequences. It

is well known that tandem repeats in telomeres play important role in cancer

and are linked to over a dozen major neurodegenerative genetic disorders in hu

mans. Short tandem repeats are used for DNA fingerprinting. Despite their

importance, locating and characterizing these repeats within anonymous DNA

sequences remain a challenge. In past, signal processing (SP) algorithms based

on DFT and short periodicity transform (PT) techniques have been applied for

identifying tandem repeats. Periodicity transform based approach is computa

tionally expensive and inaccurate for inexact tandem repeat identification, espe

cially where it occurs due to insertion and deletion operations in DNA sequences.

Furthermore, both DFT and PT techniques for the caseof inexact repeats cannot

clearly ascertain whether a pattern is due to period 'P' or its multiple. The pro-
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Abstract

posed algorithm applies a novel periodicity measure based on orthogonal exactly

periodic subspace decomposition (EPSD) technique. The algorithm is based on

the concept of identifying local periods in the input signal and is robust in iden

tifying inexact and hidden repeat patterns which otherwise are very difficult to

detect. The EPSD measure also resolves the problems that were present in pre

vious signal processing based approaches. The time complexity of the algorithm

is 0(NLwlog2Lw), where N is the length of the DNA sequence and Lw is the

window length for identifying repeats. To demonstrate the capabilities of the

algorithm, experiments were performed on artificially generated DNA sequences

and actual DNA sequences covering both exact and inexact repeats.

Chapter four of the thesis addresses the problem of identifying exact and inex

act inverted repeats present in DNA sequences. Fast correlation and periodicity

measure based algorithms are presented in this chapter for identifying both exact

and inexact IRs. Inverted repeats (IRs) are widespread in both prokaryotic and

eukaryotic genomes, and have been associated with a large number of possible

functions. Identification of inverted repeats and especially inexact inverted re

peats in a DNA sequence has remained one of the challenging problems in DNA

sequence analysis. Most of the existing methods for inverted repeat identification

are either very difficult to handle, as they require a large number of input param

eters or are inefficient in identifying inexact inverted repeats. Also, till date no

signal processing algorithm exists for identifying IRs. The algorithms require the

user to input only two easily understood parameters: maximum inverted repeat

size and minimum length of contiguous repeat. This makes IRs identification

job easier for the users, especially for biologists. The algorithm is evaluated by

performing experiment on biological dataset download from NCBI website. The

obtained results are compared with standard tool available online and the results
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show the effectiveness of the proposed approach. In Chapter five the correlation

based approach is extended for RNA secondary structure prediction problem
after modification in merging algorithm for IR detection.

Chapter six of the thesis deals with the problem of identifying protein coding
patterns and presents a novel pattern recognition framework based on wavelet

variance features for identifying protein coding DNA patterns. The identification

task is a very challenging because there is no specific criterion based on which

every coding and non-coding pattern can be identified. Currently, the most

accurate identification techniques are based on linear/slope model of Z-curve

components. However, the linear model provides apoor approximation for highly
non-linear Z-curve components. In-addition, the slope based techniques ignore
the local statistical information present in DNA sequences which are important
for identifying small coding patterns. The existing signal processing methods
are based on only period-3 feature of protein coding region. In the proposed
approach a wavelet based time series analysis technique has been applied for

extracting coding feature from Z-curve components. Till now, wavelets have

never been applied in identification of coding patterns. Also, pattern recognition

approach has not been explored for identification of coding DNA sequences. The

wavelet coefficient provides both local and global information contents of DNA

sequences. The proposed approach provided a 10-fold cross-validation accuracy

ofmore than 93% on recall patterns of Yeast genome. Furthermore, a combined

feature vector (i.e., slope andwavelet variance features) based SVM classification

is also proposed. The combined feature vector provided a 10-fold cross-validation

accuracy of 96% for recall patterns of Yeast genome and more than 96% recall

pattern accuracy for the E. coli genome.

Chapter seven of the thesis presents the development of a novel feature vector
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for efficient identification of G-protein-coupled receptors (GPCRs), GPCRs fam

ilies, subfamilies and sub-subfamilies using SVM. GPCRs are one of the largest

groups of proteins in vertebrate species. Their classification and functional an

notation are very important in present medical and pharmaceutical research

because GPCRs play key roles in many diseases. The large dimension of fea

ture vector for the existing popular SVM based technique (SVMpred) makes the

classification task quite expensive in terms of computational and memory used.

The proposed feature vector is based on wavelet variance of seven important

physicochemical properties of amino acids. Furthermore, the dimension of the

proposed feature vector is also reduced to 35. This helps in building faster and

memory efficient classifier which can be implemented on any normal desktop

computer. The technique classifies GPCRs and non-GPCRs using a 5-fold cross-

validation with accuracy and Matthews correlation coefficient (MCC) of 99.9%

and 0.998 respectively. The technique is further able to detect major classes

or families, subfamilies and sub-subfamilies of GPCRs with a total accuracy of

97.63%, 96.64% and 93.38% respectively. In addition, the technique classifies

the human GPCRs with accuracy and MCC of 99.88% and 0.998 respectively.

Finally in chapter eight, the contributions made in the thesis are summarized

and scope of future work is outlined.
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Chapter 1

Introduction

The entire genetic information of any living organism is written as linear infor

mation within DNA sequences and is coded by four different nucleotides. DNA

molecules serve as backup for genetic information for the whole organism. The

particular well defined fragments of this information, so-called coding sequences,

are then translated, using complex molecular mechanisms, into other linear in

formation then contained with protein sequences and coded with 20 different

amino acids.

One of the significant genomic achievements in recent times has been the de

velopment of fast methods for sequencing genes and proteins. This has enabled

the creation of large databases which can be processed by considering sequences

of nucleic acids (DNA, RNA) and amino acids (proteins) as strings of characters.

Today there exists over 65 billion nucleotides from more than 61 million individ

ual sequences in GenBank [l](see Figure 1.1). On an average, these databases

double in size every 18 months. Analysis and interpretation of the extremely

large size of biomolecular sequences are some of the most exciting challenges

faced by the scientific community.
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Figure 1.1: Growth of entries and nucleotides in GenBank from 1982-2005.

Signal processing techniques offer a great promise in analyzing genomic data.

Genomic information is expressed digitally in nature much like as information is

encoded digitally in computers as strings of zeros and ones. For example, DNA

sequences are encoded by four nitrogenated bases: Adenine, Thymine, Cytosine,

and Guanine. Similarly, protein molecules are encoded by twenty types of amino

acids. Both DNA and protein molecules can be mathematically represented by

character strings. The character string can be properly mapped into one or more

numerical sequences, and in this way signal processing techniques provide a set

of novel and useful tools for solving highly relevant problems of genomics.

Signal processing has played an important role in the area of sequence anal

ysis (DNA and proteins) and DNA microarray analysis. The sequence analysis
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Chapter 1. Introduction

techniques have beenapplied to reveal some hidden structures, for sequence com

parison and classification, to distinguish coding from non-coding regions in DNA

sequences, and in genotype to phenotype mapping and several other problems.

DNA microarray analysis technique helps in the monitoring of gene expression

for tens of thousands of gene simultaneously. It has found applications in the

medical and biological fields such as gene discovery, disease diagnosis, drug dis

covery, and toxicological researches. For the current study the signal processing

techniques for sequence analysis is explored.

Digital signalprocessing (DSP) techniques offer moreefficient ways to identify

regions of the DNA exhibiting periodic behaviour. In [2, 3, 4], digital filters

are applied to extract the period-3 component (the protein-coding regions of

DNA demonstrate a period-3 performance due to codon structures. A codon

is a sequence of three adjacent nucleotides constituting the genetic code that

determines the insertion of a specific amino acid in a polypeptide chain during

protein synthesis or the signal to stop/start protein synthesis). In [5, 6, 7],

sliding window based discrete Fourier transform (DFT) technique was proposed

for identification of coding DNA sequences. DFT based algorithms are also used

to identify tandem repeat patterns from a DNA sequence [8, 9]. In [10], DSP

techniques for predicting potential promoter are proposed.

Wavelet analysis provides a useful SP approach for the visual description ofin

herent structure underlying DNA sequences. In [11], cross-correlation of wavelet

coefficients is used for protein sequence comparison. Lio and Vannucci [12], ap

plied discrete wavelet transform (DWT) to find pathogenicity islands and gene

mutation events in genome data. Wavelet is also used [13] to search the DNA

sequence construction rules. The salient spots in the final two-dimensional (2-D)

analysis results revealed significant features in the DNA sequence. Their re-
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suits demonstrated that while the non-coding sequences showed spectra similar

to those from random sequences, coding sequences revealed specific periodici

ties of variable length and a common periodicity of three. In [14], the authors

discuss the use of the continuous wavelet transform (CWT) and the resonant

recognition model (RRM) to predict the location ofoncogene protein active sites

and to gain insight into their structures and functions. Arneodo et al. [15]

used wavelet transform modulus maxima (WTMM) to analyze the fractal scal

ing properties in DNA sequences. They demonstrated the existence of long-range

correlation in genes containing introns and non-coding regions, and also quan

tified that correlation. They also found that the fluctuations in the DNA walk

profiles were homogeneous with Gaussian statistics. This result reveals useful

information about the role of introns and non-coding intergenic regions in the

non-equilibrium dynamic process that produced DNA sequences.

1.1 Research Problems

The aim of the present research work is to contribute towards furnishing novel

signal processing measures and features for analysis of DNA, RNA and protein

sequences. Furthermore, supervised machine learning technique is proposed for

identification of DNA and protein sequence patterns based on features extracted

using signal processing techniques. The challenges inherent in the development

of measures and features applying signal processing include:

• Forming a close relationship between sequence analysis issues and signal

processing problems.

• Providing a suitable mapping technique for converting symbolic DNA,

RNA and protein sequences into numeric sequences.

*



Chapter 1. Introduction

• Selection of an appropriate signal processing tool either for calculation of

measures or for extraction of features from mapped biomolecular sequence

data.

• Dealing with huge genomic data in an efficient and effective manner.

The sequence analysis problems that were taken up for the current research

if work are:

• Detection of exact and inexact tandem from DNA sequences.

• Identification of inverted repetitive patterns from DNA sequences.

• Prediction of RNA secondary structure from its primary sequence.

• Identification of protein coding DNA sequence patterns.

• Recognition of G-coupled protein receptor protein sequences and classifi

cation of GPCRs into its family, subfamilies and sub-subfamilies.

-r

1.2 Framework of the Research

A general strategy was followed for solving the selected research problems. The

steps are as follows:

1. Understand the issues related to the problem and identify the limitations

of the exiting solutions.

2. Visualize the problems in terms ofsignal processing andpattern recognition

task.

3. Identify the DSP and machine intelligence techniques for calculating mea

sures or features.



1.2 Framework of the Research

4. Propose a suitable mapping technique for DNA, RNA or proteinsequences.

5. Present a technique that implements DSP and pattern recognition concepts

and solves the issues related to the problem.

6. Evaluate the performance of the proposed technique on actual biological

datasets and compare the results with the existing techniques.

The complete framework of our research work is presented in Figure 1.2. The

various tasks performed for solving our research problems are: acquisition of

datasets, mapping ofgenomics and proteomics datasets into numeric sequences,

processing of mapped datasets using DSP techniques and calculation of measures

or features, interpretation of measures and annotation of biological data, appli

cation of machine intelligence algorithms to extracted features and identification *•

ofpattern class. Depending on the task to be performed the complete framework

is divided into different modules.

The proposed methodology for the sequence analysis problems of the the

sis can be considered as 3-steps procedure: mapping, processing and analy

sis/classification. The data acquisition module is a pre-processing step which

helps in constructing datasets for analysis purpose. The mapping module helps

in converting a symbolic sequence (input) into numeric sequences (output). A

mapping function is selected depending upon the formulations of the problem.

An arbitrary selection of mapping function may lead to incorrect or no result.

After obtaining a numeric sequence, an appropriate signal processing technique

is applied to the input data and the desired information is extracted either in

the form of measures or feature vector. The third step consists of two modules:

annotation and classification. The tandem repeat identification, inverted repeat

identification and RNA secondary structure prediction problem move through

f
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annotation module. However, the pattern recognition research problems: iden

tification of protein coding regions and GPCRs identification and classification

move through theclassification modules. The second step, i.e., application of sig

nal processing on mapped data acts as a feature extraction module from pattern

recognition point of view. The feature vectors are processed using a classification

algorithm for identification of patterns.

1.3 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents a brief introduction to sig

nal processing tools and an overview of signal processing contributions to several

sequence analysis problems. A novel signal processing measure for identifica

tion of tandem and other hidden patterns is presented in chapter 3. Chapter

4 presents a correlation based framework for identification of inverted repeat.

Chapter 5 presents a correlation based framework for prediction of RNA sec

ondary structure from a primary RNA sequence. A pattern recognition approach

for identification of coding and non-coding patterns is proposed in chapter 6.

Chapter 7 presents an efficient wavelet based features extraction and SVM clas

sification technique for GPCRs recognition and identification of GPCR families

and subfamilies. Chapter 8 concludes our thesis by presenting our contribution

and future research directions.
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Figure 1.2: Framework of the proposed research work.

-i*



*

k

Chapter 2

Review and Preliminaries

With the enormous amount ofgenomic and proteomic data available in the pub

lic domain, it is becoming increasingly important to be able to analyze the data

and interpret the results in a biologically meaningful manner. The need goes far

beyond database management, which is still essential for the organization and

easy access to the huge quantity of data, to the necessity of deciphering the con

nections between the genomic data and the biological functionality of living cells

and organisms. This chapter presents a brief review on contributions of signal

processing (SP) techniques for sequence analysis problems of bioinformatics.

2.1 SP Tools for Sequence Analysis

In this section, a brief introduction to some transformation techniques of signal

processing useful for sequence analysis is provided.



2.1 SP Tools for Sequence Analysis

2.1.1 Transforms

A transform is a special type of function. To understand transforms, one must

first understand the concept of a function. A function is a relationship between

two sets (called thedomain and codomain), and this relationship must satisfy two

conditions. First, everyelement in the domain must correspond to some element

in the codomain. Second, no two elements in the codomain cancorrespond to the

same element in the domain. These two requirements can be combined by saying

that for each element in the domain there corresponds exactly one element in

the codomain. Transforms are special type of functions whose domain and the

codomain contains frequency functions.

2.1.2 Discrete Fourier transform

Let {at} = {at : t = 0,...,JV —1} is a sequence of TV real or complex valued

variables. The discrete Fourier transform (DFT) is the sequence {Ak} of N

variable given by

JV—1

AfcS^atexp-'27^, k=0,...,N-l. (2.1)
4=0

where Ak is associated with frequency fk = k/N.

{at} can reconstructed from its DFT {Ak} using the following equation

j N-l
at =NJ2Ak exp>'2,rtfc/JV, t=0,..., N- 1. (2.2)

fc=0

Since we can reconstruct {at} from its DFT, these two sequences {at} and

{Ak} can be considered representations of common mathematical entity.

10



Chapter 2. Review and Preliminaries

2.1.3 Discrete wavelet transform

Wavelets are becoming increasingly popular in different areas of applied and

theoretical science. Data compression, signal processing, turbulence, geophysics,

statistics, numerical analysis and bioinformatics are only few examples from a

long list ofdisciplines in which wavelet have been successfully employed.

Discrete wavelet transform (DWT) is an orthonormal transform. Let X0,

X1, ..., XN_X represent a time series of TV real-valued variable. If {Wn : n =

0,..., N - 1} represent the DWT coefficients, then we can write W = WX,

where W is a column vector of length N = 2J whose nth element is the nth

DWT coefficient Wn, and W is an NxN real-valued matrix defining the DWT

and satisfying WTW = IN (the condition that the length of X be a power

of two is restrictive). Orthonormality of DWT implies that X = WTW and

I! wll =11 X|| . Hence W% represents the contribution to theenergy attributable

to the DWT coefficient with index n.

In DFT coefficients are associated with frequencies, the nth wavelet coeffi

cients Wn is associated with a particular set of times. The elements of the vector

W can be decomposed into J + 1 subvectors, where J = log2 N. The first J

subvectors are denoted by W3-, j = 1,..., J, and the jth such subvector con

tains all of the DWT coefficients for scale ts. Note that W,- is a column vector

with N/2J elements. The final subvector is denoted as Vj and contains just the

scaling coefficient WN-X. The wavelet transform can be written as

W=[W1,W2,...,WJ,VJ]T (2.3)

The energy preservation for DWT can be written as:

l|X||2H|W||2 =£||WJ2+||V,||2 (2.4)
j=i

11



2.2 SP Techniques for Sequence Analysis

Let Dj = Wj"Wj for j = 1,..., J, which is an N dimensional column vector

whose elements are associated with changes in X at scale r,; i.e., Wj = WjWj

represents the portion of the analysis W = WX attributable to scale rj} while

WfWj is the portion of the synthesis X = WTW attributable to scale r,-. Let

Sj = VjVj, which has all of its elements equal to the sample mean X. The

input time series X can be written as follow:

j

X= J2D3 +Sj (2.5)

which defines a multiresolution analysis (MRA) of X, i.e., we express the series

X as the sum of a constant vector Sj and J other vectors Dj, j —1,..., J, each

of which contains a time series related to variations in X at a certain scale. And

Dj is referred as the jth. level wavelet detail.

2.2 SP Techniques for Sequence Analysis

In this section, signal processing techniques for sequence analysis issues in bioin

formatics are briefly discussed. The list is not exhaustive but covers several key

problems of bioinformatics.

2.2.1 Identification of protein-coding regions

It has been noticed that protein-coding regions (exons) in gene have a period-

3 component because of coding biases in the translation of codons into amino

acids. This observation can be traced back to the 1980 work of Trifonov and

Sussman [16]. The period-3 property is absent outside exons, and hence can be

exploited to locate exons. Automatic identification of protein coding regions in

genomic DNA sequences is a fundamental step in the computational annotation

of genes and is one of the central issues in bioinformatics.

12
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Digital signal processing (DSP) techniques for identification of coding regions

(exons) in DNA sequences include the application ofthe DFTonoverlapping win

dows [5, 6, 7] and the application of bandpass digital filters that are centered at

27r/3 [2, 3, 4]. The output of the bandpass digital filter at 27r/3 can be thought

of as one measure of the DNA spectral content at frequency 27r/3. A computer

program GeneScan, based on concept of DFT for period-3 identification was de

veloped by Tiwari et al. [7]. It locates coding open reading frames and exonic

regions in genomic sequences. In [17], a new measure based on the arguments of

DFT is presented and is very useful in locating short genes and exons. A fast

DFT based gene prediction algorithm is proposed by Datta and Asif in [18] for

identifying protein coding regions. The authors also provide theoretical justifi

cation for the period-3 property by defining a new parameter referred to as the

position count function (PCF), which measures the number of times different

nucleotides appear in the three phases with a DNA codon.

2.2.2 Identification of non-coding regions

The period-3 property indicates a strong short-term correlation in the coding

regions but there is also a long-range correlation exhibited by DNA sequences

both in gene and intergenetic regions. One of the earliest papers to point this

out appeared in Nature in 1992 [19]. The study made is based on a concept of

DNA walk [19, 20]. Later studies by other authors [21, 22, 23, 24, 25] examined

correlations over much longer regions which contained many genes. Long range

correlations have been found both in coding and noncoding regions. According

to Fourier transform theory, long range correlation implies that the Fourier trans

form has 1//-behavior in low frequency region [26]. In [27], Voss demonstrated

that the power spectrum has power-law of 1/f0 behavior for the human Cy-

13



2.2 SP Techniques for Sequence Analysis

tomegalovirus strain AD169. Later studies have indicated that such long range

correlation is valid even further, extending to several millions of bases [28]. Li [29]
has written a comprehensive review paper on this topic, and has also observed

that the 1// behavior in natural phenomenon can be traced to the so-called

duplication-mutation model [30].

2.2.3 Identification of hidden structures

Predicting and detecting the underlying structural patterns accurately in a DNA

sequence is a difficult problem for researchers. Traditional techniques for struc

ture detection were based on calculating average base composition in a DNA

sequence for a fixed window size. However, by applying multiresolution analysis

concept of wavelet transform, the problem of deciding window size is resolved.

The wavelet transform allows efficient extraction of basic components at different

scales. In [12], discrete wavelet transform (DWT) is applied to find pathogenicity

islands and gene mutation events in genome data. DWT is used to smooth G+C

profiles to locate characteristics patterns in a genome sequences, and a wavelet

scalogram is used for sequence profile comparison. In [31], a wavelet change-point

(WCP) technique is used to predict the location and topology oftransmembrane

helix (HTM) in a primary amino acid sequences. Wavelet is applied to decom

pose the propensity profile based on frequency of the residues in HTM segments,

into wavelet coefficients. Later on, a data dependent threshold is used to select

wavelet coefficients that detect abrupt changes in the profile. The reported re

sult was comparable with other methods, such as HMM and NN architectures

which are computationally much more complex than WCP technique. In [32], a

non-decimated wavelet transform and wavelet variance, correlation scale-by-scale

decompositions jbased approach is applied to determine the location of HTM and

14
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Chapter 2. Review and Preliminaries

G+C regions in genome sequences. Another method based on wavelet transform

has been proposed in [33]. The proposed approach combines wavelet multiresolu

tion analysis and the cumulative GC profile to precisely identify the boundaries

of isochores in the human genome. A novel approach based on IIR lowpass fil

ters for detecting CpG islands in a genomic sequence is presented in [34]. In this

research, a Markov chain model as elaborated in [35] is coupled with IIR low-

pass filters to identify CpG islands. The proposed approach is very simple and

capable of identifying CpG islands efficiently at a low computational expense.

*

2.2.4 Sequence similarity

Protein sequence comparison and alignment techniques are one of the most im

portant and widely used methods for protein sequence analysis. The aim of

protein comparison and alignment is to find the similarities or differences be

tween two or more protein sequences. These comparative techniques have pro

vided new insight into the structure-function relationships of the active site of

a protein. Many algorithms such as BLAST [36, 37], PSI-BLAST [38] and

FASTA [39] have been developed based on character based similarity, though

differing in approaches. The concept of similarity for those approaches only

means how many identical pairs of amino acids exist for the query sequence and

the subject sequence. These algorithms fail to extract subsequences that are not

identical in characters but show similarities in their physicochemical properties,

tertiary structure, resonance recognition model (RRM) spectra and biological

functions [40].

Signal processing provides a non character based approach to establish sim

ilarity between protein sequences. In [11], wavelet analysis is used to extract

characteristic bands from protein sequences. In this work, the sequence-scale
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analysis with wavelet gives a multiresolution similarity comparison between pro

tein sequences. This similarity expands the traditional sequence similarity con

cept which take into account only the local pair-wise amino acid and disregards

the information contained in coarser spatial resolution. In addition, this wavelet-

based approach does not require the complex sequence alignment processing for
sequences. In [41], a technique based on spectral similarity is proposed to com

pare subsequences of amino acids that show similarly. This approach finds a

similarity score between sequences based on any given attribute, like hydropho
bicity of amino acid on the basis of spectral information after partial conversion

to the frequency domain. Other than sequence comparison, sequence classifica
tion is also a major problem in DNA sequence analysis.

A Fourier transform-based support vector machine approach is presented

in [42] for predicting and classifying GPCRs subfamilies. This method cou

ples fast Fourier transform (FFT) with SVM on the basis of the hydrophobicity

profile of the amino acid sequences. Awavelet packet (WP) technique is applied

in [43] for DNA sequence classification, i.e., to classify exons (a segment of DNA

that is transcribed to RNA and specifies a portion of a protein) and introns

(noncoding subregions in genes). The wavelet coefficients is later on used as a

criteria for sequence classification.

2.2.5 Identification of tandem repeats

SP solutions to tandem repeat pattern identification problem include the applica

tion of discrete Fourier transform (DFT) [8, 9] and the application of short-time

periodicity transform (STPT) [44]. In [8], DFT is used as a pre-processing tool

for identifying the significant periodic regions through a sliding window analysis,

and then an exact search method is used for finding the repetitive units. In [9],
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instead of a product spectrum, a sum spectrum is proposed as a measure for

identifying repeats. The product spectrum is especially sensitive to the pres

ence of inexact repeats. A STPT based approach for finding tandem repeats in

DNA sequence is presented in [44]. Details of SP algorithms for tandem repeat

identification are discussed in chapter 3. .

2.2.6 Protein function prediction

Prediction of protein function from its 3-D structure is a big problem in bioinfor

matics. A relational map between protein structure and function is considered

as the third genetic code (the relationship between amino acid sequences and the

3-D structure of proteins is thought to be as the second genetic code). If biolo

gists could predict the action of a protein by looking at its 3-D structure, they

would have an increased chance of designing more effective drugs. Furthermore,

if they could solve the sequence-structure problem, they would be able to make

those structural modification exactly. Unfortunately, this still remains a dream

for now, as we do not really know how to interpret protein functions, both in

theory and in practice.

In [14], researchers have investigated the oncogene functional group using

digital signal analysis methods, in particular Fourier transform and continuous

wavelet transform (CWT). They incorporated the continuous wavelet transform

(CWT) into the RRM [40] to predict the activesites for a chosen protein example.

The RRM is a novel physico-mathematical approach established to analyze the

interaction between a protein and its target. The RRM assumes that the speci

ficity of protein interaction is governed by the resonant electromagnetic energy

transfer at the specific frequency for each interaction. RRM was also known as

ISM (information spectrum method). ISM main interest is in giving each amino
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acid a set of electron-ion interaction potentials and comparing the frequency one

obtains from a chain of these amino acids. This is mostly an information-domain

approach that assumes that proteins can only interact ifthey share a peak in this

frequency space through which energy can be transferred. RRM now includes

not only resonant energy, which happens at very small distances, but also longer

range interactions. One of the main applications of this model is to predict the

location of a protein's biological active site(s) using DSP. The results provided

a new insight into the structure-function relationships of the analyzed oncogene
protein family.

2.2.7 Visualization of sequences

Data visualization is a key challenge in bioinformatics, especially so with the

increasing number of complex genomes that are currently being sequenced. One

motivation among many, that requires such analysis techniques deals with study

ing the fractal behavior ofDNA sequences. In [45, 46], DNA walk representation

and Gauss-wavelet-based method is used for visualization and analysis of DNA

sequences. DNA walk representation allows one to graphically visualize how

DNA sequences evolve. Gaussian-wavelet-based analysis is used for locating pe

riodicity and extractingstructural information from a complex-valued DNA walk.

In [47], a correlation function is proposed to compare each base in a DNA se

quence to its various neighbours and which is subsequently processed by Fourier

and wavelet transform (Walsh-Hadamard).

18
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Chapter 3

Identification of Exact and

Inexact Tandem Repeat Patterns

The identification and analysis of repetitive patterns are active areas of biological

and computational research. Tandem repeats in telomeres play a role in cancer

and hyper-variable tri-nucleotide tandem repeats are linked to over a dozen ma

jor neurodegenerative genetic disorders. Despite their importance, locating and

characterizing these repeats within anonymous DNA sequences remain challeng

ing tasks. The difficulty is due to presence of imperfect and complex repeat

patterns.

In this chapter, an application of signal processing technique for identification

of exact and inexact tandem repeat patterns in DNA sequences is presented. The

motivation for developing a signal processing approach for the current problem

comes from similarity between period detection problem in signal processing and

tandem repeat identification problem. The algorithm proposed in this chapter

applies a novel periodicity measure based on orthogonal exactly periodic sub-

space decomposition technique. The measure resolves the problems like whether

19
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the repeat pattern is of period P or its multiple (i.e., IP, 3P and so on) and

several other problems that are present in previous signal processing based ap

proaches. The time complexity of the algorithm is 0(NLw log £,„,), where N is

the length of DNA sequence and Lw is the window length for identifying repeats.

To demonstrate the capabilities of the algorithm experiments were performed on

pseudo DNA, i.e., artificially generated and actual DNA sequences covering both
exact and inexact repeats.

3.1 Introduction

A direct or tandem repeat is the same pattern recurring on the same strand in

the same nucleotide order, e.g., TGAC recurs as TGAC. Tandem repeats play
significant structural and functional roles in DNA. They occur in abundance in

structural areas such as telomeres, centromeres and histone binding regions [48].

They also play a regulatory role near genes and perhaps even within genes. Over

a dozen of major human degenerative diseases [49, 50, 51, 52] are associated with

dramatic increase in the number ofcopies ofa trinucleotide pattern and are listed

in Table 3.1. In afflicted individuals, the repeat number has been amplified from

the normal range of tens of copies to hundred or thousands, resulting in the dis

ease. It hasbeen suggested that the repeats themselves produce unusual physical

structures in the DNA causing polymerase slippage and the resulting amplifica

tion. Cancer is also correlated to regions containing tandem repeats [48]. Short

tandem repeats are used as a convenient tool for genetic profiling of individu

als [53]. Thus, identification and analysis of repetitive DNA are active areas of

biological and computational research.

The main objectives of tandem repeat pattern identification algorithms are

to identify its periodicity, its pattern structure, its location and its copy number.

20

-4



V

T

Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

The algorithmic challenges for identification problemare: lackof prior knowledge

regarding the composition of the repeat pattern and presence of inexact and

hidden repeats. Inexact repeats, formed due to mutations of exact repeat, are

thought to be representation of historical events associated with sequence. Thus,

it is important for any repetitive"pattern identification algorithm to identify

inexact in addition to exact repeat structures in a DNA sequence.

In past, several algorithms and measures based on heuristic, combinatorial,

dynamic programming [54, 55, 56, 57, 58, 59] and SP approaches [8, 9, 44] have

been proposed for finding tandem repeat structure in DNA sequences. In this

chapter, a novelsignal processing (SP) approach for identifying exact and inexact

tandem repeats in DNA sequences is presented. An exactly periodic subspace

decomposition (EPSD) [60] based measure for identifying repeats is proposed.

