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Abstract

The huge volume of genetic data generated through biological experiments is not

useful until it is analyzed and classified properly. A single human genome project

ensued in 3.2 million base pairs of nucleotide sequence data. Manual analysis

of this kind of huge data is impossible [1]. The quest of classifying the genetic

material leads to one of the most important field of biology called phylogenet

ics. Phylogenetics is the study of relationship among species or genes with the

combination of molecular biology and mathematics. The large applications and

availability of genetic data indicate the serious requirement for accurate, fast and

generic phylogenetic analysis tools to process genomic data. This is presented in

detail through citing recent works in the first part of the thesis.

It is well known that the network representation of the evolutionary relation

ship provides a better understanding of the evolutionary process and the non-tree

like events such as horizontal gene transfer, hybridization, recombination and

homoplasy. The second part of the thesis proposes a pattern recognition based

approach for the construction of phylogenetic network due to recombination.

Unlike other works [2, 3, 4, 5, 6, 7], we used both similarity and dissimilarity of

Single Nucleotide Polymorphism (SNP) sites for classifying the nodes into mu

tation and recombination nodes. The use of both distance measures helps to

overcome the information loss due to converting of sequence data into distances.
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Abstract

The proposed algorithm [8] conducts a row-based search to detect the recombina

tion nodes which significantly reduces the complexity of the proposed algorithm.

Comparisons with existing algorithms show the superiority of our approach both

in network visualization and time complexity.

Third part of the thesis presents the problem of merging a set of given smaller

phylogenetic trees into a bigger tree called supertree. There exist nearly 1.7 mil

lion known species. Constructing tree of life consisting of these species is im

practical. A method which exploits the features of distance and character based

phylogenetic reconstruction methods is proposed to construct phylogenetic tree

of life. We developed a variant of well known Unweighted-Pair-Group Method

with Arithmetic mean (UPGMA) [9] for constructing the rooted supertree [10].

The algorithm satisfies all the desirable properties of the supertree algorithms

and gives the better visualization of the supertree than the existing supertree

methods. We also consider the problem of supertree reconstruction for unrooted

input trees [11].

The fourth part of the thesis introduces the problem of incorporating addi

tional evolutionary information for constructing supertrees. Most of the existing

supertree methods combine the input trees based on the topological information

carried by each of the input tree and other evolutionary information is usually

ignored [12]. If the available evolutionary information is considered with tree

topology for amalgamating the input collection of trees, the resulting supertree

would be more accurate and resolved. In this part, we propose a novel supertree

method [13], which incorporates relative time divergence information with tree

topologies. This method returns a supertree even for incompatibilities such as

conflicts in divergence dates and incompatibility between topology and diver

gence dates. The conflicts are resolved based on graph theoretic concepts [14].

iv
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Another advantage of the algorithm is that the resulting supertree represents all

nestings present in the input collection, which is not possible with other existing

algorithms.

Fifth part of the thesis explores the problem of merging smaller trees with

some of the labelled internal nodes. Generally, most of the existing supertree

methods are developed based on the implicit assumption that only leaf nodes

are labelled in the input tree collection. On the other hand, the phylogenies con

structed based on morphological studies often contain the labelled internal nodes,

thus requiring for a more generalized supertree approach. In this part of the dis

sertation, we propose an optimization based divide and conquer method [15] to

combine semi-labelled trees. The algorithm returns a supertree even for (descen

ded level) incompatible input trees. Moreover, it also preserves all the nestings

present in the input tree collection. On the other hand, most of the existing

methods are neither capable of handling incompatible input trees nor the result

ing supertree represent all the nestings present in all the input trees.

Finally, the contributions made in the thesis are summarized and scope for

the future work is outlined.
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Chapter 1

Introduction

It is human nature that whenever man sees any object, whether living or non

living, he tries to name it and associate it with the related objects. The quest to

name living organisms and finding the relationship between them leads to one

of the most important field of biology called Phylogenetics. It sheds light on

how the species or genes have evolved, giving a greater insight into the biological

system.

1.1 An overview

Phylogenetics is the study of relationship among species or genes with the com

bination of molecular biology and mathematics. Two major developments, com

puter algorithms and availability of molecular data, have changed the way of

finding the relationships between the species. The increase in the availability of

DNA and protein sequence data has increased the interest in molecular phylo

genetics and classification. Molecular phylogenetics overcomes the limitations of

morphological phylogenetics such as, convergent evolution, finding the relation

ship among bacteria and the comparison ofdistinctly related organisms [16].

1



1.1 An overview

Large number of research projects in the field of phylogenetics shows the

importance and need for the computational methods for the fast and accurate

construction of the phylogenies.

Tree Of Life (TOL) project (refer to http://www.tolweb.org/tree) presents

one of the greatest challenges of science in reconstructing the evolutionary history

of every living organism on the earth. Under this many smaller projects such as

"The Green Tree of Life", and "Assembling the Fungal Tree of Life (AFTOL)"

are also proposed. Huge support is also provided from different funding agencies

and countries to the development of computational methods to reconstruct the

tree of life (refer to http://www.phylo.org).

Development and use of phylogenetic systems to enhance food safety and

food security project is proposed to produce an evolutionary framework to un

derstand the ecology, virulence and epidemiology of Listeria, Clostridium, and

Enterococcus species. It will contribute to the development and implementation

of effective control strategies for these species [17]. This project is supported by

the United States Department of Agriculture. Similarly, research projects are

also proposed and carried out to the reticulate evolution in the species.

Reconstruction of ancestral relationships from contemporary data is widely

used to provide evolutionary and functional insights into biological system. These

insights are largely responsible for the development of new crops in agriculture,

drug design and in understanding the ancestors of different species. The other

applications of phylogenetics includes:

1. Understanding of the process of evolution of different species, constraints,

behavior and evolutionary time [18, 19, 20].

2. Conservation studies to reduce the phylogenetic diversity [21].

*•
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3. Discovering functional relationship between the cells due to similarity in

the function of genes [22, 23].

4. Performing functional prediction of genes. Most of the similarly looking

genes show the similar functionality. Looking at the evolutionary history

of the newly sequenced gene will help in predicting its functionality [24].

5. Finding protein-protein interactions [25].

6. Helping ligands predication [26].

7. Development of vaccines, antimicrobial and herbicides [27,28].

8. Forensics studies [29].

Since last three decades, phylogenetics has taken a new look due to the avail

ability of molecular data, computational infrastructure and methods for phylo

genetic tree construction. Many fields as given above are conceptually united

with molecular phylogenetics.

1.2 Motivation

The large applications and huge available sequence data, reflect the need for

developing fast and accurate methods for constructing the phylogenies. Most

of the existing methods accepts molecular sequence data or distance data for

the construction of the phylogenetic history. Usually evolutionary history is

represented as an acyclic graph called a phylogenetic tree.

Advances in molecular biology andgenomic lead to the large amounts ofdata,

both in number of taxa as well as sequence length, available for phylogenetic

construction. Moreover, most of the inferences in comparative biology depend
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on accurate estimates of evolutionary relationships [30, 31]. In this scenario

character based methods, such as maximum likelihood, parsimony search, or

quartet puzzling, play an important role. But they are very slow and cannot

scale up to the size of the genetic data available. These methods compare trees

according to a specific criterion. Ideally, all possible trees should be compared.

However, the number of trees with n sequences are very large (i.e, njj=3(2fc —5)).

For example, given 20 sequences this number is of the order of 1020. Thus, these

methods go intractable for 15 to 30 taxa. On the other hand, distance based

methods suffer with the problem of information loss due to converting sequences

into distances. This information loss leads to inaccuracies in the phylogenetic

tree reconstruction. This leaves a huge gap to be filled for fast and accurate

phylogenetic tree with large number of taxa.

Phylogenetic tree reconstruction methods cannot be used to represent exten

sive phylogenetic relationships. There are situations or reticulate events where

trees are not sufficient to represent phylogenetic relationships. They are: (1)

horizontal or lateral gene transfer; (2) hybridization between the species; (3)

microevolution of local populations within the species; (4) homoplasy, the por

tion of phylogenetic similarity resulting from evolutionary convergence [32]. A

more generic framework called phylogenetic network is suitable for representing

nontree or reticulate events.

After generating the genomic data of thousands of living organisms, now

comes the task of classifying them and making a single tree of life. This is a

challenging task and till date no algorithm exists that can compute most accurate

tree of life. The existing phylogenetic reconstruction algorithms cannot be used

for this task as they suffer with poor efficiency and computational hardness

problems. The problem with the phylogenetic tree construction approach is that f



>

Chapter 1. Introduction

they cannot be used for the classification of 1.7 million described species on the

earth. The existing methods cannot be used for constructing the tree of life due

to aforementioned shortcomings.

In summary, efficient algorithms for constructing phylogenetic network due

to recombination has to be developed. Phylogenetic network representation pro

vides deeper insights and direction for designing drug for different viruses [33,

i 34, 35]. The methods for combining trees, either rooted or unrooted, and ro

bust methods to add additional information like ancestral time divergence and

semi-labelled trees are demanded by the biologists. The above discussion reflects

the urgent need for the fast and accurate phylogenetic networks and supertrees

construction methods.

t 1.3 Problem statement

The objective of this thesis is the development of algorithms for constructing

phylogenetic network, supertree and supertree variants. This problem can be

divided into the following subproblems:

1. Given a set of binary sequence M, finding a phylogenetic network N that

> minimizes the number of recombination events with some biologically mo

tivated structural properties.

2. Given a collection of small phylogenetic trees T combine them into single

tree in such away that no branching information carried by any input tree

is lost.

3. Given a set of divergence date statements D and a collection of small phy

logenetic trees T, combine the input tree collection into single tree in such



1.4 Organization of the thesis

a way that no branching information carried by any input tree is lost and

divergence date information is also preserved.

4. Given a collection of small phylogenetic trees T combine them into single

tree in such a way that the resulting tree preserves all the ancestral rela

tionships described by the input collection.

A general strategy is followed in order to solve the aforementioned problems. y

The steps are as follows:

1. Investigating the key existing methods of phylogenetic networks and su

pertrees.

2. Exploring the major inadequacies of the existing systems.

3. Proposing an efficient method that addresses the problems of the existing

methods.

4. Exploring the correctness of the proposed approach.

5. Evaluating and performance using analytical and biological data sets.

1.4 Organization of the thesis
V

The thesis is organized as follows. Chapter 2 presents a brief literature review

on Phylogenetic networks, supertrees and their variants. An efficient algorithm

for constructing the phylogenetic network due to constrained recombination is

proposed in chapter 3. Chapter 4 presents an efficient distance based supertree

algorithm. An algorithm for constructing supertree with additional evolutionary

information, such as fossil records, molecular dates and relative divergence dates,

is given in chapter 5. In chapter 6, an algorithm for constructing semi-labelled

(i
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supertree from a nested of semi-labelled input tree collecting is proposed. Chap

ter 7 finally concludes the thesis by presenting our contributions and directions

for the future work.
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Chapter 2

Review and Background

The term phylogenetics is derived from the Greek. Phylon means race or old fam

ily, and genos means birth or origin, and gennetikos means related to generation

or the genesis of something. The goal of the phylogenetic study is to provide

insights into the evolutionary relationships, divergence time, and the patterns

and constraints of evolution process. This will help to understand the process of

evolution and most of biological predications are based on this relationship. This

chapter presents the background information required to understand the phylo

genetic reconstruction methods and also gives a survey of prominent phylogenetic

network and supertree methods.

2.1 Phylogenetic Networks

Traditionally, evolutionary relationship is represented by a tree model. However,

recent developments in molecular phylogenetics indicated that the exchange of

genetic material between the lineages needs a more generic framework to rep

resent the evolutionary relationship [36]. Different conflicting phylogenetic sig

nals such as horizontal gene transfer, hybridization, and homoplasy can only
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be represented with the help of a framework called networks rather than the

trees [37, 38, 39]. In this section, we briefly present the biological behavior be

hind reticulate evolution along with the review of existing phylogenetic network

reconstruction algorithms.

In evolutionary biology, any perfect phylogenetic history leads to a tree like

representation of evolutionary history. The events such as horizontal gene trans

fer, hybridization, homoplasy or micro-evolution are known as reticulate events.

The evolutionary history during the presence of reticulate events cannot be rep

resented by a simple tree structure. The genes involving in reticulate event leads

to a different tree than the one constructed using the genes that are not involved

in the reticulate event. A network like structure is used to represent these events

and both the trees.

2.1.1 Preliminaries

Biologists have recognized long before that the tree representation of evolutionary

relationship oversimplifies the view of the process of evolution, as it cannot take

into account the non-tree like or reticulate events. In this section, we cover both

biological aspects as well as mathematical representation of the phylogenetics

networks.

Reticulate events

Horizontal Gene Transfer (HGT): The transfer of genetic material between

the lineages takes place through the sexual process. The changes might take place

in the offspring gene sequence during the replication of genes. This leads to the

change in some of the characters of the offspring. On the other hand, if the

genetic material is transferred directly from one lineage to another, it is called

10
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horizontal gene transfer. In this process few genes or sometimes only a part of

the gene is transferred. Horizontal gene transfer does not result in a new lineage

or species. A network representing HGT is shown in Figure 2.1(a), and its two

induced trees are shown in Figure 2.1(b) and 2.1(c).

Figure 2.1: (a) Network representing HGT between B and C. (b) and (c) are

induced trees of network (a).

The tree represented in Figure 2.1(b) is appropriate for the genes acquired

through horizontal gene transfer, and the tree shown in Figure 2.1(c) is appro

priate for the genes inherited from the ancestor of the species. Horizontal gene

transfer is common phenomenon in bacteria. They develop the ability to adapt

to new environments by acquiring the new genes by the process of horizontal

gene transfer. The major mechanisms for horizontal gene transfer are:

Transformation: Bacteria take the DNA fragments from the environment. It

mediates an exchange of any part of chromosome. Only short sequences are

transformed in this way.

Conjugation: Conjugal plasmids or conjugal transposes mediate it. Long frag

ments of DNA can be transferred by conjugation.

Transduction: This is the transfer of DNA by phase. It requires the donor and

11
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recipient share cell surface receptors for phage binding. This happens in limited

and closely related bacteria.

Hybridization: In hybridization, two lineages recombine to create a new species.

This non-tree evolutionary event is shown in Figure 2.2(a), and Figure 2.2(b)

and 2.2(c) shows the induced trees of 2.2 (a).

BCD ABCD A BCD

(a) (b) (c)

Figure 2.2: (a) Network representing hybridization between B and C. (b) and

(c) are induced trees of network (a).

If the new species have the same number of chromosomes as the parent species

then the process is called diploid hybridization. The polypolide hybridization re

sults in a species that has the number of chromosomes equal to the sum of the

number of chromosomes of its parents. The major mechanisms of hybridization

are:

Autopolyploidazation is a speciation event involving the doubling of chromosomes

within a single species. It produces a bifurcating speciation event in phylogenetic

tree.

Allopolyplodization is hybridization between two species, when the offspring ac

quires a complete diploid chromosome complements of the two parents.

12
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Chapter 2. Review and Background

Diploid hybrid speciation is a normalsexualevent that takes place between plants

of different but related species.

Hybridization is common in plants, fishes, amphibians and reptiles, and is

absent in other groups, particularly in birds, mammals and most anthropods.

Homoplasy: The resemblance of body structure and functions of the organs

of two different species, which do not have the common ancestral origin, is called

homoplasy. This is the result of convergent evolution, thus the two species are

close to each other when compared on the anatomical basis, whereas genetically

they are not.

Genetic Recombination: The exchange of genetic material between the ho

mologous chromosomes is called the genetic recombination. It is the process

which gives the new combinations of genetic material. Recombination creates a

nontree evolution in the lineages. This may occur at any part of the chromo

some. Homologous chromosomes are paired during the prophase of meiosis. In

crossing over, two chromosomes swap a portion of their genetic material. After

the separation member of a pair of chromosomes contain a part of its partners

genetic material.

Genetic recombination has a great influence on the genetic structure of the

population and explains a considerable amount of genetic diversity in the popu

lations of sexually reproducing species.

Mathematical modelling of reticulate events

Mathematically, the reticulation eventsare visualized as Directed Acyclic Graphs

(DAGs). Strimmer et al. [40] proposed the use of DAG model with some prop

erties, called Acyclic Recombination Graph (ARG), for applying maximum like-

13
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lihood to directed splits graphs. However, splits graphs are representations of

possible incompatibilities in sequence data sets and not phylogenetic networks.

Hallett and Lagergren [41] used DAGs with a set of simple assumptions that

were more biologically realistic than splits graphs. They created a method for

inferring lateral gene transfer events when one is attempting to reconcile gene

trees and species trees. Linder et al. [42] proposed a model of phylogenetic

network based on DAGs, following Strimmer [40], to represent the topology of y

phylogenetic networks, adding a set of simple conditions, similar to Hallett [41]

to ensure that resulting DAGs reflect the properties of biological reticulation.

The mathematical model is formally described as follows:

A phylogenetic network is directed acyclic graph N —(V, E), where the nodes

are partitioned as tree and network nodes. Similarly, edges are also partitioned.

