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ABSTRACT

Mobile computing as compared to traditional computing paradigms enables clients to have

unrestricted mobility while maintaining network connections. Due to mobility, location

identification has naturally become a critical attribute, as it determines the location of mobile

users. The ability to pinpoint a mobile user's location due to the advances in global positioning

technologies, such as Global Positioning System (GPS), along with the advances in wireless

technology has motivated the emergence of a new class of mobile services commonly referred to

as Location-Dependent Information Services (LDISs). The promising applications are travel and

tourist information system, assistant and emergency system, nearest object searching system and

local information access system, to name a few. Users of LDISs face many new challenges

inherent to mobile environment. These challenges include limited bandwidth, intermittent

connectivity, limited storage, slow CPU speed, low battery power and small user interface. Data

management in this paradigm also poses new challenging problems. Thus, sophisticated data

management and resource management techniques are needed to enhance the performance of

data access in LDISs. The work presented in this thesis is an effort to address these issues by

proposing new and efficient cache management schemes for location-dependent data (LDD) in

mobile environment. We used geometric model based location identification technique for

mobile clients.

First part of the thesis addresses the cache invalidation issues. A cache invalidation scheme

maintains data consistency between the client's cache and the server. Unlike the common data,

every item of LDD usually has various values, which aretermed as datainstances of an LDD item.

Each instance is only valid within some specific region, which is termed as the Valid Scope

(VS) of that data instance. For maintaining consistency of the cached LDD, LDIS stores valid

scope of the data item along with its value in the client's cache. The valid scope of a data item is

represented and stored as a convex polygon on the server. Downloading valid scope along with

data consumes substantial bandwidth. The overhead of storing all end points of the polygon in

client's cache is large, so a subset of valid scope is stored that approximates the original valid

scope. But storing the subset of valid scope at client's cachereduces the precision of its validity.

The mobile client may be shown outside of the valid scope even when actually it is within the

original valid scope. Therefore, the problem of selecting the best subset (candidate) of valid

xin



scope that balances the precision and overhead costs becomes crucial. We present a Generalized

Caching Efficiency Based (CEB_G) algorithm which selects thebest suitable candidate for valid

scope that increases caching efficiency and compare its performance with the existing Caching-

Efficiency-Based (CEB) algorithm. We then introduce a new metric called Future Access (FA),

which takes into account the future movement behavior of the client and based on it propose

Caching Efficiency with Future Access Based (CEFAB) algorithm, which selects the best

suitable candidate for valid scopeusing FA. We further propose a generalized CEFAB algorithm

(CEFAB_G). A number of simulation experiments are conducted to evaluate the performance of

theproposed cache invalidation schemes. The results show that algorithms CEB_G, CEFAB, and

CEFAB_G give better performance than CEB for different system settings. Among theproposed

algorithms, CEFAB_G gives thebestperformance. But, computational overhead at the server for

CEFAB_G and CEB_G is higher than CEFAB. Moreover, in CEFAB and CEFAB_G, the client

has to send additional information to the server, which requires extra computation at the client's

end, as compared to CEB_G. Thus, for low resource client CEB_G is preferred. Depending on

the resources at the server, choice can be made between CEFAB and CEFAB_G.

Second part of the thesis presents new cache replacement algorithms for location-dependent

information services. Due to the limitation of the cache size, it is impossible to hold all accessed

data items in the cache. As a result, cache replacement algorithms are used to find a suitable

subset of data items for eviction when the cache is full and a new data item is to be inserted into

cache. Several location-dependent cache replacement policies have been proposed for LDISs.

None of these cache replacement policies are suitable if client changes its direction of movement

quite often. The impact of client's anticipated location or region in deciding cache replacement

still remains unexplored. Existing cache replacement policies only consider the actual data

distance (directional/undirectional), and not the distance based on the predicted region/area

where the client can be in near future. When client movement pattern is random, retaining the

data items in the direction of user movement and discarding the data items that are in the

opposite direction of user movement may not always improve the performance. Therefore our

cache replacement policy considers the predicted region of user presence in near future (rather

than considering the direction of user movement only) while selecting a data item for

replacement. The predicted region is based on the client's current movement pattern. We propose

cache replacement algorithms based on the predicted region of user's presence in near future.

xiv



These algorithms predict an area in the vicinity of client's current position, and give priority to

the cached data items that belong to this area irrespective of the client's movement direction.

Based on the predicted region we propose Predicted Region based Cache Replacement Policy

(PRRP), Prioritized Predicted Region based Cache Replacement Policy (PPRRP) and Weighted

Predicted Region based Cache Replacement Policy (WPRRP). In PRRP, data distance is

calculated such that the data items within the predicted region are given higher priority than the

data items outside the predicted region. In PPRRP, in addition to giving highest priority to the

data items within the predicted region, data items nearer to the client's current position are also

favored over other data items in the same predicted region. WPRRP divides the whole area into

different sub regions: in-direction, out-direction, predicted andnon-predicted and then associates

different weights with each of these sub regions. By changing these weights this scheme can

adapt itself to suit to any situation. We compare our cache replacement policies with other

existing cache replacement policies such as Probability Area Inverse Distance (PAID), Furthest

Away Replacement (FAR), and Manhattan for LDIS. A number of simulation experiments have

been conducted to evaluate the performance of the proposed cache invalidation schemes. The

results show that proposed algorithms with different system settings, give much better

performance than other policies.

The third part of the thesis considers the effects of recency and frequency of data items

accessed, on location-dependent cache replacement. We propose a cache replacement policy

namely CRF Area and Inverse Distance Size (CAIDS) which uses the Combined Recency and

Frequency (CRF) value, valid scope area, data distance and data size of a data item, to select a

data item for replacement. Simulation results show that CAIDS has an edge over existing

policies. Earlier cache replacement policies for LDIS consider only the recency of data items.

But CAIDS considers both recency and frequency factors while deciding the item to be replaced

from the cache when the cache is full and new data item is to be inserted in the cache.

Lastly, the contributions made in the thesis in the area of cache management for LDIS have

been summarized and scope for future work is outlined.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF LDIS

Computing has evolved very rapidly over the past couple of decades. With the advances in

wireless technology, wireless devices, such as laptops, mobile phones, personal digital assistants,

smartcards, watches and the like, are gaining wide popularity. Their computing capabilities are

growing and size is shrinking day by day. The proliferation of wireless networks and smart

portable wireless devices has led to the emergence of mobile computing. Today, more and more

users can access networked services by using portable devices and easily accessible wireless

connections, evenwhen on the move. Initially, the main objective of the wireless networks was

to enablemobile units to communicate. Nowadays, these networks support various services and

applications ranging from simple network enabled printers to more sophisticated application-

level services, e.g., traffic reports, multimedia tourist guides, etc., with a goal to provide

information anytime, anywhere, and on any device. However, all the advantages of wireless

access by mobile users come with their own costs. Users in mobile wireless environment suffer

from intermittent connectivity, narrow bandwidth and limited local resources. Their mobility

introduces new challenges. The ability to pinpoint a mobileuser's locationdue to the advances in

global positioning technologies, such as Global Positioning System (GPS) [43], along with the

advances in wireless technology has motivated the emergence of a new class of mobile services

commonly referred as Location-Dependent Information Services (LDISs). LDISs areITservices

for providing information that has been created, compiled and selected orfiltered based on the

current location of the user or the target object. The attractiveness of LDIS results from the fact

that their participants do not have to enter their location manually, but it is automatically

pinpointed and tracked. A traveler may use his laptop to query for weather, traffic, hotels, petrol

pumps, adjacent ATM locations, tour guide, shopping guide etc., while traveling. LDIS provides

answers depending on the location of the traveler. However, as the queries generated by LDIS

users are spatial in nature, sophisticated data and resource management techniques areneeded to

efficiently provide data to LDIS users. Techniques for improving the capability and quality of

wireless environment to provide data to mobile users have become a hot research area in the



academics and industry [23, 72]. Problems in LDIS such as the high network traffic, heavy

server workload and long user query delay arise due to mobility of user in the wireless

environments and caching is oneof thebasic methods to overcome these drawbacks.

Cache is a small but fast memory meant to hold frequently accessed data for reuse in near

future. Caching has been successfully used for improving performance in traditional operating

systems, distributed systems, and Web environments [1,19,22,26,47,61,82,100,122]. In amobile

wireless environment, caching expensive data on client side is desirable to handle data

reusability. Since each time the data is requested, one can turn to the cache rather than going to

the server and fetching the result. This not only improves query latency but also decreases

network access and load at the server, thereby increasing system performance [1,3, 4,5,12, 14,

21,66,82,92,108].

However, in applications like LDIS the same service request may need to be answered

with completely different results as the user changes his location or the target moves. Because of

this dependency on location, traditional cache management techniques are not well suited for

LDIS and the design of anefficient data / cache management strategy for LDIS becomes a major

challenge. The main challenges in the management of data / cache for LDIS are summarized

below [13,37,50,78,81,82,109]:

• New types of queries: Queries raised by LDIS users can be categorized into two types

[11,12]. The first one includes queries issued from mobile terminals querying data related

to fixed objects (e.g. hotels, gas station, etc). The second category includes the queries

issued from mobile or fixed terminals and querying data related to moving objects (e.g.

vehicles, planes, peoples). The movement of LDIS users and target objects introduces

new issues in maintaining cache consistency.

• Constraints of wireless environments: Wireless communication is inherently more

interference-prone than wired communication because the surrounding environment

interacts with signal, blocks signal paths, and introduces noise and echoes. As a result,

wireless connections are of poorer quality and lower bandwidth, are error-prone, and

suffer from more frequent disconnections than wired connections. In contrast to wired

networks, wireless networks typically have lesser resources, low bandwidth and high

latency. Caching should act as a shield to these constraints for users. A good cache



management mechanism should require as little co-operation as possible between the

server and the client.

• Portability of Mobile devices: Due to portability, mobile devices have a lot of inherent

limitations, such as low battery power, slow CPU speed, high risk of data loss, smaller

user interfaces, and limited storage. Therefore, all applications in a mobile computing

environment including LDIS should take these limitations into consideration and should

emphasize on data reusability.

• Spatial property of Location Dependent Data: Location-dependent data (LDD)

[29,50,82] may show different results for different locations even with the same query,

which brings new challenges for cache management. For example, suppose a traveler

wants to find out information about nearest hotel in the middle of his journey from Delhi

to Haridwar. He issues a query to obtain this information. The answer to this query

depends upon the geographical location of the traveler. At one place, for example

Roorkee, the answer might be a Roorkee Inn and at another place, near to Haridwar, the

response might be Hotel Ganges. In this example data item is Hotel and data values are

Roorkee Inn and Hotel Ganges. Due to the spatial property of data item, the data value

changes with the movement of client. Hence, the cache management techniques should

consider the issues related to LDD.

• User Mobility: The ability to change location while connected to a network decreases

the validity of information. Certain data, considered static in fixed computing

environments, becomes dynamic in LDIS. The information stored in user's cache may

become useless if the user changes his location. This introduces a new challenge,

requiring new cache management techniques.

Above factors, together with scalability, variable data sizes, heterogeneous access patterns,

and frequent data updates, make the design of client cache management a challenge in LDIS.

Because of these characteristics of the computing environment, the existing cache management

techniques proposed for the distributed-computing arena that operates in a wired environment

may not be applicable in LDIS. Ideally, the user should be able to access services in one location

and continue to use the equivalent services without interruption when moving to another location

or to different wireless network, provided the service is accessible in this new location.



A summary of characteristics of cache in various computing environments is given in Table

1.1

Table 1.1 Characteristics of Cache in Various Computing Environments

Traditional

Computing
Web

Computing
Mobile Computing

Time-Dependent
Data

Location-

Dependent Data

Environment Characteristics
Connectivity Strong Strong Weak/Intermittent Weak/Intermittent

Data Size Fixed Distributed

between

small(i.e.
text)to very

large(i.e. video)

Distributed

between small(i.e.
text)to very

large(i.e. video)

Distributed

between small(i.e.
text)to very

large(i.e. video)

Data Access

Pattern

Sequential Random/Zipf s
distribution

Random/Zipfs
distribution

Random/Zipf s
distribution/

Location

dependent

Communication

Speed
Very high Fast/Medium Very slow Very slow

Cache Characteristics

Notion CPU Cache Web Cache Mobile Cache Mobile Cache

Cache Type Fast, expensive
volatile

memory

Nonvolatile

memory, i.e
disk/ flash

memory

Nonvolatile

memory, i.e disk/
flash memory

Nonvolatile

memory, i.e
disk/flash memory

Cache Size Very small large Very small Very small

Cache Data Read/Write Read only Read only Read only

Cache

Inconsistency

Due to update
in cache

Due to update
at server

Due to update at
server

Due to mobility of
client

In general, cache in mobile client is a small space allocated in the nonvolatile memory such

as hard disk or flash memory of the hand held devices. The advantages of using client-side data

caching are as follows:

• It can improve data access performance since a portion of queries, if not all, can be

satisfied locally.

• It can help to save energy since wireless communication is required only for cache-miss

queries.

• It can reduce contention on the narrow-bandwidth wireless channels and reduce workload

of the server. This improves the system throughput.

• It can improve data availability when clients are disconnected or weakly connected as

queries can be answered from the cached data.



• In LDIS, certain information is same for a given area, for example weather in a city.

Caching reduces the need to repeatedly query the server for the same result, thereby

saving battery power and wireless bandwidth.

There are three main issues involved in client cache management

[3,4,12,22,50,55,56,59,66,82,87,92]:

• Cache consistency: A cache consistency scheme, or, as it is called, a cache invalidation

scheme maintains consistency betweencached data at the client andthose at the server.

• Cache replacement: A cache replacement policy determines which data item(s) should

be dropped from the cache when the free space is insufficient to accommodate an item to

be cached.

• Cache prefetching: A cache prefetching policy, or called a cache hoarding mechanism,

automatically preloads data into the cache for possible future access requests. The main

purpose ofprefetching is to reduce cache miss costs.

In summary, characteristics of a mobile computing environment in LDISs pose many

challenges that do not exist in traditional computing environments. Client-side data caching in

LDIS is attractive, as it overcomes, to some degree, constraints such as scarce bandwidth, limited

power source and mobility. As very little work has been done in this area, there is a need to

devise effective caching mechanisms to handle location-dependent data.

1.2 STATEMENT OF THE PROBLEM

Caching is an effective technique to reduce query latency, bandwidth and power consumption in

mobile environment. The spatial property of LDD opens up new challenges and opportunities for

data caching research. First, the cached result for a query becomes invalid when the client moves

from one location to another. Second, a cache replacement policy that has to identify the data

unlikely to be used again needs to consider spatial factors in addition to temporal factors. In

LDISs, the chance for a data instance to be used again depends on the size of its valid scope (the

area in which the data instance is valid) and the mobility of the user. Therefore, traditional cache

consistency and replacement policies can not be used for location-dependent data.



The main objective of the present research work is "to investigate andpropose client-side

cache management techniques for location-dependent data in mobile environment. The above

problem canbe further subdivided into smaller objectives as follows:

1. To investigate types of queries issued by the mobile client's.

2. To explore client's movement pattern.

3. To investigate the various location models used in determining user's position in

LDIS.

4. To examine the existing cache management strategies for LDIS.

5. To propose new cache invalidation strategies for LDIS and evaluate their

performance.

6. To propose and evaluate new cachereplacement policies for LDIS.

1.3 CONTRIBUTIONS OF THE THESIS

This thesis attempts to address the issues concerning the client-side caching for location-

dependent data in mobile environment and proposes new techniques for maintaining cache

consistency and selecting data item for cache replacement. The main contributions of the thesis

are as follows:

• Location-dependent cache invalidation. For maintaining consistency of the cached

Location Dependent Data (LDD), LDIS stores valid scope of the data item along with its

value in the client's cache. Valid scope of the data item is represented and stored as a

polygon (convex and irregular) on the server. The overhead of storing all end points of

the polygon in client's cache is large, so a subset of valid scope is stored that approximate

the original valid scope. But storing the subset of valid scope at client's cache reduces the

precision of its validity. The client may be shown outside of the valid scope even when

actually he is within the original valid scope. Therefore, the problem of selecting the best

subset of valid scope becomes crucial. In this thesis, we propose a Generalized Caching

Efficiency Based algorithm (CEB_G) which selects the best suitable candidate for valid

scope. We also propose a new Caching Efficiency with Future Access Based (CEFAB)

cache invalidation policy that tries to improve the performance by speculating the user's

future access based on his movement pattern.



• Location-dependent cache replacement. Due to cache size limitation, the choice of cache

replacement technique to find a suitable subset of items for eviction from cache becomes

important. We propose a new Predicted Region based Cache Replacement Policy (PRRP)

for the replacement of location-dependent data in mobile environment. The proposed

policy uses a predicted region based cost function to select an item for eviction from

cache. The policy selects the predicted region, based on client's movement and uses it to

calculate the data distance of an item. This makes the policy adaptive to client's

movement pattern unlike earlier policies that consider the directional / non-directional

data distance only. We also propose Prioritized Predicted Region based Cache

Replacement Policy (PPRRP) and Weighted Predicted Region based CacheReplacement

Policy (WPRRP) based on it.

It has been shown that Combined Recency and Frequency (CRF) value gives better

results than the traditional Least Recently Used (LRU) and Least Frequently Used (LFU)

cache replacement policies [25]. We propose a cache replacement policy known as CRF

Area and Inverse Distance Size (CAIDS) which uses CRF, valid scope area, data distance

and data size of a data item, while selecting an item for replacement. Simulation results

show that the proposed cache management policies perform better than the existing

policies in terms of cache hit ratio.

1.4 ORGANIZATION OF THE THESIS

This thesis is organized as follows. Chapter 2, provides an introduction to the subject of LDIS

and a review of related work. The background includes the mobile computing system model and

a brief description of its characteristics. Formal definitions of location-dependent information

services (LDISs) and the concept of valid scope is also given. Finally, the work done on cache

invalidation, cache replacement and prefetching for time-dependent data as well as location-

dependent data is reviewed.

In Chapter 3, a generalized cache invalidation algorithm is presented. A new cache

invalidation scheme, CEFAB is also described in this chapter, which tries to improve the

performanceby speculating the user's future accesses based on his movement patterns.

Chapter 4, deals with the design of cache replacement policies that use a predicted region

based cost function to select data items for eviction from cache. These policies select the



predicted region based on client's movement and use it to calculate the data distance ofa data
item. This makes the policy adaptive to client's movement pattern unlike earlier policies that

consider the directional/non-directional data distance only. PRRP, PPRRP and WPRRP have

been explained in detail.

Chapter 5, describes recency/frequency based location-dependent cache replacement policy,

CAIDS, which considers both recency and frequency of data item for eviction from cache.

Finally, Chapter 6, concludes the thesis by summarizing our work and suggests

areas/issues which can be explored in future. A list of the author's research publication is also

given at the end of the thesis.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The emergence of powerful portable computers, along with advances in wireless communication

technologies, has made mobile computing a reality. Mobility arises naturally in wireless mobile

computing since as mobile users move, their point of attachment to the fixed network changes.

Mobile (or wireless) applications, despitebeing potentiallyvery different in nature from each other,

all share a common characteristic that distinguishes them from their wireline counterparts: they

allow their users to move around while remaining capable of accessing the network and its services.

Mobility and portability has created an entire new class of applications and possibly new massive

markets combining personal computing and consumer electronics. Among the applications that are

finding their wayto the market of mobile computing - those that involve data management - hold a

prominent position [23,31,37,78]. Due to mobility, location identification has naturally become a

critical attribute, as it opens the door to a world of applications and services that were unthinkable

only a few years ago. The term Location-Dependent Information Services (LDISs) has been coined

to group together all those applications and services that utilize information related to the

geographical position of their users in order to provide value-added services to them. In the mobile

wireless computing environment, massive number of low powered mobile/wireless devices query

databases over the wireless communication channels. These devices act as clients (data consumers),

while servers having databases typically reside on the wired network (mobile data management,

typically based onthe client/server model). Mobile clients may often be disconnected for prolonged

periods of time to save battery power. They can also frequently relocate between different cells and

connect to different data servers at different times [72,78,80,81,109,113].

In the past few years, there has been a tremendous surge of research in the area of data

management in mobile computing. This research has produced interesting results in areas such as

data dissemination over limited bandwidth channels, location-dependent querying of data, and

advanced interfaces for mobile computers to provide location-dependent information services to

mobile users [23,29,62,78,80,89,91,105,109]. This chapter is an effort to survey these techniques

and to classify this research in a few broad areas.



2.2 BACKGROUND

2.2.1 MOBILE COMPUTING SYSTEM MODEL

A mobile computing system [13,23,31,50,74,75,81,109] is usually made up of a server, moving

clients, and a wireless connection between them (see Figure 2.1). The geographical area is divided

into small regions, called cells. Each cell has a Base Station (BS) orMobile Support Station (MSS)

augmented with wireless interfaces and anumber ofMobile Clients (MCs). Inter-cell and infra-cell
communications are managed by the MSSs. The MCs communicate with the MSS bywireless links

within its radio coverage area. An MC can move freely from one location to another within a cell or

between cells while retaining itsnetwork connection. An MC can either connect to a MSS through a

wireless communication channel or disconnect from the MSS by operating in the doze (power save)

mode. The MC queries the database servers that are connected to a wired network. The wireless

channel is logically separated into two sub channels: uplink channel and downlink channel. The

uplink channel is used by MCs to submit queries to the server via an MSS, while the downlink

channel is used by MSSs to disseminate information or to forward the answers from the server to

the target client.

Cellular Data Wireless LAN

(CDPD.DataTae: 19.2 kbps) (AironM.Wavslan: 2.12Mbps)

Figure 2.1 Mobile Computing System Model

The mobile computing platform can be effectively described under the client/server paradigm

[46]. A data item is the basic unit for update and query. MCs only issue simple requests to read the

most recent copy of a data item. There may be one or more processes running on an MC. These

processes are referred to as clients (we use the terms MC and client/users interchangeably). In order

to serve a request from a client, the MSS needs to communicate with the database server to retrieve
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the data items. Since the communication between the MSS and the database server is through wired

links and is transparent to the clients (i.e., from the client's point of view, the MSS is the same as

the database server), we also use the terms MSS and server interchangeably. The system provides

location dependent services to mobile clients. The geographical area covered by the system is

referred to as the service area. Moreover, the data item value is different from data item. Data item

value for a data item is an instance of the item valid for a certain geographical region. So, a data

item can show different values when clients at different locations query it. For example,

"restaurant" is a data item, and the data values for this data item vary depending on the location of

queryi.e. point at whichthe query" Tell me the nearest restaurant" was issuedby a mobile client.

Characteristics of Mobile Computing System

Although a wirelessnetworkwith mobile clients is essentially a distributed system, there are some

characteristic features that make mobile computing system unique and a fertile area of research.

These features are summarized below [8,13,23,28,31,37,50,60,72,78,80,81,108,109]:

• Constrained and unreliable wireless communications. The radio spectrum used for

wireless communications is inherently scarce. For example, GSM operates only between 880

MHz and 960 MHz. The data rates for a single wireless channel is limited, varying from 1.2

Kbps for a slowpaging channel, 19.2 Kbps for CDPD, to about 11 Mbps for a wireless LAN.

Furthermore, wireless transmission is error-prone because the surrounding environment

interacts with the signal, blocks signal paths, and introduces noise and echoes. Data mightbe

corrupted or lost due to many factors such as signal interference and obstruction by tall trees

and buildings. As a result, wireless connections are of poor quality.

• Limited power source. The battery power of wireless portable devices is limited, ranging

from only a few hours to about half a day with continuous use. Moreover, only a modest

improvement in battery capacity of 20-30% can be expected over the next few years [15,31].

It is also worth noting that sending data consumes much more power than receiving data. For

example, a WaveLan card consumes 1.7 W when the receiver is "on" but 3.4 W when the

transmitter is "on"

• Frequent disconnections. To save energy or connection costs, mobile clients frequently

disconnect themselves from the network and are kept in a weak connection status.
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Furthermore, due to unreliable wireless communication links, mobile clients are also often

disconnected by failure.

Asymmetric communication. The bandwidth in the downstream direction (servers-to-

clients) is much greater than that in the upstream direction (clients-to-servers). Stationary

servers have powerful broadcast transmitters while mobile clients have little or no

transmission capability [23]. Even in the case of an equal communication capacity, the data

volume in the downstream direction is estimated to be much greater than that in the upstream

direction [97].Example include Information dispersal systems for time-sensitive information

such as stock prices, weather information, traffic updates, factory floor information, etc.

Unrestricted mobility. Mobile users can move from one location to another freely while

maintaining network connectivity, which enables their almost unrestricted mobility. Locations

and movements of mobile users are therefore hard to predict. The ability to change location

while connected to a network increases the volatility of some information. Certain data,

considered static in stationary computing environments, become dynamic in mobile

computing scenarios. Therefore, the management of location-dependent information is a new

challenge. Mobility also makes the network address of a mobile computer change

dynamically, which is not supported by traditional wired networking. Thus, new protocols

need to be devised.

Heterogeneous network. In contrast to most stationary computers, which stay connectedto a

single network, mobile computers encounter more heterogeneous network connections in

several ways. First, as they leave the range of one network transceiver and switch to another,

they may also need to change transmission speeds and protocols. Second, in some situations a

mobile computer may have access to several network connections at once, for example, where

adjacent cells overlap or where it can be plugged in for concurrent wired access. Also, mobile

computers may need to switch interfaces, for example, when going between indoors and

outdoors. Infrared interfaces cannot be used outside because sunlight drowns out the signal.