EPSD technique, unlike the Fourier transform, is obtained by taking projection

onto exactly periodic orthogonal multidimensional subspaces. By having sub-

spaces of dimensions larger than one, the exactly periodic subspace (EPS) [60]

can better capture, in one coefficient, the periodic energy than the Fourier trans

form. Hence, the new measure is more sensitive than previous techniques for

identifying repeats. In addition to identification of exact repeats, the proposed

measure is useful in identifying inexact and other hidden repeat patterns unanno-

tated by GenBank database. The EPSD based approach also helps in identifying

whether a particular pattern is due to period P or its multiple. Thus the am

biguity that is present in [8, 9, 44] is taken care by the proposed algorithm.

In section 3.3.2, an analogy between tandem repeat and periodicity in a signal

is discussed. As with other signal processing approaches, the proposed approach

strictly deals with numeric sequences. In section 3.3.1, a numeric mapping for
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Table 3.1: Human diseases caused by expansion of simple DNA repeats.

Disease Gene Pattern Repeat number [51]

Normal Affected

Fragile X syndrome FMR1 CGG < 50 >200

Fragile X-E mental retardation FMR2 CCG < 35 >200

Myotonic dystrophy DMPK CTG <35 >50

Spinocerebellar ataxia type 8 SCA8 CTG <40 > 110

Friedreich's ataxia X25 GAA <35 > 100

Spinobulbar muscular atrophy AR CAG <40 >40

Huntington's disease IT15 CAG < 40 >40

Dentatorubralpallidoluysian atrophy DRPLA CTG <35 >50

Spinocerebellar ataxia type 1 SCA1 CAG <40 >40

Spinocerebellar ataxia type 2 SCA2 CAG < 30 >35

Spinocerebellar ataxia type 3 SCA3 CAG <40 >40

Spinocerebellar ataxia type 6 CACNA1A CAG < 20 >20

Spinocerebellar ataxia type 7 SCA7 CAG < 20 >40
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nucleotides (DNA bases) is presented. The need for an alternate signal approach

other than Fourier [8] and STPT [44] methods for identifying inexact repeats is

explained in section 3.3.2. The theory of EPSD technique and its modification for

the current problem is discussed in section 3.3.3. Further, the proposed tandem

repeat algorithm is given in section 3.4. Experiments were performed on pseudo

DNA sequences and several actual DNA sequences to verify the effectiveness of

the novel approach and are given in section 3.5.

3.2 Literature Review

This section presents a brief review on existing methods for identification of

tandem repeats.

3.2.1 Non-signal processing approaches

Benson [54, 61] proposed a heuristic program (i.e., Tandem repeat finder) for

finding tandem repeats. The algorithm does not require specification of pattern

or pattern size and is based on a stochastic model of tandem repeats, rather

than some minimal alignment score. The program has detection and analysis

components. The detection component uses a set of statistically based criteria

to find candidate tandem repeats. The analysis component attempts to produce

an alignment for each candidate and if successful, gathers a number of statistics

about the alignment (such as percent, identity, percent indels) and the nucleotide

sequence (such as composition, entropy measure). The stand-alone version of

tandem repeat finder (TRF) is available free of charge for non-commercial pur

pose at http://tandem.bu.edu/trf/trf.download.html and an online version of TRF

can be accessed at (http://tandem.bu.edu/trf/trf.submit.options.html).
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Kurtz et al. [62, 63, 55] proposed REPuter program family for identification

of tandem. It implements an efficient and compact implementation of suffix trees

in order to locate exact repeats in linear space and time. These exact repeats
are then used as seeds for identifying inexact repeats by allowing mismatches,
insertions, and deletions. The program is not heuristic and guarantees to find

all inexact repeats as specified by the parameters. Output size is controlled via

parameters for minimum length and maximum error. Output is sorted by sig
nificance score (E-values) calculated according to the distance model used. The

stand-alone version of REPuter is available free of charge for non-commercial pur
pose at http://www.genomes.de/download.html. An online version of REPuter

providing some basic functionality can be used on the Bielefeld Bioinformatics

web server (http://bibiserv.techfak.uni-bielefeld.de/reputer/submission.html).

Kolpakov et al in [56] proposed acombined combinatorial/heuristic paradigm
algorithmic approach for finding approximate tandem repeats and a software

program, named mreps. The program finds all approximate tandem arrays (un

der the Hamming distance model) that verify a certain combinatorial definition.

The program is divided into two main stages. In the first stage, the program

applies an efficient combinatorial algorithm for finding all repetitive structures

of a certain kind in a given sequence. These structures serve as 'raw material'

for the second stage, which applies to them an heuristic treatment consisting

of several steps to obtain relevant repeats. The mreps program is open-source

software and can be freely downloaded or queried through a web-based interface

at http://bioinfo. lifl.fr/mreps/.

An algorithm to identify complex repeat pattern is proposed by Hauth and

Joseph in [59, 64]. The algorithm involves both locating and characterizing re

peat regions. It is divided into three major tasks: (1) isolate a tandem repeat by
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determining its period and its approximate sequence location, (2) determine the

pattern associated with a region period and (3) characterize the region using the

pattern. The proposed techniqueanalyze A;-length substrings in a DNA sequence

by finding recurring distances between identical substring and is similar to Ben

son [54]. However, instead of using a statistical model for locating interesting

periods, a simple and accurate filter technique is applied to determine repeat

patterns.

Apart from the above discussed algorithms, there exists several other meth

ods for identifying repeats. EQUICKTANDEM available in the EMBOSS pack

age [65] is a simple statistically-based algorithm that identifies tandem repeat

structures in DNA for each pattern size up to given bound. RepeatMasker

(http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) is a program which

uses a database of known sequences and implements a string-matching algo

rithm to find copies of those repeats in a new sequence. A clustering method

for analysis of the repetitive structure of genomic sequences is described in [66].

In [67], TROLL program for finding exact tandemly repeated copies of priori

specified patterns is presented.

3.2.2 Signal processing approaches

SP based algorithms for identifying tandem repeats have their own advantages

because of its sensitivity towards detection of inexact repeats and application

of faster signal processing tool like DFT. These algorithms also provide an easy

solution to biologist or non-computer experts. Unlike the non-SP approaches

which require a number of error tolerances parameters like match, edit distance,

Hamming distance and several other parameters which are verydifficult to under

stand for any normal user, the SP based algorithms require mainly oneparameter
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3.2 Literature Review

which acts as a threshold for identifying repeats.

In [44], authors have presented a novel signal processing algorithm (periodic

ity explorer (PE)) for identification of tandem repeats. The algorithm is based

on the short-time periodicity transform (STPT) and is adapted from the period

icity transform [68] to provide a more localized measure ofperiodic content. The

periodicity transform provides a method for detection of periodicities in finite-

duration sequences. This transform decomposes a finite-duration sequence into

a sum of periodic sequences where the decomposition is accomplished by pro

jecting the sequence onto a set of periodic subspaces. These subspaces are not

orthogonal leading to decompositions that are not unique. The PE algorithm

is composed of three main components. The first component is the mapping

of the nucleotide bases {A, C, T, G} into numerical values. The second is the

primary processing component in which STPT is applied to the DNA sequence

and periodogram is obtained. The last component consists of a search for repeat

sequences and a repeat characterization based on the periodogram.

The PE algorithm has several shortcomings. The nucleotide mapping in [44]

was taken as follows: A= 1 + j, C= -1 + j, G= -1 - j, and T= 1 - j, where

j = \fzl- Let the two DNA sequences be ACATACAC and ACAGACAC.

The projection of the DNA sequences onto the periodic subspace P2 (where P

is the set of.all periodic sequences) is given by {(1 + j), (-0.5 + 0.5j), (1 + j),

(-0.5+0.5J), (1+j), (-0.5+0.5J), (1+j), (-0.5+0.5J)} and {(1+j), (-1+0.5J),

(1 + j), (-1 + 0.5J), (1+j), (-1 + 0.5J), (1+j), (-1 + 0.5J)} respectively. And

the periodogram coefficient values obtained for projection of the DNA sequence

on P2 subspace are 0.75 and 0.895 respectively. By comparing the two DNA

sequences, it is observed that even though the two DNA sequences have equal

degree of 2-periodic component (differ just by one symbol from becoming ETR),
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

the projection of DNA sequences are different and also the periodogram coeffi

cient obtained are different. This shows that the periodogram coefficient cannot

act a good estimator for measuring periodicity.

Sharma et al. [8] presented a Fourier transform (FT) based method (i.e.,

Spectral repeat finder (SRF)) for locating and identifying repetitive DNA and

its constituent units. The method first identifies the length of the potential

repeat unit present in a given DNA sequence by evaluating the power spectrum.

Subsequently, the sequence is scanned at particular individual frequencies to

locate the approximate region(s) where the repeat units are present. Potential

seed patterns from these regions are then used to identify repeats through an

exact method. The SRF algorithm is summarized in the following steps:

Step 1: Take a DNA sequence of length N as an input and map the DNA

sequence into numbers using binary indicator mapping technique.
t

Step 2: Compute the power spectrum, S(f), and the average power spectra S

for the mapped DNA sequence.

Step 3: Identify all the peaks with S(fi)/S > T (the threshold). After identi

fying the peaks, calculate the period of the repeat pattern, p, = 1/ft.

Step 4: Foreachidentified peaks, compute Pm(j) = S(fi)/S in a slidingwindow

of length I centered on position j in the sequence. Regions containing a

repeat of length pi can be identified directly as those where Pm(j) is greater

than threshold (T).

Step 5: Since both the period of repeat pattern p{, and its location are known,

an exact method is used to identify the repeat units.

The power spectrum gets crowded when the length of the input DNA sequence is

highand therefore assessing the significance of peak in the power spectra becomes
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difficult. Hence, the long DNA sequences (>15Kb) are divided into overlapping

segments of length 10 Kb; each of these segments is analyzed individually for the

presence of repetitive units. The time complexity of SRF algorithm is 0(n2),

where n is the length of the sequence. The threshold value (T) is fixed to 4 and

the choice of window length and slide length is made heuristically.

In [9], a product spectrum of Fourier nucleotide subsequences is presented to "+

detect hidden periodicity. The algorithm is summarized in the following steps:

Step 1: Convert the DNA sequence into four nucleotide subsequence xA[n],
xc[n], xG[n], xT[n] using binary indicator mapping technique.

Step 2: Remove the mean value from mapped sequences and then take a nor

malized Fourier transform.

1 iV"1

where N is the length of the DNA sequence

N-l

Sa(f) =VJ^(xa[n)-ma)e-^n
n=0

for 0 < / < 0.5 and a e {A, C, G, T}.

Step 3: Calculate the Fourier product spectrum

S(f)= J] (\Sa(f)\ + c) (3.3)
Q6{A, C, G, T}

where c is a small positive constant. The constant c is to prevent the nulling

of S(f) if a particular character is not part of the repeat pattern.

Step 4: The beginning and end location of the repeat of the tandem repeat

region is identified by selecting a threshold value and using the Fourier

product spectra (equation 3.3).
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

However, the existing SP approaches for tandem repeat identification have

several disadvantages. All three existing approaches [8, 44, 9] cannot ascertain

whether a repeat is due to period P or its multiple, i.e., 2P, 2>P and so on.

For example, from Figure 3.1 one cannot tell whether the repeat period is of

21 or its multiple, i.e., 42, 63 and so on. In SRF [8], the power spectrum gets

crowded when the length of the input DNA sequence is high and hence it becomes

difficult to identify tandem repeats, especially inexact repeats. The PE algorithm

is designed to be executed separately for every period because the periodicity

transform provides non-orthogonal decomposition of the signal. This means that

the run time of the PE algorithm is 0(NWPmax) where N is the length of

analyzed DNA sequence, W is the window size and Pmax is the maximum period.

Further, PE algorithm does not work well in identifying inexact repeats which

occur due to insertions or deletions.

a.o« t )

a.031

0.B22

8.01 j

O.BIM
i, . ..

I i
«H«£Ld kti—J *g ink,,

1.01: II\r isS ILK ' (\M
frequency.!

Figure 3.1: Power spectra provided by SRF program for an inexact repeat DNA

sequence of period 21.
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3.3 Mathematical Formulation of Tandem Repeat Pattern Identification

3.3 Mathematical Formulation of Tandem Re

peat Pattern Identification

The standard representation of genomic information by sequences of nucleotide

symbols in DNA, RNA or amino acids limits the processing of genomic infor

mation to pattern matching and statistical analysis. Providing mathematical

representation to symbolic DNA sequences opens the possibility to apply signal

processing techniques for the analysis of genomic data [5] and reveals features of

genomes that would be difficult to obtain by using standard statistical and pat

tern matching techniques. The arbitrary assignment of a number to each symbol

would impose a mathematical structure not present in the original data. Thus, a

nucleotide mapping should be chosen such that it preserves the biological features

and does not introduce any artifact into the mapped signal. For the proposed

algorithm, a binary indicator sequence [7] representation for the DNA sequence

is selected. This mapping helps in formulating the tandem repeat identification

problem analogous to period detection in signal processing.

3.3.1 Numerical representation of DNA sequences

Consider a DNA sequence S[n] = sis2 ...sLoi length L, consisting ofa sequence

ofa series offour nucleotides symbols A, C, G, T. The binary indicator sequences

are obtained as follows:

1, if S[n] = n where Q € £(= {A,C,G,T})
Su[n\ = ^ (3.4)

0, otherwise

For example, the binary indicator sequences for GGCATACACAGACACGCC

are given in Table 3.2.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Table 3.2: Binary indicator sequences for a random DNA sequence.

G G <3 A T A C ACAGACACGC C

SA 000101010101010000

Sc 001000101000101011

SG 1 10000000010000100

ST 000010000000000000

3.3.2 Definitions of different repeats in DNA sequences

Definition 1: A subsequence S'[n] = SiSi+i... si+(_i of S[n] is an exact tandem

repeat (ETR) of period 'p' and repeat pattern a = r^r2 •••rp (where 'i' is the

starting position and T is the length of ETR), if the following conditions are

satisfied:

1- [l/p\ > 2, where [l/p\ is the count for pattern (a), i.e., number of times a

has occurred in subsequence S'[n]. The count of repeat pattern (a) should

at least be equal to two.

2. A = {rir2... rp}, where A C E k |A| > 1.

3. S&[n] is p-periodic, VA € A, where i < n < i + /.

For example, if S[n] = GGCATACTACGACGACGCCG. then S'[n] =

ACGACGACG, t = 9, p = 3, / = 9, [l/p\ = 3, a =ACG, and SA[n], Sc[n],

Sg[ti] are 3-periodic sequence.

Definition 2: A subsequence S"[n] = SiSi+1... si+;_i ofS[n] is an inexact tandem

repeat (InTR) of period 'p' and repeat pattern a = r^r2.. .rv (where 'z' is the

starting position and '/'is the length of InTR), if the following conditions are
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3.3 Mathematical Formulation of Tandem Repeat Pattern Identification

satisfied:

1. \l/p\ > 2.

2. A= {Tlr2 ... rp}, where AC E & |A| > 1.

3. SA[n] is non-periodic, for at least one A <E A, where i<n<i + l.

4. VA e A, p-period measure ofSA[n] > Threshold.

For example, if S[n] =GGCATACACAGACACGCCGGCG, then S"[n] =
ATACACAGACAC, i = 4, p= 2, / = 12, a =AC, Aee {A,C} and SA[n] is
2-periodic sequence (not necessarily exact).

From the above formulations it is observed that the repeat identification

in DNA is analogous to period detection in signals. Thus, the knowledge of
periodicity in the binary signals (i.e., Sn[n]) helps in identifying tandem repeats

present in DNA sequences. Therefore, the main objective of SP algorithm for

tandem repeat identification problem is to develop agood measure for identifying

periods in the binary signals.

3.3.3 Exactly periodic subspace decomposition

The exactly periodic subspace decomposition (EPSD) technique was proposed

by Muresan k Parks in [60]. The EPSD technique generates orthogonal sub-

spaces that correspond to periods ranging from 1 upto the maximum expected

sub-period of the input signal S. The energy of the expected sub-periods are

obtained by taking orthogonal projections of S onto these different orthogonal

subspaces. The key idea behind the EPSD technique is the concept of exactly

periodic signals (EPS). The definition of exactly periodic signal is given as:
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Definition 3: A signal S is of exactly period P if S is in <&p (where $p is

the subspace of the signal of period P) and the projection of S onto subspace

$P' for all P' < P (where $p/ is the subspace of signal of period P') [60].

^L^jL^^JjUL^^f{^^T^f

iS\ LLibUl

6000

Sequence(bp)

irtwr

uirnr^

Figure 3.2: Output period provided by EPSD technique for an inexact repeat

DNA sequence of period 21.

Thus, a signal of exactly period P is not exactly period IP, 3P, etc. although

it continues to be of period 2P, 3P, etc. Also, not every periodic signal is

exactly periodic, but every exactly periodic signal is periodic. This property of

EPSD technique helps in removing the problem with existing signal processing

techniques. For example, by looking at the output period provided by EPSD

technique as shown in Figure 3.2 one can easily say that the repeat present in
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3.3 Mathematical Formulation of Tandem Repeat Pattern Identification

the DNA sequence is of period 21. However, this is not possible for the SRF
program whose spectral coefficient was previously shown in Figure 3.1. Some of
the important properties of the EPSD technique are:

1. The EPSD technique completely decomposes the input signal S € R"
into exactly periodic orthogonal components corresponding to each of the
exactly periodic signals of n and all possible factors of n.

2. Unlike the STPT [44], the decomposition of the EPSD technique is unique.
Thus, the input signal can be uniquely decomposed on the orthogonal sub-
spaces.

3. The EPSD of signal is achieved by taking projections onto exactly periodic
orthogonal multidimensional subspaces of periods that divides n, whereas
the discrete Fourier transform is obtained by taking orthogonal projections
onto one-dimensional (1-D) complex exponentials &**/*)* with frequencies
(k/N), k= 0,...,N-l. The EPS is spanned by a collection of Fourier

exponentials, which is dictated by the period. Thus, by having spaces of

dimensions larger than one, EPS can capture the periodic energy in one
coefficient better than the Fourier transform.

The EPSD technique, proposed in [60], was applied to identify periodic signal

by considering the entire input signal, i.e., it provides information about the

periods that are present in complete input data sequence. However, in tandem

repeat identification problem, even though the core objective is to identify periods

in DNA sequences, there is one major difference. Instead of looking for periods

that are present in entire input DNA sequence, local periodic information is

considered because most of the tandem repeats that are present in the DNA

sequences are localized to small portion of the complete genome. In addition,
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

the tandem repeats form only small fraction of total genome. Thus, the main

objective of tandem repeat identification program is to provide the localized

periodic information. The EPSD technique is adapted for the current problem

to provide a measure for localized periodic information that is present in DNA

sequences.

Instead of analyzing the complete input DNA sequence in one go, we divide

the DNA sequence into a set of subsequences defined by a point-wise multiplica

tion of the original DNA sequence by a stationary window. The EPSD technique

is then applied to the resulting subsequences. Let the window be represented by

Wi of length Lw and beginning at ith element, where

(1, n = i,i + 1,... ,i + Lw — 1
(3.5)

0, otherwise

The localized portion of the sequence S, Swt is defined as

Swa = S[n] • Wi[n] (3.6)

3.4 Tandem Repeat Detection Algorithm

The objectives of the proposed algorithm are to identify the position, period and

the length of repeat patterns in DNA sequences. For identifying repeats, the sym

bolic DNA sequences are first mapped into four digital signals and then EPSD

mathematical tool is applied. Later on, repeat coefficient measure is calculated

for each window and the potential repetitive patterns are reported depending on

the value of input parameters provided by the user. The algorithm is designed to

identify tandem repeats from 2-period to maximum period (Pmax) provided by

the user within an observation window of size Lw. The complete repeat detection

process is divided into three major phases. The proposed algorithm is described
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3.4 Tandem Repeat Detection Algorithm

Table 3.3: Algorithm for calculating repeat coefficients.

1. Accept window size (Lw), Maximum period (Pmax).

2. for i=l to N + Lw - 1 do // N is the length of DNA sequence.

3. SWii [n] = Swa [n] - Swa [n], where Sw,i [n] = MEAN(Sw<i [n]).

4. am[l,..., Pmax) = EPSD(5lv,[n], Pmax).

5. irw[l,...,P^l-l2BfcJMC.

6. OUTPUTfo,^[»*]), where jr^Jp,] =max(7rw,,i[l],..., 7rW)i[Pm,

below.

Nucleotide mapping of a DNA sequence S[n] into nucleotide subsequences —

The nucleotide mapping procedure was discussed in the section 3.3.1. In this

phase, four binary subsequences (SA[n), Sc[n], SG[n] and ST[n}) are obtained

using (equation 3.4) that act as input signals for the proposed algorithm.

Calculation oftandem repeat coefficient for subsequences —For identifying the

position of the tandem repeats in DNA sequences a sliding window based ap

proach is used. The algorithm for calculating period with maximum energy for

the input DNA sequence of length N and input parameters (Pmax, Lw) is pro

vided in Table 3.3, where the value oi Pmax can vary from 2 to Lw/2. The prior

knowledge of maximum repeat pattern size restricts the search to pattern size

Pmax- However, if the user does not have prior knowledge then the value of Pmax
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can be fixed to Lw/2. In step 3 of the algorithm, the DC component (i.e., period

1) is removed from the input signal. This step helps in removing the repeats

that occur due to single base repeat pattern, for instance repeat like AAAAA in

DNA sequence ACGACAAAAACAACG, because the repeat pattern of period

1 is of no interest. In step 4, the energy of the input signal is decomposed on

the subspaces from 2 to Pmax using EPSD technique. The energies of the sub-

spaces are stored in the array aWzi . The array nwA which is calculated in step

5, measures the fraction of power of the periodic subspaces from 2 to Pmax- The

value irw^ acts as an indicator for identifying the local periodicity of the input

sequence and is said to as tandem repeat coefficient. Finally in step 6, a tuple

< P> 7Tiv,i[p] > for each window is obtained where p is the periodic subspace that

has maximum fraction of power in the subsequence for the window positioned

at i. The algorithm presented in Table 3.3, unlike the PE algorithm, needs just

a single scan for identifying the period (< Pmax) of repeat patterns in the input

DNA sequence. This step is performed on all four binary subsequences obtained

from the previous step.

Identification and characterization repeat from binary subsequences — In this

phase, utilizing the value of threshold parameter (r) and tuple < p,Trw,i\p] >

calculated in the previous phase, the repeats in all four binary subsequences are

identified first. A repeat is represented by tuple < Q,i,l,p >, where 0, £ {A,

C, G, T}, i is the starting position of the repeat (position of the window), / is

the length of the repeat, and p is the period of repeat. A repeat satisfies the

following conditions:

• TtWAi "tyt+li • • • i T*W,i+l-\ > T

• Pi = Pi+l = • • • = Pi+l-i = p
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3.5 Experimental Results

After the repeats in each subsequences are identified, all four subsequences are

processed together and classified into ETR, and InTR based on the definitions

provided in section 3.3.2.

3.5 Experimental Results

In this section, experiments are performed on two categories ofdatasets to show

the effectiveness of the proposed algorithm. First, the algorithm is used to an

alyzes pseudo DNA sequences. The second datasets included actual DNA se

quences available at GenBank database. The datasets were selected such that

the experiment covers exact, inexact (complex, dispersed, and hidden) repeat

patterns. Results obtained from other tandem repeat identification algorithm

when applied to the DNA sequences considered for analysis is also provided in

this section. The proposed algorithm was implemented in C++ for Microsoft

Windows ® platform.

A. Pseudo DNA sequence testings: In this category the datasets were created

by adding a tandem repeat pattern in a random DNA sequence. The datasets

includes both exact and inexact tandem repeats. For inexact tandem repeats

test cases with substitution, insertion and deletion operations in the initial exact

tandem repeat were taken upfor the simulation study. For each test case in (Fig

ures 3.3- 3.12), three sub-figures have been provided. The first figure shows the

test DNA sequence where the substituted nucleotides are underlined, inserted

nucleotides are circled and the deleted nucleotides are shown by rectangular box.

The symbol * in the result represents any of the four nucleotides. The second

and third figures provide information about the tandem repeat coefficient and

output period respectively, obtained for the test DNA sequence. In Table 3.4, a
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summary of tests performed on pseudo DNA sequences is provided.
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3.5 Experimental Results

Test 1: An exact tandem repeat pattern. Repeat position: 51-100.

TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT
51 61 71 g1
ATGATGATGA TGATGATGAT GATGATGATG ATGATGATGA TGATGATGAT
101 m 121 131 ,4,
GATCCTGCAG GCTGTGGGCG GTGGGCCTGG GACAGGCAGC TACGGGCCCG

AGTGTGACTG_ gIgGGCGCTG GGTGTATTCG CCTATGAAAT GTTCTATGGG

(a) DNA sequence

A 0.5

20 40 «0 80 ,00 ,20 ,40
1-

C 0.5K

Tandem Q 1 I
R«pea 20 40 60 80 100 120 140 160

1| p

jjy^

f\> .Fff
20 « 60 80 100 120 140 160 160

STfT jur™^1^

Coefficient
Output 0
Period 10

8

G4
2
0

20 40 60 80 100 120 140 160
•w "W""V, ''

•"aa^VAW

1

T 0.5

0

20 40

^•^f\l
20 40

60 100 120 140

iO 80 100 120 140 160 160
Nucleotide Position (N) »

(b) Tandem repeat coefficient

2
0

[VL_,np^! ~U

20 '» 60 80 100 120 140 160 180
10 ,

«™ rr
VYI

20 40 60 80 100 120 140 160 180
Nucleotide Position (N) *.

(c) Output period

1^-

Figure 3.3: Exact tandem repeat.

Input parameters: Maximum period=10, Window length=20, Thresholds.7.

Result: Tandem repeat pattern=ATG, Output period=3, Start position=48,

Length=61.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Test 2: Tandem repeat with 10% substitutions, (at positions 53, 56, 64, 71

and 84), Location: 51-100.

I II 21 31 41

TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT

51 61 71 81 91
ATCATTATGA TGAGGATGAT CATGATGATG ATGTTGATGA TGATGATGAT

101 111 121 131 141
GATCCTGCAG GCTGTGGGCG GTGGGCCTGG GACAGGCAGC TACGGGCCCG

151 161 171 181 191

AGTGTGACTG GTGGGCGCTG GGTGTATTCG CCTATGAAAT GTTCTATGGG

(a) DNA sequence

20 40 60 80 100 120 140 160 180
Nudtotidf Poiition (N) >

(b) Tandem repeat coefficient

80 100 120 140 160 160

^1 r
' 1\ th

:

20 40 60 80 100 120 140 160 160

y\j\ IIL_' rm ijj }
I u •

1

20 40 60 80 100 120 140 160 180

fej^ '
..A f] f Tlr

FH , I
20 40 60 80 100 120 140 160 180

Nucltotld* position (N) *.

(c) Output period

Figure 3.4: Tandem repeat with 10% substitutions.

Input: Maximum period=10, Window length=20, Threshold=0.9.

Result: Tandem repeat pattern= ATG, Output period= 3, Start position= 61,

Length= 48.
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3.5 Experimental Results

Test 3: Tandem repeat with 20% substitutions,^ positions 53, 56, 58, 64,
68, 71, 77, 80, 84 and 93). Location: 51-100.

Input: Maximum period=10, Window length=20, Threshold=0.7.

1 " 21 31 " 4)
TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT

51 61 71 81 91
ATCATJA£GA TGAfiGATTAT £ATGATAATA ATGTTGATGA TG£TGATGAT
101 111 121 131 141
GATCCTGCAG GCTGTGGGCG GTGGGCCTGG GACAGGCAGC TACGGGCCCG!

AGTGTGACTG GTGGGCGCTG GGTGTATTCG CCTATGAAAT GTTCTATGGG

(a) DNA sequence

20 40 60 80 100 120 140 160 1801-7PI MT\ <an <tn u ™7^ XZ H 7Tt L-fr ' i-UlJ "
20 40 60 100 120 140 160 180

1

C0.5

0

iV1//v/ ^rnrr7y==ju^^
ouput 20 40

Tandem .

RepeM '
Coefficient

80 100 120 140 160 180 221 ° 20 40 80 100 120 140 160 180

G0.5 v^'W.^aA?' IawaV '^— f v-

20 40 80 100 120 140 160~ 180

T0.5k A, n *™\

I3i
20 40 60 80 100 120 140 M0 180

Nucleotide Portion (N) »

(b) Tandem repeat coefficient

V\f}ps IN . . f W ""LM i
IAJ j !rd

I I

20 40 60 80 100 120 140 160 180

4 P4i ir^l/

20 40 60 60 100 120 140 160
Nucleotide portion (N) *

(c) Output period

Figure 3.5: Tandem repeat with 20% substitutions.

Result: Tandem repeat pattern= ATG, Output period=3, Start position=78,

Length=30.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Test 4: Tandem repeat with 30% substitutions, (at positions 53, 56, 58, 64,

68, 71, 77, 80, 84, 86, 90, 93, 97 and 99). Location: 51-100.

Input: Maximum period=10, Window length=20, Thresholds.7.

1

TTAACTGTCC

n

GAGTCGGAAT

21

CCATCTCTGA
31

GTCACCCAAG
41

AAGCTGCCCT

51

AT£ATTA£GA
61

TGAG.GATTAT
71

£ATG£TAATA
81

ATGTT£ATGG_
91

TG£TGAG_G£T

I0l

GATCCTGCAG

111

GCTGTGGGCG
121

GTGGGCCTGG
I3I

GACAGGCAGC
I4l

TACGGGCCCG

I5l

AGTGTGACTG
161

GTGGGCGCTG
171

GGTGTATTCG
I8l

CCTATGAAAT

191

GTTCTATGGG

(a) DNA sequence

Rf
10

A 5

0

10

C 5

0
Oupul
Period ((j

0 5

0

Mr

20 40 60 80 100 120 140 160 180

c0-5W-v/V^/V/*
Oupul 20 40 60 80 100 120 140 160 180

Tandem .