Let a node v eV be tree node then if indegree of v is 0 and outdegree is 2 then

v is root of the tree. If indegree is 1 and outdegree is 2 then v is internal node

and if the indegree is 1 and outdegree is 0 then v is a leaf node. For v being a

tree node the indegree < 1. A node v € V is said to be network node if indegree

is 2 and outdegree is 1. Similarly, an edge e £ E is said to be network edge

if it is incident on a network node, otherwise it is a tree edge. A simple DAG

that depicts a phylogenetic network is shown in Figure 2.3. Nodes X, Y are tree

nodes, R is a root node and Z is a network node. Doted edges represents network

edges and solid edges indicates the tree edges.

Neighbor-Net [4], SplitsTree [43], and T-Rex [44] are some popular methods

that use a simple graph with cycles to represent the phylogenetic network.

Approaches for phylogenetic network construction The network con

struction methods can be broadly classified into four categories [42]. They are

as follows:

14



*

Chapter 2. Review and Background

Figure 2.3: Simple DAG depicting phylogenetic network.

• First approach is to identify the genes involved in gene transfer then con

struct phylogeny after removing them. Most of the phylogeniesconstructed

are based on this approach.

• Second approach is to use tree as underlying structure for a network con

struction. First, a phylogenetic tree is constructed based on existing al

gorithms and then the non-tree like edges are added to the tree based on

some optimization criteria.

• Third approach is to construct many trees using different partitions of data

or different algorithms then reconcile them. Whenever reconciliation fails

there will be a conflict and can be represented a reticulation edge.

• Identifying the incompatibilities in the data beforehand and constructing

all possible resolutions through reticulation from which biologist will choose

the most relevant one.

15
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2.1.2 Phylogenetic Network construction algorithms

Reticulated network [3] reconstruction method, implemented in T-REX pack

age [44], uses a phylogenetic tree topology as a basic structure for reconstruction

of the phylogenetic network. In this algorithm, first a phylogenetic tree is con

structed for the given distance matrix using any existing tree reconstruction

algorithm. Next new branches, known as reticulated branches, are added one at

a time in order to minimize the least square criterion given in below equation,

yielding weighted least-square loss function.

where 6(i,j) and d(i,j) are the given path length and the minimum path

length after adding a reticulate branch between the nodes i and j respectively.

The length of newly added reticulate branch is calculated using the following

equation:

_ Z?M EjiWgj) - Min{5(i, x) +6(3, y); Sjj, x) +6(i, y)})
2sP=k+i \Ap\

where I is the possible path length of the reticulated branch between x and y

node, k is number of reticulation branches and A is a set of pairs of taxa such that

adding a new reticulate branch will change the minimum path length between

them. The set A is partitioned into m subsets, for the partitioning criteria for

mathematical details, refer to [3] and [32]. This formula is used to compute the

length of the new reticulate branch on the fixed interval Ik < I < h+\-

The total number of nodes in a binary unrooted phylogenetic tree will be

2n —2. Therefore, the maximum number of branches on a reticulated network

can be (2n —2)(2n —3)/2 and the maximum number of branches in a complete
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graph is n(n - l)/2. Thus, any of these two is the maximum number of nodes

in a network. If latter is considered as limit, then the degree of freedom of the

network with N network branches can defined as {(n(n - l)/2) - N).

A penalty function opposing the loss of degree of freedom to the gain in fit is

considered as the goodness of fit or stopping criterion as given in the following

equation:

_yfZiexE^x(d(i,j)-S(i~j)y
2 JV

The function Qx has only one minimum value over the interval [2n - 3, n(n -

l)/2] amongst possible values of N. This minimum value defines a stopping rule

for addition of new branches to the reticulate phylogeny. Many other stopping

criteria are given in [43].

T-REX computes the reticulation network by first computing a phylogeny

and subsequently forming a network by adding branches, which minimizes certain

least square loss function. This restriction is time consuming and causes problem

if the data is not tree like.

Split Decomposition [43] used the concepts of Split Graphs [45] and it is

a transformation approach. Generally a phylogenetic tree T is made up of nodes

(vertices), and branches (edges). The leaf nodes in a phylogenetic tree represent

the living species at a particular time period. A tree reconstruction for X taxa

is equivalent to compatible splits and determining the weight of each split.

A split in a phylogenetic tree T is the one in which when an edge is removed

from T, it splits the set of taxa X into two non-empty groups. The split is called

compatible if, for any two splits Sx = {A^A^} and S2 = {A2,A'2}, one of the

following four intersections is empty:

17
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{Ax n A2}, {A\ n A'2}, {A[ n A2}, {Ax n A'2}

Any tree will represent the compatible system of splits. To obtain a network

a system with fewer restrictions must be considered which is referred as weakly

compatible split. For any three splits Si, 52, S3 and A{ 6 Si, for i = 1, 2 and 3,

at least one of the following four intersections is empty:

r

{Ax nA2r\ A3}, {Ax nA'2n A3}, {A\ r\A2r\ A'3}, {A[ n^n A3}

A split graph representing a weakly compatible split system is a graph G =

(V, E) whose leaf nodes v e V are labelled by a set of taxa X and edges e e E

are straight lines representing the split. Split is represented by a band of parallel

edges, in such a way that deleting all the parallel edges splits the graph into two

components A and A'. The length of the edges, representing a split S, indicates

its weight or support.

Split Decomposition is quite conservative. It only represents splits of taxa

with positive isolation index. Many splits with negative isolation index are re

moved. But they may represent some conflicting information.

Neighbor-Net [4] combines the features of Neighbor Joining [46] and Split-

sTree [6] algorithms. In Neighbor-Net two taxa with least dissimilarity are not V

added immediately instead they are kept waiting till the new node is paired up

with these two taxa. Then these three nodes are linked and the distance matrix

is reduced. There are three important steps as in all network reconstruction al

gorithms: criteria for selection of nodes, reduction of distance matrix, and finally

estimation of edge lengths.

The selection of taxa to be grouped together is made as follows. Let A be

the set of nodes, N = \A\ and d be the distance function defined between pair of

18
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nodes in A. Let Ci,C%, C3,..., Cn be the clusters of either size one or two. Then

the distance for each pair of cluster can be calculated by the function given in

the following equation:

The clusters are selected based on the minimization of the following function.

QiCuCj) - (n- 2)d(Ci,C,-) -JJ^C*) - Y^d(Cj,Ck)
k^i k^j

The nodes are selected based on the minimization of the following function.

Q(x, y) = (n- 2)d(x, y) - £ d({x}, Ck) - £ d({y}, Ck)

where x e d and y e Cj. The reduction of distance is done as follows. If

£ and 2 are neighbors for y, Neighbor-Net algorithm will replace x, y, z into two

new nodes u and v. The distance form u to v is computed as:

d(u, a) —ad(x, a) + fid(y, a)

d{y, a) —/3d(y, a) + jd(z, a)

d(u, v) = ad(x, a) + fid(y, a) + -yd(z, a)

Theory of circular decompositions is used for the estimation of the branch

lengths. The branch length can be computed as follows:

d(x,y) = ^2 asts(x,y)
s£S(9)

where x,y e X,s e S(6), d is circular distance, and 0 represents the circular

order. as is a positive constant and S3 is a split metric. 6S is 0 if the pair of
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nodes are in same part of the split S, otherwise its value will be 1. Sa in terms

of d is given in below equation.

Sa = -(d(xi,Xj) + d(xi_x,Xj-x) - d(xi-i,Xj) - d(xuXj_i))

Netting [47] is a distance based method, which first generates all the par

simonious trees for the given data and then connects the leaf nodes to form a

network. The algorithm starts with connecting the sequences that are most sim

ilar. A new node is added to the tree such that the three pairwise distances

are satisfied. The ancestral distance between two species is considered to be

equal to the number of differences between them. A new edge is added between

the nodes if homoplasy encounters between them. Gaps and invariant positions

in the sequences are not considered for the analysis. Since the method tends

to satisfy the distances among the species, the number of dimensions required

to represent the relationship may be more, therefore the method leads to the

complex network representation.

In the median network [48, 49] sequences are first transformed into binary

data and constant sites are not taken into consideration. Each split is encoded

as binary characters 0 or 1. Sites supporting the same split are clustered into one

site and then the site is weighted as the number of sites clustered. As a result

the species are represented as vectors of binary numbers. The vectors are used

for the construction of network. Using this method, it is difficult to represent the

network of 30 or more species. The median network can represent at the most

parsimonious trees and results in complex network if the diversity between the

sequences is more.

In summary, most of the existing [4, 43, 47, 50, 51] network construction

methods are based on distance data. Converting sequences into distances leads

to loss of information. Very less work has been done on the computational aspects

20
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of the phylogenetic network using sequence data except the work by Wang et al.

[52] and Gusfield et al. [7].

Wang et al. [52] showed the problem offinding a perfect phylogenetic network,

a network with minimum number of recombination nodes, is NP-hard. They gave

an algorithm for a restricted problem, called node disjoint network, with 0(n4)

computing time, where n is number of leaf nodes or species. The restriction was

that in the merged path of the recombination node, there is no node that is in the

merge path of a different recombination node. In other words, no node can be

shared by two recombination cycles, if underlying undirected graph has cycles.

A recombination cycle that shares no node with any other recombination cycle

is called a "gall" and a phylogenetic network with disjoint recombination cycles

is called a "gall tree" [7]. Gusfield et al. [7] showed that the algorithm in [52] is

incomplete and does not constitute the necessary test conditions for the existence

of the gall tree. The most efficient solution for the gall tree problem, till date,

is given in [7]. It uses the conflict graph as the main tool for the detection of

the conflicting sites. The components of the conflict graph are used to construct

galls in the gall tree. Finally, all the galls are connected, leading to the final gall

tree. The algorithm can compute the gall tree, if one exists, in 0(nm + n3) time,

where m is the length of the binary sequence [7].

In chapter 3, we propose an efficient algorithm for the construction ofthe gall

tree. Converting the binarysequences into distance matrix based on dissimilarity

leads to the information loss. To avoid this effect we use both similarity and

dissimilarity between the binary sequences as a major tool for detecting and

constructing the gall tree.
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2.2 Phylogenetic consensus and supertrees

Many smaller overlapping phylogenetic trees are combined in a supertree in such

a way that no branching information is lost. There may exist an exponentially

large number of supertrees for a given set of trees. The optimal tree is selected

based upon different optimality criteria.

If all the input trees classify the same set of taxa, the result of amalgamating

them will be a consensus tree. Many of the supertree algorithms use the existing

consensus methods as the base for the their supertree construction. In this

section, we start with the basic terminology, desirable properties of the supertree

algorithms, then give a survey of prominent consensus tree methods. Finally this

section ends with the critical survey of the supertree methods.

Basic Terminology

A tree is an acyclic connected graph and can be represented as T = (V, E). A

vertex v G V is internal if the degree of v is greater than two, otherwise v is leaf

and a distinct vertex with degree two is called the root. An edge e, connected to

the vertices u and v, is internal if both u and v are internal vertices, otherwise

it is an external edge. The set of leaf nodes of a tree is represented as L(T).

A phylogenetic or evolutionary tree is a tree T having a single internal node

with degree two and rest of the internal nodes have degree three or more. If

the degree of each internal node is three except root then it is called a binary

rooted tree. Two rooted phylogenetic trees on set of species Y, T = (V , E)

and T" = iy", E") are considered as identical if there exists a bijection function

/ : V —> V", which includes a bijection from E' to E and fits the set of leaf

nodes Y. Except the root, the labelling of the internal nodes is unimportant

in phylogenetics. The internal nodes represent the hypothetical ancestors of
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the descendents. These hypothetical ancestors are known as Least Common

Ancestors (LCA) of their immediate descendents. A phylogenetic tree is shown

in Figure 2.4, where clusters represent the LCAs of their descendents.

•Root

Internal nodes or

clusters

Figure 2.4: Phylogenetic tree with least common ancestors.

Restriction on phylogenetic trees

Let T be the rooted tree with the leafset X. Given a set X' such that X' e X,

the topological restriction of the tree T on the taxa X' is the tree obtained

by deleting the nodes, which are not in the path from root to any node in X'

and then contracting the internal edges whose degree is two. The topological

restriction is represented as T\x>. An example is shown in Figure 2.5. T' is

called the induced subtree of T by X'.

Compatibility of phylogenetic trees

A rooted phylogenetic tree T displays a rooted phylogenetic tree T' if T' can

be obtained from an induced subtree of T by contraction and is represented as

T < T . According to Steel [53], a collection of rooted phylogenetic trees is

compatible if there is a phylogenetic tree that displays all of them. Figure 2.6

shows T and T" in which T" can be obtained from T' by contraction.

Clusters, Triplets, splits and quartets

A group or set is said to be a cluster on a tree if and only if it contains all
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Figure 2.5: (a) T is phylogenetic tree on taxa {A,B,C,D,E}, (b) represents the

restriction T\{a,c,e}-

Tree T' Tree T"

Figure 2.6: Tree T' and T" are compatible according to Steel M.

the descendents of its most recent common ancestor as shown in Figure 2.4. A

collection of clusters C is compatible if and only if for each pair of clusters A and

B in C, that is A, B € C, either A is in B or B is in A, or A and B are disjoint.

The compatibility condition is as follows:

1. A C B or B C A

2. An B =

A cluster A is compatible with the tree T if it is compatible with every cluster

24
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+ in T. A rooted tree T refines another rooted tree T' on the same set of taxa if

every cluster in T' is a cluster of T.

A rooted triplet is the binary rooted tree with three leaf nodes. Any two

leaf nodes share a least recent common ancestor. A triplet is denoted as AB\C,

where the least common ancestor of the taxa A and B are descendents of least

I common ancestor of A, B and C. Triplets are used for the construction and

estimation of the rooted trees.

Removing a branch in an unrooted tree will divide the tree into two connected

graphs. Each group represents a subset of the set of taxa X in the tree. Let A is

the group of taxa on side and B is the group of taxa on the other side, then the

split can be represented as A\B. Splits are replacement of clusters for unrooted

trees.

A quartet is a binary unrooted tree with four leaf nodes. The two pairs of

taxa share a common ancestor each. The quartet is represented as AB\CD,

where the taxa A, B and C, D share the common ancestors and there is an edge

between the common ancestors of these two groups. The quartet AB\CD is said

"*- to belong to tree T if there is a split in T having A and B on one side and C

and D on the other.

Let T bea collection ofphylogenetic trees {Tu T2,..., Tk} with leaf sets L(TX),

L(T2),..., L(Tfc). Asupertree ST is atree with the leaf set L(Tx)n L(T2)n...nL(Tk)

such that each tree T{ is an induced tree ofST. If the L(Tj)n L(T2)n...nL(Tk) =

L(Ti) then the result ofamalgamation is called consensus tree, otherwise the re-

suit is called supertree.
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Desirable properties and limitations of the consensus and supertree

algorithms

There are some inherent limitations of the concensus and supertree methods given

in [54]. McMorris [55] discussed three properties that cannot simultaneously be

satisfied by any consensus method, Steel et al. added some more properties [53,

54]. These desirable properties are as follows:

1. The method should be independent of the order of the input trees.

2. Renaming or relabelling of the species should not result in a different tree.

The output should be the old tree with the corresponding species renamed.

3. If there exist at least one parent tree for the given collection of input trees,

then the output tree is one of those parent tree.

4. Each leaf that is present in at least one of the input trees should be present

in the output tree.

5. The resulting tree should be computed in polynomial time.

Property 1 and 2 are essential and can be achieved simultaneously. However,

third property is not easy to achieve. Therefore the alternatives are: (1) neglect

the Property 3. (2) Dealing with restrictive inputs, such as rooted trees (3)

Resulting a collection of supertrees that lists all the possible trees that can be

drawn from the collection of input tree.

The first option can be achieved by always giving the star like tree as output.

This option leads to the loss of biological information loss.

The second option is promising. Many algorithms for rooted trees satisfying

all the three desirable properties exist and are discussed in the coming sections.

These methods follow two additional properties.
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1



*

Chapter 2. Review and Background

Property 4 says that no taxa can be removed from the output tree even

though the input trees are not compatible. On the other hand, property 3 is

applied when the input trees are compatible.

The third option is also attractive as parsimony based methods always result

in a set ofmore than one tree. For highly unresolved input tree the set of output

tree may grow exponentially [56].

* McMorris [57] has shown that any consensus tree for unrooted trees does not

satisfy the following three properties simultaneously:

1. If all input trees displays ij\kl, then the output tree displays ij\kl.

2. If all the input trees display ij\k, then the output tree should display ij\k.

3. If at least one input tree display ij\k and no input tree displays ik\j or kj\i

then the resulting output tree should display ij\k.

The property 3 cannot be satisfied by any consensus method for the rooted

phylogenetic trees [55] .

2.2.1 Phylogenetic consensus and supertree algorithms

In this section, we present a critical review on phylogenetic consensus and su

pertrees.

Strict consensus method

Given a collection of phylogenetic rooted or unrooted trees, this method returns

the rooted or unrooted tree with the clusters or splits common to all the trees

in the collection of input trees [57].