Even with radio frequency transmission, the interface may still need to change access

protocols for different networks, for example, when switching from cellular coverage in a city

to satellite coverage in the country. This heterogeneity makes mobile networking more

complex than traditional networking.

12
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• Limited client capacities. Portable wireless devices are restricted by weight, size, and

ergonomic considerations, which limits their capacities for CPU cycle, storage, and display.

Because of their portability, mobile devices have a lot of inherited limitations, such as low

power, high risk of data loss, small user-interfaces, and limited storage. Therefore, all the

applications in a mobile computing environment should take these limitations into account.

• Wireless Data deliverables. There are two fundamental information delivery methods for

wireless data applications: point-to-point access and data broadcast [49,52]. Compared

with point to point access, data broadcast is a more attractive method for several reasons

[13,17,20,50,51,52,57,84]:

i. A single broadcast of a data item can satisfy all the outstanding requests for that item

simultaneously. As such, broadcast can scale up to an arbitrary number of users,

ii. Data broadcast can take advantage of the large downlink capacity when delivering data

to clients, and

iii. A wireless communication system essentially employs a broadcast component to

deliver information. Thus, data broadcast can be implemented without introducing any

additional cost.

In brief, the specific features of wireless scenarios introduce a lot of new research challenges

that do not exist in the traditional wired environments. As computing is becoming increasingly

pervasive, information services are gettingmore and more complex and challenging

2.2.2 LOCATION-DEPENDENT INFORMATION SERVICES (LDISs)

Location-dependent information services (LDISs) are services that answer queries based on the

locations with which the queries are associated, normally the locations where the queries are

issued. The emergence of LDISs is the result of advances and convergence in high-speed

wireless networks, personal portable devices, and location identification techniques. There are a

variety of promising applications with LDISs, including:

• Tourism information, e.g., finding nearby hotels/motels, nearby restaurants, local attractions,

and local maps.

• Driving information, e.g., downloading local traffic report and finding the nearest gas

station.
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• Health and entertainment information, e.g., finding local cinemas, clinics, and health

centers.

• Emergency information, e.g., finding the nearest hospital, police, etc.

• Targeted advertisement: advertisements are delivered to the client based on its current

location, e.g., when the client is passing by a supermarket, on-sale information is provided.

Although, LDISs exist in the traditional computing environments (e.g. Yahoo Local,
MSN's yellow page, etc.), but their greatest potential would be utilized in a mobile/pervasive
computing environment [50], where users enjoy unrestricted mobility and ubiquitous
information access. Take a traveler on the road as an example. Travel plan can be done in the

traditional way, e.g., access to web, online databases, travel agent, secretary, etc. Once on the

road, many problems are situational. Fastest transportation may depend on the next bus

departure time, traffic situation, and time of day. There are many uncertainties which may

arise, e.g., relocation of bus terminals, change of schedules, and so on. LDIS may behelpful in

many of these situations.

2.2.2.1 LDIS Terminology

In this subsection, we defined the terminologies that are frequently used with LDISs. They are as

follows:

Location: A location is a geographical area. Location maybe expressed with various granularities.

For instance, it maybe specified as a longitude-latitude pair, a city, a country or a region covered by

a cell or a group of cells when referringto the cellulararchitecture in wireless communications.

Location-Dependent Data (LDD): Location-dependent data (LDD) refers to data whose values

depend on location i.e. a data item is location-dependent if it takes on different values based on its

location [10,27, 82,104]. For example, a location-dependent data item may have some value a in

region A and some other value b in another region B at the same time. Both values are correct in

their respective regions and represent the same data object. The value b may be related to value a by

some functional mapping which may depend on factors such as the distance between the two

regions or the two values may be independent. We assume that values in a location remain the same

unless explicitly updated. We have not considered items whose value changes continuously with

time.
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Location Identifying Models: Location plays a central role in LDISs. A location needs to be

specified explicitly or implicitly for any information access. A location model depends heavily

on the underlying location identification technique employed in the system. The available

mechanisms for identifying locations can be categorized into two models [14,24,50,55,56 J:

• Geometric Model: A location is specified as an n-dimensional coordinate (typically n =

2 or 3), e.g., the latitude/longitude pair in the GPS [43]. GPS data resolves the latitude

and longitude of a mobile user on the Earth's surface using a satellite-based triangulation

system. The main advantage of the geometric model is its compatibility across heteroge

neous systems. Geometric coordinates also provide a natural primitive to support a range

of spatial queries such as containment. For example, if we define a polygonal region by

specifying the vertices of the polygon in geometric coordinates, it is very easy to compute

if a particular (x,y,z) location coordinate lies inside or outside the polygon. Similarly,

geometric coordinates are especially useful in determining proximity measures in the

physical world, e.g., determining the geographically closest cafeteria or restaurant.

However, providing such fine-grained location information may involve considerable cost

and complexity. The basic problem with geometric data is that it cannot reflect the notion

of containment without numerical computation.

• Symbolic Model: The location space is divided into disjointed zones, each

of which is identified by a unique name. Examples are Cricket [84] and the

cellular infrastructure. For example, the PCS/cellular systems identify the mobile

phone using the identity of its current serving mobile switching center (MSC); in the

Internet, the IP address associated with a mobile device (implicitly) identifies the

subnet/domain/service provider to which it is currently attached. Compared to the

geometric model, the symbolic model normally has a coarser location granularity and is

cheaper to deploy. Also, being discrete and well-structured, location information based

on the symbolic model is easier to manage.

It is important to realize that any geometric coordinate can be easily converted into a

symbolic namespace simply by treating the physical coordinate space as the symbolic

namespace. For example, we could treat each PIN code in a country as a separate symbol and
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map each geometric coordinate to its PIN code. The geometric representation may be more

natural for applications where the physical coordinates of the mobile node is of principle

interest (such as the E-911 [24] initiative for emergency response).Also, applications that

require extremely fine-grained location may find the symbolic namespace to be unacceptably

coarse. For example, in follow-me application wishing to activate wall-mounted displays

based on user head motion, merely obtaining the ID of the nearest Active Badge sensor may

not be good enough. The geometric and symbolic location models have different overheads

and levels of precision in representing location information. The appropriate location model to

be adopted really depends on its applications. Table 2.1, Table 2.2 and Table 2.3 gives the

various technologies and applications of LDIS [24,50].

Table 2.1 A Taxonomy of Enabling LDIS Technologies

Technology Category Technology Coverage
Range

Accuracy Support Application
Environment

Mobile Network Dependent
Technology

Cell-ID Long Low Indoor/Outdoor

TOA Long Medium Indoor/Outdoor

OTD Long Medium Indoor/Outdoor

Mobile Network Independent
Technology

GPS / A-GPS Long High Outdoor

BLUETOOTH Short High Indoor

WLANs Short Low to Medium Indoor

RFID Short High Indoor

Table 2.2 Location Determination Technologies and Use of Symbolic/Geometric Coordinates

Product/Research

Protype
Primary Goal Underlying

Physical
Technology

Techniques Employed Location

Representation

GPS Outdoor tracking RF Triangulation Geometric

Active Badge Indoor tracking Infrared Vicinity-based
reporting

Symbolic

Active Bats Follow-me indoor

computing
Ultrasonic Paging Geometric

Cricket Indoor location

tracking
RFand

ultrasonic

Location updates Geometric/

Symbolic
RADAR Indoor location

tracking
802.11 WLAN Triangulation, location

updates
Geometric

3D-iD Indoor location

tracking
Active RFID Triangulation, paging Geometric

LANDMARC Indoor location

tracking
Active RFID Multilateration,

minimum distance

estimation

Geometric

Smart floor Indoor user tracking Foot pressure Location updates Geometric
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Table 2.3 A Classification Framework for LDIS

Services Examples Accuracy
Needs

Application
Environments

Corresponding
Enabling
Technologies

Corresponding
Facilitating
Technologies

Service

Charging
Scheme

Emergency
911 calls Medium to

High
Indoor / Outdoor TOA / OTD/A-

GPS

Free-of-

charge

Automotive

Assistance

Medium Outdoor TOA / OTD / A-

GPS

User-

charged

Navigation

Directions High Outdoor GIS User-

charged

Traffic

Management
Medium Outdoor TOA / OTD/A-

GPS

WAP / GIS User-

charged

Indoor Routing High Indoor BLUETOOTH/

WLANs / RFID

WAP / GIS Free-of-

charge

Group
Management

Low to

Medium

Outdoor CELL-ID / TOA /

OTD / A-GPS

User-

charged

Information

Travel services Medium to

High
Outdoor TOA / OTD/A-

GPS

WAP / GPRS /

UMTS / GIS

User-

charged

Mobile yellow
Pages

Medium Outdoor TOA / OTD / A-

GPS

WAP / GIS User-

charged

Infotaimnent

Services

Medium to

High
Outdoor TOA / OTD/A-

GPS

WAP / GPRS /

UMTS / GIS

User-

charged

Advertising
Banners,

Alerts,
Advertisements

Medium to

High
Outdoor TOA / OTD/A-

GPS

WAP / GPRS /

UMTS / GIS

Free-of-

charge

Tracking

People
Tracking

High Indoor / Outdoor OTD / A-GPS User-

charged

Vehicle

Tracking
Low Outdoor CELL-ID GIS Corporate

User-

charged

Personnel

tracking
Medium Outdoor TOA / OTD/A-

GPS

GIS Corporate
User-

charged

Product

Tracking
High Indoor BLUETOOTH/

RFID

Corporate
User-

charged

Billing
Location-

sensitive

billing

Low to

Medium

Indoor / Outdoor CELL-ID / TOA /

OTD

Free-of-

charge

Valid Scope: Unlike thecommon data, every data item of LDD usually has various values, which are

defined as data instances of an LDD item. Each instance is only valid within some specific region,

which is termed as the Valid Scope (VS) of that data instance. Take PIN code as an example (see

Figure 2.2 (a)). For the query "Give me the PIN Code of my current location", clients in Roorkee

will receive 247667, while those in Haridwar will get 249403. PIN code can be regarded as an

LDD item, and its VSs are defined by the PIN code boundary map.
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The main benefit of knowing the VS for a query is that once a query is answered, the same

query does not have to be asked again as long as the user stays within the VS. This can be used as

a spatial caching scheme to significantly reduce the number ofqueries submitted and is mandatory

for the support of continuous queries [12,13,14,50,58]. VSs can be defined differently for various

types of applications. The VS of PIN code is defined by the postal office, whereas the VS of
nearest-neighbor queries is defined bythe Voronoi Diagram (VD). Formally, given a set ofpoints

O= {oi, o2, • • • , on}, V(oj), the Voronoi Cell (VC) for Oi, is defined as the set ofpoints q in the

space such that dist(q,oO < dist(q,Oj), V J ± i. That is, V(o0 consists of the set ofpoints for

which Oj, is the nearest neighbor.

(a) PIN Code

@ t>litrte!H«ll<lquott«
in, taurlil Place

£*) Dlitrlet HvodquortM

(b) Nearest Neighbor

f*) nitrite) H««dquail«

(c) Temperatures

Figure 2.2 Examples ofValid Scopes (Haridwar District)
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As shown in Figure 2.2(b), there are three Tourist Places in Haridwar District. The district is

partitioned into three parts by the VD. For this simple example, it is a simple perpendicular

bisectorbetween the two tourist places. For clients in the Roorkee region, tourist place in Roorkee

is the nearest. VS can also be based on temperature in the geographical region. For example,

when a user asks for the temperature at his current location (i.e. Roorkee), the answer will be 15°C

(see Figure 2.2 (c)).

VSs can also be defined symbolically. For example, when a user moves across cells in a cellular

system, he (or his mobile phone) may ask for the cell id of his current cell. The valid scope for

these types of queries is the radio coverage of the cells.

2.2.2.2 LDIS Queries

According to the mobility of the clients and the data objects queried by the clients, location-

dependentqueries can be classified into three types [2,12,13,14,50,110]

• Mobile clients querying static objects: Queries like "Tell me where the nearest gas station

is" and "where the nearest restaurant is?" are popular queries in real-world applications. In

general, the clients submitting this kind of queries are mobileand data objects are fixed. The

main challenge of this type of queries is how to get the locations of clients and also

guarantee the validation of the results when the client keeps moving during the query

evaluation process. Queries such as "Report all the available hospitals within a 500 meter

radius" are an extensions of this type of query.

• Stationary clients querying moving objects: An example of this type of query is "Report all

cars that pass gas station A in next 10 minutes". Here, gas station A is static and moving

cars are objects being queried.

• Mobile clients querying mobile objects: In this case, both, the clients submitting the queries

and the data objects are continuously moving. For example query of type "Tell me all the

cars that will pass me after 20 minutes".

All the queries listed above can also contain query about location-independent attributes, such

as: "Tell me the nearest restaurant providing Chinese food". Since these queries can be broken

down into two parts: one for location-dependent information and the other for location-independent

attributes, we only consider queries about location-dependent information, as the others can be

handled by traditional query-processing methods.
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A location-dependent query becomes difficult to answer when it is submitted as a continuous

query. For example, aclient in amoving car may submit the query: "Tell me the room rate ofall the
hotels within a 500meter radius of me", continuously in order to find cheap hotel. Since the client

keeps moving, the query result becomes time-sensitive in that each result corresponds to one
particular position and has a valid duration because oflocation dependency. The representation of
this duration and how to transmit it to client are the major focuses of Continuous Queries (CQ).

Sistla et. al. employed a tuple (S, begin,end) to bound the valid time duration of the query result
[7,9]. Based on this method, they also developed two approaches to transmit the results to the client:
an immediate approach and adelayed approach. The former transmits the results immediately after

they are computed. Thus, some later updates may cause changes to the results. The latter, transmits

S only at time begin, so the results will be returned to the client periodically, thus increasing the

wireless network burden. To alleviate the limitations of both approaches, new approaches, such as

the Periodic Transmission (PT) Approach, the Adaptive Periodic Transmission (APT) approach and

the Mixed Transmission(MT) Approach, were proposed [12].

Most, if not all, of the location-dependent queries can be categorized as one of the three types

described above. We can analyze each type separately in order to define the scenario clearly and

simplify the problem. The rest of this thesis will focus onthe first type only

2.2.3 DATA CACHING

Most mobile applications deal with two type of data: Time-dependent data and Location-dependent

data [13,14,50,55,117]. Time-dependent data is a data whose value depends on time. For example,

stock prices, reservations, match scores, etc. Whereas, location-dependent data is the data whose

value is determined by the location to which it is related, for example hospitals, restaurant, gas

station, etc. Caching is considered as one of the important techniques to relieve bandwidth

constraint imposed on wireless mobile systems [5,21,22,40,41,53,112,119,121]. Copies of remote

data can be kept in the local memory of mobile devices to substantially reduce data retrievals from

the original server. This not only reduces the uplink and downlink bandwidth consumption but also

the average data access latency. In a majority of mobile devices like laptops, palmtops and cellular

phones, wireless communication is one of the major sources of energy consumption that reduces

battery life [71]. Caching frequently accessed data in mobile devices can potentially minimize

communication and hence conserve battery power. In client-server paradigm, when the client
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receives a query, it first searches its cache. If there is a valid copy in the cache, it returns an answer

immediately. If not, the client attempts to obtain the data item from the server. Advantages of data

caching on mobile clients are:

• improved access latency,

• less wireless bandwidth requirements,

• low energy/power consumption due to lower data transmission, and

• Improved data availability in case of disconnection.

Client-side data caching has been considered a good solution for coping with the constraints of

wireless/mobile environments. There exists considerable number of papers discussing general issues

and research challenges related to caching strategies in wireless environment.

2.3 RELATED WORK ON CACHE MANAGEMENT

Client-side data caching is attractive in a mobile computing environment as it can overcome to

some degree the constraints of wireless environment /devices such as scarce wireless bandwidth and

limited power source. However, factors such as frequent client disconnections and movements

across cells make the design of cache management a challenge. In the past few years, a lot of

research effort has been done to develop efficient cache invalidation, replacement, and prefetching

strategies. In the following, we briefly review related studies based on the taxonomy shown in

Figure 2.3. In subsection 2.3.1, we will review the cache invalidation and replacement studies for

temporal and location-dependent data. Then in subsection 2.3.2, review of work related to

prefetching is presented.

2.3.1 CACHE INVALIDATION AND REPLACEMENT

Cache invalidation helps to ensure consistency between the cached data items at client end and the

original dataitems stored at the server. It maintains the correctness of data in the client's cache. On

the other hand, cache replacement evicts data items from cache in order to accommodate new data

item in cache when the cache is full. In the following subsection, we review cache invalidation and

replacement policies for time-dependent data as well as location-dependent data.

2.3.1.1 Time-Dependant Data

Since data may be updated at the server from time to time (referred to as time-dependent

invalidation), the cached copy of the data at client may differ from the current copy of that data at
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the server and therefore, cached data becomes invalid. Hence, the data cached at a client should be

kept consistent with those at the server. Various cache invalidation schemes have been developed to
ensure the data consistency between a client and the server [21,50,66,85,88,115]. Two basic

categories of cache invalidation schemes, namely, stateful server approach and stateless server
approach, have been discussed in theliterature.

In stateful server approach, the server keeps the information about which data item is cached by

which mobile client(s). Whenever a data item is updated, the server sends an invalidation message

or a refresh message (with the new value) to those clients that cached this item. This approach
requires the server to locate mobile clients. Therefore, the challenge for such an approach is how to
handle disconnections and mobility. Moreover, the server stores the cache states for all the mobile

clients, and hence, it is not scalable to a large client population.

Cache Management

Time-Dependent

Cache Replacement

Cache Invalidation

Stateful/Stateless

Server

Asynchronous/Synchronous
Broadcast

Data Update Rate

Disconnection

Invalidation Reports

Prefetching

Location-Dependent

Cache Invalidation

Cache Replacement

Movement

Direction

Distance

Location Models

Valid Scope

Prefetching

Figure 2.3 Taxonomy for Cache Management in Mobile Computing Environment
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The stateless server approach does not require the server to be aware of the state of a client's

cache. Instead, the server keeps track of the update history (of a reasonable length) and provides

this information in the form of an Invalidation Report (IR) to the clients by periodic broadcasting or

asrequested by the clients. Forinstance, one could send a listof IDs for theitems that have changed

since the last IR was sent. The mobile clients, if active, listen to the broadcast IRs and update their

caches accordingly. Most of the existing studies are based on the IR-based stateless approach.

Stateless server approaches can be further categorized into synchronous and asynchronous

approaches. In asynchronous approaches, invalidation reports are sent out on data modification. In

synchronous approaches, the serversendsout invalidation reports periodically.

Barbara and Imielinski [21,22], were first to introduce issues of cache invalidation using a

broadcast medium in wireless mobile environment. They proposed three new cache invalidation

methods suitable for wireless environment with high rate of client's disconnection. They are

Timestamp (TS), Amnesic Terminals (AT) and Signatures (SIG).In all three strategies, the server

(stateless) periodically broadcasts the report which reflects the changing database state. They

categorized the mobile units into sleepers and workaholics on the basis of the amount of time they

spend in their sleep mode. In the TS or AS algorithms, the entire cache will be invalidated if the

disconnection time exceeds an algorithm-specified value (w seconds in TS and L seconds in AT),

regardless of how many data items have actually been updated during the disconnected period.

Their results showed that SIG which are based on the data compression technique for file

compression are thebest for long sleepers, when the period of disconnection is long and difficult to

predict. As the rate of updates increases, TS becomes less and less efficient. AT method was the

best for workaholics, that is, units which rarely go to sleep and are awake most of the time. They

also extended the TS strategy to dynamically adjust window size to the changing query, update and

wake-up ratios of the environment. The server has to use some feedback from the clients to modify

the window size accordingly. The broadcast based solution is attractive because it can scale to any

number of clients who listen to the broadcast report.

To salvage as many cache contents as possible, Wu et al. [67] presented an energy efficient

cache invalidation method called Grouping with COld update-set REtention (GCORE).It modifies

the TS or AT algorithms to include cache validity checks after reconnection. This scheme explores

the fact that some of cached objects are still valid after reconnection. The server partitions the

database into a number of groups. It maintains for each group the object update history of past W
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broadcast intervals (W > w), where w is invalidation broadcast window. It also maintains the

number ofdistinct objects that were most recently updated between (T-W*L) and (T-w*L) to speed
up the group validity checking, where 7/is the current timestamp and Lis the interval after which IR
is broadcasted. The side effect of this method is that it requires uplink bandwidth and an update

history window of past Wbroadcast interval to be specified, which introduces the same basic
problem as in the TS method(e.g. when the disconnection time is greater than W, nothing can be
salvaged). The effectiveness ofthe algorithm also depends heavily on the update pattern ofthe data

items.

To make cache invalidation energy efficient, Tan et al. [45,65,66] proposed four schemes for

cache invalidation. Two of them are - Dual-Report Cache Invalidation (DRCI) and Bit-Sequences

(are variations of existing schemes) and other two schemes- Selection Dual Report Cache
Invalidation (SDCI) and Bit-Sequences with Bit Count (BB), that support selective tuning to

minimize energy consumption. Under DRCI, the server broadcasts every L time units a pair of

invalidation reports, an Object Invalidation Report (OIR) and a Group Invalidation Report (GIR).

The GIR report consists of the server's update history at a group level up to W(W > w)

intervals, which aims at cutting down the probability of discarding the entire cache. Unlike

DRCI, SDCI broadcasts GIR before OIR and the entries in OIR are ordered and broadcasts based

on Groups. An additional pointer is added to each element of the GIR, which reflects the starting

position of the objects within this group in the OIR. In BB, each bit sequence is associated with a

bit count array. SDCI and BB consume significantly less energythan their counterparts, but clients

has to wait for the invalidation report before their cache contents can be validated.

A major challenge for broadcast-based solution is to optimize the organization of broadcast

reports. Jing et al. [8,47] addressed the report size optimization problem. They introduced a new

cache invalidation algorithm called Bit-Sequences (BS), in which a periodically broadcast

invalidation report is organized as a set of binary bit sequences with a set of associated timestamps.

The BS algorithm with static (implicit) bit mapping was found to support clients regardless of the

length of their disconnection times and offers the effectiveness of the report for data items covered

in the report at the cost of about 2 bits/item. The effectiveness of a report is measured by the

number of cached data items that can be accurately verified for a client by the use of the report.

These bits can be used to cover the data items that are cacheable and most frequently referenced.

The BS algorithm with dynamic (explicit) bit mapping was found to offer the same level of
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effectiveness at the expense of only about half of the report size. The coarse granularity bit

technique enables the static BS algorithm to cover more data items without increasing the size of

the report. The hybrid BS scheme with the coarse granularity bit technique was also found to

improve the effectiveness of the report by including recently updated data items in a dynamic BS

scheme in the report. In general, changing workload parameters such as disconnection time, update

rates, query rates, etc., has little impact on the performance of the BS algorithm. However, BS

algorithm requires much greater invalidation report size than those in TS or AT methods, especially

when the database size is larger.

In [87,88] , Hu and Lee, introduced two adaptive cache invalidation schemes namely Adaptive

Invalidation Report with Fixed Window (AFW) and Adaptive Invalidation Report with Adjusting

Window ( AAW_TS and AAW_AT). Their second scheme is hybrid of the schemes proposed in

[21,22,47]. In AFW, Invalidation Report (IR) consists of two types of information update history

for window w, IR (w) and bit-sequences structure, IR (BS). Depending upon the feedback of

timestamp of cache update of clients, the broadcasting is toggled between IR (w) and IR (BS). In

AAW_TS, a dummy record (dummyid, T!b) is used by the server to enlarge the window size in the

next IR, where dummyid is a special id not to be used by any data as id and Ty, is the latest

timestamp. Client k checks to see whether its 7*a, is within wor not. Otherwise, it checks to see

whether the report include the dummy record and whether Tib <^ib- Otherwise, it sends back its 7*/i
to the server to request more update information. AAW_AT is variation of AAW_TS, instead of

using w as the default window, the default window only cover one interval of update information.

These adaptive methods make use of workload information from both client and server, so that the

system workload has less impact on its performance while maintaining low uplink and downlink

bandwidth requirement.

In IRbasedapproaches, before answering a queryfrom its local cache a client must listen to next

IR to conclude if its cached copy is valid or not. Consequently, the average latency for answering a

query is the sum of the actual query processing time and half of the IR Interval. Based on this

observation, G. Cao in [33,34,35,36] proposed UIR-based approach. In this approach, a small

fraction of the essential information (called Updated Invalidation Report (UIR)) related to cache

invalidation is replicated several times within an IR interval and hence the client can answer a query

without waiting until the next IR. He further proposed Counter-based cache invalidation algorithm.

The counter-based schemehelps the server to find out hot data items and broadcast their updates to
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the clients. Also, when the counter associated with a dataitembecomes 0, the server does not add it

to the IR even though the data is updated during the last IR interval, hence, saving the broadcast

bandwidth. To deal with counter accuracy problem, stateful server approach is used, in which the

server maintains a Cached Item Register (CIR) for each client.

Chand et al. in [85] presented a synchronous stateful caching strategy called Update Report

(UR), where all the recently updated/requested items are broadcasted immediately after the IR. The

track of cached items for each client is maintained at home mobile support station in the form of

Cache State Information (CSI). The use of CSI reduces the size of IR by filtering out non-cached

items, handles long disconnection and supports clientmobility. To further reduce query latency, the

strategy uses Request Reports (RRs), where all the recently requested items are broadcasted after

the UIR.