Repeal
Coefficient

G0.5 AVai^WV>VvAA/w' v ->*~-J^J V H
20 40 60 80 100 120 140 160 180

1

T05

0

;A../w/ •~/vU -Ay
20 40 60 80 100 120 140 160 180

Nucleotide Position (N) »-

(b) Tandem repeat coefficient

^•nnsH^rV

20 40 60 80 100 120 140 160 180

vq/ipijli^fl ' v,1.

20 40 60 80 100 120 140 160 180

4 Ml
\j\-T Y1— jjj—

20 40 60 80 100 120 140 180 180
Nucleotide Position (N) *-

(c) Output period

Figure 3.6: Tandem repeat with 30% substitutions.

Result:

• Tandem repeat pattern = T*A, Output period = 3, Start position = 60,

Length = 21.

• Repeat pattern = T**, Output period = 3, Start position = 81, Length =

31.
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Test 5: Tandem repeat with 40% substitutions,^ positions 53, 55, 56, 58,
62, 64, 68, 71, 73, 75, 77, 78, 80, 84, 86, 87, 90, 93, 97 and 99), Location: 51-100.

Input: Maximum period=10, Window length=20, Thresholds.7.

1 " 21 3| 4,
TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT

AT£AATA£GA TJ.A£GATTAT £A£C£TAATA ATGTT£TTG£- TG£TGA£G£T
101 m 121 131 ,4,
GATCCTGCAG GCTGTGGGCG GTGGGCCTGG GACAGGCAGC TACGGGCCCG

AGTOTOACTO OTOOOCOCTO OOTOTATTCO CCTATGAAAT GTTCTATGGG

(a) DNA sequence
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(c) Output period

Figure 3.7: Tandem repeat with 40% substitutions.

Result:

44

Periodic repeat pattern = A**, Output period = 3, Start position = 46,

Length = 27.

Periodic repeat pattern = T**, Output period = 3, Start position = 81,

Length = 31.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Test 6: Tandem repeat with 2 insertions after position 59 and 72 in input

DNA sequence. Location of repeat: 51-104.

Input: Maximum period=10, Window length=20, Threshold=0.7.

1

TTAACTGTCC

11

GAGTCGGAAT

21

CCATCTCTGA

31

GTCACCCAAG

41

AAGCTGCCCT

51

ATGATGATGg)
61

ATGATGATGA TGAgTGATGA
81

TGATGATGAT
91

GATGATGATG

I0l

ATGATCCTGC

111

AGGCTGTGGG
121

CGGTGGGCCT
131

GGGACAGGCA
I41

GCTACGGGCC

151

CGAGTGTGAC
161

TGGTGGGCGC
171

TGGGTGTATT
til

CGCCTATGAA

191 201

ATGTTCTATG GG

(a) DNA sequence

Iff^3 g oB innl
100 120 140 160 180 20 40 60 80 100 120 140 160 180

C05 KT IUr-^
*WAA ft"

20 40 60 80 100 120 140 160 180 *JJ" ° 20 40 100 120 140 160 180

Repeat
Coefficient

G0.5

0

1 pv ' ' •

20 40 60 80 100 120 140 160 180

T05

0

A^-r~^
i/,

20 40 60 80 100 120 140 160 180
Nucleotide Portion <N) *

(b) Tandem repeat coefficient

1

2-
0L

TT

20 40 60

f\fL_', fW~\JJt ',

100 120 140 160 160

IT* rr^
20 40 60 60 100 120 140 160 180

Nucltotld* position (N) *.

(c) Output period

Figure 3.8: Tandem repeat with 2 insertions.

Result: Tandem repeat pattern= ATG, Output Period=3, Start position= 74,

Length= 37.

45
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Test 7: Tandem repeat with 4 insertions after position 59, 72, 74 and 93 in

input DNA sequence. Location of repeat: 51-104.

Input: Maximum period=10, Window length=20, Thresholds.7.

1 I' 21 31 41
TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT

ATGATGATGg) ATGATGATGA TGA^TCgKTG ATGATGATGA TGATGaJITGA
101 I" 121 131 141
TGATGATCCT GCAGGCTGTG GGCGGTGGGC CTGGGACAGG CAGCTACGGG

151 ,6' 171 181 ,91 ->,,,
CCCGAGTGTG ACTGGTGGGC GCTGGGTGTA ttcgcctatg aaatgttcta tggg

1

C0.5

20 40

K/y^v~A

(a) DNA sequence

T^niK
100 120 140 160 180

20 40 60 80 100 120 140 160 180

Oupul
Tandem .

Repeat !
Coefficient

G0.5

1
20 40 60 80 100 120 140 160 180 Ontpul °

10

Vl-^H^v'K^:

20 40 60 80 100 120 140 160 180

r U I u U ^ h
20 40 60 80 100 120 140 160 180

™iA~A-,W^U ^ApW
20 40 60 80 100 120 140 160 180

a Portion (N) k.

20 40 80 100 120 140 160 180

!» rnr s/v- TJ
US rr

JL

20 40 60 60 100 120 140 160 180
Nucleotide position (N) v

(b) Tandem repeat coefficient (c) Output period

Figure 3.9: Tandem repeat with 4 insertions.

Result: Tandem repeat pattern^ TGA, Output Period=3, Start position=77,

Length=23.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Test 8: Tandem repeat with 2 deletions after position 54 and 79. Location

of repeat: 51-98.

Input: Maximum period=10, Window length=20, Thresholds.7.

Oup"1 20 40 60 80 100 120 140 160
Tandem

Repeat
Coefficient

ttaactgtcc gagtcggaat
21

ccatctctga
31 41

GTCACCCAAG AAGCTGCCCT

51 61

atgasgatgat gatgatgatg
71

ATGATGAT1IA1
81 91

GATGATGATG ATGATGATGA

10I 111

tcctgcaggc tgtgggcggt
121

GGGCCTGGGA
131 141

CAGGCAGCTA CGGGCCCGAG

I51 161

tgtgactggt gggcgctggg
171

TGTATTCGCC
181 191

TATGAAATGT TCTATGGG

(a) DNA sequence

t^YmJ\ ffirp
20 40 60 80 100 120 140 160

fviTT fu ' lur^-^ l
10

°;
2

Oulpul 0
Period

10
8

*i
o2

10;
Si.

20 40 60 80 100 120 140 160

G0.5- /
«V<A

7vF\
w \ŷ JW./v

•v* ^•-^••j-
H II n

I u

1

T0.5

0

80 100 120 140 160

A^J
nw

20 40 60 80 100 120 140 160
Nucleotide Portion (N) «•

Wn^Av

(b) Tandem repeat coefficient

2M-
01

20 40 60

13

20 40

100 120 140 160

n
JL_JTr

80 100 120 140 160
(N) ft-

(c) Output period

Figure 3.10: Tandem repeat with 2 deletions.

Result: Tandem repeat pattern=TGA, Output Period=3, Start position=53,

Length=52.
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Test 9: Tandem Repeat with 4 deletions after position 54, 68, 79 and 83.

Location of repeat: 51-96.

Input: Maximum period=10, Window length=20, Threshold=0.7.

1 11 21 31 41
TTAACTGTCC GAGTCGGAAT CCATCTCTGA GTCACCCAAG AAGCTGCCCT

51 61 71 81 91
ATGAHGATGATGATGATGBTGATGATGATSATG BTGATGATGAT GATGATGATC
101 HI 121 131 141
CTGCAGGCTG TGGGCGGTGG GCCTGGGACA GGCAGCTACG GGCCCGAGTG

TGACTGGTGG GCGCTGGGTG TATTCGCCTA TGAAATGTTC TATGGG

(a) DNA sequence

1

A 0.5

0

1

C0.5

20 40 60 80 100 120 140 160 °C ^ ^ ± ^ .[. ' .!_ •AU

srnn
100 120 140 160

10

C4
2

Output 0
Period

10

J {Jf-^-rH

Oupul 20 40
Tandem .
Repeal

Coefficient

_j

80 100 120 140 160

GO!

/^

'[yJ1^^ W^V-^/^^^j
0

1

T0.5

0

20 40 60 80 100 120 140 160

•jJ\s\r\J km
IT

r~"VL

20 40 60 80 100 120 140 160
Nucleotide Portion (N) »

(b) Tandem repeat coefficient

20 40 80 100 120 140 160

w
2
0

20 40 60 80 100 120 140 160

CriM JHiT^
0' 1 1 1 LjJ ,

20 40 60 80 100 120 140 160
Nucleotide portion (N) *

(c) Output period

Figure 3.11: Tandem repeat with 4 deletions.

Result: Tandem repeat pattern= TGA, Output Period=3, Start position=79,

Length=26.
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Test 10: Tandem repeat with 10% substitutions, 2 insertions and 2 deletions.

Location of repeat: 51-100.

Input: Maximum period=10, Window length=20, Thresholds.7.

1 II

TTAACTGTCC GAGTCGGAAT
21

CCATCTCTGA

31

GTCACCCAAG

41

AAGCTGCCCT

51 61 _

ATCATTpTGAT GAG^GATGAT
71

£ATG@ATGAT
81

GATGTTGATHA
91

TGATGATGAT

101 in

CTGCAGGCTG TGGGCGGTGG
121

GCCTGGGACA
131

GGCAGCTACG
I41

GGCCCGAGTG

151 161

TGACTGGTGG GCGCTGGGTG
171

TATTCGCCTA
181

TGAAATGTTC

191

TATGGG

(a) DNA sequence

1

A 0.5

iJ^
Hrp-^ in

20 40 60 80 100 120 140 160 180

C 0.5

Repeat
Coefficient

G0.5
A/^VW^v/V^^^K^ —rJ\

20 40 60 80 100 120 140 160 180

to:^IA^AmWw r^\^

(b) Tandem repeat coefficient

20 40 60 80 100 120 140 160 180

rVlT

OuP"1 V 20 40 60 80 100 12t5 140 160 180 ££Tandem . rarwg

|U_ 'JUt^-m

20 40 60 100 120 140 160 180

tPtff

0

j^^[-yTY\}
20 40 60 80 100 120 140 160 180

\T^Woi. • I, , *

ol 1 1 1 1 1
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Nucleotide Portion(N) • Nucleotide portion(N) p.

r^lr

(c) Output period

Figure 3.12: Tandem repeat with 10% substitutions, 2 insertions and 2 deletions.

Result: Periodic Repeat pattern= TG*, Output Period=3, Start position=88,

Length=25.
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3.5 Experimental Results

Table 3.4: Summary oftest performed on 10 pseudo DNA

sequences.

Repeat pattern

Exact tandem repeat

pattern ATG from 51-

100

Tandem repeat pat

tern ATG from 51-

100 with 20% substitu

tions

Tandem repeat pat

tern ATG from 51-

100 with 30% substitu

tions

Tandem repeat pat

tern ATG from 51-

100 with 40% substitu

tions

50

Operation

None

Substitutions at posi

tions 53, 56, 58, 64, 68,

71, 77, 80, 84 and 93

Substitutions at posi

tions 53, 56, 58, 64, 68,

71, 77, 80, 84, 86, 90,

93, 97 and 99

Substitutions at posi

tions 53, 55, 56, 58, 62,

64, 68, 71, 73, 75, 77,

78, 80, 84, 86, 87, 90,

93, 97 and 99

Detected repeat pattern

Repeat pattern= ATG, Out

put period= 3, Position=

48-108.

Repeat pattern=ATG, Out

put period=3, Position=78-

107.

(a) Repeat pattern = T*A,

Output period = 3, Position

= 60 - 80.

(b) Repeat pattern = T**,

Output period = 3, Position

= 81 - 110.

(a) Repeat pattern = T*A,

Output period = 3, Position

= 60 - 80.

(b) Repeat pattern = T**,

Output period = 3, Position

= 81 - 110.

Continued on next page
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

Table 3.4 - continued from previous page

Repeat pattern Operation Detected repeat pattern

Tandem repeat ATG Insertions after posi Repeat pattern= ATG, Out

with 2 Insertions. Lo tion 49 and 72 put Period=3, Position= 74-

cation of repeat: 51- 110.

102

Tandem repeat ATG Insertions after posi Repeat pattern= TGA,

with 4 Insertions. Lo tion 59, 72, 74 and 93 Output Period= 3, Posi-

cation of repeat: 51- tion= 77-99.

104

Tandem Repeat with 2 Deletions after posi Repeat pattern= TGA,

Deletions. Location of tion 54 and 79 Output Period=3, Posi-

repeat: 51-98 tion= 53-104.

Tandem Repeat with 4 Deletions after posi Repeat pattern= TGA,

Deletions. Location of tion 54, 58, 79 and 83 Output Period=3, Posi-

repeat: 51-96 tion= 79 - 104.

Exact Tandem Repeat Location of repeat: Repeat pattern= TG* , Out-

with 10% substitu 51-100, 10% substitu put Period=3, Position= 88-

tions, 2 Insertions and tions, 2 Insertions and 112.

2 Deletions 2 Deletions
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3.5 Experimental Results

B. Actual DNA sequence testings

Test 1: Myotonic dystrophy disease, the most common muscular dystrophy

in Humans, is caused by an expansion ofthe CTG repeat located in the 3'-UTR

(untranslated region) of dystrophia myotonica protein kinase (DMPK) gene [69].
The 3'-UTR region is present after a coding region in a DNA sequence. For a

normal person the repeat number of CTG is less than 35 and for aperson suffering

from myotonic dystrophy the CTG count is above 50 [51]. This dataset consists

of DNA sequence (GenBank accession number: XM.027572, length = 3436 base

pairs (bp)) of Homo sapiens DMPK gene sequenced under NCBI annotation

project.

The DNA sequence was tested with input parameters for window size (Lw)=40
and maximum period (Pmax)=10 and threshold (r)=0.95. The tandem repeat

coefficients obtained for subsequences SA[n], Sc[n], SG[n], ST{n] are shown in

Figure 3.13(a) and in Figure 3.13(b) the output periods obtained for the sub

sequences are provided. The subsequences Sc[n], SG[n] and ST[n] have repeat

coefficient values greater than 0.95 from 2876 to 2967 and the corresponding out

put period is 3 (shown in Figure 3.13(b)). An exact tri-nucleotide tandem repeat

pattern CTG of repeat length 62 (repeat number « 21), beginning at 2890 was

identified in the DNA sequence. The protein coding sequence for Human DMPK

gene is from 779-2668 bp. The identified tandem repeat lies after 2668 bp in

DMPK gene sequence; this confirms the presence of CTG repeat in 3'-UTR of

Human DMPK. Apart from exact tandem repeats, weak patterns of period 3

were also identified for nucleotides C (beginning at 1864, length of 21) and G

(beginning at 2114, length of 63).

Experiments were also conducted using TRF 4.0 [61]and PE [44] for a max-
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A 0.5
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(b) Output period

Figure 3.13: (GenBank Accession: XM.027572, length=3436 base pair (bp))

with input parameters (window length=80 and maximum period=20).
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3.5 Experimental Results

Table 3.5: Repeat patterns identified in HSVDJSAT DNA sequence.

Program Consensus period Repeat region

Our Algorithm 2°>r 825-865

9a,C)10a,C) lQb.d 49m 1177-1545

Hauth program 9, 10, 19, 37, 38, 48 1197-1538

TRF 4.0e 2C 826-856

10C! 1199-1539

19d 1190-1539

49d 1195-1539

"Maximum period size (Pmax)<l0. ''Maximum period size(Pmaa.)>10

cSimple tandem repeat, dMulti-period tandem repeat

eAlignment parameter(match,mismatch,indel)=(2,7,7), Min. score=30 and Pmax=50

imum period size equal to 10. TRF 4.0 with default input parameters provides

output consisting of tandem repeat of pattern TGC starting at 2890 and repeat

length 62. The PE program provided output pattern of period 3 (TGC), period

6 (TGCTGC) and period 9 (TGCTGCTGC).

TEST 2: The analysis of Homo sapiens, GeneBank Locus: HSVDJSAT of

length 1985 bp is provided in this example. This DNA sequence consists ofsimple

and multi-period tandem repeat patterns. Periods of size 2, 9, 10, 19 and 48 were

identified in the DNA sequence. The details of the identified repeats are provided

in Table 3.5. The consensus tandem repeat patterns of size 2, 19, and 49 reported

by the algorithm are: AC, CTGGGAGAGGCTGGGATTG, CTGGGAGAG-

GCTGGGAGAG,GAGGCTGGGAGAGGCTGGGAGAG*CTGGGAGAGGCT

G*GATTGCTGGGA (where * represents any of the four nucleotides i.e. A, C,

G or T). Tests were also performed using tandem repeat finder (TRF) 4.0 [54, 61]
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and Hauth program [59] for identifying repeats. In [64], Hauth reported the 49th

period as period of 48 and missed the simple repeat pattern of period 2. The

TRF 4.0 program missed the tandem repeat pattern of period size 9.

TEST 3: The complete chromosome I sequence contains two flocculation

genes (FLOl and FL09), one at each end of the chromosome, that contain a

tandem repeat region having similar 135 bp pattern [70]. The GeneBank details

of the DNA sequence and genes (FLOl and FL09) are as follows:

Locus: NC_001133, Total base pairs: 230,208

Organism: Saccharomyces cerevisiae (baker's yeast)

Gene: FLOl, Region in DNA sequence: 24,001 - 27,969

Gene: FL09, Region in DNA sequence: 203,394 - 208,007

The DNA sequence is processed by the algorithm with input parameters,

jf window size (Lw) = 600 and maximum period (Pmax) — 150. The outputs (i.e.

repeat coefficients and maximum period) of the algorithm for the nucleotide

subsequences are provided in Figure 3.14(a) and Figure 3.14(b). Two sharp

peaks are present in Figure 3.14(a). These peaks are due to presence of strong

tandem repeats in the DNA sequence at these positions. The first peak starts

at 25324 and last for 1842 bp. The maximum period for this region as shown in

Figure 3.14(b) is 135. This tandem repeat region lies in gene FP09. The second

peak starts at 204207 and last for 2466 bp. This region also have maximum

period of 135 bp. However, the total number of copies for this tandem repeat is

higher than the previous one. The result confirms the presence of strong tandem

repeats which are present in FLOl and FL09 genes of Saccharomyces cerevisiae,

chromosome I.

TEST 4: The analysis of Homo sapiens collagen gene, GenBank accession

number: NM.001847 of length 6574 bp containing weak tandem repeat pattern
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(b) Output period

Figure 3.14: (GenBank Accession: NM.001133, length=230,208 bp) with input

parameters (window length=600 and maximum period=150).
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Figure 3.15: Tandem repeat coefficient value of subsequences $4[ft], 5c[ft], SG[n],

ST[n] for DNA sequence (GenBank Accession: NM.001847, length=6574 bp)

with input parameters (window length=100 and maximum period=20).

is provided in this example. The tandem repeat coefficients obtained for subse

quences SA[n], SG[n], Sain], Srln] for window size (Lw) = 100 and maximum

period (Pmox) = 20 are shown in Figure 3.15. In the figure, subsequence SG[n]

has significant repeat coefficient value from 250 to 4400, while for subsequence

Sr[n], the repeat coefficient is above threshold=0.7 from 2233 to 2326. However,

for other subsequences i.e., SA[n] and SG[n] the value of repeat coefficient lies

between 0.4 and 0.6. This shows the presence of repetitive pattern involving

nucleotide G and T.

Tests were also performed using PE and TRF program. PE program gave

tandem repeat of period 9 and multiple of 9 (i.e., 18, 27 and so on). This is

due to problem with the PE algorithm because it cannot distinguish whether a

repeat is of period p or it's multiple. However, this problem did not appear in our
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3.5 Experimental Results

algorithm because of unique decomposition property of EPSD technique. The

TRF program provided two tandem repeat region of period 9starting at 963 and
1404. Both PE and TRF fail to inform the user regarding hidden periodicity of
nucleotide G. This has happened because the TRF and PE programs are designed
only to detect tandem repeat and not hidden periodicity of individual nucleotides
in DNA sequences.
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Figure 3.16: Output period of subsequences SA[n], Sc[n], SG[n], ST[n] for

DNA sequence (GenBank Accession: M65145) with input parameters (window

length=110 and maximum period=ll).

TEST 5: A Human microsatellite repeat (GenBank Accession: M65145) is

taken up for analysis in this dataset. Figure 3.16 shows the periods identified in

the DNA sequence. From the figure, it is clear that the DNA sequence contains

two repeat regions of period 2 and 11. The dinucleotide repeats of pattern TG

occur between positions 780 and 933 bp (GenBank annotation is between 860

and 900 bp). And the period 11 repeats are located between 92 and 781 bp
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Chapter 3. Identification of Exact and Inexact Tandem Repeat Patterns

(unannotated by GenBank). The analysis of the period 11 repeat region of

the DNA sequence reveals the dispersed (hidden repeat) copy of the period 11

i.e., TGACTTTGGGG. The TRF program was unable to detect the period 11

repeats in the DNA sequence with default input parameters. This shows the

sensitiveness of the proposed algorithm in identifying and locating dispersed or

hidden periodic patterns.

3.6 Conclusion

In this chapter, a signal processing approach for tandem repeat identification

problem in a DNA sequence is presented. A novel measure based on adapted

exactly periodic subspace decomposition technique is proposed in this chapter.

The algorithm offers an easy solution to biologist or non-computer experts and

is a complementary technique to existing non-signal approaches for identifying

tandem and other hidden repeats in a DNA sequence. Based on the concept of

local periodicity in a signal as discussed in section 3.3.3, the algorithm has the

potential to identify and locate exact, inexact tandem repeat and other hidden

and complex repeat pattern unannotated by GenBank databases. The algorithm

resolves the problems like whether the repeat pattern is of period P or its multiple

(i.e., 2P, 3P and so on) and other issues related to detection of inexact tandem

repeats that were present in previous signal processing based approaches.

Experimental results obtained from pseudo (random) DNA sequences and

actual DNA sequences, and comparison with other algorithms show the effec

tiveness of our algorithm. The proposed algorithm is able to identify the inexact

repeats that were missed by TRF algorithm due to two major advantages of the

proposed approach. First, all four bases were analyzed separately so even if one

base out of four bases is repeating in a portion of DNA sequence the repeat can
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3.6 Conclusion

be easily identified. Secondly, the periodicity measure is calculated by taking
projection onto exactly periodic multidimensional subspaces.
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Chapter 4

Novel Approaches for

Identification of Inverted

Repeats

The detection of inverted repeat (IR) structure is important in biology because it

has been associated with large biological function. The existing tools for inverted

repeat identification are too complex for non-computer experts such as biologists.

These tools require a number of input parameters before starting a search for IR

detection. Also, there does not exist any signal processing based algorithm for

IR detection in a DNA or RNA sequence. The goal of this chapter to investigate

a signal processing based approach for IR identification. Additionally, the aim is

to develop an algorithm which require few input parameters and easier to use.

First, a periodogram measure for identification of exact IR and inexact IR

(due to substitution) is presented. Later on, a correlation based approach is

provided to identify all type of inexact IRs present in a DNA sequence. This

method applies FFT algorithm for faster calculation of correlation based measure
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for IR identification. The algorithm operates in two different stages. In the first

stage it identifies exact inverted repeats present in the DNA sequence. In the

second stage the exact repeats are merged to identify inexact IRs. Experiments

were performed on actual datasets downloaded from standard databases and

results demonstrate the effectiveness of the algorithms.

4.1 Introduction

An inverted repeat is a DNA or RNA sequence that becomes a palindrome if
each character in one half of the sequence is changed to its complement char

acter (in DNA, A-T, C-G are complements; in RNA A-U, C-G). For example,
ATGCATGCAT is an inverted repeat. Inverted repeats (IRs) are widespread in
both prokaryotic and eukaryotic genomes [71, 72, 73], and have been associated

with a large number of possible functions. IRs have been implicated in the reg
ulation of initiation of DNA replication in plasmids, bacteria, eukaryotic viruses

and mammals [74]. Restriction enzyme cutting sites are interesting examples

of IRs. For example, the restriction enzyme EcoRI recognizes the inverted re

peat GAATTC and cuts between the Gand the adjoining A(the substring TTC

when reversed and complemented GAA). A detail report about the roles of IR

in human diseases is presented in [75].

Thus, it is important to detect the inverted repeat structure in a DNA se

quence. A major difficulty in identification of repeats arises from the fact that

the inverted repeats present in DNA sequence can beeither exact or inexact, and

are of unspecified length. The detection of exact inverted repeat is simple and

can be achieved in linear time but the detecting an inexact inverted repeat has

proven to be challenging task. One way to detect inverted repeats in a sequence

is done using suffix technique [76]. This technique transforms the inverted re-
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Chapter 4. Novel Approaches for Identification of Inverted Repeats

peat detection problem to finding longest common extension subsequence and

solve exact or inexact repeat with fixed number of mismatches in linear time.

However, the technique becomes both complex and inefficient for finding inexact

inverted repeat without any prior knowledge of mismatches due to substitution

or insertion/deletion of nucleotides.

Another technique for detecting approximate inverted repeats in nucleotide

sequences is inverted repeat finder (IRF) [77]. The methodology for detecting

inverted repeat using IRF is similar to the tandem repeat finder [54]. Tandem

repeat finder (TRF) is a statistically based heuristic algorithm. The general

approach of TRF is similar to BLAST algorithm. The program detects candidate

IRs by finding short, exact, reverse complement matches of 4-7 nucleotides (k-

tuples) between non-overlapping fragments of a sequence. A "center" position is

defined for each /c-tuple match. Inverted repeat finder (IRF) detects "clusters"of

A;-tuple matches having the same or nearly the same center and falling within a

small interval of sequence. Candidate inverted repeats are confirmed (aligned and

extended) or rejected by computing Smith-Waterman style similarity alignment.

IRF run against a genome sequence using parameters match, mismatch, indel,

and minimum score. Major drawback of this technique is the requirement of

input parameters listed above. A user has to do many trial sessions specifying

different set of values for these parameters in order to get a good match.

Einverted available at http://bioweb.pasteur.fr/seqanal/interfaces/einverted.

html is another program which is used for finding inverted repeats in a DNA

sequence. The algorithm is based on dynamic programming methodology. It

works by finding alignments between the sequence and its reverse complement

that exceeds a threshold score. Gaps and mismatches are assigned penalty (neg

ative score). Matches are assigned a positive score. The score is calculated by
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4-2 Periodicity Transform

summing the values of each match, the penalties of each mismatch and the large

penalty of any gaps. Any region whose score exceeds the threshold value are

reported.

In this chapter, algorithms for identifying inverted repeats based on efficient

signal processing techniques are presented. The aim of this work is to provide

easier techniques for identifying inverted repeats and to explore the possibility

of applying signal processing tools for. inverted repeat problem. Also, the aim

of this work is to provide a complementary and easier approach for identifying
inverted repeats.

4.2 Periodicity Transform

The periodicity transform [68] offers a technique which helps in detecting period
icities in a given sequence. This transform decomposes finite-duration sequences

into a sum of periodic sequences by projecting it onto a set of periodic subspaces.

The periodic subspaces are not orthogonal and hence the decomposition may not

be unique.

4.2.1 Periodic subspaces

A sequence of real numbers S (k), is said to be p-periodic if there is an integer

p such that S(k + p) = S (k) for all integers k. Let Pp be the set of all p-

periodic sequences, and P be the set all periodic sequences. Consider a sequence

S C P containing N elements. This can be considered to be a single period

of N elements, i.e., S e Pn C P, and the goal is to locate smaller periodicities

within S. In order to locate smaller periodicities within S, the sequences must be

projected on subspaces Pp for p < N. When S is close to some periodic subspace
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Pp , then there exists a p-periodic sequence Sp which is closest to S. This Sp is

said to be the ideal choice for decomposing S. For every period p and time shift

s, we can define the sequence S*(j) for all integers j such that:

1 if (j - s) mod p = 0
s&) = \ (4.i)

0 otherwise

4- The sequences <5£ for s = 0,1,... ,p —1 are called p-periodic basis vectors

since they form a basis for Pp. An inner product can be defined on the periodic

subspaces asaPxP^S function given by:

k

<51>52> =&2k7l £ 51«52« (42)
i=—fc

for arbitrary elements 51 and 52 in P. If 51 6 PPl and 52 € PP2, then the

product sequence Sl(i)S2(i) G PPlP2 is PiP2-periodic, and the inner product

satisfying the basic properties of inner product is given as:

P1P2-1

(51,52) = Yl Sl(i)S2(i) (4.3)

A sequence 5 is said to be orthogonal to the subspace Pp if (5, Sp) = 0, V Sp G

Pp. Any two subspaces are orthogonal if every periodic basis vector in a subspace

^ is orthogonal to every vector in the other subspace. However, it is important to

note that the periodic subspaces Pp are not orthogonal to each other.

4.2.2 Projection onto periodic subspaces

Consider an arbitrary sequence 5 G P. Then, a minimizing vector in Pp is

defined as 5* G Pp such that:

\S-S;\\ < \\S-SP\\ (4.4)
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4-2 Periodicity Transform

V5P G Pp. Thus, 5* is the p-periodic sequence that is closest to the original

sequence 5. The projection theorem [68] states that 5; can be characterized

as an orthogonal projection of 5 onto Pp. Applying the projection theorem,

5* GPp can be expressed as a linear combination of the periodic basis vectors

5^ (equation 4.1) as: -^

S*p = ao<5 +ay6p + ••• +a^"1 (4.5)

where the unique minimizing vector is the orthogonal projection of 5 on Pp.
Hence, 5 - S* is orthogonal to each of the periodic basis vectors 6" for s =
0,1,...,p- 1, i.e.,

(5 - 5p*) =(5 - «<$ - Ql5p •••ap_x8l-\ 6;) = 0 (4.6) *

After simplification, the coefficients as are obtained as:

a, = p(S,S;) (4.7)

Since 5 GP, it is periodic with some period N. From the definition of inner

product in (equation 4.3), a, are given by:

. pN-l >

a'=P^ESW (4-8)

However, 6*(i) is zero except when (s - i) mod p = 0, and therefore, it sim

plifies to
j JV-l

a- =^ J] 5(s +fcp) (4.9)
fc=0

And if N/p is integer then this reduces to

N/p-l

N/p
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4.2.3 Periodicity measure for IR identification

The inverted repeat measure is based on the idea that if a given rearranged DNA

sequence (where the second half of the DNA is complemented and reversed as

shown in Figure 4.1) is found to be [L/2\ periodic, where L is the length of the

DNA sequence, then this shows that the DNA sequence is an inverted repeat.