Formally the strict consensus can be defined as: Let P = TX,T2, ...,Tn be a

collection ofunrooted phylogenetic trees on L and £(T) represents all the splits
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in T. The strict consensus tree displays the splits present in all the input trees,

represented as follows:

J2(C-Utree) = f| £(T«)

A similar formulation can be done for the rooted trees.

Majority rule consensus tree

The majority consensus rule tree contains exactly those clusters or splits that

appear in more than half of the input trees [58, 59]. Therefore, all the splits or

clusters appearing the strict consensus tree are also the part of the majority rule

consensus tree. In other words, the majority rule tree refines the strict consensus

tree. Formally it can be defined as follows:

E(p) = U T>

For a 6 £, let n(o~) is the number of times the split a found in the collection

of input trees. The majority rule states that:

^(MJUtree) ={a €S:j^- >0.5}
Similar equation can be derived for the clusters.

Loose consensus tree or semi-strict consensus tree

The loose consensus method will result in a tree with the splits or cluster found

in the input trees, which are compatible with every tree in P [59, 60]. Therefore

it refines the strict consensus tree. Formally it can be defined as:

J2(P) = J2(C-Utree) UiA\B GU ^ ^(C-Utree)}
TiSP

The disadvantage of this method is that the output tree displays the splits

or clusters found in only one input tree [61]. The splits or clusters appearing in
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more than one tree are considered as reliable, but the split or cluster found in a

single tree may or may not be reliable.

Adam's consensus tree

This is first consensus tree method and is defined for only rooted input trees

[62]. In this method first the trees are divided into partitions and their product

is determined. Let PuP2,..., Pn be the partition of the set of taxa. The product

of these partitions is that the taxa a and bare in the same block if the appear

in the same block of all the partitions. The partitions represent the maximal

clusters in the input trees.

The maximal cluster of a rooted tree T is the largest proper cluster in the tree

T. The maximal cluster partition for a tree T is the partition P(T) of the set of

taxa with blocks equal to the maximal clusters of T. For further details Adam's

paper for consensus trees [62] can be referred. The algorithm is as follows:

ALGORITHM: AdamsTree(7i, T2,..., Tk)

begin

1. if the tree Ti contains only one leaf then

return leaf.

2. for each i = 1,..., k let 7Tj be the partition given by the leaf

set of maximal subtrees of %.

3. let 7r be the partition product of ttx, tt2, ..., -nk.

4. for each block B of •k construct

AdamsTree(ri|B, T2\B, -, Tk]B).

5. Append the roots of these trees to a new vertex.

return the new tree.

end
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Some methods have been designed based on rooted triplets and quartets. The

advantage of these methods is that the two trees sharing triplet or quartet share

much more information than that in a shared cluster or split. Two trees can

share lots of triplets but may not share a single cluster.

Local consensus tree

Let T is the collection of input trees, and the R is the collection of triplets of

each tree ofT, R = \JT.€T r(Ti)- The set R is said to be comPatible if there exist

a tree V such that RCr(T').

For any compatible set of triplets and the set of leaf nodes Aho's algorithm

[63] can be used to find the local consensus tree. The algorithm is as follows:

Input: Collection of rooted trees T and the set of leaf nodes L.

Output: A rooted phylogenetic tree T' that displays T or

incompatibility message.

ALGORITHM: BUILD(T, L)

begin

1. Set S to be label set of P.

2. if 151 = 1, then the rooted tree consists of one vertex and labelled

by an element of S.

3. if \S\ = 2 , construct [P, S].

4. Let Si,S2,...,Sk denote the vertex set of the components of [P, S].

if k = 1 then halt and return T is not compatible.

5. for each i G {1,2,..., k},

call BUILD(T', Vt), where T' is the restriction ofT on VJ.

if returns a tree, call it Ri else

return incompatible input trees.
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6. Construct a new tree R by connecting the roots of

the tree R4 to a new node r.

7. return R.

end

Another class of methods converts the input trees into the distance or se

quence data. This converted data is used for the consensus tree construction.

Some of the prominent methods are Matrix Representation with Parsimony

(MRP) [64, 65], and Average consensus tree [66]

Matrix Representation with Parsimony (MRP)

This method is basically derived for the input trees, which classify the over

lapping set of leaf nodes (supertrees). Here we will consider the special case,

with the same leaf nodes in the input trees.

MRP [64, 65] encodes the input trees into binary characters and thesupertree

or consensus tree is constructed from the resulting data matrix using a parsimony

tree building method. The method for converting the trees to binary data is as

follows:

Let T is a collection of unrooted trees. For each spilt A\B in each tree a

binary character is assigned to each taxon in the tree. All the taxa in thesplit A

is assigned the value zero (0), and the taxa appearing in the split B are assigned

to one. The MRP consensus tree is the strict consensus tree of the set of tree

resulting from parsimony analysis.

Average consensus tree [66]

This can be viewed as the distanced version of MRP. A distance matrix

based on the path length, which is the sum of weights on each branch of the

path, between the taxa is constructed for each tree. Then the average of all the
y

distance matrices is considered for the construction of the consensus tree.
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The least square difference between the two trees Tl and T2 is computed as

follows:

d(Tx,T2) = J2J2{dx(a,b)-d2(a,b)}2
a b

where dx and d2 represents the path length distance between a and b in the

tree 7\ and T2. For a given set of input trees the average consensus tree Tc is a

tree which minimizes the following function:
k

d(Tc,T) =£0(rc,7-)
i=l

This method suffers with the disadvantages such as there is no efficient algo

rithm to construct the tree. It is not known whether the splits appearing in all

the input trees will appear in the resulting consensus tree or not.

These disadvantages are addressed in the Buneman consensus tree [67], and

an efficient algorithm for its construction is given by Berry and Bryant [68].

Phylogenetic supertree methods

Supertree methods summarize the collection of trees without losing branch in

formation. In other words, it is an algorithm which takes the collection of phy

logenetic trees on the overlapping sets oftaxa as an input and returns the single

tree on the taxa present in all the input trees. Most of the methods use any of

the consensus method as the base method for the construction of the supertrees.

There are different approaches to solve this problem. Some methods solve it using

graph theoretic approach, others are subtree based and yet others are recoding

based approach. We present some of the popular methods in the forthcoming

sections.

Mincut Algorithm

This is a subtree based algorithm and has all the advantages of using triplets

and quartets. Mincut method [53] is one of the very few methods that satisfy
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all the desirable properties of supertree. This method is an extension of the

BUILD [63]. BUILD method reports an error when the input trees are incom

patible. Semple [53] modified the BUILD algorithm in such a way that if the

input trees are incompatible then some of the edges are removed from the trees

based on the minimum loss criteria. The minimum cost is identified using the

edges which have minimum weights and when removed, they will result in a dis-

» connected modified graphs. Therefore the algorithm results in a single tree even

if the input trees are not compatible.

Modified Mincut method

This is also a subtree based method. Mincut method results in highly un

resolved trees when applied to the input tree representing polytomy. Page [69]

modified the Mincut algorithm to work for a general case. The basic idea was

± to divide the edges of the modified graph into three categories: unanimous, un

contradicted and contradicted. Whenever the modified graph is fully connected,

instead of removing the edges from the minimal cut set of the graph, the con

tradicted edges are removed. As it is an extension of the Mincut method, it also

satisfies the properties that Mincut satisfies.

RankTree

T RankTree [12] method is the extension of the BUILD, which includes the

ancestral time divergence of certain pair of species along with the input tree

collection. The absolute divergence time of the species is not available. An

alternative approach of relative time divergence is considered in this method.

A rank function is defined for the collection of input tree, which assigns the

ranks to the internal vertices based on the order of speciation. A ranked tree is

shown in Figure 2.7.

The Figure 2.7 indicates that the least common ancestor ofthespecies Aand
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Figure 2.7: A ranked phylogenetic tree

B, LCA(A,B), has diverged after the LCA(D,E).

RankTree modified the BUILD in such a way that the algorithm assigns

ranks to the internal nodes and at the end when the supertree is constructed the

ranking is preserved. For incompatible input trees, the algorithm results in an

error message.

The other variants of the BUILD are Semi-labelled and AncestralBuild [70].

The Semi-labelled supertree is constructed when some of the internal nodes of

the input trees are labelled. This imposes the restriction that the children ofthe

labelled internal node cannot be changed in the resulting tree. AncestralBuild

given an alternative approach to RankTree and can be applied to the incompat

ible input trees.

In recoding based techniques, the trees are converted to distance data and

then any ofthe tree construction method can be used for the construction ofthe

supertrees. Some of the prominent methods are discussed here.

Matrix Representation with Parsimony (MRP) and its variants

This is the most widely used phylogenetic supertree method defined by Baum

[64] and Ragan [65] independently. MRP represented a universally applicable
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method that could combine even an incompatible set of input trees. In this

method binary coding of the components of each input tree is used to generate

a pseudocharacter matrix representation of the trees [71]. An example is given
in Figure 2.8.

T

a

x

a

Nodes

1 2

A 0 0

B 1 0

C 1 1

D 1 1

E ? ?

Figure 2.8: A phylogenetic tree and its binary character matrix.

The character matrices of all the trees are combined. The leaves that are

not present in a given tree are marked as '?', i.e, missing. The final matrix is

then analyzed with reversible parsimony procedure [72] to produce one or more

parsimonious trees.

Irreversible MRP [73] differs only in its use of base method, which is irre

versible parsimony [66]. Purvis MRP [74] uses a reversible parsimony but the

matrix elements represents sister group relations rather than binary characters

of the components. This method uses the parsimony tree construction method,

which is computationally intractable problem, making MRP intractable.

The most similar supertree (MSS) method [75] also uses distance matrix, but

the optimization criterion here is the minimization of the weighted sum of the

absolute differences in the path lengths between the supertree and each of the

input trees.
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2.2 Phylogenetic consensus and supertrees

MinFlip supertree methods

Supertree methods developed by Chen et al. [76] and Eulenstein [77] are

motivated by the concept of error correction. In MRP taxa present in the same

cluster are scored as 1, those absent are scored as 0, and those which are not

sampled are marked '?' as shown in Figure 2.8. One notion of error in such

cluster system is the presence ofan incorrect label in a cluster or the absence of

one that should be present. This type of errors are called flips 0 -> 1 or 1 -> 0.

This formulation of the problem can be mapped to an optimization problem

of finding the minimum number of flips that converts the matrix into a matrix

which is consistent with a phylogenetic tree. This is an NP-hard problem and

[76, 77] gave approximate algorithms for it.

Another approach to the matrix representation is to employ the distances

between the taxa of each tree and finally combine them into a single average

matrix, called as average consensus method [76]. Any distance based tree con

struction method can then be used to construct the supertree. This is the only

method which considers the branch lengths for supertree construction, while all

the other methods discussed above just use the tree topology.

The disadvantage of recoding based approaches is that they lead to hard op

timization problems and are intractable for even a small number of taxa. On the

other hand, the extensions of BUILD suffer with the problem of all or nothing,

given incompatible input tree collection the algorithms fail to return a supertree.

In chapter 4 we present an efficient method for supertree construction that ad

dresses the problems of both recoding based methods and the methods based on

BUILD. In chapter 5 we discuss the issues involved in the supertree construction

with additional available evolutionary information. In chapter 6, we proposed

a conflict graph based method for constructing supertrees with internal labelled
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+ node overcoming the problems of existing methods.
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Chapter 3

Phylogenetic Network with

Constrained Recombination

Pattern recognition has emerged as a major tool for bioinformatics applications

such as DNA sequence analysis and DNA Microarray analysis [78]. It has also

been applied to different graph theory applications [79]. In general, given a new

DNA sequence, it is compared with the sequences that has already been stud

ied and analyzed. The sequences that are similar would probably have similar

functional and structural properties in case ofgenes and proteins. Relationship

between the homologous sequences has an important implication in phylogenet

ics. Sequence alignment is one of the methods of sequence comparison, similar

to the string matching, which is studied extensively in pattern recognition. Se

quence alignment is a procedure for comparing two or more sequences by search

ing a series of individual characters or character patterns in the sequences. The

distance based phylogenetic methods make use of the dissimilarity between the

sequences to find the evolutionary relationships between the species. We use

both similarity and dissimilarity for the classification of the nodes into mutation
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and recombination nodes. A similar approach for the clustering of symbolic ob

jects is given in [80]. This chapter proposes a pattern recognition based 0{n2)

time approach for constructing the phylogenetic network, where n is the number

of nodes or sequences in the input data. The network is constructed with the

restriction that no two cycles in the network share a common node.

3.1 Introduction

The recombination event originates from modelling mutation in DNA sequences

[81]. For example, consider that each species is assigned a binary sequence. When

recombination occurs, the child gets some parts of genetic sequence from one

ancestor and rest of the sequence from another ancestor, as shown in Figure 3.1.

Thus, the recombination event cannot be modelled with a tree structure. Instead

it should be represented as network where some of the nodes may have two

parents. The nodes with two parents are called as the recombination nodes.

Sequence 1

Sequence 2

Recombination sequence

Figure 3.1: The recombination event.

Presence of recombination allows different parts of a single sequence to display

different evolutionary histories. This violates the traditional assumption ofsingle

evolutionary history underlying the sequences. A study on HIV-1 [82] has shown

that the most frequent recombination event has made it difficult to design a

40
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drug for HIV. Recombination in HIV is recognized as an important mechanism

by which the virus escape the attack against the drug [82]. Since long time, the

consequences of recombination are ignored, and phylogenies were constructed

by neglecting the recombination events. Schierup and Hein [83, 84] and Posada

[85] have shown the effect of negligence of recombination while constructing the

phylogeny. The effects shown by Schierup and Hein include the long terminal

branches in star like trees and that the rate of heterogeneity among the sites is

wrongly inferred. Despite above facts, very little has been published on robust

methods for recombination.

3.2 Preliminaries

In this section, we introduce the basic terminology, in addition to those given

in chapter 2, and assumptions made for the development of the algorithm. We

follow the terminology given in [7, 86] for simplicity.

If a node u is reachable from a node v via a directed path, then v is an

ancestor of u, and u is a descendent ofv. Each node in the phylogenetic network

is represented with a binary number of some specified length m, each element

in the array of m binary numbers is called a site or characteristic. The node

with all zeros in its sequences is called the root of the network N. In the perfect

phylogeny, the transformation of a site from 0 to 1 occurs at most once for each

site. The nodes in perfect phylogenetic networks are organized in such a way

that there is a unique node having state 1 in site i whereas, every other node

having state 1 at site i is descendent of this unique node. The transformation

from 0 to 1 is possible in case of recombination where the crossovers can change

the state from 0 to 1. A phylogenetic network with recombination is said to be

perfect if it has minimum number of recombination nodes and follows all the
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restrictions mentioned above.

A set of binary sequences represents a phylogenetic network N, if and only if

each sequence labels exactly one leaf of the network N. A phylogenetic network

on a set of three binary sequences is shown in Figure 3.2. The biological inter

pretation of a phylogenetic network N for n sequences represents the possible

history of the sequences under the following assumptions: (1) there is a single

known ancestral sequence, (2) the change in one site, from 0 to 1, is permitted

only once (called mutation), (3) two sequences are permitted to recombine as a

result ofrecombination event, (4) each site in the sequence represents a SNP (sin

gle nucleotide polymorphism), a site where two of the four possible nucleotides

appear in the population with the frequency above some threshold [87].

Root: 00

Label Sequence

A 01

B 11

1" / \ /•* ^ Recombination edge
Recombination node

A:01 B:ll C:10

Figure 3.2: A Phylogenetic network for three binary sequences.

Given a set of species and their binary sequences, a perfect phylogenetic

network, always exists with 0(mn) recombination nodes, where n is number

of species and m is the length of binary sequences. However, recombination

is a rare event in the evolutionary process, therefore a phylogenetic network

with minimum number of recombination nodes is biologically significant and

informative.

A node a: in a phylogenetic network N is said to be coalescent if it has two

42

-A



Y

Chapter 3. Phylogenetic Network with Constrained Recombination

pathsout ofit that meet at recombination node r. Those two paths together with

the coalescent node and recombination node represent a recombination cycle.

A recombination cycle in a phylogenetic network that does not share any

node with any other recombination cycles is called a gall. But the path from

root to any of the gall or a node, which is not on the gall, can pass through the

gall. A phylogenetic network is said to be gall tree if every recombination cycle

is a gall in the network.

A simplified constrained recombination network with recombination, coales

cent and mutation nodes is shown in Figure 3.3.

Root node

Mutation node

D F

Recombination node

Coalescent node

Figure 3.3: A gall tree with recombination, coalescent and mutation nodes.

3.3 Conditions for the detection of recombina

tion nodes

In this section, we formulate the necessary and sufficient conditions for the detec

tion of the recombination nodes. We use the similarity and dissimilarly between
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3.3 Conditions for the detection of recombination nodes

the sequences as major tool for the detection of recombination nodes. The sim

ilarity and dissimilarity of the sequences is computed with respect to 1. For

example, let Si : 00010 and S2 : 00110 are two binary sequences, the similarity

is 1, due to 1 in both sequences at site 2 from right, and dissimilarity is 1 as the

site 3 in 52 is 1 and in Sx is 0.