Kahol and Khurana [3,4] proposed cache invalidation scheme called AS (Asynchronous and

Stateful). AS scheme, allows invalidation reports to be broadcasted onlyif any client has valid data

in cache and as and when data changes (asynchronous). Queries are answered as they are generated

and arbitrary sleep patterns are supported. This method requires Home Location Cache (HLC) for

each mobile host at the server. This minimizes the overhead of validating MH's cache after each

disconnection. Though maintaining state information (HLC) at the MSS can be considered as an

overhead, but it can be benefited in profiling techniques and prefetching or hoarding data at the

clients.

Wang et al. [118,120,121] proposed Scalable Asynchronous Cache Consistency Scheme

(SACCS), which is hybrid of both stateful and stateless algorithms. Unlike stateful algorithms,

SACCS maintains only one flag bit for each data item in MSS and unlike the existing synchronous

stateless approaches, it does not require periodic broadcast of IRs. It has been shown through

simulation that the proposed algorithm offers significantly better performance than TS and AS in

both single cell and multi-cell environments.

Recently, Yeung and Kwok [79,83] have proposed cache invalidation strategies for error prone

channel. Simulation results show that theyperform better than the original IR strategy by alleviating

the effect of transmission errors on the broadcast traffic and the impact of broadcast traffic on the

downlink traffic in the system. The major drawback is large size of the invalidation report due to

broadcast of same IR's in different cells , which in turn leads to higher query latency and client

energy consumption.

26



The cache replacement issues for wireless data dissemination were first studied by Acharya et

al. [96,97] .They described a new architecture called "Broadcast Disks". In this approach, server

continuously and repeatedly broadcasts data items to the clients. In effect, the broadcast channel

becomes a "disk" from which clients can retrieve data as it goes by. The broadcast is created by

assigning data items to different "disks" of varying sizes and speeds, and then multiplexing the

disks on the broadcast channel. Items stored on faster disks are broadcast more often than items on

slower disks. This approach creates a memory hierarchy in which data on the fast disks are closer"

to the clients than data on slower disks. The number of disks, their sizes, and relative speeds can be

adjusted, in order to more closely match the broadcast with the desired access probabilities at the

clients. If the server has an indication of the client access patterns (e.g., by watching their previous

activity or from a description of intended future use from each client), then hotpages (i.e., those that

are more likely to be of interest to a larger partof the client community) canbe brought closer while

cold pages can be pushed further away. Acharya et al. proposed an optimal cache replacement

policy known as PIX (P inverse X) for this new architecture, that replaces the cache-resident page

having lowest ratio between its probability of access (P) and its frequency of broadcast (X).

Simulation based study showed that this strategy could significantly improve the access latency

over the traditional LRU and LFU policies.

Xu et al. [50,53,54] proposed a gain based cache replacement policy, namely Stretch Access-

rate Inverse Update-frequency (SAIU), for on-demand broadcasts. Previous studies assumed that

data items had the same size and ignored data updates and client disconnection. Different from

previous work SAIU considered a real life application environment and was developed by taking

into consideration various factors affecting cache management, such as varied data item sizes,

retrieval delays, access probabilities and update frequencies. But, the optimal formula for

determining the best cached items to be replaced based on above factors and also the influence of

the cache consistency requirement was not considered in SAIU. The author in [50,54], further

proposed anoptimal cache replacement policy called Min-SAUD (Minimum Stretch integrated with

Access rates, Update frequencies and Cache validation Delay), which accounts for the cost of

ensuring cache-consistency before each cached items is used.

Recently, Yin et al. [74,75] proposed a generalized value function for cache replacement

algorithm for wireless networks under strong consistency model. The distinctive feature of value

function is that it is generalized and can be used for various performance metrics by making the
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necessary changes. The authors proved that the proposed value function could optimize the access

cost. However this strategy suffers from high computational complexity and does not consider

association among data items.

2.3.1.2 Location-Dependant Data

Most of the previous work studied the cache consistency problem incurred by data updating (time-

dependent update). In mobile computing environment, besides the temporal-dependent updates,
cache inconsistency can also be caused by location changing (location-dependent updates).We

broadly classify the location-dependent cache invalidation policies into two class- Symbolic Model

based and Geometric Model based.

In [55,56], Xu et al. proposed three symbolic model based location-dependent cache invalidation

schemes Bit-Vector with Compression (BVC), Grouped Bit-Vector with Compression (GBVQ and

Implicit Scope Information (ISI). These schemes differ from each other in scope information

organization.

In the BVC scheme, the complete validity information is attached to a data item value, i.e.,

the complete set of cells in which the data value is valid, is kept in the cache. It uses a bit

vector (BV), corresponding to all the cells, to record valid scope. The length of a BVis equal to

the number of cells in the system. A "1" in the «th bit indicates that the data item value is

valid in the «th cell while "0" means it is invalid in the nth cell. It is obvious that in BVC the

overhead would be significant when the system is large.

In GBVC scheme, the whole geographical area is divided into disjoint districts and all the

cells within a district form a group. A CID, denoted by (group-ID, intra-group-ID), consists of

a group ID and a cell ID within the group. Validity information attached to a cached data value

is represented as a vector of the form (group-ID, BV) and includes the current group-ID and a

B Vwhich corresponds to all the cells within the current group. Note that while delivering a data

value to a client only the BV is attached since the group-ID can be inferred from the current

CID.

For example, if there are 12 cells in the system, then a BV with 12 bits is constructed for

each cached data item value. If the BV for a data item value is 000000111000, it means this

value is valid in the 7th, 8th, and 9th cells only. Suppose that the whole geographical area is
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further divided into two groups, such that cells 1-6 form group 0 and the rest form group 1.

With the GBVC method, one bit is used to construct group-ID and a six-bit BV is used to

record the cells in each group. For the data item value mentioned earlier, in group 0, the

attached bit vector is (0,000000); in group 1, the attached bit vector is (1,111000). As can be

seen, compared with the BVC method, the overhead for scope information is reduced in the

GBVC method.

In BVC, a client stores in the cache the complete validity infonnation of each cached data

in the form of a bit vector. The disadvantage of this method is that the size of the validity

information could be very large especially when the system consists of a large number of cells.

Consequently, a large bandwidth and cache memory are needed. The advantage is that the

validation process is very simple; only the current cell ID is needed. GBVC attempts to

reduce the size of the validity information by only keeping partial information in the cache.

The ISI scheme attempts the other direction by trying to minimize the size of validity

infonnation at the expense of the validation procedure. Under this scheme, the server

enumerates the scope distributions of all items and numbers them sequentially. The valid scopes

within a scope distribution are also numbered sequentially. For anyvalue of data item i, its valid

scope is specified by a 2-tuple (SDNi, SNi), where SDNi is the scope distribution number and

SNi denotes the scope number within this distribution. The 2-tuple is attached to a data item

value as its valid scope. For example, suppose there are three different scope distributions (see

Figure 2.4) and data item 4 has distribution 3. If item 4 is cached from cell 6 (i.e., CID=6),

then SDN4 = 3 and SN4 = 3. That implies that the cached item 4's value is valid in cells 6

and 7 only.

CID 1 2 3 4 5 6 7 8 9 10 11 12

(SDN)Scope 1 2 3 4 5 6 7 8 9 10 11 12

(SDN)Scope 1 2 3 4

(SDN)Scope 1 2 3 4 5

Figure 2.4 Data Items with Different Distributions
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Though, these schemes used location dependent queries based on cwxent location of a client, but

they are also applicable to queries that are bound to other locations. Drawback of these schemes is

that the client has to validate its cache every time it goes to new service area.

Zheng and Lee [12] presented a method for answering location-dependent queries in a mobile

computing environment. They investigated a common scenario, where data objects (e.g. restaurant

and gas station) are stationary while clients that issue queries are mobile (i.e. Mobile clients

querying static objects). They presented an indexing and semantic cache method that records a

cached items as well as its valid range for location-dependent queries based on the Voronoi

Diagram (VD). They also proposed three cache replacement scheme based on area, dist (distance)

and ComA (Common Area). The drawback is that a semantic cache and a VD index are very

efficient when the number of service objects are limited. When the number becomes very large, the

semantic cache can only contain a very limited area and the cache-hit rate is considerably reduced.

Moreover, only a single cell environment was considered.

Zheng et al. in [14] studied the issues of cache invalidation and cache replacement for location-

dependent data under a geometric location model. They introduced a new performance criterion,

called caching efficiency and proposed basic schemes for location-dependent invalidation namely

Polygon Endpoints (PE), Approximate Circle (AC) and a generic method Caching-Efficiency-Based

(CEB). The PE scheme is a straightforward way to record the valid scope of a data value. It

records all the endpoints of the polygon representing the valid scope. It contains complete

knowledge of the valid scope of a data value. Its performance suffers when a polygon has a large

number of endpoints. In AC scheme, a valid scope is approximated by the center of the

inscribed circle and the radius value. Hence, the overhead is minimized. However, the

inscribed circle is only a conservative approximation of a valid scope. When the shape of the

polygon is thin and long, the imprecision introduced by the AC method is significant. This will

lead to a lower cache hit ratio, since the cache will incorcectly treat valid data as invalid if the

query location is outside the inscribed circle but within the polygon. The CEB scheme attempts

to balance the storage overhead and the precision of invalidation information when selecting an

approximation of a valid scope has to be decided.

Among the location-dependent cache replacement proposed in literature, Manhattan Distance-

based cache replacement policy [98] was proposed to support location-dependent queries in urban

environments. Cache replacement decisions are made on the basis of distance between a client's
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cunent location and the location of each cached data object. Objects with the highest Manhattan

distance from the client's cunent location are evicted at cache replacement. While the Manhattan

based policy accounts for the distance between clients and data objects, the major limitation of this

approach is that it ignores the temporal access locality of mobile clients and the direction of client

movement while making cache replacement decisions.

FurthestAway Replacement (FAR) [90] policy uses the cunent location and movement direction

of mobile clients to make cache replacement decisions. Cached objects are grouped into two sets,

viz., in-direction set and the out-direction set. Data objects in the out-direction set are always

evicted first before those in the in-direction set. Objects in each set are evicted in the order based on

their distance from the client. Similar to the Manhattan approach, FAR also neglects the temporal

properties of clients' access pattern. It also becomes ineffective when mobile clients change

direction frequently due to frequent change in the membership of objects between the in-direction

and out-direction sets.

In addition, two cache replacement policies Probability Area (PA) and Probability Area Inverse

Distance (PAID) were proposed by Zheng et al. [14] , that consider the valid scope area (for both

methods) and data distance (for PAID only) and combine these with access probability. The cost

function of PAID is given byi^(v.s/-)/Z)(v.s/), where, Pt is theprobability of access of data item i, vst

is the valid scope of the instance of data item i, A(vs) is the area of the valid scope vs-t and D(vsi) is

the distance of the vsi from the cunent position of client. It neither takes into account the size of

the data object nor does it give priority to the data objects in cache that are near to the mobile client.

Mobility-Aware Replacement Scheme (MARS) [68] policy is also a cost based policy, which

comprises of temporal score, spatial score and cost of retrieving an object. Unlike PAID, it takes

into account the updates of data objects. But as far as location-dependent data (LDD) is concerned,

their update rate (if exist) is negligible as compared to temporal data. Thus, for LDD, only spatial

score dominates which consists of area of valid scope, data distance from cunent client location and

data distance from future client location. The impact of client's anticipated location or region in

deciding cache replacement stilfremains unexplored.

None of the existing these cache replacement policies are suitable if client changes its direction

of movement quite often. They only consider the data distance (directional/undirectional) but not

the distance based on the predicted region or area where the client can be in near future. Very few

of these policies [14,68] account for the location and movement of mobile clients.
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2.3.2 PREFETCHING

Prefetching is a technique that can reduce access latency and improve cache hit ratio. In
prefetching, access to remote data is anticipated and the data is fetched apriori. Most of the existing
prefetching schemes [36,40,41,63,94] use uplink bandwidth and battery energy to improve cache hit
ratio and reduce access latency. Broadcast and multicast [49,95] are proven as effective data

dissemination techniques in mobile computing environments. A prefetching scheme that considers
both power and bandwidth efficiency needs to be investigated for data dissemination environments.

Prefetching and caching are also effective techniques for improving the performance of file
systems, but they have not been studied in an integrated fashion. The goal ofa prefetching and
caching policy is to make the decisions like when to fetch ablock from disk, which block to fetch
and which block to replace when the fetch is initiated so that the total elapsed time is minimized.

Cao etal. in [86], proposed four properties that optimal integrated prefetching and caching strategy

must satisfy, and then presented and studied two such integrated strategies, called aggressive and
conservative. They proved that the performance ofthe conservative approach is within a factor of

two ofoptimal prefetching schedule and that the performance ofthe aggressive strategy is a factor

significantly less than twice that of the optimal prefetching case.

Prefetching has also been investigated to reduce web access latency in wireline networks

[1,6,24,32,38,93,103]. Existing works [1,24,32] investigate prefetch schemes involving point-to-

point session transmission model, which is different from the broadcast communication model in

wireless mobile networks. A prefetching technique for Broadcast Disks [97] known as PT was

proposed by Acharya et al. [96]. This technique uses a heuristic that computes a value for each data

page by multiplying the probability of access for that page by the time that will elapse before that

page appears next on the broadcast disk, this value is called as data page's pt value. PT finds the

page in the cache with the lowest pt value, and replaces it with the cunently broadcast page if the

latter has a higher pt value. The pt value of a data page is dynamic because the time parameter of

the metric is constantly changing.

In recent years, hybrid of prefetching and data invalidation has been studied for performance

tradeoff [36,73] in wireless environment. G. Cao in [36] calculated the prefetch access ratio (PAR)

for mobile devices, which is the number of prefetches divided by the number of accesses for each

data item. Mobile devices use a threshold PAR to determine whether to prefetch a data item or not.
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Yin et al. in [73], used an adaptive value function instead ofPAR to evaluate each data item. All of

these schemes use prefetching to retrieve the desired data in a proactive fashion, in which mobile

devices need to send an uplink message to the base station and then wait for a period of time to

acquire the data from downlink channel. Since mobile devices consume much more energy for

sending an uplink message than receiving a downlink message of the same size, due to channel

contention and data retransmission [114], proactive prefetching schemes are not expected to be

energy efficient in general.

Shen et al. [41] proposed a novel energy and bandwidth efficient data caching mechanism, called

Greedy Dual Least Utility (GD-LU) that enhances dynamic data availability while maintaining

consistency. The proposed utility-based caching mechanism considers several characteristics of

mobile distributed systems, such as connection-disconnection, mobility handoff, data update and

user request patterns to achieve significant energy savings in mobile devices. They developed an

analytical model for energy consumption of mobile devices in a dynamic data environment. Based

on the utilityfunction derived from the analytical model, cache replacement and passive prefetching

of data objects was done.

Dissemination of data by broadcasting may induce high access latency if number of

broadcasted data items are large. Saygien et al. [116] proposed two methods aiming to reduce client

access latency of broadcast data. There methods are based on analyzing the broadcast history (i.e.,

the chronological sequence of items that have been requested by clients) using data mining

techniques. Data mining research [64,69,102,111] deals with finding relationships among data items

and grouping the related items together. The two basic relationships that are of particular concern

were:

• Association, where the only knowledge we have is that the data items are frequently

occurring together, and when one occurs, it is highly probable that the other will also occur.

• Sequence, where the data items are associated, and in addition to that, we know the order of

occunence as well.

Their main interests were in finding the sequences among the data items that occur frequently. With

the first method, the data items in the broadcast disk are organized in such a way that the items

requested subsequently are placed close to each other. The second method, focuses on improving

the cache hit ratio by enabling clients to prefetch the data from the broadcast disk based on the rules

extracted from previous data request patterns. Authors used Web logs to estimate the effectiveness
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ofboth strategies and it was shown through performance experiments that the proposed rule-based
methods are effective in improving the system performance in terms ofthe average latency as well

as the cache hit ratio.

Yin and Cao [73] proposed a power-aware prefetch scheme, called Adaptive Value-based
Prefetch (AVP) scheme. The AVP scheme defines avalue function which can optimize the prefetch
cost to achieve better performance. Also, AVP dynamically adjusts the number ofprefetches to get

better tradeoff between performance and power. To address the issues ofpower constraints of the

mobile clients and other factors such as the data size, the data access rate, and the data update rate,

they first propose avalue-based (VP) scheme, which makes prefetch decisions based on the value of
each data item considering various factors such as access rate, update rate, and data size. Then, they

extended the VP scheme and presented adaptive value-based prefetch (AVP) scheme, which

achieved abalance between performance and power based ondifferent user requirements. Extensive

simulations were used to justify the analysis. Their proposed schemes reduced the energy

consumption and improved the system performance in terms ofstretch [54] under various scenarios.
Song and Cao [42] realized that cache misses are not isolated events, and a cache miss is often

followed by a series of cache misses. They addressed the prefetching issues among related data
items by using a cache-miss-initiated prefetch (CMIP) scheme, which is based on association rule

mining technique.

Drakatos et al. in [99] proposed a prefetching strategy that prefetches data items with maximum

benefits and evicts cache data with minimum benefit. The data item benefit is evaluated based on

the user's query context defined as a set of constraints of both movement pattern and information

context requested by the mobile user. Similarly, Chen et. al [18] also proposed a Benefit-Oriented

Prefetching (BOP) that efficiently selects the LDD of interest to a client and prefetches them for the

client.

2.4 SUMMARY

Mobile computing has proven a fertile area of work for researchers in the areas of database and data

management. The inherent limitations of mobile computing systems present a challenge to the

traditional techniques used in database management. As we can see, the amount of research in this

area in the last few years has been staggering and there are many problems that remain open for

research. There is a need for better protocols in the area of data sharing and transaction
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management, better interfaces, clever algorithms that exploit locality to shape the answers to

queries. The above literature review shows that most of the work available today has addressed

cache invalidation and replacement strategy for temporal data, simple queries, fixed sized data,

assumed enor free wireless environment, etc. Some amount of work has been done for LDIS, but it

is an area that still has many unexplored issues - cachingbeing one of them that plays an important

role in improving the performance of any location-dependent service.
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CHAPTER 3

LOCATION-DEPENDENT CACHE INVALIDATION

3.1 INTRODUCTION

Mobile computing, as compared to traditional computing paradigms, allows mobile users to

access information anywhere, any time, and in any form. Data caching at mobile clients reduces

data access time and increases its availability, thus, improving system performance. In location-

dependent information services, data values for a data item depend on geographical locations.

Traditional caching strategies did not consider this and therefore, are inefficient for location-

dependent data. As mentioned earlier in this thesis, caching issues for location-dependent data

become challenging because of spatial property of LDD and mobility of users. Spatial data

cached in the mobile user's device may become invalid when the user moves to a different

location. Therefore, issues in cache invalidation and replacement need to be re-examined for

location-dependent data. In this chapter, we focus on location-dependent cache invalidation for

geometric location model.

Since the server generally does not know which items are cached by the clients, a common

method to perform location-dependent cache invalidation is to attach a valid scope with each

data value returned to the client. The client caches the data as well as its valid scope that can be

used for checking its validity without connecting to the data server on fixed network. There are

two situations where checking the validity of data is necessary at the client end: 1) the same

query may be issued later when the client has moved to a new location; 2) a mobile client may

keep on moving after it submits a query, and it may have moved to a new location when the

response comes back (if there is a long data access delay) [14,50]. In both cases, if client's

location is not within the valid scope attached with data, the data is marked as invalid and a new

query is submitted. In this thesis, we assume that when a data value is delivered from the server

to a client, it's valid scope is also attached with it so that the client can check the data validity

against its location. However, different methods might be employed at the server to represent a

valid scope to be sent and stored in the client cache along with its data value.

An important aspect of cache invalidation in LDISs is how to represent the valid scopes.

Downloading and storing valid scope along with data consumes more bandwidth and needs more
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storage space. The actual valid scope is represented by convex polygon under geometric location
model. Cost of storing all endpoints of a polygon is high. Therefore, an approximation of the
actual polygon is needed to reduce the cost. Thus, the issue is how to represent the valid scope
in order to balance the precision and overhead costs. The concept of valid scope information was
first proposed by Zheng et al. [14], in which it was used to construct asemantic cache to reuse
the cached data. Authors in [14] try to find a representation ofthe valid scope which does not
introduce too much overhead. In this chapter, we show that the algorithm given in [14] does not
always give best possible valid scope. We present amodified procedure for finding best suitable
candidate for valid scope that increases caching efficiency. We compare our Generalized
Caching Efficiency Based (CEB_G) algorithm which selects the best suitable candidate for valid
scope with the Caching-Efficiency-Based (CEB) algorithm proposed in [14]. We further
introduce a new metric Future Access (FA) and based on it propose Caching Efficiency with
Future Access Based (CEFAB) algorithm which selects the best suitable candidate for valid
scope using FA. We further generalize CEFAB algorithm into CEFAB_G.

3.2 SYSTEM MODEL

This section describes the system model adopted in this thesis. As described in the previous
chapter (see section 2.2.1), the information system provides location-dependent information
services to mobile clients. We refer to the geographical area covered by the system as the service

area. Unlike the common data, every item ofLDD usually has various values, which are termed as

data instances of an LDD item. Hence, data item may show different values whenit is queried by

clients at different locations.

We assume a geometric location model (see section 2.2.2.1), i.e., a location is specified as

two-dimensional coordinate. However, it can be easily extended to 3-dimension space by

including the third dimension. Mobile clients can determine their locations using system such as

the Global Positioning System (GPS) [43]. In two-dimensional space, a valid scope v can be

represented by a geometric polygon p(e;, e?, ..., en), where e,-'s are endpoints of the polygon.

A mobile client can cache data on its local disk or in any storage system that survives power-

off. In this chapter, data values are assumed to be of fixed size and read-only so that we can omit

the influence of data sizes and updates on cache performance and concentrate on the impact
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caused by the unique properties of location-dependent data. In the abstract model, the path of a

moving client is represented by a curve in 2-dimension (x-y plane), as shown in Figure 3.1(a).

(a)

Ml4= f seconds

F 1 4

V3 /. 0 Ml3= ' S6C0ndS

V, ^fi Ml2= t seconds

Ml," t seconds

(b)

Figure 3.1 Client's Movement Path (a) Abstract Model (b) Discrete Model

Though abstract model is simple, from computer implementation point of view, discrete

model is prefened [77]. In the discrete model the path traveled is modeled as a sequence of line

segments, each associated with fixed velocity and direction, as shown in Figure 3.1(b). Length of

the line segment depends on the rate of change of direction and velocity. For random movement

this duration between change in direction and velocity is small and for regular movement and

highway users this duration is large. This duration is known as MovingInterval (MI) [14,50,68,

107]. Figure 3.1(b) shows the discrete movement of a mobile user with MI of t seconds. The
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distance between any two locations or points is the length of a straight line connecting the two

points (i.e. Euclidean distance).

3.3 GENERALIZED CACHING EFFICIENCY BASED (CEB_G) ALGORITHM

Zheng et al. proposed three cache invalidation schemes based on geometric model [14]:
Polygonal Endpoints (PE) Scheme, Approximate Circle (AC) Scheme and Caching-Efficiency-
Based (CEB) Method. The PE scheme, records all endpoints of the polygon representing the
valid scope. However, when the number of endpoints is large the overall performance
deteriorates, because PE scheme will consume alarge portion of the wireless bandwidth and the
client's limited cache space for storage, effectively reducing the amount ofspace available for
caching the data itself. The advantage is that it contains complete knowledge of the valid scope

of data value.

An alternative to PE scheme, is the AC scheme, where an inscribed circle is use to

approximate the polygon instead of recording the whole polygon. In other words, avalid scope
can be approximated by the center of the inscribed circle and its radius value. The medial axis
approach is used for generating inscribed circle [48,50,76] in apolygon. When the shape of the
polygon is thin and long, the imprecision introduced by the AC method is significant. This leads
to a lower cache hit ratio, since the cache inconectiy treats valid data as invalid if the query

location is outside the inscribed circle but within polygon.

CEB is a generic method for balancing the overhead and the precision of valid scopes. It is

based on caching efficiency. Suppose that, the valid scope of a data value is v, and v! is a sub

region contained in v. Let D be the data size, A(v\) the area of v\, and 0( v'.) the overhead

needed to record the scope v]. Then, caching efficiency of the data value with respect to a scope

v] is defined as follows [14,50]:

,(/).4jHw. p>
Ul {d+o(4/d MD*°b.

CEB scheme can be stated as follows:
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For a data item value with valid scope of v, given a candidate valid scope set

v' ={vl>v2>•-. v'i}. v,' c v,i <i <k, choose the scope v\ that maximizes caching efficiency £(v,')

as the valid scope to be attached to the data.

Thus, CEB scheme generates candidate valid scopes and then selects the best one. Greedy

approach is used to generate a series of candidate polygons. Suppose the cunent candidate

polygon is v', . CEB scheme considers all polygons resulting from deletion of one endpoint from

v',- and chooses the next candidate, v',-+i> the polygon which has the maximal area. The algorithm

can be seen in [14,50] which describe the generation of candidate valid scopes and the selection

of the best valid scopes.