Let 5 be the given DNA sequence and let 5' be the rearranged DNA sequence of

5. And let P[l/2J be the projected sequence of 5' on \_L/2\ subspace, then the

measure for inverted repeat is given by the following periodogram coefficient.

x=\iP~¥ (4n)ll-Hi/ajll

where ||5'||2 and ||T[l/2j||2 are squared norm of sequences 5' and T|£/2j- The

value of A is always less than or equal to unity. For the case of exact inverted

repeat the value of A is equal to unity. In section 4.4.1, an algorithm based on A

is presented to identify inverted repeats. .

Unchanged

"sequenc? ACGGCCGT ACGGACGG £££.

Figure 4.1: Palindrome sequence and period-2 sequence.

4.3 Correlation Function

Correlation is a mathematical tool to quantify the degree of interdependence of

one data upon another. In other words, it is used to establish the similarity

between one set of data and another. The process of correlation occupies a

significant place in signal processing. Applications of correlation are found in
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image processing for robotic vision or remote sensing by satellite in which data

from different images are compared, in detection and identification of noise, and

in many other fields, such as, climatology. The correlation function can also be

used for discovering weak periodic signals in time series data [78].

The correlation for Appoint data is given as:

1 NPfuf2[k] =-ff22fi[n]h[n +k] where k=0,1,..., jV- 1. (4.12)
n=l

where h and f2 are two functions for which the correlation is to be calculated.

When /i[n] = f2[n\ then correlation is said to be auto-correlation and when

/iN 7^ /2N then it is said to be cross-correlation.

The complexity of the correlation operation is 0(N2) which is quite expensive,
especially when dealing with very large sequences. The correlation computation

may be speeded up by exploiting the correlation theorem, usually stated as

PFuFAk] = jjF \Fi[n]F2[n]) where k=0,1,...,N - 1. (4.13)

where F^n] and F2[n) are Fourier transforms (FT) of fx[n] and /2[n] respectively

and is the inverse Discrete Fourier transform (IDFT). This approach requires

computation of two discrete Fourier transforms (DFTs) and one inverse DFT,

each of which is most easily executed using the FFT algorithm in 0(Alog2 N).

If the sequence is sufficiently large, it is faster to use this FFT technique than to

calculate the correlation directly.
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Exact Inverted Repeat

AGTCGACT

InExact Inverted Repeat

CCAAACCTGACCTGGT-TGG

Figure 4.2: An exact and inexact inverted repeat.

4.3.1 Correlation measure for IR identification

Detection of an inverted repeat of a fixed size and fixed number of mismatches

(due to substitution or insertion/deletion) is easy. However, detecting an in

verted repeat without apriori knowledge of its length and number of mismatches

is really a challenging task. An example of exact an inexact inverted repeat

is shown in Figure 4.2. The two major objectives of any inverted repeat iden

tification algorithm are: length and location or position of inverted repeats in

a given sequence. In this section, a measure based on correlation function for

identification of length and position of inverted repeats is presented.

t 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

AGCGGCATGATCATGATCATGCCCG

GGCATGATCATGATCATGCCC CATGATCATG

Figure 4.3: A random DNA sequence and inverted repeats.

Consider a random DNA sequence AGCGGCATGATCATGATCATGCCCG.

The two main inverted repeats present in the random sequence are shown in

Figure 4.3. The reverse complemented of the random DNA sequence is given

by CGGGCATGATCATGATCATGCCGCT, where the DNA sequence is first
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Random

DNA v^' ' 3 • s » ' • i « • ,mi , » , ,, , , , j „ n 2< !S
AGCGGCATGATCATGATCATGCCCG (TV N°' °fmatches
1 ! 3 " ' • ' • • « 11 ,2 11 u IS II 17 t. n 20 21 22 21 2. 2S \i/

< CGGGCATGATCATGATCATGCCGCT
Reverse / .21.5.,,, ,„ „ „ „ t „ „ „ „ „ . , a

Complement AGCGGCATGATCATGATCATGCCCGA ^
leverse / > t • t 1 1 t 1 1 , •••<t« o la ,
nplement AGCGGCATGATCATGATCATG
DNA ' ! 3 " • « ' » > * 11 '2 13 l< 15 16 17 1, „ 20

CGGGCATGATCATGATPATr;

- 23 24 25 ,

C C C G A (20)
20 21 22 23 24 25 ^—'• ..aereenei

CGGGCATGATCATGATCATGCCGCT
2 3

A G C G G C
i ;;;;;;» »' « j » » » » u 23 24 2S 1
CATGATCATGATCATGCCCGA
4 S •'"»'«" 12 13 14 15 10 17 II 11 20 21 22 23 24

CGGGCAT"
' ' 4 S " ' 8 ' » 11 12 13 14 15 II 17 II 1| 20 21 22 23 24 25

GGGCATGATCATGATCATGCCGCT
2 ' ' ' ' ' ' ' <° « • 13 14 .5 II 17 II U 20 21 22 23 24 25 1 2

A G C G G C *
* ' ' * ' ' " » » " • 13 14 15 II 17 II 1» 20 21 22 23 24 25 1 2 3 _

GCGGCATGATCATGATCATGCCCGAGC (i)
1 ' ' S • ' ' * " 11 1! 13 14 15 II 17 II II » 21 22 23 24 25 ^^

CGGGCATGATCATGATCATGCCGCT
2 ' ' ' * ' < » * 11 12 13 14 15 II 17 11 1| 20 21 22 23 24 25 I 2 3 4

GC GGC A T G A T C A T G A T C A T GC C C G A GC G fti\
' ! " 4 »"'"» 10 11 12 ,3 14 15 18 17 II 1| 20 2, 22 a 24 25 W

15 II 17 II

' 4 a 4 a 0 7 I 9 10 11 12 11 14 ,5 ,8

CGGGCATGATC
12 3 4 5 6 7 8

AGCGGCAT

ATGATCAT

15 16 17 18 19

21 22 23 24 25

G C C G C T

20 21 22 23 24 25P • H U Id 14 15 16 17 18

GATCATGATC
* 5 6 7 fl | 10 ,, ,2 13

CGGGCATGA

14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5

TGATCATGCCCGAGCGG (7)' 1" " « '3 M 15 16 17 II 1J 20 21 22 23 2. 25 \_J

ATCATGATCATGCCGCT
16 17 18 II 20 21 22 23 24 25 1 2 3 4 5 6

ATCATGCCCGAGCGGC Ot10 11 12 13 1* 15 18 17 18 19 20 21 22 23 24 25 \ I

TCATGATCATGCCGCT

' » 3 4 S B ' « ' » '1 12 '3 « 15 16 ,7 ,8 ,1 20 21 22 23 2.
AGCGGCATGATCATGATCA

' 2 1 4 5 8 7 8 9 io 11 12 1|

CGGGCATGA

' 1, ' 4 S «'•»'» 1' " 13 14 15 16 17 18 19 20 21 22 23 24 _
AGCGGCATGATCATGATCATGCCCGAGCGGCA

3 4 ' ' ' » » '» " I' 13 « 15 16 17 18 11 20 21 22 21 24 25
CGGGCATGATCATGATCATGCC G C T

(a) Matching between a random DNA and its reverse complemented sequence

i
e
5

I
I
o

u

MW
2 4 6 8 10 12 14 16 18 20 22 24

Delay

(b) Correlation coefficients graph

Figure 4.4: Correlation between a DNA and its reverse complemented sequence.
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reversed and then the nucleotides are complemented, i.e., A—>T, T—>A, C-+G

and G^C. The number of matches that are obtained between the random DNA

and its reverse complemented sequence (where the position ofthe DNA sequence

is fixed and the reverse complemented isshifted by one position towards right) are

shown in Figure 4.4(a). This matching process between the two DNA sequences

is also called as cross correlation. The collection of cross correlation coefficients

(or coefficients having number of matches between two sequences) between the

random DNA and its reverse complemented sequences areshown in Figure 4.4(b).

Note that the two maximum peaks in the graph occurs at delay (or shifting) =

1 and 7. The magnitude of peak in the graph is actually related to the length of

IR and the delay or (shifting) is related to the start position of inverted repeat.

The two maximum peak present in Figure 4.4(b) provide information about the

major IR present in the DNA sequence and are shown in Figure 4.3. Hence,

using correlation of a DNA sequence and its reverse complemented sequence,

information about the position and length of the repeat, i.e., number of matches

can be easy obtained.

A primary step before performing DFFT based correlation of DNA sequences

is to assign some numeric values to the nucleotides. An arbitrary assignment of

number to the nucleotides would not give a correct correlation measure between

the DNA sequences. For example, let A=l, C=2, G=3, T=4, and 3 sequences be

SI = AACC, 52 = AACG, 53 = AACT. By observation, the correlation between

51 and 52 is equal to the correlation between 51 and 53, since they are off by

one element. However, using the given numeric mapping of the sequence, the

correlation coefficient between 51 and 52 is 0.9, 51 and 53 is 0.82. So, in order

to obtain a correlation measure for which the correlation coefficient is dependent

on the sequences but not on the numeric mapping, a binary assignment of the
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DNA sequence is used [29, 7]. Consider a DNA sequence 5 of length Lgiven by,

5 = sis2...sL_1sL (4.14)

And, nucleotide mapping for the DNA sequence is given by, ^

(
1, if S[n] = Q where ft e £(= {A,C,G,T,U})

0, otherwise
Sn\n] = < (4.15)

In this way, the original DNA sequence is decomposed into four binary se

quences. The decomposition of the DNA sequence into binary sequences helps

in obtaining correlation coefficients which provides the actual level of correlation

between the two DNA sequences. Let T represent the reverse complemented

sequence of 5, then the correlation between the two sequences is calculated as

follows:

Psj[k)« EnPsbeJoW 0<fc<L-l (4.16)

Psa,la[k)= EtoSn[i]In[t + k] where In[«] = IQ[i + L] (4.17)

where Psn,in[k] is an array of correlation coefficients. The magnitude of correla

tion coefficient provide information about the number of matches and k provides

information about the location of IR. The proposed algorithm in the section 4.4.2

for inverted repeat identification uses correlation coefficients as a measure for

identification of inverted repeats in a given DNA sequence.
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4.4 Inverted Repeat Identification Algorithms

4.4.1 Algorithm 1

In this algorithm, a periodogram coefficient based measure as defined in sec

tion 4.2.3 is applied for identification of exact and inexact repeat due to substi

tution. The algorithm is divided into three major stages and is given as follows:

Preprocessing: The nucleotides of 5 are assigned a complex value. This step

is very important because signal processing techniques deal only with real or

complex values. Hence, mapping symbols to numeric values is a necessary step

before the signal processingtechniques can be applied. The mapping used in this

paper is as follows:

A-1+j, T--1-J, C-l-j, G--1+J (4.18)

The nucleotides are mapped to numbers of same magnitude because of the

algorithm requirement. The mapping is independent of the order in which the

numbers are assigned to nucleotides. If 5 is of odd length then the central charac

ter from 5 is removed and length of 5 is decreased by 1. Now, the rearrangement

of 5 is done as shown in Figure 4.1 and 5' represents the rearranged sequence.

Calculation of L/2-periodic sequence: In this stage, period length, p is set

to half-length 5, i.e., L/2. Then periodicity transform is used to calculate the

L/2-periodic sequence, called TL/2, which is closest to 5.

Calculation of Periodogram Coefficient: Periodogram coefficient as defined

in (equation 4.11) is calculated to identify exact inverted repeat. However, to

detect inexact inverted repeat due to substitution, the equation 4.11 requires

73



4-4 Inverted Repeat Identification Algorithms

Table 4.1: Average of the sum of nucleotides.

A C G T

A 1+j 1 j 0

C 1 1 - j 0 - j

G j 0 -1+j -1

T 0 -j -1 -l-j

modification. For instance, if we calculate the periodogram coefficient of the

strings GCATTTGC, GCAGTTGC, GCGGTTGC, we get 0.75, 0.875, 0.75,

respectively, using (equation 4.11). The mismatch subsequences in the above

strings are denoted by underlining them. The string GCATTTGC has one mis

match and GCGGTTGC has two mismatches, yet the same value of 0.75 is

obtained for both of these strings. Thus, the straightforward formulation of pe

riodogram coefficient does not provide a direct correlation between the number

of mismatches and the observed values.

Let us understand the reasons for this ambiguity. We had earlier used a

mapping of each DNA nucleotide to a complex number, i.e., A= 1 + j, C =

1— j- G= —1+j and T = —1 - j. We observe that the average sum of any

two nucleotides and its norm (which is used in equation 4.11) are not the same

for different sets of nucleotides, thereby leading to the above ambiguity. In

Table 4.1, we show the average sum of any two nucleotides. For example, the

average of nucleotide A with nucleotide A (represented as column 1 and row 1 of

Table 4.1) would be ((1 + j)+(l + j))/2 = 1+j; and the average of nucleotides

A and G would be (row 1 and column 3 of Table 4.1) ((1 + j)+(-l + j))/2

= j. Table 4.2 shows the squared norm of the entries in Table 4.1. That is,

the first entry is ||l+j||2 which is the squared norm of (1 + j). The calculation
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Table 4.2: Square of the norm of Table 4.1.

A C G T

A 2 1 1 0

C 1 2. 0 1

G 1 0 2 1

T 0 1 1 2

of the periodogram coefficient must take into account the varying contributions

from nucleotide pairs as depicted in Table 4.2. The squared norm of each pair of

nucleotides can have a magnitude of 0, 1, or 2. In case of a match, the magnitude

contribution is 2, whereas in case of a mismatch, the magnitude contribution can

be either 0 or 1. Next, we analyze the result of these varying contributions on

the periodogram coefficient. Let L be the string length, a be the number of

matches, (5 be the number of mismatches that have magnitude 1, and a be the

number of mismatches that have magnitude 0. Then the periodogram coefficient

can be computed as (using equation 4.11):

2 * (2 * a) + 1 * (2 * ,9) + 0 * (2 * a)
2 * L

L-2*(f3 + a)+(3
L

/3 + 2*a _ k + cr

(4.19)

Note that (equation 4.19) is dependent on a, and is not simply a function of

the number of mismatches k (where k = 0 + a). It can be seen from Table 4.3

that for k number of mismatches we obtain different values for periodogram

coefficient because of the dependence of (equation 4.19) on a. In order to make

the periodogram coefficient independent of a, we use the following compensated

periodogram coefficient taking into account the nature of the nucleotide pair.
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Table 4.3: Ambiguous variation of A with the number of mismatches.

String length(L) # Match(a) # Mismatch^) Periodogram coeff. (A)

k = 0 + a

6 a

0.5

0.0

0.75

0.5

0.5

0.0

0.25

Let a be the number of matches and k be the total number of mismatches. The

contribution ofa match is two, and that ofa mismatch is one, then the expression

for compensated periodogram coefficient is obtained as follows:

2 * (2* a) + 1* (2*0) + 1 * (2* a)
Xm TZl

_ L - 2 * (0 + a) + (0 + a)
L

_1 0+ Q- =1_ *
L L

(4.20)

From (equation 4.20) it is observed that the compensated periodogram coeffi

cient is dependent on total number of mismatches and the length of palindrome.

Hence, we can obtain an unique value of compensated periodogram coefficient

for k number of total mismatches.
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4.4.2 Algorithm 2

The inverted repeat detection algorithm operates in two stages. The first stage

identifies small contiguous inverted repeats position and its length in the DNA

sequence. A contiguous inverted repeat (exact inverted repeat) is represented by

tuple < X,Y,I > where (X, Y) represents a pair of coordinates revealing the

position of the repeat in the genome sequence and I is the length of the repeat.

The second phase of the algorithm merges the small contiguous inverted repeats

to obtain inexact inverted repeats present in the DNA sequence. An inexact

inverted repeats may consists of many small contiguous inverted repeats like the

one shown in the Figure 4.3. The inexact repeat CCAAACCTGACCTGGT-

TGG is formed by merging two contiguous repeats (CCA, TGG) and (ACC,

GGT) represented by tuples < 1,19,3 > and < 5,16,3 > respectively.

Inputs: A DNA sequence (5), Minimum length of contiguous repeat (Lmin),

Window length (W).

Preprocessing Stage: In this step, four binary sequences (consisting of Os and

Is) are constructed each for the input DNA sequence and its reverse comple

mented sequence as discussed in the section 4.3.1.

Identification of contiguous inverted repeat sequence: The major diffi

culties while detecting an inverted repeat in DNA sequence are the length of the

repeat and the position of such repeat in the DNA sequence. As discussed in

section 4.3.1, the delay parameter in the correlation operation gives the location

of inverted repeat and the value of correlation provide the number of matches,

which can be used in finding the length of the inverted repeat. An exact repeat
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consists ofa single continuous repeat, however an inexact repeat may consists of

many small contiguous repeats. In this stage, the algorithm identify the length

and position of contiguous inverted repeat in the given DNA sequence. Apseudo

code of this stage is provided in the PSEUDO CODE 1.

The identification process is based on dividing the given DNA sequence into

small subsequence until some stopping criteria is met. One of the important

stopping criteria while searching for inverted repeats is based on the count of

nucleotides A, C, G, and T in the DNA sequence. The MaxMatch variable rep

resents the maximum length ofcontinuous inverted repeat sequence that can be

present in the DNA sequence and is sum of min(AA, AT) and min(Ac , Nn),
where NA, NT, Nc, NG are the counts of nucleotides A, C, G, T in the DNA

sequence between Start and End position. For example, for AGCGGCATGAT

CATGATCATGCCCG. NA=6. NT =5, Nc =7, 7VG=7 and MaxMatch = 12

which mean at maximum, there can be a continuous inverted repeat of length 12

in the DNA sequence. Thus, for any DNA sequence if it is found that MaxMatch

is less than Lmin which is provided by the user can bestraight away rejected and

hence reducing our inverted repeat search cases. After all stopping criteria for

the DNA sequence fails, a search is made for an exact contiguous inverted repeat.

Iflength of the length satisfies the minimum matching length criteria (Lrnm) then

its position and length is recorded otherwise a further search for inverted repeat

is made in the DNA sequence.

The identification of the position and length of the inverted repeat is based on

the value of the correlation coefficients that is obtained after performing a corre

lation between the DNA sequence and its reverse complemented DNA sequence.

The delay parameter of the correlation tells the location of inverted repeat in

the sequence and the value of correlation is directly related to the length of the
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inverted repeat. The list of all contiguous repeats that were identified in a por

tion of DNA sequence of Saccharomyces cerevisiae chromosome III is provided

in Figure 4.5.

PSEUDO CODE 1: FIND CONT IREPEAT(5, Start, End, Lmin)

begin

1. if CHECK FLAG(Start,End) = TRUE then

return

2. if (End-Start+1) < 2*Lmin then

return

3. NA «- No. of A's in S[Start... End]

Nc 4- No. of C's in S[Start... End]

NG 4- No. of G's in S[Start... End]

NT 47- No. of T's in S[Start... End]

4. MaxMatch <- min(AA, NT) + mm(Nc, Nq)

5. SET FLAG(Start,End) = TRUE

6. if (MaxMatch < Lmin) then

return

7. i *- start, j <— end, TotalMatch <— 0

8. while (i< j) and (TotalMatch < MaxMatch) and S[i\ = S[j] do

9. i4-i + l, j<- j-1

TotalMatch 4- TotalMatch + 1

10. if (TotalMatch > Lmm) then

11. OUTPUT(5iari, End, TotalMatch)

Start <— Start + TotalMatch, End «- End - TotalMatch

if (TotalMatch < MaxMatch) then

79



4-4 Inverted Repeat Identification Algorithms

FIND CONT IREPEAT(5, Start, End. Lmm)

return

else Corr = FIND CORRELATION (5, /, Start, End)

i<-0

while (i < [WindowLength]) do

if (Corr[i] > 2 * Lmin) then

FIND CONT IREPEAT(5, Start, Start + i, Lrmn)

FIND CONT IREPEAT(5, Start + i + 1, End, Lmm)

£ +- t + 1

return

end

Input: Saccharomyces cerevisiae chromosome III

Accession Number: NC_001135
WindowLength: 100

Minimum Continuous Inverted Repeat Length: 4

1501 ggctgtacgg tatcgagacc gctgctgaat atgctaacga atatatgaac gaattcgttc
1561 ataccggaga tatccaatca atgaaaaggg attacaatct

Output:

<1504,1596,4> <1508,1521,4> <1508,1566,6> <1511,1572,4> <1526,1561,4> <1527,1556,4>
<1529,1544,4> <1529,1546,4> <1529,1573,4> <1530,1563,4> <1536,1559,7> <1541,1573,4>
<1543,1573,4> <1544,1563 ,10x1550,1557, 4> <1558,1585, 5> <1568,1600,4> <1572 ,1592 ,4>
<1576,1593,4> <1590,1599,4>

Figure 4.5: A list of exact contiguous inverted repeat identified in the DNA

sequence of Saccharomyces cerevisiae chromosome III between 1501 and 1600.

Merging of contiguous inverted repeats: In this stage, the contiguous in

verted repeats that are present in the same window are merged together in order

to form inexact inverted repeats. The output from previous stage consists of a

list of tuples <X,Y.l >. Two tuples < XI, Yl, 11 > and < X2, Y2,12 > can be
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merged only if the following condition holds true:

X2>(Xl + ll) and Y2 < Yl -11, where Al < X2 (4.21)

For example, ACGGATATGT have contiguous inverted repeatas < 1,10,2 >

i.e., AC - - GT and < 5,8,2 > i.e., ATAT, so both can be combined

according to the above rule to obtain an inverted repeat as AC- -ATAT- - GT.

An acyclic graph is constructed in order to obtain inexact inverted repeats from

a list of contiguous inverted repeats generated in the previous stage. The nodes

of the acyclic graph are labeled as < X,Y, I >. An edge is created from node

Al =< XI, Yl, 11 > to node N2 =< X2, Y2,12 > if and only if the condition

provided in (equation 4.21) holds true.

After the construction of graph is completed, a topological sorting of the

acyclic graph is done. The sorting may result in various paths and each such

path forms an inverted repeat of the DNA sequence. For selecting the starting

node for topological sorting, the following conditions must be satisfied:

• starting node must be non-traversed node.

• if P =< XI, Y1,1 > is selected as a starting node then XI must be the

smallest starting location from the set of non-traversed node and Yl must

be farthest among all nodes that are starting from XI.

After reaching an end node, all the nodes of the current path are displayed in

the order they were visited. Each such path obtained forms an inverted repeat of

the input DNA sequence. Figure 4.6 shows the acyclic graph constructed out of

the contiguous inverted repeat provided in Figure4.5. The inverted repeat which

have the highest number of matching is < 1504,1596,4 >< 1511,1572,4 ><

1530,1563,4 >< 1536,1559, 7 > and the inverted repeat is TGAC

- GG - TATCGAGACCGCTGCTGAATATGCTAACGAAT
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Listof Inexact inverted repeat inthe DNA sequence

,4><1511

,4><1511

4x1511

4><1511

4x1511
4x1511.

4><1543.

4><1541,

4> <1558,
4> <1572,

,4x1529,
,4x1529,
.4x1527,

4><1529,
4> <1550,
4x1536,

,1572,4><1526,1561,4>
,1572,4><1529,1546,4>
1572,4x1530,1563,4><1550,1557,4>
1572,4><1530,1563,4><1536,1559,7>
1572,4x1527,1556,4>
1572,4><1544,1563,10>
1573,4>

1573,4>

1585,4>

1592,4x1590,1599,4>
1573,4><1544,1563,10>
1573,4x1550,1557,4>
1556,4>

1546,4>
1557.4>

1559,7>

Figure 4.6: A list of inexact inverted repeats detected in the DNA sequence of

Saccharomyces cerevisiae chromosome III between 1501 and 1600 base pair.

ATATGAACGAATTCGTT - - CATACCGGA

ATCAATGAAAAGGGATTACA.

GATATCCA

4.5 Experimental Results

To demonstrate the capabilities of the inverted repeat detection algorithm, ex

periments were performed on several actual DNA sequences available on public

databases. In order to demonstrate the working of the inverted repeat algorithm,

the result of a test performed on a DNA sequence is as follows:

Escherichia.colLO157:H 7. trna74

Location: (3542018-3541942), Length: 77 bp

Sequence: GCATCCGTAGCTCAGCTGGATAGAGTACTCGGCTACGAACC-

GAGCGGTCGGAGGTTCGAATCCTCCCGGATGCACCA
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GCATCCG

CGTAGGC

18

TAGCTCAGCT GGA

CCT

66

29

TAGAGTAC

C C T A

TCG

AGC
59

40

GCTACGAA

T T GG A

CCGA

GGCT
51

** Total
Match= 17

GG

«-e-> i1i +
18 29 40

GCATCCGTAGCTCAGCT

CGTAGGC

GGA

CC T

_fifi_

TAGAK

--C- It

TAC TCG

AGC
59

GCTACGAA

-T-TGGA-

CCGA

GGCT
51

GC

GG

Total

Match= 23

Figure 4.7: (a) One ofthe maximal inverted repeat given by the algorithm at the

end ofsecond stage of the algorithm. The contiguous inverted repeats are shown

in rectangular boxes. The number above the box shows the position ofthe repeat

in the sequence, and the number above the arrow denotes the length of inverted

repeat. Total number of matches in the sequence is 17. Applying a global

sequence alignment algorithm on the region where no repeat was reported, the

number of matches has increased to 23. The dark boxes in (b) shows additional

matches detected.

For the experiment minimum length of continuous inverted repeat is taken

as 3 and the window length is taken as 100. At the end of second stage, 36

inexact inverted repeats were reported from the sequence. One of the inexact

inverted repeat obtained from Escherichia_coli.Ol57:H7.trna74 at the end is the

following:

< 1, 73, 7 >< 18,66,3 >< 29, 59, 3 >< 40,51,4 >

This inexact inverted repeat is shown in Figure 4.7. The contiguous inverted

repeats identified by the algorithm are shown in the rectangular boxes. The

position ofthe contiguous inverted regions are (1, 73), (18, 66), (29, 59), and (40,

51) and the corresponding lengths are 7, 3, 3 and 4 respectively. The length of

the contiguous repeat is greater than or equal to 3. This is because the minimum
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number of contiguous repeat for the DNA sequence was taken as 3. The inverted

repeat provided by the inverted repeat detection algorithm consists of matched

(shown in rectangular box) and unmatched region. The region between two

contiguous inverted repeat matches i.e., unmatched region is further processed

in order to obtain a maximal repeat. The maximal repeat of the DNA sequence

is provided in Figure 4.7. The unmatched regions are aligned using a global

alignment technique.

The inverted repeat detection algorithm was applied on various chromosomes

of Saccharomyces cerevisiae (baker's yeast) genome data available at NCBI web

site http://www.ncbi.nlm.nih.gov.

Saccharomyces cerevisiae chromosome III: A detailed test was per

formed for different window sizes and minimum contiguous repeat length. A

typical result is shown in Figure 4.8. The inverted repeat shown in the figure

was reported when applied to chromosome III of Saccharomyces cerevisiae with

window size equal to 100 and minimum continuous repeat length as 5. Total

number of matches in the reported inverted repeat was 43. As the window size

was increased to 300 the length of the inverted repeat reported in the Figure 4.8

was increased. The inverted repeat is given by:

< 82899,83191,11 >< 82914,83176, 24 >< 82939,83151,12 >< 82952,83138,5 >

< 82958,83132,23 >< 82981,83108,29 >< 83011, 83078,8 >< 83020,83069,20 >

TATGTAGAAAT ATAG ATTCCATTTTGAGGATTCCTATAT C CTC

GAGGAGAAC T TCTAG T ATATTCTGTATACCTAATATTAT - AG

CCTTTATCAATGGAATCCCAACAA T TATCTCAA C ATTCACCC
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ATTTCTCAAGTA CTATTCATCT TACTTGAGAAATGGGTGAAT T

TTGAGATA G TTGTTGGGATTCCATTGTTGATAAAGGCT A AT

AATATTAGGTATACAGAATAT G CTAGA G GTTCTCCTCGAG C

ATATAGGAATCCTAAAATGGAAT TAGC ATTTCTACATA

Input:

Organism: Saccharomyces cerevisiae chromosome III
Accession number: NC_001134
Length: 813178 bp
Window size: 100

Minimum contiguous repeat: 5

Output:

Inverted Repeat: <82995, 83094, 15><83011, 83078, 8> <83020. 83069, 20>
Total Matches: 43

ATGGAATCCCAAC A/, T TATCTCAA
III I I I I II III III
TACCTTAGGGTTGTT

III III II
ATAGAGTT

ATTCACCCATT TCTCAAGT*

I I I I I I I I I I I I I I I I I I I I
TAAGTGGGTAAAGAGTTCAT

S3069

Figure 4.8: An inverted repeat reported by the algorithm in chromosome III of

Saccharomyces cerevisiae DNA sequence.

The starting location of the inverted repeat in the DNA sequence is 82899

and the length is equal to 293. The inverted repeat is obtained by merging

eight contiguous inverted repeats of length 11, 24, 12, 5, 23, 29, 8 and 20. The

contiguous repeats are shown in bold and are also underlined. The total number

of matches in the inverted repeat sequence is 132.