Lemma 3.1 is crucial for the detection of the gall in the given binary se

quences. It says that the similarity and dissimilarity between the sequences,

which share a common parent should be computed after removing the parent's

characteristics from each child. This avoids the misleading similarity between

the species.

Lemma 3.1. Let S and S' be the sequences of the children of node v. If S' is

not the result of the mutation or recombination in S then the similarity between

S and S' is due to common ancestry.

Proof. Let S' not be a child of S, then S' is not reachable from S, therefore, all

the sites or characters of S' are different from the characters of the node S. Let

S and 5" be children of node v, then both S and S' are reachable from node v,

and show similarity by at least one character (or site) with the parent node v.

Therefore both the nodes S and 5" show the similarity with each other at the

parent characters or sites. Hence, this proves that the distinct nodes will show

similarity due to common ancestry. •

A set of binary sequences can be assigned to each node in the network based

on the following properties. For a non-recombination or the mutation node, the

sequence is same as its parent, except at a single site i, where the mutation

has occurred and the value has changed from '0' to 1'. This gives the basis

for the assumption that if we consider each sequence as a binary number then

the parent will always have less value than its children. As recombination is the
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process of exchanging the genetic material between the species, the sequence of

recombination node will either be only two substrings of both the parents (for

single crossover) or many smaller substrings ofboth the parents (called multiple

crossovers).

The similarity and dissimilarity measures give important structural details

about the gall trees. Weshow that the nodes can be classified into mutation and

recombination nodes using the distance measure. We construct the gall tree and

prove that this algorithm displays minimum number of recombinations needed

by the sequence matrix, which has all O's in the ancestral sequence.

Lemma 3.2. Ifa node v' is the result ofmutation from its parent v then v < v',

when the sequences are considered as the binary numbers.

Proof of lemma 3.2 is quite obvious as only one site is changed from 0 to 1

during mutation and the back mutation is not permitted.

Lemma 3.3 plays an important role in the detection of the recombination

nodes. It states that if a node is the result of recombination then it should be

greater than at least one of the parents. This can be used to classify the input

sequences in mutation and recombination classes.

Lemma 3.3. Let v be a recombination node with sequence S. If P' and P" are

two parent nodes of v, with sequences S' and S" respectively, then any of the

following will hold.

(a) S' <S and S" < S

(b) S' > S and S" < S

(c) S' <S and S" > S
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3.3 Conditions for the detection of recombination nodes

Proof. Let us consider the proof for the binary sequences of length two. Let

three binary sequences, which give a recombination node v are 01, 10, 11. These

sequences can be placed in only three different ways to represent the recombina

tion as shown in Figure 3.4 . It is proved by Gusfield et al. [7] that these are

the only possible ways of representing the above sequences. In all the cases, the

sequence with all O's is considered as root. The case of child having less value

than both of its parent is not possible because back mutation is not permitted

and the assumption that the root of the gall tree will have all O's in it. Let us

now consider the cases (a), (b), and (c) individually below:

10 oi

Figure 3.4: Three cases for Lemma 3.3.

(a) Here, the two mutations from root node lead to the species 01 and 10. The

recombination node v, with sequence 11 is the result of recombination of

01 and 10. Clearly, v is greater than its two parents. This is shown in

leftmost network of the Figure 3.4.

(b) In this case, the sequence 01 mutated from root and the sequence 11 is

mutated from 01. The recombination node v is the result of recombination
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between root and P'. It satisfies the case (b) stating, S' > S and S" < S.

This is shown in middle network of the Figure 3.4.

(c) In this case, the sequence 10 is mutated from root and the sequence 11 is

mutated from 10. The recombination node v is the result of recombination

between root and P". It satisfies the case (c) stating, S' < S and S" > S.

This is shown in rightmost network of the Figure 3.4.

It can be easily seen that the proof follows for binary sequences of length

greater than two. rj

Converting the binary sequences into distance matrix based on similarity or

dissimilarity leads to the information loss. For example, consider the sequences

Si: 00010, S2: 00100, S3:10010 and S4:10100. The distance or dissimilarity

between Si and S2 is 2, and the distance between S3 and S4 is also 2. According

to the definitions of child parent relationship mentioned in section 2 and 3, the

sequences Si and S2 do not share any relationship with each other. On the other

hand, thesequences S3 and S4 share a child parent relationship even though they

have the same dissimilarity, i.e., 2 as for Si and S2. This clearly indicates loss

of information due to transition. Its effects when applied to different methods,

which construct the network based on distance data, are shown in section 3.6. To

avoid this loss, we consider both similarity and dissimilarity for the construction

of gall trees.

The theorem 3.1 uses the lemma 3.2 and 3.3 for the detection of the

recombination nodes. It helps in finding the parents of the recombination node,

which is particularly useful when any one ofthe parent is greater than the child.

It states that the similarity between the parents of the recombination node is 0.

Given three nodes indicating a recombination event, using lemma 3.2 and 3.3
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we can find one parent easily and the other parent can be can be detected with

aforementioned fact.

Theorem 3.1. Let M be the given sequence matrix representing the gall tree.

A species or sequence is said to be a result of recombination if any one of the

following conditions holds good:

1. Iftwo species haveO < similarity <= 100% and dissimilarity > (100/m)%,

where m is the length of the sequence, one sequence represents parent and

other sequence represents the child, which is the result of recombination.

2. Parents of the recombination node have similarity = 0.

Proof. 1. Suppose that at some node x, mutation occurred at site i, which

represents the change at only site i from 0 to 1 in the mutated node y.

If we calculate the similarity and dissimilarity between the nodes x and

y corresponding to the value 1 at each site, the similarity between them

will be 100% and dissimilarity will be (100/m)%. This indicates that only

one site has modified its value from 0 to 1. By the assumptions we made

for phylogenetic network, there is no provision for back mutation, that is

transformation from 1 to 0 and in addition, the mutation of more than one

site at the same instance of time is ruled out. This restricts the dissim

ilarity as (100/m)% for mutation. But in case of recombination the two

aforementioned restrictions of the mutation are ruled out due to the fact

that the resulting sequence will carry a part of the sequence from one of its

parents and rest will be copied from the other parent (in single crossover).

This fact indicates that the similarity can be 0 < similarity <= 100% and

dissimilarity > (100/m)%. Hence the condition (1) holds true.
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2. Let us prove this by contradiction. Suppose the recombination node v has

two parents with the sequences S' and S" showing some similarity. From

the assumptions made in section 3.2 and lemma 3.1, the similarity between

the species in node disjoint recombination networks is due to following

three reasons: (1) common parent, (2) child parent relationship with a

single mutation, and (3) recombinations. IfS' and S" show some similarity

then one of the above relations holds. The relation 1 is eliminated by

removing the parent characteristics while computing the similarity between

the children. Since we focus ona constrained recombination problem, where

two recombination nodes are disjoint, relation 3 is avoided. Let S" is an

immediate child of S", due to mutation in S'. If the nodes S' and S" are

the parents for recombination node N, then the sequence of recombination

node will be same as any of its parents, N e (S',S"), instead of a new

sequence as shown in Figure 3.5.

oo oo

Figure 3.5: Result of recombination between parent and child.

Hence, the parents of the recombination node will be dissimilar to each

other.

•
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Theorem 3.2 gives a strong basis for the detecting the galls in the given input

data. Any data satisfying the conditions given in theorem 3.2 will have gall tree.

Otherwise, the data will not represent the gall tree structure.

Theorem 3.2. // C, C, and C" are child list of nodes S, S', and S" then the

following conditions should hold for the gall trees:

1. Recombination node will be C C\C' 7^ 0 and \CDC'\ = 1 .

2. If the number of recombination nodes in any of the parents is greater than

1, and C0 C" ^ 0 then (C DC" = 0 or S" UC" C C) and (C DC" = 0

or S" UC" C C) .

Proof. 1. This is proved by contradiction. Let \C DC'\ > 1 represent that

the nodes S and S' are involved in more than one recombination with each

other. Each recombination node represents a cycle in the gall tree. The

path from root node to the recombination node always has two alternatives,

one from each of its parents. If there are more than one recombination node

for the single pair of parents S and S", then there are two paths for each

recombination node which involves the same set of parents S and S'. In

other words, the parent nodes are shared by two recombination cycles. But

according to the definition of gall tree, the nodes in one cycle should not

be shared with other recombination cycle. This contradicts the assumption

made and hence proves the condition.

2. The proof is similar as in case (1). Let C DC ^ 0 and the number of

recombination nodes in C be two. If C n C = X and Cf\C" =Y, then

there exists a path from root nodeto the recombination cycle ofnode X and

node Y, which passes through the node S. This violates the node disjoint

%
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rule of gall trees. Let child list C" and the node S" itselfbe a subset of the

child list ofnode S. If the similarity and dissimilarity between the children

of S are computed after removing the S"s characteristics from each node

then the recombination node will not show S in its parent list, according

to lemma 3.1. This parent relationship with the recombination node is due

to the common ancestor of all the nodes in the recombination cycle. Thus,

when there is common ancestor for the parents of a recombination node

then the parent of all the nodes in that cycle is also added as the parent

to the recombination node.

D

Ifchild list is associated with every node that indicates its potential children,

then any two nodes, having child list C and C, share more than one child,

i.e., \C n C'\ > 1, and it indicates that the parents are involved in more than

one recombination resulting into a non gall tree structure. The condition (1) in

theorem 3.2 restricts the two parents from having more than one recombination

node.

Similarly, the condition (2) states that only the node, which is parent of the

two or more galls in the networks can have more than one recombination nodes

in its child list.

3.4 The Node Class Algorithm

In this section, we propose an algorithm for the phylogenetic network recon

struction with constrained recombination. We prove that this algorithm results

in minimum number of galls in the resulting network.

The root sequence contains all zeros in it and only a state change from 0 to
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1 gives information about mutation or recombinations. Thus the similarity and

dissimilarity with respect to 1 are considered. The similarity and dissimilarity

with respect to l's in the sequence can becalculated using AND and XOR binary

number operations respectively. For example, consider the sequences Sx and S2,

having zero similarity and 2 dissimilarities as shown below.

0 0 0 10 : Sx

0 0 10 0 : S2

0 0 0 0 0 AND (Similarity)

0 0 110 XOR (Dissimilarity)

The number of l's in the result represents similarities or dissimilarities with

respect to the operation performed. Similarly, the parent's characteristics can be

eliminated from children using the XOR operation. This approach significantly

reduces the number of comparisons performed to compute the similarity and

dissimilarity, hence reduces the complexity of the algorithm.

The algorithm makes the child of each node given in the data matrix based

on similarity and dissimilarity. We assume that all the sequences represent a

unique leaf node in the network. The arrangement of nodes starts with the root

node, assumed to have all 0s in it. Each mutation will lead to change at only

one site and recombination may lead to more than one change.

The algorithm accepts a n x m binary matrix as input, where each row rep

resents a node in the phylogenetic network. Similarity and dissimilarity matrices

are generated based on the input matrix and are computed corresponding to

the value 1 at the sites. The distances (similarity and dissimilarity) between

the siblings are measured after removing the parent's characteristics from the
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children. The parent node is considered as the root to all the nodes in the child

list except the recombination node. If the data does not represent gall tree, then

the algorithm terminates by reporting an error message. We use a special data

structure Node with three variables Lable, Type and Count. Label is used to

represent node label, Type for representing the type of the node, and count is

used to represent number of parents of the node. There are three types of node

^ Recombination, Mutation and Null. Recombination is assigned to the node

which is the result of recombination, Mutation is assigned to the node which

results from mutation, and Null is used to represent the node, which is the child

of the root node or is not a Mutation or Recombination node. The algorithm is

as follows:

DATA STRUCTURE:

Input : Binary matrix ofnxm.

Output : Parent and Child list for each node.

D <— An input matrix of size n x m ,where n is number of species and m is

length of sequences. Each row is considered as a Node

Sirriij i— The similarity with respect to l's on comparing rows i and j.

DiSij <— The dissimilarity with respect to l's on comparing rows i and j.

Node <— A record with three variables: Label, Count, and Type. Initially the

Count and Type variables of a Node are set to zero and Null respectively. The

variable Label is set to the labels of rows in the input matrix.

Childi <— An array of child labels for Nodet initially set to Null.

ParenU <—is an array of parent labels for Nodei initially set to Null.

ALGORITHM: Node.Class(D)

begin
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1. for each Row (Node) i in D do

2. for each Row (Node) j in D do

3. if 0 < simij < 100% and Disi:j > 100/m% then

4. if Nodei < Nodej then

prnt <— i

chid <— j

else

prnt <— j

c/i/d <— i

end if(4)

Nodechid.Count <— Nodechid.Count + 1

Childprnt <— Childpmt UNodecud-Label

5. if 0 < Nodechid.Count > 2

Nodechid-Type <— Recombination

else

Nodechid-Type <— Mutation

end if(5)

end if(3)

end for(2)

end for(l)

end Algorithm

The next function TesLGall takes Child list and Node record list as input

and based on theorem 3.2, it verifies whether gall tree exists in the given data. If

the data does not represent the gall tree then the function terminates giving an

error message as an output, otherwise it returns a message confirming presence

of gall tree. The function is as follows:
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FUNCTION: Test.Gall ( Child, Node )

Begin

1. for each Row (Node) i in D do

2. for each Row (Node) j in D do

3. if \Childi fl Childj\ > 1 then

return Gall tree does not exist

end if(3)

end for(2)

end for(l)

4. for each Row / with more than one recombination node as child do

5. for each child c of childi do

6. if Nodec.Label U Childc C Childi

Add a new node in the Child list same as Nodec

Add the Children of Nodec to the new node

Remove the children of Nodec from Child list of Nodet

Add the new Node as the child of Nodec

else

return Gall tree does not exist

end if(6)

end for(5)

end for (4)

end Function

The following theorem proves that the algorithm results in a gall tree, if one

exists, with the minimum number of galls in it.

Theorem 3.3. For the input matrix M, if there are k recombination nodes then

any gall tree that minimizes the recombination will have exactly k galls or node

55



3.5 Correctness and time complexity analysis of the algorithm

disjoint cycles.

Proof. Let T be a gall tree for the input binary matrix M. If there is a gall Q in

T that contains only the mutation nodes, then the sequence labeling of the nodes

on Q can be derived from the perfect phylogeny. The root of the gall Q is the

sequence labeling the coalescent node of Q. Replacing Q with perfect phylogeny

will result in a gall tree with one recombination less than the gall tree T. Hence,

any gall tree using the minimum number of recombinations must have exactly

one recombination node for each gall. Therefore, the minimum number of galls

in a gall tree is exactly the number of recombination nodes. •

3.5 Correctness and time complexity analysis

of the algorithm

All the results and facts in section 3.4 are based on the existence of the gall tree

for the input matrix M. The theorems in section 3.3 and 3.4 show correctness

of the algorithm. When the input data does not display a gall tree structure, the

algorithm reports an error message and terminates. The gall tree computed by

the algorithm have minimum number of recombinations.

The algorithm proposed in this chapter computes a gall tree, if one exits, in

0(n2) time, where n is the number of nodes in the input data. The complexity

is reduced with the help of small bookkeeping, which maintains a child list and

a record for each node. There are three phases for finding a gall tree.

In the first phase, the similarity and dissimilarity matrices are computed

based on the binary AND and XOR operations. The comparison is considered

as a major operation contributing to the complexity of the computation and

counting the number of ones in the result is taken as an elementary operation,
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this phase takes at most 0{n2) time to compute the similarity and dissimilarity.

In the second phase, the nodes are classified intothree types Null, Mutation,

and Recombination using Node.Class algorithm. The first two steps for loops,

i.e., step 1 and 2, are major steps contributing towards the complexity of the

algorithm and thus the steps take 0(n2) time.

The final phase is used to find a gall tree based on child list and node record

using Test-Gall method. The first two for loops, i.e., steps 1 and 2, run for n

times and takes n2 time. The step 4 runs for each node with more than one

recombination node, which is far less than the total number ofnodes, i.e., n, and

the step 5 runs for each child and its child list which is also less than the total

number of nodes. The first two steps dominate the complexity of the Test.Gall

method and lead to 0(n2) time for the algorithm.

The total time required to compute thegall tree, ifone exist, is0(n2+n2+n2)

which is 0(n2). This gives the better computing time than the best known

algorithm [7] with time complexity of 0(n3).

The first two 'for' loops, i.e., step 1 and step 2,of the Test.Gall method run

for n times to check the existence of the gall tree. Therefore, it takes 0(n2) time

to find that there does not exist a gall tree for the given binary matrix.

3.6 Results and discussion

In this section, we illustrate the working of the proposed method with an ex

ample and compare the results with the existing methods, such as T-Rex [44],

NeighborNet [4], and SplitsTree [6]. The comparison is made with these methods

based on the resulting network and the time complexity.
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3.6.1 An illustrative Example

The input matrix for the algorithm is shown in Figure 3.6, which consists of

seven leaf nodes and a binary number to represent each of the nodes. The

initial value for the variables of each Node record is set to Null. The similarity

and dissimilarity matrix after removing the parent's characteristic are shown in

Figure 3.7.

Label Sequence

A

B

C

D

E

F

G

000 10

10010

00 100

10 100

0 1100

0 110 1

00101

Figure 3.6: Input binary matrix with labels.