To look in detail how the greedy approach works in CEB, consider an example of polygon

consisting of 7 sides. CEB sets the original polygon as candidate polygon (size=7). The first

iteration finds all polygons with 6 vertices from the original polygon having 7 vertices and finds

the best among the six sided polygons. It then sets it as the candidate polygon (size=6) for the

next iteration. The second iteration finds all polygons with 5 vertices from 6 vertices of the

candidate polygon (size=6), finds the best among them and sets it as the candidate polygon

(size=5) for next iteration. This process is repeated with successive lower order polygons until

the number of sides of the sub polygon becomes 3.

The complexity of CEB algorithm is 0(n2). However, if the polygons are not regular CEB

does not ensures that the final polygon selected is always optimal. The optimal polygon may be

among those polygons which CEB never considers. In each iteration, CEB always selects the

best out of the polygons constructed during that iteration. It then explores only the sub cases of

this best. It is shown in section 3.3.1 that in many cases CEB may not give the optimum solution.

This affects the overall performance of the system resulting in less cache hit.

We propose a generalized method CEB_G for the generation of candidate valid scope set.

This method explores all possible combinations of sub polygons in the original polygon. The

Algorithm Al, in Figure 3.2 describes proposed CEB_G method for the generation of candidate

valid scopes and for the selection of the best valid scope.

Now consider the same example as above, i.e., a polygon consisting of 7 sides. In Algorithm

Al (see Figure 3. 2), the first iteration, finds all 1C(> combinations of 6 sided sub polygon from

the original polygon (size=7) and finds the best among them. The second iteration finds all C$

combinations of 5 sided sub polygons from the original polygon (size=7) and not the polygon
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selected as best in first iteration. It then finds the best among them. This goes on until the side of
the sub polygon becomes 3. This method has all possible valid scopes available for selecting the
best in eachiteration as compared to CEB.

Algorithm Al: Selection of the Best Valid Scope for the CEB_G Method

Input: valid scope v=p (eh ...,en) ofadata value;

Output: the attached valid scope v';

Procedure:

1: v'i~ the inscribed circle ofp (eh ...,e„)
2: v'~v\;Emax:=E(v\);

3: v'2:=p (ei, -,en);
4: /:= 2;

5: while n - i > 1 do
6: //containing atleast three end-points for apolygon
7: if E(v'i)>Emax then
8: v':=v'i;Emax~E(v'i);

9: end if

10: if« -/ > 1 then

11: v',+i ~ the polygon having maximum area, consisting of((n-\)-i +2) endpoints of
v and being bounded by v ;

12: end if

13: i:=i+l;

14: end while

15: output v'.

Figure 3.2 Algorithm for CEBG

Although, the complexity of CEB_G is exponential (nC3 + nC4+ + nCn-i ~ 2n) but

exponential factor matters when the number of sides of polygon is high. Following observations

make CEB_G attractive in comparison to CEB.

• The algorithm is to be used at the server end which is (assumed to be) a powerful machine

with high resources.
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• In actual scenario, maximum number of polygon sides may vary from 6 to 10. Beyond 10

sides, the polygon resembles more towards circle as circle is a polygon having infinite sides.

So for polygons with number of sides <10 even exponential complexity may be acceptable.

• Calculation of the best valid scope needs to be done only once and can be stored on the

server along with the actual valid scope.

• CEB_G selects more precise representation of valid scope as compared to CEB which

improves the over all performance, resulting in higher cache hit than that of CEB.

3.3.1 Case Study

We consider the polygon given in Figure 3.3(a) with endpoints ei(1351.5,3513.22),

e2(1352.89,3516.69), e3(1480.88,3580.69), e4(1535.16,3307.59), e5(1522.8,3279.94),

e6(1354.61,3183.61) and e7(l351.5,3187.75). CEB selects the polygon pCEB(e\, e3, e4, en) given

in Figure 3.3(b) as the best candidate for the valid scope to be sent to client along with data,

whereas CEB_G selects the polygon Pceb_g (e\, e?,, e4, et) given in Figure 3.3(c) as the best

candidate.

Stepwise execution is shown in Table 3.1. The entries in each row shows the best polygon

selected by CEB and CEB_G in each iteration. The final best polygons selected by CEB and

CEB_G to be sent to client along with data arep(e\, e3, e4, ej) andp(e\, e3, e4, e^) respectively.

Both polygons have size 4, which means that the over head of sending and storing the polygon

with data is same. But the area of pceb_g is greater than the area ofj^ceb, which means;?ceb_g

has more precise representation than £>ceb -This results in more cache hit at the client side.

3.3.2 Precision versus Computational Complexity

The greedy approach of CEB, selects only one best candidate valid scope in each iteration. It has

low computational complexity but at the same time low precision also. CEB_G considers all

possible sub polygons of the original polygon. This increases precision but also computational

complexity. However, if the server has limited computing power, lesser number of sub polygons

may be considered in each iteration. Considering best two candidate valid scopes instead of one

in each iteration, we can get more precise representation of valid scope in many cases, thus

improving the caching efficiency than CEB.
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(a) Original Polygon

(b) Best candidate for CEB, />ceb (<0 Best candidate for CEBG, />ceb_g
Figure 3.3 Case Study

Table 3.1 Stepwise Execution for CEB and CEB G

Iteration CEB CEB_G

0 P {fix, e2 e3, e4, e5, e6, e7) p(e\, e2e3, e4, e5, e6, e7)

1 p (e\, e3, e4, e5, e6, e7) p(e\,e3,e4, e5, e6, e7)

2 p(eu e3,e4,e5, e7) p (ex, e3, e4, e5, e-i)

3 p(elf e3, e4, e-i) p (ex, e3, e4, e6)

4 p(ex, e4, e7), p(e\, e4, e6)
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Table 3.2 Stepwise Execution with best two in CEB

Iteration Best Two Candidate Valid Scopes

0 p (eu e2 e3, e4, e5, e6, e7)

1 p (ex, e3, e4, e$, e6, e7) ,p (e2, e3, e4, e5, e6, e7)

2 p (ex, e3, e4, e5, e7), p (eu e3, e4, e5, e6)

3 p(eu e3, e4, e7), p (ex, e3, e4, e6)

4 p(eu e4, e7), p(ex,e4, e6)

Computing time only increases by a constant and the complexity remains same, i.e., 0(n ).

Consider again the original polygon in Figure 3.3(a). If we select best two candidate valid scopes

in each iteration, polygon/? {fix, e3, e4, e£) is selected as the best valid scope, same as the polygon

selected by CEB_G method. Stepwise execution is shown in Table 3.2.

3.4 CACHING EFFICIENCY WITH FUTURE ACCESS BASED (CEFAB)
ALGORITHM

Predicting accurately the movement behavior of the client is a challenging task. Lots of research

is going on in this area [107]. Using the discrete model (described in section 3.2), we can track

the future movement of the client for a certain amount of time. Since the client changes speed

and direction randomly, so it is very difficult to track its entire path. However we can make use

of the Moving Interval (MI) to track client's future path up to the end of MI from the cunent

query location. Moving Interval is duration within which client's velocity and direction remains

constant.

Basic Idea:

Given two sub regions v,and Vj of thevalid scope vof a data item. Choose the sub region v,- (v,)

if the mobile client will remain in v;- (vj) for a longer duration than vj (v,) even if A(v,) > A(v,)

(A(v,)>A(v,)).

Approach:

Suppose SMi be the start and EMi be the end of Moving Interval as shown in Figure 3.4. Let

Tq bethe time atwhich a query is executed bythe client, where SMi < TQ < EMl. Also, let eTQ and

eE be the points in x-y plane at time Tq and EMi respectively. We define Future Movement

Path (FMP) for interval [TQ, EMi] as:
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FMPT ,Em =Line_Segment(eTg,eEyi) (3.2)

Server selects the sub-valid scope that contains maximum part ofFMP and sends it to the client

along with data value. Consider the scenario as shown in Figure 3.5.
FMP

a) eF e v
/ Lin

^

Smi Tq

Figure 3.4 Future Movement Path

h)et G V C) eE„, * V

Figure 3.5 eE with respect to Valid scopev

In the first and the second case the FMP is within the valid scope, but in the third case, we

have to consider the intersection point ofLine_Segment(eTg,eEM) with the valid scope v, let it be

evi,because we select the best candidate valid scope v, so we consider line segment that is within

the valid scope. Redefining FMP with respect to the valid scope v for interval [TQ, EMi], we have

[Line Seement(er ,ec ) ifeP ev
Q " " (3.3)

Line_Segment(eT ,en) if eE gv

Our ultimate goal is to select a valid scope that increases the cache hit of the client, which

means the sub polygon which retains the total FMP. Keeping this fact, we define a new metric

called Future Access (FA) for valid scope v,-' for interval [Tq, EMi], given by

Length(FMPTQEMi(v]))

FMPT,E (v) = -

FAr F (v,.) =
T^'V,J Length(FMPT„(v))

IQ'&MI

where, v,- = sub region contained in v

v=valid scope of a data value

Length= computes length of line segment between two given end points.

46

(3.4)



FA helps to find out the best candidate polygon/sub polygon with respect to its future validity

in client's cache, because it takes into account the future path to be traversed by the client from

the cunent position.

After integrating FA with caching efficiency we get an integrated metric, called Caching

Efficiencywith FutureAccess (CEFA) for valid scope v,-' in interval [Tq, Emi], given by:

CEFAs,EJvt) =E(vt)*F\^ (vi) =A(v)A^lD0(Vi)) *F\*„ ti) (3-5>
The new metric takes into account the future movement behavior of client. We propose a

new cache invalidation algorithm called Caching Efficiency with Future Access Based (CEFAB)

that uses CEFA metric. CEFAB scheme can be stated as follows:

For a data item value with valid scope of v, given a candidate valid scope set

V' = {v.'.vj , vl}, v,' c v,i < i < k, choose the scope v\ , that maximizes CEFAT E (v,) , as the

valid scope to be attached to the data.

Thus, CEFAB also generates candidate valid scopes and then selects the best one. IfTq = Emi,

then it returns the original polygon as the best valid scope because client's movement behavior

cannot be predicted for next Moving Interval. For other cases, suppose the cunent candidate

polygon is v'/, CEFAB considers all polygons resulting from the deletion of one endpoint of v ',•

and chooses the next candidate, v',+i, the polygon whichhas maximum Length(FMPT £ (vj)) . In

case of tie for length, the polygon with maximal area is selected. The algorithm of CEFAB is

described in Figure 3.6. Similar to CEB_G, CEFAB can also be generalized into CEFAB_G,

described by Figure 3.7.

3.5 SIMULATION MODEL

This section describes the simulation model used to evaluate the performance of the proposed

location-dependent cache invalidation methods. Our Simulator is implemented in C++ and setup

is similar and in accordance with those used in earlier studies [14,44,50].

3.5.1 System

Since seamless hand-off from one cell to another is assumed, the network can be considered a

single, large service area within which the clients can move freely and obtain location-dependent
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Algorithm A2: Selection of the Best Valid Scope for the CEFAB Method

Input: valid scope v=p (e,, ...,en) of adata value, TQ and Emi;

Output: the attached valid scope v';

Procedure:

1: ifTQ==EMi then
2: v'=v;

3: goto 19;

4: end if

5: v'i:~ theinscribed circle ofp (eh ...,e„)
6: v'~v\;CEFAmax~E(v\);

7: v'2 :=p (et, ...,e„)',
8: i:« 2;

9: while n - i > 1 do r*
10: //containing at least three end-points for a polygon

11: if CEFA, . (v.) > CEFA max then
JQ>LMt '

12: v':= v',; CEFA max := CEFA,^ (v\);
13: end if

14: ifrc -i > 1 then

15: v't+i := the polygon that is deleted one endpoint from v/while being bounded byvand
havingmaximum Length(FMPT E (vj));

16

17

18

19

end if

/:=/+ 1;

end while

output V'.

Figure 3.6 Algorithm for CEFAB
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Algorithm A3: Selection of the Best Valid Scope for the CEFAB_G Method

Input: valid scope v=p (ej, ...,en) of a data value, Tq and EMi;

Output: the attached valid scope v';

Procedure:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

if To == E Ml

V -V ;

goto 19;

end if

v\:- the inscribed circle ofp (ej, ...,en)

v':=v\;CEFAmax:=E(v\);

v'2:=p (et, ...,en);

i:=2;

while n - i > 1 do

//containing at least three end-points for a polygon

if CEFA. . (v.) > CEFA max then

v':= v'i; CEFA max := CEFA,^ (vj);

end if

if n - i > 1 then

v',+1 := thepolygon having maximum Length(FMPT e (vj)), consisting of

((n - 1) - i +2 ) endpoints of v and being bounded by v ;

end if

i:=i+\;

end while

output V'.

then

Figure 3.7 Algorithm for CEFAB_G
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information services. In our simulation^hllefvlcT^elriTrepresented by arectangle with afixed
size of Size. We assume a "wrapped-around" [14,44,107] model for the service area. In other
words, when aclient leaves one border of the service area, it enters the service area from the
opposite border atthe same velocity.

The database contains ItemNum items. Every item may display ScopeNum different values for
different client locations within the service area. Each data value has asize of DataSize. In the
simulation, the scope distributions of the data items are generated based on voronoi diagrams
(VDs) [48,76] because valid scopes of nearest neighbor queries is defined by VD. Formally,
given sets of point 0={o,,o2, ,o„), V(oi), the Voronoi Cell (VQ for oh is defined as the set of
points qin the space such that dist(q,0i) <dist(q,oj), vj+i. That is, V(os) consists of set ofpoints
for which 0i is nearest neighbor. In our simulation, first data set Scope Distribution 1(Figure 3.8
(a)) contains 110 points randomly distributed in asquare Euclidean space. The second data set,
Scope Distribution 2(Figure 3.8 (b)), contains the locations of 215 hospitals in California area,
which is extracted from thepoint data setavailable at [106].

(a) Scope Distribution 1 (ScopeNum=110) (b) Scope Distribution 2 (ScopeNum=215)

Figure 3.8 Scope Distributions for Performance Evaluation

This model assumes that two floating-point numbers are used to represent a two-dimensional

coordinate and one floating-point number to represent the radius of circle. The size of a

floating-point number is FloatSize. The wireless network is modeled by an uplink channel and a

downlink channel. The uplink channel is used by clients to submit queries, and the downlink

channel is used by the server to return query responses to target clients. The communication

between the server and a client makes use of a point-to-point connection. It is assumed that the
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available bandwidth is UplinkBand for the uplink channel and DownlinkBand for the downlink

channel.

3.5.2 Client

The mobile client is modeled with two independent processes: query process and move process.

The queryprocess continuously generates location-dependent read-only queries for different data

items. After the cunent query is completed, the client waits for an exponentially distributed time

period with a mean of Querylnterval before the next query is issued. The client access pattern

over different items follows a Zipfdistribution with skewness parameter 9, which is shown to be

a realistic approximation of skewed data access and are frequently used to model non-uniform

distribution [14,50,70,74,75]. In the Zipf distribution, the access probability of the Ith (1<i <N)

data item is represented as follows

1'Jrr (3-6)
where N is the number of items in the database and 0< 9 <1.

When 9 = 0, the access pattern is uniform. As 9 value is increased the skewness increases. When

9 = 1, it is the strict Zipf distribution. Large 9 results in more "skewed" access distribution. To

answer a query, the client first checks its local cache. If the data value for the requested item with

respect to the cunent location is available, the query is satisfied locally. Otherwise, the client

submits the query and its cunent location to the server and retrieves the data through the

downlink channel. The move process controls the movement pattern of the client using the

parameter Movinglnterval. After the client keeps moving at a constant velocity for a time period

of Movinglnterval, it changes the velocity randomly: the next moving direction (represented by

the angle relative to the x-axis, counter clock wise taken as positive) is also selected randomly

between 0° to 360°, and the next speed is selected randomly between MinSpeed and MaxSpeed.

If the difference between MinSpeed and MaxSpeed is low the mobile users move with almost

same velocity. The client is assumed to have a cache of fixed size, which is a CacheSizeRatio

ratio of the database size.

3.5.3 Server

The server is modeled by a single process that services the requests from clients. The requests

are buffered at the server if necessary, and an infinite queue buffer is assumed. The FCFS service

principle is assumed in the model. To answer a location-dependent query, the server locates the
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conect data value with respect to the specified location. Since the main concern of this thesis is
the cost of the wireless link( i.e. transmission time, receiving time and disconnections), which is
more expensive than the wired-link and disk I/O costs(i.e. disk access time), the overheads of
request processing and service scheduling at the server are assumed to be negligible in the model.

3.6 PERFORMANCE EVALUATION

This section describes the performance parameters and metric used for simulation and analyze
the results of the simulation

3.6.1 Performance Parameters

This subsection describes the parameters used for simulation. The default values of different
parameters used in the simulation experiments are given in Table 3.3. They are chosen to be in
accordance with those used in earlier studies [14,50,44,68].

Table 3.3 Configuration Parameters and Default Parameter Settings for
Simulation Model

Parameter Description Setting

4000m*4000m,
Size size of the rectangle service area

44000m*27000m

ItemNum number of data items in the database 500

ScopeNum number of different values at various
locations for each item

110,215

DataSize size of a data value 128 bytes

UplinkBand bandwidth of the uplink channel 19.2 kbps

DownlinkBand bandwidth of the downlink channel 144 kbps

F loatSize size of a floating-point number 4 bytes

Querylnterval average time interval between two
consecutive queries

50.0 s

Movinglnterval time duration that the client keeps moving
at a constant velocity

100.0s

MinSpeed minimum moving speed of the client lm s"1^ m s"1
MaxSpeed maximum moving speed of the client 2ms"1, 10ms"1
CacheSizeRatio ratio of the cache size to the database size 10%

9 skewness parameter for the Zipf access
distribution

0.5

Experiments are performed using different workloads and system settings. The performance

analysis presented here compares the effects of different parameters such as Querylnterval,
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Movinglnterval and DataSize on the performance of our and other algorithms. In order to get the

true performance for each algorithm, we collect the results only after the system becomes stable,

which is defined as the time when the client caches are full [14,50,74,75].Each simulation is run

for 20,000 client issued queries and each result obtained in the experiment is taken as the average

of 10 simulation runs with Confidence Interval of 96 percent.

For simulation purpose, we assume that all data items follow the same scope distribution in a

single set of experiments. Two scope distributions with 110 and 215 valid scopes are used (see

Figure 3.8). Since the average valid scope areas differ for these two scope distributions, different

moving speeds are assumed, i.e., the pair of (MinSpeed,MaxSpeed) is set to (1,2) and (5,10) for

Scope Distribution 1 and Scope Distribution 2 , respectively. The LRU cache replacement

policy is employed for cache management. For calculating data distance between valid scope

(either a polygon or a circle) and cunent location we select a reference point for each valid scope

and take the distance (Euclidean distance) between the cunent location and the reference point.

For polygonal valid scope, the reference point is defined as the endpoint that is closest to the

cunent location and for circular valid scope, it is defined as the point where the circumference

and the line connecting the cunent location and the center of the circle meet.

3.6.2 Performance Metric

Our primary performance metric is cache hit ratio. This is because other performance can be

derived from the cache hit ratio. Cache hit ratio can be defined as the ratio of the number of

queries answered by the client's cache to the total number of queries generated by the client.

Specifically, higher the cache hit ratio, higher is the local data availability, less is the uplink and

downlink costs and the battery consumption [14,50].

3.6.3 Comparison of Location-Dependent Invalidation Schemes

This subsection examines the performance of different location-dependent invalidation schemes,

namely, CEB, CEB_G, CEFAB and CEFAB_G. Figures 3.9 to 3.14 show the cache hit ratio for

both scope distributions (Figure 3.8) under various query intervals, moving intervals and data

sizes.

Figure 3.9 shows that for Scope Distribution 1, CEFAB, CEB_G and CEFAB_G, perform

better than over CEB scheme for all query intervals (from 20s to 200s). We observe that the

generalized procedure of selecting the best candidate valid scope in CEB_G helps to achieve

maximum improvement of 6 % better than CEB. It can also be seen that CEFAB performance is
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up to 4%better than CEB and CEFAB_G performs up to 9%better than CEB. Similar
performance is observed in Figure 3.10 for Scope Distribution 2. Here, the average improvement
of CEFAB_G, CEB_G, CEFAB is 3%, 2%and 1.5% over CEB respectively.

CEFAB_G performs better than all. It is the increase in precision provided by the algorithms
while selecting candidate valid scopes that improves performance. As the query interval
increases, cache hit ratio of all algorithms decreases, because the probability that the user
remains in the same valid scope decreases and hence the gains achieved by using a candidate
valid scope ofhigh precision decreases.

0.34

0.22

0.20
20 40 60 80 100 120

T

-B—

1

CEFAB_G
CEB G

t — CEFAB

1 CEB

140 160 180 200

Query Interval (second)
Figure 3.9 Cache Hit Ratio of Invalidation Schemes vs. Query Interval

(Scope Distribution 1)

The effect of Moving Interval (varied from 20s to 400s) on all invalidation algorithms is shown

in Figure 3.11 and Figure 3.12. The longer the moving interval, the less frequently the client

changes velocity and direction and, hence, less random is the client's movement. In Figure 3.11

(for Scope Distribution 1) CEB_G gives an average improvement of 6 percent over CEB.

The performance of CEFAB depends on the Moving Interval, so smaller moving interval

reflects highly random user and small future prediction of path, which results in less precise

selection of valid scope. On the other hand, larger moving interval means future prediction path

is long and thus highly precise valid scope selection is done. Hence, CEFAB shows improvement
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Figure 3.10 Cache Hit Ratio of Invalidation Schemes vs. Query Interval
(Scope Distribution 2)
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Figure 3.11 Cache Hit Ratio of Invalidation Schemes vs. Moving Interval

(Scope Distribution 1)
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Figure 3.12 Cache Hit Ratio of Invalidation Schemes vs. Moving Interval

(Scope Distribution 2)
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Figure 3.13 Cache Hit Ratio of Invalidation Schemes vs Data Size
(Scope Distribution 1)
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(Scope Distribution 2)

over CEB, with increase in moving interval. CEFAB shows an improvement of about 3 percent

over CEB for different moving intervals.

CEFAB_G which combines both generalized selection procedure of valid scope and the

future access shows the best performance with an average improvement of 8 % over CEB.

Similar improvements in performance can be seen for Scope Distribution 2 in Figure 3.12 for

algorithms CEFAB_G, CEB_G, CEFAB with the averageimprovements of 10 %, 4 % and 1.5 %

over CEB respectively.

Figures 3.13 and 3.14, show the results when the data size is varied from 64 bytes to 1024

bytes. When the data size increases, the overhead of the invalidation information becomes

relatively smaller and all of the schemes perform better. It is observed for both scope

distributions, that for data size of 64 bytes, the overhead of invalidation information is large and

algorithms CEFAB_G, CEB_G and CEFAB give better performance over CEB. As the data size

increases, their performance reduces as compared to CEB.
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3.7 CONCLUSIONS

In this chapter, we explored cache invalidation issues for location-dependent data under a
geometric location model. We observed that modifying CEB to consider more choices in each
iteration gives better results. Based on this observation, we proposed ageneralized algorithm
CEB_G that selects the best suitable candidate for valid scope to maximize the caching
efficiency. Though, CEB_G takes more computational time, but as these candidate valid scopes
can be calculated only once and then stored at the server along with its actual valid scope, it is
acceptable. However, CEB_G improves precision by selecting more precise representation of
valid scope as compared to CEB. We compared its performance with the existing CEB algorithm.
We also introduced a new metric, Future Access, which takes into account the future movement
behavior of client and proposed CEFAB and CEFAB_G algorithms based on it. Anumber of
simulation experiments have been conducted to evaluate the performance of the proposed cache
invalidation schemes. The results show that algorithms CEB_G, CEFAB, and CEFAB_G with
different system settings, give better performance than CEB. Among the proposed algorithms,
CEFAB_G gave the best perforaiance. But, computational overhead at server for CEFAB_G and
CEB_G is higher than CEFAB. Moreover, in CEFAB and CEFAB_G, client has to send
additional information to the server, which requires extra computation at client's end, as
compared to CEB_G. Thus, for low resource client CEB_G is prefened. Depending on the
resources at the server, choice canbe made between CEFAB and CEFAB_G.
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CHAPTER 4

PREDICTED REGION BASED CACHE REPLACEMENT

4.1 INTRODUCTION

Since a mobile client has only limited cache space, cache replacement is another important issue

for client cache management. In Chapter 3, we focused on location-dependent cache invalidation.

This chapter focuses on location-dependent cache replacement.

Caching frequently accessed data items on the client side improves the system performance in

wireless networks. Due to the limitation of the cache size, it is impossible to hold all the accessed

data items in the cache. As a result, cache replacement algorithms are used to find a suitable

subset of data items for eviction when the cache is full. Cache replacement algorithms have been

extensively studied in the context of operating system, virtual memory management and database

buffer management. These cache replacement policies rely on the temporal locality of user's

access pattern to improve cache performance. In this context, cache replacement algorithms

usually maximize the cache hit-ratio by attempting to cache the items that are most likely to be

accessed in the future. These algorithms, however, are not ideal in supporting mobile clients

using location-dependent applications. As mobile clients can move freely from one location to

another, their access pattern not only exhibits temporal locality, but also exhibits spatial locality.

In order to ensure efficient cache utilization, it is important to take into consideration the location

and movement direction of mobile clients, when performing cache replacement.