Saccharomyces cerevisiae chromosome IV: One of the maximal in

verted repeat reported by the algorithm for window size=100 and minimum

contiguous repeat length as 5 is the following:

< 307956,308027, 5 >< 307962,308021,5 >< 307982,308010,12 >

The inverted repeat is formed by merging 3 contiguous repeats of length 5, 5

and 12. The starting location of the inverted repeat is 307956. The total number

of matches in the inverted repeat sequence is 22.

Saccharomyces cerevisiae chromosome VIII: One of the maximal in-
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verted repeat reported by the algorithm for window size=100 and minimum

contiguous repeat length as 5 is the following:

< 4147,4238,5 >< 4164,4232,10 >< 4176,4203,6 >

The inverted repeat is formed by merging 3 contiguous repeats oflength 5, 10

and 6. The starting location ofthe inverted repeat is 4147 in the DNA sequence.

The total number of matches in the inverted repeat sequence is 21.

4.6 Conclusion

Identification of inverted repeats and especially inexact inverted repeats in a

DNA has remained one of the challenging problem in DNA sequence analysis.

Most of the existing methods for inverted repeat identification are either very

difficult to handle or inefficient in identifying inexact inverted repeat. Also, till

now, there does not exist any signal processing framework for identifying IRs.

The objectives of this chapter was to introduce an easier, sensitive and yet effi

cient signal processing approach for IRs identification. Based on fast correlation

technique and periodicity measure, algorithms are presented for identifying both

exact and inexact IRs. Additionally, the algorithm require the user to input only

two parameters: maximum inverted repeat size or window length and minimum

length of contiguous repeat. Experimental results of IRs detection algorithms

show the effectiveness of the proposed techniques.
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Chapter 5

Correlation Measure for RNA

Secondary Structure Prediction

Predicting the secondary structure of a RNA molecule from the knowledge of its

primary structure is a challenging task. The function of many RNA molecules de

pends crucially on theirstructure. Thischapter presents a novel signal processing

based framework for predicting the secondary structure of a RNA molecule from

its primary sequence. Correlation function is applied for finding base pairing

regions of RNA by quantifying the degree of matching between RNA sequence

and its reverse complemented sequence.

The advantage ofthis framework is that it requires only two input parameters

and does not need the user to be an expert in using the program. Additionally,

the framework gives a list of probable RNA secondary structures which are fur

ther processed by free energy algorithm to estimate the structure with minimum

free energy of the RNA molecule. Experiments conducted over tRNA and tm-

RNA sequences demonstrate the effectiveness of the framework.
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5.1 Introduction

A ribonucleic acid (RNA) molecule consists of a chain of nucleotides. Each

nucleotide is comprised of a base, a phosphate group and a sugar group. The

nucleotides differ only because of the base involved. There are four choices for

the base, namely Adenine (A), Cytosine (C), Guanine (G) and Uracil (U). The
specific sequence of the bases along the chain is called primary structure of the

molecule. Asecondary structure for a RNA molecule is simply a set of pairing

interaction between bases in the molecule. Each base can be paired with at most

one other base.

RNA molecules have a large number of functions in the cell, which often

depend on its special structural properties. RNA molecules plays important

role in a variety of important biological processes that include catalysis, RNA

splicing, regulation oftranscription, translation, and RNA-DNA, RNA-RNA and

RNA-protein interactions. The function of an RNA molecule is determined by

its structure. The formation of RNA structure is hierarchical. The primary

structure, which is thesequence ofnucleotides form the first level oforganization.

At the next level is the secondary structure, the sum of canonical (AU, CG and

UG) base pairs. And there is a tertiary structure, which is the three-dimensional

arrangement of bases and the quaternary structure is the interaction of RNA

with other molecules, which are proteins, RNA or DNA molecules. To a large

extend the structure of RNA molecule is determined by its secondary structure.

Thus it is very important to predict the secondary structure of a RNA molecule

to know its tertiary and quaternary structure. The experimental approaches

for the discovery of structure are very expensive and time consuming, and thus

computational methods are followed to predict the structure of RNA from the

primary structure of the molecule.
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The computational algorithms for predicting RNA secondary structure is pri

marily divided into two categories: phylogenetic comparison/covariance meth

ods [79, 80] and minimum free energy methods [81; 82, 83]. The former methods

start from the assumption that structure is much more conserved than sequence

during evolution. Base pairs are inferred by finding positions inaligned sequences

that co-vary so as to conserve base pairing potential. Comparative analysis is

quite robust when a number of homologous sequences are available. Over 97% of

base-pairs predicted for ribosomal RNA were demonstrated in subsequent crys

tal structures [84]. In contrast, free energy minimization methods require only

a single sequence and proceed automatically without the labor-intensive steps of

iterative alignment and base pair detection that comparative sequence analysis

requires. Free energy minimization is the most popularmethod for the prediction

of RNA secondary structure. The energy minimization algorithms are based on

the hypothesis that a RNA molecule forms a structure that has minimum free en

ergy. The free energy of the RNA molecule is calculated based on the summation

of the free energy ofall the loops init [85]. Also, many tools have been developed

that use a combination of minimum free energy and a covariation score [86, 87]

or probabilistic models compiled from large reference data-sets [88, 79].

The current available programs require a number of parameters from user to

predict the structure of the RNA molecule. The contribution of this study is to

provide a signal processing based technique to predict the secondary structure

of RNA molecule. The proposed algorithm takes mainly two input parameters:

RNA sequence and theminimum number of continuous base pairs. These param

eters, unlike in other programs, do not require an expert user who understands

the inner details of the system. A novel correlation measure is defined later in this

paper for identifying the regions in RNA sequence with high base pairing. The
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algorithm tested over a number of RNA sequences and the predicted structure is

compared withmfold server (http://www.bioinfo.rpi.edu/applications/mfold/old/

rna).

5.2 Correlation measure for RNA secondary struc

ture prediction

The secondary structure of a RNA molecule is the collection of base pairs that

occur in its 3-dimensional structure. The base pairing in RNA sequence leads

to formation of various types of loops (hairpin loop, internal loop, stack/stem

loop, multi-branched loop) in a RNA secondary structure. A RNA sequence is

represented as R = n,r2,r3, ...,rn where n is called the ith nucleotide. Each r{

belongs to the set A, C, G, U. The pairs A-U and C-G are called Watson-Crick

pairs and G-U is called wobble pair. A secondary structure or folding, on R is a

set S of ordered pairs ri: Tj written as i-j, satisfying the following:

1. The distance between the bases in the pairs (i-j) should be greater than

3.

2. If i-j and i'-f are 2 different base pairs, (i < i'), then either

• ^ < j < i' < j' (i-j precedes i'-j'), or

• i < i' < j' < j (i-j includes i'-j').

For example, the secondary structure of a random RNA molecule shown in

Figure 5.1 is written as S ={(2,53,3), (5,49,2), (8,31,4), (14,26,4), (35,45,3)}.

Each secondary structure of a RNA sequence has some Gibbs free energy

AG(S) associated with it [81, 82]. For pseudoknot-free secondary structures,
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Stacking
loop

3- V^

m • Hairpin
loop

Interior

loop

Figure 5.1: Secondary structure of a psuedo RNA molecule. The thick line stands

for the backbone ofthe molecule and thick line stand for base pairings. The solid

dots represent monomers 5' and 3' show the head and tail of this RNA of length

54. Many different loops formed when RNA folds are also shown in the figure.

this is typically calculated as the sum of the free energies of all loops. The

Gibbs free energy is commonly used to describe the secondary structure since it

contains entropic contributions from the formation of base pairs. The total free

energy is the sum of the energy contributed from each elementary piece such as

the stacking of base pairs and the connecting loops.

The RNA secondary structure prediction problem can be stated as follows:

Given a RNA sequence R, let ft be a set of secondary structure, and let G(S)

be the free energy ofS, where S € ft, then the objective ofprediction algorithm

is to find S' such that G(S') is minimum. In the proposed algorithm, the sec

ondary structure ofa RNA is predicted by first maximizing base pairing and later
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on minimizing free energy of the RNA molecule. The base pairing regions are

identified based on the correlation framework as discussed in section 4.3.1. The

correlation coefficients for Watson-Crick and Wobble pairs in a RNA sequence is

obtained using (equation 4.12 and equation 4.13) and is given by,

pR,l[k] = PRA,iA[k]+ PRcJclk}+ PRGJGlk} +

PRvJv [k] + PRcJa [k] + PRuJc [k], l<k<L (5.1)

where R is a primary RNA sequence, I is the reverse complemented sequence of

5 and L is the length ofthe RNA sequence. RA, Rc, RG and Rv are the binary

sequences of R obtained using (eqution 4.15). Similarly, IA, Ic, IG and Iv are

the binary sequences of /.

The correlation measure used by the proposed algorithm for identifying con

tinuous Watson-Crick and wobble base pairs is given by,

WU = j7PR,i[k], l<k<L (5.2)

5.3 RNA Secondary Structure Prediction Algo

rithm

The algorithm is divided into three different stages. The complete framework

of the algorithm is shown in Figure 5.2. The algorithm starts with nucleotide

mapping which form the preprocessing step of the algorithm. Correlation coef

ficients for the input RNA sequence (R) are obtained by processing the binary

mapped sequences. These coefficients are further processed and the regions hav

ing high base pairs in the RNA sequence are identified. Some of these regions are

merged together to construct secondary structures for the input RNA sequence.
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The algorithm provides a list of secondary structures and the structure that has

minimum free energy [81, 82] is reported as the secondary structure ofthe input

RNA sequence.

Correlation

\
Reverse

Complemented
RNA

Nucleotide

Mapping

A/ /
c\ /

u\l /1~*.

\
Correlation \

—»>

—»»

A

Sum

, i

Correlation
Identification

,. of base
pairing
regions

Merging of
Contiguous

Base Pair

Regions
Correlation

Nucleotide

Mapping

A//l\ \r-*-
&]/ y\
g//\\

Primary
RNA

Correlation

T1 \
nput RNA Sequence \ \ 1

Correlation /

Free

Energy
Calculation

Figure 5.2: Block diagram ofthevarious steps involved inthesecondary structure

prediction algorithm.

Inputs: RNA sequence (R), minimum number of contiguous base pairs (0).

Preprocessing Stage: The symbolic RNA sequence (R) is converted into four

binary indicator sequences RA, RQ, Rq, and % as discussed in the sec

tion 4.3.1. Let nA, nc, nG, and njj represent the number of nucleotides A,

C, G, and U in R. And, let 'a' represent the number of base pairs for a RNA

secondary structure (S). Then, the maximum value ofa (if Watson-Crick pairs
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are given priority over wobble pairs) is given by:

oimax — min(nA, njj) + min(n(j,riQ) +

min(njj —min(nA,n-[j),nQ —min(nQ,nQ)) (5.3)

The value of amax is useful in devising threshold parameters which are defined

in next stage of the algorithm for identifying high base pair regions.

Identification of high base pair region: In this step the regions that satisfy

the minimum number of contiguous base pairs (0) as provided by users are

identified in the input RNA sequence. Two threshold parameters Xupper and

Xiower are defined which are useful in locating the base pairs. The threshold

parameters utilize the value of amax which was defined in (equation 5.3).

•Slower = Glow,,.,. * Otmax, XUpper = 0upper * OLmax, (5.4)

Wliei C U <*. 0/onjer'i Oupper -^ t, 0/oufer <C Oupper

The values 5upper and Si^ej. are fixed for the proposed experiment to 0.75

and 0.5. These values were obtained after testing the algorithm to a number of

test data sets. Using these two threshold values and the correlation coefficient

sequence that was defined in the previous step, the base pair identification is

divided into three different cases. For the first case in which the correlation coef

ficient values are below lower threshold value Xiower, the RNA sequence is rejected

(i.e., subsequence not explored further). In the second case where the value of

threshold lies between upper and lower thresholds value, the RNA sequence is

divided into two subsequences and each subsequence is explored further for high

base pairing regions. For the last case, if the correlation coefficient lies above

the upper threshold parameter the RNA sequence is not explored further and is
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accepted as a high base pairing region. The pseudo code ofthis stage is provided

in PSEUDO CODE 2.

PSEUDO CODE 2: FIND HIGH BPAIR(i?, i, j, 0)

begin

1. if(j - i < 3) and CHECK FLAG(ij)=0 then

//checking minimum distance between base pairs

return

2. else

//if base pairs satisfy the minimum distance criteria

SET FLAG(i, j)*- 1, match <- 0

while(j - i)< 3 and ri is base pair of r7 do

//looking for contiguous base pairs

i*-i + l,j+-j-l

match <— match + 1

if (match > 0) then

//check for minimum contiguous match criteria

OUTPUT(i —match, j + match, match)

FIND HIGH BPAIR(i?, i + l,j-l,0)

else

i <— i —match, j <— j + match

if (aw* < 2 * /?) then

//check for presence of enough base pairs

return

else

//calculate coefficient

p,{i,...,j} = FlNDCORR(R[i,...,j})
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k <— i

while(/f < j) do

•f(* < j)(^[k] > Xiower) and [fi[k] < Xupper) then

FIND HIGH BPAIR (R, i, k, 0)

FIND HIGH BPAIR (R, k + 1, j, 0)

else if(i-i[k] > Xupper) then

FIND BASE PAIRS (R,[i,k])

FIND BASE PAIRS (R[k + l,j))

end

Merging of contiguous base pairing regions: The previous step of the

algorithm results in construction of a tree structure. The nodes of the tree are

represented bya tuple < X. Y, L >, where X, Y are the positions ofa contiguous

base pair region and L is the length of the contiguous base pair region in the

RNA sequence. The children of a node P =< Xp, Yp, Lp > satisfy the following

properties:

• < Xt, Yt, L{ > is a left child if Xt > (Xp + Lp) and Yt < (Yp + Lp).

• < Xr, Yr, LT > is a right child if Xr > Yp.

The tree is traversed in depth first search manner and the nodes covered

from the starting node to the end node form a secondary structure of RNA. For

selecting the starting node, the following conditions must be satisfied:

• Starting node must be a non-traversed node.

• IfP=<AT,yi,Ll > is the selected starting node then XI must be the

smallest among the non-traversed node and Yl must be farthest among all

nodes that are starting from Al.
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Later on the free energy for each structure is calculated and the structure that

has minimum energy is selected as the secondary structure of the RNA molecule

(R).

5.4 Experimental Results

In order to test the effectiveness of the proposed algorithm, experiments were

performed on datasets of transfer RNA (tRNA) obtained from publicly available

website http://lowelab.ucsc.edu/GtRNAdb/ and datasets of tmRNA obtained

from http://www.indiana.edu/tmrna. From thetRNA database a tRNA sequence

for an organism was taken up for the experiment. The details of the tRNA se

quence are as follows:

Organism: Drosophila melanogaster(Release 4), Sequence name: arm 2L.trna35,

Location: (3173084-3173003), Length: 82bp,

Sequence-.gcagucguggccgagcgguuaaggcgucugacuagaaaucagauucccucugggagcgua

gguucgaauccuaccgacugcg

For the experiment, the minimum length of contiguous base pair region was

taken as 3. The minimum folding energy reported by the algorithm was -27.3

Kcal/mol and structure of the molecule is given by: < 1,81,7 >,< 10,25,3 >

, < 27,43,5 >, < 45, 55,4 >, < 58,74,5 >. The predicted secondary structure of

RNA molecule is shown in Figure 5.3. The base pairs in the structure are shown

with dots. This tRNA was later on tested using mfold program available at http:

//www.bioinfo.rpi.edu/applications/mfold/cgi-bin/rna-forml.cgi. For thetestthe

setting of the mfold server was left to its default values. The folding energy of

the tRNA predicted by the mfold server was -27.1 Kcal/mol and the structure

is given by: < 1,81,7 >, < 8,21, 5 >, < 23,47, 2 >, < 26,44,6 >, < 51, 73,5 >
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, < 57,66,2 >. Thus the algorithm provides a secondary structure for the tRNA

which has lower folding energy than that predicted by mfold program.

Figure 5.3: The secondary structure predicted by the algorithm. The base pairs

in the structure are shown with a dot. The free energy of the RNA secondary

structure is -27.3 Kcal/mol.

Experimental results of some Eukarya and Archaea tRNA sequences are pro

vided in Table 5.1. The secondary structures that were predicted by the proposed

algorithm and the mfold server are shown in Table 5.1. The free energy of the

structures that were predicted by algorithms (i.e., proposed algorithm and mfold

program) is quite close and is shown in the Table 5.1. As the minimum number

of contiguous base pair is taken as 3, the secondary structure obtained by the

proposed algorithm for some of the tRNA is different from that given by mfold

program. However, the folding energy obtained by both methods is quite near.

When the minimum length of matching region was reduced to 2, the proposed
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program gives out the same secondary structure as that predicted by the mfold

program.

The result obtained on some RNA sequences using the proposed algorithm is

presented in this section. The minimum contiguous match was set to 4.

Sequence name: Recli_amer2_0200 Reclinomonas americana mitochondrion pre-

tmRNA homolog, version 2, RNA sequence: uauauuaacuauggacccgagggcaguu-

cucggcaucuccauuuagauauuguuuuuaaggggauguuuuuaggauucgacauaguaauaua

Secondary structure predicited: < 1,92, 7 >, < 9,85,5 >, < 17,37, 7 >, < 34,66,

7>,<43,59,5 >

Folding energy of the structure: -26.3 Kcal/mol.

The secondarystructure predicted by the proposed algorithm for Recli_amer2

_0200 Reclinomonas americana mitochondrion pre-tmRNA homolog is shown in

Figure 5.4.

Sequence name: Recli_amer3_0201 Reclinomonas americana mitochondrion

pre-tmRNA homolog, version 3

RNA sequence: uuucguaguaacuauggacccgagggcaguucucggcaucuccaucuaaaaaaau-

uuuuuuuaaggggauguuuuuagaauucgacauaguacaauauuaugaga

Secondary structure predicted: < 1,105,10 >,< 11,91,6 >, < 20,36,7 >, <

37,71,7>,<47,63,7>

Folding energy of the structure: -30.4 Kcal/mol.

The secondary structure predicted by the proposedalgorithm for ReclLamer3

_0201 Reclinomonas americana mitochondrion pre-tmRNA homolog is shown in

Figure 5.5. The tmRNAs were also tested with mfold program and it gives out

the same secondary structure as that given by the proposed algorithm. From the
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Figure 5.4: Secondary structure of Recli_amer2.0200 Reclinomonas americana

mitochondrion pre-tmRNA homolog, version 2 with minimum contiguous match

taken as 4.

experimental results, it is seen that the mfold program does not always provide

a secondary structure of the RNA molecule that has the minimum free energy.

For example, for Drosophila melanogaster (Release4) RNA sequence the mfold

server provides a secondary structure having free energy as -27.1 Kcal/mol, how

ever the proposed algorithm provides a structure having free energy equal to

-27.3 Kcal/mol. Also, the mfold program requires a large number of input pa

rameters, however the proposed algorithm require two input parameters. Thus,

the proposed algorithm provides a very simple and novel signal processing based

approach for any non-computer experts/biologists for predicting secondary struc

ture of RNA molecule. Applying the correlation theorem of signal processing the

calculation of coefficient takes 0(Llog2L) where L is the length of the RNA

sequence. Thus, the algorithm can be applied to even very large RNA sequences

without much increase in the computational time. Additionally, the algorithm
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Figure 5.5: Secondary structure of Recli.amer3_0201 Reclinomonas americana

mitochondrion pre-tmRNA homolog, version 3 with minimum contiguous match

taken as 4.

can be used for designing RNA molecule satisfying the minimum contiguous

match parameter.
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to Table 5.1: The secondary structure of RNA with minimum folding/free energy calculated by the algorithm.

Sequence name Length

Athal-chrl.trnal5 73

C.Elegans, 72

ChrJV.trna26

D.melanogaster 82

Arm_2L.trna35

Gallus gallus 82

Chr7.trnal5

Homo sapiens 75

Chrl2.trnal6

Our algorithm

Structure Free

Energy

< 1,72,7>,<9,32,3>, -20.6

< 36,63,5 >,<42,56,3 >

< 1,71,8 >.< 10,24,4 >, -28.2

<26,42,5>,< 49,62,3 >

< 1,81,7 >,< 10,25,3>, -27.3

< 27,43,5>,<45,55,4>,

< 58, 74,5 >

< 1,81,7>,< 10,25,3 >, -29.1

<35,52,7>,<58,74,5>

< 1,74,12 >,< 15,58,3>, -20.6

< 29,45,6 >

*

Mold program

Structure Free

Energy

< 1,72,7 >,< 8,64,3 >, -26.53

< 11,43,3>,< 16,34,3 >

< 1,71,8 >,< 10,24,4 >. -28.2

<26,42,5>,<49,62,3>

< 1,81, 7 >,< 8,21,6 >, -27.1

< 23,47, 2 >,< 26,45,6. >,

< 51,73,5 >,< 57,66,2 >

< 14,32.5 >,< 19,66,4 >, -31.0

<24,59,4>,<29,54,2>

<35,52,7>

< 1,74,12>,< 15,58,3 >, -21.3

< 24,50, 2 >,< 29,45,6 >

<35,52,7>

re

3
re
s

S3
V.
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5.5 Conclusion

The main contribution of this chapter is the use of correlation based framework

for predicting the secondary structure of a RNA sequence. The advantage of

using the algorithm is that it gives a list of probable secondary structure for

the RNA sequence. The secondary structures are then processed by free energy

calculation algorithm and the structure having minimum free energy is selected

as the most probable secondary structure for the RNA sequence.

The secondary structure prediction algorithm requires the specification of

mainly two well understood parameters: primary RNA sequence and minimum

number of continuous base pair required for the secondary structures. The other

parameters required are the values for degrees of upper and lower matching

parameters. These can be generally fixed to a reasonable value by the algorithm.
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Chapter 6

Recognition of Coding and

Non-Coding DNA Sequences

In this chapter, a pattern recognition framework for classification ofcoding and

non-coding DNA sequences is presented. In addition, a novel feature vector

consisting of wavelet variance coefficients (WVC) is also proposed. The various

tasks performed for the classification system are discussed first. Later on, a de

tailed 10-fold performance evaluation ofthe system on Saccharomyces cerevisiae

(Yeast) and Escherichia coli (E. coli) genome is performed. Acomparison ofthe

proposed approach with a standard classification technique is also done.

The classification algorithms operate on the basic assumption that every pro

tein coding region should have some distinct sequence features or properties that

can distinguish it from the surrounding regions, such as non-coding regions and

intergenic regions. The standard existing classification techniques are based on

linear/slope model of Z-curve components. However, the linear model provides

a poor approximation for highly non-linear Z-curve components. The second

problem is that the features which are derived from linear model of Z-curve do
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not consider the local information content ofthe DNA sequence. In the proposed

technique a wavelet based time series analysis isperformed for extracting features

from Z-curve components. The wavelet variance feature vector is obtained based

on scale by scale decomposition of Z-curve components variance and provides

both local and global information contents of DNA sequences. Additionally,

the presented wavelet based time series analysis technique for DNA sequences

provides a generic approach for analysis of genomic data and can be extended

to other problems related to DNA sequence analysis. Experimental results ob

tained from analysis of complete genome data of Yeast and E. coli demonstrate

the effectiveness of the proposed approach.

6.1 Introduction

A (protein-coding) gene may bedefined as any pattern in a DNA sequence which

results (under proper conditions) in the generation ofa protein product. A gene

is further divided into exons and introns. Although some exons (or parts of

them) may be non-coding, most gene finding softwares use the term 'exon' to

denote the coding part of the exons only. The problem of gene recognition

is to define an algorithm which takes as input DNA sequence and produces as

output a feature table describing the locationand structure of the pattern making

up any genes present in the sequence. At the core of most gene identification

algorithms are one or more coding measures - functions which produce, given

any sample window of sequence, a number of vectors intended to measure the

degree to which a sample sequence resembles a window of 'typical' exonic DNA.

The prediction and classification of coding and non-coding DNA sequences are

popular research areas and many review papers on gene prediction have been

published [89, 90, 91, 92, 93, 94, 95]. '
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In the past two decades, a number of useful coding measures/indices have

been proposed, for example codon usage bias [96], base composition bias be

tween codon positions [97], and periodicity in base occurrence [7]. Review on

various coding region statistics is provided in section 6.2. Most of the previ

ous classification measures were obtained either by studying the composition

of the nucleotides in the DNA sequences or Z-curve components. The Z curve

representation for DNA was given by Zhang and co-workers [98, 99]. A brief

introduction to Z-curve is provided in section 6.3.1. The popular and accurate

protein-coding DNA classification tools are based on coding measures derived

from Z-curve components [100, 101, 102]. The Z-curve based coding measures

are obtained by calculating the slope of all three components of Z-curve. The

linear/slope model fitting approach concentrates on global trend in the DNA

sequence. Hence, there may be cases where some local information which other

wise is important for identifying as a coding sequence is lost, especially for short

DNA sequence.

Till date, a number of techniques exist for protein-coding identification, how

ever very little work has focused [103, 102] on the classification of coding and

non-coding DNA sequences. The aim ofthis chapter is to provide a novel coding

measure that provides both local and global information of the DNA sequence

for designing more accurate classification system. In addition, the goal is not

meant to replace previous coding measures, rather, to act as a complement to

these already widely used measures. The proposed novel coding measure is rep

resented by a fixed length feature vector (in pattern recognition terminology).

The feature vector is obtained by applying a wavelet based time series analy

sis approach to Z-curve components. The feature vector calculation task makes

no assumptions about the model followed by the components of Z-curve and is
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purely based on analysis of variance (ANOVA) [104], a time series analysis tech

nique. Each component of the Z-curve is viewed as a time series data generated

by some stochastic stationary process. Then, a scale-by-scale decomposition ofZ-

curve components variance is performed using maximal overlap discrete wavelet

transform (MODWT). The collection of wavelet variance coefficients obtained at

various scale is defined as a feature vector. Thus, the feature vector obtained is

a summary of various levels of information (finer to coarser or local to global)

present in DNA sequences. Later on, support vector machine (SVM) [105, 106],

an efficient machine learning tool, is applied on the novel features for classifica

tion.

6.2 Literature Review

During the past twenty years, several gene finding algorithms (GRAIL [107],

GeneParser [108], GeneFinder [109], MZEF [110], VEIL [111], Genie [112], GENES-

CAN [113], HMMgene [114], GeneMark [115]), etc. have been developed. At the

core of the gene finding algorithms are one or more coding measures [96, 90,

89, 116]-functions which calculate, for a given window of sequence, a number or

vector that measures attributes correlated with protein coding function. Some

of the coding measures that are widely used by the gene finding algorithms are

as follows:

Start codon measures: The frequencies of ATG triplets in the genomes of

various species were systematically analyzed by Saito and Tomita [117]. ATG

triplet is involved in the initiation of translation and is also called the start

codon. Let the total number of the ATG triplet contained in all three frames

in a sequence be denoted by NATG. The number of frames containing the start
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i.
codon m a sequence is denoted by k, i.e., k = 0,1,2,3. The start codon measures

are given by:

fstartCodonl = (1 + k?) *NATG (6.1)

fstartCodon2 ~ NATG (6.2)

Stop codon measures: The distributions of the three stop codons, i.e., TAA,

TAG and TGA, in three phases along coding, noncoding, and •intergenic se

quences are studied in detail by Wang et al. [118]. Let NTAA, NTAG, and NTGA

be the number oftriplets TAA, TAG, and TGA occurring inall the three frames

of the sequence. Like the start codon measures, the stop codon measures are

given by:

fstopCodonl = (1 + k2) *Nstop, (6.3)

fstopCodoni = Nstop, where NSTop = NTAA + NTAG + NTGA (6.4)

Position asymmetry measure: Let f(b, r) be the frequency of nucleotide

bat triplet position r. Let f(b) = £;!=1(/(&,r))/3 be the average frequency

of nucleotide bat the three triplet positions, and define the asymmetry in the

distribution of nucleotide bas the variance of this frequency, i.e., asym(b) =
J2i=i(f(b, i) - f(b))2. The position asymmetry measure (PA) of the sequence is
defined as:

PA = asym(A) + asym,(C) + asym(G) + asym(T) (6.5)

*
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Purine measure: It is well known that the first codon position in coding re

gion is predominantly taken by purines and this fact is independent of species ,

whereas bases in non-coding regions tend to be randomly distributed. The occur

rence frequencies of purines in the three reading frames are denoted by (o» + gA,

i = 1,2,3, and the purine measure is defined as: max(ai + gt), i = 1,2,3.

Pyrimidine measure: It is well known that the third codon position in coding

region is predominantly taken by pyrimidines and this fact is independent of

species, whereas bases in non-coding regions tend to be randomly distributed.

The occurrencefrequencies ofpyrimidinesin the three reading frames are denoted

by (ci + ti), i = 1,2,3, and the pyrimidine measure is defined as: max(ci + £,),

i = 1,2,3.

Z-curve measures: The Z-curve representation for a DNA sequence was given

by Zhang and Zhang [98]. The Z-curve measures are based on the differences

of single nucleotide frequencies at the three codon positions between the protein

coding ORFs and the non-co.ding ORFs. The frequencies of bases A, C, G, and T

occurring in an ORF with bases at positions 1,4,7,...; 2,5,8,...; 3, 6,9,..., are

denoted by Oi, cl5 gi, a2, c2, g2\ a3, c3, g3, respectively. The Z-curve measures,

xi, yi, zx, x2, j/2, z2, x3, j/3, z3 are given by:

Xi = (a* + g\) - (et + U)

y{ = (oi + c{) - (gt + ti)

zi = (a< + U) - (d + g{) (6.6)

where i = 1,2,3.