After processing each node the values assigned to each variable or properties

of the nodes are shown in Table 3.1. The values for nodes A and C are 'Null'

because they are mutated from the root node, and not from any other nodes.

The nodes D and F are the result of the recombination and have two parents.

The rest of the nodes are the result of mutation from their respective parents.

Table 3.2 shows the child list of each node. The nodes D and F do not have

any child, thus their child lists carry Null values. On the other hand, the nodes

D and F are in the child list of B, C and E, G nodes respectively; thus making

them recombination nodes. The function Test.Gall results in Table 3.3 when

applied to Table 3.3 and Node list. The child list is computed based on the
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A B C D E F G

A 1,0 1,1 0,2 0,3 0,3 0,4 0,3

B 1,1 2,0 0,3 1,2 0,4 0,5 0,4

C 0,2 0,3 1,0 1,1 1,1 1,2 1,1

D 0,3 1,2 1,1 2,0 0,2 0,3 0,2

E 0,3 0,4 1,1 0,2 2,0 1,1 0,2

F 0,4 0,5 1,2 0,3 1,1 3,0 1,1

G 0,3 0,4 1,1 0,2 0,2 1,1 2,0

Figure 3.7: Similarity and dissimilarity matrix for the input data shown in Fig

ure 3.6. The first element represents similarity and second one represents dis

similarity.

Table 3.1: Values of each property of node record after processing the input

matrix shown in Figure 3.6.

Node Label Type Count

A Null 0

B Mutation 1

C Null 0

D Recombination 2

E Mutation 1

F Recombination 3

G Mutation 1

gall tree conditions proved in theorem 3.2. The child list for the node C has

two recombination nodes D and F, and the child F has count value 3 indicating
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three parents. But, it satisfies second condition in theorem 3.2. The steps 4,5,

and 6 of function Test.Gall are executed, which results in a new node C". The

node C is added to child list of C. The child nodes E,F, and G are removed

from the child list of node C and added as the children of node C. The modified

child list is shown in Table 3.3.

Table 3.2: Child list for the input matrix shown in Figure 3.6.

Node Label Child List

A B

B D

C D,E,F,G

D NULL

E F

F Null

G F

Given the child and node record list for each of the node in the input data,

it is easy to construct the gall tree for it. The procedure starts by including a

new node called Root, with all zeros in it's sequence. All the nodes with a Null

entry in their NodeType are attached to the root node. The rest of the nodes

are then added and connected accordingly to the child list entries. The child

list is preprocessed and analyzed for coalescent node, therefore, the phylogenetic

network can be constructed directly with the help of child list and node record

itself. It is obvious that the network can be constructed with a single scan of

child list and node record. Both the lists contain n entries and can be computed

in linear time, i.e., 0{n).
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Table 3.3: Modified Child list for the input matrix shown in Figure 3.6.

Node Label Child List

A B

B D

C D,C

C E,F,G

D NULL

E F

F Null

G F

The network construction for the above example starts with the first entry

in the node record. Here, the first node is A which has a Null entry in its

Node.Type as shown in Table 3.1, so it is attached to the Root node of the gall

tree. Node A's child list shows B as child, therefore, the node B is attached to

node A as child. The nodes B and C have the node D as child, therefore, node D

is attached to both of them. The whole network is constructed in similar fashion.

The final gall tree for the input shown in Figure 3.6 is shown in Figure 3.8.

3.6.2 Comparison with other methods

The distance matrix used for the input to the different methods is shown in Fig

ure 3.9. The distance between the nodes represent the number of mismatches in

the sequences. For example, consider the sequences S^OOOIO and 52:10010 the

distance is 1 as only one site has a mismatch and all other sites have the match

ing values. When the input matrix is applied to different network construction
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R: 00000

D: 10100

E: Oil

C : 00100

G: 00101

F: 01101

Figure 3.8: Final gall tree for the input data shown in Figure 3.6.

methods the resulting networks are shown in Figure 3.10 and Figure 3.11.

A B C D E F G

A 0 1 2 3 3 4 3

B 1 0 3 2 4 5 4

C 2 3 0 1 1 2 1

D 3 2 1 0 2 3 2

E 3 4 1 2 0 1 2

F 4 5 2 3 1 0 1

G 3 4 1 2 2 1 0

Figure 3.9: The distance matrix used as input to T-Rex, NeighborNet, and

SplitsTree.

Figure 3.10(a) shows the tree constructed using Neighbor Joining method and

is used as the underlying tree structure by T-Rex for constructing phylogenetic
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network, shown in Figure 3.10(b). There is a reticulation edge between the nodes

B, D and G, F. The nodes E and F haveevolved from a common ancestor and F

shares a reticulation edge with G. This indicates that the node F is the result of

reticulate evolution. However, in the actual data F is the result of recombination

between E and G. It can be observed that the other reticulation edge is missing

between E and F. Similarly, a reticulation edge is missing between C and D as

the node D is the result of recombination between B and C.

(a)

E

• F

.'''
G

A

..--'""
--""'

D

(b)

Figure 3.10: Underlying tree for T-Rex, constructed using neighbor joining

method and the network constructed using T-Rex.

Figure 3.11 shows the network constructed using NeighborNet and SplitsTree,

both of which give the same result. NeighborNet and SplitsTree give closer

visualization to actual representation than T-Rex does. The evolution of node

F is properly indicated as the recombination node of E and G. The evolution

of D is also interpreted properly. However, NeighborNet and SplitsTree added

an additional edge between the node A and C. In actual representation there is

no relationship between A and C as they have evolved independently from root

node. Thus, the output is not fully correct for these algorithms.
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Figure 3.11: Phylogenetic network constructed using NeighborNet and Split

sTree.

The variation in the networks is due to the information loss while converting

the sequences into distances. To avoid this our algorithm utilizes both similarity

and dissimilarity measures for the construction of the network. This gives a

nearest visualization of the data to the actual representation. The resulting

network of the proposed method is shown in Figure 3.8. Our algorithm gives the

correct output as verified by the actual data representation.

The time required to compute the phylogenetic network bySplitTree is0(n5),

T-Rex is 0(n4) and NeighborNet is 0(n3), where n is the number of node. On

the other hand the algorithm proposed in this chapter computes the phylogentic

network in 0(n2) time.

3.7 Conclusion

In this chapter, we proposed a pattern matching based approach for the con

struction of phylogenetic network with constrained recombination. The pro

posed algorithm, computes the gall tree in 0{n2) time, where n is represents the

number of nodes. We also formulated the necessary and sufficient condition for
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constructing the gall trees. There are two major changes in the network con

struction approach that reduces the complexity and improves the visibility of the

proposed method. They are:

1. A row-based search to detect the recombination nodes

2. Use of both similarity and dissimilarity.

•k
Other algorithms search the columns for the detection of recombination and

the number of columns in a sequence may be far greater than the row, which

increases the complexity of the previous algorithms. The use of both similar

ity and dissimilarity avoids the information loss due to converting sequences

into distances. The comparison with the result of other algorithms like T-Rex,

NeighborNet, and SplitsTree shows that our algorithm is accurate and efficient.
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Chapter 4

Supertree algorithms

Phylogenetic tree of species can be constructed using distance and character

based methods, as discussed earlier. In spite of the great progress in the phylo

genetic tree constructing methods, it appears difficult for a single research team

to construct the tree of life due to following reasons:

• Most of the individual researchers and research teams are concentrating on

the evolutionary pathways of specific phylogenetic groups.

• Many efficient phylogenetic reconstruction methods, such as Maximum

Parsimony [72] and Maximum Likelihood [88], are hard optimization prob

lems and are limited to small number of taxa. On the other hand, distance-

based [9, 89, 46] phylogenetic reconstruction methods are computationally

efficient but while converting sequence data to distance data, loss of infor

mation occurs.

In this chapter, we propose a phylogenetic supertree method that exploits the

features ofboth the methods in a way that smaller trees canbeconstructed using

efficient character based methods and then these smaller trees can be merged

using distance based methods.

67
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4.1 UPGMA and its variant

In this section, we describe the standard UPGMA algorithm, which is a sim

ple bottom-up data clustering method used for constructing phylogenetic trees.

The failure of UPGMA with respect to the constraints on the tree distances is

discussed with a novel solution to overcome the drawback of standard UPGMA.

4.1.1 Standard UPGMA

UPGMA is statistical based and simplest among the phylogenetic tree construc

tion methods. It accepts the pairwise distance between the species to be classified

and give a phylogenetic tree as output. It starts by considering each species as

a cluster then combines two nearest clusters in each step. After combining two

closely related clusters the algorithm recalculates the pairwise distances between

the clusters. The process is repeated till there is only one cluster left. The

method is as follows:

1. Take distance matrix as input. For example a distance matrix for three

species is shown below.

Species ABC

B dAB

C dAc dec

D dAD dBD dcD

2. Species with the smallest distance amongst them will be clustered.

3. The new distance matrix is computed with the distance between new group

and the remaining species as d{AB)c = l/2(dAc + dBC) for all the species.

4. Repeat until all the species have been grouped.
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4.1.2 Failure of Standard UPGMA

This method applied to pairwise distance data returns a rooted phylogenetic

tree. However, when applied to tree distance data leads to the clustering of

wrong taxa. This will be clear with the following example. Let us consider the

trees shown in Figure 4.1 as input trees and their average distance matrix shown

in Figure 4.2. The distance between two species is computed as the average of

path lengths between the species in each tree of input collection.

Figure 4.1: Input trees for UPGMA.

A B C D E

B 4

C 4.5 2.5

D 4.5 3.5 3

E 4.5 4.5 4 3

F 4 6 5.5 4.5 3.5

Figure 4.2: Distance matrix for the trees shown in Figure 4.1
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The distance matrix in Figure 4.2 shows that the distance between B and

C is least and thus leads to the grouping of the B and C. The distance matrix

after merging B and C is shown in Figure 4.3.

A BC D E

BC 4.25

D 4.5 3.25

E 4.5 4.25 3

F 4 5.75 4.5 3.5

Figure 4.3: Modified distance matrix after grouping B and C

The species D and E at minimumdistance in the matrix shown in Figure 4.3,

but if the distance from the least common ancestor of the BC is considered then

D is close to the group BC. The distance between the least common ancestor

of BC and D is 2 as shown in Figure 4.1(a) and 4.1(b). This shows that

employing the standard UPGMA algorithm leads to wrong clusters, thus leading

to incorrect phylogenetic supertree.

4.2 UPGMA variant: A new distance calcula

tion algorithm

In this section, we propose a variant of standard UPGMA that makes use of dif

ferent distance measure for recalculating distance matrix to be used for clustering

the species.

The algorithm is based on sets of clusters and therefore is used for rooted

trees. It makes use of cluster information available in the given tree for distance

calculation. Once the clusters shows least difference they are combined and
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considered as a single cluster. Then the distance from the newly formed cluster

to all the other clusters is recalculated. The algorithm for calculating distances

between two species or clusters is as follows:

ALGORITHM: Distance( A , B )

Input: clusters A and B

Output: Distance between the clusters A and B

begin

1. Find all clusters with A or B and make a set X

2. Find the minimum cluster M in which both A and B are present

3. Dist = 0

4. for each cluster i in X

5. if Xi n M = Xi then

6. Dist = Dist + 1

end if(4)

end for

7. Final distance is Dist = Dist-2 (for two nodes)

end Algorithm

In the first step, the algorithm finds all clusters with A or B where A and

B can be a single node or a cluster. Once the clusters are available a cluster

with minimum number of taxa that includes both A and B is searched. This

minimum cluster is then used for finding the distance between the clusters. The

working of the algorithm can be made clear with the help of following example.

For the tree shown in Figure 4.1(a), the distance between cluster BC and A

can be computed as:

1. Clusters with BC or A are X = {{A}, {AB}, {ABC}, {ABCD}, {ABCDE},

{ABCDEF}}.
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4-3 The supertree algorithm

2. Minimum cluster with BC and A, M = {ABC}.

3. Clusters with Xif)M = Xi are {{A}, {AB}, {ABC}, {ABC}}.

4. The final distance is number of clusters in step - 2, i.e. 4-2 = 2.

Similarly, the distance can be calculated in different trees and an average is

taken for further combining of species.

There are at most (2n - 1) clusters in each tree therefore the algorithm takes

0(n) time for distance calculation. The new modified distance matrix, shown in 4-

Figure 4.4, is used for further grouping instead of the distance matrix show in

Figure 4.3.

A BC D E

BC 3.5

D 4 2.5

E 4 3.5 3 *

F 3.5 5 3.5 3.5

Figure 4.4: Distance matrix computed using variant of standard UPGMA.

4.3 The supertree algorithm

In this section, we describe the new technique for the construction of the su

pertrees and establish the desirable properties of the supertree method. The

advantage of this algorithm is that it will return a tree even for incompatible

input tree collection. The algorithm is described below.

ALGORITHM: DISTSUPERTREE( T )

begin

1. Find common and distinct leaves in the given
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trees as COMM = nk=1L(Ti) and DISTINCT = {L(TA - COMM}

2. For all trees, find the restrictions of the input

trees on the subsets COMM and DISTINCT.

T[ = T\{COMM} and 7f = ^{DISTINCT} for all t = 1 to k

3. Construct the phylogenetic consensus tree ST using UPGMA variant for

the for the restriction trees constructed in step 2.

/* for each tree the number of edges between the leaves

is considered as the evolutionary distance between them.

For the final tree the average of the distances of the

trees is considered. */

4. if COMM + 0

5. for each i = 1 to k

6. if T is a subtree of T without performing contraction.

The root of T is connected with root

of the ST, and the whole tree is renamed as ST.

else

7. for each node Nj in DISTINCT

Add an edge between Nj and its least common

ancestor in T\ in the tree ST.

end for (7)

end if(6)

end for(5)

end if(4)

end Algorithm

The first step of the algorithm finds the COMM common and DISTINCT

leaf nodes in the collection of input trees. Restriction trees for the both COMM
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and DISTINCT sets are constructed in the second step of the algorithm. Step

3 takes the restriction trees of COMM set as input and uses the variant of

UPGMA to find the consensus tree for common leaf nodes. The distance between

the species is considered as the average number of edges between them. Finally

the distinct nodes are added to the consensus tree (which is the result of step 3),

based on least common ancestor optimality criteria.

4.4 Properties of the DISTSUPERTREE

The proposed DISTSUPERTREE algorithmshows all the properties given by

Steel [54] for the supertree methods. Here we establish the desirable properties

for the above algorithm.

The DISTSUPERTREE method computes the supertree in polynomial

time as each step in the algorithm takes polynomial time to complete the desired

task. The key steps in the algorithm are 3 and 4, which compute the supertree

of all the taxa. Step 3 takes 0(kl3), where k is number of tree of trees and I is

number of common leaf nodes, I = \COMM\, in the collection of the input trees.

Step 4, which grafts the distinct nodes on the consensus tree resulting from step

3, takes 0(km), where m stands for the number of nodes in DISTINCT set

of each input tree m = \DISTINCTi\, for i = 1 to k. The total complexity of

the algorithm is 0(kn3), where k is number of trees and n is the total number

of leaf in all the input rooted trees. The following theorem formally proves the

time complexity of the proposed algorithm.

Theorem 4.1. Let T = Tx,T2, ...,Tk be a set of rooted phylogenetic trees. Then

the DISTSUPERTREE takes 0(kn3) time to compute the supertree.

Proof. The step three of the algorithm takes 0{kl3) time for constructing the
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consensus tree of common nodes, where k is number of trees and I is number of

common leaf nodes in the input tree collection. It can be elaborated as follow:

the algorithm distance takes 0(1) time and it has to be computed I2 times for

pairwise distances between each node. Thus, the total time to compute the

distances is 0(l3). The whole computation has to be performed for each tree the

complexity goes to 0(kl3).

The step 4 is to add the distinct nodes ofeach tree to the result ofstep 3. It

takes 0(km) time, where k is number of trees and m is distinct leaf nodes in the

input tree collection.

In the worst case the value of / and m can be same as the total number

of nodes in the input tree collection n. Therefore, the total complexity of the

algorithm in worst case is 0(kn3). •

It is evident that the algorithm satisfies the properties 3 and 4, which states

that the result of the supertrees should not be affected if the order of the trees is

changed or leaves are relabelled. The algorithm does not make use of the order

or labelling information rather uses the structural topology for the construction

of the supertree. Hence properties 3 and 4 are satisfied. The fact it returns a

supertree is proved in the following theorem.

Theorem 4.2. Let T = Tx,T2,..., Tk be a set of rooted phylogenetic trees. Then

the DISTSUPERTREE applied to T returns a tree.

Proof. To simplify the proof we consider two cases, the first case is of collection

of input trees classifying the common species, and the second case is of the

collection of the input trees classifying the overlapping set of species.

For the first case, it is clear that the DISTSUPERTREE method returns
%

a tree when applied to a collection of trees T, which classifies the common leaf
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nodes. The algorithm returns a consensus tree at step 4. UPGMA variant is

used for the construction of the consensus tree which always results in a single

rooted tree.