A cache replacement policy determines, which data item(s) should be deleted from the cache

when the cache does not have enough free space to accommodate a new item [14,68,74]. The

problem can be formally defined as follows. Let Vdenotes the set of all the cached data items

with total size Sy in mobile client's cache of size cacheSize. The ultimate goal of a cache

replacement policy is to determine the set ofobjects V* to evict from the client's cache when a
new data item of size S^has to be inserted in cache and (Sy + Snew) > cacheSize, such that the

costof the objects evicted areminimized. Many existing cache replacement algorithms employ a

cost function cost(i) to calculate the cost of data item i in cache which depends on different

factors such as time since last access, entry time of the item in the cache, transfer time, item

expiration time, valid scope of item, data distance of item and so on. A cache replacement policy
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can be viewed as a specialized instance of the well-known knapsack problem [68,74,75]. The

objective is to minimize the cost of items that are purged from cache while satisfying a size
constraint. The formulated problem is shown below:

The objective is to minimize

Y.cost{i) VF'(^cK) (4.1)
leV'

subject to the constraint

ieV

where, st is the size of /* data item. It is well known that the knapsack problem is NP complete.

Although, there is no optimal solution to the problem, but when the data size is relatively small
compared to cache size, heuristics can be used to find a sub-optimal solution in polynomial time.
Generally, the heuristics chosen to solve this knapsack problem is that when a client needs to

insert a new item into the cache and the cache is full, the cached item with the lowest cost is

removed until there is enough available space in thecache to store the new item [14,68,74,75].

In mobile networks, where clients utilize location dependent information services, clients

access pattern do not only exhibit temporal locality, but also exhibit dependence on the location

of data, location of the client and direction of the client's movement [14,27]. Hence, relying

solely on temporal locality while making cache replacement decisions will result in poor cache

hit ratio in LDIS. To overcome this problem, several location-aware cache replacement policies

[14,50,68,90,98] have been proposed for location dependent information services. None of these

cache replacement policies are suitable if client changes its direction of movement quite often.

Existing cache replacement policies only consider the data distance (directional/undirectional)

but do not try to predict the region or area where the client can be in near future. Very few of

these policies [14,50,68] account for the location and movement pattern of mobile clients.

In this chapter, we propose cache replacement algorithms based on the predicted region of

user's presence in near future. These algorithms predict an area in the vicinity of client's cunent

position, and give priority to the cached data items that belong to this area inespective of the

client's movement direction. Based on the predicted region we propose Predicted Region based

Cache Replacement Policy (PRRP), Prioritized Predicted Region based Cache Replacement

Policy (PPRRP) and Weighted Predicted Region based Cache Replacement Policy (WPRRP).

We also compared our cache replacement policies with other existing cache replacement policies
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such as PAID, FAR, and Manhattan for LDIS.

The next section describes our proposed cache replacement policies. The system model used

is same as described in section 3.2.

4.2 CACHE REPLACEMENT POLICIES BASED ON PREDICTED REGION

Traditional cache replacement policies, due to their temporal nature, consider access

probability as the most important factor that affects cache performance. A data item with least

access probability is evicted from cache. Since LDIS is spatial in nature, distance of data item

from client's cunent position and its valid scope area should also be taken into account for cache

replacement. In LDIS, the server responds to the user query with suitable data value that depends

on client's cunent location. Greater the distance of valid scope of data from the user's cunent

position, lower is the chance that client will enter in the valid scope area of that data in near

future. Thus, it is better to eject the farthest data item value when replacement takes place.

Moreover, because the client is mobile, its position at the time of next query will be different

from its cunent position. Therefore, the client's movement should also be taken into account.

Locations in the direction opposite to client's movement have very low chance ofbeingrevisited

soon, though they may be very close to it. Based on this reasoning, existing cache replacement

schemes like FAR and PAID(Directional) [14,50] assign higher priorities to data items in the

client's direction of movement giving very low priority to the items in the direction opposite to

user's movement. However, with client's random movement patterns, it is not always necessary

that client will continue moving in the same direction. Therefore, evicting data values which are

in the opposite direction to client's movement but are very close to client current position may

degrade the overallperformance [14,50].

Basic Idea:

When client's movement pattern is random, retaining the data items in the direction of user

movement and discarding the data items that are in the opposite direction of user movement may

not always improve the performance, because in random movement client's direction may

change frequently. Therefore, our cache replacement policy considers the predicted region of

user presence in near future (rather than considering the direction of user movement only) while

selecting a data item for replacement. The predicted region is based on the client's cunent

movement pattern. We show that it is useful to calculate the data distance with respect to this
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region, so that the data items in the vicinity of client's cunent position are not purged from the
cache. Valid scope area of the data item and space required to store the data item in cache are
also used in selecting an item for replacement. This is because the client has ahigher chance of
being in larger region rather than in smaller regions and keeping smaller size data items in cache
helps to accommodate alarge number of data items in the cache. Hence, our cache replacement
policy selects a victim with low access probability, small valid scope area falling outside the
predicted region and large data size.

Approach:

We make use of discrete model for client's movement path as described in Section 3.2 and

used in [14,44,68]. Assuming a predefined path ofmobile user or a predefined destination is
generally not possible unless we are dealing with acase where the user is moving in a train or a
ship and the entire path of the user is known well in advance. For discrete model, the direction
and velocity of the user are known for cunent MI. At the end ofeach MI, direction is selected
randomly between 0° to 360° degrees and the velocity between minimum (vmin) and maximum
speed (vmax)of the client. This assumption allows us to predict aregion ofuser's presence in the

near future.

LMIc'

(xs,ys) (xe,ye)

Figure 4.1 Current Moving Interval

Let vc be the velocity in the cunent moving interval MIC, LMic be the length of MIC along

direction 9C and (xs, ys) and (xe, ye) be the starting and end points of MIC respectively (see Figure

4.1). Assuming that the next Lmi is almost same, after reaching (xe, ye) mobile user selects the

direction randomly and covers a distance of Lmi in next MI. We can predict the region of user

presence in near future by the circle with radius Lmic and centre (xe, ye) as shown in Figure 4.2.

One of the advantages of using predicted region is that it dynamically changes with speed of

client and Moving Interval and so takes into account the random movement of client. Our cache

replacement policy uses this region to calculate the data distance in various ways. For each case

we define a new cache replacement policy. They are as follows:

62



(xs,y}

Figure 4.2 Predicted Region

4.2.1 PREDICTED REGION BASED CACHE REPLACEMENT POLICY (PRRP)

In this cache replacement policy, we differentiate between the data items inside and outside the

predicted region and calculate their distances as follows:

(i) The distance of data items outside the predicted region is calculated from the center

of the circle

Instead of assigning equal low priority to the data items that lie outside the predicted region,

we assign priorities to different items based on their distance from the center of circle

(given in Figure 4.2), as it is the farthest location that the user will reach in its cunent MI.

A fair selection is thus made for all data item that lies outside the predicted region.

(ii) The distance of data items inside the predicted region is the minimum distance of the

data item from any point on the circle and from its center.

Logically, we can think of predicted region as a reference of assigning priority to data

items that the user will visit in very near future. Generally, if we consider circle's center as

the cunent position of user and if we calculate the distance of data items from it, then the

maximum data distance is same as the radius of the circle and the minimum is zero if it lies

in the center. But, then it is same as (i) above. For assigning a much higher priority to data

items in the predicted region, we calculate its distance from all points on the circle as well

as from the center of circle and assign its minimum distance as its data distance (thus, the

distance is never more than half of the radius). Using this method, a data item near to center

and near to circle edge gets nearly equal priority. However, this does not affects the

performance much, as the priority of the data item inside the predicted region is greater
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than those outside the region, since outside data item has minimum distance greater than

the radius of circle.
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Figure 4.3 Predicted Region with Extreme Cases

Calculating the distance of data items from the points on the circle, means, calculating the
distance from all the points that lies on the circumference ofit. Since it is impossible to calculate
the distance of data items valid scope from all the points on the circle, we choose only four
points (simplest possible points) as explained later. One can choose more points depending on
the application and its permissibility ofcomplexity. We consider following four extreme cases:

• user travels in same direction as 9C in new MI.

• user travels in direction opposite to the 9C in new MI, i.e. 9C + 180°, and

• user travels in direction perpendicular to <9C in new MI, i.e. 9C ± 90°.

Figure 4.3 shows the four point on the circle (A, B, C, D) with <9C =0°. So a user canreach points

B, A, C and D in the above worst case at the end of next MI with velocity vc, and direction 9C, 9C

+ 180°, 9C + 90°and 9C -90° respectively.

Now, we define our cost based cache replacement policy PRRP which takes into

consideration access probability, data distance from the predicted region, valid scope area and

data size in cache. Each cached data object is associated with its replacement cost. When a new

data object needs to be cached and there is insufficient cache space, the object(s) with lowest

replacement cost is removed until there is enough space to cache new object. The cost of

replacing a data valuey of data item i in client's cache is calculated as:
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where,

Pi: access probability of data item i

A(vsij): area of valid scope vsy for data valuej of data item i

Sjj : storage space (size) needed to store data valued and its valid scope vsy

D(vsij,p) :distance between vsg and point (px, py)

D(vsij): distance between the center of the predicted region and the valid scope vsij

Pred_Reg : predicted region, and

Pred_Point: set of points consisting of extreme case points and center ofPred_Reg

4.2.2 PRIORITIZED PREDICTED REGION BASED CACHE REPLACEMENT

POLICY (PPRRP)

In this cache replacement policy, we differentiate between the data items inside and outside the

predicted region as well as data items nearer to user's cunent position within the predicted

region and calculate their distances as follows:

(i) The distance of data items outside the predicted region is calculated from the centre of

the circle,

(ii) The distance of data items inside the predicted region is calculated as the minimum of

(Lmic, distance of the valid scope from the cunent position of the user).

Calculating the distance of data items in this way ensures that

(i) Items outside the predicted region always have lower priority than the items inside the

predicted region,

(ii) Items inside the predicted region, close to the user have higher priority.

Now, we define our cost based cache replacement policy PPRRP that considers access

probability, predicted region based data distance, valid scope area and size of the data.
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Associated with each cached data object is the replacement cost. When a new data object needs
to be cached and there is insufficient cache space, the objects with lowest replacement cost are

removed until there is enough space to cache new object. The cost ofreplacing a data value; of

data item i in client's cache is calculated as:

PrA(vs ) j
if vs. . e Pred Reg

S. . minimum jL^jc ,D(vs..)

ostij =<
P..A(vs ) j (4>4)

if vs. . <£ Pred Reg

Sij D(vs..)

where,

Pt: access probability of data item i

A(vsij): area ofthe valid scope vsu for data value; ofdata item i
Sij :storage space (size) needed to store data value; and its valid scope vsy
D(vsij): distance ofthe valid scope vsy from the cunent user position

D'(vsij): distance ofthe valid scope vary from the centre ofthe predicted region, and

Pred_Reg: predicted region

4.2.3 WEIGHTED PREDICTED REGION BASED CACHE REPLACEMENT POLICY
(WPRRP)

To make our earlier schemes adaptable to different user movement patterns, we divide the

service area into four sub regions (R1-R4) as given in Table 4.1.

Table 4.1 Sub Regions
Inside Outside

Predicted Region Predicted Region
In-Direction R2 R3

Out-Direction Ri R4

This not only helps us in differentiating between the data items inside and outside the region

but also between the data items along and opposite to the direction of user movement. We study

the effect of assigning different weights to the data items in different regions while calculating
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their distance from the cunent position of the user.

Figure 4.4 Sub Regions within Service Region

The sub regions are shown in Figure 4.4, where c is the cunent position of client. Weights Wj,

W2, W3 and W4 are assigned to Ri, R2, R3 and R4 respectively. Data items falling in the sub

region Ri is assigned a weight of W;. By selecting appropriate value of W;, we can give different

priorities to the items in those regions. This is done by multiplying respective weights to the data

distance of data items (specific cases are considered below).

We call our replacement policy weightedpredicted region based cache replacement policy

(WPRRP).The cost of replacing a data value; of data item i in client's cache in WPRRP is

calculated as:

R.A(vsr)
WPRRP Cost- • = — •—*weighted_distance

hJ S..
v

PrA(vs..) Wh
K

= wt

SiJ.D(vSiJ)
where

vsiJeRKARKG{R],R2,R3,R4}
K-

where,

Pi: access probability of data item i

0<WK <1
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A(vsjj): area of the valid scope vsu for data value; of data item i
Sij : storage space (size) needed to store data value; and its valid scope vsy
WK: weight of theRK sub region, and

D(vsi,j): distance of the valid scope vsy from the cunent user position
To demonstrate the adaptiveness ofthis scheme, let us consider following three cases with

different weights in range 0.1 to 1, where 1is the highest priority and 0.1 is the lowest priority

assigned as weights.

Case 1: Assigning Priority to in-direction data items only (Wi=0.1; W2=l; W3=l; W4=0.1)
The in-direction items falls in regions R2 and R3 so they are given the highest priority (i.e. 1)

and the out-direction data items falls inRi and R4 region and they were given lowest priority (i.e.

0.1), because priority is given to the in-direction items only. This case is same as those taken in
FAR and PAID(Directional) as far as data item with respect to direction ofclient is concerned.

Case 2: Assigning highest priority to data items in the predicted region and in the direction of
user movement over data items outside the predicted region and out-direction. (Wi=l/3; W2=l;

W3=l/2; W4=l/4)

In this case, weight assignment depends on two factors: direction and predicted region.

Setting W2 and W3 larger than Wi and W4 gives higher priority to data items in the direction of
user movement. Based on predicted region, R2 should be given higher priority than R3 and Ri

overR4. We therefore assign highest value to W2(=l) as it is in the predicted region as well as in

the direction of user's movement. W3 is assigned the weight of 1/2 as it is in the direction ofuser

movement. Starting from highest priority R2 is assigned the weight of 1 and R3 is assigned the

weight of 1/2. Since Wj and W4 should have lower weights than W2 and W3, so Wi is assigned

weight of 1/3 and W4 as it falls outside the predicted region, and in opposite to the direction of

user's movement, it is assigned the lowest weight of 1/4. The combination of weights comes out

to be W2=l, W3=l/2, W,=l/3 and W4=l/4.

Case 3: Assigning highest priority to Predicted Regions over Non-predicted ones (Wi=l;

W2=l;W3=l/2;W4=l/2)

In this case, priority is given to data items only based on predicted regions. Hence, R\ and R2

are assigned highest priority by setting WI = W2 = 1 as compared to R3 and R4, as W3 and W4

are both set to 1/2.

Let these replacement policies, be called as WPRRP-1, WPRRP-2, and WPRRP-3 for easel,
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case2 and case3 respectively.

4.3 SIMULATION MODEL

To study the performance of the above mentioned protocols we used the same simulation model

and scope distributions as described in section 3.5 with following additional features:

The size of data value varies from Smin to Smax and has following three types of distributions

[50,74]:

• IncreasingSize: The size Si of data item i grows linearly as / increases, and is given by:

S =5 +('" 0*(Sma» Smin) ,- =l^JtemNum- (4.6)
I Hill 1 rj » T- i

ItemNum -1

DecreasingSize: The size Si of data item i decreases linearly as i increases, and is given by:

S =Smsx- (i Qllggg S^ ,i =i,..„ItemNum; (4.7)
ItemNum -1

• RandomSize: The size S-, of data item i falls randomly between Sm{n and Smax, given by:

3 =Smin +lprob()*(Smax -Smia)\j =l,...,ItemNum; (4.8)

where, _pro&() is a random function with uniformly distributed value between 0 and 1. The

choice of the size distributions are based on previously published trace analysis [74]. Though,

some researchers have shown that small data items are accessed more frequently than large data

items, but recent web trace analysis shows that the conelation between data item size and access

frequency is weak and can be ignored [70]. Combined with the skewed access pattern,

IncreasingSize and DecreasingSize represent client's preference for frequently querying smaller

items and larger items respectively. In other words, with IncreasingSize setting, the clients access

the smallest item most frequently and with DecreasingSize setting, the clients access the largest

item most frequently. RandomSize, models the case where no conelation between the access

pattern and data size exists.
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4.4 PERFORMANCE EVALUATION

This section describes the performance parameters and measures used for simulation and
analyzes the results ofthe simulation.

4.4.1 Performance Parameters

The default values of different parameters used in the simulation experiments are given in Table
4.2. They are chosen to be the same as used in earlier studies [14,44,68].

Experiments are performed using different workloads and system settings. In order to get the
true performance for each algorithm, we collect the result data only after the system becomes
stable, which is defined as the time when the client caches are full [74,75]. Each simulation runs
for 20,000 client issued queries and each result obtained in the experiment is taken as the average
of 10 simulation runs with Confidence Interval of 96 percent.

For simulation purpose, we assume that all data items follow the same scope distribution in a
single set of experiments. Two scope distributions with 110 and 215 valid scopes are used (see
Figure 3.8). Since the average valid scope areas differ for these two scope distributions, different
moving speeds are assumed, i.e., the pair of (MinSpeedJvIaxSpeed) is set to (1,2) and (5,10) for
Scope Distribution 1 and Scope Distribution 2, respectively. The Caching-Efficiency-Based
(CEB) [14,50] cache invalidation policy is employed for cache management. For calculating data
distance between valid scope (either a polygon or a circle) and cunent location we select a

reference point for each valid scope and take the distance (Euclidean distance) between the

cunent location and the reference point. Forpolygonal valid scope, the reference point is defined

as the endpoint that is closest to the cunent location and for circular valid scope, it is defined as

the point where the circumference and the line connecting the cunent location and the center of

the circle meet. Access probability for each data item is estimated by using exponential ageing

method [14,50,74]. Two parameters are maintained for each data item i: a running probability P,

and the time of the last access to item /,•. P,- is initialized to 0. When a new query is issued for

data item /, P; is updated using the following formula:

Pi=al(tc-tli) +(\-a)Pi (4.9)

where, tc is the cunent system time and a is a constant factor to weigh the importance of most

recent access in the probability estimate. Note that the access probability is maintained for each
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data item rather than for each data value. If the database size is small, the client can maintain

these parameters (i.e., Pt and f/ for each item i) for all items in its local cache. However, if the

database size is large, these parameters will occupy a significant amount of cache space. To

alleviate this problem, we set an upper bound to the amount of cache used for storing these

parameters (5 percent of the total cache size in our simulation) and use the Least Frequently

Used (LFU) policy to manage the limited space reserved for it.

Table 4.2 Configuration Parameters and Default Parameter Settings for
Simulation Model

Parameter

Size

ItemNum

ScopeNum

umin

UplinkBand
DownlinkBand

F loatSize

Querylnterval

Movinglnterval

MinSpeed
MaxSpeed
CacheSizeRatio

9

Description

size of the rectangle service area

number of data items in the database

number of different values at various

locations for each item

minimum size of a data value

maximum size of a data value

bandwidth of the uplink channel
bandwidth of the downlink channel

size of a floating-point number
average time interval between two
consecutive queries
time duration that the client keeps moving
at a constant velocity
minimum moving speed of the client
maximum moving speed of the client
ratio of the cache size to the database size

skewness parameter for the Zipf access
distribution

constant factor

Setting

4000m*4000m,
44000m*27000m

500

110,215

64 bytes
1024 bytes
19.2 kbps
144 kbps
4 bytes
50.0 s

100.0s

1ms"1,5 m s"1
2ms"1, 10ms'1
10%

0.5

0.25

4.4.2 Performance Metric

Same as described in section 3.6.2.

4.4.3 Comparison of Location-Dependent Cache Replacement Schemes

This subsection examines the performance of different location-dependent cache replacement

policies, namely, PRRP, PPRRP, WPRRP-1, WPRRP-2 and WPRRP-3 with PAID, FAR and

Manhattan. Figures 4.5 to 4.24 show the cache hit ratio for both scope distributions (see Figure
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3.8) under various query intervals, moving intervals, cache sizes, client's speed and Zipfs
distribution.

Effect of Query Interval

Query interval is the time interval between two consecutive client queries. In this set of
experiments, we vary the mean query interval from 20 seconds to 200 seconds. Figures 4.5 to
4.8 show cache performance for both scope distributions and for the data distributions:
IncreasingSize, RandomSize and DecreasingSize.

Results show that, when the query interval is increased, almost every scheme gets a worse

performance. This is because, for a longer query interval when anew query is issued the client
has alower probability of residing in one of the valid scopes of the previously queried data items.
When different cache replacement policies are compared, the proposed policies substantially

outperform the existing policies. Figures 4.5 and 4.6 compare the performance of cache
replacement policies over query interval for Scope Distribution 1. PRRP, which prefers object
within the predicted region over the objects outside the predicted region obtains better
performance than PAID with an average improvement of 25%, 17% and 12% for data
distribution: IncreasingSize, RandomSize and DecreasingSize respectively. Similarly, PPRRP

which improves PRRP by giving priority to the data objects that are nearer to the client's cunent
position within the predicted region also shows better performance than PAID and
PRRP.Average improvement of PPRRP over PAID is 28%, 21% and 19% for IncreasingSize,

RandomSize and DecreasingSize respectively. As far as weighted predicted region based cache

replacement policy is concerned, all WPRRP-1, WPRRP-2 andWPRRP-3 performed better than

PAID for all query interval. But, WPRRP-3 gave the best performance over PAID as well as

over PRRP and PPRRP. WPRRP-3 shows an average improvement of 29%, 27% and 21% for

IncreasingSize, RandomSize and DecreasingSize respectively over PAID policy.
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(Scope Distribution 1)
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Figure 4.8 Cache Hit Ratio of Replacement Schemes (WPRRP) vs. Query Interval
(Scope Distribution 2)
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Figures 4.7 and 4.8 show the effect of change in query interval on the performance of cache

replacement policies for Scope Distribution 2. It can be observed that the proposed policies show

similar gains in performance for Scope Distribution 2 also as they were for Scope Distribution1.

The average improvement of PRRP, PPRRP and WPRRP-3 over PAID for Scope Distribution 2

is shown in Table 4.3.

Table 4.3 Average Improvement of WPRRP-3, PPRRP and PRRP over PAID
on Different Mean Query Intervals (Scope Distribution 2)

Proposed IncreasingSize RandomSize DecreasingSize
Policies (%) (%) (%)

WPRRP-3 12 16.2 7.3

PPRRP 8 12.2 11

PRRP 3.3 7 6.3

Effect of Moving Interval

This subsection examines the performance of the replacement policies when the client's moving

interval is varied. Longer the moving interval, less frequent are the changes in velocity of the

client and, hence, there is lesser randomness in the client's movement. The performance results

for IncreasingSize, RandomSize and DecreasingSize of data distribution are shown in Figures

4.9 through 4.12.

We can see that when the moving interval is varied from 50 seconds to 400 seconds, the

cache hit ratio decreases drastically. The reason for this is as follows. For a relatively longer

moving interval, there is a high possibility of leaving a certain valid region. Consequently, the

cached data are less likely to be re-used for subsequent queries, which lead to a worse

performance.

Figures 4.9 and 4.10 compare the performance of cache replacement policies over changing

moving interval for Scope Distribution 1. Though for small MI, the randomness in client

movement is more as compared to larger MI but PRRP, PPRRP and WPRRP perform better than

all existing policies for both small and large MI. The predicted region in PRRP helps to keep the

data items within the influence of client's movement, thereby reducing the affect of randomness

in client's movement.
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Average improvement of PRRP is 22%, 16% and 9% for IncreasingSize, RandomSize and
DecreasingSize respectively over the next best policy PAID. Also, average improvement of
PPRRP over PAID is 27%, 21% and 12% for IncreasingSize, RandomSize and DecreasingSize

respectively. Weighted distance with respect to predicted region also plays a major role in
overcoming the randomness of the client movement. WPRRP-1, WPRRP-2 and WPRRP-3 also
show improvement in performance over PAID along with PRRP and PPRRP. As shown in
Figure 4.10, WPRRP-3 gives the best performance, that is, performance not only better than
PAID but also better than PPRRP and PRRP because the average improvement ofWPRRP-3 is

30%, 23% and 18% for IncreasingSize, RandomSize and DecreasingSize respectively over the

next best policy PAID.

Figures 4.11 and 4.12 compare the performance ofcache replacement policies over change in
moving interval for Scope Distribution 2. For Scope Distribution 2 also, we get similar
improvement in performance of proposed policies as they were for Scope Distribution 1. The
average improvement ofPRRP, PPRRP and WPRRP-3 over PAID is shown in Table 4.4.

Table 4.4 Average Improvement of WPRRP-3, PPRRP and PRRP over PAID
on Different Moving Intervals (Scope Distribution 2)

Proposed IncreasingSize RandomSize DecreasingSize
Policies (%) (%} (%)

WPRRP-3 10 12.4 14.5
PPRRP 7 6.3 11
PRRP 3.3 3.8 8.3

Effect of Cache Size

In this set of experiments, we intend to investigate the robustness of the proposed replacement

schemes under various cache sizes. Figures 4.13 to 4.16 show the results when CacheSizeRatio

is varied from 5% to 20%. As expected, the performance of all replacement schemes improves

with increasing cache size. This is because the cache can hold large number of data items which

increases the probability of getting a cache hit. Moreover, replacement occurs less frequent in

comparison to the case when cache size is low. Figures 4.13 and 4.14 show the performance for

Scope Distribution 1. PRRP consistently outperforms the existing policies from small size cache

to large size cache. Average improvement of PRRP over PAID is 21%, 20% and 10% for

IncreasingSize, RandomSize and DecreasingSize respectively. Similar to PRRP, PPRRP and
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WPRRP policies also consistently outperform the existing policies from small size cache to large

size cache. Average improvement of PPRRP over PAID is 25%, 24% and 18% for

IncreasingSize, RandomSize and DecreasingSize respectively. Average improvement of

WPRRP-3 over PAID is 26%, 23% and 15% for IncreasingSize, RandomSize and

DecreasingSize respectively.