The most recent and accurate protein-coding identification techniques are

based on Z-curve [100, 119, 120, 121].
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Simple Z-curve measures: The simple Z-curve (SZ) measures [101] are given

by:

SZi = max[(ai + gf) - (a + U))

SZ2 = max[(ai + a) - (gt + U)]

SZ3 = max[(ai + U) - (a + gt)] (6.7)

where i = 1,2,3.

Periodic asymmetry index: Given a DNA sequence, three distinct probabil

ities are considered, the probability Pin of finding pairs of the same nucleotide

at distance nucleotide at distances k= 2,5,8,..., the probability P^t of finding

pairs of the same nucleotide at distance k= 0,3,6,..., and the probability P2ut

of finding pairs of the same nucleotide at distances k = 1,4, 7,.... The value

of Pin will be greater than the other two other probability for protein-coding

regions, whereas for non-coding regions the three probabilities will be similar.

The periodic asymmetry index (PAI) is given by:

PAI = m^(Pin,PoUyPL) ,fi .
min(Pin,P^ut,P^t) V-*)

Average mutual information measure: Let Pi and pj be the probabilities

of nucleotides i and j in the DNA sequence, and pij(k) is the probability in the

DNA sequence of the pair of nucleotides i and j at a distance of k nucleotides.

For each distance k, sixteen different individual correlations can be calculated.

A measure that summarizes all sixteen correlations at a given distance k is the

mutual information function and is given by:

I(k)= £ Pii(*)log2(^) (6.9)
i,je{A,C,G,T} PlP3
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The mutual information I(k) quantifies the amount of information that can

be obtained from one nucleotide about another nucleotide at a distance k. In

protein-coding DNA, I(k) oscillates between two values, while in non-coding

DNA, I(k) is rather flat. Herzel and Grosse [122] called the two values between

which I(k) oscillates in coding DNA the in-frame mutual information Iin at

a distance k = 3,6,9,..., and the out-of-frame mutual information Iout at k =

4,5,8,.... In order to reduce the pair of numbers Iin and Iout to a single quantity,

they compute the average mutual information (AMI) as

AMI =Im +32Iout (6.10)

Fourier spectral measure: A major signal in protein-coding regions of ge

nomic sequences is a three-base periodicity [7]. The Fourier spectral measure is

defined as follows. Let Ad(t), Cd(t), Gd(t) and Td(t) be the number of distinct

pairs of nucleotide bases A, C, G and T respectively, in a DNA sequence sepa

rated by a distance t, where t ranges from 1 to N. Let s(t) = Ad(t) + Cd(t) +

Gd(t) + Td(t). Let S(k) be the discrete Fourier transform (DFT) of s(t), i.e.,
N-l

S(k)^J2s^~j27rkt/N (6-n)
t-o

For three-base periodicity, S(k) exhibits a strong peak at the frequency index

k = N/3. Let P(k) = |5(A;)|2 be the power spectrum of S(k), then the Fourier

spectrum measure is defined as follows:

P(k)

(i/(2w) + i)Y:^Kk-ZPU)
where k = N/3 and 2w + 1 are the window used to obtain the average power >

spectrum within the window.
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In past, a number of signal processing techniques (Fourier spectral measure)

based on period-3 property of protein-coding regions have been proposed [7, 123,

5, 2, 3, 17, 4, 18, 119]. A major drawback with Fourier spectral and Z-curve

coding measures is that they provide only global level of information present in

DNA sequences.

6.3 Classification System

Pattern recognition is the scientific discipline dealing with methods for object

description and classification. Applications of pattern recognition systems and

techniques are numerous areas, such as agriculture, astronomy, biology, economy,

engineering, geology, medicine, military and security. A fundamental notion in

pattern recognition, independent of whatever approach is followed, is the notion

of similarity. In a classification system objects are assigned to a particular class

based on the measurement of features or patterns. Features are generally math

ematical or numeric representations of the object. For instance, when apple is

to be distinguished from orange, their color and shape is looked. The feature

vector in this case is represented by 2-dimensional vector F and is given as:

h

k

color

shape
(6.13)

The color is represented by red-green-blue components and in order to obtain

the numeric representation of the shape feature we may, for instance, measure the

distance, away from the top, or the maximum width of the object and normalize

the distance by the height. Similarly, for classifying DNA sequences, the biologi

cal property of the DNA sequence is to be considered. Most of the protein coding
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DNA sequences have some distinct sequence features that can distinguish it from

the surrounding regions, such as intergenic regions. In [100], it was demonstrated

that the Z-curve which has the information of purine/pyrimidine, amino/keto and

strong-H bond/weak-H bond bases distribution can help in identifying protein

coding sequence.

In this study, the information provided by the Z-curve has been considered J

for constructing a fixed length feature vector for DNA sequences. Unlike the

previous classification techniques [100, 101] which are based on calculating slope

of the distributions curves (i.e., Z-curve components) the proposed approach ap

plies the wavelet based technique for extracting features from the distribution

curves. This helps in deriving different level of information from Z-curve com

ponents. The complete framework for our classification problem consists of four

major components which are shown in Figure 6.1. First, the DNA sequences (or

patterns) andother necessary information are acquired from different databases.

Secondly, the Z-curve components for DNA sequences are generated. At the

third step the Z-curve components are decomposed into wavelet variance coef

ficients (WVC) in order to calculate a fixed length' feature vector. Finally, in

the fourth step an optimized SVM model is constructed using a hierarchical grid

search based technique [124, 125] for automatic optimization ofmachine learning

parameters. The components of feature extraction unit and classification unit

are shown in Figure 6.1 and are discussed in the next section.

6.3.1 Time series model for Z-curve components

The Z-curve [98] is a three-dimensional curve representation for a given DNA

sequence. The Z-curve for a DNA sequence is a connection of points whose >-

coordinates are xn, yn, zn (n = 0, 1, 2,... ,N, where N is the length of the DNA
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DNA Sequence !

Pre-processing ofDNA
sequences andExtraction of
protein coding information

from Databases

T

Z-curve Mapping
Maximal Overlap
Discrete Wavelet

Transform ( MODWT)

Classification System Units

A: Pre-processing Unit
B: Feature Extraction Unit
C: Classification Unit

! Feature Vector

Support Vector
Machine( SVM)

Output Model

Figure 6.1: Ablock diagram showing the various units of pattern recognition
based classification system.

sequence being studied).

xn = (An + Gn) - (Cn + Tn) = Rn- Yn,

Vn = (An + Cn) - (Gn + Tn) = Mn- Kn,

Zn = (An + Tn) - (Cn + Gn) =Wn- Sn,

xn,yn,Zn G[-N,N],n =0,l,2,...,N. (6.14)

where An, Gn, Cn and Tn are the cumulative occurrence numbers of nucleotides
A, G, Cand T, respectively in the DNA sequence. R, Y, M, K, Wand Srepresent
the bases of purine, pyrimidine, amino, keto, weak hydrogen bonds and strong
hydrogen bonds, respectively, according to the Recommendation 1984 by the
NC-IUB [126]. The starting coordinate of the Z-curve is taken as (0,0,0), where
A) = C0 = G0 = T0 = 0. For example, the three components of Z-curve for a
DNA sequence of Yeast are shown in Figure 6.2.

The three components of the Z-curve, xn, yn and zn, represent three inde-
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-200

Puriiw/Pyrimidine Dist

Am.no/Keto Dist.

- Strong-H bond/Weak-H

500 1000 1500
Nucleotide Position (bp)

2000

Figure 6.2: The three components ofZ-curve for a DNA sequence.

pendent distributions that completely describe the DNA sequence being studied.

Bach component ofthe Z-curve, i.e., xn,yn and zn has a clear biological meaning.

The xn component represents the distribution of purine/pyrimidine (A or G/C or

T). Similarly, the component yn represents the distribution of amino/keto (A or

C/G or T), and the component z„ displays the distribution strong-H bond/weak-

Hbond bases (A or T/G orC) along the sequence respectively. For more details

about the Z-curve refer to http://tubic.tju.edu.cn/zcurve/.

In [100], authors have shown that using the global variation information

(slope) of Z-curve components, a DNA sequence can be identified as cochng

or non-coding sequence. In this study wc have also extracted information from

Z-components. However, our analysis is based on wavelet theory which helps in
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extracting information both at local and global level from Z-curve components.

The feature vector Fz can be represented by a 3-dimensional vector based on

three different properties of DNA sequences and is given as:

F7,=

Jx

h

u

x-component

purine/pyrimidine distribution

amino/keto distribution

strong - Hhond/weak - H bond distribution

DNA Sequence

Z-curve Mapping

y-component z-component

MODWT MODWT MODWT

Wavelet Variance

Coefficients

Wavelet Variance

Coefficients

Feature Vector

Wavelet Variance

Coefficients

(6.15)

Figure 6.3: A block diagram showing the construction of the proposed feature

vector.

Formally, each Z-curve component is viewed as a discrete time series data,

where the time interval between two observations, i.e., At is equal to 1 amino

acid or 1 bp and generated by some stationary stochastic process. In order to

extract the coding features from the DNA sequences we perform a time series
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analysis using MODWT, amodified version of discrete wavelet transform (DWT)
well suited for time series data, In [32], authors have shown that the wavelet

variance is a very useful parameter of wavelet analysis for identifying patterns

in biological data (C+G islands and transmembrane proteins). In this study,
a novel fixed length feature based on scale-by-scale decomposition of wavelet

variance of Z-components is defined for classifying coding and non-coding DNA
sequences. The steps involved in construction of feature vector from a DNA

sequence are shown in Figure 6.3.

6.3.2 Maximal overlap Discrete Wavelet Transform

Wavelet is a very powerful mathematical tool which has been applied in a wide
variety of disciplines, such as image coding and compression, signal processing,
astronomy, medicine, geophysics, analysis of climate time series, chaos, frac

tal, turbulence, financial market, economics time series and in certain area of

mathematics, as in solution to partial differential equation or numerical analysis.
In bioinformatics the wavelet based techniques have been applied especially in

DNA, protein and microarray data analysis [127, 32, 128, 129, 33]. The main fea

tures of wavelet analysis are multiresolution analysis (MRA) and wavelet packet

analysis. MRA enables the researchers to separate out a variable or signal into

its constituent multiresolution components and is a very popular for analysis

of different types of time series data. Wavelets are, by definition, small waves.

Wavelets possess many desirable properties, some ofwhich are useful in genomic

sequence analysis, but many of which are not. In this chapter, our focus is on

extracting features by applying the wavelet based analysis technique for time

series data and their ability to decompose statistical information scale by scale.

MODWT [130, 26, 131] is an important extension of Discrete Wavelet Trans-
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form (DWT) and is an important tool for analysis ofdifferent type of time series

data [132, 133, 32]. In our current study we have applied the concept of analysis

ofvariance (ANOVA) of time series data [104] using MODWT for an important

problem of DNA sequence analysis. The MODWT is a linear filtering operation

that transforms a series into coefficients related to variation over a set of scales.

It is similar to the DWT in that both are linear filtering operations producing

a set of time-dependent wavelet and scaling coefficients. Both have basis vector

associated with a location t and a unitless scale Tj = 2i~1 for each decompo

sition level j = 1,..., J. Both are suitable for analysis of variance (ANOVA)

and multiresolution analysis (MRA). Detail about wavelet theory is provided

in [134, 135, 136, 137].

The MODWT differs from the DWT in that it is a highly redundant and non-

orthogonal transform. Although the MODWT gives up orthogonality (through

not sub-sampling) it has several advantages over DWT:

1. The MODWT can handle any sample size N, while Jth order DWT re

stricts the sample size to multiple of 2J. The property is very useful for

analysis of the DNA sequence, as the length of the DNA sequence is not a

multiple of 2J.

2. The detail and smooth coefficients of a MODWT multiresolution analysis

are associated with zero-phase filters.

3. The MODWT is invariant to circularly shifting the original time series.

4. The MODWT yields an estimator of the variance of the wavelet coefficients

that is statistically more efficient than the corresponding estimator based

on the DWT. This helps in constructing better feature set and thus helps

in designing an efficient classifier for classification of DNA sequences into
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6.3 Classification System

coding and non-coding.

Advantages (1) and (4) are very useful for our study. They help in analyzing
DNA sequences of arbitrary size and provide statistically more efficient wavelet

coefficients that helps in designing more accurate classification model.

Let Xbe an input column vector containing a sequence XQ,XX, A7V_1 of
N (not necessarily dyadic) data points of x-component of Z-curve time series. We

assume that Xt was collected at time tAt, where At is the time interval between

consecutive observation (in our case At is equal to 1bp and tAt represents base

pair position). The MODWT of level J is an orthonormal transform of X defined
by

w =wx (6<16)

where Wis a column vector of length (J+ 1)A, and is an (J + 1)N xN real-
valued non-orthogonal matrix. The matrix W can be decomposed into J + 1
submatrices, each ofthem N x N and is given by

W= [W1,W2,...,Wj,VJ) (6.17)

Instead of using the wavelet and scaling filters, the MODWT utilizes the

rescaled filters

hj = hj/2, gj = gj/2, j = 1, 2,..., J. (6.18)

where hj and gj are wavelet (high-pass) and scaling (low-pass) filters.

To construct the N x N dimensional submatrix Wx, we circularly shift the

rescaled wavelet filter vector by integer unit to the right so that

. W1=[h?\h?\...,h[N~1\h1]T (6.19)

Submatrices W\, W2,... ,Wj are formed similarly.
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The vector of MODWT coefficients given in (equation 6.16) may be decom

posed into J + 1 vectors:

W = [W1,W2,...,WJ,VJ] (6.20)

where \Nj is a length ofN/23 vector ofwavelet coefficients associated with change

on scale of length r,- = 2j~l and Vj is a length of N/2J vector of scaling coeffi

cients associated with averages on a scale of length 2J = 2tj.

In [130, 26] it was proved that the MODWT is an energy-preserving transform

in the sense that

|| X||2 =|| W||2 =5^=i|| W, ||2 +|| Vj II2 (6.21)

so that || W || represents the contribution of the energy of X due to change at

scale Tj, while || V || represents the contribution due to variation at scales tj+i

and higher. Because of the orthonormality of W and the special form of Vj, we

can decompose (analyze) the sample variance (empirical power) of X into pieces

that are associated with scales T\, t2,. .. ,ry.

ai =1|| X||2 - (A)2 -1|| W||2 - (A)2 (6.22)

i=i

where a\ is the sample variance of X and X is its mean. Hence, || Wj || /N

is the contribution to the sample variance of X due to change at scale Tj, i.e.,

c-xO)- Similarly, the sample variance for y and z components of Z-curve time

series data can also be obtained for a DNA sequence.

The wavelet variance decomposes (analyzes) the variance of the time series

data a scale-by-scale basis and is closely related to the concept of spectral density
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function (SDF) and offers a simple summary of the SDF. The individual wavelet

coefficients are associated with a band of frequencies and specific timescale. In

the next section we define the feature vector using wavelet variance obtained

from Z-curve representation of the DNA sequence that helps in distinguishing
whether the given DNA sequence is of coding or non-coding ORFs. For example,
the series of wavelet coefficients obtained for three components of Z-curve as

shown in Figure 6.2 are provided in Figure 6.4, Figure 6.5, and Figure 6.6. The
decomposition was performed using Haar wavelet and the maximum level of

decomposition was set to 10. Furthermore, the values of WVCs obtained for the
corresponding components are shown in Figure 6.7.

The implementation of MODWT was done using free downloadable MATLAB

WMTSA [26] toolkit version 0.2.5 available at http://www.atmos.washmgton.edu/
wmtsa.

6.3.3 Feature vector

As said earlier, each Z-curve component, i.e., xn, yn, and zn is treated as discrete

time series data. The feature vector for a DNA sequence is obtained from cal

culation of wavelet variance using (equation 6.22) for three Z-curve components.

The feature vector for classification is given by:

/.»«J-K(i),«2(2) ffl,

/y = ^=K(D,^(2),...,^(L)],

fz = al={al(l),al(2),...,al(L)},
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Figure 6.4: The wavelet coefficients obtained at various level (L = 1 to 10)

for x-component (i.e., purine/pyrimidine distribution) ofZ-curve (as shown in

Figure 6.2).
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Figure 6.5: The wavelet coefficients obtained at various level (L = 1 to 10)

for y-component (i.e., amino/keto distribution) of Z-curve (as shown in Fig

ure 6.2).
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Figure 6.6: The wavelet coefficients obtained at various level (L = 1to 10) for z-
component (i.e., strong H-bond/weak H-bond distribution) of Z-curve (as shown
in Figure 6.2).

Fz =

./ X

fv

fz

o-l(l\...,alXL),&l(l),...,el(L),al(l),...,al(L) 1 (6.24)

where L is the maximum level of decomposition of the time series data.

Thus, Fz is a collection of wavelet variance coefficients (WVC). The dimen

sion of Fz is 3L and is dependent upon the number of levels (L) to which the

time series data has to be decomposed. The level of decomposition is dependent

on number of observation points in the time series data (i.e., length of DNA

sequence) and L > log2A , where N is the number of data points in the time

series. Another parameter that has to be considered for feature extraction is the

selection of wavelet. The type of wavelet used for a particular analysis using

wavelet technique is dependent on nature of data. The Haar wavelet is used
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Figure 6.7: The wavelet variance value obtained at various level (L = 1 to 10)

for x, y and z components of Z-curve (as shown in Figure 6.2).

for extracting features because the value of Z-components either increases or de

creases by unity at each step. However, result obtained using other wavelets is

also provided in section 6.4.

6.3.4 Support vector machine

The SVM was proposed by Vapnik and co-workers [105, 106] as a very effective

technique for general purpose supervised pattern recognition. SVM is based on

the idea of structural risk minimization, which bounds the generalization error to

the sum of training set error and a term depending on the Vapnik-Chervonenkis

dimension [105, 106] of the learning machine. The SVM induction principle min

imizes an upper bound on the error rate of a learning machine on test data (i.e.,

generalization error), rather than minimizing the training error itself which is

used in empirical risk minimization. This helps them to generalize well on the
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6.3 Classification System

unseen data. The SVM method has been successfully applied to isolated hand

written digit recognition [105], microarray data analysis [138], protein structure

prediction [139], CpGs island prediction [140] etc.

When used for classification, SVMs separate a given set of binary labeled

data with a hyperplane that is maximally distant from them. SVM maps the

input patterns into a higher dimensional feature space through some nonlinear

mapping function (kernel) chosen a priori. A linear decision is then constructed

in this high dimensional feature space. Aclassification procedure usually involves

training and testing datasets which consist of a list of records. Each record in

the training dataset contains a class label and several attributes (features). The
objective of SVM is to produce a model using the training dataset records which

can predict the class labels for the records in the testing datasets.

The SVM learns linear decision rules h(x) = sign(w.x + b) described by a

weight vector wand a threshold b. Let the training dataset contain 'm' training

records with each record having 'n' features and a class label. The ith training

record is given by (x\y% i = l,2,...,m, where x* = (x\,x\,..., xn) and label

yl e {1, -1}. For a linearly separable input, the SVM finds the hyperplane with

maximum Euclidean distance to the closest training examples. This distance

is called the margin '<5' as depicted in Figure 6.8. For non separable training

sets, the amount of training error is measured using slack variable & as shown

in Figure 6.8 for two class problems. Computation of hyperplanes requires the

solution to the following optimization problem.

Minimize : P(w,(),() = -ww+cV$ (6.25)
i=i

Subject to : V™ : y* [w x* + b] > 1- £, V™ :&> 0 (6.26)
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Figure 6.8: The optimal separating hyperplane (OSH), support vectors a1 and

the slack variable &.

The point on is called support vector (SV) and are the points that lie closest

to the separating hyperplane as shown in Figure 6.8. The SV associated with x*

expresses the strength with which that point is embedded in the final decision

function and often only a small subset of points will be associated with non-zero

a*. For solving the general case of linearly non-separable inputs, SVM maps the

input vector x into a higher dimensional feature space by some kernel function

and constructs an optimal separating hyperplane (OSH).

The performance of SVM classification is strongly related to the choice of ma

chine learning parameters. There are a large number of kernel functions available

in literature. In general, radial basis function (RBF) is a reasonable first choice.

The RBF kernel is given by

A(x,z) = exp(-7- || x - ii2> (6.27)
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6.4 Performance Evaluation

Thus, for the RBF kernel function two parameters i.e., C and 7 need to be

calculated. The knowledge of C and 7 for the training dataset is not known

in prior. Usually, these parameters are obtained on a trial and error basis i.e.,

the user performs SVM classification using different combinations of (C,-y) pair

and selects the one that gives maximum performance. The goal is to select good

values of (C, 7) so that the classifier provides high performance output on the

testing and unseen datasets.

For finding the optimum values of parameters (C, 7) automatically, a grid

search technique as provided in [124, 125] is applied using 10-fold cross validation.

Different combinations of (C, 7) are tried and the one with the best cross valida

tion accuracy is picked. The grid search is performed in a hierarchical manner.

Keeping one of the parameter fixed, the other parameter is grown exponentially
and classification performance is evaluated using cross validation. The combina

tion of (C, 7) that provides the best performance is selected and further a finer

grid search on that region can be conducted to improve the classification perfor

mance. SVM based classification implementation was achieved using free down

loadable LIBSVM library available at http://www.csie.nyu.edu.tw/ cjlin/libsvm

for academic use [141].

6.4 Performance Evaluation

To evaluate the classification performance of SVM using wavelet variance co

efficient (WVC) feature vector a 10-fold cross-validation was performed on the

dataset of Yeast and E. coli genomes. The generated optimized model was tested

on unseen data to demonstrate the generalization capability of the system. The

experiments were conducted using RBF kernel because of its superior perfor

mance over other kernels.
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6.4.1 Dataset description

The genome of Yeast and E. coli was downloaded from GenBank database http://

www.ncbi.nlm.nih.gov/ and the coding ORFs (open reading frames) details for

the Yeast genome were extracted from MIPS databases [142], available at http://

www.mips.gsf.de/genre/proj/Yeast. For the presentstudy all the 16 chromosomes

(leaving the ORFs of mitochondria) is considered. The ORF information for the

E. coli genome was extracted from the header information which is present in

the downloaded file (GenBank Accession Number = NC.000913) from GenBank

database.

6.4.2 Performance measures

In [89], many prediction measures for protein coding regions are provided. For

the present study, the performance measures of the predictions is calculated at

ORF level. The ORF based approach in evaluating the accuracy of protein

coding region for Yeast genome was also taken up in [100].

The prediction performance was determined by measuring the sensitivity

(SE), specificity (SP), and accuracy (ACC) obtained from the experiments.

The SE, SP and ACC parameters were calculated using the following equa

tions:

SE=WPTm (628)
TN ,

sp=WnTfp) (6'29)
(TP + TN)

ACC -(TP +TN +FP +FN) (O0)

where, TP (true positive), TN (true negative), FN (false negative) and FP
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(false positive) correspond # coding ORFs that have been correctly predicted

as coding ORFs, # non-coding ORFs predicted as non-coding ORFs, # coding

ORFs predicted as non-coding ORFs, # non-coding ORFs predicted as coding
ORFs respectively.

6.4.3 Results on Yeast genome

For the Yeast genome the total number of entries of coding ORFs for 16 chro

mosomes (excluding mitochondria) in MIPS database is equal to 6559. As the

training and test datasets should be accompanied by the counterparts of neg
ative samples, the intergenic sequences (non-coding ORFs) with length longer

than 11 base pair (bp) is randomly selected from the 16 chromosomes and each

of them starts with ATG and ends with one of the stop codons (i.e., TAA, TAG,
or TGA). The procedure to select intergenic sequences is slightly different from

that used in [100]. If the procedure provided in [100] is followed, the average

length of non-coding ORF sequences obtained is ss 350 bp. However, if the av

erage length ofpositive samples (coding ORFs) is calculated, it is found to be «

1341 bp. So, the negative samples created from the procedure given in [100] lead

to creation ofa biased dataset, where most of the shorter ORFs are non-coding

DNA sequence. To create a better negative dataset (i.e., non-coding ORFs) than

Zhang et al. [100] a slightly different procedure is followed and is described as

follows:

• Find the length of the intergenic sequences between any two adjoining

coding ORFs. Ignore the sequence if its length is < 12 bp.

• For all sequences > 12 bp, starting from the first base, search for the first

start codon (i.e., ATG) along the sequence. In the downstream direction,

starting from the 4th codon (1 codon = 3 bps) beginning from ATG, search
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for the last stop codon encountered. Then the DNA sequence starting from

ATG and ending with one of the stop codon is regarded as one candidate

for the intergenic sequences. Note that this is not an ORF because there

often may be several stop codons within it.

The above procedure provides 5635 non-coding ORFs sequences with aver

age length « 607 bp which is better than that provided by [100]. The MIPS

database [142] categorizes the complete ORFs of Yeast genome into six different

classes, i.e., known proteins, strong similarity to known proteins, similarity or

weak similarity to known proteins, similarity to unknown proteins, no similarity,

and questionable ORFs. For our experiment the coding ORFs dataset that be

long to known protein class which constitutes a large portion of coding ORFs is

selected. This is done so that the system performance can first be verified with

the known ORFs and later on can be applied for predicting novel ORFs. The

Yeast genome consists of 5277 known protein coding ORFs.

Our next step is to calculate the feature vector value for each ORF. The

feature extraction procedure requires specification of a wavelet filter and the

maximum scale of decomposition (L). The maximum level of decomposition (L)

for wavelet analysis is chosen depending on the minimum length of the DNA

sequences (N) that is taken up for the study. Haar wavelet was selected as the

wavelet filter for our experiments. However, experiments were also performed

using other wavelets, i.e., Daubechies, least symmetric and Coifiet and it was

found that the Haar wavelet provides the best performance parameters. The

distribution of features values generated by x, y, and z components of Z-curve

for coding/non-coding DNA sequences of yeast genome is provided in Figure 6.9,

Figure 6.10, Figure 6.11 respectively.
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In Table 6.1, the performance measures i.e., sensitivity (SE), specificity (SP),
and accuracy (ACC) obtained by our technique for the Yeast genome is provided.

Each training dataset of Table 6.1 consists of equal number of positive and nega
tive samples. For example, when the training dataset has 250 samples then this

means that the training dataset has 125 positive samples (i.e., coding ORF) and
125 negative samples (i.e., non-coding ORF). The maximum accuracy provided
by the optimized classifier is equal to 92.91%. From Table 6.1, it is also ob

served that the classifier performance with different value of (L) is almost same.

In fact, for smallest level of decomposition (i.e., for smaller DNA sequences)
highest accuracy level is achieved.

As said earlier that the wavelet variance feature vector need selection of a

wavelet filter. So, experiments were also performed with various other wavelets

(other than Haar) on the same datasets that were taken for the Haar wavelet

(Table 6.1). The performance parameters obtained are given in Table 6.2. From

the table it is observed that the accuracy is almost similar for all the wavelets

that were taken up for the study. However, the Haar wavelet performs (Table 6.1)
slightly better than other wavelet filters (Table 6.2).
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Table 6.1: The performance of <jur approach for Yeast genome datasets.

# Training

data

# Test

data

L

SE(%)

= 6,A>

SP(%)

64bp

44CC(%)

L--

SE(%)

= 7,N>

SP(%)

128bp

ACC(%)

L =:8,A> 256bp

SE(%) SP(%)

92.3

ACC(%)

250° 1750° 91.4 91.3 91.4 88.5 90.7 89.6 77.8 85.1

500° 1500° 92.4 89.1 91.3 92.0 88.0 90.0 89.9 86.8 88.3

750° 1250° 90.7 90.6 90.6 95.2 92.2 93.7 89.9 89.1 89.5

1000° 1000° 90.8 90.6 90.7 94.6 89.8 92.2 90.6 89.6 90.1

2000° b.c,d
94.6 91.3 92.9 92.7 91.6 92.1 93.3 90.3 92.2

L is the level of decomposition for the wavelet variance.

JV is the length of the Z-curve time series data (DNA sequence).

a datasets consist ofequal number ofpositive (coding ORFs) and negative (non-coding ORFs) samples.

6Test dataset(L=6): (4277 positive samples, 4357 negative samples).

c Test dataset(L=7): (4268 positive samples. 3862 negative samples).

dTest dataset(L=8): (4206 positive samples, 2520 negative samples).
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Table 6.2: The performance of our approach for Yeast genome datasets using different wavelet types.

# Training sample = 2000°, L = 6,A > 64bp, Feature vector dimension = 18

Daubechies6 Least symmetric6 Coiflet6

SE(%) SP(%) ACC(%) SE(%) SP(%) ACC(%) SE(%) SP(%) ACC(%)

94.0 91.5 92.7 93.5 91.3

"Training dataset:(1000 positive samples, 1000 negative samples).

6Test dataset:(4277 positive samples, 4357 negativesamples).

92.4 94.0 91.4 92.7
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6.4 Performance Evaluation

Next, a performance comparison of wavelet variance coefficients (WVC) fea

tures with slope based features proposed by Zhang et al. in [100] is performed.

The performance parameters obtained by both approaches are provided in Ta

ble 6.3. This time, the classifier was trained with large number of samples in

order to construct more accurate model. From the result it was observed that

the accuracy achieved by WVC features is slightly better than the slope features.

Even though the wavelet and slope feature provide different information about

the DNA sequence, the accuracy achieved by both features is similar.

The aim of this study was not meant to replace previous coding measures,
rather, to act as a complement to these already widely used measures. Next, a
new feature vector which is a combination of wavelet variance and slope features

is defined. The results that were obtained after combining both of the feature

sets have been provided in Table 6.4. From the table it is observed that the

accuracy of optimized SVM classifier has increased to 96%. Thus, a classifier

designed using both wavelet and slope features provides better results than the

classifier based on single features set.