For the second case, the input collection of the tree classifies overlapping set

of species. Step 4 uses the least common ancestor information carried by the

input trees to ensure that all the leaf nodes are connected to the proper least

common ancestor.

The leaf nodes of each input tree comeunder COMMON set or DISTINCT

set. Both the sets are used for the construction of the supertree. The loop in step

4 ensures that all trees are processed for each node in the DISTINCT set, which

is added to the resulting supertree. This leads to a single rooted supertree. •

The proofof the theorem 4.3 depends on the result proved in theorem 4.2 of

[90].

Lemma 4.1. Let T and T are two phylogenetic rooted trees then T < T" if and

only ifr(T) C r{T) and L{T) C L(T).

Theorem 4.3. Let T = Tx,T2,...,Tk be a set of compatible rooted phylogenetic

trees. Then the DISTSUPERTREE applied to T returns a tree, which displays

all the input trees.

Proof. If T = Tx,T2,...,Tk is the set of compatible rooted collection of input

trees. Let r = U*L1r(Ti) is set all the rooted triplet of the input trees, where

r(Ti) is the set of triplets of the tree T . Then by comparing the algorithm

Mincut [53] with the DISTSUPERTREE, when the input collection of trees

is compatible, the resulting tree of both the algorithms is identical (shown in

section 4.5 ) when applied to r(Tt). Therefore, as r(T) is a subset of rooted

triplets of the tree returned by Mincut, r = Ulfc=1r(Ti) also holds. According to

lemma 4.1 , ST displays all the trees in the collection T. •
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4.5 Experimental Evaluation and comparisons

In this section, we discuss the results of the experiments conducted upon two

different trees and compare them with the Mincut [53], and Adams consensus

methods [91, 62]. The first data set consists of the trees, which shares common

leaf nodes. The result will be a consensus tree. The input trees for this method

are given in Figure 4.5.

Figure 4.5: Trees T' and T" are amalgamated to give a consensus tree using
different methods.

If the trees in Figure 4.5 are given as input to DISTSUPERTREE, after

the first step COMM contains all the leaf nodes and set DISTINCT is empty.

The distance matrix computed for the trees is given in Figure 4.5.

The matrix represented in Figure 4.5 is constructed using the average number

of edges between any two leaf nodes in two trees. Then the tree ST is constructed

using these distances as shown in Figure 4.7(a). This tree returned by the algo

rithm as supertree after step 4 because the set DISTINCT is empty. Figure 4.7

also includes the results obtained by the Mincut and Adam's consensus method.

DISTSUPERTREE gives the identical tree to the Adam's consensus tree

when applied to the common leaf nodes, indicating that the DISTSUPERTREE
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A B C D

B 2

C 2.5 2.5

D 3 3 2.5

E 2.5 2.5 3 2.5

Figure 4.6: Distance matrix obtained as a result of step 3 of DISTSUPERTEE.

A B D E A B

(a)

Figure 4.7: Consensus trees as the result of combining tree of Fig.3 (a) DIST

SUPERTREE (b) Adam's consensus method (c) Mincut.

method is at least as good as Adam's consensus method, which preserves all

the nesting represented by all the input trees. The reason for the difference in

output trees shown in Figure 4.7 is that Mincut supertree method uses a local

optimization principle and Adams consensus tree uses set theoretic operations.

The disadvantage of the Mincut algorithm is that the result of the algorithm

sometimes contains the triplets which express conflict in input trees, an example

ofthis is given below. Even though the DISTSUPERTREE uses an optimality

criterion, it gives similar results to Adams consensus tree. But the results are

appreciable when applied to the tree representing the polytomy, which results

when two or more lineages diverge from the single ancestor at the same time.
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An example is presented for the trees shown in Figure 4.8.

B C

Figure 4.8: Trees T and T" form an example of polytomy and are used for

experiments.

In the trees shown in Figure 4.8(a) and 4.8(b), only three leaf nodes (A, B,

and C) are common and the trees show a conflict on the relationship of these

nodes. They also show resolved relationship for distinct leaf nodes. When trees

shown in Figure 4.8 are given as input to the DISTSUPERTREE, the result

of step 3 and step 4 is shown in Figure 4.9.

A B

B 3

C 4 3

ABC

Figure 4.9: Average distance matrix for COMM of Figure 4.8, and a tree for the

same.

The subtrees ofDISTINCT represent subtrees of the corresponding treewith

out any common node. Therefore, the subtrees can be directly attached to the

root node of the ST. The result of DISTSUPERTREE is shown in Figure 4.10
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and the result of Mincut is shown in Figure 4.11.

w XYA B CLMNO

Figure 4.10: The supertree constructed using DISTSUPERTREE for the tree

shown in Figure 4.8.

M N O A B W X

Figure 4.11: The supertree constructed using Mincut for the tree shown in Fig

ure 4.8.

It is clear from the Figure 4.10 and Figure 4.11 that when the tree shown in

Figure 4.8 are given as input to DISTSUPERTREE and Mincut, the DIST

SUPERTREE gives a better fit than Mincut. The input trees disagree on the

relationship of A, B, and C, but the supertree computed using Mincut method

contains triplet AB\C, thus resulting in an unresolved supertree. Both Mincut
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and Modified Mincut are local minima algorithms. There exists an exponen

tially large number of supertrees for a given set of tree and the above algorithms

stop at local minima. The above example shows that the Mincut algorithm is

sensitive to the size of the input trees and in addition, it fails to include the

contradictory information of the input trees. There is no existing supertree or

consensus method that displays all the uncontradicted information [54]. As it

is always desirable to maximize the uncontradicted information that a supertree

displays, our method fills the lacuna.

4.6 Supertree for unrooted input phylogenetic

trees

The phylogenetic tree construction methods typically generate urooted tree to

represent evolutionary relationship. This representation has strong statistical

and natural selection basis, such as maximum likelihood and maximum par

simony methods respectively, to prove its relevance in biology. If the smaller

phylogenetic trees are constructed using these methods, resulting in smaller un

rooted phylogenetic trees. The task of amalgamating these unrooted trees in

such a way that the properties of supertrees mentioned in Chapter 2 are also

satisfied is not possible [54].

The possible alternatives to produce a satisfactory solution or supertree are:

1. Ignore some of the properties.

2. Have restrictions on input trees such as rooted input trees, number ofinput

trees, or restriction on the degree of input trees.

3. Return a collection of supertrees rather than a single supertree.
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Each of possible alternative have its own disadvantages, such as the first

alternative may lead to an uninformative star like tree. The second alternative

is promising but converting unrooted trees to rooted trees and reverting back to

original unrooted trees is difficult. Though, mathematical methods have been

developed for finding roots in a graph yet their biological significance is very

trivial [92]. The third alternative may result in an exponential number of trees

making it difficult to choose the best among them.

In this section, we propose a heuristic algorithm for constructing supertrees

for unrooted input trees. We follow the second alternative of converting the un

rooted tree into rooted trees. We used DISTSUPERTREE to construct rooted

supertree. Finally the resulting rooted supertree is converted to unrooted tree

using the unrooting information acquired during the initial converting process.

4.6.1 Converting trees

It is important to note that the root need not be the temporal or ancestral root

of the tree. This property gives a greater freedom in selecting the root of an

unrooted tree and also makes it difficult to all the possibilities. There are two

possible approaches of converting the unrooted tree to a rooted tree.

The first approach is to select a taxon present in all the trees, consider it as

"pseudo-root". Next the pseudo root is removed along with its incident edges

from all the unrooted trees. The node that was incident to pseudo root is con

sidered as root of each tree. If there are more than one taxon is common in the

input collection, selecting different taxon leads to different resulting supertrees

that leads to violation of some of basic properties of supertrees.

The second approach is to add new leaf node or taxon to all the input trees

and consider its incident node as the root of the tree. It is computationally
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expensive to decide the nodes to which a new node can be attached.

To overcome these problems, we propose an alternative approach based on

pendants vertex and pairs. A vertex of degree one in a rooted or unrooted tree

is called a pendent vertex (i.e. leaf node) and the edge incident on one pendent

vertex is called pendent edge. If a pair of pendant vertices are adjacent to a

non-pendent vertex, which is not adjacent to any other pendant vertices then

the pair is called pendent pair. Pendant pairs should be preserved while merging

two trees for optimality.

The proposed heuristic approach divides the unrooted tree into two rooted

trees by removing the edge that is incident to the nodes that divide the unrooted

tree in to equal number of pendant pairs. This divides each tree T into two

subtrees STiX and STi2. The incident vertices of the removed edged in STa and

STi2 are connected through a new node called temporary root. The remaining

pendant vertices are added based on their position in other trees. The algorithm

is as follows:

ALGORITHM: ROOT(T)

begin

1. Remove pendant vertices from each tree leaving pendant pairs.

2. Remove the edge that divides the into two subtrees with equal pendants

3. Add a new root node and attach the roots of the subtrees with this node

4. for each tree T,

5. for each pendant pair pj

if Pj G Tk then

attach the pendant vertex pj to the subtree consist of other

pendant vetex of the pendant pair found in Tk.

else
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4-6 Supertree for unrooted input phylogenetic trees

Attach either the taxon to any subtree. The result will not be effected

end (if)

end (for)

end (for)

end (Algorithm)

Working of this algorithm can be illustrated with the following example. The

input trees are shown in Figure 4.12. Trees after removing the pendant vertices

are shown in Figure 4.13. Input trees shown in Figure 4.12(a) have an additional

pendant vertex E. The pendant vertex E is a part of pendant pair tree shown

in Figure 4.13(b). Therefore, according to step 5, in the above algorithm, the

vertex E is to be attached to the subtree consisting of node D as the taxa E and

D share a pendant pair in tree shown in 4.13(b). The rooted tree for the input

trees are shown in Figure 4.14.

C a E

D B

00

Figure 4.12: Two unrooted phylogenetic trees.

A generic supertree algorithm for amalgamating the converted rooted trees

is as follows: The algorithm first computes the supertree then selects a suitable

set of nodes to condense and remove the attached root nodes. The informa

tion retained in the form of equal pendants can be used to condense nodes. In
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D B

(») (1.)

Figure 4.13: Trees after removing the pendant vertices from trees shown in Fig

ure 4.12.

Figure 4.14: Rooted trees for the trees shown in Figure 4.12.

other words, either STx or STi2 is condensed. This leads to the final unrooted

supertree.

ALGORITM: MERGE( X )

begin

1. T = ROOT{X)

2. T = DISTSUPERTREE(T)

3. for each tree T

Condense either STx or STi2.
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4-6 Supertree for unrooted input phylogenetic trees

end for

end

The result after step 2, when MERGE algorithm is applied to the input

trees given in Figure 4.12 is shown in Figure 4.15. The final supertree is shown

in Figure 4.16. As the input trees are compatible any subset of taxa in subtree

STx and ST2 will not be on different path from root to the leaf node in all the

trees. This indicates the condensing any sub tree will not effect the resulting

supertree. Both the changes leads to same isomorphic graphs.

Figure 4.15: Result of DISTSUPERTREE when applied to the trees shown in

Figure 4.12.

Figure 4.16: Final unrooted supertree for the trees shown in Figure 4.12.

Unlike the other rooting methods the proposed approach preserves the in

formation of edges removed during rooting the trees. Moreover, nodes to be
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connected to temporary roots can be easily identified and resolved in polynomial

time. This depicts the superiority and uniqueness of the proposed method.

4.7 Conclusion

The DISTSUPERTREE algorithm, presented in this chapter, demonstrates all

desirable properties of supertree algorithms. It has a polynomial time complexity

and results in a single output tree for a given set of input trees. Most of the

supertree methods do not return a supertree for incompatible input trees. The

supertree method presented in this chapter always returns a single supertree.

The supertree methods which depends on the maximal agreement such as Jesper

et al. [93], remove the edges which represents conflicting information resulting

in removal of certain leaf nodes. MRP is a global optimization technique, which

finds one or more optimal supertrees. These methods are computationally heavy.

The concluding comparison of DISTSUPERTREE with different existing

supertree methods is given in table 4.1. The supertree methods are evaluated

on the basic properties such as, time complexity, number of tree returned, and

results of the methods when the input trees carry evolutionary conflicts. Com

parisons on polytomy, where more lineages diverge from the single ancestor at the

same time, and optimization criteria are also made. The result of comparisons

shows that DISTSUPERTREE outperforms all the existing methods.
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Chapter 5

Combining semi-labelled rooted

phylogenetic trees

There are two approaches, agreement and optimization, for combining the small

phylogenetic rooted trees with overlapping taxa into a single tree. Almost all

the existing supertree methods, irrespective of the underlying approach, are de

veloped based on the implicit assumption that only leaf nodes are labelled in

the input trees. On the other hand, it is common that the phylogenetic trees

constructed on morphology and fossils to have labels on internal nodes [94]. The

existing methods to solve this problem took an agreement approach and fail to

return any tree if the input trees are incompatible.

5.1 Introduction

Recently, Page [94] posted an interesting problem of combing the input trees

in which the leaf nodes and some internal nodes are labelled. The phylogenies

constructed based on morphological studies often contain the labelled internal

nodes. This needs a more generalized supertree approach. As yet, AncestralBuild
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[70] and NestedSupertree [95] are the only known algorithms for constructing

supertree of the small phylogenetic input trees with labelled internal nodes.

Both the algorithms are all-or-nothing algorithms. NestedSupertree is a gen

eralization of the AncestralBuild. Both the algorithms give either a tree com

patible to all the input trees or a message indicating that the input trees are

not ancestrally compatible or there is ancestor descendent conflict. The formal

definitions for ancestral compatibility and ancestor descendent conflict are given

in the coming sections. This chapter propose an optimization based divide and

conquer method to combine semi-labelled trees. This method will return a tree

even for incompatible input trees. The conflict is removed by deleting the con

flicting edges based on least square error estimates. Once the conflict is resolved,

the Adam's consensus algorithm [91] is used to construct the supertree. The

algorithm is applied on two datasets, one consists of semi labelled phylogenetic

trees of spiders, and the second data set consists of hypothetical fully labelled

tress.

5.2 Background and Preliminaries

In this chapter, we follow the terminology analogous to [70] and [95]. We present

some of the basic concepts which are sufficient to understand the problem as well

as the proposed solution.

A rooted phylogenetic tree, on label set S, is a tree T with a function /, in

which all the nodes have degree three or more except the root node and leaf node,

which have degree at least two and one respectively. The function / maps from S

to leaf nodes of the tree T, f : S —> setofleafnodes. Semi-labelled phylogenetic

tree on label set S is a generalization of a simple phylogenetic tree with all the

leaf nodes as well as some of the internal nodes labelled. Let T be a semi-labelled

90



Chapter 5. Combining semi-labelled rooted phylogenetic trees

tree with vertex set V. A function assigns the labels to node with the degree one

and two. Moreover, some of the internal nodes can even be labelled but the leaf

nodes must be labelled.

Let T be the rooted phylogenetic tree with the label set S. Given the label

set S , such that the topological restriction of T to S is the tree obtained by

deleting the nodeswhich are not in the path from root to any node in S' and then

> contracting the internal edges whose degree is two. The topological restriction

is represented as T" = T\s>, an example of which is shown in Figure 5.1. T" is

called the induced subtree of T by S'. A rooted tree T is said to display another

rooted tree T" if T\g> is isomorphic to T". A set of semi-labelled trees G is said

to be compatible if there exists a semi-labelled tree T, which displays every tree

inG.

a b d

7"=r71{a,b,d,g}

Figure 5.1: Two rooted semi-labelled trees. T" is induced subtree or restriction

of T on the labels {a, b, d,g}.

A node a is said to be descendent of another node b if the path from root

to a includes the node b. A rooted tree T is said to ancestrally display another

rooted tree V if S' C S and T\s> is restricted in such a way that whenever a

is strict descendent of b in T then a is also a strict descendent of b in T". A

collection of semi labelled trees Z is ancestrally compatible if a semi-labelled
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5.3 The ResolvedSupertree Algorithm

tree R ancestrally displays all the trees in Z. Two labels, a and b, are said to

be pairwise consistent if whenever a is a strict descendent of b in some tree in Z

then a is always a strict descendent of b in every tree of Z whose label contains

both a and b.

5.3 The ResolvedSupertree Algorithm

In this section, we define the ResolvedSupertree algorithm for semi-labelled col

lection of input trees. The algorithm is based on the construction of conflict

graph. The conflicts are identified and resolved using least square error crite

rion. Then the Adam's consensus tree method [91] is used for the construction

of the semi-labelled supertrees.

As a first step, new distinct labels are assigned to the root nodes of the

input trees if the root node is not labelled. The input trees are then divided into

multiple trees by cutting the tree till its internal label. The internal labelled node

is considered as the leaf node label for the parent tree and root node label for the

child tree. The division of the semi-labelled input trees is shown in Figure 5.2.

The conflict graph consists of only weighted arcs (directed edges) and may

have cycles in it. Let Z' be the collection of semi-labelled rooted trees and their

child trees. The arcs from node labelled a to the node labelled b is added to the

conflict graph if a is an ancestor of b in any of the tree in Z'. The number of

trees that represents the same child parent relationship of the nodes are assigned

as the arc weight. An example is shown in Figure 5.3.