Figures 4.15 and 4.16 compare the performance of cache replacement policies under varied

CacheSizeRatio for Scope Distribution 2. Results show similar performance gains for all

proposed policies for Scope Distribution 2 also. The average improvement of PRRP, PPRRP and

WPRRP-3 over PAID is shown in Table 4.5

Table 4.5 Average Improvement of WPRRP-3, PPRRP and PRRP over PAID
on Different Cache Size (Scope Distribution 2)

Proposed IncreasingSize RandomSize DecreasingSize
Policies (%) (%) (%)

WPRRP-3 13.4 14.2 19

PPRRP 6.7 9.4 10

PRRP 3.9 4.5 6

Effect of Client's Speed

This subsection examines the effect of change in client's speed on the performance of the

proposed cache replacement policies. Client's cache hit ratio is shown against client speed from

Figures 4.17 to 4.20. Four speed ranges [16], l~5m/s, 6~10m/s, 16~20m/s, 25~35m/s,

conesponding to the speed of a walkinghuman, a runninghuman, a vehicle with moderate speed

and a vehicle with high speed, respectively are used. It can be seen that very high cache hit ratio

can be achieved for walking human. For higher speed range, the cache hit ratio drops as client

spends less time at each geographic location and the valid scope of each data item stored in

cache becomes less effective. In PRRP, PPRRP, and WPRRP(all cases), higher the speed of

client, greater is the predicted region and hence more data items stored in the cache are held in

that region. The overall performance of WPRRP-3 is best with respect to other policies in each

speed range. Because the weighted distance in WPRRP-3 helps to retain the data items in cache

more efficiently than the other proposed policies. Average improvement of PRRP, PPRRP, and

WPRRP-3 over PAID for different speed ranges (see Figures 4.17 and 4.18) for Scope

Distribution 1 are given in Table 4.6, Table 4.7 and Table 4.8 respectively.
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Table 4.6 Improvement ofPRRP over PAID on Different Speed Ranges

Speed Ranges IncreasingSize RandomSize DecreasingSize

(m/s) (%) (%) (%)

1-5 39 20 15

6-10 37 23 16

16-20 34 18 14

25-35 26 10 15

Table 4.7 Improvement of PPRRP over PAID on Different Speed Ranges
(Scope Distribution 1)

Speed Ranges IncreasingSize RandomSize DecreasingSize

(m/s) (%)
43

(%) (%)

1-5 29 21

6-10 41 31 25

16-20 40 30 24

25-35 37 29 35

Table 4.8 Improvement of WPRRP-3 over PAID on Different Speed Ranges
(Scope Distribution 1)

Speed IncreasingSize RandomSize DecreasingSize

Ranges (m/s) (%) (%) (%)

1-5 47 29 21

6-10 43 31 33

16-20 40 30 39

25-35 41 32 43

Table 4.9 Improvement of PRRP over PAID on Different Speed Ranges
(Scope Distribution 2)

Speed Ranges IncreasingSize RandomSize DecreasingSize
(m/s) (%) (%) (%)
1-5 -1.5 11.3 7.2

6-10 2.9 5 8.3

16-20 2.4 4.3 3.2

25-35 1.0 2.3 7.3
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Table 4.10 Improvement of PPRRP over PAID on Different Speed Ranges
(Scope Distribution 2)

Speed Ranges IncreasingSize RandomSize DecreasingSize
(m/s) (%) (%) (%)
1-5 2.2 15.3 16.2

6-10 5.8 8.5 13.5

16-20 4.7 10.9 6.3

25-35 1.2 7.4 11.3

Table 4.11 Improvement of WPRRP-3 over PAID on Different Speed Ranges
(Scope Distribution 2)

Speed IncreasingSize RandomSize DecreasingSize
Ranges (m/s) (%) (%) (%)

7-5 6 23.5 17.4

6-10 9.3 14 14.8

16-20 11.8 12.2 10

25-35 4.1 8.2 14.1

Similarly, Figures 4.19 and 4.20 compare the performance of cache replacement policies

under various client's speed for Scope Distribution 2. For Scope Distribution 2 also, the

proposed PRRP, PPRRP, and WPRRP (all cases) policies have a similar improvement in

performance as in case of Scope Distribution 1 and consistently outperform the existing policies.

The average improvement of PRRP, PPRRP and WPRRP-3 over PAID is shown in Table 4.9,

Table 4.10, and Table 4.11 respectively.

Effect of Client's Access pattern

This subsection examines the performance of the replacement policies under various client's

access pattern. Client's access pattern is modeled by Zipfs Distribution. The Zipf parameter 9

determines the "skewness" of the access pattern over data items. When 9=0, the access pattern is

uniformly distributed. When 9 increases, more access is focused on few items (skewed). Figures

4.21 to 4.24 show the impact of access pattern on performance of replacement policies for both

scope distributions. As desired, performance of PRRP,PPRRP, and WPRRP (all cases) along

with other replacement policies increases with increase in 9 for both Scope distributions over all

the three data size distributions . Moreover, proposed policies show an edge over other policies.

89



0.30

0.25

or

I 0.15

0.00 l

0.20

0.05

Distribution: IncreasingSize

1-5 6-10 16-20

Client Speed (m/s)

(a)

Distribution: RandomSize

6-10 16-20

Client Speed (m/s)

(b)

6-10 16-20

Client Speed (m/s)

(C)

•M PPRRP

mm® prrp

r^n far

BBS Manhattan

••• PPRRP

BB PRRP

•B FAR
HBB Manhattan

Figure 4.17 Cache Hit Ratio of Replacement Schemes (PPRRP, PRRP) vs. Client Speed
(Scope Distribution 1)

90

>



0.30

.9 °-20
TO

or

I 0.15

£
o

to

0.05

0.20

0.00

Distribution: IncreasingSize

6-10 16-20

Client Speed (m/s)

(a)

Distribution: RandomSize

6-10 16-20

Client Speed (m/s)

(b)

Distribution: DecreasingSize

1-5 6-10 16-20

Client Speed (m/s)

(C)

•Mi WPRRP-3

C53 WPRRP-2

••1 WPRRP-1

EE3 PAID

U FAR

KS3 Manhattan

25-35

•B WPRRP-3

^H WPRRP-2

us wprrp-1

r^^i paid

[HU Manhattan

m WPRRP-3

r~1 WPRRP-2

•Bl WPRRP-1

I 1 PAID

BM9 Manhattan

Figure 4.18 Cache Hit Ratio of Replacement Schemes (WPRRP) vs. Client Speed
(Scope Distribution 1)

91



0.2

0.0

Distribution: IncreasingSize

6-10 16-20

Client Speed (m/s)

(a)

Distribution: RandomSize

6-10 16-20

Client Speed (m/s)

(b)

Distribution: DecreasingSize

1-5 6-10 16-20

Client Speed (m/s)

(C)

BBi PPRRP
— PRRP

bbi Paid
BJB FAR
WMI Manhattan

25-35

M PPRRP

— PRRP

rr^i far

BBB Manhattan

25-35

BBi PPRRP

vmm prrp

U^ I FAR

B9&1 Manhattan

25-35

Figure 4.19 Cache Hit Ratio of Replacement Schemes (PPRRP, PRRP) vs. Client Speed
(Scope Distribution 2)

92



I

0.6

Distribution: IncreasingSize

6-10 16-20

Client Speed (m/s)

(a)

6-10 16-20

Client Speed (m/s)

(b)

Distribution: DecreasingSize

1-5 6-10 16-20

Client Speed (m/s)

(C)

BBl WPRRP-3

r~ I WPRRP-2

EKi WPRRP-1

I 1 PAID

BBS Manhattan

25-35

•Bi WPRRP-3

ES3 WPRRP-2

mm wprrp-1

I ~l PAID

BBl Manhattan

25-35

Figure 4.20 Cache Hit Ratio of Replacement Schemes (WPRRP) vs. Client Speed
(Scope Distribution 2)

93



0.4 0.6

Zipf parameter (9)

(a)

0.4 0.6

Zipf parameter (6)

(b)

• PPRRP

•9 — PRRP

♦— PAID

•0 FAR
•©— Manhattan

0.5

Distribution: DecreasingS ze

A
. ^

PPRRP

PRRP

PAID

I--- e —

»—
—S- v~~

© FAR

—e— Manhattan

£ 0.3

X

S

S 0.2
CO

O

0.1

0.0

Zipf parameter (9)

(C)

Figure 4.21 Cache Hit Ratio of Replacement Schemes (PPRRP, PRRP) vs. Zipf Parameter
(Scope Distribution 1)

94



0.4 0.6

Zipf parameter (9)

(a)

0.4 0.6

Zipf parameter (9)

(b)

0.8 1.0

0.4 0.6 0.£

Zipf parameter (9)

(C)

Figure 4.22 Cache Hit Ratio of Replacement Schemes (WPRRP) vs. Zipf Parameter
(Scope Distribution 1)

95



0.3

0.4 0.6

Zipf parameter (9)

(a)

0.2 0.4 0.6

Zipf parameter (9)

(b)

-• PPRRP

-e — PRRP

-♦— PAID

-0 FAR
-e Manhattan

PPRRP

—e — prrp

♦— PAID
0 FAR

e Manhattan

0.4 0.6 0.E

Zipf parameter (9)

(C)

1.0

Figure 4.23 Cache Hit Ratio of Replacement Schemes (PPRRP, PRRP) vs. Zipf Parameter
(Scope Distribution 2)

96



0.4 0.6

Zipf parameter (9)

(a)

WPRRP-3

-* WPRRP-2

-A WPRRP-1

-♦— PAID

-9 FAR

-e Manhattan

0.8

Distribution: RandomSize

WPRRP-3

WPRRP-2

WPRRP-1

PAID ^__--*
FAR _____*-- "^-"'*
Manhattan Ar ^^^"^

—-♦—

—e—

/ -£__ /?
^y

\s^ -

or

x

-5
CO

O

0.5

0.2 0.4 0.6

Zipf parameter (9)

(b)

A WPRRP-3

* WPRRP-2

A WPRRP-1

-♦ — PAID

•0 FAR

€ Manhattan

Zipf parameter (9)

(C)

Figure 4.24 Cache Hit Ratio of Replacement Schemes (WPRRP) vs. Zipf Parameter
(Scope Distribution 2)

97



4.5 CONCLUSIONS

In this chapter, we proposed the cache replacement policies PRRP, PPRRP, and WPRRP that
uses predicted region based cost function for selecting data items to be replaced from the cache
for location-dependent data. In order to decide which data items to replace from cache, an
attempt must be made to predict what items will be accessed in the future. We emphasized on
predicting a region around mobile client's cunent position apart from considering only user's
direction or distance. Predicted region plays an important role in improving the system

performance. Using the predicted region of user influence, the data items in the vicinity of
client's cunent position are not purged from cache, which increases the cache hit. Proposed
policies take into account factors like access probability, data distance from predicted region,
valid scope and data size in cache. Out of these factors, the factor data distance from predicted
region is unique for PRRP, PPRRP, and WPRRP. In PRRP, data distance is calculated such that
the data items within the predicted region are given higher priority than the data items outside the

predicted region. In PPRRP, in addition to giving highest priority to the data items within the
predicted region, data items nearer to the client's cunent position are also favored over other data
items in the same predicted region. WPRRP divides the whole areas into different sub regions:

in-direction, out-direction, predicted and non-predicted and then associates different weights

with each of these sub regions. Bychanging these weights the schemes can adapt itself to suit to

any situation. Section 4.2.3 shows how these schemes can adapt to different situation by using

different weight assignments.

A number of simulation experiments have been conducted to evaluate the performance of the

proposed cache invalidation schemes. The results show that algorithms WPRRP-3, WPRRP-2

WPRRP-1, PPRRP and PRRP, with different system settings, give better performance (improves

cache hit ratio) than PAID. Among the proposed policies, the performance of WPRRP-3 was the

best. This shows that when client movement is random in nature, predicted region based schemes

should be used. Simulation results show that WPRRP-3 achieves an average improvement of

more than 25 % for IncreasingSize, more than 20 % for Random Size and more than 15 % for

DecreasingSize as compared to existing replacement policy PAID.

Though, the experiments done with different weights assignments for WPRRP show the

improvement in performance but a more detailed study is needed to find optimal weight

assignment to different regions as it depends heavily on client movement and on other factors.
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We compared all policies under various system parameters and for two scope distributions.

But in real-world, there can be lots of scope distributions varying from regions to countries.

Moreover, we used Euclidean distance to calculate the distance between two points. However, in

the real-world, this distance cannot represent the real distance that a user has to cover in order to

reach to an object. For example, in City model the distance between two points is calculated

using Manhattan distance. Hence, there is a need to explore proposed policies under different

real-world conditions. Their performance can vary.
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CHAPTER 5

RECENCY/FREQUENCY BASED CACHE REPLACEMENT

5.1 INTRODUCTION

In the last chapter, we focused on the effect of predicted region on location-dependent cache

replacement policy. In this chapter, we explore the effects ofrecency and frequency ofdata items

accessed on location-dependent cache replacement. Least Recently Used (LRU) and Least

Frequently Used (LFU) are two most commonly used cache replacement policies based on

recency and frequency respectively. We consider these temporal characteristics (i.e., frequency

and recency) of data items for location-dependent cache replacement.

Gas station
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| ! Ill
Convenience Store

Hotel

Museum

Query Point for
Museum

Query Point for
Restaurant

Figure 5.1 Effect of Frequency of Data Item Access
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We illustrate our motivation with the help of an example. Consider the scenario shown in
Figure 5.1. It shows asnapshot of the nearest-neighbor queries issued for data items- Museum
and Restaurant by amobile client moving around in aservice area during agiven time period.
The circular symbols reflect access position / query point for Museum and Restaurant in the
service area. This scenario presents the frequency characteristic of data access by the mobile
client for data items Museum and Restaurant. It is observed from the figure that Restaurant has
been more frequently accessed by the mobile client than Museum. This means that the mobile
client has more inclination towards Restaurant than Museum. In other words, the mobile client is
more interested in Restaurant. Hence, Restaurant should be given higher priority over Museum,
while retaining data items in cache when the cache is full and new data item is to be inserted in
the cache.
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Figure 5.2 Effect of Recency of Data Item Access
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Consider the next scenario given in Figure 5.2, which shows therecency characteristic of data

access by the mobile client for data items Museum and Restaurant in the service area. TimeAccess /

gives the time stamp of user's i'h access to data item, where TimeAccessJ < TimeAccessJ <
TimeAccessj < TimeAccessJ < TimeAccessJ < TimeAcCessj < TimeCUrrent- It is observed that Museum

and Restaurant has been accessed same number of times. However, Museum has been accessed

more recently than Restaurant while the mobile client is nearby to the museum in the service

area. That is, recency of Museum over Restaurant is greater with respect to Timecurre„t. Thus,

higher priority should be given to Museum over Restaurant in retaining data items in client's

cache when the cache is full and purging is needed to accommodate a new data item in cache.

The recency characteristic shows the cunent access nature of the user. It may be due to the

nearby attractions in which user gets interested or it may be depending upon facilities nearby

which matches user's profile.

All earlier approaches for cache replacement of LDD only consider recency as a factor for

replacing data items from cache (cache replacement), while we feel that frequency is also

important because it shows the user preferences and needs. In this chapter, we propose a

replacement policy known as CRF Area and Inverse Distance Size (CAIDS), which uses

Combined Recency and Frequency value (CRF) [25], valid scope area, data distance and data

size of a data item, to select it for replacement. The next section describes our proposed cache

replacement policy. The system model used is same as described in section 3.2.

5.2 RECENCY/FREQUENCY BASED CACHE REPLACEMENT POLICY

Efficient and effective cache replacement policies have been the topic of research. Traditional

cache replacement policies, due to their temporal nature, consider recency and frequency of data

item as the most important factor that affects cache performance. Of these, the Least Recently

Used (LRU) and the Least Frequently Used (LFU) replacement policies constitute the two main

streams. The LRU policy and its variants base their replacement decision on the recency of

references, while the LFU policy and its variants base their decision on the frequency of

references. In [25], Lee et al. showed that, between these two seemingly unrelated and

independent policies, there exist a spectrum of policies, with LRU and LFU policies as the two

extreme points. Combined Recency and Frequency value (CRF), proposed by them uses this

spectrum and allows a flexible trade-offbetween recency and frequency of references in making
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the replacement decision. The decision to lean toward the recency or frequency is made through
the use of aparameter X, which essentially determines how much more weight we give to the
recent history than to the older history. The CRF value ofdata item iat time tis computed as:

c,(0=X>«-'«,) (5>1)
7=1

where, F(x) is aweighing function and {tn, ti2, , fc} are the reference times of data item i

and ttx<ta< <t&<t.

The weighingfunction is defined as:

F(x) = (1/2)Ax (5-2)

where, x is the difference between the cunent time and the time of areference in the past and X
ranges from 0 to 1.

F(x) essentially reflects the influence of the recency and frequency factors of adata item's past
references in projecting the likelihood of its re-reference in the future. In general, F(x) is a
monotonically non-increasing function to give more weight to more recent references. This
policy differs from the LFU policy in that the contribution of each reference is not always the
same, but depends on its recency. The policy also differs from the LRU policy in that it considers
not only the most recent reference, but also all the other references in the past.

An intuitive meaning ofXin the weighing function is that adata item's CRF value is reduced
to Vi ofthe original value after every l/X time unit. For example, if A. is 0.0001, a data item's
CRF value is reduced to lA after every 10000 time units. This control parameter X, allows a trade

offbetween recency and frequency in projecting the likelihood offuture references. For example,

as Xapproaches 0, the CRF value moves towards frequency-based policy. Eventually, when X=0
i.e. F(x)=l, it becomes simply LFU policy. On the other hand, as Xapproaches 1, the CRF value

moves towards recency-based policy and when Xis equal to 1 i.e. F(x) = (Vi) x, it degenerates to

LRUpolicy. The spectrum of Recency/Frequency is shownin Figure 5.3.

As far as location-dependent data based cache replacement policies are concerned, policies

such as FAR, Manhattan, only considers spatial properties. But PAID considers both spatial and

temporal characteristics of data item. In PAID the cost function takes into account the access

probabilities (P) of data objects , area of their valid scopes A(vs) and the distance between the

client's cunent position and the valid scope of the object concerned (known as data distance) and
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it is given by P{A(vst)lD(vst). Temporal properties are taken care by P. But, P as used in PAID

only takes into account the recency factorof the data item.

F(x)

\

F(x)-i (LFUExtreme)

Spectrum
.(Recency/Frequency)

F(x)=(1/2)x (LRU Extreme)

(Current time - Reference time)

Figure 5.3 Spectrum of Recency/Frequency According to Function F(x) =(%) ** where x
is (current time - reference time)

We therefore use Combined Recency and Frequency (CRF) value, instead of Access

Probability P, which quantifies the likelihood of data item that will be referenced in future.

Access probability used in PAID for each data item is estimated by using exponential ageing

method [14,74]. Two parameters are maintained for each data item i: a running probability P(i)

and the time ofthe last access to item /,-. P(i) is initialized to 0. When a new query is issued for
data item i, P(i) is updated using the following formula:

Ptc(i) =oc/(tc-ti) +(l-a)Pt!(i) (5.3)
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where, tc is the cunent system time and a is aconstant factor to weigh the importance of most
recent access in the probability estimate.

Increasing Time

;, 4 '•

Figure 5.4 Access History of Data Item i

For showing the difference between CRF and P, we take an example. Consider Figure 5.4,
which shows the access times t,, t2 and t3 for same data item. Cunent time is represented by tc.
The CRF and Pvalue at tc is calculated using eq. (5.1) and eq. (5.3) respectively as shown below:

C,c (0 =F(te - f3)+F(tc -t2)+F(tc - ty)

Ptc(i) =cc/(tc-t3) +(\-a)Ph(i)

In general, computing the CRF value of adata item requires that the reference times of all the
past references of data item to be maintained. It also necessitates re-computing of CRF value of
data item at each time step because reference's contribution to CRF values changes over time.
From implementation point of view, Lee et al. in [25] proved that ifthe weighing function F(x)
has property F(x+y)= F(x) * F(y), the storage and computational overheads can be reduced
drastically such that it becomes not only implementable but also efficient. Authors further gave
an equation in which the CRF value at the time of the kth reference can be computed directly
from the time of the (k-l)th reference and the CRF value at that time. Using this property the

equation canbe reduced to (forderivation please refer [25]):

Clk (i) =F(0) +F(tk - tk_x) *CtkA (0 (5.4)

Equation 5.4 shows that, at any time, the CRF value canbe computed using only two variables

tk.t and Ct ( CRF value at tk-i) for each data item i. This represents history of the data item that

needs to be maintained in client's cache.

Our recency/frequency based location-dependent cache replacement policy CAIDS is defined

as the product of CRF value of data item, the area of the attached valid scope, inverse of data

distance and inverse of data item size. Associated with each cached data object is the
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replacement cost. When a new data object needs to be cached and there is insufficient cache

space, the object(s) with lowest replacement cost is removed until there is enough space to cache

new object. The cost ofreplacing data valuey of data item i is calculated for CAIDS as:

Cj.ACvSjj)CAIDS _Costij = ' \«> (5.5)

where,

C, : CRF value of data item i,

A(vsjj) : areaof valid scope vsy for datavalue./ of data item i,

D(vsy) : distance between the cunent location of client and the valid scope vs„, and

S0 :storage space (size) needed to store data valuey and its valid scope vsv.

5.3 PERFORMANCE EVALUATION

The simulation model used to evaluate the performance of the proposed location-dependent

cache invalidation policy CAIDS is same as described in section 4.3. This section describes the

perforaiance parameters and measures used for simulation. It also analyzes the simulation results

of CAIDS.

5.3.1 Performance Parameters

Performanceparameters are same as described in section 4.4.1 with following additional detail.

When a new query is issued for data item /, CRF value for each data item is estimated by

using eq. (5.4). Two parameters are maintained for each data item i: a CRF value C\ and the time

of the last access to item /,-. Q is initialized to 0. Note that the CRF value is maintained for each

data item rather than for each data value. If the database size is small, the client can maintain the

history parameters (i.e., Q and f( for each item i) for all items in its local cache. However, if the

database size is large, history information will occupy a significant amount of cache space. To

alleviate this problem, we set an upper bound to the amount of cache used for storing it (5

percent of the total cache size in our simulation) and use the LFU policy to manage the limited

space reserved for it.

The default values of different parameters used in the simulation experiments are same as

given in Table 4.2. Control parameter X is an additional parameter required for this simulation

apart from those mentioned in Table 4.2. The default setting ofXis 0.0001.
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5.3.2 Performance Metric

Same as described in section 3.6.2.

5.3.3 Comparison ofLocation-Dependent Cache Replacement Schemes

This subsection compares the performance of proposed recency/frequency based location-
dependent cache replacement policy CAIDS with PAID. Figures 5.5 to 5.15, show the cache hit
ratio for both scope distributions (see Figure 3.8 ) for various query intervals, moving intervals,
cache sizes, client's speed and Zipf s distribution.

Effect ofaccess probability P and CRF value is shown separately in Figure 5.5 with change
in Querylnterval. CRF make best use of the recency/frequency spectrum and gives an average
improvement of 10 percent for IncreasingSize, 8 percent for RandomSize and 10 percent for
DecreasingSize over access probability. This improvement plays an important role in CAIDS

cache replacementpolicy.

Figure 5.6, shows the improved performance of CAIDS and PAID with respect to change in
mean Query Interval for Scope Distribution 1. We observe that the performance of CAIDS is
better one. As the query interval increases, cache hit ratio decreases, because the client would
make more movements between two successive queries, and thus has low probability at the time

of new query to remain in the same valid scope from where the earlier query was being issued.
CAIDS gives an average improvement of 33 percent, 28 percent and 17 percent over PAID for
IncreasingSize, RandomSize and DecreasingSize respectively.

Figure 5.7, shows the effect ofMoving Interval (varied from 50 seconds to 400 seconds) on
replacement policies for Scope Distribution 1. The longer the moving interval, the less frequently
the client changes velocity and direction and, hence, less random is the client's movement. For

small MI, the randomness in client movement is more as compared to larger MI. In CAIDS, the

frequency factor plays an important role along with the data size for both large and small MI

which has not been taken into account by PAID policy. Due to this reason CAIDS performs

better than PAID for both small and large MI. As MI increases, the performance decreases.
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Figure 5.5 Effects of Probability of Access P and CRF on Cache Hit Ratio
(Scope Distribution 1)
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Because for relatively longer MI, a larger average distance difference is observed for two
successive queries, which implies that client has ahigher possibility of leaving certain regions.
Consequently, the cached data are less likely to be reused for subsequent queries, which lead to a
worse performance. However, it appears that this fact deteriorates the performance of PAID
more than CAIDS and therefore, CAIDS gives an average improvement of 30 percent, 25
percent and 16 percent over PAID for IncreasingSize, RandomSize and DecreasingSize
respectively.

Effect of cache size on performance of replacement policies are shown in Figure 5.8. As
expected, the performance of replacement policies improves with increase in cache size. CAIDS
consistently out performs PAID policy because CAIDS along with recency and frequency also
considers the data item size into its cost function. For IncreasingSize, CAIDS policy gives 30
percent better for small cache sizes and 20 percent better than PAID for large cache sizes.
Improvement is 25 percent and 20 percent for small and large cache sizes respectively of CAIDS
over PAID for RandomSize. CAIDS gives an average improvement of 16 percent over PAID for
DecreasingSize.