6.4.4 Results on E.Coli genome

The genome of E. coli was downloaded from GenBank database. The information

about the protein coding regions in the genome was extracted from the header of

the E. coli genome file ofNCBI (GenBank accession number = NCJ300913). The

non-coding ORFs were constructed similar to that were constructed for the Yeast

genome, discussed in the previous section 6.4.3. The complete positive (ORF)

and negative (non-ORF) samples were divided into training and test datasets.

The samples for training and test datasets were selected randomly. Later on, 10-

fold cross-validation was performed for constructing an optimized SVM model.
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Table 6.3: Comparison of SVM classifier performance measures based on wavelet

variance and slope features of Z-curve components for Yeast genome.

Level" Min. ORF

length

Wavelet variance features Slope-based features6

SE(%) SP(%) ACC(%) SE(%) SP(%) ACC(%)

6° 64 95.2 90.6 92.9 90.9 91.7 91.3

T 128 95.5 91.7 93.6 91.6 92.6 92.1

8° 256 95.6 88.3 91.9 94.0 89.8 91.9

"Test dataset:(1000 positivesamples, 1000 negative samples).

6Training dataset:(4277 positive samples, 4357 negative samples), Feature vector length=18.

"Training dataset:(4268 positive samples, 3862 negative samples), total features = 21.

^Training dataset:(4206 positive samples, 2520 negative samples), total features = 24.

"Feature vector length = 10.

Table 6.4: Classification performance achieved using both wavelet variance and

slope based features for Yeast genome.

Level° Minimum Wavelet variance and Slope-based features

ORF length (bp) SE(%) SP(%) ACC(%)

6h 64 96.5 94.9 95.7

T 128 94.9 96.9 95.9

S'1 256 96.1 93.2 94.6

"Test dataset:(1000 positive samples, 1000 negative samples).

bTraining dataset:(4277 positive samples, 4357 negative samples), Feature vector length = 28.

"Training dataset:(4268 positive samples, 3862 negativesamples), Feature vector length = 31.

''Training dataset:(4206 positive samples, 2520 negative samples), Feature vector length = 34.
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6.5 Conclusion

Table 6.5: Classification performance achieved using combined feature vector

(wavelet variance and slope features) for E. Coli genome.

Level Minimum

ORF length (bp)

Combined feature vector

SE(%) SP(%) ACC(%)

6°

7b

64

128

96.9

95.4

95.6

95.6

96.2

95.5

"Training: (3234 positives and 1110 negative samples), Test: (1000 positive and 1000 negative samples).

'Training: (3213 positives and 951 negative samples), Test: (1000 positive and 500 negative samples).

Experiments were performed for L= 6 and 7 with Haar wavelet. The perfor

mance parameters obtained using combined feature vector (i.e., wavelet variance

and slope) are provided in Table 6.5. An accuracy of more than 96% is achieved

for E. coli genome.

6.5 Conclusion

Based on the novel wavelet variance coefficient feature vector, a pattern clas

sification framework is provided for classifying the DNA sequences into coding

and non-coding sequence class. The study of wavelet variance of the time series

data is of interest because it decomposes (analyzes) the variance of stochastic

processes on a scale-by-scale basis and hence provides information from local to

global variation present in data. The wavelet variance is also of interest because

it is related to the concept of spectral density function (SDF). Further, MODWT

has been used for calculating variance because it offers several advantages over

DWT and is especially very useful for analysis of time series data. This approach

also provides a generic methodology for analyzing DNA sequences.
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The optimized machine learning parameters ofthe SVM system was obtained

using hierarchical grid based parameter selection techniques. The wavelet vari

ance coefficient features obtained by our method for the Z-curve components

yield more than 93% accuracy for Yeast genome dataset. The major challenge

in classification of DNA sequences is that there is no exact information about

the features or measures that makes a DNA sequence protein coding or not. It

is totally based on the statistical study of the DNA sequences. Also, it is always

better to use more than one type of information of an object for improving the

classification accuracy. Thus, later on SVM classifiers using WVC features and

slope based features is designed. For the combined feature vector it was observed

that the accuracy of 10-fold cross-validated classifier reaches upto 96% for the

Yeast genome and more than 96% for the E. coli genome datasets.
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Chapter 7

Identification and Classification

of GPCRs

G-protein-coupled receptors (GPCRs) are one of the largest group of proteins

in vertebrate species. Their classification and functional annotation is very im

portant in today's medical and pharmaceutical research because GPCRs play

important roles in cellular signalling networks involving such processes as neuro

transmission, cellular metabolism, secretion, cellular differentiation and growth,

inflammatory and immune responses, smell, taste and vision. GPCRs have been

proved to be one of the most attractive targets for pharmaceutical intervention.

In this chapter, a novel feature vector for efficient identification and classifica

tion of GPCRs, GPCR family, GPCR subfamily and GPCR sub-subfamily is

presented. The feature vector is based on wavelet variance of protein profiles.

First, the various tasks involved in the classification system are presented followed

by performance evaluation of the system on datasets downloaded from GPCR

database (GPCRDB). Acomparison of the proposed technique with SVMpred
on standard is also presented.
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7.1 Introduction

The existing SVM based approaches for GPCRs classification are either based

on amino acid or dipeptide composition in a protein sequences. The dipeptide

based SVM approach is the most accurate technique to identify and classify

the GPCRs. However, this approach has two major disadvantages. Firstly, the

dimension of dipeptide based feature vector is equal to 400. The large dimen

sion makes the classification task computationally and memory wise inefficient.

Secondly, it does not consider the biological properties of protein sequence for

identification and classification of GPCRs. This chapter introduces a novel fea

ture vector based on variation of seven key biological properties of amino acids in

a protein sequence. The feature vector is calculated after performing a wavelet

based time series analysis technique of protein sequences. In addition, the di

mension of the feature vector is also reduced to 35.

7.1 Introduction

G protein-coupled receptors (GPCRs), also known as seven transmembrane re

ceptors, 7TM receptors, heptahelical receptors, and G protein linked receptors

(GPLR), are a protein family of transmembrane receptors that transduce an

extracellular signal (ligand binding) into an intracellular signal (G protein acti

vation). A diagram of GPCR protein is shown in Figure 7.1. They are among the

largest and most diverse protein families in mammalian genomes. GPCRs have

been aggressively pursued as drug targets due to their central role in physiolog

ical processes affecting almost all aspects of the life cycle of an organism [143].

It is estimated that about 50% of all current drug targets are GPCRs and are

the most successful of any target class in terms of therapeutic benefit [144, 145].

The 3-dimensional structure of GPCRs are largely unsolved, except for that of

one GPCR (Bovine rhodopsin) [146]. In contrast, the amino acid sequences of
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thousands of GPCR-related proteins are known [147, 148, 149]. In the absence of

experimental data, computational methods are frequently used to facilitate iden

tification and characterization of novel receptors. Due to vital role of GPCRs

and enormous data, developing an accurate and faster technique for automatic

classification of GPCRs and its families, subfamilies and sub-subfamilies is of

prime importance.

GPCRs have been divided into six principal classes or families generated

based on sequence similarities: class A(rhodopsin-like), class B(secretin-like),
class C(metabotropic glutamine/pheromone), class D(fungal pheromone), class
E (cAMP receptors), and the Frizzled/Smoothened class [147]. Each class is
further divided into families based on their ligand specificity, with some families

combined into larger groups based on closely related ligands. For example, the

class AGPCRs include groups such as amine binders, peptide binders, prostanoid

receptors, and olfactory receptors. The amine binding group, for instance is

formed by seven families (acetylcholine receptor, adrenoceptor, dopamine re

ceptor, histamine receptor, serotonin receptor, octopamine receptor and trace

amine receptor). In humans, there are three major families of GPCRs (the

rhodopsin, secretin and metabotropic glutamine receptor-like superfamilies) com
prising more than 50 subfamilies and 350 sub-subfamilies [150, 151].

In the past, many strategies have beenproposed for identifying novel GPCRs.

Sequence alignment techniques such as BLAST and FASTA coupled with pat
tern database (PRINTS) are the simplest and frequent programs that have been

used for identifying novel GPCRs through their similarity to known receptors.
In [152], an automatic classification technique based on the signature search

against pattern/motif databases with highly improved diagnostic performance

is presented. However, the above mentioned techniques fail when query protein
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Figure 7.1: G protein-coupled receptor protein.

lacks significant similarity to the database sequences. To overcome the limitation

of sequence comparison techniques, a support vector machine (SVM) based tech

nique was presented in [153, 154]. This technique is based on the feature vectors

which are derived from amino acid composition of the protein sequences. A more

accurate SVM based technique (GPCRpred) was proposed in [155]. GPCRpred

is based on feature vectors derived from dipeptide composition of the protein

sequence. Dipeptide composition encapsulates information about the fraction of

amino acids as well as the local order.

The GPCRpred program has two major disadvantages. Firstly, the dimension

of the feature vector is very high (i.e., 400). The large dimension of feature

vector makes the classification task quite expensive in terms of computational

and memory used. Secondly, the key physicochemical properties of an amino acid

sequence that can probably reveal more properties of a protein family have been

ignored by the exiting SVM based approaches for identification and classification

of GPCRs. The objectives of this chapter are:
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1. To provide a novel feature vector based on variation ofbiological (physic-

ochemical) properties of amino acids in GPCRs sequences.

2. To reduce the dimension of fixed length feature vector for designing faster

classifiers.

3. To improve the accuracy of identification and classification system for

GPCRs.

The novel feature vector presented in this chapter is inspired from the work

of Vannucci and Lio [32, 128, 129] for transmembrane proteins. In [32], the

authors had shown how non-decimated wavelet transforms and the wavelet vari

ance [104] scale-by-scale decomposition can be applied to extract features from

hydrophobicity profiles of transmembrane proteins. In this chapter, a feature

vector which is a collection of wavelet variances value is proposed. The wavelet

variance values are obtained after performing a scale-by-scale decompositions of

seven key physicochemical properties of amino acids. The dimension of the pro

posed feature vector is also reduced to 35. Later on, an optimized SVM based

classification system was designed to identify a given protein sequence as GPCR

or not. Once identified as GPCR protein sequence, it was further classified into

its family, subfamily and sub-subfamily. In section 7.3.3, the strategy followed

for classification of GPCRs protein sequences has been provided.

7.2 Literature Review

In this section, a brief review of available techniques for identification and clas

sification of GPCRs is presented.
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7.2.1 Sequence similarity method

The simplest and most frequently used techniques for identifying proteins related

to a query sequence is to search a sequence database using pairwise alignment

tools, such as the Basic Local Alignment Search Tool (BLAST) and FASTA

families of programs [36, 38, 39, 156]. The strength of the match is judged by a
score based on the similarity of two biological sequences after alignment.

Sequence identity, which is the fraction of the pairwise alignment identical

between the query and the reference sequence, is an alternative metric for judging
the likelihood of two sequences being homologous. It is thought that when se

quence identity between two aligned sequences falls below 20-25%, homology, and

therefore shared function, can no longer be reliably inferred. Moreover, the accu

racy of machine-generated alignments decays as the intrinsic pairwise sequence

similarity decreases [157], further complicating matters. Because receptors that

share a natural ligand can have pairwise sequence identities below 25% (e.g., the

histamine receptors [158]), there are no hard cutoffs to positively associate an

orphan to a known GPCR, much less a receptor that shares the same ligand. For

example, using BLAST to compare the protein sequence of human histamine H4

receptor to that of histamine HI receptor yields 26% identity over the length of

the match, whereas the sequence identity over the length of the match, whereas

the sequence identify between the human somatostatin receptor type 1 with a

receptor with different ligand (nociceptor receptor) is actually higher at 43%.

Nevertheless, pairwise sequence comparison is a convenient approach and one

that has certainly worked in the identification of putative GPCRs of unknown

function and in some cases can provide strong clues as to the natural ligand as

well.
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7.2.2 Motif-based classification

To overcome some ofthe problems of pairwise methods, motif orsignature based

method were developed for classification of GPCRs. Typically, motifs are de

rived by parsing multiple alignments into consensus sequences, the conserved

columns of which reflect important structural and/or functional residues. The

first approach, illustrated by PROSITE [159, 160], is to use only a single con

served region encoded as a consensus sequence or regular expression. When

searching PROSITE, such regular expressions have to be matched exactly, some

times leading to high error rates. Many true relationships are missed because

sequences deviate slightly from the expression, and many false matches are made

because the patterns are short and non-selective. The EMOTIF database also

uses regular expressions to encode regions of conservation [161]. Here, however,

different variants of each expression are derived, offering greater flexibility to

capture distant family members.

The PRINTS database uses a different approach: knowing that protein fam

ilies are likely to contain more than one conserved region, using all such motifs

to create a characteristic fingerprint improves diagnostic performance [162, 163].

Although individual motifs are short, greater selectivity is achieved by exploit

ing the mutual context of motif neighbours. False-positive matches can then be

more easily distinguished from family members, as they usually fail to match

several motifs within a given fingerprint. The Blocks database also uses multiple

motifs (known as blocks) to describe families [164]. In contrast with PRINTS

manual approach, blocks are automatically derived. The scoring methods also

differ from those of PRINTS, as blocks are encoded as weight position-specific

scoring matrices, rather than the frequency matrices typical of fingerprinting.
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7.2.3 Profile-based method

Profiles are statistical descriptions of the primary sequence consensus of a gene

family derived from a multiple sequence analysis. Whereas pairwise alignment

methods such as BLAST use position-independent scoring (i.e., in the case of

proteins, the incremental value of aligning two given amino acids is the same

irrespective of its location in the overall sequence), profile methods use position-

specific scores for the placement of various amino acids. Profiles are commonly

represented in astatistical model called ahidden Markov model (HMM) [35]. The

HMM is able to estimate the probability that a query sequence was generated

by the model itself. Like BLAST, one metric for evaluating a match between a

query sequence and the HMM is also the E-value, corresponding to the number

of hits that would be expected to have a score equal or better by chance alone.

In practice, one would gather member of each protein family (or subfamily)

and train an HMM to represent the group. After building HMMs for all families

of interest, one would then match the sequence with unknown function (the

query) against them all, and assign membership to the family corresponding to

the best E-value (or alternatively, the best score). The predictive power of the

model is a function of several variables, such as exact algorithm used to train

the models, as well as the accuracy of any multiple sequence alignment used to

guide the model training.

Papasaikas et al. presented PRED-GPCR program for GPCR recognition

and and classification at the family level [165, 152] using signature profile HMMs

corresponding to some well characterized GPCR families. In [166], the authors

proposed a phylogenic tree-based profile hidden Markov model(T-HMM) based

on chemical and physical property of amino acids for classification and identifica

tion of GPCRs. The chemical and physical properties of amino acid sequence re-
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veal more properties ofproteinfamily where pure sequence-based methods fail to

find some detailed information beyond the discriminative power of20 characters.

The technique is divided into two main branches: (1) ligand-based classification

and (2) G-protein coupling-based classification. It achieved overall predictive

accuracy of 99.9% for ligand group-based classification (i.e., amine vs. peptide

binding), and over 99% for ligand family-based classification. In addition, the G-

protein coupling specificity-based classification provides 83% accuracy over large

dataset.

A major disadvantage ofsignature based approach is absence of large signa

tures database. Furthermore, these signatures are collected by experts. Also, it

is not known that whether this method is useful for G-protein coupling speci

ficity but the SVM method can be used to identify the G-protein coupling speci

ficity [167].

r

7.2.4 SVM-based method

Amino acid composition-Protein information can be encapsulated in a vector

of 20 dimensions, using amino acid composition of the protein. This amino

acid composition is the fraction of each amino acid type within a protein. The

fractions of all 20 amino acids are calculated using the following equation,

^ . . . . ,.. Total number of amino acids of type i
Fraction of AA(z) = -— — (7.1)

Total number of amino acids in protein sequence

where i is an amino acid i out of 20 amino acids (AA).

Dipeptide composition-The dipeptide composition provides global informa

tion of a protein sequence in the form of a fixed-length vector. Dipeptide en

capsulates information about the fraction of amino acids as well as their local

order. The dipeptide composition ofeachprotein is calculated usingthe following
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equation,

Fraction of Dipep(i) = Total number of Dipep(z)
Total number of all possible dipeptides

where Dipep(t-) is a dipeptide i out of 400 dipeptides.

Support vector machines (SVMs) are statistical machine learning algorithm

that has been successfully used to classify biological sequence [168]. Like HMMs,

SVMs are trained from labeled (classified) data. Unlike HMMS, the SVM ap

proach enables training on both positive and negative examples of family mem

bership and hence is discriminate examples from different classes.

Karchin et al. [153, 154] applied SVM based approach for classification and

identification of GPCRs. The fixed length feature vector for SVM was con

structed using amino acid composition as given in (equation 7.1). This method

provided an accuracy of 99.3% for recognition of GPCRs, and its accuracy for

prediction of family and sub-subfamily is 88.4% and 86.3% respectively.

In [155], amore accurate technique (GPCRpred) than amino acid composition

based SVM is presented. GPCRpred uses dipeptide composition (equation 7.2)

based fixed length feature vector for classification purpose. This technique is

composed ofthree-steps for annotating GPCRs: (i) it predicts whether the query

sequence belongs to the GPCRsuperfamily or not; (ii) it predicts class or family

of GPCRs; and (iii) it predicts the GPCR sub-family if it belongs to class A of

GPCRs. GPCRpred provides an accuracy of 99.5% for recognition of GPCRs.

Similarly, it achieved an overall accuracy of 91.3% and 96.4% at family and

sub-family level respectively.

In [42], a fast Fourier transform-based support vector machine technique

(Pred-GPCR) has been proposed for predicting GPCR subfamilies according to

protein's hydrophobicity. In this method, a 512 point FFT has been applied to

hydrophobicity profile of protein sequences for constructing a fixed length feature

152



Chapter 7. Identification and Classification of GPCRs

vector for classification purpose. In classifying class B, C, D and F subfamilies,

the method achieved an accuracy of 93.3%.

The dipeptide composition based method (GPCRpred) is better for identify

ing and classifying GPCRs superfamily than the amino acid composition based

methods: phylogenic tree-based profile hidden markov model (T-HMM), bagging

classification tree and SVM (Karchin et al. [153, 154]) achieves lower accuracy

than dipeptide method SVM [155]. However GPCRpred classification technique

has two major drawbacks. First, this technique suffers from high dimensionality

problem because the length of dipeptide based feature vector is equal to 400.

Secondly, the feature vector is based only on dipeptide composition.

7.2.5 Clustering-based method

r In [169], a bagging classification tree algorithm is proposed to predict the type of

receptor based on its amino 'acid composition. For construction of classification

tree the C4.5 was implemented. The C4.5 algorithm uses a divide-and-conquer

approach for growing decision trees. This algorithm selects a feature (i.e., an

amino acid composition) to split the training data into subsets (i.e., nodes of the

decision tree). The default criterion used by C4.5 for feature selection is 'infor

mation gain ratio', a measure based on information theory. This measure can

quantify how well a given feature separates the training data. At each node the

training dataset will be further divided until some stopping criteria are satisfied.

Then each terminal subset (leaf node) is assigned to a class label (receptor type).

After generating the maximal classification tree, a pruning technique is used to

simplify the classification tree and avoid over-fitting. Pruning a tree consists of

replacing a whole sub-tree by a leaf node. The replacement takes place if the

expected error rate in the subtree is greater than that in the single leaf. Further,
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the bootstrap aggregating (bagging) procedure is applied to improve the predic

tion accuracy reported by a single classification tree. In the bagging procedure,

bootstrap samples are formed by drawing at random with replacement from the

original learning set. Classifiers (different classification trees) are built for each

bootstrap sample, then the multiple classifier are aggregated by majority votes,
i.e., the final class is the one predicted by the majority of the predictors. The

bagging classification tree algorithm provides an overall accuracy of 86.9% for

GPCRs sub-family classification and 81.5% for sub-subfamily classification.

7.3 Classification System

The pattern recognition framework developed for the current classification prob
lem is shown in Figure 7.2. The complete framework is divided into three dif

ferent stages: amino acid mapping, feature construction and classification. The

first step involves the transformation of the amino acid sequence into a numer

ical sequence. Numerical series obtained are then analyzed using wavelet based

time series analysis technique for extracting information in terms of wavelet

variance [104]. The original numerical sequence is thus transformed into vari

ances using non-decimated wavelet transform or maximal overlap discrete wavelet

transform (MODWT) [130, 26, 131] technique. The wavelet variance values ob

tained from seven numerical sequences are later on combined to form a fixed

length feature vector. Finally, an SVM based classification is performed using

the wavelet variance feature vector to identify protein classes.
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Protein Sequence:

MDVLSPGQGNNTTSPPAPFETGGNTTGISDVTVSYQVITSLLLGTLIFCAVLGNACVVAA
IALERSLQNVANYLIGSLAVTDLMVSVLVLPMAALYQVLNKWTLGQVTCDLFIALDVL
CCTSSn.HLCAIALDRYWAlTDPIDYWKRTPRRAAALISLTWLIGFLISIPPMLGWRTPE
DRSDPDACTISKDHGYTIYSTFGAFYIPLLLMLVLYGRIFRAARFRIRKTVKKVEKTGAD
TRHGASPAPQPKKSVNGESGSRNWRLGVESKAGGALCANGAVRQGDDGAALEVIEVH
RVGNSKEHLPLPSEAGPTPCAPASFERKNERNAEAKRKMALARERKTVKTLGIIMGTFI
LCWLPFFIVALVLPFCESSCHMPTLLGAIINWLGYSNSLLNPVIYAYFNKDFQNAFKK1IK
CKFCRQ

Figure 7.3: Amino acid sequence of 5-hydroxytryptamine 1Areceptor in Human.

7.3.1 Amino acid mapping

Seven principal properties ofamino acids, i.e., hydrophobicity, electronic, isoelec

tric point, polarity, volume, composition and molecular weight are used for amino

acid mapping. The amino acid mapping scales are discussed in this section.

Hydrophobicity

The hydrophobicity determines the structure and function of protein, especially

for the transmembrane proteins. The hydropathy scale provided by Kyte and

Doolittle in [170] is used for experiment and is provided in Table 7.1. The scale

has been composed wherein the hydrophilic and hydrophobic property of the 20

amino acids side-chains is taken into consideration. The scale is based on an

amalgam of experimental observations derived from the literature. Figure 7.4

shows the hydrophobicity profiles generated from the amino acid sequences of

5-hydroxytryptamine 1A receptor in Human as shown in Figure 7.3.

156

>

-f



4

Chapter 7. Identification and Classification of GPCRs

Table 7.1: Hydropathy scale for amino acids.

Amino acid Hydropathy index

Isoleucine (I) 4.5

Valine (V) 4.2

Leucine (L) 3.8

Phenylalanine (F) 2.8

Cysteine/cystine (C) 2.5

Methionine (M) 1.9

Alanine (A) 1.8

Glycine (G) -0.4

Threonine (T) -0.7

Tryptophane (W) -0.9

Serine (S) -0.8

Tyrosine (Y) -1.3

Proline (P) -1.6

Histidine (H) -3.2

Glutamic acid (E) -3.5

Glutamine (Q) -3.5

Aspartic acid (D) -3.5

Asparagine (N) -3.5

Lysine (K) -3.9

Arginine (R) -4.5
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Table 7.2: The electron-ion interaction potential (EIIP) values for amino acids.

Amino acid EIIP

158

Isoleucine (I) 0.0000

Valine (V) 0.0057

Leucine (L) 0.0000

Phenylalanine (F) 0.0946

Cysteine/cystine (C) 0.0829

Methionine (M) 0.0823

Alanine (A) 0.0373

Glycine (G) 0.0050

Threonine (T) 0.0941

Tryptophane (W) 0.0548

Serine (S) 0.0829

Tyrosine (Y) 0.0516

Proline (P) 0.0198

Histidine (H) 0.0242

Glutamic acid (E) 0.0058

Glutamine (Q) 0.0761

Aspartic acid (D) 0.1263

Asparagine (N) 0.0036

Lysine (K) 0.0371

Arginine (R) 0.0959
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Figure 7.4: Hydrophobicity profile of 5-hydroxytryptamine 1A receptor in Hu

man.
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Figure 7.5: EIIP profile of 5-hydroxytryptamine 1A receptor in Human.

Electron-ion interaction potential (EIIP)

The EIIP describes the average energy of all valence electrons of amino acid

sequences. The EIIP values for each amino acid arecalculated using the following
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general model pseudopotential [171]:

(k + q\w\k) = 0.25Zsin(7rl.04Z)/(27r) (7.3)

where q is a change of momentum of valence electron in the interaction with

potential w,while

Z - Z(ZA/N (7.4)

where Z{ is the number of valence electrons of the z-th component of each amino

acid and N is the total number of atoms in the amino acids. The EIIP val

ues for 20 amino acids are shown in Table 7.2. Each amino acid irrespective of

its position in a sequence, can thus be represented by a unique number. Fig

ure 7.5 shows the EIIP profiles generated from the amino acid sequences of

5-hydroxytryptamine 1A receptor in Human which is shown in Figure 7.3.

150 200 250

Sequence
350 400

Figure 7.6: Isoelectric point profile of 5-hydroxytryptamine 1A receptor in Hu

man.
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50 100 150 200 250 300 350 400
Sequence

Figure 7.7: Polarity profile of 5-hydroxytryptamine 1A receptor in Human.

50 100 150 200 250 300 350 400
Sequence

Figure 7.8: Volume profile of 5-hydroxytryptamine 1A receptor in Human.

Remaining physicochemical properties

The values of isoelectric point, polarity, volume, composition and molecular

weights of the amino acids are obtained from www.http://pages.pamona.edu/
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7.3 Classification System

50 100 150 200 250 300 350 400
Sequence

Figure 7.9: Composition profile of 5-hydroxytryptamine 1A receptor in Human.

50 100 150 200 250 300 350 400
Sequence

Figure 7.10: Molecular weight profile of 5-hydroxytryptamine 1A receptor in

Human.

ac044747/aroc/Genetic.Code.swf.
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Table 7.3: The isoelectric point, polarity, volume, composition and molecular

weights for amino acids.

Amino acid Isoelec.

Point

Pol. Vol. Comp. Mol.

Weight

Isoleucine (I) 6.02 5.2 Ill 0.0 131.17

Valine (V) 5.96 5.9 84 0.0 117.15

Leucine (L) 5.98 4.9 111 0.0 131.17

Phenylalanine (F) 5.48 5.2 132 0.0 165.19

Cysteine/cystine (C) 5.05 5.5 55 2.75 121.16

Methionine (M) 5.74 5.7 105 0.0 131.17

Alanine (A) 6.0 8.1 31 0.0 89.09

Glycine (G) 5.94 9 3 0.74 75.07

Threonine (T) 5.66 8.6 61 0.71 119.12

Tryptophane (W) 5.89 5.4 170 0.13 204.23

Serine (S) 5.68 9.2 32 1.42 105.09

Tyrosine (Y) 5.66 6.2 136 0.2 181.19

Proline (P) 6.3 8.0 32.5 0.39 115.13

Histidine (H) 7.59 10.4 96 0.58 155.16

Glutamic acid (E) 3.22 12.3 83 0.92 147.13

Glutamine (Q) 5.65 10.5 85 0.89 146.15

Aspartic acid (D) 2.77 13.0 54 1.38 133.10

Asparagine (N) 5.41 11.6 56 1.33 132.12

Lysine (K) 9.74 11.3 119 0.33 146.19

Arginine (R) 10.76 10.5 124 0.65 174.20
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7.3 Classification System

7.3.2 Feature extraction

A wavelet transform decomposes a signal into several groups (vectors) of coef

ficients. Different coefficient vectors contain information about characteristics

of the sequence at different scales. Coefficients at coarse scales capture gross

and global features of the signal while coefficients at fine scales contains local

details. In this section, a novel feature vector based on wavelet variance [104] is

proposed. Unlike previous feature vectors [154, 155], the proposed feature vector

contains information about the variability of seven key physiochemical proper

ties of protein sequences over different scales. This helps in understanding the

functionality of proteins from its primary sequence in a much better way than

simple composition based studies [154, 155] and hence provide more accurate

identification of protein classes.

Wavelets seem to be well suitable for the analysis of biological signals that

present a multi-scale nature. A scale-by-scale wavelet decomposition of variance

and correlation help in highlighting hidden structures of single sequences and

similarities among different sequences. For example, wavelet coefficient profiles

for 5-hydroxytryptamine 1A receptor (Human) and 5-hydroxytryptamine 1A re

ceptor (Mouse) are shown in Figure 7.11 and Figure 7.12 respectively. From

the figures it can be easily observed that the hydrophobic and EIIP profiles of

two proteins is similar. In [32], authors have shown that wavelet variance de

composition of the hydrophobic profiles of proteins can be used for detecting

the transmembrane regions of a protein. This means that the wavelet variance

for a transmembrane protein will differ from non-transmembrane protein. The

wavelet variance values obtained at different scale for 5-hydroxytryptamine 1A

receptor (Human) and 5-hydroxytryptamine 1A receptor (Mouse) sequences us

ing hydrophobic and EIIP profiles are shown in Figure 7.13 and Figure 7.14
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respectively. From the figures it is clear that the wavelet variance values ob

tained from various level are similar for both GPCR proteins sequences. The

feature vector that is proposed in this section is based on the relationship of

transmembrane proteins and wavelet variances obtained after a scale-by-scale

decomposition of hydrophobic and EIIP profiles of proteins.
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Figure 7.11: Wavelet coefficients for Hydrophobicity profile of 5-

hydroxytryptamine 1A receptor(Human) and 5-hydroxytryptamine 1A receptor

(Mouse).

A non-decimated version of the DWT, a modified transform also known as

maximal overlap DWT (MODWT) [130, 26, 131] is applied for calculating the

wavelet variances. Discussion about MODWT and scale-by-scale decomposition

of wavelet variance for a time series data is provided in chapter 6.
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Figure 7.12: Wavelet coefficients for EIIP profile of 5-hydroxytryptamine 1A

receptor(Human) and 5-hydroxytryptamine 1A receptor (Mouse).