The root nodes of the trees Ti and T2 are not labelled, for the construction

of conflict graph we assign new distinct labels ux and u2 to the root nodes of the

trees Tx and T2 respectively. The conflict graph for the trees Ti and T2 (shown

in Figure 5.2) are given in Figure 5.3.
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a b g

Figure 5.2: Two rooted semi-labelled trees Tl and T2 and the resulting trees

after dividing from internal labels.

The given input tree collection can have the conflicting branch information.

These conflicts are detected using a graph based approach that results in a con

flict graph. This conflict graph is used for resolving the conflicts. A simple

strategy is applied, which removes the edges that agree (appear in) by least

number of trees is to resolve the conflict. In phylogenetics it is usually assumed

that the information given in most number of trees is near to true phylogeny [96].

Once the conflict graph (CG) is ready, it is searched for different conflicts and

the algorithm ConflictResolve is applied to resolve the conflicts. The algorithm

results in a directed tree and parent table. The directed tree, with all the nodes

having indegree exactly one, except the root node with indegree zero, is also
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Figure 5.3: Conflict graph for semi-labelled trees Ti and T2 (shown in Figure 5.2).

called resolved graph. Based on the resolved graph, the subtrees are modified.

Let the node a be ancestor of nodes {b,c, d,e] in divided collection of trees.

The resolved graph shows that if the node a has child list {b,c, d}, then all the

trees in the divided collection with the root node labelled a are refined for child

list {b,c, d}. Therefore, the final trees having root as a, which are combined to

get the supertree, have {b,c,d} subset as its descendants. The parent table gives

the information about the label of the least common ancestor of the set of labels

given in the table.

ALGORITHM: ConflictResolve ( CG )

Input: Conflict Graph constructed for the given input semi-labelled trees.

Output: Resolved graph and parent table.

Begin

for each node n in CG having indegree two or more do

if the originating node has indegree 0 (zero) then add node n to the

child list of originating node and remove the arc between them.
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else

Delete all minimum weight incoming edges.

In case of tie or more than one incoming edges, the following rules

can be applied:

If n has Ox and 02 as originating nodes then if Ox is the descendent

of 02 then the link between 02 and node n is removed.

end (if-else)

end (for)

for each directed cycle in CG do

Remove the arc with least weight. In case of tie remove; each

minimum weighted arc and calculated the error using Least Square

error criterion. Remove the edge with minimum least square error.

> end (for)

return Modified Conflict Graph (MCG) and parent table.

end (Algorithm)

The algorithm ConflictResolve returns the modified conflict graph and par

ent table. The modified conflict graph is obtained by removing the conflicting

arcs which leads to minimum error. All the nodes in the resulting modified graph

^ have indegree equal to one. The immediate descendents of each node n in modi

fied conflict graph represents the set of labels that the trees with n as root label

can have. Finally the Adams consensus tree is used for the construction of the

supertree.

ALGORITHM: ResolveSupertree ( Z, MCG, parent table)

Input: Divided collection of semi-labled input trees (Z), Modified

Conflict Graph and parent table.

Output: Supertree for semi-labelled input trees.
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begin

for each node n in modified conflict graph do

Make a set, S, of all immediate descendents of node n.

Find the restrictions of all the trees in Z with root

n on S.

for all modified trees with root node n do

Find the restriction of each tree on common nodes

Apply Adams consensus tree for the modified trees.

Add remaining taxa to appropriate edge.

end (inner for)

end (outer for)

Merge all the trees to a make single tree as if tree T has a leaf

node label x same the root label of T"

T is attached to T at the leaf node x.

for each entry e in parent table do

Add a label, e, to the most recent common ancestor of the set

element in entry e.

end (for)

Remove all the new distinct labels assigned to the roots of the

Unlabelled roots of the input trees.

end (Algorithm)

5.4 Experimental results

To illustrate the algorithm, ResolvedSupertree is applied to a data set consists

of semi labelled phylogenetic trees of spiders. The two spider trees, shown in
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Figure 5.4 are taken from [94].

Grad

Aust

Ara-3

Arac

Hypo Ara-2

Myga

Ambi

Figure 5.4: Two trees for spiders and related taxa. These can be obtained from

study Slz6z97cl4c42c30 from TreeBase.

We have taken the first four letters of the taxa in the Figure 5.4, the full

names of the taxa can be obtained from study 51x6x97cl4c42c30 from TreeBase

[97] or [94]. The first step is to label the root nodes of the input trees. However,

since both the trees are root labelled, therefore this step is avoided. Next, the

trees are divided into child and parent tree through its internal labelled node.

The internal label node, in master tree, is now leaf node in parent tree and

root node label in child tree. The collection of trees divided from input trees

(Figure 5.4) is shown in Figure 5.5.

The conflict graph is constructed based on the guidelines given in the algo

rithm. The conflict graph for input trees (Figure 5.4) is shown in Figure 5.6.
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The collection of divided trees and the conflict graph is given as an input to

the ConflictResolve algorithm. As the input conflict graph does not have any

directed or underlying cycles, the algorithm return the same conflict graph with

only Arac and relative arcs from the graph; Arac is added as the most recent

common ancestor of the labels Ara-1 and Ambi, in parent table.

Ara-1

Ara-1Arac

Ambi

Neoc

Ara-2 Neoc

Hypo

Amau

Ara-3

Opis
Ara-2

Opis

Myga

Dein

Orbi

Ara-3

Neoc

Ara-2

Ara-3

Aust

Neoc

Pale

Figure 5.5: Trees obtained from dividing the input trees shown in Figure 5.4.

The conflict graph shown in Figure 5.6 does not have any cycles and under

lying cycles in it. The arcs, Ara-2 to Neoc, Neoc to Ara-3, Neoc to Aust, are

weighted 2 as they appear in both the input trees; rest of the arcs carry unit
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Arac

Ara-1

Scyt Fili Amau Lyco Diet

Dein Ulbo Aran

Figure 5.6: Conflict graph for the input trees shown in Figure 5.4.

weight. Now it is straightforward to costruct the supertree for each smaller tree

with same root label and merge them for the final supertree. The final supertree

for the input trees is shown in Figure 5.7. The supertree can be constructed for

the trees shown in Figure 5.2 using the conflict graph shown in Figure 5.3.

5.5 Conclusion

The proposed algorithm addresses an extremely important problem in classifi

cation. The ResolvedSupertree outperforms the NestedSupertree and Ancestral

Buildas it preserves all the nesting information common to all the input trees due
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Figure 5.7: Supertree for the spider trees shown in Figure 5.4.

to underlying Adams consensus tree construction method. On the other hand,

both the NestedSupertree and AncestralBuild may not display the information

carried by all the input trees [95].

Above all, this is the first algorithm which resolves the conflicts or incom

patibilities and returns the semi-labelled supertree even for incompatible semi-

labelled input trees. The conflicts are removed based on minimum error criterion,

which is a quite sensible approach for resolving the conflicts.
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Combining rooted phylogenetic

trees with ancestral divergence

time

Many supertree methods have been developed for amalgamating the small rooted

phylogenetic trees with overlapping taxa into a single tree. These methods com

bine the input trees based on the topological information carried by each of the

input tree. Other important evolutionary information such as fossil data, molec

ular dating data and actual divergence time estimates are usually ignored. If the

available evolutionary information is considered with tree topology for combining

the input collection of trees then the resulting supertree may be more accurate

than the supertree constructed without using the additional information. The

existingsupertree methods with the ability to include additional evolutionary in

formation are the extensions ofthe BUILD algorithm which have the property of

all-or-nothing, i.e., if the input collection of trees is incompatible, the algorithm

fails to return the supertree.
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6.1 Introduction

Supertree construction methods are generally classified into two categories, op

timization and agreement methods, based on their objective function. The opti

mization based supertree construction methods result in supertree that has the

maximum fit for certain objective function when applied to a given collection

of input trees. On the other hand, the supertree constructed using agreement

based approaches represent the groupings which are common to all the trees. The

agreement based methods show the groups or clusters present in all the input

trees and was introduced by the Gorden [98]. When there are conflicts in the

input collection the resulting supertree constructed using the agreement tech

nique may have polytomies. The disadvantage of using optimization technique

when the input tree collection show conflicting information is that the resulting

supertree may not have all the relationships present in the input tree collection.

The agreement supertree methods include MinCutSupertree [53] and its variants

[12, 69, 70], and the variants ofstrict supertree methods [98, 99, 100]. The Ma

trix Representation of Parsimony (MRP) [64, 65], Bayesian supertree [101] and

MinFlip supertree methods [76] optimize the objective function for constructing

the supertree, therefore, they come under the optimization based approaches. A

comprehensive survey on supertree methods is given in [102].

Till date, RANKEDTREE [12] is the only published supertree construction

algorithm, which incorporates the additional information, such as divergence

date along with the tree topologies. This is an extension of BUILD [63] and

suffers with the problem of incompatible input trees. The disadvantages of the

RANKEDTREE are as follows.

1. It can not process the incompatible input trees.
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2. It does not represent all the nesting present in the input collection [95].

3. It assumes only topological incompatibility and neglects other conflicts,

such as conflict in divergence dates information.

This chapter propose a supertree method, which incorporates relative time

divergence information with tree topologies. This method returns a tree even for

incompatibilities such as divergence dates conflicts and incompatibility between

topology and divergence dates. We follow the least error method for removing

the conflicts. Once all of the conflicts are resolved, the Adam's consensus algo

rithm [91] is used to construct the supertree. Finally a rank function is used to

rank the internal nodes of the resulting supertree based on the divergence date

information. The algorithm is applied to a data set consisting of hypothetical

trees with divergence time.

In addition to the aforementioned properties, the proposed algorithm satisfies

the desirable properties of the supertree construction methods, given in chapter

2.

Figure 6.1 shows the generic architecture for incorporating the divergence

date information into the existing supertree methods. The process includes

three modules: conflict detection, conflict resolution and supertree refinement.

The conflict detection module detects and resolves the divergence date and tree

incompatibilities. Three types of conflicts that are handled by the proposed

method are:

1. Conflicts in relative divergence data information

2. Tree incompatibilities

3. Conflicts between trees and divergence date information
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Conflict Resolution (Supertree
Methods}

^Optimization Techniques^

Refined Supertree

Figure 6.1: A generic architecture for constructing the supertrees with divergence

date information.

The conflict resolution module is an integrated part of the optimization based

supertree construction methods, whereas the methods like BUILD [63] and its

variants need a collection of compatible input trees. The supertree refinement

module makes use of processed divergence date information and the result of

supertree module to return a refined supertree.

6.2 Background and Preliminaries

In this section, we present necessary concepts to understand the problem and

solution of incorporating ancestral divergence times along with input tree topolo

gies for constructing supertree.

A rooted phylogenetic tree, on label set S, is a tree T in which all the internal

nodes have degree three or more, while the root node and leaf nodes have degree
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at least two and one respectively. Polytomies are referred to the nodes that give

rise to three or more descendent lineages simultaneously. Mathematically, these

are the internal nodes in the tree with degree more than three. This is usually

the result of insufficient or conflicting information about the order or branching

information.

Let G be a collection of rooted phylogenetic trees. A tree T is said to be

a supertree if and only if the tree T displays all the trees in G. Let Gx be a

phylogenetic tree. For all vuv2 € V(T),Vi <Gl v2, represents that the node

v2 is descendent of vx in the tree d. The unique vertex of Gx that is the

greatest lower bond of Vi and v2 under <Gl is referred to as the most common

recent ancestor of vi and v2 of T, represented as MRCGl(vx,v2). The supertree

constructed using the input collection G, where Gx G G, should preserve the

vi <d v2 relationship found in Gx, i.e. vi <T v2 . A set of phylogenetic rooted

trees G is said to be topologically compatible if there exists a phylogenetic tree

T, which display every tree in G. The relative divergence date is represented in

the form of statements, such as "div(x, y) predates div(u, v)n, which means that

the divergence of x and y predates the divergence of u and v species. A rank

function, R, maps the interior nodes(V) of the tree to some positive integer such

that V(ui, v2) € V, R(vx) < R(v2) if v2 is a proper descendent of vx.

Similarly, conflict may occur between topology and divergence date infor

mation. For example, consider the supertree topology given in Figure 6.2, and

divergence date information is given as adiv(c,d) predates div(d, f) ". Both the

tree and divergence date represent contradictory information.

The phylogenetic supertree T with ancestral divergence time D is said to

preserve the divergence time if the rank R(a, b) < R(c, d) for the given divergence

time information statement, udiv(a,b) predates div(c,d)".
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^MRC(dJ)

MRC(c,d)

Figure 6.2: Tree topology contradicting the divergence date, "div(c, d) predates
i

div(d,f)".

6.3 Conditions for detecting conflicts in diver

gence date statements

In this section, we formulate the necessary and sufficient condition for detecting

conflicts in the divergence date statements. The lemmas proved in this section

represent different conditions where the divergence date conflicts may occur.

Lemma 6.1 indicates an important property of the divergence date statements.

It states that no subset of species can predate its superset, and if a set X predates

another set Y, then any subset of Y also predates X.

Lemma 6.1. Let T is a tree with label set L{T), which satisfies the divergence

date information "div(X) predates div(Y)", where X,Y e L(T). Let x and y

are subsets of X and Y, x C Xandy C Y, respectively then all of the following

conditions should hold for compatibility:

1. div(X) predates div(x) or MRCT(X) = MRCT{x)

2. div(Y) predates div(y) or MRCT(Y) = MRCT{y)

3. div(X) predates div(y) x
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Proof. Let us consider the trees shown in Figure 6.3 that satisfy the predate

condition, "div(X) predatesdiv(Y)", where X,Y € L(T). It can be easily proved

that the three conditions given in lemma 6.1 should hold for compatibility.

To prove first two conditions it is sufficient to prove that the MRC(N) will

be the root of the restricted tree T\N, where N C L(T). As the root node is

the first divergence event in the tree, it is ranked with the least possible positive

value. Let T be a tree with label set L(T), the restriction of T on a set of labels

N, where N C L(T), can be obtained by removing all the leaf nodes which are

not in N and suppressing the nodes with degree two.

/ Any rooted '""'-•••,.,

""--••....tree structure

MRClX}/ "'~ ~"T'

Any tree structure for
L{X)

\MRC(Y)

Any tree structure forL{Y)

(a)

/ Any rooted '"

""•-•4ree structure ys
MkCffl

MRC(Y)

Any tree structure for L(Y)

Any tree structure for L(X]

(b)

Figure 6.3: (a) A generalized tree satisfying the divergence date statement D,

udiv(X) predates div(Y)". (b) Generalized tree structure preserving D, where

L(Y) c L(X).

Clearly, the resulting tree is V = T\N with N as set of leaf nodes and

MRC(N) as root. Therefore, any subtree T of T has the rank of its root

node greater than the rank of the root node of the parent tree T. Let AT be a set
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of labels then MRC(X) predates MRC(x), where x C X, and the rank of x is

greater than or equal to the rank of X, R(X) < R(x).

The ranks for most recent common ancestor of X and Y, in relative repre

sentation is R{X) < R(Y). The value assigned by rank function to the most

common recent ancestor of Y is always greater than the rank of most recent

common ancestor of X, as udiv(X) predates div(Y)". If we take a set y,y C Y,

then MRC(y) may be a descendent of MRC(Y) or is same as MRC(Y) and its ^

rank will always be R(Y) < R(y). We know that R(X) < R{Y), or MRC(X)

predates MRC{Y), hence, the value of R(y) should be greater than R(X). The

divergence relation between X and y can be given as R(X) < R(Y) < R(y).

This proves the third condition and hence the lemma. •

Lemma 6.2. Let the divergence date information "div(X) predates div(Y)",

where X, Y G L(T), be given. There exists a tree T with L(T) labels. If a 4.

tree represents MRC(X) = MRC(Y) then the divergence information, which

includes X and Y on different sides of divergence notation is incompatible.

Proof. Let X,Y G L(T), they are comparable under < if and only if the one of

them is a strict descendent of other, i.e. X (~)Y = X,Y. li X C~)Y = 0 then

the label sets X and Y are not comparable under <, as neither X nor Y is a

descendent of other. The information given in the divergence date statement *

udiv(X) predates div(Y)" is true if and only if Y is a strict descendent of X,

in other words Y C X, as shown in Figure 6.3(b). The information carried by

the tree, MRC(X) = MRC(Y), is true if they share a set of species which have

the same greatest lower bond, i.e. X D Y = N , where N ^ {X, Y, 0}. Let

the rooted phylogenetic tree T, shown in Figure 6.4, have the labels L(A) and

L(B) and MRC(A) and MRC(B) are not comparable under < or they are on

different paths from the root of the tree.
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If two sets of labels X and Y are selected in such a way that they contain

labels from both A and B, then MRC(X) = MRC(Y), as shown in Figure 6.4.

There are two conditions to achieve MRC(X) = MRC(Y). They are:

1. XHY = {XUY,0}

2. XHY = N, whereN ^ {X, Y}

The condition for preserving the divergence date statement, udiv(X) pre

dates div(Y)", is as follows:

3. X n Y = X

MRC(A)

Any rooted

.tree structure

hIRC (B)

Any treestructure forL(A) Anytree structure forL(B)

Figure 6.4: A generalized tree satisfying the MRC(X) = MRC(Y), where

X,Y C {A and B}.