Client cache hit ratio is shown against client speed in Figure 5.9. Four speed ranges, l~5m/s,
6~10m/s, 16~20m/s, 25~35m/s, conesponding to the speed of a walking human, a running
human, avehicle with moderate speed and avehicle with high speed, respectively are used [16].
It can be seen that very high cache hit ratio can be achieved for walking human. For higher speed
range, the cache hit ratio drops as clients spend less time at each geographic location and the
valid scope of each data item stored in cache becomes less effective. CAIDS, which interpolates
between recency and frequency helps to retain the best suited data item in cache and yields an
improvement of over 40 percent for IncreasingSize over 30 percent each for RandomSize and
DecreasingSize for all speed ranges over PAID policy.

The Zipf parameter 9 determines the "skewness" ofthe access pattern over data items. When
9=0, the access pattern is uniformly distributed. When 9 increases, more access is focused on few
items (skewed). Figure 5.10 shows the impact of access pattern on performance of replacement

policies. CAIDS shows an improved performance over PAID though both increases with
increase in 9 for all three distributions. Similarperformance improvement is observed for Scope

Distribution 2 (see Figure 5.15).

110



0.32

0.30

0.28

0.26

0.24

0.22

0.20

0.18

0.16

0.14

1 1 1 1 I I

\ Distribution: IncreasingSize
i F

CAIDS

PAID—&—

\
\

T

0.08

80 100 120 140 160 180 200

Query Interval (seconds)

(a)

•~v

80 100 120 140 160 180 200

Query Interval (seconds)

(b)

-i 1 1 1 1 1—

Distribution:DecreasingSize

*- —

80 100 120 140

Query Interval (seconds)

(C)

-• CAIDS

-& — PAID

Figure 5.6 Cache Hit Ratio vs Query Interval (Scope Distribution 1)

111



0.12

100

Distribution: IncreasingSize

Moving Interval (seconds)

(a)

Distribution: RandomSize

-« __

Moving Interval (seconds)

(b)

CAIDS

-e— paid

400

-«— CAIDS

-«— PAID

400

0.22

V Distribution: DecreasingSize
0.20 "

^\ • CAIDS

£ — PAID

0.18 A \ -

\ \
\ \

O. 0.16 \ V _

I \^\
\ ^\| 0.14 V ^\ _

"*V ^-s*
O

"v. »—" .

0.12 •

0.10

"^—— ___
— — —-_

— ~i

100 400

Moving Interval (seconds)

(C)

Figure 5.7 Cache Hit Ratio vs Moving Interval (Scope Distribution 1)

112



0.26

10 15

Cache Size (% of Database Size)

(a)

Distribution: RandomSize

- CAIDS

— -* — PAID

-*>

-O— PAID

10 15

Cache Size (% of Database Size)

(b)

20

0.24

0.22

0.20

o
'•= 0.18
TO
a:

I 0.16 -

ra 0.14

0.12

0.10

0.08

Distribution: DecreasingSize

^^ ^^^ —-$— PAID

10 15

Cache Size (% of Database Size)

(C)

20

Figure 5.8 Cache Hit Ratio vs Cache Size (Scope Distribution 1)

113



0.20

£ °-1£

S 0.16
TO

O

0.14

0.12 L

o.ie

0.14 -

5 0.10
TO

o

Distribution: IncreasingSize

1-5

i
6-10 16-20

Client Speed (m/s)

(a)

6-10 16-20

Client Speed (m/s)

(b)

Distribution: DecreasingSize

tern caids

mrnm paid

warn caids

mm paid

16-20 25-35

Client Speed (m/s)

(C)

Figure 5.9 Cache Hit Ratio vs Client Speed (Scope Distribution 1)

114



Distribution: IncreasingSize ,

CAIDS //t
PAID / .'

/ /
0.5 -

—-e —

.Q

| 0.4-
r

0)

1 0-3"
o

S /
/y

/ /
S /

/ /

0.2-

0.35

0.25 -

0.4 0.6

Zipf parameter(8)

(a)

Distribution: RandomSize

—•— CAIDS

- -e — paid

0.4 0.6

Zipf parameter(8)

(b)

Distribution: DecreasingSize

—•— caids

— -e — paid

o-
^

&

0.2 0.4 0.6

Zipf parameter^)

(C)

1.0

o.a 1.0

Figure 5.10 Cache Hit Ratio vs Zipfparameter^) (Scope Distribution 1)

115



0.80

0.50

Distribution:lncreasingSize

CAIDS

20 40 60 80 100 120 140 160 180 200

Query Interval (seconds)

(a)

0.5020 40 60 80 100 120 140 160 180 200

Query Interval (seconds)

(b)

1"
,

'
' 1

0.64 Distribution:DecreasingSlze

0.62 * •

—-e —

CAIDS -

PAID

o 0.60 -

TO

or
& 0.58 -

X

?
3 0.56 -

O <k
0.54 - \

\
\

0.52 >--
•>-

, , . i

20 40 60 80 100 120 140 160 180 200

Query Interval (seconds)

(C)

Figure 5.11 Cache Hit Ratio vs Query Interval (Scope Distribution 2)

116



0.80

0 0.70

TO

£

1 0.65

0.55

Distribution: IncreasingSize

CAIDS

0 — PAID

.

-

- -

\

•

V-~.
~~~^-

"""—•————_
---_

~~~~""Y

0.50

50 100 200

0.50
50 100

Moving Interval (seconds)

(a)

Distribution: RandomSize

Moving Interval (seconds)

(b)

—•— CAIDS

— -e — paid

0.62 k Distribution: DecreasingSize

CAIDS .

PAID
0.60

—-fr —

0.58

(2 0.56

"

o 0.54
.c

g 0.52<

0.50

>- —

—•
___ —z

0.48
-

0.46
-

Moving Interval (seconds)

(C)

Figure 5.12 Cache Hit Ratio vs Moving Interval (Scope Distribution 2)

117



0.45

0.40

0.75

0.70

0.65

a.

X 0.55

Distribution: IncreasingSize

-•— caids

-0 — PAID

10 15

Cache Size (%of Database Size)

(a)

Distribution: RandomSize

20

caids

— -e — paid

10 15

Cache Size (% of Database Size)

(b)

1 1

Distribution: DecreasingSize

^ "•"^"^ _- —— 7

yS ^S • CAIDS
jS / —-S — PAID

10 15

Cache Size (% of Database Size)

(C)

Figure 5.13 Cache Hit Ratio vs Cache Size (Scope Distribution 2)

118



^
O

c
rc i n n B f
t

n o S (7
2

» a o o 1
3 r
s

c
r

C o S3

C
a
c
h

e
H

it
R

a
ti

o

< i

&
•

C
I

O 9* M O la E
ft

3
p

O
O

C
3

to
*

.
o

j
b

.^
^

^
^

^
S

S
^

S
S

S
^

^
S

S
S

S
:

c
^

D c/>
"

o

3
*

|
3

T
D C
D

C
D

C 3

O C
D

O 3
•

Q
)

W

v
,-

,-
.

•
k
s

N C
D

I
S

S
^

T
ii T

J
O

>
> 0

)

O
-

en

C
a
c
h

e
H

it
R

a
ti

o

7*
-

o w
"

B
r

C o 3 7
)

E
D

O
.

o 3 w N
'

C
D

11 >
> G

o

o
>

^
^
S

S
\X

S
>

\
'S

^
S

^
W

S
S

^

Q
D

^
x
S

S
^
^
K

>
^
\
^
S

S
^

M U
S

w
>

X
S

^
v
\\

\<
\^

v
v
\^

\\
V

\\
N

—
-
.

I
I

I

C
a
c
h

e
H

it
R

a
ti

o

*
°
s
^
^
^



0.0

0.75

—• CAIDS

--$— PAID

0.2

0.2

Distribution: IncreasingSize

0.4 0.6

Zipf parameter^)

(a)

0.4 0.6

Zipf parameter^)

(b)

Distribution: DecreasingSize

—•— CAIDS

—-e— PAID

0.2 0.4 0.6

Zipf parameter(8)

(C)

1.0

Figure 5.15 Cache Hit Ratio vs Zipf parameter(0) (Scope Distribution 2)

120



Table 5.1 Average Improvement of CAIDS over PAID By Varying System Parameters
(Scope Distribution 2)

System Parameters
Data Item Size Distributions

IncreasingSize RandomSize DecreasingSize
Query Interval 13.5 % 15.0% 8.0 %

Moving Interval 13.0 % 12.5 % 10.5%

Cache Size 11.2% 13.5 % 8.0 %

Client Speed 9.2 % 9.0% 6.0 %

Performance comparisons of CAIDS and PAID is also done on real-data set (Scope

Distribution 2) for IncreasingSize, RandomSize, and DecreasingSize distribution, which is

shown in Figures 5.11 to 5.15. For Scope Distribution 2 also, we get similar improvement in

performance of proposed policies as they were for Scope Distribution 1. The average percentage

improvementof CAIDS over PAID for Scope Distribution 2 is given in Table 5.1.

5.4 CONCLUSIONS

In this chapter, we proposed a Recency/Frequency based location-dependent cache replacement

policyCAIDS. CAIDS takes into account CRF value of data item, valid scope area, inverse data

distance and inverse data item size. CRF plays an important role in improving the performance

of LDIS. CRF makes best use of Recency/Frequency spectrum and allows a flexible trade-off

between recency and frequency of references in making the replacement decision without any

extra computational and storage overhead as compared to exponential ageing method. Our

experiments show that though the recency factor is important because the access is location

dependent but frequency can not be totally ignored because it reflects the user preferences and

needs. Simulation results show that improvement of CAIDS over PAID was more than 25 % for

IncreasingSize, 20 % for Random Size and 15 % for DecreasingSize.
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CHAPTER 6

CONCLUSIONS AND SCOPE FOR FUTURE WORK

In this thesis, we have examined existing cache management policies and proposed new policies

for location-dependent data in mobile environment based on geometric location model. This

chapter summarizes the work done and discusses some future research directions.

6.1 CONCLUSIONS

A mobile computing environment enables clients to enjoy unrestricted mobility while continuing

their computations as they are not required to maintain a fixed position in the network. In such an

environment, location information becomes a new important parameter and introduces a new

kind of information services, named as Location-Dependent Information Services (LDISs),

whose services are dependent on the position of query issuers. Unlike traditional queries, which

are assumed to be location-independent, the processing of Location-Dependent Queries has to

take into account the client's physical position, which changes continuously in the mobile

environment. Due to limitations of mobile environment and battery power of hand held devices,

the processing needs to be efficient. Caching at client end is commonly employed to overcome

user latency and facilitate data availability even on disconnections.

For maintaining consistency of the cached Location-Dependent Data (LDD), LDIS stores

valid scope of the data item along with its value in the client's cache. The valid scope of a data

value is needed to validate an answer to a specific location-dependent query which is only valid

in a limited region. Valid scope of the data itemis represented and stored as a convex polygon on

the server. The overhead of storing all end points of the polygon in client's cache is large, so a

subset of valid scope is stored that approximates the original valid scope. We observed that,

modifying Caching-Efficiency-Based cache invalidation policy [14] to consider more choices in

each iteration, gives better results. Based on this observation, we proposed a generalized

algorithm CEB_G that selects the best suitable candidate forvalid scope to maximize the caching

efficiency. Though, CEB_G requires more computation time than CEB, but, as these candidate

valid scopes can be calculated and stored at the server only once along with the actual valid

scopes, it is acceptable. Moreover, CEB_G improves the precision by selecting more precise
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representation of valid scope as compared to CEB. We compared its performance with the

existing CEB algorithm. We further introduced a new metric, Future Access, which takes into

account client's movement behavior. We proposed CEFAB and CEFABG algorithms based on

the metric, Future Access. The results show that algorithms CEB_G, CEFAB, CEFAB_G with

different system settings, give better performance than CEB. Among the proposed algorithms,

CEFAB_G gives thebestperformance. But, computational overhead at server for CEFAB_G and

CEB_G is higher than CEFAB. Moreover, in CEFAB and CEFAB_G, client has to send

additional information i.e. the end of MI along with the current position, to the server, which

requires extra computation at client's end, as compared to CEB_G. Thus, for low resource client

CEB_G is preferred. Depending on the resources at the server, choice can be made between

CEFAB and CEFAB_G.

Due to the limitation of the cache size, it is impossible to hold all accessed data items in the

cache. As a result, cache replacement algorithms are used to find a suitable subset of data items

for eviction. Existing cache replacement policies for LDIS only consider the data distance

(directional/undirectional), but not the distance based on the predicted region or area where the

client can be in near future. With client's random movement patterns, it is not always necessary

that client will continue moving in the same direction. Therefore, we consider an area in the

vicinity of client's current position, within which the client is likely to be present in near future

and give priority to the cached data items that belong to this area irrespective of the client's

movement direction. Based on this predicted region, we proposed cost function based Predicted

Region based Cache Replacement Policy (PRRP), Prioritized Predicted Region based Cache

Replacement Policy (PPRRP) and several Weighted Predicted Region based Cache Replacement

Policies. Among the proposed policies, WPRRP-3 gives the best performance, from which we

conclude that predicted regions has to be favored irrespective of direction of movement

particularly where the client's movement pattern is random.

We further explored the effect of temporal characteristics (i.e., frequency and recency) of

data access on location-dependent cache replacement. We proposed a cost function based cache

replacement policy known as CAIDS. CAIDS considers both recency and frequency factors

along with the data item size, valid scope area and data distance of a data item. Our experiments

show that though the recency factor is important because the access is location dependent but

frequency can not be totally ignored because it reflects the user preferences and needs.
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6.2 SCOPE FOR FUTURE WORK

Location is an increasingly important parameter that was introduced by client's free mobility in

mobile computing environment. Research on Location-Dependent Information Services has

made great strides in recent years. Several location-aware prototyped applications like tour

guides, city guides, and conference companions have demonstrated the potential of taking

location information into account. But a number of challenges still remain. We look at some of

the issues here and outline directions for future work.

• Existing work done by researchers is based only on simple queries such as "find the nearest

restaurant". Investigation of caching and query processing problems associated with general

location-dependent queries such as "find the nearest hotel with a room rate below Rs. 200" is

required. The demands become much greater if multiple dimensions are introduced or if

complex spatial analysis is involved, or both [30,39]. Any future enhancements may vary

considerably in their algorithmic complexity.

• We considered a single server environment for cache management. Investigation of handoff

problem and cache management schemes in a global environment [113,119] (multiple server

environments) is needed.

• The extent to which data is static or dynamic varies among the kinds of data involved.

Geocoding and mapping data [101] are perhaps most static, since addresses and landmarks

tend to be constant. Routing information is fairly static, although construction affects the

status and the number of roads available. Demographic and yellow pages information is

somewhat static, though the rate of any population and business changes affects its accuracy

and value. Weather information is relatively dynamic, and traffic information is highly

dynamic. Hence, there is a need to study the influence of LDD data and its updates on

location-dependent caching strategies based on the observation of the pitfalls of attaching

invalidation information to data that are updated frequently. Investigation of cache

management schemes involving both location-dependent and time-dependent data is also

required.

• Location Based Broadcast is an interesting area where a lot of research can be done. For

example, restaurants advertising their menu or discount voucher, hotels announcing room

availability, theaters listing last-minute tickets for sale, and many other applications

providing information of their services to the users in their respective coverage areas.
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Broadcast can be general, grouped or specific, depending upon number of users, time of the

day and business season. Hence, there is a need of new indexing schemes [13] to broadcast

LDD data. Moreover, the broadcast program needs to be highly adaptive.

• Prefetching of LDD based on spatial association rules is a new area where lots of research is

needed. Constructing a prefetch set and using it to pull data items from server with little

additional cost in one such area. Further, storing prefetched data may require replacement of

existing data from the client's cache. Hence, study of prefetching schemes and cache

replacement policies based on spatial data mining technique is needed for LDISs.

• Currently, no positioning system is accessible everywhere. In particular, there are large

differences between outdoor and indoor positioning and related applications. For example,

typical indoor applications at least require locating targets with the granularity of rooms and

floors inside a building, which has so far been impossible to determine via satellite or cellular

positioning. In most cases, GPS does not work at all inside buildings, although, there are

some initiatives, such as Indoor GPS, for coping with this issue. As a consequence, it would

be necessary to develop mechanisms that automatically select the best positioning method

from all those that are available on the spot. This includes that the terminal or the network

also dynamically switches between different methods for keeping the required level of

accuracy, for example, from GPS to WLAN fingerprinting, if the target enters a building.

• Developments in recent years also spawned research in the recent years in the field of spatio-

temporal databases and spatio-temporal data streams. For example, medical facilities can

track staff and monitor patients for emergency response, and coordinate logistics in case of

an emergency (e.g., navigate to the closest hospital or the nearest emergency department that

has available capacity). Emergency response centers can help people navigate and evacuate

faster in case of disasters such as floods, earthquakes, or terrorist attacks. System needs to

consider both the positions of the moving/stationary objects as well as the queries. Thus,

there is a need for new real-time spatio-temporal query processing algorithms as well as new

association rule mining algorithms for spatio-temporal data streams that deal with large

numbers of moving/stationary objects and large numbers of continuous spatio-temporal

queries where near-real time response is a necessity.

The number of services potentially relevant for a given location can grow enormously and be

very dynamic, with new services appearing and disappearing constantly. The goodness of any
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policy lies in the adaptiveness of its algorithm, which adjusts dynamically to the changes in the

workload characteristics. The LDIS community is experiencing an increase in the number of

initiatives that are addressing these challenges. They are taking place in the form of intensive

cooperation between research, industry, and standardization, which are working very hard on

making the next and future generations of LDISs a success.

127



REFERENCES

[1] A. Balamash and M. Krunz, "An Overview of Web Caching Replacement Algorithms,"

IEEE Communications Surveys & Tutorials, Vol. 6, No. 2, pp. 44-56, 2004.

[2] A. Guttman, "R-trees: A Dynamic Index Structure for Spatial Searching," In the

Proceedings of the ACM SIGMOD International Conference on Management ofData,

Boston, Massachusetts, USA, pp. 47-57, 1984.

[3] A. Kahol and S. Khurana, "A Strategy to Manage Cache Consistency in a Disconnected

Distributed Environment," IEEE Transactions on Parallel and Distributed Systems, Vol.

12, No. 7, pp. 686-700, July 2001.

[4] A. Kahol, S. Khurana, S. Gupta and P. Srimani, "An Efficient Cache Maintenance

Scheme for Mobile Environment," In the Proceedings of the Twentieth International

Conference on Distributed Computing Systems, pp. 530-537, April 2000.

[5] A. Madhukar and R. Alhajj, "An adaptive energy efficient cache invalidation scheme for

mobile databases," In the Proceedings of the 2006 ACM Symposium on Applied

Computing Session: Mobile Computing and Application (MCA), Dijon, France, pp. 1122-

1126,2006.

[6] A. Nanppoulos, D. Katsaros and Y. Manopoulos, "A Data Mining Algorithm for

Generalized Web Prefetching," IEEE Transactions on Knowledge andData Engineering,

Vol. 15, No. 5, pp. 1155-1169, Sept/Oct. 2003.

[7] A. P. Sistla, O. Wolfson, S. Chamberlain and S. Dao, "Modeling and Querying Moving

Objects," In the Proceedings of the 13th International Conference on Data Engineering

(ICDE'97), Birmingham, UK, pp. 422-432, April 1997.

[8] A. K. Elmagarmid, J. Jing, A. Helal and C. Lee, "Scalable Cache Invalidation

Algorithms for Mobile Data Access," IEEE Transactions on Knowledge and Data

Engineering, Vol. 15, No. 6, pp. 1498-1511, November/December 2003.

[9] A.Y. Seydim, M. H. Dunham and V. Kumar, "Location Dependent Query Processing," In

the Proceedings of the 2" ACM International Workshop on Data Engineering for

Wireless and Mobile Access (MobiDE'01), California, USA, pp. 47-53, May 2001.

[10] A.Y. Seydim, M.H. Dunham and V. Kumar, "An Architecture for Location Dependent

Query Processing," In the Proceedings of the 12th International Workshop on Database

129



and Expert Systems Applications (DEXA), Munich, Germany, pp. 549-555, 3rd -7th
September 2001.

[11] B. Zheng and D. L. Lee, "Processing Location-Dependent Queries in a Multi-cell
Wireless Environment," In the Proceedings ofthe 2nd ACM International Workshop on
Data Engineeringfor Wireless and Mobile Access (MobiDE'01), Santa Barbra, CA, USA,
pp. 54-65, May 2001.

[12] B. Zheng and D. L. Lee, "Semantic Caching in Location-Dependent Query Processing,"
In the Proceedings of the 7th International Symposium on Spatial and Temporal
Databases (SSTD '01), Los Angles, CA, USA, pp. 97-116, July 2001.

[13] B. Zheng, "Indexing of Location-Dependent Data in Mobile Computing Environments,"
PhD Thesis, Hong Kong University ofScience and Technology, Hong Kong, 2002.

[14] B. Zheng, J. Xu and D. L. Lee, "Cache Invalidation and Replacement Strategies for
Location-Dependent Data in Mobile Environments," IEEE Transactions on Computers,
Vol. 51, No. 10, pp. 1141-1153, October 2002.

[15] B. Zheng, W.-C. Lee and D. L. Lee, "On Semantic Caching and Query Scheduling for
Mobile Nearest-Neighbor Search," Wireless Networks, Kluwer Academic Publishers, Vol.

10, No. 6, pp. 653-664, November 2004.

[16] C. Lu, G. Xing, O. Chipara and C. L. Fok, "MobiQuery: ASpatio Temporal Data Service
for Sensor Networks," In the Proceedings of the 2nd International Conference on
Embedded Networked Sensor System (ACM SenSys'04), Baltimore, USA, pp. 320-334,

2004.

[17] C. W. Lin and D. L. Lee, "Adaptive Data Delivery in Wireless Communication

Environments," In the Proceedings of the 20th IEEE International Conference on

Distributed Computing Systems (ICDCS'2000), Taipei, Taiwan, pp. 444-452, April 2000.

[18] C.C. Chen, C. Lee, C.C. Wang and Y. C. Chung , "Prefetching LDD: A Benefit-Oriented

Approach," In the Proceeding of the 2006 International Conference on Communications

andMobile Computing (IWCMC '06), Vancouver, Canada, pp. 1103-1108, July 2006.

[19] C. Aggarwal, J. L. Wolf and P. S. Yu, "Caching on the World Wide Web," IEEE

Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, pp. 94-107,

January/February 1999.

130



[20] D. Aksoy and M. Franklin, "R x W: A Scheduling Approach for Large-Scale On-Demand

Data Broadcast," IEEE/ACM Transactions on Networking, Vol. 7, No. 6, pp. 846-860,

December 1999.

[21] D. Barbara and T. Imielinski, "Sleepers and Workaholics: Caching Strategies in Mobile

Environments," In theProceedings oftheACMSIGMOD Conference on Management of

Data, Minneapolis, USA, pp. 1-12, 1994.

[22] D. Barbara and T. Imielinski, "Sleepers and Workaholics: Caching Strategies in Mobile

Environments (Extended Version)," MOBIDATA: An Interactive Journal of Mobile

Computing, Vol. 1, No. 1, November 1994.

[23] D. Barbara, "Mobile Computing and Databases: A Survey," IEEE Transactions on

Knowledge and Data Engineering, Vol. 11, No. 1, pp. 108-117, January/February 1999.

[24] D. J. Cook and S. K. Das, "Smart Environments: Technologies, Protocols, and

Applications," Wiley-Interscience Publications, ISBN 0-471-54448-5, 2005

[25] D. Lee, J. Choi, J.H. Kim, S.H. Noh, S.L. Min, Y. Cho and C.S. Kim, " LRFU: A

Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently Used

Policies," IEEE Transactions on Computers, Vol. 50, No. 12, pp. 1352-1361, Dec. 2001.

[26] D. Lee and W. W. Chu, "Semantic Caching via Query Matching for Web Sources," In the

Proceedings of the 8' International Conference on Information and Knowledge

Management (CIKM'99), Kansa City, USA, pp. 77-85, November 1999.

[27] D. L. Lee, W.-C. Lee, J. Xu and B. Zheng, "Data Management in Location-Dependent

Information Services," IEEEPervasive Computing, Vol. 1, No. 3, pp. 65-72, July 2002.

[28] D. P. Agrawal and Q. A. Zeng, "Introducing to Wireless and Mobile Systems,''' Second

Edition, Thomson, 2006.

[29] D. Acharya and V. Kumar, "Location based indexing scheme for DAYS," In the

Proceedings of the 4l ACM International Workshop on Data Engineering for Wireless

and Mobile Access, Baltimore, USA,pp. 17-24, June 2005.

[30] D. Papadias, Y. Tao, K. Mouratidis and C. K. Hui, "Aggregate Nearest Neighbor Queries

in Spatial Databases," ACM Transactions on Database Systems (TODS), Vol. 30, No. 2,

June 2005.

131



[31] E. Pitoura, and B. Bhargava, "Building Information Systems for Mobile Environments,"
In the Proceedings of 3rd International Conference on Information and Knowledge
Management (CIKM'94), pp. 371-378, November 1994.

[32] E. Yajima, T. Hara, M. Tsukamoto and S. Nishio: "Scheduling and Caching Strategies
for Correlated Data in Push-Based Systems," ACM Applied Computing Review (ACM
ACR), Vol. 9,No.l, pp.22-28, July 2001.