Feature vector

The feature vector FProt based on hydrophobicity, EIIP, isoelectric point, polar

ity, volume, composition and molecular weight for GPCRs classification is given

as follows:

FHyP = Kyp(l).^Hyp(2), •-.,aHyp(L)]T (7.5)

Feiip = [o-|//p(l),o-|//p(2), •••,cr2EIIP(L)] (7.6)

Fiso = [dj30(l), oL(2),...,a2Iso(L)]T (7.7)

FPol = [a2PJl),a2Pol(2),... ,a2Pol(L)]T (7.8)

Fvoi = [^(1),^(2),. •. ,cr2Vol(L)]T (7.9)
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Figure 7.13: Wavelet variance for Hydrophobicity profile of 5-hydroxytryptamine

1A receptor(Human) and 5-hydroxytryptamine 1A receptor (Mouse).

Level (L)

Figure 7.14: Wavelet variance for EIIP profile of 5-hydroxytryptamine 1A recep-

tor(Human) and 5-hydroxytryptamine 1A receptor (Mouse).
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Fcomp = [oComi,(l). d-2Cimp(2),..., a2Cmnp(L))r (7.10)

FMoi = [^MMhrttM), •••^lioi(L)]r (7.11)

Fprot = FHyp © Feiip © FIso © FPoI © Fvoi © FConip © FMoi (7.12)

Fprot =[^(1), •••, o-2Hyp(L),a2Enp(l),..., a2EIIP(L),a2Iso(l),..., (7.13)

^iso(L), a2Pol(l) a2Pol(L), a2Vol(l),..., a2Vol(L),a2Comp(l),

•••>°Comp(L)' ^Molt1). •••»̂ Mol(L)}

where L is the maximum level of decomposition of the time series data (protein

sequence length) and © represents concatenation operation. Thus, FProt is a

collection of wavelet variance coefficients (WVC). The dimension of FProt is

equal to 2L and is dependent on the number of levels (L) to which the time

series data has to be decomposed. The value of L is further dependent on the

length of time series data (i.e, protein sequence) and L > log2(A), where N

is the number of observation points in the time series. As most of the GPCR

sequence have length greater than 32 the value of L is taken as 5. In this study

Daubechies [135] wavelet has been used for analysis.

7.3.3 Classification strategy

This section describes a support vector machine-based implementation developed

for annotating GPCRs on the basis of fixed length feature vector (equation 7.13).

A four step strategy similar to that proposed in [155] is followed for annotating

GPCRs are as follows:
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Figure 7.15: A block diagram of 4-step strategy followed for identification of

GPCR, its family, subfamily and sub-subfamilies.
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7.3 Classification System

1. Predicts whether the protein sequence belongs to the GPCR superfamily

or not.

2. Predicts the family of GPCRs.

3. Predicts the subfamily of GPCRs.

4. Predicts the sub-subfamily of GPCRs.

The four-step strategy for identifying the superfamily, family and subfamily of

GPCRs is shown in Figure 7.15.

Support vector machine

The SVM was implemented using the downloadable tool pattern classification

program (PCP) written by Buturovic [172]. PCP is an open-source machine

learning program for supervised classification of patterns and is freely available

at http://pcp.sourceforge.net. It incorporates a widely used open-source SVM

implementation called LIBSVM [141] and performs a cross-validation estimation

of classifier performance. In addition, the program includes the provision of

automated and efficient model selection (optimization of parameters) for support

vector machine (SVM) classifier. The program enables the user to change the

individual class costs. This may be useful to achieve a desired balance among

class-conditional error rates. PCP (through LIBSVM [141]) provides four kernel

types: radial basis function (RBF), linear, polynomial and sigmoid. Experiments

were conducted using different kernels, however the RBF was selected because of

its superior performance parameters. A brief introduction on SVM theory and

RBF is given in chapter 5.
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7.4 Performance Measures

7.4.1 GPCR superfamily

The performance of SVM in distinguishing GPCRs from non-GPCRs was eval

uated using 5-fold cross-validation. In the 5-fold cross-validation, the dataset

was partitioned randomly into five equal-sized sets. The training and testing of

each classifier was carried out five times using one distinct set for testing and

other four sets for training. The performance of the SVM classifier was measured

in terms of four performance measures-sensitivity (SN), specificity (SP), accu

racy (ACC) and Matthew's correlation coefficient (MCC). The performance

measures are defined as follows:

TP

SN ~WpTfn) (7"14)

TN

sp =JtnTfp) ^

Ann- (TP + TN)
ACC ~ (TP +TN +FP +FN) (7J6)

MCC - ((TP*TN)-(FP*FN))
^(TP + FN)(TP + FP)(TN + FP)(TN + FN) V' ;

where, TP (true positive), TN (true negative), FN (false negative) and FP

(false positive) represents # GPCR sequences that have been correctly predicted

as GPCR sequence, # non-GPCR sequences predicted as non-GPCR sequence,

# GPCR sequences predicted as non-GPCR sequence, # non-GPCR sequences

predicted as GPCR sequence respectively.
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7.5 Experimental Results

7.4.2 GPCR family, subfamily and sub-subfamily

The four performance measures-accuracy (ACC), Matthew's correlation coeffi

cient (MCC), total ACC and total MCC as provided by Hua and Sun [173] are

given by

ACC(i)=p(i)/obs(i) (7.18)

MCC(i) = P{l)n{i) - ^W (7 19)
y/(p(i) + u(i))(p(i) + o(i))(n(i) + u(i))(n(i) + o(i)) { ' }

ACCtotal =Ei^P{l) (7.20)
Mcctotal=s^i(^m (7.21]

where, N is the total number of sequence, i is the any family/subfamily/sub-

subfamily, k is thefamily/subfamily/sub-subfamily number, obs(i) is the number

of sequences observed in family/subfamily/sub-subfamily i, p(i) is the number

ofcorrectly predicted sequences of family/subfamily/sub-subfamily i, n(i) is the

number of correctly predicted sequences not of family/subfamily/sub-subfamily

i, u(i) is the number of under-predicted sequences, and o(i) is the number of

over-predicted sequences.

7.5 Experimental Results

7.5.1 Dataset description

To evaluate the performance of the proposed approach the GPCRs protein se

quences were downloaded from GPCRDB http://www.gpcr.org/7tm. GPCRs

have been divided into six principal classes or families generated based on se

quence: class A (rhodopsin-like), class B (secretin-like), class C (metabotrophic
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glutamine/phero-

mone), class D (fungal pheromone), class E (cAMP receptors), and the Friz-

zled/Smoothened class [147, 148]. Each class/family is further divided into sub

families and sub-subfamilies based on their ligand specificity, with some fami

lies combined into larger groups based on closely related ligands. The negative

dataset i.e., non-GPCRs protein sequences were downloaded from http://www.so-

e.ucsc.edu/research/compbio/gpcr/superfamily.seqs/ [154], and includes 99 de

coy negative examples (i.e., non-GPCRs): 18 archaea rhosphins and 80 G-protein

alpha domains and 2466 additional negative examples obtained from SCOP ver

sion 1.37 PDB90 domain data data [154, 168]. For comparison with GPCR

pred the GPCRs protein sequences were downloaded from above mentioned web

site (negative dataset) which were used by Karchin et al. [154] and Bhasin and

Raghava [155].

The downloaded datasets were pre-processed before using for the experiment.

The protein sequences having length less than 32 amino acids (as L = 5) and the

protein sequences having invalid amino acid symbol (i.e., not among 20 alphabet)

were removed from the dataset. The processed dataset obtained for Karchin et

al. [154] dataset is given in Table 7.4.

7.5.2 GPCR identification

The performance of the system developed for identifying GPCRs from other

protein sequences (i.e., non-GPCRs) using Fprot (equation 7.13) feature vector

is summarized in Table 7.5. The obtained results show that the technique can

identify GPCRs using wavelet variance feature vector from other protein sequence

with an accuracy of 99.9% and a MCC of 0.998, when evaluated through 5-fold

cross-validation. The best results were obtained using RBF kernel with 7 =
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7.5 Experimental Results

Table 7.4: Processed dataset for GPCRs recognition and GPCR family recogni
tion.

Superfamily GPCR Family # of sequence

GPCR Class A 664

Class B 55

Class C 16

Class D 11

Class E 3

Total 749

Non-GPCR decoy 99

SCOP 1.37 PDB90 domain data 2254

Total 2353

0.045316 and the optimized value of C was equal to 3.1623xl06.
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Table 7.5:

GPCRs.

The performance of the proposed technique for identification of

Dataset Information:

# GPCR protein sequences = 2573

# Non-GPCR protein sequences = 2353

Experiment Setting:

5-fold cross-validation

Normalized Feature Vector

Kernel = Radial Basis Function(RBF)

Experimental Result:

Optimal parameters:

Cost (C) = 3.1623xl06

Gamma (7) = 0.045316

Performance Measures:

TP = 2571, TN = 2350, FN = 2, FP = 3

Sensitivity (SE) = 99.92%

Specificity (SP) = 99.87%

Accuracy (ACC) = 99.9%

MCC = 0.998
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Table 7.6: The performance of the proposed technique on unseen GPCR sequences.

Dataset Information Performance parameters

Class # Train # Test # Predicted Sensitivity(%) Specificity(%) Accuracy(%) MCC
GPCR Non-GPCR (SE) (SP) (Recall Rate)

GPCR 1853 730 730(TP) 0(FN) 100.0 99.62 99.8 0.996

Non-GPCR 1569 784 781(TA) 3(FP)

# Total 3422 1514
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It is very important to evaluate the performance ofa classification system on

an unseen or recall patterns/dataset to demonstrate its generalization capability.

None ofthe protein sequences in recall dataset were used for training the system.

Adataset of 1514 protein sequences (#GPCRs = 730, #non-GPCRs = 784) was

selected from the processed downloaded dataset for testing and the remaining

protein sequences were used for training the classification system. The perfor

mance obtained is summarized in Table 7.6. The system provided an accuracy

of 99.8% and MCC of 0.996, when evaluated through a 5-fold cross-validation

based model. The results demonstrated the generalization capability of the pro

posed technique and robustness of wavelet variance feature vector. The results

proved that GPCRs and non-GPCRs can be classified with high accuracy us

ing wavelet variance of physiochemical profiles of protein sequence as a feature

vector. The key point to note is that with only 35-dimensional feature vector a

better performance than GPCRpred [155] is achieved.

7.5.3 GPCR family identification

The classification of GPCRs into its families is a multi-class classification prob

lem. Unlike, SVMpred program where a series of binary SVMs were constructed

to identify families of GPCR, a multi-class classification approach was followed.

From the experimental using the proposed feature vector it was found the multi-

class classification approach provides better performance than a series of binary

SVMs approach.

177



00

GPCR Family # Training # Predicted 44CC(%) MCC

Rhodopsin and andrenergic-like receptors (Class A) 1861

Calcitonin and PTH-like receptors (Class B) 308

Metabotropic-like receptors (Class C) 204

Pheromone-like receptors (Class D) 62

cAMP-like receptors (Class E) 10

Frizzled/Smoothened 128

Total 2573 2512 97.63 0.959

1850 99.41 0.962

291 94.48 0.963

188 92.16 0.948

52 83.87 0.914

9 90.0 0.948

122 95.31 0.955
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Table 7.7: The performance of the proposed technique for identification of GPCR families. £
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Table 7.8: The performance of the proposed technique on unseen dataset of GPCR families.

GPCR Family Dataset # Correctly ACC(%) MCC

# Training # Test predicted

Rhodopsin and andrenergic-like receptors (Class A) 1361 500 497

Calcitonin and PTH-like receptors (Class B) 208 100 94

Metabotropic-like receptors (Class C) 144 60 57

Pheromone-like receptors (Class D) 42 20 16

cAMP-like receptors (Class E) 10 10 10

Frizzled/Smoothened 88 40 33

Total 1853 730 707

99.40 0.965

94.0 0.959

95.0 0.972

80.0 0.892

100.0 1.0

82.5 0.889

96.85 0.959
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7.5 Experimental Results

The overall 5-fold cross-validation accuracy achieved for GPCR family clas

sification was equal to 97.63% and is provided in Table 7.7. A test was also

performed on unseen dataset of GPCR family. In this test leaving class E data

the training and testing dataset of class A, class B, class C, class D and Friz-

zled/Smoothened consists of different protein sequences. Due to lower number

of protein sequences for class E, the training and test dataset were kept same

because a learning technique requires a good number of examples for reliable

prediction. The performance of the SVMs in recognizing the unseen or recall

patterns of the classes or families of GPCRs is summarized in Table 7.8. The

overall accuracy and MCC achieved for unseen pattern/dataset for identifying
the six GPCR classes were 96.85% and 0.959 respectively.

7.5.4 GPCR subfamily identification

The prediction ofGPCR subfamilies is crucial in assigning a function to GPCRs.

Therefore, experiments have also been performed for identifying the subfamilies

of GPCRs. The system was evaluated using 5-fold cross-validation (except for

Gastric inhibitory peptide, Very large GPCR subfamilies of class B for which

a 4-fold cross-validation was performed) and the performance of the system in

predicting the subfamilies in terms ofaccuracy (ACC) is shown in Table 7.9. The

overall prediction accuracy and MCC of the proposed technique for identifying

subfamilies of GPCR is equal to 96.64% and 0.97 respectively and is better than

GPCRpred program. Further, test on unseen dataset of class A (rhodopsin-like)

subfamilies which constitutes more than 80% of GPCRs was also performed.

Accuracy of 96.78% and MCC of 0.97 was achieved and the result is summarized

in Table 7.10.
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Table 7.9: The performance of the proposed technique

for identification of GPCR subfamily.

Family Subfamily #Actu al #Predicted ACC(%)

528 91.99

MCC

Class A Amine 574 0.93

Cannabinoid 24 22 91.67 0.96

Gonadotropin-releasing 78 70 89.74 0.93

hormone

Hormone proteins 65 65 100.0 1.0

Leukotriene B4 receptor 12 12 100.0 1.0

Lysosphingolipid & 60 57 95.0 0.97

LPA

Melatonin 22 22 100.0 1.0

Nucleotide-like 146 137 93.84 0.96

Olfactory 2489 2470 99.24 0.99

Peptide 1314 1257 95.66 0.96

Platelet activating fac 9 7 77.78 0.88

tor

Prostanoid (J5 93 97.89 0.99

Rhodopsin 625 615 98.4 0.99

TRHS 36 27 75.0 0.85

Viral 88 74 84.09 0.91

Overall for Class A 5637 5456 96.79 0.97

Class B Calcitonin 29 28 96.55 0.96

Continued on next page
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Table 7.9 - continued from previous page

Family Subfamily #Actual #Predicted ACC(%) MCC

Corticotropin releasing 34 34 100.0 1.0

factor

Gastric inhibitory pep 4 4 100.0 1.0

tide

Glucagon 23 21 91.3 0.95

Growth hormone- 15 13 86.67 0.93

releasing hormone

Parathyroid hormone 23 21 91.3 0.95

PACAP 21 21 100.0 0.97

Secretin (i 6 100.0 1.0

Vasoactive intestinal 22 18 81.82 0.90

polypeptide

Diuretic hormone 7 (> 85.71 0.92

EMR1 27 27 100.0 1.0

Latrophilin 41 39 95.12 0.96

Brain-specific angiogen- 18 17 94.44 0.97

esis inhibitor

Methuselah-like pro 23 20 86.96 0.93

teins (MTH)

Cadherin EGF LAG 11 11 100.0 1.0

(CELSR)

Very large GPCR 4 4 100.0 1.0

Overall for Class B 308 290 94.16 0.94

Continued on next page
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Table 7.9 - continued from previous page

Family Subfamily #Actual #Predicted ACC(%) MCC

Class C Metabotropic gluta-

mate

53 51 96.23 0.97

Calcium-sensing like 11 37 90.24 0.91

Putative pheromone re 20 19 95.0 0.97

ceptors

GABA-B 35 32 91.43 0.93

Orphan GPRC5 17 17 100.0 0.97

Orphan GPRC6 5 5 100.0 1.0

Bride of sevenless pro 4 4 100.0 1.0

teins

Taste receptors 29 26 89.65 0.92

Overall for Class C 204 191 93.63 0.95

Class D Fungal pheromone A-

Factor like

21 21 100.0 1.0

Fungal pheromone B 39 39 100.0 1.0

like

Overall for Class D 60 60 100.0 1.0

Frizzled/ Frizzled 115 115 100.0 0.96

Smoothened Smoothened 13 12 92.31 0.96

Overall for Friz- 128 127 99.22 0.96

zled/Smoothened

Overall for subfamily 6337 6124 96.64 0.97
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7.5.5 GPCR sub-subfamily identification

The receptors of amine subfamily are specifically major drug targets for therapy
of nervous disorders and psychiatric diseases. The recognition of novel amine type
of receptors and their cognate ligands is of paramount interest for pharmaceutical

companies. The complete dataset that is available at GPCRDB was taken for

the current experiment. The 5-fold cross-validation accuracy that was obtained

for amine subfamily after the experiment is given in Table 7.11. The overall

accuracy and MCC obtained was equal to 93.38% and 0.95 respectively.

7.5.6 Human GPCR identification

To evaluate theperformance oftheproposed approach for human GPCRs a 5-fold

cross-validation test was performed on the dataset downloaded from GPCRDB [147].

The protein sequences were pre-processed and sequences of length less than 32

amino acids were removed (as 1 = 5) from the dataset. A total number of 2583

human GPCRs belonging to the six families or classes of GPCR were obtained

after pre-processing. The dataset that was taken for GPCRs classification ex

periment in section 7.5.2 is taken as non-GPCR dataset. The performance of the

SVMs is summarized in Table 7.12. The system provided an accuracy of 99.88%

and a MCC of 0.998, when evaluated through a 5-fold cross-validation based

model. In addition, a test on recall patterns was also performed to evaluate the

generalization capability of the proposed technique. The performance obtained

is summarized in Table 7.13. The system provided an accuracy of 99.83% and an

MCC of 0.996, when evaluated through a 5-fold cross-validation based model.
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Table 7.10: The performance ofthe proposed technique on unseen subfamilies of

class A.

Subfamily #Train #Test #Predicted ACC(%) MCC

Amine 474 100 96 96.0 0.96

Cannabinoid 20 1 4 100.0 1.0

Gonadotropin-releasing 61 17 13 76.47 0.87

hormone

Hormone proteins 50 15 15 100.0 1.0

Lysosphingolipid & LPA 45 15 14 93.33 0.97

Melatonin 17 5 5 100.0 1.0

Nucleotide-like 102 14 38 86.36 0.93

Olfactory 2021 468 466 99.57 0.99

Peptide 1027 287 277 96.52 0.95

Prostanoid 70 25 24 96.0 0.98

Rhodopsin 516 109 109 100.0 1.0

TRHS 32 4 2 50.0 0.71

Viral 64 24 18 75.0 0.86

Overall 4499 1117 1081 96.78 0.97
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Table 7.11: The performance of the proposed technique for identification of

GPCR sub-subfamily.

Sub-subfamily # Actual # Predicted ACC(%) MCC

Muscarinic acetylcholine 63 61 96.82 0.96

Adrenoceptors 118 114 96.61 0.97

Dopamine 94 84 89.36 0.94

Histamine 18 45 93.75 0.96

Serotonin 157 145 92.36 0.93

Octopamine 25 18 72.0 0.80

Trace amine 69 69 100.0 1.0

Overall 574 536 93.38 0.95
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Table 7.12: The performance of 5-fold cross-validation of the proposed technique for identification of Human GPCRs.

# GPCRs # non-GPCRs True True False False SN SP ACC MCC

positive negative positive negative

- (TP) (TN) (FP) . (FN) (%) (%) (%)

2583 2353 2581 2349 99.92 99.83 99.88 0.998
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Table 7.13: The performance of the proposed technique on unseen Human GPCRs.

Dataset Information Performance parameters

Class # Train # Test # Predicted Sensitivity(%) Specificity(%) Accuracy(%) MCC

GPCR Non-GPCR (SE) (SP)

GPCR 1612 971 971(TP) O(FN) 100.0 99.62 99.83 0.996

Non-GPCR 1569 784 781(TN) 3(FP)

# Total 3181 1755
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Table 7.14: Comparison of the proposed technique with GPCRpred for identifi-

cation GPCRs.

TyPe Our Technique GPCRpred

# Actual # Predicted ACC(%) MCC ACC(%) MCC

GPCR 749 746 99.84 0.996 99.5 0.99

Non-GPCR 2353 2351

Overall 3102 3097

7.5.7 Performance comparison with SVMpred

To compare the performance of the proposed method with GPCRpred program

an experiment was performed on the dataset of GPCR and non-GPCR protein

sequences that was used by Bhasin and Raghava [155]. Accuracy of 99.84% was

achieved (refer to Table 7.15) and is better than that achieved by 400-dimension

feature vector based program (GPCRpred). The key point to note here is that

using only 35-dimensional feature vector better accuracy is achieved as compared

to GPCRpred program.

For comparing the performance of the proposed method with GPCRpred

for family identification a 5-fold cross-validation was performed on the dataset

that was used by Raghava and Bhasin. The result obtained is summarized in

Table 7.15 and the overall accuracy achieved by the proposed method is higher

than SVMpred. Poor result was obtained for class D and class E due to low

number of training samples.
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Table 7.15: Comparison of the proposed technique with GPCRpred for identification GPCR family.

GPCR Family Type Our Technique GPCRpred

# Actual # Predicted ACC(%) MCC ACC(%) MCC

Rhodopsin and andrenergic-like receptors (Class A) 664 662

Calcitonin and PTH-like receptors (Class B) 55 53

Metabotropic-like receptors (Class C) 16 15

Pheromone-like receptors (Class D) 11 6

cAMP-like receptors (Class E) 3 2

Total 749 738

99.7 0.953 98.1 0.8

96.36 0.98 85.7 0.84

93.75 0.968 81.3 0.81

54.54 0.68 36.4 0.49

66.67 0.816 100.0 1.0

98.53 0.951 97.3 0.81
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7.6 Conclusion

In this chapter a novel wavelet variance based feature vector for identification and

classification of GPCRs is presented. Based on pattern recognition framework

the proposed approach is divided into three different tasks: amino acid map

ping, feature construction and classification. The feature vector unlike previous

SVM based approaches summarizes the variation of seven important biological

properties (hydrophobicity, electronic, isoelectric point, polarity, volume, com

position and molecular weight) of amino acids in a protein sequence. The feature

extraction technique is based on wavelet based time series analysis. Further, the

dimension of the proposed feature vector is equal to 35 and is much smaller than

GPCRpred program whose feature vector dimension is equal to 400. This huge

reduction in feature vector dimension facilitates in developing computational and

memory efficient classifiers for drug discovery applications.

Performance evaluation performed on the complete dataset of GPCR super-

family, family, subfamily, sub-subfamilies and human GPCRs that is available at

GPCRDB. The proposed technique provides a 5-fold cross-validation accuracy of

99.9%, 97.63%, 96.64% and 93.38% for GPCR superfamily, families, subfamilies

and sub-subfamilies (amine group) respectively. Test conducted for identifying

human GPCRs provided an accuracy of99.88%. In addition, tests were also con

ducted on unseen or recall datasets and accuracy of 99.8%, 96.85% and 96.78%

was obtained for GPCR superfamily, families and subfamilies respectively. This

proves the generalization capability of the proposed classification technique and

sensitivity of the novel features. Comparison of experimental results with GPCR

pred shows that the proposed approach is more accurate. The proposed pattern

recognition framework coupled with wavelet based feature extraction provides a

generic approach for sequence analysis, especially for sequence classification.
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Chapter 8

Conclusions and Future Work

8.1 Contributions of the Thesis

The contributions of the thesis are as follows:

• A novel signal processing measure for identifying tandem repeat patterns in

DNA sequences is presented in this thesis. The motivation for developing

a signal processing based technique for tandem repeat algorithm is due

to similarity of tandem repeats and short periodic signals. The proposed

approach is based on orthogonal decomposition of input signal using exactly

subspace decomposition algorithm. The algorithm resolves the common

problem of the existing signal processing algorithms where by they could

not identify whether an inexact repeat pattern is of due to period P or

its multiple (i.e., 2P, 3P and so on). In addition, it resolves other issues

that are present with existing signal processing solution for tandem repeat

identification problem.

The proposed algorithm is computationally efficient and computes tandem

repeats in 0(NLwlogLw), where N is the length of DNA sequence and
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Lw is the window length, for identifying repeats. The algorithm operates

in two stages. In the first stage, each nucleotide is analyzed separately

for periodicity, and in the second stage, the periodic information of each

nucleotide is combined together to identify the tandem repeats. Datasets

having exact and inexact repeats were taken up for the experimental pur
pose. Comparison of sensitiveness of the algorithm with existing methods

both signal processing and non-signal processing shows the effectiveness of

the approach.

>Identifying exact and inexact inverted repeats (IRs) or DNA palindrome

in DNA sequences is an important problem in bioinformatics. The existing
programs require a number of input parameters for finding inverted repeats

and are difficult to use for non-computer experts especially biologists. Also,
till date there does not exist any signal processing algorithm for IR iden

tification. As one of the aims the thesis is to explore novel application of

signal processing technique for bioinformatics problems, asignal processing

approach is proposed for IR identification.

In this thesis, two algorithms have been presented for identifying inverted

repeats. The first algorithm is based on periodicity transform and is able

to identify exact IR and inexact IR (due to substitution). The second algo

rithm applies a fast correlation based signal processing approach for iden

tifying all cases of inexact IRs. The motivation for developing a correlation

based approach is due to presence of high correlated patterns between a

DNA sequence and its reverse complemented sequence whenever inverted

repeats are present in the input DNA sequence. The algorithm requires

only two input parameters and is a easier method for identifying IRs. The

correlation based approach with slight modification is extended to predict
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RNA secondary structure from its primary sequence.

• Gene prediction and the classification of protein coding and non-coding

DNA sequences are unsolved and popular research problems in bioinfor

matics. Several powerful computational methods have been developed and

their performance is highly dependent'on coding measures that are used for

characterizing sequences. Period-3 property of the coding sequences and

slope based model for Z-curve components are two important and popular

coding measures for classifying a DNA sequence into protein coding and

non-coding classes. However, both of these measures provide only a global

level of information that is present in the DNA sequences. For many DNA

sequences, especially, for small coding DNA sequences the local information

that is present in the sequence is also important for correct classification.

In this thesis, a pattern recognition framework for classification of DNA

sequences into coding and non-coding classes is presented. A novel coding

measure is calculated using wavelet based time series analysis technique on

Z-curve components. The coding measure contains both local and global

level variance information of Z-curve components. An optimized support

vector machine (SVM) based on the novel coding measure is constructed

for accurate classification. Later on, a fixed length vector based on wavelet

variance and slope based coding measure is also used for classification pur

pose. Performance evaluation of the proposed approach shows that wavelet

variance classification provides better accuracy than slope based method

(existing most accurate method). Further experiments show that a com

bined coding measure (wavelet variance and slope) provides accuracy up

to 96% for Yeast and more than 96% for E.Coli genome.
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»An automatic identification and classification of G-protein coupled recep

tors (GPCRs) is proposed in this thesis. GPCRs play important roles in

cellular signalling networks and are a large superfamily of receptors. They

are major therapeutic targets of numerous prescribed drugs. However, the

ligand specificity of ofmany receptors is unknown and there is little struc

tural information available. Thus, computational techniques for automatic

recognition and characterization of GPCRs are very important. Till date,

there exists several methods for identification and classification of GPCRs.

SVMpred program is a SVM based approach and is the most accurate

method for classification of GPCRs. However, this technique has two ma

jor drawbacks. First, the fixed length vector dimension is huge and is equal

to 400. Secondly, the feature vector is based on dipeptide composition and

ignores the physicochemical properties of amino acids which are important

for knowing the functionality of proteins.

In this thesis, a novel feature vector based on variation of seven physico-

chemical properties (hydrophobicity, electronic, isoelectric point, polarity,

volume, composition and molecular weight) of amino acids is proposed.

The feature vector is obtained based on wavelet method for analyzing time

series sequences. Further, the dimension of the proposed feature vector is

only 35. This low dimension of the feature vector facilitates developing

computational and memory efficient classifiers for drug discovery applica

tions. A four step strategy is followed for automatic classification of protein

sequences into GPCRs, GPCR family, GPCR subfamily and GPCR sub-

subfamily using SVMs. Experiments were performed on complete dataset

that is available at GPCR database (GPCRDB). Performance evaluation

of the proposed system on standard dataset shows that our approach is
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more accurate than GPCRpred. Further test conducted on unseen datasets

shows the effectiveness of our approach.

8.2 Future Work

There are a number of extensions and scope of the present research work. The

three step methodology proposed in this thesis can be followed for other se

quence analysis problems and for finding novel applications of signal processing

algorithms. Some of the future works of the current research work are as follows:

• The proposed exactly period subspace decomposition algorithm can be

extended for identifying protein coding regions from a genome based on

period-3 component.

• More coding measures can be included in the proposed coding feature vec

tor for further improvement in classification accuracy. The proposed feature

vector can be utilized by the existing gene finding algorithms for accurate

identification of genes.

• The proposed pattern recognition approach can be extended for identifying

methylated CpGs patterns from DNA sequences.

• The proposed feature based on physicochemical properties on amino acids

can be applied for prediction of protein structural classes, identification

of membrane protein type, enzyme family classification and many others.

In addition, other physicochemical properties of amino acids can also be

included for further improvement in accuracy of the proposed system.

• A clustering based approach can be developed based on the proposed fea

ture for finding classes or families of proteins.
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The proposed pattern recognition approach system for time series data

(DNA and protein sequences in this thesis) can be applied to economic,
atmospheric and other time series data.

The proposed wavelet based variance analysis can be extended to wavelet

based correlation analysis and sequence similarity algorithm can be devel

oped.
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