As condition 3 is not possible with 1 or 2, the two statements, udiv(X)

predates div(Y)" and MRC(X) = MRC(Y) are incompatible and represents a

conflict. •
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Lemma 6.2 helps in identifying the conflict between the divergence date in

formation and tree topology. If given a tree which says MRC(X) = MRC(Y)

and a statement udiv(X) predates div(Y)n then it leads to a conflict.

Lemma 6.3. Let T is a tree with label set L(T), which satisfies the divergence

date information "div(X) predates div(Y)", where X,Y £ L(T) . If Z is a set of

labels with the property Z - X ^ 0 then "div(Z) predates div(X) and div(Y) ".

Proof. Let T is a tree with label set L(T), which satisfies the divergence date

information adiv(X) predates div(Y)", indicating that X DY —X and Y C X.

Consider a set of labels Z such that Z - X ^ 0. Let Z fl X = x, MRC(x) can be

at most MRC(X), the labels Z - x does not belong to X. Therefore MRC{Z)

is MRC(MRC(x), MRC(Z - x)). As the sets x and Z - x belong to different

clusters in the tree, they are not comparable under <. Therefore, MRC(x, Z —x)

is the root of these two subsets and predates both the sets. As Z predates X, it

predates all its descendants. Therefore Z predates both X and Y. •

ALGORITHM: DivCompat( D )

Input: divergence date data D.

The divergence date data is given in udiv(X) predates div(Y)" form.

Output: compatible divergence data data.

begin

sort D by the number of labels in it, in descending order

and attach a conflict flag to each statement .

repeat until all statements have conflict values zero

initialize all conflicts to 0 (zero).

begin

for each statement, s, in sorted D do
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for s+1 to last statement of D do

if there is a statement on X and y, y C Y then

The statement should be udiv(X) predates div(y)v.

else

increment the conflict by one.

end (if)

if there is a statement on X and Z,Z —X ^ 0 then

the statement should be udiv(Z) predates div(X)n.

else

increment the conflict by one.

end (if)

end (for) // first for

end (for) // second for

for each statement in D do

remove the statement with maximum conflict and modify the D.

end (for)

end (repeat)

return D

end (Algorithm)

Figure 6.5: DivCompat: An algorithm for finding compatible divergence dates.

6.4 Supertree with ancestral divergence time

algorithm

In this section, we present the DivCompat and DdateSupertreealgorithms, which

incorporates the divergence date information with topological information.
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6.4.1 The DivCompat Algorithm

The DivCompat algorithm takes the divergence date information as input and

returns compatible divergence information. The algorithm makes use of the

conditions identified in lemma 6.1, 6.2 and 6.3 and is given in Figure 6.5.

Theorem 6.1. Let the divergence date information D applied to the algorithm

DivCompat results in a compatible set of divergence date information statements.

Proof Let D be the set of divergence date information statements. When ap

plied to the DivCompat algorithm, each statement is checked for conflict with

other statements. Both the subsets and supersets of the labels involved in the

statements are considered for conflict detection. Let the divergence date infor

mation statement be udiv(X) predates div(Y)", then X predates any subset of

Y as shown in lemma 6.1. Therefore, any statement on X and y where y C Y,

should be "div(X) predates div(y)", otherwise there is conflict. On the other

hand, if there a set of labels Z, such that Z - X ^ 0 , then the statement involv

ing Z and X or Y should be of the form, udiv(Z) predates div(X) or div(Y)v,

and Z also predates subsets of both X and Y. The algorithm DivCompat checks

for all these conditions in steps 8 and 13. Therefore, DivCompat algorithm de

tects all the incompatibilities in divergence date statements and resolves them by

removing the statements that contradict with maximum number of divergence

date statements. D

The DivCompat algorithm returns a compatible set of divergence date state

ments in polynomial time as it is shown in proposition 6.1.

Proposition 6.1. Let D be the collection consisting of n divergence date state

ments, then DivCompat results in a compatible set of divergence date information
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in time, where n is the number of divergence date statements.

Proof. The running time of the DivCompat algorithm is dominated by steps 6

and 7, which involve comparing different statements for compatibility. Given n

divergence date statements, each statement is compared with other statements.

The comparisons take n iterations and the loopin step 6 runs (n—i) times, where

i is the statement number which is being compared with other statements. These

two loops take 0(n2) time. Heap sort can be used to sort the statements, which

runs in 0(nlogn) time. The loop in step 20 takes 0(n) time as it process each

divergence date statementones. Therefore, the algorithm runsin 0(n2) time. •

6.4.2 The DdateSupertree Algorithm

Our proposed DdateSupertree algorithm makes use of DivCompat and Adams

consensus tree construction algorithms and returns a ranked supertree. As a

first step the divergence data information is applied to the DivCompat algo

rithm, which returns the divergence date statements which are compatible to

each other. A common set of labels are searched among the input tree col

lection and applied to the Adams consensus algorithm. The labels which are

not common to all the input trees are then attached individually to the result

of the Adams consensus tree. Finally the hierarchies are ranked according to

the divergence date statements. The additional information usually refines the

polytomies in the resulting supertree. The polytomies in the supertrees are due

to incompatible or insufficient input information. The algorithm computes the

ranked supertree in polynomial time and preserves all the nesting present in the

input collection.

Theorem 6.2. Let the divergence date information D and input collection of

rooted phylogenetic trees G, be applied to the algorithm DdateSupertree, which
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results in a supertree thatpreserves all the nestings present in the input collection

and also preserves the divergence date statements.

Proof. For collection of input trees T = {Tx,T2, ...,Tk}, if {a, b} nest in {a, b, c}

for every tree T in T, then {a,b} nest in {a,b,c}. The DdateSupertree used

the Adams consensus algorithm as the base and added the nodes unique to each

tree to build a supertree, the resulting supertree preserves all the nesting present

in all the trees. Let the label sets for two trees T\ and T2 are {a, b, c, d,e} and

{a, b, c, d, g, h} respectively. The nestings present in both the trees contain labels

that are present in both of them. If all the nesting of labels present in both the

trees, Tx C\T2 = {a, b, c,d}, is preserved then the supertree built on this, also pre

serves all the nestings present in all the trees. It is proved in theorem 6.1 that the

DivCompat algorithm returns only the compatible divergence date statements.

The DdateSupertree algorithm ranks the internal nodes based on the compatible

divergence date statements returned by DivCompat. Therefore, the resulting

supertree preserves the divergence date statements. D

Proposition 6.2. Given a set of divergence date statement D and collection of

input trees G, a supertree can be constructed using DdateSupertree in 0(kn3)

time where k is number of input trees and n is number of unique labels in the

input tree collection.

Proof. The algorithm consists of three major steps: finding the compatible di

vergence date statements, constructing the supertree and ranking of the internal

nodes of the tree based on the divergence date statements. Finding compatibility

between the divergence date statement takes 0(m2) time as shown in proposi

tion 6.1, where m is the number of divergence date statements. Constructing

the supertree with total n labels can be analyzed as follows. A straightforward

algorithm for Adams consensus tree takes 0(kn2) time, where k is the number of
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trees and n is the number of unique labels in the input tree collection [103, 104].

If the total number of leaf nodes are n, then the labels which are common to all

the trees, I, is always less than or equal to the total number of labels, I < n, and

the number of labels that are unique in all the trees, u, is also less than or equal

to the total labels, u < n. Therefore, the total time required to build Adams

consensus tree is 0(kn2) and adding each unique label takes at most n more

iterations, hence the total complexity for constructing the rooted supertree is

0(kn3). The final step uses the compatible divergence time statements to refine

the supertree, which takes at most m iterations, where m is the total number

of statements divergence date statements. After the incompatibility test there

can be at most m statements. Hence the total time required by DdateSupertree

for constructing the supertree is 0(kn3 + m2 + m). The number of divergence

date statements are always less than or equal to the unique nodes in the input

tree collection, i.e. m < n , therefore the total complexity of the algorithm is

0(kn3). a

6.4.3 An Example

To illustrate the working of DdateSupertree algorithm, it is applied to the tree

collection shown in Figure 6.6. Divergence date information statements are:

1. udiv(d,e) predates div(a,b,c)"

2. udiv(a, b) predates div(d, e)"

3. udiv(a,c) predates div(a,b)"

As a first step in DdateSupertree, the divergence date statements are applied

to DivCompat algorithm that checks the statements for the compatibility. The
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abed e a c bg d 6

Figure 6.6: Input trees for DdateSupertree

Divcompat algorithm first sorts the statements according to the number of labels

in the statement. The order of the statements remains the same as the first

statement has the highest number of labels and the statement 2 and 3 have the

same number of labels, i.e, 2. The first statement is compared with other two

statements. The first statement is "div(d,e) predates div(a,b,c)", and according

to lemma 6.1, all the subsets of {a,b,c} are also the predated by div(d,e). But

the second statement indicates that subset of {a,b,c}, i.e. div(a,b), predates

div(d,e), which leads to a conflict and the conflict flag of second statement is

incremented by one. There is no conflict between the first statement and the third

statement. In second iteration, the second statement is compared with the third

statement, and both are compatible with each other. Finally the statements with

maximum conflicts are removed. In this case, the second statement is a victim

as it is involved in highest number of conflicts. The modified list of statements

are:

1. udiv(d,e) predates div(a,b,c)"

2. udiv(a, c) predates div(a, 6)"

As a second step in DdateSupertree algorithm, the common leaf nodes and

their restrictions are applied to Adams consensus tree algorithm. The set of
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common leaf nodes for the trees shown in Figure 6.6 is {a, b, c, d, e], and the

restrictions on this common set to input trees are shown in Figure 6.7.

Figure 6.7: Restrictions of input trees, shown in Figure 6.6, on {a,b, c, d, e).

The input tree collection shows the conflict due to the clusters involving

species c. The clusters in tree, shown in Figure 6.7(a) are, {a, b},{a, b, c},{d, e]

and {a, b, c, d, e}, and theclusters intree, shown in Figure 6.7(b), are {a, c},{a, b, c},{d, e]

and {a, b, c, d, e}. The two clusters {a, b} and {d, e) in the input collection lead

to a conflict. The Adams consensus tree and the final supertree for the given

input collection is shown in Figure 6.8 and Figure 6.9 respectively.

a c b

Figure 6.8: Adams consensus tree for the input tree collection shown in Fig

ure 6.7.
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b g d

Figure 6.9: Final supertree for input tree collection

Once the final supertree is obtained the refined divergence date statements are

used to rank the internal nodes of the resulting supertree. The final supertree for

the input trees, given in Figure 6.6, is shown in Figure 6.9. The supertree shown

in Figure 6.8, represents polytomy at the divergence node of a, b, and c due to the

conflict in the input tree collection. Most of these polytomies are resolved by in

corporating the divergence date statements and ranking the internal nodes in the

supertree. The first divergence date statement udiv(d, e) predates div(a, b, c)" in

dicates that the rank of MRC(d,e) is less than MRC(a, b, c). Therefore, the rank

of the MRC(d,e,g) is always less than MRC(d,e), according to lemma 6.3. It

implies that the rank of MRC(a, b, c) is greater than MRC(d, e,g). The second

statement, "div(a, c) predates div(a, 6)", indicates that the rank of MRC(a, c)

is less than that of MRC(a,b). The final supertree after incorporating the di

vergence date information is shown in Figure 6.10.

6.5 Conclusion

In this chapter, we proposed an algorithm for incorporating additional informa

tion in supertree construction, which is useful in resolving polytomies and results
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a b c g d

Figure6.10: Final rankedsupertree after incorporating the divergence date state

ments.

in more accurate and refined tree. We identified and proposed a suitable method

to resolve additional conflicts such as, conflict in divergence date information,

conflict between tree topology and divergence information. The proposed algo

rithm satisfies all the desirable properties of the supertree algorithms. DdateSu

pertree accomplishes the task of incorporating the divergence date information

and resolves the conflicts without additional computational complexity. Both

RankedTree and DdateSupertree computes a supertree in 0(kn3) time, where

k is the number of trees in input collection and n is the number of unique leaf

nodes in the input trees. DdateSupertree shows superiority in terms of pre

serving all the nestings, as proved in theorem 6.2, and robustness to divergence

date statement conflicts and the conflicts between divergence date and input tree

topology.
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Conclusion and Future Work

7.1 Contributions of the thesis

The contributions made in this thesis are as follows:

• A phylogenetic network reconstruction algorithm with constrained recom

bination was presented in this thesis. In the previous available algorithms

there is information loss due to conversion of the molecular sequences into

distances. In order to avoid this, our algorithm utilizes both similarity and

dissimilarity measures for the construction of the network. This gives a

nearest visualization of the data to the actual representation. We proved

that our algorithm results in minimum number ofgalls in the resulting net

work. Our specialcontribution lies in proposing a pattern recognition based

node classification algorithm that considers the pattern in the similarity

and dissimilarity matrices and classifies into three types: Null, Mutation,

and Recombination.

The time required to compute the phylogenetic network by popular al

gorithms such as SplitTree is 0(n5),T-Rex is 0{n4) and NeighborNet is
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0(n3), where n is the number of node. On the other hand, the reconstruc

tion algorithm proposed in this thesis computes the phylogentic network

in 0(n2) time. This is very significant improvement with large 'n' values.

The amalgamation of a collectionof the input trees into a single output tree

known as supertree is an important task in various areas of classification,

particularly evolutionary biology. We solve the two problems of supertree

contruction algorithm by proposing a reasonable criterion by which to com

bine the input trees, and designing a polynomial time algorithm to carry

this out. The least common ancestor algorithm is used for the detection

of the least common ancestors of different species. The new technique for

the supertree construction for rooted trees proposed by us exhibits all the

desirable properties, such as preserving the branch information of the in

put trees, invariant to change of order of trees and so on. Our approach

is based on a variant of standard UPGMA algorithm that employs a new

distance measure to compute the supertree in polynomial time.

It should be noted that the most of the supertree methods do not return a

supertree for incompatible input trees. The supertree method presented in

this thesis always returns a single supertree. In addition, other supertree

methods generally depend on the Maximal Agreement and they remove

the edges which represents conflicting information resulting in removal of

certain leaf nodes. However, our method preserves all the leaf nodes. The

supertree methods were evaluated on the basic properties such as, time

complexity, number of trees returned, polytomy, optimization criteria and

results of the methods when the input trees carry evolutionary conflicts.

The comparison shows that our supertree construction algorithms outper

forms all the existing methods. f
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Mostphylogenetic supertree construction methods utilize typically onlythe

discrete topology of the input trees and ignore other information that might

be available. In this thesis, we proposed an algorithm for incorporating ad

ditional information in supertree construction, which is useful in resolving

polytomies and results in more accurate and refined tree. Till date only

RankedTree [3] is a published supertree algorithm with the capability to

incorporate divergence date information for supertree construction. It is an

extension of BUILD [4], which could not process incompatible collection of

input trees. Moreover, the supertree constructed with [4] or its variants do

not represent the nestings present in all the input trees [2]. In contrast, our

algorithm DdateSupertree is an extension of Adams consensus tree, which

represents all the nestings represented by every input tree [5], and so does

the DdateSupertree.

We identified and proposed a suitable method to resolve additional con

flicts such as, conflict in divergence date information, conflict between tree

topology and divergence information. The proposed algorithm satisfies

all the desirable properties of the supertree algorithms. DdateSupertree

accomplishes the task of incorporating the divergence date information

and resolves the conflicts without additional computational complexity.

Both RankedTree and DdateSupertree computes a supertree in polynomial

0(kn3) time, where k is the number of trees in input collection and n is

the number of unique leaf nodes in the input trees. DdateSupertree shows

superiority in terms of preserving all the nestings, and robustness to diver

gence date statement conflicts and the conflicts between divergence date

and input tree topology.
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7.2 Future Work

There are a number of research issues which spring up from our work. We have

worked on resolving several crucial problems of phylogenetic analysis. There

are several other phylogenetic and other bioinformatics problems that could be

related to the contributions in this thesis. They are as follows:

1. The reconstruction of phylogenetic network involving additional data such

as ancestral divergence time.

2. The pattern recognition based algorithm proposed in thesis can be extended

to implement similarity and dissimilarity measures for the additional data.

3. The supertree construction algorithms can be further modified to work

with the unrooted input trees with some internal nodes labelled, than just

rooted input trees. This will require developing more generalized algorithm

to incorporate the labelled internal nodes.

4. An important and practical consideration will be to incorporate the weights

of different attributes in the phylogenetic network reconstruction and su

pertree reconstruction algorithm. The weight is assigned based on the

reliability of the feature, physical significance of feature, etc. The incorpo

ration of weights will yield supertrees and phylogenetic networks that are

closer to real-life .

5. Methods can be developed to find the divergence time between the species

using their DNA sequences.

6. The methods can be extended to find the phylogenetic diversity for the

supertrees constructed using divergence date statements and higher level

taxonomic information.
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7. Everyday large number of phylogenetic trees are constructed, analyzed and

published. Efficient methods ofstoring and retrieving can also be developed

as an extension to this work.
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