[33] G. Cao and C. Das, "On the Effectiveness of a Counter-Based Cache Invalidation
Scheme and Its Resiliency to Failures in Mobile Environments," In the Proceedings of
the 20th IEEE Symposium on Reliable Distributed Systems (SRDS'01), pp. 247-256, 2001.

[34] G. Cao, "A Scalable Low-Latency Cache Invalidation Strategy for Mobile
Environments," IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 5,
pp. 1251-1265, September/October 2003.

[35] GCao, "On Improving the Performance of Cache Invalidation in Mobile Environments,"
ACMKluwer Mobile Network and Applications, Vol. 7, No. 4, pp. 291-303, 2002.

[36] G. Cao, "Proactive Power-Aware Cache Management for Mobile Computing Systems,"
IEEE Transactions on Computers, Vol. 51, No. 6, pp. 608-621, June 2002.

[37] G. H. Forman and J. Zahorjan, "Challenges of Mobile Computing," IEEE Computer
Society, Vol. 27, No. 6, pp. 38-47, April 1994.

[38] G. Yavas, D. Katsaros, O. Ulusoy and Y. Manolopoulos, "A Data Mining Approach for
Location Prediction in Mobile Environments," Elsevier Data and Knowledge

Engineering, Vol. 54, No. 2, pp. 121-146, 2005.

[39] Gaede and O. Gunther, "Multidimensional Access Methods," ACM Computing Surveys,

Vol. 30, No. 2, pp.170-231, June 1998.

[40] H. Shen, M. Kumar, S. K. Das and Z. Wang, "Energy-Efficient Caching and Prefetching
th

with Data Consistency in Mobile Distributed Systems," In the Proceedings of the 18

InternationalParallel and DistributedProcessing Symposium (IPDPS), pp. 67-76, 2004.

[41] H. Shen, M. Kumar, S. K. Das and Z. Wang, "Energy-Efficient Data Caching and

Prefetching of Mobile Devices Based on Utility," ACM/Kluwer Journal of Mobile

Networks and Applications(MONET), Special Issue on Mobile Services, Vol. 10, No. 4,

pp. 475-486, August 2005.

132



[42] H. Song and G. Cao, "Cache-Miss-Initiated Prefetch in Mobile Environments," Journal of

Computer Communications, Vol. 28, No. 7, pp. 741-753, 2005.

[43] I. A. Getting, "The Global Positioning System," IEEE Spectrum, Vol. 30, No. 12, pp. 36-

47, December 1993.

[44] Il-dong Jung, Young-ho You, Jong-hwan Lee and Kyungsok Kim, "Broadcasting and

caching policies for location-dependent queries in urban areas," In the Proceedings ofthe

2" International Workshop on Mobile Commerce, Atlanta, USA, pp. 54-60, September

2002.

[45] J. Cai and K. L. Tan, "Energy-Efficient Selective Cache Invalidation," ACM/Baiter

Journalof Wireless Networks (WINET), Vol. 5, No.6, pp. 489-502, May 1999.

[46] J. Jing, A. Helal and A. Elmagarmid, "Client-Server Computing in Mobile

Environments," In the Proceedings of the ACM Computing Surveys, Vol. 31, No. 2, pp.

117-157, June 1999.

[47] J. Jing, A. K. Elmagarmid, A. Helal and R. Alonso, "Bit-Sequences: An Adaptive Cache

Invalidation Method in Mobile Client/Server Environments," Mobile Networks and

Applications, Vol. 2, No. 2, pp. 115-127, October 1997.

[48] J. O' Rourke, Computational Geometry in C, chapter 5, Univ. of Cambridge Press, 1998.

[49] J. W. Wong, "Broadcast Delivery," In the Proceedings ofthe IEEE, Vol. 76, No. 12, pp.

1566-1577, December 1988.

[50] J. Xu, "Client-side Data Caching in Mobile Computing Environments," PhD Thesis, Hong

Kong University of Science and Technology, Hong Kong, 2002.

[51] J. Xu, B. Zheng, W.-C. Lee and D. L. Lee, "Energy efficient index for querying

location-dependent data in mobile broadcast environments," In the Proceedings of the

19th IEEE International Conference on Data Engineering (ICDE'03), Bangalore, India, pp.

239-250, March 2003.

[52] J. Xu, D. L. Lee, Q. Hu and W.-C. Lee, "Data Broadcast," Handbook of Wireless

Networks and Mobile Computing, Chapter 11, Ivan Stojmenovic, Ed., New York: John

Wiley & Sons, ISBN 0-471-41902-8, pp. 243-265, January 2002.

[53] J. Xu, Q. Hu, W. C. Lee and D. L. Lee, "An Optimal Cache Replacement Policy for

Wireless Data Dissemination Under Cache Consistency," In the Proceedings of the

133



30thInternational Conference on Parallel Processing (ICPP'Ol), Valencia, Spain, pp.

267-274, September2001.

[54] J. Xu, Q. Hu, W. C. Lee and D. L. Lee. "SAIU: An Efficient Cache Replacement Policy
for Wireless On-demand Broadcasts," In the Proceedings of the 9th ACM International
Conference on Information and Knowledge Management (CIKM), Mc Lean, VA, USA,
pp. 46-53, Nov. 2000.

[55] J. Xu, X. Tang and D. L. Lee, "Performance Analysis of Location-Dependent Cache
Invalidation Schemes for Mobile Environments," IEEE Transactions on Knowledge and
Data Engineering, Vol. 15, No. 2, pp. 474-488, March/April 2003.

[56] J. Xu, X. Tang, D. L. Lee and Q. Hu, "Cache Coherency in Location-dependent
Information Services for Mobile environment," In the Proceedings ofthe 1st International
Conference on Mobile Data Access (MDA '99), Hong Kong, Springer-Verlag LNCS, Vol.
1748, pp. 182-193, December 1999.

[57] J. Zhang and Le Gruenwald, "Prioritized Sequencing for Efficient Query on Broadcast
Geographical Information in Mobile-Computing," In the Proceedings of the 10th ACM
International Symposium on Advances in Geographic Information Systems, McLean,

USA, pp. 88-93, November 2002.
[58] J. Zhang, M. Zhu and D. Papadias, Y. Tao, and D. Lee, "Location-based Spatial Queries,"

In the Proceedings of the ACM SIGMOD International Conference on Management of
Data, San Diego, USA, pp. 443-454, 2003.

[59] J. C. Yuen, E. Chan, K. lam and H. W. Lueng, "Cache Invalidation Scheme for Mobile
Computing Systems with Real-Time Data," In the Proceedings of the ACM SIGMOD,

Vol. 29, No. 4, pp. 34-49, December 2000.

[60] K. C. K. Lee, H. V. Leong and A. Si, "A Semantic Broadcast Scheme for a Mobile

Environment Based on Dynamic Chunking," In the Proceedings of the 20' IEEE

International Conference on Distributed Computing Systems ( ICDCS'2000), Taipei,

Taiwan, pp. 522-529, April 2000.

[61] K. C. K. Lee, H. V. Leong and A. Si, "Semantic query caching in a mobile environment,"

Mobile Computing andCommunication Review, Vol. 3, No. 2, pp. 28-36, 1999.

[62] K. Cheverst, K. Mitchell and N. Davies, "The role of adaptive hypermedia in a context-

aware tourist Guide," Communications ofthe ACM, Vol. 45, No. 5, pp. 47-51, 2002.

134

>



[63] K. J. Nesbit and J. E. Smith, "Data Cache Prefetching Using a Global History Buffer," In

the Proceedings of the lCf International Symposium on High Performance Computer

Architecture (HPCA '04), pp. 96-96, 14-18* February 2004.

[64] K. J. Cios and L. Kurgan, "Trends in Data Mining and Knowledge Discovery," in Pal

N.R., Jain, L.C and Teoderesku, N. (Eds.), Knowledge Discovery in Advanced

Information Systems, Springer, 2002.

http://citeseer.ist.psu.edu/cios05trends.html

[65] K. L. Tan and J. Cai, "Broadcast-Based Group Invalidation: An Energy-Efficient Cache

Invalidation Strategy," Elsevier Information Sciences, Vol. 100, No. 1-4, pp. 229-254,

1997.

[66] K. L. Tan, J. Cai and B. C. Ooi, "An Evaluation of Cache Invalidation Strategies in

Wireless Environments," IEEE Transactions on Parallel and Distributed Systems, Vol.

12, No. 8, pp. 789-807, August 2001.

[67] K. L. Wu, P. S. Yu and M. S. Chen, "Energy-Efficient Caching for Wireless Mobile

Computing," In the Proceedings of the 12th International Conference on Data

Engineering(ICDE'96), New Orleans, USA, pp. 336-343, Feb. 26-March 1, 1996.

[68] K. Lai, Z. Tari and P. Bertok, "Location-Aware Cache Replacement for Mobile

Environments," IEEE Global Telecommunication Conference (GLOBECOM 04), Vol. 6,

pp. 3441-3447, 29th November- 3rd December 2004.

[69] L. A. Kurgan and P. Musilek, "A Survey of Knowledge Discovery and Data Mining

Process Models," The Knowledge Engineering Review, Vol. 21, No. 1, pp. 1-24,

Cambridge University Press, March 2006.

[70] L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, "Web Caching and Zipf-like

Distributions: Evidence and Implications," In the Proceedings of the 18th Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM'99), New

York, USA, Vol. 1, pp. 126-134, March 1999.

[71] L. Feeney and M. Nilsson, "Investigating the Energy Consumption of a Wireless Network

Interface in an Ad Hoc Networking Environment," In the Proceedings of IEEE

INFOCOM, Anchorage, USA, Vol. 3, No. 8, pp. 1549-1557, 2001.

135



[72] L. Kleinrock, "Nomadicity: Anytime, Anywhere in a Disconnected World," In the
Proceedings ofMobile Network and Applications, Vol. 1, No. 4, pp. 351-357, December
1996.

[73] L. Yin and G. Cao, "Adaptive Power-Aware Prefetch in Wireless Networks," IEEE
Transactions on Wireless Communication, Vol. 3, No. 5, pp. 1648-1658, 2004.

[74] L. Yin, G, Cao and Y. Cai, "A Generalized Target-Driven Cache Replacement Policy for
Mobile Environments," Journal ofParallel and Distributed Computing, Vol. 65, No. 5,

pp. 583-594, 2005.

[75] L. Yin, G. Cao and Y. Cai, "A Generalized Target-Driven Cache Replacement Policy for
Mobile Environments," In the Proceedings ofthe IEEE Symposium on Applications on

the Internet, pp. 14-21, January 2003.
[76] M. Berg, M. Kreveld M. Overmars and O. Schwarzkopf, "Computational Geometry:

Algorithms and Applications," chapter 7, New York, NY, USA, Springer-Verlag, 1996.
[77] M. Erwig, R. H. Guting, M. Schneider and M. Vazirgiannis, "Spatio-Temporal Data

Types: An Approach to Modeling and Querying Moving Objects in Databases,"
Geolnformatica, Vol. 3, No. 3, pp. 269-296, 1999.

[78] M. H. Dunham and A. Helal, "Mobile Computing and Databases: Anything Thing
New?," In the Proceedings of the ACM SIGMOD Record, Vol. 24, No. 4, pp. 5-9,
December 1995.

[79] M. K. Ho Yeung and Y. -K. Kwok, "New Invalidation Algorithms for Wireless Data
Caching with Downlink Traffic and Link Adaptation," In the Proceedings of the 18th
International ParallelandDistributed Processing Symposium (IPDPS'04), April 2004.

[80] M. Satyanarayanan, "A Catalyst for Mobile and Ubiquitous Computing," IEEE

Pervasive Computing, Vol. 1, pp. 2-5, January-March 2002.

[81] M. Satyanarayanan, "Fundamental Challenges of Mobile Computing," ACM Symposium

onPrinciples ofDistributed Computing (PODC95 invited lecture), May 1996.

[82] M. H. Dunham, and V. Kumar, "Location Dependent Data and Its Management in

Mobile Databases," In the Proceedings of the International Workshop Database and

Expert System Systems Applications, Vienna, Austria, pp. 414-419, August 1998.

136



[83] M. K. H. Yeung and Y.-K. Kwok, "Wireless Cache Invalidation Schemes with Link

Adaptation and Downlink Traffic," IEEETransactions on Mobile Computing, Vol. 4, No.

l,pp. 68-83, Jan./Feb. 2005.

[84] N. B. Priyantha, A. Chakraborty and H. Balakrishnan, "The Cricket Location-Support

System," In the Proceedings of the 6th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (Mobi-Com'2000), Boston, MA, USA, pp. 32-43,

August 2000.

[85] N. Chand, "Cache Management in Mobile Computing Environment," PhD Thesis, Indian

Institute of Technology Roorkee, India, 2006.

[86] P. Cao, E. W. Felten, A. Karlin and K. Li, "A Study of Integrated Prefetching and

Caching Strategies," In the Proceedings of the ACMSIGMETRICS, Vol. 23, No. 1, pp.

171-182, May 1995.

[87] Q. Hu and D. L. Lee, "Adaptive Cache Invalidation Methods in Mobile Environments,"

In the Proceedings of the 6' IEEE International Symposium on High Performance

Distributed Computing, August 1997.

[88] Q. Hu and D. L. Lee, "Cache Algorithms Based on Adaptive Invalidation Reports for

Mobile Environments," Cluster Computing, Vol. 1, pp. 39-50, 1998.

[89] Q. Ren and M. H. Dunham, "Using Clustering for Effective Management of a

Semantic Cache in Mobile Computing," In the Proceedings of the International

Workshop on Data Engineeringfor Wireless and MobileAccess (MobiDE'99), Seattle, WA,

USA, pp. 94-101, August 1999.

[90] Q. Ren and M. H. Dhunham, "Using Semantic Caching to Manage Location Dependent

Data inMobile Computing," In the Proceedings of 6th ACM/IEEE Mobile Computing and

Networking (MobiCom), Boston, USA, pp. 210-221, 2000.

[91] Q. Ren, M. H. Dunham and Vijay Kumar, "Semantic Caching and Query Processing,"

IEEE Transactions on Knowledge and Data Engineering, Vol. 15, No. 1, pp. 192-210,

January/February 2003.

[92] R. Alonso, D. Barbara, G. Molina and H. G. Molina, "Data Caching Issues in an

Information Retrieval System," ACMTransactions on Database Systems, Vol. 15, No. 3,

pp. 359-384, September 1990.

137



[93] R. Cooley, B. Mobasher and J. Srivastava, "Data Preparation for Mining World Wide
Web Browsing Patterns," Knowledge and Information Systems, Vol. 1, No. 1, pp. 5-32,

1999.

[94] R. Cucchiara, M. Piccardi and A. Prati, "Temporal Analysis of Cache Prefetching
Strategies for Multimedia Applications," In the Proceeding of IEEE International
Conference on Performance, Computing and Communications (IPCC'01), Phoenix,
USA, pp. 311-318, 4-6th April 2001.

[95] S. Acharya and S. Muthukrishnan, "Scheduling On-demand Broadcasts: New Metrics
and Algorithms," In the Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom '98), Dallas, TX, USA, pp.
43-54, October 1998.

[96] S. Acharya, M. Franklin and S. Zdonik, "Prefetching From aBroadcast Disk," In the
Proceedings of the International Conference on Data Engineering (ICDE'96), New
Orleans, USA, pp. 276-285, February/March 1996.

[97] S. Acharya, R. Alonso, M. Franklin and S. Zdonik, "Broadcast Disks: Data Management
for Asymmetric Communication Environments," In the Proceedings of the ACM
SIGMOD Conference on Management ofData, San Jose, USA, pp. 199-210, May 1995.

[98] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan, "Semantic Data Caching
and Replacement," In the Proceedings of the 22nd International Conference on Very
Large Databases(VLDB), pp. 330-341,1996.

[99] S. Drakatos, N. Pissinou, Kia Makki and Christos DouHgeris, "A Context-Aware
Prefetching Strategy for Mobile Computing Environments," In the Proceedings of the
International Conference on Communications and Mobile Computing (ICMC'06),

Vancouver, Canada, pp. 1109-1116, July 3-6, 2006.

[100] S. Podlipnig and L. Z. Boszormenyi, "Survey of Web Cache Replacement Strategies,"

ACM Computing Surveys (CSUR), Vol. 35, No. 4, pp. 374-398, December2003

[101] S. Upadhyaya, A. Chaudhury, K. Kwiat and M. Weiser, "Mobile Computing:

Implementing Pervasive Information and Communication Technologies," Kluwer

Academic Publisher, ISBN 1-4020-7137-X, 2002.

138



[102] S. K. Gupta, V. Bhatnagar and S. K. Wasan, "Architecture for Knowledge Discovery and

Knowledge Management," Springer Knowledge Information System, Vol. 7, No. 3, pp.

310-336,2005.

[103] S.P. Vander Wiel and D.J. Lilja, "When Caches Aren't Enough: Data Prefetching

Techniques," IEEE Computer, Vol. 30, No. 7, pp. 23-30, July 1997

[104] S. K. Madria, B. K. Bhargava, E. Pitoura and V. Kumar, "Data Organization Issues for

Location-Dependent Queries in Mobile Computing," In the Proceedings of the East-

European Conference on Advances in Databases and Information Systems Held Jointly

with International Conference on Database Systemsfor Advanced Applications: Current

Issues in Databases and Information Systems, LNCS, Vol.1884, pp. 142-156, 2000.

[105] S.-Y. Wu and K.-T. Wu, "Effective Location Based Services with Dynamic Data

Management in Mobile Environments," Wireless Networks, Vol. 12, No. 3, Kluwer

Academic Publishers, pp. 369-381, May 2006.

[106] Spatial Datasets. Website at http://www.rtreeportal.org, 2005.

[107] T. Camp, J. Boleng and V. Davies, "A Survey of Mobility Model for Ad Hoc Network

Research," Wireless Communication & Mobile Computing (WCMC): Special Issue on

Mobile AdHoc Networking: Research, Trends and Applications, Vol. 2, No. 5, pp. 483-

502, 2002.

[108] T. Hara, "Cooperative Caching by Mobile Clients in Push-Based Information Systems,"

In the Proceedings of 11' International Conference on Information and Knowledge

Management (CIKM'O2),McLean, USA, pp. 186-193, 2002.

[109] T. Imielinski and B.R. Badrinath, "Mobile Wireless Computing: Challenges in Data

Management," Communications of ACM, Vol. 37, No. 10, pp. 18-28, October 1994.

[110] T. Sellis, N. Roussopoulos and O. Faloutsos, "The R+-Tree: A Dynamic Index for

Multi-Dimensional Objects," In the Proceedings of the 13th International Conference on

Very Large Data Bases (VLDB'87), Brighton, England, pp. 507-518, September 1987.

[Ill] U. Fayyad, G. P.-Shapiro and P. Smyth, "From Data Mining to Knowledge Discovery in

Databases," AlMagazine, Vol. 17, No. 3, pp. 37-54, 1996.

http://citeseer.ist.psu.edu/fayyad96from.html

139



[112] W. C. Lee and D. L. Lee, "Signature Caching Techniques for Information Filtering in
Mobile Environments," ACM/Baltzer Journal ofWireless Networks (WINET), Vol. 5, No.

1, pp. 57-67,1999.

[113] W.-C. Peng and M.-S. Chen, "Design and Performance Studies of an Adaptive Cache
Retrieval Scheme in a Mobile Computing Environment," IEEE Transactions on Mobile
Computing, Vol. 4, No. 1, pp. 29-40, January/February 2005.

[114] W.-G. Teng, C.-Y. Chang and M.-S. Chen, "Integrating Web Caching and Web
Prefetching in Client-Side Proxies," IEEE Transactions on Parallel and Distributed
Systems, Vol. 16, No. 5, pp. 444-455, May 2005.

[115] Y. Bao, R. Alhajj and K. Barker, "Hybrid Cache Invalidation Schemes in Mobile
Environments," In the Proceedings of the IEEE/ACS International Conference on
Pervasive Services (ICPS'04), pp. 209-218, July2004.

[116] Y. Saygin and O. Ulusoy, "Exploiting Data Mining Techniques for Broadcasting Data in
Mobile Computing Environments," IEEE Transactions on Knowledge and Data
Engineering, Vol. 14, No. 6, pp. 1387-1399, November-December 2002.

[117] Y.-B. Lin, W.-R. Lai and J.-J. Chen, "Effects of Cache Mechanism on Wireless Data
Access," IEEE Transactions on Wireless Communications, Vol. 2, No. 6, pp. 1247-1258,

2003.

[118] Z. Wang, M. Kumar, S. K. Das and H. Shen, "Investigation of Cache Maintenance
Strategies for Multi-Cell Environments," In the Proceedings ofthe IEEE International
Conference on Mobile Data Management (MDM), LNCS, Vol. 2574, pp. 29-44, 2003

[119] Z. Wang, M. Kumar, S.K. Das and H. Shen, "Dynamic Cache Consistency Schemes for

Wireless Cellular Networks," IEEE Transactions on Wireless Communications, Vol. 5,

No. 2, pp. 366-376, February 2006.

[120] Z. Wang, S. K. Das, H. Che and M. Kumar, "A Scalable Asynchronous Cache

Consistency Scheme (SACCS) for Mobile Environments," IEEE Transactions on

Parallel and Distributed Systems, Vol. 15, No. 11, pp. 983-995, November 2004.

[121] Z. Wang, S. K. Das, H. Che and M. Kumar, "SACCS: Scalable Asynchronous Cache

Consistency Scheme for Mobile Environments," In the Proceedings of the 23r

International Conference on Distributed Computing System Workshops (ICDCSW'03),

pp. 797-802, May 2003.

140



[122] Z. Xu, Y. Hu and L. Bhuyan, "Exploiting Client Cache: A Scalable and Efficient

Approach to Build Large Web Cache," In the Proceeding of the 18th International

Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, New Mexico, pp.

55-64, April 26-30, 2004.

141



Author's Research Publications

International Conferences

1. Ajey Kumar, Manoj Misra and A.K. Sarje, "A Weighted Cache Replacement Policy For

Location Dependent Data In Mobile Environments," In Proceeding of22nd ACM Symposium

on Applied Computing (SAC07) Mobile Computing and Applications (MCA) Technical

Track, Seoul, Korea, pp. 920-924, 11th- 15th March, 2007.

2. Ajey Kumar, Manoj Misra and A.K. Sarje, "A Predicted Region based Cache Replacement

Policy For Location Dependent Data In Mobile Environment," In Proceeding of 2nd IEEE

International Conference on Wireless Communications, Networking and Mobile Computing

(WiCOM'06), Wuhan, China, 22nd -24th September, 2006.

3. Ajey Kumar, Manoj Misra and A.K. Sarje, "An Improved Cache Replacement Policy For

Location Dependent Data In Mobile Environment," In Proceeding of 10th World Multi-

Conference on Systemics, Cybernetics and Informatics (WMSCI'06), Orlando, Florida, USA,

Vol. 3, pp. 167-172, 16th -19th July, 2006.

4. Ajey Kumar, Manoj Misra and A.K. Sarje, "A New cache replacement policy for location

dependent data in mobile environment," In Proceeding of 3rd IEEE and IFIP International

Conference on Wireless and Optical Communication Networks (WOCN'06), Bangalore,

India, 11th-13th April, 2006.

5. Ajey Kumar, Manoj Misra and A.K. Sarje, "A New Metric for Cache Invalidation of

Location Dependent Data in Mobile Environment," InProceeding of4th Asian International

Mobile Computing Conference (AMOC'06), Kolkata, India, pp. 255-263, 4th-7th January,

2006.

6. Ajey Kumar, Manoj Misra and A.K. Sarje, "Strategies for Cache Invalidation of Location

Dependent Data in Mobile Environment," In Proceeding of International Conference on

Parallel andDistributed Processing Techniques andApplications (PDPTA '05), Monte Carlo

Resort, Las Vegas, Nevada, USA, pp. 38-44, 27th- 30th June, 2005.

7. Ajey Kumar, Manoj Misra and A.K. Sarje, "Selecting Efficient Valid Scope for Cache

Invalidation of Location Dependent Data in Mobile Environment," In Proceeding of

Conference on Wireless Communication and Sensor Networks (WCSN), India, S^"1 March,

2005.

143



International Journals

8. Ajey Kumar, Manoj Misra and A.K. Sarje, "A New Metric for Geometric Model Based

Cache Invalidation of Location Dependent Data in Mobile Environment," Efficient

Heuristics for Information Organization, Journal of Computer Science (Special Issue) pp.

34-40, 2005.

Under Review (International Journals)

1. Ajey Kumar, A.K. Sarje and Manoj Misra, "Prioritized Predicted Region based Cache
Replacement Policy for Location Dependent Data in Mobile Environment," International

Journal ofAdHoc and Ubiquitous Computing.

2. Ajey Kumar, A.K. Sarje and Manoj Misra, "Weighted Predicted Region based Cache
Replacement Policy for Location Dependent Data in Mobile Environments," International
Journal of Wireless and Mobile Computing (IJWMC).

144


	LOCATION DEPENDENT DATA CACHING IN MOBILE ENVIRONMENT
	ACKNOWLEDGEMENTS
	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CONTENTS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 LOCATION-DEPENDENT CACHE INVALIDATION
	CHAPTER 4 PREDICTED REGION BASED CACHE REPLACEMENT
	CHAPTER 5 RECENCY/FREQUENCY BASED CACHE REPLACEMENT
	CHAPTER 6 CONCLUSIONS AND SCOPE FOR FUTURE WORK
	REFERENCES

